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Abstract 18 

We investigate reliability and component importance in spatially distributed infrastructure networks 19 

subject to hazards characterized by large-scale spatial dependencies. In particular, we consider a selected 20 

IEEE benchmark power transmission system. A generic hazard model is formulated through a random 21 

field with continuously scalable spatial autocorrelation, to study extrinsic common-cause-failure events 22 

such as storms or earthquakes. Network performance is described by a topological model, which 23 

accounts for cascading failures due to load redistribution after initial triggering events. Network 24 

reliability is then quantified in terms of the decrease in network efficiency and number of lost lines. 25 

Selected importance measures are calculated to rank single components according to their influence on 26 

the overall system reliability. This enables the identification of network components that have the 27 

strongest effect on system reliability. We thereby propose to distinguish component importance related 28 

to initial (triggering) failures and component importance related to cascading failures. Numerical 29 

investigations are performed for varying correlation lengths of the random field, to represent different 30 

hazard characteristics. Results indicate that the spatial correlation has a discernible influence on the 31 

system reliability and component importance measures, whilst the component rankings are only mildly 32 

affected by the spatial correlation. We also find that the proposed component importance measures 33 

provide an efficient basis for planning network improvements.   34 
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1 INTRODUCTION 35 

The societal requirements on continuous and reliable power supply are increasing, yet regional blackouts 36 

in European and North American power grids have occurred frequently in the last two decades [1]. Short 37 

time blackouts alone lead to an estimated annual economic loss of between US$ 104 billion and US$ 38 

164 billion in the USA [2]. In many cases, natural hazards such as earthquakes, windstorms, floods or 39 

heat waves are the initial triggering events. Therefore, significant research is ongoing within the broad 40 

field of power grid restoration and strengthening against natural hazards. This research includes the 41 

modeling of network performance and cascading failure, network or system reliability and component 42 

importance, and common cause failures (CCF) in the context of natural hazards.  43 

In system reliability assessments, component importance measures are employed to rank components 44 

based on their influence on the overall system reliability. Most importance measures (IMs) currently 45 

utilized depend on the component’s function in the system and on the reliability of the component in 46 

question [3]. The resulting rankings can serve the identification of components to be repaired, 47 

strengthened, replaced, or alleviated from external or internal load impacts. Importance measures can 48 

further support the improvement of maintenance, operating methods, and network expansion planning. 49 

Several studies applied IMs specifically to network reliability analysis for electrical power systems [e.g., 50 

4, 5-9].  51 

Network vulnerability to natural hazards has been assessed and modelled synoptically in a number of 52 

studies [10-13]. Large-scale natural hazards, including windstorms or earthquakes, can lead to multiple 53 

simultaneous component failures, i.e. CCF. Natural hazards are characterized by spatial distributions 54 

and variability, which should be accounted for in the analysis of the reliability and IMs for infrastructure 55 

networks. Classical approaches for the modeling of CCF in system and network reliability analysis [e.g., 56 

14, 15, 16] do not consider spatial correlation in CCF. However, models for network reliability analysis 57 

under spatially correlated hazards have been developed [e.g., 11-13, 17, 18-23]. These studies focus on 58 

scenario-based reliability analyses of specific infrastructures subjected to hazards, but do not 59 

systematically investigate and quantify the effects of varying autocorrelation structures on system 60 

reliability. Andreasson, et al. [24] analyze a model for the Nordic power grid to study effects of 61 

correlated failures of power lines on the total system load shed. They conclude that with increased 62 

dependence among line failures, the expected value and the variance of the system load shed increases 63 

significantly. Rahnamay-Naeini, et al. [25] model correlated failures as spatial point processes and their 64 

effects on network reliability for communication networks in the US. They find that the network 65 

performance in terms of network efficiency decreases with increasing degree of correlation among 66 

component failures. Both Andreasson, et al. [24] and Rahnamay-Naeini, et al. [25] do not include the 67 

effect of cascading failures following initial triggering failure events in the network.  68 

The effect of CCF on the importance of components for system reliability has been studied for general 69 

networks by Bérenguer, et al. [26] and Tanguy [27]. The latter assessed the effect of generic CCF models 70 
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on the system reliability and various IMs in a network with 9 nodes and 14 lines. Tanguy [27] concludes 71 

that adding CCF effects to the model of a small sized network does not profoundly change the ranking 72 

of the system components. None of these studies investigates how spatial dependence influences the 73 

behavior of component importance measures in spatially distributed networks. A first approach in this 74 

direction is reported in Scherb, et al. [28], where we focus on the s-t connectivity for network 75 

performance assessment. Our results obtained for the IEEE118 bus system show that the spatial 76 

dependence should be explicitly considered if the correlation length of the hazard is in the range between 77 

the lengths of individual lines to the diameter of the entire system.  78 

Our aim is to investigate the reliability and component importance in spatially distributed infrastructures, 79 

accounting for the spatial dependence of the exogenous hazard and resulting cascading failure processes. 80 

