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Zusammenfassung

Diese Studie untersucht den mehrphasigen Stofftransport einer nicht-wässrigen flüssigkeit
(”Non-aqueous phase liquid”, NAPL) im Porenmaßstab, einschließlich der Auswirkungen
von Oberflächenspannungs und Marangoni-Kräften. Für die Mehrphasenströmung wurde
die Methode ”Conservative Level Set” (CLS) implementiert, um die Grenzfläche zu verfol-
gen, während die Oberflächenspannungskraft mit der Methode ”Sharp Surface Tension Force”
(SSF) simuliert wird. Zur Messung des Kontaktwinkels zwischen der Oberfläche der Flüs-
sigkeit und der Kontur der Kontaktfläche wird ein auf der CLS-Methode basierendes Kon-
taktlinienmodell verwendet; das ”Continuum Surface Force” (CSF)-Modell wird zur Model-
lierung des durch einen Konzentrationsgradienten induzierten Marangoni-Effekts verwendet;
ein neues Stofftransfermodell, das einen Quellterm in der Konvektions-Diffusionsgleichungen
verwendet, wird zur Untersuchung des Stoffübergangs verwendet.

Ein zweidimensionales Hohlraummodell, das den Marangoni-Effekt vernachlässigt, wird mit
veriierendem Strömungsbedingungen (z.B. unterschiedliche Weberzahlen, Reynoldszahlen
und Beschleunigungszeitskalenverhältnisse) implementiert, um die Massentransferrate und
das Verhalten der Grenzfläche zu untersuchen. Aufgrund der geringen Löslichkeit der NAPL
wird nur der konvektive Stoffaustausch berücksichtigt. Die Ergebnisse zeigen, dass die
Weber-Zahl und das Zeitskalenverhältnis die wichtigsten Faktoren sind, die das Verhalten
der Grenzfläche bzw. der Stoffübergangsrate beeinflussen.

Ein zweidimensionales Stofftransfermodell, das den Marangoni-Effekt berücksichtigt, wird
qualitativ untersucht. Der Marangoni-Effekt beeinflusst das lokale Geschwindigkeitsfeld in
der Nähe der Grenzfläche und erzeugt damit ein Zirkulationsmuster. Damit erhöht der
Marangoni-Effekt auch die lokale Stoffübergangsrate, was in guter qualitativer Übereinstim-
mung mit der theoretischen Analyse und Experimenten steht.
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Abstract

This study investigates pore-scale multiphase mass transport, including the effects of sur-
face tension forces and Marangoni forces of a Non-Aqueous Phase Liquid (NAPL) into water.
For the multiphase flow, the Conservative Level Set (CLS) method has been implemented
to track the interface, while the surface tension force is simulated by the Sharp Surface
tension Force (SSF) method. A contact line model based on the CLS method is used to
measure the contact angle between the surface of the liquid and the outline of the contact
surface; the Continuum Surface Force (CSF) model is applied to model the Marangoni effect
induced by a concentration gradient; a new mass transfer model, adding a source term in
the convection-diffusion equations, is employed to investigate the mass transfer rate.

A two-dimensional cavity model that neglects the Marangoni effect is implemented with var-
ious flow conditions (such as different Weber numbers, Reynolds numbers and acceleration
time scale ratios) to examine the mass transfer rate and the behavior of the interface. Due to
the low solubility of the NAPL, only the convective mass transfer will be taken into account.
The results show that the Weber number and the time scale ratio are the most significant
factors affecting the behavior of the interface and mass transfer rate, respectively.

A two-dimensional mass transfer model, influenced by the Marangoni effect, is qualitatively
investigated. As a circulation pattern appears close to the interface, the Marangoni effect
begins to impact the local velocity field near the interface. Furthermore, the Marangoni
effect also promotes the local mass transfer rate, which is in good agreement with the theo-
retical analysis and previous simulations.
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1 Introduction

1.1 Background

Transport on pore-scale is significant in many environmental applications. Mass transfer
rates across the interface in porous media impact natural systems, especially underground
water. Due to the pore topology, diffusion and transverse dispersion dominates the disso-
lution process of non-aqueous phase liquids (NAPL) (Eberhardt & Grathwohl, 2002). The
mass transfer process of contaminants from NAPL pools into groundwater involves the prop-
erties of the fluid and the interface in between, transport in the water phase and the diffusion
transport in the non-aqueous phase (Wehrer et al., 2011). Therefore, the diffusion is often
the main constraint for the mass transfer rate. Additionally, mass transfer with the least
kinetics controls the overall release rate (Ortiz et al., 1999). This behavior is taken into
account in numerical models of mass transport and rely on the interface stability.

However, when a gradient of surface tension exists along the interface between two phases,
mass transport can be impacted by the Marangoni effect (Levich & Krylov, 1969). In this
case, diffusion is not sufficient to precisely predict the mass transfer rate. Moreover, the
surface tension gradient can be caused by the variance of the concentration field and tem-
perature field along the interface. The application of the Marangoni effect are apparent
in various fields. The Marangoni effect can influence crystal growth, enhance oil recovery
(Khosravi et al. (2014) and Cheng et al. (2012)), control flow in micro-fluidic devices (Darhu-
ber & Troian, 2005) and promote mixing. However, little attention has been paid to the
Marangoni effect in the field of contaminant transport in undergroundwater.

1.2 Motivation

NAPLs such as gasoline and various petroleum products, for instance octanol, may enter
the subsurface from a leaking underground pipe (Fetter, 1993). Due to their low solubility
in water, it may take several decades for them to disperse by nature dissolution. Residual
NAPLs will be trapped in soil and constitute a long-term threat to drinking water supplies.
For this reason, a variety of techniques have been developed to remediate the NAPLs con-
taminated land.

The most widely used method is pump-and-treat, which extracts the contaminated ground-
water from the subsurface by pumping. Then, the contaminated groundwater is treated
before it can be discharged (Mackay & Cherry, 1989). However, this system takes a very
long period to meet the cleanup requirements; the ’rebound ’ phenomenon (i.e. pumping

1
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reduces the ground water level, leaving residuals on the soil. After the groundwater returns
to normal, the contaminants on the soil dissolve) may also arise. The other treatment is
In-situ remediation, which injects chemical or biological materials to subsurfaces in order
to enhance the solubility of the contaminant (Pennell et al. (1993), Augustijn et al. (1994))
or increase the liquidity of the trapped NAPL (Brandes & Farley, 1993). This method is
limited by the inability to meet the purifying requirements.

There is no perfect method thus far due to the complexity of mass transfers. It is necessary
to fundamentally understand the properties and the influencing factors of mass transfer to
solve the current contaminate problem. We can assume that the local mass transfer rates
across the interface are influenced by the Marangoni effect, since the Marangoni convection
impacts the mixing in the aqueous phase at low Peclet numbers.

In a combined experimental and numerical study, our objective is to concentrate on the
Marangoni effect of the mass transfer. We conduct a series of numerical simulations to test
the contributions of individual physical effects, such as the Gibbs-Marangoni effect. Ad-
ditionally, we investigate the purging of non-aqueous phase liquids from a two-dimensional
cavity model. In this application, different flow conditions are employed to test the influ-
ences on the mass transfer rate and the behavior of the interface.

1.3 Outline

The structure of this work is:

Chapter 2 presents the basic conceptions and equations of the incompressible flow and mass
transportation. This is followed by the introductions of theory and characteristics of multi-
phase flows, surface tension force, the contact angle model and mass transfer model. More-
over, the numerical measurements of the above models are described.

Chapter 3 contains the code basis and state of the present work at the beginning. First, the
code MGLET which is used to simulate the turbulent flows using the Finite Volume Method
(FVM) and the staggered grid is introduced in section (3.1). Then, the conservative level
set method that was implemented in MGLET (Andre, 2012) is presented in section (3.2).
This method is employed to track the interface due to its good mass conservation and sim-
plicity. In this section, at first the reinitialization equation used to maintain conservation is
presented; afterwards, the Fast Marching Method (FMM), applied to compute the normal
vector using a distance function, is analysed; then, the method to calculate the interface
curvature using the normal vector is presented; finally, the surface tension force is simulated
using the Sharp Surface tension Force (SSF) method at the end of this chapter.

Current implementations are presented in chapter 4. In section (4.1), a contact line model
for the conservative level set method is described. The Marangoni effect, induced by the
concentration gradient, is implemented using the Continuum Surface Force (CSF) model in
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section (4.2). The mass transfer model across the interface in multiphase flows is described
in section (4.3). Finally, in section (4.4), the time step size limited by different effects is
examined.

Four test cases are presented in chapter 5 to validate different numerical models: the first
test case is applied to test the accuracy of the surface tension force; the second one is applied
to validate the interaction between the viscous force and surface tension force; the third one
validates the contact line model based on the CLS method; and the fourth one is imple-
mented to validate the mass transfer model.

In chapter 6, we present the results of the mass transfer from a two-dimensional cavity model.
Section (6.1) introduces the cavity model. The numerical configuration of the cavity model
is shown in section (6.2). Afterwards, the two-dimensional and three-dimensional results are
compared in section (6.3) to investigate whether additional effects exist. The behavior of the
interface, influenced by various Weber numbers, is examined in section (6.4). The results of
the mass transfer rate, influenced by different flow conditions (e.g., the Weber number, the
Reynolds number and time scale ratio), are presented in section (6.5).

In chapter 7, the results of the mass transfer rate impacted by the Marangoni effect are
presented. The objective and the numerical model are introduced in section (7.1) and sec-
tion (7.2), respectively. Section (7.3) examines the velocity field influenced by the different
parameters. The mass transfer rate, influenced by the Marangoni effect, is presented in
section (7.4).

The conclusions and outlook for future study are provided in chapter 8.
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2 Theory

In this chapter, we introduce the theoretical foundation and numerical models of the present
work. Single-phase flows are described by the governing equations: the three-dimensional
Navier-Stokes equations in section (2.1). Afterwards, in section (2.2) the numerical methods
which are used to track the interfaces for multiphase flows are discussed. Next, some addi-
tional effects due to the multiphase flows, such as the surface tension force, the contact line
model and the Marangoni effect, are presented in section (2.3), (2.4) and (2.5). Finally, we
conclude with the description of the numerical model of mass transfer.

2.1 Single-phase flows

We solve the Navier-Stokes equations for incompressible flows of a Newtonian fluid with
external forces. The equations of the conservation laws of mass and momentum are indicated
by

∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ Fi, (2.2)

where ui refers to the instantaneous velocities, ρ indicates the density, p is the pressure, ν
denotes the kinematic viscosity, and Fi represents the body forces, including the gravita-
tional force, surface tension force and Marangoni force (see section (4.2)).

The convection-diffusion equation is used to solve the scalar transportation,

∂Φ

∂t
+ ui

∂Φ

∂xi
= D

∂2Φ

∂x2i
, (2.3)

where Φ is the scalar field (i.e. level set, temperature) and D is the diffusivity.
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2.2 Multiphase flows

In some special cases when liquid and gas occur simultaneously, a two-phase flow model
can solve them. The relatively simple relationships between variables of a single-phase flow
model cannot satisfy the analysis of two-phase flows or multiphase flows. By definition, a
multiphase flow is an interactive flow of two or more different phases with common inter-
faces. Each of the phases is regarded as having a separately defined volume fraction (or mass
fraction) and has its own properties, temperature, and velocity.

Multiphase flows can be divided into two categories:

• Materials with different states or phases (e.g. water-steam mixture and a liquid-solid
system).

• Materials with different chemical properties but in the same state or phase (i.e. liquid-
liquid systems, such as oil droplets in water).

Multiphase flows in industry have a large variety of applications. For example, in aerospace
and marine engineering, some research are related to atomization and free surface flow. In
the chemical and process industries, the design of separation systems and mixers requires
multiphase flow analyses. In power engineering, the multiphase flow models need to be em-
ployed to interpret certain phenomena, e.g. cavitation and combustion.

2.2.1 Characteristics of multiphase flows

All multiphase flow problems have features which differ from those existing in single-phase
flows.

• Multiphase flows contain a variety of immiscible phases, each with a set of flow vari-
ables, even if the two-phase flow can be divided into gas-liquid, gas-solid, liquid-liquid,
and liquid-solid. Therefore, more parameters describe the multiphase flow than those
for the single-phase flow.

• The behavior of the interface is an important factor affecting the multiphase flow,
which also poses a challenge for research. For example, when cavitation occurs in the
pump, as the fluid moves from the low pressure zone to the high pressure zone, the
shape of the interface between the cavitation bubble and the environmental liquid may
change. Furthermore, there are many forms of instability in multiphase flows.

• The spatial distribution of the various phases in the flow field strongly influences flow
behavior.

• When the densities of different phases vary greatly, the effect of gravity on the multi-
phase flow is significantly more important than the single-phase flow.

Regardless of the experimental studies or the numerical simulations, the treatment of multi-
phase flow problems is much more complicated than the single-phase flow, and even contains
some issues that cannot be solved using current state of the art.
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2.2.2 Numerical methods of multiphase flows

The numerical simulation of multiphase flows is a vast and complicated topic. Current ex-
perimental methods are insufficient for visualizing phenomena appearing on scales of space
and time. In such cases, numerical simulations for fluid-fluid and gas-fluid systems may be
a useful tool to validate or explain the concept of the physicist, engineer, or mathematician.

There have been several methods to simulate the interface of multiphase flows numerically,
including the volume of fluid (VOF) (Hirt & Nichols (1981), Tryggvason et al. (2011) and
Rider & Kothe (1998)), level set method (Sussman et al. (1994), Sethian (1999) and Osher
& Fedkiw (2002)), and front tracking method (Unverdi & Tryggvason (1992b) and (Popinet
& Zaleski, 1999)).

The VOF method is a surface-tracking technique implemented into a Eulerian coordinate
system, where Navier-Stokes equations which indicate the motion of the flow have to be
solved separately. In this manner, the interface is represented implicitly by a volume frac-
tion or color function C which is discontinuous and varies between the constant value 1 in
full cells to 0 in empty cells, while the intermediate value of C in the transition region de-
fines the location of the interface. The interface reconstruction has to be carried out in each
cell using a stair-stepped (Hirt & Nichols, 1981), piecewise linear (Rider & Kothe, 1998) or
other approaches at each advection step. The VOF method is known to maintain good mass
conservation properties and to allow for topology changes, such as those occurring during
reconnection or breakup, which are implicit in the algorithm. Moreover, it is straightforward
to extend to three-dimensional space and simple to implement. However, since the geomet-
ric information of the interface is not stored directly, the interface reconstruction and the
surface tension forces have to be taken good care of to ensure that simulations are physically
accurate. Also, due to the discontinuity of the color function, the higher order methods
cannot be applied, resulting in inaccurate results (Olsson & Kreiss, 2005).

The level set method is a numerical technique used for tracking interfaces and modeling
shapes. In this method, the interface is defined as an iso-contour of a smooth scalar func-
tion. The advantage of the level set method is that the evolving curves and surfaces can be
numerically calculated on a fixed Cartesian grid (Osher & Sethian, 1988). It is not necessary
to parameterize these objects. Another advantage of the level set method is that it is con-
venient to track the topological changes of an object, such as when the shape of the object
is divided into two. All of these make the level set method a powerful tool for modeling.
However, some problems can arise when using this technique to simulate multiphase flows.
As the function is advected by the flow field, it may lose smoothness (Sussman et al., 1994).
In terms of mass conservation, many deficiencies also exist. Several attempts have been
made to improve mass conservation by adding a reinitialization constraint (Sussman et al.
(1998), Sussman & Fatemi (1999), Olsson & Kreiss (2005) and Olsson et al. (2007)).

