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Several engineering applications require the consideration of dependent quantities that vary ran-

domly in space. Spatially variable dependent quantities can be modeled by means of multivari-

ate random fields. This paper discusses methods for discretization of multivariate random fields 

and presents a new method based on extending the expansion optimal linear estimation (EOLE) 

method, originally proposed for the discretization of univariate fields. The method expresses the 

multivariate random field as a linear combination of uncorrelated random variables and a set of 

spatial vector-valued functions determined by minimizing the sum of point-wise mean-square 

errors of the approximation of each component of the field. The idea is based on linear estima-

tion theory for interpolation of dependent data, i.e. the so-called co-kriging method. We discuss 

the properties of the method and demonstrate its applicability with a numerical example. More-

over, we show that the method can be understood as a numerical Karhunen-Loève expansion for 

discretization of multivariate fields.  

Keywords: Multivariate random fields, discretization, correlated expansions, EOLE, co-kriging, 

Karhunen-Loève expansion. 

 

1 Introduction 

Many engineering applications require the 

consideration of physical parameters that vary 

randomly in space. Common examples are 

soil material properties in geotechnical engi-

neering, wind and earthquake loads in struc-

tural engineering and topology of multiphase 

materials in bio-mechanics. This type of pa-

rameters can be modeled by means of random 

fields. Random fields represent infinite sets of 

random variables indexed by a continuous 

spatial parameter. If the quantity attached to 

each spatial point is a random variable, the 

field is said to be univariate. If this quantity is 

a random vector, the field is called multivari-

ate. Multivariate random fields are used to 

describe dependent random quantities that 

vary randomly in space. A typical example 

from geotechnical engineering is the strength 

parameters of the soil. For example, the fric-

tion angle and cohesion of soils modeled by 

the Mohr-Coulomb law are typically consid-

ered to have negative point-wise correlation 

(Cho 2010). Recently, a number of studies 

have showcased the influence of the spatial 

variability of dependent quantities on the un-

certainty and reliability of engineering sys-

tems (e.g. Cho 2010, Cho and Park 2010, Al-

Bittar and Soubra 2013, Sánchez Lizarraga 

and Lai 2014, Babuška et al. 2014, Jiang et al. 

2014). 

Numerical treatment of random fields in-

volves their approximation with a finite num-

ber of random variables. This procedure is 

termed random field discretization. The effi-
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ciency of random field discretization methods 

depends on their ability to approximate accu-

rately the random field with as few random 

variables as possible. Efficient random field 

representations involving small numbers of 

random variables are beneficial for most nu-

merical methods for uncertainty quantification 

and reliability analysis.  

Sudret and Der Kiureghian (2000) present 

an overview of methods for the discretization 

of univariate random fields. Random field 

discretization methods include point methods, 

spatial average methods and series expansion 

methods. In point and spatial average meth-

ods, the random field is expressed in terms of 

random variables that correspond to spatial 

points or averages of discrete parts of the spa-

tial domain. On the other hand, series expan-

sion methods express the random field as a 

superposition of products of deterministic 

spatial functions and random variables. That 

is, each random variable in the expansion has 

a global influence in the approximation of the 

random field. Through a proper choice of the 

spatial functions, it is often possible to de-

scribe the spatial variability accurately with 

much fewer terms in the expansion as com-

pared to point or spatial average methods 

(Sudret and Der Kiureghian 2000). Popular 

series expansion methods include orthogonal 

series expansions (Zhang and Ellingwood 

1994), the Karhunen-Loève (KL) expansion 

(e.g. Ghanem and Spanos 1991) and the ex-

pansion optimal linear estimation (EOLE) 

method (Li and Der Kiureghian 1993).   

This paper addresses the discretization of 

multivariate random fields with series expan-

sion methods. We first review approaches that 

perform multiple correlated series expansions 

to represent the multivariate field. Then, we 

discuss the application of the KL expansion to 

the discretization of multivariate random 

fields and its numerical implementation. A 

new method is proposed that extends the 

EOLE method to multivariate random fields. 

Moreover, it is shown that the new method 

can be viewed as a numerical multivariate KL 

expansion. The performance of the proposed 

method is demonstrated with a numerical ex-

ample. 

2 Multivariate Random Fields 

Let 𝐗(𝐭) = [𝑿1(𝐭), 𝑿2(𝐭), … , 𝑿𝑛(𝐭)]𝑇, where 

𝐭 ∈ Ω ⊂ ℝ𝑑, denote a 𝑛-variate 𝑑-dimensional 

random field. A multivariate random field is 

said to be second-order if the variances of its 

components Var(𝑋𝑖(𝐭)) exist for all 𝐭 ∈ Ω and 

𝑖 = 1, … , 𝑛. Second-order multivariate ran-

dom fields have well-defined mean vector 

function 𝛍(𝐭): Ω ⟶ ℝ𝑛, whose element 𝜇𝑖(𝐭) 

is the mean function of 𝑋𝑖(𝐭). They also have 

well defined covariance matrix function 

𝚺(𝐭, 𝐬): Ω × Ω ⟶ 𝑀𝑛(ℝ), where 𝑀𝑛(ℝ) de-

notes the space of real 𝑛 × 𝑛 matrices. The 

(𝑖, 𝑗) element of 𝚺(𝐭, 𝐬) is the covariance func-

tion 

 𝛴𝑖𝑗(𝐭, 𝐬) = Cov[𝑋𝑖(𝐭), 𝑋𝑗(𝐬)]. (1) 

For 𝑖 = 𝑗, 𝛴𝑖𝑖(𝐭, 𝐬) is the auto-covariance 

function of 𝑋𝑖(𝐭) and for 𝑖 ≠ 𝑗, 𝛴𝑖𝑗(𝐭, 𝐬) is the 

cross-covariance function of 𝑋𝑖(𝐭) and 𝑋𝑗(𝐬). 