The hazard event is idealized by a spatial random field, which is parametrized through the correlation 81 

length. The network is modeled as a complex graph and the network performance under disturbances is 82 

quantified through the efficiency measure of Latora and Marchiori [29]. The reliability and component 83 

importance rankings are determined in function of this parameter. The IMs are thereby formulated once 84 

with respect to failures caused directly by the hazard event, and once with respect to cascading failures. 85 

We compare these two IM formulations and find that the distinction made by the two formulations is 86 

key to identifying efficient network improvement strategies. Numerical investigations are performed on 87 

the IEEE 39 bus benchmark system for transmission power grids.  88 

2 METHODS 89 

2.1 Power grid represented as a complex graph  90 

Modeling the performance and assessing the reliability of large infrastructure systems is demanding in 91 

terms of both the modeling and the computation efforts, in particular if cascading effects are to be 92 

accounted for. 93 

To enhance computational efficiency, power grids can be represented as complex weighted graphs [30-94 

33]. Even though the reduction of a power grid to a complex graph leads to a simplified grid description 95 

[34], graph theory can provide insights into the degree of connectivity of a power grid and help identify 96 

potential critical aspects for a first reliability estimation with a level of accuracy that is comparable to 97 

traditional electrical engineering approaches [32, 35-38].  98 

Applying a complex graph representation, we describe the power grid by a weighted and undirected 99 

graph 𝐺, consisting of a set of 𝑁 nodes (vertices) and a set of 𝐾 lines (edges). In a graph representation 100 

of a power transmission grid, nodes typify generation, transmission, and distribution buses, or 101 

substations. Lines model the transmission cables and transformers. The 𝑛 × 𝑛 adjacency matrix 𝐀 =102 

 {𝑎𝑖𝑗} of the graph describes its topology. The entry 𝑎𝑖𝑗 takes value zero if no connection between nodes 103 
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𝑖 and 𝑗 exist. If there is a link between 𝑖 and 𝑗, the entry 𝑎𝑖𝑗 is the weight assigned to the line. Here, the 104 

reactance values of the transmission lines are used as weights. The reactance of a transmission line is an 105 

indicator of the amount of power flowing through a line under the assumption of lossless conditions [39, 106 

40]. The lower the reactance of a path between two nodes, the more power may flow through the path. 107 

Because the graph is undirected, it is 𝑎𝑖𝑗 = 𝑎𝑗𝑖.  108 

2.2 Network performance and reliability 109 

In network analysis based on graph theory, performance measures are derived from topological 110 

properties of networks [40-42]. For instance, Motter and Lai [43] define the load of a node as the total 111 

number of shortest paths passing through the node, which corresponds to the betweenness index. This 112 

load can increase when another node of the network fails, possibly leading to the overloading of 113 

additional nodes. The model has been further developed and extended with the concept of graph 114 

efficiency [29, 41]. Dwivedi, et al. [40] modified the betweenness index by considering the total number 115 

of shortest paths through an edge instead of a node. This modeling approach has been used to model 116 

cascading failures in power grids [e.g., 40, 44].  117 

2.2.1 Efficiency of a power network as performance measure 118 

The efficiency of a single line 𝑒𝑖𝑗 is defined as the inverse of its reactance, 𝑎𝑖𝑗 (with 𝑎𝑖𝑗 > 0): 119 

𝑒𝑖𝑗 =
1

𝑎𝑖𝑗
 [

1

Ω
] (1) 

The efficiency of a path between two nodes is the sum of the efficiencies of the lines that constitute the 120 

path. In defining the efficiency of the network, it is assumed that the connection between any pair of 121 

nodes 𝑖 and 𝑗 is governed by its most efficient path. We denote with 𝜖𝑖𝑗 the maximum efficiency of all 122 

paths between 𝑖 and 𝑗; its inverse is 𝑑𝑖𝑗 = 1/𝜖𝑖𝑗, the shortest electrical distance between 𝑖 and 𝑗 [40]. If 123 

there is no connection between two nodes, i.e. if they are disconnected, 𝜖𝑖𝑗 is set to zero. The shortest 124 

paths for all node pairs in a weighted graph can be obtained efficiently through the Floyd-Warshall 125 

algorithm [45]. 126 

The overall efficiency of the whole network is defined following Latora and Marchiori [29] as the sum 127 

over all 𝜖𝑖𝑗: 128 

𝐸(𝐺) =  
1

𝑁(𝑁 − 1)
∑ 𝜖𝑖𝑗  

𝑖≠𝑗∈𝐺

 
(2) 
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2.2.2 Cascading failure model 129 