In the method of Sussman et al. (1998) and Sussman & Fatemi (1999), a distance function is
defined as the level set function to track the interface. The distance function is determined
by solving a particular form of the Hamilton-Jacobi partial differential equation known as
the Eikonal equation. In this case, after reinitialization, the level set function becomes the
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distance function without changing its zero level set, where the interface is located.

Olsson & Kreiss (2005) and Olsson et al. (2007) use an alternative smeared out Heaviside
function as the level set function, i.e. a function being zero in one fluid and one in the other.
The value varies smoothly from zero to one over the interface. The advection of the level set
function is performed using a conservative scheme with a reinitialization step that maintains
the thickness of the interface. The reinitialization step is achieved by solving a reinitializa-
tion equation, which contains both advection and diffusion terms that can be discretized
conservatively using the finite volume method (FVM). These two terms can prevent the
transition region from smearing out and maintain the smoothness of the interface, respec-
tively. Furthermore, as opposed to the discontinuous color function, the smoothness of the
level set function makes our method easy to extend to a higher order (Olsson & Kreiss, 2005).

2.3 Surface tension

Physically, the definition of surface tension, in the narrow sense, refers to the tendency of
liquids to attempt to obtain the minimum surface potential energy; broadly speaking, all the
tension at the interface between two different phases is called surface tension. The dimension
of surface tension is force per unit length or energy per unit area.

The most common example of surface tension occurs at the interface between a liquid and
some other media. For example, the surface tension of water comes from the cohesion caused
by van der Waals forces. When solids, such as water striders, run on the water, the surface
tension will be as flat as possible to maintain the water surface in order to achieve the least
surface potential energy. If the water strider remains its weight limits, there will be only a
few hollows on the surface, which is why water striders can move on water.

2.3.1 Physics

Surface tension can be defined in terms of force or energy:

In terms of force, the cohesive forces among liquid molecules are responsible for the phe-
nomenon of surface tension. Inside the liquid, each molecule is pulled in every direction
equally by neighboring molecules, so that the net force of the molecules inside the liquid
is zero. However, the liquid molecules on the surface between the liquid and a gas are un-
balanced, causing the molecules in the surface layer to be pulled inwards. Therefore, the
liquid will have a tendency to reduce the surface area, and this behavior is surface tension
phenomenon.

In terms of energy, the interior molecules have as many neighbors as possible, so they are
at a lower state of potential energy. However, the molecules in the surface layer have higher
potential energy. In order for the low energy part to achieve a stable state, the molecules in
the surface layer tend to move toward the interior of the liquid, resulting in a decrease in the
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Figure 2.1: Diagram of the forces on molecules of a liquid

number of molecules in the surface layer and a reduction in the liquid surface area (White,
1948).

2.3.2 Numerical modeling

The interface is defined by two different phases, and the treatment of discontinuities must
be taken into account for density, viscosity and pressure fields. Thus, a special strategy is
needed to numerically describe the jump conditions. Two different methods can be used
to achieve this: the continuous surface force (CSF) model (Brackbill et al., 1992) and the
ghost fluid method (GFM) (Fedkiw et al., 1999), which is a continuous interface fashion
and a sharp interface fashion, respectively. The CSF method is widely used to model the
surface tension force of two-phase flows in the VOF method (Gueyffier et al. (1999), Gao
et al. (2003) and Tang et al. (2004)), the level set method (Chang et al. (1996) and Wang
et al. (2008)) and the diffuse-interface method (Badalassi et al. (2003) and Kim (2005)). In
the CSF model, the surface tension is converted into a type of body force rather than as a
boundary condition, and the resulting force is proportional to the product of the interface
gradient and the interface curvature. Interface curvature can be calculated using standard
finite differences on the level set function which varies smoothly around the interface. Model-
ing surface tension can lead to the occurrence of parasitic currents. Discretizing the pressure
and surface tension forces with the same stencil is used to significantly reduce parasitic cur-
rents (Renardy & Renardy (2002) and Tryggvason et al. (2011)). However, two essential
problems still exist. Smoothing the Heaviside function introduces an interface thickness,
which depends on the mesh size, and thus an uncertainty regarding the exact location of the
interface (Mammoli & Brebbia, 2005).

The GFM extended to incompressible two-phase flows by Kang et al. (2000), avoids the
interface thickness and, in contrast to the CSF method, respects jump discontinuous across
the interface. It is necessary to know the location of the interface, as well as its curvature,
so the ghost cells can be defined on both sides of the interface. Then, the jump conditions
can be extrapolated on the ghost nodes on each side of the interface. Following the jump
conditions, the discontinued functions are extended continuously, and then derivatives are
estimated (Mammoli & Brebbia, 2005). In this way, the discretization of discontinuous vari-
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Figure 2.2: Numerical scheme of GFM

ables is more accurate, and the velocity field has much smaller spurious currents than when
using the CSF method.

2.4 Contact angle models

The contact angle θ is the angle between the surface of the liquid and the outline of the con-
tact surface, when an interface exists between a liquid and a solid. This angle measures the
wettability of a solid surface by a liquid. The contact angle is not limited to the liquid-gas
interface; it is also available for liquid-liquid or vapor-vapor interfaces. For a given system,
at a given temperature and pressure, the contact angle is uniform. However, the contact
angle hysteresis exists in practice.

2.4.1 Mechanisms

The contact angle at steady state can be calculated using the Young equation, playing a role
of a boundary condition.

γSG − γSL
γLG

= cos θC , (2.4)

where θC is the contact angle, γSG indicates the solid-vapor interfacial energy, γSL denotes
the solid-liquid interfacial energy, and γLG refers to the liquid-vapor interfacial energy (i.e.
the surface tension).

The prerequisite of the Young equation is that the surface is perfectly flat. Even with such
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a smooth surface, hysteresis in the contact angle still exists. In this case, the contact angle
ranges from the so-called advancing (maximal) contact angle θmax to the receding (minimal)
contact angle θmin. The contact angle hysteresis is defined as θmax − θmin. The equilibrium
contact angle is within these two values and can be calculated from them ((Tadmor, 2004),
(Chibowski & Terpilowski, 2008)):

θC = arccos

(
rA cos θmax + rB cos θmin

rA + rB

)
, (2.5)

where

rA =

(
sin3 θmax

2− 3 cos θmax + cos3 θmax

)1/3

(2.6)

and

rB =

(
sin3 θmin

2− 3 cos θmin + cos3 θmin

)1/3

. (2.7)

The real solid surface is either rough or has a non-uniform chemical composition, which
makes the contact angle not as unique as the Young equation predicts. The roughness has
a substantial effect on the contact angle and the wettability of a surface. If the surface
is wetted homogeneously, the droplet is in the Wenzel state (Wenzel (1936)), while if the
surface is wetted heterogeneously, the droplet is in the Cassie-Baxter state (Cassie & Baxter
(1944)). The contact angles computed using both the Wenzel and Cassie-Baxter equations
have been found to agree well with contact angles with real surfaces (Marmur (2009)). In
our work, the surfaces in all the simulations are assumed to be sufficiently smooth.

Figure 2.3: Schematic of a liquid drop showing the quantities in the Young equation.
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2.4.2 Numerical models for the contact angle

Zahedi et al. (2009) developed an algorithm for CLS method. However, this method is only
available for two-dimensional computation. Furthermore, it also requires two additional nu-
merical parameters, which are obtained by numerical experiments and test-case dependent.
Sato & Ničeno (2012) developed a new method suitable for both two- and three-dimensional
computations. Their method modifies the reinitialization step from the original CLS, with-
out adding parameters. The layer of cells adjacent to the wall is referred as to the wall
layer and treated separately from other layers. In this layer, the level set function is only
sharpened in the tangential direction of the wall. Meanwhile, the conservation is satisfied.
This model has been implemented in MGLET in present work, as discussed in detail in
section (4.1).

Many studies have been carried out on the contact line model in the context of some other
conservative methods, such as VOF and CLSVOF. Bussmann et al. (1999) and Bussmann
et al. (2000) first calculated the drop impact phenomena using a three-dimensional VOF
code. Meanwhile, in Afkhami & Bussmann (2009), a height function was used in the VOF
method to simulate the contact line model. This method enables the contact line phenomena
to be simulated in both static and dynamic conditions. A contact line model for CLSVOF,
developed by Sussman (2001) and Sussman (2005), incorporates an embedded boundary ap-
proach (Colella et al., 1999) in which a solid-body shape can be displayed within a Cartesian
grid. With the help of the contact line model, contact line dynamics problems can be re-
solved: for instance, free surface flow around a solid body (Yang & Stern, 2009), free surface
deformation due to a wall adhesion force without gravity (Himeno & Watanabe, 2005), and
drop impact phenomena (Yokoi, 2011).

2.5 Marangoni effect

The Marangoni effect occurs when a surface tension gradient exists along the interface be-
tween two phases. In most cases, this two-phase interface is a liquid-gas interface. As the
solute concentration, surfactant concentration, and temperature change along the interface,
a surface tension gradient is usually generated.

2.5.1 Relevance

The applications of the Marangoni effect have been observed in various fields. This effect
has to be considered during the welding process, since it influences the stresses within the
material as well as deformation. Forces that generated from the Marangoni effect can also
affect crystal growth, leading to defects within the structure, which can inhibit the mate-
rial’s semiconducting capabilities. During the electron beam melting process, the Marangoni
effect can be caused in the melting process by large thermal gradients. These forces have a
negative impact on the quality of the material.
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There are various ways to define a Marangoni number, a dimensionless number quantifying
the influence of the Marangoni effect. One possibility is:

Ma = −L∆σ

µD
, (2.8)

where L is the characteristic length, µ is the dynamic viscosity and σ is the surface ten-
sion.

2.5.2 Mechanisms

When two liquids are in contact with each other, the liquid with stronger surface tension
pulls more strongly on the surrounding liquid than one with lower surface tension, so that
the liquid flows away from regions of low surface tension.

Tears of wine is a typical phenomenon caused by Marangoni effect. Its mechanism is vi-
sualized in figure (2.4). It forms at the three-phase junction of glass walls, wine, and air.
At this junction, the fluid remains on the surface of the glass. Since the vapor pressure of
alcohol is higher than that of water, the alcohol in the wine continues to evaporate from
the surface, evaporating faster than water. The alcohol concentration in the thin film drops
quickly, because of their small volume and relatively large surface area. This establishes a
concentration difference between the thin film and the flat contact surface, between the wine
and the air, which in turn causes a surface tension gradient that moves the thin film up the
wall of the glass.

As alcohol is further volatilized, a greater surface tension gradient is created. More wine is
drawn to the glass wall until droplets form. At this point gravity will pull the tears of wine
along the glass wall back to the main body of the wine.

There are two special cases of the Marangoni effect: (1) In the case where the change in
surface tension is driven by concentration, the Marangoni effect is referred to as the soluto-
capillary effect:

dσ =
∂σ

∂c
dc, (2.9)

where c is the concentration. (2) In the case where the surface tension varies due to the
temperature, the Marangoni effect is referred to as the thermo-capillary effect (Levich &
Krylov, 1969):

dσ =
∂σ

∂T
dT, (2.10)
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Figure 2.4: The phenomenon of tears of wine (Source: COMSOL INC.).

where T is the temperature. Both (1) and (2) can take place simultaneously, such that,

dσ =
∂σ

∂T
dT +

∂σ

∂c
dc. (2.11)

2.5.3 Numerical models

Numerical simulation of the Marangoni convection can be performed in several ways. The
critical point of these numerical methods is to specify the location of the interface. The
methods for tracking the interface for two-phase flows are discussed in section (2.2). The
Marangoni convection together with mass transfer and heat transfer has been studied ex-
tensively with different CFD models. Many numerical simulations of the Marangoni effect
have been documented.

As the Marangoni force is the tangential component of surface tension force, the numerical
treatment of the Marangoni effect is similar to the surface tension effect. Two approaches
can be used to deal with the Marangoni effect: one is the continuum surface tension method
and the other is the ghost fluid method (see section (2.3)). Based on the continuum surface
fluid method, the Marangoni force is transformed to a volume force in the region near the
interface in the momentum equations, rather than as boundary conditions. The CSF method
is directly applicable to the level set method (Sussman et al., 1994) and reported to be quite
robust. However, as mentioned above, the CSF method generates spurious currents near
the interface when surface tension force are dominant. These spurious currents are caused
by the inaccuracy in curvature estimations and the imbalance of the surface tension and
pressure gradient forces (Francois et al., 2006).

The ghost fluid method is used to deal with the jump conditions of physical quantities. In
GFM, with the properly defined ghost cells, the boundary conditions are implemented in
the form of discontinuity in the solution variable, in the gradient of the variable and in the
properties of two-fluid across the interface (Shaikha et al., 2015). As a result, the sharp
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interface is maintained without smearing. The discontinuous variables are discretized more
accurately in GFM, thus the spurious currents are much lower as compared to the CSF
method. However, the GFM is not a conservative method because it solves two single fluid
problems rather than the two-phase problem. Therefore, the numerical flux is calculated
twice at the interface (Liu et al., 2011).

The Marangoni effect is widely used in many fields. Davis (1987) examined the instabilities
leading to the Marangoni effect. The impact of the Marangoni effect on crystal growth was
considered by Okano et al. (1991), Kobayashi et al. (1997), Galazka & Wilke (2000), and
Kawaji et al. (2003). The thermo-capillary effect of a droplet in a non-uniform temperature
field was studied in Bassano (2003). The impacts of the Marangoni convection on binary
mixture, in which the surface tension depends on both the temperature and the solute con-
centration was investigated in a series of papers ((Bergeron et al., 1994), (Bergeron et al.,
1998) and (Bahloul et al., 2003)). The Marangoni convection can be also used in absorption
processes (Kim et al., 2004). The numerical simulation of the Marangoni effect induced by
interphase mass transfer to/from drops, especially for mass transfer to/from a deformable
drop were conducted in Mao & Chen (2004) and Wang et al. (2008).

2.6 Mass transfer over interfaces

Mass transfer describes the passing of mass from one point to another and is the central
issue in transport phenomena. In multi-physics systems, mass transfer can take place in a
single phase as well as over phase boundaries. Although mass transfer also exists between
solid-phase materials, in most engineering problems mass transfer involves at least one fluid
phase (gas or liquid).

In many cases, mass transfer of a substance occurs in conjunction with chemical reactions.
This means that the flux of a chemical substance within a volume element does not have
to be conserved, because the chemical substances can be generated and consumed in this
volume element. The chemical reaction is the source or sink of this flux balance.

The mass transfer theory allows for the computation of the mass flux, and the temporal and
spatial distribution of different substances in a system (including in the presence of chem-
ical reactions). The purpose of such calculations is to understand, design or control such
systems. Explaining the mechanisms of mass transfer is essential, not only for the design
of mass transfer equipment, but also for reactor design, especially if it relates to reactions
that are controlled by mass transfer. In addition, mass transfer plays an important role in
environmental engineering, space technology, and biomedical engineering.

Mass transfer results from the effect of the chemical potential caused by concentration, tem-
perature and pressure gradients. The driving force Fd can be written as:

Fd = −∇Φ, (2.12)
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where Φ is the potential in the system.

The dimensionless number which is used to measure the ratio of the convective mass transfer
to the rate of diffusive mass transport is given by the Sherwood number (Sh):

Sh =
K

D/L
, (2.13)

where L is the characteristic length, K is the convective mass transfer coefficient and D is the
mass diffusivity. Once the Sherwood number is calculated, then the mass transfer coefficient
can be obtained. Furthermore, the Sherwood number can also be defined as a function of
the Reynolds number (Re) and the Schmidt number (Sc):

Sh = f(Re, Sc). (2.14)

Depending on different model configurations and different flow conditions, the relationship
between the Sherwood number, the Reynolds number and the Schmidt number is various.
The Reynolds number is the ratio of inertial forces to viscous forces in the fluid:

Re =
ρuL

µ
=
uL

ν
, (2.15)

where µ is the dynamic viscosity of the fluid.

