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ABSTRACT

The navigation of autonomous ground vehicles and unmanned aerial vehicles requires precise and reliable position and
attitude information. A sensor fusion of GNSS, INS, barometer and vision is attractive for unmanned aerial vehicles. The focus
of this paper is on high-precision position and attitude determination, i.e. the aiding of vision and barometric heightfor fast
RTK integer ambiguity fixing.

The paper gives an overview of the sensor fusion architecture and the individual processing steps. The visual positioning
uses camera images and geo-referenced satellite/ aerial images. An efficient feature matching is described. It uses GNSS/ INS
tightly coupled position and attitude information for alignment of the camera and satellite images, and an iterative closest point
search algorithm for matching the feature points.

INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are widely used, e.g. for surveying and mapping, for agriculture, for forestry, for security,
for monitoring of facilities, and for transport and logistics. A precise and reliable position is needed using sensors of low weight
and cost.

A sensor fusion of GNSS, INS and vision is promising and initial work has been performed by a few authors:

30th International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS+ 2017), Portland, Oregon, September 25-29, 2017

2290



Wang et al. proposed an integrated GPS/ INS/ vision navigation system for UAVs in [1]. The vision system consists of a
video camera and a laser range-finder. The velocity and height were estimated by fusion of GPS-based velocity, optical flow,
velocity relative to ground from laser range-finder, and of gyroscope angular rates in a Kalman filter. However, no absolute
position information was derived directly from vision, andno carrier-phase based RTK positioning was used.

Winkler et al. [2] detected the horizon line with an on-boardcamera. They estimated pitch and roll angles from the horizon
line, and integrated this pitch and roll angle information into GPS/ INS coupling.

Hol analyzed a sensor fusion of inertial sensors, vision, ultra-wideband and GPS in [3]. The fusion of inertial and vision
measurements was performed in a smart manner: First, position, velocity and attitude were predicted with a movement model.
Similarly, the feature positions were predicted. Subsequently, the true feature positions were searched in the new image around
the predicted positions. Once the feature positions were found, the position, velocity and attitude were updated accordingly.

Henkel and Burger developed a sensor fusion of GNSS receivers, inertial sensors and visual positioning in [4]. The visual
positioning enabled an instantaneous correction of biasedRTK float and fixed solutions. The method was tested with a vehicle
at Königsplatz in Munich, Germany.

This paper is organized as follows: In this section, we describe the models for the GNSS, INS and barometric measurements.
Section II describes the sensor fusion including the required pre-processing and the GNSS carrier phase ambiguity fixing.
Section III includes a detailed description of the visual positioning. Prominent features are extracted from both the camera
image and a geo-referenced map, and a feature matching is based on the iterative closest point search algorithm. SectionIV
describes the re-adjustment of the GNSS/ INS tightly coupled solution with vision. Finally, section V summarizes this paper.

GNSS measurement model

We use three GNSS receivers being mounted on the UAV, and the measurements of a (virtual) GNSS reference station.
Double differences (DD) are calculated between the receivers of the UAV and of the reference station for both carrier phase
and pseudorange measurements to eliminate orbital errors,clock errors, biases and ionospheric delays. The DD carrierphase
measurement of usersu andr and satellitesk andl is modeled as
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The DD pseudorange measurement is modeled similarly as

ρklur := (ρku − ρlu)− (ρkr − ρlr) = ~e kl
u ~xur + cklur +mkl

T∆Tz,ur +∆ρklMP,ur + ηklur, (3)

with the DD pseudorange multipath error∆ρklMP,ur and the DD pseudorange noiseηklur .
We also use satellite-satellite single difference (SD) Doppler measurements being modeled as

fkl
d,u = −fc

~e k
u (~vu − ~v k

u )− ~e l
u(~vu − ~v l

u)

c
− δτ̇kl + ηfkl

d,u
, (4)

with the carrier frequencyfc, the receiver’s velocity~vu, the satellite’s velocity~v k, the speed of lightc, the SD satellite clock drift
δτ̇kl and the SD measurement noiseηfkl

d,u
. As the satellite velocities and clock drifts are known fromthe broadcast message,

the SD Doppler measurements can be rearranged as
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which has only the receiver’s velocity~vu as unknown.
The distances between the GNSS antennas on the UAV can be easily measured with a meter or laser. This baseline length

prior information is very valuable for fixing the DD integer ambiguities, and shall be modeled as

lur = ‖~xu − ~xr‖+ ηlur
, (6)

with the measurement noiseηlur
being typically below2 cm.
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Inertial measurement model

