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Abstract. Early warning systems (EWSs) are increasingly

applied as preventive measures within an integrated risk

management approach for natural hazards. At present, com-

mon standards and detailed guidelines for the evaluation of

their effectiveness are lacking. To support decision-makers

in the identification of optimal risk mitigation measures, a

three-step framework approach for the evaluation of EWSs is

presented. The effectiveness is calculated in function of the

technical and the inherent reliability of the EWS. The frame-

work is applicable to automated and non-automated EWSs

and combinations thereof. To address the specifics and needs

of a wide variety of EWS designs, a classification of EWSs

is provided, which focuses on the degree of automations en-

countered in varying EWSs. The framework and its imple-

mentation are illustrated through a series of example appli-

cations of EWS in an alpine environment.

1 Introduction

A growing number of early warning systems (EWSs) is de-

veloped and operated for reducing the risks imposed by a

wide range of natural hazard processes. They can mitigate

the consequences of hazardous events if information is is-

sued in a timely way. In recent years, EWS technologies have

been improved significantly. In many fields, EWS are now

cost-efficient alternatives to structural mitigation measures.

They are applied for large-scale hazard processes, such as

severe weather, floods, tsunamis, volcanic eruptions or wild-

fires, where they complement structural measures and sup-

port the preparation for, and response to, the hazard events

(e.g. Sorensen, 2000; Zschau and Küppers, 2003; Grasso

and Singh, 2009; Glade and Nadim, 2014). They are also

popular as flexible and temporary mitigation measures on

smaller scales. In mountain regions, they are successfully ap-

plied to mitigate risks from snow avalanches, debris flows,

flash floods, rockfalls, and landslides (e.g. Bell et al., 2010;

Thiebes, 2012; Michoud et al., 2013; Stähli et al., 2015).

Whether or not EWSs are effective and efficient risk mit-

igation measures can be evaluated case-specifically through

cost–benefit analyses, in which the life-cycle costs and the ef-

ficiency are compared to those of alternative mitigation mea-

sures (Penning-Rowsell, 2005; SafeLand, 2012; Špačková

and Straub, 2015). In cost–benefit analyses, the efficiency

is defined as the risk reduction achieved with a mitigation

measure and is expressed in monetary values. To avoid ex-

pressing the risk in monetary terms, cost-effectiveness anal-

yses can be conducted instead (Bründl et al., 2009). The ef-

fectiveness Ew is quantifiable without expressing the risk in

monetary terms. For EWSs, one can define it as a function

of the overall risk without the EWS, R, and the risk with the

EWS, R(w) (Sättele et al., 2015a):

Ew = 1−
R(w)

R
. (1)

The risks with and without the EWS are evaluated by sum-

ming or integrating over all nscen possible scenarios j and all

nobj exposed objects i, which are persons or assets exposed

to a hazardous scenario:

R =

nscen∑
j=1

nobj∑
i=1

Rij . (2)

Both Rij and R
(w)
ij can be calculated from the probability of

occurrence of a hazard scenario, pj , the probability of expo-
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Figure 1. Following the principle of signal detection theory, a clas-

sifier (e.g. in form of a threshold) discriminates between correct and

wrong outcomes of EWSs: the EWS correctly issues an alarm when

an event occurs (hit) or no alarm when no event occurs (neutral),

but can also wrongly issue false alarms or miss dangerous events.

sure of object i in scenario j , peij , the vulnerability of object

i in scenario j , vij , and the value of object i,Ai (Fuchs, 2006;

Bründl et al., 2009):

Rij = pj ×peij × vij ×Ai . (3)

When issuing timely information, EWSs can reduce the ex-

posure probability of persons and mobile objects (Dai et al.,

2002; SafeLand, 2012; Thiebes, 2012) or their vulnerabil-

ity (Einstein and Sousa, 2006). Detailed guidelines on how

this risk reduction can be evaluated have been published for

structural mitigation measures (e.g. Romang, 2008) but, to

the best of our knowledge, not for EWSs.

Even without detailed guidelines, the effectiveness of

EWSs has been investigated previously. Thereby, it is com-

mon practice to consider both the probability that an EWS

detects hazardous events, as well as the probability that the

EWS leads to a false alarm. If the EWS detects a hazard

event, timely warnings can initiate preventive actions, such

as an evacuation of endangered persons to prevent dam-

age. However, frequent false alarms can lead to excessive

intervention costs or reduce compliance with future warn-

ings (Pate-Cornéll, 1986; Grasso et al., 2007; Schröter et al.,

2008; Rogers and Tsirkunov, 2011; Ripberger et al., 2014).

To account for the probability that events are correctly de-

tected (hit) and the probability that false alarms are issued

(Fig. 1), the effectiveness is typically evaluated based on con-

cepts of signal detection theory, where a classifier (in the

simplest case a predefined threshold) discriminates between

alarm and no alarm (Swets, 1996).

An optimal EWS detects all hazardous events and never

produces false alarms (Intrieri et al., 2013). In the operational

application of EWS, false alarms cannot be avoided and an

optimal trade-off between detected events and false alarms

needs to be identified. To solve this optimization problem

quantitatively, costs and utilities must be assigned to possible

outcomes. Along these lines, Paté-Cornell (1986) suggests

optimizing the effectiveness of fire warning systems operated

in buildings in function of the probability that the event is

detected (POD) and the probability that endangered persons

comply with the warning (POC). The latter is modelled con-

ditional on the probability of false alarms (PFA) by means of

both descriptive (“How do people react in real situations?”)

and normative (“How should people optimally react?”) ap-

proaches. In the normative model, the willingness of individ-

uals to respond to an alarm is considered through a decision

tree. Following that approach, decision trees have been used

by others for the identification of decision rules that provide

an optimal trade-off between POD and PFA (Einstein and

Sousa, 2006; Rheinberger, 2013). In these two subsequent

studies, the effect of false alarms on the compliance is not

explicitly addressed, but the reliability is expressed in terms

of POD and the PFA. This ability of the EWS to distinguish

between hazard events and noise can be summarized graphi-

cally in receiver operator characteristic curves. This is the in-

herent reliability of an EWS and will be presented in Sect. 3.