The Schmidt number is a dimensionless number defined as the ratio of momentum diffusivity
(kinematic viscosity) and mass diffusivity:

Sc =
ν

D
=

µ

ρD
. (2.16)

The primary challenge of mass transfer is to determine the concentration distribution and
mass transfer rate. Many studies have been discussed on the mass transfer rate under dif-
ferent numerical and experimental conditions.

2.6.1 Mass transfer due to the temperature gradient (phase
change)

Evaporation is a common form of mass transfer caused by temperature gradients. From the
microscopic perspective, evaporation is the process of liquid molecules leaving the liquid sur-
face. Molecules in a liquid move constantly and irregularly, with their average kinetic energy
dependent on the temperature of the liquid. Due to the random movement and collision of
molecules there are always some molecules that have higher kinetic energy than the average
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instantaneous kinetic energy. Molecules with sufficient kinetic energy to overcome the forces
between the molecules of the liquid, such as those near the surface of the liquid, will ’escape’
and enter the surrounding air in gaseous phase.

As the molecules with higher kinetic energy escape from the liquid, the energy removed from
the vaporized liquid reduces the average kinetic energy and the temperature of the liquid,
resulting in evaporative cooling.

For different flow conditions and different model configurations, the mass transfer rate can
be defined in various ways, as discussed below:

Mass transfer by evaporation at a flat interface

If we consider a liquid at a given temperature TL, and the constant partial vapor pressure
(lower than the saturated pressure psat) at a certain distance H from the interface (see
figure (2.5)), we are able to calculate the mass transfer rate of the evaporation at steady
state (Borghi & Anselmet, 2014):

ṁ =
ρDv

H
ln

(
1− YV,H

1− YV sat(TL)

)
, (2.17)

where ṁ is the mass transfer rate, Dv is the diffusion coefficient of the vapor in the air, YV,H
is the mass fraction of vapor at H, YV sat is the mass fraction of the vapor at interface. H
should be sufficiently small to ensure that the pressure between the point H and the interface
linearly and monotonously depends on the distance H.

The evaporation process contains three phenomena (Borghi & Anselmet, 2014): Firstly, the
movement of vapor molecules in the gas phase due to the gradient of the partial pressure,
which is molecular diffusion. Secondly, the transformation of the liquid-vapor at the surface
maintains the equilibrium between the liquid and the vapor, which is influenced by the be-
havior of the molecular diffusion. Thirdly, the motion of the interface, in which the liquid
moves towards the interface and the vapor moves away from the interface.

If the gas mixture is a perfect mixture, then

pV = p
Mmix

MV

YV , (2.18)

where pV is the partial pressure, p is the total pressure in the gas and can be assumed to be
known, Mmix is the molar mass of the mixture and MV is the molar mass of the vapor.

Stefan’s equation expresses the relationship between the partial pressure and the mass frac-
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Figure 2.5: Model for the study of the evaporation of a liquid

tion:

ṁ =
ρDv

H
ln

(
p− pV,H

p− psat(TL)

)
. (2.19)

If we assume that the total pressure is higher than pV,H and psat, and the temperatures of
the liquid and the gas are lower than 30◦C, we have: P−PV 0

P−Psat ≈ 1. In this case, Stefan’s
equation simplifies to Dalton’s equation:

ṁ =
ρDv

H
ln (psat(TL)− pV,H) . (2.20)

Although Dalton’s and Stefan’s equations are only applicable to simple one-dimensional
problems of water evaporation in a tube (Borghi & Anselmet, 2014), they clearly show how
the mass transfer rate depends on water temperature, and that the evaporation rate in-
creases when the partial vapor pressure in H is low. We can also observe that the equation
is reversible: if the partial vapor pressure of H is higher than the saturation pressure at the
temperature of the liquid, then there is condensation rather than vaporization at the inter-
face. Therefore, this equation is not only related to the evaporation, but also an equilibrium
of vaporization-condensation.

Evaporation of a drop
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Another case of the local evaporation rate is the vaporization of a drop in a gas phase. This
case has been studied both theoretically and experimentally (Sirignano, 1999).

The drop is assumed to be isolated and spherical in shape without gravity, so that the
profiles of the velocity and temperature fields remain spherical. Then the mass flow rate
of the vaporization from the drop can be obtained similarly to the case of the flat inter-
face:

ṁ = 4πrdρgDvln

(
1− YV∞

1− YV sat(Ts)

)
, (2.21)

where rg is the radius of the drop, ρg is the density of the gas, Dv = const. is the mass
diffusivity of the vapor. Ts is the temperature at the surface. Then the mass flow rate per
surface unit is:

ṁ =
ρgDv

rd
ln

(
1− YV∞

1− YV sat(Ts)

)
. (2.22)

In recent years, new methods have been developed to compute phase change, with the help
of interface tracking techniques, which have been discussed in section (2.2). Juric & Tryg-
gvason (1998) showed a front tracking approach to simulate the boiling flow. In this case, the
single field formulation is applied to describe the entire flow field. Welch & Wilson (2000)
introduced a volume of fluid method for phase change. A coupled level set and volume of
fluid method was used in Tomar et al. (2005) to calculate the film boiling. In Tanguy et al.
(2007) a combination of the level set method and the ghost fluid method was implemented
to handle the two-dimensional vaporizing issues.

2.6.2 Mass transfer due to the concentration
gradient

Mass transfer driven by the concentration gradient without considering the temperature field
is discussed in this section. It is widely used in chemical engineering, especially liquid-liquid
reactions and solvent extraction. Many of these industrial processes are related to the mass
transfer of moving drops or bubbles (rising or falling). The main challenge in the numerical
simulation of mass transfer to/from a buoyancy driven drop is that the motion of a deformed
drop with simultaneous mass transfer must be solved with the un-determined topology of
a surface (Petera & Weatherley, 2001). Key to this challenge is understanding the mass
transfer mechanism by considering the drop deformation and the mass transfer process it-
self. Due to the complexity of the mass transfer, many empirical and theoretical equations
for mass transfer coefficients for various drop and bubble conditions can be looked up (Clift
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et al., 1978).

In addition to experiments, a number of numerical simulations have been performed recently.
Mao et al. (2001) concentrated grid points near the bubble by using a body-fitted coordinate
system. Davidson & Rudman (2002) and Gupta et al. (2010) simulated mass transfer with a
volume of fluid method. Unverdi & Tryggvason (1992a) and Aboulhasanzadeh et al. (2012)
computed the bubble motion with mass transfer using the front tracking method. The lat-
ter approach applies a multi-scale computation technique to significantly reduce the overall
grid resolutions. Wang et al. (2008), Ganguli & Kenig (2011a), Ganguli & Kenig (2011b)
and Hayashi & Tomiyama (2011) implemented the level set method tracking the interface
to measure the mass transfer rate and, to observe the behavior of bubbles. Especially for
Ganguli & Kenig (2011a) and Ganguli & Kenig (2011b), the conservative version of the level
set method was applied by adding two source terms in the momentum equations. However,
in most of these studies, the volume of the bubbles was assumed to remain constant. Only
Hayashi & Tomiyama (2011) considered the shrinkage of the bubbles as gas diffused to the
liquid.

The overall liquid mass transfer coefficient kod influenced by the concentration gradient can
be estimated by

V
∂cL
∂t

= Skod

(
cL −

cG
HD

)
, (2.23)

where kod is the mass transfer coefficient, V is the volume of the liquid, S is the surface
area of the liquid, HD is the dimensionless distribution coefficient, cL and cG are the con-
centrations in the liquid phase and gas phase, respectively. cG/HD means the concentration
in equilibrium in the liquid phase due to the Henry’s law. The Henry’s law and HD will be
discussed in detail in section (4.3).

If the time interval is sufficiently small, integrating equation (2.23) gives:

kod = −V
S

1

t2 − t1
ln

(
cG/HD − c̄L,t1
cG/HD − c̄L,t2

)
, (2.24)

where t1 and t2 are the two measurement times and c̄L is the average concentration of the
drop at any time.

The difference between the mass transfer coefficient kod and the mass flux ṁ is a factor ρ
(i.e., kod = ṁ/ρ). Here, the concentration term is taken into account, rather than the mass
fraction term or the pressure term in the formula of evaporation rate.

Additionally, two interfacial boundary conditions need to be considered in this case:

• flux continuity at the interface
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• interfacial dissolution equilibrium

The method used to implement these two interfacial boundary conditions will be discussed
in section (4.3).
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3 Code basis and state at the beginning

In this chapter, the code MGLET is introduced in detail, which is used to solve the governing
equations of turbulent flows. Furthermore, the conservative version of the level set method
(CLS), already implemented into MGLET as part of a master’s thesis (Andre, 2012) will be
discussed.

3.1 MGLET

The main objective of MGLET is to predict turbulent flows in and along complex geometries
with Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This code is
based on the finite volume method in the Cartesian coordinate system. It has been par-
allelized and tested on a high-performance computer (more than 109 grid cells). Recently,
several research groups (e.g., NTNU Trondheim, DLR Institute of atmosphere physics) have
been adopting this code to various applications, such as bluff body flow and wake vortices.

Recent developments to this code include:

• Conservative Immersed Boundary method for arbitrary geometries in a Cartesian grid.

• Zonal grid refinement and hierarchical grids for high Schmidt number scalar fields.

• Particle dynamics and fiber suspension.

• Fourth-order Finite Volume schemes.

• Multiphase flows.

MGLET is implemented on a Cartesian grid with the staggered variable arrangement of com-
putations (Manhart & Friedrich (2002), Manhart (2004)). Convective and diffusive fluxes at
cell faces are discretized with central space approximations (second and fourth order). Time
integration is achieved by a third-order Runge-Kutta (RK) method. The pressure in the
Poisson equation is solved by an Incomplete Lower-Upper (ILU) decomposition of second
order accuracy.

3.1.1 Finite volume method

The finite volume method is a numerical algorithm to solve partial differential equations
(PDE) which is widely used in computational fluid dynamics (CFD). This method is based
on conservation of the integral form rather than the differential form. In the finite volume
method, volume integrals in a partial differential equation can be handled by calculating
the values of variables averaged across the volume in conservation form. If volume integrals
contain a divergence term, they can be converted to surface integrals using the divergence

23
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theorem (Gauss theorem). These terms may then be treated as fluxes at the surfaces of each
control volume.

The advantages of finite volume method are:

• Consistent with the law of conservation (Because the flux entering a given volume is
identical to that leaving the adjacent volume).

• Highly adaptable to the unstructured meshes.

3.1.2 Staggered grid

For a staggered grid, scalar variables (i.e. pressure, density, viscous, level set, etc.) are
stored at the center of each control volume cell, and the velocities are allocated at the center
of the surface of each cell. This is in contrast to a collocated grid arrangement, in which all
the variables are stored in the same positions in the center of the control volume for each cell.

Figure 3.1: Control volumes for the spatial discretization of the momentum equations

Figure (3.1) shows the variable arrangements for a staggered grid. The main advantage of
the staggered grid over the collocated grid is that the staggered grid can avoid odd-even
decoupling between the pressure and velocity fields. Odd-even decoupling, which occurs in
the collocated grid can lead to checkerboard patterns in the pressure field in numerical sim-
ulation. However, these kind of arrangements make it difficult to deal with different control
volumes for different variables. As a result, extra care should be made when taking into
account different variables in the post-processing phase.
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3.2 Conservative level set method

The CLS method has been chosen as the numerical method to track the interface, due to its
ability to conserve mass and simplicity. It was first implemented in the MGLET within a
master thesis (Andre, 2012). The CLS method has been reprogrammed from its initial form
to comply with recent updates to MGLET. To validate the implementation, some test cases
were computed (see Chapter 5). In the following, the current implementation will be detailed.

3.2.1 Level set advection

The level set ϕ is advected by equation (3.1):

∂ϕ

∂t
+ u ·∇ϕ = 0. (3.1)

For a divergence free velocity field, this can be re-written as

∂ϕ

∂t
+∇ · (ϕu) = 0. (3.2)

Equation (3.2) has a number of benefits: It is effective in keeping the scalar ϕ conserva-
tive, ensuring that volumes of each fluid approach constant values as the level set function
converges to a step function. The advection equation is discretized using the finite volume
method.

In MGLET, a preprocessing step is implemented to improve resolution properties of low
order numerical schemes (Schwertfirm et al., 2008). This method is employed to calculate
the level set function to improve the accuracy during the advection step.

3.2.2 Level set reinitialization

In order to deal with the inconsistency with the mass conservation of the level set method,
Olsson & Kreiss (2005) introduced an alternative reinitialization equation which was further
refined by Olsson et al. (2007). The reinitialization equation is given by

∂ϕ

∂τ
+∇ · (ϕ(1− ϕ)n) = ε∇ · ((∇ϕ · n)n), (3.3)

where τ is the pseudo time step, ε is the artificial diffusion number and n is the interface
normal vector.

To comprehend the reinitialization equation, each term in equation (3.3) has been examined
separately. The second term on the left side of equation (3.3) is referred to as the compres-
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sion term which is used to sharpen the definition of the interface profile. The term on the
right side is referred to as the diffusion term, which is used to prevent the interface from
being too sharp, maintaining the smoothness of the interface.

The steady state solution of equation (3.3) discussed by Olsson et al. (2007) is given by:

ϕ =
1

2

(
tanh

(
φ

2ε

))
. (3.4)

Increasing ε tends to smear out the interface profile while decreasing ε tends to sharpen the
interface profile. Olsson & Kreiss (2005) suggested to define the artificial diffusion term ε
and the pseudo time step size τ as follows:

ε =
h1−d

2
(3.5)

and

∆τ =
h1+d

2
, (3.6)

where is d = 0.1, and h is the grid spacing. In this case, as opposed to others, it is not only
sufficient to obtain convergence, but also maintain a sharp interface.

In Olsson & Kreiss (2005), the level set function is advected with a total variation di-
minishing (TVD) method. The equation used to calculate the interface normal vector
is:

n =
∇ϕ
|∇ϕ|

. (3.7)

The non-TVD advection schemes cannot avoid all oscillations occurring in the level set
field. These oscillations lead to rapid fluctuation of the normal vector n near the interface.
Desjardins et al. (2008) used a distance function φ free of oscillations to compute the normal
vector n,

n =
∇φ
|∇φ|

(3.8)

is to make the level set method more robust.

The distance function in the CLS is in fact the level set function in the original level set
method, while the level set function in the CLS is defined using a hyperbolic tangent profile
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rather than the signed distance function in the original version of the level set method. The
method used to determine the distance function is discussed in section (3.2.3).

When solving the Navier-Stokes equations, density and viscosity fields need to be clari-
fied. While these two fields are assumed to be constant within each fluid, jump condi-
tions around the interface lead to density and viscosity not being constant. The density
and viscosity fields are defined using the level set function as followed (Olsson & Kreiss,
2005):

ρ = ρ1 + (ρ1 − ρ2)ϕ (3.9)

and

µ = µ1 + (µ1 − µ2)ϕ. (3.10)

3.2.3 Distance function and normal vector

The Fast Marching Method (FMM) used to compute the distance function is a numerical al-
gorithm for solving boundary value problems of the Eikonal equation (Sethian, 1999):

|∇φ| = 1 for φ ∈ Ω (3.11a)

φ = 0 for φ ∈ ∂Ω. (3.11b)

The general principle of equation (3.11) is to find a path with the shortest travel time from a
point in the modeling domain to the boundary. In other words, the direction of the steepest
descent needs to be specified.

