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Abstract 12 

Loss prediction models are an important part of wildfire risk assessment, but have received only 13 

limited attention in the scientific literature. Such models can support decision making on 14 

preventive measures targeting fuels (e.g. thinning, pruning, mechanical treatments) or potential 15 

ignition sources (e.g. public behaviour), on fire suppression (e.g. firefighting crew allocation), 16 

on mitigation of consequences (e.g. property insurance, education of the citizens to make their 17 

homes fire resistant) and on effective allocation of funds. This paper presents a probabilistic 18 

model for predicting wildfire housing loss at mesoscale (1 km2) using Bayesian network (BN) 19 

analysis. The BN enables the construction of an integrated model based on the causal 20 

relationships among the influencing parameters jointly with the associated uncertainties. Input 21 

data and models are gathered from literature and expert knowledge, to overcome the lack of 22 
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housing loss data in the study area. Numerical investigations are carried out with spatio-23 

temporal datasets for the Mediterranean island of Cyprus. The BN is coupled with a GIS and 24 

the resulting estimated house damages for given fire hazard are shown in maps. The BN model 25 

can be attached to a wildfire hazard model to determine wildfire risk in a spatially explicit 26 

manner. The developed model is specific to areas with house characteristics similar to those 27 

found in Cyprus, but the general methodology is transferable to any other area, as well as other 28 

damages.  29 

Keywords: wildfire damages, vulnerability, Bayesian networks, Mediterranean  30 

Introduction 31 

Wildfire risk prediction is an important tool for fire management planning because it can justify 32 

and guide fire risk management measures, including preventive measures targeting fuels (e.g. 33 

thinning, pruning, mechanical treatments, prescribed burning) (Mason et al. 2006; Ager et al. 34 

2010) or elimination of potential ignition sources (e.g. activities of the public), fire suppression 35 

(e.g. firefighting crew allocation), and mitigation of consequences (e.g. property insurance, 36 

education of the citizens to make their homes fire resistant). Wildfire risk is commonly defined 37 

as the expected net value loss in a particular geographic area and time period (Finney 2005). In 38 

recent years, significant effort has been devoted to fire risk analysis across wildlands leading to 39 

methodological advances and the development of advanced tools (Finney 2006; Miller and 40 

Ager 2013).  41 

In most forest landscapes, the highest wildfire risks are associated with houses damaged by 42 

forest fires. Therefore, the development of a method for assessing housing losses is an important 43 

step towards improved decision support for the authorities and private owners. Significant 44 

research efforts are devoted to improved prediction of housing losses due to wildfires. Studies 45 
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focus on the analysis of past house losses, either concentrating on the documentation of the 46 

events (Lynch 2004;Xanthopoulos 2008) or providing in-depth analysis and discussion 47 

(Gibbons et al. 2012; Syphard et al. 2012). Other studies use spatial simulation of fires (Ager 48 

et al. 2010;Salis et al. 2013;Mitsopoulos et al. 2015;Platanianaki et al. 2015). Only few studies 49 

compare model predictions to real world data (Cohen 2000, Cohen 2004).  50 

In general, it has been found that house losses due to wildfires are mainly influenced by fire 51 

characteristics (fire intensity, spread rate, burning ember density), by house location, 52 

surroundings (defensible space, distance from forest, fuel accumulation), design and 53 

construction materials, and by fire suppression effectiveness. The fire impact may be at various 54 

intensity levels and may include convective heating or direct contact of the flames, radiant heat 55 

flux from nearby flames and airborne firebrands (Cohen 2000;Koo et al. 2010;Mell et al. 2010). 56 

Focusing on the effect of meteorology on fire characteristics, Blanchi et al. (2010) analyzed the 57 

relationship between house loss and the fire weather under which it occurred and found that 58 

virtually all of the loss occurred under extreme conditions. Harris et al. (2012) considered a 59 

measure of the power of the fire (PWR), calculated as the product of Byram’s fireline intensity 60 

(Byram 1959) with a portion of the length of the fire perimeter, and showed the existence of a 61 

strong relationship between community loss and PWR. Gibbons et al. (2012) examined the 62 

effectiveness of fuel management on decreasing house losses and found that all fuel treatments 63 

were more effective when undertaken closer to houses.  64 

The vulnerability of a house is usually determined by its weakest point (Xanthopoulos 2004). 65 

In most cases, houses either survive a fire or are totally destroyed; partial damages are less 66 

common (Blong 2003). Structure flammability depends on exterior construction materials (e.g. 67 

roof type and roof material influence the ignition by firebrands (Koo et al. 2010;Gibbons et al. 68 

2012) and construction design (e.g. number, size and characteristics of openings). Fire resistant 69 

roof materials are, for example, metal, clay tile and asphalt shingles (FSBC 2003). In addition, 70 



4 
 

houses are not only a loss potential, but also serve as potential fuels (Cohen 2000). Therefore, 71 

building density is also included in studies of house losses due to wildfires (Gibbons et al. 72 

2012;Syphard et al. 2012). However, for areas where houses are built with less flammable 73 

materials than those in Northern America and Australia, such as the Mediterranean region, this 74 

may be of less relevance (Xanthopoulos et al. 2012). Poor firefighter access may explain why 75 

housing clusters with fewer roads are more vulnerable (Cohen and Butler 1998). Finally, there 76 

is significant variability in the behavior under fire even for houses with the same characteristics. 77 

Occasionally, houses with low ignitability can be destroyed even during low intensity fire 78 

events, whereas houses with high ignitability can sometimes survive high intensity fires (Cohen 79 

2000). 80 

Despite the insights into wildfire-related housing loss that is provided by these studies, there is 81 

currently no broadly accepted generalized predictive model that would allow performing cost 82 

assessments at sites other that the ones for which studies have been carried out. Reports on 83 

community wildfire protection plans use damage rating systems to assess consequences 84 

(Ohlson et al. 2003;OFD 2004;ECONorthwest 2007). Rating systems are also often used to 85 

evaluate the vulnerability of items at risk on the basis of expert knowledge (Tutsch et al. 86 

