
Modeling and verifying behavioral constraints for
automation systems

Benjamin Brandenbourger Milan Vathoopan, Alois Zoitl

CAX-Service GmbH fortiss GmbH

Siedlungsweg 14, 85258 Weichs, Germany Guerickestr. 25, 80805 Munich, Germany

brandenbourger@cax-service.de {vathoopan, zoitl}@fortiss.org

Abstract—A technical plant behavior using a functional de-
scription forms the basis for common understanding of different
disciplines and is used for the draft of hardware and software.
Correlations between specific functions of the automation compo-
nents and system can be allowed or denied in the behavior model
describing the tended reaction. This contribution proposes an ap-
proach for modeling and verifying formal behavioral constraints
of automation systems. The approach is realized either with finite
state machines or with regular expressions. Furthermore, this
work presents a methodology to convert verbalized constraints
into finite state machines or regular expressions. The approach
is evaluated by means of a pick & place unit.

I. INTRODUCTION

The manufacturing industry currently experiences drastic

changes shifting mass production towards customer-specific

products [1]. With the increasing, dynamic, and variant nature

of customer requirements [2], companies are forced to react

with fast refitting machines. Cyber-physical systems with

functional interfaces are one response to this requirement [3].

However, the Plug&Produce approach does not implicitly

support equipment protection. Malfunction of an automation

system causing unintended behavior or even physical damage

due to faulty programming can occur at any time. Yet using

the system’s functionalities together with a behavior model

such as presented in [4] opens up new possibilities. Specific

sequences of functionalities can be permitted or blocked.

As a consequence, modeling system- or application-specific

constraints retains the monitored system in a protected, defined

status and prevents unintended behavior.

The practical application of the approach is diverse, as it

is independently applicable: One use case is continuously

checking the activity of the monitored system during run-

time and detecting program sequences leading to a harmful

behavior. This use case could find approval, for example, in

the education sector and is comparable to the restriction of a

robot’s working space in order to avoid physical crashes with

the periphery. Another application is planing and pre-checking

program sequences before a new code is downloaded on the

automation system. Furthermore, the approach supports equip-

ment protection for a common resource which is accessed by

several parallel running application sequences. The risk of a

common resource running into a dead-lock is also eliminated

when using the severest level of restriction. Additionally, the

behavior of spatially distributed component system can be

modeled and checked.

In this work, an approach for modeling and verifying

complex sequences of operations of automation systems is pre-

sented. The approach supports simultaneous call of functions

which is required e.g. for interpolation.

The remainder of this paper is structured as follows: Sec-

tion II gives an overview of available work in the field

of modeling constraints in behavior models. An application

example in form of a pick & place unit is presented in

Section III. Section IV describes the theoretical approach for

modeling behavioral constraints. Different levels of restriction

of the behavior model, depending on the envisioned level

of severeness, are introduced. The theoretical approach is

analyzed on the one hand with finite state machines and on

the other hand with regular expressions. In Section V the

evaluation of the approach is presented. Finally, Section VI

concludes the paper.

II. RELATED WORK

Hanisch et al. [5] put forward a method for formal synthesis

of discrete supervisory controllers which is based on an

automaton model of the plant. The model describes the plant’s

uncontrolled behavior and a specification of states or state

sequences of the plant which must be prevented by the con-

troller. Moreover, Hanisch presents together with Vyatkin et

al. [6] a new framework for design and validation of industrial

automation systems based on systematic application of formal

methods. Preusse et al. [7] propose a graphic-based method

which enables the user to create a formal specification of

behavior description with the use of symbolic timing diagrams.

The authors of this work follow a functional approach for

controlling the plant’s actuators.

The same functional approach is also taken up again by

Brandenbourger et al. [8] by creating an integrated mecha-

tronic model using a metamodel implemented in Automa-

tionML. The system’s functions are encapsulated in so-called

skills which start a procedure when triggered. Together with a

3D-model, the same authors introduce in [4] a behavior model

of automation components using cross-domain interdependen-

cies.

