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Abstract

Protein glycosylation, namely the covalent attachment of monosaccharide chains called

glycans to the protein backbone, is the most frequent and structurally diverse post-

translational modification. This enzymatic process is not directly encoded in the genome,

but is the result of the activity of hundreds of enzymes that catalyze and regulate the at-

tachment and removal of monosaccharides on proteins in a concerted fashion. Alternative

glycosylation, namely the presence of different glycan structures on a given glycosyla-

tion site on a protein, can have substantial effects on the protein structure and function,

sometimes completely reverting its activity. Moreover, the final glycosylation state of any

protein or cell heavily depends on the physiological and environmental conditions of the

organism, and alterations in glycosylation profiles of many proteins have been described

for a variety of human diseases.

Due to the overall complexity of the glycosylation process and the absence of a genetic

template to manipulate, a proper in vivo investigation of the underlying molecular mecha-

nisms is, to this day, experimentally infeasible. Current technologies allow to establish the

in vitro substrate specificities of all major glycosylation enzymes, although their in vivo

cell-, protein-, or site-specific activities cannot be predicted with this approach. Current

measurement technologies are able to measure glycans in large population cohorts, either

from isolated proteins or from a mixture of proteins, enabling systematic statistical data

analysis, which can help gain insight into the regulation of protein glycosylation in absence

of direct experimental evidence.

In this doctoral thesis, I investigate large-scale glycomics datasets to elucidate the molec-

ular mechanisms of glycan synthesis. My main aims are: (i) inferring new biochemical

reactions taking part in glycan synthesis; (ii) predicting the structural details of glycans

from mass spectrometry measurements; (iii) establishing the best preprocessing strategy

for glycomics data; (iv) optimizing the inference of correlation networks. Each of these

points is addressed in a specific project.
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First, we estimate a partial correlation network, or Gaussian Graphical Model (GGM),

from four large-scale Immunoglobulin G (IgG) glycomics cohorts. Here, only glycans from

a specific glycosylation site, on a specific protein from human plasma are quantified. We

demonstrate that statistically significant partial correlations among glycan pairs mostly

represent known glycosylation synthesis reactions. Our analysis also shows evidence of

previously unknown substrate specificities for two glycosylation enzymes, which would

allow additional steps in the glycan synthesis pathway. We validate our predictions using

data from a GWAS and results from three in vitro experiments. Our findings demonstrate

that GGMs are able to recover single biochemical steps in glycosylation pathways and can

drive the discovery of new synthesis steps.

Second, we consider a mixture glycomics dataset, where glycans from all proteins in hu-

man plasma are quantified via Mass Spectrometry (MS). This platform allows to identify

molecular masses, which could correspond to different glycan structures. We intersect the

data-driven GGM with the prior knowledge available on the synthesis pathway to infer the

most abundant structure contributing to each measured molecular mass. Our predictions

are validated with previously published datasets and demonstrate high accuracy. This

approach could contribute to the characterization of complex glycomics datasets thereby

help in reducing the cost of additional fragmentation experiments for the identification of

glycan structural features.

Third, we exploit the strong relationship between GGMs and glycosylation pathways to

evaluate different preprocessing strategies for glycomics data. We quantify the quality

of any given normalization through the ability of the corresponding data-driven GGM

to reconstruct known biochemical synthesis steps. This is an innovative approach to the

problem of normalization evaluation, as it is based on a biological quality measure rather

than on purely statistical criteria. We consider six glycomics datasets and three different

measurements platforms. We are able to identify an optimal preprocessing strategy that

holds for any of the considered glycomics platform and data type.

Finally, we use the overlap between GGM and glycosylation pathways to address a major

problem in correlation network inference, namely the determination of a biologically mean-

ingful correlation cutoff. That is, we search for the cutoff that produced the network that

best reproduces known molecular interactions. We show that even a coarse, incomplete,

or partly incorrect prior knowledge is suitable for this approach, as long as a sufficient

amount of correct information is included. We first prove the validity of the approach

on glycomics measurements, for which we have a well-characterized, supposedly complete

biochemical synthesis pathway. We then apply the algorithm to urine metabolomics and

TCGA RNA-sequencing data, where our method is able to identify an optimal network
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and to outperform regular statistical cutoffs.

Taken together, we demonstrate that GGMs are able to reconstruct biochemical pathways

of glycan synthesis from large scale glycomics data, as well as to predict true but unknown

enzymatic steps. Moreover, GGMs and prior knowledge can be successfully exploited to

infer glycan structural features from mass spectrometry measurements, and to optimize

glycomics data preprocessing and GGM estimation. In conclusion, this thesis provided

new insights into protein glycosylation, as well as new statistical tools for the analysis and

interpretation of glycomics data.
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Zusammenfassung

Die Proteinglykosylierung - die kovalente Bindung von Monosaccharidketten (Glykane) an

das Proteinrückgrat - ist die häufigste und strukturell facettenreichste post-translationale

Modifikation. Dieser enzymatische Prozess ist nicht direkt im Genom kodiert, sondern ist

das Ergebnis der Aktivitäten von Hunderten von Enzymen, die die Bindung und Spal-

tung der Monosaccharide von Proteinen katalysieren und regulieren. Alternative Glyko-

sylierung, die Anwesenheit von verschiedenen Glykanstrukturen an einer gegebenen Glyko-

sylierungsstelle eines Proteins, kann wesentliche Auswirkungen auf die Proteinstruktur

und -funktion haben; beispielsweise kann die Funktionalität eines Proteins vollkommen

verändert oder sogar umgekehrt werden. Außerdem hängt der Endglykosylierungszus-

tand eines Proteins oder einer Zelle stark von den physiologischen Bedingungen und den

Umweltfaktoren des Organismus ab. Veränderungen der Glykosylierungsprofile vieler Pro-

teine wurden bereits mit einer Vielzahl von menschlichen Erkrankungen assoziiert.

Aufgrund der Komplexität des Glykosylierungsprozesses und der Abwesenheit einer ma-

nipulierbaren genetischen Komponente ist eine tiefgehende In-vivo-Untersuchung der zu-

grundeliegenden molekularen Mechanismen bis heute experimentell nicht durchführbar.

Aktuelle Technologien erlauben es, die In-vitro-Substratspezifitäten aller wichtigen Glyko-

sylierungsenzyme zu bestimmen, allerdings können daraus keine Vorhersagen bezüglich

ihrer In-vivo zell-, protein- oder ortsspezifischen Aktivitäten gemacht werden. Einen

Schritt in Richtung Verständnis der Regulierung und Funktionalität nativer Glykopro-

teine ohne direkte experimentelle Beweise bieten gegenwärtige Messtechnologien, die in

der Lage sind, Glykane in großen Populationskohorten entweder aus isolierten Proteinen

oder aus einer Mischung von Proteinen zu messen, was eine systematische, statistische

Datenanalyse ermöglicht.

In dieser Dissertation untersuche ich large-scale Glycomics-Datensätze, um die moleku-

laren Mechanismen der Glykansynthese zu untersuchen. Meine Hauptziele sind: (i) Er-

schließen neuer biochemischer Reaktionen, die an der Glykansynthese beteiligt sind; (ii)

Vorhersagen der strukturellen Details von Glykanen aus Massenspektrometrie-Messungen;
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(iii) Untersuchen von geeigneten Preprocessing-Strategien für MS-basierte Glycomics-

Daten; (iv) Optimierung der Inferenz von Korrelationsnetzwerken. Jeder dieser Punkte

wird in einem der nachfolgenden Projekte beschrieben.

Um neue biochemische Reaktionen in der Glykansynthese zu identifizieren, generieren wir

ein partielles Korrelationsnetzwerk, oder Gaussian Graphical Model (GGM), basierend

auf vier großen Immunglobulin G (IgG) Glycomics Kohorten. In diesen Kohorten wurden

nur Glykane von einer spezifischen Glykosylierungsstelle an einem spezifischen Protein im

menschlichen Plasma quantifiziert. Wir zeigen, dass statistisch signifikante partielle Ko-

rrelationen zwischen Glykanpaaren meist bekannte Reaktionen aus der Glykansynthese

darstellen. Unsere Analyse gibt auch Hinweise auf bisher unbekannte Substratspezi-

fitäten für zwei Glykosylierungsenzyme, die den bisherigen Glykansyntheseweg um zwei

zusätzliche Schritte erweitern würden. Wir validieren unsere Vorhersagen mit Daten aus

einem GWAS und Ergebnissen von drei In-vitro-Experimenten. Unsere Resultate zeigen,

dass GGMs in der Lage sind, einzelne biochemische Schritte in Glykosylierungswegen zu

rekonstruieren und neue Syntheseschritte zu identifizieren.

Im zweiten Teilprojekt zielen wir darauf ab, Glykan-Strukturen basierend auf MS-Daten

genauer vorherzusagen. Hierzu verwenden wir einen gemischten Glycomics-Datensatz,

in dem Glykane aus allen Proteinen im menschlichen Plasma mittels Massenspektrome-

trie (MS) quantifiziert werden. Diese Plattform ermöglicht es, molekulare Massen zu

identifizieren, die verschiedenen Glykanstrukturen entsprechen könnten. Wir überlap-

pen das datengesteuerte GGM mit dem experimentell-basierten Syntheseweg, um auf die

am häufigsten vorkommende Struktur zu schließen, die zu jeder gemessenen molekularen

Masse beiträgt. Unsere Vorhersagen werden mit zuvor veröffentlichten Datensätzen vali-

diert und zeigen eine hohe Sensitivität. Dieser Ansatz könnte zur Charakterisierung von

komplexen Glycomics-Datensätzen beitragen und somit die Kosten zusätzlicher Fragmen-

tierungsexperimente zur Identifizierung von Strukturmerkmalen von Glykanen erheblich

senken.

Im dritten Teilprojekt nutzen wir die enge Beziehung zwischen statistischen GGMs und ex-

perimentell identifizierten Glykosylierungswegen, um verschiedene Preprocessing-SchritteD

für Glycomics-Daten zu analysieren. Dazu evaluieren wir die Qualität einer gegebenen

Normalisierungsmethode anhand der Fähigkeit des daraus resultierenden datengetriebe-

nen GGMs, bekannte biochemische Syntheseschritte zu rekonstruieren. Dies ist ein inno-

vativer Ansatz für das Problem der Bewertung von Normalisierungsmethoden, da er auf

einem biologischen Qualitätsmaß statt auf rein statistischen Kriterien beruht. Unter Be-

trachtung von sechs Glycomics-Datensätzen und drei verschiedene Messplattformen sind

wir in der Lage, eine optimale Preprocessing-Strategie zu bestimmen, die für jede der
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betrachteten Glycomics-Plattformen und -Datentypen gilt

Schließlich verwenden wir die Überlappung zwischen GGM und Glykosylierungswegen,

um ein Hauptproblem in der Korrelationsnetzwerk-Inferenz anzugehen: die Bestimmung

einer biologisch sinnvollen Korrelationsgrenze. Das heißt, wir suchen nach dem Cutoff,

der das Netzwerk generiert, das die bekannten Glykosylierungswege (biologische Regerenz)

am besten reproduziert. Wir zeigen, dass auch eine grobe, unvollständige oder teilweise

inkorrekte Referenz für diesen Ansatz geeignet ist, solange eine ausreichende Menge an

korrekter Information enthalten ist. Wir beweisen zunächst die Gültigkeit des Ansatzes

für Glycomics-Messungen, für die wir einen gut charakterisierten, vermutlich vollständigen

biochemischen Syntheseweg haben. Wir wenden den Algorithmus dann auf Metabolomics-

Messungen von Urin-Proben und TCGA-RNA-Sequenzierungsdaten an, wobei unsere Meth-

ode in der Lage ist, ein optimales Netzwerk zu identifizieren und übliche statistische Cutoffs

zu übertreffen.

Zusammenfassend demonstrieren wir, dass GGMs in der Lage sind, biochemische Wege

der Glykan-Synthese aus Glycomics-Daten in großem Maßstab zu rekonstruieren, sowie

echte, aber unbekannte enzymatische Schritte vorherzusagen. Darüber hinaus können

GGMs und experimentelles Vorwissen erfolgreich genutzt werden, um Strukturmerkmale

von Glykanen aus Massenspektrometrie-Messungen abzuleiten und das Preprocessing von

Glycomics-MEssungen sowie GGM-Schätzung zu optimieren. Zusammenfassend liefert

diese Arbeit neue Einblicke in die Proteinglykosylierung sowie neue statistische Werkzeuge

für die Analyse und Interpretation von Glycomics-Daten.
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R., Razdorov, G., Trbojević-Akmačić, I., Deelen, J., van Heemst, D., Slagboom,
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Chapter 1

Introduction

In this chapter, we first illustrate the basic concepts of glycobiology, we then describe

the most common technologies for data acquisition and we present the data analysis

approaches exploited in this work. We conclude the chapter introducing the research

questions addressed here, as well as a summary of the content of this thesis.

1.1 Glycobiology

Glycosylation is the enzymatic process that covalently binds sugar chains, called glycans, to

proteins and lipids. Glycosylated molecules are referred to as glycoproteins and glycolipids,

or glycoconjugates in general. This thesis will focus on protein glycosylation exclusively.

It is estimated that at least 50% of all human proteins are glycosylated [1], most of

which are found on the extracellular surface of the plasma cell membrane or as secreted

proteins [2]. The proportion to which glycans contribute to the overall mass of their

glycoconjugate can vary greatly, but in many cases they constitute a substantial portion.

For example, the glycans bound to the major glycoprotein on human erythrocyte cell

membranes have been estimated to contribute to the total molecular weight for more than

50% [3]. Moreover, the surface of all cells is covered with a dense layer of glycans, referred

to as glycocalyx. This glycocalyx is a feature of all cells, with no known exception. It is

worth noting that nature was able to create human cells without a nucleus (for example

corneocytes), but none without a sugar coating. Despite this prominent feature, the role

and effect of glycosylation is often ignored when describing the plasma membrane of cells,

where glycans are depicted as trees sparsely decorating the mostly flat surface of the lipid

bilayer (Figure 1.1A). In reality, the glycocalyx is an extremely dense layer that can be
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over ten times as thick as the plasma membrane itself (Figure 1.1B). This is just one

of the many examples that illustrate the relevance of glycans, which have by now been

recognized to take part in virtually all biological processes [4].

BA

Plasma membrane
(ca. 10 nm)

Glycocalyx
(up to 140 nm)

Figure 1.1: Glycocalyx. A Typical textbook image of the plasma membrane. In this picture,
glycans appear sparsely on the surface of the lipid bilayer. Taken from the Encyclopedia Britannica
[5]. B Electron microscopy image of a human erythrocyte. The cell is densely covered by a thick
layer of glycans, referred to as glycocalyx. The glycocalyx can be up to 140 nm thick, more than
ten times the thickness of the plasma membrane (typically ca. 10 nm), which is barely visible in
the image. Adapted from Voet and Voet, Biochemistry [6].

In this section, we will introduce some general concepts of protein glycosylation, starting

from the description of the basic building blocks of vertebrate glycans and their synthesis,

highlighting then the role of glycans in modulating protein functions and interactions, and

concluding with an overview of the documented involvement of glycans in human diseases.

1.1.1 Glycan building blocks and linkage

There are nine basic monosaccharides found in vertebrate glycoconjugates [7] (Figure 1.2),

although a variety of other monosaccharides exist in other species [8]. The most common

constituents of vertebrate glycans are hexoses, six-carbons sugars, which are found on

glycoconjugates in three forms: Glucose (Glc), Galactose (Gal), and Mannose (Man).

These sugars are all epimers, i.e., they are made by the same atoms and differ only

in the configuration. The same holds for the two hexosamines N-Acetylglucosamine

(GlcNAc) and N-Acetylgalactosamine (GalNAc), where the 2-hydroxyl group of the

corresponding hexose is substituted by an acetylated amino group. Glucuronic acid

(GlcA) is made from oxidation to a carboxyl group of the C6 atom of glucose, while the

removal of the C6 atom of glucose generates the pentose Xylose (Xyl). Fucose (Fuc) is

created by the loss of the 6-hydroxyl group from galactose, but it is found in a different

configuration (L instead of D, as for all other monosaccharides). The last known building

block is a sialic acid called N-Acetylneuraminate (Neu5Ac), a negatively charged nine-



1.1. GLYCOBIOLOGY 3

carbon sugar acid. In this thesis, we will encounter seven of these nine monosaccharides

(gray boxes in Figure 1.2).
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Figure 1.2: Common monosaccharides found in human glycoconjugates. A colored shape is associ-
ated to each monosaccharide, and this symbolic nomenclature, defined according to the Consortium
for Functional Glycomics (CFG) [9], will be used to represent glycan structures throughout this
thesis. Gray boxes represent monosaccharides that will be discussed in this work.

In glycans, monosaccharides are linked together via a glycosidic bond, which is formed

between the C1 carbon, also known as anomeric carbon, of one building block and the

hydroxyl group (OH) of the other. This same chemical bond can also be created between

a glycan and a protein, if the latter is a hydroxyl amino acid, such as serine (Ser) or

threonine (Thr) (see Subsection 1.1.2). The glycosidic linkage can occur in either α or β

stereoisomeric form (Figure 1.3).

Hexoses have four hydroxyl groups attached to the ring carbons, so each one of these
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Figure 1.3: Glycosidic bond.

monosaccharide can have up to four glycosidic linkage sites, each with two linkage stereoiso-

mers. This means that, given two hexoses, they can produce eight different disaccharides.

If we consider three different hexoses, we can have up to 384 combinations1. This is a com-

pletely different level of complexity in comparison to other macromolecules, like DNA and

proteins, where three different nucleotides or amino acids can only produce six different

trimers.

Given that we have nine basic monosaccharides, N-glycans typically include between ten

and twenty monosaccharides each as well as branching points (see Figure 1.6), the space

of possible configurations explodes into an untreatable number. However, only a few

thousands of different glycan structures have so far been discovered in biological systems

[7,10], which strongly indicates that glycan synthesis is highly regulated at a cellular level.

1.1.2 Biosynthesis

Principles of glycan biosynthesis All glycans are the product of chemical reactions

catalyzed by enzymes that add (glycosyltransferases) or remove (glycosidases) single mo-

nosaccharides. Most glycosylation reactions use activated forms of monosaccharides as

donors (typically nucleotide sugars [11]), where different monosaccharides require different

nucleotides (Figure 1.4). Glycosyltransferases have a high specificity for sugar donor and

acceptor and their activity is usually also specific to the glycosylation site and substrate

configuration [12]. Because of this strict specificity, most glycosyltransferases can only add

one type of monosaccharide in a specific linkage configuration [12], and often different en-

zymes are necessary to catalyze the same reaction on different substrates and proteins [13].

To generate all the diverse glycan structures observed in human glycoconjugates, roughly

250 different glycosyltransferases are estimated to be coded in the genome [14]. Glycosi-

1In a sequence of three hexoses we have two glycosidic bonds with two linkage possibilities each. The
hexoses can be chosen from three different molecules (Glucose, Mannose, Galactose) and each pair of
hexoses leads to eight different combinations. Therefore, for any sequence of three hexoses, the total
number of possible combinations becomes 8 · 8 · (3 · 2 · 1) = 384.
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dases have similar specificity properties, with approximately 100 different enzymes coded

in the human genome [15,16].

Uridine Diphosphate (UDP)

Guanine Diphosphate (GDP)

Cysteine Monosphate (CMP)

Nucleotide UDP-Galactose

Nucleotide Sugar Glycosylated AcceptorNucleotide PhosphateSugar Acceptor
Glycosyltranferase

UDPUDP R H O2R

Free Sugar
Glycosidase

Glycosylated Acceptor Sugar Acceptor

RH O2R

Glycan monosaccharides

Figure 1.4: Activated sugars and example reactions of glycosylation. Glycosyltransferases need
nucleotide sugars as donors. Different monosaccharides need different nucleotides: Man and Fuc
need GDP, Neu5Ac needs CMP, and all others need UDP. During a typical glycosylation reaction,
a glycosyltransferases catalyzes the attachment or removal of a monosaccharide to or from an
N-glycan (R).

Glycan synthesis pathways Glycans found on proteins are usually classified in two

major classes, according to how they are linked to the protein backbone:

1. N-linked glycans: are linked to the amide nitrogen atom of the side chain of

an asparagine (Asn) in the motif Asn-X-Ser/Thr, where X must not be proline

(Pro) [17]. In animal cells, the monosaccharide linked to the asparagine residue is

almost exclusively GlcNAc [18].

2. O-linked glycans: are linked to the oxygen atom of a serine (Ser) or threonine

(Thr) residue in a polypeptide. In this case the connecting monosaccharide is often

a GalNAc [19].

Other than their linkage to the protein, N- and O-glycans differ significantly in their

synthesis processes and hence in their structures. While O-linked glycans are synthesized

by adding monosaccharides one at a time directly on the protein, the biosynthetic pathway

of N-linked glycans is more complex, and can be divided into three spatially separated

stages:

1. Formation of a lipid-linked precursor oligosaccharide. A characteristic 14-monosac-

charide-chain (Glc2Man9GlcNAc2) highly conserved across species [20], is built onto

a dolichol molecule in the Endoplasmatic Reticulum (ER) (Figure 1.5A).
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2. En bloc transfer of the oligosaccharide to the protein. The precursor is co-translatio-

nally transferred en bloc to the protein during folding (Figure 1.5B, black oval).

3. Processing of the oligosaccharide on the protein. The protein travels through the

Golgi apparatus, where glycosyltransferases and glycosidases further modify the at-

tached glycan (Figure 1.5B). In the cis-Golgi, the glycan is first trimmed to produce

Man5GlcNAc2. Glycans escaping this trimming will result in high mannose glycan

structures (Figure 1.6, left). Structures processed to Man5GalNAc2 can be further

modified to produce hybrid and truncated structures (Figure 1.6, center). In the me-

dial -Golgi, the GlcNAc of the first antenna is added to Man5GlcNAc2. This allows

further trimming of the mannoses and the initiation of the formation of branching.

In the trans-Golgi, the structures are extended into complex glycans (Figure 1.6,

right).

1.1.3 Regulation

For glycosylation there is no direct genetic template, and it is estimated that roughly

2% of the human genome encodes proteins involved in glycan biosynthesis, degradation

or transport [21]. The final glycosylation state of a protein or cell is therefore determined

by numerous factors, including (i) the availability of nucleotide sugar donors in the ER

and Golgi apparatus, and (ii) the expression, activity and localization of the glycosylation

enzymes, which often compete for the same substrates and can be site-, protein- and

tissue-specific. Moreover, protein glycosylation is a highly dynamic process that quickly

adapts to changes in the surrounding environment [22], and hence the same protein or cell

can express very different glycosylation profiles in response to different stimuli.

For all these reasons, the final glycosylation state of a given site on a given protein syn-

thesized by a particular cell type is not unique, and, to the contrary, all glycosylation sites

exhibit a variety of different attached glycan structures. The extent of this effect, known

as microheterogeneity, varies considerably from one glycosylation site to another and from

glycoprotein to glycoprotein, and in some cases it can have prominent consequences on

the protein function. For example, different glycans attached to the Fc region of Immu-

noglobulin G can have opposite effects, i.e., leading to pro- or anti-inflammatory protein

activity (see Section 1.1.6 for a more detailed description).

Although the general mechanism of protein N-glycosylation is quite well established, the

investigation of the site-, protein-, or cell-specific pathways of glycosylation in vivo is,

to this day, experimentally infeasible due to the enormous complexity of the process. In

vitro experiments have allowed to identify the substrate specificities of all major glycosyl-

transferases [23] and localization experiments on cell lines have helped in determining the

localization of many enzymes within the ER and Golgi-apparatus [24–28].
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A

B

Figure 1.5: N-glycan biosynthesis. Adapted from ”Essentials of Glycobiology” [2]. A Formation
of the lipid-linked oligosaccharide. B En bloc transfer of the oligosaccharide to the protein and
further processing.
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N-Acetylglucoseamine Fucose GalactoseMannose

Monosaccharides

Sialic Acid

High
mannose

Hybrid Truncated Complex

N-glycan structures

Figure 1.6: Common N-glycan structures.

However, given that glycosylation is highly site-, protein- and cell-specific, it is possi-

ble that results obtained on a particular cell type or protein do not generalize well to

other systems. For example, the in vitro specificities of glycosylation enzymes might not

correctly represent the in vivo ability of a given glycosyltransferase to act on specific pro-

teins. A valuable tool to investigate both the synthesis and the function of protein glycans

is the analysis of mice where one or more glycosyltransferase genes have been knocked

out [29, 30]. However, given that glycosylation is highly site-, protein- and cell-specific, it

is possible that results obtained on a particular cell type or protein do not generalize well

to other systems. For example, the in vitro specificities of glycosylation enzymes might

not correctly represent the in vivo ability of a given glycosyltransferase to act on specific

proteins. A valuable tool to investigate both the synthesis and the function of protein

glycans is the analysis of mice where one or more glycosyltransferase genes have been

knocked out [29,30].

However, even in the very early stages of development, severe alterations to the normal

glycosylation of proteins is fatal to the organism [31], and hence a systematic analysis

approach is again infeasible.

In conclusion, although indications of the specificities and activities of enzymes involved in

protein glycosylation can be derived from in vitro assays and model systems, a proper in

vivo validation on the site-, protein- and cell-specific activities of these enzymes is lacking.

To overcome this enpasse, we generated hypotheses on site- and protein-specific synthesis
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pathway from the analysis of population omics data. This type of approach has proven

to be a powerful tool, in particular in the field of metabolomics [32]. In this thesis, we

tackled the problem of determining protein- and site- specific glycosylation pathways by

analyzing four large-scale glycomics cohorts (Research question I, Section 1.4). In the

project described in Chapter 3, we were able to identify known biochemical steps, as well

as validate new ones with in vitro experiments.

1.1.4 Function

Given their ubiquitous and diverse nature, it is not surprising that glycan functions are

diverse, and their effect on the activity of the protein they are bound to can vary from

very subtle to critical for the development, growth and survival of an organism [31]. It is

therefore difficult to establish a general structure-function relationship for glycans, con-

sidering that (a) there is no direct genetic template, (b) each protein can have multiple

glycosylation sites with different structures attached, and (c) the same structure on dif-

ferent proteins can have different functions. The analysis of specific glycan structures on

specific proteins has nevertheless allowed to establish so far five main glycan functions [2],

which can be classified into two broad categories, according to whether they affect the

carrying protein (intrinsic), or mediate the interaction with other molecules (extrinsic):

• Providing structural components

(cell walls, extracellular matrix)

• Modifying protein properties

(stability, solubility)

 Intrinsic Functions

• Directing glycoconjugates trafficking

(intra- and extra-cellular)

• Mediating and modulating signaling

(intra- and extra-cellular)

• Self identification

(immune response)


Extrinsic Functions

N-linked glycosylation can, for example, affect protein conformation, solubility, signaling,

antigenicity and protein-protein interactions. A concrete example of the prominence of

these effects is given in Section 1.1.6.

1.1.5 Relevance in human physiology and disease

In a report aimed at articulating ”a unified vision for the field on glycoscience and gly-

comics”, the National Academy of Science (USA) recognized in 2012 that glycans are

directly involved in the pathophysiology of every major disease [4]. Although for
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most diseases the molecular mechanisms are still unknown, changes in the glycosylation

profiles of proteins and cells have been observed in a fast increasing number of pathologies,

including but not limited to: Congenital Disorders of Glycosylation (CDG) [33], cardiovas-

cular diseases [34,35], Alzheimer’s disease [36–38], rheumatoid arthritis [39], inflammatory

bowel disease [40], lupus [41], diabetes [42–45], HIV [46–48], and cancer [49–54]. Moreover,

since glycosylation adapts quickly to reflect changes in the cell state, glycans and glycan-

binding-proteins (GBPs) are being investigated more frequently as possible drug targets,

in particular for HIV [55–58] and different types of cancer [59, 60]. Despite this, many

branches of the biological sciences still ignore the presence of glycans when describing

disease etiologies and mechanisms.