2010;Penman et al. 2013).  87 

The interdisciplinary domain knowledge needed to predict house loss requires model 88 

frameworks that can account for the interdependencies among the involved processes. BNs are 89 

well suited to combine interdisciplinary models (Straub and Der Kiureghian 2010). They 90 

combine expert knowledge with quantitative models and data and can be modified when 91 

additional information is available. For these reasons, BNs are an ideal modeling framework 92 

for a quantitative system for the assessment of the consequences of a natural hazard. For 93 

example they have been used in assessing volcano hazard (Aspinall et al. 2003), rock-fall 94 

hazard (Straub 2005), seismic hazard (Bayraktarli et al. 2005;Li et al. 2012; Bensi et al. 2014), 95 
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avalanches (Grêt-Regamey and Straub 2006), floods (Vogel et al. 2013), tsunami (Blaser et al. 96 

2009) and landslides (Song et al. 2012). Applications of BNs to wildfires include the prediction 97 

and assessment of wildfire occurrence and burn severity (Dlamini 2009;Sunderman and 98 

Weisberg 2012;Papakosta et al. 2013;Zwirglmaier et al. 2013), wildfire spread (Dahmani and 99 

Hamri 2011), effectiveness of wildfire management measures such as fuel treatment and fire 100 

suppression (Penman et al. 2012;Penman et al. 2014), ecological consequences from wildfires 101 

(Howes et al. 2010), risk of human fatality from fire in buildings (Hanea and Ale 2009), fire 102 

spread in buildings (Cheng and Hadjisophocleous 2009) and wildfire causes (Biedermann et al. 103 

2005). 104 

In this study, we propose a methodology to quantify economic loss to housing at a resolution 105 

of 1 km2. This methodology accounts for the lack of data and the variability among data types 106 

and sources, and facilitates incorporation of expert knowledge. It is based on a BN model, which 107 

includes variables expressing hazard characteristics, houses at risk and their susceptibility, and 108 

fire suppression. 109 

As a case study, the proposed BN is applied to Cyprus. The parameters of the model (initial 110 

probability distributions) are learnt with both data and expert knowledge. Past wildfire disaster 111 

events in Cyprus from the period 2006-2010 are chosen to demonstrate the model’s ability to 112 

predict housing economic loss [€]. For given hazard characteristics, the information is 113 

propagated through the Bayesian network and the model predicts expected housing economic 114 

loss. We examine the influence of the model parameters (including fire management options) 115 

on housing economic loss. The BN is coupled with a Geographic Information System (GIS) 116 

and maps of expected economic losses for given wildfires are provided to illustrate the results. 117 

The predictions are compared with the damages registered in the NatCatSERVICE database of 118 

the reinsurance company Munich Re. The presented model can potentially be transferred to 119 

other regions with similar hazard and house characteristics.  120 



6 
 

 121 

Methodology 122 

Study area 123 

The parameters of the proposed BN model are learnt for the Mediterranean island Cyprus. The 124 

study area covers 5285 km². The State forests of Cyprus are made up of the following plant 125 

communities: Pinus brutia (accounting for more than 80% coverage), Pinus  nigra, mixed  126 

Pinus  brutia-nigra, Cedrus  brevifolia,  mixed  Cedrus brevifolia-Pinus brutia, Quercus 127 

alnifolia, mixed Pinus brutia-Quercus alnifolia, Eucalyptus sp. and  Riverine  communities. 128 

The private forests in Cyprus, in addition to Pinus brutia also include stands of Cupressus 129 

sempervirens, Ceratonia siliqua, Olea europaea, Juniperus phoenicia, and Quercus infectoria. 130 

Furthermore, there is significant coverage of maquis and garrigue vegetation which is found 131 

mainly on private land (Department of Forests 2006). 132 

The topography of the island is dominated by the densely forested Troodos range with Mount 133 

Olympus, at 1.953 meters being its highest peak; to its north lies the central Messaoria plain 134 

while many coastal valleys surround it along the southern coast. 135 

Due to its Mediterranean climate Cyprus is prone to fires. In the 2006-2010 period, the annual 136 

mean occurrence rate of fires was 5.5 ∙ 10−5 Fires

day∙km²
 and the average total burnt area was 21 137 

km²/year (Papakosta and Straub 2015). Fires of all sizes were recorded, with 10% of recorded 138 

fires being less than 0.01 ha. The total number of recorded fires in 2006-2010 was 616, which 139 

corresponds to a mean annual number of fire occurrences of 123 (Fig. 1). The mean burnt area 140 

[km²] of the fires is 0.17 km² and the standard deviation is 0.92 km². The maximum burnt area 141 

recorded in 2006-2010 is 13.62 km² (Papakosta 2015).  142 
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Besides human safety, the main assets at risk on Cyprus are buildings, protected natural habitats 143 

and agricultural areas (Fig. 2). 144 

Risk assessment framework 145 

In risk assessment for natural hazards, varying conventions are applied, and the terminology is 146 

not unified even within the forestry world (Hardy 2005). We therefore briefly summarize the 147 

risk concept and terminology as used in this paper.  148 

In many areas of natural hazard risk assessment, it is common to express risk as a function of 149 

hazard, vulnerability and exposure; the latter is also known as value at risk, and characterizes 150 

the damage potential. Vulnerability describes the response of the affected system to the hazard, 151 

e.g. the probability of a house being destroyed by a specific fire. This framework dates back to 152 

(UNDRO 1980) and is common practice in earthquake (Carreño et al. 2007), flood (Kron 2002) 153 

or landslide (Guzzetti et al 2005) risk assessments; it has also been adopted by the International 154 

Panel on Climate Change (IPCC) (Cardona et al. 2012).  155 

The hazard 𝐻 describes the hazard process in probabilistic terms, e.g. by means of occurrence 156 

probabilities for different types and magnitudes of events. Therefore, fire hazard in this study 157 

refers to both the occurrence and intensity of the phenomenon. This is similar to Scott et al. 158 

