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Abstract

Most mammals, including humans, are able to localize sound sources in space by
making use of the differences in the sound signals arriving at the two ears. One
important physical cue is the interaural phase difference – the frequency specific
difference in phase between the two ears. Traditionally, the neuronal processing
of interaural phase differences has been explained by a systematic arrangement of
delay lines, but recent results from electrophysiological measurements questioned this
approach. It has instead been suggested, that phase differences are encoded in the
relative activity between neuronal populations within the two brain hemispheres. This
is also known as the two-channel hypothesis.

This thesis investigates the neuronal representation following this two-channel
hypothesis by means of computational modeling. A detailed spiking-neuron-network
model of the neuronal circuit responsible for encoding interaural phase differences
in mammals was developed. Using this model, it is shown that the two-channel
code is able to reliably encode interaural phase differences over a large frequency
range, also for complex signals. To evaluate the two-channel hypothesis, this thesis
derives a simplified, functional model of the neuronal responses due to interaural phase
differences in tones. By evaluating this model with several psychoacoustic experiments,
it is shown that the acuity and accuracy of interaural phase difference perception can
be predicted directly from the model responses. These findings directly support the
two-channel hypothesis, creating a direct link between neuronal representation and
perception.

iii





Zusammenfassung

Der Mensch sowie die meisten Säugetiere sind in der Lage, Schallquellen im Raum zu
lokalisieren. Dafür werden die Unterschiede zwischen den an beiden Ohren anliegenden
Schallsignalen genutzt. Ein wichtiges Merkmal sind die interauralen Phasenunter-
schiede – frequenzspezifische Phasendifferenzen zwischen den Signalen an beiden Ohren.
Traditionell wurde die neuronale Verarbeitung von interauralen Phasendifferenzen
durch eine systematische Anordnung von Laufzeitgliedern erklärt. Neuere Ergebn-
isse aus elektrophysiologischen Messungen stellten diesen Ansatz allerdings in Frage.
Stattdessen wurde vorgeschlagen, dass die Phasendifferenzen in der relativen Aktivität
neuronaler Populationen innerhalb der beiden Gehirnhälften kodiert werden. Dieser
Ansatz wird auch als Zweikanalhypothese bezeichnet.

Diese Arbeit untersucht mittels numerischer Modelle die neuronale Repräsenta-
tion, unter Annahme dieser Zweikanalhypothese. Ein detailliertes Netzwerk-Modell
des neuronalen Schaltkreises, welcher im Säugetier Phasendifferenzen kodiert, wird
vorgeschlagen. Anhand dieses Modells wird gezeigt, dass der Zweikanalcode in der
Lage ist, interaurale Phasendifferenzen über einen großen Frequenzbereich, auch bei
komplexen Signalen, zuverlässig zu kodieren. Um die Zweikanalhypothese genauer
zu evaluieren, leitet diese Arbeit ein vereinfachtes Modell der neuronalen Antworten
aufgrund interauraler Phasenunterschiede in Tönen ab. Durch den Vergleich dieses
Modells mit Ergebnissen mehrerer psychoakustischen Experimente, wird gezeigt, dass
die Schärfe und die Genauigkeit der Wahrnehmung von interauraler Phasendifferenzen
direkt anhand der Modellantworten vorhergesagt werden kann. Diese Ergebnisse
befürworten die Zweikanalhypothese und stellen anhand des Modells eine direkte
Verbindung zwischen der neuronalen Repräsentation und der Wahrnehmung her.
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CHAPTER1
Introduction

The ability to determine the location of sound sources in space is one of the more
inconspicuous and yet essential abilities of the auditory system. By extending the
range of space that can be perceived by vision to a full 360◦ (Rayleigh, 1907) and to
situations where vision is restricted such as in dense vegetation or in the dark, it poses
an important skill to both hunter and pray. Spacial hearing further aids communication
by helping to orient a talker of interest within multiple sources (Bronkhorst, 2015) – a
task that has aptly been named the cocktail party problem (Cherry, 1953). It is thus
unsurprising that the ability to localize sound sources has been developed, at least to
some degree, in most higher animals (Grothe and Pecka, 2014).

However, hearing-impaired listeners often have trouble locating sound sources (Husler
et al., 1983; Noble et al., 1994), also when using hearing aids (Van den Bogaert et al.,
2006) or when aided with a cochlear implant (CI) (Seeber et al., 2004; van Hoesel and
Tyler, 2003) – a neuroprosthesis that can restore hearing in case of severe to profound
sensorineural hearing loss. One explanation for this limitation in aided listeners is that
sound localization relies on a highly precise temporal coding, which might be distorted
by the signal processing within the aiding device. In the case of CIs, where a hearing
sensation is evoked by electrically stimulating the auditory system thus bypassing the
sensory neurons, there might additionally be a degradation or even omission within
the neuronal representation of the physical cues (van Hoesel and Tyler, 2003; Kerber
and Seeber, 2012). To understand these limitations and to improve on the strategies
used to encode the physical cues requires in-depth knowledge of the underlying system.

There is a long history in the research of spacial hearing in general as well as in the
neuronal representation of localization cues (Rayleigh, 1907; Von Békésy and Wever,
1960; Jeffress, 1948). Both, the representation itself and also the way this representation
is analyzed to create a hearing sensation are still disputed (McAlpine et al., 2001;
Belliveau et al., 2014; Bernstein and Trahiotis, 2017). One way to investigate and
validate the different hypotheses is by applying computational models of the different
processes involved in sound localization such as the models proposed in this thesis.
Ultimately such models try, in some form, to explain the connection between a sound
event and the perception evoked by this event.

In his book, “Räumliches Hören” (English translation: Blauert, 1999), Jens Blauert
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1 Introduction

described the process that connects a property of a sound event to a psychoacoustic
measurement by a series of processing blocks (see Fig. 1), where a sound event is
received by a perceiving system (e.g., the subject of the experiment) which might
result in the perception of an auditory event (following Fastl and Zwicker (2007) from
here on called hearing sensation). The hearing sensation can be characterized by the
describing system (again the subject of the experiment) on a psychophysical scale
resulting in a description of some properties of the hearing sensation.

Ear signals Encoder Representation Decoder Hearing sensation

Perceiving
System

Describing
System

Sound Event Description

Figure 1.1: Top: Schematic representation of the process that leads from a sound event to a
psychoacoustic measurement following Blauert (1999). Bottom: Breakdown of the stages
within the perceiving system following an encoder/decoder model.

As noted by Blauert (1999), the hearing sensation itself, as well as the process that
results in its creation, are not directly accessible in a psychoacoustic experiment. As
a result, the subject is treated as a black box that takes a sound event as the input
and gives a description of the hearing sensation as the output. Models are often
used to better understand the internal working of this black box with the problem
that multiple different models might capture the same input-output relationship. In
sound localization, for example, multiple models based on very different assumptions
about the internal representation successfully capture the outcome of psychoacoustic
experiments (e.g. Stern and Shear, 1996; Dietz et al., 2009; Takanen et al., 2014).
One way to constrain these models is by applying knowledge about the internal
representation which can be obtained from additional measurement modalities. Such
modalities include neuroimaging methods such as Electroencephalography (EEG) or
Magnetoencephalography (MEG) as well as invasive electrophysiological measurements
such as single- or multi-unit recordings of neuronal responses.

In this thesis, the internal structure of the perceiving system is described using
an encoder/decoder model as shown in Fig. 1. In this model, an encoder describes
a stage in the neuronal circuit that translates a property of the sound event into
a neuronal representation of the same. This representation is then processed while
ascending through the auditory pathway. At some point within this pathway, the
neuronal representation is then interpreted by a decoder which might result in a
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1.1 Structure and Overview

hearing sensation.

Following this framework, the decoder is only able to make use of information that
is encoded in the neuronal representation so that any limitation within this encoding
should also affect perception. As aforementioned, physiological measurements can
be used to gain quantitative information about the neuronal representation and any
model of the perceiving system should ultimately be consistent with physiology while
being able to explain the resulting percept. The goal of this thesis was to investigate
the neuronal representation of interaural phase differences (IPDs), which are one of
the physical cues used to localize sound sources in space. This is done by developing a
model of the assumed neuronal representation which is based on existing physiological
data. The predictive power of this model is then evaluated based on psychoacoustic
experiments with the goal of creating a direct link between the neuronal representation
and behavioral data.

1.1 Structure and Overview

The content of this thesis is structured into six chapters. While each of the chapters
builds on the previous one, they are written such that they can be read independently
as each contains an individual introduction and discussion.

Chapter 2 is intended to introduce the unfamiliar reader to the necessary physical,
neuronal and psychoacoustical principles of sound localization as well as models thereof.
It focuses on the topics most important in the context of this thesis with more detailed
introductions given in the corresponding chapters.

Chapter 3 proposes a novel biophysically-plausible model of the neuronal circuit
of the medial superior olive (MSO) which is thought to be the encoding stage for
temporal interaural disparities in the mammalian brainstem. The model accounts for
the auditory periphery and responses are calculated using spiking-neuron models of two
stages within the brainstem. Following this encoding stage, the temporal disparities
are represented in the form of a two-channel code. Using a simple linear as well as an
artificial neuronal network (ANN) decoder, it is shown that the modeled representation
contains sufficient information to reliably encode both static and time-dependent time
disparities over a broad frequency range.

Chapter 4 closely investigates the internal representation of IPDs following the
two-channel hypothesis and a simplified, statistical model of this internal represent-
ation based on existing electrophysiological data is proposed. Results of a left-right
discrimination task are used to determine the free model parameters, and it is shown
that the model can replicate the results of this experiment. In a second psychoacoustic
experiment, the appearance of multiple hearing sensations at large IPD values is
investigated, and the implications are discussed in light of the two-channel model.

Chapter 5 uses the model introduced in the previous chapter to predict IPD detection
thresholds at different frequencies and around difference reference IPDs which are

3



1 Introduction

determined in a psychoacoustic experiment. It is further shown that the same model
also predicts a high-frequency limit for the sensitivity to interaural phase differences
which, in agreement with previous literature, is located at around 1.5 kHz

Chapter 6 introduces a concept of using the two-channel model to represent signals
with multiple frequency components. Using a likelihood measure, it is shown that the
results of the two-channel model can be represented in a manner that is very similar
to the cross-correlogram used by delay-line models.

Chapter 7 investigates the influence of small low-frequency interaural level differences
(ILDs) as they would occur in a natural environment on the perception of IPDs
especially at higher frequencies where phase wrapping introduces ambiguities in the
range of naturally occurring IPDs.

4







CHAPTER2
Fundamentals and Models of Sound

Localization

The process that connects a sound event to a hearing sensation as discussed in the
Introduction (see Fig. 1) can be separated into three domains. Sound events are
characterized by physical measurements and are, as such, described in the physical
domain. Any information in the perceiving system is regarded as information about
the neuronal representation. It is therefore characterized in the neuronal domain.
The hearing sensation itself can only be assessed by obtaining a description using
psychophysical measures which are attributed to the perceptual domain. This chapter
is intended to present a short overview over the general process of sound localization
as well as existing models of the same. The chapter is split into four sections, Sec.
2.1, 2.2 and 2.3 are structured following the three domains by discussing the physical,
neuronal and perceptual background while Sec. 2.4 provides a short overview over
existing models of the neuronal representation of interaural time disparities. Each
of these chapters does not aspire to draw a complete picture but to provide a quick
introduction into those principles most important in the scope of this thesis.

2.1 Physics

This section discusses the influence of sound source location on the physical properties of
the signals at the two ears and introduces some definitions that will be used throughout
the thesis. As this thesis exclusively discusses sound sources in the horizontal plane,
this section will be limited to this spacial dimension and neglect any influence due
to the elevation of a sound source. A more in-depth discussion can be found in the
literature (e.g. Blauert, 1999).

A head centered coordinate system, as shown in Fig. 2.1, with the azimuthal angle
being defined anti-clockwise, will be used throughout the thesis. The horizontal plane
as shown in Fig. 2.1 is intersected by the median plane (MP). A location to the left of
the MP (positive azimuth) will be denoted as left while any location to the right of
the MP (negative azimuth) will be denoted as right. Following a popular notation,
results associated with spatial locations to the left will usually be visualized using the

7



2 Fundamentals and Models of Sound Localization

color blue while results associated with spatial locations to the right will be visualized
using the color red.

M
P

0◦

±180◦

−90◦90◦

Figure 2.1: Schematic of the horizontal plane according to the coordinate system used
throughout the thesis. The horizontal plane is intersected by the median plane (MP).
Locations to the left of the MP will be denoted as ’left’ while locations to the right of the
median plane will be denoted as ’right’.

Information about the location of a sound source in the horizontal plane is conveyed
by differences in the sound pressure waveform at the left and right eardrum (ear-signals)
(e.g. Rayleigh, 1907; Von Békésy and Wever, 1960). Under natural conditions, these
differences, which are also called interaural differences are introduced by the different
locations of the two ears within the sound field. Following Fourier’s theorem, the
interaural differences of each frequency component can also be decomposed into a
difference in amplitude (or level) and a difference in phase. In addition, both differences
can also depend on time. As a consequence, the differences in the ear-signals due
to a given sound source location can be defined by a frequency and time-dependent
interaural level difference (ILD) ∆L(f, t) and a frequency and time-dependent interaural
phase difference (IPD) ∆ϕ(f, t).

IPDs are mainly introduced by a difference in the effective distance the sound signal
has to travel until reaching each ear. Any wavefront of a sound signal located to the
left will reach the left ear earlier than the right ear which results in a difference of
arrival time. For a defined frequency f , the resulting IPD can be calculated as

∆ϕ(f) = 2πf(ta, l − ta, r), (2.1)

where ta, l and ta, r are the arrival time of a given wavefront at the left and right ear
respectively. By using this definition, positive IPD values are associated with a sound

8



2.2 Physiology

source to the right of the MP while negative IPD values are associated with a sound
source to the left of the MP. To prevent any confusion between the azimuth and
IPDs, IPDs will be stated in radian while azimuths will be stated in degree. As the
difference in arrival time ∆t = (ta, l − ta, r) for a specific position in space is nearly
independent of frequency, many studies use the notation of interaural time difference
(ITD) instead of IPD. The two measures can be used interchangeably, but it has to be
noted that a frequency independent ITD results in frequency dependent IPDs ∆ϕ(f)
which becomes relevant for signals with multiple frequency components.

ILDs are defined as the difference in sound pressure level (SPL) between the two
ear-signals and will be calculated as

∆L = Lr − Ll, (2.2)

where Lr is the SPL of the right and Ll the SPL of the left ear-signal so that a sound
source location to the left will mostly result in a negative ILD while a sound source to
the right will mostly result in a positive ILD. Level differences are mainly introduced
by a shadowing effect of the head due to diffraction (Sivian and White, 1933). The
effect of diffraction strongly depends on the sound frequency with near to no effect
at lower frequencies and an increasing effect at higher frequencies. As a consequence,
ILDs also show a strong frequency dependence which is in contrast to time differences
which are, as a first approximation, independent of frequency (see Chapter 7 for more
details).

Under natural conditions, ILDs and IPDs do not exist independently as a specific
location of the sound source always results in both interaural differences. Using
headphones instead of a sound source in space enables the independent presentation of
the two ear-signals so that ∆L(f, t) and ∆ϕ(f, t) can be defined independently from
each otheri.

2.2 Physiology

This section provides a short overview of the most important stages of the mammalian
brainstem that are involved in sound localization. As in the previous section, the
discussion will be limited to the two cues ILD and IPD that are of importance in the
scope of the thesis. A complete overview can be found in the literature (e.g., reviewed
in Grothe et al., 2010).

At each of the two ears, the ear-signals are converted independently into action
potentials which are conducted by the auditory nerve fibers (ANFs) to the cochlear
nucleus (CN) in their respective hemisphere. As discussed in the previous section,
the information of both ear-signals and thus of both hemispheres is necessary to

iThis only holds if the transfer functions associated with conduction of sound from the actuator to
the tympanic membrane are assumed to be symmetric
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2 Fundamentals and Models of Sound Localization

convey information about the location of a sound source. The first stage at which
this convergence of inputs of both hemispheres onto the same neuron takes place is
within the superior olivary complex, a collection of nuclei located in the brainstem of
mammals. Within the olivary complex, the most important nuclei in respect to sound
localization are the lateral superior olive (LSO) and the medial superior olive (MSO).

Excitatory Synapse
Inhibitory Synapse

Left Hemisphere Right Hemisphere

ANF

CN

LSO

LNTB

MSO

MNTB

ANF

CN

LSO

LNTB

MSO

MNTB

Figure 2.2: Schematic of the neuronal sound localization pathway in the brainstem. To
improve readability, only the connections of the MSO in the left and the LSO in the right
hemisphere are shown.

The principal neurons of the LSO receive excitatory inputs from spherical bushy
cells (SBCs) located in the ipsilateral CN (Cant and Casseday, 1986) while receiving
inhibitory inputs from neurons in the medial nucleus of the trapezoid body (MNTB)
(Spangler et al., 1985; Friauf and Ostwald, 1988) which are innervated by globular
bushy cells (GBCs) of the contralateral CN (Harrison and Warr, 1962) (see Fig. 2.2).
This excitation, inhibition (EI) circuit can be interpreted as a subtraction of the
contralateral input from the ipsilateral input which would be predestinated to analyze
ILDs. Unsurprisingly, neurons in the LSO have been found to be sensitive to ILDs
(Boudreau and Tsuchitani, 1968). As expected from the circuit, most LSO neurons
of a given hemisphere respond strongest if the sound level of the ipsilateral ear-
signal (excitatory input) is higher than the sound level of the contralateral ear-signal
(inhibitory input) resulting in approximately sigmoidal ILD response functions (see
Fig. 2.3a). Some studies have shown that neurons in the LSO are also sensitive to time
differences due to the resulting shift in the stimulus envelope (Joris and Yin, 1995;
Ashida et al., 2016) or when using clicks (Beiderbeck et al., 2018) but when following
the definition of Sec. 2.1, a time difference in the envelopes of the two ear-signals
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Figure 2.3: Schematic of typical responses of neurons in the LSO and MSO of both hemi-
spheres. a) Typical sigmoid response of neurons in the LSO to stimuli with different ILDs.
b) Typical bell-shaped response of MSO neurons to stimuli with different IPDs.

would be interpreted as a time-dependent ILD.
For frequencies below approximately 4 kHz, responses coded in the ANF are phase-

locked to the ear-signals meaning that the probability of ANFs to fire an action potential
is largest at a specific phase of the stimulus. This phase-locked firing of the ANFs
allows the auditory system to detect IPDs by comparing the timing of the responses of
the left and right ANFs. Principal neurons in the MSO receive phase-locked excitatory
inputs from contra- and ipsilateral SBCs as well inhibitory inputs from the ipsilateral
lateral nucleus of the trapezoid body (LNTB) and MNTB (Spangler et al., 1985) (see
Fig. 2.2). This excitatory, excitatory (EE) circuit functions as a coincidence detector
where the neuron responds strongest if the inputs from the two hemispheres arrive
simultaneously (no time difference - zero IPD). The response decreases with increasing
phase or time difference between the two inputs resulting in bell-shaped IPD-response
functions. Neurons in the MSO have been found to follow this response pattern with
the difference that most neurons do not show maximal response for zero IPD but for
IPDs that correspond to contralateral leading ear-signals so that MSO neurons in the
left hemisphere predominantly show maximal response for positive IPDs while MSO
neurons in the right hemisphere predominantly respond strongest to negative IPDs
(see Fig. 2.3b). While the origin for the shift in the maximum of the IPD-response
function (also called the best-IPD) towards contralateral leading IPDs is still under
discussion (Joris et al., 2006; Franken et al., 2015; Brand et al., 2002), most studies
reported the best-IPDs of the majorities of IPD sensitive neurons to fall within the
range between zero and π (McAlpine et al., 2001; Joris et al., 2006; Pecka et al., 2008)ii.

To summarize, the brainstem circuitry seems to be divided into two pathways, IPDs
are primarily analyzed in the MSO while ILDs seem to be analyzed in the LSO. As
the information about both, IPDs and the ILDs, is only available after combining the
inputs from the two ears in the MSO and LSO, the two nuclei will be considered as

iiThe data in the two studies McAlpine et al. (2001) and Joris et al. (2006) was obtained in the
inferior colliculus which is the next higher processing stage after the MSO.
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Figure 2.4: The perceived lateral position of the hearing sensation for a 200 Hz tone at
different IPDs and ILDs as indicated on a scale of 21 values where -10 indicates fully left
lateralized, and ten indicates fully right lateralized (Data for three subjects digitized from
Yost (1981) Fig. 2 and Fig. 7)

the encoder for IPD and ILD.

2.3 Perception

The following section provides a concise overview of the effect of introducing IPDs
and ILDs on the perceived location of a sound source. As all experiments presented in
this thesis use stimuli presented over headphones, this section will also focus on this
setting. A more in-depth discussion of the topic can be found e.g. in Blauert (1999).

Under natural conditions, listeners are able to assign a perceived spatial location,
positioned mostly outside of the head, to a hearing sensation. In contrast to this,
if the sound is presented via headphones, the hearing sensation is mostly perceived
to be located inside the head (Sayers and Cherry, 1957; Plenge, 1974). Due to this
difference, two terms are usually used to describe the two types of spatial perception.
If the hearing sensation is perceived outside of the head, it is described as being
localized while, it is described as being lateralized if it is perceived inside of the head
(intracranial location). As it is hard to assign a physical location to an intracranial
hearing sensation, the extent of lateralization is often stated in terms of the position
of the hearing sensation on the interaural axis - an axis connecting the two ears (e.g.
Sayers, 1964; Yost, 1981).

