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ABSTRACT

The navigation of autonomous ground vehicles and unmanegdl aehicles requires precise and reliable position and
attitude information. A sensor fusion of GNSS, INS, baragnand vision is attractive for unmanned aerial vehicle® fbicus
of this paper is on high-precision position and attitudeedwination, i.e. the aiding of vision and barometric heifgitfast
RTK integer ambiguity fixing.

The paper gives an overview of the sensor fusion architecnd the individual processing steps. The visual posiiipni
uses camera images and geo-referenced satellite/ aeaigésnAn efficient feature matching is described. It uses GNSS
tightly coupled position and attitude information for aligent of the camera and satellite images, and an iteratigest point
search algorithm for matching the feature points.

INTRODUCTION

Unmanned Aerial Vehicles (UAVS) are widely used, e.g. fawsying and mapping, for agriculture, for forestry, for sgty,
for monitoring of facilities, and for transport and logcsi A precise and reliable position is needed using sen$tow aveight
and cost.

A sensor fusion of GNSS, INS and vision is promising andahitiork has been performed by a few authors:
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Wang et al. proposed an integrated GPS/ INS/ vision nawigaystem for UAVs in [1]. The vision system consists of a
video camera and a laser range-finder. The velocity and heigte estimated by fusion of GPS-based velocity, optical,flo
velocity relative to ground from laser range-finder, and wyfogcope angular rates in a Kalman filter. However, no alsolu
position information was derived directly from vision, amal carrier-phase based RTK positioning was used.

Winkler et al. [2] detected the horizon line with an on-boeatnera. They estimated pitch and roll angles from the horizo
line, and integrated this pitch and roll angle informatiotoiGPS/ INS coupling.

Hol analyzed a sensor fusion of inertial sensors, visiomawwideband and GPS in [3]. The fusion of inertial and visio
measurements was performed in a smart manner: First, gositlocity and attitude were predicted with a movementehod
Similarly, the feature positions were predicted. Subsatiyghe true feature positions were searched in the newéaaound
the predicted positions. Once the feature positions waredpthe position, velocity and attitude were updated atingty.

Henkel and Burger developed a sensor fusion of GNSS resgiveartial sensors and visual positioning in [4]. The visua
positioning enabled an instantaneous correction of bigédfloat and fixed solutions. The method was tested with ackehi
at Konigsplatz in Munich, Germany.

This paper is organized as follows: In this section, we dese¢he models for the GNSS, INS and barometric measurements
Section Il describes the sensor fusion including the reglpre-processing and the GNSS carrier phase ambiguitygfixin
Section Il includes a detailed description of the visuasiponing. Prominent features are extracted from both taera
image and a geo-referenced map, and a feature matchingad bashe iterative closest point search algorithm. Sedtion
describes the re-adjustment of the GNSS/ INS tightly caliptdution with vision. Finally, section V summarizes thaper.

GNSS measurement model

We use three GNSS receivers being mounted on the UAV, and gasumements of a (virtual) GNSS reference station.
Double differences (DD) are calculated between the receivkthe UAV and of the reference station for both carrierggha
and pseudorange measurements to eliminate orbital eclock errors, biases and ionospheric delays. The DD cgrtiase
measurement of usetsandr and satellited andl is modeled as

M = (Wl = Mpl) = (Wl = Nol)
= (M@, —zh -el@ - 7)) - (@@ -z -el@ - 7))
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with wavelength\*, normalized line of sight vectat” from thek-th satellite to theu-th receiver, the receiver positian,, the
satellite positionz *, the DD carrier phase integer amb|gufk§{f the single difference carrier phase integer ambigyify,,
the tropospheric mapping function’,, the differential tropospheric zenith deldy,,, = T, , — 1%, and the DD phase noise
eF . The synchronization correction takes the satellite mamwithin the differential receiver clock offset into aced and
is given by:

5lr = (é’f(fr - ff) - éqi(fr - fqi)) - (grk(fr - fk) - é'rl(fr - CZ"'rl)) (2)

The DD pseudorange measurement is modeled similarly as

pht = (pk — pl) — (pf — pL) = €' Tup + oy + MK AT, i + Apip e + T, ®)

with the DD pseudorange multipath ermpMP . and the DD pseudorange noigg..
We also use satellite-satellite single difference (SD) mepmeasurements being modeled as