MEMS-based inertial sensors typically include gyroscopesand accelerometers. The gyroscope provides angular rate mea-
surements of the body-fixed (b-) frame with respect to the inertial (i-) frame, being coordinatized in the body-fixed b-frame.
These measurements are modeled as

ωb
ib = Rb

nω
n
in + ωb

nb + bbωib
+ ηbωib

, (7)

with Rb
n being the rotation matrix from the local navigation (n-) frame (aligned with north, east and down axes) into the body-

fixed (b-) frame, the angular ratesωb
nb, the measurement biasbbωib

and the measurement noiseηbωib
. The rotation matrixRb

n

depends on the rollϕ, the pitchθ, the headingψ, and is given by
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with Ri, i ∈ {1, 2, 3}, being a rotation matrix for a rotation around thei-th axis. The angular ratesωn
in andωb
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Jekeli in [5] and are provided for completeness:
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with the Earth rotation rateωe, the rate of longitudėλu, the rate of latitudėϕu, the rate of rollϕ̇, the rate of pitcḣθ and the rate
of headingψ̇.

The acceleration is measured also in the local body-fixed (b-) frame and is modeled as

~a b = Rb
n(~a

n + ~g n) + bb~a + ηb~a , (11)

with the true acceleration~an in the navigation-frame, the gravitational acceleration~g n = (0, 0, g)T, the measurement biasbb~a
and the measurement noiseηb~a .

Barometric measurement model

We model the barometric air pressure measurement accordingto Hopfield [6] as

p(h) = p0(h0) ·

(

1−
α · (h− h0)

T0(h0)

)γ

+ bp + ηp, (12)

with the heighth, the air pressurep0 at heighth0, the temperature lapse rateα = 6.5 K/km, the temperatureT0 at heighth0,
the measurement biasbp, the measurement noiseηp, and the exponent

γ =
g

Rdα
≈ 5.25, (13)

whereg = 9.80m/s2 denotes the gravitational acceleration andRd = 287.1 J
kg·K

represents the specific gas constant for dry air.
The measurement bias can be derived from Eq. (12) using the air pressurep0(h0) from a close weather station and the height
h(p) of the GNSS/ INS tightly coupled solution.

Visual positioning

Visual positioning with a camera and a geo-referenced map provides an independent position information that is obtained in
the following steps: First, an inverse perspective mapping(IPM) is applied to the camera images to transform them from slant
view to top view using the UAV’s attitude and camera calibration data. In the next step, a feature extraction is applied tofocus
on the relevant information. Finally, the extracted features of the camera image and map are matched, and a visual position is
derived from the position of the matched features of the geo-referenced map.
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Fig. 1: Sensor fusion with GNSS, INS, barometer and vision: GNSS and INS are tightly coupled. The ambiguities of the attitude
and RTK baselines are fixed to achieve centimeter-level positioning accuracy. The barometer and vision provide independent
position information with a slightly lower accuracy. Therefore, barometric and visual position information are used to fasten
the RTK ambiguity fixing and re-fixing.

SENSOR FUSION

This section describes the sensor fusion of GNSS, INS, barometric height information and visual positioning. We use the
measurements from three GNSS receivers to obtain a precise attitude information and additionally use the measurementsfrom
a (virtual) reference station for Real-Time Kinematic (RTK) positioning. Fig. 1 shows a block diagram of the sensor fusion.
The individual blocks are described in the following paragraph.

We use a Kalman filter (see Brown and Hwang [8]) and perform a tight coupling of GNSS and INS. The Kalman filter
performs alternating state predictions and state updates.The state vector includes the absolute position~xu, velocity ~vu and
acceleration~au of theu-th GNSS receiver, the three-dimensional attitude (rollϕ, pitchθ and headingψ), the angular rates (ϕ̇,
θ̇, ψ̇), the differential tropospheric zenith delay∆Tz,ur, the single and double difference GNSS carrier phase ambiguitiesNkl

u

andNkl
ur, and the pseudorange multipath offsets∆ρkl

r
. The state prediction is performed at every GNSS and INS measurement

epoch, and uses the linear movement model
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with the time step∆t = tn − tn−1. The state update uses either pre-processed GNSS or INS measurements. It is important
that all state parameters are updated at every epoch as all state estimates arecorrelatedand, thus, are affected by an update of
a subset of states.