Using the multi-dimensional approximation from Osher & Sethian (1988), the discrete form
of equation (3.11) is given by

|∇φ|2 ≈ max(D−xφi,j,k, 0)2 +min(D+xφi,j,k, 0)2

+max(D−yφi,j,k, 0)2 +min(D+yφi,j,k, 0)2

+max(D−zφi,j,k, 0)2 +min(D+zφi,j,k, 0)2

= 1. (3.12)

The version of the first order forward and backward operators, take x-direction as an example,
can be defined as,

D+xφi,j,k =
φi+1,j,k − φi,j,k

∆x
(3.13)
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and

D−xφi,j,k =
φi,j,k − φi−1,j,k

∆x
. (3.14)

However, the first order version is not sufficient to obtain the accurate values. Therefore, a
second order discretization of the above equations is employed, in the x-direction:

D+xφi,j,k =
φi+1,j,k − φi,j,k

∆x
+ S+∆x

2

φi+2,j,k − 2φi+1,j,k + φi,j,k
∆x2

(3.15)

and

D−xφi,j,k =
φi,j,k − φi−1,j,k

∆x
+ S−

∆x

2

φi,j,k − 2φi−1,j,k + φi−2,j,k
∆x2

. (3.16)

The operators of S+ and S− are defined as followed,

S+x(φi,j,k) =

{
1 if φi+1,j,k and φi+2,j,k are known, and φi+2,j,k ≤ φi+1,j,k

0 else

for the forward derivative in the x-direction, and

S−x(φi,j,k) =

{
1 if φi−1,j,k and φi−2,j,k are known, and φi−2,j,k ≤ φi−1,j,k

0 else

for the backward derivative in the x-direction. Equations for y-direction and z-direction
follow similarly.

A more practical formulation is noted by Sethian (1999):

|∇φ|2 ≈ max(D−xφi,j,k,−D+xφi,j,k, 0)2

+max(D−yφi,j,k,−D+yφi,j,k, 0)2

+max(D−zφi,j,k,−D+zφi,j,k, 0)2

= 1. (3.17)

With this approach, the distance function φ is approximately second order accurate. Since
they are calculated from the gradient of φ (see equation (3.8)), the normal vectors are ex-
pected to be first order accurate.

In the level set method, the distance function has a positive sign on the side of the interface
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with ϕ ≥ 0, while on the opposite side the distance function has a negative sign. In order to
initialize the distance values around the interface, the inverse to equation (3.4) is applied,
as given by

φ = εln

(
ϕ

1− ϕ

)
. (3.18)

The points in the domain can be categorized into three groups: known, trial and unknown.
All the nodes are marked as unknown at first. Then the grid points closest to the interface
are initialized by equation (3.18). These grid points are identified as having known solution
values. The neighbors of the known nodes without known values are marked as trials. The
remaining grid points are marked as unknown. The calculation of the gradient of a node is
achieved only if the node has known neighbors. The resulting minimum distance is stored
as a trial value. If at a later time a previously unknown neighbor becomes known, this min-
imum needs to be recalculated and compared to the previous minimum distance. Repeating
this process, until the minimum distance of a given point is determined. Thereafter, this
point can be marked as known, and used to compute the distance for its trial neighbors.
Finally, the results can be determined until a specified distance value becomes known or all
nodes are marked as known in the domain.

Figure 3.2: FMM initialization. Cells are marked as known (black circle), trial (blue circle) or
unknown (empty).

3.2.4 Interface curvature

The accuracy of curvature is a critical factor that effects the accuracy of surface tension
force calculations. The interface curvature can be calculated with a finite difference method
(Sethian, 1999), a least squares method (Marchandise et al., 2007) and a convolution method.
Due to the second order accuracy of the distance function, the curvature calculated using
finite difference method did not result in convergence (Desjardins et al., 2008). For the
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convolution method, which has been already used to calculate the derivative of the color
function in VOF (Cummins et al., 2005), the curvature can be determined by computing the
divergence of the normal vectors:

κ = −∇ · n, (3.19)

where κ is the curvature.

The advantage of this approach is that the additional computational cost of equation (3.19)
is small. However, the disadvantage is that the curvature stencil size is larger, which may
result in lower accuracy.

3.2.5 Surface tension

The surface tension force is included in the momentum equations (2.2) as a volumetric force
(Brackbill et al., 1992):

Fsu = κσnδ(x− xs), (3.20)

where σ is the constant surface tension coefficient, xs is the point on the interface and δ is
a delta function defined as:

δ(x) =

{
+∞ if x = 0

0 if x 6= 0

and

∫ +∞

−∞
δ(x) = 1.

The role of the delta function is to transform the surface tension force from a volume inte-
gral to a surface integral over the domain of the interface. In the CSF method, nδ(x −
xs) can be replaced with the gradient of the level set function ∇ϕ (Olsson & Kreiss,
2005):

FCSF
su = κσ∇ϕ. (3.21)

The surface tension force is not zero if the gradient of the level set function ∇ϕ is not
zero. However, as mentioned in section (2.3), the interface curvature calculated by CSF
model may lead to less accurate results. An alternative method, similar to the sharp surface
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tension force (SSF) method (Brackbill et al., 1992) is used to compute the surface tension
force:

FSSF
su = κσ

1

∆x
, (3.22)

which is still treated as the volume integral, rather than the surface integral in the momen-
tum equations. It also results in a jump condition in the Poisson equation similar to the
GFM (Liu et al., 2000). In this case, the surface tension force only exists at interfaces at
which the distance function φ changes sign. For example, if the interface is located between
the cell (i, j) and (i + 1, j), the surface tension force applied in x-direction can be defined
as:

Fi+1/2,j,k = sign(φi+1,j,k − φi,j,k)
σκ

∆x
, (3.23)

and, in the y-direction,

Fi,j+1/2,k = sign(φi,j+1,k − φi,j,k)
σκ

∆x
. (3.24)

The curvature at the interface can be calculated from values at neighboring cells, through
an interpolation process, using the distance function

κ =
|φi+1,j,k|κi,j,k + |φi,j,k|κi+1,j,k

|φi+1,j,k|+ |φi,j,k|
. (3.25)

The advantage of this method is that the points used to calculate the curvature of the in-
terface are close to the interface, while the CSF method spreads the surface tension over the
entire transition region of the level set function.
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4 Current implementations

In the framework of this dissertation, models for the contact angle, the Marangoni force and
mass transfer over a fluid-fluid interface have been implemented in MGLET. In section (4.1),
a new contact line model for the conservative level set method is described. Then, the
Marangoni model is implemented in MGLET by adding a volume force in the momentum
equations shown in section (4.2). Section (4.3) introduces the mass transfer model due to
the concentration gradient. Finally, in section (4.4) the time step restrictions for advancing
the flow variables are presented.

4.1 A contact line treatment for the CLS
method

A contact line model for the CLS method is discussed in this part. As mentioned above,
many studies of the contact line model are based on the volume of fluid and sharp level
set method. However, not many studies are related to the conservative level set method.
Recently, only two models have focused on the CLS, Zahedi et al. (2009) and Sato & Ničeno
(2012). In Zahedi et al. (2009), two additional parameters which are test-case dependent are
introduced to be implemented in the reinitialization step. However, this method is limited
to two-dimensional cases. Sato & Ničeno (2012) modify the reinitialization step from the
original CLS, and this method enables the model to solve both two- and three-dimensional
problems. In present study, the latter one is implemented.

In section (4.1.1), the revised reinitialization step based on the original CLS is described.
Then the boundary conditions for the contact line model of Sato & Ničeno (2012) are intro-
duced in section (4.1.2). This model is validated in section (5.3).

4.1.1 The reinitialization function for CLS

The reinitialization function proposed by Olsson et al. (2007) has been introduced in sec-
tion 3.2. Therein, equation (3.3) the diffusion term on the right side is limited to the normal
direction only. This avoids diffusion in tangential direction. Since the flux in the direction
tangential to the interface will not be balanced by any compression effects, the tangential
diffusion might move the interface which is suppressed by the reinitialization function, equa-
tion (3.3). However, in the new contact line model, the tangential diffusion effects of the
level set function in the reinitialization step are also significant for the movement of the
interface at the wall layer; thus, the original reinitialization function is needed (Olsson &
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Kreiss, 2005):

∂ϕ

∂τ
+∇ · (ϕ(1− ϕ)n) = ε∇ · (∇ϕ). (4.1)

The discretized form of the reinitialization function, using the finite volume method, is
written as (Sato & Ničeno, 2012):

V
∂ϕ

∂τ
+
∑

((ϕ(1− ϕ)n) · S) =
∑

ε(∇ϕ) · S, (4.2)

where V is the volume of the cell, and S is the area vector of the cell faces. In our study,
the level set function and the normal vectors are stored at the cell centers.

4.1.2 Boundary conditions

In the following sections, we will introduce how to deal with the boundary conditions with
respect to the level set function and the normal vector.

Level set function

Since the velocity at the wall surface is zero (no-slip boundary condition is applied), the
fluxes of the level set function at the wall surface should also be zero. Therefore, a special
treatment is needed in which the fluxes of the compression term and the diffusion term in the
normal direction of the wall are forced to be zero at a wall layer. These boundary conditions
are written as:

(ϕ(1− ϕ)n) · Swall = 0 (4.3)

and

(∇ϕ) · Swall = 0, (4.4)

respectively, where Swall is the area vector of the wall.

The layer of cells adjacent to the wall is treated differently from the other layers. Therefore,
this layer is denoted as the wall layer as shown in figure (4.1). In this wall layer, fluxes
of the level set function are only in the tangential direction of the wall (i.e., no fluxes in
the normal direction of the wall), rather than in all directions in other layers. Therefore,
the governing equation of the reinitialization equation of the wall-layer can be re-written
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as:

V
∂ϕ

∂τ
+
∑

((ϕ(1− ϕ)n)|| · S) =
∑

((ε(∇ϕ)||) · S), (4.5)

where the subscript || means the tangential component. For example, the tangential com-
ponent of the vector a is defined as:

(a)|| = a− (a · nwall)nwall = 0, (4.6)

where nw is the normal vector of the wall.

Thus, the fluxes of the diffusion term and the compression term in equation (4.5) on the
wall boundary are written as:

(ϕ(1− ϕ)(n)||) · Swall = 0 (4.7)

and

(ε(∇ϕ)||) · Swall = 0, (4.8)

respectively.

Since ((n)||) · Swall = (∇ϕ)|| · Swall = 0, these two equations also fulfill the wall boundary
conditions given in equation (4.3) and equation (4.4).

Figure 4.1: Schematic of the wall-layer (blue cells: wall-layer cells; black cells: others)
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Due to equation (4.3) and equation (4.4), the fluxes of the diffusion term and the compres-
sion term shown in figure (4.2) are set to zero for a Cartesian grid system. The interface
sharpening algorithm does not work between the wall-layer and other parts in the domain,
since the fluxes between them are forced to be zero. Therefore, the level set function of the
wall-layer smears out in the normal direction of the wall. However, the smearing out only
happens in the wall layer (i.e., only one cell layer).

Figure 4.2: Wall-boundary treatment of the flux calculation (blue arrows: flux enforced to be zero;
black arrows: flux calculated normally).

Normal vector

Since the staggered grid is implemented in MGLET, the normal vectors are stored in the
center of the cells shown in figure (4.3). For a known static contact angle which is physically
located on the wall boundary as a boundary condition, the normal vector nc of this point is
available. Then a ghost normal vector outside of the domain needs to be taken into account
as follows:

ni,j−1 = 2nc − ni,j. (4.9)

As a result, the normal vector on the wall is fixed by its two neighbors which are located
on two sides of the wall. Moreover, nc can be dynamically predicted by Cox’s law (see sec-
tion (5.3)).
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Figure 4.3: Treatment of normal vectors at boundary.

4.2 Marangoni effect

The Marangoni effect induced by the spatial variations in the surface tension coefficient
can be caused by temperature or concentration gradients, or a combination of both effects.
Understanding these phenomena is significant since they are related to various applications.
Numerical methods for studying the Marangoni effect were discussed in section (2.2). The
conservative level set method is efficient and robust for tracking the interface. And due
to its continuous characteristics, the CSF method which interprets surface tension as a
continuous effect across an interface, rather than as a boundary condition on the interface,
is implemented to simulate the surface tension force in a direction tangential to the interface.

Stress boundary conditions are generated due to the presence of the interface, see figure (4.4).
The stress boundary condition in the normal direction at the interface defines the stress jump
(Landau & Lifshitz, 1987):

〈n · T · n〉 = σ(x)κ, (4.10)

where 〈〉 defines the jump condition across the interface (i.e., the difference on both sides of
the interface) and T is the total stress tensor,

T = pI + µ(∇u +∇uT ). (4.11)
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Figure 4.4: The schematic of two immiscible fluids and the corresponding stress boundary conditions

The variation of the surface tension coefficient leads to the tangential stress gradient at the
interface:

〈n · T · t〉 = t ·∇σ(x), (4.12)

which drives the flow from a low surface tension part to a high surface tension tension part.
t is the unit tangent vector of the interface.

In the CSF model, the volume force Fi induced by the surface tension and the Marangoni
effect can be defined as:

Fi(x) = fs(x)δ(x− xs), (4.13)

where fs is the surface tension force per unit interfacial area, δ is the Dirac delta function
and xs indicates the point on the interface. fs is expressed as

fs = κσn +∇sσ. (4.14)

Here∇s is the gradient operator along the interface and can be represented by

∇s = ∇− n
∂

∂n
. (4.15)

The surface tension σ may depend on the temperature and concentration. If the sur-
face tension is only influenced by the concentration, the following linear model can be
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assumed:

σ = σ0(1 + γc), (4.16)

where σ0 is the surface tension of a pure system, and γ is a negative constant value in most
cases. Then equation (4.11) can be rewritten as:

fs = κσn +
∂σ

∂c
(I− nn) ·∇c. (4.17)

The body force Fi in the momentum equations (2.2) can now be written as:

Fi(x) =

(
κσn +

∂σ

∂c
(I− nn) ·∇c

)
δ(x− xs). (4.18)

4.3 Mass transfer

In this section, the mass transfer due to the concentration gradient is examined. This mass
transfer model was first developed by Ganguli & Kenig (2011a). To implement this method,
some prerequisites are needed for the fluid-fluid system:

• Newtonian incompressible fluids.

• No chemical reaction.

• Isothermal system.

• Laminar flow.

• No surface active contaminants.

The governing mass transport equation for the incompressible fluid flow is as follows:

∂c

∂t
+ u ·∇c = ∇ · (D∇c). (4.19)

Here, c is the concentration. Next, let us consider a two-phase flow system comprising a gas
bubble (denoted as G) and a liquid phase (denoted as L). Then the mass transport equation
can be re-written as:

∂cG
∂t

+ u ·∇cG = ∇ · (DG∇cG) (4.20)

and

∂cL
∂t

+ u ·∇cL = ∇ · (DL∇cL), (4.21)
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where DG and DL are the mass diffusion coefficients for the gas phase and liquid phase,
respectively. For the mass transport equation, two interfacial boundary conditions need to
be fulfilled. First, the interfacial dissolution equilibrium is defined by the thermodynamic
equilibrium assumption:

cG = HDcL. (4.22)

Here, HD is the distribution coefficient that is used to measure the interfacial concentration
jump. In the gas-liquid system, the amount of dissolved gas is proportional to its partial
pressure in the gas phase. HD is the proportional factor. In the liquid-liquid system, HD

is defined as a partition constant by the liquid-liquid solubility and varies from the val-
ues of solubility (Ramachandran, 2018). Second, the interfacial fluxes obey the continuity
condition:

DL
∂cL
∂n

= DG
∂cG
∂n

. (4.23)

The main idea of the mass transfer model is to combine the two interfacial boundary condi-
tions (e.g., equation (4.22) and equation (4.23)) with the governing mass transfer equations
for two-phase flow (e.g., equation (4.20) and equation (4.21). The interfacial boundary con-
ditions are fulfilled only in the region very close to the interface, while outside this region
the original mass transfer equations are applied.