(2012) who characterized wildfire hazard with burn probability, fireline intensity and a 159 

composite index.  It is, however, in disagreement with the common approach of tying hazard 160 

only to the contribution of the forest fuels to fire danger (Hardy 2005, Miller and Ager 2013). 161 

In spite of these differences, it is commonly agreed that risk is the expectation of losses 162 

(UNDRO 1980, Finney 2005). Utilizing the above definitions, the risk of an asset (or resource) 163 

𝑗 is mathematically expressed as  164 
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𝑅𝑖𝑠𝑘𝑗 = ∫ 𝑝𝐻(ℎ) ∫ 𝑝𝐷𝑗|𝐻(𝑑|ℎ) 𝐶𝑗(𝑑, ℎ) d𝑑

 𝑑𝑎𝑚𝑎𝑔𝑒
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑑 

dℎ

𝐻𝑎𝑧𝑎𝑟𝑑
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ℎ

 
(1) 

wherein 𝑝𝐻(ℎ) is the probability (density) of a particular wildfire hazard event. 𝑝𝐷𝑗|𝐻(𝑑|ℎ) is the 165 

vulnerability of asset 𝑗, which describes the probability of a damage 𝑑 conditional on a hazard 166 

event ℎ. 𝐶(𝑑, ℎ) is the economic loss associated with the hazard and the damage scenario, it is 167 

a measure of exposure. 168 

Wildfire risk has previously been defined as (Finney 2005; Miller and Ager 2013): 169 

𝑅𝑖𝑠𝑘𝑗 = ∑ Pr(𝐹𝑖) 𝑅𝐹𝑗(𝐹𝑖)

𝑖

 (1) 

where Pr(𝐹𝑖) is the probability of a fire at intensity level 𝑖 and 𝑅𝐹𝑗 is the response function of 170 

resource 𝑗 as a function of fire intensity level 𝑗 (Miller and Ager 2013). Pr(𝐹𝑖) corresponds to 171 

𝑝𝐻(ℎ), with the difference that the hazard (a fire at a specific intensity level) is modeled by a 172 

discrete number of scenarios, hence the integral in Eq. (1) is replaced by the summation. The 173 

inner integral in Eq. 1 corresponds to the response function: 174 

𝑅𝐹𝑗 = ∫ 𝑓𝐷𝑗|𝐻(𝑑|ℎ)

𝐷

𝐶(𝑑, ℎ)d𝑑 (2) 

This integral considers that a fire with a given intensity level ℎ can lead to different responses, 175 

depending on which damages 𝑑 occur. In this study, this response function is developed for 176 

damages to housing.  177 

Consequences can be classified based on their ability to be measured by market values as either 178 

tangible (e.g. house damage) or intangible (e.g. cultural heritage losses). Consequences can 179 

furthermore be classified according to whether they are direct (e.g. house damage) or indirect 180 
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(e.g. erosion on slopes following the destruction of a stabilizing forest). Tangible direct 181 

damages can be measured by the costs of repairing or replacing damaged assets, whereas 182 

intangible direct damages may often be measured in terms of number of affected items (Paul 183 

2011). 184 

In order to quantify consequences, vulnerability and exposure indicators are identified, which 185 

are related to the degree of loss and the items at risk by means of a BN model. Selecting the 186 

appropriate indicators is crucial for an accurate assessment of vulnerability and exposure. 187 

Indicators should be relevant, measurable, easy to interpret, analytically and statistically sound 188 

(Birkmann 2006). 189 

 190 

Bayesian Network (BN) 191 

BNs are directed acyclic graphs and consist of nodes, arcs and probability tables attached to the 192 

nodes (Jensen and Nielsen 2007). In a discrete BN considered here, each node represents a 193 

discrete random variable whose sample space consists of a finite set of mutually exclusive 194 

states. The arcs describe the dependence structure among the random variables.  195 

A conditional probability table (CPT) is attached to each of the nodes, defining the probability 196 

distribution of the random variable conditional on its parents. The full (joint) probabilistic 197 

model of the random variables 𝐗 = [𝑋1, … , 𝑋n] in the BN is the joint Probability Mass Function 198 

(PMF), 𝑝(𝐱) = 𝑝(𝑥1, … , 𝑥n). By making use of the independence assumptions encoded in the 199 

graphical structure of the BN, this joint PMF is equal to the product of the conditional 200 

probabilities (Kjaerulff and Madsen 2013): 201 

𝑝(𝐱) = ∏ 𝑝(𝑥𝑖|𝑝𝑎(𝑥𝑖))

𝑛

𝑖=1

 (3) 
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wherein 𝑝𝑎(𝑥i) are realizations of the parents of 𝑋i. Eq. (3) states that the joint PMF of all 202 

random variables in the BN is simply the product of the conditional PMFs of each individual 203 

random variable given its parents. Therefore, the graphical structure of the BN and the 204 

conditional PMFs Pr(𝑥𝑖|𝑝𝑎(𝑥𝑖)) specify the full probabilistic model of  𝐗 = [𝑋1, … , 𝑋n]. 205 

Inference in BNs is performed by computing the conditional probabilities of selected variables 206 

given the available data on other variables. Efficient algorithms for performing these 207 

computations are implemented in software such as GeNIe (Decision Systems Laboratory 2013) 208 

or HUGIN (HUGIN EXPERT 2012). The latter is employed in this study. However, in the 209 

context of wildfire consequence assessments, the advantage of the BN is not its computational 210 

effectiveness but that it facilitates the combination of information from various sources in a 211 

single model. 212 

We propose the BN model of Fig. 3 for assessing consequences to houses caused by wildfires. 213 

Houses are here defined as separate households contained within a multi-unit apartment 214 

building (dwelling unit) (Service 2010). The BN structure is based on phenomenological 215 

reasoning, the authors’ experiences and existing models, such as a fire containment model. The 216 

present version of the model reflects the availability of data that can be used for defining and 217 

learning the model parameters, and may be modified if additional data becomes available. Table 218 