The pre-processing of GNSS measurements includes the following steps:

• selection of satellites based on stability of phase tracking

• selection of common receiver and of reference satellites

• cycle slip correction using predicted state information

• outlier detection and removal

• synchronization of measurements
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• estimation of noise statistics

• determination of GLONASS ambiguity transformation (see Henkel et al. [9])

• double differencing using measurements from a (virtual) reference station

The pre-processing of INS measurements includes the following steps:

• subtraction of INS sensor biases

• correction of lever arm effects

• determination and subtraction of the gravity vector (usingattitude information) from the acceleration measurements
(provided in the body-fixed frame)

The DD carrier phase ambiguities need to be fixed from float to integer numbers to fully benefit from the high accuracy of
carrier phase measurements. The DD ambiguities related to the attitude baseline are fixed using prior information on thebaseline
length as described by Teunissen in [10]. Mönikes et al. [11] and Henkel and Günther [12] used additional prior information
on theattitude to increase the reliability of integer fixing. Subsequently, the DD ambiguities of the RTK baseline are fixed.
The DD measurements of the attitude baseline are also used for RTK ambiguity fixing, i.e. the measurements of the attitude
baselines, the measurements of the (virtual) reference station and the fixed attitude are combined and expressed in terms of the
RTK baseline as described by Teunissen in [13]. The ambiguity fixing is performed with Teunissen’s integer decorrelation and
sequential tree search [14]. The fixing decision is based on thestatisticsof the weighted sum of squared ambiguity residuals
given by

‖N̂ur − Ňur‖
2

Σ
−1

N̂ur

, (15)

and on the drift of the fixed DD phase residuals

∆rur(tn) := (∆r1lur(tn), . . . ,∆r
kl
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T, (16)

with the time-differenced DD fixed phase residual

∆rklur(tn) = rklur(tn)− rklur(t1), (17)

and the DD fixed phase residual

rklur(tn) = λϕkl
ur(tn)− (~e kl)T~̌bur(tn)− λŇkl

ur. (18)

A reliable RTK fixing with single frequency GNSS receivers/ antennas takes a few minutes due to the need for pseudorange
multipath estimation (e.g. Henkel and Sperl [7]). Thus, a fixed solution can hardly be kept in urban environments with very
limited satellite visibility and frequent losses of lock below bridges and/ or in tunnels. However, a fast RTK fixing can be
achieved if an independent prior information on the position with a1 m accuracy is available.

In this paper, the prior position information is obtained from visual positioning with a camera and a geo-referenced map
(satellite/ aerial). The accuracy of the visual positioning is mainly limited by the accuracy of the map but also affected by errors
of the feature extraction and matching. The visual positioning uses the tightly coupled position and attitude to align the camera
image with respect to the map.

An additional prior information on the height is derived from the barometric air pressure measurement. The barometer is
calibrated with the GNSS/ INS tightly coupled height information once an RTK fixed solution is available. The calibrated
barometric height information is used for RTK re-fixing.

VISUAL POSITIONING

In this section, the visual positioning with a camera image and a geo-referenced map is described. The section is divided
into three parts: the feature extraction of the camera image, the feature extraction of the satellite/ aerial image, andthe feature
matching.
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(a) Camera image: slant perspective of street markings. (b) Camera image, projected to top view.

Fig. 2: Transformation of camera image with Inverse Perspective Mapping.

Feature extraction of camera image

The process steps for feature extraction of the camera imageare provided in the following list. The steps are applied to the
camera image of Fig. 2a and the results of the most important steps are shown in Fig. 2b - 4 (see also Blum [15]).

• Inverse Perspective Mapping of camera image from slant view(Fig. 2a) to top view (Fig. 2b)

• Edge detection by subtraction of sufficiently blurred projected image from projected image (Fig. 3a)

• Application of threshold on brightness to enhance contrastand to eliminate (some) outliers (Fig. 3b)

• Application of morphological transformations:

– Erosion and dilatation of image to eliminate small erroneous feature points

– Dilatation and erosion to join broken feature points

• Polygonisation of features (Fig. 4)

• Selection of features based on size and shape

In principle, the subtraction of the blurred image from the raw image corresponds to an edge detector. However, we used a
Gaussian filter with a large standard deviation of2 m for blurring. In this case, the inner parts of the road markings also remain
bright after subtraction of the blurred image.