Since providing an exhaustive list of glycans’ involvement in the development and progres-

sion of diseases is out of the scope of this thesis, we describe in this section two concrete

examples that illustrate how understanding the molecular mechanism of glycosylation and

protein-glycan interactions can improve medical procedures and treatment of diseases.

ABO blood groups. Probably one of the most important discoveries in the history

of glycobiology, the identification of different groups in human blood dates back to the

beginning of the 20th century [61] and allowed the development of the blood transfusion,

a widely used procedure in modern medicine. The ABO blood groups are controlled by

a single gene (the ABO gene), which can have three alleles (i, IA and IB), each of which

codes for a different glycosyltranferase. These glycosyltransferases act on the terminal

part of the glycans attached to several proteins and lipids on the surface of erythrocytes.

As a consequence, depending on which allele is expressed, these cells will exhibit different

glycan structures on their glycocalyx.

R

H antigen

R

B antigen

R

A antigen

Allele i IA IB

Figure 1.7: ABO blood groups antigens on N-glycans (R).
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Allele i produces antigens H, which translates to blood group O, allele IA gives rise to

antigen and blood type A, while allele IB creates antigen and blood type B (Figure 1.7).

Allele i is recessive, and alleles IA and IB are codominant. Therefore, blood group O needs

two i alleles, while the presence of both A and B alleles will give rise to both antigens (blood

type AB). Note that antigens A and B only differ for a single chemical functional group

(the N-Acetylgalactosamine in antigen A has an N-acetyle group whereas the galactose in

antigen B has a hydroxyl group, see Figure 1.2) and yet the human immune system is so

sensitive to structural differences that individuals with blood type A cannot receive blood

from a type B donor and viceversa.

Influenza virus. Influenza is still a major global health problem: more than 70 million

deaths have been attributed to the influenza pandemic of 1918 [63]. One of the most

alarming properties of influenza is that it has the ability to be transmitted across species,

for example from swine to human, as it recently happened with the strain H1N1 [64].

Figure 1.8: Life cycle of the influenza virus. Hemagglutinins on the membrane of the virus bind
to the sialic acids on the glycocalyx of the host cell and triggers endocytosis. After viral DNA
replication, new viral particles bud off the host cell and neuraminidases cleave the sialic acids bound
to hemagglutinins, enabling the new viruses to infect other cells. Taken from Stiver (2003) [62].
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Influenza is a membrane enclosed virus and has two important proteins protruding from

its membrane: Hemagglutinin (H), a receptor for sialic acid, and Neuraminidase (N), an

enzyme that catalyzes the cleavage of sialic acid off of the host cell2. In the very first

stages of the infection, as the virus approaches the host cell, hemagglutinin attaches to

sialic acids on the host cell surface, enabling the docking of the viral particle. This triggers

the endocytosis of the viral particle into the host cell. The virus then is able to release

its native nucleic acid into the cell and initiate its replication. Eventually, new particles

will bud off the cell surface of the host cell. However, hemagglutinin keeps the newly

replicated virions bound to the surface of the host cell. In order for the virions to release

themselves and start their own cycle of replication, neuraminidases cleave off the sialic

acids bound to the hemagglutinins on the virus particles (Figure 1.8). Thanks to the in

detail understanding of the molecular mechanism of influenza infection, pharmaceutical

industries are now able to develop antiflu drugs based on synthetic compounds that mimic

the structure of sialic acid and inhibit the action of the neuraminidase, therefore limiting

the spread of the infection.

1.1.6 Immunoglobulin G

Due to their accessibility, secreted glycoproteins are the best characterized glycoconju-

gates. Among them, Immunoglobulin G (IgG) is the most abundant and investigated. It

is a large molecule of about 150 kDa made of four peptide chains: two identical heavy

chains and two identical light chains. The two heavy chains are linked to each other and

to a light chain each by disulfide bonds. The resulting tetramer has two identical halves,

which together form the typical antibody Y-shape (Figure 1.9). IgG has four isoforms or

subclasses. Like all antibodies, it is produced and secreted by B lymphocytes and has two

functional domains, namely an antigen-binding fragment (Fab), which is responsible for

recognizing antigens on foreign pathogens and infected cells, and a crystallizable fragment

(Fc), which triggers the immune response by interacting with various Fc receptors [65].

Although secreted proteins can have up to 20 different glycosylation sites, IgG only has

four main ones: one on each side of the antigen-binding portion of the protein, which

are however only actively glycosylated in 15 to 20% of the cases [66–68], and one highly

conserved glycosylation site in each heavy chain of the Fc region (at Asn 297) (Figure

1.9) [69]. While the functional effects behind Fab glycosylation are still unclear [70], Fc

glycosylation is well-characterized. From a structural point of view, glycans are mostly of

the complex type and biantennary, with the possible addition of a core fucose, namely a

fucose attached to the first GlcNAc of the glycan structure, or a bisecting GlcNAc, i.e.,

2The flu strains owe their name to the particular forms of hemagglutinin and neuraminidase that are found
on the membrane of the virus, for example H1N1.
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a GlcNAc attached to the first mannose of the glycan structure, to which no additional

monosaccharides can be added (Figure 1.9). Contrary to most other glycoproteins, where

the glycans are protruding from the surface, Fc glycans on IgG are buried within the

hydrophobic core of the protein (Figure 1.9) and therefore even small changes in the sugar

composition can have prominent effects on the structure of the protein and its affinity to

Fc receptors [71, 72]. For example, the presence of a core fucose modifies the structure of

the Fc region and dramatically reduces its ability to bind to the receptor FcγRIIIa [73],

which triggers the initiation of Antibody-Dependent Cellular Cytotoxicity (ADCC), which,

in turn, results in the destruction of target cells. IgG with glycans lacking a core-fucose

are more than 100 times more effective in initiating ADCC through binding to FcγRIIIa

[74, 75]. However, on average, roughly 95% of IgG Fc glycans are core-fucosylated [76],

and this indicates that the mechanism is tightly regulated. Moreover, the addition of

sialic acid is able to actively revert IgG’s functionality from pro-inflammatory to anti-

inflammatory [77]. Therefore, alternative glycosylation of IgG is exploited to effectively

modulate the protein structure and enable vastly different functionalities.

Furthermore, alterations in the expected glycosylation profiles of IgG have been linked to

numerous diseases, including autoimmune diseases [41,78], rheumatoid arthritis [39], dia-

betes [79], and some types of cancer [50,53,80,81], although the involvement of the protein

in the etiology of the diseases remains unclear. Elucidating the molecular mechanisms of

IgG synthesis and regulation would help in better understanding how IgG contributes to

the antibody-based immune response.

F
a
b

F
c

C
L

C
1H

VL

C
2H

C
3H

VH

A
sn
2
9
7

Heavy chain
Light chain

core
fucose

bisecting
GlcNAc

glycan

Figure 1.9: Structure of Immunoglobulin G. Adapted from Jefferis (2009) [82].
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1.2 Glycomics measurement

Given the ubiquitous nature of protein glycosylation and its potentially critical effect on

the structure and function of glycoproteins, increasing attention is being directed towards

the systematic analysis of glycan structures. Since the functional effect on any given

glycan is site- and protein-specific, the ultimate goal of glycomics, namely the study of all

glycoforms on a protein, a cell or tissue, would require to somehow retain the information

about the site and protein of origin of each glycan structure measured. Unfortunately,

this is to this day still technologically infeasible. Two alternative approaches have been

developed to investigate glycan structures on proteins on a large-scale basis: (i) For isolated

proteins, glycan structures can be analyzed in a site-specific fashion by measuring a small

peptide around the glycosylation site (glycoproteomics), which in most cases differs from

site to site, together with each glycan; (ii) N-glycans can be released from all glycosylation

sites on either a purified protein or a mixture of proteins. In this thesis we will analyze

data from both scenarios.

1.2.1 Measurement platforms

The three approaches to quantify protein glycosylation considered in this thesis (UPLC,

LC-ESI-MS and MALDI-TOF-MS) are based on two widely used measurement technolo-

gies: Liquid Chromatography (LC) [83] and Mass Spectrometry (MS) [84], which will be

briefly discussed below.

Liquid Chromatography. LC sample analysis relies on pumps to pass a pressurized

liquid solvent containing the sample through a column filled with a solid adsorbent material

[83]. Due to their different chemical and physical properties, each component in the sample

will interact slightly differently with the adsorbent material, and each component will

therefore have different flow rates, or elution times, leading to their separation as they

flow through a column.

LC performed at high pressure (about 1200 atmospheres) is referred to as Ultra High-

Performance Liquid Chromatography (UPLC) [85].

Mass Spectrometry. The MS analysis of the compounds in a sample consists of three

main steps: first, the molecules are ionized; the resulting ions are then separated by

a magnetic field according to their charge and mass; finally, a detector captures and

quantifies the separated ions, producing a spectrum of intensities as a function of the mass-

to-charge ratio (m/z) [84]. Molecular ionization can be achieved with the Matrix Assisted
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Laser Desorption Ionization (MALDI) [86] technology, which involves crystallizing the

sample on a metal target and ionizing it with a laser pulse.

MALDI sources are usually attached to Time of Flight (TOF) [87] analyzers, which am-

plify the ions flight path through an electric field. This combination allows the identifica-

tion of ions with a very high molecular mass (> 200 kDa). Alternatively, the ElectroSpray

Ionization (ESI) [88] technique provides another efficient protocol to create molecular

ions for mass spectrometry. Here, ionization is achieved by applying a high voltage to

a liquid solution containing the sample. ESI-MS can be coupled to LC allowing on-line

LC-ESI-MS analysis [89], where the liquid eluting from the LC column is directly fed into

the ESI machine.

The costs associated to the platforms considered in this thesis are summarized in Table 1.1.

Table 1.1: Cost of glycomics measurements. Adapted from Huffman et al. (2014) [90].

UPLC LC-ESI-MS MALDI-TOF-MS

Throughput
per
instrument

Medium low
(∼50 samples/day)

Medium high
(∼100 samples/day)

Very high
(<1 minute/sample)

Cost of
equipment

40k - 70k Euros 200k - 500k Euros 100k - 500k Euros

Cost per
sample

Rather high due to
low throughput and
cost of consumables

very high due to
expensive equipment
and relatively low
throughput

low due to high
throughput

1.2.2 Measured glycans

The three platforms described above have been used to measure the three types of gly-

comics data investigated in this thesis and presented in Chapters 3, 4, 5, and 6. Each of

these techniques has advantages and disadvantages, which are outlined below.

• UPLC: Total IgG glycans N-glycans from both the Fc and Fab region of IgG are

measured.

Advantages: Provides branch-specific information, i.e., it is able to differentiate

between the 3-arm and 6-arm (corresponding to the left and right antenna in our

graphical representation, respectively) IgG glycan isomers , due to a slightly higher

retention time of the 3-arm isomer [90].
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Disadvantages: 1. The information about the glycosylation site is lost [90]. 2.

Peaks in the chromatogram do not necessarily correspond to single glycan structures,

as different structures with similar elution times contribute to the same peak [76].

• LC-ESI-MS: IgG Fc glycopeptides IgG Fc glycans are measured together with

a short peptide in proximity of the glycosylation site.

Advantages: 1. Provides structural information on the measured glycoforms [90].

2. Since the peptide sequence in proximity of the Fc glycosylation site is different for

different IgG subclasses, it provides site- and subclass-specific glycosylation profiles

[91].

Disadvantages: Difficult to perform for more than one glycosylation site.

• MALDI-TOF-MS: Total plasma N-glycome (TPNG) N-glycans from all pro-

teins in plasma are measured together.

Advantages: Provides the masses of a large number of glycans.

Disadvantages: 1. The information about the protein of origin and the correspond-

ing glycosylation site is lost. 2. Given the presence of epimers in the glycan building

blocks, different structures could contribute to the same mass, or composition, and

therefore structural information is not directly available from the spectra [92].

Glycosylation measurements from isolated proteins are valuable to understand protein-

specific synthesis and regulation. However, a more general footprint of the overall gly-

cosylation profile of an organism, like the total plasma N-glycome, can provide relevant

information about alterations in the system’s homeostasis, for example in the presence of

diseases [93] and inflammation [94]. Given the strong regulation of glycan biosynthesis,

the structural details of the plasma N-glycome are essential in order to be able to track

alterations in the observed glycosylation profiles back to molecular mechanisms. In this

thesis, we contribute to a better understanding of the structural properties of the TPNG

by providing a data-driven approach to infer structural details from glycan compositions

quantified by MALDI-TOF-MS (Research question II, Section 1.4).

1.3 Glycomics analysis

The main objective of glycomics analysis is to infer biologically relevant information on

the structure, synthesis, regulation and function of glycans from the analysis of large-

scale datasets. Typically, measured and derived glycan traits are correlated to disease

phenotypes to identify accessible biomarkers [95–100] and predictors of disease outcomes

[101–103]. However, the observed associated traits are often difficult to link to specific
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glycan structures and functions without available prior information [104]. In this thesis,

we study the available glycomics data focusing on proper data processing prior to analysis,

as well as glycan pathway and structure inference, which provide valuable information for

a better characterization of glycobiology processes.

1.3.1 Data preprocessing

Regardless of the chosen measurement platform, glycan data are susceptible to a system-

atic bias, due to technical variations from non-biological sources, originating for example

from small alterations in experimental conditions, sample preparation, temperature, or in-

strument calibration. The exact sources of the bias are usually unknown, but its presence

can significantly affect the outcome of any downstream analysis. If the goal is to extract

biologically meaningful information from the data, the effect of technical variations should,

as far as possible, be corrected for prior to analysis. The process that aims at reducing

such bias from the measured data is referred to as normalization.

One of the most common procedures to normalize glycan data is total area normaliza-

tion [105], which requires dividing the intensity of each glycan by the sum of the intensities

of all measured glycans. Once normalized, each entry represents what percentage of the

total sample intensity the corresponding glycan contributes. This allows for an intuitive

interpretation when, for example, comparing the glycome composition of different indi-

viduals [106], but imposes strong constraints on the correlation structure of the data (see

Subsection 2.1.3 for details). Briefly, the constant sum constraint (each sample’s percent-

age always sums up to 100%), introduces spurious values in the correlation structure, and,

therefore, any observed correlation among variable pairs might be a result of the constraint

introduced by the normalization method and not represent true biological associations.

Even regarding this approach as unsuitable for correlation analysis, however, the problem

of which normalization method to select from the several available remains. Different

approaches have different underlying assumptions and can introduce additional bias in

the data if not suitably chosen. Systematic comparisons of commonly implemented nor-

malization approaches have been performed in recent years for many omics data, e.g.

transcriptomics [107], proteomics [108], as well as metabolomics [109–111], but an analo-

gous study for glycomics data is still missing. In this thesis, we addressed the question of

glycan normalization using an innovative approach, based on a biological measure of qual-

ity. The idea is to rank each method according to its ability to preserve known biochemical

interactions among the variables (Research question III, Section 1.4).
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1.3.2 Network inference

The inference of biological information from large-scale omics measurements has been one

of the big challenges in systems biology [112]. The observed inter-individual variation in the

concentration of various types of molecules, from proteins [113] to metabolites [114, 115],

has been exploited to gain insights into their synthesis [32, 116] and regulation [117], as

well as into their involvement in clinical phenotypes [118,119].

One popular approach to extract biologically relevant interactions from measured molec-

ular concentrations is based on the computation and subsequent analysis of the data cor-

relation structure. Correlations quantify dependencies among pairs of variables and can

be computed with a number of different approaches. The most common method, known

as Pearson correlation [120], estimates the linear associations between variables. When

dealing with high-dimensional omics data, however, this usually leads to a highly corre-

lated system, where single coefficients are difficult to associate to specific biochemical or

regulatory effects. An efficient alternative to this approach is partial correlation [121],

which accounts for the presence of confounding variables and covariates when estimating

pairwise correlations, therefore filtering out indirect interactions, i.e., those that are ex-

clusively due to the mediating effect of one or more other variables (see Subsection 2.3.1

for details).

Since population-based measurements of biological molecules are intrinsically noisy, cal-

culated pairwise correlation coefficients must undergo a selection criterion to determine

which coefficients are to be considered significantly different from zero. This criterion is

usually based on statistical principles, which allow to control in different ways the amount

of expected false positives, i.e., correlation coefficients that arise because of noise and

that do not represent true molecular associations. The two most commonly used statisti-

cal approaches to perform this selection, known as multiple testing correction, control

either (i) the proportion of false positives, or False Discovery Rate (FDR) [122], or

(ii) the probability of including at least one false positive, or Family-wise Error Rate

(FWER) [123]. Only those coefficients that pass the chosen selection criterion will be

defined as significant, i.e., representing true molecular interactions, and will be considered

for further analysis.

The data correlation structure can be easily visualized as a network, where nodes rep-

resent measured variables and edges the significant correlation coefficients among them.

In the case of partial correlation, these networks are also known as Gaussian Graphi-

cal Models (GGMs) and have been shown to represent known molecular interactions in

different data types [115,124–129]. In metabolomics data, for example, GGMs selectively

identify single biochemical steps in metabolic synthesis pathways [32]. In this thesis, we
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will apply GGMs to glycomics data for the first time and show that significant partial cor-

relation coefficients represent known biochemical steps in the glycan synthesis pathways

(Chapter 3 and 4).

Since, however, different statistical selection criteria have different basic assumptions, the

resulting networks could be vastly different. All of these network are statistically correct,

but do not necessarily convey the most accurate representation of the underlying biologi-

cal mechanisms. Therefore, instead of selecting correlation coefficients based on statistical

significance, we define a biological selection criterion, which maximizes the biological infor-

mation contained in the resulting correlation network (Research question IV, Section

1.4).

1.4 Research questions

Due to the lack of a direct genetic template and the huge number of molecules involved

in its regulation, glycosylation is an extremely complex biological process. Found on

the great majority of membrane and secreted proteins, glycans can dramatically alter

protein structure and interactions. Different measurement technologies now enable the

quantification of glycan moieties from thousands of samples, and the analysis of large-

scale glycomics datasets can help elucidating several aspects of protein glycosylation that

could be difficult to test at a cellular level. Pairwise correlations are a powerful tool

for the identification of single enzymatic steps in synthesis pathways, but a selection

criterion needs to be defined to determine which correlation coefficients are to be considered

significant.

However, several aspects need to be better characterized to fully unlock the potential of

the currently available glycomics data technology. Within the scope of this doctoral thesis,

four main research questions were addressed, which contribute to a better understanding

of the biology of protein glycosylation, as well as to the development of a more efficient

inference pipeline for glycomics analysis.

I Can we infer new site- and protein-specific enzymatic reactions of glycan synthesis

from large population glycomics data?

II Which glycan structures contributing to the Total Plasma N-glycome can be inferred

from mass spectrometry measurements?

III What is the most appropriate normalization approach for glycan data?
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IV Is there a more biologically meaningful cutoff for correlation networks than the ones

obtained with statistical methods?

1.5 Thesis overview

In the following, a short outline of the content of this thesis is provided. A graphic

representation is provided in Figure 1.10.

The Materials and Methods chapter (Chapter 2) first presents the glycomics datasets

analyzed in this work, highlighting their features and differences. In the second part,

we describe the main statistical approaches used in this thesis. We introduce the basis

for network inference, starting with correlation measures and multiple testing correction,

and the approaches to analyze the resulting networks, like pathway analysis and network

modularity. In the last section, we illustrate how a Genome-Wide Association Study is

performed.

All the projects presented in this thesis are the result of collaborations with several labora-

tories and institutions. While data were provided by these partners, I contributed the vast

majority of the statistical and computational analysis, as well as the result interpretation

and discussion. I appeared or will appear as sole first author of all publications deriving

from each of the project listed below.

The four main results chapters are divided according to their goal: while the first two

(Chapters 3 and 4) demonstrate how the data correlation structure can be used to infer

biological information from glycomics population studies, the last two (Chapters 5 and 6)

use this correlation to investigate technical aspects of the network inference pipeline.

In Chapter 3, we infer new enzymatic reactions in the IgG glycosylation pathway. We

analyze the correlation structure of four large-scale glycomics cohorts and show that par-

tial correlation networks selectively identify known biochemical steps in the IgG glycan

synthesis pathway. We then use this relationship to generate hypotheses on possible new

enzymatic steps based on the data-driven network and validate the findings in a set of

experiments, using in vitro enzymatic assays and enzyme localization in cell lines.

Chapter 4 deals with the analysis of glycomics measurements from all plasma proteins in

a large human population, wherein the information about the glycosylation site or protein

of origin is unknown. Moreover, only the masses of the glycan moieties are available, which

means that multiple structures can contribute to the same mass, or composition. Here,

we use the data correlation structure and prior knowledge on the synthesis pathway of
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glycans to infer the single glycan structures within the compositions that contribute most

to the observed correlation structure. Our predictions are then validated with external

data and demonstrate that, in most cases, our data-driven approach is reliable.
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Figure 1.10: Overview of the content of this thesis. We first describe how we can compute data-
driven correlation networks and compare them to the available prior knowledge by defining a
quantitative measure of overlap. This measure is then exploited to either extract information
about the underlying biological system, such as new biochemical reactions (Chapter 3) and
structural details (Chapter 4), or to improve the pipeline of network inference, in particular
the data preprocessing (Chapter 5) and significance selection (Chapter 6).
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In Chapter 5 we show how the relationship between the data-driven correlation network

and prior knowledge can be exploited to evaluate different preprocessing approaches. We

apply different normalization strategies to several glycomics data and evaluated which

normalization method leads to the best biological network. Specifically, from each nor-

malized dataset we infer a correlation network and subsequently quantify the performance

of each normalization approach according to how well the inferred correlation network is

able to recover single enzymatic steps in the known glycosylation pathway. In this way, we

have a biological measure of quality for the assessment of performance. By applying the

approach to six different glycomics datasets across three platforms, we are able to identify

the methodology that performs best overall.

Chapter 6 tackles the question of determining a correlation cutoff for network reconstruc-

tion. This step is usually determined statistically via multiple testing correction methods.

However, statistical significance is not necessarily related to the underlying biology. We

therefore investigate whether we can define a significance cutoff based on the ability of the

network to correctly represent biological interactions. We once again use the comparison

between data-driven correlation networks and prior knowledge to optimize the network

correlation cutoff and show that the approach works even when the prior knowledge is

incomplete or partially incorrect. To demonstrate the generalizability of these findings,

we replicate the results in one metabolomics and one transcriptomics dataset.

In the final Chapter 7, the main results of this thesis are summarized and the scientific

contributions of this work in the context of the field are discussed, together with possible

extensions and potential future projects.
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Materials and Methods

In this chapter, we introduce the data and statistical analysis tools that will appear

throughout the thesis. In the first section, we present the different glycomics dataset ana-

lyzed in this thesis (IgG Fc glycopeptides, IgG total N-glycans, total plasma N-glycome),

together with their corresponding measurement platform (LC-ESI-MS, UPLC, MALDI-

TOF-MS). The data preprocessing protocol is then described, as well as the biochemical

pathway of glycan synthesis specific to each dataset. The second section focuses on the

core statistical and computational methods developed and used in the rest of this thesis.

2.1 Glycomics data

The glycomics data analyzed in this work were measured by our collaboration partners

at Genos Laboratories and Leiden University Medical Center. In the following, we briefly

describe the considered cohorts and measurement platforms, and provide an overview of

the features of each considered dataset, as well as of the differences between the measured

glycan profiles.

2.1.1 Cohorts and platforms

IgG Fc glycopeptides - LC-ESI-MS

Cohort Human plasma samples were obtained from four Croatian population studies:

two from the Croatian islands of Vis and Korčula, which are part of the “10001 Dalma-

tians” biobank [130], and a second cohort from Korčula and one cohort from Split collected

separately a few years later (see Table 2.1 for details). Overall, the four cohorts includes

2,548 samples from individuals ranging from 18 to 91 years of age.
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Data acquisition To generate the glycomics data from these cohorts, IgG was isolated

[90, 131] and glycopeptides from the Fc region of the protein were extracted through

trypsin digestion and measured by Liquid Chromatography - Electrospray Ionization -

Mass Spectrometry (LC-ESI-MS). Because different IgG subclasses have different amino

acid sequences around the glycosylation site [82,91], this platform allows the measurement

of subclass- specific IgG Fc glycosylation. However, in Caucasian populations, the tryptic

Fc glycopeptides of IgG2 and IgG3 have identical peptide moieties [82,91] and hence were

not distinguishable with this profiling method. The final spectra included 50 different

structures: 20 for IgG1, 20 for IgG2 and IgG3, and 10 for IgG4 (due to low abundance).

Total IgG N-glycans - UPLC

Cohort Human plasma samples were obtained from the Study of Colorectal Cancer in

Scotland (SOCCS), a case–control study designed to identify genetic and environmental

factors associated with nonhereditary colorectal cancer risk and survival outcomes [132].

For the purpose of this analysis, only the 535 control samples were considered (see Table

2.1 for details).

Data acquisition To generate the glycomics data from this cohort, N-glycans were first

released from isolated IgG with peptide N-glycosidase F (PNGase F), an enzyme able to

specifically cleave N-linked glycans from their corresponding Asn [133]. This procedure

allows for the release of all IgG glycans, both from the Fc and the Fab region of the protein

(see Figure 1.9). Released glycans were labelled with 2-aminobenzamide (2-AB) and

separated by hydrophilic interaction via Ultra high-Performance Liquid Chromatography

(UPLC) . Although this methodology loses the information about the glycosylation site,

UPLC-based glycomics has the advantage of providing branch-specific information, i.e.,

it is able to differentiate between the 3-arm and 6-arm glycan isomers due to a slightly

higher retention time of the 3-arm isomer. The final chromatogram included 24 distinct

peaks.

Total plasma N-glycome - MALDI-TOF-MS

Cohort Human plasma samples were obtained from the Leiden Longevity Study (LLS),

a family-based study comprising the offspring (and their partners) of 421 nonagenarians

sibling pairs of Dutch descent [134]. A total of 2,056 individuals were included in the

analyses described in this thesis (see Table 2.1 for details).

Data acquisition To generate the glycomics data from this cohort, N-glycans were

released from all N-glycosylation sites on all plasma proteins (total plasma N-glycome,

TPNG) with PNGase F and analyzed via Matrix Assisted Laser Desorption/Ionization

- Time Of Flight - Mass Spectrometry (MALDI-TOF-MS) [134]. This technique al-



2.1. GLYCOMICS DATA 25

T
a
b

le
2
.1

:
G

ly
co

m
ic

s
d

a
ta

.

K
or

cu
la

2
01

3
K

or
cu

la
20

10
S

p
li

t
V

is
C

R
C

co
n
tr

ol
s

L
L

S

M
ea

su
re

m
en

t
P

la
tf

or
m

L
C

-E
S

I-
M

S
L

C
-E

S
I-

M
S

L
C

-E
S

I-
M

S
L

C
-E

S
I-

M
S

U
P

L
C

M
A

L
D

I-
T

O
F

-M
S

T
y
p

e
of

g
ly

ca
n

s
m

ea
su

re
d

Ig
G

F
c

Ig
G

F
c

Ig
G

F
c

Ig
G

F
c

Ig
G

to
ta

l
to

ta
l

p
la

sm
a

N
u

m
b

er
of

p
ea

k
s

50
50

50
50

24
61

Ig
G

1
Ig

G
2

Ig
G

4
20

20
10

20
20

10
20

20
10

20
20

10
-

-
N

u
m

b
er

o
f

sa
m

p
le

s
66

9
50

4
98

0
39

5
53

5
2,

05
6

M
al

es
F

em
a
le

s
27

1
39

8
15

6
34

8
38

6
59

4
15

2
24

3
28

8
24

7
93

6
11

20
A

g
e

ra
n

ge
(m

ea
n
±

st
an

d
a
rd

d
ev

ia
ti

on
)

18
-8

8
(5

3,
16

)
18

-9
0

(5
6,

14
)

18
-8

5
(5

0,
14

)
18

-9
1

(5
5,

15
)

21
-7

4
(5

2,
6)

30
-8

0
(5

9,
7)



26 CHAPTER 2. MATERIALS AND METHODS

lows to precisely identify the mass of the molecules, which can be decomposed into the

corresponding composition, i.e., the number and type of monosaccharides (Hexose, N-

Acetylhexosamine, Fucose, etc.) necessary to produce the observed mass. The final spec-

tra in this cohort included 61 distinct masses, or compositions.