1  summarizes the definitions of the variables and the corresponding data sources. It is reminded 219 

that the spatial resolution of the model is 1km², which is of relevance for the definition of the 220 

variables. 221 

The BN includes variables that correspond to (a) hazard, (b) exposure, (c) vulnerability and (d) 222 

costs (Fig. 3). Connecting arcs show the causal relationships among the variables. It models the 223 

probabilistic relation between the Hazard 𝐻, damage 𝐷 and cost 𝐶, for computing the response 224 
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function to a given wildfire hazard following Eq. (3). The BN thereby automatically performs 225 

the integration (or summation) over the possible damage states 𝑑.  226 

(a) Wildfire hazard 𝐻 is characterized by the variables Fire type, Burnt area and the Fire 227 

Weather Index (FWI) of the Canadian Forest Fire Weather Index System, a numeric rating of 228 

fire intensity, used as a general index of fire danger as influenced by weather conditions 229 

(Lawson and Armitage 2008).  In the BN applied here, FWI influences only the result of the 230 

suppression effectiveness. No link from FWI to the Burnt area and the Fire type is included. 231 

The reason for this omission is that in this study we account for specific hazard characteristics 232 

and are not interested in modeling the hazard itself. However, in a full risk analysis these links 233 

must be included, as shown in Papakosta et al. 2014). Fire type distinguishes among a surface 234 

fire with flame length <3.5m, a surface fire with flame length >3.5m and a crown fire (Table 235 

1). Burnt area represents the extent of the wildfire. Through the link to Fire type, the variable 236 

Burnt area also provides information on wildfire severity, since it influences the posterior 237 

probability distribution of the variable Fire type. The variables describing the fire hazard 238 

typically result from a fire hazard model (Papakosta and Straub 2013;Zwirglmaier et al. 2013). 239 

Since our interest in the present study is in the response to a given hazard ℎ according to Eq. 3, 240 

these models need not be included here (the hazard characteristics ℎ are provided as an input to 241 

the consequence model).  242 

As a rule, more intense wildfires, i.e. those with longer flame lengths, are more difficult to 243 

extinguish and thus result in larger burnt areas (Rothermel and Deeming 1980). In the proposed 244 

model, there is an arc from Burnt area to Fire type, which is contrary to the causality among 245 

these two variables. Such a contra-causal connection is possible in BNs, but care is needed to 246 

ensure that the overall dependence structure among variables is consistent with reality (Straub 247 

and Der Kiureghian 2010). The arc is introduced here in view of an extension to a larger BN, 248 

which includes fire size prediction, i.e. a model that predicts Burnt area (Papakosta et al. 2014). 249 
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The variable Fire type and its probabilities conditional on Burnt area are ideally defined based 250 

on data. Since no data on Fire type are available for Cyprus, a data set is used that includes the 251 

Fire type, the resulting Burnt area and the House damages of 195 fire events that took place in 252 

the Wildland Urban Interface (WUI) in Greece in the 1981-2003 period. These fire events 253 

resulted in 442 heavily damaged structures. Wildfire conditions in Greece are generally 254 

considered similar to those in Cyprus, as both countries have Mediterranean climate and similar 255 

forest vegetation. Fig. 4 shows a boxplot of the fire type versus the resulting burnt area for the 256 

Greece data used to learn the CPT of Fire type.  257 

(b) Exposure nodes in the BN describe the exposure of the system (items at risk). Urban/Rural 258 

discriminates urban from rural areas, which influences House density [house/km²] and House 259 

stock. House stock accounts for the house type portfolio in the meso-scale. It describes the 260 

relative distribution of house types in 1km², which include single houses, semi-detached/row 261 

houses, and apartments. Specifically for the study area, House stock can be in one of two states: 262 

40s_25r_35a, meaning that 40% of the houses are single houses, 25 % row houses and 35% 263 

apartments and 70s_20r_10a, meaning 70% single houses, 20% row houses, 10% apartments 264 

(Table 1). The definition of House stock should be adjusted when modeling at different scales 265 

and for other regions. The vulnerability of House stock classes (single houses, row houses, 266 

apartments) based on the possible flammability of their surroundings is considered to be high 267 

for single houses, medium for row houses and low for apartments (Long and Randall 2004; 268 

OFD 2004). The house stock classification influences 269 

 the costs of rebuilding, which is here taken as the construction value of the houses in monetary 270 

terms. The above variables were chosen to represent the exposure of the houses based on their 271 

arrangement and surrounding conditions. At the applied meso-scale level, the portfolio of the 272 

variable House stock is the combination of house types in each 1 km² spatial unit and is defined 273 

specifically for the study area. Fig. 2 shows selected exposure indicators of the study area. 274 
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(c) Fire containment in 24hrs and Construction type are vulnerability nodes. The parents to the 275 

vulnerability variable Fire containment in 24 hrs are chosen based on (Plucinski et al. (2012)), 276 

where a logistic regression analysis is performed to determine the effect of multiple variables 277 

on fire containment. The probability of successful Fire containment in 24hrs is modeled as 278 

 Pr(𝐹𝑖𝑟𝑒 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑖𝑛 24ℎ𝑟𝑠) 

= 𝑏0 + 𝑏1 × 𝐹(𝐺)𝐹𝐷𝐼 + 𝑏2 × 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑡𝑡𝑎𝑐𝑘 + 𝑏3 ×  𝐴𝑖𝑟 𝑡𝑖𝑚𝑒 
(6) 

FFDI is the Forest Fire Danger Index and GFDI is the Grass Fire Danger Index that were 279 

developed for Australia (McArthur 1967). Which of the two should be used depends on the 280 