As an alternative to decision trees, influence diagrams are

applied to probabilistically model decision procedures asso-

ciated with EWS (Einstein and Sousa, 2006; Martina et al.,

2006). Influence diagrams are based on Bayesian networks

(BNs), which are graphical models that consist of nodes rep-

resenting random variables and arcs describing the statisti-

cal dependencies among them (Jensen and Nielsen, 2007).

They have been successfully applied in the field of environ-

mental modelling and civil engineering due to their intuitive

nature, their ability to deal with uncertainty and perform-

ing Bayesian analysis, and because of their strengths in rep-

resenting dependence in large-scale systems (Straub, 2005;

Straub and Der Kiureghian, 2010). Causal relations between

components are defined through conditional probability ta-

bles, describing the probability distributions of the variables

conditional on their parent nodes. Influence diagrams extend

BNs for decision analysis by including decision nodes and

utilities (Shachter, 1986).

In Sturny and Bründl (2014), a BN has been constructed

to model the technical reliability of a glacier lake EWS. In

their study, it was possible to model the entire technical sys-

tem with a BN, which was not possible with a fault tree in a

previous study on the reliability of the Swiss avalanche fore-

casting system (Bründl and Heil, 2011). The first BN, which

models both the technical and the inherent reliability of a

EWS, is described for a debris flow EWS in Sättele et al.

(2015a). In a subsequent case study, the reliability of a partly

automated rockslide warning system is assessed (Sättele et

al., 2015b). The automated part is again modelled in a BN

and human decision procedures of the non-automated part

are assessed through a Monte Carlo analysis.

In the present contribution, a comprehensive framework

approach for the evaluation of EWSs is presented, with three

main objectives. The first objective, addressed in Sect. 2, is

the development of a classification of EWSs, which serves as

a basis for a structured evaluation of EWSs. The second ob-

jective is the development of evaluation methods for the tech-
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Table 1. Characteristics associated with EWS classes.

Alarm system Warning system Forecasting system

Fully automated Partly automated Lowest degree of automation

Detect ongoing process parameters Monitor precursors Monitor precursors

Short lead times Extended lead times Extended lead times

Thresholds serve as decision instance First decision is based on threshold, Experts conduct analysis in regular

the final one is made by experts intervals and not based on thresholds

Automated intervention measures such Organized intervention actions Forecast the danger level for predefined

as automated barriers on roads or such as an evacuation warning regions to enable preventive

interrupted power lines at railways actions and preparation

Figure 2. Classification of EWSs: each EWS class includes typical system components facilitating the monitoring and interpretation of data,

and the dissemination of warnings. Automated system parts are highlighted in grey.

nical and the inherent reliability of EWS. The third and final

objective is the development of an overall framework for as-

sessing the effectiveness of EWS. The individual steps of the

framework approach are presented in Sect. 3, illustrated by

the insights gained in the case studies. The paper concludes

with a discussion of the applicability of the framework, its

limitations, and future work (Sect. 4).

2 Generic classification of EWSs

EWSs can be defined as “sets of capacities needed to gener-

ate and disseminate timely and meaningful warning informa-

tion to enable individuals, communities, and organizations

threatened by a hazard to prepare and to act appropriately

and in sufficient time to reduce the possibility of harm or

loss” (UNISDR, 2007). EWSs currently operated in practice

have widely varying designs, because they are preliminarily

developed as prototypes to fit specific needs. They are am-

biguously referred to as alarm, alert, detection, early warn-

ing, forecasting, monitoring, and warning systems. To facil-

itate a structured evaluation of EWSs, a recognized classifi-

cation should be established.

A classification of landslide EWSs is proposed by Bell

et al. (2010), in which monitoring systems, alarm, and ex-

pert systems are distinguished. We adapt this proposal by

classifying EWS in function of their degree of automation

into alarm, warning, and forecasting systems (Sättele et al.,

2012). In Fig. 2, each system class is depicted with the three

main units for monitoring, data interpretation, and dissem-

ination. To indicate the degree of automation, components,

which are operated automatically, are highlighted in grey.

In this classification, monitoring systems are not consid-

ered as a stand-alone class, because they do not actively

issue warning information (Schmidt, 2002; Glantz, 2003).

They are a central unit of every EWS, in which the environ-

ment is observed and relevant data are collected to increase

the understanding of the processes. As proposed by Bell et

al. (2010), alarm systems are understood as threshold-based

fully automated EWSs. The term “expert system” is omitted

because it is already used in the field of artificial intelligence

to signify computer systems that imitate the decision abil-
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Figure 3. Assignment of natural hazard processes to the proposed classification of EWSs: the system class depends on the availability and

expressiveness of precursors and the available lead time.

ity of humans (Jackson, 1999). Instead, the terms “warning”

and “forecasting system” are used to distinguish two types

of partly automated EWS. All three classes are named ac-

cording to how they disseminate information. While alarms

are signals activated to inform endangered persons of ongo-

ing dangerous events, warnings provide information on im-

minent or probable events by including suggestions or or-

ders on protective risk mitigation actions (Villagrán de León

et al., 2013). Forecasts deliver more general information on

the probability of hazard events in endangered or affected re-

gions for certain time frames in the future (Hamilton, 1997).

The applicability of this novel classification was tested by

assigning state-of-the-art EWSs to the three classes (Sättele,

2015), including EWSs installed worldwide for meteorolog-

ical hazards, floods, earthquakes, tsunamis, wildfires, vol-

canic eruptions, and mountain hazards. The results are sum-

marized in Fig. 3, where natural hazards are arranged accord-

ing to the number and expressiveness of available precursors

and according to the lead time that typical EWSs can provide.

In the following, general characteristics of each EWS class

are introduced (see Table 1) and illustrated through a system

example. These example systems have been investigated in

detailed case studies previously (Sättele et al., 2015a; Sättele

et al., 2015b) and key results of these case studies are used

in Sect. 3 to demonstrate individual steps of the proposed

framework approach.

2.1 Alarm system

Alarm systems are fully automated EWSs (Table 1; Fig. 2a).