Ramadge et al. [9] follow in their work a similar approach

as presented in this contribution. However, the derivation

of the system’s behavioral states is not taken into account.

Furthermore, different interdependent levels of application,

such as arbitrary or reasonable aaplications, are not considered.

De Schutter et al. [10] present in their work an approach

focusing on constraint-based programming of robot systems

that can also be applied on plant automation. The vector-

valued functions are comparable to the functional approach of

the presented work. However, the geometry uncertainty is not

categorized into different interdependent levels of application.

An automatic synthesis of control strategies for complex

dynamical systems is presented in the work of Wongpiromsarn

et al. [11]. The resulting system is used for planning and

continuously checking the correct behaviors. The authors ex-

press the desired properties in the language of linear temporal

logic which is used to construct a finite state automaton.

Hence, the envisioned state automaton is build up from the

scratch whereas the approach followed in the presented work

consists of erasing undesirable transitions out of a total state

automaton.

An alternative approach concentrating on spatially dis-

tributed component systems is proposed by Blech et al. [12]

with a framework for modeling and checking the behavior.

Vogel-Heuser et al. [13] present the core concepts for PLC-

statecharts - an adaptation of UML-statecharts - which can be

used as a visual programming language for PLCs. The defined

formal behavioral semantics sets the basis for an automatic

transformation of PLC-statecharts into timed automata which

are analyzed by a model-checker. However, these approaches

mainly concentrate on the model itself or its possible appli-

cation methodology. The evolution of the model and a real

application scenario considering the model are not in the

scope of these works. Besides, the combination of regular

expressions with a functional approach in the automation

domain has not yet been examined.

III. APPLICATION EXAMPLE

Figure 1 depicts a pick & place unit with an initial position

consisting of two retracted linear drives and an open gripper.

The pick & place unit is used for transferring workpieces

from one tray to the other. Following the functional approach

presented in [8], the following steps need to be performed for

transferring workpieces from tray 2 to tray 1:

1) call skill Right (Ri) (extend X-axis)

2) call skill Down (D) (extend Z-axis)

3) call skill Grip (G) (close gripper)

4) call skill Up (U) (retract Z-axis)

5) call skill Left (L) (retract X-axis)

6) call skill Down (D) (extend Z-axis)

7) call skill Release (Re) (open gripper)

8) call skill Up (U) (retract Z-axis)

After this series of steps, the pick & place unit resides again

in its initial configuration. Furthermore, the first 5 steps can

be grouped to the composed skill called ”Pick” and the last 3

steps to the composed skill called ”Place”. The composition

of the 8 steps can be grouped to the composed skill called

”Pick&Place”.

In this specific setup, two constraints are verbalized to avoid

a malfunction of the system:

1) ”Do not hit the trays.”

Z

X

1 2

Fig. 1. Application example: pick & place unit with two trays

2) ”Do not release a workpiece while transporting.”

In order to convert a verbalized constraint to the offered

functionalities of the system and its components, the system

topology needs to be taken into account. The first constraint

is therefore transformed to the physical restriction that no X-

movement should be performed while the Z-axis is down.

Using the system’s skills, the first constraint is restricting any

skill-call of the X-axis (skills Left or Right) after calling the

skill Down and before having called the skill Up. Analog to

the first constraint, the second verbalized constraint results in

restricting the skill-call Release after having called the skill

Up and before having called the skill Down.

IV. APPROACH

In this work two approaches for modeling behavioral con-

straints of automation systems are presented. The first ap-

proach concentrates on modeling the constraints within the

behavior model presented in [4] by removing transitions. The

other approach uses regular expressions for describing a valid

skill order. A skill order (SO) is a sequence of skill-calls.

Both approaches are explained and evaluated by means of the

application example.

