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ABSTRACT

Precise point positioning requires precise knowledge of satellite phase biases, satellite position and satellite clock corrections.
In this paper, a method for the estimation of these parameters with a global network of multi-frequency reference stations is
presented. It includes a clustering of the reference stations. First, individual satellite phase biases, position andclock corrections
are derived for each cluster. Subsequently, the solutions of each cluster are combined. We exploit the integer propertyof the
carrier phase ambiguities and perform an integer decorrelation and fixing within each cluster and also in the multi-cluster
combination. The performance of the proposed method is analyzed with Galileo measurements on both E1 and E5a of the IGS
stations. We defined16 clusters and obtained satellite phase biases with an accuracy of better than2 cm.

INTRODUCTION

Precise Point Positioning is becoming attractive as the user does not need any raw measurements from a reference station.
Zumberge et al. have introduced Precise Point Positioning (PPP) in [1] using precise orbits and clocks obtained from a large
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network of reference stations. Kouba and Héroux describe PPP in [2] including a precise modeling of satellite antenna offsets,
phase wind-up corrections, solid earth tides, ocean loading and earth rotation parameters. They have also assessed theperfor-
mance using IGS (International GNSS Service) products. Precise satellite orbit and clock information can be obtained by the
Bernese software as described by Dach et al. in [3].

Precise knowledge of satellite phase biases is required forPPP with integer ambiguity fixing. Ge et al. [4] used the Melbourne
Wübbena combination and the ionosphere-free phase combination. These combinations were applied to satellite-satellite single
difference measurements of450 IGS stations to estimate the single-difference widelane biases and phase biases. The estimation
is performed in two steps, i.e. a first step for the widelane ambiguity fixing, and a subsequent step for fixing the narrowlane
ambiguities. The estimated phase biases of [4] vary by only0.4 cycles per day for some GPS satellites. Ge et al. also show that
their corrections enable a narrowlane (NL) integer ambiguity fixing, i.e.91 % of the float NL ambiguity estimates are deviating
by at most0.1 cycles from the nearest integer.

Laurichesse et al. [5] estimatedundifferencedsatellite phase clocks, station clocks, satellite differential code/ phase bias,
station differential code/ phase biases, station coordinate corrections, satellite orbit corrections and ambiguities in a Kalman
filter. They used the same combinations as Ge et al. [4], but processed undifferenced measurements. The assumptions on the
process noise statistics are accurately described for eachstate parameter. Laurichesse et al. [5] analyzed the evolution of the
narrowlane pseudorange minus phase biases over the whole year 2008 for all GPS satellites. They distinguished between blocs
IIA and IIR satellites and observed a drift of only3 narrowlane cycles per year.

Wen et al. [6] proposed to estimate the undifferenced satellite phase biases, non-dispersive geometry correction terms in-
cluding their time derivatives, slant ionospheric delays,and carrier phase ambiguities in a Kalman filter. The ambiguity fixing
was triggered based on the stability of the float solution andthe statistics of the Kalman filter. The method was applied tothe
regional network of SAPOS reference stations in Germany.

Carrier phase integer ambiguity fixing is essential for precise satellite phase bias estimates. Blewitt proposed a sequential
ambiguity fixing in [8], which partially exploits the correlation between float ambiguities. The correlation was obtained from a
triangular decomposition of the float ambiguity covariancematrix. Teunissen developed the famous Least-squares AMBiguity
Decorrelation Adjustment (LAMBDA) method in [7] to solve the integer least-squares problem. The LAMBDA method inclu-
des an integer decorrelation and a sequential tree search tofind the integer ambiguities which minimize the sum of squared
ambiguity residuals. Teunissen provides an expression forthe success rate of integer bootstrapping based on the cumulative
Gaussian distribution in [9].

Brack et al. [10] proposed asequentialBest-Integer Equivariant (BIE) estimator for high-dimensional integer ambiguity
fixing. The authors performedn one-dimensional searches instead of onen-dimensional search, which is much more efficient.
The Sequential BIE was used for satellite phase bias estimation with 20 reference stations.