Introducing positive IPDs, for example by delaying the signal of the left ear, mostly
results in a hearing sensation that is lateralized towards the right while introducing
negative IPD mostly results in a hearing sensation lateralized towards the left (see
Fig. 2.4). At larger IPDs close to ±π, it is often not possible to unambiguously report
the lateralization as these stimuli often result in multiple, spatially separated hearing
sensation (see also Sec. 4.4). The sensitivity to changes in IPDs is often presented in
terms of ITDs, where the smallest detectable change of ITDs is in the range of 10 µs
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at 1000 Hz, but this value depends strongly on the stimulus frequency with higher
thresholds at lower frequencies and a steep increase in thresholds towards higher
frequencies (Zwislocki and Feldman, 1956). If the same values are presented in terms
of IPDs, one instead finds a monotonic increase in IPD thresholds with frequency, the
smallest values thus found at low frequencies. IPD thresholds will be discussed in
detail in Chapter 5.

In agreement with the introduction of positive IPDs, introducing a positive ILD also
results in a hearing sensation that is lateralized towards the right while a negative ILDs
result in a lateralization in the opposite direction (see Fig. 2.4). Contrary to the findings
with IPDs, ILD difference thresholds do not change significantly with frequency (Yost
and Dye, 1988) reaching difference thresholds below 1 dB. As previously discussed in
Sec. 2.1, introducing ITDs also introduces a time-dependent ILD due to the shift of
the stimulus envelope. While the sensitivity to IPDs is limited to lower frequencies,
listeners can make use of time shifts in the envelope at higher frequencies (Henning,
1974).

As aforementioned, ILDs and IPDs do not exist independently under natural
conditions, and several studies have shown interactions between the two cues (e.g.
Moushegian and Jeffress, 1959; Sayers, 1964; Domnitz and Colburn, 1977). The nature
of this interaction for lower frequencies is also discussed in Chapter 7.

2.4 Models of the Neuronal Representation

This chapter gives a short overview over existing models for the neuronal representation
of ITDs or IPDs. It focuses on two important concepts, the delay-line based and
the rate models and, in favor of clarity, neglects some alternative concepts like the
equalization-cancellation model (EC-model) (see Colburn and Durlach (1978) for an
overview of EC-models). The chapter is intended to introduce the basic concepts
without reviewing individual models as good overviews over existing models can be
found in the literature (e.g. Stern et al., 2006; Dietz et al., 2018).

In 1948 Lloyd A. Jeffress published an influential paper (Jeffress, 1948) in which
he hypothesized an ITD encoder based on a systematic arrangement of coincidence
detecting neurons located along a delay line. These neurons respond strongest if the
input of the two ears arrive simultaneously so that a given neuron responds strongest
if the specific ITD is compensated by the axonal runtime of the neuron. Figure 2.5
shows a schematic of such an arrangement. In this example, neuron 1 will show
maximum response if the left input is strongly delayed while neuron 10 will show the
maximum response for a strong delay of the right input with the other neurons tuned
to intermediate delays.

This kind of encoder creates a neuronal representation where the ITD is encoded by
the specific delay of the strongest responding neuron. This representation is visualized
in Fig. 2.6a which schematically shows a set of coincidence detector neurons, each
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1 2 3 4 5 6 7 8 9 10

Left Input

Right Input

Figure 2.5: Schematic representation of a delay line circuit as found in the avian brain. The
circuit is constructed by a systematic change of the axonal length from both ears into a set
of coincidence detecting neurons represented by the black circles. The coincidence neurons
respond maximally if the input from both ears arrives simultaneously.

narrowly tuned to a specific ITD value (color-coded in Fig. 2.6a). To decode the ITD
from this representation, any decoder needs to know which delay is associated with
each of the neurons or in other words, the neurons place within the delay line so that
this kind of representation is often referred to as a place-code. Mathematically, this
principle can be implemented in the form of a discreet cross-correlation of the inputs
from both sides. Several models have been based on the idea of the cross-correlation
model (e.g. Colburn, 1973; Stern and Colburn, 1985; Lindemann, 1986; Bernstein
and Trahiotis, 2017) which, in this thesis, will be referred to as delay-line or Jeffress
style models. Over time, these models developed to explain an impressive catalog of
psychoacoustic results (see Stern et al. (2006) and Bernstein and Trahiotis (2017) for
an overview). A neuronal delay line structure was also found in the avian nucleus
laminaris (Carr and Konishi, 1988) but findings in the mammalian brainstem, as
discussed in Sec. 2.1, are hard to reconcile with a delay-line mechanism. Specifically,
most delay-line models presume neurons narrowly tuned to specific ITDs and also
assume the majority of the neurons to be tuned to ITDs close to zero (Stern and Shear,
1996; Colburn, 1977). In the mammalian MSO, studies instead found rather broadly
tuned neurons mostly responding strongest to non-zero ITDs within half a cycle of
the neurons best-frequency (McAlpine et al., 2001; Joris et al., 2006). This half-cycle
limit has also become known as the π-limit, and due to this and other properties
which are easier expressed in terms of phase than in terms of time, this thesis will
mainly use the measure of IPDs when referring to rate models. In addition to the
frequency dependent tuning, a large proportion of the neurons was also tuned to IPDs
outside of the respective natural range of small mammals (Yin and Kuwada, 1983;
Goldberg and Brown, 1969). These observations lead to an alternate hypothesis in
which the IPD is encoded in the neurons’ firing rate instead of their tuning (McAlpine
and Grothe, 2003). One way this could be implemented is by considering the summed
activity in each of the two hemispheres. In this case, only two IPD-rate functions, one
per hemisphere, are necessary to characterize the system which is why this model is
also referred to as the two-channel model (TC-model). Some alternative names are
opponent-channel (Magezi and Krumbholz, 2010), count-comparison (Colburn and
Durlach, 1978) or hemifield model (Stecker et al., 2005). Figure 2.6b shows a schematic
of this neuronal representation. Following the TC-model, specific IPD is encoded in
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Figure 2.6: Comparison of three commonly assumed neuronal representations of interaural
time or in case of the Hemispheric model phase differences. a) Schematic of the neuronal
representation following the Jeffress style place-code. A set of coincidence detector neurons,
each narrowly tuned to a specific ITD values (color coded), encode a specific ITD (dashed
black line) in form of the specific delay of the neuron or the group of neurons with the strongest
response (black curve) b) Neuronal representation of IPDs following the TC-model rate code
. In this model, the IPD is encoded in the summed or averaged response of all neurons in
each of the hemispheres. Given a certain IPD (dashed black line) two responses, one for each
hemisphere, (black circles) are necessary to code for the specific IPD. c) Schematic of the
labeled-line rate code. The graph shows an example of individual neuronal responses in the
left (blue curves) and right (red curves) hemisphere. A specific IPD (dashed black line) is
coded in the individual or sub-grouped responses (black circles) in both hemispheres.
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the relative firing rates within the two hemispheres. Some previous models that make
use of this type of encoding are the models proposed by Takanen et al. (2014) and, at
least to some degree the model of Dietz et al. (2009) even though the latter uses both
a mixture of TC and place code.

An extension of the two-channel rate code is the labeled-line rate code. This code
also considers the variations in the IPD-rate functions of the individual or sub-grouped
neurons. As a result, this representation uses multiple responses per hemisphere to
code for an IPD (see Fig. 2.6c) and assumes knowledge about the individual IPD-
response functions. An example for models employing this representation is the models
proposed by Hancock (2004), and the implications of this type of code were further
investigated by Goodman et al. (2013) and Belliveau et al. (2014).
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CHAPTER3
A Biophysical Model of the Medial Superior

Olive

The content of this chapter was previously published as a peer-reviewed articlei:

Encke, J. and Hemmert, W. Extraction of inter-aural time differences using a spiking
neuron network model of the medial superior olive. Frontiers in Neuroscience, 12, Mar
2018. doi: 10.3389/fnins.2018.00140

It is reproduced here without content-related changes. Figures have been reformatted
to fit the format of this document but are otherwise unchanged. Due to historical
reasons, this chapter deviates from the convention of using interaural phase differences
to address the effect of an interaural delay on the fine structure of a signal and instead
uses interaural time differences.

3.1 Introduction

Our remarkable sound localization acuity relies on the ability of the auditory system
to decode the arrival time and intensity difference between the ear canal signals into
information about the direction of sound sources. In mammals, the primary nucleus
to extract fine structure interaural time differences (ITDs) is the medial superior
olive (MSO), while the interaural level differences (ILDs) are extracted primarily
at the lateral superior olive (LSO) (Grothe et al., 2010). The MSO neurons detect
fine-structure ITDs by acting as coincidence detectors receiving excitatory inputs
from both hemispheres. The existence of such neurons was already hypothesized by
Jeffress (1948), who proposed an array of coincident detectors to be arranged along
a neural delay line. In this hypothesis, each neuron would respond maximally to a
specific ITD (best-ITD) – generating a topographical mapping of time differences
within the nucleus. Later, such a circuit was found in the nucleus laminaris of birds

iThe articles copyright lies with the authors and the original article was licensed under a Creative
Commons copyright license (CC BY-4.0).
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3 A Biophysical Model of the Medial Superior Olive

like the barn owl (Carr and Konishi, 1988). However, more recent measurements of
mammalian inferior colliculus (IC) and MSO neurons in gerbils (Brand et al., 2002)
or guinea pigs (McAlpine et al., 2001) revealed broadly-tuned neurons, of which the
majority had their best-ITDs at the border or even outside of the animals physiological
range. This observation is inconsistent with place-code theory, which would require
a vast amount of narrowly-tuned neurons with their best-ITDs distributed within
the physiological range. One alternative ITD-coding mechanism is based on the
comparison of firing rates between the nuclei in the two hemispheres. This mechanism
has consequently been called the opponent-channel (Magezi and Krumbholz, 2010),
count-comparison (Colburn and Durlach, 1978) or hemifield (Stecker et al., 2005)
model. The opponent-coding model is in agreement with both observations, the wide
tuning curves and the large best-ITDs (McAlpine and Grothe, 2003). There is also
evidence that overall sound localization (Stecker et al., 2005; Briley et al., 2012) as
well as specifically ITD-coding in the human auditory cortex is based on an opponent
coding mechanism (Salminen et al., 2010). Lesion studies in cats showed that unilateral
lesions at the level of the central auditory system (Jenkins and Masterton, 1982) as
well as in cortical regions (Malhotra et al., 2004) mainly resulted in deficits localizing
sounds from locations contralateral of the lesion. These results lead Jenkins and
Masterton (1982) to conclude that each auditory-hemifield is represented solely in
the respective contralateral hemisphere, which would contradict the opponent coding
mechanism. One problem with applying this interpretation to ITD processing is that
both studies used broad-band stimuli so that ITDs and ILDs, as well as spectral and
monaural cues were available to localize the sound source this makes it difficult to
draw conclusions about the representation of the individual cue. An alternative to the
opponent-channel code, which uses the summed response of the neurons within each
of the two hemispheres, is the population decoder that instead uses the individual
response of each neuron for decoding. Based neuronal recordings of neurons in the
IC, Goodman et al. (2013) and Day and Delgutte (2013) both proposed population
decoders and showed that these decoders could outperform a two-channel decoder.
On the other hand, Harper et al. (2014) used an optimal coding approach to show
that ITDs in low-frequency signals would be best represented by a two-channel code.
Additionally, results from psychoacoustic lateralization experiments using pure-tone
adapter stimuli with fixed ITDs showed, that adaptation influences lateralization at
ITDs not only close to that of the adapter but within the whole hemisphere (Phillips
et al., 2006), which is more in line with an opponent-channel code.

The aforementioned remarkable sound localization ability has inspired numerous
researchers to create computational binaural models. Most of the existing binaural
models are phenomenological implementations of the delay-line principle proposed
by Jeffress (1948), which have been tuned to successfully predict data from human
psychoacoustics (Lindemann, 1986). Some more recent models were implemented
following the opponent-coding mechanism (Dietz et al., 2011; Takanen et al., 2014;
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Pulkki and Hirvonen, 2009). Even though these models closely follow the functionality
of the neuronal sound localization pathway, they provide only a phenomenological
description of the processing stages. On the other hand, several biophysical models
of MSO neurons have been published as well (Zhou et al., 2005; Lehnert et al., 2014;
Brughera et al., 2013, 1996), but there are only a few biophysical models covering the
complete neuronal circuit. Wang et al. (2013) used a circuit containing a model of the
auditory periphery as well as spiking models of the MSO and LSO and a simplified IC
model to investigate the sensitivity of IC neurons to envelope ITDs in high-frequency
sounds. Due to the focus on high-frequency sounds where ITDs are extracted from
the envelope of the sound signal instead of its fine structure (Nuetzel and Hafter,
1976), Wang et al. (2013) did not include any source for a shift in best-ITD and also
neglected inhibitory inputs to the MSO. Glackin et al. (2010) presented a spiking
neural network (SNN) constructed from leaky integrate-and-fire models of the CN
and MSO nuclei. In disagreement with newer physiological studies, the SNN was
constructed as a Jeffress-type delay-line decoder. Glackin et al. (2010) trained the
network to localize the sounds using spike-timing-dependent plasticity learning rules.

To our knowledge, none of the previous models combined an SNN approach with
the concept of opponent-coding to investigate ITD sensitivity. Brughera et al. (2013)
presented a single spiking neuron model of the MSO to investigated ITD sensitivity,
but used a periodic Poisson-like process as an input to the MSO. This limits the model
to simple pure-tone-like scenarios while also neglecting any non-linear processing of
the auditory periphery. To that end, we present here a new binaural model based on
biophysical spiking neuron models of the mammalian MSO circuit. We show that a
simple linear hemisphere decoder applied to the output of the model is sufficient to
encode ITDs in tones with a precision that matches human performance. Furthermore,
we show how the model in conjunction with a simple artificial neural network can
decode ITDs from broadband signals, including complex signals like speech.

3.2 Results

3.2.1 Model Structure

The primary mammalian MSO neurons receive excitatory inputs from spherical bushy
cells (SBCs) as well as inhibitory inputs from the globular bushy cells (GBCs) of
the cochlear nuclei in both hemispheres. Inhibitory inputs are being relayed via the
trapezoid body (TB) (see Grothe et al. (2010) for an overview). Both SBCs and GBCs
are directly excited by auditory nerve fibers (ANFs). GBCs in particular, but also
SBCs have been found to enhance phase locking of the neuronal inputs (Joris et al.,
1994; Dehmel et al., 2010). Our model consists of three stages, a model of the auditory
periphery, a population of globular bushy cells and a population of MSO neurons (see
Fig. 3.1). For simplicity, SBC as well as the TB nuclei, were reflected as direct relays of
the ANF signals so that our MSO model receives direct excitatory input from the ANF
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Figure 3.1: a) and c) Poststimulus time histograms (750 µs bin size) of the responses of
the three model stages to a 100 ms long pure tone. b) The model network contains three
stages. A model of the auditory periphery (ANF), A model of the globular bushy cells in
the cochlear nucleus (GBC) and the model of the medial superior olive (MSO). (Graphic
adapted from Encke and Hemmert (2018))

and inhibitory inputs from GBCs of both hemispheres (see Section 3.4 for details on
the implementation). In practice, our model takes digitized binaural signals as input
and processes them first through the peripheral hearing models of the left and right
ears. The peripheral model consists of a middle-ear compensation filter, a non-linear
model of the basilar membrane and a functional model of the neural transduction
of the inner hair cell and auditory nerve fibers (Zilany et al., 2014). All ANFs were
modeled as high spontaneous rate units. The spike timings of the peripheral hearing
models were then used as input to the biophysical neuron models. As a consequence
of the direct excitation by ANF fibers, the frequency responses of both MSO and
GBCs resemble that of the ANFs from the peripheral hearing model (see Fig. S1 in
the supplemental materials).

As an example of the output from the different model stages, Figs. 3.1a and 3.1c
illustrate the outputs of ANFs, GBCs and the MSO of the two hemispheres for a
left-leading (150 µs ITD) 125 Hz pure-tone input. The ANFs of both hemispheres show
a phase-locked response to the input stimulus. This phase-locked response is sharpened
by the population of GBC neurons. The MSO neurons of the two hemispheres respond
with different firing rates depending on the delay between the signals delivered to the
left and right ear.

Most MSO neurons of gerbils show bell-shaped ITD-rate functions with their
maximum (best-ITD) located outside of the animals physiological range (Brand et al.,
2002). There has been much debate about the origin of this shift ranging from intra-
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Figure 3.2: a) MSO ITD-rate functions (calculated for 15 ITDs in the range ±1 ms) for
the right hemisphere of the model at different inhibitory conductivities ĝsyn,i b) Increased
inhibition, reduces the overall firing rate and shifts the best-ITD towards more contra-lateral
leading ITDs. Without inhibition the best-ITD equals the predefined shift of 100 µs. (Graphic
adapted from Encke and Hemmert (2018))

cochlear delays (Joris et al., 2006) over asymmetric synaptic currents (Jercog et al.,
2010) to effects of the recent stimulus history (Franken et al., 2015). Our model is
based on the effect described by Brand et al. (2002) and Pecka et al. (2008), who
showed that blocking of the inhibitory inputs results in a shift of the best-ITD towards
zero. Measurements in gerbil brain slices have also shown that inhibitory inputs to the
MSO precede the excitatory inputs in time (Roberts et al., 2013). Using conduction
clamp measurements, Myoga et al. (2014) showed that the relative timing of inhibitory
to excitatory inputs to the MSO can delay or advance the peak of the excitatory
post-synaptic potential (EPSP) and consequently, affect the best ITD of the neurons.
Our model is consistent with these findings. In agreement with Brand et al. (2002)
and Pecka et al. (2008), the best-ITD shifted towards zero when simulating the effect
of blocked inhibition by reducing the inhibitory synaptic strength (see Figs. 3.2a and
b). Similarly, and in accordance with Myoga et al. (2014), we could shift the best-ITD
of the MSO model by adjusting the delay of contra- and ipsilateral inhibitory inputs.
For the model used in later evaluations, we optimized both arrival times to obtain
a maximal shift of the best-ITD towards contra-leading ITDs. This optimization
resulted in a delay of 0.6 ms for the contralateral inhibitory input and 0 ms for the
ipsilateral input (both values relative to the timing of the excitatory input from the
corresponding side). These values are in agreement with the timescales observed by
both Myoga et al. (2014) and Roberts et al. (2013). The study by Pecka et al. (2008)
showed a residual shift of the best-ITD even when the inhibitory inputs were blocked.
This could be explained by fundamental physics as the axons connecting inputs from
the contralateral hemisphere to the MSO have to span over a larger distance than the
ones for ipsilateral inputs. We considered this observation by adding a constant delay
of 100 µs to the contralateral excitatory and inhibitory inputs, which resulted in an
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additional shift of the best-ITD towards negative values (see Fig. 3.2b).

3.2.2 Decoding ITD information from the neuronal responses.

The opponent-coding theory is based on two populations of neurons, both firing
maximally when the sound source is on the opposite side of the midline (Stecker et al.,
2005). Figure 3.3a shows firing rates of the MSO model in both hemispheres to a
stimulation with varying ITDs. The left MSO responds strongest when the stimulus
was right-leading (positive ITD), while the right hemisphere responds strongest to a
left-leading ITD (negative value). Consequently, a change in ITD from zero results
in an increased firing of one MSO and a reduced firing of the other. A very basic
decoder for the opponent-channel code can be constructed by subtracting the firing
rates of the left MSO (RL) from the right MSO (RR). Around zero ITD, the calculated
firing rate difference ∆R = RR −RL shows an almost linear response to ITD changes
(see Fig. 3.3b). Due to the subtraction, this approach increases the slope around
zero by a factor of two and consequently maximizes the sensitivity in this region.
However, this approach is applicable only for ITDs for which the linear approximation
is valid. The linear ITD region depends primarily on the location of the best-ITD (see
Fig. 3.3c in the two hemispheres. When calculating ITD-rate functions for neurons
with different best-frequency, the best ITD decreases with increasing sound frequency
(see Fig. 3.3c). The best-ITD is maximally 470 µs at 125 Hz and decreases to 110 µs at
1.4 kHz. The same trend of decreasing best-ITDs with increasing frequency has been
found in in-vivo recordings of MSO neurons (Brand et al., 2002; Pecka et al., 2008)
as well as in the IC (McAlpine et al., 2001). As aforementioned, this model mainly
uses phase-locked inhibition to shift the best-ITD. This method relies on the slopes
of the inhibitory post-synaptic potentials (IPSPs) of each phase (Myoga et al., 2014).
At higher frequencies, the summation of individual IPSPs reduces the effectiveness in
shifting the best-ITD (Roberts et al., 2013; Myoga et al., 2014), which is also seen in
the model results. Experimental studies have shown that MSO and IC neurons exhibit
a variety of different best-ITDs (Bremen and Joris, 2013; McAlpine et al., 2001), while
in this model, all neurons with the same best frequency also show the same best-ITD.
As this study does not use a population decoder but relies on the mean activity within
each hemisphere, the single ITD-rate function can also be interpreted as the mean
ITD-rate function of a single hemisphere.

