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The highest activity a human being can attain is learning

for understanding, because to understand is to be free.

Baruch Spinoza
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1 Introduction

Traits of animals and plants, e.g., height or age at maturity, are influenced both by genetic (heri-

table) and environmental factors. Selection exploits genetic properties of a population by passing

favorable alleles onto subsequent generations. For breeding animals or plants, it is therefore cru-

cial to distinguish between genetic contributions and environmental factors influencing traits. Thus,

decomposition of phenotypic variances and covariances between traits into their genetic and en-

vironmental components has been under investigation for decades (e.g., Fisher 1918; Hazel 1943;

Falconer 1952; Robertson 1959; Searle 1961; Roff 1995; Lynch and Walsh 1998).

Identifying genetic relationships between traits is an important research focus when investigating

genetic covariances; an example is a study of genetic correlations among 16 quantitative traits of

maize (Malik et al. 2005). Insights into the connections between developmental or phenological

traits with target traits such as stress resistance might assist breeding decisions. While such rela-

tionships may be antagonistic when two target traits affect each other adversely, they can be useful

in genome-enabled prediction of traits when a complex trait is influenced by a second trait that is

easier to measure, assess, or breed for. In addition, it has been found that selection for traits with

low heritability can be enhanced by joint modeling with genetically correlated traits. These and

other advantages of multiple-trait prediction models have been corroborated by experimental and

simulation studies (e.g., Jia and Jannink 2012; Pszczola et al. 2013; Guo et al. 2014; Jiang et al.

2015; Maier et al. 2015).

Discovering and understanding phenotypic relations among traits is therefore important in this con-

text. Statistical methods have been developed that specify connections among traits as directed influ-

ences, in contrast to standard multiple-trait models where connections among traits are represented

by unstructured covariance matrices. One effective approach, structural equation models (SEM),

can describe systems of phenotypes connected via feedback or recursive relationships (Gianola and

Sorensen 2004). SEM are regression models that allow for a structured dependence among vari-

ables, e.g., by a structure matrix Λ. Elements of Λ represent effects of dependence and can be either

freely varying, or the structure can be constrained by setting some entries to zero a priori.

For a given structure Λ, the effect of one variable on another can be estimated using likelihood-

based or Bayesian approaches. SEM are well established and many studies in the animal sciences

have investigated causal relationships among traits using various SEM approaches and data sets, e.g.,

body composition and bone density in mouse intercross populations (Li et al. 2006), calving traits in

cattle (de Maturana et al. 2009, 2010), or gene expression in mouse data by incorporating genetic

markers (Schadt et al. 2005; Aten et al. 2008). Methodology, applications, and potential advantages

of SEM in prediction of traits were reviewed by Rosa et al. (2011) and Valente et al. (2013). One

of the limitations of SEM is that connections between traits and their directions are assumed to be

known to be able to estimate their magnitude (e.g., Valente et al. 2013).
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To investigate connections among traits, Bayesian network (BN) learning methods can be used. BN

are models representing the joint distribution of random variables (e.g., traits) in terms of their

conditional independencies. There are two main types of algorithms for learning a BN: constraint-

based and score-based algorithms. The former use a sequence of conditional independence tests to

learn the network among variables, while the latter compare the fit of many (ideally all) possible

networks to the empirical data using a score (Nagarajan et al. 2013).

BN have been used for many purposes in quantitative genetics, for example, to predict individual

total egg production of European quails using earlier expressed phenotypic traits (Felipe et al. 2015)

and to study linkage disequilibrium using single nucleotide polymorphism (SNP) markers (Morota

et al. 2012). BN have also been employed in genome-assisted prediction of traits, with a performance

that was at least as good as that of other methods such as genomic best linear unbiased prediction

or elastic nets (Scutari et al. 2014). In addition, many studies have investigated connections among

several traits via a BN analysis incorporating quantitative trait loci and phenotypic data (Neto et al.

2008, 2010; Winrow et al. 2009; Hageman et al. 2011; Wang and van Eeuwijk 2014; Peñagaricano

et al. 2015). BN can also search for connections among SNPs and traits for feature selection, or

in genome-wide association studies by finding the Markov blanket for one or several traits (Porth

et al. 2013; Scutari et al. 2013). However, interpretation of BN connections as causal influences is a

delicate issue. Pearl (2000) offers a modern perspective on causal inference, methodology and issues

in causal inference were reviewed by Rockman (2008). Within the scope of this thesis, learning BN

is a hypothesis-generating tool with respect to the causal nature of the connections found.

Valente et al. (2010) investigated causal connections among phenotypic traits using an approach

combining BN and SEM. They learned network structure from Markov chain Monte Carlo (MCMC)

samples of the residual covariance matrix of a Bayesian multiple-trait model using the inductive-

causation (IC) algorithm. This was a preliminary step before fitting SEM with the selected structure

to estimate the magnitude of influences among traits. These authors illustrated the effectiveness of

their approach with a simulation study.

While modeling of relationships with BN and SEM has been shown to be very effective, all applica-

tions discussed so far have considered both the genetic and residual trait relationships jointly. In this

thesis, a novel approach combining BN and SEM analysis is presented to investigate several traits

simultaneously, and for the first time with respect to their genomic and residual trait relationships

separately. Arguably, causes for genomic connections among traits must be different from those for

residual relationships in designed plant breeding experiments, the latter mainly due to environmen-

tal causes. The novel approach developed works as follows: First, different BN algorithms were

used to learn genomic and residual networks. Second, the BN algorithms were compared and as-

sessed by fitting SEM to the structures learned from them. The learned networks may provide deeper

insight into relationships among traits than pairwise-association measures (such as correlations or

covariances) on the genetic and residual levels.
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Instead of using the IC algorithm to analyze MCMC samples of covariance matrices, it was decided to

use predicted (fitted) genomic values and residuals from a multiple-trait model as input variables for

structure-learning algorithms. This was enabled by finding a suitable transformation of the genomic

values to meet sample-independence assumptions of the BN learning algorithms. Using effects for BN

learning instead of MCMC samples of covariance matrices has the following advantages: it allows

using available software for learning BN, is computationally feasible, and use of bootstrapping to

assess uncertainty regarding the edges of the connections is straightforward (Scutari and Nagarajan

2011, 2013; Nagarajan et al. 2013). Using this strategy, it was possible to study the behavior of

various BN algorithms on experimental data and compare them to each other.

In addition, effects are expected to be more accurately estimated than covariance matrices in mixed

models because they are one hierarchy higher within the Bayesian approach. Results from boot-

strapping can flag confounders affecting the networks (Edwards 2000; Nagarajan et al. 2013). This

is an important opportunity when analyzing experimental data which cannot be assured to be free of

confounders. Experimental data also poses a challenge to evaluate results since the true connections

remain unknown. This issue is addressed in this thesis by proposing using SEM as a structure-

evaluation tool, comparing the found structures with the standard, unstructured model.

The novel separation of genomic from residual structure allows understanding which trait connec-

tions might be manipulated by selective breeding because they have a genetic origin, whereas phe-

notypic structures or residual structures include many other causes for trait connections, especially

environment and morphology. If two favorable traits are adversely genetically correlated and a third

trait is found to be inducing this connection, this third trait might help with breeding decisions re-

garding the two antagonistic traits. In line with this argument, a genomic network analysis can also

reveal spurious connections, e.g., those that have a high genomic correlation, but no direct genomic

connection with each other in a Bayesian network (Nagarajan et al. 2013). After illustrating trait

connections in such a case, a clearer picture on which traits should be included in a multiple-trait

prediction model or in an indirect selection process may be gained.

Traditionally, in quantitative genetics and plant breeding phenotypic variation is decomposed into

random genetic and environmental contributions; genotype-by-environment interaction and geno-

type-by-environment correlation can confound both of these contributions. In experimental data

from plant breeding, phenotypic data points are usually averaged across locations representing

different environmental conditions, and every location contains replications of experiments. This

approach reduces noise from environmental effects and also effectively decreases the influence of

genotype-by-environment effects in the data (Falconer and Mackay 1996). With such data, genomic

trait covariances fitted with a multiple-trait genome-enabled prediction model represent mainly ge-

netic connections among traits, induced inter alia by pleiotropy and linkage disequilibrium. Resid-

uals estimated with such a model include, e.g., nonadditive genetic effects and nonaccounted-for

(micro-)environmental effects, such as nongenetic physiological and morphological trait dependen-

cies.
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In all methodology presented so far, the residual structure contains trait covariances from several

different causes and separating macro-environmental from micro-environmental trait connections

has not been possible so far. Later in the thesis, it is therefore proposed to use a refined decomposi-

tion of phenotypic covariances into genomic, micro-, and macro-environmental components. Micro-

environmental trait correlations might be helpful for understanding and improving the impact of

the field design (including distribution of treatments) on trait correlations. So, this approach helps

to identify alterable nongenetic trait connections (e.g., induced by field design), and to distinguish

them from inalterable factors concerning a certain site (e.g., induced by climate, weather, presence

of certain diseases, and soil quality).

In order to model these micro-environmental effects, the use of a single random component with

a Gaussian kernel including one bandwidth parameter for modeling trait covariances due to spatial

arrangement of plots in experimental trials is an appealing approach presented in this thesis (cf. Pérez-

Elizalde et al. 2015 concerning the genomic component). Using a single random component instead

of several is expected to represent a robust modeling approach for this purpose. Further, summarizing

all micro-environmental effects into a single random component allows for BN structure analysis of

this component, e.g., in order to identify spurious correlations.

Spatial models are well known, both in terms of their ability of adjusting for random micro-en-

vironmental confounding in experiments (e.g., Gilmour et al. 1997 or Piepho et al. 2008) and in

their statistical formulation (e.g., Pérez-Elizalde et al. 2015 concerning the genomic component).

In experimental trials, random micro-environmental factors such as unevenly distributed fertilizer,

light, soil moisture, or diseases may lead to covariance of phenotypic values among neighboring

plants or plots in the trial. In addition, larger and nonrandom spatial trends, e.g., water or light

gradients caused by slopes in the field, can confound experimental data. Nearest neighborhood

adjustments such as the Papadakis method, random walk, and the linear variance model (Piepho

et al. 2008) have been widely applied in these circumstances. More complex models accounting

for random confounding and gradients have been introduced recently (e.g., Bernal-Vasquez et al.

2014, Rodríguez-Álvarez et al. 2016, De Faveri et al. 2017, Velazco et al. 2017). These methods

usually include a random component per dimension in the experiment (also referred to as “rows”

and “columns” in field design) and supplement them by accounting for various kinds of spatial effects,

e.g., derivatives of these dimensions (e.g., diagonal) or components for gradients.

For exploring trait connections due to micro-environmental trait covariances, however, a single ran-

dom component can be used to model all micro-environmental effects together. The approach of

Pérez-Elizalde et al. (2015) was therefore amended in this thesis, using physical distances in the

trials as features of joint random micro-environmental factors of neighboring plants. A Gaussian

feature-based kernel with a bandwidth parameter that follows a priori a Gamma distribution was

then applied to experimental data, thereby mapping physical distance onto spatial correlation be-

tween neighboring plots. Using a Bayesian approach, the bandwidth parameter is sampled via a

Metropolis-Hastings (MH) algorithm implemented in this thesis, embedded in an already known
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Gibbs sampler (de los Campos 2015; Lehermeier et al. 2015). This is a more efficient alternative

than a grid search, and enables investigation of sensitivity to hyper-parameters.

Experimental trials may be laid out at several climatically diverse locations, e.g., one site in a dry, hot

place, one in a dry, cold place, one in a wet, hot place, and one in a wet, cold place. Locations can

also vary in soil quality, presence of diseases, plot size and shape, altitude and many other factors.

Each of these locations may contain more than one experimental unit, i.e., crop fields. Fields in a

given location are designed and treated as similarly as possible and placed at close distance because,

in each of these fields, some or all of the genotypes planted in the other field are replicated (e.g.,

Lehermeier et al. 2014). Hence, the bandwidth parameter is expected to be different in every field,

and therefore the posterior mean of distribution of the bandwidth parameter is obtained for every

field separately in a first step, using the aforementioned MH implementation. Afterward, all fields

are integrated into a single model.

This single model contains inter alia a genomic component, a location component, and a spatial com-

ponent, modeling genomic, macro-environmental, and micro-environmental effects, respectively,

complemented with independent and identically distributed errors per plot. This model is referred to

as “one-stage model” throughout the thesis (cf. Bernal-Vasquez et al. 2014). In contrast, the multiple-

trait genome-enabled prediction model discussed earlier is fitted after a preliminary phenotypic anal-

ysis, where adjusted means for each genotype across locations and replications are estimated. These

adjusted means are then decomposed into a genomic component and an error term, modeling ge-

nomic and residual effects and their covariance matrices per genotype, respectively. This approach

is referred to as “two-stage model”.

Regarding the genomic component, the one-stage and the two-stage models produce similar results;

however, only the one-stage model allows for an analysis of micro- and macro-environmental effects

and covariance matrices. The one-stage approach is seen as the gold standard (Bernal-Vasquez et al.

2014). However, practitioners often prefer the two-stage approach as it is computationally more

robust and simpler when dealing with large experimental designs. If the error term’s variances from

the phenotypic analysis are used as weights in the genome-enabled prediction models, the difference

between the one-stage and two-stage models is reduced (Möhring and Piepho 2009; Bernal-Vasquez

et al. 2014).

In this thesis, the advantages of the novel approaches are illustrated using a maize data set. Bio-

logical objectives of this thesis focus on the investigation of connections among maize traits, on the

comparison of networks with respect to two underlying sources of information (genomic and resid-

ual) and genetically different, heterotic maize groups (Dent and Flint). Later, the decomposition

of the environmental covariance into micro- and macro-environmental covariance is investigated.

Five well-characterized complex traits were studied: biomass yield, plant height, maturity, male and

female flowering time.
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This thesis starts with an overview of the plant material used for experimental trials. It continues

with developing the methodology employed for investigating genomic and residual trait connections.

Subsequently, the methodology for constructing the spatial component and the one-stage model is

described. A third section summarizes methods for model evaluation and lists the software resources.

Finally, results are presented and discussed.
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2 Material

The data contain a sample of phenotypes and genotypes representing two important heterotic maize

pools, Dent and Flint. European hybrid breeding exploits the genetic divergence between these

pools, which arose from their geographical separation and different environmental adaptation. Dent,

coming from subtropical climate, was introduced into Europe’s southern regions already at the end

of the 15th century. Flint, adapted to temperate conditions and shorter vegetation periods, followed

around 45 years later and enabled corn production in northern regions (Tenaillon and Charcosset

2011; Mir et al. 2013). Production of the material used in this thesis was similar to modern maize

hybrid breeding programs including crossing within pools, derivation of doubled haploid (DH) lines,

and assessing performance in testcrosses with a member of the opposite heterotic pool.

2.1 Genetic background of Dent and Flint

A panel of half-sib families was available for each pool, where each family contained several full-sib

lines (Bauer et al. 2013). In the Dent (Flint) panel, 10 (11) founder lines were crossed to a common

central Dent (Flint) line. DH lines were derived from these crosses in both panels (Table A1), where

DH lines from one full-sib family are referred to as a DH population. All DH lines were genotyped

with the Illumina MaizeSNP50 BeadChip containing 56,110 SNP markers (Ganal et al. 2011). After

imputation and SNP quality control, 34,116 high-quality SNPs remained in the Dent and Flint panels.

Only markers that were polymorphic within a panel were considered, which were 32,801 (30,122)

SNPs in the Dent (Flint) panel. A total of 831 (805) Dent (Flint) DH lines were used for all analyses

conducted in this thesis.

2.2 Phenotyping and field design

All DH lines (genotypes) were evaluated as testcrosses with the central line from the opposite pool

as tester (Lehermeier et al. 2014). F353 (UH007) was the central Dent (Flint) line, so for example,

performance of the Dent DH line CFD02-003 was assessed using testcrosses CFD02-003 × UH007

and the Flint DH line CFF03-001 was evaluated from testcrosses CFF03-001 × F353 (cf. Table A1).

Experiments were conducted according to an augmented p-rep design (Williams et al. 2011). In the

Dent (Flint) panel, 480 (960) blocks were used all together for phenotyping the DH line testcrosses

and other material like fillers, checks, or parental testcrosses. These 480 (960) blocks were dis-

tributed in four (six) European locations. Two fields were created at each location for partially

replicating plant material, i.e., one fourth (one third) of the Dent (Flint) material was replicated

in each location. These fields were formed from 60 (80) incomplete blocks each, and every block

consisted of ten (eight) plots. The term “replication” instead of field is avoided in this thesis since

genotypes are only partially replicated in a p-rep design.
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In both panels, five phenotypic traits were recorded: biomass dry matter yield (DMY) (decitons per

hectare), biomass dry matter content (DMC) (percentage), plant height (PH) (centimeters), days

to tasseling (DtTAS) (days), and days to silking (DtSILK) (days). Plots containing less than 70% of

the median number of plants per location and those being identified as outliers (all traits) on the

basis of maximum deviate residuals (Grubbs 1950) were classified as missing data and discarded

(Lehermeier et al. 2014). For the multiple-trait spatial analyses, only plots with records available for

all traits were used (Table A2).

2.3 Data availability

Phenotypic data are available from file S1 of Lehermeier et al. (2014) at http://www.genetics.org

/content/suppl/2014/09/17/198.1.3.DC1. Genotypic data (Bauer et al. 2013) were deposited at

the National Center for Biotechnology Information Gene Expression Omnibus as data set GSE50558,

accessible via http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558.
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3 Methods for learning covariance structure

In the following subsections, the methods for obtaining and evaluating genomic and residual struc-

tures are described. First, adjusted phenotypic means are calculated employing a model in which all

DH lines were assumed fixed. These were provided by a single-trait phenotypic analysis of a previous

project (details are below). Second, these adjusted means are used in a linear mixed model to ob-

tain estimates of genomic breeding values, both in a single-trait and a multiple-trait approach. Third,

Bayesian networks learn genomic and residual structures from the genomic values and residuals es-

timated in the multiple-trait model. As a novel approach, structures are learned from the estimated

effects, and for genomic and residual effects separately. Last, these structures are evaluated in a

novel approach of structural equation models, separately and jointly. At the end of this section, the

workflow of this methodology is summarized.

3.1 Phenotypic analysis before genomic value estimation

Adjusted means across locations and fields for each genotype were obtained from a previous study

(Lehermeier et al. 2014), in which means were estimated using a single-trait model separately for

each panel (Dent and Flint) and trait:

ypbrl g = µ+ locl + fieldr(l) + blockb(r l) + gg + (loc · g)l g + epbrl g (1)

where y is the vector of phenotypic values of all plots, µ is a fixed intercept, loc and field are random

components for the locations and the fields (nested within locations), block is a random compo-

nent containing the blocks (nested within location and field), g is a fixed vector representing the

genotypes, and e is the error term. (loc · g) is a random component for the genotype-by-location in-

teraction. The number of levels are summarized per component in Table 1. All random components

and the error term were assumed to follow independent normal distributions with specific variances.

Table 1: Number of levels in phenotypic analysis

Index Meaning
Levels

Range
Dent Flint

t trait 5 5 1 : d
p plot 4800 7680 1 : N
b block 480 960 —
r field 8 12 —
l location 4 6 —
g genotype 841 811 1 : n
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Variance components were estimated by restricted maximum likelihood (REML) using the R pack-

age ASReml (Butler et al. 2009), and estimates and predictions were then calculated according to

Henderson’s mixed model equations (e.g., Henderson 1977).

For predicting genomic breeding values, the adjusted means were mean-centered in each DH pop-

ulation, as focus of investigation was on allelic rather than on population effects. They were also

standardized to unit variance based on their sample variance within each trait.

3.2 Obtaining genomic breeding values

A Bayesian univariate Gaussian model and a Bayesian multivariate Gaussian model were fitted to

the d = 5 traits and a reduced set of n = 831 (n = 805) genotypes within the Dent (Flint) panel to

separate genomic values from random residual contributions to phenotypic values (adjusted means).

Not all genotypes from the phenotypic analysis could be used due to quality issues of the genomic

data. The genomic and residual correlations between traits were estimated with the multiple-trait

model.

An MCMC approach based on Gibbs sampling was used to explore posterior distributions. A burn-in

of 30,000 MCMC samples was followed by an additional 300,000 MCMC samples. The MCMC sam-

ples were thinned with a factor of two, resulting in 150,000 MCMC samples for inference. Posterior

means were then calculated for all effects and their covariance matrices, separately for the Dent

and Flint panels. Genomic and residual trait correlations and their standard deviations (SDs) were

estimated from samples of the posterior distributions of the respective covariance matrices.

3.2.1 Single-trait analysis

Genomic breeding values for a single trait can be obtained from

y = µ ·1n + g+ e (2)

where y, g, and e are (n×1)-dimensional column vectors of scaled adjusted means, genomic values,

and residuals. µ ·1n is the product of an intercept scalar µ and an (n × 1)-dimensional vector of

ones (1n). Since adjusted means (y) are mean-centered within their respective DH population, only

a trait-specific intercept is included in the model.