Henkel et al. [11] developed an ambiguity transformation for GLONASS double difference carrier phase measurements to
enable integer ambiguity fixing for FDMA-moduated signals.The transformation was used for joint ambiguity fixing of GPS
and GLONASS.

In this paper, a method for undifferenced satellite phase bias estimation with a large global network of reference stations is
presented. The method outperforms previous methods by

• splitting the global network into several clusters and by introducing a parameter mapping, which maximizes the number
of integer-valued parameters that can be estimated withoutrank defect on a global perspective

• fixing all integer-valued ambiguities within each cluster using integer decorrelation

• fixing the between cluster differential ambiguities using integer decorrelation

The method consists of two steps as shown in Fig. 1. The first step includes the splitting of the global network into several
clusters and a separate processing of undifferenced and uncombined measurements of each cluster. The second step includes
the combination of the individual solutions.

We perform a clustering of the global receiver network for the following reasons:

• selection ofcommonreference satellite andcommonreference receiver for all measurements only feasible withregional
coverage

• common visibility at reference receiver and any other receiver within a cluster enables relationship betweenreal-valued
undifferenced ambiguity/ phase biases using double differenceintegerambiguities

• reduced dimensions of measurements and states within each cluster enables integer ambiguitydecorrelationandfixing

• selection of receiver-independent reference satellite enablestransformationinstead ofre-estimationof clock offsets,
receiver phase biases and double difference integer ambiguities in case ofchanging reference satellite
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Fig. 1: Functional diagram for satellite phase bias estimation with clustering of global network

The optimum size of the cluster depends on the geographical distribution of the reference stations. A large cluster size
provides more measurements related to a certain satellite,which improves the accuracy of the respective clock and phase bias
estimates. However, there are also two arguments for small to moderate cluster sizes:

• integer ambiguity decorrelation onlyfeasiblewith small to moderate cluster size

• joint visibility between reference receiver and any other receiver of cluster reduces with size of cluster

Thus, the optimum cluster size is atrade-off betweenmaximizingthe number of measurementsandmaximizing common
satellite visibility.

Fig. 2 shows a map with the locations of the491 IGS stations. The stations are grouped into16 clusters with the reference
cluster being in Europe. Each cluster has a reference receiver, being denoted by a circle. It is selected based on the distances of
the receivers’ positions from the mean value of all station coordinates within one cluster.
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Fig. 2: Map of IGS stations with16 clusters. The number of receivers per cluster is provided inthe upper left corner of each
cluster. The reference receiver of each cluster is additionally highlighted.
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MEASUREMENT MODEL

The undifferenced carrier phase measured at receiverr ∈ {1, . . . , R} on frequencym = {1, . . . ,M} of satellitek =
{1, . . . ,K} is modeled as

λmϕk
r,m = ~e k

r (~xr − ~x k) + c(δτr − δτk) +mT(E
k
r )Tz,r − q21mIkr,1 + λmNk

r,m + βr,m − βk
m + εkr,m ∀ r,m, k,

with the wavelengthλm, the carrier phase measurementϕk
r,m in units of cycles, the line of sight vector~e k

r pointing from the
satellite to the receiver, the positions~xr and~x k of the receiver and satellite, the speed of lightc, the clock offsetsδτr and
δτk of the receiver and satellite, the tropospheric mapping functionmT depending on the elevation angleEk

r , the tropospheric
zenith delayTz,r, the ratio of frequenciesq1m = f1/fm, the ionospheric slant delayIkr,1 onf1, the integer ambiguityNk

r,m, the
receiver phase biasβr,m, the satellite phase biasβk

m and the phase noiseεkr,m.
The pseudoranges are modeled similarly as

ρkr,m = ~e k
r (~xr − ~x k) + c(δτr − δτk) +mT(E

k
r )Tz,r + q21mIkr,1 + br,m − bkm +∆ρkMPr,m

+ ηkr,m ∀ r,m, k, (1)

with the code biasesbr,m andbkm, the pseudorange multipath∆ρkMPr,m
and the pseudorange noiseηkr,m.