The sensitivity of the linear-decoder to ITD changes is proportional to the slope
of the ∆R function around zero ITD– a steeper slope results in larger changes. As
the slope of the ∆R function around zero is twice the slope of a single hemisphere
response, maximizing the slope of the single hemisphere will also result in a maximal
slope of ∆R. Pecka et al. (2008) and McAlpine et al. (2001) both reported the maximal
slope of single neuron responses to be located at or close to mid-line. In this model,
responses to frequencies up to 700 Hz followed these findings (see Fig. 3.3e). At higher
frequencies, the location of the largest slope started to shifted away from midline as the
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Figure 3.3: a) The model demonstrates ITD-rate functions for the left and right MSO that
are effectively mirrored around zero so that a shift in ITD from the center line leads to
an inverse response of the two channels forming the basis for the opponent-channel code
(Stecker et al., 2005). b) A simple difference computation between the ITD-rate functions of
the two hemispheres resulted in a nearly linear relationship around zero ITD (dashed line)
c) The shift in the best-ITD decreases with increasing best-frequency of the MSO neuron,
reaching the predefined shift of 100 µs at about 1.4 kHz. d) The slope of the rate difference
curve around midline can be seen as a sensitivity to changes in ITD. This value changes
with the best frequency. The sensitivity peaks at 300 Hz from where it decreases again
towards higher frequencies. e) The single hemisphere responses showed the largest change
at or close to the midline and therefore maximizes the sensitivity of the linear-decoder. f)
Frequency-dependent normalized firing rates of the three neuron populations in the model
in response to a 100 ms pure tone at 50 dB. (Graphic adapted from Encke and Hemmert
(2018))
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3 A Biophysical Model of the Medial Superior Olive

Figure 3.4: a) Frequency-dependent JNDs calculated for subsets of five, ten, fifty and one
hundred randomly chosen neurons among a population of 500 neurons. b) When normalized
to a region between 0 and 1, all JND curves overlap. c) The JND values were calculated by
fitting weibull-functions to the fraction correct values (see Sec. 3.4).

best-ITD decreased faster than the width of the ITD-tuning function, which shifted
the location of the largest slope towards positive ITDs. A second influencing factor on
the sensitivity is the maximum firing rate of the MSO response – a higher rate of the
single hemisphere responses will also result in a larger slope at midline. Figure 3.3f
shows the frequency dependent normalized firing rates of all three neuron populations
in the model. The firing rate of the MSO model is of course strongly influenced by
the balance between the excitatory inputs from the ANFs and the inhibitory inputs
from the GBCs but it is additionally modulated by changes of the spiking thresholds.
MSO neurons have been found to exhibit subthreshold resonance (Remme et al., 2014;
Mikiel-Hunter et al., 2016) which introduces frequency dependent thresholds. The
MSO model used in this study exhibited a resonance frequency at about 260 Hz (see
Fig. S2 in supplemental material) which is in agreement with the resonance frequencies
found in electrophysiological studies (Remme et al., 2014; Mikiel-Hunter et al., 2016).
The reduced spiking threshold around 260 Hz in combination with the dynamics of
the synaptic inputs results in a peak in MSO response seen in Fig. 3.3f, which also
corresponds to the peak in sensitivity shown in Figure 3.3d.

While applying the linear-decoder does not directly result in an ITD estimate, it
can be used to predict ITDs. The link between ITD and ∆R also allows for a direct
comparison of the laterality of two signals with different ITDs without the necessity
to map the MSO model response to the absolute ITD estimates. This highlights the
difference between an absolute localization task, which requires the mapping of the
auditory perception to a spatial measure and a relative comparison task where the
relative location of one perception in comparison to a second perception is reported. In
psychoacoustical experiments, the sensitivity to ITDs is often assessed by determining
the JND which describe the smallest change in ITD a subject can use to detect a change
in lateralization between the two otherwise identical stimuli (Klumpp, 1956). Using
the same method, we calculated JNDs for our network model using the linear-decoder
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(see Sec. 3.4). In our model, the performance depends critically on the number of
neurons composing the population, as the intrinsic stochasticity of the neuronal system
loses its impact on the average firing rate when the population increases. To determine
the influence of the population size on the performance of our model, JNDs were
calculated separately for subsets of five, ten, fifty and one hundred randomly chosen
neurons among a population of 500 neurons. Figure 3.4c shows exemplary psychometric
curves derived for a population of ten and one hundred neurons. Figure 3.4a shows
the result of the JND experiment for different pure tone stimuli. As expected, the
predicted JND decreases when increasing the size of the population. The decrease in
JND can be described by a 1/

√
N dependency, where N is the population size. The

dependence is in line with the reduced effect of noise due to a larger population of
neurons. If the JND thresholds are determined mainly by the noise of the system, they
should also be reflected in the sensitivity described by the slope of the ∆R function.
Figure 3.4b shows the JND curve as well as the inverse of the slope of ∆R with all
values normalized to lie between 0 and 1. As expected, there is a good agreement
between the normalized JND curves and the inverse of the slope, which confirms the
aforementioned assumption that the detection threshold of the linear-decoder depends
mainly on the slope of the rate-difference function around zero ITD.

One problem of such a linear-decoder is that the firing rates of the two MSO models
depends not solely on the ITD, but also on other characteristics of the inputs to the
MSO model. As the firing rate of the peripheral hearing model depend strongly on
the sound pressure level, so will the output of the MSO model. To demonstrate such
dependency, Fig. 3.5c shows how the predicted sensitivity of our model varies with both
frequency and level of the pure tone input. The ANFs also exhibit strong spike-rate
adaptation (Smith, 1977) which, consequently affects the MSO response (Fig. 3.5A ).
These variations could be compensated by normalizing the ITD-∆Rfunctions (overlay
in Fig. 3.5b) but this is not possible in practice as it would require a priori knowledge
about the maximum firing rate of the ITD-∆Rfunction at each point in time. A much
more practical approach is to compensate such non-linear dependencies using the
information that is already encoded in the ANF firing rates.

The MSO exhibits a distinct tonotopic organization along its dorsoventral axis. As
the neuronal populations along the axis differ in their characteristic frequency (Guinan
et al., 1972), consequently, a given ITD decoder can specialize on decoding of ITDs
within a specific frequency range. In addition, the non-linear and time-dependent
output of the peripheral hearing process can be compensated by using direct knowledge
about the firing rates of the ANF. However, implementing such corrections would
require designing a complex multi-dimensional correction function. artificial neuronal
network (ANN) have been proven to be quite successful in learning the behavior of
highly nonlinear systems (Almeida, 2002), hence, they provide an appealing alternative
to tedious manual construction of a correction function.
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Figure 3.5: a) The ∆R function (calculated for 100 ms bins) of 500 MSO neurons in response
to a two second long 250 Hz pure tone with ITDs ranging from 0 ms to ±0.3 ms show a strong
influence of the peripheral hearing model’s adaptation on the MSO model output. b) The
same data as in a) but shown in form of ITD-∆Rfunctions. Every function corresponds to
one point in time evaluated for 20 ITDs in the range from −1 ms to 1 ms. The difference
in the slope of these functions illustrates that adaptation influences the sensitivity of the
linear-decoder. Normalization with respect to the maximal rate of each function could
compensate for this influence (overlay) c) The model displays strong variations in sensitivity
with sound frequency and sound level. (Graphic adapted from Encke and Hemmert (2018))

3.2.3 Artificial neuronal network predictor.

We used a small multi-layer perceptron (MLP) to predict ITD values from the output of
the SNN model by means of non-linear regression analysis. The regression is based on
the average firing rates across the neuronal populations and predictions are calculated
separately for each frequency band and time frame. The MLP was implemented using
seven input nodes, one hidden layer with twenty nodes and two output nodes (for
details see Sec. 3.4). One of the MLP output nodes was used for the prediction task,
while the second output was used to classify the reliability of the prediction based on
the firing rates. This was deemed necessary to omit predictions for parts of the input
signal, which did not contain enough energy in the given frequency band to enable
robust predictions based on sufficient spiking activity.

The inputs to the MLP were designed to consist of the firing rates from the MSO of
the left and right hemisphere and the characteristic frequency of the neuron population
(see Fig. 3.6 for a schematic of the networks in- and outputs). As one of the main tasks
of the predictor was to compensate for the influence of variations in the peripheral
hearing model output, the MLP was also provided with a monolateral input of the
ANF firing rate. All firing rates were provided as an average value computed over a
predefined time period of 30 ms. This duration was chosen as it offered reasonably
high temporal resolution and ensured that several periods of the phase locked input
were included. In addition to the rates within the given time frame, we also provided
firing rates of the previous time frame which reduced the noise in the predictions by
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Left MSO (t)
Left MSO (t− 30 ms)
Right MSO (t)
Right MSO (t− 30 ms)
ANF (t)
ANF (t− 30 ms)
Best Frequency

ITD Prediction (t)
Signal Exists (t)

Figure 3.6: The ANN predictor was implemented using seven input nodes, one hidden layer
with twenty nodes and two output nodes. Inputs denoted with (t) are firing rates within a
given time period (typically 30 ms) for which the ITD should be predicted, while the ones
denoted with (t-30 ms) are firing rates of the preceding time frame. (Graphic adapted from
Encke and Hemmert (2018))

effectively doubling of the time span that the network can employ in its predictions.
The MLP was trained on 300 ms long pure tones (see Sec. 3.4) covering the frequency
range from 125 Hz to 1000 Hz so that predictions can be obtained for any stimuli
within that range. For the following experiments we calculated predictions for 13
logarithmically spaced frequencies between 125 Hz to 1000 Hz.

Figures 3.7a - 3.7c compares the results of the ANN-predictor with those of the
linear-decoder for an amplitude-modulated tone with 400 Hz carrier frequency and
a modulation rate of 2 Hz. Since amplitude modulation is encoded in the firing rate
of the ANF, it is also exhibited in the output of the linear-decoder (Fig. 3.7a and
3.7c). On the other hand, the predictions from the ANN (Fig. 3.7b) showed only minor
deviations at the on- and offsets of each modulation cycle while largely compensating
the strong onset response introduced by ANF’s adaptation. Figure 3.7b shows only
such predictions that the ANN classified to be reliable. In case of the amplitude-
modulated signal, the frequency bands for which the ANN could predict ITDs are
dependent on the phase of the modulation.

Omitting unreliable predictions enables the calculation of a general prediction across
frequency bands. In case of the linear-decoder, zero output can correspond to two
conditions – zero ITD and no signal. The employed method of omitting unreliable
estimates is especially important for applying the ANN predictor to more complex
signals that have several frequency components because the omission enables the
ANN to predict ITDs without prior knowledge about the signal’s frequency content.
Figures 3.7d - 3.7f show examples of the ANN-predictor applied to a linear chirp. To
demonstrate the ability of the predictor to follow changes both in frequency as well
as in ITD, an additional phase shift was applied to the left ear signal. This phase
shift was chosen to be proportional to an ITD-value that varied linearly from 300 µs
to −300 µs. By calculating a cross-frequency prediction for every time frame, the
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3 A Biophysical Model of the Medial Superior Olive

ANN-predictor was able to follow the change in frequency as well in ITD (Fig. 3.7c)
deviating from the true value only in the last two time frames. As a final example,
we show the ANN-predictor applied to a speech signal with a static ITD of 200 µs
(Figs. 3.7d - 3.7f). Again, the across-frequency estimation, combined with the omission
of unreliable predictions allows the ANN-predictor to offer an accurate estimate of the
ITD for the whole signal.

3.3 Discussion and Conclusion

In this study, we presented a novel binaural model and used it to detect ITDs
in arbitrary sound signals. In contrast to previous binaural models that used a
phenomenological modeling approach (Pulkki and Hirvonen, 2009; Dietz et al., 2011),
this study used biophysical neuron models based on the current knowledge about the
function of the mammalian medial superior olive. Some previous studies implemented
similar SNN but either used a simplified auditory periphery and thus limited the
application of the model to pure tones (Brughera et al., 2013), based their model
on topologies that disagree with newer physiological studies (Glackin et al., 2010) or
focused on ITDs in the stimulus envelope (Wang et al., 2013). Using two different
extraction methods, we found that applying the opponent-coding mechanism to the
output of the model enabled a robust extraction of ITDs even in complex signals.

3.3.1 Sensitivity of the linear-decoder

We have shown that a simple linear-decoder can detect ITDs from the outputs of the
left and right MSO models with a sensitivity that reflects human performance in a
discrimination task and depended on sound frequency. The sensitivity was mainly
determined by the maximum firing rate of the MSO at a given frequency. Our MSO
neurons showed a peak at approximately 300 Hz. To our knowledge, no such systematic
variation of firing rate with frequency has been described, but Yin and Chan (1990)
noted a similar characteristic in the response of high-frequency MSO neurons. They
recorded the response of neurons that phase-locked to the envelopes of amplitude-
modulated tones and also showed a peak in the response at a modulation rate of 300 Hz.
In the model, the responses were influenced by the subthreshold resonance of MSO
neurons, which is due to the dynamics of the low threshold potassium current (Mikiel-
Hunter et al., 2016). This resonance would also explain the results by Yin and Chan
(1990). An explanation why no similar result in the response of low-frequency MSO
neurons has been described is that these measurements are limited to responses derived
at the neurons’ best-frequency so that any systematic variation between neurons with
different best-frequencies could be masked by variations in the overall response rate
between neurons.

It should be noted that the sensitivity of the linear-decoder cannot be directly
compared to results from psychoacoustical experiments, as the model only accounts for
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Figure 3.7: a) Results of the linear-decoder for an amplitude-modulated tone with 400 Hz
carrier frequency and a modulation rate of 2 Hz presented with an ITD of 200 ms. ∆R
showed strong modulation with the modulation frequency of the sound as well as an influence
of ANF adaptation b) Results of the ANN-predictor predictor for the same signal as in a).
The ANN was able to correct for the variations conveyed by the ANF inputs and to provide
a stable prediction within the frequency bands from 250 Hz to 595 Hz. c) The output of
both, the ANN-predictor and the linear decoder for the amplitude modulated signal over
time. Red: ANN predictions for the 420 Hz channel which was the closest to the stimulation
frequency. Black: Mean over all predictions that were classified to contain a useful signal.
Gray: Result of the linear-decoder in the 420 Hz frequency band. d), e) Same plots as in
a) and b) but for a linear, one-second long chirp ranging from 125 Hz to 1 kHz where the
ITD changed from −0.4 ms to 0.4 ms. f) The ANN-predictor was able to follow the change
in frequency as well as in ITD, deviating from the true value only at the end of the signal.
g) - i) The ANN-predictor applied to a speech signal (German sentence ”Britta gewann
drei schwere Steine”) taken from the OLSA sentence test (Wagener et al., 1999). (Graphic
adapted from Encke and Hemmert (2018))
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3 A Biophysical Model of the Medial Superior Olive

the lowest stages of the neuronal ITD-detection circuit in gerbils. In other words, it
was not the goal of this study to replicate any psychophysical data per se, but rather
to investigate the performance of the model on its own. Nevertheless, the model could
be easily tuned to replicate psychoacoustic threshold data by adjusting the size of the
neuronal population to fit human or animal data.

3.3.2 Influence of missing SBCs on the output of the model.

In the presented model network, MSO neurons received direct excitatory input from
ANFs, while in the physiological case, they receive excitatory inputs from SBCs. SBCs
have been found to increase the precision of phase-locking in comparison to ANFs
(Dehmel et al., 2010; Künzel et al., 2011). The improvement shown in this study is
rather small when compared to the large improvement that has been shown for GBCs
(Joris et al., 1994). In spite of this Improvement, the precision is not much higher
than that of the ANF model used in this study, and thus no further improvement
in phase locking seemed necessary. A second function of SBCs could arise from non-
monotonic rate-level functions due to an inhibitory sideband (Künzel et al., 2011; Keine
and Rübsamen, 2015). Including a model that would reproduce the non-monotonic
rate-level functions may also change the output of the MSO model, specifically, the
behavior shown in Fig. 3.5c. This change in the MSO rate-level function may also
be compensated by the ANN, so that the additional feature would not change the
message of this paper, leading to the decision to neglect the influence of SBCs. It
was also suggested that the slow GABA-ergic inhibition on the level of the SBC may
support sound localization of complex sounds by acting as a gain control mechanism
(Keine et al., 2016, 2017), this would be interesting to investigate in the context of the
presented model but is outside of the scope of this paper.

3.3.3 Performance of the ANN-predictor

The model output showed a strong dependence on both frequency and level of the input
signals. Previous models that employed the opponent-coding principle constructed
the output of their models to be self normalizing (Takanen et al., 2014; Pulkki and
Hirvonen, 2009) or directly extracted the phase from the left and the right input signals
using gammatone filters (Dietz et al., 2011). While both methods are valid in view of
a phenomenological modeling approach, they can not be easily applied to a neuronal
network as presented in this study. We instead showed that a multilayer perceptron
could be trained to compensate for frequency and level dependencies and to predict
ITD values from the firing rate outputs of the spiking neuron network. By using an
ANN to compensate for variability of the MSO output, this study neither makes any
assumption about the exact location in the ascending auditory pathway, at which this
compensation takes place, nor speculates about the exact mechanism underlying this
compensation. We rather show that a very basic ANN containing only twenty hidden
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nodes in one layer is able to perform the compensation. The ANN-predictor was also
shown to provide accurate ITD predictions for complex signals and for time-variant
ITDs, even though it was trained on pure tones only. This suggests that the necessary
compensation is independent of context. Psychoacoustic studies have shown that
sound localization performance depends on the duration (Tobias, 1959) and bandwidth
(Trahiotis and Stern, 1989) of the stimulus indicating an integration of information
across frequency and time. In this study, the ANN predicted ITDs independently
for each frequency and time frame. While integration over the frequency bands was
implemented by calculating the mean prediction across all frequencies, no integration
over time apart from the calculation of 30 ms averages was performed. Hence, the
prediction capability is expected to further improve if the output of the model would
also be integrated over time.

While the goal of this study was to evaluate the models’ performance on the detection
of ITDs, the prime interest of our binaural hearing lies in estimating the direction of a
sound source instead of the ITD value. Since low-frequency ITDs between the ear canal
signals provide a salient cue about sound source direction, reliable prediction of the
ITDs indicates that the azimuthal sound direction may also be accurately predicted.
To that end, the ANN could also be trained to directly predict azimuthal angles instead
of ITDs.

3.4 Methods

3.4.1 Topology of the Model

Both MSO and GBC neurons were modeled using single-compartment, Hodgkin-
Huxley-type models simulated in python using the package Brian (Goodman, 2009).
MSO as well as GBCs received direct excitatory input from ANF fibers, which were
modeled using the model of Zilany et al. (2014), implemented in the python library
cochlea (Rudnicki et al., 2015). Each population of neurons (ANF, GBC, MSO) always
consisted of 500 independent neurons in each hemisphere. The frequency channel of
the neuron population was set by selecting the appropriate critical frequency of the
peripheral hearing model.

3.4.2 Spiking models

While this study does not discuss the effect of single ionic currents, it makes use
of Hodgkin-Huxley-type models, as simpler neuron models like the leaky integrate-
and-fire neurons neglect the influence of ion channel dynamics. Especially the shift
of best-ITD towards contralateral-leading ITDs has been shown to be influenced by
both low-threshold potassium (Myoga et al., 2014) and hyperpolarizing ionic currents
(Baumann et al., 2013), both of which are included in this model.
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3 A Biophysical Model of the Medial Superior Olive

MSO neurons were simulated using single-compartment, Hodgkin-Huxley-type mod-
els. The dynamic of their membrane potential Vm is given by the following equation:

dVm

dt
= − 1

Cm

(Ileak + INa + IK + Ih + Isyn,e + Isyn,i), (3.1)

where Cm is the membrane capacitance, Ileak is the leakage current, INa, IK, Ih are
the sodium, potassium and hyperpolarizing ionic currents and Isyn,e, Isyn,i are the
excitatory and inhibitory synaptic currents respectively. All ionic currents were defined
as follows:

Ix = ĝxa
mbn(Vm − Ex), (3.2)

where ĝx and Ex are the maximal conductivity and Nernst potential for the respective
ion species x. The gating variables am and bn determine the channel kinetics. Equations
for these variables can be found in the original publication: The sodium dynamics
were implemented according to Rothman and Manis (2003) and were corrected for
a body temperature of 37 ◦C (k = 3(T−22)/10). To gain realistic spike shapes as well
as a spiking threshold, the activation kinetics had to be sped up by a factor of four.
Potassium currents were modeled with the equations for the low threshold channels
given by Khurana et al. (2011) with the steady-state inactivation z∞ set to 0.4. The
hyperpolarizing currents were modeled using the equations for dorsal MSO neurons
from Baumann et al. (2013). We used a membrane capacity of 70 pF (Couchman
et al., 2010) and the ionic conductivities were adjusted to fit the steady state and peak
membrane resistances to values measured by Scott et al. (2005). Use of these values
resulted in spiking thresholds close to the data published by Couchman et al. (2010).
All parameters are summarized in Table 3.1. GBCs and their synaptic inputs were
modeled using the neuron model with 40 non-depressing ANF inputs as proposed by
Rudniki and Hemmert (2017).

Symbol Value Symbol Value

Cm 70 pF Ei −70 mV
Erest −55.8 mV ĝNa 3.9 µS
ENa 56.2 mV ĝK 650 nS
EK −90 mV ĝh 520 nS
Eh −35 mV ĝleak 13 nS
Ee 0 mV

Table 3.1: Parameters for the MSO model
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3.4.3 Synaptic MSO inputs

Each MSO neuron received six excitatory inputs from ANFs of each hemisphere. The
excitatory post-synaptic currents (EPSCs) were modeled as an alpha function:

Isyn,e =
t · e1−t/τ

τe
(Vm − Ee). (3.3)

Inhibition was provided via three GBC inputs per hemisphere. The inhibitory post-
synaptic currents (IPSCs) were modeled using a bi-exponential function:

gi = ĝi
τ2 · (e−t/τi,1 − e−t/τi,2)

τi,2 − τi,1
· (Vm − Ei). (3.4)

Both, excitatory and inhibitory timeconstants were fitted to recordings by Couchman
et al. (2010) yielding values of τe = 0.17 ms and τi,1 = 0.14 ms, τi,2 = 1.6 ms.