In this way, the interfacial boundary conditions are directly implemented in the mass transfer
equations as source terms and the following extended equations are obtained (Ganguli &
Kenig, 2011a):

∂cG
∂t

+ u ·∇cG = ∇ · (DG∇cG) + α1

(
DL

∂cL
∂n
−DG

∂cG
∂n

)
(4.24)

and

∂cL
∂t

+ u ·∇cL = ∇ · (DL∇cL) + α2

(
cL −

cG
HD

)
. (4.25)

Here, α1 and α2 are two coefficients. In order to make sure the boundary conditions are
only fulfilled at the interface, the values of α1 and α2 are set sufficiently high here (e.g., 105)
and zero in the rest of the computational domain. The limitation of this strategy created by
Ganguli & Kenig (2011a) is that, with regards to convergence, the values of α1 and α2 can
be changed from 103 to 105, and the values of HD can be set from 20 to 40.

These two extended mass transfer equations should run iteratively like reinitialization func-
tion for the conservative level set method. The iterations are terminated when the iterative
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error is smaller than the tolerance error. Here, the first boundary condition (equation (4.23))
has the function of mass transfer. The second one can be regarded as a convergence criterion.
For each iterative step, equation (4.23) is used to control how much mass can be transferred
from one side of the interface to the other; equation (4.22) is a stop criterion to determine
when to move to the next time step, until this condition is fulfilled.

This method is available for any fluid-fluid system, and not limited to binary mass transfer.
It can also be extended to multicomponent systems (Ganguli & Kenig, 2011a).

In Ganguli & Kenig (2011a), the mass transfer model is implemented using the Finite Ele-
ment Method (FEM) in an interface-conforming grid. In order to adapt the mass transfer
model to MGLET, which is applied with FVM, several modifications are employed. Im-
plementing these two interfacial boundary conditions in MGLET is a great challenge: (1)
How to maintain the mass conservation in the FVM after applying equation (4.23), (2) how
to implement equation (4.22) on the arbitrary interface in the Cartesian coordinate system
defined by the level set function. In the following, an alternative strategy to implement the
mass transfer model will be discussed in detail.

4.3.1 Interfacial fluxes conservation

In the FVM, in order to maintain mass conservation, the flux entering a given volume is
identical to that leaving the adjacent volume. Therefore, after initializing the interface lo-
cated between cell centers i and i+ 1, one needs to determine on which side of the interface
is the surface shared by points i and i+ 1 located (see figure (4.5)).

We consider the mass transfer from the gas phase to the liquid phase in the x-direction. First,
the case of the liquid phase on the left side of the interface is examined. If the surface is on
the side of the liquid phase shown in figure (4.5) a), a linear extrapolation is done to compute
the concentration on the interface cgG from the gas phase,

cgG =
3

2
ci+1,j,k −

1

2
ci+2,j,k. (4.26)

Here, ci+1,j,k and ci+2,j,k are the concentrations in the gas phase. Moreover, equation (4.21)
can be rewritten as:

DL
cL − ci,j,k

∆x/2
ni,j,k = DG

ci+1,j,k − cgG
∆x/2

ni+1,j,k, (4.27)

where cL is the real concentration on the surface in the liquid phase. Substituting equa-
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a

b

Figure 4.5: Liquid on the left side of the interface: (a) The surface is on the side of the liquid
phase, (b) The surface is on the side of the gas phase

tion (4.26) into equation (4.27), we obtain:

cL =
DG

DL

1

2
(ci+2,j,k − ci+1,j,k)(

ni+1,j,k

ni,j,k
) + ci,j,k. (4.28)

If the surface is on the side of the gas phase (see figure (4.5) b)), then

cG =
DL

DG

1

2
(ci−1,j,k − ci,j,k)(

ni,j,k
ni+1,j,k

) + ci+1,j,k. (4.29)

Here cG is the real concentration on the surface in the gas phase. The extension to the case
that the liquid phase is on the right side of the interface is straightforward.
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4.3.2 Interfacial dissolution equilibrium

The schematic of the concentration jump for the interfacial mass transfer at the interface
is depicted in figure (4.6). Although the concentration varies in both phases, the interfa-
cial concentration jump is defined by thermodynamic conditions (Ramachandran, 2018).
cL,interface and cG,interface are the concentrations on the interface based on the Henry’s
law.

Figure 4.6: The schematic of the concentration jump at an interface

However, in our case, Henry’s law is modified to be fulfilled on the surface of two control
volumes, since FVM is implemented in MGLET.

Therefore, when the liquid phase is on the left side of the interface, equation (4.20) can be
rewritten as:

cL =
cgG
HD

=
1

HD

(
3

2
ci+1,j,k −

1

2
ci+2,j,k) (4.30)

for the surface on the side of the liquid phase, and

cL =
1

HD

(
DL

DG

1

2
(ci−1,j,k − ci,j,k)(

ni,j,k
ni+1,j,k

) + ci+1,j,k) (4.31)

for the surface on the side of the gas phase.

The interfacial dissolution equilibrium can be treated as an objective function. The inter-
facial flux conservative condition needs to be fulfilled for each iterative time step until the
objective function is reached, such that both interfacial boundary conditions are obeyed.
Therefore, if the liquid is on the left side of the interface, the errors fxLG1 and fxLG2 be-
tween these two interfacial boundary conditions equation (4.28) and equation (4.30) in the
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x-direction can be obtained:

fxLG1 =
1

HD

(
3

2
ci+1,j,k −

1

2
ci+2,j,k)−

DG

DL

1

2
(ci+2,j,k − ci+1,j,k)(

ni+1,j,k

ni,j,k
)− ci,j,k (4.32)

and

fxLG2 =
1

HD

(
DL

DG

1

2
(ci,j,k − ci−1,j,k)(

ni,j,k
ni+1,j,k

)− ci+1,j,k) + (
3

2
ci,j,k −

1

2
ci−1,j,k) (4.33)

for the surface in the liquid phase and gas phase, respectively. For other locations and di-
rections of the interface, the condition can be written accordingly.

Thus, the extended mass transfer equations (4.24) and (4.25) can be re-written as:

∂c

∂t
+ u ·∇c = ∇ · (D∇c) + αfLG, (4.34)

where α is a coefficient that is set sufficiently high close to the interface and zero in the rest
of the computational domain. Since the two interfacial boundary conditions are combined,
in this case, we only need to apply the combined boundary condition once on either side of
the interface.

A validation of this method will be given in section (5.4).

4.4 Time integration

A third order RK method is applied to the Navier-Stokes equations, level set advection and
the transient mass transfer equation, while a second order RK method is applied to the
reinitialization steps and the contact angle model. Because of these explicit algorithms, the
time step size ∆t must fulfill the Counrant-Friedrich-Lewy (CFL) conditions and also the
restrictions due to gravity, viscous terms, surface tension, and diffusivity to stabilize the
numerical simulations.

The convective time step is defined as

∆tconv =
h

|u|
. (4.35)

The diffusive time step is defined as

∆tdiff =
ρh2

4µ
. (4.36)
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The capillary time step is defined as (Brackbill et al., 1992)

∆tcap =

√
(ρ1 + ρ2)h3

4πσ
. (4.37)

The gravity time step is defined as

∆tgra =

√
h

g
. (4.38)

The mass diffusivity time step is defined as

∆tdiffm =
h2

4D
. (4.39)

When selecting a time step size, a regulation is given as

∆t ≤ min(∆tconv,∆tdiff ,∆tcap,∆tgra,∆tdiffm). (4.40)

The main steps of the algorithm are as follows:

1. Initialize all the parameters (density ρ, viscosity µ, surface tension σ, diffusivity D,
concentration c, level set function ϕ, velocity field u and some coefficients) in each
phase.

2. Construct the distance function φ from the level set function ϕ near the interface using
FMM.

3. Calculate new density field ρ, viscosity field µ and concentration field c from the level
set function ϕ, and curvature from the distance function φ.

4. Advance the flow variables, like velocity, pressure p and level set function, in time for
one Runge-Kutta sub-step.

5. Compute the concentration iteratively, until the tolerance error is larger than the nu-
merical one at the interface.

6. Repeat steps from 2 to 5 for each Runge-Kutta sub-step to obtain the new values for
velocities, pressure, level set and concentration.

7. Reinitialize the level set ϕ iterativly with pseudo time step size ∆τ and artificial dif-
fusion number ε, which is similar to the concentration field in step 3, to maintain
conservation.
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5 Validation

Four test cases will be introduced in this chapter: in the first test case, a static pressure
drop is used to test the accuracy of the surface tension force. These results are compared
to previous studies to validate the current code. In the second test case, the capillary wave
amplitude is discussed. The results of this test case can be used to predict capillary waves on
an interface between two immiscible fluids with a density ratio of 1 and 1000. These results
are also compared to previous studies to show the accuracy of the current implementation.
The above two test cases are applied in Andre (2012) to validate the implementation of the
CLS method. In the third test case, the case of a two-dimensional droplet on a wall without
gravity is presented. The purpose of this test case is to show the improvements in the accu-
racy of the new contact line treatment for the CLS method. Finally, the result of the mass
transfer with negligible external resistance is presented to validate the mass transfer model
based on the CLS method (see section (4.3)).

5.1 Static drop

A method similar to the SSF model is used to model the surface tension force. In order to
check the accuracy of this method, a static drop is simulated to investigate the strength of
the parasitic currents. In numerical simulations, parasitic currents and pressure fluctuations
tend to occur due to the inaccuracies in the curvature calculation.

The drop at diameter Dd = 0.4 is placed in the center of a unit domain. The velocity
field is defined as zero in the whole domain. The analytical solution is zero and a pressure
difference of ∆p = 5 across the interface for the velocity field and pressure field, respec-
tively. The Laplace number is used to characterize the static drop problem and defined
as:

La =
σρ2Dd

µ2
2

. (5.1)

The surface tension coefficient is defined as a constant σ = 1, the viscosity for both fluids is
set to µ = 0.1, and the value of the capillary time step size of 1

2
∆tcap (see section (4.4)) is used.

The density ratio and viscosity ratio are both set to unity. The dimensionless capillary num-
ber is defined with the maximum magnitude of the velocity:

Ca =
|Umax|µ2

σ
, (5.2)

47
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and the time is indicated in the dimensionless form as below:

tsd =
tσ

µ2Dd

. (5.3)

The dimensionless time is set to tσ/µ2Dd = 250 for all test cases.

Table (5.1) shows the results for a 40 x 40 mesh with different Laplace numbers. These
outcomes are similar to those reported by Desjardins et al. (2008), and indicate that the
parasitic currents seem to be independent of the Laplace number.

La 120 12000 2000000
Ca 9.46 x 10−6 2.12 x 10−5 1.37 x 10−5

Table 5.1: Dependence of the magnitude of parasitic currents on the Laplace number with a 40 x
40 mesh

Mesh 40x40 80x80 160x160
Ca 1.37 x 10−5 8.79 x 10−6 1.15 x 10−5

Table 5.2: Dependence of the magnitude of parasitic currents on mesh spacing with La = 2x106

Figure 5.1: Parasitic currents time evolution

In order to investigate the mesh convergence of the parasitic currents, the Laplace number
is fixed to La = 2x106, while mesh spacing is varied. In contrast to Desjardins et al. (2008)
who concluded that the parasitic currents are first order convergence, results shown in Ta-
ble (5.2) are observed to increase with refined grids. Moreover, no first order behavior can
be detected, which can be explained by figure (5.1), indicating that this observation is a
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coincidence of this oscillatory mode. The results of various grid spacings depend on the time
of measurement.

Next, the pressure is taken into account with La = 2x106, unit density and viscosity ratios.
Figures (5.2) and (5.3) show that results are in good agreement with the analytical solution
in all cases. Surprisingly, the errors in pressure for Dd/H = 64 are larger than those for
Dd/H = 32, which can be explained by the lack of convergence of the parasitic currents. As
seen in figure (5.1), the errors in parasitic currents are time dependent. These conclusions
are dependent on the time at which observations are made.

Figure 5.2: Numerical pressures for different meshes

Figure 5.3: Error in Pressure
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5.2 Capillary waves

Next, the viscous damping of a surface wave is discussed. This test case will help to assess the
accuracy of numerical simulations and solve the problem of the interaction between viscous
and surface tension forces. An interface is initialized in a [0, 2π] x [0, 2π] domain defined by
the distance function:

φ0(x, y) = y − x+ A0cos(x), (5.4)

where A0 = 0.01λ is the initial wave amplitude and λ = 2π is the wavelength of the per-
turbation. In this case, both fluids have the same kinematic viscosity ν. This was first
investigated by Prosperetti (1981), who developed an analytical solution of the wave ampli-
tude with time:

A0(t) =
4(1− 4β)ν2k4

8(1− 4β)ν2k4 + ω2
0

A0erfc(νk
2t)

1
2

+
4∑
i=1

zi
Zi

(
ω2
0A0

z2i − νk2
− u0

)
exp[(z2i − νk2)t]erfc(zit

1
2 ),

(5.5)

where ω0 =
√

σ
ρ1+ρ2

k3 is the inviscid oscillation frequency, k = 1 is the wave number, u0 = 0

is the initial velocity and β = ρ1ρ2
(ρ1+ρ2)2

is the dimensionless parameter. The zi are the roots
of the equation

z4 − 4β(k2ν)
1
2 z3 + 2(1− 6β)k2νz2 + 4(1− 3β)(k2ν)

3
2 z + (1− 4β)ν2k4 + ω2

0 = 0 (5.6)

and

Zi =
4∏

j=1,j 6=i

(zj − zi). (5.7)

Two test cases are investigated: the first case with unity density ratio and the second one
with a density ratio of 1000. For both cases, four different grid spaces have been evaluated,
a 16 x 16 mesh, a 32 x 32 mesh, a 64 x 64 mesh and a 128 x 128 mesh. A fixed surface
tension coefficient σ = 2 is used in both cases.

In the first test case, the kinematic viscosity for both fluids is set to ν = 0.064720863, and
the density for both fluids is set to ρ = 1. A fixed time step size ∆t = 0.003 is applied. This
case is performed up to a time of ω0t = 24. The time evolution of the normalized capillary
wave amplitude for the different meshes as well as the analytical solution are shown in fig-
ure (5.4); the time evolution of the amplitude errors is depicted in figure (5.5). The Root
Mean Square (RMS) errors between the theoretical solution and the numerical results are
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shown in table (5.3) using the same time period.

In figures (5.4) and (5.5), the result of the 16 x 16 mesh has a slightly larger oscillation than
the other meshes. After the grid has been refined, an expected improvement in the results
is observed. The rate of convergence observed in table (5.3), according to Herrmann (2008)
and Desjardins et al. (2008) is approximately second order. The order of Herrmann (2008)
decreases to first order on finer grids. The results obtained by Desjardins et al. (2008) has
a strong agreement with the analytical solution even with a coarse 16 x 16 mesh. With the
current implementation, the rate of convergence remains first order approximately, but does
not reach the second order. The results in Andre (2012) which are implemented with fourth
order preprocessing, differ slightly from the current study, using second order implementa-
tion.