PARAMETER MAPPING

In this section, we introduce a parameter mapping that (a) combines some of the above parameters to enable a full-rank
system of equation and that (b) combines ambiguities mainlywith ambiguities to preserve the integer property of ambiguities.
The mapping requires the selection of a reference receiver and reference satellite being denoted by the lower/ upper index ref.
As the reference receiver and reference satellite are cluster dependent, we introduce the indexc = {1, . . . , C} to denote all
cluster dependent parameters.

The rank-defect of the absolute clock offset estimation is prevented by mapping the satellite clock offset of the reference
satelliteref of clusterc to the receiver clock offset, i.e.

δτ̃r,c := δτr − δτ ref,c ∀ r, c. (2)

The clock offsets of the other satellites are adjusted respectively:

δτ̃k,c := δτk − δτ ref,c ∀ k, c. (3)

The code biasesbr,m andbkm of the first two frequencies can be mapped to the clock offset and ionospheric delay:















br,1 − bk1
br,2 − bk2
br,3 − bk3

...
br,M − bkM















= Λ















bδτr − bδτk

bIk
r

b̃r,3 − b̃k3
...

b̃r,M − b̃kM















, (4)

with

Λ =















1 1 0 · · · 0
1 q212 0 · · · 0
1 q213 1 0
...

...
.. .

1 q21M 0 1















(5)

Solving for the biases of the clock offsets and ionospheric delays gives:















bδτr − bδτk

bIk
r

b̃r,3 − b̃k3
...

b̃r,M − b̃kM















= Λ−1 ·















br,1 − bk1
br,2 − bk2
br,3 − bk3

...
br,M − bkM















. (6)

3988



The receiver clock offset is extended to:

δτ̃r,c := δτr − δτ ref,c +
M
∑

m=1

γ1m · (br,m − bref,cm ), (7)

with γ1m being the element of the1-st row andm-th column ofΛ−1. The satellite clock offsets are adjusted respectively, i.e.

δτ̃k,c := δτk − δτ ref,c +

M
∑

m=1

γ1m · (bkm − bref,cm ). (8)

The slant ionospheric delay is adjusted similar as:

Ĩkr := Ikr +
M
∑

m=1

γ2m · (br,m − bkm), (9)

with γ2m denoting the element of the2-nd row andm-th column ofΛ−1.
The estimation of an individual receiver phase bias for eachreceiver, of an individual satellite phase bias for each satellite,

and of an individual integer ambiguity for each link is not feasible due to a rank deficient. We perform the following parameter
mappings to overcome the rank defect:

• mapping of phase bias of reference receiver to satellite phase biases

• mapping of ambiguities of reference receiver to satellite phase biases

• mapping of ambiguities of reference satellite to receiver phase biases

Additionally, the phase biases have to be corrected for the code biases being mapped into the clock offsets and ionospheric
delay. Thus, the receiver phase bias with lumped code biasesand ambiguities of reference receiver and satellite is given by

β̃r,c,m := βr,m − βref,c,m

−

M
∑

m=1

γ1m · (br,m − bref,c,m) +

M
∑

m=1

q21m · γ2m · (br,m − bref,c,m)

+N ref,c
r,m −N ref,c

ref,c,m ∀ r, c,m. (10)

The satellite phase bias is adjusted respectively, i.e.

β̃k,c
m := βk

m − βref,c,m

−

M
∑

m=1

γ1m · (bkm − bref,c,m) +

M
∑

m=1

q21m · γ2m · (bkm − bref,c,m)

−Nk
ref,c,m ∀ k, c,m. (11)

The individual integer ambiguity is related to the integer ambiguity of the reference receiver and reference satellite, which
results in the well-known double difference integer ambiguity:

Ñ
sk̄r
r,c,m := (N

sk̄r
r,m −N ref,c

r,m )− (N
sk̄r
ref,c,m −N ref,c

ref,c,m) ∀ r, c, k̄, (12)

wheresr denotes the subset of visible satellites at ther-th receiver and̄k is the satellite index within this subset.
The undifferenced carrier phase measurements of Equation (1) can be expressed in terms of the reduced parameter setδτ̃r,c,