2.1.2 Preprocessing

First, related individuals (first cousins or closer) and samples with missing values were

excluded from all analyses. Glycan abundances were then normalized with the Probabilis-

tic Quotient method [135] and subsequently log-transformed to improve normality [136];

finally, the normalized values were corrected for age and gender prior to statistical anal-

ysis. In the case of glycoproteomics measurements, where IgG glycans were separated by

subclass, the normalization procedure was applied on each subclass separately.

The idea behind the Probabilistic Quotient normalization procedure, which was first in-

troduced for metabolomics data, is to eliminate the effect of different dilution factors from

the data. Let us consider a data matrix X = xij , where i = 1, 2, ...n indicates the samples

and j = 1, 2, ...k the measured glycans. Therefore, xi· represents sample i and x·j indicates

glycan j across all samples. Probabilistic Quotient normalization works as follows:

1. Define a reference sample as a vector r whose entries are the median values of each

glycan measurement across all samples:

r = {med(x·1),med(x·2), ...med(x·k)} = {r1, r2, ...rk} (2.1)

2. For a given sample xi·, compute a quotient vector by dividing each entry of sample

xi· by the corresponding entry of the reference sample r:

qi = {
xi1
r1
,
xi2
r2
, ...

xik
rk
} = {qi1, qi2, ...qik} (2.2)

3. Compute the dilution factor Qi of sample xi· as the median of elements in qi:

Qi = med(qi) (2.3)

4. Divide each entry of sample xi· by the dilution factor Qi to obtain the normalized

data sample x̂i·:

x̂i· = {
xi1
Qi
,
xi2
Qi
, ...

xik
Qi
} = {x̂i1, x̂i2, ...x̂ik} (2.4)

5. Repeat 2-4 for all samples.
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2.1.3 Normalizations

In Chapter 5, where the goal was to test the effect of different normalization strategies on

the investigation outcome, we considered several additional alternatives to Probabilistic

Quotient for glycomics data normalization and compared their performance. The consid-

ered normalizations are described in this subsection.

Raw: These are the unprocessed spectra.

Median Centering: To each glycan value in the dataset, the value of that glycan median

is subtracted. The underlying assumption is that the samples have a constant offset.

Total Area: The intensity of each glycan is normalized to the total area of the spectrum.

This preserves the relative intensities of each peak within the sample, at the cost of

losing one degree of freedom due to the constant sum constrain and giving rise to a so-

called “compositional dataset” [137]. The underlying assumption here is that only relative

intensities are biologically relevant. This type of normalization introduces spurious effects

in the data covariance matrix, altering therefore the original structure. Let us consider

three variables 1, 2, and 3 whose values x1, x2, and x3 have been normalized with this

technique. This means
3∑

i=1

xi = κ, with κ constant. (2.5)

Therefore, if we compute the covariance of x1 with the sum of all variables, we have

cov(x1, x1 + x2 + x3) = cov(x1, κ) = 0. (2.6)

But we also have that

cov(x1, x1 + x2 + x3) = cov(x1, x1) + cov(x1, x2) + cov(x1, x3). (2.7)

Therefore

cov(x1, x2) + cov(x1, x3) = −var(x1) ≤ 0. (2.8)

This means that, just because of the constraint introduced by the normalization, each row

of the variance-covariance matrix will have at least one negative value.

Quantile: This method forces the distributions of the glycans (columns) to be the same

with respect to the quantiles. It requires replacing each point of a glycan with the mean

of the corresponding quantile [138].

Rank: Values are replaced with the corresponding ranks [139].
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Log-transformation: Biological data have been observed to often follow a log-normal

distribution [136]. Since our correlation estimator assumes normally distributed data, for

each considered normalization (except the median centering) we included in the compari-

son both the non-transformed, as well as the log-transformed data.

Subclass-specific normalization: LC-ESI-MS IgG glycans are measured at the gly-

copeptides level, which means that the information about the IgG isoform is preserved

(see Subsection 2.1.1). For this platform, each normalization method was applied both on

the 50 glycan measurements together, as well as separately per each IgG subclass.

2.1.4 Glycosylation synthesis pathways

As we mentioned in Chapter 1, the in vivo investigation of protein-specific glycosylation

pathways is experimentally infeasible. Nevertheless, details on enzyme specificities are

available from in vitro experiments, and this information was used as prior knowledge

to build the glycosylation pathways used in this thesis.

IgG Secreted IgG has been observed to mainly carry 26 different glycoforms, which are

synthesized by the stepwise modifications of one monosaccharide at a time. The glycosyla-

tion reactions supported by in vitro experimental evidence are shown in Figure 2.1 (colored

arrows). This model will be extended in Chapter 3 (Figure 2.1, black arrows) and this will

then be used in all subsequent chapters. Depending on the chosen measurement platform,

not all IgG glycoforms might be identified, and hence the pathway needs to be adjusted

to match the measured data. Figure 2.2 shows the IgG glycosylation pathways for LC-

ESI-MS and UPLC data, where only the synthesis reactions among glycoforms measured

in the corresponding platform are included. Note that in glycoproteomics data we have

different IgG subclasses: in absence of experimental evidence that suggested otherwise, in

this thesis the pathways for all subclasses were assumed to be the same. For IgG4 only

the fucosylated glycan structures were measured and hence only the corresponding part

of the pathway was considered.

Total Plasma N-Glycome For the total plasma N-glycome, the construction of one

unified glycosylation pathway is a substantially more complex task, as these data include

glycans from different proteins and glycosylation sites. We first created a theoretical path-

way describing the synthesis of all known human protein glycan structures, including all

single monosaccharide modifications against which there was no experimental evidence

(Figure 2.3). Since in our TPNG data only compositions were measured, we reduced the

theoretical pathway to only include structures whose composition appeared in the dataset

(Figure 2.4). We then merged all the nodes representing structures with the same com-
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position. The resulting compositional pathway included the same composition covered by

the considered dataset (see Chapter 4).

G0-N G0F-N

G0 G0F

G1 G2 G0N G1F G2F

G1S1 G2S1 G1N G2N G1FS1 G2FS1

G2S2 G1NS1 G2NS1

G2NS2

G2FS2 G1FN G2FN

G1FNS1 G2FNS1

G2FNS2

G0FN

Sialic acid
Galactose
Mannose
N-Acetylglucosamine
Fucose

ST6Gal1
B4GalT1
MGAT3 (MGAT2)
FUT8

Monosaccharides

Enzymes

Figure 2.1: IgG glycan structures and their glycosylation pathway. IgG glycans are biantennary
complex type structures. The glycan nomenclature describes how many galactoses (G0/G1/G2)
are present, whether there is a core fucose (F) or a bisecting N-Acetylglucosamine (N), and whether
the structure includes one or two sialic acids (S1/S2). Nodes represent glycan structures and arrows
represent single enzymatic reactions in the synthesis process. Colored arrows represent enzymatic
reactions reported in literature, while black arrows indicate new enzymatic steps inferred from the
data and validated experimentally in this thesis (see Chapter 3). MGAT3 is responsible for the
addition of the bisecting GlcNAc, while MGAT2 adds the GlcNAc to the second antenna of the
glycan.
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Figure 2.2: IgG glycosylation pathway adapted to the available data.
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Figure 2.3: TPNG theoretical pathway.
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Figure 2.4: TPNG theoretical pathway adapted to the available data.
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2.2 Other omics data

2.2.1 Genomics data

The German study population KORA (”Kooperative Gesundheitsforschung in der Region

Augsburg” [140]) included 3,788 DNA samples with 18,185,628 SNPs (after QC) and 1,887

glycomics samples. 1,823 samples included both gene information and glycan concentra-

tions. Samples with mismatched phenotypic and genetic genders were excluded, leaving

1,641 samples and 18,185,628 SNPs to be analyzed (Table 2.2).

Table 2.2: Glycomics data in the KORA F4 cohort.

KORA F4

Measurement Platform LC-ESI-MS
Type of glycans measured IgG Fc

Number of peaks 50
IgG1 IgG2 IgG4 20 20 10
Number of samples 1,641

Males Females 793 848
Age range

(mean ± standard deviation)
32-81

(61, 9)

2.2.2 Metabolomics data

Metabolomics samples were taken from an antipsychotics study conducted in Qatar (Al-

Amin et al., manuscript in preparation). Urine samples were analyzed using ultra-high-

performance liquid-phase chromatography and gas-chromatography separation, coupled

with tandem mass spectrometry by Metabolon, Inc. Data were runday-median scaled,

normalized using probabilistic quotient normalization [135] and log-transformed. From the

original data matrix, we first excluded metabolites with more than 20% missing values, and

then samples with more than 10% missing values. Samples with missing covariates were

subsequently excluded from the analysis. The filtered data matrix contained 97 samples

and 1,021 metabolites (527 known structures and 494 unknown), see Table 2.3. Remaining

missing values were imputed with a KNN-based method with variable preselection [141].

Data were corrected for age, gender and BMI prior to analysis. All participants have given

written informed consent and the local ethics committees have approved the studies.
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Table 2.3: Metabolomics data in the Qatar cohort.

urine

Platform Metabolon
Number of peaks 1,021

Known Unknown 527 494
Number of samples 95

Males Females 35 60
Age range

(mean ± standard deviation)
21-60
(36, 8)

BMI range
(mean ± standard deviation)

17-46
(28, 5)

2.2.3 Transcriptomics data

RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA) [142] and ini-

tially included 2,726 samples and 16,115 genes from 11 cancer types: acute myeloid

leukemia, bladder urothelial carcinoma, colon adenocarcinoma, glioblastoma multiforme,

head and neck squamous cell carcinoma, kidney clear cell carcinoma, lung adenocarci-

noma, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, rectum adeno-

carcinoma, and uterine corpus endometrioid carcinoma. For each cancer type, genes with

more than 20% of missing values were excluded. Missing values in the remaining genes

were imputed using a KNN-based method with variable preselection [141]. Values were

corrected for age and gender. The final dataset was obtained by considering only genes

present in all cancer types after preprocessing (12,005). Cancer type was further corrected

for prior to statistical analysis.

Table 2.4: Transcriptomics data in the PANCAN cohort.

PANCAN

Platform RNA-seq
Number of transcripts 12,005

Number of samples 2,726
Males Females 1294 1432

Age range
(mean ± standard deviation)

18-90
(63, 12)

Cancer types 11
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2.3 Network inference and analysis

Since biological data have been shown to often follow a log-normal distribution [136,143],

i.e., a continuous probability distribution whose logarithm is normally distributed, in the

description below we will only consider the case of normally distributed variables.

2.3.1 Correlation measures

Throughout this thesis, we considered three measure of linear dependence to describe the

relationship between molecules in our data:

1. Pearson correlation

2. Analytical partial correlation, referred to as ”parcor”

3. Regularized partial correlation, referred to as ”GeneNet”

This section briefly introduces the mathematical formulation of these measures and elab-

orates on their advantages and limitations.

Given two normally distributed random variables Xi and Xj , their covariance is:

cov(i, j) = cij = E[(Xi − E[Xi])(Xj − E[Xj ])], (2.9)

where E[·] is the expectation value. The matrix Σ = (cij) is referred to as the variance-

covariance matrix. The pairwise Pearson correlation coefficient rij between the two

variables Xi and Xj is given by their covariance cij divided by the product of their standard

deviation σi and σj [120]:

ri,j =
cij
σiσj

, (2.10)

with r ∈ [−1, 1]. The resulting coefficient quantifies the linear dependence between Xi

and Xj , but it does not account for the presence of covariates or confounders that may

mediate the interaction. When dealing with highly correlated variables, this might lead

to an inaccurate interpretation of the underlying dependency structure. To overcome this

problem, partial correlation can be used to compute the linear association between two

variables conditioned against one or more other variables in the dataset. The idea is to

remove from the computed correlation between Xi and Xj the effect of the correlation

of the two variables with other variables in the dataset. This can be obtained from the

inverse of the covariance matrix Σ−1 = (wij) as [121]:



36 CHAPTER 2. MATERIALS AND METHODS

zij =
−wij√
wiiwjj

, (2.11)

where zij is the pairwise partial correlation coefficient of variables Xi and Xj . This

analytical derivation of partial correlation, from now on referred to as parcor, allows for

an efficient estimation of the coefficients. However, since it involves a matrix inversion

operation, it is unstable for small sample sizes and cannot be computed directly if the

number of samples is less than the number of variables (n < p).

This issue can be overcome by considering a regularized formulation of partial correlation.

For example, Schäfer and Strimmer proposed a regularized covariance estimator, called

GeneNet [144], based on the Ledoit-Wolf lemma [145]. Briefly, to correct the covariance

matrix prior to inversion, a shrinkage parameter λ∗ is defined as

λ∗ =

∑
i 6=j

var(rij)∑
i 6=j

r2ij
, (2.12)

where rij is the empirical correlation between random variables Xi and Xj . From this

optimized shrinkage value, the empirical correlation and covariance coefficients rij and cij

are redefined, respectively, as

r∗ij =

1 if i = j

rijmin(1,max(0, 1− λ∗)) if i 6= j
(2.13)

and

c∗ij =

c2ii if i = j

r∗ij
√
ciicjj if i 6= j.

(2.14)

This shrinkage-based estimation of the covariance matrix Σ∗ = (c∗ij) is always positive-

definite and well-conditioned, therefore allowing for a more stable estimation of partial

correlation coefficients when applying formula 2.11.

To assess the statistical significance, a mixture model is fitted to the partial correlation

matrix to estimate the corresponding p-values [144], which results in a more robust p-value

estimation.
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2.3.2 Multiple testing correction

Correlation matrices were corrected for multiple testing by controlling the False Discovery

Rate (FDR) at a significance level α (usually 0.01 or 0.05) using the Benjamini–Hochberg

method [122]. This approach allows for the control of the expected proportion of false

positives.

For a set of null hypotheses H1, H2, ...Hn and their associated p-values P1, P2, ...Pn, the

approach works as follows:

1. Rank the p-values P1, P2, ...Pn associated to the correlation coefficients in ascending

order

2. For a given significance level α, find the largest k such that P(k) ≤ k
nα

3. Reject the null-hypothesis for (i.e., declare statistically significant) all H(i) with

associated p-values P(i) ≤ P(k) and i = 1, ...k.

Another common multiple testing correction approach is the Bonferroni correction [146],

which differs from the FDR approach in that it controls for the Family-wise Error Rate

(FWER), i.e., for the probability of having at least one false positive. In this case, the

null-hypothesis is rejected for all p-values that satisfy Pk ≤ α/n.

In Chapter 6, we will use a biological measure to optimize the correlation cutoff for network

inference, and compare the GGMs obtained with our approach to those obtained using

the aforementioned statistical cutoffs.

2.3.3 Network representation

In general, a network is a graph defined by a set of nodes and edges. Pairwise correlations

are well suited for visualization as undirected weighted graphs, where the nodes represent

the variables in the dataset and the edges the strength of their correlation.

For the purpose of this thesis, we define a correlation network as the network represen-

tation of a data-driven correlation matrix of n variables, where a selection criterion has

been applied to establish which of the computed n(n − 1)/2 correlation coefficients is to

be considered true. For example, if we choose the statistical significance as a selection

criterion, the network representation will depict all correlation coefficients whose p-values

passed the multiple testing correction.

The adjacency matrix A = (aij) associated to any given network describes which nodes

are adjacent in the network, i.e., share a connection. Since correlation matrices are sym-

metric, their corresponding network adjacency matrix will be as well:
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aij =

1 if node i and node j are connected by an edge

0 otherwise.
(2.15)

A graphical model is a probabilistic model in which the conditional dependence structure

between a set of random variables is visualized as a graph. In particular, a Gaussian

Graphical Model (GGM) is an undirected graph where edges represent the conditional

dependence structure among normally distributed variables: the presence of a connecting

edge between two variable nodes indicates that such variables are still correlated even

once the confounding effect of all other variables has been corrected for. Therefore, GGMs

correspond to partial correlation networks for multivariate normally distributed data and

have been widely exploited in systems biology to infer molecular interaction networks, from

gene regulatory networks [125,147,148] to metabolic pathways [32,116]. In this thesis, we

apply for the first time this methodology to glycomics data.

2.3.4 Biological references

Glycomics data. The biological reference reflects the current understanding of the IgG

glycosylation pathway, as established in Chapter 3. Glycans can be modified by the

addition of one monosaccharide at a time, but only selected reactions are enzymatically

feasible, as shown in Figure 2.2.

Metabolomics data. There is no established complete biochemical pathway to consider

as biological reference for metabolomics data. Known metabolic reactions were imported

from the RECON2 database [149] and included in one of the adjacencies. As a more coarse

type of biological references, we used sub- and super-pathway annotations provided with

the metabolites measurements by Metabolon, Inc., from which adjacency matrices were

created by connecting all metabolites within the same sub- or super-pathway, respectively.

Transcriptomics data. Pathway annotations were imported from the Reactome database

[150,151]. We restricted the analysis to pathways containing at least 50 genes and with at

least 30% of the genes in the pathway measured in the TCGA data. These constraints led

to a total of 469 Reactome pathways being selected. For each pathway, protein-protein

interactions were downloaded from the STRING database [152,153] and used as biological

reference for the optimization.
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2.3.5 Pathway analysis

In order to better characterize what edges in a data-driven network represent biologically,

we relate the network to the available prior knowledge on synthesis pathways.

To quantitatively estimate the agreement between a data-driven correlation networks and a

biochemical pathway or, more generally, any prior-knowledge-based biological reference, we

employed Fisher’s exact test [154]. This statistical test evaluates whether two categorical

variables are statistically independent, with low p-values indicating lack of independence.

For the purpose of the analyses presented in this thesis, we treated the Fisher’s p-value

as a quantitative measure of the overlap between the available biological reference and

the calculated correlation networks. In this case, lower p-values indicate a better overlap

between the biological reference and the data-driven network.

In order to compute the Fisher’s test p-value, all computed correlation coefficients are first

classified in a contingency table (Table 2.5), according to their statistical significance and

whether the corresponding variable pair is directly connected in the biological reference.

Table 2.5: Contingency table for pathway analysis

in reference not in reference

significant correlation a b
non significant correlation c d

In other words, we classify which correlation coefficients are true positives (present in both

the data-driven network and the reference), false positives (in the network but not in the

reference), false negatives (in the reference but not in the network), and true negatives

(neither in the network nor the reference). The p-value of the Fisher’s exact test is

calculated according to the hypergeometric distribution as:

p =

(
a+b
a

)(
c+d
c

)(
n

a+c

) , (2.16)

where n = a+ b+ c+ d.

2.3.6 Modularity

The network modularity algorithm was adapted from the widely used community detection

clustering method of Newman [155], which optimizes a modularity Q to determine clusters.

In this thesis, we used the Q measure to assess the modularity of predefined clusters,
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given by the three IgG subclasses. To this end, subclass-based network modularity was

calculated as the relative out-degree from each subclass to all other subclasses for all

significantly positive edges. Let V1, V2, V3 indicate the sets of glycans belonging to each

of the three measured IgG subclasses. The subclass-based modularity is mathematically

described as

Q :=
3∑

i=1

[
A(Vi, Vi)

A(V, V
−
(
A(Vi, V )

A(V, V )

)2
]
, (2.17)

where A(Vi, Vj) represents the total number of edges between glycan sets Vi and Vj , and

V represents all glycans in the network [156].

To assess the significance of the observed modularity, we performed graph randomization

via edge rewiring [157,158]. In this process, two edges in the original data-driven network

are randomly selected and the end nodes of each edge are swapped. The operation was

repeated 10 times the number of edges to reach sufficient randomization. The entire

randomization was repeated 105 times to obtain a sufficient number of null model networks.

2.3.7 Resampling techniques

To improve the generalizability of the results presented in this thesis, we resampled the

original datasets multiple times with replacement (bootstrapping) and repeated the whole

analysis pipeline. Thus, for each bootstrapped dataset a new set of results was obtained.

We then computed the median and 95% confidence intervals from the overall distribution

of the bootstrapping results and used them to provide an estimate of the robustness of

our findings.

The resampling idea can be applied also when trying to simulate the effects of smaller

sample sizes on the outcomes of the analysis (see for example Section 6.1 in Chapter 6).

In this case, the dataset is resampled multiple times without replacement (subsampling) to

produce new datasets of the chosen sample size. Again, the analysis pipeline is repeated on

the subsampled data and, for each considered sample size, the median and 95% confidence

intervals are used to provide an estimate of the robustness of the results to variations in

sample size.
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2.4 Genome-wide association study

Genotyping was performed using the Affymetrix GeneChip array 6.0 with prephasing by

SHAPEIT v2 and imputation by IMPUTE v2.3.0, using 1000 Genomes (phase 1 integrated

haplotypes CEU) as a reference panel. We limited our analysis to non-monomorphic SNPs

that had a minor allele frequency >1%, a high genotyping quality (call rate >97%), and did

not significantly deviate from the Hardy–Weinberg equilibrium (HWE; pHWE ≥ 5×106).

The glycan measurements were preprocessed using a similar pipeline as that for the Croa-

tian data in the pathway analysis (see Subsection 2.1.2). Samples from each IgG subclass

were log-transformed and batch-corrected using the ComBat algorithm of the R package

“sva” (R package version 3.14.0). The data were exponentiated to retrieve the original

scale and then normalized using the probabilistic quotient algorithm [135]. Glycan ratios

were calculated as the product–substrate ratios of all possible reactions in the IgG glycosy-

lation pathway, as shown in Figure 3.5A, and then log-transformed and regressed against

age and sex. A rank-based inverse normal transformation was applied to the residuals.

For the purposes of this study, we only focused on SNPs located in the regions of the

known glycosylation enzymes—ST6GAL1 (chr.3), B4GALT1 (chr.9), FUT8 (chr.14), and

MGAT3 (chr.22)—and with a linkage disequilibrium (LD) and R2 ≥ 0.8 (see Supple-

mentary Table 1 in the original publication). Genomic positions were retrieved from the

UCSC Genomic Browser (GRCh37/hg19) [159], while LD information was obtained using

the software SNIPA [160].

GWAS was performed with snptest software v2.5.1 [161] using an additive genetic model.

We used an established GWAS significance threshold [162] corrected for the number of

considered ratios, i.e., 5 · 10−8/95 = 5.26 · 10−10. For suggestive hits, we used a relaxed

threshold of 10−7, as also suggested in Panagiotou and Ioannidis (2012) [162].

P-gains were introduced to describe the increase in strength of the association of a ra-

tio compared to the corresponding single glycans. We assume that a significant p-value

combined with a high p-gain indicates that the two glycans are functionally linked in a

biochemical reaction involving the gene of the associating SNP. P-gains were defined as

the ratio between the minimum of the association p-values of single glycans and the asso-

ciation p-value of the corresponding ratio [163, 164]. The gain in the p-value of the ratio

was considered to be significant if it was greater than or equal to 10, as this value indicates

gains of one order of magnitude. This threshold was taken as suggestive also in previous

studies, e.g. in Suhre et al., 2011 [165] and Shin et al., 2014 [166]. See Supplementary

Data 3 in the original publication for a full list of results.
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Chapter 3

Network inference from

glycoproteomics data reveals new

reactions in the IgG glycosylation

pathway

In this chapter, we investigate the IgG glycosylation pathway using plasma IgG glycomics

LC–ESI-MS measurements from four independent cohorts measured by our collaboration

partners at Genos (see Subsection 2.1.1). We first generate a partial correlation network,

or Gaussian graphical model (GGM), where the nodes represent individual glycans and

the edges represent their pairwise correlations, corrected for the confounding effects of all

other glycans and clinical covariates.

Previous studies using serum metabolomics data have shown that highly correlated pairs

in GGMs represent enzymatic reactions [32,166]. This is the first study to apply GGMs to

large-scale IgG glycomics data from four independent populations. We find that significant

partial correlations predominantly occur between glycan structures that are one enzymatic

step apart in the known IgG glycosylation pathway shown in Figure 2.1, demonstrating

that network statistics on quantitative glycoprotein measurements allow us to detect true

enzymatic reaction steps in the glycosylation pathway.

Based on this result, we expect edges in the GGM that did not appear in the known

pathway to represent true but hitherto unknown enzymatic steps, i.e., unknown substrate

specificities of the enzymes in the pathway. To investigate this hypothesis, we develop
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a rule-based inference approach to test alternative pathway models. This shows that

additional reactions are supported by the data for all four cohorts. More in detail, we

predict that bisection of fucosylated, galactosylated glycans, as well as galactosylation of

monosialylated glycans occur during IgG glycan synthesis.

Network
analysis

Rule-based
pathway inference

Replication
24 cohorts3

Known glycosylation
pathway

Pathway
analysis

IgG glycan measurements
2LC-ESI-MS3

Experimental
validation

1 2 3

7 5 4

6

Figure 3.1: Analytical procedure. Starting from the immunoglobulin G (IgG) glycan abundances
measured using liquid chromatography coupled with electrospray mass (LC-ESI-MS) (1), we cal-
culated a correlation-based network (2) and mapped it to the known IgG glycosylation pathway
(3). We found that most edges in the network corresponded to single enzymatic steps in the path-
way (4). Based on this finding, we inferred unknown enzymatic reactions that were putatively
involved in the synthesis of IgG glycans using a rule-based approach (5). We then replicated the
findings using four cohorts (6) and performed different in vitro validation experiments to confirm
the predicted reactions (7).

As direct experimental validation is considered infeasible for the reasons outlined above, we

validate our findings with two different approaches (Figure 3.1). First, we use a genome-

wide association study (GWAS) in a fifth cohort. It has previously been shown that the

substrate–product ratios of metabolites are associated with their enzymes in GWAS [163,

165]. Therefore, we consider the ratios of substrate–product pairs of the predicted reactions

as quantitative traits, with which we can confirm several of our predicted reactions across
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the IgG subclasses. Second, we perform three sets of in vitro experiments to confirm the

predicted enzymes substrate specificities, as well as their colocalization inside the Golgi

apparatus. Our results show that at least one of the inferred reactions occurs in vitro,

that one rejected rejection does not occur, and that the glycosyltransferases involved in

the predicted reactions are colocalized in the Golgi stacks of two different cell lines.

All results reported in this chapter are part of the following publication:

• Benedetti, E., Pučić-Baković, M., Keser, T., Wahl, A., Hassinen, A., Yang, J-Y.,

Liu, L., Trbojević-Akmačić, I., Razdorov, G., Štambuk, J., Klarić, L., Ugrina, I.,

Selman, M.H.J., Wuhrer, M., Rudan, I., Polasek, O., Hayward, C., Grallert, H.,

Strauch, K., Peters, A., Meitinger, T., Gieger, C., Vilaj, M., Boons, G-J., Moremen,

K.W., Ovchinnikova, T., Bovin, N., Kellokumpu, S., Theis*, F.J., Lauc*, G., Krum-

siek*, J., Network inference from glycoproteomics data reveals new reactions in the

IgG glycosylation pathway, Nat. Commun., 8(1):1483, 2017.