Skill orders are classified in both approaches in different

levels such as arbitrary SO, valid SO, and reasonable SO.

The goal of both presented approaches is gaining a model

describing a valid SO. This valid SO prevents application-

and system-specific malfunctions leading to physical crashes.

Both the valid and the reasonable SO are system-specific, as

they depend on the system topology.

In order to gain the different levels of SO, the following

steps are followed by both approaches:

1) Modeling an arbitrary skill order - An arbitrary skill

order is a model containing all possible series of skill-

calls of the considered automation system. Malfunctions

of the system can occur when using this model. Each

skill can be called after any other skill and multiple skills

can be called simultaneously.

2) Identifying and modeling constraints - System-

specific constraints must be identified in order to be

modeled in the valid SO. The verbalized constraints

must be formalized depending on the applied approach.

In order to convert a verbalized constraint to the offered

functionalities of the system and its components, the

system topology needs to be taken into account.

One approach for the formalization of a constraint

consists of the following steps applied on the application

example:

a) Formulate the constraint in a verbalized phrase

(e.g. ”Do not hit the trays”)

b) Formulate the converse (e.g. ”Hit the trays”)

c) Deduce out of the plant topology the components

involved to fulfill the converse (e.g. Z-axis and X-

axis)

d) Formulate the expression to fulfill step b) using

the components identified in step c) (e.g. ”Move

X-axis while Z-axis is down”)

e) Formulate the same expression using the skills of

the components involved (e.g. ”Call skill Left or

Right after calling skill Down and before calling

skill Up”)

f) Inverse the statement for getting the constraint

from step 1 (e.g. ”Do not call skill Left or Right
after calling skill Down and before calling skill

Up”)

g) Formalize the expression (e.g. Down ≺
¬(Left|Right) ≺ Up)

The critical skill-call is the skill which triggers a con-

straint and is, in this specific case, the skill Down.

There are several other approaches for formalizing ver-

bal constraints which are out of scope of this paper.

3) Modeling a valid skill order - A valid SO is an

arbitrary SO including system-specific constraints. The

order in which skills are allowed to be called, for

creating valid application sequences, is derivable from

the valid SO while taking the constraints into account.

Crucial malfunctions of the system are prevented by

modeling constraints in the valid SO. Therefore, this

SO severeness is the intentioned level for industrial use.

Preconditions for a valid SO are:

• The call of a skill can be repeated.

• By recalling a skill, no malfunction occurs (e.g.

recall skill Grip with no physical impact; recall

composed skill Pick and the pick-procedure is per-

formed again).

• If a skill should not be recalled, this restriction has

to be modeled as a constraint.

arbitrary SO
valid SO

(arbitrary SO \ constraints)

reasonable SO
(valid SO \ absurdism)

Fig. 2. Relation between different levels of skill orders (SO)

4) Modeling a reasonable skill order - A reasonable SO

emerges when removing system-specific absurdism of a

valid SO. Therefore, parts of the valid SO correspond-

ing to skill orders which are not system-relevant are

eliminated. This level of SO is used for optimization or

increased efficiency of a monitored automation system.

Examples for absurdism are in most cases skill recalls

and loops with counter skills. The creation of a reason-

able SO is highly system-specific and requires knowl-

edge of the envisioned applications on the automation

system.

Figure 2 depicts the relation between the three different SO

levels.

A. Approach by modeling constraints in a finite state machine

In [4] a behavior model for automation components and

systems using a functional approach was presented. A possible

representation of the behavior model is a finite state machine

(FSM) consisting of states and transitions. The states represent

all possible physical states of an automation component or

system. The transitions between the states represent 1 to n

(parallel) skill-calls. In this way, simultaneous skill-calls of

different automation components are supported and permit,

for example, interpolation.

By applying the four steps of the approach presented in

Section IV on this behavior model, the different levels of SO

are gained.