3.4.4 Sound Signals and Data Analysis

All sound signals were generated in Python at a sampling rate of 100 kHz as this
sampling rate is required by the peripheral hearing model (Zilany et al., 2014). In the
case of the speech signal, the sound was up-sampled from 44.2 kHz to 100 kHz. Each
sound signal was gated using a 20 ms long raised-cosine function and 20 ms of silence
was attached to the beginning and the end of the signal. The stimuli were presented
at a sound pressure level of 50 dB if not stated otherwise. ITDs were defined as the
difference in the arrival times between the left and the right ears, with positive values
corresponding to right leading sounds. To archive sub-sample ITDs, we generated the
corresponding delays between the two signals by applying a fast Fourier-transform
(FFT), adding the equivalent phase angles, which resulted from the delays, and reverse
FFT back to time domain signal.

ITD-rate functions were fitted using a modified Gaussian function as shown in (3.5)
were ∆t is the ITD value, Rmax the maximum firing rate, W defines the width of the
curve and B the location of the maximum (best-ITD).

R(τ) = Rmax · e
−(∆t−B)2

W2 +Roffset (3.5)

Spiking data were analyzed using the Thorns toolbox for python. Firing rates were
always given as the average response of the whole population. To compensate for
the intracochlear delay of the inner ear model, we only considered action potentials
arriving 25 ms after signal onset and up to 25 ms after the end of the signal.

3.4.5 Calculation of Just Noticeable Differences

JNDs for our model were calculated by presenting two stimuli with ITDs located
symmetrically around zero – i.e. −∆t/2 and ∆t/2. The difference between the two
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ITD was denoted ∆ITD . We calculated independently, the difference in firing rate at
both hemispheres (∆R) for each of the presented signals. The two values were then
compared to each other. If the ∆R value for the negative ITD signal was larger than
the one for the positive ITD signal, the trial was considered as a correct prediction.
Each ∆ITD was presented 100 times and the fraction of correct trials was calculated.
To calculate the JND, we presented 20 logarithmic arranged ∆ITD in the range from
2 µs to 800 µs. The resulting fraction correct values were then fitted with a weibull
function. The JND was defined as the ITD at which 75% correct predictions were
achieved.

3.4.6 The Artificial Neural Network Predictor

The ANN network was implemented using the Theano package for Python. The ANN
layout was that of a classic multilayer perceptron containing an input layer with seven
nodes, one hidden layers with twenty nodes and an output layer with two nodes (see
Fig. 3.6). Both the hidden and the output layer consisted of non-linear nodes with a
tanh(x) activation function.

The predictor was designed to make predictions for every 30 ms section of the signal.
For this, average firing rates for both MSO hemispheres and for the ANF of one
hemisphere were calculated in bins of 30 ms. The model firing rates of MSO and
ANF as well as the best frequency of these neurons were given as the ANN inputs.
To provide some history which can be used to compensate for on- and offsets, the
predictor was also provided with the firing rate in the previous 30 ms bin. Using this
information, the ANN gave a prediction of the ITD value in the current bin and a
classification whether the presented bin actually contained a signal (signal exists).

The network was trained on the MSO model output from 2000 different 300 ms long
sine tones which were padded by 60 ms of quiet. For each tone the level, frequency as
well as ITD were randomly chosen to lie between 30 dB to 70 dB, 125 Hz to 1000 Hz
and ±500 µs respectively. The target data for the training set consisted of the ITD
value of the corresponding input signal, as well as the classification whether the current
time frame contained a signal or not. The target for the classification was set to -1
for the two time bins at the start and at the end of each signal as those contained
silence. It was set to 1 for all other bins. The set of training signals was then split
into three subsets, a training set containing 80% of the data, a validation and test set
both containing 10% of the signals. The ANN was trained on the training set, until
the improvement on the mean squared error function for the validation set stayed
consistently below 0.01%.
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CHAPTER4
A Two-Channel Model of the Neuronal

Representation of IPDs

4.1 Introduction

In order to localize sound sources in the horizontal plane, humans and other mammals
make use of interaural time differences (ITDs) and interaural level differences (ILDs).
Traditionally, the neuronal processing of ITD cues conveyed by the fine structure of a
sound, in the following referred to as interaural phase differences (IPDs), has been
explained using the delay-line model of Jeffress (1948), where a cascade of neurons,
each tuned to a different specific time difference, encodes the IPD. This neuronal
structure was also implemented in several models, which were able to explain a large
variety of binaural phenomena (e. g., Lindemann, 1986; Colburn, 1977; Stern and Shear,
1996).

In the last two decades, the application of the neuronal delay-line code to mammals
has been challenged by electrophysiological measurements in several species (Yin and
Kuwada, 1983; Brand et al., 2002; McAlpine et al., 2001). Instead of a cascade of
neurons narrowly tuned to IPDs within the physiologically-occurring range, most
studies found rather broadly tuned neurons, several or sometimes most of which tuned
to IPDs outside the physiologically-occurring range, and only a few neurons tuned to
IPDs around midline (McAlpine et al., 2001). Based on a recent review by Grothe
et al. (2010), these findings are more consistent with a neuronal representation where
the IPD is encoded by the relative activity in the two brain hemispheres, as it was first
proposed by Von Békésy and Wever (1960). This hemisphere code is also supported by
psychoacoustic findings (Phillips and Hall, 2005; Phillips et al., 2006) and functional
imaging studies in humans (Salminen et al., 2010; Magezi and Krumbholz, 2010;
Salminen et al., 2018).

While there is ample physiological evidence for a hemisphere code, only a few models
successfully applied the hemisphere code to explain the outcome of psychoacoustic
experiments (e.g. Takanen et al., 2014). Dietz et al. (2009) presented a binaural model
that employed the hemisphere code in combination with a Jeffress style place-code
to explain several psychoacoustic experiments and noted that some of the experi-
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4 A Two-Channel Model of the Neuronal Processing of IPDs

ments could not be explained when relying solely on the hemisphere code. Using
biophysical models Encke and Hemmert (2018) and Brughera et al. (2013) showed
that the hemisphere code is sufficient to explain ITD-difference thresholds in the same
magnitude as observed in humans but both studies could not account for the observed
frequency-dependence of ITD-difference thresholds. Hancock (2004) on the other hand
presented a model consistent with the mammalian physiology but relied on a neuronal
representation that combined the hemisphere and place-code approach.

This chapter develops an empirical model of the neuronal representation of IPDs
assuming a hemisphere code. The model is constrained solely by biophysical data
(section 4.2) resulting in a condensed formulation of the complex physiological processes.
This formulation allows a direct investigation of implications of the neuronal code
on perception with only a fraction of the parameters necessary for more complex
neurophysiological or empirical models. The output of the formulated model of the
neuronal code predicts to what extent a positive IPD can be distinguished from
negative IPDs. As this prediction is solely based on the neuronal code, which also
restricts perception in that only the information conveyed by this code is accessible for
forming hearing sensations, any limitation of the code is expected to be reflected in
perception. In order to evaluate the model predictions and this hypothesis, sections 4.3
and 4.4 investigate the human IPD-lateralization performance in two psychoacoustic
experiments, which are compared to model predictions in section 4.5.

4.2 The Model

An ITD is defined as the delay ∆t between the signals at the two eardrums (Blauert,
1999, pp. 140f). For a pure-tone impulse of frequency f , the effect of an ITD can be
decomposed into a time shift of the stimulus envelope and a phase shift of one ear
signal with respect to the other. For low-frequency sounds, the latter was reported to
provide, compared to envelope cues, the dominant cue for lateralization (Bernstein
and Trahiotis, 1985; Smith et al., 2002). In order to separate effects of envelope and
phase shifts, a pure-tone IPD

∆ϕ = ϕ0,r − ϕ0,l = 2πf∆t (4.1)

is defined here as the difference between the starting phases ϕ0 of the tones that
constitute the right (r) and left (l) ear signals. This nomenclature shall emphasize
that introducing an IPD, as used here, is meant to only affect the phase of the ear
signals, while keeping their envelopes interaurally identical. For pure tones, IPDs are
limited to the range ∆ϕ ∈ [−π, π], and the ear signals are identical for IPDs of −π
and π. As a consequence, neuronal and psychoacoustical results must be comparable
for pure-tone stimuli with IPDs of ±π.

In order to distinguish between an anatomical brain hemisphere and its model
representation, each brain hemisphere will be referred to as a channel of the model.
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4.2 The Model

The proposed model was largely based on the repeated finding that the average
neuronal responses of ITD-processing nuclei at several stages of the auditory system
are described well by Gaussian functions (Stange et al., 2013; Yin and Kuwada, 1983;
Belliveau et al., 2014). Therefore, no specific location in the neuronal auditory pathway
at which the hemisphere code is implemented was assumed when defining the average
channel response as

R̄C(∆ϕ,∆ϕbest, wC) =
∞∑

i=−∞
e
− (∆ϕ−(2πi+∆ϕbest))2

2wC
2

i ∈ N0, (4.2)

where ∆ϕbest represents the IPD with maximum neuronal response (best-IPD) and
wC determines the width of the neuronal response function. Thereby, in order to
implement the 2π periodicity of ∆ϕ, each neuronal response is defined by a sum of
Gaussian functions centered at 2πi + ∆ϕbest, so that R̄C(∆ϕ) = R̄C(∆ϕ + 2πi) for
all i ∈ N0. For applications where ∆ϕ ∈ [−π, π], it is sufficient to confine i to [−1, 1],
as the influence of larger i becomes negligible. Equation (4.2) gives a normalized,
unit-less value, the modeled average neuronal channel response. While several other
equations, like a rectified cosine or interaural correlation (Hancock, 2004) could be
used to model the same relationship, Eq. 4.2 was used because its parameters can be
easily interpreted.

Psychoacoustic experiments suggest that the sensitivity to ITD differences is highest
around ∆t = 0 (Hafter and De Maio, 1975; Domnitz and Colburn, 1977). As the slope
of R̄C over IPD may be considered to model a sensitivity towards IPD differences, it
appears reasonable to assume the maximum slope of R̄C at ∆ϕ = 0. This assumption
is also supported by neuronal recordings (McAlpine et al., 2001; Stecker et al., 2005),
which found the maximum slope of single-neuron responses at or close to ∆ϕ = 0. It
follows from Eq. (4.2) that the maximum slope at ∆ϕ = 0 is reached if wC = |∆ϕbest|.

Electrophysiological studies have shown that neurons in the left hemisphere normally
respond strongest to positive IPDs and vice versa (McAlpine et al., 2001; Joris et al.,
2006). Following these findings and further assuming the responses of the channels to
be symmetric with respect to ∆ϕ = 0, Eq. (4.2) can be specified to the IPD-dependent
mean channel responses

R̄C,l(∆ϕ) = R̄C(∆ϕ,∆ϕbest) (4.3)

of the left channel and

R̄C,r(∆ϕ) = R̄C(∆ϕ,−∆ϕbest) (4.4)

of the right channel. Figure 4.1a shows those channel responses as functions of ∆ϕ for
the parameter ∆ϕbest = 0.3π.
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Figure 4.1: Modeled average neuronal responses R̄C,l (∆ϕ) and R̄C,r (∆ϕ) of the left and
right model channels (hemispheres) according to Eq. (4.3) and Eq. (4.4), for the parameter
∆ϕbest = 0.3π. a) Responses as functions of the IPD ∆ϕ for the left (blue) and right (red)
channels. b) IPD-response plane: For all IPDs (color coded), the respectively corresponding
responses, combined here to the response vector R̄(∆ϕ), describe a closed contour in the
IPD-response plane (R̄C,l-R̄C,r plane).

In the model, the responses of the two channels are combined to the response vector

R̄(∆ϕ) =
(
R̄C,r(∆ϕ) R̄C,l(∆ϕ)

)T
, (4.5)

which defines the center of the bivariate normal distribution of observable responses

Robs ∼ N2

(
R̄(∆ϕ),

(
σC

2 0
0 σC

2

))
, (4.6)

where N2 (µ, Σ) denotes a bivariate normal distribution with expectation vector µ and
covariance matrix Σ. σC

2 is the variance of the responses in each channel.
With changing IPD, the average response vector R̄ describes a closed contour in

the R̄C,l-R̄C,r plane (IPD-response plane). Each IPD can be assigned a specific R̄
on this contour (cf., Figure 4.1b, which, following Eq. (4.6), defines a distribution of
observable responses Robs. Any decoder of this neuronal code would have to solve the
inverse problem: Finding the R̄, or IPD, which resulted in the observed Robs. The
most simple mapping task between Robs and IPD is a basic left-right task, which only
attributes an observed Robs to a positive or negative IPD. It becomes clear in Fig. 4.1b
that all positive IPDs result in R̄ above the equal-response diagonal (R̄C,l = R̄C,r),
while negative IPDs result in R̄ below the equal-response diagonal.

In the model, the probability for a given IPD to result in a Robs above the diagonal
is calculated from Eq. (4.6). The probability is determined by the shortest distance

ddiag(∆ϕ) =

√[
R̄C,l(∆ϕ)− R̄C,r(∆ϕ)

]2
/2 (4.7)
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Figure 4.2: Overview of the proposed model. a) Modeled average neuronal channel responses
R̄C,l and R̄C,r (dashed) and their difference ∆R (solid), with the parameter ∆ϕbest = 0.3π.
b) Probability distribution of the responses for the IPD indicated by the circle in a) with
the parameter σ∆ = 0.25π. ∆R is normally distributed, and integrating the respective part
of the distribution function results in the probability that a stimulus with a given IPD will
result in a positive observed rate difference (hatched area). c) Probability of presenting the
model with a given IPD to result in a positive observed rate difference. The hatched area in
b) is the circled value.

of R̄(∆ϕ) from the diagonal. Equation (4.7) only depends on the difference

∆R(∆ϕ) = R̄C,l(∆ϕ)− R̄C,r(∆ϕ) (4.8)

between the average responses of the right and left channels. ∆R is normally distributed
with the standard deviation σ∆ =

√
2σC

2.
As a R̄ above the diagonal results in a positive rate difference and vice versa, it

is possible to formulate the probability of a given IPD to result in a Robs above the
diagonal based on ∆R. This probability is

P (+|∆ϕ) =

∞∫
0

N
(
∆R(∆ϕ), σ∆

2
)

d∆R, (4.9)

where N (µ, σ2) denotes the normal distribution with expectation value µ and variance
σ2. According to Eq. (4.9), the probability P (+|∆ϕ) for observing a positive rate
difference is calculated by integrating the positive portion of the distribution centered
at ∆R.

Two parameters are necessary for solving Eq. (4.9): The standard deviation σ∆ and
the best-IPD ∆ϕbest, which determines the channel-response vector R̄(∆ϕ). Electro-
physiological studies in the brainstem of gerbils found ∆ϕbest between approximately
0.2π and 0.4π (Pecka et al., 2008).

Figure 4.2 gives an overview of the proposed model structure, assuming the realistic
parameters ∆ϕbest = 0.3π and σ∆ = 0.25π. Figure 4.2a) shows, similar to Fig. 4.1, the
basis of the model: The physiologically-motivated average channel responses (dashed)
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and their difference (solid). Figure 4.2b depicts, as an example, the probability
distribution for the IPD circled in Fig. 4.2a). Figure 4.2c shows the probability of
the model to observe a positive rate difference given Eq. (4.9). The probability for
the circled example case is given by the dashed area in Fig. 4.2b. The resulting
IPD-dependent contour is symmetric with respect to (0, 0.5) and intersects the chance
level of 0.5 twice, at ∆ϕ = 0 (center IPD) and, due to periodicity, at ∆ϕ = ±π (lateral
IPD).

In order to be able to evaluate the model predictions in a psychoacoustic experiment,
it is necessary to connect P (+|∆ϕ), the probability that the response to a given ∆ϕ is
attributed to a positive IPD, to a hearing sensation property. In free-field conditions,
positive IPDs mostly result from sound sources located to the right of the median
plane (Blauert, 1999; Völk et al., 2017b), and positive IPDs in headphone presentation
tend to evoke hearing sensations to the right of the perceived median plane (Cherry
and Sayers, 1956; Völk et al., 2017b). On that basis, this chapter hypothesizes that
P (+|∆ϕ) describes the probability that a given IPD results in a hearing sensation
on the right of the perceived median plane. The latter probability will be denoted
P (r|∆ϕ).

4.3 Experiment one

In order to address the validity of the model predictions, a psychoacoustic left-right
task was conducted. This experimental paradigm is a one-interval, two-alternative
forced choice (2-AFC) procedure, where the subjects were presented a stimulus via
headphones and were subsequently asked to answer the question “left or right?” This
procedure may be described in an attempt of addressing whether the hearing sensations
occurred left or right of the perceived median plane. In the left-right task, the subjects
had to base their decision on an ”internal” representation of the median plane (MP),
as no “center marker” was employed, in contrast to similar earlier experiments of this
type (e. g., Phillips and Hall, 2005). The presentation of an acoustic marker, aside
from introducing a reference, also changes the experiment in that the subjects are then
able to perform the relative task of comparing the hearing sensations corresponding
to the test and reference sounds instead of the absolute task of judging a single
hearing sensation. In order to resemble the modeled process, the left-right task used
in this chapter presents an absolute task, as the decision has to be made directly
after the presentation of a single stimulus. This method also reduces the need for
internal mapping that may be present with a marker or in pointer tasks and magnitude
estimation. None of the subjects indicated difficulties with the task and only little
training was necessary to obtain consistent results that remained stable even when
repeating the experiment after several weeks (Völk et al., 2017b).
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4.3 Experiment one

f/Hz 125 250 500 1k 2k 4k

L/dB 72 64.5 59.5 57.8 57.9 55.5

Table 4.1: Presentation levels L for the tone impulses of different frequencies f for experiment
1, determined with the goal of equal loudness based on ISO 226:2006.

4.3.1 Subjects

A total of 13 subjects (5 females, 8 males) with the age ranging from 23 to 52 years
(median 26 years) participated in this experiment. All subjects were without known
hearing difficulties and showed less than 20 dB deviation from the monaural pure-tone
thresholds according to ISO 389-7:2005 at all studied frequencies. None of the listeners
was familiar with the design or aim of the experiment. The subjects participated
voluntarily and were not reimbursed for their participation.

4.3.2 Stimuli

The stimuli were 700 ms pure-tone impulses with 160 ms Gaussian slopes (10% to
90% of the amplitude) at six one-octave spaced frequencies between 125 Hz and 4 kHz.
The tone impulses were presented approximately equally loud at about 58 phon, with
sound-pressure levels based on ISO 226:2006 (cf., Table 4.1). IPDs were introduced by
changing the starting phase of the tone impulse at one ear relative to the other while
leaving the envelope unchanged. This chapter investigated 49 equidistant IPDs from
−π to π.

4.3.3 Apparatus

Stimuli were generated digitally at double-precision word length and a sample rate
of 96 kHz in Matlab R2016b (MathWorks, Natick, Massachusetts, USA). The signals
were transmitted to the external audio interface (Babyface; RME, Haimhausen)
using an ASIO/Matlab-interface software (WindAcoustics UG, Windach, Germany),
enabling the use of the full D/A-converter word length of 24 Bit. The subjects sat
in a sound-insulating booth (IAC 350; IAC Acoustics, Winchester, UK), with the
window covered, in order to reduce uncontrolled visual stimulation. The same pair of
circumaural headphones (HD 650; Sennheiser electronic GmbH, Wedemark) was used
for all experiments (selected based on Völk, 2014). The headphones were electrically
calibrated by means of the nominal headphone sensitivity at 1 kHz, and the left and
right headphones were equalized at the stimulus frequencies in amplitude and phase
(Völk et al., 2017a) using a coupler according to IEC 60318-1:2009. Two buttons
(left/right) of a wireless presenter (R400; Logitech Europe S.A., Lausanne, Switzerland)
were used by the subjects for indicating their responses.
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4 A Two-Channel Model of the Neuronal Processing of IPDs

4.3.4 Procedure

Every condition (combination of IPD and frequency) was presented ten times in
individually-randomized order. The data were collected in two sessions, each comprising
half of the ten presentations. The two sessions were separated by at least one, but
typically several hours, and lasted about 45 min each. A single session was split into
two parts, with a short break (typically 5 min) after half the stimuli, during which
the subject left the booth. Within the experiment, the stimuli were presented one by
one to the subject, which subsequently had to respond to the question “left or right”
by pressing one of the two buttons on the presenter. To prevent temporal masking
effects (Fastl and Zwicker, 2007, pp. 83f), a silent interval of at least 0.3 s, individually
elongated by the response time, was inserted after each stimulus.

4.3.5 Results

As expected from previous studies on IPD perception (e. g., Sayers, 1964; Yost, 1974),
none of the subjects showed systematic results at 2 kHz or 4 kHz, so that results for
these frequencies will not be discussed. Most of the subjects experienced a reduced
ability to give consistent judgments also at 1 kHz. Figure 4.3a) depicts the results of
the two subjects S5 and S8 by means of the relative frequency of the response ’Right’
(black dots). Both subjects showed distinct sensitivity to IPDs between 125 Hz and
500 Hz, while only S8 was able to respond comparably reliable at 1 kHz.

At all frequencies, the results of S5 where approximately symmetric to the origin
(cf., left column of Fig. 4.2), as predicted by the model, while those of S8 showed an
asymmetry. For S8, the transition between left and right (represented by the relative
frequencies 0 and 1, respectively) occurred shifted from π towards IPDs of smaller
magnitude, to the extent that the subject categorized an IPD of ±π consistently as
located to the left. Several subjects showed such asymmetries.