The following mutually independent distributions were assumed for g and e:
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g ∼Nn(0,Kσ2
g)

e∼Nn(0, In×nσ
2
e )

(3)

where σ2
g and σ2

e are the genomic and residual variances, respectively, K is an (n× n)-dimensional

realized-kinship matrix estimated using simple matching coefficients (Sneath and Sokal 1973), and

the (n× n)- dimensional identity matrix In×n represents independence of model residuals.

A flat prior was assigned to intercept µ. Prior assumptions for σ2
g and σ2

e were chosen analogously

to the following multiple-trait analysis , i.e., independent scaled-inverse χ2 distributions with four

degrees of freedom and a scale parameter equal to three:

σ2
g ∼ scale-inv-χ2(4, 3)

σ2
e ∼ scale-inv-χ2(4, 3)

(4)

according to the parametrization of the BLR function (de los Campos and Pérez-Rodríguez 2012).

In general, prior distributions for dispersion parameters were chosen to be relatively uninformative,

and such that the variance of the scaled response variable was equally distributed among all random

components, including error terms.

3.2.2 Multiple-trait analysis

Genomic breeding values were also estimated using the multiple-trait model (MTM)

y = µ⊗1n + g+ e (5)

where y, g, and e are (nd×1)-dimensional column vectors of scaled adjusted means, genomic values,

and residuals sorted by trait and genotype within trait, respectively. µ⊗1n is a Kronecker product of

a (d×1)-dimensional intercept vector µ and an (n×1)-dimensional vector of ones. The trait-specific

intercepts are included in the model as fixed effects represented by the d coefficients in µ .

For g and e the following mutually independent distributions were assumed:

g ∼Nnd(0,G⊗K)

e∼Nnd(0,E⊗ In×n)
(6)
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where G and E are (d × d)-dimensional covariance matrices containing the genomic and residual

variances and covariances. K is again the (n × n)-dimensional realized-kinship matrix estimated

using simple matching coefficients (Sneath and Sokal 1973) and independence of residuals was

again represented by the (n×n)-dimensional identity matrix In×n (independence among genotypes,

not traits).

Flat priors were assigned to the elements of the intercept vector µ . The covariance matrices G and

E were assumed to follow a priori independent inverse-Wishart distributions with specific degrees of

freedom ν and scale matrix Φ, regarded as hyper-parameters, i.e.,

G∼W −1 (ΦG,νG)

E∼W −1 (ΦE,νE)
(7)

The hyper-parameters ν andΦwere chosen such that: (1) they implied relatively uninformative prior

distributions of matrices G and E; (2) the prior mode of genomic and residual trait variances was 0.5

for each trait, and (3) the choice of hyper-parameters needed to ensure equivalence with the choice

of hyper-parameters for a scaled-inverse χ2 prior defined later in the SEM models (cf. Equation 28)

for specific trait variances. Considering (1), (2), and (3), νG = νE = 8 and ΦG = ΦE =
14
2 · In×n,

with ν and Φ in accordance with the parametrization of the respective distributions in the R package

BGLR and the MTM function of its multiple-trait extension (see software availability for details).

3.3 Learning genomic and residual Bayesian networks

A BN models connections among random variables. It consists of two components: a statement

about the joint distribution of these random variables, and its graphical representation as directed

acyclic graph (DAG) (Nagarajan et al. 2013). The statement about the joint distribution f (X) =

f (X1,X2, . . . ,Xd) of the d random variables X1, X2, . . ., Xd is that f (X) can be decomposed into a

product of conditional distributions:

f (X) = f (X1,X2, . . . ,Xd) =
d
∏

k=1

f (Xk | pa(Xk)). (8)

Above, pa(Xk), the “parents” of Xk, denotes the subset of random variables in X on which Xk depends.

Accordingly, Xk is then called the “child” of all elements in pa(Xk). In the respective DAG, all random

variables Xk are represented as nodes, and arcs point from parents to their children. The joint

distribution is also referred to as a global distribution and the conditional distributions are called

local distributions. If the global and local distributions are normal and the variables are linked by

linear constraints, the BN is a Gaussian BN.
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Figure 1: BN constraint-based structure learning: constraint-based algorithms search for trios of variables
and test their relations with marginal and conditional independence tests. Thereby, they distinguish between
the stochastic decomposition of the joint distribution of all variables as in (A) and the decomposition as in
(B). These two decompositions can be represented in a DAG as shown. Whereas the directions are clear and
unique in (B), the influences’ directions in (A) can form three different graphs. Which of these equivalent
structures is most likely, one can only deduce from the context of other already tested decompositions in their
neighborhood and from the rule that no cycles must be formed in the graph.
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There are two types of algorithms to learn structure of networks: constraint-based and score-based

algorithms (Nagarajan et al. 2013). The constraint-based algorithms employ a series of conditional

and marginal independence tests to infer potential connections and directions between each pair

of variables. First, an undirected structure linking variables directly related to each other is con-

structed. Next, trios of variables where one is the outcome of the other two (“v-structures”) are

sought. Last, the remaining connections are oriented whenever possible, such that neither cycles

nor new v-structures are created. For illustration, core structures with three nodes are shown in

Figure 1. In contrast, score-based approaches search through the space of possible networks (in-

cluding direction of edges) and compare them by a model-fit score, returning the network with the

best score. Both approaches were employed in this thesis for comparison.

3.3.1 Assumptions and algorithms

This and the following subsection (3.3.1 and 3.3.2) summarize the assumptions and algorithms of

BN learning that are relevant for this thesis, mainly following Nagarajan et al. (2013).

The correspondence between the DAG and conditional independence of the random variables is

ensured by the directed separation (d-separation) criterion (Pearl 1988; Nagarajan et al. 2013). The

Markov property of a BN can be directly derived from this criterion and enables the representation

of the global distribution as product of local distributions by application of the chain rule (Korb and

Nicholson 2010; Nagarajan et al. 2013). A definition of the d-separation is given in Nagarajan et al.

(2013):

Definition (D-separation). If A, B, and C are three disjoint subsets of nodes in a DAG,

then C is said to d-separate A from B, if along every sequence of arcs between a node in

A and a node in B there is a node X satisfying one of the following two conditions:

1. X has converging arcs (i.e., there are two arcs pointing to X from the adjacent nodes

in the path) and none of X or its descendants (i.e., the nodes that can be reached

from X) are in C.

2. X is in C and does not have converging arcs.

By repeated application of Bayes’ theorem, some factorizations of a global distribution can be trans-

formed into others (e.g., as in part A of Figure 1). As these transformations are symmetric, reflexive,

and transitive, there are equivalent classes of structures, so called (Markov) equivalent structures

(Nagarajan et al. 2013).

D-separation leads to the concept of the Markov blanket of a node, which is the set of nodes that

completely d-separates this node from the remaining network. Markov blankets help to facilitate

algorithmic approaches for learning BN and are also defined in Nagarajan et al. (2013):
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Definition (Markov Blanket). The Markov blanket of a node X is the minimal subset

S of all nodes such that X is probabilistically independent from all nodes not in S and

itself, given S. In any BN, the Markov blanket of a node X is the set of the parents of X,

the children of X, and all the other nodes sharing a child with X (“spouses”).

Learning a BN naively includes exploring all probabilistic independencies of the given variables,

where the number of possible conditional independence relationships grows exponentially with the

number of variables (cf. IC algorithm by Verma and Pearl 1990). Most constraint-based algorithms

therefore reduce search space by first learning the skeleton of the BN via Markov blankets and then

orienting the edges (Nagarajan et al. 2013). A simple forward-selection Markov-blanket-detection

approach was introduced by Margaritis (2003). It is called Grow Shrink (GS) for its growing and

shrinking phases in the Markov-blanket detection (Algorithm A2).

Based on the Markov blankets of all nodes, the GS (Algorithm A3) reduces the Markov blanket of

each node X (B(X)) to the set of direct neighbors of X (N(X)), i.e., selecting parents and children and

neglecting spouses (Margaritis 2003; Nagarajan et al. 2013). This is done by a series of independence

tests between all pairs of nodes X and Y ∈ B(X) conditioned on all subsets of the smaller of their

Markov blankets (excluding the nodes themselves), i.e., basically testing if a connection via parents,

children or spouses of X or Y can explain a probabilistic dependence between X and Y or not; if

not so, they are assumed to be directly probabilistically dependent (Margaritis 2003). Thereby, the

skeleton of the graph is derived. Afterward, the principle of Figure 1 helps to orient edges on this

structure. Any edge that cannot be oriented by this principle will be oriented if its counter-direction

would introduce a cycle (Margaritis 2003).

Alternatively, algorithms follow the idea of a heuristic optimization. The basic concept is to start

from a certain network structure (e.g., empty or full graph) and then adding, deleting, or reversing

one arc at a time, trying to improve a certain score (Bouckaert 1995). Hence, they are called score-

based. Again, not all possible networks can be explored as their number grows exponentially with

the number of nodes, so only those networks that arise from the current network S by changing one

arc without introducing a cycle are considered at a time (N(S)) (Bouckaert 1995; Nagarajan et al.

2013). In this process, algorithms become easily stuck in local optima (Bouckaert 1995). For leaving

a local optimum, the algorithm must be able to relax the effectiveness of the current optimal score

value and immediate re-visiting of the local optimum must be prohibited during this time. Therefore,

local optima are stored in a tabu list (Bouckaert 1995), hence the name tabu search (TABU) for such

an algorithmic approach. The length of this tabu list determines the minimal number of steps the

algorithm needs to undertake before it can re-visit a local optimum (Algorithm A4).

3.3.2 Tests and scores

Generally, any global or local distribution can be part of a BN and an appropriate score or indepen-

dence test might be – at least approximately or heuristically – derived. As data for the BN analysis is

3 Methods for learning covariance structure 15



assumed to be normally distributed in the MTM (cf. Equations 5 and 6), the choice for independence

tests in GS and scores in TABU was limited to those consistent with this assumption. All these tests

and scores assumed independent samples of the random variables as input, an issue that will be

discussed and addressed later in this thesis.

Simple correlation coefficient with an exact Student’s t-test. For testing conditional independence

of X and Y given Z, one can use the partial correlation coefficient ρXY|Z. It can be calculated as the

standard Pearson correlation coefficient between residuals derived from X regressed against Z and

residuals derived from Y regressed against Z (Legendre 2000). Nagarajan et al. (2013) defines the

statistic for the exact t-test as

T (X,Y | Z) = ρXY|Z

√

√ ν

1−ρXY|Z
2

(9)

T is distributed as a Student’s t random variable with ν = n− 3 degrees of freedom, where n is the

number of samples. This also holds if Z is a set of variables, then T is distributed as a Student’s t with

ν= n− q− 2 degrees of freedom, where q is the number of elements in Z (Nagarajan et al. 2013).

Mutual information investigated with an asymptotic χ2 test. Mutual information is the general

concept of how much information on one entity informs about the state of another entity, and vice

versa. In statistics, mutual information relates to mutual dependence between two random variables

(e.g., Cover and Thomas 2006). Any measure of it should be 0 if and only if the two variables are

independent, and positive otherwise. The term

log
�

p(X,Y)
p(X)p(Y)

�

is well established for this purpose (Cover and Thomas 2006). For measuring overall mutual infor-

mation, this term is integrated over all possible events, using the probability density as weight, such

that

MI(X,Y) =

∫∫

X, Y

p(x , y) log
�

p(x , y)
p(x)p(y)

�

d(x , y) (10)

Conditional mutual information is defined analogously by

MI(X,Y | Z) =
∫∫∫

X, Y, Z

p(x , y, z) log
�

p(x , y | z)
p(x | z)p(y | z)

�

d(x , y, z) (11)

For X, Y and Z being normal random variables, MI becomes (Kullback 1959; Scutari 2010)

MIg(X,Y | Z) = −
1
2

log
�

1−ρXY|Z
2
�

(12)

MIg is proportional to the log-likelihood ratio test and can be tested accordingly. This test can also

be generalized to Z being a set of variables (Nagarajan et al. 2013).
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MC permutation tests. Distributions of test statistics are often approximated when the real distri-

bution of the random variables is unknown. For assessing an empirical distribution of a test statistic

for the data given, one can permute the data, thereby reflecting random dependencies in the data in-

stead of structural ones. Values of the test statistic for all permutations are then expected to represent

samples of its empirical distribution under the null hypothesis, and tests are performed using empiri-

cal quantiles of the empirical distribution of the test statistic (Good 2005; Scutari and Brogini 2012).

Without loss of generality, one can permute X when testing conditional independence between X

and Y given Z and derive statistics (Legendre 2000; Nagarajan et al. 2013).

Bayesian information criterion (BIC) as score. BIC on a BN is defined using the local distributions

(Rissanen 1978; Lam and Bacchus 1994; Nagarajan et al. 2013)

BIC=
d
∑

k=1

log f (Xk | pa(Xk))−
D
2

log n (13)

where D is the number of parameters of the global distribution, or the sum of parameters of the local

distributions, respectively.

Bayesian Gaussian equivalent (BGE) score. The BGE score is the Wishart posterior density of the

network and the data when assigning a uniform prior to the space of the network structures and

to the parameters of the local distributions (Geiger and Heckerman 1994, 1995; Nagarajan et al.

2013). Inter alia, BGE assigns the same scores to equivalent network structures (Chickering 1995;

Nagarajan et al. 2013). Equivalent network structures refer to the same decomposition of the global

distribution with different edge directions (e.g., part A of Figure 1). Such network structures form a

so called equivalent class of networks (Nagarajan et al. 2013).

3.3.3 Assumptions for causal interpretation of Bayesian networks

Nagarajan et al. (2013) explain which assumptions are necessary to learn causal effects instead of

describing networks of conditional independence:

1. Each variable Xk ∈ X used in BN analysis is conditionally independent of its non-

effects, both direct and indirect, given its direct causes (causal Markov assumption).

Non-effects are all variables having no direct or indirect causal effect on Xk.

2. There must exist a network structure which is faithful to the dependence structure

of X, i.e., the dependence structure of X must be decomposable into local distribu-

tions according to Equation 8 with a corresponding representation as DAG.

From these two assumptions it follows that there must not be any unobserved variables influencing

the variables in the network (Nagarajan et al. 2013). Since confounders can hardly be excluded

when dealing with experimental data, causal interpretation of BN is always a delicate issue.
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Edwards (2000) illustrated that confounders can result in different networks in sub-groups of the

data (Nagarajan et al. 2013). It therefore is important to measure robustness of network structures

by sub-sampling from experimental data and measuring thereby uncertainty of edges and directions.

This generally reduces the impact of locally optimal, but globally suboptimal networks, but might

also indicate influences from unknown variables (Edwards 2000; Nagarajan et al. 2013). Therefore,

a bootstrap approach was applied in this thesis that is explained in the next subsection.

3.3.4 Bootstrapping and averaging over networks

Bootstrapping is a broadly applied re-sampling strategy, with which one can empirically determine

the distribution of a statistic, preserving structure of the data (e.g., Good 2005). First, one samples a

subset from observations of the random variable under investigation with replacement. Evaluations

of the statistic from these samples then approximate the distribution of the respective statistic given

the data and its structure (e.g., Good 2005). With regard to learning BN, this means sampling from

X1,X2, . . . ,Xd and learning BN from each sample (bootstrap networks). Appearance of edges and

directions in the learned BN can be reported in percent and thereby uncertainty is measured (Scutari

and Nagarajan 2011, 2013).

To infer one network from all bootstrap networks (i.e., averaging over networks), arcs are oriented

in the more preferred direction (in this thesis more than 250 out of 500 networks) and edges are

included if their support in percent lies above a certain threshold. One can simply set such a threshold

(e.g., to 50% or 75%) or use the empirical distribution of support of all edges in the network for

determining a statistically suggested threshold (Scutari and Nagarajan 2011, 2013). As sensitivity

to the edge significance threshold was different among networks (results not shown), the latter

approach was chosen in this thesis.

Scutari and Nagarajan (2011, 2013) proposed to consider all empirical probabilities (i.e., frequen-

cies) of the edges’ appearance (percent) and order them in a vector

p̂=
�

0≤ p̂1 ≤ p̂2 . . .≤ p̂ j ≤ 1
	

(14)

with j = 0.5 · d(d − 1) being the number of potential edges in the network (d being the number of

variables). The significant edges have the larger values in p̂ (on the right-hand side of the vector).

The true probability of an edge belonging to the BN is

p= {0, . . . , 0, 1, . . . , 1} (15)

In order to find a useful cut-off position in p̂ for deciding whether or not the respective edge belongs

to the BN, the idea of Scutari and Nagarajan (2011, 2013) was to minimize the L1 norm between
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the cumulative distribution function (CDF) of the observed confidence levels (p̂) and the CDF of the

confidence levels of the unknown BN (p). He defined the empirical CDFs as

Fp̂(x) =
1
j

j
∑

i=1

1p̂i<x (16)

Fp(x) =



















0 if x ∈ (−∞, 0)

t if x ∈ [0, 1)

1 if x ∈ [1,∞)

(17)

where1 denotes the characteristic function and t corresponds to the significance threshold sought.

Then they formulated the minimization problem as

t̂ = argmin
t ∈ [0, 1]

L1(t; p̂) (18)

with

L1(t; p̂) =

∫

�

�Fp̂(x)− Fp(x; t)
�

�dx =
∑

x i ∈ {0} ∪ p̂ ∪ {1}

�

�Fp̂(x i)− t
�

� (x i+1 − x i) (19)

An edge is then significant if its value in p̂ is larger than F−1
p̂ ( t̂) (Scutari and Nagarajan 2011, 2013).

It was found in this thesis that one might obtain an inconsistent DAG (e.g., containing cycles) from

applying bootstrapping and then averaging the networks as described here. A manual correction is

then necessary, advisably a minimal change such as re-directing an edge with uncertain direction

(i.e., both directions were appearing at the same or nearly same frequency in the bootstrap samples

of the network).

3.3.5 Transformation of inter-dependent samples before learning a Gaussian Bayesian
network

Scores and tests of BN learning algorithms assume independent observations, as mentioned above.

In the MTM (cf. Equation 5), independence of residuals between genotypes was assumed. In contrast,

the genomic components in g were correlated between genotypes due to kinship (represented by the

matrix K) in addition to being dependent within genotypes due to between-trait genomic covariances

(represented by the matrix G). Before learning BN from the genomic component, a transformation

was applied to vector g such that the transformed vector g∗ was distributed asNdn (0,G⊗ In×n), i.e.,

elements of g∗ were independent between genotypes while still preserving genomic relationships

among traits as encoded by G.
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For this purpose, the kinship matrix K was decomposed into its Cholesky factors, K= LL′, where L is

an (n×n)-dimensional lower triangular matrix. Define a (dn×dn)-dimensional matrix M= Id×d⊗L,

so that M−1 = Id×d ⊗ L−1 and ( Id×d ⊗ L)
�

Id×d ⊗ L−1
�

= Idn×dn. Hence, for g∗ =M−1g

Var(g∗) = Var
�

M−1g
�

=M−1Var(g)(M−1)′ =M−1(G⊗K)(M−1)′

=
�

Id×d ⊗ L−1
�

(G⊗K)
�

Id×d ⊗ L−1
�′
= G⊗ In×n (20)

because L−1K(L−1)′ = In×n, which follows directly from the definition of the Cholesky factor (cf. Equa-

tion A2). This transformation and the resulting covariance structure was used by Vázquez et al.

(2010) for a single-trait model.

For a standard Cholesky decomposition of K, a positive definite realized kinship matrix is needed.

Here, realized kinship matrices were positive definite, but are not generally guaranteed to be positive

definite. However, the proposed approach here can still be used as adjustments to assure positive

definiteness are available (Nazarian and Gezan 2016).

3.3.6 Application of methodology to data

Here, the random variables investigated by BN were the estimates of the genomic and residual com-

ponents of phenotypic traits in the MTM (cf. Equation 5), with the former transformed as described

above. A Gaussian BN was chosen as a consequence of assuming that quantitative traits, and partic-

ularly genomic values and residuals, follow a normal distribution.

So the decomposition of the following global distributions was sought:

f (Γ ) = f (Γ ·1, Γ ·2, . . . , Γ ·5) =
5
∏

k=1

f (Γ · k | pa(Γ · k)) (21)

and

f (H) = f (H·1,H·2, . . . ,H·5) =
5
∏

k=1

f (H· k | pa(H· k)) (22)

where Γ and H denote (n× d)-dimensional matrices formed from the vectors g∗ = M−1g and e by

arranging genotypes and traits in rows and columns, respectively. The index “· k” denotes the kth

column of the respective matrix.