Each covariance function can be expressed as 

𝛴𝑖𝑗(𝐭, 𝐬) = 𝜎𝑖(𝐭) ⋅ 𝜎𝑗(𝐬) ⋅ 𝜌𝑖𝑗(𝐭, 𝐬), where 𝜎𝑖(𝐭) 

is the standard deviation function of 𝑋𝑖(𝐭) and 

𝜌𝑖𝑗(𝐭, 𝐬) is the correlation coefficient function 

of 𝑋𝑖(𝐭) and 𝑋𝑗(𝐬). The matrix-valued func-

tion 𝚺(𝐭, 𝐬) is symmetric, i.e., 𝛴𝑖𝑗(𝐭, 𝐬) =

𝛴𝑗𝑖(𝐬, 𝐭) and 𝚺(𝐭, 𝐬) = 𝚺(𝐬, 𝐭)𝑇 . It is also posi-

tive semi-definite, i.e., 

 
∑ ∑ 𝐜𝑖

𝑇𝚺(𝐭𝑖 , 𝐭𝑗)𝐜𝑗

𝑚

𝑗=1

𝑚

𝑖=1

≥ 0 (2) 

for any {𝑚, 𝐭1, … , 𝐭𝑚, 𝐜1, … , 𝐜𝑚}, 𝐭𝑖 ∈ Ω, and 

𝐜𝑖 ∈ ℝ𝑛. Here, we restrict our attention to 

second-order multivariate random fields. It is 

noted that the task of constructing covariance 

matrix functions that satisfy Eq. (2) is not 

straightforward (Ma 2011). Valid parametric 

models that extend the well-known Matérn 

class to cross-covariance functions are given 
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in (Gneiting et al. 2010, Apanasovich et al. 

2012). 

3 Error Measures for Random Field Dis-

cretization  

The approximation �̂�(𝐭) of a continuous ran-

dom field 𝐗(𝐭) by a finite set of random vari-

ables {𝜉𝑖 , 𝑖 = 1, … , 𝑚} is termed random field 

discretization. The approximation error 𝛜(𝐭) is 

defined as the difference between the original 

field and its approximation, i.e., 𝛜(𝐭) =
𝐗(𝐭) − �̂�(𝐭). Define a matrix-valued function 

𝚺𝛜(𝐭): Ω ⟶ 𝑀𝑛(ℝ) having the elements 

𝛴𝜖,𝑖𝑗(𝐭) = Cov[𝜖𝑖(𝐭), 𝜖𝑗(𝐭)]. That is, 𝛴𝜖,𝑖𝑗(𝐭) is 

the point-wise covariance of 𝜖𝑖(𝐭) and 𝜖𝑗(𝐭) so 

that the 𝑖th diagonal element of 𝚺𝛜(𝐭) repre-

sents the variance of the error of the represen-

tation �̂�𝑖(𝐭) of 𝑋𝑖(𝐭). It is reasonable to as-

sume that the mean of the vector field 𝐗(𝐭) 

can be represented exactly. In this case, the 

elements of 𝚺𝛜(𝐭) also equal 𝛴𝜖,𝑖𝑗(𝐭) =

E[𝜖𝑖(𝐭)𝜖𝑗(𝐭)]. That is, the 𝑖th diagonal ele-

ment of 𝚺𝛜(𝐭) is equal to the point-wise mean 

square of the approximation error of �̂�𝑖(𝐭). 

For assessing the accuracy of the discreti-

zation method, we defined the following 

point-wise relative error for each pair of com-

ponents (𝑖, 𝑗) of the vector field: 

 
𝛿𝑖𝑗(𝐭) =

𝛴𝜖,𝑖𝑗(𝐭)

Cov[𝑋𝑖(𝐭), 𝑋𝑗(𝐭)]
 

=
Cov[𝑋𝑖(𝐭) − �̂�𝑖(𝐭), 𝑋𝑗(𝐭) − �̂�𝑗(𝐭)]

Cov[𝑋𝑖(𝐭), 𝑋𝑗(𝐭)]
. 