Feature extraction of satellite/ aerial image

The feature extraction of the map (satellite/ aerial image)is more challenging than the feature extraction of the camera image
due its lower image resolution. Nevertheless, we use a similar processing:

• Transformation of map (satellite/ aerial image) to grayscale (Fig. 5a)

• Edge detection by subtraction of sufficiently blurred map from map (Fig. 5b)

• Application of threshold on minimum brightness to increasecontrast and to remove outliers (Fig. 6)

• Application of two additional masks (Fig. 7) to reduce noise(Fig. 8)

– Application of mask for minimum brightness

– Application of masks for elimination of regions with dark spots
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(a) Subtraction of blurred image from image. (b) Application of threshold on brightness.

Fig. 3: Highlighting of features with edge detection.

Fig. 4: Camera image with extracted road markings

Matching of feature points from camera image and satellite/aerial image

In this subsection, we describe the matching of the feature points of the camera image and of the geo-referenced satellite/
aerial image. It is assumed that a precise GNSS/ INS tightly coupled attitude and a less precise GNSS/ INS tightly coupled
position are available. The different accuracy levels typically occur in areas with very limited or no satellite visibility, in which
the GNSS attitude ambiguities are still fixed but the GNSS RTKambiguities are only float.

The precise attitude information is used to rotate the camera image to be aligned with the geo-referenced satellite/ image.
The position information is assigned to the camera image andadditionally used to select the relevant geo-referenced satellite/
aerial image. The camera is assumed to be calibrated, i.e. the scaling factor is known and both images are scaled with equal
factors.

The feature points of the properly scaledsatellite/ aerial imagediffer still in a few aspects from the feature points of the
properly rotatedcameraimage:

• Translation by common offset due to errors in GNSS/ INS position and errors in position of satellite/ aerial maps

• Additive Gaussian noise due to different pixel sampling dependent on feature extraction
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(a) Satellite image in gray scale. (b) Subtraction of blurred image.

Fig. 5: Feature detection in satellite image using edge detection.

Fig. 6: Satellite/ aerial image with hightlighted bright regions, obtained by application of threshold on brightness.

• Unknown relation between feature points of camera image andfeature points of the satellite/ aerial image

• Reduced number of feature points in satellite/ aerial imagecompared to camera image due to lower image resolution

The latter two aspects can be modeled by a permutation matrixP and a selection matrixS.
In this paper, the two-dimensional pixel coordinates of thek-th feature point of the properly rotated (using heading from

GNSS/ INS tight coupling)camera imageare denoted by
(

xk
yk

)

. (19)

A model for the two-dimensional pixel coordinates of thej-th feature point of the (properly scaled)satellite/ aerial imageis
obtained from thek-th feature point of the (properly rotated)cameraimage by

(

x̄j
ȳj

)

= S · P ·

(

xk +∆x+ η∆xk

yk +∆y + η∆yk

)

. (20)
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(a) Mask for minimum brightness (b) Mask for elimination of regions with dark spots

Fig. 7: Masks for improving feature extraction

We estimate the translation∆x and∆y with the Iterative Closest Point Search Algorithm 1.

We simulated a point cloud of the extracted features (arrow and some superposed noise) of thecameraimage. Fig. 9 shows
this point cloud with + markers. We also simulated the point cloud of the extracted features of thesatellite image (x markers)
using Eq. (20) and the point cloud of the camera image. A random permutation and a sub-sampling of80% was applied, and
Gaussian noise with standard deviations ofση∆xk

= 5cm andση∆yk
= 5cm was added. Fig. 9 shows also the point cloud

corresponding to thesatelliteimage and the mapping of six exemplary feature points. Obviously, the point cloud matching is a

(a) Application of mask for minimum brightness (b) Application of masks for both minimum brightness and forelimi-
nation of regions with dark spots

Fig. 8: Application of masks for improving feature extraction to satellite image
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Algorithm 1 Point cloud matching

1: Iterative solution:
2: for i = 1 to ni do
3: Loop over all satellite/ aerial pixels:
4: for j = 1 to nj do
5: Search of closest camera pixel:

jmin := argmink(x̄j − xk)
2 + (ȳj − yk)

2

6: Determine translation vector:
∆j := (x̄j − xjmin

, ȳj − yjmin
)T

7: end for
8: Average translation vectors:

∆̄ := 1/nj

∑nj

j=1 ∆j

9: Scaling of averaged translation vector:
∆̄ := γ · ∆̄

10: Apply translation:
x̄j := x̄j − ∆̄1, ȳj := ȳj − ∆̄2

11: end for

non-trivial task since both the mapping/ permutation and the translation are unknown.
Fig. 10 visualizes the point cloud matching with the iterative closest point seach algorithm. The feature points of the satellite

image are iteratively shifted towards the feature points ofthe camera image. These intermediate solutions are indicated with
· markers. A scaling factor ofγ = 2 was used to fasten the convergence. The final solution is chosen with o markers and
coincides with the feature points of the camera image.
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Fig. 9: Point clouds of camera and satellite images: Each point cloud includes an arrow and noise. The point clouds are shifted,
permuted, sub-sampled and superposed by additional noise.The matching is shown for six exemplary points, and visualizes the
randomness of the mapping.

Fig. 11 shows the position matching error as a function of thenumber of iterations. The error floor of∼ 5 cm is caused by
the additive Gaussian noise in the simulated point cloud of the satellite image. The convergence behaviour depends alsoon the
number of extracted feature points/ image resolution. A large image resolution is not necessarily an advantage since a large
number of close feature points might lead to biased solutions (local optima) of the iterative closest point search algorithm. The
error floor is only reached with an image resolution of 2 cm/ pixel or lower, and the fastest convergence is achieved for an image
resolution of only 0.2 m/ pixel.

The point cloud matching is now applied to the real camera image of Fig. 4 and the real satellite/ aerial image of Fig. 8. Fig.
12 shows the merged features of both images. The features of the camera image were rotated and aligned using the GNSS/ INS
tightly coupled position and heading. One can observe that the heading accurately agrees between the feature points of both
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Fig. 10: Matching of camera and satellite/ aerial images: The matching is determined with the iterative closest point search
algorithm. It starts with the point clouds described by x-markers. The intermediate solution after each iteration is shown as
dots. The final point cloud is shown with o-markers, and accurately matches the point cloud marked with +.
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Fig. 11: Convergence of iterative point cloud matching: Thematching error reduces with increasing number of iterations until
an error floor is reached. This error floor is described by the variance of the additive Gaussian noise. The convergence depends
also on the pixel resolution: A very high pixel resolution of5 mm/ pixel results in a local optimum. A moderate resolutionof
0.2 m per pixel enables a faster convergence.

images but that there is a position offset of a few meters. Obviously, the street markings of the satellite image appear much
more noisy due to the lower image resolution.

Fig. 13 shows the aligned feature points of the camera and satellite/ aerial image. The alignment was performed with the
iterative closest point search Alg. 1. The residual error isless than 50 cm.

RE-ADJUSTMENT OF GNSS/ INS/ BAROMETER TIGHTLY COUPLED POSI TION WITH VISION

The GNSS/ INS tightly coupled solution is drifting in environments without satellite visibility, e.g. in tunnels or below
bridges. For low-cost sensors, the position error grows above decimeter-level within a few seconds. Fig. 14 shows both the
tightly coupled GNSS/ INS RTK position (after a longer GNSS outage) and the vision-based position. The latter one indicates
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Fig. 12: Merged features of camera image (green) and satellite/ aerial image (red): The features of the camera image were
rotated using the GNSS/ INS tightly coupled heading to be aligned with the satellite/ aerial image. One can observe that the
street markings of the camera image are much less noisy than the ones of the satellite/ aerial image due to the closer distance.

Fig. 13: Aligned features of camera image (green) and satellite/ aerial image (red).

that the car was on the middle lane, which agrees with the camera image of Fig. 2a.
Obviously, the vision-based position information can be used to re-adjust the float GNSS/ INS RTK solution and, thereby,to

enable a faster ambiguity re-fixing.
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Fig. 14: Re-Adjustment of tightly coupled positioning after sections with GNSS outages (e.g. tunnels): The GNSS/ INS/ baro-
meter coupled solution is shown with a red + and the vision-based position is shown with a green +.

CONCLUSION

In this paper, we presented a fusion of GNSS, INS, barometer and vision for precise position and attitude determination.The
GNSS and INS measurements were tightly coupled in a Kalman filter. Carrier phase measurements from a reference station
were used to enable ambiguity fixing and RTK positioning. Thebarometer and vision were used to re-adjust the GNSS/ INS
tightly coupled float solution after GNSS outages and, thereby, to enable a faster re-fixing. The paper also provides an iterative
closest point search algorithm for efficient matching of thefeature points of the camera and map.
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