For learning BN, the GS algorithm (Margaritis 2003) was chosen as an example of a constraint-based

approach, and TABU (Daly and Shen 2007) as an example of a score-based algorithm. For comparing

the constraint-based with the score-based approach, these two algorithms are suited when dealing

with small networks of up to 10–15 traits. For larger networks, runtime-optimized network learning

algorithms might be preferred.
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Table 2: BN learning settings: tests and scores used for GS and TABU

Abbreviation

for Setting

Measure of Conditional

Independence
Test / Score

Grow-Shrink (constraint-based)

GS 1 partial correlation

coefficient (Pearson)

exact Student’s t test

GS 2 partial correlation

coefficient (Pearson)

MC permutation test (Legendre 2000)

GS 3 mutual information asymptotic χ2 test (Kullback 1959)

GS 4 mutual information MC permutation test

TABU (score-based)

TABU 1 BIC (Lam and Bacchus 1994; Rissanen 1978)

TABU 2 BGE (Geiger and Heckerman 1994)

The GS algorithm was combined with four different tests for marginal and conditional indepen-

dence and TABU was combined with two scores (see Table 2). Scores and tests were described

above. Regarding the constraint-based approaches, the number of permutations used for each of the

permutation tests was 450 (slightly more than half of the genotypes in each of the two panels).

Multiple testing issues in the context of a constraint-based algorithm have been addressed by Aliferis

et al. (2010a,b). According to these authors, for a sample size of about 1000, a significance level of

α= 0.05 resulted in a worst-case false positive rate of 6×10−4 for arc inclusion. Choosing α= 0.01

in the more exhaustive GS, false positives should be avoided effectively with five variables (traits)

and about 800 genotypes.

Each of the six settings was run with 500 bootstrap samples. After structure learning from the

bootstrap samples, an averaged network was derived from the 500 bootstrap networks as described

above using the R package bnlearn (Scutari 2010; Nagarajan et al. 2013).

3.3.7 Translation of learned structures from Bayesian networks to a structure matrix

The structure learned by the BN needed to be translated into a structure matrix for SEM analysis.

Thus, a (d × d)-dimensional matrix Λ was formed from each learned structure. Each arrow of the

DAG pointing from a parent trait to a child trait becomes a freely varying coefficient in the structure

matrix in the column of the parent and the row of the child. All other entries were set to zero a priori.

The resulting structure matrices are lower triangular matrices, since loops are not allowed in a BN

structure. The lower triangular form might not be produced by an arbitrary order of traits but can
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always be formed by rearranging the order of the traits in columns and rows. Figure 2 shows an

example of how a DAG is transformed into a structure matrix.

Λ=











0 0 0 0 0
0 0 0 0 0

λDtTAS, DtSILK 0 0 0 0
0 λDMY, PH λDMY, DtTAS 0 0

λDMC, DtSILK 0 λDMC, DtTAS λDMC, DMY 0











Figure 2: Transformation from a DAG to a structure matrix Λ. An example of a directed, acyclic graph and its
respective structure matrix is shown. The coefficients are ordered as DtSILK – PH – DtTAS – DMY – DMC.

If a learned structure was an element of an equivalent class of several structures, only one represen-

tative of this equivalent class was translated into a structure matrix and assessed in SEM analyses.

SEM based on different Λ from the same equivalent class of networks may lead to different sets of

coefficients, however, they lead to the same model fit of the respective SEM.

3.4 Fitting structural equation models

The following paragraph presents how the structures found in the BN analysis translate into SEM;

doing so also clarifies how MTM (cf. Equation 5) and SEM are related. Genomic or residual trait

dependence can be described by the recursive linear regression models

g∗ =
�

Λg∗ ⊗ In×n

�

g∗ +ρg∗

e= (Λe ⊗ In×n)e+ρe

(23)

where Λg∗ and Λe denote the (d × d)-dimensional genomic and residual structure matrices and

ρg∗ (ρe) are vectors of dn independent and identically normal-distributed residuals. Independence

among genotypes in ρg∗ follows from the transformation of g into g∗; elements of ρe are indepen-

dent since e are independent among genotypes by the model assumptions of the MTM (cf. Equation

5). If the genomic and residual structures in Equations 23 explain all genomic and residual trait

covariances fully, then ρg∗ and ρe are also independent between traits.

For genotype i Equations 23 are

g∗i = Λg∗g
∗
i + (ρg∗)i

ei = Λeei + (ρe)i
(24)
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Equations 24 can be rearranged into

g∗i =
�

Id×d −Λg∗
�−1
(ρg∗)i

ei = ( Id×d −Λe)
−1 (ρe)i ,

(25)

which imply that

Var(g∗i ) = Var
�

�

Id×d −Λg∗
�−1
(ρg∗)i

�

=
�

Id×d −Λg∗
�−1

Var
�

(ρg∗)i
�

�

�

Id×d −Λg∗
�−1�′

Var(ei) = Var
�

( Id×d −Λe)
−1 (ρe)i

�

= ( Id×d −Λe)
−1 Var

�

(ρe)i
� �

( Id×d −Λe)
−1�′

(26)

where Var
�

(ρg∗)i
�

and Var
�

(ρe)i
�

are unknown diagonal matrices. Note that Var(g∗ i) = Var(gi)

when considering individual genotypes and, therefore, Λg∗ = Λg.

Let Ψg = Var
�

(ρg∗)i
�

and Ψe = Var
�

(ρe)i
�

for all i, i.e., assume that both genomic and residual

variances of traits are the same for all genotypes, so the genomic and residual covariance matrices

G and E can be replaced by

G∗ = Var(g∗ i) = Var(gi) =
�

Id×d −Λg

�−1
Ψg

�

�

Id×d −Λg

�−1�′ ∀i

E∗ = Var(ei) = ( Id×d −Λe)
−1Ψe

�

( Id×d −Λe)
−1�′ ∀i

(27)

Since the true structure matrices Λg and Λe are unknown, the inferred structures from the BN are

used instead.

Then, the MTM (cf. Equation 5) can be reformulated as the following SEM in its reduced form (Gi-

anola and Sorensen 2004; Valente et al. 2010):

y = µ⊗1n + g+ e (28)

where genomic values and residuals are assumed to be independently distributed according to

g ∼Nnd(0,G∗ ⊗K)

e∼Nnd(0,E∗ ⊗ In×n)
(29)
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The Bayesian Gibbs sampling implementation is as for the MTM (cf. Equation 5), but, additionally, G∗

(E∗) is sampled from its posterior distribution based on Equations 27. We fitted SEM (cf. Equation

28) with both or only one structured component, i.e., with G∗ and E∗, G∗ and E, or G and E∗ for

assessing the structures and comparison with the MTM (cf. Equation 5).

The structures of Λg and Λe affect whether or not the use of G∗ and E∗ instead of G and E induces a

reduction in the number of parameters. For example, G∗ and G (E∗ and E) have the same number

of nonnull parameters if the structure is fully recursive.

The diagonal elements of matrices Ψg and Ψe in SEM (cf. Equations 27) were assigned independent

scaled-inverse χ2 prior distributions with four degrees of freedom and a scale of three. As mentioned

above, this choice of hyper-parameters yields the same prior distribution as for the MTM (cf. Equation

5) with respect to the diagonal elements of the covariance matrices. Also, the trait variances’ prior

mode is again 0.5 and the priors are relatively uninformative. The nonnull coefficients of Λg and

Λe in SEM (cf. Equations 27) were assigned independent normal distributions with null mean and

variance of 6.3 and 0.07, respectively.

The prior distribution’s variance for the nonnull coefficients of Λg and Λe in SEM (cf. Equations

27) was chosen to align with the estimated genomic (residual) covariance components in the MTM

(cf. Equation 7), which lay in the interval between −3.7 (−0.13) and 5.0 (0.52). When a normal

prior distribution with null mean is assumed for the SEM structure matrices’ coefficients, then 5.0

(0.52) lies within two times its standard deviation (SD) when its variance (a hyper-parameter) is

chosen to be larger than
�5

2

�2
= 6.25

�

�0.52
2

�2
= 0.0676

�

. This assures that the prior distribution for

the structure matrices’ coefficients are flat enough to impose no additional prior restriction compared

to the prior assumptions of the MTM (cf. Equation 5).
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3.5 Summary and overview

Figure 3: Investigating the structure of covariance components: (1a) fitting a Bayesian multiple-trait Gaussian
model (cf. Equation 5) to all five traits to obtain posterior means of genomic values and of model residuals
for each panel, and (1b) transforming the predicted genomic values to meet assumptions on sample indepen-
dence required by a BN analysis; (2) applying the BN analysis to the residual and transformed genomic trait
components (Equations 21 and 22); and (3) assessing the quality of the inferred structures by a structure-
comparative SEM analysis (cf. Equation 28).

3 Methods for learning covariance structure 25



4 Methods for learning components of environmental covariances

In the following subsections, the methods for decomposing the environmental trait covariance into

micro- and macro-environmental components are described. Micro-environmental factors are jointly

and indirectly modeled using physical distance between plots in the experiments via a single spatial

component. First, a bandwidth parameter for mapping physical distance into spatial correlation coef-

ficients needs to be estimated for every field of the experiment separately. This is done by embedding

a Metropolis-Hastings algorithm in an existing multivariate Gibbs sampler, where an R implemen-

tation was developed for the Metropolis-Hastings step in this thesis. Second, the posterior means

of these bandwidth parameters and the respective spatial correlation coefficients are used to form a

micro-environmental component in a one-stage approach across all fields of the experiment. In this

one-stage model, macro-environmental factors are modeled by locations and, consequently, micro-

and macro-environmental trait covariances can be estimated separately in this model. At the end of

this section, the workflow of this methodology is summarized.

4.1 Estimating the spatial bandwidth parameter per field

Scaled phenotypic values of d traits and n genotypes in N plots were analyzed separately for each

field by using the model

y =1n ⊗µ+ g+ e (30)

where y, g, and e are (nd×1)-dimensional column vectors (phenotypic values, genomic values, and

residuals, respectively), all sorted by plot and trait within plot. 1n ⊗ µ is a Kronecker product of an

(n× 1)-dimensional vector of ones and a (d × 1)-dimensional intercept vector µ . No fixed effects

except the d elements in µ were included, and flat priors were assigned to these elements. Note that

n = N here as no genotype is replicated within a field, see Table A2 for genotype (plot) numbers

in the respective fields. The model described in Equation 30 was applied to the data of each field

separately, with the response being raw phenotypic values per plot (instead of adjusted means for

each genotype as in the MTM, cf. Equation 5).

For g and e the following mutually independent distributions were assumed:

g ∼Nnd(0,K⊗G)

e∼Nnd(0, In×n ⊗ E)
(31)

Here, K is an (n×n)-dimensional realized kinship matrix estimated from the genomic data according

to Astle and Balding (2009). Note that in this model ordering of elements within response and
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covariable vectors is different than in the MTM (cf. Equation 5) and, therefore, the factors of the

Kronecker product forming the respective covariance matrix of the prior distributions are switched.

The matrices G and E were assumed to follow a priori independent inverse-Wishart distributions:

G∼W −1(ΦG,νG)

E∼W −1(ΦE,νE)
(32)

For obtaining prior modes for the genomic and residual trait variances of 0.5 for each trait and

assuming a large variance of the prior distribution densities of G and E, νG = νE = 8 and ΦG = ΦE =
14
2 · Id×d were set with ν and Φ in accordance with the parametrization of the respective distributions

in the BGLR package and MTM function.

Adding a spatial component into Equation 30, one obtains

y =1n ⊗µ+ g+ s+ e (33)

where s is an (nd × 1)-dimensional column vector of spatial effects, also sorted by plot and trait

within plot. Independence of s from g and e and the following prior distribution were assumed for s

s∼Nnd(0,Sϑ ⊗Σ) (34)

where Σ is a (d × d)-dimensional positive-definite symmetric matrix containing spatial variances of

traits and covariances between traits. Sϑ is an (n×n)-dimensional Gaussian kernel matrix, of which

the entries depended on an unknown bandwidth parameter ϑ and on the physical distances between

plots.

An element of Sϑ for plots i and j is

(Sϑ)i j = exp(−ϑ · d(i, j)2) (35)

where d(i, j) is the distance (meter) between the centers of plots i and j. ϑ was assigned a Gamma

prior distribution (cf. Pérez-Elizalde et al. 2015) with shape parameter k and scale parameter ψ as

hyper-parameters, i.e.,

ϑ ∼ Γ (k,ψ) (36)
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Figure 4: Density of two prior Gamma distributions for the bandwidth parameter ϑ

For assessing sensitivity with respect to the choice of hyper-parameters of the model described by

Equation 33, two prior distributions of ϑ were compared. These were ϑ ∼ Γ (k = 2,ψ = 2) (weak)

and ϑ ∼ Γ (k = 4,ψ = 0.15) (strong). The respective prior mode (mean) of ϑ was then 2 (4) and

0.45 (0.60), respectively (see Figure 4 for an illustration).

Prior independence ofΣ from G and E was assumed and the following prior distribution was assigned

to Σ

Σ∼W −1(ΦΣ,νΣ) (37)

where νG = νE = νΣ = 8 and ΦG = ΦE = ΦΣ =
14
3 · Id×d , resulting in modes of 1

3 for the variance of

each trait and random component (including the error term).

4.1.1 Multivariate Gibbs Sampler

A Gibbs sampling approach (with an MH algorithm embedded for sampling ϑ) was used to infer

features of the posterior distributions of parameters in the models described by Equations 30 and

33 (Algorithms A1 and 1). After a burn-in of 200,000 iterations, the MCMC analysis was run for an

additional 200, 000 iterations. 100, 000 MCMC samples were stored after thinning using a factor of

two.

The Gibbs sampler from the R package MTM uses a quasi-orthogonal representation (de los Campos

2015) for each of the random effects, which is based on the eigenvalue decomposition of the kernel
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matrices of each of the random effects. Let

y = µ+
p
∑

k=1

uk + e (38)

where

uk ∼Nnd(0,Ωk ⊗Vk)

e∼Nnd(0, In×n ⊗ E)

Vk ∼W −1(Φk,νk)

E∼W −1(Φ,ν)

(39)

be the model under investigation with intercept vector µ , p random effects uk ∼ N (0,Ωk ⊗ Vk)

with kernel Ωk and covariance matrix Vk, error term e ∼ N (0, In×n ⊗ E), and inverse-Wishart prior

distributions assigned to each of the covariance matrices. Ωk could be a kinship matrix or a spatial

kernel, Vk would then be the respective genomic or spatial trait covariance matrix.

A quasi-orthogonal representation of Equation 38 is given by using an eigenvalue decomposition of

each of the kernel matrices Ωk (de los Campos 2015). Let mk be the number of positive eigenvalues

of the respective kernel matrix. The kernels are then decomposed as Ωk = ΛkΨkΛk
′, where Ψk

are (mk ×mk)-dimensional diagonal matrices containing mk eigenvalues (> 0) of kernel Ωk on the

diagonal, and Λk are (n×mk)-dimensional matrices of eigenvectors satisfying Λk
′Λk = Imk×mk

(de

los Campos 2015). In the implementation of de los Campos (2015), all eigenvalues smaller than a

small positive scalar are considered to be zero, hence the naming quasi-orthogonal.

In de los Campos (2015) it was shown that the distribution of uk equals that of ũk = (Λk ⊗ Id×d)vk

with vk ∼Nmkd(0,Ψk ⊗Vk) and mk ≤ n, and

E(ũk) = (Λk ⊗ Id×d)E(vk) = 0 (40)

Var(ũk) = (Λk ⊗ Id×d)Var(vk)(Λk
′ ⊗ Id×d) = (ΛkΨkΛk

′)⊗Vk = Ωk ⊗Vk (41)

Then, the model represented by Equation 38 can be formulated as (de los Campos 2015)

y = µ+
p
∑

k=1

(Λk ⊗ Id×d)vk + e (42)

where
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vk ∼Nnd(0,Ψk ⊗Vk)

e∼Nnd(0, In×n ⊗ E)

Vk ∼W −1(Φk,νk)

E∼W −1(Φ,ν)

(43)

As Ψk are diagonal matrices, sampling from the multivariate normal distributions of vk is greatly

facilitated (de los Campos 2015). The Gibbs sampler draws from the joint posterior distribution by

sampling from a row of fully conditional distributions (Algorithm A1) (de los Campos 2015).

4.1.2 Embedding a Metropolis-Hastings algorithm

The fully conditional posterior distribution of ϑ is (Pérez-Elizalde et al. 2015)

p(ϑ | else)∝ p(s | ϑ) · p(ϑ) =Nnd(0,Sϑ ⊗Σ) · Γ (k,ψ) (44)

In this thesis, the fully conditional posterior distribution of ϑ was represented with a transformed

spatial component for runtime acceleration, i.e., the implementation of Equation 33 uses

p(ϑ | else)∝ p(s | ϑ) · p(ϑ)∝ p(s∗ | ϑ) · p(ϑ) =Nnd(0,Sϑ ⊗ Id×d) · Γ (k,ψ) (45)

Derivation of a suitable s∗ and proof of Equation 45 can be found in the Appendix. Sampling was

done by an MH step (implemented for this thesis, see Algorithm 1 and code in Appendix) embedded

in the MTM function. As ϑ > 0, its proposal distribution cannot be symmetric and a Metropolis

algorithm would draw biased samples, hence an MH approach was necessary.
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Algorithm 1 MH algorithm for the bandwidth parameter ϑ

Let ϑ(t) be the current state of ϑ and σ2
ϑ

an arbitrary, but positive scalar.

Draw ϑ∗ ∼N(0,∞)(ϑ(t),σ2
ϑ
). . proposal

Compute Sϑ∗ from (Sϑ∗)i j = exp(−ϑ∗ · d(i, j)2). . cf. Equation 35

Compute the densities of ϑ∗ and ϑ(t) by evaluating the conditional posteriors

p(ϑ∗ | else)∝ p(s∗ | ϑ∗) · p(ϑ∗)

p(ϑ(t) | else)∝ p(s∗ | ϑ(t)) · p(ϑ(t))

. fully conditional posterior

Compute the probability of moving to a new state

α=min

�

p(ϑ∗ | else) · p(ϑ(t) | ϑ(t) ∼N(0,∞)(ϑ∗,σ2
ϑ
))

p(ϑ(t) | else) · p(ϑ∗ | ϑ∗ ∼N(0,∞)(ϑ(t),σ2
ϑ
))

, 1

�

Draw x ∼ U(0,1).

if x ≤ α then
ϑ(t+1)← ϑ∗ and Sϑ

(t+1)← Sϑ∗
else
ϑ(t+1)← ϑ(t) and Sϑ

(t+1)← Sϑ(t) .
end if
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4.2 Estimating micro- and macro-environmental trait covariances across all
fields

A Bayesian multiple-trait Gaussian model was fitted to d traits and N plots of all fields of the Flint

panel. This one-stage model can be expressed as

yt prl g = µ t + loct l + fieldt r(l) + st p(r l)g + gt g + et prl g (46)

where y is the scaled vector of phenotypic values of all plots, µ is a fixed intercept, loc and field are

random components for the locations and fields, s is the spatial random component, g is the genomic

random component, and e is the error term. Fields are nested within locations, and plots are nested

within fields. Parameters and levels are summarized in Table 3. Scaling of the response variable was

done by mean-centering and using the estimate of the sample variance.

A priori, the following mutually independent distributions were assumed:

µ∝ 1

loc∼N6d(0, I6×6 ⊗Vloc)

field∼N12d(0, I12×12 ⊗Vfield)

s∼NNd(0,S⊗Vs)

g ∼Nnd(0,K⊗Vg)

e∼NNd(0, IN×N ⊗Ve)

(47)

K is again an (n × n)-dimensional realized kinship matrix estimated from the genomic data (Astle

and Balding 2009) as in the models described by Equations 30 and 33. Vloc, Vfield, Vs, Vg, and Ve are

the location, field, spatial, genomic, and residual trait covariance matrices.

The bandwidth parameter ϑ for each field was assumed to be known in the model described by

Equation 46. Values of ϑ for each field were determined as posterior means (denoted by ϑ̄) when

Table 3: Number of levels in the one-stage mo-
del

Index Meaning Levels Flint Range

t trait 5 1 : d
p plot 6323 1 : N
b block 960 —
r field 12 —
l location 6 —
g genotype 805 1 : n
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estimating parameters in the model described by Equation 33. When y is sorted by field, and then,

within each field, sorted by plot and trait within plot (cf. Equations 30 and 33), S in Equation 47 is a

block diagonal matrix formed from the posterior means of Sϑ for each of the twelve fields. S would

then be

S=













Sϑ̄, 1 0 · · · 0

0 Sϑ̄, 2 · · · 0
...

...
. . .

...

0 0 · · · Sϑ̄, 12













(48)

All trait covariance matrices Vloc, Vfield, Vs, Vg, and Ve were again assumed to follow a priori inde-

pendent inverse-Wishart distributions:

Vloc ∼W −1(Φloc,νloc)

Vfield ∼W −1(Φfield,νfield)

Vs ∼W −1(Φs,νs)

Vg ∼W −1(Φg,νg)

Ve ∼W −1(Φe,νe)

(49)

For equivalent shrinkage on all components, νloc = νfield = νs = νg = νe = 8 and Φloc = Φfield =

Φs = Φg = Φe =
14
5 · Id×d .