In the monitoring unit, sensors are installed to detect process

parameters of already ongoing hazard events. They are pri-

marily installed for processes triggered rather spontaneously,

such as earthquakes, wildfires, tornados, small rockfalls and

debris flows (Sättele, 2015). Thus, the remaining lead time

is short and procedures include a minimal number of inter-

faces to ensure a reliable and fast information flow. Sensors

are directly connected to a control tool, e.g. a data logger, in

the interpretation unit. Here, data are analysed to issue and

transfer automated warnings or to initiate mitigation actions

when predefined thresholds are exceeded. Measured sensor

data are transferred and stored in a central data management

unit, which is commonly equipped with a diagnostics sys-

tem. In the dissemination unit, automated intervention mea-

sures use optical signals or sirens to generate warnings. In

some cases, power cut-offs are initiated to stop approaching

trains. At the same time, risk managers and system operators

receive information.

For example, a fully automated alarm system is operated to

protect persons from debris flows within the Illgraben catch-

ment in Switzerland (Badoux et al., 2009). One single geo-

phone in the upper catchment and two geophones and two

radar devices some hundred metres below should detect on-

going events in real time (Fig. 4). They measure the ground

vibrations and the flow depth in the river bed. The upper geo-

phone is controlled by one logger and another logger controls
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Figure 4. System sketch of the debris flow alarm system in the Illgraben catchment including automated procedures in the monitoring,

interpretation, and dissemination unit. (Figure based on pixmaps 2015 swisstopo (5704 000 000).)

the remaining four sensors. An automated alarm is initiated

if predefined thresholds are exceeded. The alarm information

is transmitted via modem and communication devices to ac-

tivate audible signals and red lights at three alarm stations.

In parallel information is sent to system operators. The lead

time of the alarm system is between 5 and 15 min.

2.2 Warning system

Warning systems are partly automated EWS (Table 1;

Fig. 2b). In the monitoring unit, sensors or human observers

monitor precursors of hazardous processes. Precursors are

either events that trigger the hazard, such as intense rain-

fall, or relevant changes in the disposition that occur prior

to the event. Therefore, warning systems are typically in-

stalled for natural hazard processes that evolve over time and

provide precursors, such as tsunamis announced by earth-

quakes, volcanic eruption, or large-scale rockfalls (Sättele,

2015). Lead times are extended and enable a two-instance

decision-making procedure in the interpretation unit. The

first instance is automated: sensor data are transferred to a

control tool that typically uses predefined thresholds to initi-

ate automated warnings, similar to alarm systems. The warn-

ing is not directly issued to endangered persons but to ex-

perts, which constitutes the second decision instance. Ex-

perts analyse measured sensor data, and to predict the final

event they often apply models or consult additional informa-

tion sources, such as remote sensing data or reports from lo-

cal observers. In the dissemination unit, organized interven-

tion actions, such as evacuations and/or closures of roads and

railway sections, are set up to mitigate the risk.

For example, in Preonzo, Switzerland, a warning system

was installed to predict a mid-magnitude rockslide (Willen-

berg et al., 2009; Loew et al., 2012), which eventually oc-

curred on 15 May 2012, with about 300 000 m3 rock mass

(Fig. 5). Five extensometers and a total station with 14 re-

flectors monitored increased displacement rates. In the auto-

mated part, warning information was sent when predefined

thresholds were exceeded. In the non-automated part, dis-

placement data were analysed by experts and the inverse ve-

locity model was applied to predict the event timing, on the

basis of which it was decided on further activities. Evacu-

ations were ordered to protect the underlying factories and

road. The available lead time is in the order of days.

2.3 Forecasting system

Forecasting systems have the lowest degree of automation

(Table 1; Fig. 2c). In the monitoring unit, sensors or hu-

man observers monitor precursors to indicate the likelihood

of dangerous events. They are chiefly operated to extend

the short lead time achieved with alarm systems for spon-

taneous processes, such as severe weather, wildfires, or snow

avalanches, but can also be found for processes that are more

predicable such as rain-induced flood events (Sättele, 2015).

In contrast to warning systems, the data interpretation is

not initiated when predefined thresholds are exceeded, but

it is conducted at regular intervals. Measured sensor data are
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Figure 5. System sketch of the rockslide warning system in Preonzo including partly automated procedures in the monitoring, interpretation,

and dissemination unit. (Figure based on pixmaps 2015 swisstopo (5704 000 000).)
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Figure 6. System sketch of the national avalanche forecasting system in Switzerland including mainly non-automated procedures in the

monitoring, interpretation, and dissemination unit. (Figure based on pixmaps 2015 swisstopo (5704 000 000).)
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Figure 7. The framework approach comprises three major parts that can be selected dependent on the EWS class to quantify the effectiveness

as a function of the reliability.

Reliability analysis method
(automated part EWS)

Inherent reliability:

Part I

Draw system sketch
Technical reliability: 

Design BN

Estimate component failure probabilities 

Determine conditional probabilities 

Include sensor data and thresholds
Quantify the reliability

Figure 8. Part I includes six steps to model the technical and inher-

ent reliability of automated EWSs.

transferred to a central data management unit, where experts

analyse data and apply models to forecast the danger level

for predefined warning regions. If predefined danger levels

are exceeded, information is disseminated to public and/or

risk managers via media such as mobile phones, Internet,

radio, and TV. Based on this information and local assess-

ments, risk managers typically initiate a chain of preventive

measures by following operation and intervention plans.

For example, the Swiss avalanche system operated by the

WSL Institute for Snow and Avalanche Research SLF is an

example of a forecasting system (Fig. 6). A network of about

160 snow and weather stations monitors precursors, such as

snow height, air and snow temperature and humidity, solar

radiation, wind direction, and wind speed at regular intervals.

Observers transfer measurements and observations to the na-

tional centre (Techel and Darms, 2014). Data analysis is con-

ducted by experts on a regular basis. They merge and analyse

measured data and data collected by human observers; more-

over they apply models and consult meteorological models

to predict the danger level for the next day. The forecasts

are disseminated in the form of a bulletin, in which warn-

ing regions are assigned to five danger levels defined in the

uniform European Avalanche Hazard Scale (Meister, 1995).

The bulletin is published via radio, TV, and Internet, and if

danger level four is exceeded, warnings are actively com-

municated to cantonal authorities and to the public by the

National Emergency Operations Centre (Hess and Schmidt,

2012). Based on this information and local assessments, local

avalanche safety officers take measures, such as road closures

or controlled avalanche release.

