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ABSTRACT

In this work, we present an approach to support penetration
tests by combining safety and security analyses to enhance
automotive security testing. Our approach includes a
new way to combine safety and threat analyses to derive
possible test cases. We reuse outcomes of a performed
safety analysis as the input for a threat analysis. We show
systematically how to derive test cases and we present the
applicability of our approach by deriving and performing
test cases for a penetration test of an automotive Electronic
Control Unit (ECU). Therefore, we selected an airbag
control unit due to its safety-critical functionality. During
the penetration test, the selected control unit was installed
on a test bench and we were able to successfully exploit a
discovered vulnerability, causing the detonation of airbags.

INTRODUCTION

Modern automobiles host more than 50 ECUs, which
contain a total of up to 100 million code lines to control
safety-critical functionality [1]. In total, this fact and the
close interconnectivity of automotive ECUs open up new
possibilities to attack these systems. Many of these attacks
affect the safe operation of the vehicle which can lead to
injuries of the passengers [2][3][4][5]. To decrease the
possibility of such scenarios, security has to be an integral
part of the development lifecycle. In order to achieve
the highest level of protection against security attacks,
the Security by Design concept represents a promising
attempt. Therefore, security tasks have to be embedded
in early phases of the development lifecycle. One security-
related task is the Threat Analysis and Risk Assessment
(TARA). It identifies and prioritizes possible threats

against the target which can lead to security incidents.
Thus, countermeasures or design changes can be applied
before the first line of code is written. In contrast, a
validation of implemented security measures and a review
of further vulnerabilities after an implementation should
be performed. This can be done with a security testing
of the system including internal and/or external testing.
In particular, internal security testing is typically executed
during the product development. On the other hand,
external security tests, which are usually performed after
product development, are called penetration tests if they are
performed from the perspective of an attacker (see Figure 1,
right path).

Security testing

Internal security testing External security testing

Black-box approachWhite-box approach

typically 

performed by

typically 

performed by

Figure 1: Classification of security testing and the
supposed knowledge level

Internal security testing corresponds to a white-box
approach having a great amount of information, e.g.
development documents, source code, etc. Therefore, this
testing scenario is best suited for validating of implemented
security measures. To determine the resistance level of
a system against hackers, penetration testing is the way
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to go [6]. Unfortunately, setting up a penetration test is
not an easy task. Especially, if less knowledge of the
device under test is available. Due to the fact that the
tester has no detailed knowledge of the implementation but
only a functional description of the system, the test can be
described as a black-box test [7]. Hence, we consider it as
reasonable to reuse the results of a threat modeling process
to reduce the effort for security testing.

As safety violations can also be caused by security
problems, it is important to analyse Hazard Analysis and
Risk Assessment (HARA) results in terms of security.
Beyond that, safety analyses performed with HARAs
are a fixed part in the automotive sector. Results of
these analyses contain valuable knowledge which can be
used for threat modeling and therefore for penetration
testing as well. Unfortunately, no approach exists which
reuses HARA and TARA results for penetration testing.
Consequently, we want to show the first step towards
an approach that reuses results of both analysis types
for decreasing the security testing effort. Moreover, we
evaluate our approach by applying it for a safety critical
ECU. In detail, the contributions of this paper are the
following:

Problem: As penetration tests are mainly driven by tester-
experience, an integration of threat analyses may increase
the testing quality due to a complementary concept for test
case generation.
Solution: We provide a methodology for test case
generation with an adapted threat and risk analysis. To be
more specific, we show the necessary steps for generating
test cases using attack trees and how we embed these steps
in a well-known security testing methodology. To do this,
we transform identified threats into attack trees and derive
test cases from each tree branch.
Contribution: Besides the derivation of test cases using
attack trees, we also show how the results of a safety
analysis can be reused. This will be done by the
combination of a given Hazard analysis with a Threat
and Risk analysis. In particular, we show how identified
hazards can be used to identify threats that could
compromise vehicle safety. In addition, we evaluated our
methodology steps with a penetration test of an Airbag-
ECU. As a result of our research, we have discovered
a vulnerability that can cause life-threatening injuries to
vehicle occupants and appears to exist across several
manufacturers.

The paper is structured as follows: In the
Section Background, we give a short overview of security
testing concepts used in Information Technology (IT) and
their suitability for the automotive domain. Furthermore,
we summarize threat analysis methodologies which are
known to be applicable for automotive systems. In the
Section Approach, we show how to integrate threat
modeling results for security testing. To show the practical

applicability of our approach we provide an example in
the Section Experimental Evaluation. Additionally,
we suggest possible countermeasures to mitigate the
discovered vulnerability, and conclude with an outlook in
the Section Conclusion and Future Work.

BACKGROUND

SECURITY TESTING METHODOLOGIES A
traditional approach in IT to assess the security of a
system is the application of a penetration test. In this
type of testing, the security engineers do not have any
detailed information about the target system. The objective
of penetration testing is to analyse the security level
of a system, network or application from an attacker’s
perspective. This also implicates to use general public
tools and methods which are available to a potential
hacker. The primary goal of penetration testing is to
find vulnerabilities that are not found during internal
security testing and could be exploited by an adversary.
Furthermore, penetration testing is usually a mandatory
part of a security testing. The execution of penetration
tests is normally at a late stage of the product development
or afterwards. If any security issues are uncovered at this
point, the costs and efforts of software patches are high in
contrast to early development stages. Thus, a combination
of white-box testing during the product development and
penetration testing after the product release is reasonable.

For clarification, in this paper we don’t want to propose
a completely new penetration testing methodology, but
rather an approach to identify feasible test cases for
penetration testing by using threat modeling techniques.
Therefore, we have analysed publicly available security
testing methodologies, which are commonly applied in the
traditional IT. In contrast, there are still no guidelines
explicitly for the automotive sector. The Open Source
Security Testing Methodology Manual (OSSTMM) [8]
includes fundamentals in security risks, metrics, and
disclosure as well as planning and execution of different
test types. However, there is no part with detailed
information with a focus on penetration testing. The
special publication 800-115 of National Institute of
Standards and Technology (NIST) [9] gives a good
overview and practical recommendations for security
testing similar to OSSTMM without the intention to
represent a comprehensive security testing guideline.
In contrast to OSSTMM, the Information Systems
Security Assessment Framework (ISSAF) [10] is very
comprehensive and presents strategies, assessments, and
check-lists. Beyond that, ISSAF includes also a penetration
testing methodology and defines different steps for
performing these type of test but does not integrate a
threat analysis in its steps. In addition, the structure as
a framework allows an integration in the business life
cycle [11]. Furthermore, the Penetration Testing Execution
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Standard (PTES) [12] is a technical guideline exclusively
for penetration testing. Similar to ISSAF, it contains
different steps to perform a comprehensive test procedure
and explains each step in detail with recommendations,
which software tools can be used. Furthermore, the PTES
recommends to perform a threat modeling step as the only
method. Unfortunately, the standard does not suggest a
specific model but rather which consistent terms should be
supported by the used model. The guideline presented by
the Open Web Application Security Project (OWASP) [13]
can be seen as a special field for testing the security of web
applications.