Cop (U — Uy) — €4(Tu — T)

kl
du — _fC

with the carrier frequency., the receiver’s velocity, , the satellite’s velocity ¥, the speed of light, the SD satellite clock drift
§7*t and the SD measurement norg%L . As the satellite velocities and clock drifts are known frima broadcast message,

the SD Doppler measurements can be rearranged as
i, = f3, — fo (458 — El51) ot 67 = — fueli, fo+ mpm (5)

which has only the receiver’s velocity as unknown.
The distances between the GNSS antennas on the UAV can e masisured with a meter or laser. This baseline length
prior information is very valuable for fixing the DD integenaiguities, and shall be modeled as

c — 57’“ + nfc’flu’ (4)

lur = |Zu — Zr || + M1y (6)
with the measurement noigg, . being typically below2 cm.
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Inertial measurement model

MEMS-based inertial sensors typically include gyroscoped accelerometers. The gyroscope provides angular rae me
surements of the body-fixed (b-) frame with respect to thetiee(i-) frame, being coordinatized in the body-fixed lauine.
These measurements are modeled as

wh, = RPwi +why, + b5, + b @)

with R? being the rotation matrix from the local navigation (n-)fra (aligned with north, east and down axes) into the body-
fixed (b-) frame, the angular rates) , the measurement bi#§  and the measurement noige . The rotation matrixiz;,
depends on the rof, the pitchd, the heading), and is given by

RY = Ri(¢)R2(0)Rs(v)), )

with R;, i € {1,2,3}, being a rotation matrix for a rotation around thth axis. The angular rates’, andw?, are derived by
Jekeli in [5] and are provided for completeness:

(/\u + we) cos(py,)
Wip = . (p’U« ) (9)
—(Au + we) sin(py,)

and
0 0 "
wp, =Ri(@)Ra(0) | O | +Ra(e)| 6 |+ 0 |, (10)
0 0 0

with the Earth rotation rate., the rate of longitud@.,,, the rate of latitude,,, the rate of roll, the rate of pitcly and the rate
of headingy.
The acceleration is measured also in the local body-fixedi@me and is modeled as

@®=R(@"+g") + bz +ng, (11)

with the true acceleratio@ in the navigation-frame, the gravitational acceleragon= (0,0, g)*, the measurement bia$
and the measurement noigg

Barometric measurement model

We model the barometric air pressure measurement accaaltigpfield [6] as

p(h) = po(ho) - (1 - %};)}LO)) + by + s (12)

with the heighth, the air pressurg, at heighth, the temperature lapse rate= 6.5 K/km, the temperaturg&; at heighthy,
the measurement biag, the measurement noigg, and the exponent

d

whereg = 9.80m/s? denotes the gravitational acceleration did= 287.11{%K represents the specific gas constant for dry air.

The measurement bias can be derived from Eq. (12) using thpeessure, (ho) from a close weather station and the height
h(p) of the GNSS/ INS tightly coupled solution.

Visual positioning

Visual positioning with a camera and a geo-referenced mayighs an independent position information that is obtine
the following steps: First, an inverse perspective mapgiiRiyl) is applied to the camera images to transform them friamts
view to top view using the UAV’s attitude and camera calilmatdata. In the next step, a feature extraction is applidddos
on the relevant information. Finally, the extracted featuof the camera image and map are matched, and a visuabpasiti
derived from the position of the matched features of the igéerenced map.
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Fig. 1: Sensor fusion with GNSS, INS, barometer and visiddSS and INS are tightly coupled. The ambiguities of thetadst
and RTK baselines are fixed to achieve centimeter-levetipagig accuracy. The barometer and vision provide inddpanh
position information with a slightly lower accuracy. Thiree, barometric and visual position information are useéasten
the RTK ambiguity fixing and re-fixing.

SENSOR FUSION

This section describes the sensor fusion of GNSS, INS, batrisvheight information and visual positioning. We use the
measurements from three GNSS receivers to obtain a pratitsel@information and additionally use the measureménota
a (virtual) reference station for Real-Time Kinematic (RTpositioning. Fig. 1 shows a block diagram of the sensorofusi
The individual blocks are described in the following paegar.

We use a Kalman filter (see Brown and Hwang [8]) and perfornght ttoupling of GNSS and INS. The Kalman filter
performs alternating state predictions and state updatesstate vector includes the absolute positign velocity v, and
acceleratiori,, of theu-th GNSS receiver, the three-dimensional attitude (politch 6 and heading)), the angular ratesy
9, 1), the differential tropospheric zenith del&yT, .., the single and double difference GNSS carrier phase aritigigv*!
andN*., and the pseudorange multipath offséts.. The state prediction is performed at every GNSS and INS oneaeent
epoch, and uses the linear movement model

Zu(tn) 1 At A2 Zu(tn1) Al
Hu(tn) 0 0 1 6u(tn71) At

with the time stepAt = ¢,, — t,,_1. The state update uses either pre-processed GNSS or INSimessts. It is important
that all state parameters are updated at every epoch aatellestimates am@rrelatedand, thus, are affected by an update of
a subset of states.