Figure 5.4: Time evolution of the capillary wave amplitude for ρ2/ρ1 = 1

Figure 5.5: Time evolution of the amplitude errors for ρ2/ρ1 = 1
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λ/h 8 16 32 64 128
ERMS 0.1176 0.0586 0.0390 0.0143

ERMS, Andre (2012) 0.1601 0.0717 0.0403 0.0170
ERMS, Herrmann (2008) 0.1116 0.0295 0.0114 0.0067

ERMS, Desjardins et al. (2008) (ω0t < 24) 0.1997 0.0395 0.0104

Table 5.3: Capillary wave RMS error for ρ2/ρ1 = 1 (ω0t < 24)

In the second test case, the densities are set to ρ1 = 1 and ρ2 = 1000. The kinematic viscos-
ity is the same as the first test case ν1 = ν2 = 0.0064720863, a time step size of ∆t = 0.06
is chosen, and the results are simulated for ω0t < 20.

In figures (5.6) and (5.7) we can observe that the result with a 16 x 16 mesh is much better
than with a 32 x 32 mesh. All the results have good agreement with the theoretical solution,
and the results of Andre (2012) are similar to the current implementation. Moreover, the
result of Desjardins et al. (2008) shows better accuracy, as shown in table (5.4). The current
implementation still performs as first order except for the 16 x 16 mesh, while the results of
Herrmann (2008) does not maintain convergence at finer grids.

Figure 5.6: Time evolution of the capillary wave amplitude for ρ2/ρ1 = 1000
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Figure 5.7: Time evolution of the amplitude errors for ρ2/ρ1 = 1000

λ/h 8 16 32 64 128
ERMS 0.0131 0.0224 0.0153 0.0081

ERMS, Andre (2012) 0.0666 0.0271 0.0153 0.0085
ERMS, Herrmann (2008) 0.0482 0.0208 0.0127 0.0118

ERMS, Desjardins et al. (2008) (ω0t < 20) 0.0892 0.0204 0.0097

Table 5.4: Capillary wave RMS error for ρ2/ρ1 = 1000 (ω0t < 20)

5.3 Two-dimensional droplet on a wall under zero-gravity
conditions

The simulation of a two-dimensional droplet melting on a flat plate was discussed in Zahedi
et al. (2009) and Sato & Ničeno (2012). In order to compare the accuracy of the present
method for estimating the contact angle and the wetting velocity, this case has been re-
computed. The drop sits on a solid surface surrounded by another liquid with the identical
density and viscosity. The static contact angle is θs = 25◦. Gravity is neglected meaning
that capillary effects dominate.

In experiments performed by Hoffman (1975) with viscosity ratio ranges between 10−5 and
10−8, the results showed that the contact angle is a function of the capillary number Ca∗.
Later, a more general analysis of the dynamics of wetting was presented by Cox (1986),
which is regarded as an analytical solution.
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5.3.1 Cox’ theory

For a given system of two immiscible fluids with viscosity ratio λ, Cox’s theory assumes
that

g(θD, λ)− g(θs, λ) = Ca∗ln(δ−1c ), (5.8)

where θD is the macroscopic dynamic contact angle, δc is a constant term, θs is the static
angle and the function g(θ, λ) is defined as

g(θD, λ) =

∫ θ

0

dθ

f(θ, λ)
, (5.9)

where

f(θ, λ) =
2 sin θ(λ2(θ2 − sin2 θ) + 2λ(θπ − θ) + sin2 θ) + (π − θ)2 − sin2 θ

λ(θ2 − sin2 θ)((π − θ) + sin θ cos θ) + ((π − θ)2 − sin2 θ)(θ − sin θ cos θ)
. (5.10)

Therefore, Cox’s theory is used to predict the macroscopic dynamic contact angle for two
immiscible fluids. When the system reaches the steady state, the contact line speed Ca∗ is
zero. Thus, the macroscopic dynamic contact angle θD becomes the static contact angle θs
as expected.

Results from Hoffman’s profile for all values of the dynamic contact angle (except those very
close to 180◦) have good agreement with the formula obtained from Tornberg & Engquist
(2000). Zahedi et al. (2009) confirmed that a value of δ ≈ 10−4 minimizes the relative
difference between the contact-line speeds Ca∗ obtained from Hoffman’s experiments using
silicone fluid with λ = 0 and θs = 0 and those obtained from Cox’s theory. In the following
part, δ = 10−4 will be applied.

5.3.2 Results

The interface of the droplet is initialized in a [−2, 2] x [0, 2] domain. The location of the
droplet is around x = 0 with radius Lx/r = 8. At initial time, the contact angle between
the drop and the solid wall is applied with 156◦. The Reynolds number and the Capillary
number are defined as

Re =
ρul

µ
= 1, (5.11)

where l is the diameter of the droplet. And the dimensionless contact-line speed is expressed
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as:

Ca∗ =
2
√

2µu

3σ
= 1. (5.12)

A time step size is according to the capillary limitation (see section (4.4)). If the static
contact angle is θs = 25◦ at the wall, we obtain

tan(90◦ − θs) = tan65◦ = |ny
nx
|, (5.13)

since the vector is normalized, thus

n2
y + n2

x = 1. (5.14)

Therefore, the boundary condition for the normal vector field discussed in section (4.1) is
set as:

nwall = (nx, ny) = (−sign(x)0.4226,−0.9063). (5.15)

The Neumann boundary conditions are implemented for the other boundaries.

The dynamic contact angle is calculated between the tangential line from the inflexion point
and the wall as shown in figure (5.8). The inflexion point is a point on a continuously differ-
entiable curve at which the curve changes from concave to convex, or vice versa. Thus, the
inflexion point can be obtained by calculating the local minimum or maximum tangent. The
wetting speed is measured by the position of the intersection point on the wall at different
time steps.
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Figure 5.8: The measurement of the contact angle and the wetting speed.

The profiles of the droplet wetting on the solid wall are illustrated for different time steps in
figure (5.10). A foot formed at the initial time due to the boundary conditions of the normal
vector field at the wall. The curvature is a driving force to move the droplet to wet the
surface. The movement of the contact line is fast at the initial steps, however slows down
when the contact angle approaches equilibrium. The results of the contact angle are in agree-
ment with the studies of Zahedi et al. (2009) and Sato & Ničeno (2012) as seen in table (5.5).

The contact angle at 300s is relatively larger than the expected 25◦. The reason is that the
contact angle is defined as 25◦ at the wall boundary. However, due to the characteristics of
the staggered grid, the normal vector and the level set function are stored in the center of
the cells. Therefore, we can only measure the contact angle at the center of the cells, rather
than at the wall boundary.

Figure 5.9: The interface based on the FVM and staggered grid.
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Time 0.0 0.1 1.0 25.0 300
Presentstudy 156 144 123 60 28

Zahedi et al. (2009) 156 147 126 55 28
Sato & Ničeno (2012) 156 149 120 − 27

Table 5.5: Comparison of the contact angle of a liquid droplet on a solid surface.

Figure 5.10: Wetting of a liquid drop on a solid surface (0.0s (a), 0.1s (b), 1.0s (c), 5.0s (d), 25s (e),
300s (f)).

The results of the contact angle against the capillary number are shown in figure (5.11). In

this case, the wetting speed is equal to the Capillary number as Ca∗ = 2
√
2µu
3σ

= u
uref

= 1.

The simulation is performed with 250 x 128 cells which is similar to the fine grid in Sato’s
study. The values in the present study show good agreement with previous results.

Figure 5.11: The contact angle as a function of the capillary number.
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5.4 Mass transfer of a two-dimensional droplet with negligible
external resistance

A test case is calculated to validate the mass transfer model implemented in MGLET. A drop
is located in the center of a unit domain with slip boundary conditions. The velocity field is
set to zero in the whole domain. For a stagnant spherical drop with negligible external mass
transfer resistance, the analytical Sherwood number can be derived by Newman’s equation
(Newman, 1931):

Shod =
2π2

3

∞∑
n=1

exp(−n2π2τp)/
∞∑
n=1

1

n2
exp(−n2π2τp), (5.16)

where τp = Dt
r2

is the dimensionless time step. Therefore, the steady asymptotic value
is:

(Shod)τp→∞ =
2π2

3
= 6.58. (5.17)

The mass transfer coefficient to a single drop dominated by internal resistance can be eval-
uated by equation (2.23). In the two-dimensional case, V/S = r/2. The corresponding
Sherwood number is

Shod = kod
2r

D
. (5.18)

Both phases have the same density, kinematic viscosity and mass diffusivity. Additional, the
distribution coefficientHD is set to 1. The concentration field is initialized as:

c1 = 1 at t=0 (continuous phase) (5.19a)

c2 = 0 at t=0 (drop phase). (5.19b)

Figure (5.12) shows the results of three different grid spacings and the analytical solution.
As the grid is refined, the predicted Sherwood number converges close to the analytical
solution. The relatively error of the grid with 400 x 400 nodes is 5%. This grid spacing is
qualitatively sufficient for spatial computational accuracy and applied in the following (see
Chapter 7).
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Figure 5.12: The comparison of predicted internal Sherwood number with analytical solution



60 5.4 Mass transfer of a two-dimensional droplet with negligible external resistance



6 Application 1: Purging of non-aqueous
phase liquids from a 2D cavity model

A numerical investigation of the purging of non-aqueous phase liquids from a two-dimensional
cavity model is undertaken. Due to NAPLs low solubility, only convective mass transfer will
be taken into account. Our numerical results show that the flow conditions, such as Ri, We,
density ratio and time scale significantly impact the mass transfer rate and the behavior of
the interface.

6.1 Cavity flows

Since NAPLs may stay underground for several decades due to their low solubility in water,
a long-term threat to drinking water supplies can be generated. Therefore, the influencing
factors and the properties of mass transfer between NAPLs and water in pore-scale are sig-
nificant. Then the cavity model is the simplified setup of the original setup of a micro-model.

Cavity models are widely used to study complicated phenomena, such as shear layer insta-
bility, vortex shedding and flow-induced vibrations. A simple cavity model is the lid-driven
cavity flow. A number of studies have been conducted on the driven cavity flow problem
using various numerical approaches (e.g. Erturk et al. (2005), Abouhamza & Pierre (2003)
and Liffman (1996)).

Another important area of the cavity flow is a model that contains a channel with a cavity
underneath. This kind of model is widely employed to analyze flow mechanisms (Crook
et al. (2013), Chen et al. (2014) and Allegrini et al. (2014)), mass transfer (Kirkpatrick et al.
(2012), Liu et al. (2004) and Occhialini & Higdon (1992)) and heat transfer (Brown & Lai
(2005), Khanafer et al. (2002) and Leong et al. (2005)).

Chang et al. (1987) investigated the mass transfer in the cavity due to an external channel
flow with various aspect ratios, the Re number and the Sc number. Occhialini & Higdon
(1992) studied a numerical simulation of convective mass transfer from rectangular cavities
in low Reynolds number flows. Brown & Lai (2005) conducted the combined heat and mass
transfer from a horizontal channel with a cavity heated below. Liu et al. (2004) used a
large eddy simulation to investigate pollutant transport in a street canyon with different
aspect ratios. Kirkpatrick et al. (2012) examined the shear driven entrainment of a neg-
atively buoyant fluid from trapezoidal cavities caused by a turbulent overflow numerically
and experimentally.

61
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However, all of these studies are ’single phase flows’, since they do not employ a system
of two immiscible fluids, where one is located in the channel and the other in cavity, nor
interface tracking methods. As a result, the behavior of the interface and the mass transfer
rate influenced by the surface tension force cannot be specified. The objective of the present
work is to analyze the mass transfer rate solely due to the convective effect with the interface
tracking method with the two immiscible flow system in the cavity model.

Simple cavities are typically described as rectangular, with a particular length l, width w
and depth d (see figure (6.1)). The non-dimensional aspect ratio l/d is important, different
flow regimes exist depending on this ratio (Charwat et al. (1961), Ashcroft & Zhang (2005)).

A cavity is defined as being deep at l/d ≤ 1 (Sarohia, 1977). A shallow cavity (l/d > 1) can
be further described as open or closed according to the location of the flow reattachment
(see figure (6.2)).

Figure 6.1: Sketch of a simple 3D cavity model

Open-shallow cavity flow: This flow exists for l/d ≤ 6− 7. It is characterized by a shear
layer that bridges the entire cavity opening and by a large recirculation zone inside the cavity.

Closed-shallow cavity flow: This flow exists for l/d ≥ 8 − 9. The shear layer generated
at the leading edge touches the bottom of the cavity, and no large recirculation zone exists
in the center of the cavity. Between these two ranges, a transitional regime exists.

6.2 Model set-up

Since a low Reynolds number is applied in the present work, a two-dimensional deep cavity
model with aspect ratio 1 is implemented, as shown in figure (6.3). The cavity is filled with
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a

b

Figure 6.2: Two-dimensional representation of (a) open-type cavity flow and (b) closed-type cavity
flow.

a NAPL, which is immiscible with water. We assess the fraction of NAPL flushed from
the cavity due to the surface tension and density fraction with and without the influence of
gravity. In addition, we examine the effect of flow acceleration, i.e. how fast the steady state
velocity is reached. To do this, we enforce an inflow boundary condition on the velocity field
using an exponential relaxation to reach the steady state,

u = u0

(
1− e

− t
τ0

)
. (6.1)

In this formula, τ0 is a time scale and u0 is a constant.

The walls are regarded as no slip surfaces (including the top wall) for velocity fields, and
treated as Neumann boundary conditions (without flux) for the scalar field (level set func-
tion). Fixed and convective boundary conditions are used at the inflow and outflow, respec-
tively. A connect boundary condition communicates boundary information to neighboring
grids. In the following, subscript 1 indicates the fluid in the channel and 2 the fluid in the
cavity. The interface initially is located in the cavity as a straight line with 0.9L height.

The Weber number (We) and the cavity Reynolds number (Recavity) are defined using the
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properties of the fluid in the cavity,

We =
ρ2u

2
0L

σ
(6.2)

and

Recavity =
ρ2u0L

µ2

, (6.3)

where u0 is the inflow velocity coefficient and L is the depth of the cavity.

Figure 6.3: Sketch of flow in a channel with a bottom 2D cavity

6.3 Two-dimensional and three dimensional
model

The two-dimensional model is employed in this chapter. Since the deep cavity model is ap-
plied (i.e., the streamline connects the entire cavity opening), three-dimensional model is not
necessarily needed to be conducted. However, in order to investigate if there are several ad-
ditional effects will happen in the three-dimensional model, rather than the two-dimensional
model, results of the two-dimensional and three-dimensional models are compared in this
section. The configuration of the three-dimensional model is shown in figure (6.4). The
model extends three times in the spanwise direction for the channel part, and the cavity is
located in the center of the bottom surface of the channel.

The comparison is shown in figure (6.5). The mass left in the cavity is normalized by the mass
at the original state. In the beginning phase, the results of the two-dimensional and three-
dimensional models are nearly the same. After approximately one second, the difference
between the two cases becomes visually. Then after reaching the steady state, the results
converge to 0.89 and 0.92 for two-dimensional and three-dimensional cases, respectively (i.e.
the mass left in the three-dimensional case is more than that in the two-dimensional case).
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The variance can be explained by the wall effect.

Figure (6.6) shows two slices of the cavity in the streamwise direction, one slice in the span-
wise direction and one from the two-dimensional case. (b) is very close to the wall. As
no-slip boundary conditions are applied to all surfaces of the cavity (except the top surface),
the wall effect, rather than the convective effect from the overflow, has a strong influence
on the velocity field and interface. This interface inhibits the mass transfer from the cavity.
(a) is the slice in the middle and is similar to the two-dimensional case (d), mainly affected
by the convective effect. Due to the inconsistency in the spanwise direction (see (c)), the
three-dimensional result is different from that in the two-dimensional case. Thus, in our case
where the low Weber number and Reynolds number are applied, except for the wall effect,
no other additional effect can impact the mass transfer in the three-dimensional case. In the
present work all the simulations are implemented using the two-dimensional model.