Based on Motter and Lai [43], the cascading failure model describes the evolution of failures in the 130 

network, considering the redistribution of loads in the network following initial line failures. In a first 131 

step, the loads on the network lines are determined from the analysis of the intact network, i.e. at time 0. 132 

The initial load 𝐿𝑘(0) on a line 𝑘 is defined as the total number of most efficient paths between any 133 

node pair passing through that line [41, 43].  134 

Each line 𝑘 is characterized by a capacity 𝐶𝑘, which is proportional to its initial load: 135 

𝐶𝑘 = 𝛼 𝐿𝑘(0), 𝑘 = 1,2, … , 𝐾,  (3) 

where 𝛼 ≥ 1 is the tolerance parameter of the network that quantifies the ratio of line capacity to the 136 

initial line load. It corresponds to a safety factor of the network. In a real network, 𝛼 might vary among 137 

different lines. 138 

Cascading failures are triggered by initial line failures. The interest here is in initial failures caused by 139 

a natural hazard event, independent of the load and capacity of the lines. These initial failures are 140 

reflected in an updated adjacency matrix 𝐀, in which the entries for all failed lines are set to zero. The 141 

network is then re-analyzed with the updated adjacency matrix. In particular, the most efficient paths 142 

among all node combinations are evaluated, and the new loads 𝐿𝑘(1) in all lines 𝑘 = 1, … , 𝐾 are 143 

computed. It is assumed that overloaded lines fail, i.e. all lines for which 𝐿𝑘(1) > 𝐶𝑘 fail. The entries 144 

in the adjacency matrix corresponding to these lines are set to zero, and the process is repeated until it 145 

converges, i.e. until in one step no new line overloads occur.  146 

Finally, the efficiency of the resulting (damaged) network is computed through Eq. (2). To obtain a 147 

normalized measure of network damage, the efficiency of the damaged network is divided by the 148 

efficiency of the intact network: 149 

𝐸𝑛𝑜𝑟𝑚 =  
𝐸(𝐺𝑑𝑎𝑚𝑎𝑔𝑒𝑑)

𝐸(𝐺)
  (4) 

2.2.3 Network reliability definition 150 

As described in the previous section, network performance is measured in terms of change in the overall 151 

graph efficiency. A system failure event 𝐹𝑆 is defined as the overall graph efficiency falling below a 152 

threshold 𝑡𝐸. In this way, a binary system definition is introduced, with binary component and system 153 

states:  154 

𝐹𝑆 = {𝐸(𝐺) < 𝑡𝐸} (5) 

The system reliability is defined as 155 
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𝑝𝑆 = 1 − Pr(𝐹𝑆). (6) 

This binary definition provides only partial information on the system performance and it is dependent 156 

on the definition of the 𝑡𝐸. It is introduced here to facilitate the use of classical reliability importance 157 

measures.  158 

2.3 Component importance  159 

We investigate the effect of spatial correlation in hazards on component importance rankings following 160 

different importance measures (IMs). Classical reliability importance measures describe either how the 161 

strengthening of individual components influences the system reliability, or they measure the impact of 162 

component failures on system reliability [3, 6, 46]. Since the system performance is not inherently 163 

binary, we include additionally an importance measure based on the effect of the component reliability 164 

on the graph efficiency.  165 

2.3.1 Birnbaum’s measure for a binary system 166 

The Birnbaum’s measure (BM) describes the sensitivity of system reliability 𝑝𝑠 to a change in the 167 

component reliability 𝑝𝑖 = Pr(𝑋𝑖 = 1): 168 

𝐵𝑀𝑖 =
∂𝑝𝑆

∂𝑝𝑖
 

=  Pr(𝑋𝑆 = 1|𝑋𝑖 = 1) −  Pr(𝑋𝑆 = 1|𝑋𝑖 = 0) 

(7) 

Following the second equality in Eq. (7), the BM can be computed as the difference between the 169 

conditional probability that the system is functioning given component 𝑖 is functioning and the 170 

conditional probability that the system is functioning given component 𝑖 has failed. This shows that BM 171 

is independent of individual component reliability, which can be seen as a weakness of this IM [3]. 172 

However, the BM can be used to differentiate between those components that influence the system 173 

reliability significantly and those that do not. The IM can thus serve to identify components of the 174 

network worthy of further detailed investigation. 175 

2.3.2 Criticality importance for a binary system 176 

The criticality importance (CI) measure of a component 𝑖 is the probability that failure of component 𝑖 177 

is the cause of system failure, conditional on system failure having occurred. It can be defined as a 178 

function of BM: 179 

𝐶𝐼𝑖 =  
𝐵𝑀𝑖 (1 − 𝑝𝑖)