In summary, the analysed security testing methodologies
have different characteristics relating to penetration testing.
Only the PTES guideline supports the approach of threat
modeling, which is fundamental part of our approach to
derive test cases. As we mentioned before, PTES does
not recommend a specific methodology for this step. For
this reason, we depict differences between existing threat
modeling methodologies in the next section relating to
their applicability for Cyber-Physical-Systems (CPS) due
to their special relationship between safety and security.

THREAT MODELING The concept of threat modeling
is an integral part of our overall methodology and
therefore we will briefly describe the existing methods
for threat modeling of automotive systems in the
following. We want to start with approaches explicitly
recommended for the automotive sector and listed by
SAE in its Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems (SAE J3061 [14]). The guidebook
suggests to apply the Operationally Critical Threat, Asset,
and Vulnerability Evaluation (OCTAVE) approach, the
HEAling Vulnerabilities to ENhance Software Security and
Safety (HEAVENS) [15] methodology, and the E-Safety
Vehicle Intrusion Protected Applications (EVITA) [16][17]
approach. OCTAVE was developed for enterprise security
risk assessment. Therefore, it does not directly address
specific attributes of automotive systems which makes
it less meaningful to apply in the automotive domain.
The HEAVENS methodology is focused on threats of the
Microsoft Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, Elevation of privilege
(STRIDE) classification model [18][19]. Due to the fact
that the scope of STRIDE is mainly on security goals,
it depends on the security engineer to decide whether a
threat violates the safety of a vehicle or not. This fact
implies that security engineers have to be familiar with
safety to decide if a threat can violate a safety goal. Lastly,
EVITA uses dark-side scenarios as unintended use cases
to identify possible security threats. The methodology is
mainly focused on vehicle-to-vehicle connections and less
on in-vehicular networks. The threat identification depends
highly on the set of use cases (dark-side scenarios) whereas
safety-related use cases are less in focus. As a result,

threats with impact on safety can be unconsidered by using
this approach. Furthermore, the classification of safety and
non-safety threats is different. Hence, this can lead to an
unbalanced threat assessment [20].

Besides the listed threat modeling methodologies in the
Society of Automotive Engineers (SAE) guidebook, we
want to mention the Hybrid Threat Modeling Method
(hTMM) approach developed by a CERT division [21].
The approach combines Security Cards [22] and the
persona non grata (PnG) for threat and risk identification.
Especially, the provision of so-called Security Cards to
guide the analyst through the brainstorming phase should
be mentioned. Besides its benefit to support the analyst
in the brainstorming phase, the approach does not directly
focus on identification of threats that can violate the safety
of the item under analysis. In conclusion, the approach is
not developed to import results of a pre-performed safety
analysis.

Threat Modeling Including Safety We were particularly
interested in identifying test cases that can violate the
safety of the vehicle. Therefore, a threat modeling
methodology should be able to identify this particular
threat type. To obtain a considerable number of candidates
for such threat modeling methodologies, we conducted a
literature survey and identified additional threat analysis
methodologies which were not explicitly mentioned in
the SAE guidebook. In particular, we additionally found
the Security-aware Hazard and Risk Analysis Method
(SAHARA) [23][24] and the Failure Mode Vulnerabilities
and Effect Analysis (FMVEA) [25][26]. We decided
to assign the identified methodologies to the classes
of safety and security depending on their focus and
according to our point of view. The resulting classification
contains exclusive methods for HARA and TARA as
well as a categorization for combined methodologies like
HEAVENS or CORAS [27] shown in Figure 2.

HARA TARA

Safety Security

OCTAVE, STRIDE, 
hTMM

HEAVENS, EVITA, SAHARA, 
FMVEA,...HAZOP, FMEA, 

FTA,...

CORAS, STPA-SafeSec, 
SGM

Figure 2: Classification of HARA and TARA methods
which were selected from the literature survey
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Table 1: Threat analysis methodologies with regard to safety, mentioned in the automotive context

Criteria SAHARA FMVEA EVITA HEAVENS
Scope of
application

Automotive systems Cyber-Physical-Systems
(CPS)

Automotive systems Automotive systems

Threat modeling
approach

STRIDE STRIDE Dark-side scenarios
with attack trees

STRIDE

Type of safety &
security linking

Hazards and threats are
identified and security
threats with safety
consequences are passed on
to safety analysts.

Failure modes and threats
are detected in parallel
without any exchange
between the both domains.

Only risk assessment
of threats in terms of
safety.

Only risk assessment
of threats in terms of
safety.

HARA is a subset in the safety set shown in Figure 2
illustrating methods which are exclusively used for safety
analyses. In particular, these are the Hazard and
Operability Study (HAZOP), the Failure Mode and Effects
Analysis (FMEA) or the Fault Tree Analysis (FTA). On the
other hand, TARA methods are a subset of the security set.
We made a distinction between threat modeling methods
that do not address safety (OCTAVE, STRIDE and hTMM)
and methodologies that address safety in specific parts,
e.g. determining severity values for threats violating safety.
These are in particular: HEAVENS, EVITA, SAHARA
and FMVEA. Besides the distinction, if a proposed threat
modeling methodology addresses safety, it was of interest
at which point this is done. Therefore, we evaluated the
threat modeling methodologies listed in Figure 2 with the
criteria in Table 1. It was interesting to know, on which
domain the proposed methods are focussed, the technique
for identifying threats and especially if the methodology
provides a link between safety and security.

Our analysis has shown that EVITA and HEAVENS only
address safety after security threats have been identified.
This is done by a safety risk value if the threat influences
safety. This means that these methodologies do not
explicitly focus on the threat identification regarding
safety. Furthermore, both methodologies do not integrate
or claim a safety analysis in their description. However,
SAHARA and FMVEA have a stronger focus on safety.
Both methodologies determine risk values for security
threats which have a safety impact. Besides this, SAHARA
claims to perform a HARA as well as a TARA in a parallel
manner. In addition, the methodology examines if the
identified threats can violate the safety of the vehicle and
forwards identified threats to safety analysts who rate the
safety impact [24]. Unfortunately, neither SAHARA nor
FMVEA reuse identified failures or hazards of a safety
analysis as an input for their threat analysis. This implies
that the outcomes of a performed safety analysis are not
used for threat identification. Thus, it depends on the
security engineer to decide if a threat is safety-critical
or not. As a result, security engineers must have safety
knowledge.