I contributed all data analysis on the Croatian glycomics cohorts, as well as all results

interpretation and discussion.

3.1 IgG glycomics correlation networks

We analyzed four glycomics datasets, where IgG Fc glycans were quantified by LC-ESI-

MS (Table 2.1). Data preprocessing and normalization was performed as described in

Subsection 2.1.2. In the following, the Korčula 2013 cohort was selected for use in the

discovery analysis. The results for all other cohorts are discussed in the replication section

below.

We used both regular Pearson correlation and partial correlation analysis to make com-

parisons. The partial correlation analysis tested the conditional dependency between two

variables when accounting for the confounding effects of all other glycans, as well as

age and gender. In total, 905 Pearson correlation coefficients were significantly different

from zero following multiple testing correction (FDR 0.01 [122]). This significance level

corresponded to an absolute correlation cutoff of 0.105, with coefficients approximately

symmetrically distributed around zero (Figure 3.2A). Partial correlation coefficients are,

by nature, much lower in absolute value than Pearson coefficients, and so only 66 of the

total 1,275 coefficients were found to be significant, the majority of which were positive

(Figure 3.2B).
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Figure 3.2: Pearson and partial correlations of IgG glycans. A, B Histograms of all pairwise
Pearson and partial correlation coefficients, respectively. Black dashed lines indicate the signifi-
cance cutoff (FDR = 0.01). The Pearson correlation matrix contains a large number of significant
coefficients, which are evenly distributed around zero. Partial correlations are generally lower,
and a much smaller proportion was statistically significant. Moreover, most significant partial
correlations were positive. C, D Pearson and partial correlation matrices, respectively. Black and
red indicate positive and negative coefficients, respectively. Blue lines separate the different IgG
subclasses. The ordering of the glycans is the same for all subclasses. The stronger signal around
the inter-subclass diagonals represents connections between glycans with the same structure in
different IgG subclasses.

Upon inspection of the correlation matrices, we observed a remarkably similar structure

between the different IgG subclasses (Figure 3.2C and D)—that is, glycoforms that were

strongly correlated in one subclass also tended to be strongly correlated in the other

subclasses. Moreover, there were only a few significant correlation coefficients for cross-

subclass glycan pairs (off-diagonal blocks of the matrix). This suggests that the regulation

of IgG is highly conserved across subclasses. Interestingly, seven of the nine cross-subclass

pairs involved glycans with the same structure. For a full list of the partial correlations,

see Supplementary Data 1 in the original publication.

The Pearson and partial correlation matrices were represented as networks (i.e., weighted
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graphs), with the nodes representing glycans and the edges indicating coefficients that are

statistically significant (Figure 3.3A and B).
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Figure 3.3: Network representation and modularity. A, B Pearson and partial correlation matri-
ces, respectively, visualized as networks, where the nodes represent different glycoforms, and the
edges indicate significant positive (black) and negative (red) correlations. Different node shapes
correspond to different immunoglobulin G (IgG) subclasses, while the thickness of each edge cor-
responds to the magnitude of the respective correlation. C, D Pearson and partial correlation
modularity, respectively, between IgG subclasses, measured as the relative out-degree from each
subclass (row) to each other subclass (column). A Pearson correlation modularity analysis showed
that all subclasses were highly interconnected. By contrast, the GGM showed high subclass mod-
ularity, indicating that associations between glycans mostly occurred within each IgG subclass.
Furthermore, while the first two IgG subclasses were slightly interconnected, the IgG4 subclass
was mostly isolated in the network.

Most of the network edges connected glycan pairs that differed by only a single monosac-

charide residue. This directly reflects the underlying glycan synthesis pathway, whereby
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monosaccharides are added one at a time and in a given order to create the final gly-

coform (Figure 2.2). Furthermore, unlike the GGM, which showed a strong modularity

with respect to the IgG subclasses, the Pearson correlation network did not show a clear

separation between the subclasses (Figure 3.3C and D). This indicates that significant par-

tial correlations were mostly found between glycans belonging to the same IgG subclass,

with few significant correlations between glycans with different IgG isoforms. To inves-

tigate this observation quantitatively, we calculated a subclass-based network modularity

for all significantly positive edges based on the method by Newman et al. (2004), and as

previously adapted by Krumsiek et al. (2011). We used degree-preserving random edge

rewiring as a null model to assess the statistical significance (see Subsection 2.3.6). The

computed modularity for the original network was Q = 0.495 with an empirical p-value of

< 10−5, proving a high level of subclass-specific modularity.

3.2 Overlap of GGM with known IgG glycosylation pathway

We systematically investigated the relationship between the known IgG glycosylation path-

way (Figure 2.2) and the data-driven GGM (Figure 3.3B). To do this, we defined the

“pathway distance” between any pair of glycans as the minimum number of enzymatic

steps separating the two structures—for example, two glycans that corresponded to the

reactant and product of a single enzymatic reaction in the IgG glycosylation pathway

had a pathway distance of 1, whereas the shortest path from G0 to G2S1 includes three

enzymatic steps, giving them a pathway distance of 3. We could not interpret correlations

between glycans with the same structure belonging to different IgG subclasses in terms of

the enzymatic reactions because they are bound to different proteins, and so we labeled

these “X” (Figure 3.4). All other cross-subclass glycan pairs were ignored in our analysis.

Significant Pearson correlation coefficients were found for both short and longer pathway

distances (Figure 3.4A); however, there were far more significant partial correlation co-

efficients at a pathway distance of 1 (Figure 3.4B) than at any other pathway distance,

demonstrating that significant partial correlations tend to occur between glycans that are

directly connected in the pathway. To assess whether significant partial correlations oc-

curred more often at a given pathway distance than expected by chance, we performed a

Fisher’s exact test. The results of the test were highly significant (P = 3.41 ·10−39; Figure

3.4C and D), proving that there is a strong relationship between the data-driven GGM

and the known IgG glycosylation pathway.
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Figure 3.4: Systematic comparison of correlations and pathway distances. A, B Pearson and
partial correlation coefficients, respectively, versus pathway distance. Gray dashed lines represent
the significance threshold (FDR = 0.01). On each box, the central mark indicates the median,
and the whiskers indicate the 25th and 75th percentiles, respectively. The label “X” represents
correlations between the same glycoforms across different immunoglobulin G (IgG) subclasses. In
line with the network visualization, we observed significant Pearson correlation coefficients across
all pathway distances, suggesting that Pearson correlations are non-specific with respect to the
IgG glycosylation pathway. By contrast, significant partial correlation coefficients accumulated
at a pathway distance of 1. The black dashed oval highlights significant partial correlations for
pathway distances >1. C P-values for Fisher’s exact tests for both Pearson and partial correla-
tions at different pathway distances. There were significantly more significant partial correlations
between glycans with a pathway distance of 1, demonstrating a close relationship between the IgG
glycosylation pathway and the reconstructed GGM. The log10 p-values can be interpreted as a
variance-normalized measure of the effect size. D Contingency table for the partial correlations
at a pathway distance of 1. Entries represent the numbers of partial correlations satisfying the
corresponding conditions.
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3.3 Rule-based prediction of new enzymatic reactions

Above, we demonstrated that significant partial correlation coefficients represent pairs of

glycans that are directly linked in the known IgG glycosylation pathway. Interestingly,

however, there were also 22 significant partial correlations for pathway distances greater

than one (and not contained in the “X” group), as indicated by the black oval in Figure

3.4B. Therefore, given the strong evidence for a relationship between the GGM and the

IgG glycosylation pathway, we hypothesized that these correlations represented true but

yet unknown pathway reactions. In principle, all glycans that differ in structure by a single

monosaccharide could be connected by a reaction performed by one of the four enzymes

involved in the glycosylation pathway shown in Figure 2.1; and among these 22 significant

correlations, 15 (68%) differed by only one sugar residue. Furthermore, if we discard the

seven negative partial correlations, whose interpretation has been shown to be problematic

[32], this increases to 88% (see Supplementary Table 2 in the original publication for

details). Thus, all 15 of these glycan pairs are candidates for direct enzymatic reactions.

To analyze this quantitatively, we tested whether these unexplained partial correlations

could be attributed to missing steps in the known pathway. To do this, we first created a

list of all possible novel pathway reactions, i.e., all connections between glycan structures

that only differed by a single sugar unit and that were not present in the known IgG gly-

cosylation pathway. Since we followed an unbiased approach, this included reactions for

which in vitro experiments showed evidence of inhibition, e.g. the addition of fucose to the

G0N structure [167]. We then divided these initial reactions into sets of “rules” according

to the features of the hypothetical substrate and the corresponding enzyme performing

the reaction (Figure 3.5A and Table 3.1)— i.e., we built the rules to account for previ-

ously undescribed substrate specificities for the four glycosyltransferases involved in IgG

glycosylation. For example, the first rule (F1) describes the fucosylation of galactosylated,

non-bisected glycans, as these reactions are not included in the known pathway. In this

way, starting from 22 single potential new reactions, we defined six rules, as described in

Figure 3.5A and Table 3.1.

The rationale for our inference method and model selection technique was that the pathway

model that contains the greatest proportion of true reactions should produce the lowest p-

value with a Fisher’s exact test, as seen in Figure 3.4C. In total, we considered 63 pathway

models that extended the known glycosylation pathway using all combinations of the six

rules described above. To obtain a robust model fit, we performed bootstrapping with

10,000 resamplings and calculated 95% confidence intervals for each p-value distribution.

We considered a pathway model to fit the data significantly better than the known pathway
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Table 3.1: Rules for pathway inference.

Substrate Enzyme Product Rule name

galactosylated
non-bisected

non-fucosylated
FUT8

galactosylated
non-bisected
fucosylated

F1

galactosylated
bisected

non-fucosylated
FUT8

galactosylated
bisected

fucosylated
F2

non-galactosylated
bisected

non-fucosylated
FUT8

non-galactosylated
bisected

fucosylated
F3

mono-galactosylated
mono-sialylated

B4GalT1
di-galactosylated
mono-sialylated

G1

galactosylated
non-bisected

non-fucosylated
MGAT3

galactosylated
bisected

non-fucosylated
N1

galactosylated
non-bisected
fucosylated

MGAT3
galactosylated

bisected
fucosylated

N2

if it had a lower Fisher’s test p-value and its 95% confidence interval did not overlap

with that of the known pathway. Where several proposed pathway models were found to

perform significantly better than the known pathway, we chose the simpler model, i.e., the

one that included the fewest rules. Note that for this analysis we used p-values as variance-

normalized measures of effect size for model comparison, rather than as the probability

of an event occurring by chance. Figure 3.5B shows a comparison of the p-values for the

known pathway, the known pathway extended with any one of the six defined rules, and

all combinations that gave a significantly better p-value than the known pathway alone.

A list with the results for all 64 (26) pathway models, including the known pathway for

reference, can be found in Supplementary Data 2 of the original publication.

In the selected pathway model from this analysis, rules G1 and N2 were added to the known

pathway (Figure 3.5C), which resulted in the inclusion of eight new enzymatic steps in the

IgG glycosylation pathway. By considering this selected model as the ground truth and

reclassifying all partial correlations according to the pathway distances derived from this

extended model, we found that most of the significant partial correlations that had longer

distances in the original IgG glycosylation pathway (Figure 3.4B) had a pathway distance

of 1 in the modified IgG glycosylation pathway (Figure 3.5D). Note that the pathway

model that included all possible enzymatic reactions (model “F1F2F3G1N1N2” in Figure
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3.1) did not yield the lowest p-value, indicating that the addition of more reactions than

required to provide the optimal pathway model impaired the result.
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Figure 3.5: Rule-based approach for pathway inference. A Sketch of all single-monosaccharide
additions in the immunoglobulin G (IgG) glycosylation pathway. The black network represents
the known IgG glycosylation pathway, while arrows with the same color describe a rule. Shades
of the same color represent reactions performed by the same enzyme. B Fisher’s exact test results
for the addition of different combinations of rules to the known pathway. The pathway model
that most resembles the biological truth is expected to have the best overlap with the calculated
GGM and hence yield a lower p-value. The black dashed line represents the lower end of the
95% confidence interval of the p-value for the known pathway obtained by bootstrapping. The
simplest model that was significantly more accurate than the known pathway is indicated by a
black arrow and includes rules G1 and N2. For a full list of results, see Supplementary Data 2
in the original publication. C Pathway model inferred by our approach. D Partial correlation
coefficients for different pathway distances in the selected model. On each box, the central mark
indicates the median, and the whiskers indicate the 25th and 75th percentiles, respectively. Most
of the significant partial correlations that were a long distance apart in the known pathway are
now at a distance of 1 (cf. Figure 3.4B).
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3.4 Replication in three additional cohorts

We replicated these findings using IgG glycomics data measured on the same platform

in three independent Croatian cohorts (Table 2.1). We again observed that most partial

correlation coefficients between glycans were positive (Figure 3.6) and that the calculated

GGM displayed a highly modular structure with respect to the IgG subclasses (Figure

3.7).
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Figure 3.6: Distributions of partial correlation coefficients in the replication cohorts: Korčula 2010
(A), Split (B), Vis (C).

Moreover, pathway analysis showed that the edges represented single enzymatic steps in

the IgG glycosylation pathway in all GGM networks (Figure 3.8). When inferring possible

additional enzymatic steps, we again found that the addition of rules G1 and N2 to the

known pathway gave a significantly better overlap with the GGM (Figure 3.9), providing

further evidence that the enzymatic reactions included in these rules represent true steps in

the IgG glycosylation pathway. The GGMs for all cohorts can be found in Supplementary

Software. To quantitatively evaluate the agreement between GGMs
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Figure 3.9: Rule-based pathway inference in the replication cohorts: Korčula 2010 (A), Split (B),
Vis (C).

across the four cohorts, we generated a consensus network that represented the overlap

between the networks (Figure 3.10A). We considered an edge to be “replicated” if it was

significant in all four cohorts. This showed that 44 of the 140 significant correlations were

replicated across all four cohorts (Figure 3.10B). To investigate how these edges related

to the IgG glycosylation pathway, we again performed a Fisher’s exact test. We only

considered partial correlations that were found to be significant in at least one cohort,

and built a contingency table that classified these according to their replication status

and pathway distance (Figure 3.10). The highly significant result of this test (P = 7.73 ·
10−12) indicates that the replicated edges tend to represent true pathway reactions even

more strongly than the non-replicated edges do, demonstrating that partial correlations

corresponding to single enzymatic reactions in the IgG glycosylation pathway were robustly

identified in all cohorts.

3.5 GWAS evidence for predicted reactions

We applied a GWAS-based approach on an independent cohort to provide evidence-based

validation, assuming that significant associations between glycan ratios and single nu-

cleotide polymorphisms (SNPs) in the IgG glycosyltransferase genes indicate that the
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Figure 3.10: Replication. A Consensus network. Black edges represent replicated partial correla-
tions that correspond to direct enzymatic steps in the known immunoglobulin G (IgG) glycosylation
pathway, green edges represent replicated edges matching the reactions predicted by our approach,
and red edges represent replicated correlations corresponding to reactions that were not predicted
to take part in IgG glycosylation. Replicated edges were defined as partial correlations that were
significant in all four cohorts. Gray edges represent partial correlations that were significant in at
least one cohort but not in all four. Note that three of the five replicated but non-predicted edges
linked the same glycan structure in different IgG subclasses, which we did not consider in our
inference approach. Thus, there are only two edges that are truly non-predicted. B Venn diagram
of the significant partial correlations in the four cohorts. In total, 44 edges were shared among all
four cohorts. C Contingency table for the partial correlation coefficients that were found to be
significant in at least one of the four considered cohorts. The classification variables in this case
are replication status and pathway distance. Here, we considered edges that were significant in at
least one of the four cohorts, and we considered an edge to be replicated if it occurred in all four
cohorts. The resulting p-value was very low, indicating that replicated edges are more likely to
represent enzymatic reactions than non-replicated edges.

underlying reactions truly exist. This rationale is based on previous studies on blood

metabolomics data, in which ratios of two metabolites were frequently found to be associ-

ated with genetic variation in the gene region of their catalyzing enzymes (see e.g. Gieger

et al., 2008 [163]; Suhre et al., 2011 [165]; Shin et al., 2014 [166]). To quantify the increase

of association strength of the ratio with respect to the single glycans, p-gains as defined in

Petersen et al. (2012) [164] were used. Only significantly associated ratios with a sufficient
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Figure 3.11: Genome-wide association study (GWAS) results for glycan ratios. A Reference path-
way for interpreting the GWAS results. Black lines represent reactions in the known immunoglo-
bulin G (IgG) glycosylation pathway, green lines represent reactions associated with the predicted
rules, and gray lines represent possible reactions that were not selected by our approach. B, C, D
GWAS results for IgG1, IgG2, and IgG4, respectively. Solid thick arrows represent ratios that were
significantly associated with single nucleotide polymorphisms (SNPs) in the regions coding for an
IgG glycosylation enzyme (P < 5.26 · 10−10 and p-gain>10). Dashed arrows represent suggestive
associations (5.26 · 10−10 ≤ P ≤ 10 − 7 and p-gain>10). Gray nodes in the IgG4 plot represent
glycoforms that were not measured. The asterisk (*) indicates that the ratio was unexpectedly
associated with SNPs in the FUT8 gene region.

p-gain (see Methods) were considered to confirm a given enzymatic reaction. For this

analysis, we used glycomics data from the German population study KORA F4 [140].

Plasma IgG Fc N-glycopeptide measurements were obtained using the same LC-ESI-MS

platform as for the discovery and replication cohorts described above, and included the

same 50 measured glycoforms. Linear associations with genetic variants were calculated

using the logarithm of all glycan product–substrate ratios defined in Figure 3.5A (see

Methods). We considered SNPs in the four glycosyltransferase genes involved in IgG

glycosylation, namely ST6GAL1, B4GALT1, FUT8, and MGAT3 (see Supplementary

Table 1 in the original publication for details). As a positive control, we first verified that

the glycan product–substrate ratios in the known pathway were significantly associated

with loci in the regions coding for the enzymes that are catalyzing the reactions. We found

that 12 out of 47 ratios were genome-wide significant, while another five met a suggestive p-

value of 10−7 (Figure 3.11, thick black lines). Interestingly, we also found one ratio (G2/G1

in IgG2) that was associated with genetic variants in the region of the enzyme FUT8,
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which is responsible for the addition of core fucose (Figure 3.11, arrow with asterisks).

This was unexpected as neither of the structures in the ratio are fucosylated. For our

22 predicted reactions, we found three significant and three suggestive hits (Figure 3.11,

thick green lines). Importantly, these significantly associated ratios tended to be the same

across the three IgG subclasses and were equally distributed across the predicted rules.

We found three confirmations for the rule G1 and three for the rule N2. By contrast, five

significant associations and one suggestive hit were observed among the 26 ratios that were

not predicted by our approach, but these did not replicate across subclasses (Figure 3.11,

thick gray lines). In particular, three out of these six non-predicted reactions originated

from rule F1 exclusively in IgG1 and could not be replicated in IgG2, while the other

three hits spread across three different rules. Overall, we found at least one genome-wide

significant association for all of the considered genes, providing evidence that we could

indeed investigate all four glycosyltransferase enzymes involved in IgG glycosylation. In

the supplementary information of the original publication, the complete GWAS results are

provided in Supplementary Data 3, while the regional association plots in Supplementary

Figure 7.

3.6 Experimental validation by enzymatic assays

To address different aspects of our predictions, our collaborators performed three sets of

in vitro experiments: two enzymatic assays and one colocalization experiment.

In a first experiment, we aimed to verify whether GalT1 and MGAT3 exhibited the pre-

dicted, previously unknown substrate specificities. To this end, Prof. Gordan Lauc from

Genos and Prof. Kelley W. Moremen from the University of Georgia compared UPLC

spectra of pooled IgG glycans before and after exposure to the two enzymes. We con-

sidered seven different experimental conditions, covering various combinations of enzyme

concentrations as well as negative controls (lacking sugar donors) that are not expected to

show any reaction (Figure 3.12A). As expected, GalT1 efficiently galactosylated a number

of glycans in the IgG glycome (see Supplementary Data 4 in the original publication for

details). To investigate our inferred reactions, we focused on the ratio of the substrate

G1FS1 and product G2FS1. With increasing concentrations of added GalT1 enzyme (25,

50 and 100 ng), this ratio drops significantly compared to the respective negative con-

trols (Figure 3.12A), directly confirming one of the predicted reactions in rule G1 in a

concentration-dependent manner.
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Figure 3.12: Experimental validation results. A In vitro enzymatic assay. The figure illustrates
the ratio of G1FS1 over G2FS1 across different concentrations of the enzyme (B4GalT1), and in
presence or absence of sugar donors. Bars represent the average value over triplicates, while er-
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substantial colocalization of all enzyme pairs in both cell lines. C Exemplary colocalization im-
ages of B4GalT1, ST6Gal-1 and MGAT3 in CaCo-2 (left) and COS-7 (right) cells, used for the
overlap quantification in B. The individual figures represent a typical view from 5 different Golgi
areas examined. In the images labeled as ”Merged” and ”Zoom”, yellow areas represent enzymatic
overlap. Due to the dispersed Golgi stacks throughout the cytoplasm in CaCo-2 cells, the overlap
can be observed clearly in separated cisternae, proving that localization of the glycosyltransferases
is not limited to cis-, medial-, or trans-Golgi areas. Bar represents 5μm.

When performing the analogous experiment for MGAT3, however, we were not able to see
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addition of the bisecting GlcNAc to any of the glycans (not even reactions in the known

IgG glycosylation pathway) (Supplementary Data 4 in the original publication). This

might indicate that the fluorescent label attached to the IgG glycans interferes with the

enzymatic reaction. For this reason, we were not able to experimentally prove or disprove

any enzymatic reaction in rule N2.

In a second experiment, we focused on a reaction from an excluded rule, namely the ad-

dition of bisecting GlcNAc to galactosylated non-fucosylated glycans (rule N1). To this

end, Prof. Nicolai Bovin from the Shemyakin and Ovchinnikov Institute of Bioorganic

Chemistry in Moscow performed the enzymatic reaction with a pure G2 synthetic gly-

copeptide. For positive control, we also considered a G0 glycopeptide, a known substrate

for MGAT3.

A

C

B

Figure 3.13: Enzymatic assay on synthetic substrates for MGAT3. A Initial glycopeptide: G0.
The structure is a known substrate for MGAT3 and after three hours the substrate was completely
converted into product (G0N). B Initial glycopeptide: G2. The substrate did not show any
conversion to the product after 24 or 48 hours. This is compatible with our prediction that rule
N1 is infeasible. C Initial structure: fluorescently labeled G2. The previous result was confirmed
also with this alternative substrate, which did not show any conversion after up to 48 hours.
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While the G0 structure was completely converted to product within 3 hours (Figure 3.13A),

there was no measurable addition of bisecting GlcNAc to the G2 structure even after 48

hours (Figure 3.13B). The latter result was further confirmed using a fluorescently labelled

G2 glycan structure, which also did not show any conversion to G2N (Figure 3.13C). These

experiments are thus supportive of our prediction that rule N1 is not enzymatically feasible.

3.7 Enzyme colocalization experiments in cell lines

In vitro evidence for enzymatic reactions does not necessarily translate to in vivo condi-

tions. A general consensus in the field has been that Golgi glycosyltransferases mainly

localize in the stack of cisternae according to their expected order of functioning [168,169].

In particular, this is expected to prohibit the bisection of galactosylated glycans due to

the different localization of the enzymes. In contrast, our predictions suggest that the

addition of bisecting GlcNAc can occur also on galactosylated, fucosylated glycans (rule

N2).

To address this aspect, Prof. Sakari Kellokumpu from the University of Oulu performed

colocalization experiments of the enzymes involved in our predicted reactions, namely

B4GalT1, MGAT3 and ST6Gal1, in kidney COS-7 cells and CaCo-2 colorectal cancer cells.

Evidence of such a colocalization between the three glycosyltransferases would indicate

that our predictions are, in fact, not impossible. Localization of of the enzymes in the

Golgi stacks of cisternae (cis-, -medial, -trans) was assessed using confocal microscopy and

Z-stack imaging with Venus- or Cherry-tagged enzyme constructs expressed at modest

levels both in COS-7 and CaCo-2 cells. The latter have the advantage of having Golgi

stacks dispersed throughout the cytoplasm, facilitating colocalization analyses at the level

of individual Golgi stacks and, thereby, aiding interpretation of the imaging data. In

addition, cells were stained with anti-GM130 cis-Golgi marker antibody.

The overlap between the enzymes and GM130 was on average 62%/73% (MGAT3),

55%/67% (B4GalT1) and 51%/67% (ST6Gal1) in CaCo-2/COS-7 cells, respectively

(Figure 3.14).

This means that, to different degrees, all three enzymes can be found in the cis-part of

the Golgi. Higher overlap percentages were detected in COS-7 cells due to the more

compact Golgi architecture in the cells. Comparing the overall localization of the three

enzymes, we observed prominent colocalization. The overlaps were quantified as 69%/65%

(B4GalT1-MGAT3), 76%/71% (B4GalT1-ST6Gal1) and 68%/66% (MGAT3-ST6Gal1) in
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Figure 3.14: Colocalization experiment. A Quantitative overlap between the three enzymes and the
cis-Golgi marker GM130. The overall colocalization of each enzyme pair was expressed as overlap
coefficient percentage (mean % ± standard deviation) obtained using pixel per pixel comparison
of each Z-stack image and by combining the values across 5 cells each. B Colocalization images
of B4GalT1, ST6Gal-1 and MGAT3 with GM130 in CaCo-2 (left) and COS-7 (right) cells. COS-7
cells and CaCo-2 cells were grown on cell culture plates and transfected with the defined plasmids,
and processed for confocal Z-stack imaging (0.3 μm sections). The individual figures represent
a typical view from 5 different Golgi areas examined. In the images labeled as “Merged” and
“Zoom”, yellow areas represent localization overlap. The cis-Golgi GM130 marker protein and
the three enzymes showed differential localization in CaCo-2 cells, indicating that the dispersed
Golgi stacks are functionally polarized in this colorectal cancer cell line. This was evident from the
observed differential distribution of the green and red colours within each Golgi stack of cisternae
(arrowheads in figure). Yet, each enzyme showed partial colocalization with the cis-Golgi-marker
GM130 based on coalescence of the two colours (yellow areas in figure) in the middle of the Golgi
stack. Higher overlap percentages were detected in COS-7 cells due to the more compact Golgi
architecture in the cells. Bar represents 5μm.
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CaCo-2/COS-7 cells, respectively (Figure 3.12B,C). These data indicate that, unexpect-

edly, a substantial proportion of all these three enzymes are present in the same Golgi

compartments, indicating that our newly proposed reactions described by rules G1 and

N2 are compatible with enzyme localization inside the Golgi stacks of cisternae.

3.8 Conclusion

In this study, we demonstrated for the first time that GGMs can be used to reconstruct

single enzymatic reaction steps in the glycan synthesis pathway using IgG Fc glycan mea-

surements from human plasma. We also found that additional glycosylation reactions

can be inferred from the calculated network, with the pathway rules G1 and N2 (Table

3.1) likely representing real biochemical steps in the IgG glycosylation pathway. Rule G1

represents the galactosylation of sialylated glycans. The current standard glycosylation

pathway is based on immunohistochemical studies that were performed over 30 years ago,

which suggested different subcellular localization of galactosyltransferases and sialyltrans-

ferases in the Golgi apparatus [170,171].