The pre-processing of GNSS measurements includes thevfolisteps:

e selection of satellites based on stability of phase tragkin

e selection of common receiver and of reference satellites

cycle slip correction using predicted state information

outlier detection and removal

synchronization of measurements
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e estimation of noise statistics

e determination of GLONASS ambiguity transformation (seak# et al. [9])

e double differencing using measurements from a (virtudBrexce station
The pre-processing of INS measurements includes the finlpsteps:

e subtraction of INS sensor biases
e correction of lever arm effects

e determination and subtraction of the gravity vector (usatiitude information) from the acceleration measurements
(provided in the body-fixed frame)

The DD carrier phase ambiguities need to be fixed from floattisger numbers to fully benefit from the high accuracy of
carrier phase measurements. The DD ambiguities relatbé tttitude baseline are fixed using prior information orbidgigeline
length as described by Teunissen in [10]. Mdnikes et all #htl Henkel and Glinther [12] used additional prior infotiora
on theattitudeto increase the reliability of integer fixing. Subsequerithe DD ambiguities of the RTK baseline are fixed.
The DD measurements of the attitude baseline are also us&Ir'f¢ ambiguity fixing, i.e. the measurements of the attitude
baselines, the measurements of the (virtual) referentierstand the fixed attitude are combined and expressed irstefiine
RTK baseline as described by Teunissen in [13]. The amblyidining is performed with Teunissen’s integer decorrelamd
sequential tree search [14]. The fixing decision is basedhestatisticsof the weighted sum of squared ambiguity residuals
given by

| Ny — N“"”%L’ (15)
and on the drift of the fixed DD phase residuals
Aryr(tn) == (AP (t,), .., AL )T, (16)
with the time-differenced DD fixed phase residual
Ary (tn) = 1y (tn) = 7o (1), (17)
and the DD fixed phase residual
rEL(£0) = AP (bn) = (@) TBur(t) — AN (18)

A reliable RTK fixing with single frequency GNSS receiveratennas takes a few minutes due to the need for pseudorange
multipath estimation (e.g. Henkel and Sperl [7]). Thus, adisolution can hardly be kept in urban environments witty ver
limited satellite visibility and frequent losses of lockltxe bridges and/ or in tunnels. However, a fast RTK fixing can b
achieved if an independent prior information on the positigth a1 m accuracy is available.

In this paper, the prior position information is obtainednfr visual positioning with a camera and a geo-referenced map
(satellite/ aerial). The accuracy of the visual positignsmainly limited by the accuracy of the map but also affédtg errors
of the feature extraction and matching. The visual positigiises the tightly coupled position and attitude to allgnd¢amera
image with respect to the map.

An additional prior information on the height is derivedrfidhe barometric air pressure measurement. The barometer is
calibrated with the GNSS/ INS tightly coupled height inf@tion once an RTK fixed solution is available. The calibrated
barometric height information is used for RTK re-fixing.

VISUAL POSITIONING

In this section, the visual positioning with a camera imagé a geo-referenced map is described. The section is divided
into three parts: the feature extraction of the camera inthgefeature extraction of the satellite/ aerial image, twedfeature
matching.
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(a) Camera image: slant perspective of street markings. (b) Camera image, projected to top view.

Fig. 2: Transformation of camera image with Inverse PeltsgeMapping.

Feature extraction of camera image

The process steps for feature extraction of the camera imagprovided in the following list. The steps are applied® t
camera image of Fig. 2a and the results of the most importeps sre shown in Fig. 2b - 4 (see also Blum [15]).

e Inverse Perspective Mapping of camera image from slant (g 2a) to top view (Fig. 2b)

Edge detection by subtraction of sufficiently blurred petgel image from projected image (Fig. 3a)

Application of threshold on brightness to enhance conaadtto eliminate (some) outliers (Fig. 3b)

Application of morphological transformations:

— Erosion and dilatation of image to eliminate small errorsef@ature points
— Dilatation and erosion to join broken feature points

Polygonisation of features (Fig. 4)
e Selection of features based on size and shape

In principle, the subtraction of the blurred image from the/image corresponds to an edge detector. However, we used a
Gaussian filter with a large standard deviatior2 of for blurring. In this case, the inner parts of the road nragkialso remain
bright after subtraction of the blurred image.