For comparison, the spatial component was removed from the model above (cf. Equation 46) pro-

ducing the model

yt prl g = µ t + loct l + fieldt r(l) + gt g + et prl g (50)

with independent inverse-Wishart distributions

Vloc ∼W −1(Φloc,νloc)

Vfield ∼W −1(Φfield,νfield)

Vg ∼W −1(Φg,νg)

Ve ∼W −1(Φe,νe)

(51)

and νloc = νfield = νg = νe = 8 and Φloc = Φfield = Φg = Φe =
14
4 · Id×d . Both models were

implemented using GIBBS1F90 (see software availability for details).
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4.3 Summary and overview

Separation of micro-environmental trait covariances from macro-environmental factors was explored

by adding an additional random component describing the spatial correlations between plots in the

fields to the random component evaluating influence of location. The spatial random component is

defined by a Gaussian kernel matrix, whose coefficients depend on an unknown bandwidth param-

eter and on physical distances between plots.

Figure 5: Refining phenotypic covariance decomposition with respect to environment: (1) For each field,
a multiple-trait Gaussian model including a spatial random component (cf. Equation 33) was fitted to the
phenotypic records of its plots. The posterior means for the bandwidth parameters of each field were thereby
estimated separately. (2) Afterward, a one-stage model (cf. Equation 46) including genomic, micro-, macro-
environmental, and residual components was fitted to all fields jointly, and the respective trait covariances
were extracted.
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5 Methods for model evaluation and software availability

Predictive ability and model fit of MTM vs. SEM (cf. Equations 5 and 28) were used to assess if the

structures found in BN analysis were a better representation of trait connections than a fully recursive

structure. The deviance information criterion (DIC) (Spiegelhalter et al. 2002), the logarithm of the

Bayesian marginal likelihood (logL), and the predictive ability from 10 replicates of a fivefold cross-

validation (CV) were employed for this purpose. The same 50 training- and test-set combinations

were used for all models, including the single-trait model. Predictive ability was measured as the

correlation between the adjusted means y and their predicted values.

Usefulness of the micro-environmental component in the spatial models (Equation 30 vs. Equation

33, and Equation 46 vs. Equation 50) was assessed by DIC. Fit of the analyses by field were also

investigated using the logarithm of the likelihood at posterior mean in addition to DIC.

5.1 Deviance information criterion and likelihood

The “logarithm of likelihood at posterior mean” is the logarithm of the likelihood of the data (D)

given the parameters (Θ), estimated as mean from their MCMC samples:

log L(Θ) = log p(D | Θ) (52)

Θ =
1
S

S
∑

l=1

(Θ(l)) (53)

where S is the number of MCMC samples and Θ(l) is the l th MCMC sample of the parameters. In

contrast, the “logarithm of the mean likelihood” is the mean over all logarithms of likelihoods of the

data given the current parameter sample:

log L(Θ) =
1
S

S
∑

l=1

log p(D | Θ(l)) (54)

According to Spiegelhalter et al. (2002), the effective number of parameters can then be derived as

pD = D(Θ)− D(Θ) = −2 log L(Θ) + 2 log L(Θ) (55)

where D(Θ) is called the Bayesian deviance. Spiegelhalter et al. (2002) then proposed the DIC as the

sum of the Bayesian deviance at the posterior mean and twice the effective number of parameters:

DIC= D(Θ) + 2pD = D(Θ) + pD (56)
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The marginal likelihood (ML) is the probability of the data given the model (M):

ML= p(D | M) =
∫

p(D | Θ, M)p(Θ | M) dΘ (57)

Using Bayes’ theorem, one can state that

p(Θ | M)
M L

=
p(Θ | D, M)
p(D | Θ, M)

(58)

Integrating both sides over Θ yields

1
M L

∫

p(Θ | M) dΘ =

∫

1
p(D | Θ, M)

p(Θ | D, M) dΘ (59)

If p(Θ | D, M) is a proper prior, the integral over the prior distribution on the left-hand side equals

one. It follows that
1

M L
= E Θ|D, M

�

1
p(D | Θ, M)

�

(60)

Newton and Raftery (1994) then proposed the harmonic mean of the MCMC likelihood values as an

estimator of the marginal likelihood, that is

ÓML=

�

1
S

S
∑

l=1

1
p(D | Θ(l), M)

�−1

(61)

This explanation can be found in Sorensen and Gianola (2002). They also describe a numerically

stable computation method following Equation 61 to compute the marginal likelihood that was used

in this thesis.

5.2 Software availability

Analyses were performed with the statistical programming tool R (R Core Team 2014) unless stated

otherwise. Single-trait prediction was implemented with the BLR function (de los Campos and Pérez-

Rodríguez 2012). Structure learning, multiple-trait mixed models and SEM were implemented using

the R package bnlearn (Scutari 2010; Nagarajan et al. 2013) and the R function MTM, an extension

of the BGLR package (de los Campos and Pérez-Rodríguez 2014; Lehermeier et al. 2015) which

is available on Github (https://github.com/QuantGen/MTM). MTM was modified for the spatial

models with unknown bandwidth parameters, see Appendix for the R code. The one-stage models

were implemented using GIBBS1F90, a Fortran 90 program from the BLUPF90 family (Misztal et al.

2016).
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6 Results

6.1 Genomic and residual trait connections

6.1.1 Trait correlations and Bayesian networks

Phenotypic, genomic, and residual correlations between the five traits were estimated with the MTM

(cf. Equation 5) for the Flint and Dent panels separately (Table 4). In both panels, there was a strong

positive genomic correlation between flowering traits DtTAS and DtSILK, and between the yield-

related traits DMY and PH. Genomic correlations were positive for trait combinations not including

DMC, whereas DMC was negatively correlated with all other traits. The magnitude of genomic cor-

relations differed between the two panels; for example, the genomic correlation between DMC and

DMY was −0.29 in the Dent panel, and −0.64 in the Flint panel. Posterior SDs of correlation esti-

mates varied between 0.01 and 0.10. Single-trait predictive abilities (Table 4) were high and similar

to those found in Lehermeier et al. (2014), where a detailed single-trait analysis of the phenotypic

and genotypic data can be found.

As the genomic values in the MTM (cf. Equation 5) were correlated between genotypes due to kinship,

estimates were transformed to meet the model assumptions of the BN algorithms.The transformation

modified the relationship between estimated genomic values as expected (see Figure 6).

Figure 6: Transformation of the genomic component: relationships between estimated genomic values of DMY
(ĝDMY) and DMC (ĝDMC) from the Dent panel and their counterparts (ĝ∗DMY and ĝ∗DMC) after transformation.

BN inference was sensitive to the choice of algorithm and test (for detailed results see Figure A1,

Figure A2, Figure A3, and Figure A4). The inferred networks varied in up to two edges and/or

three directions. In general, score-based algorithms tended to choose more edges than constraint-

based algorithms, and the networks of residual components were sparser than those of genomic

components. Within the constraint-based or score-based approaches, inference was more consistent

than between them.
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Table 4: Phenotypic, genomic, and residual correlations between five traits in Dent (lower triangular)
and Flint (upper triangular) with posterior SDs in parentheses where appropriate as well as predictive
ability

Dent\Flint DMY DMC PH DtTAS DtSILK

Phenotypic correlations
DMY −0.36 0.68 0.60 0.56
DMC −0.13 −0.50 −0.59 −0.64
PH 0.59 −0.27 0.66 0.66
DtTAS 0.39 −0.51 0.46 0.91
DtSILK 0.32 −0.57 0.45 0.80

Genomic correlations
DMY −0.64 (0.07) 0.82 (0.04) 0.75 (0.05) 0.73 (0.05)
DMC −0.29 (0.10) −0.65 (0.06) −0.71 (0.05) −0.77 (0.04)
PH 0.79 (0.04) −0.27 (0.08) 0.76 (0.04) 0.75 (0.04)
DtTAS 0.60 (0.07) −0.66 (0.06) 0.60 (0.06) 0.95 (0.01)
DtSILK 0.46 (0.08) −0.67 (0.06) 0.52 (0.07) 0.88 (0.02)

Residual correlations
DMY 0.14 (0.05) 0.41 (0.04) 0.19 (0.05) 0.14 (0.06)
DMC 0.06 (0.05) −0.10 (0.06) −0.26 (0.05) −0.25 (0.05)
PH 0.33 (0.05) −0.22 (0.05) 0.35 (0.05) 0.36 (0.05)
DtTAS 0.20 (0.05) −0.26 (0.05) 0.25 (0.05) 0.68 (0.03)
DtSILK 0.17 (0.05) −0.35 (0.05) 0.34 (0.05) 0.63 (0.03)

Single-trait predictive abilitya

Flint 0.63 (0.04) 0.66 (0.05) 0.69 (0.04) 0.74 (0.04) 0.76 (0.04)
Dent 0.51 (0.05) 0.64 (0.04) 0.69 (0.04) 0.61 (0.04) 0.68 (0.03)

Multiple-trait predictive abilitya

Flint 0.64 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.04) 0.76 (0.04)
Dent 0.52 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.04) 0.68 (0.04)

Traits: biomass dry matter yield (DMY) (dt/ha), biomass dry matter content (DMC) (%), plant height (PH) (cm),
days to tasseling (DtTAS) (days), days to silking (DtSILK) (days).
a Average of 10 random 5-fold cross-validations.
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BN inference of residual components was very similar in the Dent and Flint panels, irrespective of

the algorithmic settings (Figure A2 and Figure A4). Connections that appeared in both panels were

those between the flowering traits, from DtSILK to PH, from DMY to DMC, and between DMY and

PH. Specific to the Flint panel was the edge from DtTAS to DMC, while the Dent panel showed a

corresponding connection from DtSILK to DMC. An additional edge in the Dent panel not detected

in the Flint panel was between DMC and PH. One network in the Flint panel showed an edge from

PH to DtTAS, but it was only supported by 56% of the bootstrap samples in the respective network

algorithm.

BN inference of genomic components was more variable than that of residual components within

and across panels (Figure A1 and Figure A3). In the Flint panel, algorithms recognized edges from

DtSILK to DtTAS, from DtTAS to PH, from DtSILK to DMC; and between DMY and DMC, between

DMY and DtTAS, between DMY and PH, and between DM and DtTAS. In the Dent panel, only the

connection between DMC and DMY was never inferred by any algorithm. A fully recursive network

(i.e., including all possible arcs) was never inferred, neither on the genomic nor on the residual

components.

6.1.2 Structural equation model analyses

The structures inferred by the different BN algorithms were integrated into SEM (cf. Equation 28) and

compared with the full structure by using model-fit criteria and predictive abilities of the respective

SEM and of the standard multiple-trait model (MTM; cf. Equation 5) representing the full structure

(Table 5, Table 6, Table A3, and Table A4). When two or more BN algorithms inferred the same

network for the same component (genomic or residual), SEM analysis was only performed once for

this structure. In the SEM, genomic and residual networks were assessed separately (G and E∗ or G∗

and E) (Table 5 and Table A3) and jointly (G∗ and E∗) (Table 6 and Table A4).

The number of connections in the networks and the resulting number of nonnull entries in G∗ and E∗

were derived (Table 5 and Table 6). These illustrate the variable reduction attained by application

of the structures to the residual or genomic components. For each SEM, the sum of the number of

connections in the networks and the sum of nonnull entries in the covariance matrices were split

into the genomic and the residual contributions. In general, residual networks were sparser than

genomic networks, and SEM on residual structures were more parsimonious in the Flint panel than

in the Dent panel.
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Table 5: Single-structure evaluation: model fit for the multiple-trait model (MTM) and for structural equa-
tion models (SEM) including a genomic (Λg∗) or residual (Λe) trait structure denoted by the BN algorithm it
originates from

BN Giving Λg∗ BN Giving Λe DICa pD
b logLc No.

Connectionsd
No. Nonnull
Parameterse

Dent
— GS 3 −87.0 +61.6 +66.0 10 + 6 = 16 15 + 13 = 28
— GS 1, 2, 4 −78.5 +65.7 +72.1 10 + 5 = 15 15 + 12 = 27
— TABU 1, 2 −62.7 +45.1 +23.3 10 + 6 = 16 15 + 15 = 30
TABU 1 — −0.7 −12.6 +12.1 8 + 10 = 18 15 + 15 = 30
— — 0.0 1024.9f 0.0 20 30
TABU 2 — +1.0 −14.1 −7.3 9 + 10 = 19 15 + 15 = 30
GS 1, 2, 3, 4 — +57.0 −16.9 −32.4 7 + 10 = 17 15 + 15 = 30

Flint
— TABU 1 −124.1 +64.0 +105.2 10 + 5 = 15 15 + 13 = 28
— GS 1, 2, 3, 4 −122.3 +63.3 +126.3 10 + 5 = 15 15 + 13 = 28
— TABU 2 −117.7 +61.0 +131.1 10 + 6 = 16 15 + 14 = 29
— — 0.0 1086.0f 0.0 20 30
TABU 1, 2 — +35.8 +23.1 −3.2 7 + 10 = 17 14 + 15 = 29
GS 1, 2, 3, 4 — +72.1 +4.2 −57.1 6 + 10 = 16 12 + 15 = 27

For notation of BN algorithms see Table 2.
a Deviance information criterion: DIC of SEM minus DIC of MTM.
b Effective number of parameters: pD of SEM minus pD of MTM.
c Logarithm of Bayesian marginal likelihood: logL of SEM minus logL of MTM.
d Number of connections in the genomic network plus number of connections in the residual network.
e Number of nonnull parameters in the genomic covariance matrix plus number of nonnull parameters in the residual

covariance matrix.
f Absolute value of pD.
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Table 6: Double-structure evaluation: model fit for the multiple-trait model (MTM) and for structural equation
models (SEM) including a genomic (Λg∗) and residual (Λe) trait structure denoted by the BN algorithm it
originates from

BN Giving Λg∗ BN Giving Λe DICa pD
b logLc No.

Connectionsd
No. Nonnull
Parameterse

Dent
TABU 1 GS 3 −87.0 +47.6 +63.8 8 + 6 =14 15 + 13 = 28
TABU 2 GS 3 −86.0 +47.4 +66.1 9 + 6 =15 15 + 13 = 30
TABU 1 GS 1, 2, 4 −75.1 +48.0 +35.5 8 + 5 =13 15 + 12 = 27
TABU 2 GS 1, 2, 4 −74.4 +47.8 +52.7 9 + 5 =14 15 + 12 = 27
TABU 1 TABU 1, 2 −64.3 +34.6 +66.0 8 + 6 =14 15 + 15 = 30
TABU 2 TABU 1, 2 −63.9 +34.5 +54.1 8 + 6 =14 15 + 15 = 30
GS 1, 2, 3, 4 GS 3 −31.2 +47.0 +41.3 7 + 6 =13 15 + 13 = 28
GS 1, 2, 3, 4 GS 1, 2, 4 −26.6 +51.3 +21.1 7 + 5 =12 15 + 12 = 27
GS 1, 2, 3, 4 TABU 1, 2 −9.2 +33.2 +23.0 7 + 6 =13 15 + 15 = 30
— — 0 1024.9f 0 20 30

Flint
TABU 1, 2 TABU 1 −17.2 +108.1 +52.0 7 + 5 =12 14 + 13 = 27
GS 1, 2, 3, 4 TABU 2 −15.6 +77.7 +40.4 6 + 6 =12 12 + 14 = 26
TABU 1, 2 GS 1, 2, 3, 4 −14.8 +105.5 +65.9 7 + 5 =12 14 + 13 = 27
TABU 1, 2 TABU 2 −14.0 +103.5 +65.3 7 + 6 =13 14 + 14 = 28
— — 0 1086.0f 0 20 30
GS 1, 2, 3, 4 TABU 1 +30.4 +76.5 +34.8 6 + 5 =11 12 + 13 = 25
GS 1, 2, 3, 4 GS 1, 2, 3, 4 +33.1 +74.2 +22.9 6 + 5 =11 12 + 13 = 25

For notation of BN algorithms see Table 2.
a Deviance information criterion: DIC of SEM minus DIC of MTM.
b Effective number of parameters: pD of SEM minus pD of MTM.
c Logarithm of Bayesian marginal likelihood: logL of SEM minus logL of MTM.
d Number of connections in the genomic network plus number of connections in the residual network.
e Number of nonnull parameters in the genomic covariance matrix plus number of nonnull parameters in the residual

covariance matrix.
f Absolute value of pD.
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Model fit. Model fit was assessed with the DIC and with the logarithm of the Bayesian marginal

likelihood (logL) (Table 5 and Table 6). logL evaluates the fit of the model to the data and prior

assumptions, and DIC takes into account and penalizes the number of parameters in the model.

Models were ranked according to their DIC, which differed from their logL ranking. In Dent (Flint),

eight (four) SEM with both a structured residual and structured genomic component had a lower

DIC than the multiple-trait model (Table 6). In Flint, no SEM with only a genomic structure had

a lower DIC than the multiple-trait model (Table 5). In general, DIC and logL varied more in Flint

than in Dent (Table 5 and Table 6).

Predictive ability. Predictive abilities and their SDs were derived from 10 replicates of a fivefold CV

with random sampling of training and test sets within each panel (Table A3 and Table A4). Averaged

over traits and for each trait individually, predictive abilities were similar for all models (single-trait,

MTM, and SEM) and differences between models were smaller than 1 SD and not significant. The

magnitude of predictive-ability estimates in the single-structure SEM was consistent with predictive-

ability estimates in the double-structure SEM in both panels. Since all SEM with a genomic structure

in the Flint panel had higher DIC (Table 5) and slightly lower predictive ability estimates (Table A3)

than the MTM, genomic structures might not have been identified correctly, which might also have

affected the double-structure SEM.

Choice of best network. Considering all model performance criteria jointly, the best-performing

networks in the SEM analysis are given in Figure 7. In the Dent panel, the SEM with the structure

derived from the residuals with GS 3 and the SEM derived from the genomic component with TABU 1

performed best considering both the double-structure and single-structure settings.

In the Flint panel, the SEM with the structure derived from the genomic component with TABU 1 and

2 had the best fit among SEM with a predefined structure, but performed worse than the MTM in

the single-structure setting. Regarding the residual structure in the Flint panel, the structure derived

with GS 1, 2, 3, and 4 was selected because it had a considerably larger logL than the structure

derived with TABU 1 when at the same time DIC and effective number of parameters were very

close.

Consequently, Figure 7 shows the structures derived with TABU 1 for the genomic components and

the structure derived with GS 3 for the residual components for both panels.
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Figure 7: BN for genomic values and residuals in Dent and Flint: graphs of the genomic component from
the tabu-search algorithm using BIC as score. Structure learning was performed with 500 bootstrap samples.
Graphs of the residuals from the GS algorithm with mutual information as test statistic, also with 500 bootstrap
samples and a significance level of α = 0.01. Labels of edges indicate the proportion of bootstrap samples
supporting the edge and (in parentheses) the proportion having the direction shown. Edges that were not
significant in the averaging process due to a network-internal empirical test on the arc’s strength are not
shown.
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6.2 Genomic, micro-, macro-environmental, and residual trait correlations

Runtime of a model with a random spatial component including the MH algorithm for the bandwidth

parameter was almost as fast as without this additional MH step using the R code implemented here

(see Appendix for code, and Algorithms A1 and 1 for details): Spatial models with two kernels

(Equations 33) ran twice as long as models with only one, genomic, kernel (Equations 30) on a

common Windows-7 machine (64-bit operating system).

Table 7: Posterior mean of bandwidth parameter for several prior and proposal
settings (Flint panel)

Prior Assumption ϑ ∼ Γ (2, 2) ϑ ∼ Γ (4,0.15)

Starting Value (ϑ(t=0)) 0.10 1.00 2.00 0.10 1.00 2.00
SD Proposal (σ2

ϑ
) 0.05 0.10 0.10 0.10 0.05 0.10

Field
INRA 1 0.531 0.532 0.531 0.520 0.518 0.520
KWS 1 0.555 0.559 0.557 0.547 0.544 0.545
SYN 1 1.092bc 1.231bc 1.412bc 0.802c 0.802c 0.804c

TUM 1 0.559 0.561 0.563 0.548 0.545 0.546
CIAM 1a 1.246c 1.249c 1.247c 1.186c 1.187c 1.188c

HOH 1 0.393 0.391 0.392 0.390 0.391 0.390
INRA 2 0.257 0.258 0.261 0.260 0.259 0.261
KWS 2 0.453 0.455 0.453 0.450 0.449 0.451
SYN 2a 0.782c 0.782c 0.810bc 0.712c 0.711c 0.711c

TUM 2 1.593bc 1.809bc 1.866bc 0.884c 0.882c 0.883c

CIAM 2a 0.888 0.893 0.893 0.872 0.874 0.873
HOH 2a 0.619 0.619 0.621 0.598 0.598 0.598

Ploudaniel 2011 (INRA), Einbeck 2011 (KWS), Wadersloh 2011 (SYN), Roggenstein 2011
(TUM), La Coruna 2011 (CIAM)
a Low prior sensitivity.
b MCMC not converged.
c SD of posterior mean larger than 0.1.