(3) 

For 𝑖 = 𝑗, 𝛿𝑖𝑖(𝐭) reflects the mean-square rela-

tive accuracy of the approximation of each 

component field �̂�𝑖(𝐭) at each point 𝐭 and for 

𝑖 ≠ 𝑗, 𝛿𝑖𝑗(𝐭) reflects the linear dependence 

between the errors in approximation �̂�𝑖(𝐭) and 

�̂�𝑗(𝐭) at point 𝐭. We also define the corre-

sponding global errors as the spatial average 

of the point-wise errors, given by 

 

𝛿�̅�𝑗 =
1

|𝛺|
∫ 𝛿𝑖𝑗(𝐭)𝑑𝐭

𝛺

. (4) 

4 Multiple Correlated Series Expansions  

Consider a particular class of multivariate 

random fields whose components have identi-

cal auto-correlation coefficient functions 

𝜌(𝐭, 𝐬) and each cross-correlation coefficient 

function 𝜌𝑖𝑗(𝐭, 𝐬) is given by the following 

proportional model: 

 𝜌𝑖𝑗(𝐭, 𝐬) = 𝜌𝑖𝑗
𝑐 ⋅ 𝜌(𝐭, 𝐬) (5) 

where 𝜌𝑖𝑗
𝑐  is the point-wise cross-correlation 

of 𝑋𝑖(𝐭) and 𝑋𝑗(𝐭). That is, the cross-

correlation between each pair of random fields 

at the same location 𝐭 is constant and equals 

𝜌𝑖𝑗
𝑐 . Vořechovský (2008) proposed to discre-

tize multivariate fields belonging to this class 

through performing the series expansion of 

each component 𝑋𝑖(𝐭) and imposing a correla-

tion between random variables derived from 

different expansions. For the discretization of 

each random field 𝑋𝑖(𝐭), Vořechovský (2008) 

proposed to apply either the univariate KL 

expansion or the EOLE method. The truncated 

KL expansion �̂�𝑖(𝐭) of component field 𝑋𝑖(𝐭) 

reads: 

 
�̂�𝑖(𝐭) = 𝜇𝑖(𝐭) + ∑ 𝜉𝑘

𝑖 √𝜆𝑘
𝑖 𝜑𝑘

𝑖 (𝐭)

𝑚

𝑘=1

 (6) 

where {𝜆𝑘
𝑖 , 𝜑𝑘

𝑖 (𝐭)} are the eigenpairs of the 

auto-covariance function 𝛴𝑖𝑖(𝐭, 𝐬). The corre-

sponding EOLE representation �̂�𝑖(𝐭) of the 

field 𝑋𝑖(𝐭) reads: 

 
�̂�𝑖(𝐭) = 𝜇𝑖(𝐭) + ∑

𝜉𝑘
𝑖

√𝜆𝑘
𝑖

𝚺𝑞
𝑖 (𝐭)𝑇𝚽𝑘

𝑖

𝑚

𝑘=1

 (7) 



EOLE for Discretization of Multivariate Random Fields 
I. Papaioannou and A. Der Kiureghian 
 

4 

Here, {𝜆𝑘
𝑖 , 𝚽𝑘

𝑖 } are the eigenpairs of the covar-

iance matrix of the random variables 𝑋𝑖(𝐭𝑗) 

corresponding to a set of points {𝐭𝑗, 𝑗 =

1, … , 𝑞} and 𝚺𝑞
𝑖 (𝐭) is a 𝑞 × 1 vector function 

with 𝑗 element 𝛴𝑖𝑖(𝐭, 𝐭𝑗). In both series expan-

sions, the variables {𝜉𝑘
𝑖 , 𝑘 = 1, … , 𝑚} are zero 

mean orthonormal random variables. Using 

either of the two expansions to represent each 

component field, we can model the cross-

correlation function of Eq. (5) through intro-

ducing a correlation between each pair 

{𝜉𝑘
𝑖 , 𝜉𝑙

𝑗
} for 𝑘 = 𝑙. That is, 

 
E[𝜉𝑘

𝑖 𝜉𝑙
𝑗
] = {

𝛿𝑘𝑙 , 𝑖 = 𝑗

𝜌𝑖𝑗
𝑐 𝛿𝑘𝑙 , 𝑖 ≠ 𝑗

 (8) 

where 𝛿𝑖𝑗 is the Kronecker delta. The ap-

proach of (Vořechovský 2008) has the limita-

tion that it can only represent multivariate 

random fields with identical auto-correlation 

functions and cross-correlation function of the 

form of Eq. (5). Cho et al. (2013) generalized 

the idea of using multiple correlated series 

expansion to multivariate random fields with 

arbitrary covariance matrix function. Their 

method performs the KL expansion of each 

component field and evaluates the correlation 

between variables derived from different ex-

pansions through projecting the cross-

covariance functions to the eigenfunction set 

of each component field. That is, 

E[𝜉𝑘
𝑖 𝜉𝑙

𝑗
]

=
1

√𝜆𝑘
𝑖 𝜆𝑙

𝑗

∫ ∫ 𝛴𝑖𝑗(𝐭, 𝐬)𝜑𝑘
𝑖 (𝐭)𝜑𝑙

𝑗
(𝐬)𝑑𝐭𝑑𝐬

𝛺𝛺

 
(9) 

The cross-covariance function �̂�𝑖𝑗(𝐭, 𝐬) of the 

approximated vector field then reads: 

�̂�𝑖𝑗(𝐭, 𝐬)