Methodologies from other domains like Information and
Communication Technology (ICT) provide the capability
to reuse results of a perform safety analysis. A holistic
overview of such approaches is given by the researchers
Friedberg et al. [28]. They provide a survey of research
papers for combined safety and security analyses which
can be selected for CPSs. Friedberg et al. list different
approaches classified in two categories: generic and
model-based approaches. The latter are subdivided into
graphical and non-graphical approaches. As part of the
evaluated methods we want to mention the CORAS [27]
approach and STPA-sec [29] with the extension STPA-
SafeSec [30]. These methodologies suggest performing
a hazard analysis followed by a security threat analysis.
This makes it possible to include and reuse results
of safety analyses. Furthermore, the methods can be
applied in an early development phase which offers
advantages for early design decisions. For the analysis,
CORAS uses UML models and STPA-SafeSec use control
loops with component layer diagrams to identify security
constraints [30]. Both approaches meet most of our
demands for a combined safety and security method.
But they are rather complex and not easy to integrate
into existent safety analyses due to the fact that they
require specific method steps. As a result, we decided to
use another approach for a combined safety and security
analysis that can be easily integrated into existing safety
analyses while also achieving a link between safety and
security. The method is called Security Guide-word
Method (SGM) and will be described in the next section.

Threat Modeling Using the Security Guide-word Method
In this section, we give an overview of our previous
presented approach [31] for combining safety and security
analyses by reason of reusing this method as a component
for our security testing approach. The approach reuses
identified hazards as an input for the threat analysis
without changing the typical safety analysis steps (see
Figure 4) and can be easily integrated into established
safety and security processes presented in Figure 3. We
recommend our method to safety engineers as it enables
them to identify threats that can impair vehicle safety.
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analysis scope
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(e.g. HAZOP, FMEA,...)
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(SGM)
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analysis scope
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(e.g. use cases, 

brainstorming,...)

Identification of threats

(e.g. ATA, DFD & STRIDE, ...)
Risk assessment

Safety teamSafety team

Security teamSecurity team

Hazard Analysis and Risk 

Assessment (HARA)

Threat Analysis and Risk 

Assessment (TARA)

Identified 

threats

Severity value 

of identified 

threats

Conventional way

Proposed extension

Figure 3: Common steps for safety and security analyses with the SGM extension to reuse safety results

For this purpose, we extend the typical safety analysis
process with our approach as an intermediate step, which
is shown in Figure 3 by the dashed box. The analyst is
guided through the brainstorming phase using guide-words
and a template (see Table 2) to achieve a structured threat
identification. The use of guide-words was originally
introduced by HAZOP for functional safety analysis and in
compliance with ISO 26262. HAZOP was then extended
by the researchers Rune et al. [32][33] for security,
whereupon we extended the approach to reuse the results
of a safety analysis to identify threats. In particular, we
derive threats from the identified hazards violating the
safety of the vehicle. We call this method the SGM and
we demonstrated the applicability of the method by means
of an experimental evaluation with safety and security
engineers [31].

We want to point out that SGM is actually only focused on
security threats which can violate safety goals. We consider
this as reasonable due to the negative consequences that
safety violations can cause. Furthermore, manufacturers
are committed to performing a safety analysis and therefore
they should look for security threats which influence safety
goals. Currently, assets like confidentiality or repudiation
are not directly addressed and therefore they should be
addressed by using one of the listed threat methodologies
above, e.g. STRIDE or hTMM.

To illustrate the embedding of our SGM method in the
established process of a safety analysis according to
ISO 26262, the individual steps are shown in Figure 4
whereas Step 5 presents an additional step based on our
SGM approach. The method receives hazards as input,
which were identified in the steps before. To systematically
derive threats that can violate safety goals, we use each
identified hazard with a set of guide-words, done as in
HAZOP. For this, we provide a template which supports
the structured threat analysis, shown in Table 2. After
finishing this step, the safety analysis continues with

2. Instantiate fault-
type guide words

1. Provide an item 
definition

3. Situation 
classification

4. Identification of 
hazardous situations

5. Instantiate security guide-words 
and identify protection goals

6. Hazard 
classification

7. Threat classification using severity 
value of related hazards

Context diagram with 
data flow

Set of fault-type guide-
words Situation database Hazard analysis profile

SGM template Classification based on 
ISO 26262

Risk assessment template 

Figure 4: General safety analysis steps according to
ISO 26262 complemented with the steps for the SGM [31]
which is represented by the dashed boxes.

determining risk values for each hazard, presented by step 6
in Figure 4. Lastly, we take over the severity values of
step 6 and use them as one parameter for determining risk
values for threats identified with SGM.

Table 2: SGM template.

Hazard
can be

triggered
by

name of
message

or
function

for
component
or system

entry
point

(1) (2) (3) (4) (5)

The template in Table 2 requires a hazard in column 1
which was identified in the safety analysis (HARA). In
column 2 one security guide-word is required from the set:
disclosure of information, disconnection of ECU, delay of
message or signal, deletion of message or signal, stopping
of ECU, triggering of (diagnostic) function, insertion of
message or signal, reset of ECU, manipulation of message
or signal and lastly manipulation of firmware.

Furthermore, in column 3 the analyst writes down the name
of the message or function which will be the objective of

5



the security incident. To obtain more information about the
identified threat, column 4 and 5 are implemented in the
template. Column 4 represents the name of the component
or system that will potentially be under attack. The last
column in the given template records the point of entry,
where the attack could potentially start. As an example, for
the manipulation of a message transmitted over Controller
Area Network (CAN), the attacker needs access to CAN.
Hence, the analyst would write down CAN in column 5. We
consider it as reasonable that safety analysts can generate
a great contribution to threat modeling by applying SGM.
This is partly explained by the fact that safety analysts
obtained a lot of knowledge during their safety analysis that
can be reused for security, e.g. the item definition or high-
level architecture. This hypothesis seems to be confirmed
by an evaluation we performed with safety and security
engineers [31][34]. As a last step of the HARA based threat
modeling part, we suggest transferring the identified threats
to security engineers for further evaluation which can be
seen in the lower part of Figure 3.

APPROACH

As we have already explained, the suggested approach can
be used in the scenario of internal and external testing
related to Figure 1. In this work, we will explain the
steps of our approach for external testing and therefore
as a penetration testing scenario. This can be explained
by the fact that the external and black-box scenario is
typically defined for no or little knowledge about the device
under test. Consequently, this scenario represents the more
difficult scenario of both.

The main goal of our approach is to provide a guideline
for security testers and if possible to reduce the testing
effort for the security testing by reusing existing analysis
results. The steps suggested in Figure 5 are in accordance
with the PTES standard, as we consider this penetration
testing methodology as suitable for automotive systems by
including a threat modeling step exclusively. Therefore,
the upper part of Figure 5 show the original steps of PTES
and the lower part represents the steps we modified. As
with PTES, Step 1 is representing the intelligence gathering
phase, we recommend collecting as much knowledge about
the device under test as possible. Step 2 then recommends
performing a hazard and threat analysis as described in
Section Threat Modeling Using the Security Guide-
word Method, to identify security aspects which should
be tested. We would like to point out that the execution
of a HARA and TARA in Step 2 can be considered as
optional if they were already performed in an early product
development phase (internal testing scenario). In contrast,
this means that additional effort is only generated in the
external testing scenario. However, we consider this effort
to be very helpful, as it allows the tester to gain a better
understanding of the black-box device.