Vegetation type (forest/shrub/grass). Here, F(G)FDI is adapted to the FWI according to Dowdy 281 

et al. (2010). 282 

Time for ground attack and Air time is the time needed by ground and air suppression crews to 283 

reach the fire. In the BN, Time for ground attack [min] is modeled as a function of the Distance 284 

to next fire station [km], which describes the shortest distance to the next fire station. The 285 

response time of the ground firefighting group is defined as 5 min. The mean vehicle velocity 286 

is assumed to be 70km/hr. The response time of the air firefighting group is 10 min with a mean 287 

aircraft travel time of 190 mph (306 km/hr).  Land cover types refer to the Corine 2006 land 288 

cover type nomenclature and influences the variable Vegetation type. Vegetation type can be 289 

grass, forest, shrub and non-burnable. Air suppression can be either present or absent (yes/no). 290 

The above variables are chosen to express the suppression result and how it influences the house 291 

damages.).  292 

Construction type categorizes the houses based on the construction materials and roof type. It 293 

represents a portfolio of construction types found in the 1 km² cell, and includes construction 294 

materials such as stone/mud, single/insulated brick, and roof types such as flat concrete or 295 

inclined roof with tiles (Table 1). The definition of Construction type may be modified when 296 
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modeling at different scales and for different areas. The vulnerability node House damages 297 

represents the degree of damage to the house portfolio in the cell. The vulnerability is influenced 298 

by Fire type, Fire containment in 24 hrs, Construction type and House stock. It is expressed as 299 

percentage of houses totally destroyed in 1 km². Since House damages refers to the portfolio in 300 

the cell, it is expressed as the percentage of destroyed houses (Table 1). The definition of the 301 

CPT of House damages can vary based on the modeling scale and the available data set. Here, 302 

the CPT of House damages results as a normalized summation of the individual contributions 303 

to the damage from each of the influencing variables. The influence of Fire type on House 304 

damages is quantified using the Greek dataset. The failure of Fire containment is assumed to 305 

lead to minor House damages with 60% probability and major House damages with 40% 306 

probability. The Construction type of houses in Cyprus includes mainly three types of 307 

structures. Traditional houses, mostly built in the period prior to 1945 with stone or mud walls 308 

and roofs with punky wood parts (Nemry and Uihlein 2008), are considered the most 309 

vulnerable. The vulnerability of houses built with single brick walls and flat reinforced concrete 310 

roofs in the period 1946 − 1970 (Nemry and Uihlein 2008) is considered to be lower, and 311 

newer houses with insulated brick walls and inclined roofs with ceramic tiles are the most fire 312 

resistant. 313 

(d) The node Housing economic loss (HDC) in Fig. 3 expresses the housing economic loss in 314 

the 1km² cell as the product of House damage, Construction value, House density and Burnt 315 

area. HDC is expressed in monetary terms [€]. 316 

Coupling with GIS 317 

The BN model is coupled with a GIS for both parameter learning and output mapping. GIS 318 

layers are used as inputs for some BN nodes and the spatially referenced output of the BN is 319 

returned and visualized in the GIS. First, the spatial information is managed in a Geodatabase 320 
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(and attached to a 1 km² grid. The CPTs of the BN model are trained with the attribute table of 321 

the grid, which combines the attributes of the GIS layers. After the learning process, the BN 322 

model is applied to additional spatial datasets for predictions. The new dataset is initiated as 323 

evidence on the BN nodes and the target node is updated via inference based on the trained 324 

CPTs. The output of these calculations is the expected losses (in €) in each 1 km² cell of the 325 

study area. The evidence propagation is conducted as batch propagation within the BN software 326 

shell (HUGIN). 327 

The BN is run separately for each of the grid cells. Note, that spatial dependence between cells 328 

is represented through the dependence of the observed indicator variables, but not through the 329 

BN itself.  330 

 331 

Results 332 

The expected housing economic loss (HDC)  estimated by the BN model for an average cell of 333 

the study area conditional on a fire occurring is 18635 €. To obtain this results, the BN is 334 

evaluated without any information, i.e. all influencing variables are represented by their 335 

probability distributions reflecting an average 1km2 area on Cyprus.  336 

Fig. 5 illustrates the BN estimate of the HDC conditional on a fire with the lowest hazard 337 

conditions, i.e. with a burnt area < 0.01 km² and of fire type 1 (surface fire with flame length < 338 

3.5m). The average HDC in a 1km2 cell over the study area is 331 €. In each node of Fig. 5 the 339 

posterior marginal distribution of the variable is shown together with the expected housing 340 

economic loss, given the corresponding state. As an example, were the FWI fixed to its largest 341 

state 60-120, with all other parameters left unaltered, the expected HDC would increase to 580 342 

€. For different land cover types, the expected HDC varies from 0 (for urban areas and 343 

wetlands) to 588€ (for forested areas). Areas with forests (land cover type: 5) are expected to 344 
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have the highest housing economic loss, followed by shrubs (land cover type: 6) and permanent 345 

crops (land cover type: 3).  346 

As expected, HDC increases proportionally to burnt area (Fig. 6). When burnt area > 1km², it 347 

exceeds the total area of the cell. In such a case, if burnt area would be visualized as a circle 348 

buffer zone from the cell where fire occurred, this burnt area circle would intersect also with 349 

neighboring cells. In this case, and since we still want to include bigger burnt areas in the study, 350 

for simplification purpose the neighboring cells are assumed to have similar characteristics with 351 

the “fire” cell (where fire occurs) and would result in similar losses. The losses for the “fire” 352 

cell when burnt area > 1km² are thus over-estimated, since they include losses that are expected 353 

in neighboring cells, if they are similar to the “fire” cell. The effect of Fire type can be studied 354 

by fixing this variable while leaving all others without evidence; the expected HDC varies 355 

between 7.6 ∙ 103 € (Fire type = 1) and 57.0 ∙ 103 € (Fire type = 3).  356 

To assess the sensitivity of HDC to the model variables and their variability, we compute the 357 

variance (and standard deviation) of HDC with respect to each individual variable. This 358 

variance-based sensitivity analysis is global, i.e. it accounts for the interaction among the input 359 

variables and the non-linearity of the model (Saltelli et al. 2008). The highest influence on 360 

housing economic loss have the variables (in decreasing order) House damage, Burnt area, Fire 361 

containment in 24 hrs, House density, Urban/rural, House stock, Construction value, Fire type, 362 