Figure 6.4: Sketch of the three dimensional model

Figure 6.5: Results of the 2D and 3D model with We = 25, Re = 1000, the density and viscosity
ratios are one and the time scale is also one
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a b

c d

Figure 6.6: Spanwise slices of the cavity in three-dimensional model (a) y=0.500 (b) y=0.005 (c)
x=0.95 (d) 2D case result after 4.25s. The same parameters are set as figure (6.5).

6.4 Flushing the cavity

The motion of the mainstream in the channel has a significant impact on the behavior of
the interface, the fluid movement in the cavity and the mass transfer rate. In this section,
different numerical simulations with two different Weber numbers (i.e., surface tension co-
efficient) are analyzed. Both density and viscosity ratios are one in all cases. The cavity
Reynolds number is 1000 and the dimensionless time scale ratio τ = τ0/(L/u0) is set to 1.
The gravitational force is neglected in this case.

The first case is conducted with We = 100. The time evolution of the interface and of the
streamlines in the cavity are depicted in figure (6.7) to figure (6.11).
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Figure (6.7) shows the interface and streamlines at t = 0.4s after flow initiation. At this
time, no NAPL has been pushed out of the cavity by the overflow, while at the leading
corner of the cavity the interface has been pushed down slightly. Additionally, two small
vortices are generated near the leading and trailing corners.

In Figure (6.8), mass being pushed out of the cavity at the trailing corner. The vortex close
to the leading edge grows, while the one near the trailing edge disappears. Several stream-
lines from the mainstream can be observed entering and traversing the cavity, then exiting
at the trailing corner.

Figure (6.9) indicates that the vortex close to the leading corner of the cavity becomes
considerably large, while the process of mass transfer continues. The crest observed in the
interface contour is now being rolled up by the vortex. The exiting part of the mass in the
channel impacts the distribution of the streamlines.

The results at t = 4s after initiation are represented in figure (6.10). The splash of the
NAPL has now completely exited the cavity and is being convected to the boundary by the
overflow. The vortex, initially located at the leading corner, has moved across the cavity and
is nearly touching the trailing wall. At the same time, the vortex has become considerably
large and almost fills the cavity. Furthermore, it starts to separate into two parts. Contrary
to results in figure (6.9), no streamlines enter and traverse the cavity, since the mass transfer
process is complete.

Two steady state vortices are shown in figure (6.11). The streamlines indicate that one
vortex center is located near the trailing wall with a clockwise rotation, while a counter-
clockwise-rotating vortex has formed in the lower part of the cavity near the leading corner.
At this time all mass in the channel has been transported outside the domain. The interface,
initially defined as a horizontal line between the overflow and the NAPL, has now changed
into an inclined line in the cavity once steady state is reached, due to the high Weber num-
ber. The interface is located between these two vortices.

While the short initiation is uneventful, mass transfer starts and completes relatively quickly.
The flow acceleration is inviscid in the initiation phase. This is the phase in which mass is
pushed out of the cavity. In this phase, mass transfer mainly depends on the potential flow,
rather than the complicated flow mechanisms in the following transient phase. Afterwards,
the interface tends to reach the minimum energy state under the effect of the surface ten-
sion force. Finally, after reaching steady state, the interface becomes an inclined line in the
cavity. The location of the interface is between the two vortices in the cavity. Moreover, the
interface is parallel to the streamlines, rather than cross the streamlines which drives the
movement of the interface before the steady state.
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a

b

Figure 6.7: Interfaces (a) and streamlines (b) at time 0.4s
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a

b

Figure 6.8: Interfaces (a) and streamlines (b) at time 1.0s
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b

Figure 6.9: Interfaces (a) and streamlines (b) at time 2.0s



6 Application 1: Purging of non-aqueous phase liquids from a 2D cavity model 71

a

b

Figure 6.10: Interfaces 4.0s (a) and streamlines (b) at time 4.0s
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b

Figure 6.11: Interfaces (a) and streamlines (b) at time 20.0s
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Next, the second case with σ = 0.005 and We = 200 will be discussed. Furthermore, the
time evolution of the interface and the streamlines in the cavity are shown.

Figure (6.12) shows results similar to the case in which the Weber number is 100 at t = 0.4s
after the initiation of the flow. At this time step, no NAPL has been pushed out of the
cavity by the overflow, and no obvious difference can be observed neither from the interface
orientation nor the streamlines.

In figure (6.13), the results are illustrated after t = 2s. The interface indicates that the
vortex close to the leading corner of the cavity is stronger than that in figure (6.9), since
more fluid splashes further out of the cavity and goes farther in the channel. Mass starts to
be pushed out of the cavity at the trailing corner.As can be also seen, several streamlines
from the overflow, which produce the splash of fluid, enter and traverse the cavity, then exit
at the trailing corner.

The results at t = 4s after initiation are showed in figure (6.14). The process of mass trans-
fer is complete, since no streamlines enter the cavity. The exiting NAPL in the channel has
moved farther than that in figure (6.10). The vortex has already touched the trailing wall,
but there is no strong tendency to separate into two parts as observed in figure (6.10).

Figure (6.15) shows the vortex moving backwards nearly to the center of the cavity, after
reaching the trailing edge, rather than stopping there. This is because of the convective
effect from the channel part provides sufficient momentum to the vortex, which contrasts to
the case where the Weber number is 100.

Figure (6.16) shows steady state results at t = 40s. The inclination of the interface should
be larger than that in figure (6.11), since a smaller surface tension coefficient was applied.
However, the left side of the interface (see figure (6.11)) has already reached the leading
corner when the Weber number is 100. Three vortices have formed in the cavity in order to
generate the larger inclination: the first was a clockwise rotation generated near the leading
edge and is balanced by the convective effect from the channel; the second vortex is close to
the trailing edge; the third vortex that rotates counter-clockwise appears at the bottom of
the cavity, due to these two vortices. A part of the overflow enters the cavity resulting in a
saddle point, in addition to these three vortices. The small amount of mass remaining outside
the cavity can be explained by the strong effect of the first vortex. Therefore, the location
of the interface is between these three vortices, producing a large inclination, because the
surface tension force is not strong enough to protect the interface from the changing topology.

When the Weber number is 200, mass transfer is similar to the previous case in which the
Weber number is 100. However, the behavior of the interface is quite different, due to the
smaller surface tension force. Moreover, the three vortices generated in the cavity were not,
as expected, within the normal two-phase cavity flow.
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Figure 6.12: Interfaces (a) and streamlines (b) at time 0.4s
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a

b

Figure 6.13: Interfaces (a) and streamlines (b) at time 2.0s
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Figure 6.14: Interfaces (a) and streamlines (b) at time 4.0s
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b

Figure 6.15: Interfaces (a) and streamlines (b) at time 9.0s
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Figure 6.16: Interfaces (a) and streamlines (b) at time 40.0s
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This problem is similar to the ’single phase problem’ because the density ratio and the vis-
cosity ratio are equal to one. However, the presence of the interface, influenced by the surface
tension force between two immiscible flows, plays an important role in the two-phase model.
This presence is the essential difference between the single-phase and multiphase flows. The
Weber number can be regarded as the dimensionless form of the surface tension force, which
is the ratio of the convective effect to the surface tension force. If the value of the surface
tension coefficient is quite small, this indicates that the convective effect is starting to dom-
inate. As a result, the behavior of the interface can be easily influenced by the convective
overflow. In contrast, if the surface tension coefficient is relatively large, the interface will
be well protected from changing its topology. Therefore, the Weber number can be treated
as a force to protect the interface and prevent its shape changing. This conclusion can also
be observed in figure (6.17) - figure (6.19).

a b

Figure 6.17: Interface (a) and streamlines (b) after steady state (We = 100)

a b

Figure 6.18: Interface (a) and streamlines (b) after steady state (We = 25)
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a b

Figure 6.19: Interface (a) and streamlines (b) after steady state (We = 12.5)

As introduced above, the original interface is initially defined as a straight line in the cav-
ity. In figures (6.17) and (6.18), after the steady state, the interface becomes an inclined
line. However, as the surface tension force increases (We number decreases), the angle of
inclination of the interface becomes smaller. For the larger surface tension force shown in
figure (6.19), the interface remains straight as can be observed in the original state. The
location of the two vortices has also been changed due to the topology of the interface when
comparing the streamline figures.

6.5 Influencing factors of mass transfer rate for cavity
model

In this section, different flow conditions, such as different We number, density ratio and
time scale ratio, are investigated to estimate the mass transfer rate from the cavity.

6.5.1 Effect of the flow acceleration

In this test, the cavity Reynolds number is set to Re = 1000 and the Weber number is set
to We = 100. Both the viscosity ratio and the density ratio are set to one. Figure (6.20)
demonstrates the effect of the acceleration rate of the flow, expressed by the dimensionless
time scale ratio τ . If τ is large, the flow attains its steady state very slowly and is unable
to push the mass out. Apparently, if τ is small enough, a strong shear layer is generated
between the overflow and the cavity. The flow obtains a large acceleration and is able to push
some mass out of the cavity. Furthermore, due to the different accelerations, the starting
time of the mass transfer also varies. In the following part, τ = 1 is used for all simulations.



6 Application 1: Purging of non-aqueous phase liquids from a 2D cavity model 81

Figure 6.20: Mass transfer with various time scale ratios

6.5.2 Effect of the surface tension

In section (6.4), we can conclude that the surface tension force can influence the behavior
of the interface (i.e., different surface tension forces result in different inclinations of the in-
terface). Moreover, we can also conclude that the surface tension force qualitatively impact
the mass transfer rate. In this part, the mass transfer rate impacted by the surface tension
force will be examined quantitatively.

The surface tension has a strong effect on the flushing of the cavity. As mentioned above,
the surface tension effect is quantified by the non-dimensional Weber number. Small surface
tension effect σ results in a large Weber number. In this case, we still set the density ratio
and viscosity ratio to unity. The cavity Reynolds number is 1000. From figure (6.21), at
small surface tension, the mass transfer can be considerably larger than at larger surface
tension. A surface tension force can protect the interface and inhibit the mass transfer if the
Weber number is small. Moreover, more time is needed to achieve the steady state when
the smaller Weber number is employed.

6.5.3 Effect of the Reynolds number

The mass transfer influenced by the Reynolds number is investigated. The density of both
fluids is set to ρ = 1, and the Weber number is 100. By changing the viscosity µ of both
fluids, the cavity Reynolds number can be varied. However, we still keep the viscosity ratio
at one. The mass transfer mainly depends on the convective effects. A small Reynolds
number leads to the weak convective effect. And, thus the number of mass exits from the
cavity is reduced. In figure (6.22), the results are, as expected, that the higher the Reynolds
number applied, the more mass that can be pushed out of the cavity.
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Figure 6.21: Mass transfer with various We numbers

Figure 6.22: Mass transfer with various Re numbers

6.5.4 Effect of the density ratio

The density ratio is indicated as ρ1
ρ2

. The other parameters are set similarly to the previ-
ous cases. The strong convective effects caused by the large density can increase the mass
transfer rate. If the density ratio is greater than one, the convective effect from the over-
flow is stronger than that in the cavity, resulting in larger momentum to push the mass out
of the cavity, while a smaller density ratio decreases the mass transfer rate (see figure (6.23)).
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Figure 6.23: Mass transfer with various density ratios

6.5.5 Effect of the viscosity ratio

Next, different viscosity ratios are taken into account with We = 100 and Re = 1000; the
density ratio remains one. The viscosity ratio is expressed as µ1

µ2
. Because the diffusive effect

has little impact on the mass transportation from the cavity, the results in figure (6.24) do
not differ significantly after reaching the steady state, consistent with the theory discussed
previously.

Figure 6.24: Mass transfer with various viscosity ratios
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6.5.6 Effect of the gravitational force

The gravitational force is considered in figure (6.25). In this test, the bulk Richardson
number is used to characterize the buoyancy effect,

Ri =
ρ2 − ρ1
ρ1

gL2/u20 (6.4)

If the Richardson number is much smaller than unity, buoyancy is not significant in the flow;
however if it is greater than unity, buoyancy is dominant. Three simulations with initial
Richardson number Ri = 0.0, 0.245, and 0.49 are performed. The results indicate that the
transport mechanism is very different in the neutrally buoyant case (Ri = 0.0) compared
to the negatively buoyant ones (Ri = 0.245 and Ri = 0.49). The neutrally buoyant case is
more efficient than the other two.

Figure 6.25: Mass transfer with various Ri numbers

6.5.7 Sensitive analysis

The sensitive analysis of mass in the cavity at the steady state with various Weber numbers,
Reynolds numbers and time scale ratios are discussed in this section.

In figure (6.26), in terms of strong acceleration, a small increment of the Weber number
can result in large mass transportation if the Reynolds number is high enough (Re = 1000).
However, the improvement in the mass transfer rate is quite small when increasing the
Reynolds number and the Weber number with a small value and when the Reynolds number
is less than 1000. Continuously increasing the Weber number and the Reynolds number,
the number of the mass in the cavity reduces strongly. The mass transfer rate seems to be
sensitive to the Weber number and the Reynolds number. At most around 15.3 percentage
of the mass can be pushed out of cavity.
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Figure 6.26: τ = 1

Figure 6.27: τ = 5

Next, the results with time scale ratio τ = 5 are investigated (see in figure (6.27)). Nearly no
mass can exit the cavity when the Weber number is less than 25. Meanwhile, increasing the
Reynolds number has little affect on the mass transfer. Only when the Reynolds number and
the Weber number are sufficiently large, can the mass transported out of cavity be observed.
Therefore, the mass transfer rate is not sensitive to the Reynolds number when the Weber
number is small. At most 12% of the mass can exit the cavity.

Finally, the results with weak acceleration are shown in figure (6.28). Therefore, the mass in
the cavity is almost the same as the original state even after reaching the steady state. The
amount of the mass transported out of the cavity is negligible, since at most only 0.42% of
the mass can leave the cavity. Thus, the mass transfer rate is not sensitive neither to the
Reynolds number nor the Weber number if the time scale ratio is very large. Furthermore,
after comparing these three figures, we also conclude that the mass transfer rate is strongly
sensitive to the time scale ratio.
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Figure 6.28: τ = 15

In the end, we conclude that the dimensionless time scale ratio τ is the most important pa-
rameter concerning the mass transfer rate. If the acceleration is too low, then the interface
cannot be deformed. Furthermore, the Weber number is the most significant factor for the
behavior of the interface. For different Weber numbers, we can obtain various inclinations
of the interface.



7 Application 2: Mass transfer with the
Marangoni effect

Mass transfer and velocity fields influenced by the Marangoni effect are investigated in this
chapter. The Marangoni effect can be caused by a concentration or a temperature gradient;
however, in our simulation we only focus on the concentration gradient. The numerical re-
sults indicate that the Marangoni flow creates a shear stress at the interface which results
in fluid motion along the interface rather than the parasitic currents occurring in the flow
without the Marangoni effect. This behavior enhances the mass transfer rate. Furthermore,
the dominance of the Marangoni flow influences the velocity field near the interface until
the mass transfer process is completed (i.e. the velocity field converges into the parasitic
currents).