Galactosylation is a prerequisite for sialylation, and so the hypothesis of physically sepa-

rated enzymes implied that galactosylation could only occur prior to sialylation. However,

it has recently been shown that these two enzymes are colocalized in COS7 cells and are

likely to act as a complex [172]. Our results directly support this hypothesis, as rule G1

represents sialylation of IgG prior to further galactosylation. Rule N2 suggests that fu-

cosylated, galactosylated glycans can be modified by adding a bisecting GlcNAc through

MGAT3. Again, the standard glycosylation pathway assumes differential localization of

the B4GalT1 and MGAT3 enzymes, and thus that the addition of bisecting GlcNAc could

only occur prior to galactosylation. Previous studies have moreover indicated that over-

expression of the B4GalT1 enzyme decreases the amount of bisecting GlcNAc [173], sug-

gesting that the two enzymes might mutually inhibit each other’s activity by competing

for the same substrate. In contrast, our results suggest that the two enzymes may be colo-

calized and that galactosylated glycans could be direct substrates for MGAT3, hinting at

a different regulation of the enzymatic activity than previously described.

As a limitation, it is to be noted that partial correlations calculated from glycomics data

might not represent true biological processes in all cases. For example, we observed cross

IgG-subclass correlations of the same glycan structures, which might be attributed to

overall sugar or glycan abundances, rather than single enzymatic steps. Vice versa, not
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all glycan pairs that share a biochemical reaction will necessarily show correlation in the

data. Reasons for this could be too low concentrations of glycans or high turnover rates

of the IgG antibodies in blood. However, we used the correlation-based methodology

to generate novel pathway hypothesis for experimental testing, which does not require a

perfect reconstruction of the pathway.

Our findings were replicated across the analyzed cohorts, suggesting that the mechanisms

that regulate IgG glycosylation are conserved across different Croatian populations. To

validate our hypothesis for new enzymatic reactions in the IgG glycan synthesis pathway,

we performed GWAS on glycan product-substrate ratios. Previous GWAS analyses on

total IgG glycans measured with ultra performance liquid chromatography (UPLC) in

the Vis and Korčula 2010 cohorts revealed statistically significant associations between

traits describing fucosylated, non-bisected glycans and the MGAT3 gene 9. Here, we

used specific glycan product–substrate ratios as quantitative traits, allowing us to analyze

individual reactions at an IgG subclass-specific level. Six ratios that corresponded to our

predicted reactions were found to be significantly associated with SNPs in the gene regions

coding for the enzymes involved in the putative reactions (three for rule G1 and three for

rule N2, see Supplementary Table 4Data 3), further supporting our hypothesis of these

novel pathway steps occurring in vivo.

The GWAS evidence stems from an in vivo system; however, it is an indirect association

and does not provide proof for the predicted reactions. Therefore, we performed in vitro

enzyme assays probing specific reactions from the inferred pathway model. We found

evidence that the addition of galactose to monosialylated glycans via B4GalT1 is indeed

possible (rule G1). Confirming or disproving reactions in rule N2 was not possible due to

experimental limitations. Moreover, we were able to show that a reaction from the rejected

rule N1 did indeed not occur in the experiment. In addition to substrate specificity, current

knowledge of the physical distribution of enzymes across the Golgi apparatus implied a

directed order of the enzymes involved in the glycosylation process, thus preventing our

predicted reactions from occurring in cells. In contrast to this, we found that the three

enzymes involved in our predictions (B4GalT1, MGAT3, ST6Gal1) strongly colocalize

across the Golgi in two different cell lines, suggesting that, in fact, the reactions are not

infeasible. Taken together, while full in vivo validation of the new reactions is out of

reach at this point, we found substantial evidence supporting our prediction in in vitro

experiments.

Future studies could build on our findings in several ways. (1) The predicted rules could

be investigated at a single-reaction level to determine whether all or only some of the enzy-

matic steps described in rules G1 and N2 are included in the IgG glycan synthesis pathway.
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(2) In addition, a single-reaction pathway inference approach could be used to explore the

subclass-specific pathways suggested by some of our GWAS results. (3) The approach

described in this thesis could also be used to analyze other glycomics datasets, obtained

from different platforms (e.g. UPLC fluorescence [FLR], matrix-assisted laser desorption

ionization–time-of-flight–MS [MALDI-TOF-MS], or multiplexed capillary gel electrophore-

sis with laser induced fluorescence detection [xCGE-LIF]; to investigate whether the same

reconstructed pathways are produced. (4) Measurement techniques for total plasma gly-

comes, including glycoforms with extremely heterogeneous structures (i.e., high mannose,

hybrid, truncated, and complex glycans) from approximately 24 glycoproteins in blood,

have recently become available [174]. Therefore, it would be of major interest to apply

our methodology to these more complex datasets, to determine whether partial corre-

lations can be used to reconstruct single enzymatic reactions even when dealing with a

heterogeneous set of glycoproteins. (5) Replication of the results should also be verified

in a non-Croatian cohort, as population-specific effects may have gone undetected in this

analysis. (6) From a theoretical perspective, an analytical formulation of the likelihood

function of the different pathway models based on information criteria such as the AIC

(Akaike) or BIC (Bayesian) would lead to more rigorous model selection.

In conclusion, in this study we demonstrated for the first time that GGMs based on

large IgG glycomics datasets contain strong footprints of biochemical reactions in the

IgG glycosylation pathway. We proposed an inference algorithm based on the accordance

of GGMs and the candidate pathways, to improve our understanding of the complex

process of protein glycosylation. Novel reaction steps could be partially validated using

GWAS data and in vitro experiments. In general, the finding that GGMs can be used

to represent single steps in glycan synthesis indicates that it may be possible to compare

the GGMs from healthy and sick individuals to detect alterations in enzymatic activity

of the glycosyltransferases, shedding light on the molecular mechanisms that regulate IgG

glycosylation.



Chapter 4

Network-driven structural

inference on the human total

plasma N-glycome

After establishing the ability of GGMs to retrieve pathway steps from site- and protein-

specific glycomics data, in this chapter we consider glycomics data from different plasma

proteins.

Given the complexity and diversity of glycan structures, accurate measurements of large-

scale glycomics datasets from human plasma are difficult to obtain. The optimal scenario

would involve the quantification of all glycan structures in a protein- and site-specific

fashion, so that associations to phenotypes and profile changes can be traced back to

specific molecular entities and pathways. This is to this day experimentally infeasible.

The overall glycome of plasma proteins can currently only be measured as a mixture, i.e.,

without retaining the information about the protein or site of origin.

Quantification is usually performed either via UPLC, or MALDI-TOF-MS (see Subsec-

tion 2.1.1). UPLC separates glycans according to their chemical-physical properties. The

resulting chromatographic peaks, therefore, cannot be directly associated to specific gly-

can structures without further experiments, and substantially different structures could

have very similar retention times, hence occurring within the same peak (see Subsection

2.1.1). MALDI-TOF-MS, on the other hand, identifies different molecular masses, which,

per se, do not give any information about the order with which the glycan monosaccha-

rides are linked together. Fortunately, prior knowledge allows for a significant reduction

of the number of possibilities. For example, it has been shown that N-glycans in human
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proteins always have two N-Acetylglucosamines at the core followed by two or three man-

noses [175] (Figure 1.6). However, since human glycan building blocks include several

epimers, i.e., monosaccharides made of the same atoms but in different configurations

(e.g., glucose, mannose and galactose, which are all hexoses), different structures could

contribute to the same mass, referred to as composition (Figure 4.1), and would therefore

not be distinguishable by the measurement platform.

H7N4F1

Compositional Masses

Sialic Acid SFucose FHexose HN-Acetylhexoseamine N

Composition Examples

N-Acetylglucoseamine Fucose GalactoseMannose

Monosaccharides

Sialic Acid

Structures Composition

H4N4

Structures Composition

H5N5F1

Structures Composition

H5N3

Structures Composition

Figure 4.1: Example of the glycan structures within compositions measured via MALDI-TOF-MS.
Due to the presence of epimers, very different glycan structures can have the same mass and hence
not be distinguishable with the used platform.

Since a correct characterization of glycan structures is essential to understand their func-

tion and effect on protein activity, in this chapter we address the question of identifying

the most abundant glycan structures within each composition measured in the human

total plasma N-Glycome (TPNG) via MALDI-TOF-MS from the Leiden Longevity Study

(Table 2.1) by exploiting the correlations among measured compositions combined with

the available prior knowledge on glycan synthesis.
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First, we design a theoretical pathway of glycosylation, considering known glycan struc-

tures from plasma proteins and allowing, among them, all synthetic steps that have not

been proven enzymatically infeasible. In order to be able to relate this pathway to the

measured data, we subsequently convert the structures to the corresponding compositions,

generating a compositional pathway. We then compute data partial correlation coefficients

and show that significant coefficients mainly correspond to single synthetic steps in the

compositional pathway. We use this strong relationship between data-driven significant

partial correlations and compositional pathway to predict the most abundant glycan struc-

ture within any composition. Our predictions are then validated using external data, and

show that our data-driven approach is able to correctly identify the majority of structures.

In conclusion, we demonstrate that data-driven correlations and prior knowledge can be

successfully integrated to gain insights into glycan structural details when they are not

directly available from the data, reducing the costs of further fragmentation experiments.

4.1 Creation of the compositional pathway

Before proceeding with the data analysis, we investigated the biochemical pathway of

the TPNG synthesis. While some of the enzymatic steps are well established, like the

processing from high mannose to hybrid and complex glycans [18], others, like those among

bi- tri- and tetra-antennary complex glycans, are still not well characterized. Moreover,

different proteins might have different enzymatic affinities and thus potentially different

pathways [13]. In order to group all the available information into one unified model,

we built a theoretical pathway including all possible enzymatic reactions (i.e., all single

monosaccharide modifications) against which there was no strong experimental evidence.

Therefore, the resulting model describes all potential reactions of N-glycan synthesis across

all proteins (Figure 4.2).

As mentioned above, the measured TPNG dataset included glycan masses, where each

of these masses could correspond to one or more glycan structures. In order to relate

the constructed pathway of glycan synthesis to the measured data, we created a pathway

where the nodes corresponded to the 61 measured compositions.

Starting from the theoretical pathway (Figure 4.3A), we mapped each structure to its

corresponding composition (Figure 4.3B). We subsequently merged all the nodes in the

theoretical pathway with the same composition, and obtained a compositional pathway

(Figure 4.3C). As not all compositions that appeared in the compositional pathway were

measured in the available dataset, we deleted all unmeasured compositions together with
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Complex
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Figure 4.2: Theoretical pathway of TPNG synthesis. Each node corresponds to a glycan structure.
Edges represent possible enzymatic reactions of glycan synthesis, namely all single monosaccharide
modifications against which there is no strong experimental evidence against. Node colors represent
the glycan classes (high mannose, hybrid, truncated, complex). The insets show examples of the
synthesis pathway. A representation of the theoretical pathway with all corresponding glycan
structures is reported in Figure 2.3.

their edges to have a model compatible with the available data (Figure 4.3D). The resulting

compositional data pathway is shown in Figure 4.4 and contains the same 61 compositions
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that were measured in the dataset considered in this thesis.
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Figure 4.3: Creation of the compositional pathway. A Theoretical biochemical pathway. B Map-
ping between structures in the theoretical pathway and the corresponding compositional name.
C Structures with the same mass in the theoretical pathway were merged into one single com-
positional node. D Since not all compositions in the theoretical pathway were measured in the
available dataset, the unmeasured compositions were removed from the pathway together with all
their edges.
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Figure 4.4: Compositional data pathway. This compositional data pathway included the same 61
compositions measured in the considered dataset. Grey nodes represent compositions composed
by a single structure, while colored nodes represent compositions made of more than one structure.
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Figure 4.5: Data driven GGM. Nodes represent compositions and edges significant partial corre-
lations estimated with GeneNet. The inset shows the partial correlation coefficients distribution.
Black lines indicate the significance cutoff (FDR 0.01).
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4.2 Pathway analysis

To investigate the correlation among compositions, we considered a regularized partial cor-

relation (GeneNet) measure, which has previously been shown to identify single enzymatic

reactions in Immunoglobulin G glycomics data. Values were adjusted for multiple testing

(FDR 0.01 using Benjamini-Hochberg [122]). Only roughly 4% of the coefficients resulted

significant (83 out of 1,830), with a strong prevalence of positive correlations (Figure 4.5,

side panel). We visualized significant correlations as a network (Figure 4.5), where nodes

indicate compositions and edges significant correlations.

To understand what the computed correlations represent in biological terms, we system-

atically compared them to the compositional data pathway. Briefly, we computed a con-

tingency table by classifying all composition pairs according to the significance of their

correlation and the presence of an edge in the compositional pathway. We used the values

in this table to perform a Fisher’s exact test, where the resulting p-value quantifies the

statistical dependency between the correlation network and the compositional pathway:

a low p-value indicates lack of independence. In this case, the computed Fisher’s p-value

was 1.14 ·10−53, which demonstrated that significant partial correlations do identify single

enzymatic reactions in the pathway of glycan synthesis. Note that the ability of partial

correlation in detecting biochemical steps in biological network has already been shown

for metabolomics [32] and IgG glycomics data (see Chapter 3 [176]), so the result is not

completely unexpected. However, a systematic correlation analysis of TPNG data had

never been performed before.

4.3 Structural inference

We have shown that the data-driven partial correlation network was able to selectively

identify biochemical relations among the measured variables. However, since the variables

in our data were compositions, we could not make any a priori statement on which glycan

structures were contributing to the observed correlations. To infer this information, we

exploited the strong relationship between GGM and compositional data pathway.

The approach was as follows: once the data driven GGM was computed from the data

(Figure 4.6A), we intersected it with the compositional data pathway (Figure 4.6B). This

was done to exclusively select the edges representing single enzymatic reactions of glycan
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synthesis that also showed a significant partial correlation among the corresponding com-

positions, giving rise to a data-driven pathway (Figure 4.6C). At this point, for any given

composition C (Figure 4.6D), we select the nearest neighbors (Figure 4.6E) and mapped

them back to the theoretical biochemical pathway, where a single composition could corre-

spond to several structures (Figure 4.6F). Finally, we selected the structure with compo-

sition C that maintained the most neighbors to be the Most Compatible Structure (MCS,

Figure 4.6G). Notice that in case of structures with the same number of nearest neighbors,

a clear decision could not be made, and therefore the structures were identified as equally

contributing. The procedure was repeated for all compositions in the dataset.

In our dataset, 28 of the 61 compositions were made of more than one glycan structure

(Figure 4.7). Out of these, for 14 of them our approach could identify a single MCS, for

2 we could at least exclude one structure and for 12 we could not make any prediction.

In order to validate our findings, we compared our results to glycomics data obtained

from the TPNG analyzed with different platforms [106, 177]. Among those compositions

for which we could identify a single MCS, 11 out of 14 were correctly inferred, two were

incorrectly predicted and for one we could not find validation data. Moreover, among those

compositions for which no single structure could be identified with our algorithm, but for

which at least one of the possible structures could be excluded (H5N4 and H5N4F1), the

most abundant structure was in the set of structures selected by our approach.

Overall, our approach demonstrated to be a cheap and effective tool to predict glycan

structures from compositions.

4.4 Conclusion

The overall glycosylation state of an organism is a powerful biomarker to identify physio-

logical changes or diseases [10,51,102,178–180]. The MALDI-TOF-MS platform allows to

measure N-glycans released from all human plasma proteins in large-scale cohorts. The

resulting spectrographic peaks represent different molecular masses (or compositions),

which, however, could be associated to multiple glycan structures. Since the structure

of a glycan is often essential to modulate the function of the corresponding glycopro-

tein [181], we addressed the problem of inferring the glycan structures contributing most

to the identified masses in the human total plasma N-glycome from a large cohort.

We first introduced a unified theoretical biochemical pathway, which we based on to the



4.4. CONCLUSION 75

Figure 4.7: MCS analysis results. In the figure, all compositions made of more than one structure
are shown. MCS as inferred with our approach are shown with a gray background. Structures
found in previously published studies on the TPNG [106,177] are indicated with a check mark.
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available literature on glycan synthesis. We then adapted this pathway to match the com-

positions measured in the available dataset. We showed that significant partial correlation

among measured compositions represent in large part single enzymatic steps in the path-

way. This relationship between partial correlation and glycosylation pathways was already

observed for IgG Fc glycans (see Chapter 3 [176]); however, this was a surprising result,

as the glycomics data are not extracted from a single isolated protein, but from a mixture

of proteins with vastly different functions. This result therefore indicates that a substan-

tial part of the glycosylation pathway is shared among different proteins. Protein-specific

synthesis steps are still likely to occur [13], but protein-specific data would be needed to

investigate them in detail.

We used the intersection between significant partial correlations and biochemical pathway

to predict which structure within a composition, referred to as the Most Compatible

Structure (MCS), was the one contributing most to the observed correlation matrix. We

then validated our prediction with previously published data [106, 177]. Out of the 14

compositions for which we could identify a single MCS, 11 were predicted correctly, 2

incorrectly, and for one prediction we did not have any validation data. In two additional

cases we could correctly exclude one of the structures within the composition.

For 12 compositions we could not make any prediction: out of these, two (H3N3 and

H6N4F1S1) did not show any significant correlation in the GGM, and were therefore not

suitable to be analyzed with our approach; 8 out of the remaining 10 were compositions

including bisected biantennary and triantennary glycans. Since tetraantennary structures

are isolated from the rest of the theoretical pathway due to unmeasured nodes (see Fig-

ure 2.4), bisected biantennary and triantennary glycans have the same neighbors in the

theoretical pathway, namely biantennary non bisected structures, and were therefore not

distinguishable by our approach.

This problem could be reduced once measurement platforms will be able to more accurately

quantify low abundant glycans, e.g., incompletely glycosylated tetraantennary structures.

However, it is also possible that those structures do not appear at all on plasma proteins:

recent studies demonstrated that incomplete glycosylation on plasma proteins could trig-

ger degradation [182], and hence proteins carrying such structures would be more likely

removed from circulation. Should this be the case, the problem could be addressed by

modifying the theoretical pathway to account for unmeasured structures. One way to ac-

complish this would be to also connect structures that are only separated by unmeasured

nodes. This approach would however require careful analysis, as multiple paths could

be possible, leading to multiple pathway models. However, the same pathway analysis
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employed in this thesis could be used to test these different models and select the one

with the highest overlap to the data correlation matrix (i.e., with the lowest Fisher’s test

p-value).

One intrinsic limitation of the approach presented here is that it needs a highly corre-

lated set of variables to be able to predict the MCS. In a biological system with only

few significant partial correlation coefficients, it would be hard to discriminate between

different structures according to their neighbors in the data-driven pathway. Furthermore,

it is worth noticing that the MCS our methodology identifies is technically the structure

within a composition that most contributes to the structure of the partial correlation. For

the considered dataset, we proved that in most cases this corresponds to the most abun-

dant structure in that composition, but this could be not true in other cases: should the

more abundant structures participate in substantially fewer pathway reactions than the

less abundant molecules, it would be difficult for our approach to select the former over

the latter. This drawback could be reduced by considering the inference results on neigh-

boring nodes when predicting the MCS on a new composition: by allowing a multivariate

inference approach, prediction accuracy should improve.

In conclusion, in this chapter, we presented an efficient data-driven approach for the

inference of glycan structures from mass spectrometry large-scale datasets. The results

of our analysis could be of concrete help in reducing the costs of further fragmentation

experiments, only selecting those compositions for which our approach was not able to

make a clear prediction.
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Chapter 5

Systematic evaluation of

normalization methods for

glycomics data based on

performance of network inference

Similar to all other omics data types, glycomics samples need to be preprocessed prior

to statistical analysis in order to minimize intrinsic, non-biological variation. This varia-

tion can arise, for example, from alterations in the experimental setup, temperature, or

instrument conditions. The process that aims at reducing technical variations from the

data is referred to in this thesis as normalization. Different normalization procedures may

have substantially different assumptions regarding the nature of the non-biological signal,

which in most practical cases is unknown. Systematic comparisons of commonly imple-

mented preprocessing strategies have been performed in recent years for many omics data,

e.g. transcriptomics [107], proteomics [108], as well as metabolomics [109–111], but an

analogous study for glycomics data is, to the best of our knowledge, currently unavailable.

This need for a glycomics-specific evaluation is further supported by the observation that

the de facto standard for large-scale glycomics data preprocessing is the Total Area (TA)

normalization [105], which describes each glycan intensity in a sample as a percentage

of the total. Following this transformation, the normalized intensities of a sample sum

up to one (or 100%) by definition, therefore implying the loss of one degree of freedom.

The division of each value by the sum of all values in a sample is referred to as a closure

operation, and the resulting dataset is known as a compositional dataset [137]. Notably,
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these type of data alter the structure of the covariance matrix, subsequently affecting any

downstream correlation-based analysis (for details on this phenomenon, see Section 2.1.3).

Compositional datasets are not unique to glycomics, but are widely used in other fields,

in particular in microbiome analysis [183], where percentages are used to describe the

relative abundance of different microbial species. However, regular multivariate methods

are not appropriate to treat these types of data, and specific statistical techniques need to

be employed [184–188]. Most of these methods require for the analysis the establishment

of new variables, typically defined as ratios between the original compositional values

[189–191]. This makes interpretation of the results in terms of the original quantities

challenging, if not impossible [192,193].

In order to be able to infer specific molecular interactions from the analysis of large-

scale glycomics data, the selection of a more suitable alternative to TA normalization

is therefore necessary. Given the variety of possible preprocessing strategies available,

we need to define an evaluation criterion to quantitatively assess the quality of different

normalization methods.

Common evaluation schemes for the performance of preprocessing strategies are mostly

based on two approaches: 1. Minimizing the variation between technical replicates [194,

195]; 2. Maximizing the variation across groups [111, 196]. Consistency across technical

replicates is a desirable outcome, but alone is not sufficient to guarantee good data quality,

and technical replicates might not always be available. The maximization of phenotypic

associations, on the other hand, is based on the assumption that the measured variables

associate strongly to an arbitrarily chosen phenotype, which might or might not be the case

for specific data. This criterion does therefore not necessarily reflect the true underlying

biology.

In this chapter, we address the question of evaluating different normalization strategies for

glycomics data with an unconventional and innovative approach. Specifically, we assess

the quality of a normalized dataset through its ability to reconstruct a biochemically

correct pathway using statistical network inference. The idea is based on the observation

that Gaussian Graphical Models are able to selectively identify single enzymatic steps in

metabolic pathways [32]. Here, we compare the GGMs inferred from data normalized with

different approaches to the known biochemical pathway of glycan synthesis and we evaluate

the quality of each normalization according to how well the corresponding GGM retrieves

known synthesis reactions (Figure 5.1). By computing the quantitative overlap between

estimated GGM and glycosylation pathway, we rely on a biological measure of quality,

as a higher overlap indicates data whose correlations are able to better reflect known
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biochemical interactions. Hence, the normalization that produces the highest overlap is

defined as the best. Glycomics data provide an ideal test case to demonstrate the validity

of this approach, as the known biochemical pathway of synthesis is well characterized.

In the following, we compared the performance of different variations of seven commonly

implemented normalization methods applied to glycan data from six cohorts and across

three different glycomics platforms, including measurements of IgG Fc, total IgG or total

plasma N-glycans.
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Figure 5.1: Pipeline for the evaluation of different normalization methods for glycomics data. First,
data are normalized with various approaches. From each processed dataset, a GGM is inferred
and compared to the available prior knowledge on the biochemical pathway of glycan synthesis.
The result of this comparison is a quantitative overlap that describes how well the estimated
GGM represents known synthesis reactions. This overlap is the used for the evaluation of the
normalization approach, where higher overlap corresponds to a better normalization.

5.1 Considered normalizations

For all six cohorts presented in Section 2.1.1 (Table 2.1), seven basic preprocessing ap-

proaches were considered (Table 5.1). All methods are commonly used in omics data

analysis: (1) Raw, i.e., unprocessed, data were included for comparison; (2) Quantile [197]

and (3) Rank [139] normalization are widely used in microarray data analysis; (4) Total
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Table 5.1: Considered Normalizations. Where possible, two variants were additionally considered:
a log-transformation subsequent to normalization and, for LC-ESI-MS measurements, normaliza-
tion per IgG subclass instead of total IgG.

Normalization Log Subclass

1 Raw —
2 Quantile per glycan [197]
3 Rank per glycan [139]
4 Total Area (TA) [198]
5 Median Centering [199] — —
6 Probabilistic Quotient [200]
7 TAProbabilistic Quotient [135]

Area (TA) is often used to treat large-scale glycomics [198] and microbiome data [183]; (5)

Median centering [199], (6) Probabilistic Quotient applied to raw and (7) to TA normalized

data are popular methods for the preprocessing of metabolomics data [135,200].

Since omics data have been observed to often follow a log-normal distribution [136, 143],

and since GGMs assume normally distributed data, log-transformation on normalized

data was also included in the analysis when applicable (indicated with a check mark in

the second column of Table 5.1), resulting in 13 different preprocessing strategies. For LC-

ESI-MS data, 10 additional variations were included, as in this case data normalization

can be performed over the full dataset or per each IgG subclass separately (third column

in Table 5.1). A detailed description of each normalization procedure can be found in

Section 2.1.3.

5.2 Prior knowledge based evaluation

Once all normalizations were applied to the data, partial correlation coefficients were

computed with the GeneNet algorithm [144], which has proven to give more reliable and

stable estimates of partial correlation coefficients than the analytical solution (see Section

6.1). Statistical significance of coefficients was determined by applying a False Discovery

Rate (FDR) of 0.01. The resulting partial correlation network, or Gaussian Graphical

Model (GGM), was then compared to the biochemical pathway of glycan synthesis. As

quantitative measure of overlap between the calculated GGM and the pathway, we chose

the Fisher’s p-value (see Methods), where lower p-values correspond to a higher overlap,

and, in the context of this thesis, to a better normalization. Schematics of the pathways

used for the evaluation can be found in Figures 2.2 and 2.4.
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5.2.1 LC-ESI-MS

For the LC-ESI-MS platform, most methodologies performed well (Figure 5.2, left). In-

terestingly, the unprocessed data (Raw) were among the best-performing methods, which

indicates that for this platform data transformation is not essential for correlation analysis.
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Figure 5.2: Normalization analysis results for the Korčula 2013 cohort. Results in the panels are
colored according to type of normalization (left), log-transformation (center), or normalization per
IgG subclass or total IgG (right). Bars represent the median of the Fisher’s exact test p-values
over 1,000 bootstrapping, and error bars the corresponding 95% confidence intervals.

As expected, TA-based normalizations performed significantly worse than all other con-

sidered preprocessing. Given the assumption of normality of the considered correlation

measure, we expected Log-transformed data to perform better than their non-transformed

counterparts. However, we observed that Log-transformation seemed to even worsen per-

formance, although not significantly (Figure 5.2, center).

An exception to this rule is the TA-log normalization, for which the logarithm appears to
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neutralize the constraints imposed by TA. Normalizing per total IgG or per IgG subclass

did not result in substantial differences in performance (Figure 5.2, right).

The results of the evaluation were consistent across all cohorts (Figures 5.3-5.5).

In conclusion, we showed that for LC-ESI-MS IgG Fc glycomics data, all considered pre-

processing performed comparably except TA, which was significantly worse than the rest.

Surprisingly, non log-transformed data did not perform worse than the transformed data,

and normalizing per total IgG or per IgG subclass did not make a significant difference.
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Figure 5.3: Normalization analysis results for the Korčula 2010 cohort. Results in the panels are
colored according to type of normalization (left), log-transformation (center), or normalization per
IgG subclass or total IgG (right). Bars represent the median of the Fisher’s exact test p-values
over 1,000 bootstrapping, and error bars the corresponding 95% confidence intervals.
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Figure 5.4: Normalization analysis results for the Split cohort. Results in the panels are colored
according to type of normalization (left), log-transformation (center), or normalization per IgG
subclass or total IgG (right). Bars represent the median of the Fisher’s exact test p-values over
1,000 bootstrapping, and error bars the corresponding 95% confidence intervals.