Air suppression, Vegetation type, Land cover, FWI, Construction value, Time for ground attack 363 

and Distance to next fire station (Fig. 7). The variable House stock is deterministically related 364 

to the variable Urban/rural, and hence their effect on HDC is the same.  365 

Two examples of past fire periods are selected to compare the estimated HDC to available 366 

observations (Fig. 8). Based on the hazard characteristics (Burnt area and FWI) and the 367 

exposure and vulnerability indicators, the model estimates the expected HDC for each cell 368 

(1km²) in which a fire occurred. The results vary from 0 to 570 ∙ 103 €. The aggregated 369 



17 
 

expected housing economic loss from all fire events in the periods are also provided. The BN 370 

model gives results that are in agreement with actual recorded losses (Table 2).  However, the 371 

NatCatSERVICE database (Munich Re) gives information on the number of houses damaged, 372 

and not on the resulting housing economic loss, which hinders a direct verification of the BN 373 

results. It is also noted that the BN model provides expected (mean) values, which do not have 374 

to coincide with the actual observed losses for a single event.  375 

On the assumption of a specific fire occurring throughout the entire study area, it is possible to 376 

get estimates of the HDC in maps (Fig. 9). The specifics of the assumption (Burnt area, Fire 377 

type and FWI) are based on data for the prefectures of East Attica, West Attica, Corinthia and 378 

Viotia as reported by Xanthopoulos et al. (2014). As expected, the HDC under more destructive 379 

fire (Burnt area = 0.4 km², Fire type = 1 − 3) and dryer vegetation conditions (FWI = 60) is 380 

higher than under less destructive and easier to contain fires (Burnt area  = 0.003 km², Fire 381 

type = 1) and humid vegetation conditions. Urban areas have the lowest conditional HDC, due 382 

to the lack of flammable vegetation and a higher probability of fire containment. The peri-urban 383 

areas, which represent the coexistence of residential areas and natural vegetation, have the 384 

highest expected HDC values for given fire hazard. Forested areas also exhibit an above-385 

average expected HDC (see also Fig. 2c).  386 

 387 

Discussion 388 

Predictive models for quantitatively estimating consequences to houses are an important 389 

component of wildfire risk assessment. Our aim is to present a methodology than can be used 390 

in assessing different types of damages and can be useful in case of variable data sources or 391 

even lack of data. The model should be able to incorporate other existing models. Moreover, 392 

we are interested in evaluating the influence of different variables on the damage economic 393 
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loss. The model should be able to predict damage economic loss for given fire characteristics 394 

in monetary values in 1 km² spatial resolution.  395 

The model shows that the wildland-urban interface is expected to experience the highest 396 

damages, a result which agrees with previous studies (Mozumder et al. 2009; Gibbons et al. 397 

2012;Syphard et al. 2012). Moreover, the influence of higher fire danger conditions (FWI =398 

60) on the expected house losses shows that the majority of losses are expected to occur on 399 

days with adverse fire weather conditions, as found in other studies as well (Blanchi et al. 2010). 400 

While such results are potentially useful and can serve as a plausibility check, they are not the 401 

main aim of this study. Instead, the goal is to develop a predictive model for wildfire 402 

consequences based on readily available spatially and temporally variable indicators that are 403 

known to have an effect on wildfire risk.  404 

Although the proposed model has shown to give plausible and useful results and can be applied 405 

to other areas with similar characteristics, there are limitations that should be addressed. The 406 

meso-scale modeling requires that the indicators are representative for a 1 km² spatial unit. This 407 

introduces uncertainties into the model, as it is necessary to identify representative states not of 408 

individual houses, but of portfolios of houses, e.g. house stock, construction type. These must 409 

be adjusted when the model is transferred to other regions. The resulting BN includes the 410 

Australian model from Plucinski (2012) on fire suppression. Clearly, the conditions are 411 

different in the Mediterranean, but we believe that the model is still valuable as the variables 412 

influencing the probability of fire containment are similar in both regions. Furthermore, the 413 

approach is flexible. As we demonstrate, the BN can easily incorporate existing models, in this 414 

case a linear regression model, and with the same ease, the models can be replaced. The CPTs 415 

of the corresponding variables are to simply change when a similar model calibrated with data 416 

from the Mediterranean is available. We have also demonstrated the ability of the model to 417 
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incorporate expert knowledge, but in case of missing data, care is needed when incorporating 418 

such information.  419 

The proposed model should be seen as an initial step towards a comprehensive consequence 420 

analysis for wildfires. Besides extending it to consequences other than house damage, the model 421 

should include additional factors known to influence wildfire consequences. The flexibility of 422 

the BN framework facilitates such an extension of the model. Additional influencing variables 423 

that could be added to increase the model accuracy include the adjacent vegetation influencing 424 

house damages, evacuation plans and a distinction between permanent and non-permanent 425 

house use to account for the suppression attempts of residents, the existence of fire protection 426 

plans at the community level to account for the preparedness of residents to protect their houses 427 

from fire, and the existence of house insurance against fire, which also influences residents’ 428 

behavior in case of fire. These (and other) parameters can be included in the BN model by 429 

adding them as nodes, together with the appropriate links. Their inclusion does however require 430 

that quantitative models of their influence on the house damage, or on other variables of the 431 

BN, are available.  432 

Finally, data on actual house damages and fire characteristics would be valuable for model 433 

calibration and validation. While databases on fires are available, it is difficult to obtain reliable 434 

statistics on the consequences of fires. In the absence of such data, the BN enables the 435 

combination of the limited available data with expert knowledge and models.  436 

 437 

Conclusions 438 

A Bayesian Network (BN) model for estimating housing economic loss at the meso-scale is 439 

developed and applied to the Mediterranean island of Cyprus. The coupling of BN with GIS 440 

results in maps providing the expected building damage economic loss for different hazard 441 
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types. The model is flexible and can be extended to include additional indicators and to assess 442 

consequences related to human safety, habitat and agricultural losses. 443 
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Table 1. Description of BN variables and data sources for the definition of the conditional probability tables. 680 