δτ̃k,c, β̃r,c,m, β̃k,c
m andÑk

r,c,m. Some parameters vanish and do not have to be estimated forr = ref or sk̄r = ref as shown in
Equations (13) and (14).
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λmϕk
r,m = ~e k

r (~xr − ~x k) +mT(E
k
r )Tz,r − q21mĨkr,1

+















cδτ̃r,c − cδτ̃k,c +β̃r,c,m −β̃k,c
m + λmÑk

r,c,m +εkr,m r 6= ref, k 6= ref

cδτ̃r,c +β̃r,c,m −β̃k,c
m +εkr,m r 6= ref, k = ref

cδτ̃r,c − cδτ̃k,c −β̃k,c
m +εkr,m r = ref, k 6= ref

cδτ̃r,c −β̃k,c
m +εkr,m r = ref, k = ref.

(13)

ρkr,m = ~e k
r (~xr − ~x k) +mT(E

k
r )Tz,r + q21mĨkr,1

+















cδτ̃r,c − cδτ̃k,c +∆ρkMPr,m
+ηkr,m r 6= ref, k 6= ref

cδτ̃r,c +∆ρkMPr,m
+ηkr,m r 6= ref, k = ref

cδτ̃r,c − cδτ̃k,c +∆ρkMPr,m
+ηkr,m r = ref, k 6= ref

cδτ̃r,c +∆ρkMPr,m
+ηkr,m r = ref, k = ref.

(14)

SINGLE CLUSTER SOLUTIONS WITH KALMAN FILTER

In this section, we briefly describe the estimation of satellite positions, clock offsets and phase biases for one individual
cluster.

The carrier phase and pseudorange measurements of all receiversr ∈ {1, . . . , R} and frequenciesm ∈ {1, . . . ,M} in cluster
c of a certain epoch are stacked in a column vector, i.e.

z =
(

λ1ϕ
1
1,1, . . . , λ1ϕ

K
1,1, . . . , λ1ϕ

1
R,1, . . . , λ1ϕ

K
R,1, . . . ,

λMϕ1
1,M , . . . , λMϕK

1,M , . . . , λMϕ1
R,M , . . . , λMϕK

R,M ,

ρ11,1, . . . , ρ
K
1,1, . . . , ρ

1
R,1, . . . , ρ

K
R,1, . . . ,

ρ11,M , . . . , ρK1,M , . . . , ρ1R,M , . . . , ρKR,M

)T
. (15)

Similarly, all unknowns of clusterc are stacked in the state vectorx given by

x =
(

(~x 1)T, . . . , (~xK)T,

cδτ̃1,c, . . . , cδτ̃R,c, δτ̃
1,c, . . . , δτ̃K,c,

Tz,1, . . . , Tz,R,

Ĩ11,1, . . . , Ĩ
K
1,1, . . . , Ĩ

1
R,1, . . . , Ĩ

K
R,1,

β̃1,c,1, . . . , β̃R,c,1, . . . , β̃1,c,M , . . . , β̃R,c,M ,

β̃1,c
1 , . . . , β̃K,c

1 , . . . , β̃1,c
M , . . . , β̃K,c

M ,

Ñ1
1,c,1, . . . , Ñ

K
1,c,1, . . . , Ñ

1
R,c,1, . . . , Ñ

K
R,c,1, . . . ,

Ñ1
1,c,M , . . . , ÑK

1,c,M , . . . , Ñ1
R,c,M , . . . , ÑK

R,c,M

)T

. (16)

As the satellite positions and clock offsets are known from the broadcast orbits with an accuracy of1 m and as the order of
magnitude of atmospheric errors and satellite phase biasesis also known, we introduce some prior knowledge on these state
parameters:

x̄ =
(

(~̄x 1)T, . . . , (~̄xK)T,

δ ˜̄τ1,c, . . . , δ ˜̄τK,c,

T̄z,1, . . . , T̄z,R,

˜̄I11,1, . . . ,
˜̄IK1,1, . . . ,

˜̄I1R,1, . . . ,
˜̄IKR,1,

˜̄β1,c,1, . . . ,
˜̄βR,c,1, . . . ,

˜̄β1,c,M , . . . , ˜̄βR,c,M ,

˜̄β1,c
1 , . . . , ˜̄βK,c

1 , . . . , ˜̄β1,c
M , . . . , ˜̄βK,c

M

)T

, (17)
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with a priori known covariance matrixΣx̄.
Both measurements and prior information are linear dependent on the state vector. Thus,z andx̄ of epochn are combined to