HARA with 

use of SGM

Threat 

modeling

Vulnerability 

analysis
Exploitation Reporting

Step 2 Step 3 Step 4 Step 5

Threat 

modeling

Vulnerability 

analysis
Exploitation Reporting

Intelligence 

gathering

Step 1

Intelligence 

gathering

PTES

Our approach

Reuse threats that were identified in a 

combined HARA and TARA.

Figure 5: Method steps for deriving test cases with hazard
and threat analyses in addition to the PTES phases

It was crucial that we did not change the original steps
of PTES but adjust them for integration of our approach.
Thus, the following sections will show how our approach
can be integrated into the phases Intelligence Gathering
and Threat Modeling of the PTES methodology. In
addition, Figure 6 shows the sequence and the required
subtasks from Step 2 out of Figure 5. The generic sequence
starts with a safety analysis and ends with the derivation of
test cases based on the threat modeling results represented
by Step 2.4.

Step 2.1:
HARA + SGM Step 2.2: TARA Step 2.3: Attack

tree generation
Step 2.4: Test
cases derivation

Functional
description

Security threats
violating safety

Additional
information

List of threats List of
test cases

Figure 6: Detailed description of Step 2 of Figure 5 which
shows the sequence for deriving test cases based on HARA
and TARA results using attack trees.

As a first step, we recommend performing a safety analysis
(HARA) with SGM shown with Step 2.1 in Figure 6.
The input is a functional description of the device under
test. As output, we receive a list of security threats which
can violate the safety of the vehicle. Based on this a
threat analysis in Step 2.2 is performed. In particular,
threats identified with SGM represent the class of threats
that can violate the safety of the vehicle. Additional
information about the device under test should be added
to this step. In particular, all relevant information gathered
in the intelligence gathering phase which will be explained
in the following.

For common threat classification, we additionally provide a
mapping between the SGM and STRIDE terminology [18]
in the Appendix. With regard to the terminology of an
unintentional event, we use the expression threat, which
can cause an attack to trigger an undesired event.

6



INTELLIGENCE GATHERING The information
gathering phase is the first and most important step of the
whole method. All further steps are based on this. The
objective of the phase is to collect as much knowledge of
the device under test as possible. Due to the fact that we
have focussed on the external test scenario in this paper,
we want to point out that this step in the internal test
scenario requires the collection and analysis of existing
development documents in regard to security. However,
in the black-box scenario, this phase involves collecting
information from public sources like product, technical
or functional descriptions. In addition to these sources of
information, international standards also provide useful
details about the test candidate for the derivation of test
cases. This applies in particular to the automotive sector
by means of the extensive standardization of electronic
components. Additionally, we consider it as reasonable to
further focus on the following points:

• Is there a high-level architecture of the device under
test available?

• Can we determine a general overview of the
communication of the device under test?

• Does the device under test provide diagnostic
functionality?

• Are there external interfaces, e.g. On-board
Diagnostics (OBD)-Port, connected with the device
under test?

Thus, it is often possible to reconstruct a high-level
architecture of the device under test. IIn particular, how
the device is embedded in bus systems and how it is
connected to actuators or other electronic components. At
first glance, this appears to be a challenge, but automotive
architectures usually differ only slightly from one to next
generation. Therefore, previous architectures can be often
reused to gather the desired information. Moreover,
we consider it as reasonable to identify how the item
communicates with its environment. Therefore, tools
which are able to record or send bus messages can be
used [35]. In addition, scanning the environment for
possible communication partners opens up the possibility
to specifically manipulate the device under test. For
example, this can be done with a port scanner [36]. Beyond
that analysing and simulating of specified communication
is an important step to get an ECU in the normal operation
mode, due to the fact that ECUs typically do not operate,
if the expected communication behaviour is not available.
Furthermore, it makes sense to check whether the ECU
possesses diagnostic functionality. If this is the case a high
probability exists that the ECU can be accessed over the
OBD-Port by sending diagnostic messages. From our point
of view, the OBD-Port is usually a good starting point for
additional information gathering.

THREAT MODELING USING HARA AND TARA In
addition to the publicly available information sources
mentioned before, the outcome of a performed threat
analysis increase the knowledge of the device under test.
Whereas in the internal testing scenario, a threat analysis is
carried out in an early stage of the product development
phase, in the external scenario it is explicitly performed
to increase the knowledge of the device that is presenting
itself as a black-box to the tester. To be more precise,
the first option results in the highest knowledge level
due to the fact that a threat analysis in an early product
development phase is done by the manufacturer with a
deep understanding of the device under test. In the
second scenario, a safety and threat analysis is exclusively
performed by the external tester to increase the knowledge
level of the device under test. Therefore, information
collected in the intelligence gathering phase is a valuable
input for the safety analysis followed by a threat analysis.
As an example, the functional description derived from
publicly available documents is a useful input.

ATTACK TREE GENERATION In Step 2.3 of Figure 6,
we perform each identified threat to create attack trees.
Dependent on the type of the selected threat modeling
method (STRIDE, attack trees, etc.), attack trees can be
taken over directly or have to be generated in this step.
In the case of creating attack trees, we want to present
a general attack tree in Figure 7. The root of the tree
represents the threat identified in Step 2.2 and each node
below represents a conceivable intermediate attack step.

Threat

Attack stage 1.1

Violating of
C/I/A/A asset

Attack stage 1.2

Attack stage 2.1

Violating of
C/I/A/A asset

Violating of
C/I/A/A asset

Figure 7: General attack tree with one root, three
intermediate nodes, and three leaf nodes. Whereby the
first two nodes have an AND conjunction and the other
nodes an OR conjunction. Leaf nodes are described with
the Confidentiality, Integrity, Availability and Authenticity
(CIA(A)) nomenclature.

The presented tree uses the logical conjunctions OR
and AND to describe the conditions which have to be
met. Whereby the conjunction AND is represented by a
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semicircle between all nodes which have to be successfully
exploited at the same time to reach the parent node. This
is obviously done with the nodes Attack Stage 1.1 and
Attack Stage 1.2 in Figure 7. The other nodes in the tree
have an OR conjunction which means only one node has
to be successfully exploited to reach the parent. By this,
the assumed feasibility of an attack can be determined
through its child nodes. Therefore, a scenario linked to
the requirements with an OR is generally easier to achieve
then an AND conjunction. We would like to emphasize that
each branch of the tree in Figure 7 ends with a leaf node.
These nodes are representing the violated information
assets related to the CIA(A) triad and will further support
the derivation of test cases which will be explained in the
next section.

