
API for Power-Aware Application Design on Mobile Systems
N. Peters1, S. Park1, D. Clifford2, S. Kyostila2, R. McIlroy2, B. Meurer2, H. Payer2, S. Chakraborty1

Technical University of Munich1, Google Inc2

ABSTRACT
Thanks to the performance improvements in hardware and soft-
ware architectures, more applications, which used to run on desktop
computers, are now being migrated to mobile devices. However,
this entails increased power consumption, that necessitates more
effective runtime power management techniques due to battery
capacity constraints. Such techniques should reduce power con-
sumption while satisfying user-perceived requirements, such as
frame rate, and response times. A major hurdle in incorporating
such techniques into real products is that user-perceived require-
ments are only visible to user applications, but not accessible by
the power managers residing in the operating system. In this paper,
we show that better power management is achievable by passing
such information to the OS, and propose an API for that purpose.

1 INTRODUCTION
One of the major decision criteria for buying a smartphone is its
battery run time [5]. Hence, power management techniques for mo-
bile devices have become very important in today’s system design.
Moreover, a key characteristic of applications running on mobile
devices is that they are user experience-sensitive. For example, an
application is expected to respond immediately to touch events. On
the other hand, there is no need to rush executing work that is not
perceivable by the user, which can increase the power consumption
- such as background tasks. The major drawback of the current An-
droid software architecture is that the power management is done
in the kernel space without regards to application-specific charac-
teristics. There have been prior works to reduce power consumption
with minimal impact on the user experience for applications such
as mobile web browsing [4, 6], gaming [1, 3], etc. Although they
show the benefit of the interaction between the kernel and appli-
cations, these works are highly application-specific and require
custom modifications to either kernel or user space applications.

In this paper, we show that there is a lack of support from the
operating system (OS) to enable a user application to pass over
user requirements or application-specific information to the kernel.
Then, we provide two use cases, mobile gaming and web browsing,
to motivate an API between the user space and the power man-
agers in the kernel space for better CPU power management, as
depicted in Figure 1. Such an API should be general enough to be
applicable to a wide variety of applications. We believe that such a
generalized framework allowing coordination of applications and
the OS, would encourage incorporating previously proposed power
reduction techniques to real products.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5712-8/18/05.
https://doi.org/10.1145/3197231.3197253

Figure 1: Possible Android system infrastructure for an
application-aware kernel power manager interface.

2 API FOR POWER MANAGEMENT
In this section, we propose an API for power-aware application de-
sign in Android. We introduce two examples, namely mobile games
and web browsing, where sharing information between application
and governor results in substantial power savings and derive a
generalized API based on these examples. Finally, we evaluate the
consequences for developers when establishing such an API.

2.1 Application-Aware Power Management
Games show how target frame rate and timing deadlines can be
exploited for interactive workloads. The browser work emphasizes
the importance of proper workload prioritization, which can only
be extracted from the application itself.

Game applications:Mobile games are very popular, but power
hungry and computation intensive applications, because the com-
plexity of modern games’ graphics, physics and artificial intelli-
gence (AI) is constantly increasing. The re-calculations have to be
performed every game frame, what poses high workload on the
system. The target frames-per-second (FPS) value is normally 30 or
60 to maintain a good user experience. From the gaming example,
we identify two classes of information that can be passed from the
applications to the governor, frame rates and deadlines. A simple
approach to control the power consumption is to pass the target
frame rate and the currently achieved frame rate to the governor.
The power manager can regulate the CPU frequency based on the
discrepancy of the achieved and the target frame rate. Further, the
frame rate can be considered a deadline [1, 3]. The goal of the power
management strategy is to calculate the frame (physics, etc.) within
a particular time slot (e.g. 16.67ms for 60 FPS). Predictive strategies
can be applied to calculate the workload of the next frame based
on the past workloads. This information can be used to find the
appropriate frequency level for the particular frame that just ful-
fills the frame’s resource requirements. Recent gaming works that
implements such strategies report on average 41.9 % for modern
mobile hardware architectures [3] compared to the Android default
interactive governor.

Mobile web browsing: The web browser is another popular
smartphone application [2] and we have shown that there is a large
potential for power savings in mobile web browsing [4]. Browsing
can be divided into different states such as loading a page, scrolling,
etc. There is application-specific data (e.g. loading state) readily

https://doi.org/10.1145/3197231.3197253


MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Nadja Peters et al.

available within the browser. Based on that, we define informa-
tion that can be passed from the application to the governor. For
example, maximum response and loading times can be handled
as deadlines if the prior workload can be determined. Otherwise,
both actions can be treated as high priority actions that need to
be completed as fast as possible. The priority of the current action
can be used to distinguish between high workloads that are criti-
cal (foreground load) and others that are not necessarily relevant
for a good user experience (background load). Such information
can solely be provided by the application and by no other entity
in the system. Further, the animation action requires a minimum
FPS value to be maintained. Scrolling or zooming actions, but also
videos playback are considered animations. Similar to gaming, the
FPS value can be used as a deadline or as a target frame rate.