3 Framework for the evaluation of EWSs

Based on the classification, we suggest a framework for a

structured evaluation of EWS effectiveness, consisting of

three parts as illustrated in Fig. 7. For fully automated alarm

systems, parts I and III are sufficient; for partly automated

warning and forecasting systems, all three parts should be

executed.

In parts I and II, reliability analyses are conducted, includ-

ing the technical and the inherent reliability. The technical

reliability analysis accounts for the availability of technical

system components and their interdependencies in the sys-

tem. The inherent reliability analysis differs for parts I and

II. While the inherent reliability of automated EWSs (part

I) depends on automated decision instances such as signal

thresholds, non-automated EWSs (part II) rely primarily on

human decision-making and the accuracy of models. In some

www.nat-hazards-earth-syst-sci.net/16/149/2016/ Nat. Hazards Earth Syst. Sci., 16, 149–166, 2016
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cases, the model accuracy needs to be considered in part I as

well, e.g. when earthquake alarm systems use models to de-

tect events in real time. In both parts, the inherent reliability

is expressed in terms of POD and PFA, as is the overall reli-

ability.

In part III, the EWS effectiveness is quantified as a func-

tion of POD and PFA. The effectiveness is a direct func-

tion of POD, because timely detection leads to intervention

measures that reduce consequences. A high number of false

alarms may not only cause large costs for unnecessary inter-

ventions, but also decrease the probability that persons com-

ply (POC). The POC is estimated from a basic compliance

rate, combined with reduction factors to account for the ef-

fect of false alarms (PFA), insufficient lead time, and possi-

bly other effects related to the communication and perception

of the alarm/warning.

In the following, the three parts of the framework are sum-

marized and individual steps are demonstrated with results

of the two case studies Illgraben and Preonzo (Sättele et al.,

2015a; Sättele et al., 2015b).

3.1 Part I: reliability analysis of automated EWS

In part I, the reliability achieved with fully automated alarm

systems and the automated part of warning and forecasting

systems is assessed in six steps (Fig. 8). Both the technical

and inherent reliability are modelled together in a BN, which

results in the POD and PFA of the automated system.

First, draw the system sketch. A system sketch is an essen-

tial basis to understand the EWS design and the dependencies

among the components (see Figs. 4–6). It can be constructed

according to the three main units of an EWS and contains all

main system components. The information flow is indicated

by arcs and components are represented in form of squares

or nodes. Redundant system parts are depicted redundantly

in the sketch.

Second, design the BN. The basic BN can be derived from

the system sketch. It consists of nodes and arcs, which can

be structured according to the same three units (see Fig. 9).

Oval nodes represent system components, and they are ar-

ranged according to the causal chain from the hazard event

to the warning. This includes the main functionalities such as

data measured, event indicated, warning issued, transmitted

and released. Redundant system components and functional-

ities are also depicted redundantly in the BN. The arcs in the

BN are directed to follow the information flow between func-

tionalities and components. Decision nodes (squared nodes)

are added in the BN to specify decision criteria on varying

levels (see fifth step).

Third, determine conditional probabilities. Interrelations

between the components and functionalities in the causal

chain can be specified in conditional probability tables of

oval nodes. In many instances, AND or OR relations are

sufficient to describe the dependencies of individual com-

ponents and functionalities, but any other type of logical or

probabilistic relation can also be specified. AND relations

represent serial connections, in which all components must

work to ensure the underlying functionality; OR relations can

be used to model redundant configurations.

Fourth, estimate component availabilities. The availabil-

ity of individual components is specified in the conditional

probability tables of oval nodes representing components. If

the component can assume exactly two states (functioning or

fail), the random variable is binary. If additional states are

possible, these are specified in the conditional probability ta-

bles. Availabilities can often be derived from failure rates

specified by the supplier, to which one should add the rate

of failures caused by external sources, such as extreme tem-

peratures or disturbances due to human and animal activity.

Fifth, include sensor data and decision instances. Decision

instances, such as warning thresholds, are added as squared

decision nodes on various levels, either for single sensors or

to specify warning criteria to combine information from sev-

eral sensors. Probabilities of measured sensor data to exceed

these criteria are included in the conditional probability ta-

bles of the nodes representing sensor signals. These probabil-

ities are estimated conditional on the occurrence of an event.

This fifth step is not necessary for forecasting systems which

do not use automated decision instances.

Sixth, quantify the reliability. The last node of the causal

chain (warning) is used to assess the overall reliability of the

EWS. POD and PFA are obtained by changing the status of

the top node (hazard event) and evaluating the BN. If the top

node is set to “event”, the probability of the last node being in

state “alarm” is equal to the overall system POD. Similarly,

the PFA is obtained by setting the top node to “no event”.

The same BN facilitates that the technical and the inherent

reliability are assessed together or separately. To model the

technical reliability alone, the status of the node “event in-

dicated” is set to “yes”; to assess the inherent reliability, the

status of all nodes representing technical system components

is set to the state “functioning”.

Illustrative examples from the Illgraben and Preonzo

case studies

The reliability of the fully automated Illgraben alarm sys-

tem and the automated part of the Preonzo warning system is

quantified following the six steps of part I (Fig. 8).

First, draw the system sketch. For the Illgraben and the

Preonzo case study, system sketches are designed following

the three main units for monitoring, data interpretation, and

information dissemination, as shown in Figs. 4 and 5. The

sketch only includes main components to keep the following

steps manageable. For example, the data logger is considered

together with the included software.

Second, design the BN. The BNs constructed for the Ill-

graben and Preonzo EWSs vary strongly. For the fully auto-

mated Illgraben debris flow alarm system, a comprehensive

reliability analysis for the entire warning chain from the haz-
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Table 2. The causal relations between functionalities and components are specified in the conditional probability tables of grey nodes. Here,

two examples of deterministic nodes are shown. (a) OR logic of the redundant sensor units; (b) AND logic of sensors in monitoring unit 2.