There were small differences among the posterior mean of the bandwidth parameter for different

starting values within settings (Table 7). In three out of twelve fields, convergence of the bandwidth

parameter’s distribution was slow and perhaps not attained when the the less informative prior

was used, with trace plots of MCMC samples of ϑ indicating convergence problems. Sensitivity to

choice of hyper-parameters was mild in four fields and not appreciable in six fields, see differences

between the two settings in Table 7. In summary, low prior sensitivity and good mixing indicated

identifiability of and a reasonable information on the bandwidth parameter ϑ. Convergence to its

posterior distribution was satisfactory.

Similarities of model fit (Table A5) and posterior means of ϑ (Table 7) were similar across settings,

and settings with converged chains of the bandwidth parameter were favored over those with con-

vergence problems (visual inspection of sampling chain) by model fit. Adding the spatial component

improved model fit (Equations 33 vs. Equations 30) in each of the fields (Table A6), and, consis-
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tently, adding the spatial component to the one-stage model (cf. Equation 46) also improved DIC and

reduced the determinant of the residual covariance matrix (Equation 46 vs. Equation 50).

Correlations between predicted genomic values of this one-stage model with predicted genomic val-

ues of a comparable two-stage model were 0.98 for DMY, 0.99 for DMC, 0.98 for PH, 0.99 for DtTAS,

and 0.99 for DtSILK. The two-stage model (MTM according to Equation 5) was recalculated for this

comparison with a kinship matrix calculated according to Astle and Balding (2009) and without a

population correction for the adjusted means.

Trait correlations and SD for all components are given in Table 8. Recall that in the two-stage ap-

proach (cf. Equations 1 and 5) there was a correction for family effects, i.e., the adjusted means were

mean-centered in each family. The one-stage model (cf. Equation 46) has no correction for family

effects, i.e., no fixed effects for the family means were included. So the genomic correlations in the

one-stage model represent family relatedness in addition to allelic effects in contrast to the genomic

correlations in Table 4. As a result, genomic correlations between DMY and DtTAS, between DMC

and DtSILK, and between DtTAS and DtSILK were lower by more than 0.05.

Micro-environmental trait correlations ranged from−0.29 to 0.57 with SD smaller than 0.05. Macro-

environmental (i.e., from the location component) and field trait correlations had a large SD, but

it is to be expected that variance components from six locations and twelve fields are necessarily

imprecise.
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Table 8: Genomic, micro-, macro-environmental, field, and residual trait correla-
tions from the one-stage model (cf. Equation 46) with posterior SDs in parentheses
(Flint panel)

DMC PH DtTAS DtSILK

Genomic correlations
DMY −0.60 (0.04) 0.81 (0.02) 0.68 (0.03) 0.68 (0.03)
DMC −0.63 (0.04) −0.69 (0.03) −0.71 (0.03)
PH 0.74 (0.03) 0.75 (0.03)
DtTAS 0.86 (0.01)

Micro-environmental correlations (spatial component)
DMY 0.28 (0.03) 0.57 (0.03) −0.29 (0.04) −0.29 (0.04)
DMC −0.05 (0.03) −0.17 (0.03) −0.20 (0.03)
PH −0.21 (0.03) 0.17 (0.03)
DtTAS 0.56 (0.02)

Macro-environmental correlations (location component)
DMY 0.11 (0.30) 0.25 (0.30) −0.15 (0.32) −0.32 (0.33)
DMC 0.02 (0.30) −0.27 (0.30) −0.29 (0.32)
PH 0.00 (0.37) 0.08 (0.38)
DtTAS 0.48 (0.28)

Field correlations
DMY −0.30 (0.35) 0.32 (0.33) −0.38 (0.33) −0.37 (0.36)
DMC −0.27 (0.32) 0.32 (0.33) 0.31 (0.33)
PH −0.19 (0.37) −0.35 (0.40)
DtTAS 0.40 (0.27)

Residual correlationsa

DMY 0.49 (0.03) −0.08 (0.04) 0.13 (0.03) −0.03 (0.03)
DMC −0.02 (0.04) 0.03 (0.03) −0.06 (0.03)
PH 0.21 (0.04) 0.24 (0.04)
DtTAS 0.49 (0.02)

Traits: biomass dry matter yield (DMY) (dt/ha), biomass dry matter content (DMC) (%),
plant height (PH) (cm), days to tasseling (DtTAS) (days), days to silking (DtSILK) (days).
a The determinant of the residual trait covariance matrix is smaller than 10−7.
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7 Discussion

7.1 Learning genomic and residual trait networks

Scope of Bayesian network and structural equation model methodology. This thesis showed

that structures derived from BN algorithms conveyed more information than mere trait-association

values because many correlations are suggested to arise from indirect associations that are mediated

by one or more variables. For example, the relatively strong genomic correlations between PH and

DMC and between DtSILK and DMY in the Flint panel, and the relatively strong genomic correlation

between DtSILK and DMC in the Dent panel, did not correspond to an edge in the genomic networks

(Figure 7). As illustrated by Valente et al. (2015), a wrong interpretation or use of trait associa-

tions can lead to erroneous selection decisions or interventions. Therefore, knowledge on network

structures among traits is useful on top of only trait correlations with respect to indirect selection

strategies.

Genomic correlations, networks, and model performance criteria varied between the Dent and Flint

panels, and incorporating genomic networks into prediction models improved model fit more in Dent

than in Flint. As the DH lines in the Dent panel were genetically more diverse than in the Flint panel

(Lehermeier et al. 2014), this could imply that formulating an SEM is more advantageous when

dealing with a diverse set of genotypes.

It is noteworthy that the DIC in the single-structure SEM was more variable in Flint than in Dent.

Variable selection through the network algorithms was more stringent in Flint and, therefore, the

SEM differed more from each other and from the MTM than in Dent (Table 5). Based on the com-

parison of the two data sets, the impact of genetic structure on network inference could not be shown

conclusively. In combination with an investigation of methods for control of variable selection inten-

sity (i.e., propensity of an algorithm, test, or score to a sparser network), this topic warrants further

research.

In both panels, the marginal logL was higher for many SEM than for the multiple-trait model, even

though the network structure on the covariance matrices implied variable selection. This shows

that restrictions on the covariance structures among traits were generally supported by the data.

Following the principle of parsimony, a fully recursive structure might not be the best representation

of connections among traits.

Choice of method for network construction. The results suggest that the choice of method for

network learning is crucial, and that a thorough assessment of network structures is necessary when

dealing with real-life data. Resulting networks might not explain or fit the data better than a full

network as seen here (especially for the genomic component in Flint). Assessment of the different

network structures was done by considering several model quality criteria (DIC, logL, number of

parameters, and cross-validated predictive ability) together, and by evaluating if these criteria ranked

networks consistently.
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Marginal likelihoods are used routinely to evaluate the relative plausibility of prior assumptions (e.g.,

Spiegelhalter et al. 2002) from the observed data. After having learned the BN, they were translated

into prior assumptions for SEM, and then the various SEM were assessed for their priors via marginal

likelihoods. DIC conveys information on number of effective parameters in model comparisons.

Different prior assumptions translate into different numbers of effective parameters in the SEM, i.e.,

model complexity varies over networks. As DIC reflects model complexity, it is a natural companion

to the marginal likelihood for SEM ranking. While model-fit criteria evaluate the quality of data

description by a network, predictive ability reflects the generalization of structure estimation from

one subset of the data (training set) to another subset (test set). However, true structures of traits

remain unknown and validating inferred connections in experiments with a broad range of genetic

material after hypothesis generation with BN and SEM is crucial.

SEM analysis suggested that score-based approaches were better for learning the structure of the

genomic networks, while constraint-based approaches were better for the residual networks. This

might have resulted from constraint-based algorithms having been more restrictive (given the chosen

significance level) and from residual networks being sparser than genomic networks. Evidence for

the significance of edges (i.e., support of the edge in more than 70% of the bootstrap samples) was

generally higher in the constraint-based networks than in the score-based networks. Influence of

the significance level in the constraint-based algorithms warrants further investigation. However, it

might be expected that a larger significance level α for learning BN from the residuals would result

in more complex networks, and, at some point, the additional complexity would result in lower

predictive ability and/or overfitting. Advanced network construction algorithms, such as max-min

hill-climbing (Tsamardinos et al. 2006), combine a constraint-based edge search with a score-based

directing of the edges. Such combined approaches should be investigated in future research because

they allow variation of the significance level in combination with a score-based network search (i.e.,

directing arcs).

Interpretation of network structure. If variables A and B are directly associated with each other,

and B and C are alike, then an association between A and C would be a logical consequence, even if

there is no direct association between A and C (cf. part A of Figure 1). When a BN is inferred, such

associations that can be explained by a chain of other associations are not depicted as connections.

This means that a connection in a network is more reliable than a significant association between

two variables because BN eliminate connections that are unlikely to be direct.

Therefore, BN connections provide more information than pairwise associations between traits. If

there were a causal connection between a child and a parent variable, then the child variable would

change with a change of the parent variable. For example, if silking time in Dent material is changed,

e.g., by early seeding, it is likely that PH at harvest changes too, according to the residual network

in the Dent panel. If the genotypic value of PH is changed in the Dent panel, e.g., by selection, this

change is likely to affect the genotypic value of DMY, according to the genomic network in the Dent

panel. Nonetheless, the interpretation of BN connections as causal effects is delicate and needs fur-
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ther assumptions than those made here, especially the assumption of absence of additional variables

influencing those already included in the study. Thus, interpretation of networks is suggested as an

overall association among more than two entities, i.e., values of the child variable are associated

with values of the parent variable.

Residual networks followed some temporal order as traits measured at harvest (PH, DMY, and DMC)

depended on traits measured during the vegetation period (DtTAS and DtSILK). Additionally, the

inference of direction between DtTAS and DtSILK in the residual networks was relatively uncertain

with 52 and 55% of bootstrap samples supporting the direction. This might be because both flowering

traits are determined by (the time for the) transition from vegetative to reproductive growth (TVR)

and no direct dependence between them truly exists, as both traits depend on TVR. The connection

between DtTAS and DtSILK would then be an example of an induced connection by an unobserved

confounder in a network.

7.2 Investigation of micro-environmental covariance by a spatial component

Evaluation of spatial model. Formulation of the spatial component with a Gaussian kernel and a

single bandwidth parameter with a Gamma prior was adapted from Pérez-Elizalde et al. (2015) for

modeling spatial dependencies in field experiments. This approach modeled parsimoniously the two-

dimensional field arrangements with a single random component, which was robust with respect to

sensitivity to choice of hyper-parameters and convergence performance.

In contrast to grid search, Bayesian sampling of the bandwidth parameter facilitated investigation of

model fit (likelihood at posterior mean) in a single model call. MCMC sampling allowed assessment

of different priors and prior sensitivity and provided an uncertainty measure (SD of the posterior

distribution) for the bandwidth parameter estimates.

Results in this thesis (cf. Table 7) showed that convergence issues or sensitivity to hyper-parameter

choice can indicate lack of statistical information, strong posterior inter-correlation structure, or non-

random spatial trends such as in the second trial in Roggenstein (TUM 2), where a fertilizer gradient

was observed in the field. It therefore can be assumed that when there is no spatial correlation in the

data following a random Gaussian pattern, the bandwidth parameter presumable may not converge,

or rather, converge to zero or very large values as these both states of the bandwidth parameter imply

little values of spatial covariances.

Model-fit measures indicated that the spatial component was supported by the data, and although

less data (Table 1 and Table 3) was used in the one-stage model (cf. Equation 46) than in the two-stage

model (cf. Equations 1 and 5), estimates of genomic values were very similar in both approaches.

In the one-stage model, phenotypic (co)variance could be effectively decomposed into genomic,

macro- and micro-environmental components, thereby distinguishing between amendable genetic
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and environmental trait connections and trait connections being induced by macro-environmental

conditions.

Differences between one-stage and two-stage approach. Besides the spatial component, there

were other differences between the one-stage (cf. Equation 46) and two-stage models (cf. Equations 1

and 5). Different kinship matrices were used for modeling the genomic component (simple matching

in the MTM and Astle-Balding in the one-stage). Additionally, family effects were considered in

the two-stage approach as the adjusted means were mean-centered per family. In contrast, family

effects were not separately modeled in the one-stage approach (cf. Equation 46) and the genomic

component was therefore modeling additive allelic and family effects together. Kinship following

Astle and Balding (2009) and no extra fixed family effects were chosen for the one-stage model

(cf. Equation 46) as it allowed faster computation. In addition, modeling family means as fixed

effects did not change estimates of non-genomic covariances or the model-fit values appreciably in

the one-stage model (results not shown).

Second and more important, all traits were considered jointly in the one-stage approach (cf. Equa-

tion 46). As a consequence, data of a plot was discarded for all traits if data was missing for a single

trait (compare Table 1 and Table 3 for details). In the two-stage approach (cf. Equations 1 and 5),

adjusted means were calculated for each trait separately and more data could therefore be used. Ad-

ditionally, less data was available in the one-stage approach (cf. Equation 46) than in the two-stage

approach (cf. Equations 1 and 5) since marker data was not available for some genotypes (6 in the

Flint panel). Differences in predicted genomic values were, however, negligible (see Results).

Estimates of fixed effects are less sensitive to not identically distributed residuals than estimates

of random components as the variance estimation of random components can be confounded if

the error terms’ variance assumptions are violated. The plots in the field experiments here had

different measurement errors, e.g., due to different number of available plants per plot at harvest,

which conflicted with the assumption of identically distributed residuals in the phenotypic analysis

(cf. Equation 1) as well as in the one-stage model (cf. Equation 46). The effect of this violated

assumption is expected to be more prevalent in one-stage models and, therefore, one-stage models

can be less robust than two-stage approaches.

This could also cause imbalances in CV schemes. The development and assessment of a suitable

weighting to correct for the measurement errors was, however, out of the scope of this thesis and

can also become challenging as it is not clear which factors are involved in the measurement errors,

how they can be measured, and then translated into error term covariance assumptions. To overcome

this challenge in future research, it might therefore be advisable to assess predictive ability of the

one-stage approach with an independent validation set, which was unfortunately not available for

the experimental data used in this thesis.

Scope of spatial model methodology. First, modeling spatial correlation using physical distance

helps identifying traits that are regulated by joint micro-environmental factors. Second, this ap-
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proach facilitates computation of a multiple-trait-one-stage model (cf. Equation 46) since spatial

effects are modeled by a single random component and can be used even if a block design is not

available.

For all traits, the same spatial correlation was assumed, which was a strong assumption that might

be inadequate as physical distance might influence traits differently. However, this assumption im-

proved identifiability of the bandwidth parameter, and is analogous to the corresponding approach

for genomic components, where bandwidth parameters are estimated for the genomic component

(Pérez-Elizalde et al. 2015).

Predefining a single Gaussian random dependence structure in experimental data is an inflexible ap-

proach because it does not account for different spatial dependencies in different directions in trials,

or for different distributions at different positions in the field (e.g., Gilmour et al. 1997, Bernal-

Vasquez et al. 2014, or Velazco et al. 2017). If nonrandom spatial effects or strong gradients are

present, such spatial patterns would need to be modeled in addition to the spatial component pro-

posed in this thesis as the micro-environmental component here only models random effects follow-

ing a Gaussian pattern. On the other hand, overfitting spatial patterns is expected to be less likely

when using a single predefined random component with a single free parameter. It is also assumed to

be computationally easier and statistically better identified than using several components and many

more parameters that need to be estimated. Whether or not spatial modeling is helpful for genomic

prediction, and when which approach is the most beneficial is problem dependent and warrants

further research.

Convergence of the MCMC sampling including MH usually depends heavily on the variance of the

proposal distribution chosen for the respective parameter (σ2
ϑ
). If the variance is chosen too small,

the MCMC chain mixes badly, i.e., the acceptance rate will be high, but successive samples will

move around the space slowly, and many samples are needed in the burn-in period. In addition,

MCMC samples will be strongly auto-correlated after convergence. If the variance is chosen too

large, the acceptance rate is very low, which directly implies slow convergence (e.g., Green et al.

2015). Choosing an optimal variance for the proposal distribution therefore requires intensive trial

and error, and is problem dependent.

If data from a plot is missing, estimation of the proposed spatial component is expected to be more

robust to such missing data than estimation in a simple row-column adjustment because both direc-

tions are combined and, therefore, a gap has less weight per coefficient of the spatial component. A

similar reasoning applies to spatial adjustment at field borders, which could be useful when investi-

gating large plantations or natural populations, e.g., of trees.

The implementation of a Gibbs Sampler with an embedded MH step provided in this thesis laid

ground for further research on epistasis. Jiang and Reif (2015) show that a genome-enabled predic-

tion model including epistatic effects (where the kernel is modeled as the Hadamard product of the

additive relationship matrix) is equivalent to a reproducing kernel Hilbert space (RKHS) prediction
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model. For this equivalence to hold, the RKHS model needs to be formulated with a Gaussian kernel

(cf. Equation 35) and a bandwidth parameter chosen accordingly. So the code developed in this

thesis can be used there and facilitate research in posterior distributions of epistatic effects and their

variances, respectively.
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8 Conclusion

The main contributions and conclusions from investigating trait covariances and their structures are:

• The novel approach allowed to determine trait connections separately on the genomic and

residual levels. This is a major development in BN trait connection studies as it aligns them

with (non-structural) multiple-trait genome-enabled prediction where genetic and residual

factors are assumed to have independent distributions.

• A suitable transformation for adapting the genomic component to assumptions of the BN learn-

ing methodologies could be found in this thesis, and genomic and residual effects were used

for BN learning instead of their variances. BN learning becomes thus presumably more robust

to noise in the data since effects are expected to be more accurately estimated than covariance

matrices in mixed models.

• An integration of the separate genomic and residual trait networks into SEM was presented

and used as trait structure evaluation tool. Consequently, genomic and residual networks

could then be assessed by SEM separately and jointly. SEM were used herein for the first time

as evaluation of found BN trait connections in experimental data, and the found BN could be

shown to fit data better than the standard model.

• Spurious connections in maize data could be identified on the genomic and the residual levels

in this study. Identification of spurious genomic connections can be useful for multiple-trait

prediction and indirect selection.

• Bootstrapping was used for the first time to identify potential confounders, and an example

(TVR) for such a confounder was found and discussed.

• A computationally feasible one-stage model was implemented in this thesis and allowed a re-

fined decomposition of phenotypic covariance into genomic, micro- and macro-environmental

components.

• In the respective R implementation, computation of a Gaussian kernel with a single band-

width parameter was facilitated by sampling this bandwidth parameter in an MH algorithm

embedded in a Gibbs sampler. The implementation had a reasonable runtime and is of general

usefulness, e.g., regarding spatial genomic kernels and modeling epistasis.

• Convergence and low sensitivity with respect to hyper-parameters indicated identifiability of

the bandwidth parameter when modeling spatial covariance in the experimental data exam-

ined.

• Using a single random component for both field dimensions as proposed here in modeling

spatial covariance enables future investigation of micro-environmental trait connections via

BN.
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9 Summary

Relationships among traits were investigated on the genomic and residual levels using novel method-

ology developed in this thesis. This included inference on these relationships via Bayesian networks

and an assessment of the networks with structural equation models. The methodology employed

three steps. First, a Bayesian multiple-trait Gaussian model was fitted to the data to decompose phe-

notypic values into their genomic and residual components. Second, genomic and residual network

structures among traits were learned from estimates of these two components. Network learning was

performed using six different algorithmic settings for comparison, of which two were score-based and

four were constraint-based approaches. Third, structural equation model analyses ranked the net-

works in terms of model fit and predictive ability, and compared them with the standard multiple-trait

fully recursive network. For juxtaposing macro-environmental to micro-environmental trait connec-

tions, it was proposed to include a component modeling covariance due to spatial arrangement of

plants in experimental trials as a representative of shared micro-environmental influences. The spa-

tial random component added to the model was defined by a Gaussian kernel matrix, of which the

coefficients depend on an unknown bandwidth parameter and on physical distances between plots.

The model was implemented in a Bayesian framework and the bandwidth parameter was sampled

within a Metropolis-Hastings step. Macro-environmental connections were modeled via the location.

The developed methods were applied to experimental data from the European heterotic maize pools

Dent and Flint (Zea mays L.). Inferences on genomic and residual trait connections were depicted

separately as directed acyclic graphs. These graphs provide information beyond mere pairwise ge-

netic or residual associations between traits, illustrating conditional independencies and hinting at

potential causal links among traits. Network analysis suggested some genetic correlations as po-

tentially spurious. Micro-environmental covariances were estimated for each field at all locations

separately. Convergence of the Monte Carlo Markov chains and identifiability of the bandwidth pa-

rameter were suggested by consistency of estimates across various hyper-parameters and Metropolis-

Hastings specifications, i.e., various starting values and standard deviation values of the Metropolis-

Hastings proposal density were examined. Including the spatial components into the models was

supported by increased likelihood. Data from all fields were integrated into a one-stage model,

from which genomic, micro-, macro-environmental, and residual contributions to the phenotype

could be calculated across the whole experiment. The implementation of the Gibbs sampler with

a Metropolis-Hastings step for the bandwidth parameter might also be useful for genomic analysis,

e.g., for estimating epistatic values.
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10 Zusammenfassung

Mit einer neuen Methodik wurden Merkmalszusammenhänge getrennt nach genomischem und an-

derweitigem Ursprung untersucht. Dazu wurden die Beziehungen zwischen den Merkmalen mit

Bayesschen Netzen bestimmt und danach mit Strukturgleichungsmodellen evaluiert. Die Methodik

bestand aus drei Schritten. Zuerst wurden die phänotypischen Werte mit einem gemischten Mo-

dell in ihre genomischen und anderweitigen Anteile zerlegt. Von beiden Anteilen wurden dann

im zweiten Schritt Bayessche Netze gelernt. Das Lernen der Netze wurde durch sechs verschiedene

algorithmische Szenarien realisiert, von denen zwei ergebnisoptimierend und vier testbasiert waren.