DERIVATION OF TEST CASES With the results of
Step 2.3 in Figure 6, we can start to derive test cases.
Therefore, we use each branch of the created attack tree. In
particular, we follow the selected path starting in the root
element and ending in a leaf node. To be more precise,
for each attack stage we are able to specify the test case
related to the violated information assets represented by
the leaf node. As an example, we perform the left branch
of the attack tree in Figure 9. The threat Unintended
airbag deployment can be initiated with the attack vector
Triggering of function airbag deployment. Broken down
to the CIA(A) assets this is equal to a violation of the
authenticity and integrity of a diagnostic message. Based
on this information, we can derive the test case: Try
to violate the authenticity and integrity of the diagnostic
message used for airbag deployment. In this way, we use
each path in the tree and derive the corresponding test case
for each intermediate node based on its leaf node.

EXPERIMENTAL EVALUATION

We evaluated our approach by a penetration test for
a Pyrotechnic Control Unit (PCU), which controls the
pyrotechnic charges in a vehicle, e.g. airbags, battery
clamps, belt tensioners, etc. We chose this control unit due
to the fact that to this time no attack against an Airbag-ECU
was known. In addition, we have already been successful
on other ECUs by manipulating safety-relevant control
devices such as the engine-ECU or the brakes. Moreover,
we passed through each step of our approach beginning
with the intelligence gathering part followed by a threat
modeling with the outcomes of a performed HARA. The
penetration test was performed without knowledge of the
source code or the CAN communication matrix, which
reflects our mentioned division into a black-box scenario.

INTELLIGENCE GATHERING OF THE PCU As
described in the approach before, we started with the

intelligence gathering as the first phase of the penetration
testing procedure. Therefore, we read up on the operating
mode of the Airbag-ECU (also referred to as PCUs) and
how this functionality is typically implemented to get a
comprehensive understanding of PCUs. However, the
found sources were mostly from a technical and safety
point of view, lacking the discussion of integrated security
measures. From the point of view of a penetration
tester, the general structure of a PCU proved to be very
challenging to discover a vulnerability. By relying on
multiple signal sources, e.g. hard-wired sensors, integrated
sensor in the PCU itself and information acquired from bus
messages, manipulating signals able to pass a plausibility
check was considered to be very difficult. Moreover,
without the availability of the source code, the logical
conjunctions of these plausibility checks represent an
additional challenge for the tester. During the study
of International Organization for Standardization (ISO)
standards 14229 [37] and 26021 [38], it was discovered,
that some PCUs support a End-of-life (EOL) deployment
based on Unified Diagnostic Services (UDS) [37], to aid in
the recycling process of automobiles. Although standards
are not available free-of-charge, they can be bought from
the ISO in digital or printed form.

High-Level Architecture of the PCU After analysing the
publicly available information, we reconstructed the
connectivity of the target. This overview and the later
performed threat analysis helped us in identifying possible
attack vectors. As shown in Figure 8, the component is
connected to an automotive bus system via an end-to-end
connection.

Central
Gateway

Speed Sensor
ECU

PCU

Gyro Signals

Crash Signals

CAN_1 CAN_2

Diagnostic
CAN

OBD-II Port Additional Communication Line (ACL)

Figure 8: Assumed high-level architecture of device under
test

Furthermore, it shows the device under test (PCU) is
connected via CAN to the Central Gateway (CGW). There
are two different internal signal paths for communicating
with the PCU either over the CGW or directly by physical
access to the CAN_2 wires between CGW and PCU. In
addition, an external communication can be established
via the OBD-Port by using the Diagnostic CAN, which
is connected to the gateway. Furthermore, the PCU has
two additional connections, one for receiving data from
crash sensors (Crash Signals) as well as the Additional
Communication Line (ACL). The ACL is a link between
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PCU and OBD-Port. The connection is intended as an
additional communication line in besides to the CAN
communication. Manufacturers can use this additional
communication to adapt the EOL detonation process to
their needs [38]. To clarify, both connections are hard-
wired in the physical sense, but we are going to refer to the
end-to-end connections as hard-wired signals in this work.

THREAT MODELING FOR THE PCU We performed
a safety analysis for the selected device (PCU) and its
definition, shown in Figure 8. As a result, we identified
several hazards with the HAZOP approach and ranked
Unintended airbag deployment as well as Unintended
prevention of airbag deployment as the most critical
hazards. After a discussion with safety engineers, we
decided to focus on Unintended airbag deployment due to
its high probability to injure passengers. Consequently, we
applied the SGM approach as suggested in Figure 6 and
were able to identify several threats, which could probably
cause a deployment of charges. For reason of presentation,
we present only the following threats and how we used
them further.

1. Unintended airbag deployment can be triggered by
triggering of (diagnostic) function airbag deployment.

2. Unintended airbag deployment can be triggered by
manipulation of message diagnostic message.

3. Unintended airbag deployment can be triggered by
manipulation of message crash message.

The first threat describes an unauthorized activation of
a standard or diagnostic function of the PCU. For
clarification, a standard function, in our view, is a function
which is implemented in a way to run during normal
operation, e.g. triggering airbags after an accident. The
other type of function (diagnostic function) is implemented
to support technicians in workshops to solve problems
during repairs. This type of function has shown a high
probability to get exploited in the last years [39]. Besides
this, Threat 1 has a high probability to be existent in
our device under test, since almost all ECUs controlling
actuators possess functions for self-diagnostics. Besides
the unauthorized activation of a diagnostic function, it
is possible to manipulate a message which is used by a
diagnostic function. This case is represented by Threat 2
and can result in an undefined behaviour leading to
airbag detonation as well. Lastly, Threat 3 describes the
manipulation of a message which contains the information
about accident detection. For example, such messages are
typically sent by intelligent crash sensors to the Airbag-
ECU.

ATTACK TREE GENERATION FOR THE PCU As
proposed by our approach, we generate attack trees for

the identified threats. Therefore, we take the first part
of the threat as the root of our attack tree shown in
Figure 9. In particular, for Threat 1 this is Unintended
airbag deployment. Then, we use the second part of the
threat description to create the next lower level in the tree
below the root. Lastly, we define the leaves of the tree
by the information assets that are violated. To do so, we
use column 2 of Table 4, filled out with the information
assets in relation to each SGM guide-word. For Threat 1
and guide-word triggering, we take over the information
assets authenticity and integrity.

DERIVATION OF TEST CASES FOR THE PCU For
the derivation of the test cases, we used the tree shown in
Figure 9. Here the selected threat and the different attack
levels executed by an attacker can be derived. Furthermore,
the relevant information assets are identified, i.e. the
authenticity and integrity of diagnostic messages or the
integrity of environmental perception of a crash message
for the airbag system. For faking an accident situation,
we assumed the manipulation of sensor data represented
by the upper right path in the attack tree. However, this
means that all three signal sources must be manipulated
simultaneously. We assumed this preconditions as essential
due to the fact that in PCUs plausibility checks are
implemented to prevent an unintended airbag deployment
by faulty signal sources. This assumption was additionally
supported by a common practice of integrating plausibility
checks in functional safety concepts.