(a) Sensor unit 1 indicates event yes no

Sensor unit 2 indicates event yes no yes no

Warning transmitted yes 1 1 1 0

no 0 0 0 1

(b) Event indicated 1 (geophone 1) yes no

Event indicated 2 (geophone 2) yes no yes no

Event indicated 3 (radar 1) yes no yes no yes no yes no

Event indicated 4 (radar 2) yes no yes no yes no yes no yes no yes no yes no yes no

Warning issued 2 yes 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0

no 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

Figure 9. The BN to model the overall reliability of the Illgraben alarm system is structured according to three main units. Grey nodes

represent main functionalities in the causal chain; white nodes represent components; squared black nodes represent the decision instances

on two levels, for details see Sättele et al. (2015a).
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Figure 10. The BN to model the technical reliability achieved in the automated part of the Preonzo warning system is shown. The redundant

monitoring unit includes 5 extensometers and 14 reflectors. In the data interpretation unit, warning information is issued automatically to

decision-makers. For details, see Sättele et al. (2015b).

Figure 11. Reliabilities of individual sensors in the Illgraben alarm

system vary strongly and can be graphically summarized as receiver

operator characteristic curves, in which the dependence between

POD and PFA is shown (Sättele et al. 2015a).

ard event to warning is conducted as illustrated in Fig. 9. The

inherent and the technical reliability are evaluated together

and are expressed in terms of POD and the PFA. Grey nodes

represent the causal chain and white nodes the components;

thresholds are defined through the black decision nodes.

For Preonzo a simplified BN is constructed to model the

ability of the system to provide timely warning information

to decision-makers (Fig. 10). Here, the technical reliability

alone is modelled, and sensor data and decision nodes are

Reliability analysis method
(non-automated part EWS)

Inherent reliability:

Part II

Determine minimal required lead time
Technical reliability: 

Estimate failure probability of remote 
components

Estimate model accuracy
Evaluate human decision-maker

Evaluate the reliability

Figure 12. Part II includes five steps to model the reliability of non-

automated EWS.

not included, so that the PFA cannot be computed here. This

simplification is possible because warnings are sent directly

to experts whose compliance should not be reduced by fre-

quent warning information.

Third, determine conditional probabilities. In both BNs,

the interrelations among system elements are specified either

deterministically or stochastically in the conditional proba-

bility tables of grey nodes. In the causal chain of the Illgraben

BN, warning information is transmitted if either sensor unit

1 or 2 issues an event (Table 2a), but the warning in sensor
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Figure 13. Shortly before the event in May 2012 a large number of

sensors were destroyed: the green function is fitted to the observed

percentage of destroyed sensors (Sättele et al., 2015b).

unit 2 is only issued if at least one of the geophones and one

radar device indicates an event (Table 2b).

Fourth, estimate component availabilities. In both case

studies, availabilities of components are specified in the con-

ditional probability tables of white nodes. All components

can assume exactly two states; functioning and failed. For

the Illgraben case study, availabilities A of system compo-

nents are calculated following Eq. (4) and are in the order of

0.9995 for most components (Sättele et al., 2015a).

A≈ 1− (λIF+ λEF)×E[Tr] (4)

λIF are internal failure rates and λEF are external failure rates;

E[Tr] is the expected time it takes to detect and repair a fail-

ure. Internal failures rates λIF are derived from the specified

mean time to failure (MTTF) and the mean time between

failure (MTBF) values, and external failure rates λEF are es-

timated by experts.

Fifth, include sensor data and decision instances. In the

Illgraben case study, past event data from 44 events are used

to determine probabilities of thresholds being exceeded on

both event and non-event days (see Table 1 in Sättele et al.,

2015a). The BN constructed for the warning system in Pre-

onzo is developed to facilitate the assessment of the technical

reliability alone and does not include thresholds or measured

sensor signals (for details, see second step).

Sixth, quantify the reliability. In the Illgraben case study,

the inherent reliability for varying thresholds is modelled

for each sensor separately (see Fig. 11). Besides the thresh-

old, the positioning of the sensors has a major influence on

the EWS reliability, whereas technical failures of individual

components have a comparatively low impact due to high re-

dundancies (Sättele et al., 2015a).

For Preonzo we find that the technical reliability, i.e. the

POD of the automated part, is high (0.988) due to multiple

redundancies in the sensor unit and a diagnostic system that

immediately detects and reports component failures to min-

imize downtimes of the system. The inherent reliability is

close to 1, but is not assessed quantitatively with the BN.

This is not necessary because the warning thresholds were

set low to ensure that the EWS sends timely information to

the expert team responsible for the final decision on an evac-

uation. The system is furthermore designed as fail-safe, i.e.

in case of a technical failure, the experts are alerted.

3.2 Reliability analysis II: non-automated EWS

In part II, reliability analyses of non-automated parts of

warning and forecasting systems are conducted. Here, the

ability of the decision-makers to correctly predict or forecast

events is evaluated. This ability depends on (potentially com-

plex) human- and model-based decision procedures, which

are difficult to quantify in practical applications. If the re-

liability cannot be expressed quantitatively in terms of POD

and PFA, a qualitative or semi-quantitative analysis should be

conducted instead. This evaluation should address both the

technical and the inherent reliability and can be conducted in

five steps (Fig. 12).

First, determine the minimal required lead time. Lead

times associated with the non-automated part of warning and

forecasting systems are typically larger than those of alarm

systems, often in the range of 1 to several days (see Sect. 2.2).

During this time period, additional data and information are

collected and predictions become increasingly accurate (see

e.g. Grasso et al., 2007; Schröter et al., 2008). The reliability

analysis in part II is therefore conducted as a function of the

lead time. The reliability can either be evaluated for a fixed

lead time or for a set of lead times. For a given lead time, one

should consider the reliability associated with that lead time,

as well as the related intervention costs, e.g. those caused by

an early evacuation.

Second, estimate failure probabilities of remote compo-

nents. Non-automated EWSs measure precursors and thus

provide extended lead times. Nevertheless, their reliability

increases with shorter lead times. For some EWSs, destruc-

tive pre-events can lead to an increased failure probability of

system components, e.g. sensors, as the event approaches. A

typical example is provided by the Preonzo case study, sum-

marized in Sect. 3.2.1. The technical failure probability asso-

ciated with the minimum required lead time is the input for

determining the remaining number of sensors, which will in

turn affect the forecast accuracy that is evaluated in the next

step.