(

zn
x̄n

)

= Hnxn +

(

ηz,n
ηx̄,n

)

, (18)

with Hn being the projection of the state vector into the measurements at epochn. We use a standard Kalman filter to estimate
xn from the extended measurement vector, i.e. the a posterioristate estimatêx+

n at epochn is given by

x̂+
n = x̂−

n +Kn(zn −Hnx̂
−
n ), (19)

with the Kalman gainKn.
The estimated state vector also includes

M ·

R
∑

r=1,r 6=ref

(Kr − 1) (20)

double difference ambiguities. A typical cluster withR = 40 dual-frequency receivers and an average of9 visible satellites per
receiver results in2 · (40 − 1) · (9 − 1) = 624 double difference ambiguities. The fixing of a few hundred ofambiguities to
integers is computationally demanding. The integer transformationZ of Teunissen [7] is still feasible to decorrelate the float
ambiguity estimates, i.e.

N̂ ′ = Z ˆ̃N, (21)

where ˆ̃N represents the ambiguity estimates of all receivers and frequencies in clusterc as obtained from the Kalman filter:

ˆ̃N =
(

ˆ̃N1
1,c,1, . . . ,

ˆ̃NK
1,c,1, . . . ,

ˆ̃N1
R,c,1, . . . ,

ˆ̃NK
R,c,1, . . . ,

ˆ̃N1
1,c,M , . . . , ˆ̃NK

1,c,M , . . . , ˆ̃N1
R,c,M , . . . , ˆ̃NK

R,c,M

)T

.

(22)

The subsequent ambiguity fixing can not be performed by a treesearch due to computational limitations. However, a sequential
adjustment as described by Blewitt in [8] is still feasible.Thei-th ambiguity conditioned on all previous ones is given by:

N̂ ′
i|1,...,i−1 = N̂ ′

i −

i−1
∑

j=1

γij

(

N̂ ′
j|1,...,j−1 − [N̂ ′

j|1,...,j−1]
)

(23)

with

γij =
σ
N̂ ′

i
N̂ ′

j|1,...,j−1

σ2

N̂ ′
j|1,...,j−1

. (24)

The conditioned decorrelated ambiguities are rounded to their nearest integer number:

Ň ′
i =

[

N̂ ′
i|1,...,i−1

]

. (25)

The real-valued parameters of Eq. (16) are adjusted after the ambiguity fixing to improve their accuracy.

COMBINATION OF CLUSTERS

This section describes the combination of the satellite positions, clock offsets and phase bias estimates of all clusters. We
derive a multi-cluster solution to achieve the following benefits:

• satellites beingvisible from more than one clusterprovidemultiple correlatedsatellite position, clock and phase bias
estimates

• selection of a reference clustercref enables relation of cluster-dependent satellite phase biases to satellite phase biases of
reference cluster and to exploitinteger propertyof double difference ambiguities related toreference satellite of reference
clusterandany other satellitebeingjointly visible at reference cluster and any other cluster, and being observed by the
reference stationsof both clusters.
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The satellite position estimate of thec-th cluster can be related to the true satellite position:

~̂x k,c = ~̂x k + η
~̂x k,c , (26)

where the true position is cluster-independent andη
~̂x k,c denotes the error of the estimate.

The estimates of the cluster-dependent satellite clock offsets of Equation (3) are related to the satellite clock offsets of the
reference cluster and differential (cluster to reference cluster) satellite clock offsets, i.e.

δ ˆ̃τk,c := δτk − δτ ref,c + ηδ ˆ̃τk,c

= δτk − δτ ref,cref − (δτ ref,c − δτ ref,cref ) + ηδ ˆ̃τk,c

(27)

The estimates of the satellite phase biasesβ̃k,c
m of Equation (11) include satellite and/ or constellation-dependent parameters.