1 − 𝑝𝑆
 (8) 
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While the BM is related mainly to the effect of increasing the component reliability, the CI includes the 180 

ratio of component to system unreliability [3]. Based on CI rankings, a less reliable component is 181 

deemed more critical. 182 

2.3.3 Component importance based on graph efficiency sensitivity (ES) 183 

We additionally investigate an efficiency-based importance measure that does not require the definition 184 

of a (binary) system failure event as for BM and CI. It describes the change in the expected value of the 185 

overall graph efficiency with a change in the component failure probability: 186 

𝐸𝑆𝑖 =
∂E[𝐸𝑛𝑜𝑟𝑚]

∂𝑝𝑖
 (9) 

By writing the expected value of the normalized efficiency as 187 

E[𝐸𝑛𝑜𝑟𝑚] =  E[𝐸𝑛𝑜𝑟𝑚|𝑋𝑖 = 1] Pr(𝑋𝑖 = 1) +  E[𝐸𝑛𝑜𝑟𝑚|𝑋𝑖 = 0] Pr(𝑋𝑖 = 0) 

=  E[𝐸𝑛𝑜𝑟𝑚|𝑋𝑖 = 1]𝑝𝑖 +  E[𝐸𝑛𝑜𝑟𝑚|𝑋𝑖 = 0](1 − 𝑝𝑖), 
(10) 

it is seen that the efficiency measure can be computed as 188 

𝐸𝑆𝑖 = E[𝐸𝑛𝑜𝑟𝑚|𝑋𝑖 = 1] −  E[𝐸𝑛𝑜𝑟𝑚|𝑋𝑖 = 0]. (11) 

A deterministic version of this measure can be found in Latora and Marchiori [47], where the importance 189 

of a component is measured in analogy to a (𝑛-1)-contingency approach. They measure the decrease in 190 

network efficiency after the component is removed from the graph. 191 

2.3.4 Importance measures in cascading system failure events 192 

The above IM all include a derivation with respect to the component probability of failure. In cascading 193 

system failure events triggered by (external) natural hazard events, it is relevant to distinguish (1) the 194 

failures of components caused directly by the hazard event and (2) the failures of components caused 195 

by the cascading effect. We refer to the former as the initial component failures and the latter as the 196 

cascading component failures. Additionally, final component failures include both failure types.  197 

All the above IM (as well as others) can be defined with respect to either of these three component 198 

failure definitions. To distinguish these measures, we introduce the superscripts (𝑖), (𝑐) and (𝑓) to 199 

denote the IMs relating to initial, cascading and final component failures. Which of these IMs should be 200 

used depends on the aim of the study. If the interest is in identifying components to be reinforced against 201 

natural hazard events, the 𝐶𝐼(𝑖) or 𝐸𝑆(𝑖) should be employed. Conversely, 𝐶𝐼(𝑐) or 𝐸𝑆(𝑐) should be the 202 

basis for identifying components for increasing capacity against overloading.  203 

The measure of system performance employed in the IMs (either 𝑝𝑆 or E[𝐸𝑛𝑜𝑟𝑚]) should always relate 204 

to the final performance of the system following the initial failures and the cascading effects.  205 
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2.4 Generic hazard representation through a random field model of component failure 206 

probabilities  207 

In this contribution, a strongly idealized stochastic random field model is introduced for describing line 208 

failures originating from large scale natural hazards (e.g. wind loads). The model describes the 209 

component failure probabilities 𝑝𝐹𝑘
 of the lines during a hazard event through a random field. Let 𝑍 210 

denote a standard normal random field, and 𝑍𝑘 its value at the midpoint of line 𝑘. The probability of 211 

failure of line 𝑘 during the hazard event is obtained in function of 𝑍𝑘 through the following 212 

isoprobabilistic transformation: 213 

𝑝𝐹𝑘
= 𝐹𝑃𝐹𝑘

−1 [Φ(𝑍𝑘)],  (12) 

where Φ is the standard normal CDF and 𝐹𝑃𝐹𝑘

−1  is the inverse CDF of the component failure 214 

probability 𝑃𝐹𝑘
. It is here modelled by the beta distribution, which is a common choice for characterizing 215 

probabilities. 216 

In the above formulation, the spatial correlation between the failure probabilities at two locations 𝑘 217 

and 𝑙, 𝑝𝐹𝑘
 and 𝑝𝐹𝑙

, is represented through the underlying standard Gaussian random field 𝑍, by means 218 

of the following covariance function: 219 

𝐶𝑧(ℎ) =  exp (−
ℎ2

𝑟2),  (13) 

where ℎ [km] is the Euclidean distance between the locations of lines 𝑘 and 𝑙, and 𝑟 [km] is the 220 

correlation length. The correlation structure of the resulting beta random variables is approximately 221 

described by the autocorrelation function of Eq. (13); see also Der Kiureghian and Liu (1986).  222 