Discretization varies based on data (e.g. Fire type) or established classification (e.g. FWI). 681 
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Variable #states States Source of probability distribution  

and additional information 

Fire type 3 1 

2 

3 

1: surface fire with flame length < 3.5m 

2: surface fire with flame length >3.5m 

3: crown fire 

 

Classification based on fire events in WUI Greece  

1993-2003 

Burnt area 

[km²] 

 

7 

 

 

0-1e-12    

1e-12-0.01 

0.01-0.1 

0.1-1 

1-3 

3-10 

10-30 

Historical fire events (2006-2010)  

 

 

Data source: 

Department of Forest, Ministry of Agriculture Cyprus 

Distance to next 

fire station  

[km]  

3 0-5    

5-10 

10-30 

 

Edited from fire station locations 

 

Data source: 

Cyprus Fire Service 

Time for ground 

attack 

[min] 

4 5-10 

10-15 

15-20 

20-25 

Ground troop response time assumed to be 5 min. 

Conditional on distance to next fire station.  

Vehicle travel velocity assumed 70 km/h 

 

FWI 4 0-10 

10-30 

30-60 

60-120 

FWI calculated from interpolated weather data from 5 

weather stations 

Source: Deutscher Wetterdienst (DWD),  

Cyprus Meteorological Service 

(Papakosta and Straub 2015) 

Land cover 7 1: Urban/Wetland/Pastures 

2: Arable land 

3: Permanent crops 

4: Heterogeneous agriculture 

5: Forests 

6: Shrubs/Herbaceous vegetation 

7: Open spaces 

Edited from Corine Land Cover map (version 13) 

Data source: European Environmental Agency 
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Vegetation type 4 Grass 

Forest 

Shrub 

No burn 

 

Conditional on Land cover types 

 

 

Edited from Corine Land Cover map (version 13) 

Data source: European Environmental Agency 

Air suppression 2 no 

yes 

no: 50% 

yes: 50% 

(initial probability that air suppression will be performed, 

assumed) 

Fire Containment 

in 24 hrs 

 yes 

no 

Conditional on Vegetation type, FWI, Air suppression, Time 

for ground attack 

 

Probabilities calculated based on regression models from 

Plucinski et al. 2012 

Urban/Rural 

 

 

2 

 

 

      Urban 

      Rural 

Classified based on population density values 

Urban >120 residents/km² 

Rural <120 residents/km² 

House Stock  

 

 

2 

 

40s_25r_35a 

70s_20r_10a 

s: single houses   

r: row houses 

a: apartments 

(% percentage)  

Probabilities from data from Service 2010 

Construction Type 2 5t_15s_80i 

10t_25s_65i 

t: traditional house, stone/mud wall 

s: single brick wall/flat roof house 

i: insulated brick/inclined roof 

(% percentage) 

 

Edited from Service 2012 

Florides et al. 2001 p. 228 

Nemry and Uihlein 2008, p.A147 

Probabilities from data (Service 2010) 
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House density 

[Nr.Houses/km²] 

6 0-3 

3-10 

10-30 

30-100 

100-300 

300-1000 

1000-3000 

Based on Nr. dwellings (houses) statistics and municipality 

borders  

 

Data source: 

Statistical Service Cyprus 

 

 

Construction 

value  

[x 10³ €] 

4 0-10 

10-50 

50-100 

100-500 

Customized to House stock based on mean value and range 

for each building type, data from: 

 

Service 2010, p. 160 (Table 14: Building permits authorized 

by type of project 2010) 

House damages 2 no damage 

minor: <20% 

major: >20% 

 

Conditional on fire type based on fire events in WUI Greece 

1993-2003 

 

Conditional on fire containment assumed 60% minor, 40% 

major 

 

Conditional on construction type based on scores from: 

OFD 2004, p.11-12 

ECONorthwest 2007,  Appendix C, page C-8 

 

Conditional on house stock (defensible space) based on 

scores: 

OFD 2004, p.11-12 
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Table 2. Aggregated expected housing economic loss (HDC) [€] compared to registered losses 683 

(NatCatSERVICE) for two past fire periods in 2007 and 2008 on Cyprus 684 

Fire Period Aggregated Burnt 

Area [km²] 

Aggregated estimated 

expected HD economic 

loss [€] 

Losses as recorded in 

NatCatSERVICE 

Service 

Estimated Losses  

[€] * 

20 June 2007- 

16 July 2007 

34 1.11∙106 several buildings n.a. 

June 2008 19.54 761∙103 5 houses 728∙103 

* Estimated Losses= NatCatSERVICE service x Mean House construction value (145684 €) 685 

  686 
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 687 

Fig. 1. Cyprus study area: (a) Municipalities, (b) Fire events during 2006-2010 classified by burnt area 688 

[km²].  689 
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 690 

Fig. 2. Exposure indicators for Cyprus study area: (a) urban/rural land, (b) distance to next fire station 691 

[km], (c) land cover types, (d) house density [Nr. Houses/km²]. 692 
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 693 

Fig. 3: Bayesian Network (BN) for consequences to houses caused by wildfires. Influencing variables are 694 

classified in hazard, exposure, vulnerability and economic loss variables. The BN estimates Housing 695 

economic loss in 1 km².  696 



34 
 

 697 

Fig. 4. Boxplot of Burnt area [km²] versus Fire type in WUI areas of Greece (1993-2003). 698 

Fire types: 1= surface fire (flame length<3.5m), 2= surface fire (flame length>3.5m), 3= crown fire 699 
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 700 

Fig. 5. Expected housing economic loss for average cell, estimated for burnt area <0.01 [km²] and fire type 701 

1 (screenshot from HUGIN).  702 
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 703 

Fig. 6. Housing economic loss [€] conditional on burnt area [km²] estimated by the proposed Bayesian 704 
network. 705 
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 706 