5.2.2 UPLC

In the available IgG UPLC dataset, only 24 glycan peaks were measured, versus the 50

structures of the LC-ESI-MS data. Just because of this intrinsic difference, the overall p-

values of the analysis were expected to be higher in this case. However, this does not affect

our analysis, as our approach evaluates normalizations according to their ranking and not

absolute performance. Contrary to the previous case, here the performance was highly

affected by the chosen normalization method (Figure 5.6, left), with TA Probabilistic

Quotient and simple Probabilistic Quotient being the top ranking methods. In this case,

the unprocessed data did not perform well at all.
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Moreover, in contrast to what was observed in the LC-ESI-MS case, for UPLC data,

the log-transformation had a significant impact on the performance of normalizations,

although with opposite effects depending on the methodology: for some it substantially

enhanced performance (Quantile, Total Area), while for others it was detrimental (Rank,

Raw data) (Figure 5.6, right).
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Figure 5.5: Normalization analysis results for the Vis cohort. Results in the panels are colored
according to type of normalization (left), log-transformation (center), or normalization per IgG
subclass or total IgG (right). Bars represent the median of the Fisher’s exact test p-values over
1,000 bootstrapping, and error bars the corresponding 95% confidence intervals.

In conclusion, for UPLC data, log-transformation did significantly affect the normaliza-

tion performance, while Probabilistic Quotient-based normalization were the overall best

performing method.
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Figure 5.6: Normalization analysis results for the CRC cohort. Results in the panels are colored
according to type of normalization (left), or log-transformation (right). Bars represent the median
of the Fisher’s exact test p-values over 1,000 bootstrapping, and error bars the corresponding 95%
confidence intervals.
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Figure 5.7: Normalization analysis results for the LLS cohort. Results in the panels are colored
according to type of normalization (left), or log-transformation (right). Bars represent the median
of the Fisher’s exact test p-values over 1,000 bootstrapping, and error bars the corresponding 95%
confidence intervals.
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5.2.3 MALDI-TOF-MS

The MALDI dataset included 61 glycan variables, so we expected Fisher’s p-values of

the same order as the LC-ESI-MS for the best performing methods. Similar to the LC-

ESI-MS case, we found a multitude of methods that performed well (Figure 5.7, left).

Log-transformed unprocessed data delivered the worse performance, followed by TA nor-

malization variations. Except for these cases, Log-transformation did not significantly

affect the normalization performance (Figure 5.7, right).

In conclusion, for MALDI data several normalizations were found appropriate. Log-

transformation did not significantly alter performance, except when considering unpro-

cessed data.

5.3 Conclusion

Little attention is often paid to data preprocessing, although it can highly affect the relia-

bility and reproducibility of any downstream data analysis. Several systematic evaluations

of preprocessing methodologies have been recently published for different omics data types,

but glycomics has so far been ignored in this regard.

In order to address this problem, we developed an innovative approach to assess the

quality of different normalization strategies applied to glycomics data. The main feature

of our procedure lies in the definition of a biological measure of quality, i.e., we quantify

how well significant correlations in the data normalized with a given technique represent

known biochemical reactions in the pathway of glycan synthesis. Our quantitative measure

of choice for this evaluation was the Fisher’s test p-value, which allows for an intuitive

interpretation of overlap between correlations and biochemical pathway.

In this chapter, we performed a systematic analysis of 23 preprocessing strategies applied

to six large-scale cohorts across three platforms, with measurements ranging from single

protein and single glycosylation site (LC-ESI-MS), to total plasma N-glycome (MALDI-

TOF-MS). The observed normalization ranking was highly compatible across platforms:

overall, the Probabilistic Quotient resulted the most reliable method, as all variations of

this procedure ranked consistently in the top performers in all cohorts and across plat-

forms. Log-transformation and normalization per IgG subclass or per total IgG did not

seem to significantly affect the ability of this method to correctly retrieve the glycan

synthesis pathway. Interestingly, while Total Area normalization did not rank high in

comparison to other methods (as expected), the log-transformed Total Area preprocessing

was a well-performing method, and TA Probabilistic Quotient was among the best per-
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forming approaches overall, suggesting that additional transformations on TA normalized

data can neutralize the constraints imposed by on the data correlation structure.

One interesting finding of our investigation was the substantial difference of the evaluation

results between MS- and UPLC-based platforms: while for the former most normaliza-

tion approaches performed comparably, for the latter the variance among the considered

strategies was considerable. The origin of this discrepancy is not easy to track, but it

could be due to the fact that UPLC does not separate glycans according to their mass,

like MS-based techniques do, but according to their chemical and physical properties,

which determine different retention times. This leads to most chromatographic peaks to

represent a mixture of glycan structures. Although it has been shown that there is a

predominant structure in the vast majority of IgG chromatographic peaks24, this con-

tamination could make the data correlation structure noisier and thus more sensitive to

different normalizations.

It is important to note that the results obtained in this chapter do not necessarily hold

for types of analyses other than correlation studies. An analogous systematic evaluation

would be therefore needed for other statistical questions; however, while in this case we

could define a well-characterized biological measure of quality, such a measure would be

harder to define for other types of analysis. Moreover, while the results presented here

seem to suggest that log-transformation is not necessary, it should be considered that data

normality is an assumption of several other statistical tests and approaches, and thus we

still recommend, in general, to log-transform the data after normalization. The results

obtained in this analysis were highly consistent across the considered platforms. Never-

theless, investigating the performance of these normalization methods on data obtained

from other common measurement platforms, e.g., Multiplex Capillary Gel Electrophore-

sis with Laser-induced Fluorescence (xCGE-LIF) [90], would be valuable to improve the

generalizability of our findings. The same approach described here could moreover be em-

ployed to evaluate other preprocessing steps, for example batch correction, which aims at

reducing the variance due to samples being measured at different times, or missing values

imputation.

In conclusion, we recommend to normalize glycan data with the Probabilistic Quotient

normalization followed by log-transformation. This technique has demonstrated to be

robust and reliable regardless of the measurement platform.
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Chapter 6

Using prior knowledge to optimize

correlation network cutoffs

Network inference, i.e., the reconstruction of biological networks from high-throughput

data, has become a booming field in systems biology [201–203] . Interactions among

biomolecules extracted from the analysis of large datasets have been shown to represent

known and predict novel biological mechanisms [204,205], in particular enzymatic reactions

in molecular pathways [32,116].

Virtually all network inference methodologies require the definition of a parameter that

determines which molecular interactions should be included in the network and which

should be discarded. The construction of correlation-based networks commonly requires

a series of simple steps (Figure 6.1A). First, pairwise correlations between variables are

estimated from the data, for which a wide variety of methods is available. The next step

is to determine which correlation coefficients are statistically different from zero using

a hypothesis test, which produces p-values associated with each correlation coefficient.

These p-values are then compared to a given significance level α, typically 0.01 or 0.05,

with appropriate multiple hypothesis testing correction. Finally, significant correlations

can be visualized and further analyzed as a network, where nodes represent the variables

in the dataset and edges represent significant correlations.

However, this straightforward network inference pipeline has two major pitfalls that are

usually overlooked and substantially affect the robustness and reproducibility of correlation-

based network inference. First, for most correlation measures, the resulting network will

vary substantially depending on the number of observations available in the dataset. In

general, the bigger the sample size, the lower the p-values. This means that with increas-
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ing sample size, weaker correlations become significant and the corresponding network

becomes denser (Figure 6.1B). Second, different multiple testing methods (e.g., Bonfer-

roni [146] or Benjamini-Hochberg [122]) have different underlying assumptions, such as

controlling for the family-wise error rate (FWER) versus the false discovery rate (FDR),

respectively. However, in practice, the choice of one method over another is usually not

scrutinized adequately. Thus, depending on the arbitrary choice for error correction and

significance level, one may obtain vastly different networks (Figure 6.1B) which are all

statistically sound, but that do not necessarily represent relevant underlying biological

mechanisms.

In this chapter, we address the problem of correlation-based network inference from a dif-

ferent perspective. Instead of a statistically-driven cutoff selection, we propose to choose

the correlation cutoff that produces the correlation network with the highest overlap to
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Figure 6.1: Pipeline of network inference and workflow of the new approach. A Typical pipeline
of correlation network inference. A correlation matrix is estimated from the preprocessed data.
A significance selection step identifies correlations that are statistically different from zero. Sig-
nificant correlations are commonly visualized as a network. B Schematic representation of the
dependence of the correlation network on sample size and statistical cutoff. Note that, despite
looking substantially different, all resulting networks can be considered statistically correct. C
Prior knowledge-based network overlap estimation. The correlation network is compared to a
prior knowledge network, where the overlap is quantified using true positives (TP), false posi-
tives (FP), false negatives (FN) and true negatives (TN). Based on these values, a quality overlap
measure between data-driven correlation matrix and biological reference is computed. D Prior
knowledge-based network inference approach. We discard the p-value-based significance selection,
and instead analyze how the overlap between correlation network and biological reference varies
depending on the correlation cutoff. We then define optimal the correlation cutoff at the point
where the overlap is maximal.



6.1. STATISTICAL CORRELATION CUTOFFS DEPEND ON SAMPLE SIZE 93

a given ground truth (Figure 6.1C and D), hereafter referred to as ’biological reference’.

That is, we search for the network that shows the highest overlap with the known un-

derlying biology, thereby avoiding the above-mentioned arbitrarily determined cutoffs for

p-values. We postulate that even a coarse, incomplete, or partly incorrect biological ref-

erence is suitable for this approach, as long as a sufficient amount of correct biological

knowledge is covered. In many cases, the molecular networks regulating the system under

study are not fully known, which results in an only partial biological reference being avail-

able. For example, often only few of the synthesis pathways of the system under study are

well characterized, and for some systems, detailed biochemical information is not available

at all. In these cases, we argue that one can still use the available prior knowledge as a

biological reference and obtain a cutoff that is close to the global optimum. We first show

that statistical significance selection is indeed substantially influenced by the dataset size.

We then apply the prior-knowledge based cutoff optimization approach to plasma IgG

glycomics measurements. In this particular case, we have a well-characterized, supposedly

complete biochemical synthesis pathway, which we use as gold standard biological refer-

ence to test our optimization approach. We show that the optimal correlation cutoff is

unique and sample size independent. Moreover, even when the optimization procedure is

performed with only a fraction of the original biological reference, the resulting optimum

remains the same. Finally, we apply the algorithm to urine metabolomics and TCGA [142]

RNA-sequencing data, where our method is able to identify an optimal network and to

outperform regular statistical cutoffs.

All results reported in this chapter are part of the following publication:

• Benedetti, E., Pučić-Baković, M., Keser, T., Gerstner, N., Büyüközkan, M., Tamara,

P., Selman, M.H.J., Rudan, I., Polašek, O., Hayward, C., Al-Amin, H., Suhre, K.,

Kastenmüller, G., Lauc, G., Krumsiek, J., Using prior knowledge to optimize corre-

lation network cutoffs. Submitted.

6.1 Statistical correlation cutoffs depend on sample size

For most correlation measures, the larger the sample size, the lower the resulting correla-

tion cutoff at a given significance level. In other words, increasing the number of subjects

measured in a study automatically results in a denser correlation network. To quanti-

tatively investigate this effect, we analyzed IgG glycomics measurements from four large

Croatian cohorts (see Subsection 2.1.1). In the following, the results for one of the four

cohorts (Korčula 2013) are shown, while the other three cohorts were used for replication.
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The discovery dataset included 669 samples and 50 glycan structures measured. Data

were normalized, log-transformed and corrected for age and gender prior to analysis.

We subsampled the glycomics dataset without replacement to simulate different sample

sizes, from 10 to 669 samples. For each subsample, we computed the glycan correlation

matrix and applied a 0.01 FDR cutoff using the Benjamini-Hochberg method as an ex-

emplary approach for multiple testing correction. Results would be qualitatively identical

with other methods (e.g. Bonferroni) and α levels. We considered two correlation measures

commonly used in the field of computational biology: classical pairwise Pearson correla-

tion and partial correlation, which accounts for the presence of confounders. We included

two different estimators for partial correlation: Exact partial correlations obtained from

the inversion of the covariance matrix (referred to as parcor), and a shrinkage-based reg-

ularization approach, which has been shown to give a more stable estimate and still work

in datasets with less samples than variables (GeneNet) (see Subsection 2.3.1).

As expected, for both Pearson correlation and parcor, the significance cutoff decreases

with increasing sample size and does not converge even for larger sample sizes (Figure

6.2A, red and blue curves, respectively).
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Figure 6.2: Correlation cutoff as a function of the sample size. A Correlation cutoff (0.01 FDR)
as a function of the dataset sample size for the three correlation measures considered: Pearson
correlation (red), exact partial correlation (purple), GeneNet partial correlation (black). Error
bars represent 95% confidence intervals from 1,000 bootstrapping samples. B Number of edges
in the correlation network after applying a 0.01 FDR cutoff as a function of the dataset sample
size. Error bars represent 95% confidence intervals of 1,000 bootstrapping samples. Note that for
parcor, correlation coefficients can only be estimated for a sample size greater than or equal to the
number of variables, in this case 50.
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Figure 6.3: Size dependence of statistical cutoffs in the glycomics replication cohorts. A, C, E
Correlation cutoff (0.01 FDR, Benjamini-Hochberg) as a function of the dataset sample size for
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sample size in the Korčula 2010, Split and Vis cohorts, respectively. Error bars represent 95%
confidence intervals of 1,000 bootstrapping samples. Note that for parcor, correlation values can
only be estimated for a sample size greater or equal to the number of variables, in this case 50.

Interestingly, partial correlations estimated with GeneNet do not show the same behavior,

as the statistical correlation cutoff is fairly stable across the considered sample sizes (Fig-

ure 6.2A, black line). This is also reflected in the total number of edges in the resulting

network: while for Pearson correlation and parcor the number of significant coefficients in-

cluded in the network systematically increases with the sample size, the network estimated

with GeneNet maintains a roughly constant number of edges (Figure 6.2B). As a quanti-

tative example, when considering twice as many samples, from 200 to 400, the GeneNet

network remains stable with around 60 edges, while the Pearson correlation network in-

creases by a factor of roughly 1.2 (from 655 to 790) and the parcor network increases by

a factor 1.5 (from 95 to 155). Analogous results were obtained in the three replication

cohorts (Figure 6.3).

This first analysis showed that indeed there is a strong dependence of network density

(number of significant correlation) on sample size of the dataset for both Pearson and

partial correlations. GeneNet did not show this behavior, which is most likely an effect of

the p-value estimation method used in the algorithm (see Methods), and it gave rise to a

considerably more stable network, almost independent of the sample size.

6.2 Reference-based cutoff optimization

We then applied our reference-based network inference approach to IgG glycomics data,

for which the pathway of synthesis is well characterized (Figure 6.4A). We have previously

shown that edges in a partial correlation network represent single enzymatic reaction in

the IgG glycosylation pathway8.

First, we tested how our method compares to regular statistical cutoffs. As a quantitative

measure of overlap, we used Fisher’s exact test based on the overlap contingency table,

which classifies glycan-glycan pairs depending on whether an edge between them appears

both in the correlation network and in the biological reference (true positives), only in

the correlation network (false positives), only in the biological reference (false negatives)

or in neither (true negatives). This p-value will be lower the higher the overlap between

correlation network and biological reference is (see Methods). The cutoff that produces the

maximum overlap to the biological reference is hereafter referred to as the “optimal cutoff”
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and the corresponding network as the “optimal network”. Regular Pearson correlation

performed poorly in comparison to parcor, while GeneNet was the overall best performing

method (Figure 6.4B).
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Figure 6.4: Network quality as a function of the correlation cutoff. A IgG glycan structures and
synthesis pathway. The figure was adapted from Benedetti et al. (2017) and represents the IgG
glycosylation pathway, with nodes representing glycan structures and arrows representing single
enzymatic reactions in the synthesis process. B Fisher’s exact test p-values as a function of the
correlation cutoff calculated for three correlation estimators: Pearson correlation (pink), exact
partial correlation (purple), GeneNet partial correlation (black). For each correlation cutoff, the
original dataset was bootstrapped 1,000 times. Error bars represent the 95% confidence intervals of
the bootstrapping results. Dashed lines represent the mean of the bootstrapped statistical cutoffs
for GeneNet. C Fisher’s exact test p-value for partial correlations estimated with GeneNet, as
a function of both sample size and correlation cutoff. Shade represents the mean across 1,000
bootstrapping samples, while the red line represents the mean of the 0.01 FDR cutoff.
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Figure 6.5: Network quality as a function of the correlation cutoff in the glycomics replication
cohorts. A, C, E Fisher’s exact test p-values as a function of the correlation cutoff calculated
in the Korčula 2010, Split and Vis cohorts, respectively, for three correlation estimators: Pearson
correlation (red), exact partial correlation (purple), GeneNet partial correlation (black). For each
correlation cutoff, the original dataset was bootstrapped 1,000 times.
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Error bars represent the 95% confidence intervals of the bootstrapping results. Dashed lines rep-
resent the mean of the bootstrapped statistical cutoffs for GeneNet. Interestingly, the maxima of
the GeneNet curve are fairly similar across cohorts: 0.24 (Korčula 2010), 0.23 (Split), 0.24 (Vis).
B, D, F Fisher’s exact test p-value for partial correlations estimated with GeneNet in the Korčula
2010, Split and Vis cohorts, respectively, as a function of both sample size and correlation cutoff.
Colors represent the mean across 1,000 bootstrapping samples, while the red line represents the
mean of the 0.01 FDR cutoff.
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Figure 6.6: Cutoff optimization as a function of the sample size for parcor correlation in the
glycomics replication cohorts. A, B, C, D Fisher’s exact test p-value for partial correlations
estimated with parcor in the Korčula 2013 (A), Korčula 2010 (B), Split (C) and Vis (D) cohorts,
respectively, as a function of both sample size and correlation cutoff. Color represents the mean
across 1,000 bootstrapping samples, while the red line represents the mean of the 0.01 FDR cutoff.

Notably, the optimal GeneNet network outperforms the GeneNet networks obtained with

most statistical cutoffs. The analysis of the replication cohorts showed similar results
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(Figure 6.5). This proves that biological prior knowledge improves the choice of a network

cutoff, and that the optimal network is identifiable and unique for all correlation measures

considered.

To assess whether the optimal network obtained with our procedure depends on sample

size, as statistical cutoffs, we reperformed the optimization procedure on subsamples of

the original dataset (Figure 6.4C). For GeneNet, the optimal cutoff turned out to be size-

independent, as expected. This indicates that, by optimizing the cutoff with our approach

even with a relatively small sample size (roughly 160 observations), we still obtain the
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samples, while the red line represents the mean of the 0.01 FDR cutoff.
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same optimal network that we would get with a much larger dataset (669 observations).

Strikingly, even for Pearson and parcor correlation, for which statistical cutoffs showed

strong sample size dependence, the optimal cutoff appeared to be sample size independent

over 300 samples (Figure 6.6 and 6.7, respectively), although the overall performance was

lower than GeneNet. In conclusion, using prior information to optimize the correlation

cutoff allowed to infer the same optimal network regardless of the sample size of the

considered dataset.

6.3 Incomplete, incorrect, or coarse biological references

Our optimization approach determines the correlation cutoff at which the data-driven

network best represents the biological reference. However, IgG glycan synthesis is a very

well-characterized process, while in most other practical cases a reference that describes

the system in detail is not available. We postulate that even with an incomplete or

partially incorrect biological reference, we will obtain an optimal network. To this end, we

considered the performance obtained from the optimization procedure when comparing

the full biological reference with an artificially incomplete, incorrect or coarse version of

it, as described in the following.

Scenario 1: incomplete biological reference. Since for many biological systems the

full biochemical pathway of synthesis is not available, we simulated a case in which only

a given percentage of the IgG glycosylation pathway is known. To this end, we randomly

constructed incomplete pathways by selecting a fraction (10 to 90% in increments of 10%)

of the edges in the IgG glycosylation pathway shown in Figure 6.4A. For each percentage,

we generated 100 different incomplete pathways and used each of them to optimize the

correlation cutoff (Figure 6.8A). Obviously, due to the increase in false positives, the fewer

edges from the original reference we consider, the lower the overlap to the correlation net-

work becomes. Importantly, however, the optimum is highly conserved across the curves,

yielding the same optimal cutoff (0.23) regardless of the amount of prior information avail-

able. This means that if we only knew, e.g., 50% of the reactions in the IgG glycosylation

pathway shown in Figure 2.2, we would still obtain the identical optimal network as we

would by using the full pathway.

Scenario 2: partially wrong biological reference. In many cases, our understanding

of how a biological system works might be partially incorrect. Therefore, we considered
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Figure 6.8: Cutoff optimization with partial knowledge. A Incomplete biological reference. For
each percentage, 100 different adjacency matrices were generated by randomly selecting edges
from the IgG glycosylation pathway. The curves in the figure represent the means of the 1,000
bootstrapping resamplings on each adjacency matrix. B Incorrect biological reference. Edges in
the IgG glycosylation pathway were randomly swapped to simulate incorrect information in the
biological reference. For each considered number of swaps, 100 adjacency matrices were generated
and the averages over those curves and over the 1,000 bootstrapping resamplings are shown. Here,
the red curve represents 100 fully randomized adjacency matrices. The error bars on this curve
represent the 95% confidence interval of the bootstrapping. Any signal that falls within these
intervals should be regarded as noise. C Coarse biological reference. For IgG glycomics data we
know that only enzymatic reactions between glycans attached to the same IgG isoform are feasible
(adjacency matrix 1) and, in addition, that only they can be modified by the addition of one sugar
unit at a time (adjacency matrix 2). The black curve corresponds to the optimization performed
on the full reference (adjacency matrix 3) for comparison. The curves in the figure represent the
means of the 1,000 bootstrapping resamplings and the different considered adjacencies. In all plots,
the black curve corresponds to the optimization performed on the full reference. The error bars
represent the 95% confidence interval of the bootstrapping.
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Figure 6.9: Cutoff optimization with partial knowledge in the glycomics replication cohorts.
A, C, E Incomplete biological reference in the Korčula 2010 (A), Split (C) and Vis (E) co-
horts. For each percentage, 100 different adjacency matrices were generated by randomly selecting
edges from the IgG glycosylation pathway. The curves in the figure represent the means of the
1,000 bootstrapping resamplings on each adjacency matrix. B, D, F Incorrect biological refer-
ence in the Korčula 2010 (B), Split (D) and Vis (F) cohorts. Edges in the IgG glycosylation
pathway were randomly swapped to simulate incorrect information in the biological reference.
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For each considered number of swaps, 100 adjacency matrices were generated and the averages
over those curves and over the 1,000 bootstrapping resamplings are shown. Here, the red curve
represents 100 fully randomized adjacency matrices. The error bars on this curve represent the
95% confidence interval of the bootstrapping. Any signal that falls within these intervals should
be regarded as noise.

the possibility of our reference to include wrong information, i.e., a given number of wrong

edges.

We simulated an increasing number of edge swaps in the IgG glycosylation pathway until

we reached full randomization. For each condition, we generated 100 different pathways

and performed the optimization procedure on them (Figure 6.8B). Again, while the overall

performance decreased as expected, the shape of the curve clearly leads to the same optimal

cutoff as the original pathway for up to 20 swaps. This means that even when starting

with a substantially incorrect prior, as long as partial truth is contained in the reference

network, the optimized network will still produce the same network as the one obtained

with the complete biological reference.

Scenario 3: coarse biological reference. Sometimes no detailed biochemical mech-

anisms of synthesis are known, but only general biological properties of the molecules in

the dataset. For example, we know that glycan processing occurs when the sugar chain is

already bound to the protein. In our datasets, we have the measurements of three different

protein isoforms (IgG1, IgG2 and IgG3 together, and IgG4). Therefore, we can constrain

the set of possible biochemical reactions only to glycans pairs within the same IgG iso-

form (adjacency matrix 1 in Figure 6.8C). Moreover, we know that glycosylation enzymes

can only add a single monosaccharide at a time during glycan synthesis. Hence, we can

further reduce the possible reactions to those between glycan pairs that differ of a single

sugar unit (adjacency matrix 2 in Figure 6.8C). When comparing the optimization results

carried out starting from these biological references to that of the full biochemical path-

way (adjacency matrix 3 in Figure 6.8C), we observe that, while the overall performance

varies substantially, the optimal values are close to each other, thus producing similar

networks. Therefore, even when biochemical details are not available for the system under

study, other sources of information can be used for the optimization and lead to the same

optimum as the complete biological reference.

The three scenarios’ results could be replicated for the other cohorts (Figure 6.9 and 6.10).



6.3. INCOMPLETE, INCORRECT, OR COARSE BIOLOGICAL REFERENCES 105

In conclusion, for various cases of incomplete prior knowledge, our approach still leads to

a close to globally optimal network.
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Figure 6.10: Cutoff optimization with coarse prior knowledge in the glycomics replication cohorts.
A, B, C Coarse biological reference in the Korčula 2010 (A), Split (B) and Vis (C) cohorts.
The curves in the figure represent the means of the 1,000 bootstrapping resamplings and the
different considered adjacencies. The black curve corresponds to the optimization performed on
the full reference for comparison. The error bars represent the 95% confidence interval of the
bootstrapping. D References considered in the optimization. For IgG glycomics data we know
that only enzymatic reactions between glycans attached to the same IgG isoform are feasible
(adjacency matrix 1) and, in addition, that only they can be modified by the addition of one sugar
unit at a time (adjacency matrix 2). The black curve corresponds to the optimization performed
on the full reference (adjacency matrix 3) for comparison.
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6.4 Application to metabolomics data

In order to test whether our approach can be generalized to other data types, we ap-

plied the algorithm to untargeted urine metabolomics dataset (Antipsychotics cohort,

Table 2.3). The dataset consisted of 95 samples with 1,021 measured metabolites. Data

were normalized, log-transformed, imputed and corrected for age, gender, and BMI prior

to analysis (see Methods). Since current pathway databases cover only a part of the

metabolites measured in a typical mass-spectrometry-based analysis, we had to rely on

partial prior information: (1) Enzymatic reactions connecting the measured metabolites

were obtained from the RECON2 database13. In addition, we created adjacency matrices

from metabolite annotations. We constrained reactions between metabolites to only those

among molecules (2) within the same biological pathway (in the following referred to as

sub-pathway) or (3) within the same molecular class (referred to as super-pathway).

Figure 6.11: Cutoff optimization for metabolomics data. We used biochemical reactions from the
RECON database as partial prior knowledge (adjacency matrix 1), as well as sub- and super-
pathway annotations (adjacency matrices 2 and 3, respectively). Curves in the figure represent the
average over 100 bootstrapping resamplings, and error bars show the corresponding 95% confidence
intervals. Vertical lines indicate the mean of the statistical cutoffs, and the horizontal error bars
the corresponding 95% confidence intervals over the bootstrapping.
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We inferred GeneNet-based networks using these three priors as biological references (Fig-

ure 6.11).

Although the absolute performances vary significantly depending on the chosen prior,

the maxima are still remarkably close to each other. This means that the corresponding

resulting optimal networks will be similar. Similar to the glycomics case, the statistical

cutoff of FDR 0.05 was found to consistently perform comparably to the optimized cutoff.

The performance of Pearson and parcor correlation measures can be found in Figure 6.12.

In conclusion, we demonstrated that our approach can be generalized to metabolomics

data, where a full biological reference is unavailable. Partial prior information can be used

from different sources and the optima obtained with different priors are highly consistent.

6.5 Application to transcriptomics data

To evaluate the approach on a substantially different type of omics data, we analyzed

RNA-sequencing data from The Cancer Genome Atlas [142] (TCGA, Table 2.4). After

preprocessing, the dataset included expression measurements of 12,005 genes from 2,726

samples across 11 different cancer types (see Subsection 2.2.3). Values were corrected for

age, gender and cancer type prior to analysis.