Im dritten Schritt wurden die damit gefundenen Netze mit Strukturgleichungen nach ihrer Anpas-

sungsgüte und ihrer Vorhersagekraft geordnet und so untereinander und mit dem Standardmodell

für mehrere Merkmale verglichen. Um Effekte der Mikro- von denen der Makroumwelt trennen zu

können, wurde ein Zufallsfaktor dem Modell hinzugefügt, der sich die räumliche Anordnung der

Parzellen im Experiment zur Modellierung der Mikroumwelt zunutze macht. Dieser neue Zufallsfak-

tor wurde durch einen Gauß-Kern definiert, dessen Koeffizienten von einem unbekannten Parameter

und dem physikalischen Abstand zwischen den Parzellen abhängen. Das Modell wurde nach Bayes

implementiert und der unbekannte Parameter darin in einem Metropolis-Hastings-Algorithmus gezo-

gen. Die Makroumwelt wurde durch den Standort im Modell repräsentiert.

Die Methodiken wurden auf experimentelle Daten angewendet, die aus den zwei heterotischen eu-

ropäischen Maisgruppen (Zea mays L.), Dent und Flint, stammten. Die von den genomischen und

anderweitigen Anteilen getrennt hergeleiteten Bayesschen Netze wurden als gerichtete, azyklische

Graphen abgebildet. Diese Abbildungen bieten genauere Einblicke als paarweise Assoziationsma-

ße zwischen Merkmalen, da sie bedingte Unabhängigkeiten abbilden und potentielle kausale Zu-

sammenhänge aufzeigen. Die Netze legten nahe, dass manchen genetischen Korrelationen keine

Kausalität zugrunde liegt. Effekte der Mikroumwelt wurden zunächst für jede experimentelle Ein-

heit an allen Orten getrennt berechnet. Die konsistente Schätzung des Parameters über verschiedene

Hyperparameter und Einstellungen des Metropolis-Hastings-Algorithmus (wie Startwert und Stan-

dardabweichung der Vorschlagsdichte) ist ein gutes Indiz dafür, dass die Monte-Carlo-Markov-Kette

konvergiert und der Parameter selbst identifiziert ist. Zum Schluss wurden alle experimentellen Ein-

heiten gemeinsam in ein Ein-Schritt-Modell zusammengefasst, aus dem sich für alle Orte des Experi-

ments gemeinsam die Anteile des Phänotyps gemäß genomischen Faktoren, Mikro- und Makroumwelt

sowie anderer Einflussfaktoren ableiten lassen. Die Implementierung des Gibbs-Sampling mit dem

Metropolis-Hastings-Algorithmus für den unbekannten Parameter kann daneben auch für die Schät-

zung von Epistasie nützlich sein.
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12 Appendix

Reduced representation of the fully conditional posterior distribution of the bandwidth
parameter

First, a suitable definition of s∗ is derived, and, then, the equivalence in Equation 45 is shown. As Σ

is assumed to follow an inverse-Wishart distribution, it is positive definite and can be decomposed

into its Cholesky factors

Σ= LL′ (A1)

where L is a (d × d)-dimensional lower triangular matrix. Define M = In×n ⊗ L , so that M−1 =

In×n ⊗ L−1 and ( In×n ⊗ L)( In×n ⊗ L−1) = Ind×nd . Defining

s∗ =M−1s (A2)

yields

Var(s∗) = Var(M−1s) =M−1Var(s)
�

M−1
�′
=M−1(Sϑ ⊗Σ)(M−1)′

= ( In×n ⊗ L−1)(Sϑ ⊗Σ)( In×n ⊗ L−1)′ = Sϑ ⊗ Id×d (A3)

because L−1Σ(L−1)′ = Id×d , which follows directly from Equation A1. Hence, s∗ | ϑ ∼ Nnd(0,Sϑ ⊗

Id×d). A similar transformation and the resulting covariance structure was used by Vázquez et al.

(2010).

For Equation 45 to hold, it suffices to show that

p(s | ϑ) = det(Σ)−
n
2 · p(s∗ | ϑ) (A4)

This can be easily seen by re-formulating the multivariate normal distribution of s:

p(s | ϑ) =
1

p

(2π)nd det(Sϑ ⊗Σ)
exp

�

−0.5s′(Sϑ ⊗Σ)−1s
�

=
1

p

(2π)nd det(Sϑ)d det(Σ)n
exp

�

−0.5s′(Sϑ
−1 ⊗Σ−1)s

�

=
1

p

(2π)nd det(Sϑ)d
1

p

det(Σ)n
exp

�

−0.5s′
�

Sϑ
−1 ⊗ (L−1)′(L−1)

�

s
�

=
1

p

(2π)nd det(Sϑ)d
det(Σ)−

n
2 exp

�

−0.5
�

s′( In×n ⊗ L−1)′
�

(Sϑ
−1 ⊗ L−1)s

�

= det(Σ)−
n
2

1
p

(2π)nd det(Sϑ)d
exp

�

−0.5s∗′(Sϑ
−1 ⊗ Id×d)

�

( In×n ⊗ L−1)s
��

12 Appendix 63



= det(Σ)−
n
2

1
p

(2π)nd det(Sϑ ⊗ Id×d)
exp

�

−0.5s∗′(Sϑ ⊗ Id×d)
−1s∗

�

= det(Σ)−
n
2 p(s∗ | ϑ)

(A5)
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Table A1: Full-sib families in the Flint and Dent panel

Name Parents Number of DH lines

Dent (10 families) 831
CFD02 F353 × B73 64
CFD03 F353 × D06 97
CFD04 F353 × D09 100
CFD05 F353 × EC169 64
CFD06 F353 × F252 92
CFD07 F353 × F618 104
CFD09 F353 × Mo17 53
CFD10 F353 × UH250 94
CFD11 F353 × UH304 81
CFD12 F353 × W117 82

Flint (11 families) 805
CFF03 UH007 × D152 72
CFF04 UH007 × EC49A 29
CFF05 UH007 × EP44 17
CFF06 UH007 × EZ5 26
CFF07 UH007 × F03802 129
CFF08 UH007 × F2 54
CFF09 UH007 × F283 133
CFF10 UH007 × F64 62
CFF12 UH007 × UH006 92
CFF13 UH007 × UH009 98
CFF15 UH007 × DK105 93

F353 is the central Dent line and UH007 is the central Flint line.

Table A2: Number of analyzed plots per
field in 2011 (Flint)

Field Number of analyzed plots

INRA 1 528
KWS 1 531
SYN 1 525
TUM 1 529
CIAM 1 528
HOH 1 528
INRA 2 528
KWS 2 526
SYN 2 520
TUM 2 523
CIAM 2 528
HOH 2 529

Ploudaniel (INRA), Einbeck (KWS), Wadersloh
(SYN), Roggenstein (TUM), La Coruna (CIAM).
Total plot count was 6323.
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Table A3: Single-structure evaluation: Predictive abilitya with SD for the MTM (cf. Equation 5) and for SEM
(cf. Equations 28) including a genomic (Λg∗) or residual (Λe) trait structure denoted by the BN algorithm
it originates from

BN Giving Λg∗ BN Giving Λe DMY DMC PH DtTAS DtSILK

Dent
— GS 3 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
— GS 1, 2, 4 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.05) 0.68 (0.04)
— TABU 1, 2 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
TABU 1 — 0.52 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.05) 0.68 (0.04)
— — 0.52 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.04) 0.68 (0.04)
TABU 2 — 0.52 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.04) 0.68 (0.04)
GS 1, 2, 3, 4 — 0.52 (0.05) 0.63 (0.04) 0.69 (0.04) 0.62 (0.04) 0.67 (0.03)

Flint
— TABU 1 0.64 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.04) 0.76 (0.04)
— GS 1, 2, 3, 4 0.64 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.04) 0.76 (0.04)
— TABU 2 0.64 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.04) 0.76 (0.04)
— — 0.64 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.04) 0.76 (0.04)
TABU 1, 2 — 0.62 (0.04) 0.67 (0.05) 0.69 (0.05) 0.74 (0.03) 0.75 (0.03)
GS 1, 2, 3, 4 — 0.63 (0.04) 0.66 (0.05) 0.67 (0.05) 0.73 (0.04) 0.75 (0.04)

Traits: biomass dry matter yield (DMY) (dt/ha), biomass dry matter content (DMC) (%), plant height (PH) (cm), days
to tasseling (DtTAS) (days), days to silking (DtSILK) (days).
For notation of BN algorithms see Table 2.
a Average of 10 random 5-fold cross-validations.

Table A4: Double-structure evaluation: Predictive abilitya with SD for the MTM (cf. Equation 5) and for
SEM (cf. Equations 28) including a genomic (Λg∗) and residual (Λe) trait structure denoted by the BN
algorithm it originates from

BN Giving Λg∗ BN Giving Λe DMY DMC PH DtTAS DtSILK

Dent
TABU 1 GS 3 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
TABU 2 GS 3 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
TABU 1 GS 1, 2, 4 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
TABU 1 TABU 1, 2 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
TABU 2 TABU 1, 2 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.63 (0.05) 0.68 (0.04)
TABU 2 GS 1, 2, 4 0.53 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.05) 0.68 (0.04)
— — 0.52 (0.05) 0.64 (0.04) 0.69 (0.04) 0.62 (0.04) 0.68 (0.04)
GS 1, 2, 3, 4 GS 3 0.53 (0.05) 0.63 (0.04) 0.69 (0.04) 0.62 (0.04) 0.67 (0.04)
GS 1, 2, 3, 4 GS 1, 2, 4 0.53 (0.05) 0.63 (0.04) 0.69 (0.04) 0.62 (0.04) 0.67 (0.04)
GS 1, 2, 3, 4 TABU 1, 2 0.53 (0.05) 0.63 (0.04) 0.69 (0.04) 0.62 (0.04) 0.67 (0.04)

Flint
— — 0.64 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.04) 0.76 (0.04)
TABU 1, 2 TABU 1 0.63 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.03) 0.76 (0.03)
TABU 1, 2 GS 1, 2, 3, 4 0.63 (0.04) 0.67 (0.05) 0.70 (0.04) 0.74 (0.03) 0.76 (0.03)
TABU 1, 2 TABU 2 0.63 (0.04) 0.67 (0.05) 0.70 (0.05) 0.74 (0.04) 0.76 (0.04)
GS 1, 2, 3, 4 TABU 2 0.64 (0.04) 0.67 (0.05) 0.68 (0.04) 0.73 (0.03) 0.75 (0.03)
GS1, 2, 3, 4 TABU 1 0.64 (0.04) 0.67 (0.05) 0.68 (0.05) 0.73 (0.04) 0.75 (0.04)
GS1, 2, 3, 4 GS 1, 2, 3, 4 0.64 (0.04) 0.67 (0.05) 0.68 (0.05) 0.73 (0.04) 0.75 (0.04)

Traits: biomass dry matter yield (DMY) (dt/ha), biomass dry matter content (DMC) (%), plant height (PH) (cm), days
to tasseling (DtTAS) (days), days to silking (DtSILK) (days).
For notation of BN algorithms see Table 2.
a Average of 10 random 5-fold cross-validations.
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Table A5: Model fit of genomic prediction models with spatial component for six prior and
proposal settings in the Flint panel

Prior Assumption ϑ ∼ Γ (2,2) ϑ ∼ Γ (4,0.15)

Starting Value (ϑ(t=0)) 0.10 1.00 2.00 0.10 1.00 2.00
SD Proposal (σ2

ϑ
) 0.05 0.10 0.10 0.10 0.05 0.10

Field

Logarithm of the likelihood at posterior mean
INRA 1 −703.7 −703.7 −704.2 −706.0 −707.4 −708.2
KWS 1 −328.0 −329.9 −328.1 −330.8 −330.9 −330.6
SYN 1 −772.3b −772.7b −770.6b −781.5 −778.9 −780.3
TUM 1 −952.9 −953.1 −951.3 −955.9 −957.3 −955.8
CIAM 1a −486.6 −486.3 −486.4 −501.9 −502.4 −501.5
HOH 1 −521.4 −524.7 −522.5 −524.5 −520.8 −523.9
INRA 2 −604.4 −604.5 −601.9 −600.4 −602.9 −600.5
KWS 2 −243.2 −242.4 −243.7 −243.4 −245.2 −242.5
SYN 2a −770.3 −770.1 −769.8b −770.9 −772.4 −773.1
TUM 2 −894.0b −890.0b −892.2b −884.6 −885.1 −885.0
CIAM 2a −323.0 −321.4 −321.1 −328.5 −326.1 −326.9
HOH 2a −683.1 −684.8 −683.4 −687.0 −687.8 −686.0

DIC
INRA 1 4490.8 4491.2 4491.6 4492.2 4494.4 4495.1
KWS 1 3833.5 3836.4 3834.1 3836.2 3836.3 3836.3
SYN 1 4551.6b 4551.1b 4548.6b 4560.8 4558.0 4559.7
TUM 1 4870.1 4870.4 4868.2 4871.9 4873.5 4872.8
CIAM 1a 4112.6 4112.0 4111.4 4127.3 4126.2 4126.0
HOH 1 4134.3 4137.3 4135.3 4137.0 4132.9 4137.2
INRA 2 4277.6 4278.3 4275.6 4273.7 4275.8 4274.9
KWS 2 3710.8 3710.6 3712.5 3711.2 3713.1 3710.1
SYN 2a 4564.4 4564.2 4563.2b 4563.3 4565.3 4566.4
TUM 2 4785.7b 4779.9b 4782.7b 4774.4 4774.0 4773.7
CIAM 2a 3770.2 3768.9 3768.7 3773.5 3771.1 3771.8
HOH 2a 4397.7 4399.4 4397.9 4399.9 4401.6 4399.5

Ploudaniel 2011 (INRA), Einbeck 2011 (KWS), Wadersloh 2011 (SYN), Roggenstein 2011 (TUM), La
Coruna 2011 (CIAM)
a Low sensitivity to priors.
b MCMC not converged.
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Table A6: Logarithm of the likelihood at posterior mean and DIC
of genomic prediction models with and without spatial component
(SC) (Flint panel)

Field Logarithm of likelihood DIC

with SCa without SC with SCb without SC

INRA 1 −708.2 −2057.7 4490.8 5483.9
KWS 1 −330.9 −1568.7 3833.5 4657.0
SYN 1 −781.5 −2001.8 4548.6 5395.2
TUM 1 −957.3 −2301.8 4868.2 5867.0
CIAM 1 −502.4 −1951.8 4111.4 5181.1
HOH 1 −524.7 −1865.1 4132.9 5117.8
INRA 2 −604.5 −2060.8 4273.7 5455.2
KWS 2 −245.2 −1558.2 3710.1 4662.9
SYN 2 −773.1 −2020.7 4563.2 5465.9
TUM 2 −894.0 −2155.9 4773.7 5689.8
CIAM 2 −328.5 −1935.1 3768.7 5102.2
HOH 2 −687.8 −1968.1 4397.7 5272.0

Ploudaniel 2011 (INRA), Einbeck 2011 (KWS), Wadersloh 2011 (SYN),
Roggenstein 2011 (TUM), La Coruna 2011 (CIAM)
a Minimum of all settings.
b Maximum of all settings.
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Figure A1: Networks of the genomic component in Dent: All networks identified the connections from DtSILK
to DtTAS, from DtSILK to DMY, from DMC to PH, from PH to DMY, from DMY to DtTAS, from DMC to DtTAS,
and between PH and DtSILK. Both score-based approaches (TABU 1 and 2) displayed an extra edge from
DMC to DtSILK. The score-based approach with the BGE score (TABU 2) showed an additional edge from PH
to DtTAS. The SEM favored the tabu-search with the BIC score (TABU 1) over all other settings. Labels of
edges indicate the proportion of bootstrap samples supporting the edge and (in parentheses) the proportion
having the direction shown. Edges that were not significant in the averaging process due to a network-internal
empirical test on the arc’s strength are not shown.
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Figure A2: Networks of the residual component in Dent: All algorithms showed edges from DtSILK to DMC,
from DtSILK to PH, from DtSILK to DtTAS, between DMY and PH, and between DMC and PH. One constraint-
based approach (GS 3) and the score-based approaches (TABU 1, 2) identified an additional connection from
DMY to DMC. The SEM favored the GS algorithm with the mutual information criterion (GS 3) over all other
settings. Labels of edges indicate the proportion of bootstrap samples supporting the edge and (in parentheses)
the proportion having the direction shown. Edges that were not significant in the averaging process due to a
network-internal empirical test on the arc’s strength are not shown.
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Figure A3: Networks of the genomic component in Flint. All algorithms identified the connections from DtSILK
to DtTAS, from DtSILK to DMC, between DMY and DMC, between DMY and PH, between DMY and DtTAS, and
between DtTAS and DMC. The score-based approaches (TABU 1, 2) oriented the connections with DMY and
between DtTAS and DMC in the opposite direction than the constraint-based approaches (GS 1, 2, 3, 4). They
also displayed an additional edge from DtTAS to PH. The SEM favored the tabu-search algorithms (TABU 1, 2)
over all other settings. Labels of edges indicate the proportion of bootstrap samples supporting the edge and
(in parentheses) the proportion having the direction shown. Edges that were not significant in the averaging
process due to a network-internal empirical test on the arc’s strength are not shown
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Figure A4: Networks of the residual component in Flint: All algorithms showed edges from DtSILK to PH,
from DMY to PH, from DMY to DMC, from DtTAS to DMC, and between DtTAS and DtSILK. The score-based
approach with the BGE (TABU 2) identified an additional connection from PH to DtTAS. The SEM favored the
GS algorithm with the mutual information criterion (GS 3) over all other settings. Labels of edges indicate the
proportion of bootstrap samples supporting the edge and (in parentheses) the proportion having the direction
shown. Edges that were not significant in the averaging process due to a network-internal empirical test on
the arc’s strength are not shown.
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Algorithm A1 Gibbs sampler for multivariate mixed models, cf. de los Campos (2015)

Let Λ·i be the ith column of Λ.

Initialize all MCMC chains with a sensible starting value.

for all random components u∼N (0,Ω⊗V) do

Compute quasi-orthogonal representation of u (see Equation 42).

Compute Ai =
�

E−1 + (Ψ−1)iiV−1
�−1

for all i ∈ {1, . . . , m}.

Draw vi = (vi1, . . . ,vid) ∼ Nd

�

(Λ·i)′ [y−1n ⊗µ− ur]E−1Ai ,Ai

�

for all i ∈ {1, . . . , m}, with ur
being the sum of all other random components.

u← (Λ⊗ Id×d)v

v0← (Ψ−
1
2 ⊗ Id×d)v . v0 ∼Nmd(0, Im×m ⊗V)

Arrange v0 in Mv0
such that rows contain traits and columns contain the m transformed eigen-

vector projections.

Draw V∼W −1
�

Mv0
′Mv0

+ΦV, m+ νV

�

.

if Ω= Sϑ then do MH step for Ω= Sϑ and ϑ. . see Algorithm 1

end for

Arrange y−
∑p

k=1 uk in Y∗ such that rows contain traits and columns contain individuals.

Draw µ∼Nd

�

Y∗1n
n , E

n

�

.

Arrange the residuals in Me such that rows contain traits and columns contain individuals.
Draw E∼W −1

�

Me
′Me +ΦE, m+ νE

�

.
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Algorithm A2 GS Markov Blanket, cf. Margaritis (2003)

Let Ω be the whole set of variables, X the node under investigation, Y any other node, and S the
Markov blanket of X to be. Then

S← ;

while ∃Y ∈ Ω \ {X} such that Y is probabilistically dependent of X given S do S← S ∪ {Y}
end while . Growing phase

while ∃Y ∈ S such that Y is probabilistically independent of X given S \ {Y} do S← S \ {Y}
end while . Shrinking phase

return S

Algorithm A3 GS (full version), cf. Margaritis (2003)

Compute the Markov blanket B(X) of all X according to Algorithm A2.

for all X and Y ∈ B(X) do determine if Y is a direct neighbor of X and if so, add Y to N(X).
end for

for all X and Y ∈ N(X) do orient Y→ X if ∃Z ∈ N(X)\N(Y)\{Y} such that Y and Z are dependent
given S ∪ {X} ∀S ⊆ T , where T is the smaller of B(Y) \ {X,Z} and B(Z) \ {X,Y}.
end for

while ∃ cycles do

Compute the set of edges C being part of a cycle.