= ∑ ∑ E[𝜉𝑘
𝑖 𝜉𝑙

𝑗
]√𝜆𝑘

𝑖 𝜆𝑙
𝑗
𝜑𝑘

𝑖 (𝐭)𝜑𝑙
𝑗
(𝐬)

𝑚

𝑙=1

𝑚

𝑘=1

 
(10) 

It is noted here that the same concept can be 

applied in the case where each component 

field is approximated by the EOLE represen-

tation of Eq. (7). In this case, the correlation 

between each pair of random variables 

{𝜉𝑘
𝑖 , 𝜉𝑙

𝑗
} for 𝑖 ≠ 𝑗 can be evaluated as 

E[𝜉𝑘
𝑖 𝜉𝑙

𝑗
] =

1

√𝜆𝑘
𝑖 𝜆𝑙

𝑗

(𝚽𝑘
𝑖 )

𝑇
𝚺𝑖𝑗𝚽𝑙

𝑗
 

(11) 

where 𝚺𝑖𝑗 is a 𝑞 × 𝑞 cross-covariance matrix 

with (𝑘, 𝑙) element 𝛴𝑖𝑗(𝐭𝑘, 𝐭𝑙). The corre-

sponding approximation of each cross-

covariance function reads: 

�̂�𝑖𝑗(𝐭, 𝐬)

= ∑ ∑
E[𝜉𝑘

𝑖 𝜉𝑙
𝑗
]

√𝜆𝑘
𝑖 𝜆𝑙

𝑗

𝚺𝑞
𝑖 (𝐭)𝑇𝚽𝑘

𝑖 𝚺𝑞
𝑗 (𝐬)𝑇𝚽𝑙

𝑗

𝑚

𝑙=1

𝑚

𝑘=1

 (12) 

To represent the vector field accurately, 

one needs to choose the number of random 

variables such that the errors defined in Eq. 

(4) are small. When using multiple correlated 

series expansion, the global mean-square error 

𝛿�̅�𝑖 of each component field 𝑋𝑖(𝐭) for a given 

number of terms in the expansion depends on 

the autocorrelation function of 𝑋𝑖(𝐭). If the 

component field is highly fluctuating, a large 

number of terms are required to achieve a 

small mean square error. On the other hand, 

slowly varying fields can be represented accu-

rately with just a few terms. However, the 

cross-covariance functions introduce depend-

ence between each pair of component random 

fields and hence decrease their relative varia-

bility. It is possible to account for the cross-

covariance in choosing the spatial functions in 

the series expansion, hence decreasing the 

number of random variables needed to repre-

sent accurately the multivariate field. Next, 

we look at series expansion methods that ac-

count for this dependence. 
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5 Karhunen-Loève Expansion of Multi-

variate Random Fields 

Consider the Hilbert space 𝐿2(Ω, ℝ𝑛) of 

square integrable vector-valued functions 

𝐟(𝐭): Ω ⟶ ℝ𝑛, i.e. 𝐟(𝐭) satisfying 

 ‖𝐟‖ = √〈𝐟, 𝐟〉 < ∞ (13) 

where 〈∙,∙〉 is the inner product on 𝐿2(Ω, ℝ𝑛) 

defined by: 

 

〈𝐟, 𝐠〉 = ∫ 𝐟(𝐭)𝑇𝐠(𝐭)𝑑𝐭

Ω

 (14) 

Assuming that 𝚺(𝐭, 𝐬) is continuous and that 

its elements are square integrable functions, 

then according to Mercer’s theorem for vector 

valued functions (Carmeli et. al. 2006), the 

kernel 𝚺(𝐭, 𝐬) adheres the spectral decomposi-

tion 

 
𝚺(𝐭, 𝐬) = ∑ 𝜆𝑖𝛗𝑖(𝐭)𝛗𝑖(𝐬)𝑇

∞

𝑖=1

 (15) 

where {𝛗𝑖, 𝑖 ∈ ℕ} is an orthonormal basis of 

𝐿2(Ω, ℝ𝑛), i.e. 

 〈𝛗𝑖 , 𝛗𝑗〉 = 𝛿𝑖𝑗 (16) 

and {𝜆𝑖 , 𝑖 ∈ ℕ} are non-negative real numbers 

arranged in a decreasing order, i.e. 𝜆1 ≥ 𝜆2 ≥
⋯. The pairs {𝜆𝑖 , 𝛗𝑖} are the eigenvalues and 

eigenfunctions of 𝚺(𝐭, 𝐬) and satisfy the fol-

lowing system of integral equations: 

 

∫ 𝚺(𝐭, 𝐬)𝛗𝑖(𝐬)𝑑𝐬

Ω

= 𝜆𝑖𝛗𝑖(𝐭) (17) 

for all 𝑖 ∈ ℕ, wherein the integration is per-

formed element-wise. The KL expansion of 

the vector field 𝐗(𝐭) truncated after the 𝑚 

largest eigenvalues reads (e.g. Busch et al. 