In order to quantify the extent of the asymmetry discussed in the previous paragraph,
the individual data was approximated by a combination of two logistic functions. The
first function described the left-right transition around ∆ϕ = 0 (resulting in a more
or less central hearing sensation), while the second function described the transition
for lateral hearing sensations. The IPDs at which those transitions occur are referred
to as center IPD ∆ϕc and lateral IPD ∆ϕl, respectively. The periodicity of ∆ϕ was
implemented by splitting the second function in two parts, accounting for the ranges
∆ϕ ∈ [−π, 0] and ∆ϕ ∈ [0,+π], respectively. This results in the function

f(∆ϕ, θ) =
1− 2δf

1 + e−kc(∆ϕ−∆ϕc)
+ δf

+
1− 2δf

1 + ekl(∆ϕ−∆ϕl−2π)
− 1− 2δf

1 + e−kl(∆ϕ−∆ϕl)
, (4.10)
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Figure 4.3: Results of experiment one (lateralization, left-right task). a) Individual data
for the subjects S5 and S8 at different frequencies. Shown is the relative frequency of the
response “right” for different IPDs (black dots), as well as fits to Eq. (4.10) (gray contours).
The two circles mark the IPDs where the fitted functions result in chance level, the center
IPD (light gray) and lateral IPD (dark gray). b) Interindividual histograms for the center
IPDs and the lateral IPDs from the fits. The distributions are located at −0.02π ± 0.06π
and −0.97π ± 0.16π, respectively.

where θ is a vector composed of the parameters ∆ϕc, ∆ϕl, the slopes kc and kl of
the two logistic functions, and δf , which adjusts the maximum and minimum of the
logistic functions to 1− δf and 0 + δf , respectively.

Equation (4.10) was fitted to the individual data sets using a log-likelihood approach.
To reduce the effect of outliers, δf was restricted to values between 0 and 0.05 (Wich-
mann and Hill, 2001). ∆ϕc and ∆ϕl were restricted to [−π/2, π/2] and [π/2, 3π/2],
respectively. As mentioned above, some subjects showed unstructured results at 1 kHz,
which resulted in an unreliable fit. Based on a deviance-based goodness of fit test,
three fits at 1 kHz were rejected (D = χ2(44) = 64.14, 66.20, and 72.92; p < 0.05).
The fits to the 1 kHz responses of three further subjects showed overall variations
below 0.5, as for example S5 in Fig. 4.3a, indicating inconsistent reports. All six data
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Figure 4.4: Results of experiment one (lateralization, left-right task). Medians and in-
terquartile ranges of the individual relative frequencies of pushing the right button (10
individual repetitions per condition, 13 subjects). The results from subjects giving inconsist-
ent reports at a specific frequency were not included (cf., inserts).

sets were excluded from further analysis.
Figure 4.3b shows the distributions of the center IPDs and lateral IPDs (N=46),

as calculated from the fitted functions. The data were pooled over the frequencies,
as similar distributions were found for the individual frequencies. While the center
IPDs showed a rather narrow distribution around ∆ϕ = 0 (M=−0.02π, SD=0.06π),
the lateral IPDs, which, for clarity, are shown in the period [0, 2π[, were spread more
widely (M=0.97π, SD=0.16π). Furthermore, center IPDs and lateral IPDs showed no
significant correlation (Pearson’s r(46) = −0.063, p = 0.659). Both findings indicate
that the asymmetry is not caused by bias or a general shift of the perceived median
plane, as these would influence center IPDs and lateral IPDs in a comparable manner.

Sayers (1964) and Yost (1981) both reported that large ITDs could result in multiple
simultaneous hearing sensations, for example, two hearing sensations located at opposite
sides of the perceived median plane. An occurrence of multiple hearing sensations at
IPDs with larger magnitudes would explain the larger variance in the lateral IPD vs.
the center IPD observed in this experiment: The left-right task forced the subjects to
select one of the hearing sensations, which may not occur with a consistent criterion
both, individually and between subjects. In order to investigate the occurrence of
multiple hearing sensations, the follow-up experiment discussed in section 4.4 was
designed.

The medians and interquartile ranges of the individual results of experiment one
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are shown in Fig. 4.4. Due to the interindividual distribution of the asymmetries, the
medians constitute approximately symmetric contours with regard to (0, 0.5), with
little to no asymmetry. As already shown by the histograms in Fig. 4.3b, the center
IPDs of the median results shown in Fig. 4.4 are located close to ∆ϕ = 0, and the
lateral IPDs close to ∆ϕ = ±π. It is interesting to note that there are only minor
structural differences between the results obtained at the different frequencies when
plotted against IPD.

4.4 Experiment two

For investigating the appearance of multiple, spatially separated hearing sensations,
especially in response to large IPDs, a second experiment was conducted. This
experiment employed a free categorization task, where the subjects were presented a
stimulus and were asked to report the number of spatially-separated hearing sensations.
Compared to pointing tasks, this procedure enabled the subject to focus solely on the
number of hearing sensations. In order to address whether the occurrence of multiple
hearing sensations was connected to the extent of lateralization or the introduction
of IPDs, the same experiment was also conducted with a reference set of pure-ILD
stimuli.

4.4.1 Subjects

A total of 10 subjects (6 females, 4 males), with the age ranging from 22 to 32 years
(median 26 years), participated in this experiment. All but one subject also took part
in experiment one, and none of the listeners was familiar with the design or aim of
the experiment. All subjects participated voluntarily and were not reimbursed for
participation.

4.4.2 Stimuli and apparatus

The set of pure-tone stimuli from experiment one was also used in this experiment,
but for reducing the duration of the experiment, the two higher frequencies 2 kHz and
4 kHz were omitted. The number of IPDs was reduced to 25, still in the range from −π
to π. In addition to the IPD stimuli, this experiment also included four ILD stimuli,
with the ILDs ∆L = ±4 dB and ∆L = ±8 dB. These values were chosen so that the
maximum ILD resulted, based on empirical listening and Yost (1981) in a considerably
lateralized hearing sensation. The ILDs were introduced by symmetrically amplifying
and attenuating the right and left ear signals by half the desired ILD. No phase shift
was introduced, and the ILD stimuli were otherwise identical to the IPD stimuli.

The identical equipment and settings as in experiment one were used, with the only
exception that instead of a presenter, the subjects used a wireless numeric keypad
(ID0120; LogiLink, Schalksmühle, Germany) for indicating their response.
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4.4.3 Procedure

The basic experimental conditions were the same as in experiment one, but the data
were collected in four sessions per subject. The sessions were separated by at least
one, but typically several hours. Each session lasted about 8 min. In every session, all
ILDs and IPDs of a single frequency were presented ten times each. The presentation
sequence per session was individually randomized. Within the experiment, the stimuli
were presented to the subject one at a time. The task was then to subsequently
indicate the number of separate locations at which a hearing sensation had occurred.
The subject was allowed to enter positive integers using the keypad. The next signal
was presented after the input was confirmed by pressing the enter key. 0.3 s of silence,
elongated by the individual response time, was inserted after each stimulus.

4.4.4 Results

Throughout the experiment, subjects consistently indicated to perceive hearing sensa-
tions at either one or two locations. Only one subject infrequently indicated three or
four locations. In seven single trials, subjects entered numbers far above the typical
range (mostly multiple keypress candidates as for example 111), these trials were
excluded from further analysis. The results were analyzed by calculating the indi-
vidual average over the denoted number per condition and subsequently calculating
interindividual medians and interquartile ranges thereof. The results are shown in
Fig. 4.5.

The first row of Fig. 4.5 shows the results over IPDs, the second row over ILDs, each
column represents the results for one frequency. The dataset at ∆ϕ = 0 is identical
to that at ∆L = 0. As in experiment one, a comparable trend was observed in the
results at all frequencies. Hearing sensations corresponding to relatively small IPDs,
approximately between ±0.5π, were reported mostly at one position. With increasing
IPD, the subjects increasingly reported a second hearing sensation position. For ILDs
on the contrary, the subjects on average reported consistently one hearing sensation,
independently of ILD or frequency. These results suggest that the second reported
hearing sensation at larger IPDs is related to the IPD, not the extent of lateralization.

4.5 Evaluating the Model

In order to address if and how the results of experiment one can be explained by the
model introduced in section 4.2, the parameters of Eq. (4.9) were adjusted to fit the
experimental data. For taking into account the asymmetries in the average results,
presumably due to multiple hearing sensations, the model was fitted to the medians
of the individual data. This procedure is assumed to result in a model of a typical
subject (with symmetrical responses).
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Figure 4.5: Results of experiment two (number of spatially separated hearing sensations
for different ILDs, IPDs, and frequencies; N=10). Depicted are medians and interquartile
ranges of individual arithmetic means over 10 repetitions per condition.

Equation (4.9) has two parameters, the best-IPD ∆ϕbest and the variance of the
neuronal response σ∆

2. The variance resulting from the fit of the experimental data is
not directly equivalent to the solely physiologically-motivated σ∆

2 in Eq. (4.9). The
latter only takes into account the noise of the neuronal responses, while the fits also
include other noise sources, for example, introduced by the experimental method or
the subjects (such as physiological and mental state, lapses, or response biases). The
variance taking into account the combined noise in the experimental data is referred
to as σfit

2, and σ∆
2 must be considered a lower bound for σfit

2.

The fits of σfit
2 and the frequency-dependent ∆ϕbest were achieved by minimizing

the sum of the log-likelihoods for the median results at all frequencies. The fitting
procedure revealed that the number of parameters could be further reduced by assuming
σfit

2 to be independent of frequency, so that the only remaining frequency-dependent
parameter was ∆ϕbest. The resulting parameters were σfit = 0.28 and the ∆ϕbest

values given in Tab. 4.2. As shown by Fig. 4.6a, this approach resulted in a plausible
agreement between fits and data at all frequencies. It is apparent from Tab. 4.2 that
the best-IPD increases with frequency. The effect of this increase on the model is
visible in Fig. 4.6b, which shows the functions R̄C,l, R̄C,r, and ∆R as they result from
the predictions shown in Fig. 4.6a. Summarizing, for describing the left-right task
results well, the proposed model requires only a single frequency-dependent parameter,
while the only further parameter can be kept independent of frequency.
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Figure 4.6: a) The physiologically-motivated model described by Eq. (4.9) was fitted (black
contour) to the results from the psychoacoustic left-right task experiment (gray circles),
resulting in ∆ϕbest according to Tab. 4.2 and the frequency-independent parameter σfit = 0.28.
b) Channel responses and their differences resulting from fitting the model parameters to
the average data.

f/Hz 125 250 500 1k

∆ϕbest/ rad 0.30π 0.36π 0.45π 0.66π

Table 4.2: Parameters resulting from fitting the model to the results of experiment one. The
standard deviation was fitted frequency-independently as σfit = 0.28.

4.5.1 Robustness of IPD encoding

Up to this point, the neuronal left-right task was discussed based on the average
neuronal responses in the two channels. A reliable neuronal code would have to
convey unambiguous information over the whole naturally-occurring ITD range. In
the presented model, presentation of a specific ∆ϕ results in an observed response
Robs, drawn from a distribution defined by R̄(∆ϕ) according to Eq. (4.6). If only Robs

is known, it is not possible to directly conclude the originating IPD, as the same Robs

could have resulted from different distributions defined by their respective R̄ (∆ϕ). It
is, however, possible, to calculate the probability for each IPD to result in the neuronal
response Robs.

For discussing this process, it is helpful to derive how well the distribution defined
by the mean response R̄(∆ϕ1), resulting from a first IPD ∆ϕ1, can be separated
(distinguished) from the distribution defined by R̄(∆ϕ2), resulting from a second IPD
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Figure 4.7: Separability of different IPD conditions. a) Distance between R̄ for any two
IPDs as calculated from Eq. (4.11). A large distance indicates a high neuronal separability
between two IPDs. b) Distances for a set of selected IPDs, marked by color-coded arrows in
a). By definition, each contour shows zero distance at the corresponding selected IPD, while
exhibiting an additional local minimum at ∆ϕ = −π.

∆ϕ2. The two mean responses R̄(−π) and R̄(+π), as an example, for being physically
identical, define the same distribution and the separability of the two IPDs +π and
−π is zero.

A measure for quantifying separability is d′ (d-prime, Green, 1960). The d-prime
value for two random variables A and B that share the same standard deviation
is calculated as the distance between their mean values, divided by their common
standard deviation. d′ for the two IPDs in the proposed model is directly proportional
to the distance

d(∆ϕ1,∆ϕ2) = ‖R̄(∆ϕ1)− R̄(∆ϕ2)‖ (4.11)

between the corresponding R̄, where ‖•‖ indicates the Euclidean norm. This distance
d instead of d-prime will be used to discuss the separability, as the calculation of
d-prime would require speculating on σC.

Figure 4.7a shows the distance d between the R̄ of any two IPDs. By definition, d
is symmetric around the diagonal, where d = 0. Figure 4.7b shows d for the selected
horizontal cross-sections indicated by arrows and dashed white lines at the top of
Fig. 4.7a. Consequently, Fig. 4.7b indicates the distance between R̄ for selected fixed
IPDs ∆ϕ1 and all other IPDs ∆ϕ, as functions of ∆ϕ. As previously discussed, the
distance for ∆ϕ1 = π (black contour) is zero at ∆ϕ = ±π, while all other ∆ϕ1 show
only one zero. At the same time, all depicted curves also exhibit a local minimum at
∆ϕ = −π, indicating that any response to ∆ϕ1 for the respective contour also has a
high probability to originate from ∆ϕ ≈ −π. There are two obvious strategies how
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4 A Two-Channel Model of the Neuronal Processing of IPDs

this ambiguity could be handled by the auditory system: I) The IPD ∆ϕ leading to
the highest probability (lowest distance) is selected, which eventually would lead to
a single hearing sensation at the most likely position. II) All IPDs ∆ϕ leading to a
probability that fulfills a certain criterion are considered relevant and may eventually
lead to hearing sensations, possibly with different loudness, dependent on the distance.
Both, strategy I) and strategy II) would predict the results of experiment one. The
results of experiment two, on the other hand, is not in agreement with strategy I),
which would predict a single hearing sensation at all times, while strategy II) predicts
additional hearing sensations, appearing especially at larger IPDs.

4.6 Discussion

4.6.1 Psychoacoustic experiments

Experiments similar to the left-right task in experiment one (Sec. 4.3) were previously
published (e. g., Cherry and Sayers, 1956; Kunov and Abel, 1981; Abel and Kunov,
1983). While most of these studies were conducted using ITDs (whole waveform
delays) instead of IPDs, they gave comparable results. In this chapter, some subjects
showed a reduced or absent ability to solve the left-right task at 1 kHz, which is in
agreement with Cherry and Sayers (1956), who also reported that some subjects had
difficulties solving their task for frequencies from 800 Hz upwards. All cases where
the subject was able to solve the left-right task resulted in periodic responses over
IPD, especially with, as required, P (r|+ π) ≈ P (r| − π). Some individual data sets
showed a considerable deviation from the expected symmetry with respect to the origin,
with P (r| ± π) resulting in probabilities far from chance level, which, as discussed
above, could be attributed to the appearance of an additional hearing sensation, as
previously reported (e. g., Yost, 1981; Sayers, 1964), combined with the individual
response strategy. The occurrence of multiple hearing sensations was supported by
the results of the second experiment (Sec. 4.4), in which subjects were asked to report
the number of spatially separated hearing sensations. In this experiment, subjects
increasingly started to report two hearing sensation for increasing IPDs, especially
when |∆ϕ| > π/2. This is consistent with the data of Yost (1981) who, in an absolute
localization task, found that |∆ϕ| > π/2 resulted in a tendency for the subjects to
report two hearing sensations at opposite ends of the employed scale. While the
left-right task does not indicate the hearing sensation position, informal listening and
reports in the present chapter confirmed the discussion of Yost (1981).

4.6.2 Model of neuronal IPD processing

Section 4.2 introduced a simplified but physiologically-motivated description of the
neuronal processing of IPDs. It is assumed in this description, that the auditory
system makes use of the combined response of all neurons per hemisphere so that
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the overall response can be described by the mean channel response formulated in
Eqs. (4.3) and (4.4). This approach contradicts a labeled-line code (such as Jeffress,
1948), which would employ the information conveyed in single-neuron responses. There
are several operations to combine the responses of the two channels, a popular one
being the hemispheric difference, in which the two responses are subtracted (Goodman
et al., 2013; Stecker et al., 2005; Brughera et al., 2013). This chapter does not directly
assume a combining operation by treating both channels independently in the form of
the response vector R̄. By only considering a left-right assignment task, it was possible
to evade an assumption on the combining operation and predict the performance in
the left-right task solely based on the statistics of the responses in the two channels.
The derivation of this prediction also leads to a rate difference ∆R, the same measure
previously used in hemispheric difference decoders. While ∆R in this chapter solves
the left-right task, it is not a suitable measure to directly decode IPDs, for being
ambiguous, with each ∆R encoding two IPDs (see Fig. 4.2a.

The model predictions of the probability to attribute a response Robs(∆ϕ) to a
positive or a negative IPD were evaluated by comparing the psychoacoustic left-right
task results to the model experiment. This step assumes that a subject’s ability to
attribute a given stimulus to the left or right is determined by the statistics of the
neuronal code: If the response to a positive IPD has a high probability to be confused
with responses to a negative IPD, there should also be a high probability of perceptual
confusion. The assumption that perception is determined by the underlying neuronal
code is plausible at least as an upper boundary: Information not encoded in the
neuronal code can also not be used for forming perceptions. Whether all information
included in the neuronal code is also used for forming perceptions can only be assumed.

For all frequencies, a good agreement between model and experimental data could
be reached by adjusting the frequency-dependent parameter ∆ϕbest and the frequency-
independent parameter σ∆

2. ∆ϕbest summarized in Tbl. 4.2 were determined solely
based on the psychoacoustic data. As the model was strongly motivated by electro-
physiological recordings, Fig. 4.8 compares the obtained values (black circles) to the
results of single-neuron recordings in the inferior colliculus (IC) of cats (gray symbols:
Joris et al., 2006; McAlpine et al., 2001). To obtain the points shown for Joris et al.
(2006), data from 176 single neurons were digitized from their Fig. 2. Based on their
characteristic frequency, the results were assigned to five log-spaced bins, and the
mean value of each bin was calculated. A linear approximation following the equation

∆ϕbest(f) = 2π∆t0f + ∆ϕ0 (4.12)

was fitted to each data set where ∆ϕ0 can be interpreted as a constant phase and ∆t0
as a constant time delay. The fits resulted in ∆ϕ0 values of 0.25π for the model and
0.17π for both data sets. The ∆t0 values were 204 µs for the model and 110 µs, 59 µs
for the data from Joris et al. (2006) and McAlpine et al. (2001) respectively. While
some difference, especially in ∆t0 was found between the model and the measurement
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Figure 4.8: Comparison between the best-IPD parameter determined by fitting the model
to the left-right task experiment (black circles) with single neuron recordings digitized from
McAlpine et al. (2001) (gray triangle) and Joris et al. (2006) (gray circle). All three could
be described well by a linear approximation (dashed lines)

data, the model followed the linear relationship of ∆ϕbest that was also found in the
physiological measurements. One reason for this difference could be the dissimilarity in
the naturally-occurring free-field ITD-range due to the difference in head size between
the two species.

In the experiments, IPDs with magnitudes above approximately π/2 increasingly
resulted in multiple hearing sensations. Considering this phenomenon in the light of
the presented model might give insight in the processing of the neuronal code. Similar
to ∆ϕ = 0, ∆ϕ = ±π cannot be unambiguously attributed to left or right of the
perceived median plane, but is at the same time encoded as a large IPD, as depicted
by Fig. 4.1b. Intuitively, one would expect the hearing sensation to jump from one
side to the other when transitioning from large positive IPDs past the lateral IPD
of ±π towards negative IPDs with large magnitudes. Instead, the experimental data
in combination with the result of absolute lateralization (Yost, 1981) suggest that,
with increasing positive IPD, an additional but weaker hearing sensation, located
towards the left, starts to appear. In the left-right task results, this additional hearing
sensation increases in strength, until matching that of the other hearing sensation at
∆ϕ = ±π. The model explains this phenomenon when looking at the separability of
the responses to different IPDs: Caused by the cyclic nature of R̄(∆ϕ), as seen in
Fig. 4.7b, a low separability occurs between IPDs with large magnitudes but different
signs, in that an observed response Robs due to a large positive IPD also has a high
probability to be caused by a negative IPD with a large magnitude. This indicates
that a hearing sensation position might be based on a probabilistic interpretation of
the neuronal code: hearing sensations arise at all positions with high probabilities to
result in the observed response Robs. This opposes a maximum likelihood approach,
which would select the single location with the highest probability to result in the
observed Robs and would thus not result in two hearing sensations.

Unlike other recent models (e. g., Dietz et al., 2009; Takanen et al., 2014; Encke
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and Hemmert, 2018), the presented model does not provide a framework that can be
directly applied to sound signals but rather presents a formalized description of the
neuronal representation of IPDs in response to dichotically-presented tone impulses.
In its current form, all responses are considered time-invariant. As such, the model
does not account for effects due to adaptation or stimulus duration, both of which are
known to influence perception (Tobias, 1959; Phillips and Hall, 2005). The assumption
of time-invariance appears justified for applying the model to the presented data,
which was acquired for stimuli of constant length, in randomized order, and with a
temporal sequence that minimizes the effects of adaptation.