Therefore, we rewrite the satellite phase bias estimates as

ˆ̃βk,c
m = u(k,m) + v(c,m) + w(k, c,m) + η

β̃
k,c
m

, (28)

with

u(k,m) = βk
m −

M
∑

m=1

(γ1m − q21mγ2m)bkm

v(c,m) = −βref,c,m +
M
∑

m=1

(γ1m − q21mγ2m)bref,c,m

w(k, c,m) = −Nk
ref,c,m. (29)

The satellite phase bias estimates of any clusterc can be related to the satellite phase bias estimates of the reference cluster, i.e.

ˆ̃βk,c
m = u(k,m) + v(cref ,m) + w(k, cref ,m)

+(v(c,m)− v(cref ,m))

+(w(k, c,m)− w(k, cref ,m)) + η
β̃
k,c
m

. (30)

The first three terms can be combined to

ũ(k,m) := u(k,m) + v(cref ,m) + w(k, cref ,m), (31)

which is of dimensionKM . As a separate determination ofũ(k,m), v(c,m) andw(k, c,m) from ˆ̃
βk,c
m is not feasible due to

rank-deficiency and as the integer property ofw(k, c,m) shall be exploited, we select a satellitek that is visible both at cluster
c and clustercref as dual-cluster reference satellite (being denoted byref), and map the differential ambiguityw(ref, c,m) −
w(ref, cref ,m) to v(c,m). Thus, the satellite phase bias estimate is expressed in terms of the reduced parameter set:

ˆ̃
βk,c
m = ũ(k,m) + ṽ(c,m) + w̃(k, c,m) + η

β̃
k,c
m

, (32)

with

ṽ(c,m) = v(c,m)− v(cref ,m)

+(w(ref, c,m)− w(ref, cref ,m) ∀ c 6= cref ,m (33)

w̃(k, c,m) = (w(k, c,m)− w(k, cref ,m))

−
(

w(ref, c,m)− w(ref, cref ,m)
)

∀ k 6= ref, c 6= cref ,m (34)

The meaning, dimensions and notation of the reduced parameter set are summarized in the following list.

• satellite phase biases̃u(k,m) (dim.KM ) including

– projected satellite code biases

– projected receiver phase and code biases of reference receiver at reference cluster
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– integer ambiguity of reference receiver at reference cluster

• receiver phase biasesṽ(c,m) of reference receiver (dim.(C − 1)M ) including

– projected receiver phase bias of reference receiver at reference cluster

– projected integer ambiguities of reference receiver at cluster and reference cluster

• double difference integer ambiguities̃w(k, c,m) (dim.KCM − CM −KM +M )
between reference stations at reference cluster and any other cluster

We derive the multi-cluster solution of satellite positions, clock offsets and phase biases from the single cluster solutions by
stacking the estimates of all clusters in a column vector:

z =
(

(~̂x 1,1)T, . . . , (~̂xK,1)T, . . . , (~̂x 1,C)T, . . . , (~̂xK,C)T,

δ ˆ̃τ1,1, . . . , δ ˆ̃τK,1, . . . , δ ˆ̃τ1,C , . . . , δ ˆ̃τK,C ,

ˆ̃β1,1
1 , . . . , ˆ̃βK,1

1 , . . . , ˆ̃β1,1
M , . . . , ˆ̃βK,1

M , . . .

ˆ̃
β1,C
1 , . . . ,

ˆ̃
βK,C
1 , . . . ,

ˆ̃
β1,C
M , . . . ,

ˆ̃
βK,C
M

)T

(35)

The stacked estimates of all clusters are considered asmeasurementsthat are linear related to the satellite positions, clock
offsets and phase biases, i.e.

z = Hx+ ηz, (36)

where the mapping matrixH and the state vectorx can be split into a part referring toreal-valued states and a part referring to
integer-valued states:

H = (Hreal, Hint) , (37)

and the combined real- and integer-valued states

x =

(

xreal

xint

)

, (38)

wherexreal andxint are defined as

xreal =
(

(~x 1)T, . . . , (~xK)T, (39)

δτ1 − δτ ref,cref , . . . , δτK − δτ ref,cref ,

δτ ref,1 − δτ ref,cref , . . . , δτ ref,C − δτ ref,cref ,

ũ(1, 1), . . . , ũ(K, 1), . . . , ũ(1,M), . . . , ũ(K,M),

ṽ(1, 1), . . . , ṽ(C, 1), . . . , ṽ(1,M), . . . , ṽ(C,M))
T
,

and

xint =(w̃(1, 1, 1), . . . , w̃(K, 1, 1), . . .