2011, Perrin et al. 2013): 

 
�̂�(𝐭) = 𝛍(𝐭) + ∑ 𝜉𝑖√𝜆𝑖𝛗𝑖(𝐭)

𝑚

𝑖=1

 (18) 

where {𝜉𝑖}  are zero mean orthonormal ran-

dom variables, given in the following closed 

form 

 

𝜉𝑖 =
1

√𝜆𝑖

∫ 𝛗𝑖(𝐭)𝑇(𝐗(𝐭) − 𝛍(𝐭))𝑑𝐭

Ω

 (19) 

From Eq. (19) it is clear that if the vector field 

is Gaussian, then the random variables {𝜉𝑖} are 

also Gaussian, because they are defined as a 

linear mapping of a Gaussian field. In this 

case, the variables {𝜉𝑖} are independent stand-

ard normal random variables.  

The mean function of �̂�(𝐭) equals the 

mean of 𝐗(𝐭) by definition. The matrix-valued 

covariance function of �̂�(𝐭) reads: 

 
�̂�(𝐭, 𝐬) = ∑ 𝜆𝑖𝛗𝑖(𝐭)𝛗𝑖(𝐬)𝑇

𝑚

𝑖=1

 (20) 

The covariance matrix function 𝚺𝛜(𝐭) of the 

truncation error of the representation of Eq. 

(18) can be expressed as: 

𝚺𝛜(𝐭) = 𝚺(𝐭, 𝐭) − ∑ 𝜆𝑖𝛗𝑖(𝐭)𝛗𝑖(𝐭)𝑇

𝑚

𝑖=1

 (21) 

The second term in the above is identical to 

�̂�(𝐭, 𝐬). Since the diagonal elements of 𝚺𝛜(𝐭) 

are always positive, it follows that each ele-

ment �̂�𝑖(𝐭) of the approximate multivariate 

field �̂�(𝐭) always underestimates the point-

wise variance of the corresponding element of 

the original field. This property of the KL 

expansion was discussed in (Sudret and Der 

Kiureghian 2000) for the case of univariate 

random fields. 

It can be shown that the expansion of Eq. 

(18) is optimal in the sense that the integral of 
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trace of the matrix function 𝚺𝛜(𝐭), i.e. the in-

tegral of the sum of the mean square errors of 

the approximated random fields is minimized 

for the particular choice of the eigenfunctions 

of 𝚺(𝐭, 𝐬) relative to any other orthonormal 

basis in 𝐿2(Ω, ℝ𝑛). 

5.1 Numerical Solution of the Eigenvalue 

Problem 

It is highly unlikely that the matrix-valued 

integral eigenvalue problem in Eq. (17) will 

have an analytical solution for an arbitrarily 

selected covariance matrix function of the 

multivariate random field. In this section, we 

discuss a method for numerical solution of 

this problem. In a subsequent section we show 

that one particular case of this solution is 

equivalent to the EOLE method, which is de-

scribed in the next section. 

Equation (17) represents a system of 𝑛 

Fredholm integral equations and can be solved 

by a variety of numerical methods (see Atkin-

son 1997, Betz et al. 2014). Here, we describe 

the Nyström method (see, e.g. Atkinson 

1997). According to this method, the integrals 

in Eq. (17) are approximated by a quadrature 

scheme so that 

 

∑ 𝑤𝑗𝚺(𝐭, 𝐭𝑗)𝛗𝑖(𝐭𝑗)

𝑞

𝑗=1

= 𝜆𝑖𝛗𝑖(𝐭),   (22) 

where {𝐭𝑗, 𝑤𝑗}, 𝑗 = 1, … , 𝑞, are a set of nodes 

and corresponding weights and convergence 

to the true integrals in Eq. (17) is achieved as 

𝑞 → ∞. Note that we are using the same set 

{𝐭𝑗 , 𝑤𝑗} for approximating all integrals in Eq. 

(17). Requiring that Eq. (22) is satisfied at the 

quadrature nodes 𝐭𝑘, 𝑘 = 1, … , 𝑞, yields: 

∑ 𝑤𝑗𝚺(𝐭𝑘 , 𝐭𝑗)𝛗𝑖(𝐭𝑗)

𝑞

𝑗=1

= 𝜆𝑖𝛗𝑖(𝐭𝑘), 

       𝑘 = 1, … , 𝑞   

(23) 

The above is a matrix eigensystem of order 𝑞𝑛 

and can be expressed in matrix form as  

 𝚺𝐖𝚽𝑖 = 𝜆𝑖𝚽𝑖  (24) 

where 𝚺 and 𝐖 are 𝑞𝑛 × 𝑞𝑛 matrices defined 

as 

 

𝚺: = [

𝚺(𝐭1, 𝐭1) ⋯ 𝚺(𝐭1, 𝐭𝑞)

⋮ ⋱ ⋮
𝚺(𝐭𝑞 , 𝐭1) ⋯ 𝚺(𝐭𝑞 , 𝐭𝑞)

] (25) 

and 

 

𝐖: = [

𝑤1𝐈 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑤𝑞𝐈

], (26) 

where 𝐈 is the 𝑛 × 𝑛 identity matrix, and 𝚽𝑖  is 

the 𝑞𝑛 × 1 vector 

 

𝚽𝑖 : = [

𝛗𝑖(𝐭1)
⋮

𝛗𝑖(𝐭𝑞)
]. (27) 

The product 𝚺𝐖 leads to an asymmetric ma-

trix eigenvalue problem; however, it can be 

transformed to a symmetric problem by left-

multiplying Eq. (24) with 𝐖1/2 (Press et al. 