Furthermore, the model only considers pure-tone stimuli and is, in its current form,
not applicable to stimuli with multiple frequency components. This limitation was
introduced deliberately, in order to focus on binaural interaction, with as little as
possible additional effects, such as those of the auditory periphery or cross-frequency
integration. It might be argued that only considering a left-right task to parameterize
the model might be too simplistic but it has to be kept in mind that the model is
completely described using only two parameters of which only one was allowed to
vary with frequency. Using this minimal set of parameters, the model was still able
to describe the outcome of the left-right task while at the same time resulting in the
linear ∆ϕbest-frequency relationship found in single neuron recordings.

4.7 Summary and Conclusions

This chapter introduced a physiologically-motivated two-channel model of IPD pro-
cessing. The model was evaluated using two psychoacoustic experiments: I) A left-right
task that investigated which IPDs were perceived to the left or to the right of an
internal center, referred to as perceived median plane and II) A categorization task
which investigated the number of spatially separated hearing sensations that occurred
for different IPDs. The main findings were:

• Using only two parameters, one frequency-independent, one adjusted frequency-
dependently, the outcome of the left-right task was directly predicted by the
statistics of the modeled neuronal responses.

• Large IPDs may result in multiple, spatially separated hearing sensations. Using
the model, this is explained by the low separability between the response statistics
for different IPDs. The ambiguous encoding of IPDs is resolved by several hearing
sensation at positions corresponding to all IPDs that cause a probability for the
observed response to exceed a certain criterion.

Concluding, the presented model is able to explain several aspects of pure-tone
lateralization, while minimizing the number of parameters and, at the same time,
retaining physiological plausibility.
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CHAPTER5
Predicting IPD Thresholds Using the

Two-Channel Model

5.1 Introduction

Two different psychoacoustical measures are often used to characterize the performance
of subjects in localizing sound sources in space. Absolute measures such as the deviation
between the location indicated by a subject and the physical location of a sound source
(Makous and Middlebrooks, 1990) or the left-right experiment used in the last chapter
are measures for the accuracy of sound localization while, relative measures such as
the minimal audible angle (MAA) or just noticeable differences (JNDs) (Mills, 1958)
can be used to characterize the acuity of sound localization.

Several studies have previously reported interaural time difference (ITD) JNDs for
tones (e.g. Klumpp, 1956; Zwislocki and Feldman, 1956; Brughera et al., 2013). Most
of these studies determined the JNDs around a reference of zero ITD with only a few
studies also determining difference thresholds around other references (e.g. Hershkowitz
and Durlach, 1969; Domnitz and Colburn, 1977) and even these studies only provide
results for 500 Hz and around a few other reference ITDs. Both studies showed a
slow increase in JNDs with increasing reference ITD up to about a quarter stimulus
period after which the JNDs increased steeply. Based on these results, several different
modeling approaches have been used to investigate ITD or interaural phase difference
(IPD) difference thresholds around zero ITD (e.g. Brughera et al., 2013; Encke and
Hemmert, 2018) and also around other references (Colburn, 1973; Stern and Colburn,
1985; Hancock, 2004). In agreement with the psychoacoustic results, the model of
Stern and Colburn (1985) predicts an increase in JNDs with reference ITD for a 500 Hz
tone, but this model is based on an internal representation following the delay-line
hypothesis of Jeffress which is difficult to reconcile with newer physiological evidence
in mammals (Grothe et al., 2010). The model of Hancock (2004) does agree with
mammalian physiology but only showed an increase in JND with reference ITD for
noise and not for tonal stimuli. Therefore, to the best knowledge, none of the currently
available models can account for both the dependence of JNDs on reference ITDs
while still maintaining physiological plausibility.
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In the previous chapter, it was shown that the two-channel model (TC-model) is able
to predict the outcome of an absolute left-right experiment. This chapter investigates
whether the neuronal representation as hypothesized for the TC-model can also be
used to predict JNDs. To that end, a psychoacoustic experiment was conducted in
which JNDs where determined at four frequencies and eleven references. This data is
then compared against the predictions of the TC-model. The same model is further
used to investigate the high-frequency limit of ITD sensitivity that was previously
shown to exist at around 1500 Hz (Brughera et al., 2013; Zwislocki and Feldman, 1956).

5.2 Experiment

Only limited data on the dependence between ITD JNDs and reference ITDs is
currently available for tones so that this experiment is aimed to provide the data
needed to evaluate the TC-model. In agreement with the previous chapter, IPDs
instead of ITDs will be used to describe the interaural time disparities. For tones, the
two can be related using Eq. 4.1.

5.2.1 Subjects

A total of 11 subjects (5 female, 6 male) participated in the experiment. Their age
ranged from 25 years to 38 years (median = 26 years). All subjects were without
known hearing difficulties and showed less than 20 dB deviation from the monaural
pure-tone thresholds according to ISO 389-7:2005 at all studied frequencies. The
subjects participated voluntarily and were not reimbursed for their participation. All
subjects also took part in the experiment described in Sec. 4.3

5.2.2 Stimuli

To enable a comparison between the two studies, the basic stimulus parameters were
identical to the ones used in the previous chapter. The stimuli were 700 ms pure-
tone impulses with 160 ms Gaussian slopes (10% to 90% of the amplitude) at four
one-octave spaced frequencies between 125 Hz and 1 kHz. The tone impulses were
presented approximately equally loud, at about 58 phon, with sound-pressure levels
based on ISO 226:2006 (cf., Table 4.1). IPDs were introduced by changing the starting
phase of the tone impulse at one ear relative to the other.

Each presentation consisted of two stimuli with the IPDs ∆ϕ1 and ∆ϕ2. The two
stimuli were presented consecutively in random order with a 300 ms inter-stimulus gap.
∆ϕ1 and ∆ϕ2 were arranged symmetrically around one of 11 reference IPDs (RIPDs)
∆ϕref which where evenly spaced between ±0.3π. The difference between the two IPDs
DIPD = ∆ϕ1−∆ϕ1 being one of 22 evenly spaced values between ±0.4π which will be
called delta IPDs (DIPDs). The actually presented IPDs can be calculated as
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5.2 Experiment

∆ϕ1 = ∆ϕref +DIPD/2

∆ϕ2 = ∆ϕref −DIPD/2. (5.1)

Section 4.4 reported that IPDs larger than approximately π often resulted in multiple
hearing sensation (HS) which were perceived at different locations, often at both sides
of the medial plane. The method used in this chapter assumes a monotonic dependence
of lateralization on IPD – an increase in IPD is assumed to result in an increase
in perceived lateralization. Monotonicity might not be fulfilled if multiple HSs are
perceived in different locations so that the experiment was designed to avoid IPDs
exceeding π restricting the range of RIPDs to the values stated above.

5.2.3 Apparatus

The same apparatus as in the previous chapter was also used in this chapter, the
description is repeated here: The stimuli were generated digitally at double-precision
word length and a sample rate of 96 kHz in Matlab R2016b (MathWorks, Natick,
Massachusetts, USA). The signals were transmitted to the external audio interface
(Babyface; RME, Haimhausen) using an ASIO/Matlab-interface software (WindAcous-
tics UG, Windach, Germany), enabling the use of the full D/A-converter word length
of 24 Bit. The subjects sat in a sound-insulating booth (IAC 350; IAC Acoustics,
Winchester, UK), with the window covered, in order to reduce uncontrolled visual
stimulation. The same pair of circumaural headphones (HD 650; Sennheiser electronic
GmbH, Wedemark) was used for all experiments (selected based on Völk, 2014). The
headphones were electrically calibrated by means of the nominal headphone sensitivity
at 1 kHz, and the left and right headphones were equalized at the stimulus frequencies
in amplitude and phase (Völk et al., 2017b) within a coupler according to IEC 60318-
1:2009. Two buttons (left/right) of a wireless presenter (R400; Logitech Europe S.A.,
Lausanne, Switzerland) were used by the subjects for indicating their responses.

5.2.4 Procedure

Each of the 242 combinations of RIPD and DIPD at each of the four frequencies
was presented five times. The data was collected in two sessions per frequency each
session lasting about 30 min. A single session was split into two parts with a short
break (typically around 5 min) during which the subject left the booth. The order of
presentations within each session was individually randomized.

Within the experiment a pair of stimuli with different IPDs where presented to the
subjects which subsequently had to indicate, by pressing one of two buttons, whether
they perceived the second stimulus to be located to the left or the right of the first
stimulus.
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Figure 5.1: Interindividual median and interquartile ranges of the JNDs (∆ϕ1 −∆ϕ2) |thr

determined for the different RIPD at the four frequencies.

5.2.5 Results

For each RIPD and subject, psychometric functions where generated by calculating
the mean response over the ten combined presentations of each ± (∆ϕ1 −∆ϕ2). A
Weibull-function was subsequently fitted to each psychometric functions by using
a log-likelihood approach. To reduce the effect of lapses, both the chance and the
saturation level of the Weibull function where allowed to vary within the ranges of 0.45
to 0.55 and 0.95 to 1 respectively. (Wichmann and Hill, 2001). JNDs where defined as
the DIPD at which the Weibull function crossed the 75 % correct line.

Figure 5.1 shows the interindividual results for the JNDs determined at the different
RIPD and frequencies. Positive and negative RIPD of the same absolute value resulted
in approximately the same JNDs. At lower frequencies, the JND increased with RIPD
while this increase is less pronounced at higher frequencies with 500 Hz only showing
little to no change in JND with RIPD.

5.3 Modeling IPD detection thresholds

To determine JND thresholds in the context of the TC-model which was introduced in
the previous chapter, it is of interest how well the distribution of responses due to one
IPD ∆ϕa can be separated from the responses due to a second IPD ∆ϕb. Two IPDs
that result in a very similar response distribution and thus a low separability are also
difficult to distinguish based on their observed responses Robs. In the TC-model, the
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Figure 5.2: a) Contour lines for the distances between any two IPDs in the model paramet-
erized for the 125 Hz condition. The contour lines are shown color coded with a spacing of
0.2. Distance values are denoted at the top border of the plot. The interindividual JNDs
determined at different RIPD for 125 Hz were inserted as circles with lines indicating their
inter-quartile ranges. b) Distances calculated for each JND that was determined in the
experiment. The boxplot visualizes the pooled distribution of distances at a given frequency
with the dashed lines indicating the median of these distances. c) The same data as in
Fig. 5.1 with the dashed gray line indicating the JNDs predicted by the TC-model for dthr

set to the median distance of the respected frequency as indicated in b)
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125 Hz 250 Hz 500 Hz 1 kHz

dthr 0.18 0.14 0.14 0.08

Table 5.1: Median distance values dthr.

separability between any two IPDs is determined by the distance as given by Eq. (4.11).
Only one parameter, ∆ϕbest, is necessary to determine this distance. This frequency
dependent parameter was previously determined in Sec. 4.5 by fitting the model to
the results of a left-right task experiment. The parameters are listed in Table 4.2.

In this chapter, the IPD-JND is defined as the DIPD at which the subject is able to
determine the perceived relative direction of the two stimuli with 75% confidence. If
the perception of stimuli locations is constrained by the statistics of the underlying
neuronal code as assumed in the TC-model, there should be a single distance dthr which
corresponds to the 75% performance at JND. Using Eq. (4.11) with the parameters
summarized in Tbl. 4.2, it is possible to calculate the distances d between any two
IPDs. Figure 5.2a shows the iso-distance lines for the TC-model at 125 Hz. In the same
plot, the JND values that were determined at 125 Hz are shown in the form of circles
with the attached lines indicating the inter-quartile ranges. From this visualization, it
is visible that the JNDs are described well by the d = 0.2 iso-line, which supports the
assumption of a constant dthr at JND. Using Eq. (4.11) it is also possible to calculate
the distance associated with each JND value. Figure 5.2b shows the interindividual
distances calculated for the JNDs at different RIPD and frequencies with the dashed
gray line indicating the interindividual median over all distances at a given frequency.
While there are some systematic deviations from this line, they are small so that the
distances will be approximated by one constant dthr at each frequency. These values
of dthr are summarized in Tbl. 5.1. Having determined dthr, these values can be used
to calculate JNDs at any RIPD. This is done by finding the DIPD that, at a given
RIPD, results in the distance of dthr:

d(∆ϕref, (∆ϕ1 −∆ϕ2) |thr) = dthr (5.2)

Figure 5.2c) shows the JND values calculated from the TC-model compared to the
JND values determined by the experiment.

5.3.1 The High Frequency Limit of IPD perception

Using the TC-model introduced in the previous chapter, only two parameters are
necessary to predict JNDs at any frequency. The TC-model is defined by ∆ϕbest and
JNDs are calculated using dthr. Up until this point, all parameters were based on
experimental results gained from the same set of subjects. In the following section, this
chapter generalizes the TC-model to be applicable at other frequencies. As discussed
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Figure 5.3: a) Linear approximation of ∆ϕbest(f) following Eq. 5.3 with the parameters
tbest = 0.2 ms and ϕbest = π/4. b) JND predictions of the model for dthr = 0.05 (solid black
line) and for dthr = 0.14 (dashed black line) compared to the JNDs of four subjects which
were taken from Brughera et al. (2013)

in Sec. 4.6, the frequency dependency of ∆ϕbest can be approximated by the linear
function

∆ϕbest(f) = 2π∆t0f + ∆ϕ0 (5.3)

where ∆t0 = 0.2 ms and ∆ϕ0 = π/4. Using this approximation of ∆ϕbest(f) enables
the TC-model to predict JNDs at arbitrary frequencies.

Previous studies reported a steep increase in the JND at zero RIPD for frequencies
around 1.5 kHz (Brughera et al., 2013; Zwislocki and Feldman, 1956). To test whether
the high-frequency limit of IPD perception is predicted by the TC-model, JNDs at zero
RIPD where calculated for frequencies from 125 Hz to 1500 Hz. To further simplify
the calculation dthr was assumed to be frequency independent. The gray circles in
Fig. 5.3b) indicate JND values that where digitized from Brughera et al. (2013). As the
absolute values of JNDs reported by Brughera et al. (2013) where considerably lower
than the values determined in this chapter (discussed in Sec. 5.4.2), dthr was reduced
until the magnitude of predicted JNDs matched the reported values at dthr = 0.05.
The black curve in Fig. 5.3b) indicates the resulting prediction of the TC-model. From
this plot, it is visible that the model prediction captures both, the overall trend of the
JNDs at lower frequencies as well as the steep increase in JND around 1.5 kHz.

5.3.2 Improvement of Model Parameter Fittings

One problem with the linear approximation of the parameters as discussed above is
that the interpolation ∆ϕbest(f) crosses the value of 0.5π at a frequency of about
f = 700 Hz. As a result of the symmetric response function, ∆ϕbest = 0.5π results in
symmetric responses around ∆ϕ = π/2 so that R̄(π/2+∆ϕa) = R̄(π/2−∆ϕa) for any
∆ϕa which would also mean that R̄(0) = R̄(π). As a result, an IPD of zero would not
be distinguishable from an IPD of π which is not in agreement with perception. One
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way for the model to remain applicable also in this frequency range is to move the case
of ∆ϕbest = 0.5π out of the physiological relevant frequency range. Figure 4.8 suggests
that the slope ∆t0 of the ∆ϕbest(f) approximation is larger than what is observed
in single neuron recordings. If keeping the condition that connects the width of the
channel response function to the best-IPD (wC = |∆ϕbest|) as introduced in Sec. 4.2,
it is not possible to reduce the slope without compromising the JND predictions. If,
on the other hand, this constrained is removed and only the slope of ∆ϕbest(f) is
changed while keeping the slope of wC(f), it is possible to find parameters with which
the model reliably predicts both the results of the left-right task as well as JNDs while
being applicable within the whole physiologically relevant frequency range. Figure 5.4
compares the predictions for two different parameter approximations: The original
approximation as determined by fitting the results in the previous chapter as well
as a corrected approximation where the slope of ∆ϕbest(f) is set to 60 µs which is
similar to the slope found for the data of McAlpine et al. (2001). Using this corrected
approximation defined by the equations

∆ϕbest(f) = 2π · 60 µs · f + 0.25π

wC(f) = 2π · 200 µs · f + 0.25π, (5.4)

shifts ∆ϕbest(f) = 0.5π to f = 2084 Hz which is located outside of the physiologic-
ally relevant frequency range. As visible from Fig 5.4, this approximation did not
compromise the ability of the model to predict the outcome of the JND or left-right
experiment.

5.4 Discussion

5.4.1 Psychoacoustic experiments

As previously discussed, surprisingly little results on JNDs at different RIPDs can be
found in the literature. Domnitz (1973) and Hershkowitz and Durlach (1969) measured
ITD JNDs for a 500 Hz tone at four or three reference-ITDs respectively. Both studies
only found small to no increases in JNDs for reference-ITDs smaller than values that
would be equivalent to RIPDs of 0.5π. Larger values resulted in a strong increase
in JNDs with Hershkowitz and Durlach (1969) reporting that the subjects reported
confusion and were unable to reliably solve the task at larger reference-ITDs. This
inability to solve the task at large reference-ITDs is in agreement with the appearance
of multiple hearing sensations as reported in Sec. 4.4 as the psychoacoustic task might
become ambiguous in the presence of multiple HSs. The small change in JNDs with
RIPD is agreement with the results presented in this chapter which also showed
little RIPD dependent change in JNDs at 500 Hz. More data is available for ITD
JNDs determined at zero RIPD (e.g. Klumpp, 1956; Zwislocki and Feldman, 1956;
Brughera et al., 2013). All studies agree with a decrease in ITD-JNDs with increasing
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Figure 5.4: Comparison of the prediction for two different parameter approximations. The
corrected approximation follows Eq. 5.4 while the old approximations follows The linear
approximation shown in Fig. 5.3 with wC = |∆ϕbest|.a) Comparison for the results of the
JND experiment. b) Comparison for the results of the left-right experiment presented in
Sec. 4.3

frequency until about 1000 Hz, which is followed by a steep increase in JNDs with a
high-frequency limit located around 1500 Hz. While the psychoacoustic data presented
in this chapter follows the same trend, the absolute JNDs were larger than those
reported in previous studies. It is well documented that the performance in these JND
tasks depends strongly on training and most JND experiments are conducted with
highly trained subjects while our study was deliberately conducted with untrained
subjects so that the results remained comparable to those obtained in the previous
chapter. The impact of training on the modeling results will be discussed in the next
section.

5.4.2 The model of neuronal IPD processing

In Sec. 5.3, the TC-model that was introduced in the previous chapter was used to
predict the determined JNDs values. Requiring only one additional parameter, the
threshold distance dthr, the TC-model was able to predict JNDs at all tested frequencies
while also capturing the frequency dependent increase of JNDs at different RIPDs
(see Fig. 5.2c) ). The determined values of dthr as listed in Tbl. 5.1 changed only little
with frequency with the only considerable deviation at 1 kHz. This is also visible
from the boxplots shown in Fig. 5.2b). One possible explanation for this result in the
context of the TC-model could be a small deviation in the TC-model parameter ∆ϕbest
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leading to a distorted representation of IPDs and as a consequence also to a deviation
in dthr. ∆ϕbest values were determined by fitting the TC-model to the results of a
left-right task (LRT) experiment. As noted in Sec. 4.3, some subjects had problems to
solve the task of this experiment at 1 kHz which could have influenced the determined
∆ϕbest. A second interpretation of the reduced dthr at 1 kHz would be a reduction in
the internal noise at this frequency. The assumption that the separability between two
IPDs can instead be represented by the value d as defined in Eq. (4.11) is based on
the condition of equal internal noise. If this condition is not fulfilled, the separability
can be determined by calculating d′ (Green, 1960). Following signal detection theory,
d′ values can be calculated from the percent correct score of the experiment using
the equation d′ = z(PC)

√
2 where z(PC) is the inverse of the cumulative distribution

function of the standard normal distribution evaluated at the percent correct score
PC. As discussed in Sec. 4.5.1, d′ can also be calculated from the distance d as defined
in Eq. (4.11). Combining the two approaches at threshold (PC = 0.75) results in the
equation

d′thr = z(0.75)
√

2 =
dthr

σjnd

, (5.5)

where σjnd is the standard deviation due to internal noise. This internal noise can be
calculated as

σjnd =
dthr

z(0.75)
√

2
≈ dthr. (5.6)

Where z(0.75)
√

2 ≈ 1 so that dthr can also be interpreted as an approximation of the
internal noise σjnd.

The value of σjnd can not be assumed to equal σC , the noise of the modeled neuronal
representation as defined in Eq. 4.6. Instead σjnd also includes contributions of all
other sources of noise. In the context of the TC-model, σjnd can be decomposed into

σjnd =
√
σ2
C + σ2

res (5.7)

where σres combines contribution of all other noise sources such as those introduced due
to the experimental procedure. As such, if the assumption of constant σC is retained,
the observed decrease in dthr could also be interpreted as a decrease in σres possibly
due to a change in training or concentration of the subjects at this particular frequency.
In the previous chapter the parameter σfit, an approximation of σ∆ =

√
2σ2

C , was
determined with a value of 0.28. Calculating an approximation of σC from this value
results in σC ≈ 0.19 which is close to the dthr values determined in this experiment for
frequencies up to 500 Hz.

As aforementioned, most previous studies reported considerably lower JNDs than
the values found in the presented experiment which was justified with the fact that the
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Figure 5.5: a) IPD-response functions of the TC-model model following the corrected
parameter approximation show a decline of modulation. b) Response-plane trajectories of R̄
for IPDs between −π/2 and π/2 at different frequencies close to the high frequency limit.

subjects used in this study did not receive any training beyond being able to familiarize
them self with the experimental procedure. Interestingly, the data of Brughera et al.
(2013) could be explained by the TC-model solely by reducing dthr. This could again
be explained by assuming constant σc with different values of σres, where σres describes
the influence of training and the experimental condition.