1) Modeling arbitrary skill order in FSM - The arbitrary

SO in the behavior model represented as a FSM consists

of any (simultaneous) call of a skill offered by one (or

more) automation components of the system. This leads

to
n∏

k=1

sk states, where n is the number of automation

components in the considered automation system and

s is the number of skills offered by the automation

component k.

As each state can be reached by any other state, each

skill can be called after any other skill leading to s2

transitions where s is the number of states (s ∗ (s − 1)

transitions between all the states +s transitions for

recalls of the same skill). This modeling step leads to an

exponential and therefore unmanageable amount of cross

relations. Therefore, Harel statecharts can be used here.

This diagram type allows the modeling of superstates

which are hierarchically nested states resulting in hier-

archical state machines (HSM). In our approach each

superstate of an HSM is a component involved in the

application example.

2) Modeling constraints in FSM - The verbalized con-

straints of the system must be identified, formalized,

and correlated to the corresponding skill-calls. Skill-

calls are modeled as transitions in the FSM. Therefore, a

constraint prevents the traversing of one or more specific

transitions by deleting them. If the obstructed transition

is part of a simultaneous skill-call, the transition of the

simultaneous skill-call must be deleted.

3) Modeling valid skill orders in FSM - Crucial mal-

functions of the system are avoided by preventing spe-

cific transitions. Therefore, theses specific transitions

are eliminated resulting in a behavioral model which

supports only valid skill orders.

4) Modeling reasonable skill orders in FSM - A rea-

sonable behavior model emerges by removing system-

specific absurdism of the valid behavior model. There-

fore, further transitions of the valid FSM, such as

most of the skill recalls, are deleted. The creation of a

reasonable FSM is highly system-specific and requires

knowledge of the envisioned applications on the automa-

tion system. With this knowledge, further transitions of

the valid FSM are eliminated until a system-specific

reasonable FSM emerges.

B. Approach by modeling constraints with regular expressions

The second approach for modeling behavioral constraints

of automation systems uses regular expressions. A regular

expression is a sequence of elements defining a specific search

pattern. The search pattern is modeled as a grammar γ, an

alphabet Σ contains all considered elements, and a sentence is

a series of elements. In this approach a grammar corresponds

to all skill sequences which are accepted by the envisioned SO

level. All skill orders modeled by constraints are implicitly

excluded by the grammar. The alphabet is the sum of all

the skills offered by the considered automation system. A

sentence is any skill sequence which needs to be checked

by the grammar. The goal of this approach is defining an

appropriate grammar for the envisioned SO level.

The approach using regular expressions also supports si-

multaneous skill-calls which are necessary, for example, for

interpolation. Simultaneous skill-calls are serialized and then

checked by the given grammar. There are n! variants of

serialization when n skills are simultaneously called. Each

variant needs to be checked by the given grammar.

In addition to the elements of the alphabet, the grammar also

contains metacharacters. * symbolizes zero or n occurrences of

the preceding element. ? symbolizes zero or one occurrences

of the preceding element.

1) Modeling arbitrary skill order in regular expressions
- The grammar γa for the arbitrary SO is any combina-

tion of skills contained in the alphabet Σ.

γa : (Skill1|Skill2|...|Skilln)∗
2) Modeling constraints in regular expressions - The for-

malized expression of the constraint resulting from the

approach in Section IV must be transformed to a regular

expression. The formalized expression will be available

in a form such as Skillc ≺ ¬(Skilln1|Skilln2) ≺
Skillx. For this purpose, the complete negation of all

skills Skilln is replaced by

(Σ \ Skilln1|...|Skillnm)∗.

3) Modeling valid skill orders in regular expressions -

First, the critical skill-call triggering a constraint must

be identified. The identified critical skill Skillc must

then be extended in γa by the regular expression of the

constraint and the leading to the new grammar γv for a

valid SO:

γv : (Skill1|Skillc(Σ \
Skilln1|...|Skillnm)∗Skillx|...|Skilln)∗

4) Modeling reasonable skill orders in regular expres-
sions - The grammar γv can be optimized in the last step

to a grammar γr which supports a reasonable SO. For

this purpose, repetitions of undesirable skills and system

specific absurdism are excluded from the grammar γv .