Gene expression measurements were analyzed in subsets according to their pathway an-

notations from the Reactome database [150, 151]. For each pathway, we used the corre-

sponding STRING [152,153] subnetwork as biological reference.

Since we tested 469 pathways in this analysis, we used a conservative significance threshold

for the Fisher’s p-value of 0.01/469 = 2.13 · 10−5, yielding 129 pathways with a significant

optimum (see Figure 6.14 for detailed results). In 102 of these cases, our optimized cutoff

clearly outperformed the statistical cutoffs, which tend to produce too sparse networks.

As a showcase of how this difference in correlation cutoff translates into differences in the

inferred network, we compared the partial correlation networks, or GGMs, obtained with

FDR 0.05 to our optimization procedure for the ”MAPK1/MAPK3 signaling” pathway

(Figure 6.13). The statistically inferred network is substantially too sparse and thus

only shows limited overlap to the biological reference (median of Fisher’s test p-value

> 10−5). The optimized network achieved a p-value of 10−14, therefore substantially

better resembling the biological reference than the statistically inferred network. Notice

that PPI networks are much denser than biochemical pathways (from the glycomics and
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metabolomics analysis), and therefore the estimated GGMs was expected to reflect this

property.

In conclusion, the analysis of the TCGA data demonstrated that the performance of

statistical cutoffs is highly unpredictable and thus statistically inferred GGMs cannot be

assumed to well represents the underlying molecular mechanisms.

Figure 6.12: Parcor (A) and Pearson (B) correlation cutoff optimization with partial and coarse
knowledge in the metabolomics cohort. As prior knowledge, we used biochemical reactions from the
RECON database (adjacency matrix 1), as well as sub- and super-pathway annotations (adjacency
matrices 2 and 3, respectively). Curves in the figure represent the average over 100 bootstrapping
resamplings, and error bars show the corresponding 95% confidence intervals. Vertical lines indicate
the mean of the statistical cutoffs, and the horizontal error bars the corresponding 95% confidence
intervals over the bootstrapping.
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Figure 6.13: TCGA transcriptomics analysis results for the MAPK1/MAPK3 signaling pathway.
A Cutoff optimization for the transcriptomics data. Protein-protein interaction networks from
STRING were used as reference. The black curve represents the average over 100 bootstrap-
ping resamplings, and the error bars show the corresponding 95% confidence intervals. Vertical
lines indicate the mean of the statistical cutoffs, and the horizontal error bars the corresponding
95% confidence intervals over the bootstrapping. This example illustrates how statistical cutoffs
can completely fail to identify a biological optimum. B Biological reference (PPI network from
STRING). C GGM obtained with a 0.05 FDR cutoff (correlation cutoff 0.155). D GGM obtained
with our optimization procedure (correlation cutoff 0.071).
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6.6 Conclusion

In this chapter, we addressed a problem that has not received much attention in the field

so far. Correlation network inference relies on statistical correlation cutoffs, which suffer

from sample size dependence and are subject to an arbitrary choice of significance level

and multiple testing correction procedure. We showed that an exception to this general

observation is GeneNet, which exhibits a remarkable robustness to sample size, but is still

subject to the statistical cutoff problem.

The approach presented here overcomes this problem by establishing a biologically optimal

correlation cutoff for network inference. The procedure ranges over the correlation cutoff

value until an optimal overlap with a given, possibly incomplete, biological reference is

achieved. We benchmarked the approach on LC-ESI-MS IgG glycosylation data from

four large Croatian cohorts. For this type of data, the full synthesis pathway has been

established and could thus serve as a gold standard for method evaluation. We showed

that for the GeneNet partial correlation method, the resulting optimization curve leads

to a well-determined and unique optimum, regardless of sample size and p-value cutoffs.

Other correlation-based methods performed inferior compared to GeneNet.

The approach was then applied to the more realistic case of partial prior knowledge, i.e., the

case where a detailed and correct biological reference is not available. We considered three

different scenarios: 1. Only a fraction of the biochemical pathway of synthesis is known;

2. The biochemical pathway contains incorrect information; 3. Only relations between

classes of variables are known. In all three cases, we obtained nearly optimal networks

even with little biological knowledge available. This means that even only marginally

informative priors are sufficient to obtain a reasonable approximation of the true network

optimum. We further demonstrated the applicability of the approach on metabolomics

and transcriptomics data, for which only partial prior knowledge is available. The three

partial biological references used for the metabolomics data, based either on metabolic

reactions or molecular annotations, yielded very similar optima, supporting the claim that

partial knowledge from different sources can be used to optimize the correlation cutoff. Our

approach was further validated on transcriptomics data, where we used protein-protein

interaction networks as references.

Interestingly, for the metabolomics dataset statistical, the 0.05 FDR cutoff was very close

to the optimum, just like in the glycomics case. However, we argue that this good perfor-

mance of FDR is purely coincidental and cannot be generalized to other datasets or data

types. This was corroborated by the analysis of transcriptomics data, for which FDR cut-
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offs were found to significantly overestimate the optimal cutoffs in many cases. Therefore,

we conclude that FDR is not a real competitor of our approach, as its performance cannot

be predicted a priori and varies substantially depending on the data type.

The procedure described in this chapter requires a quantitative overlap measure to per-

form the cutoff optimization. We chose Fisher’s exact test p-value as a proxy for the

agreement between calculated correlation network and prior knowledge. It is to be noted

that more conventional machine learning measures exist for classification problems. The

popular F1-score [206], however, does not account for true negatives and was therefore

disregarded here. Interestingly, Matthews correlation coefficient [207], another popular

measure that uses all values in the contingency table, is actually related to the Fisher’s

p-value. Its absolute value is proportional to the square root of the chi-square statistic,

which is asymptotically equivalent to that of the Fisher’s exact test [208].

It is worth mentioning that our approach fails if there is a part of the network not covered

by the biological reference (missing information) where a different optimal cutoff holds.

Since the unknown part does not factor into the optimization process, the identified cutoff

would be off and inference on that part of the network would be inaccurate. This is an

issue that can conceptually not be overcome unless we get better coverage of the biological

reference.

As an inference tool, cutoff optimization as presented in this chapter is a very flexible and

generalizable strategy. Most of the network inference methods that attempt to account for

prior knowledge integrate the biological reference directly into a specific network inference

or regression framework [209–214], for example by penalizing or enhancing specific edges

according to the biological reference. On the contrary, our approach uses prior knowledge

as an external reference system to optimize the purely data-driven association matrix.

This will allow applying the same concept to different association measures, for example

mutual information [215] or other non-linear association quantities, in future studies.

A central feature of our approach is that our formulation is robust to partial and incorrect

information in the biological reference, which makes it applicable to a wide variety of omics

data, in particular when the prior knowledge of the system is sparse and possibly of low

quality.

In conclusion, we have shown that even when dealing with data types for which a well-

characterized biochemical pathway or interaction network is not fully established, priors

based on the known biology of the system can be used for optimization. We have demon-

strated that our optimal network outperforms those obtained with common statistical
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cutoffs, and therefore recommend using our pipeline in cases where at least some biologi-

cal information on the system under study is available.
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3' −UTR−mediated translational regulation
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ABC−family proteins mediated transport
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ABC transporter disorders
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Activated TLR4 signalling
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Activation of anterior HOX genes in hindbrain development during early embryogenesis
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Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins
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Activation of HOX genes during differentiation
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Activation of NF−kappaB in B cells
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Activation of the mRNA upon binding of the cap−binding complex and eIFs, and subsequent binding to 43S
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Amino acid and derivative metabolism
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Anchoring of the basal body to the plasma membrane
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Antigen activates B Cell Receptor (BCR) leading to generation of second messengers
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Antigen Presentation: Folding, assembly and peptide loading of class I MHC
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Antigen processing−Cross presentation
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Antigen processing: Ubiquitination & Proteasome degradation
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Antiviral mechanism by IFN−stimulated genes
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APC/C:Cdc20 mediated degradation of mitotic proteins
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APC/C:Cdc20 mediated degradation of Securin
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APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1
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APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint
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APC/C−mediated degradation of cell cycle proteins
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Arachidonic acid metabolism
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ARMS−mediated activation
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Asparagine N−linked glycosylation
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Assembly of the pre−replicative complex
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Assembly of the primary cilium
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Asymmetric localization of PCP proteins
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AURKA Activation by TPX2
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Autodegradation of Cdh1 by Cdh1:APC/C
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Autodegradation of the E3 ubiquitin ligase COP1
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Axon guidance
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B Cell Activation
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Beta−catenin independent WNT signaling
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Binding and Uptake of Ligands by Scavenger Receptors
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Biological oxidations
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Biosynthesis of the N−glycan precursor (dolichol lipid−linked oligosaccharide, LLO) and transfer to a nascent protein
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B−WICH complex positively regulates rRNA expression

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

55

34

0.62

0.43

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Ca2+ pathway



118 CHAPTER 6. NETWORK CUTOFF OPTIMIZATION

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

120

112

0.93

0.9

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Cap−dependent Translation Initiation
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Cardiac conduction
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Cargo recognition for clathrin−mediated endocytosis
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Cargo trafficking to the periciliary membrane

pathway information

# of genes in pathway
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CD22 mediated BCR regulation
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# of genes in pathway

values

# of genes in pathway and data
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density
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Cdc20:Phospho−APC/C mediated degradation of Cyclin A

pathway information

# of genes in pathway
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density
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46
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CDK−mediated phosphorylation and removal of Cdc6
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# of genes in pathway
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CDT1 association with the CDC6:ORC:origin complex
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Cell−Cell communication
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Cell Cycle
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Cell Cycle Checkpoints
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Cell Cycle, Mitotic
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Cell death signalling via NRAGE, NRIF and NADE
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# of genes in pathway
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Cell junction organization
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# of genes in pathway
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density
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Cell surface interactions at the vascular wall
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pathway information

# of genes in pathway
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Cellular responses to stress

pathway information

# of genes in pathway
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Cellular response to heat stress
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# of genes in pathway
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Cellular response to hypoxia
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Cellular Senescence

pathway information

# of genes in pathway
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Centrosome maturation
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Chaperonin−mediated protein folding
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# of genes in pathway
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Chromatin modifying enzymes
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# of genes in pathway
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Chromatin organization
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Chromosome Maintenance

pathway information

# of genes in pathway
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Circadian Clock
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# of genes in pathway
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Class A/1 (Rhodopsin−like receptors)
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# of genes in pathway
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# of genes in pathway and data

coverage

density

85
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0.53
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Class B/2 (Secretin family receptors)

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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4

0.67

0.75
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Classical antibody−mediated complement activation
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# of genes in pathway
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# of genes in pathway and data
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density
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296
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Class I MHC mediated antigen processing & presentation

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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63
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Clathrin derived vesicle budding
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# of genes in pathway
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density
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Clathrin−mediated endocytosis
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density
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Cleavage of Growing Transcript in the Termination Region

pathway information

# of genes in pathway
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density
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CLEC7A (Dectin−1) signaling

pathway information

# of genes in pathway
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density
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Collagen biosynthesis and modifying enzymes
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# of genes in pathway
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coverage

density
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Collagen formation
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density
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Complement cascade
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# of genes in pathway
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Complex I biogenesis

pathway information

# of genes in pathway
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coverage

density

52
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Constitutive Signaling by Aberrant PI3K in Cancer
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# of genes in pathway
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# of genes in pathway and data

coverage
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Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
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Constitutive Signaling by NOTCH1 PEST Domain Mutants

pathway information

# of genes in pathway
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0.88

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

COPI−dependent Golgi−to−ER retrograde traffic

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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0.83

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

COPII (Coat Protein 2) Mediated Vesicle Transport

pathway information

# of genes in pathway
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coverage

density
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0.84

0.93
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COPI−mediated anterograde transport
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# of genes in pathway
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Costimulation by the CD28 family
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Creation of C4 and C2 activators
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C−type lectin receptors (CLRs)
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# of genes in pathway
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coverage
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70

66
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Cyclin A:Cdk2−associated events at S phase entry
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pathway information

# of genes in pathway
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Cyclin E associated events during G1/S transition
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# of genes in pathway
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Cytokine Signaling in Immune system
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Cytosolic sensors of pathogen−associated DNA
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DAP12 interactions
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# of genes in pathway
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DAP12 signaling
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Deadenylation−dependent mRNA decay
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Death Receptor Signalling
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Dectin−1 mediated noncanonical NF−kB signaling
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Defective CFTR causes cystic fibrosis
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Degradation of AXIN
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Degradation of beta−catenin by the destruction complex
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Degradation of DVL
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Degradation of GLI1 by the proteasome
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Degradation of GLI2 by the proteasome
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Degradation of the extracellular matrix

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

74

32

0.43

0.88

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Deposition of new CENPA−containing nucleosomes at the centromere
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Deubiquitination
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Developmental Biology
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Disease
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Diseases of signal transduction
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Disorders of transmembrane transporters

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

80

38

0.48

0.64

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

DNA Damage/Telomere Stress Induced Senescence
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DNA Double−Strand Break Repair
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DNA Double Strand Break Response
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DNA Repair
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DNA Replication
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DNA Replication Pre−Initiation
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Downstream signaling events of B Cell Receptor (BCR)
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Downstream signal transduction
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Downstream TCR signaling
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Dual incision in TC−NER
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ECM proteoglycans
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pathway information
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Endosomal/Vacuolar pathway
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EPH−Ephrin signaling
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Epigenetic regulation of gene expression
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ER−Phagosome pathway
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ER to Golgi Anterograde Transport
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Eukaryotic Translation Elongation
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Eukaryotic Translation Initiation
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Eukaryotic Translation Termination
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Extracellular matrix organization
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Factors involved in megakaryocyte development and platelet production
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Fatty acid, triacylglycerol, and ketone body metabolism
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FBXL7 down−regulates AURKA during mitotic entry and in early mitosis
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Fc epsilon receptor (FCERI) signaling
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FCERI mediated Ca+2 mobilization
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FCERI mediated MAPK activation
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FCERI mediated NF−kB activation
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pathway information
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Fcgamma receptor (FCGR) dependent phagocytosis
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FCGR activation
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Formation of a pool of free 40S subunits
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Formation of RNA Pol II elongation complex
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Formation of TC−NER Pre−Incision Complex
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Formation of the beta−catenin:TCF transactivating complex
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Formation of the cornified envelope
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Formation of the ternary complex, and subsequently, the 43S complex
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Frs2−mediated activation
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G1/S DNA Damage Checkpoints
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G1/S Transition
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G2/M Checkpoints
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G2/M DNA damage checkpoint
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G2/M Transition
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GAB1 signalosome
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GABA receptor activation
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pathway information
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G alpha (12/13) signalling events
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G alpha (i) signalling events
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G alpha (q) signalling events
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G alpha (s) signalling events
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Gap−filling DNA repair synthesis and ligation in TC−NER
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Gastrin−CREB signalling pathway via PKC and MAPK
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Gene Expression

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

32

25

0.78

0.57

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Generation of second messenger molecules
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Generic Transcription Pathway
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Gene Silencing by RNA

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

60

53

0.88

0.91

−75

−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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GLI3 is processed to GLI3R by the proteasome

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

84

82

0.98

0.67

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Global Genome Nucleotide Excision Repair (GG−NER)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

78

62

0.79

0.5

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Glucose metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

109

68

0.62

0.35

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Glycerophospholipid biosynthesis

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

114

70

0.61

0.27

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Glycosaminoglycan metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

54

47

0.87

0.88

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Golgi Associated Vesicle Biogenesis
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

111

94

0.85

0.67

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Golgi−to−ER retrograde transport

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

940

194

0.21

0.3

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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GPCR downstream signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

282

51

0.18

0.47

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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GPCR ligand binding

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

52

41

0.79

0.8

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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GPVI−mediated activation cascade

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

227

151

0.67

0.38

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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GRB2 events in EGFR signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

113

105

0.93

0.99

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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GTP hydrolysis and joining of the 60S ribosomal subunit

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

142

68

0.48

0.5

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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HATs acetylate histones

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

94

40

0.43

0.78

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
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0(
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HDACs deacetylate histones
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

132

88

0.67

0.73
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HDR through Homologous Recombination (HR) or Single Strand Annealing (SSA)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

67

55

0.82

0.91

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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HDR through Homologous Recombination (HRR)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

65

54

0.83

0.75

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Hedgehog ligand biogenesis

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

89

79

0.89

0.53

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Hedgehog 'off' state

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

84

67

0.8

0.66

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Hedgehog 'on' state

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

442

281

0.64

0.25

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Hemostasis

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

53

28

0.53

0.56

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Heparan sulfate/heparin (HS−GAG) metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

49

32

0.65

0.53
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−50
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0

0.00 0.25 0.50 0.75 1.00
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Hexose uptake
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

56

50

0.89

0.84
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−50
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0
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Hh mutants abrogate ligand secretion

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

56

50

0.89

0.84
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−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Hh mutants that don't undergo autocatalytic processing are degraded by ERAD

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

216

186

0.86

0.28
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−50
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0
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Correlation cutoff
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HIV Infection

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

143

120

0.84

0.38
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−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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HIV Life Cycle

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

138

94

0.68

0.74
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−50
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0
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Homology Directed Repair

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

116

105

0.91

0.37
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−50
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0
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Host Interactions of HIV factors

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

281

197

0.7

0.35
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−50
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0
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Correlation cutoff
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IGF1R signaling cascade

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

1464

1012

0.69

0.2
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−50
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0
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Immune System
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

82

36

0.44

0.51
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Immunoregulatory interactions between a Lymphoid and a non−Lymphoid cell

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

317

278

0.88

0.27
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Infectious disease

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

141

128

0.91

0.54
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Influenza Infection

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

135

123

0.91

0.55
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0
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Influenza Life Cycle

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

129

117

0.91

0.58
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−50
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0
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Correlation cutoff
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Influenza Viral RNA Transcription and Replication

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

21

8

0.38

0.81
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Correlation cutoff
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Initial triggering of complement

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

744

517

0.69

0.28
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Innate Immune System

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

280

196

0.7

0.35
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0
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Insulin receptor signalling cascade
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

107

67

0.63

0.41
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Integration of energy metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

66

38

0.58

0.68
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Integrin cell surface interactions

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

57

23

0.4

0.35
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Interactions of neurexins and neuroligins at synapses

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

65

49

0.75

0.86
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Interferon alpha/beta signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

149

123

0.83

0.39
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−50
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0

0.00 0.25 0.50 0.75 1.00
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Interferon Signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

244

167

0.68

0.38

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00
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Interleukin−2 signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

253

176

0.7

0.39
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Interleukin−3, 5 and GM−CSF signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

237

160

0.68

0.38
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Interleukin receptor SHC signaling
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

180

155

0.86

0.43
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Intra−Golgi and retrograde Golgi−to−ER traffic

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

185

74

0.4

0.23
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Ion channel transport

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

54

26

0.48

0.54

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Ion homeostasis

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

277

194

0.7

0.35
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Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

IRS−mediated signalling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

281

197

0.7

0.35
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0
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IRS−related events triggered by IGF1R

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

68

64

0.94

0.45
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ISG15 antiviral mechanism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

125

13

0.1

0.27
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Keratinization

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

112

104

0.93

0.99
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L13a−mediated translational silencing of Ceruloplasmin expression
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

98

55

0.56

0.36
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L1CAM interactions

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

130

107

0.82

0.43
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Late Phase of HIV Life Cycle

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

83

43

0.52

0.3
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Lipid and lipoprotein metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

59

34

0.58

0.34
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Lipoprotein metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

68

56

0.82

0.98
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Loss of Nlp from mitotic centrosomes

pathway information

# of genes in pathway

values

# of genes in pathway and data
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density
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Loss of proteins required for interphase microtubule organization from the centrosome
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# of genes in pathway
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# of genes in pathway and data
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density

64

48
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Macroautophagy
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Major pathway of rRNA processing in the nucleolus and cytosol
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pathway information

# of genes in pathway
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density
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MAPK1/MAPK3 signaling
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# of genes in pathway
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density

89

70
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MAPK6/MAPK4 signaling
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# of genes in pathway
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# of genes in pathway and data

coverage

density
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MAPK family signaling cascades

pathway information

# of genes in pathway
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# of genes in pathway and data
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density
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0.92

0.68

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

MAP kinase activation in TLR cascade
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# of genes in pathway

values

# of genes in pathway and data
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density
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Meiosis
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Meiotic recombination
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# of genes in pathway
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density
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Meiotic synapsis
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density
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Membrane Trafficking
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pathway information

# of genes in pathway
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density
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Metabolism
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Metabolism of lipids and lipoproteins
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density

84

63

0.75

0.49

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Metabolism of polyamines
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# of genes in pathway
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Metabolism of proteins
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Metabolism of vitamins and cofactors
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# of genes in pathway
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# of genes in pathway and data
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density

89

63
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Metabolism of water−soluble vitamins and cofactors

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density

85
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M/G1 Transition

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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MHC class II antigen presentation
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pathway information

# of genes in pathway
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coverage

density
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Mitochondrial biogenesis

pathway information

# of genes in pathway
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# of genes in pathway and data
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density
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49
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Mitochondrial protein import
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# of genes in pathway
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density
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Mitochondrial translation
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# of genes in pathway
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density
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Mitochondrial translation elongation
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# of genes in pathway
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density
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Mitochondrial translation initiation
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# of genes in pathway
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density
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Mitochondrial translation termination
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# of genes in pathway

values

# of genes in pathway and data
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density
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Mitotic Anaphase
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# of genes in pathway
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density
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Mitotic G1−G1/S phases
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density
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Mitotic G2−G2/M phases
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# of genes in pathway
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Mitotic Metaphase and Anaphase

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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Mitotic Prometaphase
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Mitotic Prophase

pathway information

# of genes in pathway
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density
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M Phase

pathway information

# of genes in pathway
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density

55
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mRNA 3'−end processing
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# of genes in pathway
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# of genes in pathway and data
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density
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mRNA Splicing
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# of genes in pathway
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# of genes in pathway and data

coverage

density
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Muscle contraction
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pathway information

# of genes in pathway
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coverage

density
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MyD88 cascade initiated on plasma membrane

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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MyD88 dependent cascade initiated on endosome

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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MyD88−independent TLR3/TLR4 cascade

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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MyD88:Mal cascade initiated on plasma membrane

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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NCAM signaling for neurite out−growth

pathway information

# of genes in pathway
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# of genes in pathway and data
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density
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Negative epigenetic regulation of rRNA expression

pathway information

# of genes in pathway
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# of genes in pathway and data
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density
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Negative regulation of the PI3K/AKT network
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# of genes in pathway
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# of genes in pathway and data

coverage

density

335
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Neuronal System
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pathway information

# of genes in pathway
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# of genes in pathway and data
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density
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Neurotransmitter Receptor Binding And Downstream Transmission In The  Postsynaptic Cell

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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NGF signalling via TRKA from the plasma membrane

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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NIK−−>noncanonical NF−kB signaling

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density

69

36
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Nonhomologous End−Joining (NHEJ)

pathway information

# of genes in pathway
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# of genes in pathway and data

coverage

density
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Nonsense−Mediated Decay (NMD)

pathway information

# of genes in pathway
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Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)

pathway information

# of genes in pathway
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# of genes in pathway and data
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96
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Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
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# of genes in pathway

values

# of genes in pathway and data
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density
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NoRC negatively regulates rRNA expression
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pathway information

# of genes in pathway
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coverage

density
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NRAGE signals death through JNK

pathway information

# of genes in pathway
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Nucleosome assembly

pathway information

# of genes in pathway
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coverage

density
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Nucleotide−binding domain, leucine rich repeat containing receptor (NLR) signaling pathways

pathway information

# of genes in pathway
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coverage

density
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Nucleotide Excision Repair
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# of genes in pathway
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# of genes in pathway and data
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density

81
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Nucleotide metabolism
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O−linked glycosylation
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# of genes in pathway
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density
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O−linked glycosylation of mucins

pathway information

# of genes in pathway
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Oncogenic MAPK signaling



148 CHAPTER 6. NETWORK CUTOFF OPTIMIZATION

pathway information

# of genes in pathway
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coverage

density

83

54

0.65

0.65
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Opioid Signalling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

71

59

0.83

0.82

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00
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Orc1 removal from chromatin

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

329

282

0.86

0.27
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−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Organelle biogenesis and maintenance

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

124

68

0.55

0.54
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−50

−25

0
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Correlation cutoff
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Oxidative Stress Induced Senescence

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

66

55

0.83

0.78

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Oxygen−dependent proline hydroxylation of Hypoxia−inducible Factor Alpha

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

64

56

0.88

0.85

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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p53−Dependent G1 DNA Damage Response

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

64

56

0.88

0.85

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F
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r's
 te

st
 p
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e)

p53−Dependent G1/S DNA damage checkpoint

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

53

48

0.91

0.89

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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p53−Independent DNA Damage Response
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

53

48

0.91

0.89

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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p53−Independent G1/S DNA damage checkpoint

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

95

74

0.78

0.26

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

p75 NTR receptor−mediated signalling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

92

75

0.82

0.57

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
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0(
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PCP/CE pathway

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

89

81

0.91

0.99

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Peptide chain elongation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

77

27

0.35

0.3
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−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Peptide hormone metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

182

28

0.15

0.55
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0
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Correlation cutoff
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Peptide ligand−binding receptors

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

71

19

0.27

0.58
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Phase 1 − Functionalization of compounds

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

94

43

0.46

0.26
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Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Phase II conjugation
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

181

128

0.71

0.27
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−50

−25

0
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Correlation cutoff
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Phospholipid metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

112

72

0.64

0.54

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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g1

0(
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PI3K/AKT activation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

110

72

0.65

0.54

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
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PI3K/AKT Signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

74

43

0.58

0.69

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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g1

0(
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PI3K/AKT Signaling in Cancer

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

72

48

0.67

0.6
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−50
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0

0.00 0.25 0.50 0.75 1.00
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PI3K Cascade

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

110

72

0.65

0.54

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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 te

st
 p

−
va

lu
e)

PI3K events in ERBB4 signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

73

41

0.56

0.58
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−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

71

59

0.83

0.54

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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PI Metabolism
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

142

99

0.7

0.5
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Platelet activation, signaling and aggregation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

88

48

0.55

0.29
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Platelet homeostasis

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

105

56

0.53

0.77
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Positive epigenetic regulation of rRNA expression

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

55

38

0.69

0.97

−75

−50
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Post−Elongation Processing of Intron−Containing pre−mRNA

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

64

47

0.73

0.84

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Post−Elongation Processing of the Transcript

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

835

605

0.72

0.14
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Post−translational protein modification

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

79

17

0.22

0.42
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Potassium Channels

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

110

84

0.76

0.46
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PPARA activates gene expression
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

177

147

0.83

0.98
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−50
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pre−mRNA splicing

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

233

195

0.84

0.72

−75

−50
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0
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Correlation cutoff
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Processing of Capped Intron−Containing Pre−mRNA

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

98

62

0.63

0.74

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Processing of DNA double−strand break ends

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

161

137

0.85

0.37

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Programmed Cell Death

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

234

156

0.67

0.37

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Prolonged ERK activation events

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

101

71

0.7

0.36

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Protein folding

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

71

31

0.44

0.29
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Protein−protein interactions at synapses

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

89

71

0.8

0.29
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RAB GEFs exchange GTP for GDP on RABs
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

227

151

0.67

0.38
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RAF/MAP kinase cascade

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

76

40

0.53

0.79
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Recruitment and ATM−mediated phosphorylation of repair and signaling proteins at DNA double strand breaks

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

78

65

0.83

0.92
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Recruitment of mitotic centrosome proteins and complexes

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

58

48

0.83

0.77
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−50

−25

0
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Correlation cutoff
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Regulation of actin dynamics for phagocytic cup formation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