Third, estimate model accuracy. Experts often apply mod-

els to predict the event magnitude, time, and spatial dimen-

sions. Flood forecasts are for example based on coupled hy-

drometeorological models, which become probabilistic when

Hydrological Ensemble Prediction Systems are used (Wet-
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Figure 14. In Preonzo, the model accuracy increases with decreasing lead time. In April, sensor forecasts made with the inverse velocity

model vary strongly among different sensors. On May 14, 10 out of 12 sensors predict the event correctly for the next day (Sättele et al.,

2015b).

terhall et al., 2013). The accuracy of models depends on

their capabilities, their case-specific applicability, and on the

quality of the available input data. The quality of the data

is determined by the number, the type, and the position-

ing of sensors. The model accuracy is evaluated for the se-

lected minimal lead time and expressed qualitatively or semi-

quantitatively (see fifth step). The estimated model accuracy

directly influences the ability of decision-makers to set up in-

tervention measures correctly. If no models are applied, this

step can be skipped.

Fourth, evaluate human decision-makers. In the non-

automated part of EWSs, the final decision is made by hu-

mans. The decision procedures involved are typically com-

plex and can only be assessed quantitatively in some cases

(see Sect. 3.2.1). In most cases, a qualitative or semi-

quantitative analysis is more suitable, in which possible out-

comes, the degree of risk aversion, and the expertise of indi-
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viduals and effects associated with group dynamics are ad-

dressed. Decision-makers are evaluated according to their

ability to correctly detect dangerous events (POD) and avoid

false alarms (PFA). Both terms can be rated in predefined

evaluation scales e.g. as low, medium, or high.

Fifth, evaluate the reliability. The reliability achieved in

the non-automated part of the EWS is evaluated as a func-

tion of the lead time. It depends on the procedures to ini-

tiate and carry out intervention measures following a warn-

ing, such as evacuation. The decision on a warning is influ-

enced by the accuracy of the applied forecasting models and

the quality of available information from different sources,

such as measured sensor data, data from other sources, and

reports from human observers. The quality of the input in-

formation directly influences the forecast ability of models

and the success of human decision-making. Whether dam-

age is successfully prevented depends also on the quality

and the feasibility of predefined intervention plans. In a com-

prehensive reliability analysis, all these factors and their de-

pendencies are considered. In most cases, this analysis will

be qualitative. However, the final reliability should be ex-

pressed (semi-)quantitatively in terms of POD and PFA. To

this end, values for POD and PFA may be assigned to qual-

itative rating scales (e.g. low (POD= 0.90 and PFA= 0.1),

medium (medium POD= 0.95 and PFA= 0.05), and high

(POD= 0.99 and PFA= 0.01).

3.2.1 Illustrative example from the Preonzo case study

In a detailed case study, the reliability of the non-automated

part of the Preonzo warning system is assessed. To enable a

quantitative reliability evaluation, a post-event analysis of a

large event (about 300 000 m3) that occurred on 15 May 2012

is conducted, following the five steps of part II.

First, determine the minimal required lead time. If

decision-makers release the information 1 day in advance,

the evacuation can be carried out successfully and sufficient

time for intervention teams to set up protective measures is

available. The quality of the prediction is also maximum for

short lead times, and the intervention costs, which occur due

to business interruptions in the underlying factory buildings,

can be kept relatively low. Hence, 1 day is selected as the

lead time.

Second, estimate failure probabilities of remote compo-

nents. Sensors fail before the event in May 2012, and shortly

before the instable mass collapses, the majority of sensors are

destroyed. To account for the increasing failure rate, a func-

tion is fitted to the number of observed failures (Fig. 13).

The estimated failure probability of sensors at the minimal

required lead time (t = 1 day) necessary to set up an evacua-

tion successfully is 0.4.

Third, estimate model accuracy. To predict the event time,

the inverse velocity model is applied on sensor data measured

in Preonzo before 15 May. In Fig. 14, the predicted event

dates modelled between 1 April and 14 May by sensors in-

stalled close to the release area are summarized. As the event

approaches, the prediction made by individual sensors be-

comes more uniform. One day before the event occurred, at

the minimal lead time, 10 out of 12 available sensors predict

the event to occur on the next day. However, on 6 May, most

sensors predict the event for the next day and an unnecessary

evacuation is set up on May 7 and annulled a day later when

accelerations slow down again.

Fourth, quantify human decision-makers. In Preonzo, the

final decision on setting up intervention measures is made by

an expert team. As a first attempt to quantify the decision-

making procedure, the experts are characterized by simple

decision rules. According to these rules, an evacuation is set

up if less than a certain number of initial sensors remain in-

tact (technical criterion) or if a certain percentage of initial

sensors predict the event for the following day (inherent cri-

terion), as summarized in Table 3. The number of initial sen-

sors is varied in the Preonzo study from 5 to 50.

Fifth, quantify the reliability. The overall reliability

achieved in the non-automated part of the Preonzo warning

system is assessed probabilistically through a Monte Carlo

simulation. The model accuracy and the sensor failures are

randomized, to quantify the probability that evacuation mea-

sures are set up on the day of the event (POD) (Fig. 15a).

In addition, the costs for intervention are calculated, which

decrease with an increasing number of sensors, and which

are smaller for the risk-tolerant decision-maker (Fig. 15b).

Analyses are conducted for a varying number of initial sen-

sors and two risk types (see Table 3) and confirm that the

risk tolerance of human decision-makers have a significant

influence on the reliability of non-automated parts of EWS.

Figure 15a shows that even with a high number of sensors,

the probability of the risk-tolerant decision-maker detecting

the event never exceeds 0.85.

3.3 Part III: effectiveness analysis

The effectiveness of an EWS, Ew, is defined as the relative

risk reduction achieved with the EWS and can be quantified

following Eq. (1) as a function of the risk without the EWSR

and the risk with the EWS R(w). EWSs reduce the risk when

timely information leads to intervention measures that de-

crease either the exposure probability peij or in some cases

the vulnerability in Eq. (3). By combining Eqs. (1)–(3), the

effectiveness of an EWS can be calculated as

Ew = 1−

nscen∑
j=1

nobj∑
i=1

pj ×pe
(w)
ij × v

(w)
ij ×Ai

nscen∑
j=1

nobj∑
i=1

pj ×peij × vij ×Ai

. (5)

To determine pe
(w)
ij and v

(w)
ij , the POD and PFA, estimated in

the reliability analyses of part I and II, are used.