7.1 Objectives

Residual NAPLs trapped in the soil are a long-term threat to drinking water supplies. Thus,
the mass transfer process of the NAPLs at the pore and pore network scales in multiphase
flows has received increasing attention recently. The Marangoni convection may take place,
caused by the concentration gradient near the interface, which increases the complexities of
the process. Thus, several experiments have been conducted to investigate the Marangoni
convection by our academic partner Carina Wismeth. In her experiments, some rolling par-
ticles are observed along the interface. Moreover, for a octanol-water system, the velocity
field near the interface decays from 1100µm/s to 0µm/s due to the fact that the concentra-
tion of octanol close to the interface is fully saturated in the water phase, which may last
several days. The Marangoni effect is expected to explain this phenomenon. Therefore, the
numerical simulation of the Marangoni effect is employed, since it is easier to analyze the
results with and without the Marangoni effect numerically. Additionally, many studies have
been carried out to investigate mass transfer as impacted by the Marangoni effect (Mao &
Chen, 2004) (Wang et al., 2008). However, the mass transfer models of these studies are
mainly based on sharp interface methods, rather than continuous interface methods. There-
fore, we focus on the new mass transfer model based on the CLS method (see section (4.3))
to investigate the mass transfer process with the Marangoni effect.
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7.2 Model set-up

The experimental set up is depicted in figure (7.1). It is difficult to measure the contact
angle at the top and bottom walls experimentally and model the stair geometry numerically.
Thus, the numerical model is simplified and set up as shown in figure (7.2). The interface
is a segment of a circle whose center is located at (1.85,−0.1) with a radius of 1.15. The
top and bottom walls are treated as no-slip surfaces, and the left and right are regarded
as slip surfaces for the velocity fields. All the surfaces are implemented with the Neumann
boundary conditions for the scalar fields (level set function and concentration field). In the
following, subscript 1 indicates the fluid on the left side of the interface (e.g. octanol), and
2 the fluid on the right side of the interface (e.g. water). The mass transfer from fluid 1 to
fluid 2 is measured without the external mass resistance. Additionally, the concentration is
sharply initialized as:

c1 = 1 at t=0 (fluid 1) (7.1a)

c2 = 0 at t=0 (fluid 2). (7.1b)

Figure 7.1: The experimental model of mass transfer with the Marangoni effect
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Figure 7.2: The numerical model of mass transfer with the Marangoni effect

The Marangoni number, Schmidt number, and Reynolds number, defined by the properties
of the fluid 2, are used to characterize the mass transfer process influenced by the Marangoni
effect,

Ma = −L∆σ

µD
, (7.2)

and

Sc =
ν

D
=

µ

ρD
, (7.3)

where ∆σ = ∂σ
∂c

∆c = γσ0∆c (see equation (4.16)), γ can be treated as a coefficient of the
surface tension gradient, and ∆c is the maximum concentration difference across the inter-
face. In the CLS method, ∆c is always equal to one.

Based on this, an equivalent Reynolds number can be derived as:

Re = Ma/Sc =
∆σL

ρν2
. (7.4)

The Reynolds number can be regarded as proportional to the tangential stress ∆σL divided
by the viscous stress ρν2, rather than the ratio of inertial forces to viscous forces. Appar-
ently, only two of the three numbers are independent.

The properties of water and octanol are listed in table (7.1). Thus, the Schmidt number
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in the experiment can be obtained, Sc = 1282. However, due to the uncertainty of the
coefficient of the surface tension gradient γ, since γ is assumed as a constant rather than a
concentration dependent variable in the real situation, it is difficult to measure γ as same
as in the experiment. Meanwhile, γ also needs to be set to fulfill the stable conditions of
the numerical scheme. Hence, the Marangoni number has to be analyzed qualitatively to
investigate the impacts on the flow.

ρ µ D σ
[kg/m3] [kg/m/s] [m2/s] [mN/m]

Water 1000 0.001 − −
Octanol 827 0.00736 0.78x10−9 852

Table 7.1: The properties of water and octanol

7.3 Velocity fields

7.3.1 Mechanisms

In order to understand the definition of the Marangoni effect and its influences on the concen-
tration field, the mechanisms of the Marangoni effect, caused by the concentration gradient,
are discussed in this section.

In our case, the parameters are set from table (7.1), except γ is −0.2 and the surface tension
coefficient is 0.0001. The smaller surface tension coefficient is applied to reduce the impacts
of the parasitic currents, which will be discussed in detail later. In such a way, the Schmidt
number is set to Sc = 1282 and the Marangoni number is also Ma = 1282.

Figure (7.3) a) indicates the velocity field without the Marangoni effect. We can only observe
the parasitic currents occurring along the interface. The occurrence of parasitic currents is
caused by the inaccuracy in curvature estimations and the imbalance of the surface tension
and pressure gradient forces (Francois et al., 2006). Figure (7.3) b) shows the expected
concentration field without the Marangoni effect. The isolines of the concentration in the
water phase should be parallel to the interface, and the thickness between any two isolines
should be uniform since the mass transfer is isotropic.

Figure (7.4) a) shows the velocity field influenced by the Marangoni effect. Due to the
inverse relationship between the surface tension force and the concentration, the region of
higher concentration has the lower surface tension force and the region of lower concentra-
tion has the higher surface tension force. Because of the gradient of the surface tension, an
unbalanced force distribution is created at the interface, which creates a shear stress that
leads to the fluid moving tangentially along the interface. Therefore, within the thickness
of the interface, the tangential force dominates the viscous force. Thus, the region of high
surface tension at the top wall pulls the region of low surface tension at the bottom wall
along the interface. This phenomenon gives rise to the Marangoni convection. Because of
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the Marangoni effect, the expected concentration field is shown in figure (7.4) b). The flow
moves upwards along the interface, such that the concentration accumulated at the top wall
is more than that at the bottom wall. Therefore, the distance between two isolines at the
top wall is expected to be greater than that at the bottom wall. In the following section,
simulations are conducted to verify our expectations (see section (7.4)).

7.3.2 Influencing factors of the velocity field

In this section, different parameters, such as different time periods, areas and the Marangoni
numbers, are investigated to estimate the velocity field.

Effect of the time period

In this section, the same parameters are applied as in table (7.1). In order to distinguish the
flow with and without the Marangoni effect, and fulfill the stable conditions numerically, γ
is set to −0.003. Figures (7.5) a) and b) show the velocity field and the vortex influenced
by the Marangoni effect for various time periods. In figure (7.5) a), the flow moves upwards
and tangentially to the interface. However, due to the short time period, the scale of the
vortex is smaller than that in figure (7.5) b), where the vortex rotates through the whole
part of fluid 2. This observation can be explained by the time scale T ∼ L/u.

Effect of the coefficient of the surface tension gradient γ

The effect of the constant γ is shown in figure (7.6). The same parameters are used as in the
last section, except the coefficient γ. We can observe that although various γ are applied,
the maximum velocities are not much different with and without the Marangoni effect at the
initial time. This is due to the strong surface tension force implemented in the numerical
simulation, which results in the maximum velocity (parasitic currents) occurring at the top
wall during this period (see figure (7.7) a)). This may be due to the boundary conditions
and the pressure gradient at the boundaries. Furthermore, the magnitude of the velocity
field is small, so that it is very sensitive to the surface tension force. Afterwards, the loca-
tion of the maximum velocity transfers to the middle of the domain near the interface (see
figure (7.7) b)). If the surface tension coefficient is sufficiently small, the parasitic currents
can not dominate the velocity field at the top wall compared to that has a greater surface
tension coefficient (see figure (7.7) c)). Additionally, the larger value of γ results in a greater
maximum velocity after 25000 time steps. Therefore, the velocity field separates into three
lines later on. As the mass transfer process continues, the gradient of the concentration
near the interface decreases, which leads to a smaller surface tension gradient tangentially.
Hence, the maximum velocity decreases and converges into the parasitic currents.

As outlined above, in order to avoid the maximum velocity field, influenced by the top wall
due to the strong surface tension effect, a new set of parameters with a small surface tension
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a

b

Figure 7.3: (a) Velocity field (max. velocity magnitude ∼ 10−5m/s) and (b) concentration field
without the Marangoni effect at time 0.2s

coefficient is implemented with and without the Marangoni effect. Additionally, for observ-
ing the difference of the velocity field clearly, we assume that fluid 1 and fluid 2 have the
same properties. In other words, all the ratios of the density field, viscosity field, and mass
diffusivity field are set to one. The surface tension coefficient is 0.0001 and γ is 2, such that
the Schmidt number is 12.82 and the Marangoni number is 128.2.
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a

b

Figure 7.4: (a) Velocity field (max. velocity magnitude ∼ 10−4m/s) and (b) concentration field
with the Marangoni effect at time 0.2s

Figure (7.8) clearly shows that the Marangoni effect increases the maximum velocity com-
pared to the one without the Marangoni effect, since the tangential force dominates the flow
field.
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a

b

Figure 7.5: Velocity field with different time periods: (a) 8s (max. velocity magnitude ∼ 10−4m/s)
and (b) 100s (max. velocity magnitude ∼ 10−4m/s)
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Figure 7.6: The maximum velocity with various γ

a b

c

Figure 7.7: Velocity field at (a) 0.2s with σ = 0.00852 (max. velocity magnitude ∼ 10−3m/s),
(b) 10s with σ = 0.00852 (max. velocity magnitude ∼ 10−4m/s) and (c) 0.2s with
σ = 0.0001 (max. velocity magnitude ∼ 10−5m/s)
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Figure 7.8: The maximum velocity with various γ with new parameters.

Effect of the area

Various areas of the fluid 2, changing by three different lengths in the x-direction, are em-
ployed to investigate the impacts on the velocity field in figure (7.9). As introduced above,
in order to analyze the decreasing rate of the maximum velocity at the initial time period,
the same parameters are applied as in the last section (i.e., the Schmidt number is 12.82 and
the Marangoni number is 128.2).

As mentioned above, the longer time period results in a larger scale of the vortex. Therefore,
the smaller area inhibits the generation of the vortex on the right side of the interface, but
does not impact the magnitude of the maximum velocity. Thus, in figure (7.10), the decreas-
ing rate of the maximum velocity is faster in the smaller area than the larger area. Moreover,
the magnitudes of the maximum velocity are nearly the same. We can also observe that,
due to the smaller distance between the interface and the boundary condition at the top
wall, the area impacts the magnitude of the maximum velocity field when Xl = 0.8L. Ad-
ditionally, these three maximum velocity fields converge into the parasitic currents at the end.

However, the numerical velocity field is different from that obtained from the experiments,
even though the same parameters are employed. The relatively small Peclet number, result-
ing in diffusive dominated flows, may be the reason for the difference. Due to the limitation
of the mass transfer model, it would be a challenge to simulate it with the large Peclet
number. Therefore, we can only analyze the impacts of the Marangoni effect on the velocity
field qualitatively.
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Figure 7.9: The mass transfer model with various lengths in the x-direction: 0.8L, 1.0L, 1.25L.

Figure 7.10: The maximum velocity field with various areas.

7.4 Mass transfer

Due to the surface tension gradient along the interface, the flow at the both sides of the
interface moves tangentially to the interface, rather than the parasitic currents, which are
distributed randomly along the interface. This Marangoni convection promotes the mass
transfer across the interface. In this section, the mechanisms of the mass transfer impacted
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by the Marangoni effect are investigated.

In this case, all the density, viscosity, and mass diffusivity ratios are set to one. Moreover,
the surface tension coefficient and γ are 0.05 and −0.4, respectively. The Schmidt number is
5 and the Marangoni number is 10000. Because of the small Schmidt number, the flow has a
great diffusivity, so that we can observe the difference of the mass transfer coefficient easily.
Figure (7.11) shows that the mass transfer coefficient kod of the case with the Marangoni
effect is higher than that of the case without the Marangoni effect, which is in accordance
with Wang et al. (2008). However, it is difficult to observe the difference in the concentration
field, since it only occurs at the initial time period. Therefore, the concentration field with
the same parameters as in table (7.1) is shown in figures (7.12) and (7.13).

Figure 7.11: Mass transfer coefficient kod with and without the Marangoni effect.

We can observe that the concentration at the top wall of the case with the Marangoni effect
is slightly thicker than that of the case without the Marangoni effect. This is because when
the flow moves upwards, the concentration field driven by the flow also moves along the
interface and accumulates at the top wall. In such a way, the mass transfer is promoted by
the Marangoni effect, especially at the top wall. Furthermore, it is important to note that,
although the mass transfer depends on the convection, the interfacial mass transfer is still a
purely diffusive phenomenon. However, because of the numerical limitation, the coefficient
of the surface tension σ and the coefficient of the surface tension gradient γ cannot be set
to large values; hence, the concentration difference is not as obvious as expected.
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a

b

Figure 7.12: Concentration field with (a) and without (b) the Marangoni effect at time 100s
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Figure 7.13: Concentration along the x-direction at y = 0.9L with and without the Marangoni
effect.



8 Conclusions

Multiphase mass transport on a pore-scale, including the effects of surface tension forces and
Marangoni forces, has been investigated in this work. In order to simulate this phenomenon,
several numerical models are implemented. The conservative level set method is employed
to track the interface for multiphase flows. Due to the presence of the interface, the surface
tension force needs to be simulated using the sharp surface tension force method. These two
models have already been completed in a master work (Andre, 2012). Additionally, in order
to quantify the wettability of a solid surface by a liquid numerically, a contact angle model
based on the conservative level set method (Sato & Ničeno, 2012) is used to measure the
contact angle between the surface of the liquid and the outline of the contact surface. Due
to the complexity of the mass transport on the pore-scale, the Marangoni effect may arise
from the concentration gradient. The Marangoni effect impacts the mass transfer process
and the velocity field. Hence, the continuum surface force model is applied to model the
Marangoni effect induced by the concentration gradient tangentially to the interface. Fi-
nally, a new mass transfer model based on the conservative level set method and the finite
volume method, adding a source term in the scalar transportation equations, is employed to
investigate the mass transport. To the best of the author’s knowledge, this is a new mass
transfer model based on the continuous interface method and the finite volume method. All
the above numerical methods have been validated qualitatively and quantitatively.

With the help of these numerical models, two applications are conducted to analyze the mass
transfer process.

A two-dimensional cavity model, neglecting the Marangoni effect, is conducted for the first
application. Due to the low solubility of the Non-aqueous phase liquid, we only consider
the convective mass transfer. Various flow conditions are employed to examine the mass
transfer and the behavior of the interface. The results show that the Weber number is the
most significant factor affecting the behavior of the interface. Thus, the Weber number can
be treated as a force which protects the interface and prevents its shape changing. Moreover,
since different Weber numbers are implemented for the cavity flow, various inclinations of
the interface occur, resulting in different velocity manners in the cavity. The results also
indicate that the time scale ratio strongly impacts the mass transfer rate. The small dimen-
sionless time scale ratio leads to the large acceleration. Therefore, the flow obtains a strong
shear layer and is able to push more mass out of the cavity. Furthermore, we found out that
the starting time of the mass transfer varies because of the different accelerations.

In the second application, a two-dimensional model is applied with the Marangoni effect to
investigate the mass transfer process. The external mass transfer resistance is neglected.
The results show that, due to the Marangoni effect, a circulation occurs tangentially to the
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interface, rather than the parasitic currents in the case without the Marangoni effect. This
pattern of the velocity field enhances the mixture process, such that the mass transfer rate
is larger for the Marangoni effect than without considering the Marangoni effect. The con-
centration field also verifies this conclusion, that the concentration at the top wall is more
than that of the case without the Marangoni effect. Furthermore, the maximum velocity
field influenced by various conditions is presented as well.

A number of extensions to this dissertation are addressed in the following directions: the
simulation of the conservative level set method in complex geometries would be an inter-
esting extension to this work. This requires the combination of the immersed boundary
method and the conservative level set method. Another extension would be the simulation
with a large Peclet number. So far, only diffusive dominated flows have been simulated in
the second application based on the new mass transfer model. This may be a reason that
the maximum velocity field differs from the experimental results. Moreover, the time step
limitation, which is due to the numerical stable conditions, prevents simulating with longer
time. Therefore, the numerical model needs to be further refined and improved. The three-
dimensional simulation would also be a possible extension. As the Marangoni effect and the
contact angle are three-dimensional phenomena in nature, it would be interesting to extend
these models to three dimensions.
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