Feature extraction of satellite/ aerial image

The feature extraction of the map (satellite/ aerial imag@)ore challenging than the feature extraction of the carimeage
due its lower image resolution. Nevertheless, we use aaipibcessing:

e Transformation of map (satellite/ aerial image) to grajes¢gig. 5a)

e Edge detection by subtraction of sufficiently blurred magprirmap (Fig. 5b)

e Application of threshold on minimum brightness to increesptrast and to remove outliers (Fig. 6)
e Application of two additional masks (Fig. 7) to reduce nqiBgy. 8)

— Application of mask for minimum brightness
— Application of masks for elimination of regions with darkodg
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(a) Subtraction of blurred image from image. (b) Application of threshold on brightness.

Fig. 3: Highlighting of features with edge detection.

Fig. 4: Camera image with extracted road markings

Matching of feature points from camera image and satelliteaerial image

In this subsection, we describe the matching of the featanet of the camera image and of the geo-referenced setellit
aerial image. It is assumed that a precise GNSS/ INS tiglpled attitude and a less precise GNSS/ INS tightly coupled
position are available. The different accuracy levelsdgfyy occur in areas with very limited or no satellite vidity, in which
the GNSS attitude ambiguities are still fixed but the GNSS Rifbiguities are only float.

The precise attitude information is used to rotate the carmeage to be aligned with the geo-referenced satellitegena
The position information is assigned to the camera imageadditionally used to select the relevant geo-referencesdlisey
aerial image. The camera is assumed to be calibrated, @ sctiling factor is known and both images are scaled withlequa
factors.

The feature points of the properly scalgaltellite/ aerial imageiffer still in a few aspects from the feature points of the
properly rotatedcameraimage:

e Translation by common offset due to errors in GNSS/ INS pmsénd errors in position of satellite/ aerial maps

e Additive Gaussian noise due to different pixel samplingetetent on feature extraction
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(a) Satellite image in gray scale. (b) Subtraction of blurred image.

Fig. 5: Feature detection in satellite image using edgectiete

Fig. 6: Satellite/ aerial image with hightlighted brighgiens, obtained by application of threshold on brightness.

e Unknown relation between feature points of camera imagdeatdre points of the satellite/ aerial image

e Reduced number of feature points in satellite/ aerial inwgepared to camera image due to lower image resolution

The latter two aspects can be modeled by a permutation mfataxd a selection matrig.
In this paper, the two-dimensional pixel coordinates of kil feature point of the properly rotated (using headingnfro
GNSS/ INS tight couplingtamera imagere denoted by

( ;’; ) . (19)

A model for the two-dimensional pixel coordinates of thth feature point of the (properly scaleshitellite/ aerial images
obtained from thé:-th feature point of the (properly rotatecimeraimage by

zj Tk + AT + Az,
J)=85-P- B 20
( Uj ) ( Yk + Ay + nay, ) (20)
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(a) Mask for minimum brightness (b) Mask for elimination of regions with dark spots

Fig. 7: Masks for improving feature extraction

We estimate the translatiahx andAy with the Iterative Closest Point Search Algorithm 1.

We simulated a point cloud of the extracted features (armavsome superposed noise) of teneraimage. Fig. 9 shows
this point cloud with + markers. We also simulated the poiotid of the extracted features of thatelliteimage (x markers)
using Eq. (20) and the point cloud of the camera image. A randermutation and a sub-sampling&if% was applied, and
Gaussian noise with standard deviationsrgf, = 5cm andoy,, = 5cm was added. Fig. 9 shows also the point cloud
corresponding to thsatelliteimage and the mapping of six exemplary feature points. Qislypthe point cloud matchingis a

(a) Application of mask for minimum brightness (b) Application of masks for both minimum brightness and éémi-
nation of regions with dark spots

Fig. 8: Application of masks for improving feature extractito satellite image
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Algorithm 1 Point cloud matching

1: Iterative solution:

2: for i =1ton,; do

3:  Loop over all satellite/ aerial pixels:

4. for j=1ton;do

5 Search of closest camera pixel:

Jmin = argming (Z; — ) + (75 — yr)?