w̃(1, C, 1), . . . , w̃(K,C, 1), . . . ,

w̃(1, 1,M), . . . , w̃(K, 1,M), . . .

w̃(1, C,M), . . . , w̃(K,C,M))T . (40)

The least-squares solution ofx is given by

x̂ = (HTΣ−1
z H)−1HTΣ−1

z z, (41)

with Σz being the covariance matrix ofz.
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SIMULATION RESULTS

In this section, the performance of the proposed method is analyzed. We simulated Galileo measurements on the frequencies
E1 and E5a of the full Galileo constellation (27 satellites)for the IGS stations. The IGS stations were grouped in16 clusters
as shown in Fig. 2. The measurement noise was simulated as white Gaussian noise with a standard deviation of 2 mm for the
carrier phase and of 20 cm for the pseudorange measurements.An epoch spacing of 100 s was chosen. The process noise of
the satellite position errors, receiver and satellite clock offsets, receiver and satellite phase biases, troposheric zenith delays and
ionospheric slant delays was modeled as Gaussian noise witha standard deviation of 1 mm/ epoch.

Fig. 3 shows the convergence of the estimated satellite position and clock corrections using multiple clusters. The errors are
below 3 cm for almost all epochs and satellites. A similar performance is achieved for the satellite phase bias estimatesin Fig.
4. The latter ones are mostly below 0.1 cycles (2 cm).

Fig. 5 shows the benefit of the multi-cluster solution over the single cluster. The left subfigures refer to the single cluster
and the right subfigures to the multi-cluster solution. Eachline refers to a satellite pass. The single cluster solutionhas a poor
accuracy for the parameters related to satellites rising atthe edge of the cluster. On the contrary, the multi-cluster solution
provides orbit corrections, satellite clock offsets and phase biases with an accuracy between 5 mm and 20 mm for all satellites.

0 200 400 600 800 1000
Time [epochs] with intervals of 100 s

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

E
rr

or
 o

f s
at

el
lit

e 
po

si
tio

n 
es

tim
at

es
 [m

]

(a) Errors of satellite position estimates
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(b) Errors of satellite clock offset estimates

Fig. 3: Estimation of satellite position and clock offset corrections with multiple clusters.
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Fig. 4: Errors of satellite phase bias estimates on E1 and E5 (referring to reference cluster) in units of cycles
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(a) Single cluster orbit corrections
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(b) Multi-cluster orbit corrections

0 200 400 600 800 1000
Time [epochs]

10-3

10-2

10-1

100

101

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 s

at
el

lit
e 

cl
oc

k 
of

fs
et

s 
[m

]

(c) Single cluster satellite clock estimation
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(d) Multi-cluster satellite clock estimation
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(e) Single cluster phase bias estimation
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(f) Multi-cluster phase bias estimation

Fig. 5: Benefit of multi-cluster combination for estimationof orbit corrections, satellite clock offsets and satellite phase biases
with fixed ambiguities.
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CONCLUSION

In this paper, a method for the estimation of orbital corrections, satellite clock offsets and phase biases was provided. The
method was developed for an arbitrary number of carrier frequencies and uses undifferenced and uncombined measurements.

The method splits the global network into several clusters to reduce the dimensions of the measurements and states and,
thereby, to enable integer decorrelation for ambiguity fixing. For each cluster, an individual Kalman filter was used to estimate
the orbital corrections, receiver and satellite clock offsets, receiver and satellite phase biases, tropospheric zenith and ionosphe-
ric slant delays, and double difference ambiguities. This requires an optimized parameter mapping, which enables a full rank
system of observation equations and fully exploits the integer property of ambiguities within each cluster and betweenclusters.
A final least-squares adjustment combines the individual estimates of all clusters.

The method was validated with simulated Galileo measurements and showed that orbital corrections, satellite clock offsets
and phase biases can be determined with an accuracy between 5mm and 20 mm for all satellites at almost any time.
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