Through variations of 𝑟, a range of different scenarios of hazard events can be modelled: from random 223 

and mutually independent failure events (𝑟 = 0), to large-scale fully correlated failure probabilities with 224 

spatially constant failure probabilities (𝑟 = ∞). The latter case reflects a situation in which the hazard 225 

is the same throughout the entire area, but the component failure events are still independent conditional 226 

on the hazard. When interpreting results for intermediate correlation lengths 𝑟, it is the relative value of 227 

𝑟 compared to the size of the infrastructure system that determines the system behavior.  228 

The employed generic model with its one parameter (correlation length) is not able to address the 229 

specifics of a particular hazard type. Clearly, a spatial dependence model of a heat wave differs from 230 

that of a wind storm, and both are significantly more complex than the generic model used here. If 231 

desired, for specific hazards and network locations, parametric or numerical models can be employed 232 

instead, which more accurately reflect their specific dependence structure [11, 12, 48]. However, the use 233 

of specific hazard models impedes general conclusions. In particular, any specific spatially distributed 234 

hazard is described by a non-homogenous random field, and the effects of the change in the mean hazard 235 
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intensity are superimposed on the effects of dependence. This motivates the use of the simple generic 236 

hazard model in this study.  237 

3 NUMERICAL INVESTIGATIONS 238 

3.1 Implementation 239 

The case study is conducted for the IEEE 39 bus benchmark system for transmission power grids. It has 240 

been designed to be representative of the New England transmission power network [49], and it was the 241 

subject of a large number of studies [e.g., 50, 51]. The network consists of 39 buses including 10 242 

generator buses, which are all modelled as leaf nodes. There are 46 transmission lines and transformers 243 

in the network. By assigning coordinates to the nodes, the network is projected onto a hypothetical study 244 

area of about 500 x 500 km2 (Figure 1). The mean line length is 69 km, with a minimum of 25 km and 245 

a maximum of 124 km. The graph efficiency value of the intact IEEE 39 network is 0.286. 246 

Dwivedi, et al. [40] found that the IEEE 39 is a rather stable and reliable system. They conclude that the 247 

system is robust with respect to random attacks; there is hardly any effect on the efficiency if lines are 248 

randomly selected and removed.  249 

The left-hand side of Figure 1 shows the lines weighted by their reactance values, and the right-hand 250 

side of Figure 1 indicates the line capacities, which are proportional to the number of shortest paths 251 

passing through the lines following Eq. (3). As expected, lines with lower reactance are more likely to 252 

attract shortest paths, and vice versa. 253 

 254 

Figure 1: Plots of the IEEE 39 bus system with geo referenced nodes. Left: line thicknesses indicate the reactance values of the 255 
lines; right: thicknesses indicate the line capacities, which are proportional to the number of shortest paths passing through the 256 
lines.  257 

We fix the mean component failure probability during a hazard event at 0.077 and its standard deviation 258 

at 0.054. These values are motivated by an earlier study on hurricane impacts on component failure 259 

probabilities and network damages in electrical transmission systems [48]. 260 
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The correlation length 𝑟 of the generic hazard model is varied to investigate the effect of spatial 261 

correlation on system failure events, component importance, graph efficiency, and cascading depth, i.e. 262 

mean number of cascading steps before the system stabilizes. Because an exact calculation of the 263 

reliability of a general network with more than about 25 lines is an NP-hard problem [52], and because 264 

we want to consider a variety of parameter constellations, our study is based on a Monte Carlo simulation 265 

with at least 104 samples. All results are calculated with an efficiency threshold of 𝑡𝐸 = 0.9 and a 266 

tolerance parameter 𝛼 = 1.5, unless otherwise noted.  267 

3.2 Results 268 

3.2.1 Spatial random field realizations 269 

Sample realizations of the spatial random field describing the component failure probability 𝑝𝐹𝑖
 for four 270 

selected correlation length values are visualized in Figure 2. With increasing correlation length, random 271 

field realizations are becoming increasingly homogeneous.  272 

 273 

Figure 2: Spatial random field realizations of component failure probabilities for selected values of the correlation length, 274 
together with the projected IEEE 39 bus system; scale unit is km.  275 