Determine translation vector:

Dy = (T = T Ui~ Yiin) |

7:  end for

8:  Average translation vectors:
A=1/n; 302 A

9:  Scaling of averaged translation vector:
A=r-A

10:  Apply translation:
T =T, — A1,y =7 — Ao

11: end for

@

non-trivial task since both the mapping/ permutation ardttanslation are unknown.

Fig. 10 visualizes the point cloud matching with the iterattlosest point seach algorithm. The feature points ofdhalie
image are iteratively shifted towards the feature pointthefcamera image. These intermediate solutions are iedicgith
- markers. A scaling factor of = 2 was used to fasten the convergence. The final solution isscha#th o markers and
coincides with the feature points of the camera image.

Fig. 9: Point clouds of camera and satellite images: Eachtjgtud includes an arrow and noise. The point clouds afeeshi
permuted, sub-sampled and superposed by additional idisanatching is shown for six exemplary points, and viseslihe
randomness of the mapping.

Fig. 11 shows the position matching error as a function oftitn@ber of iterations. The error floor ef 5 cm is caused by
the additive Gaussian noise in the simulated point clouti@fatellite image. The convergence behaviour dependsialde
number of extracted feature points/ image resolution. damage resolution is not necessarily an advantage sinasge |
number of close feature points might lead to biased solstflwtal optima) of the iterative closest point search atbor. The
error floor is only reached with an image resolution of 2 crmépor lower, and the fastest convergence is achieved fanagé
resolution of only 0.2 m/ pixel.

The point cloud matching is now applied to the real camerayava Fig. 4 and the real satellite/ aerial image of Fig. 8. Fig
12 shows the merged features of both images. The featurke ohimera image were rotated and aligned using the GNSS/ INS
tightly coupled position and heading. One can observe tteheading accurately agrees between the feature pointsiof b
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Fig. 10: Matching of camera and satellite/ aerial images frtatching is determined with the iterative closest poiarce
algorithm. It starts with the point clouds described by xrkeas. The intermediate solution after each iteration mshas
dots. The final point cloud is shown with o-markers, and aaigly matches the point cloud marked with +.
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Fig. 11: Convergence of iterative point cloud matching: Tegching error reduces with increasing number of iteratiomtil
an error floor is reached. This error floor is described by Hr@ance of the additive Gaussian noise. The convergenandsp
also on the pixel resolution: A very high pixel resolutionsomm/ pixel results in a local optimum. A moderate resolutién
0.2 m per pixel enables a faster convergence.

images but that there is a position offset of a few meters.i@isly, the street markings of the satellite image appearthmu
more noisy due to the lower image resolution.

Fig. 13 shows the aligned feature points of the camera amdlitdtaerial image. The alignment was performed with the
iterative closest point search Alg. 1. The residual erréess than 50 cm.

RE-ADJUSTMENT OF GNSS/ INS/ BAROMETER TIGHTLY COUPLED POSI TION WITH VISION
The GNSS/ INS tightly coupled solution is drifting in envinments without satellite visibility, e.g. in tunnels or tel

bridges. For low-cost sensors, the position error growyvalecimeter-level within a few seconds. Fig. 14 shows blo¢h t
tightly coupled GNSS/ INS RTK position (after a longer GNS8ame) and the vision-based position. The latter one itelica
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Fig. 12: Merged features of camera image (green) and setedierial image (red): The features of the camera image were
rotated using the GNSS/ INS tightly coupled heading to bgnakd with the satellite/ aerial image. One can observe teat t
street markings of the camera image are much less noisylleames of the satellite/ aerial image due to the closerrdista

Fig. 13: Aligned features of camera image (green) and #afedlerial image (red).

that the car was on the middle lane, which agrees with the mage of Fig. 2a.
Obviously, the vision-based position information can bedu® re-adjust the float GNSS/ INS RTK solution and, therehy,
enable a faster ambiguity re-fixing.
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Fig. 14: Re-Adjustment of tightly coupled positioning afsections with GNSS outages (e.g. tunnels): The GNSS/ Id&-b
meter coupled solution is shown with a red + and the visiosedaosition is shown with a green +.

CONCLUSION

In this paper, we presented a fusion of GNSS, INS, baromatkvigion for precise position and attitude determinatidme
GNSS and INS measurements were tightly coupled in a Kalmtanm. fiCarrier phase measurements from a reference station
were used to enable ambiguity fixing and RTK positioning. Bheometer and vision were used to re-adjust the GNSS/ INS
tightly coupled float solution after GNSS outages and, ther® enable a faster re-fixing. The paper also providessaatite
closest point search algorithm for efficient matching offéregture points of the camera and map.
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