Multiple studies previously reported a steep increase in the JND at frequencies
around 1500 Hz (Zwislocki and Feldman, 1956; Brughera et al., 2013). The TC-model
also predicted the same increase if a linear dependency between ∆ϕbest and frequency
as well as a constant dthr were assumed (see Sec. 5.3.1). The increase in JND can
be explained when looking at the model responses at different frequencies. With
increasing frequency, there is also an increase in the width of the channel-response
R̄C(∆ϕbest) functions defined in Eq. 4.2. At higher frequencies, this increase in width
leads to a reduction in the modulation of R̄C(∆ϕbest) (see Fig. 5.5a). As a result
of this reduction, a larger IPD is necessary to reach dthr. This relation can also be
visualized in the response-plane of the TC-model which is created by plotting the
response of the left channel R̄C,r against the response of the right channel R̄C,r at
different IPDs. Figure 5.5b shows the response plane for the three frequencies (1 kHz,
1.3 kHz and 1.5 kHz). From this plot, it is visible that the trajectory in the response
plane is compressed with increasing frequency so that an increase in JND is necessary
to result in the same distance. In agreement with this discussion, a biophysical model
used by Brughera et al. (2013) to explain the high-frequency limit did also show a
strong loss in modulation with increasing frequency. This is also consistent with
the biophysical model introduced in Chapter 3 which is clearly visible in Fig 5.6a),
where the IPD-response functions of the model are shown for different frequencies.
Fig 5.6b) shows the corresponding response planes. While both biophysical models,
the one introduced in this thesis as well as the model of Brughera et al. (2013), also
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Figure 5.6: a) IPD-response functions of the biophysical model for three frequencies. Similar
to the prediction of the TC-model-model, these IPD response functions also show reduced
modulation at higher frequencies. b) The response plane trajectories for the responses shown
in a).

showed an increasing base firing rate with frequency (minimum response in Fig. 5.5a),
this increase was much smaller than in the TC-model. The stronger increase in the
model is due to the normalization of the TC-model model. In the biophysical models
both excitation as well as inhibition interact to result in different absolute responses
depending on frequency (See Fig. 3.3) while the response of the TC-model model
is normalized. As the TC-model is based on the relative location of different R̄ on
the response plane, its predictions are not influenced by a response offset so that the
increase in the base rate of the TC-model does not influence the results.

5.5 Summary and Conclusion

This chapter applied the TC-model that was introduced in the previous chapter to
predict IPD difference thresholds for tonal stimuli. JNDs where determined at different
RIPDs by conducting a psychoacoustic experiment on ten subjects. The main findings
were:

• Within the tested region of RIPDs, JNDs increase with increasing RIPDs. This
increase was found to be more pronounced at lower frequencies.

• Applying the TC-model with the same parameters determined in the previous
chapter and using the additional parameter dthr, predicted JNDs at all measured
RIPDs and frequencies.

• The TC-model model is also able to predict JND results of previous studies when
dthr is adjustable to account for effects of training. Doing so, the TC-model also
predicts the high-frequency limit of IPD sensitivity.
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CHAPTER6
Considering Wideband Signals

6.1 Introduction

In the two previous chapters, the two-channel model (TC-model) was only applied to
tones and did not address how to handle signals with multiple frequency components.
The following chapter introduces a basic concept of how the TC-model could be applied
to wideband signals.

Most of the commonly used binaural models include model stages that account for
the auditory periphery. An often used approach is to use a filterbank to split the signal
into several frequency channels mimicking the mechanical bandpass filtering of the
basilar membrane followed by additional stages that account for other processing steps
such as the mechano-electrical transduction of the outer hair cells. The binaural stage
of these model is then commonly applied separately to each frequency channel (e.g.
Colburn, 1973; Dietz et al., 2009; Takanen et al., 2014). As an example, most models
based on the delay-line approach represent the results in the form of a cross-correlogram.
The cross-correlogram can be envisioned as a matrix where the rows represent the
frequency channels and the columns the delays along the delay line (Colburn, 1973;
Trahiotis and Stern, 1989; Stern et al., 2006). The values in this matrix represent
the rate of the coincidence detectors at a specific frequency and delay. Interactions
between the frequency channels can then be implemented by applying functions to
this matrix.

In contrast to the biophysical model proposed in Sec. 3, the TC-model does not
account for the processing within the auditory periphery so that it is only possible to
discuss the basic concept of how to apply the model to non-tonal stimuli. To do so,
this chapter will assume that the signal within each frequency channel can be described
by an equivalent unmodulated tone with a frequency that equals the channel’s center
frequency and that the interaural differences can be described by one interaural phase
difference (IPD) for each channel.
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Figure 6.1: a) Distances between the observed responses Robs(fC) and the mean responses at
different IPDs R̄(∆ϕ, fC) calculated for the case Robs(fC) = R̄(0, fC) b) Relative likelihood
functions calculated for the distances shown in a). Values were calculated for channel noises
σC = 0.05 and σC = 0.14.

6.2 Calculating the Relative Likelihoods Functions

Assuming an arbitrary number of frequency channels, each defined by its center
frequency fC, the presentation of a signal would result in one observed neuronal
response Robs(fC) per frequency channel. Using Eq. 4.11 it is possible to calculate the
distances dobs between this observed response and the expected mean response due to
any ∆ϕ at this frequency:

dobs(fC,∆ϕ) = ||R̄(∆ϕ, fC)−Robs(fC)||. (6.1)

Here, R̄(∆ϕ, fC) is the mean response vector at an IPD of ∆ϕ calculated for the
frequency fC. Figure 6.1a shows dobs calculated at four frequencies assuming Robs(fC) =
R̄(0, fC) so that dobs = 0 at an IPD of zero. Due to the normal distribution of responses

around any R̄(∆ϕ, fC) (See Eq. 4.6), the distribution of dobs can be stated as

dobs ∼ N (0, σC
2), (6.2)

where N (0, σC
2) denotes the normal distribution around zero with the standard

deviation of the channel responses σC
2. Combining Eq. 6.1 and Eq. 6.2 enables to

calculate the relative likelihood L to observe Robs(fC) for any given ∆ϕ as

L(Robs(fC)|fC,∆ϕ) = exp

(−dobs(fC,∆ϕ)2

2σC
2

)
. (6.3)
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Eq. 6.3 was normalized to result in a relative likelihood of one if dobs equals to zero so
that all other likelihoods can be interpreted relative to this value. As the name implies,
the relative likelihood functions (L-functions) can be interpreted as a measure for the
likelihood that an observed response Robs encodes a certain IPD ∆ϕ. A maximum
likelihood decoder, as an example, would use the location of the peak of the L-function
along the IPD axis as its prediction.

Figure 6.1b shows the L-functions calculated for the distances shown in Fig.6.1a.
The functions are shown for a channel noise with the standard deviation σC = 0.05
as determined for the data of Brughera et al. (2013) and σC = 0.14 as determined
for the experimental data in Sec. 5.3.1. As expected, all L-functions are maximal at
the IPD resulting in the smallest dobs. It is also visible that an increase in frequency
results in an increase in the width of the L-functions peak which is in agreement with
the increase in IPD just noticeable differences (JNDs) as presented in Sec. 5.3. A
narrow peak indicates that the observed response is encoded with high acuity. This
is also visible when comparing the L-functions for the two different σC. An increase
in channel noise leads to an increase in the width of the function’s peak, and thus a
decreases in acuity (Compare Fig. 5.3). It is, in fact, possible to directly relate the
L-functions shown in Fig.6.1 to the difference threshold. Following Eq. 5.5 and Eq. 5.6,
the difference threshold of 75% correct responses is reached if the distance between
two responses approximately equals the standard deviation of the noise. From Eq. 6.3
follows that this is the case if L = exp(−0.5) = 0.6.

In the case of multiple frequency channels, one L-function is calculated for each
channel. Figure 6.2a shows these functions for the frequencies between 100 Hz and
1 kHz calculated for a signal with a frequency independent IPD. As in the previous
visualization, Robs(fC) = R̄(0, fC) was assumed. The L-functions are shown over an
IPD range from −2.5π to 2.5π to visualize the 2π periodicity of the likelihood functions
which is due to the underlying IPD periodicity. In these plots, the underlying IPDs of
zero and 0.3π are clearly visible as the location of the L-functions peak. The acuity
with which the IPD is encoded can be estimated from the width of this peak.

In a natural setting, a signal with a frequency independent IPD as shown in Fig. 6.2a
is of little relevance. As discussed in Sec. 2.1, a given sound source location results in an
approximately frequency independent ITD which is equivalent to a frequency dependent
IPD. As a consequence, for signals with multiple frequency components it is more useful
to present the relative likelihoods as a function of ITD instead of IPD. Figure 6.2b shows
some examples for signals where an ITD was introduced in all frequency components.
The first column in this figure shows two examples of ITDs within the physiological
range of humans. Due to the 1

f
relationship between ITD and IPD, these functions

are wider at lower frequencies than at higher frequencies. This is in agreement with
the fact that ITD difference thresholds decrease with frequency while IPD difference
thresholds increase with frequency (discussed in Sec. 2.3). Interestingly, the L-functions
shown in Figure 6.2 show a very similar structure as the cross-correlogram that would
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Figure 6.2: a) L-functions calculated for signals signal with the frequency independent IPDs
∆ϕ = 0 and ∆ϕ = 0.3π. In agreement with the increase of JND with increasing frequency,
these functions also show an increase in the width of their peak. b) L-functions calculated
for different ITDs. The functions are also shown over of ITD instead of IPD. The two dashed
gray lines indicate approximations for the borders of the natural ITD range and the dashed
black line indicates the stimulus ITD
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result from applying a delay-line model to a delayed noise signal. This qualitative
agreement between the two representations makes it possible to transfer some ideas
that have been developed to explain cross-frequency processing in delay-line models to
the TC-model. One prominent example is the concept of straightness as introduced by
Trahiotis and Stern (1989). The right column of Fig. 6.2b shows L-functions calculated
for ITDs outside of the physiological range. As a result of the large ITD, the main peak
of the L-function is located outside of the physiological range (indicated by the dashed
gray lines), but some of the secondary peaks, which exist due to the aforementioned
periodicity, are located inside of the physiological range. The difference between the
primary and the secondary peaks being that the arrangement of secondary peaks
over frequency is curved while the location of the primary peaks is straight. The
idea of the straightness concept following Trahiotis and Stern (1989) is to weight the
peaks by their straightness over frequency. This approach would eliminate the curved
secondary response leaving only the primary peak. Trahiotis and Stern (1989) also
showed that the straightness concept is of behavioral relevance. In their study, they
used bandpass filtered noise centered around 500 Hz at an ITD of 1.5 ms (see bottom
right of Fig. 6.2b) and varied the signal bandwidth. At a narrow bandwidth, the
subjects perceived the stimulus to be lateralized to the left while they perceived it to
the right when the bandwidth was increased. These findings were explained by the
fact that no or only little straightness weighting is possible in the case of the narrow
bandwidth noise so that the hearing sensation was based on the secondary peak, which
indicated a negative ITD. With increasing bandwidth, straightness weighting becomes
effective, and the hearing sensation was lateralized based on the primary peak which
indicates a positive ITD. A similar concept could easily be applied to the TC-model
for example by averaging over the L-functions of multiple adjacent frequency channels.

Up to this point, all L-functions were calculated based on the constrained Robs(fC) =
R̄(0, fC) which fixes the observed response to equal the mean response. While this is

helpful for discussing the concept of the L-function, it also removes the influence of
channel noise on the observed responses. Figure 6.3 shows L-functions calculated for
20 log-spaced frequency channels between 100 Hz and 1 kHz, where each Robs(fC) was
randomly drawn from the probability distribution as defined in Eq. 4.6. L-functions
are shown for a stimulus with an ITD of 0.3 ms (R̄(∆ϕ = 2πfC · 0.3 ms, fC)) and for
two different channel noises with the standard deviations σC = 0.05 and σC = 0.14.
As a result of introducing noise to the observed responses, there is also a random
variation in the locations of the L-function peak along the ITD axis, which is visible in
Fig. 6.3a. The location of these peaks along the ITD axis changes randomly following
a normal distribution centered around the stimulus ITD. The standard deviation of
the distribution within each frequency channel is defined by the channel noise. As
a consequence of this distribution of the peaks, the variance in their position is in
agreement with results of both, the left-right experiment of Chapter 4 and the JND
experiment of Chapter 5. The influence of channel noise is visible in Fig. 6.3b, which
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Figure 6.3: a) L-functions calculated for a signal with an ITD of 0.3 ms. The functions
were calculated for Robs(fC) which were randomly drawn from a probability distribution as
defined in Eq. 4.6.The two dashed gray lines indicate approximations for the borders of the
natural ITD range and the dashed black line indicates the 0.3 ms ITD b) The superimposed
L-functions of all frequency shown in b) (gray) as well as the mean over all functions (black).
The dashed line indicates the 0.3 ms ITD.

shows the superimposed L-functions of all frequency channels (gray lines). An increase
in channel noise leads to a larger variation of the positions of the L-function but also
increases the width of the peaks, which accounts for the reduced acuity. The black
curve in Fig. 6.3b shows the mean over the L-functions over all frequency channels,
which is a simple way of applying the straightness concept. The result shows that the
ITD is unambiguously encoded when combining the likelihood across frequency.

6.3 Summary and Conclusion

In the two previous chapters, the TC-model was discussed only in the context of tones
without addressing how to handle stimuli with multiple frequency components. As the
model in its current form lacks a description of the auditory periphery, this chapter is
limited to a basic concept and abstains from comparing the model with psychoacoustic
data. To visualize the acuity of the encoded IPD in a single frequency channel, this
chapter derived the L-function, which can be interpreted as the likelihood that an
observed response was caused by a certain IPD. When using the L-function, it is,
however, important to note that any visualization where the function is shown over
ITD instead of IPD might be misleading. The TC-model only represents ITDs in a
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Figure 6.4: L-function calculated for an ITD of 1.5 ms (same as bottom right of Fig. 6.2b).
The lighter areas visualize the region of ITDs that are not directly encoded in the TC-model
but inferred by making use of the L-functions’ periodicity.

range that is equivalent to ±π with the values at other ITDs being inferred from this
range by making use of the L-functions’ periodicity. This is visualized in Fig. 6.4,
which shows the L-functions for the 1.5 ms ITD case but highlights the ±π region that
is directly represented in the TC-model.

Interestingly, visualizing the L-functions over ITD, results in a representation very
similar to the cross-correlogram which is often used to interpret the outcome of delay-
line models. This agreement opens up the possibility to reuse some of the approaches
that were introduced to explain across-frequency phenomena in delay-line models, such
as the straightness concept. However, if the brain encodes IPDs, these would have to
be remapped in a frequency specific manner.

Concluding, the L-function concept presented in this chapter seems to be a viable
method of representing signals with multiple frequency components in the TC-model.
For a more informative analysis, however, it is necessary to also account for the
influence of phase and amplitude modulations within single frequency channels as
they might arise when using complex signals and a realistic description of the auditory
periphery.
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CHAPTER7
On the Influence of Low Frequency ILDs

The content of this chapter was previously published as a peer-reviewed articlei:

Encke, J., Reimann, D., Hemmert, W., and Völk, F. On the role of interaural level dif-
ferences in low-frequency pure-tone lateralization. Acta Acustica united with Acustica,
104, 2018

The Article is reproduced here without content-related changes. Figures have been
reformatted to fit the format of this document but are otherwise unchanged.

7.1 Introduction

In his influential 1907-paper, Lord Rayleigh introduced the basis for what has come to
be known as the “Duplex Theory” of sound localization (Rayleigh, 1907). Essentially,
the duplex theory states that low-frequency sounds are localized predominantly based
on interaural phase differences (IPDs), as the shadowing effect of the head only results
in small interaural level differences (ILDs) in that frequency range. High-frequency
sounds, on the other hand, are mainly localized using ILDs, as the impact of the
head shadowing effect on ILDs increases with frequency. Additionally, IPDs become
ambiguous at about 700 Hz, where the stimulus wavelength approximately equals the
head circumference. Interestingly, the auditory system is able to detect IPDs past
the ambiguity limit up to about 1300 Hz (Brughera et al., 2013), and the sensitivity
to ILDs at low frequencies was found to be similar to the ILD sensitivity at high
frequencies (Yost and Dye, 1988). These findings suggest an interaction between ILDs
and IPDs in the low-frequency range. The nature of this interaction has been studied
extensively (Sayers, 1964; Domnitz and Colburn, 1977) and, depending on their sign,
ILDs were found to facilitate or counteract the lateralization evoked by IPDs. Due to
the small magnitude of naturally occurring low-frequency ILDs in free-field conditions,
their influence is often neglected. At the same time, additional cues are necessary in

iThe articles copyright lies with the authors and the original article was licensed under a Creative
Commons copyright license (CC BY-4.0).
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7 On the Influence of Low Frequency ILDs

order to resolve IPD ambiguities at sound frequencies above some 700 Hz in free-field
conditions – the ILD being a potential and well-suited candidate. To our knowledge, no
study has yet systematically investigated the resolving impact of ILDs on lateralization,
especially of small ILDs as they naturally occur in free-field conditions or various
natural listening environments. To that end, this study uses a pure-tone lateralization
paradigm to investigate the influence of small ILDs on the lateralization evoked by
IPDs. Aspects of the practical relevance of the results are discussed in the light of
typical free-field ILDs.

7.2 Methods

In order to evaluate a potential interaction between ILDs and IPDs, we conduced a
left-right task (LRT) experiment (Völk et al., 2017b). Tone impulses (700 ms, including
160 ms Gaussian onset and offset slopes) were presented dichotically at one-octave
spaced frequencies between 125 Hz and 1 kHz, with IPDs introduced by shifting the
starting phase of the tone at one ear relative to the other, without changing the stimulus
envelope. The sound-pressure level (SPL) in the diotic condition at 125 Hz was set
to 72 dB SPL, with the headphones calibrated based on their nominal sensitivity at
1 kHz. The levels at all other frequencies were determined based on the equal-loudness
contours according to ISO 226:2006, with the aim of approximately balancing loudness
across the conditions. ILDs were then introduced by amplifying the left and right
signals by half the desired ILD, respectively. 21 evenly spaced IPDs between −π and
π were combined with the ILDs 0 dB, ±0.5 dB, ±1 dB, ±1.5 dB, ±2 dB, ±4 dB and
±8 dB. At frequencies below 1 kHz, each IPD was combined with only the ILDs with
the sign of the IPD, while at 1 kHz, all IPDs were combined with all ILDs. Each
stimulus condition was presented and evaluated ten times in random order. The results
were collected in four sessions per subject (one session per frequency), each lasting on
average 48 minutes, with a short break after half the stimuli.

Ten unpaid, näıve with respect to the experiment, and inexperienced volunteers
(23 years to 41 years, median 27 years, all right handed) with no reported hearing
deficits and absolute thresholds within ±15 dB of ISO 226:2006 took part in the
experiment. The subjects were seated in a sound-insulating booth and were presented
with the stimuli using the same pair of circumaural headphones (HD 650; Sennheiser
electronic GmbH, Wedemark). The specific headphones were selected due to their
low inter-individual and intra-individual variability based on (Völk, 2014). They were
interaurally equalized with respect to amplitude and phase (Völk et al., 2017a), so
that the relevant sound-pressure time functions measured on a coupler according to
IEC 60318-1:2009 were identical within the accuracy of the measurement procedure.
The subjects were asked to sit upright, face a specific wall and indicate, by pushing
one of two buttons, whether the hearing sensation (HS) occurred “left or right”, with
no further explanation (Völk et al., 2017b). Prior to the experiment and after reading
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7.3 Results and Discussion

the written instructions, a basic understanding of the instructions was verified within
a short example experiment. Answers to potential procedural questions were limited
to “yes” or “no”, and the example was repeated until the subject felt comfortable with
the procedure. No further instructions were provided.

7.2.1 Analysis of IPDs and ILDs

For approximating the typical magnitudes of naturally occurring free-field IPDs and
ILDs in human listeners, free-field binaural transfer function pairs of 139 subjects
from the freely available database of the acoustics research institute (ARI) (Majdak
et al., 2010) were analyzed. The transfer functions were estimated by individually
calculating the discrete Fourier transforms (DFTs) of the finite impulse responses
corresponding to the left and right ears that reflect the geometric arrangement of
interest (variation of the sound-incidence azimuth in the horizontal plane at a fixed
source distance of 1.2 m). The IPDs and ILDs for each position were estimated by
subtracting the corresponding phase and level values of specific single DFT bins.
The results are depicted in terms of the arithmetic mean values over the dataset in
Figure 7.1a. Additionally, Figure 7.1b shows the frequency-dependent maximum values
over all included source positions. The dashed lines indicate a possible descriptive
approximations, where IPDs corresponding to 700 µs delay appear to fit the data
frequency-independently well. Consequently, IPDs representing ±700 µs are taken as
an approximation of the range of naturally-occurring free-field IPDs (abbrev.: natural
range). Regarding ILDs, frequencies below 500 Hz result in maximum ILDs around
4.5 dB, while at frequencies of 500 Hz and above, the maximum ILD increases by
about 6 dB/octave. As the results depend on measurement setup and transfer function
definition, the data are considered an approximation of the actual values.

In order to evaluate whether the supportive effect of ILDs is relevant in natural
settings, the average magnitudes of ILDs and IPDs, as they would occur in a typical
free-field setup, were analyzed. The first two columns of Figure 7.1a show interin-
dividually averaged IPDs and ILDs as functions of azimuth for different stimulus
frequencies. For the three lower frequencies, both ILD and IPD show an approximately
sinusoidal dependence on azimuth, with the maximum IPD below π. At 937.5 Hz,
the maximum IPD is about 1.4π, and IPD ambiguity is visible, as multiple azimuths
correspond to the same IPD. The third column of Figure 7.1a shows ILDs plotted
against the corresponding IPDs, for each azimuth. This representation visualizes that
IPD ambiguities can be resolved by ILDs.