Remove from the current graph the edge in C that is part of the greatest number of cycles and
put it in R.

end while

Insert each edge from R in the graph in reverse order of removal in the step before, reversed.

while ∃X and Y ∈ N(X) with no direction between X an Y do
If there exists a directed path from X to Y, orient X→ Y.

end while
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Algorithm A4 Tabu Search, cf. Bouckaert (1995)

Let STOP be any stopping criterion (e.g., the maximal number of iterations) and n the length of
the tabu-list. Let S be the set of the arrows of the current network, N(S) all networks that arise
from S by changing one arc, and counter a running integer.

Initialize S (e.g., an empty or full graph).
Sbest← S
counter← 0
Initialize the tabu-list with all elements being in S.

repeat

Select an element R ∈ N(S), R /∈ tabu-list, that maximizes the score.

S← R

tabu-list[counter]← R

counter← (counter+ 1) modulo n

if the score of S exceeds the score of Sbest then Sbest← S

until STOP

return Sbest
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Code for MTM function with spatial component

Example for a call

Let pheno be a matrix containing phenotypes, individuals in rows, traits in columns.

Let distances be a matrix containing physical distances between individuals, sorted as pheno.

Let kinship be a kinship matrix (e.g., simple matching and Astle and Balding 2009), also sorted as

pheno.

Y <− s c a l e (pheno)

K <− l i s t (

l i s t ( ## s p a t i a l kerne l

D i s t = d i s tances ,

the ta = 0.1 , # s t a r t value fo r bandwidth parameter

the tasd = 0.05 , # standard dev ia t i on fo r proposa l t runcated

normal f o r bandwidth parameter

shape = 2 , # shape parameter of Gamma p r i o r f o r bandwidth parameter

s c a l e = 2 , # s c a l e parameter of Gamma p r i o r f o r bandwidth parameter

COV = l i s t ( # p r i o r f o r s p a t i a l t r a i t covar iance matr ix

type = ’ s p a t i a l ’ ,

df0 = 8 ,

S0 = diag (14/3 ,5) )

) ,

l i s t ( ## genomic kerne l

K = kinship ,

COV = l i s t ( type = ’UN’ , df0 = 8 , S0 = diag (14/3 ,5) )

)

)

resCov = l i s t ( ## r e s i d u a l kerne l

type = "UN" ,

df0 = 8 ,

S0 = diag (14/3 , ncol ( as . matr ix (Y) ) ) )

model <− MTM(Y = Y , K = K , resCov = resCov , n I t e r = 1500 , burnIn = 500 , th in = 2)
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Modified MTM function

### Or ig ina l MTM code from Gustave de l o s Campos

### amended by Ka t r in Toepner

### Plant Breeding TUM, 2016

### k a t r i n . toepner@tum . de

### Amendments between "NEW begin " and "NEW end " .

### r e q u i r e s package msm and MASS

l i b r a r y (msm)

l i b r a r y (MASS)

# ’ F i t s a ( Bayesian ) M u l t i v a r i a t e Gaussian Mixed E f f e c t s Model us ing a Gibbs

# ’ Sampler .

# ’

# ’ Data equat ion : Y = 1mu’ + XB + U1 + . . . + Uq + E \ cr \ cr where : \ i t emize {

#’ \ item {Y ( numeric , nxp) i s a matr ix of phenotypes ( i n d i v i d u a l s in rows , t r a i t s

# ’ in columns , NAs accepted ) ,} \ item {mu i s a vec to r of (p) i n t e r c e p t s ( inc luded

# ’ by d e f a u l t ) ,} \ item {X ( nxq ) i s an inc idence matr ix f o r q f i x e d e f f e c t s , }

#’ \ item {B i s a matr ix of f i x e d e f f e c t s , } \ item {U1 , . . . , Uq are ( nxq )

# ’ matr i ces of random e f f e c t s with vec ( Uj )~N(0 , kronecker ( Gj , Kj ) ) , where Gj i s a

# ’ pxp (unknown) co−var iance matrix , Kj i s an nxn user−def ined covar iance

# ’ matr ix ( kerne l ) which must by numeric , symmetric p o s i t i v e semi−d e f i n i t e , }

#’ \ item {E (nxp) i s a matr ix of model r e s i dua l s , assumed to fo l low a MVN

#’ d i s t r i b u t i o n vec (E)~N(0 , kronecker (R0 , I ) ) . } }

#’

# ’ I n t e r c e p t s are inc luded by de fau l t , f i x e d and random e f f e c t s are op t iona l .

# ’ The same f i x e d e f f e c t s are appl ied to a l l t r a i t s . For each random e f f e c t the

# ’ user must provide a kerne l (K) . By d e f a u l t the r e s i d u a l co−var iance matr ix

# ’ (R0) and the co−var iance matr i ces of random e f f e c t s are un−s t ru c tu r ed ;

# ’ however user s can s p e c i f y other models ( e . g . , DIAG=diagonal , FA=f a c t o r

# ’ ana l y s i s , and REC=r e c u r s i v e ) .

# ’

# ’ @param Y Phenotype matr ix (nxp numeric , t r a i t s (p) in columns , i n d i v i d u a l s

# ’ (n) in rows ) .

# ’ @param K A 2− l e v e l l i s t , 1 s t l e v e l de f ine s random e f f e c t s , i n s i d e each l e v e l

# ’ a l i s t i s used to provide the kerne l (K) , a covar iance s t r u c t u r e ( type ,

# ’ ’UN’ , ’ DIAG ’ , ’ FA ’ , ’ s p a t i a l ’ supported ) and hyper−parameters ( degree of freedom ,

# ’ df0 , and sca le , S0) .

# ’ @param resCov A l i s t used to de f ine the co−var iance matr ix f o r model

# ’ r e s i d u a l s (R0) . Example : resCov= l i s t ( type= ’UN’ , df0=x , S0=V) s p e c i f i e s an

# ’ un−s t ru c tu r ed covar iance matrix , with an Inve r se Whishart p r i o r with degree

# ’ of freedom df0 ( s c a l a r ) and s c a l e matr ix ( pxp ) V .

# ’ @param n I t e r The number of i t e r a t i o n s ( i n t e g e r ) .

# ’ @param th in Thining i n t e r v a l ( i n t e g e r ) .

# ’ @param burnIn The number of i t e r a t i o n s to be discarded as burn−in ( i n t e g e r ) .

# ’ @param XF A numeric des ign matr ix ( nxq ) f o r f i x e d e f f e c t s . For f a c t o r s use

# ’ XF=as . matr ix (model . matr ix(~x+y . . . ) ) [ , −1].

# ’ @param saveAt A charac t e r path and a p r e f i x used to de f ine where to s t o r e

# ’ samples ( e . g . , saveAt= ’ c :/mtmFit/ t e s t _ ’ . By d e f a u l t samples are saved in the
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#’ cur ren t d i r e c t o r y and f i lenames have no p r e f i x .

# ’ @param tolD A numeric parameter used to de f ine the minimum eigenvalue to be

# ’ maintained in the model . E igenvec to r s of ke rne l s smal l e r than tolD are

# ’ removed . The d e f a u l t value i s to lD=1e−6.

# ’ @example examples/MTM.R

#’ @return L i s t conta in ing est imated p o s t e r i o r means and est imated p o s t e r i o r

# ’ standard dev ia t ions , inc lud ing : $yHat .

# ’ @export

MTM <− func t ion (Y , XF = NULL , K = NULL ,

resCov = l i s t ( type = "UN" , df0 = 0 , S0 = diag (0 , ncol ( as . matr ix (Y) ) ) ) ,

n I t e r = 110 , burnIn = 10 , th in = 2 , saveAt = " " , to lD = 1e−05) {

i f ( ( n I t e r − burnIn − th in ) < 0) {

s top ( " n I t e r must be g rea t e r than th in+burnIn " )

}

i t e r <− 0

Y <− as . matr ix (Y)

t r a i t s <− ncol (Y)

n <− nrow(Y)

hasXF <− ! i s . n u l l (XF)

hasK <− ! i s . n u l l (K)

## I n i t i a l i z i n g o v e r a l l mean

mu <− colMeans (Y , na . rm = TRUE)

post_mu <− rep (0 , t r a i t s )

post_YHat <− matrix (nrow = n , ncol = t r a i t s , 0)

pos t_ logL ik <− 0

## I n i t i a l i z i n g miss ing va lues

YStar <− Y

whichNa <− l i s t ( )

whichNa$subjects <− which ( apply (FUN = any , X = i s . na(Y) , MARGIN = 1) )

nNa <− l ength ( whichNa$subjects )

whichNa$tra i t s <− l i s t ( )

i f (nNa > 0) {

f o r (k in 1:nNa) {

whichNa$tra i t s [ [ k ] ] <− which ( i s . na(Y[whichNa$subjects [ [ k ] ] , ] ) )

tmpSubject <− whichNa$subject [ [ k ] ]

tmpTra i t s <− whichNa$tra i t s [ [ k ] ]

YStar [ tmpSubject , tmpTra i t s ] <− mu[ tmpTra i t s ]

}

}

hasNa <− rowSums( i s . na(Y) ) > 0

## I n i t i a l i z a t i o n r e s i d u a l s

E <− t ( t ( YStar ) − mu)
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## I n i t i a l i z i n g Fixed e f f e c t s

i f ( hasXF ) {

XF <− as . matr ix (XF)

dimX . f <− ncol (XF)

tmp <− eigen ( crossprod (XF) )

i f ( any ( tmp$values < 0) ) {

Stop ( " XF i s not f u l l −column rank " )

}

Tb . f <− tmp$vectors %∗% diag (1/ s q r t ( tmp$values ) )

XTb . f <− XF %∗% Tb . f

B . f <− matrix (nrow = dimX . f , ncol = t r a i t s , 0)

f o r ( i in 1: t r a i t s ) {

B . f [ , i ] <− lm(E [ , i ] ~ XF − 1) $coef

}

post_B . f <− B . f

E <− E − XF %∗% B . f

}

## I n i t i a l i z a t i o n R0

resCov$R <− var (E)/2

resCov$L <− chol ( resCov$R )

resCov$RInv <− chol2 inv ( resCov$L )

resCov$post_R <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

i f ( resCov$type == "REC " ) {

resCov$B <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

resCov$PSI <− diag ( resCov$R )

resCov$post_PSI <− rep (0 , t r a i t s )

resCov$post_B <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

}

i f ( resCov$type == " FA " ) {

resCov$nF <− ncol ( resCov$M )

sdU <− apply (FUN = sd , MARGIN = 2 , X = E/2)

FA <− f a c t a n a l (E/2 , f a c t o r s = resCov$nF )

resCov$B <− matrix (nrow = t r a i t s , ncol = resCov$nF , 0)

resCov$B [ resCov$M ] <− ( diag (sdU) %∗% FA$loadings ) [ resCov$M ]

resCov$PSI <− ( sdU^2) ∗ FA$uniquenesses + 1e−04

resCov$R <− t c ro s sp rod ( resCov$B ) + diag ( resCov$PSI )

resCov$L <− chol ( resCov$R )

resCov$RInv <− chol2 inv ( resCov$L )

resCov$F <− matrix (nrow = n , ncol = resCov$nF , 0)

resCov$post_PSI <− rep (0 , t r a i t s )

resCov$post_B <− matrix (nrow = t r a i t s , ncol = resCov$nF , 0)

}

i f ( resCov$type == " DIAG " ) {

resCov$R <− diag ( apply (FUN = var , X = E , MARGIN = 2) )/2

resCov$RInv <− diag (1/ diag ( resCov$R ) )
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resCov$post_R <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

}

## I n i t i a l i z i n g Kernel−components

i f ( hasK ) {

post_K <− l i s t ( )

nK <− l ength (K)

fo r (k in 1:nK) {

K [ [ k ] ]$G <− resCov$R/nK

post_K [ [ k ] ] <− l i s t ( )

post_K [ [ k ] ]$G <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

post_K [ [ k ] ]$U <− matrix (nrow = n , ncol = t r a i t s , 0)

### NEW begin

i f (K [ [ k ] ] $COV$type == " s p a t i a l " ) {

K [ [ k ] ]$K <− d i s t 2 k e r n e l (K [ [ k ] ] $Dist , K [ [ k ] ] $theta )

K [ [ k ] ] $logL ike <− − I n f

the ta <− K [ [ k ] ] $theta

K [ [ k ] ] $p_theta <− 0

post_K [ [ k ] ] $theta <− 0

}

### NEW end

i f ( i s . n u l l (K [ [ k ] ]$EVD) ) {

tmp <− eigen (K [ [ k ] ]$K)

} e l s e {

tmp <− K [ [ k ] ]$EVD

}

K [ [ k ] ]$V <− tmp$vectors [ , tmp$values > to lD ]

K [ [ k ] ]$d <− tmp$values [ tmp$values > to lD ]

K [ [ k ] ]$nD <− l ength (K [ [ k ] ]$d)

K [ [ k ] ]$U <− matrix (nrow = n , ncol = t r a i t s , 0)

i f (K [ [ k ] ] $COV$type == "REC " ) {

K [ [ k ] ]$B <− diag ( t r a i t s )

K [ [ k ] ] $PSI <− diag (K [ [ k ] ]$G)

post_K [ [ k ] ]$B <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

post_K [ [ k ] ] $PSI <− rep (0 , t r a i t s )

}

i f (K [ [ k ] ] $COV$type == " FA " ) {

K [ [ k ] ]$COV$nF <− ncol (K [ [ k ] ]$COV$M)

sdU <− s q r t ( diag (K [ [ k ] ]$G) )

FA <− f a c t a n a l ( covmat = K [ [ k ] ]$G , f a c t o r s = K [ [ k ] ]$COV$nF)

K [ [ k ] ]$B <− matrix (nrow = t r a i t s , ncol = K [ [ k ] ]$COV$nF , 0)
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K [ [ k ] ]$B[K [ [ k ] ]$COV$M] <− ( diag (sdU) %∗% FA$loadings ) [K [ [ k ] ]$COV$M]

K [ [ k ] ] $PSI <− ( sdU^2) ∗ FA$uniquenesses + 1e−04

K [ [ k ] ]$G <− t c ro s sp rod (K [ [ k ] ]$B) + diag (K [ [ k ] ] $PSI )

K [ [ k ] ]$F <− matrix (nrow = K [ [ k ] ]$nD , ncol = K [ [ k ] ]$COV$nF , 0)

post_K [ [ k ] ] $PSI <− rep (0 , t r a i t s )

post_K [ [ k ] ]$B <− matrix (nrow = t r a i t s , ncol = K [ [ k ] ]$COV$nF , 0)

}

}

}

### Gibbs Sampler

time <− proc . time () [3]

f o r ( i in 1: n I t e r ) {

l ogL ik <− 0

## Fixed e f f e c t s

i f ( hasXF ) {

E <− E + XF %∗% B . f

B . f <− sampleBf (Y = E , XTb = XTb . f , Tb = Tb . f , R = resCov$R , L = resCov$L ,

RInv = resCov$RInv , t r a i t s = t r a i t s , dimX = dimX . f )

E <− E − XF %∗% B . f

}

## Kerne l s

i f ( hasK )

{

f o r (k in 1:nK) {

E <− E + K [ [ k ] ]$U

GInv <− chol2 inv ( chol (K [ [ k ] ]$G) )

tmp <− sampleU (Y = E , RInv = resCov$RInv , GInv = GInv , V = K [ [ k ] ]$V ,

d = K [ [ k ] ]$d , t r a i t s = t r a i t s , df0 = K [ [ k ] ] $df0 , S0 = K [ [ k ] ]$S0)

E <− E − tmp$U

K [ [ k ] ]$U <− tmp$U

### NEW begin

i f (K [ [ k ] ] $COV$type == " s p a t i a l " ) {

tmp0 <− tmp$U0/ s q r t (K [ [ k ] ]$d)

SS <− crossprod (tmp0) + K [ [ k ] ]$COV$S0

df <− K [ [ k ] ]$nD + K [ [ k ] ]$COV$df0

K [ [ k ] ]$G <− MCMCpack : : r iw i sh (S = SS , v = df )

LInv <− so l ve ( t ( chol ( var (tmp$U) ) ) )

MInv <− kronecker ( LInv , diag (1 , n) )

u_s ta r <− matrix ( crossprod ( t (MInv) , as . vec to r (tmp$U) ) , ncol=

t r a i t s )
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Kspat <− d i s t 2 k e r n e l (K [ [ k ] ] $Dist , the ta )

tmp0 <− eigen ( Kspat )

Kspat_V <− tmp0$vectors [ , tmp0$values > to lD ]

Kspat_d <− tmp0$values [ tmp0$values > to lD ]

l ogL ike <− mvdnorm( data = t ( u_s ta r ) , sigma = Kspat ,

s igmavectors = Kspat_V , s igmavalues = Kspat_d )

logL ikeo ld <− mvdnorm( data = t ( u_s ta r ) , sigma = K [ [ k ] ]$K ,

s igmavectors = K [ [ k ] ]$V , s igmavalues = K [ [ k ] ]$d)

p_theta <− log (dgamma( theta , shape = K [ [ k ] ] $shape , s c a l e = K

[ [ k ] ] $sca le ) )

q_theta <− log ( dtnorm ( theta , mean = K [ [ k ] ] $theta , sd = K [ [ k

] ] $thetasd , lower = 1e−6, upper = I n f ) )

q_ thetao ld <− log ( dtnorm (K [ [ k ] ] $theta , mean = theta , sd = K [ [ k

] ] $thetasd , lower = 1e−6, upper = I n f ) )

alpha <− ( logL ike + p_theta + q_thetao ld )−( logL ikeo ld + K [ [ k ] ]

$p_theta + q_theta )

i f ( log ( r u n i f (1) ) < alpha ) {

K [ [ k ] ]$K <− Kspat

K [ [ k ] ] $theta <− the ta

K [ [ k ] ] $p_theta <− p_theta

tmp0 <− eigen (K [ [ k ] ]$K)

K [ [ k ] ]$V <− Kspat_V

K [ [ k ] ]$d <− Kspat_d

K [ [ k ] ]$nD <− l ength (K [ [ k ] ]$d)

}

the ta <− rtnorm (1 , mean = K [ [ k ] ] $theta , sd = K [ [ k ] ] $thetasd ,

lower = 1e−6, upper = I n f ) #truncated normal d i s t r i b u t i o n

}

### NEW end

i f (K [ [ k ] ] $COV$type == "UN" ) {

tmp <− tmp$U0/ s q r t (K [ [ k ] ]$d)

SS <− crossprod (tmp) + K [ [ k ] ]$COV$S0

df <− K [ [ k ] ]$nD + K [ [ k ] ]$COV$df0

K [ [ k ] ]$G <− MCMCpack : : r iw i sh (S = SS , v = df )

}

i f (K [ [ k ] ] $COV$type == "REC " ) {

tmp <− tmp$U0/ s q r t (K [ [ k ] ]$d)

tmp <− sampleG . REC(U = tmp , M = K [ [ k ] ]$COV$M, PSI = K [ [ k ] ] $PSI ,
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t r a i t s = t r a i t s , df0 = K [ [ k ] ]$COV$df0 , S0 = K [ [ k ] ]$COV$S0 ,

pr io rVar = K [ [ k ] ]$COV$var)

K [ [ k ] ]$G <− tmp$G

K [ [ k ] ]$B <− tmp$B

K [ [ k ] ] $PSI <− tmp$PSI

}

i f (K [ [ k ] ] $COV$type == " FA " ) {

tmp <− tmp$U0/ s q r t (K [ [ k ] ]$d)

tmp <− sampleG . FA(U = tmp , F = K [ [ k ] ]$F , M = K [ [ k ] ]$COV$M, B = K [ [ k

] ]$B ,

PSI = K [ [ k ] ] $PSI , G = K [ [ k ] ]$G , t r a i t s = t r a i t s , nF = K [ [ k ] ]

$COV$nF ,

df0 = K [ [ k ] ]$COV$df0 , S0 = K [ [ k ] ]$COV$S0 , pr io rVar = K [ [ k ] ]

$COV$var ,

n = K [ [ k ] ]$nD)

K [ [ k ] ]$G <− tmp$G

K [ [ k ] ] $PSI <− tmp$PSI

K [ [ k ] ]$B <− tmp$B

K [ [ k ] ]$F <− tmp$F

}

i f (K [ [ k ] ] $COV$type == " DIAG " ) {

tmp <− tmp$U0/ s q r t (K [ [ k ] ]$d)

K [ [ k ] ]$G <− sampleG . DIAG(U = tmp , t r a i t s = t r a i t s , df0 = K [ [ k ] ]

$COV$df0 ,

S0 = K [ [ k ] ]$COV$S0 , n = n)

}

}

} #ends has (K)

## Overal Mean

E <− t ( t (E) + mu)

mu <− sampleMu(Y = E , L = resCov$L , n = n , t r a i t s = t r a i t s )

E <− t ( t (E) − mu)