3.2.2 Network reliability as a function of the hazard correlation length 276 

The initially failed lines following a hazard event are compared with the number of finally failed lines 277 

after the cascading process. In Figure 3 and Table 1, this comparison is performed for the case of 278 

independent component failure probabilities (𝑟 = 0) and fully dependent component failure 279 

probabilities (𝑟 = ∞). With increasing correlation length (𝑟 → ∞), the variance of the number of 280 

initially failed lines increases. This effect is weaker for the finally failed lines. The mean number of 281 
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initially failed lines is the same for all correlation lengths (by definition); however, the expected number 282 

of finally failed lines increases slightly with decreasing correlation length. This effect can be explained 283 

by the fact that the cascading failure process has the largest effect when just a few lines have failed 284 

initially, which is more probable with no or little dependence. 285 

   286 

Figure 3: Finally versus initially failed lines for the case of independence (left) and full dependence (right); based on 10,000 287 
samples with 𝛼 = 1.5; grey circles indicate the frequency of the data points in the sample space.  288 

Table 1: Mean and standard deviation of the number of initially and finally failed lines; comparison of the independence and 289 
full dependence assumptions.  290 

Failed lines  Parameter Independence (𝑟 = 0) Full dependence (𝑟 = ∞) 

Initially Mean 3.54 3.57 

  Standard deviation 1.81 3.10 

Finally Mean 7.94 7.28 

  Standard deviation 4.69 5.50 

Means and standard deviations of graph efficiencies 𝐸𝑛𝑜𝑟𝑚(𝐺𝑖) are shown in Figure 4, as a function of 291 

the correlation length 𝑟 and the tolerance parameter 𝛼. The left-hand side of Figure 4 shows that the 292 

overall graph efficiency is increasing with the correlation length 𝑟. This result, which may at first glance 293 

appear counterintuitive, is consistent with the effect shown in Figure 3. With increasing correlation 294 

length it is more likely that no line failures or a larger number of line failures occur initially; in both 295 

cases, cascading processes will be attenuated or will not be triggered at all. The vulnerability of the 296 

system is larger for small values of 𝛼. For systems with limited vulnerability (𝛼 larger than 3.0), the 297 

correlation length has only a weak effect on the mean efficiency following the hazard, because cascading 298 

effects are limited.  299 

The standard deviation of the efficiency increases significantly with increasing correlation length 300 

(Figure 4 right). This can be explained with the increasing variance in the component failure probability, 301 

which is observed for higher values of 𝑟 (compare with Figure 3 and Table 1).  302 
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Changes in the mean and standard deviation occur mainly in the range 100 – 1000 km, which 303 

corresponds to the order of magnitude of the network size. For correlation lengths smaller than 100 km, 304 

the behavior is similar to the uncorrelated case, whereas for correlation lengths larger than 1000 km, it 305 

approaches that of the fully correlated case. The results for small correlation lengths are affected by the 306 

simplified discretization of the lines, in which the failure probability of the lines is evaluated at the line 307 

midpoints. When considering the distributed nature of the lines, the failure probabilities of the individual 308 

lines would increase with decreasing correlation.  309 

 310 

Figure 4: Network performance as function of the correlation length with varying 𝛼 value. Left: mean overall graph 311 
efficiency E[𝐸𝑛𝑜𝑟𝑚]; right: standard deviation of overall graph efficiency; based on 10,000 samples per correlation length value 312 
and 𝛼 value combinations.  313 

3.2.3 Component importance rankings 314 

Figure 5 visualizes the criticality importance (CI) with respect to initial failures (𝐶𝐼(𝑖)) and cascading 315 

failures (𝐶𝐼(𝑐)) for a correlation length of 100 km. The two rankings differ significantly, indicating that 316 

lines that are important for the initialization of network damage do not correspond to the lines that are 317 

responsible for the further propagation of cascading overloads. Initial line failures are most important in 318 

lines which are centrally located in the network graph and which have high initial loads. Cascading 319 

failures are most important in lines with low initial load and capacity, as these are more likely to be 320 

overloaded (see Figure 1). As expected, leaf lines are ranked as the least important ones, for initial as 321 

well as cascading failure. The resulting 𝐶𝐼(𝑓) values are close to the 𝐶𝐼(𝑐) values in the right-hand side 322 

of Figure 5 and are therefore not depicted here. BM importance measures lead to a ranking very similar 323 

to CI, these results are also omitted here.  324 
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 325 

Figure 5: CI weighted graph at a correlation length of 100 km. Left: 𝐶𝐼(𝑖) with respect to initial failures; right: 𝐶𝐼(𝑐) with respect 326 
to cascading failures; with 𝛼 = 1.5 and 𝑡𝐸 = 0.9; based on 10,000 samples. 327 

In Figure 6, ES importance measures are summarized. Overall, these show a similar pattern as the CI of 328 