7.3 Results and Discussion

Figure 7.2 exemplarily shows the inter-individual medians of the LRT-experiment
results for 500 Hz (left) and 1 kHz (right), represented as the fraction of stimuli rated
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Figure 7.1: a) Average horizontal-plane IPDs (first column) and ILDs (second column),
estimated from 139 binaural impulse response pairs of the ARI database (Majdak et al., 2010).
The third column shows each ILD plotted against the corresponding IPD. b) Maximum
estimated horizontal-plane ILDs (left) and IPDs (right) as functions of frequency. The
dashed contours represent descriptive approximations: line with 6 dB/oct for maximum
high-frequency ILDs (left) and IPDs corresponding to 700 µs delay for maximum IPDs (right).
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Figure 7.2: Results of the LRT experiment for 500 Hz and 1 kHz. Shown are the interin-
dividual medians with 25% and 75% percentiles for all IPDs (abscissae), combined with
selected ILDs (rows). The vertical dashed lines indicate the IPDs equivalent to ±700 µs.
Duplicate IPDs (i. e. |IPD| ≥ π) are shown lighter.

on the right. As found in previous experiments (Völk et al., 2017b), the results for
the two frequencies below 500 Hz only showed minor differences to those obtained at
500 Hz so that the results will be discussed based on the two frequencies shown in
Figure 7.2. The columns in this figure represent the frequencies of the tone impulses,
the rows indicate selected ILD conditions (label on the right). At 0 IPD and 0 ILD
(horizontal centers, first row), the subject group responded at chance level. With
increasing IPD (at 0 ILD; towards the right), the fraction of HS reported on the right
increases, until saturating at 100 %. At large IPDs, the fraction of responses to the
right starts to decrease again, likely due to an ambiguity introduced by IPD wrapping.
In the 500 Hz condition, the ambiguity effect starts to manifest itself in the data
approximately at the limits of the natural range (dashed vertical lines in Figure 7.2).
At 1000 Hz, however, 0.7 ms corresponds to an IPD of approximately 1.4π (abscissa
limits in Figure 7.2), resulting, according to Figure 7.2, more or less in a left/right
reversal of the LRT results. This appears plausible, as an IPD of 1.4π is identical to
−0.6π. Opposed to the 500 Hz conditions, ambiguity effects occur clearly within the
natural range. As the ambiguity effects start to be visible at IPDs at the limits of the
natural range at 500 Hz and lie inside this range at 1 kHz, it appears reasonable to
assume that ambiguity effects within the natural range become perceptually relevant
at frequencies of 500 Hz and above, with an amount that increases with frequency.

Each row in Figure 7.2 shows the results for a selected ILD condition. The sign of
the added ILD is always identical to the sign of the IPD (e.g −2 dB at −π), so that
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Figure 7.3: Results from the experiment of Figure 7.2, depicted as functions of ILD at 0
IPD.

mostly non-conflicting cues were presented. As expected from literature (Domnitz
and Colburn, 1977), the addition of those ILDs mostly supports the lateralization
due to the IPD (rows 2, 3, and 4 of Figure 7.2). At 2 dB, this effect is already clearly
visible, and 8 dB is sufficient to more or less fully resolve the ambiguity effects with the
intermediate ILD values (not shown) following this trend. Analyzing the magnitudes
of the ILDs calculated from the free-field transfer functions at 937.5 Hz, the maximum
ILD was found to be 9.8 dB, which, compared to the experimental data should be
sufficient to fully resolve ambiguities.

The data in Figure 7.2 suggests that small ILDs may already influence the LRT
results, at least at certain azimuths that are not affected by ILD-ambiguity effects
(e.g. IPDs between approx. ±0.5π in Figure 7.2), some combinations of which are
naturally relevant IPD and ILD combinations (compare to data in Figure 7.1a. In the
experimental paradigm used in this study, the influence of ILDs can only be examined
where the LRT results are not saturated due to the IPD alone.

In order to address the effect of small ILDs in more detail, an analysis was conducted
for the zero-IPD condition only. The results for this condition are shown in Figure 7.3.
A two-way analysis of variance (repeated measurement ANOVA) was conducted over
the LRT results with the two factors ILD and frequency. All thirteen ILDs and four
frequencies were included. The effect of frequency yielded [F (3, 27) = 1.07, p = 0.38],
indicating no significant main effect of the factor frequency. This finding is in agreement
with previous studies that report no influence of frequency on the sensitivity to ILDs
(Yost and Dye, 1988). The factor ILD, on the other hand, shows a highly significant
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main effect [F (12, 108) = 83.20, p < 0.0001], with no significant interaction with the
factor frequency [F (36, 324) = 1.11, p = 0.32]. A post-hoc comparison according to
Tukey reveals significant (p < 0.05) differences to occur first between the zero ILD
condition and ILDs of ±1.5 dB, with a non-significant comparable trend for smaller
ILDs.

The main interest of this study was the impact of small ILDs on the lateralization
of tone impulses. The experimental results showed that the exclusive use of IPDs
results in ambiguity effects at frequencies of 500 Hz and 1 kHz. It was also shown
that the addition of small ILDs of some 4 dB largely resolved these ambiguities. This
finding does not directly support the conclusion that, in the low-frequency range,
IPDs dominate ILDs (Wightman and Kistler, 1992). In the 1 kHz, 1.4π condition, the
IPD clearly indicates a sound source in the left hemifield. Once an ILD of realistic
magnitude is added, this “inversion” is resolved, resulting in a HS lateralized to
the right. This suggests that IPD and ILD are not separate “cues”, but that HS
properties arise based on most plausible combinations of the information extracted
from the stimuli by various neuronal processing stages (Völk, 2013), rather then one
arbitrarily-defined (physical) “cue” dominating the other.

7.4 Summary and Conclusions

In agreement with previous localization studies (Hartmann et al., 2016), this study
shows that ILDs can resolve IPD ambiguity in lateralization at all studied frequencies,
which becomes relevant in free-field settings starting at frequencies as low as 500 Hz,
the same frequency as stated in the original publication on the “duplex theory of
localization” by Lord Rayleigh (Rayleigh, 1907). It is important to note that, for
natural stimuli such as speech, ILDs are not the only mechanism that could resolve
ambiguities. In these cases, both low-frequency amplitude modulations and the
evaluation across frequencies may also convey unambiguous information.

Using the same experimental data, this study also addresses whether ILDs affect
the LRT result in parts of the horizontal plane and at frequencies that are not subject
to IPD ambiguity. At zero IPD, ILDs as low as 1.5 dB cause a significant effect in the
data presented here. ILDs of 4 dB were found to be sufficient to reliably attribute the
HS to left or right, even without an IPD. This finding suggests that two sound sources
in opposite hemifields can be attributed correctly based on ILDs only, as long as the
source positions correspond to ILDs larger than ±1.5 dB. ILDs of this magnitude
occur for sources in the horizontal plane at all audible frequencies, even below 500 Hz.
The latter conclusion appears relevant to the interpretation of various IPD-related
localization experiments conducted in the free sound field or with virtual-acoustics
techniques, as the present study indicates that such experiments may include effects
of both IPDs and ILDs, even at low frequencies.
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CHAPTER8
Summary and Discussion

In this thesis, the processing of interaural phase differences (IPDs) in the mammalian
brain was investigated by developing computational models of the underlying neuronal
representation based on the two-channel concept. For these models, the process that
connects a sound event to a perceived hearing sensation was described in three parts:
the encoder that translates a physical signal into the neuronal representation of the
signal, the neuronal representation itself, and the decoder that interprets the neuronal
representation to result in a property of a perceived hearing sensation (see Fig. 1). The
underlying assumption of the proposed models was that a decoder can only leverage
information encoded in the neuronal code. As a consequence, perception should also
be restricted by this information, so that the acuity and accuracy of perception should
mirror the acuity and accuracy with which a physical cue is encoded in the neuronal
representation.

Chapter 3 presented a detailed biophysical model of the medial superior olive (MSO),
which is believed to be the encoder for IPDs in mammals. It encodes temporally
precise phase differences between the left and right ear into a more robust rate code,
which can be evaluated at higher brain stages without loss of precision. The model’s
structure, as well as the biophysical parameters, were based on current physiological
knowledge about the function of the MSO. The model consisted of three parts: the
auditory periphery, a population of globular bushy cells and a population of MSO
neurons with each part implemented twice – once per brain hemisphere. In practice,
the model took digitized ear-signals as the input and resulted in spike trains for each
of the two MSO. These neuronal responses (spike trains) were interpreted following
the two-channel hypothesis, and two different decoders were implemented to interpret
the representation. The hemispheric-difference or linear-decoder was shown to be
able to decode IPDs from the neuronal responses using a simple subtraction (see
Sec. 3.2.2), but the decoder was found to be limited to a narrow range of IPDs
around zero. Additionally, the output of the decoder was also strongly influenced by
variations in the firing rate of the auditory nerve fiber (ANF) as they might arise due
to adaptation or changes in sound level. To circumvent these problems, an artificial
neuronal network (ANN) predictor was introduced (see Sec. 3.2.3). This predictor
received additional inputs directly from the ANF and, as a consequence, was shown
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to be able to predict IPDs also for complex signals by compensating for variations in
the ANN input rate. These results suggest that a neuronal representation following
the two-channel hypothesis can be implemented by the neuronal circuit of the MSO,
and that the two-channel representation is sufficient to convey information about
the interaural time difference (ITD) with high acuity. Due to the highly detailed
nature of biophysical models and the resulting number of parameters, it is, however,
computationally expensive to use this implementation for a more detailed analysis of
the neuronal representation itself.

To that end, Chapter 4 develops a simplified model of the neuronal representation
following the two-channel hypothesis. This two-channel model (TC-model) was con-
strained based on biophysical data resulting in a condensed formulation requiring only
two parameters: the response variance and the IPD of maximum response (best-IPD).
Importantly, the model also considered the response variations due to noise inherent to
any neuronal system. Analyzing the model responses, it was shown that it is possible
to calculate the certainty with which a signal with a given IPD could be categorized as
a positive or negative IPD (see Sec. 4.2). To parameterize this model, a psychoacoustic
left-right experiment was conducted. This experiment measured the ability of the
subjects to state whether they perceived the hearing sensation due to tones with a
specific IPD as lateralized to the right or the left (see Sec. 4.3). By adjusting the two
parameters of the TC-model, it was possible to get a good fit between the experimental
data and the model prediction (see Sec. 4.5). Interestingly, the best-IPD parameters
were found to increase linearly with the frequency which is consistent with the result
of single neuron measurements reported for different mammalian species (McAlpine
et al., 2001; Joris et al., 2006; Pecka et al., 2008).

While the left-right task used in Chapter 4 is a method to determine the IPD
encoding accuracy, Chapter 5 investigated whether it is also possible to predict the
IPD encoding acuity by analyzing the TC-model. It was shown that the IPD encoding
acuity in the model could be determined by applying signal detection theory (see
Sec. 5.3 and 5.4.2). Using the parameterization determined in Chapter 4, only one
additional parameter dthr had to be added to predict just noticeable differences (JNDs)
in IPD. In a psychoacoustic experiment using tones, JNDs in IPD at different reference
phases were determined. By adjusting dthr it was possible to achieve a good agreement
between the experimental results and the JNDs predicted by the model (see Sec. 5.3).
It was also shown, that the TC-model was able to predict JND values determined in
other studies after compensating for the effect of subject training by adjusting dthr

(see Sec. 5.3.1). The good agreement with previous studies was found for a large range
of frequencies and the TC-model also predicted the sharp decrease in acuity reported
for frequencies around 1300 Hz (Brughera et al., 2013).

The results of the Chapters 4 and 5 suggest that it is indeed possible to predict the
acuity and accuracy of IPD perception by analyzing the encoding acuity and accuracy
with the TC-model. The benefit of the proposed model is that it relies only on two
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central assumptions:

I IPDs are encoded by the mean activity of the neurons in each hemisphere and
the IPD dependent average response within one hemisphere can be described by
a function similar to Eq. 4.2.

II The variance in the mean neuronal response can be approximated by Gaussian
noise.

Reducing the model to this small set of assumptions was possible partly by limiting
the signals in this thesis to tones. The benefit of using tones is that it is possible
to ensure that only IPD cues are physically available to the subjects. This exclusive
reliance on IPDs seems essential when relating perception to its neuronal representation.
In previous discussions only a one-to-one correspondence between encoder and decoder
was assumed (see also Fig. 1) but realistically one must assume the existence of
several encoders and decoders as well as the possibility that one decoder interprets
the outputs of multiple encoders. As a consequence, one would need the knowledge
about the neuronal representation of all available physical cues to infer the acuity of
perception from the neuronal representation. If the signal contains multiple frequency
components, it is additionally necessary to consider how the information is combined
across frequencies, and how the different frequency components interact on the level
of the decoder; this would require a much more complex model.

Nevertheless, Chapter 6 introduced a concept of how signals with multiple frequency
components could be represented using the TC-model. Due to the current limitation
of the TC-model to tones, this discussion was based on the assumption that the
signal within each frequency channel can be represented by an equivalent tone at the
channel’s center frequency and with an equivalent IPD neglecting any variations of
amplitude or phase within the frequency channel. The discussion is based on the
relative likelihood function (L-function), which can be interpreted as the likelihood
that an observed neuronal response is due to a specific IPD. Calculating L-functions
separately for each frequency channel resulted in a representation very similar to the
cross-correlogram used in delay-line models. This makes it possible to transfer some
concepts that have been developed to explain cross frequency processing in delay line
models to the TC-model.

As discussed in Chapter 6, the L-function can also be used for maximum likelihood
decoding. A maximum likelihood decoder would use the location of the L-function
peak along the IPD axis as its prediction. Using this decoder in combination with
the TC-model make it possible to simulate the experiments presented in this thesis
directly. Figure 8.1a shows the results gained by simulating the left-right experiment of
Chapter 4 using the TC-model in combination with the maximum likelihood predictor.
The experiment was simulated by generating ten observed responses per IPD from the
distribution following Eq. (4.6). The L-function was then calculated for each of the
observed responses. If the peak of the L-function was located at a negative IPD, the
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Figure 8.1: Comparison between the modeling and experimental results using a maximum
likelihood decoder based on the L-function. a) Comparison between the simulated and
experimental results of the left-right experiment at 500 Hz as presented in Chapter 4. The
model was run with the corrected parameters following Eq. (5.4) and σC = 0.19 as determined
for the experiment. b) Same as a) but for the JND experiment at 500 Hz (see Chapter 5.3).
The model was run with the same parameters as in a) but with σC = 0.14 as determined for
the experiment.

presentation was considered as “perceived to the left” while a peak at a positive IPD
was considered as “perceived to the right”. Figure. 8.1a depicts the mean over the ten
presentations at each IPD.

Figure 8.1b shows the results of a simulated JND task as presented in Chapter 5.
The experiment was simulated by using exactly the same parameters as discussed
in Sec. 5.2. Each presentation of a stimulus was simulated by generating observed
responses for each of the two IPDs following Eq. 5.1. The presentation was noted as
’correct’ if the relative location of the two peaks matched the presented IPDs. This
means that the peak of the L-function calculated for the observed response due to
the smaller IPD was also located at a smaller IPD. JNDs were then determined as
described in Sec. 5.2.5.

The agreement between experimental and simulated results as shown in Fig. 8.1
is not surprising. The model predictions, shown in the respective chapters, can be
interpreted as the optimal, noise-free simulation results. The simulated results would
converge towards the optimal predictions, if the simulation is run for a large number
of presentations. Nevertheless, the simulations nicely visualize how the L-function can
be used for maximum likelihood decoding.

In the left-right experiment of Chapter 4, IPDs with magnitudes above approximately
π/2 increasingly resulted in multiple hearing sensations. This phenomenon was
investigated in the psychoacoustic experiment described in Sec. 4.4, where tonal
stimuli with different IPDs were presented to the subjects which subsequently had
to indicate the perceived number of spatially separated hearing sensations. In this
experiment, subjects reported only one hearing sensation for smaller IPDs between
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Figure 8.2: a) L-functions calculated for three selected IPDs at a frequency of 250 Hz
assuming Robs(∆ϕ) = R̄(∆ϕ). The model was run with the corrected parameters and
σC = 0.19. At larger IPDs the peak of the L-function is split into two which might explain
the appearance of a second hearing sensation. b) Comparison between the simulated and
experimentally determined number of hearing sensations at 250 Hz.

approximately ±0.5π. With increasing IPD, the subjects also increasingly reported a
second hearing sensation. In the discussion of Chapter 4, the occurrence of a second
hearing sensation was used to argue against the use of a maximum likelihood decoder,
which would not predict two hearing sensations but one randomly switching sides.
Instead, it was proposed that a hearing sensation could be perceived in all locations
where IPDs showed a high likelihood of resulting in the observed response.

This concept can also be implemented using the L-function based decoder. Fig-
ure 8.2a shows L-functions calculated for three selected IPDs assuming Robs(∆ϕ) =
R̄(∆ϕ). These figures visualize how the L-function for large IPDs is split into two

peaks. Following the argument presented in Chapter 4, these peaks would result in
two spatially separated hearing sensations. A simple way of evaluating the two peaks
is by calculating the fraction of the L-function within each peak. At π, both peaks are
of equal size resulting in a fraction of 0.5 for both peaks. With decreasing IPD, the
fraction of the peak at positive IPDs increases, whereas the fraction of the peak at
negative IPDs decreases. Assuming that the two hearing sensations are most salient
at π,where most subjects also report both sensations, and that the salience decreases
with a decreasing second peak, it is possible to gain a prediction for the experiment.
Figure 8.2b shows a comparison between the experimental results and the predicted
results. In this plot, the fraction of the primary peak is plotted, so that a fraction of
0.5 is denoted as two hearing sensations while a fraction of 1 is denoted as one hearing
sensation and intermediate values calculated linearly. The good agreement between
predicted and experimental data further supports the L-function approach.

Under normal listening conditions, the appearance of a second hearing sensation and
the resulting ambiguity are only of relevance if the naturally occurring IPDs extend to
values above approximately π/2. In these cases, additional cues would be necessary
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8 Summary and Discussion

to resolve the ambiguity. As noted in Sec. 2.1, IPDs and interaural level differences
(ILDs) do not exist independently from each other under natural listening conditions.
As a consequence, ILDs are a good candidate for resolving ambiguities in the IPD cue.
In Chapter 7, the magnitude of naturally occurring IPDs and ILDs was investigated by
analyzing free-field binaural transfer functions. The impact of ILDs on the perceived
lateralization due to IPDs was evaluated in a left-right experiment similar to the one
discussed in Chapter 4. Using these data, it was shown that IPD ambiguity becomes
relevant in a free-field setting starting at approximately 500 Hz and that the ILDs
available at these frequencies are sufficient to resolve the IPD ambiguity.

Recapitulating this discussion, the proposed TC-model was shown to explain several
aspects of pure-tone lateralization, while minimizing the number of parameters and
retaining physiological plausibility. These findings strongly support the two-channel
hypothesis and its applicability to IPD processing in humans. While it is likely that
this model needs to be extended to account for signals more complex than tones, the
presented concepts should create a good basis for these extensions.
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Glossary and Symbols

Glossary

ANF auditory nerve fiber
ANN artificial neuronal network
ARI acoustics research institute
BLT binary lateralization task
CI cochlear implant
CN cochlear nucleus
DFT discrete Fourier transform
DIPD delta IPD
EPSC excitatory post-synaptic current
EPSP excitatory post-synaptic potential
FFT fast Fourier-transform
GBC globular bushy cell
HRTF head-related transfer function
HS hearing sensation
IC inferior colliculus
ILD interaural level difference
IPD interaural phase difference
IPSC inhibitory post-synaptic current
IPSP inhibitory post-synaptic potential
ITD interaural time difference
JND just noticeable difference

L-function relative likelihood function

LNTB lateral nucleus of the trapezoid
body

LRT left-right task

LSO lateral superior olive

MAA minimal audible angle

MLP multi-layer perceptron

MNTB medial nucleus of the trapezoid
body

MP median plane

MSO medial superior olive

PDF probability density function

PMP perceived median plane

RIPD reference IPD

SBC spherical bushy cell

SNN spiking neural network

SPL sound pressure level

TB trapezoid body

TC-code two-channel code

TC-model two-channel model

Mathematical Symbols

∆ϕbest IPD of maximum response

∆L inter-aural level difference

∆ϕ inter-aural phase difference

DIPD delta IPD

∆t inter-aural time difference

d′ Sensitivity Index (d-prime)

∆R Difference between the responses or
rates in the two hemisphers / channels

dthr distance at threshold

fC Center frequency

m,h,w, z, a Gating variables

gleak, gNa, gKLT, gh Ionic conductivities
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Glossary and Symbols

Ileak, INa, IKLT, Ih Ionic currents
Isyn,e, Isyn,i Synaptic Currents
(∆ϕ1 −∆ϕ2) |thr Delta IPD
PC Probability of a correct response
P (+|∆ϕ) Probability to observe a

positive rate difference given ∆ϕ
P (r|∆ϕ) Probability to observe a hearing

sensation (HS) to the right given ∆ϕ
R̄C Mean response in one channel
R̄C,l Mean response in the left channel
R̄C,r Mean response in the right channel

∆ϕref reference IPD
R̄ Response vector
Robs Observed response vector
σ∆ Response STD of ∆R
σfit Response STD of fit
σC Response STD of channel
σjnd Response STD determined in the jnd

experiment
Vm Transmembrane potential
wC Determines the width of the channel

response
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