The exposure probability pe
(w)
ij is reduced when persons

are successfully evacuated or when intervention measures
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Table 3. To quantify the human decision-maker, two risk types are specified with different evacuation criteria (Sättele et al., 2015b).

Risk type Technical evacuation criterion, evacuate when Inherent evacuation criterion, evacuate when

Less risk-tolerant fewer than 6 sensors are functioning 20 % of sensors forecast the event for the next day

More risk-tolerant fewer than 3 sensors are functioning 50 % of the sensors forecast the event for the next day

Figure 15. The reliability (POD) and costs for intervention are modelled for two decision-makers and a varying number of initial sensors:

(a) the less risk-tolerant decision-maker reaches high values of POD independent of the number of sensors; the risk-tolerant decision-

maker only reaches a POD up to 0.85; (b) the more risk-tolerant decision-maker creates lower expected costs, which reach a minimum of

CHF 215 000 with around 20 sensors or more; for details see Sättele et al. (2015b).

Figure 16. Compliance frequency as a function of the false alarm

ratio (Sättele et al., 2015a).

prevent persons entering endangered areas. Organized evacu-

ations are often initiated by warning and forecasting systems

installed for tsunamis, floods, volcanic eruptions, large-scale

slope failures, and wild fires. Automated measures for keep-

ing people from the endangered area are activated by alarm

systems installed for debris flows, avalanches, and small-

magnitude rockfalls.

Figure 17. The effectiveness of the Illgraben alarm system could be

quantified as a function of POD and PFA; i.e. the reliability (Sättele

et al., 2015a).

The vulnerability v
(w)
ij is reduced if the EWS sends timely

information that leads to temporary measures, which de-

crease the susceptibility of objects to damage. If storm events

are announced in a timely way, movable objects can be fixed;

if flood warnings are issued, protective temporary measures
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such as sandbags or wooden barriers can be installed. Mod-

ern earthquake alarm systems can slow down trains or shut

down critical processes in factories when strong shaking is

detected in time.

The reduction of the exposure probability and the vulner-

ability is equal to the probability that the event is detected

and intervention measures are initiated (POD) and that en-

dangered persons comply with the warning (POC). The lat-

ter is not relevant for fully automated intervention measures

such as power cut-offs. If EWSs issue warnings to persons,

a high POC is crucial. It can be quantified as a function of

the general compliance rate POC0 and reduction factors RF,

e.g. due to false alarms RF(PFA) or insufficient lead time

RF(ILT):

POC= POC0×RF(PFA)×RF(ILT). (6)

The basic compliance rate and the reduction factors must

be determined case-specifically. The basic compliance rate

depends on the type of intervention measures and human

decision-making. If, for example, barriers are closed on a

road, car drivers have to comply, while red lights can be ig-

nored. Moreover, it can be assumed that regular training and

education leading to a higher awareness of potential conse-

quences can improve the basic compliance rate.

The reduction factor due to false alarms RF(PFA) accounts

for the cry-wolf effect, namely that people have an increased

tendency to ignore warnings after experiencing (multiple)

false alarms. This effect depends, among other factors, on

past experiences, expected consequences, and the degree of

risk aversion of the recipients.

The reduction factor due to insufficient lead time RF(ILT)

expresses the ability to comply. In certain cases, EWSs have

to be constructed in a way that the available lead time may

not be sufficient and not everybody willing to comply can

successfully evacuate. In the case of earthquake alarm sys-

tems, lead times are in the range of just a few seconds; or

for avalanche alarm systems constructed above railways, the

lead time is limited by the distance from the railway to the

release point.

3.3.1 Illustrative example from the Illgraben case study

In the Illgraben case study, the effectiveness Ew is calculated

as a function of POD and PFA. The alarm system reduces the

exposure probability of persons in the Illgraben catchment.

Therefore, the effectiveness is equal to the reduced exposure

probability with the EWS. To simplify the analysis, different

debris flow types are not distinguished, and only one scenario

j is considered. The exposure probability is the same for all

persons i, peij = pej , and it follows

Ew = 1−

pj ×pe
(w)
j ×

npers∑
i=1

vij ×Ai

pj ×pej ×
npers∑
i=1

vij ×Ai

= 1−
pe

(w)
j

pej
. (7)

The reduced exposure probability is evaluated as a function

of the POD and the POC:

pe
(w)
j = pej (1−POD×POC). (8)

Inserting in Eq. (7), the effectiveness becomes

Ew = POD×POC. (9)

POD values result from the reliability analysis and POC is

calculated as a function of PFA. To this end, we adapt the

basic compliance rate POC0 = 0.95 from published traffic

analyses (Rosenbloom, 2009; Johnson et al., 2011) and the

RF(PFA) is adapted from a existing case study in which

the compliance frequency of students as a function of false

alarms is assessed (Bliss et al., 1995). As illustrated in

Fig. 16, the compliance frequency strongly decreases with

an increasing ratio of false alarms.

In the Illgraben case study we extend the BN to a decision

graph and identify the threshold combination that leads to

a maximal effectiveness following Eq. (9). In Fig. 17, the

resulting effectiveness is shown as a function of POD and

PFA, together with the POD and PFA values associated with

the best system configurations. For this highly reliable EWS,

the effectiveness decreases faster with increasing PFA than

with increasing POD.

4 Discussion

The proposed classification of EWSs distinguishes alarm,

warning, and forecasting systems according to their degree

of automation, their lead time, and the expressiveness of

the available precursors (Figs. 2 and 3). The selection of an

EWS class depends strongly on the underlying natural hazard

process. Different process types allow for different monitor-

ing strategies, which are associated with different lead times

and degrees of automation. Earthquakes, for example, occur

without clear precursors and damage can only be reduced by

fully automated alarm systems with very short lead times.

In contrast, large river floods provide clear precursors and

damage can be reduced when warnings or forecasts are made

early enough to set up temporary intervention measures.