As mentioned before, the creation of a reasonable SO

is highly system-specific and requires knowledge of

the envisioned applications on the automation system.

Therefore, no prescribed strategy for merging γv to γr
can be described here.

In general, it can be observed that the complexity of γr
is reduced in comparison to γv . This is because the system-

specific optimization of γr leaves out regular expressions

which are embedded in γv .

V. EVALUATION

The approach presented in Section IV is evaluated in this

section by means of the application example. Both methods

of modeling constraints in a finite state machine or in regular

expressions are analyzed.

The correct and intended skill sequence

Ri,D,G,U, L,D,Re, U presented in Section III will

be accepted whereby the skill sequence L,U,D,G,Ri,Re
leading to a crash will be rejected both by the FSM and the

regular expression.

A. Evaluation of approach by modeling constraints in a FSM

The application example consists of three automation com-

ponents with two skills per component. This leads to a FSM

with
3∏

k=1

2 = 8 states and 82 = 64 transitions. The top part

of Figure 3 depicts the FSM for the arbitrary SO, whereby

bidirectional transitions are grouped for better readability. The

U L G

D L G

U Ri G

D Ri G

U L Re

arbitrary SO

valid SO

U Ri Re

D Ri ReD L Re

U L G

D L G

U Ri G

D Ri G

U L Re U Ri Re

D Ri ReD L Re

reasonable SO

Up

Dow
n

Up

Dow
n

Right

Left

Right
Left

Up Down UpDown

U L G

D L G

U Ri G

D Ri G

U L Re U Ri Re

D Ri ReD L Re

Up

Dow
n

Up

Dow
n

Right

Left

Right

Left

Up Down UpDown

Fig. 3. Evolution of FSM to reasonable SO with two constraints

FSM resides in the same state if one of the skills with no

physical impact is recalled. These skill recalls are not explicitly

labeled.

Another way of modeling the arbitrary SO of the application

example is shown in Figure 4 by using hierarchical state

machines (HSM).

The next step consists of modeling the constraints in the

FSM. Therefore, specific transitions must be eliminated. In

order to identify the specific transitions, first the formalized

constraint must be created by applying the presented approach:

1) Formulate the constraint in a verbalized phrase (”Do not

release a workpiece while transporting”)

2) Formulate the converse (”Release a workpiece while

transporting”)

3) Deduce out of the plant topology the components in-

X-axis Gripper

Z-axis

closed

opened

extendedretracted

extendedretracted

Right

Left

Down

Up

GripRelease

Fig. 4. Arbitrary SO represented as hierarchical state machine (HSM)

volved to fulfill the converse (Z-axis and Gripper)

4) Formulate the expression to fulfill step b) using the

components identified in step c) (”Open Gripper while

Z-axis is up”)

5) Formulate the same expression using the skills of the

components involved (”Call skill Release after calling

skill Up and before calling skill Down”)

6) Inverse the statement for getting the constraint from step

1 (”Do not call skill Release after calling skill Up and

before calling skill Down”)

7) Formalize the expression (Up ≺ ¬Release ≺ Down)

The first constraint was already formalized in Section IV:

Down ≺ ¬(Left|Right) ≺ Up.

Both formalized constraints need to be mapped to the

transitions of the FSM for the arbitrary SO. Thus, in the

application example, every transition from DL* to *R* and

every transition from DR* to *L* must be discarded to

fulfill the first constraint. Furthermore, every transition from

U*G to **Re and every transition from D*G to U*Re must

be discarded to fulfill the second constraint. Applying the

intended skill sequence Ri,D,G,U, L,D,Re, U on the FSM

representing a valid SO is accepted, whereby the skill sequence

L,U,D,G,Ri,Re is rejected. The center part of Figure 3

depicts the FSM for the valid SO whereby the transitions are

labeled with the corresponding skill-call.