Consequently, we used each path in the attack tree for
the derivation of individual test cases. In particular, as a
first test case, we derived: Try to violate the authenticity
and integrity of the diagnostic message used for airbag
deployment. One example for this is the replay of a
message, which was recorded during a diagnostic session
between PCU and diagnostic tester. Performing the second
path of the tree, we derived: Try to manipulate the payload
of messages which are used in the diagnostic session. For
the manipulation of payloads, we simply tried all possible
combinations on binary level. Lastly, the third path in the
tree leads to the test case: Try to fake crash situation by
manipulating crash signals or message. As we knew that
for this case we would have to manipulate three different
signal sources, we concluded that this path should be the
most difficult one.

Regarding the question which test case should be
performed first, we ranked them by the length of each
branch in the tree and the number of information assets
to be violated. Hence, we started with the first branch in
the attack tree, followed by the second and third branch in
Figure 9.
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Unintended
airbag deployment

Triggering of
function airbag deployment

Violate authenticity and integrity of
diagnostic messages

Manipulation of
message diagnostic message

Violate integrity of
diagnostic messages

Manipulation of
message crash message

Manipulation of
message crash signals

Violate integrity of
crash signals

Manipulation of
message speed signals

Violate integrity of
speed signals

Manipulation of
message gyro signals

Violate integrity of
gyro signals

Figure 9: Attack tree for the threat "‘Unintended airbag deployment"’ using SGM nomenclature

EXPLOITING OF IDENTIFIED VULNERABILITIES
In this section, we want to show how we performed the
selected test cases in our penetration test. Due to the
length of this paper, we will show the procedure using
the threat Unintended airbag deployment can be triggered
by triggering of (diagnostic) function airbag deployment
as an example. Hereby the threat is represented by the
left branch of the attack tree in Figure 9. The related
test case for this threat is Try to violate the authenticity
and integrity of the diagnostic message used for airbag
deployment. In combination with the knowledge collected
in the intelligence gathering phase and the reference to the
EOL standard, we decided on trying to gain unauthorized
access to diagnostic based EOL functionality.

Identification of Vulnerable Vehicles In a first step, we
had to check the implementation of the EOL capability
according to the ISO standard. Therefore, a diagnostic scan
(UDS) on the test vehicles was performed. The standard
mandates that the first Airbag-ECU inside a vehicle listens
and replies to diagnostic requests (UDS) with the CAN ID
shown in Table 3. This is the so-called fixed-address and
enables us to directly identify if an Airbag-ECU (PCU) has
implemented the relevant EOL standard.

Table 3: CAN IDs for communication with fixed-address
PCU regarding the airbag standard [38]

11 bit CAN ID 29 bit CAN ID
Request 0x7F1 0x18DA53F1
Response 0x7F9 0x18DAF153

In the case that a vehicle contains more than one airbag
unit, the CAN IDs of the other units can be requested
via a diagnostic service reached from the first Airbag-
ECU (fixed-address PCU). If a PCU does not respond to
the sent messages, it can be assumed directly that the EOL
standard has not been implemented.

Test Bench for Penetration Testing After the EOL
functionality in a vehicle was discovered, we purchased
the built-in PCU as a replacement part and developed a test
bench. We did not want to launch a penetration test on a
real vehicle, as unintentional deployment of airbags can be
very dangerous. The test bench is shown in Figure 10.

PCU
CAN

Oscilloscope

Power Supply

USB2CAN

µC detecting
deployment

USB1

USB2

Charges

Control
12V

Testbench

Attacker

*Linux machine
running

attack script

PC *

Figure 10: Schematic layout of the developed testbench

The setup consists the PCU, which is connected to a
Linux machine via a USB-to-CAN adapter. The Linux
machine runs the scripts to perform the penetration test
and was additionally used for documentation purposes.
Furthermore, we connected a microcontroller (interrupt
based) and an oscilloscope to all outputs pins of the PCU
to detect the voltage pulse which triggers the charges
to detonate. This setup enabled us an independent and
automatic execution of test cases without the need for a
constant supervision.

Exploitation For our penetration test, we performed the
above-mentioned test case. In particular, an unauthorized
activation of the diagnostic functionality for the end of
life detonation. To do so, we used the information given
by the EOL standard, which describes how a tool, called
Pyrotechnic Device Deployment Tool (PDT), must be
implemented to allow recycling companies the deployment
of pyrotechnic charges inside of compatible vehicles. As
the standard describes deployment via CAN only and other
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methods including an additional wired connection (ACL),
a target without that additional connection was selected.

Our way to exploit the selected PCU is described by seven
steps and is shown in Figure 11. The steps are based on
the deployment of airbags via UDS which can be extracted
from the ISO 26021 standard.

Read deployment method version

Read number of PCUs

Read address info of PCUs

Read VIN (optional)

Write documentation (optional)

Read Loop table of PCU

Initiate SafetySystemDiagnosticSession

Enable SecurityAccess

Execute SPL

Device scrapping

End PCU

Next PCU

Next device

1

2

3

4

5

6

7

Figure 11: The steps performed during the penetration
test, based on the flowchart according to the ISO standard
26021 [38]

• In Step 1, we used the Read Data By Identifier service
to retrieve information from the target. This provided
us with valuable information, e.g. the amount of PCUs
inside the vehicle. It shall be noted, that none of the
vehicles tested during the research phase was using
more than one PCU.

• In Step 2, we would have been able to use the
Write Data By Identifier service to store information,

e.g. the date of deployment inside the PCU or
data about the individual performing the recycling
deployment. With our penetration tests simulating a
malicious attack, we decided to not use this function,
as it is highly unlikely that someone would want to
leave intentional traces of a malicious deployment.
Moreover, this step proved to be unnecessary for the
execution of the next steps.

• In Step 3, we used the Read Data By Identifier service
in the same way as described in Step 1. However, the
response to this request was usually the longest, as it
does not only include the type of all loops but their
current status as well. Besides helping us in setting
up the attack this enabled us to gather additional
information during the whole experiment, as we could
determine what changes to the test-bench made the
internal status codes switch.

• Step 4, was our first challenge, as we had to use
the Diagnostic Session Control service to unlock
enhanced diagnostic functionality by switching into
a Safety System Diagnostic Session. The target
requires certain conditions to be met, in order to
allow switching into this diagnostic session. These
conditions were not immediately clear. While certain
Negative Response Codes (NRCs) [37] are helpful,
e.g. RPM too high, it was observed that most of
the time PCUs used the NRC conditions not correct,
leaving us with no hint what may have caused the
rejection of the request. By changing the physical
signals and bus simulation playback according to the
NRC combined with scenarios that made sense for the
vehicle state during a recycling deployment we found
working boundary conditions. Based on those we
were able to further modify the boundary conditions
to find the most dangerous, although working,
combination of vehicle state values. Contrary to the
Default Diagnostic Session, this session requires the
cyclic transmission of a Diagnostic Tester Present
message in order to prevent a timeout.