 707 

Fig. 7. Global sensitivity of housing economic loss to individual variables, as expressed by the individual 708 

contribution of each variable on the standard deviation of HDC (Table S1 in supplementary material). 709 

  710 

0 20000 40000 60000 80000 100000 120000

House damage
Burnt area

Fire Containment in 24 hrs
House density

Urban/Rural
House stock

Construction value
Fire type

Air suppression
Vegetation type

Land cover
FWI

Construction type
Time for ground attack

Distance to next fire station

Standard deviation 



38 
 

 711 

 712 

 713 

Fig. 8. Expected housing economic loss [€] for days and locations where fires occurred in the period (a) 20. 714 

June 2007-16. July 2007 and (b) June 2008 on Cyprus study area.  715 
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 716 

 717 

Fig. 9. Expected housing economic loss [€] conditional on (a) Burnt area = 0.003 km², Fire type = 1 and 718 

FWI=3 and (b) Burnt area = 0.4 km², fire type = 1-3 and FWI=60 on Cyprus study area.  719 

 720 

Note that in (b) for forested areas Fire type = 𝟑, for shrubs Fire type = 𝟐 and for the rest land cover types Fire 721 

type = 𝟏, to account for realistic assumptions of the fire occurring (e.g. Fire type = 𝟑 refers to a crown fire 722 

relevant only to forested areas). 723 
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Supplementary material  724 

Table S1. Effect of influencing variables on housing economic loss (HDC) in the BN. HDC is estimated after 725 

giving evidence on each state of the variables. 726 

Variable States of the variable Probability  

of variable 

being in the 

state 

𝒑(𝒗) 

Expected value of 

HDC conditional for 

given value of the 

variable 𝒗 [€] 

𝐄[𝐇𝐃𝐂|𝒗] 

 

 

 

(𝐄[𝐇𝐃𝐂|𝒗]

− 𝐄[𝐇𝐃𝐂])𝟐 ∙ 𝒑(𝒗) 

 

Expected value of 

HDC: 

 𝐄[𝐇𝐃𝐂] = 𝟏𝟖𝟔𝟑𝟓 €  

Variance 

∑(𝐄[𝐇𝐃𝐂|𝒗]

− 𝐄[𝐇𝐃𝐂])𝟐
∙ 𝒑(𝒗) 

 

Standard 

deviation 

 

√𝐕𝐚𝐫𝐢𝐚𝐧𝐜𝐞 

 

 

Burnt area 0 0.11 0 3.82∙107 6.08∙109 7.80∙104 

< 0.01 0.42 327 1.41∙108 

0.01-0.1 0.31 3606 7.00∙107 

0.1-1 0.12 36178 3.69∙107 

1-3 0.02 132109 2.58∙108 

3-10 0.01 430013 1.69∙109 

10-30 4e-3 106 3.85∙109 

Fire type 1 0.33 7556 4.05∙107 3.05∙108 1.75∙104 

2 0.50 13199 1.47∙107 

3 0.17 56988 2.50∙108 

Construction type 5t_15s_80i 0.23 17263 4.33∙105 5.63∙105 7.50∙102 

10t_25s_65i 0.77 19046 1.30∙105 

Urban/Rural urban 0.17 81258 6.67∙108 7.95∙108 2.82∙104 

rural 0.83 6229 1.28∙108 

House stock 40s_25r_35a 0.17 81258 6.67∙108 7.95∙108 2.82∙104 

70s_20r_10a 0.83 6229 1.28∙108 

Construction 

value 

0-10,000 0.10 1353 2.99∙107 3.09∙108 1.76∙104 

10,000-50,000 0.29 7382 3.67∙107 

50,000-

100,000 

0.41 13472 1.09∙107 

100,000-

500,000 

0.21 51817 2.31∙108 
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House density 0-3 0.15 515 4.93∙107 2.75∙109 5.24∙104 

3-10 0.25 2232 6.73∙107 

10-30 0.34 6868 4.71∙107 

30-100 0.18 19736 2.18∙105 

100-300 0.04 50898 4.16∙107 

300-1,000 0.04 165419 8.62∙108 

1,000-3,000 7e-3 508982 1.68∙109 

House damage no damage 0.95 0 3.30∙108 9.06∙109 9.52∙104 

minor 0.03 172405 7.09∙108 

major 0.02 651701 8.02∙109 

FWI 0-10 0.36 15923 2.65∙106 9.32∙106 3.05∙103 

10-30 0.31 17838 1.97∙105 

30-60 0.31 21542 2.62∙106 

60-120 0.02 32667 3.94∙106 

Distance to next 

fire station 

0-5 0.27 18001 1.09∙105 2.24∙105 4.73∙102 

5-10 0.46 18632 4.14 

10-30 0.27 19287 1.15∙105 

Time for ground 

attack 

5-10 0.27 18001 1.09∙105 2.45∙105 4.95∙102 

10-15 0.23 18419 1.07∙104 

15-20 0.23 18848 1.04∙104 

20-25 0.27 19287 1.15∙105 

Air suppression no 0.50 32286 9.32∙107 1.86∙108 1.37∙104 

yes 0.50 4984 9.32∙107 

Fire Containment  

in 24 hrs 

yes 0.91 0 3.16∙108 3.30∙109 5.74∙104 

no 0.09 200635 2.98∙109 

Land cover 1 0.09 0 3.13∙107 9.70∙107 9.85∙103 

2 0.10 12987 3.19∙106 

3 0.04 18082 1.22∙104 

4 0.19 12987 6.06∙106 

5 0.21 33119 4.41∙107 

6 0.26 23177 5.36∙106 

7 0.02 0 6.95∙106 
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Vegetation type Grass 0.40 12987 1.28∙107 1.01∙108 1.00∙104 

Forest 0.21 33119 4.41∙107 

Shrub 0.28 23177 5.78∙106 

No vegetation 0.11 0 3.82∙107 

 727 

 728 