A differentiation of EWSs according to their degree of

automation has proven to be a valuable basis for evaluat-

ing EWSs. The system requirements differ strongly between

automated and non-automated EWSs and these should be

addressed separately. Typical procedures conducted within

automated EWS parts are less complex than human- and

model-based decision procedures that are part of non-

automated EWSs. Part I of the proposed framework con-

sists of a six-step method for a quantitative reliability assess-

ment of automated EWS; and part II contains five steps for a

qualitative or semi-quantitative evaluation of non-automated

parts.

Through the two case studies, we demonstrate that this

framework approach is applicable to assess alarm and warn-
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ing systems installed for gravitational processes in mountain

regions. With the Preonzo case study, we moreover show

that under some conditions the reliability of non-automated

EWSs can be quantified as well. Here, a post-event analy-

sis is conducted, in which human decision-makers are spec-

ified through simple decision rules. When specifying less

risk-tolerant decision rules (Table 3), the analysis leads to

similar recommendations than the ones that were actually

made by the experts. However, to refine the framework ap-

proach for the application to EWSs operated for earthquakes,

floods, meteorological hazards, tsunamis, volcanic eruptions,

and wildfires, the following steps of the procedure should be

further enhanced.

In part I, the technical and the inherent reliability of au-

tomated EWSs are quantified in a BN. For the construction

of the BN, a system sketch forms the basis for understanding

key system components and their interrelations. To keep the

complexity of the BN and the proceeding steps low, only es-

sential components should be considered. In step four, avail-

abilities of individual system components are estimated. In-

ternal failure rates can be derived from specifications of man-

ufacturers, but external failure sources such as extreme tem-

peratures and lightning, which are more difficult to estimate,

must be considered as well. However, for many EWSs such

as the Illgraben case study, the influence of technical relia-

bility is low compared to the inherent reliability, i.e. the abil-

ity to interpret data correctly. The assessment of the inherent

reliability is challenging in the design phase of EWSs or for

EWSs installed for rare events such as large-magnitude rock-

falls. In these cases, sensor data are not yet available to esti-

mate probability distributions of EWS signals. Other EWSs,

such as earthquake alarm systems, use real-time models to

estimate the magnitude on a spatial dimension whenever un-

expected ground shaking is detected. Here, measured signals

are vector values and vary in space and time; they need to be

further processed in models before a classifier can be applied

to distinguish critical events from non-occurrences. In these

instances, BN must be enhanced, e.g. to model the reliability

dependent on the lead time.

In part II, a qualitative or semi-quantitative evaluation is

proposed, to assess time-dependent human- and model-based

decision procedures. Although a concrete evaluation method,

such as the BN of part I, is not provided, the overall proce-

dure for the evaluation of non-automated EWSs is presented.

The reliability is estimated as a function of the lead time.

In step two, the increase in sensor failure probability before

the event must be addressed, as demonstrated in the Preonzo

case study. Another example is provided by the 2011 Tohoku

earthquake in Japan 2011, where a majority of the offshore

sensors failed before the tsunami hit the mainland (Wei et al.,

2013). It may be possible that no sensor data are available for

an event prediction in the critical phase. The accuracy of pre-

dictive models (step three) depends on the capacity of the

model, its applicability, and the availability of sensor data.

For natural hazard EWSs, it is common practice to express

the accuracy of models in terms of POD and PFA (see Sim-

mons and Sutter, 2009). As we demonstrate, the framework

enables the possibility of technical system component fail-

ures to be included into POD and PFA, to obtain a single

measure of EWS reliability. In some cases, e.g. for flood

models, the ability to spatially and temporarily predict the

event should be addressed in the reliability analysis (Wheater

et al., 2005). In these cases, the reliability is ideally described

by the prediction errors of the timely forecasted discharge

and not (only) in terms of POD and PFA. In non-automated

EWS, the final decision is made by humans, often together

with models applied on available sensor data. In most cases,

human decisions are not rule-driven and cannot be quantified

easily, but depend on factors such as experience, risk toler-

ance, and the environment in which the decision is made.

To account for those factors, a qualitative evaluation is pro-

posed, in which the performance of human decision-makers

is rated on predefined scales (e.g. low, medium, high) as is

common for the evaluation of structural mitigation measures

(Margreth and Romang, 2010). The final reliability should

then be evaluated in a semi-quantitative procedure where val-

ues for POD and PFA are assigned to different rating scales,

e.g. high POD (0.95–1.0), limited POD (0.8–0.95), and low

POD (0–0.8).

In part III, the effectiveness is quantified as a function of

POD and PFA. The reduction of the exposure probability and

vulnerability is a direct function of POD. In some instances,

the EWS effectiveness is directly proportional to POD, as

demonstrated in the Illgraben case study. The PFA deter-

mines the probability that persons comply with the warning

(POC). It is also used to estimate the costs caused by unnec-

essary evacuations. The costs and the effectiveness are main

criteria for the identification of optimal risk mitigation mea-

sures for natural hazards.

The overall user-friendliness of the novel framework can

be improved if a convenient software tool is provided. Such a

software tool can be developed following the three steps de-

fined by the framework approach. The reliability evaluation

for automated system parts can be done by running a BN

in the background. The user interface should be designed to

be user-friendly, including simple input fields in which e.g.

system components, their technical failure probabilities, and

their dependencies can be specified in order to optimize a

system. Finally, it could be embedded in a software environ-

ment in which risk reduction of an EWS can be compared to

alternative measures to support decision-makers in the iden-

tification of optimal mitigation measures.

5 Conclusion

With the proposed framework approach, the effectiveness of

EWSs is evaluated as a function of the reliability through

three main parts. To enable a structured evaluation of EWS, a

generic classification is provided, differentiating EWSs into
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alarm, warning, and forecasting systems according to their

degree of automation, lead time, and the availability of clear

precursors. In function of the EWS class, different parts of

the framework are selected. Each part is structured along

predefined steps, which are illustrated here by the results of

two case studies. The reliability assessment of the automated

part of EWS is performed quantitatively through a Bayesian

network. To evaluate non-automated EWS parts, which in-

volves the decision-making of experts, a qualitative or semi-

quantitative approach is generally preferable. However, as

exemplified in the Preonzo case study, a quantitative assess-

ment is possible and provides insight.

The framework should be tested and further developed

through additional case studies. Findings of these studies can

be implemented in the existing approach, which is flexible

enough to cover various needs.
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