• In Step 5, the Security Access service protected
the access to specific functions. To ensure that
a diagnostic tester is authorized to access these
functions, it uses a challenge-response procedure.
Because we had no knowledge of the used
algorithm we acquired multiple seeds for analysis
and implemented the possibility to enter the key
by hand or with an automatic calculation. After
determining the correct algorithm, the calculation was
implemented in our tool to automate the attack as
much as possible.

• In Step 6, we were able to use the Routine Control
service to execute the Scrapping Program Module
Loader (SPL). The SPL makes the Scrapping
Program Module (SPM) executable by converting it
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in executable code and moving it into the PCU’s
RAM. Without these two steps a deployment using
this attack vector is not possible. After successfully
performing these preparations we used the Routine
Control service for the third time to deploy a specific
charge. This specific charge is selected via sending
the loop ID in the 5th byte of the Routine Control
message. In case more than one pyrotechnic charge
is available for deployment, the message can be sent
again with the new loop ID in place. During our
experiment, we decided to deploy a single loop and
monitor the PCU’s output and internal status values.

• In Step 7, we ended the scrapping of attached charges
by using the EcuReset service to hardreset the PCU.
In this case, performing a hardreset power cycled the
PCU, leading to the loss of data stored inside the
Random-access Memory (RAM). Thus, stopping the
ability to deploy charges, as the necessary code is only
executable after performing the required conversion
steps in the on-state as described in Step 6.

PENETRATION TEST RESULTS Related to Step 5
in Figure 5 we reported the vulnerabilities, which were
discovered during the penetration test. We discovered
issues exclusively based on the software implementation,
e.g. the weak security access and we discovered issues
where the weakness consists of an unused combination of
hard- and software.

Vulnerability in Security Access With the Security
Access service having a history of being exploited,
this access was assumed to possess a vulnerability. In
particular, the algorithms analysed so far violate the
Kerckhoff’s Principle [40] by using the algorithm as secret
instead of the key. In this case, we analysed multiple
seeds to check for patterns and the overall amount of
different seeds provided by the target. Here, the given
target provided new seeds for different requests and after
the target has been power cycled.

While studying the EOL standard, we discovered the
description of the implementation for the Security Access
service to protect against unauthorized deployment. This
is followed by an example demonstrating the exchange
of seed and key. In this example, a 2-byte seed is
shown, where the value in the most significant byte is the
version number of the implemented standard. The least
significant byte is a random value. For the calculation of
the corresponding key, i.e., the secret, one’s complement
of the seed is used. Standards usually provide an example
of the process and some suggestions for an algorithm, e.g.
the UDS standard [37] clearly states that the example in its
Security Access section is just one way of implementing the
secret.

Sending a key calculated by one’s complement of the
supplied seed, the authentication attempt proved to be
successful and unlocked the target. However, in our
practical evaluation, we found that this given example in
the standard is used in a PCU series unit in-field which
contradicts the fact that in the given challenge-response
approach the algorithm should be secret. As this algorithm
is simple, an attacker can easily check if the given example
is implemented. Furthermore, he is also able to easily
compromise the PCU by providing the key to the PCU after
the seed is sent. Besides using this simple algorithm for
the calculation of the key, the length is extremely short and
not even used to its full capabilities. By using the version
number of the standard in the most significant byte, only
256 different seeds can be provided by the target as only the
least significant byte is changing. This makes it even more
vulnerable for exploitation, e.g. by a brute force attack.

To verify the exploitation of this vulnerability we used
the test bench in Figure 10 for the selected target and
executed all the necessary steps according to the EOL
standard. To ensure the functionality of the target, the
pyrotechnic charges were simulated by attaching resistors
to the corresponding pins on the connector of the target.
To enable the EOL functionality CAN traffic was replayed,
consisting of only one message including a vehicle speed
of zero. This CAN bus only included the target and a CAN
transceiver sending the diagnostic messages and playing
back the aforementioned vehicle speed message. The
exploitation was successfully validated by an oscilloscope
displaying the firing impulse. The related Common
Vulnerabilities and Exposures (CVE)-ID is listed under
CVE-2017-14937 [41]. In addition, a module for the
Metasploit Hardware Bridge was developed in cooperation
with the security researcher Craig Smith [42]. The module
can test for the presence of this vulnerability in a vehicle
without the possibility of actually deploy the charges [43].

Lack of Plausibility Checks The observed PCU with the
given functionality has access to information from hard-
wired signal sources and bus messages. However, it
does not use all of them to derive if the current state
of the vehicle is correct. In fact, it only required one
CAN message, containing the vehicle speed, and physical
requirements to enable deployment on the test bench used
for this work. The physical requirements were connected
pyrotechnic charges, in our case the substitution of those
by appropriate resistors, and the ignition beeing turned
on or the engine running (if installed in a real vehicle).
Further attached hard-wired signals like seat occupancy
were present on the connector of our target but not used.

Combined with the fast and highly automated procedure
of the attack, this leads to the possibility of malicious
deployment while the engine is running and people reside
in the car, e.g. while waiting at a stoplight. This
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should be seen as a real threat, as the remote exploitation
of passenger vehicles, specifically getting access to the
CAN bus via remote connections has been demonstrated
before [44][45]. Besides, it is conceivable that hackers
distribute malicious OBD-Dongles on sales platforms
on the Internet. Furthermore, OBD-Dongles sold by
manufactures can also give the required access to the
internal vehicle network. In a worst-case scenario, this
could lead to remote access [46]. Both options could lead
to a scaled attack on different types of cars from several
manufactures as the vulnerability is part of an international
standard.

COUNTERMEASURES In general, software should be
designed from the ground up as secure as possible by
applying Security by Design during the development
process. There are several security principles, which
software architects should consider. The following
countermeasures are only examples for our observed target
based on the mentioned principles.

Selection of Suitable Technologies Documented
exploitation of passenger vehicles was achieved in
multiple cases by sending or replaying CAN messages
on the target’s bus. CAN can be seen as a bus system
not designed with security issues in mind. Especially
the lack of authentication of message sources is one
of the main problems of CAN. By using cryptographic
authentication methods coupled with integrity protection
and a freshness value, this problem can be mitigated. An
example of this is an Keyed-Hash Message Authentication
Code (HMAC) of the transmitted message, including a
freshness value to prevent replay attacks. In addition,
techniques such as threat modeling [18][31] can provide
valuable information to select specific security measures
for implementation. Furthermore, ACL’s bidirectional
communication capability [47] provides the ability to add
an authentication process using a recognized method such
as digital certificates. Moreover, the mandatory use of an
ACL line on the Airbag-ECU as an additional plausibility
check could have prevented exploitation by a single CAN
message.