1992), as follows: 

 𝐖𝟏/𝟐 𝚺𝐖𝟏/𝟐 𝚽𝒊
∗ = 𝜆𝑖𝚽𝒊

∗ (28) 

where 𝚽𝒊
∗ = 𝐖𝟏/𝟐 𝚽𝒊. The resulting symmet-

ric matrix eigenvalue problem is solved for 

the 𝑞𝑛 positive eigenvalues 𝜆𝑖 and corre-

sponding eigenvectors 𝚽𝒊
∗. The eigenfunctions 

𝛗𝑖(𝐭) are then approximated by using the 

Nyström interpolation formula, derived by 

solving Eq. (22) for 𝛗𝑖(𝐭), which gives 

 
𝛗𝑖(𝐭) =

1

𝜆𝑖

𝚺𝑞(𝐭)𝑇𝐖𝟏/𝟐 𝚽𝒊
∗, (29) 

in which 𝚺𝑞(𝐭) is the following 𝑞𝑛 × 𝑛 ma-

trix-valued function: 

 

𝚺𝑞(𝐭): = [

𝚺(𝐭, 𝐭1)
⋮

𝚺(𝐭, 𝐭𝑞)
]. (30) 
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6 EOLE of Multivariate Random Fields 

We now consider an entirely different ap-

proach for discretizing second-order multivar-

iate random fields. In the subsequent section, 

we show that this formulation is equivalent to 

the numerical solution of the multivariate KL 

expansion using Nyström’s method with uni-

form weights. 

We start by constructing an approxima-

tion �̂�(𝐭) of the random field 𝐗(𝐭), defined as 

a linear function of the random vectors 𝐗(𝐭𝑖) 

corresponding to a set of nodes 𝐭𝑖, 𝑖 = 1, … , 𝑞, 

i.e., 

 �̂�(𝐭) = 𝐚(𝐭) + 𝐁(𝐭)𝑇𝐗𝑞  (31) 

where 𝐚(𝐭): Ω ⟶ ℝ𝑛, 𝐁(𝐭) is the 𝑞𝑛 × 𝑛 ma-

trix-valued function: 

 

𝐁(𝐭): = [

𝐛1(𝐭)
⋮

𝐛𝑞(𝐭)
], (32) 

where 𝐛𝑖(𝐭): Ω ⟶ 𝑀𝑛(ℝ), and 𝐗𝑞  is the 

𝑞𝑛 × 1 vector of random variables 

 

𝐗𝑞: = [

𝐗(𝐭1)
⋮

𝐗(𝐭𝑞)
]. (33) 

The functions 𝐚(𝐭) and 𝐁(𝐭) are determined 

by application of linear estimation theory for 

interpolation of dependent data, i.e. the so-

called co-kriging method (e.g. see Stein 

1999). Define 𝛜(𝐭) as the point-wise error of 

the approximation in Eq. (31), i.e. 𝛜(𝐭) =
𝐗(𝐭) − �̂�(𝐭). Let 𝚺𝛜(𝐭) be the 𝑛 × 𝑛 matrix-

valued covariance function of 𝛜(𝐭) and recall 

that the 𝑖th diagonal element of 𝚺𝛜(𝐭) is the 

variance of the error in the approximate repre-

sentation of 𝑋𝑖(𝐭). We seek the functions 𝐚(𝐭), 

𝐁(𝐭) that minimize the trace of 𝚺𝛜(𝐭) subject 

to �̂�(𝐭) being an unbiased estimator of 𝐗(𝐭), 

i.e., 

 minimize   tr(𝚺𝛜(𝐭)) (34) 

 subject to  E[𝛜(𝐭)] = 𝟎 (35) 

From Eq. (35), we have 

 𝐚(𝐭) = 𝛍(𝐭) − 𝐁(𝐭)𝑇𝐌 (36) 

where 𝐌 is the 𝑞𝑛 × 1 mean vector of 𝐗𝑞, 

 

𝐌: = [

𝛍(𝐭1)
⋮

𝛍(𝐭𝑞)
]. (37) 

The error covariance 𝚺𝛜(𝐭) can then be written 

as 

 𝚺𝛜(𝐭) = 𝚺(𝐭, 𝐭) + 𝐁(𝐭)𝑇𝚺𝐁(𝐭) 
−2 ∙ 𝐁(𝐭)𝑇𝚺𝑞(𝐭), 

(38) 

where 𝚺 and 𝚺𝑞(𝐭) are defined in Eq. (25) and 

Eq. (30), respectively. Taking the partial de-

rivative of the trace of 𝚺𝛜(𝐭) in terms of each 

element of 𝐁(𝐭) and setting it equal to zero, 

yields: 

∂tr(𝚺𝛜(𝐭))

∂𝐁(𝐭)
= 2 ∙ 𝚺𝐁(𝐭) − 2 ∙ 𝚺𝑞(𝐭) 