## Res idual Var iance

i f ( resCov$type == "UN" ) {

SS <− crossprod (E) + resCov$S0

df <− n + resCov$df0

resCov$R <− MCMCpack : : r iw i sh ( v = df , S = SS)

resCov$L <− chol ( resCov$R )

resCov$RInv <− chol2 inv ( resCov$L )

}

i f ( resCov$type == "REC " ) {

tmp <− sampleG . REC(U = E , M = resCov$M , PSI = resCov$PSI , t r a i t s = t r a i t s ,

df0 = resCov$df0 , S0 = resCov$S0 , pr io rVar = resCov$var )

resCov$R <− tmp$G

resCov$L <− chol ( resCov$R )
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resCov$RInv <− chol2 inv ( resCov$L )

resCov$B <− tmp$B

resCov$PSI <− tmp$PSI

}

i f ( resCov$type == " FA " ) {

tmp <− sampleG . FA(U = E , F = resCov$F , M = resCov$M , B = resCov$B , PSI =

resCov$PSI ,

G = resCov$R , t r a i t s = t r a i t s , nF = resCov$nF , df0 = resCov$df0 ,

S0 = resCov$S0 , pr io rVar = resCov$var , n = n)

resCov$R <− tmp$G

resCov$L <− chol ( resCov$R )

resCov$RInv <− chol2 inv ( resCov$L )

resCov$PSI <− tmp$PSI

resCov$B <− tmp$B

resCov$F <− tmp$F

}

i f ( resCov$type == " DIAG " ) {

resCov$R <− sampleG . DIAG(U = E , t r a i t s = t r a i t s , df0 = resCov$df0 , S0 =

resCov$S0 ,

n = n)

}

resCov$RInv <− chol2 inv ( chol ( resCov$R ) )

## Imputing miss ing va lues

YHat <− YStar − E

i f ( (nNa > 0) ) {

f o r ( j in 1:nNa) {

s u b j e c t <− whichNa$subject [ [ j ] ]

miss ing <− whichNa$tra i t s [ [ j ] ]

observed <− (1 : t r a i t s )[−miss ing ]

tmp <− sampleY (R = resCov$R , y = Y[ sub jec t , ] , yHat = YHat [ sub jec t ,

] , e = E[ sub jec t , ] , miss ing = missing , observed = observed , t r a i t s =

t r a i t s )

YStar [ sub jec t , ] <− tmp$y

E[ sub jec t , ] <− YStar [ sub jec t , ] − YHat [ sub jec t , ]

l ogL ik <− l ogL ik + tmp$logLik

}

}

## Completing the logL ik computation

i f (nNa < n) {

l ogL ik <− l ogL ik + dMVNorm(X = E [ ! hasNa , ] , Sigma = resCov$R , mu = rep (0 ,

t r a i t s ) , log = TRUE)

}

## Running means

i f ( ( i > burnIn ) & ( i%%th in == 0) ) {
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i t e r <− i t e r + 1

k <− ( i t e r − 1) /( i t e r )

post_mu <− post_mu ∗ k + mu/ i t e r

resCov$post_R <− resCov$post_R ∗ k + resCov$R/ i t e r

post_YHat <− post_YHat ∗ k + YHat/ i t e r

pos t _ logL ik <− pos t_ logL ik ∗ k + l ogL ik / i t e r

i f ( resCov$type %in% c ( "REC" , " FA " ) ) {

resCov$post_B <− resCov$post_B ∗ k + resCov$B/ i t e r

resCov$post_PSI <− resCov$post_PSI ∗ k + resCov$PSI/ i t e r

}

i f ( hasXF ) {

post_B . f <− post_B . f ∗ k + B . f / i t e r

}

i f ( hasK ) {

f o r ( j in 1:nK) {

post_K [ [ j ] ]$U <− post_K [ [ j ] ]$U ∗ k + K [ [ j ] ]$U/ i t e r

post_K [ [ j ] ]$G <− post_K [ [ j ] ]$G ∗ k + K [ [ j ] ]$G/ i t e r

i f (K [ [ j ] ] $COV$type %in% c ( "REC" , " FA " ) ) {

post_K [ [ j ] ]$B <− post_K [ [ j ] ]$B ∗ k + K [ [ j ] ]$B/ i t e r

post_K [ [ j ] ] $PSI <− post_K [ [ j ] ] $PSI ∗ k + K [ [ j ] ] $PSI/ i t e r

}

### NEW begin

i f (K [ [ j ] ] $COV$type == " s p a t i a l " ) {

post_K [ [ j ] ] $theta <− post_K [ [ j ] ] $theta ∗ k + K [ [ j ] ] $theta / i t e r

}

### NEW end

}

}

}

## Saving Sammples

tmp <− i%%th in == 0

i f ( ( tmp) ) {

tmp <− l ogL ik

fi leName <− pas te ( saveAt , " l ogL ik . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = " " )

tmp <− MCMCpack : : vech ( resCov$R )

fi leName <− pas te ( saveAt , "R . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = " " )
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i f ( resCov$type %in% c ( "REC" , " FA " ) ) {

i f (sum( resCov$M ) > 0) {

tmp <− resCov$B [ resCov$M ]

f i leName <− pas te ( saveAt , " B_R . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = "

" )

}

tmp <− resCov$PSI

fi leName <− paste ( saveAt , " PSI_R . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = " " )

}

tmp <− c (mu)

fi leName <− paste ( saveAt , "mu" , " . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = " " )

i f ( hasXF ) {

tmp <− as . numeric (B . f )

f i leName <− paste ( saveAt , "mu" , " . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = " " )

}

i f ( hasK ) {

f o r (k in 1:nK) {

tmp <− MCMCpack : : vech (K [ [ k ] ]$G)

fi leName <− pas te ( saveAt , "G_ " , k , " . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = "

" )

### NEW begin

i f ( (K [ [ k ] ] $COV$type == " s p a t i a l " ) ) {

tmp <− K [ [ k ] ] $theta

fi leName <− paste ( saveAt , " the ta_ " , k , " . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = "

" )

}

### NEW end

i f ((K [ [ k ] ] $COV$type %in% c ( "REC" , " FA " ) ) ) {

tmp <− K [ [ k ] ] $PSI

fi leName <− paste ( saveAt , " PSI_G_ " , k , " . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T , sep = "

" )

i f (sum( resCov$M ) > 0) {

tmp <− t (K [ [ k ] ]$B) [ t (K [ [ k ] ]$COV$M) ]

f i leName <− pas te ( saveAt , " B_G_ " , k , " . dat " , sep = " " )

wr i te (tmp , ncol = l ength (tmp) , f i l e = fileName , append = T ,

sep = " " )
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}

}

}

}

}

tmp <− proc . time () [3]

ca t ( pas te ( " I t e r : " , i , " t ime : " , ( round (tmp − time , 4) ) ) )

ca t ( "\n " )

ca t ( "\n " )

time <− tmp

} #end i in n I t e r

tmp <− l i s t ( )

tmp$R <− resCov$post_R

i f ( resCov$type %in% c ( "REC" , " FA " ) ) {

tmp$B <− resCov$post_B

tmp$PSI <− resCov$post_PSI

}

out <− l i s t (mu = post_mu , YHat = post_YHat , resCov = tmp)

i f ( hasXF ) {

out$B . f = post_B . f

}

i f ( hasK ) {

out$K <− post_K

}

out$DIC <− getDIC (Y = Y , YHat = post_YHat , R = resCov$post_R , meanLogLik =

pos t_ logL ik )

re turn ( out )

}

### FIXED EFFECTS

### #############################################################################

sampleBf <− func t ion (Y , XTb , Tb , R , L , RInv , t r a i t s , dimX) {

SOL <− crossprod (XTb , Y)

Z <− matrix (nrow = dimX , ncol = t r a i t s , rnorm(dimX ∗ t r a i t s ) )

E <− t c ro s sp rod (Z , L )

B <− SOL + E

B <− Tb %∗% B

return (B)

}

sampleMu <− func t ion (Y , L , n , t r a i t s ) {

s o l <− colMeans (Y)
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L <− L/ s q r t (n)

mu <− as . numeric ( crossprod (L , rnorm( t r a i t s ) ) + s o l )

re turn (mu)

}

### MISSING RECORDS

### #############################################################################

sampleY <− func t ion (R , y , yHat , e , missing , observed , t r a i t s ) {

i f ( length ( miss ing ) == t r a i t s ) {

e <− crossprod ( chol (R) , rnorm( t r a i t s ) )

y <− yHat + e

logL ik <− 0

} e l s e {

Roo <− matrix (R[ observed , observed ] , nrow = l ength ( observed ) , ncol = l ength (

observed ) )

RooInv <− chol2 inv ( chol (Roo) )

Rmm <− matrix (R[missing , miss ing ] , nrow = l ength ( miss ing ) , ncol = l ength (

miss ing ) )

Rom <− matrix (R[ observed , miss ing ] , nrow = l ength ( observed ) , ncol = l ength (

miss ing ) )

Bmo <− crossprod (Rom, RooInv )

yHat2 <− as . numeric (Bmo %∗% e [ observed ] ) ##### %∗% austauschen !

CondVar <− Rmm − Bmo %∗% Rom ##### %∗% austauschen !

L <− chol ( CondVar )

e <− crossprod (L , rnorm( length ( miss ing ) ) )

y [miss ing ] <− yHat [miss ing ] + yHat2 + e

tmp <− ( y − yHat ) [ observed ]

l ogL ik <− dMVNorm_i( x_ i = tmp , SigmaInv = RooInv , mu = rep (0 , length ( observed ) )

,

log = TRUE)

}

out <− l i s t ( y = y , l ogL ik = l ogL ik )

re turn ( out )

}

### Sample U

### #############################################################################

sampleUj <− func t ion ( j , Y , RInv , GInv , V , d , t r a i t s ) {

CInv <− chol2 inv ( chol ( RInv + GInv/d[ j ] ) )

T <− crossprod ( t ( RInv ) , CInv ) ##### %∗% −> crossprod

YStar <− crossprod ( t (Y) , T) ##### %∗% −> crossprod

s o l <− as . numeric ( crossprod (V[ , j ] , YStar ) )

L <− chol ( CInv )

u j <− as . numeric ( crossprod (L , rnorm( t r a i t s ) ) ) + s o l

re turn ( u j )

}
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sampleU <− func t ion (Y , RInv , GInv , V , d , t r a i t s , df0 = 0 , S0 = 0) {

tmp <− matrix ( u n l i s t ( l app ly (FUN = sampleUj , Y = Y , RInv = RInv , GInv = GInv ,

V = V , d = d , t r a i t s = t r a i t s , X = 1: length (d) ) ) , byrow = TRUE, ncol = t r a i t s )

U <− crossprod ( t (V) , tmp) ##### %∗% −> crossprod

re turn ( l i s t (U = U, U0 = tmp) )

}

### Sample G

### #############################################################################

sampleG . REC <− func t ion (U, M, PSI , t r a i t s , p r io rVar = 100 , df0 = rep (0 , t r a i t s ) ,

S0 = rep (0 , t r a i t s ) ) {

### Model : U=UB+D (ONLY RECURSIVE ALLOWED! ) Current sample of random e f f e c t s

### ( ’ data ’ ) T a pxp matr ix with TRUE/FALSE i n d i c a t i n g p o s s i t i o n of non−n u l l

### r e c u r s i v e e f f e c t s (FALSE in diagonal ! ) PSI px1 the var iance of the orthogonal

### shocks . . .

B <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

f o r ( i in 1: t r a i t s ) {

dimX <− sum(M[ i , ] )

i f (dimX > 0) {

tmpX <− U[ , M[ i , ] ]

tmpY <− U[ , i ]

C <− crossprod (tmpX)/PSI [ i ] + 1/ pr io rVar

CInv <− chol2 inv ( chol (C) )

rhs <− crossprod (tmpX , tmpY)/PSI [ i ]

s o l <− crossprod ( CInv , rhs )

L <− chol ( CInv )

shock <− crossprod (L , rnorm(dimX) )

tmpB <− as . numeric ( s o l + shock )

B[ i , M[ i , ] ] <− tmpB

uStar <− tmpY − matrix (tmpX , ncol = dimX) %∗% (tmpB)

SS <− as . numeric ( crossprod ( uStar ) ) + S0 [ i ]

df <− nrow(U) + df0 [ i ]

PSI [ i ] <− SS/ r c h i s q (n = 1 , df = df )

} e l s e {

SS <− as . numeric ( crossprod (U[ , i ] ) ) + S0 [ i ]

df <− nrow(U) + df0

PSI [ i ] <− SS/ r c h i s q (n = 1 , df = df )

}

}
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tmp <− so l ve ( diag ( t r a i t s ) − B)

G <− tmp %∗% diag ( PSI ) %∗% t (tmp)

out <− l i s t (B = B , PSI = PSI , G = G)

re turn ( out )

}

############################################################################################

sampleG . FA <− func t ion (U, F , M, B , PSI , G, t r a i t s , nF , n , df0 = rep (1 , t r a i t s ) , S0 =

rep (1/100 ,

t r a i t s ) , p r io rVar = 100) {

### Gibbs sampler f o r FA model Model : U=BF+D

## sampling common f a c t o r s LOOP OVER FACTORS

fo r ( i in 1: nF) {

tmpY <− U − F [ , − i ] %∗% matrix ((B [ , − i ] ) , ncol = t r a i t s )

rhs <− tmpY %∗% matrix (B [ , i ]/ PSI , ncol = 1)

CInv <− 1/(sum((B [ , i ]^2)/PSI ) + 1)

s o l <− CInv ∗ rhs

SD <− s q r t ( CInv )

F [ , i ] <− rnorm(n = n , sd = SD , mean = s o l )

}

# sampling load ings LOOP OVER TRAITS LOOP OVER FACTORS

fo r ( i in 1: t r a i t s ) {

f o r ( j in 1: nF) {

i f (M[ i , j ] ) {

tmpY <− U[ , i ] − F [ , − j ] %∗% matrix (B[ i , − j ] , ncol = 1)

CInv <− 1/as . numeric ( crossprod (F [ , j ] ) /PSI [ i ] + 1/ pr io rVar )

rhs <− as . numeric ( crossprod (F [ , j ] , tmpY)/PSI [ i ] )

s o l <− CInv ∗ rhs

SD <− s q r t ( CInv )

B[ i , j ] <− rnorm(n = 1 , mean = so l , sd = SD)

}

}

D <− U[ , i ] − F %∗% B[ i , ]

df <− df0 [ i ] + n

SS <− S0 [ i ] + crossprod (D)

PSI [ i ] <− SS/ r c h i s q ( df = df , n = 1)

}

i f (nF > 1) {

B <− varimax (B) $loadings [ ]

}

G <− t c ro s sp rod (B) + diag ( PSI )
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out <− l i s t (F = F , PSI = PSI , B = B , G = G)

}

##############################################################################

sampleG . DIAG <− func t ion (U, t r a i t s = ncol (U) , n = nrow(U) , df0 = rep (0 , t r a i t s ) ,

S0 = diag (0 , t r a i t s ) ) {

### Gibbs sampler f o r DIAG covara ince matr i ces

G <− matrix (nrow = t r a i t s , ncol = t r a i t s , 0)

## sampling common f a c t o r s LOOP OVER FACTORS

fo r ( i in 1: t r a i t s ) {

tmp_SS <− sum(U[ , i ]^2) + S0 [ i ]

tmp_df <− n + df0 [ i ]

G[ i , i ] <− tmp_SS/ r c h i s q ( df = tmp_df , n = 1)

}

re turn (G)

}

i f (FALSE) {

B <− cbind ( rnorm(1000 , sd = 1) , rnorm(1000 , sd = 2) )

sampleG . DIAG(B)

}

##############################################################################

### NEW begin

d i s t 2 k e r n e l <− func t ion ( Dis t , the ta ) {

fun=func t ion (a ) { re turn ( exp(− the ta ∗a^2)) }

re turn ( fun ( D i s t ) )

}

my. inv <− func t ion (X , e igenvec tor s , e igenvalues , t o l = s q r t ( . Machine$double . eps ) ) {

## Genera l ized Inver se of a semi−p o s i t i v e d e f i n i t e matrix , i n s p i r e d by ginv

P o s i t i v e <− e igenva lues > max( t o l ∗ e igenva lues [1L ] , 0)

i f ( a l l ( P o s i t i v e ) )

crossprod ( t ( e i genvec to r s ) , (1/ e igenva lues ∗ t ( e i genvec to r s ) ) )

e l s e i f ( ! any ( P o s i t i v e ) )

ar ray (0 , dim(X) [2L :1 L ] )

e l s e crossprod ( t ( e i genvec to r s [ , P o s i t i v e , drop = FALSE ] ) ,

((1/ e igenva lues [ P o s i t i v e ] ) ∗ t ( e i genvec to r s [ , P o s i t i v e , drop = FALSE ] ) ) )

}

mvdnorm <− func t ion ( data , sigma , s igmavectors , s igmavalues , log=TRUE) {
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inv <− my. inv ( sigma , s igmavectors , s igmavalues )

det <− sum( log ( s igmavalues ) )

dim <− l ength ( s igmavalues )

p <− 0

fo r ( i in 1:nrow( data ) ) {

p <− p − (0.5∗ det ) − (dim/2 ∗ log (2∗ pi ) ) − (0.5∗ crossprod ( data [ i , ] , c rossprod (

t ( inv ) , data [ i , ] ) ) )

}

i f ( ! log ) {

p <− exp (p)

}

re turn (p)

}

### NEW end

dScale InvChisq <− func t ion (x , df , S , log = FALSE) {

y <− S/x

out <− dchisq (y , df = df , log = TRUE) + log (S/( x^2))

i f ( ! log ) {

out <− exp ( out )

}

re turn ( out )

}

dMVNorm <− func t ion (X , Sigma , mu, log = TRUE) {

## X may be a matrix , rows are I ID draws

TInv <− so l ve ( chol ( Sigma ) )

Z <− crossprod (( t (X) − mu) , TInv )

out <− sum(dnorm( x = as . vec to r (Z) , log = TRUE) ) + nrow(X) ∗ sum( log ( diag ( TInv ) ) )

i f ( ! log ) {

out <− exp ( out )

}

re turn ( out )

}

dMVNorm_i <− func t ion ( x_i , SigmaInv , mu, log = TRUE) {

## works f o r a s i n g l e random draw and r e q u i r e s SigmaInv

e <− as . matr ix ( x_ i − mu)

out <− −( length ( e )/2 ∗ log (2 ∗ pi ) ) + log ( det ( SigmaInv ) )/2 − ( crossprod (e , SigmaInv
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) %∗% e )/2

i f ( ! log ) {

out <− exp ( out )

}

re turn ( out )

}

getDIC <− func t ion (Y , YHat , R , meanLogLik = NULL , l ogL ik = NULL) {

#### Returns Deviance Informat ion C r i t e r i o n and E f f e c t i v e Number of Parameters Y

#### (nxp) the data matr ix (NA ’ s f o r miss s ing ) YHat the p o s t e r i o r mean of the

#### c o n d i t i o n a l expec ta t ion logL ik the samples of the log−L ike l ihood generated by

#### MTM() meanLogLik the p o s t e r i o r mean of logL ik

i f ( ! i s . n u l l ( l ogL ik ) ) {

meanLogLik <− mean( logL ik )

}

E <− Y − YHat

logLikAtPostMean <− 0

fo r ( i in 1:nrow(Y) ) {

observed <− ! i s . na (Y[ i , ] )

e <− matrix (nrow = 1 , E[ i , observed ] )

mu <− rep (0 , sum( observed ) )

Rtmp <− R[ observed , observed ]

i f ( length (Rtmp) > 0) {

logLikAtPostMean <− logLikAtPostMean + dMVNorm(X = e , Sigma = Rtmp , mu = mu

,

log = TRUE)

}

}

pD <− −2 ∗ ( meanLogLik − logLikAtPostMean )

DIC <− pD − 2 ∗ meanLogLik

re turn ( l i s t ( meanLogLik = meanLogLik , logLikAtPostMean = logLikAtPostMean , DIC = DIC

,

pD = pD) )

}
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13 Publication out of this thesis

The following article has been published in advance out of this thesis:

Töpner K, Rosa G J M, Gianola D, and Schön CC (2017), Bayesian networks illustrate genomic and

residual trait connections in maize (Zea mays L.). G3: Genes, Genomes, Genetics 7(8):2779–2789

The publication, including supporting material, can be accessed via the following link:

https://doi.org/10.1534/g3.117.044263

The following Sections include parts of this paper:

1, 2, 3.2, 3.3, 3.4, 3.5, 5, 6.1, 7.1, 8, 9, 10, 11, and 12

Candidate’s contribution: developing application of methodology, in particular facilitation of BN

analysis on the genomic values by applying a suitable transformation, use of bootstrapping to mea-

sure uncertainty of connections, separation of genomic from residual structures, formulation of SEM

including two structured components instead of one, and use of SEM as a network and algorithm

evaluation tool; statistical data analysis, interpretation and discussion of results, composition of

graphs and tables, writing and revisions of the manuscript.
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