Hard-wired Plausibility Checks The connector of our
target was designed to accommodate over 100 pins.
Although the presence of pins depends on the exact model
the target is installed in, this high number is explained by
the presence of physical signals being directly connected
to the target. Besides the obvious need for hard-wired
connections, e.g. the connection to the pyrotechnic
charges, it was discovered that signals such as seatbelt
status and seat occupancy were connected as well. While
this does not exclude the possibility of information being
transmitted over a bus system as well, this would allow for

plausibility checks based on sources that are not easy to be
tampered [48].

Usage of Cryptography When developers want to design
a new security feature, they should follow the Kerckhoff’s
Principle [40]. The principle explicitly describes
that cryptosystems shouldn’t be secure due to hidden
details about how the algorithm works (security by
obscurity). Moreover, the whole secret should be based
on the confidentiality of the used key. The past has
already shown multiple times that mechanisms which
disregard the mentioned principle are often broken as
soon as the algorithm has been reverse-engineered [49].
Our investigation has also confirmed the violation of
the mentioned principle by analysing the sent seed.
A first approach to fix the existing issue could be
an additional security layer which ensures a correct
authentication. However, the best solution to the
problem is to use generally recommended cryptographic
algorithms such as the Advanced Encryption Standard
(AES) [50]. The AUTomotive Open System ARchitecture
(AUTOSAR) members have already recognized the
necessity of the mentioned security goals for future
on-board communication. For this reason, they have
standardized the SecOC module [51], which includes
authentication mechanisms on the level of Protocol Data
Units (PDUs). The specification does not define a specific
method for creating a Message Authentication Code
(MAC), but rather recommends standardized cryptographic
algorithms and defines the payload of a secured PDU
with a freshness value and an authenticator for protecting
against replay attacks and unauthorized manipulation of the
message.

Hardening Against Brute-Force Attacks The use of
Negative Response Codes (NRCs), such as the exceeded
number of attempts and required time delay not expired, as
described in the UDS standard could be used to slow down
brute-force attempts. While the former would require
a power cycle of the target to continue the brute-force
attempt, the latter would slow the approach down. To
counter the use of scripted power cycling of the target
in rapid succession, the target could require a certain
time delay after being powered on, before enabling the
diagnostic capability. The length of the seed and key
could be increased to harden the target against brute-force
attempts. As mentioned before the length of 2 bytes
leads to 65536 possible keys per seed. By using the most
significant byte for the version number of the implemented
ISO standard, the most significant byte is fixed in every
seed. Thus, by only changing the values of the least
significant byte, only 256 different seeds can be supplied
by the target after a request, although the seed is 16 bits
long. Consequently, this reduces the number of maximum
tries to unlock the Security Access, as the same seeds occur
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more frequently, which enables a faster iteration over the
possible keys. Besides this problem, we recommend to
increase the key length significantly. In combination with
a suitable algorithm such as AES, a key length of 128 bits
is recommended [52][53].

Authorization Mechanisms Our own research results
regarding the airbag vulnerability have shown again that an
unlocked Security Access has a high potential for a safety
critical impact. Moreover, this type of security mechanism
ensures only the authentication. Compared with network
systems from the traditional IT, vehicles don’t have any
mechanisms for authorization and access control. A first
approach to implement such features proposed Kim et
al. [54] with an approach of an Attribute Based Access
Control (ABAC) for the AUTOSAR software architecture
based on different attributes of diagnostic CAN messages.
Another ABAC approach was published by Berger et
al. [55] for integrating this kind of access control in firewall
systems. This provides new features such as dynamic
access decisions based on environmental conditions such
as time or location of the requester. Transferred to
automotive systems, it will also be important for future
vehicles to implement dynamic and distributed firewalls
to address upcoming requirements due to increasing
interconnectivity with their infrastructure, other cars or
cloud-based functionalities. Furthermore, ABAC could
also be useful for enforcing access controls based on
different vehicle states. For instance, in one of our tested
vehicles, the gateway did not check for the appropriate
conditions, before performing certain diagnostic functions.
As a consequence of this, diagnostic functions are
available during vehicle conditions in which there would
be malicious applications for them. This includes entering
a diagnostic session specifically for safety systems, e.g.
airbags, at highway speeds. Thus, it is probable that even
more implementation flaws exist in our target which are yet
to be discovered.

CONCLUSION AND FUTURE WORK

In this work we have developed an approach to reuse
the results of a threat analysis for automotive security
testing. A structured methodology for deriving test
cases using attack trees was presented. In addition,
the presented approach shows how exactly the results
of a safety analysis can be reused to identify threats
that can compromise vehicle safety. To identify this
particular type of threat, we have shown how our recently
published approach can be used. Furthermore, we have
provided a mapping between the nomenclature of our
threat identification approach and STRIDE for an easier
integration into existing threat modeling methods. Finally,
we demonstrated the applicability of our method by
an experimental evaluation with an Airbag-ECU. In

particular, the preparation and execution of the penetration
tests for the Airbag-ECU demonstrated the applicability
of the proposed methodology steps. As a result of this
penetration test, a vulnerability was discovered that allows
unintentional detonation of airbags.

In the next steps, we want to further formalize our
approach. This could help us to create test cases with
a detailed description for the concrete selection of attack
vectors. Such a detailed test case description can further be
used to develop specific testing tools. In general, we want
to offer a computer-aided version of our approach to reduce
the total testing effort. Furthermore, we want to analyse a
possible reuse of functional requirements as further input
for our approach.

APPENDIX

For an easier integration in existent approaches we want
to provide a mapping between SGM guide-words and the
CIA(A) triad in Table 4. This further allows us to provide
a mapping between SGM and STRIDE. We provide
this transformation ability between SGM and STRIDE
due to the fact that STRIDE nomenclature is well-known
in security and commonly used. As one example for
the mapping, we utilize the threat Unintended airbag
deployment can be triggered by triggering of (diagnostic)
function airbag deployment. that was built with the guide-
word triggering of (diagnostic) function. For this guide-
word, we propose to select spoofing from Table 4 as pedant
for STRIDE. With this, we can transform the threat
description to Spoofing of (diagnostic) function presenting
the STRIDE nomenclature. We do this for the other
two threats as well, leading to an attack tree in STRIDE
nomenclature shown in Figure 12.

Table 4: Mapping from SGM to STRIDE nomenclature,
with the CIA(A) triad as intermediate mapping step

SGM CIA(A) STRIDE
triggering authenticity,

integrity
spoofing

insertion integrity tampering

manipulation integrity tampering

disconnection availability denial-of-service

delay availability denial-of-service

deletion availability denial-of-service

stopping availability denial-of-service

reset availability denial-of-service
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