For creating an application- and system-specific reasonable

SO, further transitions need to be deleted. Whether a skill

order makes sense or not depends highly on the envisioned

applications which will be running on the system. Therefore,

the reasonable SO can only be created out of the valid SO by

an engineer understanding the system and not systematically

following a method. The bottom part of Figure 3 depicts the

FSM for the reasonable SO.

B. Evaluation of approach by modeling constraints in a reg-
ular expression

Evaluating the second approach using regular expressions

leads to a set of grammar depending on the SO-level. The

grammars are depicted in Figure 5. Prefixes and suffixes

depend on the initial position of the system.

The finite alphabet of the application example is:

Σ = U,D,L,Ri,G,Re

Level of
severeness No constraints Constraint1 Constraint2 Constraint1 + Constraint2

arbitrary SO ܷ ܦ ܮ ܴ݅ ܴ݁|ܩ ∗ --- --- ---

valid SO ܷ ܦ ܮ ܴ݅ ܴ݁|ܩ ∗ ܷ ܦ ܦ ܷ ܴ݁|ܩ ∗ ܷ ܮ ܴ݅ ܴ݁|ܩ * ܷ ܷ ܦ ܴ݅|ܮ ∗ ܴ݁|ܩ|ܴ݅|ܮ|ܦ|ܦ ∗ ܴ݅|ܷ|ܮ ∗ ܦ ܴ݁|ܩ|ܦ ∗ ܷ ܴ݅|ܮ|ܷ ∗ ∗ ܦ ܴ݁|ܩ|ܦ ∗ ∗

reasonable SO ܷ ܦ ܮ ܴ݅ ܴ݁|ܩ ∗ ܮ ܴ݅ ܦ ܴ݁|ܩ ܷ * ܦ?ܴ݅ ܷ ܴ݅|ܮ ܴ݁|ܩ|ܦ ∗ ܴ݅? ܦ ܴ݁|ܩ ܷ ܴ݅|ܮ ∗ ܦ ܴ݁|ܩ ∗ ?Σ\ܮ|ܴ݅ Σ\ܩ|ܴ݁
Prefix due to init-pos. Prefix due to init-pos.

Prefix due to init-pos. Suffix

Fig. 5. Evolution of regular expression grammars depending on SO-level and constraints

The grammar γa for the arbitrary SO with no constraints

consists of any combination of skills contained in the alphabet

Σ:

γf : (U |D|L|Ri|G|Re)∗

The next step consists in modeling the formalized con-

straints in regular expressions. The first formalized con-

straint Down ≺ ¬(Left|Right) ≺ Up is transformed

to D(U |D|G|Re)∗U with (U |D|G|Re)∗ corresponding to

Σ\L|Ri. The second formalized constraint Up ≺ ¬Release ≺
Down is transformed to U(U |D|L|Ri)∗U with (U |D|L|Ri)∗

corresponding to Σ \G|Re. The critical skill-call for the first

constraint is Down and for the second constraint the critical

skill-call is Up. The resulting grammars γv1 and γv2 for the

valid SO implicating the first and second constraints are:

γv1 : (U |D(U |D|G|Re)∗U |L|Ri|G|Re)∗

γv2 : (U(U |D|L|Ri)∗D|D|L|Ri|G|Re)∗

Applying the intended skill sequence

Ri,D,G,U, L,D,Re, U on γv1 is accepted, whereby

the skill sequence L,U,D,G,Ri,Re is rejected.

The grammars γr for the reasonable SO are depicted in the

last row of Figure 5. The derivation of grammar γr from γv is

system- and application-specific and underlies no recognizable

methodology. The concatenation of two grammars emerging

from different constraints into one grammar depends on the

initial position and can be solved programmatically.