= 𝟎 

(39) 

which yields 𝐁(𝐭) = 𝚺−1𝚺𝑞(𝐭). Substituting 

this result together with Eq. (36) in Eq. (31), 

we obtain the following optimal linear estima-

tion (OLE) representation of 𝐗(𝐭): 

�̂�(𝐭) = 𝛍(𝐭) + 𝚺𝑞(𝐭)𝑇𝚺−1(𝐗𝑞 − 𝐌) (40) 

Equation (40) is a generalization of the OLE 

method for discretization of univariate random 

fields presented by Li and Der Kiureghian 

(1993). In the same reference, the authors 

proposed the expansion optimal linear estima-

tion (EOLE) method, which is based on the 

spectral decomposition of the covariance ma-

trix 𝚺 of the nodal random variables. Using 

the same concept, here we develop the EOLE 

of multivariate fields. 
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The nodal vector of random variables, 𝐗𝑞 , 

can be expressed as follows (e.g. see Yama-

zaki and Shinozuka 1990): 

 

𝐗𝑞 = 𝐌 + ∑ 𝜉𝑖√𝜆𝑖𝚽𝑖

𝑞𝑛

𝑖=1

 (41) 

where {𝜆𝑖 , 𝚽𝑖}, 𝑖 = 1, … , 𝑞, are the eigenval-

ues and corresponding eigenvectors of the 

covariance matrix 𝚺 satisfying 

 𝚺𝚽𝑖 = 𝜆𝑖𝚽𝑖 ,       𝑖 = 1, … , 𝑛𝑞 (42) 

and {𝜉𝑖} are zero mean orthonormal random 

variables defined as 

 
𝜉𝑖 =

1

√𝜆𝑖

𝚽𝑖
𝑇(𝐗𝑞 − 𝐌). (43) 

If the vector field is Gaussian, then the ran-

dom vector 𝐗𝑞  is also Gaussian and so are the 

random variables {𝜉𝑖}, because they are de-

fined as a linear mapping of 𝐗𝑞 . In this case, 

the variables {𝜉𝑖} are independent standard 

normal random variables. A truncation of the 

sum in Eq. (41) after 𝑚 terms leads to an ap-

proximation of the random vector 𝐗𝑞 , which 

corresponds to the optimal low rank approxi-

mation of the covariance matrix 𝚺 in terms of 

its Frobenius norm, according to the Eckart-

Young theorem (see, e.g. Stewart 1993). Sub-

stituting Eq. (41), truncated after 𝑚 terms into 

Eq. (31) and solving the OLE optimization 

problem, we get: 

 
�̂�(𝐭) = 𝛍(𝐭) + ∑

𝜉𝑖

√𝜆𝑖

𝚺𝑞(𝐭)𝑇𝚽𝑖

𝑚

𝑖=1

 (44) 

The mean function of �̂�(𝐭) equals the 

mean of 𝐗(𝐭). The matrix-valued covariance 

function of �̂�(𝐭) reads: 

 
�̂�(𝐭, 𝐬) = ∑

1

𝜆𝑖

𝚺𝑞(𝐭)𝑇𝚽𝑖𝚽𝑖
𝑇𝚺𝑞(𝐬).

𝑚

𝑖=1

 (45) 

The covariance matrix function 𝚺𝛜(𝐭) of the 

error of the representation of Eq. (44) reads 

 𝚺𝛜(𝐭) = 𝚺(𝐭, 𝐭) 

− ∑
1

𝜆𝑖

𝚺𝑞(𝐭)𝑇𝚽𝑖𝚽𝑖
𝑇𝚺𝑞(𝐭).

𝑚

𝑖=1

 
(46) 

The second term in the above is identical to 

�̂�(𝐭, 𝐭). Therefore, similar to the KL represen-

tation, the EOLE representation for multivari-

ate random fields underestimates the variance 

of each component random field, 𝑋𝑖(𝐭). Li and 

Der Kiureghian (1993) made this observation 

for the EOLE representation of univariate 

random fields. 

6.1 EOLE as a Numerical Solution of the  

KL Expansion 

In Section 5.1, we described the Nyström 

method for the numerical solution of the KL 

eigenvalue problem. Here, we show that the 

EOLE for multivariate random fields can be 

seen as a numerical KL expansion for the case 

where the system of Fredholm eigenvalue 

equations is solved by the Nyström method. 

The same is shown by Betz et al. (2014) for 

the case of univariate random fields. 

In the Nyström method, the integral ei-

genvalue problem of Eq. (17) is approximated 

by a finite sum, as shown in Eq. (22). Assume 

that the quadrature nodes are selected such 

that their weights are equal. This can be done, 

for example, by application of the rectangle 

quadrature using the nodes of an equispaced 

structured grid. In that case, the approximated 

eigenvalue problem takes the form 

 |Ω|

𝑞
∑ 𝚺(𝐭, 𝐭𝑗)𝛗𝑖(𝐭𝑗)

𝑞

𝑗=1

= 𝜆𝑖𝛗𝑖(𝐭). (47) 

Requiring that Eq. (47) be satisfied at the 

nodes 𝐭𝑖, 𝑖 = 1, … , 𝑞, leads to the following 

eigenvalue problem: 
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 |Ω|

𝑞
𝚺𝚽𝑖

∗ = 𝜆𝑖𝚽𝑖
∗ (48) 

where 𝚺 is defined in Eq. (25). Solving Eq. 