80

73

0.91

0.97

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Regulation of APC/C activators between G1/S and early anaphase

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

53

48

0.91

0.9
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−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Regulation of Apoptosis

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

76

63

0.83

0.78
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−50
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0
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Correlation cutoff
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Regulation of DNA replication

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

65

58

0.89

0.56

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Regulation of HSF1−mediated heat shock response



154 CHAPTER 6. NETWORK CUTOFF OPTIMIZATION

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

75

62

0.83

0.68
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Regulation of Hypoxia−inducible Factor (HIF) by oxygen

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

78

45

0.58

0.54

−75

−50
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Correlation cutoff
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Regulation of insulin secretion

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

112

86

0.77

0.46
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Regulation of lipid metabolism by Peroxisome proliferator−activated receptor alpha (PPARalpha)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

86

79

0.92

0.94
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−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Regulation of mitotic cell cycle

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

83

76

0.92

0.49
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Regulation of mRNA stability by proteins that bind AU−rich elements

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

51

44

0.86

0.89
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Regulation of ornithine decarboxylase (ODC)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

85

71

0.84

0.79
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Regulation of PLK1 Activity at G2/M Transition

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

68

61

0.9

0.71
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Regulation of RAS by GAPs



6.6. CONCLUSION 155

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

159

136

0.86

0.35
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Regulation of TP53 Activity

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

91

80

0.88

0.44
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Regulation of TP53 Activity through Phosphorylation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

73

60

0.82

0.82
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Removal of licensing factors from origins

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

99

83

0.84

0.99

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Resolution of Sister Chromatid Cohesion

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

97

80

0.82

0.74

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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g1

0(
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Respiratory electron transport

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

115

81

0.7

0.72

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

252

170

0.67

0.37

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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RET signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

138

104

0.75

0.39

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Rho GTPase cycle
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

287

200

0.7

0.38

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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RHO GTPase Effectors

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

111

94

0.85

0.67

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
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0(
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RHO GTPases Activate Formins

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

94

41

0.44

0.52

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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RHO GTPases activate PKNs

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

58

55

0.95

0.98

−75

−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Ribosomal scanning and start codon recognition

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

81

62

0.77

0.59

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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RIG−I/MDA5 mediated induction of IFN−alpha/beta pathways

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

90

41

0.46

0.78

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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RNA Polymerase I Chain Elongation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

85

68

0.8

0.79

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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RNA Polymerase II Pre−transcription Events

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

70

59

0.84

0.98

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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RNA polymerase II transcribes snRNA genes
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

149

115

0.77

0.55

−75

−50
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0
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Correlation cutoff
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RNA Polymerase II Transcription

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

63

47

0.75

0.86
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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RNA Polymerase II Transcription Elongation

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

64

47

0.73

0.84

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
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RNA Polymerase II Transcription Termination

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

109

59

0.54

0.69

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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RNA Polymerase I Promoter Clearance

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

148

93

0.63

0.5

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
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0(
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RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

111

60

0.54

0.69

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
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r's
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RNA Polymerase I Transcription

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

115

77

0.67

0.54

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
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0(
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Role of LAT2/NTAL/LAB on calcium mobilization

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

23

17

0.74

0.52

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Role of phospholipids in phagocytosis
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

58

49

0.84

0.92
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−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

rRNA modification in the nucleus and cytosol

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

188

166

0.88

0.72

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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rRNA processing

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

183

163

0.89

0.74

−75

−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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rRNA processing in the nucleus and cytosol

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

12

5

0.42

0.48
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−50

−25

0
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Correlation cutoff
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g1

0(
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Scavenging of heme from plasma

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

55

50

0.91

0.98

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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SCF−beta−TrCP mediated degradation of Emi1

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

60

56

0.93

0.92

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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SCF(Skp2)−mediated degradation of p27/p21

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

114

101

0.89

0.8

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Selenoamino acid metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

90

82

0.91

0.99

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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0(
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Selenocysteine synthesis
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

68

53

0.78

0.55
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Semaphorin interactions

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

110

58

0.53

0.71
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−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Senescence−Associated Secretory Phenotype (SASP)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

163

141

0.87

0.63

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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g1

0(
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Separation of Sister Chromatids

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

227

151

0.67

0.38

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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g1
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SHC1 events in EGFR signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

227

151

0.67

0.38

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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g1

0(
F
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 p
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SHC1 events in ERBB4 signaling

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

58

46

0.79

0.38

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Signaling by BRAF and RAF fusions

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

344

243

0.71

0.34

−75

−50
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0
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Correlation cutoff
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Signaling by EGFR

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

318

219

0.69

0.36

−75
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0
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Correlation cutoff
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Signaling by ERBB4
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

77

51

0.66

0.47
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0
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Signaling by FGFR

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

66

47

0.71

0.5
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0
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Correlation cutoff
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Signaling by FGFR2

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

58

40

0.69

0.48

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Signaling by FGFR in disease

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

1230

367

0.3

0.25

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Signaling by GPCR

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

125

103

0.82

0.41

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Signaling by Hedgehog

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

304

215

0.71

0.31
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−50
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0
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Signaling by Insulin receptor

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

400

250

0.62

0.33
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−50
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0

0.00 0.25 0.50 0.75 1.00
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Signaling by Interleukins

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

233

156

0.67

0.38
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Signaling by Leptin



6.6. CONCLUSION 161

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

65

49

0.75

0.41
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Signaling by MET

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

454

326

0.72

0.31
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Signaling by NGF

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

108

88

0.81

0.44
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Signaling by NOTCH

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

70

57

0.81

0.58
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0
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Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Signaling by NOTCH1

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

56

47

0.84

0.64
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Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

56

47

0.84

0.64
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−50
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0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff
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Signaling by NOTCH1 in Cancer

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

56

47

0.84

0.64
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Signaling by NOTCH1 PEST Domain Mutants in Cancer

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

355

245

0.69

0.34
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Signaling by PDGF
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pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

64

46

0.72

0.54
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Signaling by PTK6

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

416

296

0.71

0.27
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Signaling by Rho GTPases

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

314

223

0.71

0.37
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Signaling by SCF−KIT

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

72

66

0.92

0.45
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Signaling by TGF−beta Receptor Complex

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

282

198

0.7

0.35
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Signaling by Type 1 Insulin−like Growth Factor 1 Receptor (IGF1R)

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

319

226

0.71

0.35
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Signaling by VEGF

pathway information

# of genes in pathway

values
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Signaling by Wnt

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

2433

1196

0.49

0.16

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Signaling Pathways
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Signalling to ERKs
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Signalling to p38 via RIT and RIN
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Signalling to RAS
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SLC−mediated transmembrane transport
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SOS−mediated signalling
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S Phase

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

73

48

0.66

0.32

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

Sphingolipid metabolism

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

113

103

0.91

0.98

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

SRP−dependent cotranslational protein targeting to membrane
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Stabilization of p53
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Stimuli−sensing channels
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SUMO E3 ligases SUMOylate target proteins
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SUMOylation
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SUMOylation of DNA damage response and repair proteins
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Switching of origins to a post−replicative state
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Synthesis of DNA
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Synthesis of substrates in N−glycan biosythesis
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TCF dependent signaling in response to WNT
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TCR signaling
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Telomere Maintenance
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The citric acid (TCA) cycle and respiratory electron transport

pathway information

# of genes in pathway

values

# of genes in pathway and data

coverage

density

60

55

0.92

0.88

−75

−50

−25

0

0.00 0.25 0.50 0.75 1.00

Correlation cutoff

Lo
g1

0(
F

is
he

r's
 te

st
 p

−
va

lu
e)

The role of GTSE1 in G2/M progression after G2 checkpoint
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TNFR2 non−canonical NF−kB pathway
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Toll Like Receptor 10 (TLR10) Cascade
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Toll Like Receptor 2 (TLR2) Cascade
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pathway information
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Toll Like Receptor 3 (TLR3) Cascade
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Toll Like Receptor 4 (TLR4) Cascade
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Toll Like Receptor 5 (TLR5) Cascade
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Toll Like Receptor 7/8 (TLR7/8) Cascade
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Toll Like Receptor 9 (TLR9) Cascade
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Toll−Like Receptors Cascades
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Toll Like Receptor TLR1:TLR2 Cascade
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Toll Like Receptor TLR6:TLR2 Cascade
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TP53 Regulates Metabolic Genes
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TP53 Regulates Transcription of DNA Repair Genes
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TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation
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TRAF6 Mediated Induction of proinflammatory cytokines
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Transcriptional regulation by small RNAs
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Transcriptional Regulation by TP53
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Transcriptional regulation of white adipocyte differentiation
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Transcription−Coupled Nucleotide Excision Repair (TC−NER)
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pathway information
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Transcription of the HIV genome
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trans−Golgi Network Vesicle Budding
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Translation
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Translation initiation complex formation
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Translocation of GLUT4 to the plasma membrane
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Transmembrane transport of small molecules
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Transmission across Chemical Synapses
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Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds
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Transport of inorganic cations/anions and amino acids/oligopeptides
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Transport of Mature mRNA derived from an Intron−Containing Transcript
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Transport of Mature Transcript to Cytoplasm
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Transport to the Golgi and subsequent modification
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TRIF−mediated TLR3/TLR4 signaling
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Triglyceride Biosynthesis
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tRNA processing
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tRNA processing in the nucleus
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pathway information
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Figure 6.14: In the following pages we report the cutoff optimization results for the transcriptomics
data. For each of the 469 pathway considered, protein-protein interaction networks from STRING
were used as reference. The black curve represents the average over 100 bootstrapping resamplings,
and the error bars show the corresponding 95% confidence intervals. Vertical lines indicate the
mean of the statistical cutoffs, and the areas the corresponding 95% confidence intervals over the
bootstrapping. Pathways are shown in alphabetical order.
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Chapter 7

Discussion and Outlook

The investigation of the molecular mechanisms regulating protein glycosylation is reveal-

ing essential to better understand and describe physiological processes and diseases at a

molecular level. The absence of a direct genetic template, together with the site-, protein-

and cell-specificity of glycosylation, have made the characterization of the biochemical

pathways of glycan synthesis extremely difficult. The advancement of measurement tech-

nologies, however, allow today to quantify glycan structures from different proteins and

fluids in large-scale datasets, enabling systematic statistical analyses.

In this thesis, we contributed to a better understanding of protein glycan structures and

biosynthesis, as well as to a more biologically meaningful pipeline of analysis for glycomics

data using Gaussian graphical models on large-scale glycomics data and the available prior

knowledge on the glycan synthesis pathways.

Scientific achievements

The novel scientific findings included in this work are listed below.

• GGMs on glycomics data identify known glycosylation reactions. Gaussian

graphical models are able to identify single enzymatic reactions in the synthesis

pathway of protein glycans, in the case of both protein-specific (IgG Fc, Chapter 3)

and protein mixture (TPNG, Chapter 4) glycomics data. This means that partial

correlations among measured glycans reflect the underlying biochemical synthesis

pathway. The ability of GGMs to reflect synthesis pathways had already been shown

for metabolomics data [32], and there already it was pointed out that it is surprising,
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as these molecules are not measured directly where their production occurs, e.g., in

B-cells or in liver, but in circulating blood, where other processes, like transport and

degradation, take place.

• GGMs identify new IgG glycosylation reactions. As a consequence of the

previous finding, edges in the GGM that are not present in the known biochemical

pathway can correspond to true but previously unknown enzymatic reactions taking

part in glycan synthesis (Chapter 3). We formulated hypotheses of new synthetic

steps in the IgG glycosylation pathway based on the data-driven partial correlation

network and validated them experimentally. We therefore proved for the first time

that statistical analysis and computational modelling on large-scale glycomics data

can provide concrete biological insights into the intracellular processes of glycosyla-

tion and that systems biology can drive biological experiments.

• GGMs and prior knowledge can be used for structural inference. MALDI-

TOF-MS measurements of the total plasma N-glycome are valuable to investigate

changes in the overall glycosylation profile of plasma proteins, but do only resolve

molecular masses and not single glycan structures. We used data-driven partial

correlation networks coupled with prior knowledge to infer structural details of the

glycans within each mass spectrometry peak (Chapter 4). Our predictions on the

glycan structures were validated using previously published independent data and

showed high accuracy. This approach could be used in the future to limit the need

for expensive fragmentation experiments to resolve the structural profile of mass

spectrometry-based glycomics measurements.

• GGMs and prior knowledge can be used for glycomics preprocessing eval-

uation. The strong relationship between calculated GGMs and prior knowledge on

the glycan synthesis pathways can be used to evaluate different preprocessing strate-

gies for glycomics data (Chapter 5). We estimated the quality of different normaliza-

tion approaches according to the overlap between the inferred GGM and the available

prior knowledge, where higher overlap corresponded to higher quality. We defined

best the normalization strategy that allowed to reproduce the most known biochem-

ical relations among glycan structures, therefore introducing a biological criterion

for quality assessment. Results were replicated across different cohorts and measure-

ment platform, demonstrating the generalizability of our findings. According to our

analysis, the ’Probabilistic Quotient’ normalization followed by log-transformation

is the most reliable approach for glycan preprocessing.

• Prior knowledge can be used for correlation networks cutoff optimization.

Statistically determined correlation cutoffs for network inference are not necessarily
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the best option to obtain a network that accurately represents the underlying biolog-

ical system. Exploiting once again the relationship between inferred GGM and prior

knowledge, we developed an approach for the optimization of the correlation cutoff

for network inference (Chapter 6). Briefly, we varied the correlation cutoff and com-

puted the corresponding network-prior knowledge overlap. The optimal cutoff was

defined as the one that produced the network with maximal overlap to the available

prior knowledge. Note that there is a fundamental difference between our procedure

and most other prior knowledge-based network inference approaches [209–214]: while

the latter combine prior information and data-driven GGM to statistically regular-

ize the inference problem, we use the biological reference exclusively for comparison

to the data-driven GGM. This means that, in our setting, incomplete or incorrect

prior knowledge from different sources can be employed as well for the optimiza-

tion. Importantly, in such cases, the optimized network can be further exploited

for inference of new molecular associations. To prove generalizability, the approach

was applied to two completely different omics data, namely a metabolomics and a

transcriptomics dataset. In these cases, no complete prior knowledge is available,

and, therefore, only partial biological references can be used in the optimization. We

show that even in this scenario our approach is successful in determining an optimal

cutoff and that the corresponding optimal network is superior to the statistically

inferred networks in identifying meaningful molecular interactions.

Taken together, human glycomics data contain a strong and stable footprint of the under-

lying biochemical pathways of synthesis, which can be reconstructed by partial correlation

networks in large-scale datasets. The inferred networks can be compared to the available

prior knowledge to either infer new biology, or to optimize the pipeline of glycomics data

analysis.

Extensions and future directions

Data analysis approaches

From a methodological point of view, the results presented in this thesis could be extended

in several directions, which are discussed below.

1. Prediction

The first aspect addressed by our analysis that could be improved in the near future

concerns the accuracy of our predictions.
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• Accounting for glycosidases in pathway inference. So far, in our pathway

models, we assumed synthesis reactions to go in one direction only, mostly rep-

resenting the addition of monosaccharides to glycan structures (see Figure 2.3).

Cross-sectional omics data only allow for non-directional inference; however, any

potential new synthesis reactions identified by the data-driven GGM could in prin-

ciple be catalyzed by either a glycosyltransferases or a glycosidases. For IgG, we

have proved experimentally that the new inferred reactions are performed by glyco-

syltransferases, but this cannot be assumed in general. For TPNG, for example, the

action of glycosidases could be relevant, as most glycans are exposed on the surface

of the proteins [2], not buried within the hydrophobic core like in IgG, and hence

easily accessible. Recent studies on glycosidases are showing that these enzymes

are also active extracellularly and could modify the glycan structures on a protein

even once it has been secreted and it is circulating in blood [216], for example to

modulate the protein’s activity and degradation [182]. In a generalized model for

pathway inference, therefore, each new biochemical link inferred from a correlation

network should be experimentally tested as a possible synthesis (i.e., performed by

a glycosyltranferase) or degradation (i.e., performed by a glycosidase) reaction.

• Multivariate TPNG structural inference. Our approach to infer the structural

details of TPNG is univariate, as it resolves compositions one at a time, without

accounting for the previous results when inferring the structure of a new node. A

natural extension would therefore investigate a global solution, where each inference

step has to account for the results on all other compositions. This would avoid pos-

sible inconsistencies in the inference results and provide more accurate predictions.

2. Glycosylation regulation

One of the most interesting open issues in glycobiology is the understanding of the molec-

ular mechanisms mediating the regulation of protein glycosylation, namely what makes

the cell decide to attach the observed glycans to a given site on a given protein. A vari-

ety of different aspects play a role in the final glycosylation profile of different proteins,

from stochastic elements, like the availability of activated sugar donors [217–219] and the

partial competition of different enzymes [93], to (epi-)genetic factors [220,221], which are

extremely difficult to reproduce and manipulate in a controlled experimental setting.

In future projects, we could address the investigation of the regulatory aspect of protein

glycosylation with several statistical approaches.

• Probabilistic pathway inference. In our pathway analysis and inference ap-

proach, we treated GGMs as binary adjacency matrices, namely only considering
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whether a given edge was present in the network or not. A natural but non-trivial

extension of this model would actively consider the strength of the partial correlation

between glycan pairs to infer the likelihood of the corresponding enzymatic reaction,

where higher correlation coefficients would correspond to more probable reactions.

A quantitative pathway inference could provide valuable insights into the regulation

of different intracellular enzymatic steps. For example, if a given structure can be

synthesized from two different glycan substrates, the partial correlation coefficients

corresponding to the two synthesis steps could indicate which one is the more enzy-

matically favorable in vivo, as opposed to the in vitro enzymatic assay experiments.

Alternatively, this approach could be used to optimize the experimental validation of

new inferred enzymatic reaction, prioritizing those with a higher partial correlation

coefficient.

• Differential GGMs. The strong relationship between glycan synthesis pathways

and data-driven GGMs could also be exploited to infer the potential disruption of

particular glycosylation steps in specific physiological conditions. We have shown

that edges in the GGMs represent glycan synthesis reactions, and that glycosylation

pathways are highly conserved across populations (Figure 3.10). Therefore, a sig-

nificant difference between the partial correlation coefficients in the GGMs inferred

from two physiologically different groups of individuals could reflect a different reg-

ulation of the corresponding enzymatic step in the two conditions. Since is known

that strong aberrations in the glycosylation pathways are often fatal already in the

early stage of development [31, 222], to maximize the chances of observing statisti-

cally significant differences, one should compare the GGM inferred from controls to

that representing a disease that strongly affect cellular activities like cancer.

• Protein-specific glycosylation pathways. When more protein- and site-specific

glycomics data will become available in the future, the aforementioned approaches

could also contribute to the determination of differences in the protein- and site-

specific glycosylation pathways. Given the results of the TPNG analysis in Chap-

ter 4, we expect a substantial part of the pathway to be shared among different

proteins. However, protein-specific steps are more than likely to occur, and these

would be hard to recognize from total plasma glycomics datasets. However, when

comparing the GGMs inferred from different protein-specific glycomics data, signif-

icant differences in the strength of the partial correlation coefficients could reflect

different enzymatic activities of glycosyltransferases on the considered proteins. The

cause of this effect could be due, for example, to different stereochemical properties,

which might result in impaired or enhanced accessibility of the enzymes to the glycan
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substrates, and provide therefore a valuable starting point for further experimental

investigations.

• Glyco-proteomics analysis. Protein-specific glycomics data are currently only

available for a handful of proteins, mostly due to the lack of high affinity antibodies

for isolation [223], or to the too low protein abundance, which makes quantification

with the current technology infeasible. This is likely to change in the very near future

[224, 225], but protein-glycan relationships could, in the meantime, be investigated

by analyzing protein-glycan associations from large-scale data. The idea is here to

compute linear associations between, for example, mixture protein glycomics data,

like the TPNG, and the corresponding plasma proteomics data. A first analysis

between total plasma N-glycome and plasma proteomics data has been performed

in the QMDiab cohort [226]. However, as the TPNG data were there measured via

UPLC, observed associations were not easily traceable to protein-glycan structure

pairs (see Section 2.1.1). Using MALDI-TOF-MS TPNG data together with the

results of our structural inference, more specific protein-glycan associations could be

identified, which could help better understanding modulator activity of glycans for

protein functions.

• Gene-glycan molecular tracing. Several Genome Wide Association Studies

(GWAS) have identified genes associated with the abundances of various glycan

structures, both in IgG [79] and in plasma proteins [227]. Interestingly, most of

those genes are not glycosylation enzymes (i.e., glycosyltransferases or glycosidases)

and hence might be indirectly involved in the regulation of the glycosylation pro-

cess, rather than in the actual synthesis. For example, the BACH2 gene on chromo-

some 6 has been observed to significantly associate to monogalactosylated glycans

in IgG [79]. This gene is not a glycosylation enzyme, but is responsible, among

other things, for the transcriptional activation of B-cells [228], and it has been found

to associate with a variety of diseases related to autoimmunity, i.e., type 1 dia-

betes [229–232], celiac disease [233], Crohn’s disease [234] and multiple sclerosis [235].

In order to better understand how the genes interfere with protein glycosylation, we

could use available databases and prior knowledge to systematically trace the molec-

ular interactions connecting the gene-glycan pairs found to be significantly associated

in the cohort of interest. A similar tracing approach has been shown to be able to

explain the molecular steps leading to observed gene-metabolites interactions [236].

Our group is currently developing efficient algorithms for the automation of this

molecular tracing approach for metabolomics data, integrating biochemical pathways

from different databases (e.g., KEGG [237], RECON 3D [238], Reactome [150,151])
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with data-driven statistical associations. An extension of this model would also

include glycosylation pathways.

Future experiments

In addition to what discussed above, there are other important issues that could be ad-

dressed once measurement technologies will allow for the quantification of more specific

glycomics data. In particular, the work presented here raised two major points.

• IgG antigen-specific Fc glycosylation. Given the wide variety of pathogens that

humans, on average, encounter throughout life, the immune system evolved to elicit

different responses according to the danger level of the invading pathogen. In the

IgG molecule, the Fc region, where a highly conserved glycosylation site is present, is

responsible to initiate the immune response through interaction with Fc-receptors.

A major question is therefore whether nature optimized IgG Fc glycosylation to

produce an immune response specific to the antigen-carrying pathogen. In order to

test this, one would need to quantify the Fc glycan structure from isolated IgGs

with a given antigen-specificity, and compare the obtained glycan profile to that

of bulk IgG or IgG with a different specificity. Should this comparison identify

significant differences, an interesting analysis would be the clustering of individuals

according to their antigen-specific IgG glycosylation profiles. Each cluster could then

be associated to the efficacy of the immune response in neutralizing the antigen-

carrying pathogen. The outcome of this analysis could lead to the characterization

of an optimal glycosylation profile for any given pathogen.

• Antigen-specific Ig glycome optimization. The natural extension of the previ-

ous point, which is unfortunately still infeasible, would be the artificial engineering

of the glycosylation profile on therapeutic antibodies used, for example, for Intra-

Venous Immunoglobulin (IVIG) therapy [239, 240]. This would allow to provide

patients with only the most effective antibodies against the specific pathogen they

are infected with, optimizing immune response and recovery.

Outlook

In this thesis, we have highlighted how glycans are involved in a wide variety of biological

processes, despite the specific molecular mechanisms of their regulation being mostly un-

clear. This is in part due to the intrinsic complexity of the glycosylation process, which, in

contrast to most other macromolecules, does not have a direct genetic template and there-

fore cannot be easily manipulated under controlled experimental conditions [241]. On the
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other hand, measurement technologies are still not able to handle the full complexity of an

organism’s glycome, namely its site-, protein- and cell-specificity, and currently allow the

quantification of glycans from either a handful of isolated proteins or protein mixtures.

The situation is however likely to change soon, as measurement technologies are becoming

more versatile and precise and as more people are investigating the role of glycans in

diseases. In particular, due to the dynamic and adaptive nature of glycosylation, glycans

are finding increasing success as potential early stage biomarkers [242] and drug targets,

especially for diseases where other omics have failed, like cancer [98,100,101,243,244] and

HIV [56, 245]. Moreover, glyco-engineering, i.e., the optimization of the glycosylation on

synthetic glycoproteins, is proving valuable to improve the efficacy of widely used drugs:

since a major proportion of biotherapeutics products, from antibodies to cytokines, are

glycoproteins [246], modulating the protein function through its glycosylation will allow

to meet more specific and personalized functional requirements [106,247].

Conclusion

In this thesis, we investigated large-scale glycomics datasets by means of Gaussian graphi-

cal models. The core idea was based on the observation that edges in the computed GGM

correspond to single enzymatic steps in the glycan synthesis pathways. The quantitative

overlap between data-driven correlation networks and the available prior knowledge was

used to address specific but substantially different questions, ranging from the prediction

of new enzymatic reactions in the pathway of glycan synthesis, to the optimization of

preprocessing and network inference strategies for glycomics downstream analysis. In all

cases, our findings were either validated experimentally or replicated in different cohorts

and using different data types to prove generalizability. In conclusion, we have shown that

the pairing of GGMs with prior knowledge is a powerful tool to investigate the synthesis

and regulation of protein glycans in humans.
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R. M. Fleming, “Comparative evaluation of atom mapping algorithms for balanced

metabolic reactions: application to recon 3d,” Journal of cheminformatics, vol. 9,

no. 1, p. 39, 2017.

[239] N. Washburn, I. Schwab, D. Ortiz, N. Bhatnagar, J. C. Lansing, A. Medeiros,

S. Tyler, D. Mekala, E. Cochran, H. Sarvaiya, et al., “Controlled tetra-fc sialyla-

tion of ivig results in a drug candidate with consistent enhanced anti-inflammatory

activity,” Proceedings of the National Academy of Sciences, p. 201422481, 2015.

[240] T. B. Parsons, W. B. Struwe, J. Gault, K. Yamamoto, T. A. Taylor, R. Raj, K. Wals,

S. Mohammed, C. V. Robinson, J. L. Benesch, et al., “Optimal synthetic glycosyla-

tion of a therapeutic antibody,” Angewandte Chemie International Edition, vol. 55,

no. 7, pp. 2361–2367, 2016.

[241] A. Varki, “Factors controlling the glycosylation,” trends in CELL BIOLOGY (Vol.

8), 1998.

[242] H. J. An, S. R. Kronewitter, M. L. A. de Leoz, and C. B. Lebrilla, “Glycomics and

disease markers,” Current opinion in chemical biology, vol. 13, no. 5-6, pp. 601–607,

2009.



206 BIBLIOGRAPHY

[243] V. Padler-Karavani, “Aiming at the sweet side of cancer: aberrant glycosylation as

possible target for personalized-medicine,” Cancer letters, vol. 352, no. 1, pp. 102–

112, 2014.

[244] N. Taniguchi and Y. Kizuka, “Glycans and cancer: role of n-glycans in cancer

biomarker, progression and metastasis, and therapeutics,” in Advances in cancer

research, vol. 126, pp. 11–51, Elsevier, 2015.

[245] S. M. Muthana and J. C. Gildersleeve, “Glycan microarrays: powerful tools for

biomarker discovery,” Cancer Biomarkers, vol. 14, no. 1, pp. 29–41, 2014.

[246] L. Zhang, S. Luo, and B. Zhang, “Glycan analysis of therapeutic glycoproteins,” in

MAbs, vol. 8, pp. 205–215, Taylor & Francis, 2016.

[247] A. Russell, E. Adua, I. Ugrina, S. Laws, and W. Wang, “Unravelling immunoglobu-

lin g fc n-glycosylation: A dynamic marker potentiating predictive, preventive and

personalised medicine,” International journal of molecular sciences, vol. 19, no. 2,

p. 390, 2018.