Figure 5. The network topology determines the 𝐸𝑆(𝑖) ranking; lines with a bypass are lower ranked, 329 

lines without bypass are in the middle range, and lines that link clusters with each other are highly 330 

ranked. The important lines with respect to cascading failures, i.e. the 𝐸𝑆(𝑐) values, are more uniformly 331 

distributed in the network. This effect is similar to the difference between 𝐶𝐼(𝑖) and 𝐶𝐼(𝑐).  332 

 333 

Figure 6: ES importance weighted graph at a correlation length of 100 km. Left: 𝐸𝑆(𝑖) with respect to initial failures; right: 334 
𝐸𝑆(𝑐) with respect to cascading failures; with 𝛼 = 1.5; based on 10,000 samples. 335 

We also compared the IM values to the betweenness index as shown in Figure 1, as an example of a 336 

topological measure. Whereas the betweenness index exhibits correlation coefficients in the order of 337 

0.70 with 𝐸𝑆(𝑖) and 𝐶𝐼(𝑖), its dependence with 𝐶𝐼(𝑐) and 𝐸𝑆(𝑐) is significantly less pronounced. These 338 

results indicate that the purely topological betweenness index is only partially suitable as a proxy for 339 

IMs based on the system performance. 340 

Figure 7 shows the effect of the hazard correlation length on CI component importance rankings. While 341 

the values of 𝐶𝐼(𝑖) and 𝐶𝐼(𝑐) change significantly with varying correlation length, their respective 342 

rankings change only slightly. As in Figure 4, changes in CI occur mainly in the range 100 – 1000 km, 343 
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corresponding to the network size. The five to ten highest ranked lines are essentially the same, 344 

independent of the variation in the correlation length. The difference in the rankings of 𝐶𝐼(𝑖) to those of 345 

𝐶𝐼(𝑐) reflect the differences observable in Figure 5. As an example, line 9-39 is low ranked in importance 346 

with respect to failures caused by the hazard, but highly ranked in importance with respect to the 347 

cascading failure process.  348 

 349 

Figure 7: CI as function of correlation length. Left: 𝐶𝐼(𝑖) with respect to initial failures; right: 𝐶𝐼(𝑐) with respect to cascading 350 
failures; with 𝛼 = 1.5 and 𝑡𝐸 = 0.9 each and based on 10,000 samples per correlation length value. 351 

It is found that the rankings based on 𝐶𝐼(𝑓) are close to those based on 𝐶𝐼(𝑐) and are therefore not 352 

depicted here. Furthermore, BM and CI deliver similar results, and the five most important components 353 

coincide. The CI is based on the BM, while it additionally includes the reliability of the individual 354 

components. Here, CI is similar to BM because the component reliabilities with respect to hazardous 355 

extrinsic impacts are identical. This is not the case after cascading failure processes: a lower correlation 356 

between 𝐵𝑀(𝑐) and 𝐶𝐼(𝑐) is observed in comparison to that between 𝐵𝑀(𝑖) and 𝐶𝐼(𝑖). 357 

Figure 8 depicts the rankings based on 𝐸𝑆(𝑖) and 𝐸𝑆(𝑐). The pattern is similar to the one of CI and BM, 358 

even though different lines are identified as the most important ones.  359 

 360 

Figure 8: ES as function of correlation length. Left: 𝐸𝑆(𝑖) with respect to initial failures; right: 𝐸𝑆(𝑐) with respect to cascading 361 
failures; with 𝛼 = 1.5 each and based on 10,000 samples per correlation length value. 362 
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As Tanguy [27] observes in his study on general CCF models and their influence on importance 363 

measures, adding CCF effects to the description of the IEEE system does not profoundly change the 364 

ranking of the lines when comparing to the independence assumption for all components. Our results 365 

indicate that this also holds in essence for spatial correlation effects under consideration of cascading 366 

failure processes.  367 

In addition, we assessed the sensitivity of the results to changes in the tolerance parameter 𝛼 and the 368 

efficiency threshold 𝑡𝐸 utilized in the definition of system failure. For vulnerable systems (e.g., 𝛼 < 2 369 

and 𝑡𝐸 >  0.7), we find that the IM values are sensitive to the correlation length. In contrast, for less 370 

vulnerable systems (e.g., 𝛼 > 2 and 𝑡𝐸 <  0.5), the change of the IM values with the correlation length 371 

is less pronounced. In all cases, the ranking remained consistent among different correlation lengths.  372 

3.2.4 Results for IEEE118 373 

Additional numerical investigations were performed on the larger IEEE 118 network [49]. We do not 374 

report the results in detail, because they are consistent with the results obtained for the IEEE 39 network. 375 

The dependence of network reliability on hazard correlation length in the IEEE 118 exhibits the same 376 

trends as presented above. The clear distinction between the initial component importance rankings 377 