2.2 API between Applications and Kernel
As shown in the previous sections, there is a set of common infor-
mation among Android applications that can be used for power
management. Gaming and browsing already capture a wide range
of application types. E.g. social media applications such as Face-
book and Twitter can be compared to scrolling through a web page.
Other applications, e.g. navigation, are graphics intensive such as
games. In general, all user interactive applications need to maintain
a frame rate, have high priority phases such as displaying incoming
messages or other timing constraints such as deadlines. Hence, we
suggest a power manager that can switch between different power
management strategies, namely modes. The mode can be changed
by the developer on demand. Besides one default mode (e.g. an An-
droid default governor), the developer can choose the mode based
on the state of the application and needs to provide mode-specific
parameters as described in the following.

Frame rate: The examples in the previous section show that the
FPS value can be exploited for power management for interactive
applications or videos. As described, the frame rate can be seen as a
target value and can be provided by any application that performs
frame-based calculations. For example, there are games that run at
60 FPS, but nowadays there are also many games that target 30 FPS.
Some applications might even target a lower frame rate. If the
governor knew the target value, it could adjust the exact frequency
level that is needed by the application. This is not possible by using
workload information only. As of now, there is no possibility to
acquire the current frame rate within the kernel without input
from the application layer. The frame rate information within the
kernel is obtainable from the GPU source code,that it is usually
closed-source. Hence, the current FPS value has to be periodically
passed from the application to the kernel to adjust the control loop.

Deadlines:Deadline information could be useful in combination
with workload estimations. In many applications, there exists a
temporal correlation of frame-based workload, which allows quite
accurate workload estimations inside the governor [1, 3]. Generally,
we can consider the vertical synchronization signal (VSync) of the
display as a deadline for processing frames.

WorkloadPriority: From the browser powermanagementwork
we have learned that workloads can be prioritized differently and,
hence, require different power management techniques. For exam-
ple, we can distinguish between foreground and background load

for browsing, because the browser keeps track of the web page
loading state. Generally, developers are aware of critical sections
within their application. Hence, the prioritization of the workload
can be a hint to the power manager. This would inform the power
manager not to restrict any resources when the application is run-
ning. In the browser example, the foreground load can be marked
as high priority while the background load can have a low or a
default priority level. As a consequence, the power manager can
tune its strategy as needed. The characteristics of the application
workload are not obscure anymore, and the power manager can
perform better power management.

2.3 Implementation Issues and Challenges
Providing a power-aware API between the application and the
kernel layer requires modifications to the Android OS. However,
numerous previous work point out that the potential power savings
surely outweigh the overhead. One challenge is to integrate the API
within the system. As shown in Figure 1, a communication channel
between the application and the kernel needs to be established.
Moreover, the hardware developers need to adopt their kernel soft-
ware to provide this kind of API. This involves implementation
of the power manager for individual hardware platforms. Finally,
the application developers should have an idea of the actual re-
source demand to apply the API in the correct manner. Here, the
automated retrieval of this information and the awareness of the
developers should play a central role.

3 CONCLUDING REMARKS
Despite a considerable amount of prior work on power manage-
ment for applications running on mobile devices, introduction of
such techniques into real products has been sluggish. This is due to,
on the one hand, lack of standardized means in Android systems
to pass the application-specific information and user requirements
to the operating system, and on the other hand, customization
efforts required for implementing state-of-the-art power manage-
ment techniques. In this paper, we observe two applications, games
and web browsers, to identify information that are useful for power
management done in the operating system, and propose an API for
energy-efficient application development. As power consumption
of mobile devices is of ubiquitous importance, efforts to push power
saving techniques to the general awareness are s major concern.

Acknowledgments: This work was supported by Google Inc.

REFERENCES
[1] B. Dietrich and S. Chakraborty. Lightweight graphics instrumentation for game

state-specific power management in Android. Multimedia Systems, 20(5), 2014.
[2] Google Inc. There’s an app for that...the browser, 2015.
[3] N. Peters, D. Füß, S. Park, and S. Chakraborty. Frame-based and thread-based

power management for mobile games on hmp platforms. In IEEE International
Conference on Computer Design (ICCD), 2016.

[4] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer, and D. Clifford. Web
browser workload characterization for power management on hmp platforms.
In International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2016.

[5] A. Pilon. Smartphone battery survey: Battery life considered important. https:
//aytm.com/blogmarket-pulse-research/smartphone-battery-survey/, 2016.

[6] Y. Zhu, M. Halpern, and V. Reddi. Event-based scheduling for energy-efficient
qos (eqos) in mobile web applications. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2015.

https://aytm.com/blogmarket-pulse-research/smartphone-battery-survey/
https://aytm.com/blogmarket-pulse-research/smartphone-battery-survey/

	Abstract
	1 Introduction
	2 API for Power Management
	2.1 Application-Aware Power Management
	2.2 API between Applications and Kernel
	2.3 Implementation Issues and Challenges

	3 Concluding Remarks
	References