VI. CONCLUSION

In this paper, we presented an approach to model and

verify behavioral constraints for automation systems. The

motivation behind this is that manufacturing systems are

becoming more complex and foreseeing unintended behavior

is becoming difficult. In order to avoid physical crashes of

an automation system, the manufacturing system has to be

monitored. This is achieved by explicitly modeling constraints

in finite state machines or regular expressions which are

describing the manufacturing system’s intended behavior. The

resulting advantages consist of checking at run-time, checking

before downloading a new application, coordinating access

to common resources, and supporting local and spatially

distributed component systems. The approach is applicable

in a functional environment and proceeds independently from

existing programming sequences. Furthermore, the approach

was evaluated on an application example. The results show that

the system was able to prevent unintended behavior depending

on the level of severeness. In future work, the approach

will be extended for finding the strongest level of severeness

methodically. Furthermore, the merge of multiple grammars

describing different constraints into one grammar needs to be

analyzed by means of existing approaches.

REFERENCES

[1] H. Kühnle, “Post mass production paradigm trajectories,” Journal of
Manufacturing Technology Management, vol. 18, pp. 1022–1037, 2007.

[2] G. Da Silveira, D. Borenstein, and F. S. Fogliatto, “Mass customization:
Literature review and research directions,” International journal of
production economics, vol. 72, no. 1, pp. 1–13, 2001.

[3] T. Helbig, S. Henning, and J. Hoos, “Efficient engineering in special
purpose machinery through automated control code synthesis based on a
functional categorisation,” Machine learning for cyber physical systems,
2015.

[4] B. Brandenbourger, M. Vathoopan, and A. Zoitl, “Behavior Modeling
of Automation Components using cross-domain Interdependencies,” Int.
Conf. Emerging Technologies & Factory Automation (ETFA), 2016.

[5] H.-M. Hanisch and S. Kowalewski, “Algebraic Synthesis and Verifica-
tion of Discrete Supervisory Controllers for Forbidden Path Specifica-
tions,” 4th international Conference on Computer Integrated Manufac-
turing and Automation Technology (CIMAT), 1994.

[6] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, “Closed-Loop
Modeling in Future Automation System Engineering and Validation,”
Int. Conf. on Systems, Man, and Cybernetics (SMC), vol. 39, no. 1, pp.
17–28, 2008.

[7] S. Preusse and H.-M. Hanisch, “Specification and verification of tech-
nical plant behavior with symbolic timing diagrams,” 3rd international
Design and Test Workshop, 2008.

[8] B. Brandenbourger, M. Vathoopan, and A. Zoitl, “Engineering of Au-
tomation Systems using a Metamodel implemented in AutomationML,”
Int. Conf. on Industrial Informatics (INDIN), 2016.

[9] P. J. Ramadge and W. M. Wonham, “Supervisory Control of a Class
of Discrete Event Processes,” Society for Industrial and Applied Math-
ematics, 1987.

[10] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decr, R. Smits, E. Aertbelin,
K. Claes, and H. Bruyninckx, “Constraint-based task specification and
estimation for sensor-based robot systems in the presence of geometric
uncertainty,” The International Journal of Robotics Research, vol. 26,
no. 5, pp. 433–455, 2007.

[11] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” Conference on Decision
and Control at the 28th Chinese Control Conference (CDC/CCC), 2009.

[12] J. O. Blech and H. Schmidt, “Towards Modeling and Checking the Spa-
tial and Interaction Behavior of Widely Distributed Systems,” Improving
Systems and Software Engineering Conference (ISSEC), 2013.

[13] D. Witsch and B. Vogel-Heuser, “PLC-Statecharts: An Approach to
Integrate UML-Statecharts in Open-Loop Control Engineering Aspects
on Behavioral Semantics and Model-Checking,” Int. Federation of
Automatec Control (IFAC), vol. 44, no. 1, pp. 7866–7872, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