(𝐶𝐼(𝑖), 𝐸𝑆(𝑖)) and the cascading component importance rankings (𝐶𝐼(𝑐), 𝐸𝑆(𝑐)) is also observed for 378 

IEEE118. 379 

3.3 Strategies for improving network performance under hazards 380 

Ultimately, the IMs should support decision making. To this end, we investigate network improvement 381 

strategies based on the proposed IMs, by measuring the effect of strengthening or increasing capacity of 382 

selected lines on the network overall efficiency of the IEEE 39 network. Two network improvement 383 

strategies are considered:  384 

1) Line strengthening of the five most important lines ranked by either 𝐶𝐼(𝑖) or 𝐸𝑆(𝑖), corresponding to 385 

an increase in the resistance against the hazardous (wind) load. Line strengthening is modeled by 386 

reducing the initial line failure probability to 10% of its original value. 387 

2) Increase of the line capacity of the five most important lines ranked by either 𝐶𝐼(𝑐) or 𝐸𝑆(𝑐), 388 

corresponding to an increase in the resistance of the lines against overloading in the cascading failure 389 

process. The capacity increase is modeled by increasing the tolerance parameter 𝛼 by a factor of three. 390 

In Figure 9, we compare the resulting mean efficiency in function of the hazard correlation length. The 391 

results in Figure 9 (left) show that strengthening lines according to 𝐸𝑆(𝑖) and 𝐶𝐼(𝑖) rankings lead to 392 

similarly increased mean efficiencies, even though the rankings of the two measures do not coincide in 393 

their respective five highest ranked lines. For comparison, we also compute the resulting mean efficiency 394 
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when lines are selected for strengthening following the 𝐸𝑆(𝑐) and 𝐶𝐼(𝑐) ranking. Such a strengthening 395 

of lines does not significantly affect the system performance, highlighting the suitability of 𝐸𝑆(𝑖) 396 

and 𝐶𝐼(𝑖) rankings for prioritizing network components for strengthening against hazard impacts. 397 

Figure 9 (right) shows that the largest improvement of the resulting mean efficiency from increasing 398 

line capacity is obtained by selecting components according to 𝐸𝑆(𝑐). The ranking based on  𝐶𝐼(𝑐) leads 399 

to significantly lower gain in mean efficiency. As expected, 𝐸𝑆(𝑖) and 𝐶𝐼(𝑖) rankings are not suitable for 400 

identifying components for line capacity increase.  401 

 402 

Figure 9: Mean efficiency in function of correlation length for different network improvement strategies. Left: line 403 
strengthening (decreasing the initial failure probability during the hazard event) of five selected lines; right: increasing line 404 
capacity (increasing the tolerance parameter 𝛼) of five selected lines. 405 

4 CONCLUSION 406 

This study is a contribution to a fast, preliminary reliability assessment of large infrastructure networks. 407 

Its aim is an improved understanding of the importance of components in a network under large-scale 408 

spatially dependent hazards and internal cascading failure processes in the network. The well-known 409 

and widely used efficiency measure by Latora and Marchiori [29] and the model for cascading failure 410 

by Crucitti, et al. [41] have been implemented.  411 

To address the specifics of the cascading failure process, we propose the use of separate importance 412 

measures, considering on the one hand initial (triggering) component failures caused directly by the 413 

hazard event, and on the other hand cascading component failures. This differentiation reflects the fact 414 

that different measures are necessary for increasing component reliability with respect to the two failure 415 

modes. As our results show, the component importance rankings differ significantly between the two 416 

strategies. The importance of lines with respect to failures caused by the initial hazard is related to their 417 

initial capacity (compare Figure 6 with Figure 1). The components that are of largest importance for the 418 

cascading process are lines with smaller capacity, which are located parallel to lines with the highest 419 
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capacities. In both cases, the lines identified as the most important ones differ significantly from the 420 

ranking based solely on a topological measure such as the betweenness index shown in Figure 1.  421 

An application of the proposed importance measures for selecting lines for strengthening or capacity 422 

increase demonstrated their suitability for defining network improvement strategies.  423 

The overall reliability is affected by the spatial dependence of the hazard process. Our study shows that 424 

an increasing spatial dependence, as expressed by the correlation length, leads on average to smaller 425 

system failure events (if the mean failure rate in the lines is fixed). This result appears counterintuitive 426 

because in reality larger spatial dependence is often associated with overall larger failure rates, which 427 

however are kept constant for all correlation lengths in our study. In contrast to the network reliability, 428 

none of the component importance rankings is noticeably affected by the dependence structure. This 429 

seems to indicate that component importance analysis can be performed without considering the spatial 430 

dependence explicitly. However, in the analysis of a real system, the change in the mean failure rate 431 

with spatial location must be included, hence a detailed analysis of the hazard is nevertheless necessary. 432 
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