(48) and substituting in the Nyström interpola-

tion formula of Eq. (29), we have: 

 

𝛗𝑖(𝐭) =
1

𝜆𝑖

√
|Ω|

𝑞
𝚺𝑞(𝐭)𝑇𝚽𝑖

∗ (49) 

Substituting this result in Eq. (18), we get the 

following expression for the approximate KL 

representation of 𝐗(𝐭): 

 
�̂�(𝐭) = 𝛍(𝐭) + ∑

𝜉𝑖

√𝜆𝑖
∗

𝚺𝑞(𝐭)𝑇𝚽𝑖
∗

𝑚

𝑖=1

 (50) 

where 𝜆𝑖
∗ =

𝜆𝑖𝑞

|Ω|
. Note that {𝜆𝑖

∗, 𝚽𝑖
∗} are the 

eigenvalues and corresponding eigenvectors 

of the matrix 𝚺 and thus Eq. (50) is identical 

to Eq. (44). Hence, the EOLE expansion is a 

numerical approximation of the KL expansion 

and will converge to the analytical KL expan-

sion as 𝑞 → ∞. 

7 Numerical Example 

This example consists of a bivariate one-

dimensional homogeneous standard Gaussian 

random field defined in Ω = [0,10]. We adopt 

the exponential model to describe the auto-

correlation structures of each component field, 

i.e. 

 𝛴𝑖𝑖(𝜏) = exp(−𝑎𝑖𝑖|𝜏|) (51) 

where 𝜏 is the difference in location between 

two points 𝑎𝑖𝑖 =
1

𝑙𝑖𝑖
, and 𝑙𝑖𝑖  is the correlation 

length of component field 𝑋𝑖(𝐭). The correla-

tion lengths are chosen as 𝑙11 = 10 and 

𝑙22 = 5. The cross-correlation structure is also 

given by the exponential model, so that 

 𝛴12(𝜏) = 𝜌12
𝑐 exp(−𝑎12|𝜏|) (52) 

where 𝜌12
𝑐  is the point-wise cross-correlation 

of the two fields, chosen as 𝜌12
𝑐 = 0.7. The 

parameter 𝑎12 is chosen as 𝑎12 =
𝑎11+𝑎12

2
, 

which leads to a valid covariance matrix func-

tion – the conditions under which the expo-

nential model is valid can be found in (Apa-

nasovich et al. 2012). 

The multivariate EOLE and KL methods 

are applied to discretize the random field and 

we compare the accuracies of the two meth-

ods. For the EOLE, we use 20 equispaced 

nodes for the point representation of the ran-

dom field. For the KL, we solve the integral 

equation system of Eq. (17) with the Nyström 

method with 200 equispaced quadrature 

points, which is equivalent to the EOLE 

method with 200 points (see Section 6.1). 

Figures 1-3 show the point-wise relative er-

rors of Eq. (3) for the two discretization meth-

ods. It is shown that the point-wise errors of 

the KL expansion are smaller than the ones of 

the EOLE in the interior of the domain. How-

ever, the KL errors are larger than the EOLE 

error at the boundaries of the discretization 

domain. Li and Der Kiureghian (1993) ob-

served the same for the KL and EOLE of uni-

variate fields. 

 

 
Figure 1.  Point-wise variance error 𝛿11(𝑡) for the 

multivariate KL and EOLE methods with 𝑚 = 6. 
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Figure 2.  Point-wise variance error 𝛿22(𝑡) for the 

multivariate KL and EOLE methods with 𝑚 = 6. 

 

 
Figure 3.  Point-wise covariance 𝛿12(𝑡) of the dis-

cretization error of each component field for the 

multivariate KL and EOLE methods with 𝑚 = 6. 

 

Figure 4 shows the average errors of Eq. 

(4) against the number of random variables in 

the expansion for the multivariate EOLE. It is 

shown that the two variance errors 𝛿1̅1 and 𝛿2̅2 

decrease monotonically with increase of the 

number of terms in the expansion. However, 

the same does not hold for the average covari-

ance of the errors 𝛿1̅2. This is due to the fact 

that the spatial functions of the EOLE repre-

sentation are determined by minimizing the 

point-wise sum of the variance errors, i.e. the 

trace of 𝚺𝛜(𝐭), and not the covariance of the 

errors. As expected, the variance error of the 

component of the random field with the larg-

est correlation length  𝛿1̅1 is smaller than the 

one of the second component 𝛿2̅2 at any order 

of expansion. 

 
Figure 4. Average errors against number of random 

variables for the multivariate EOLE. 

 

Figure 5 shows the sum of the average 

variance errors against the number of random 

variables in the expansion for the multivariate 

KL and EOLE methods. It is shown that the 

KL expansion has lower sum of variance er-

rors than the EOLE. This is because the KL 

eigenfunctions minimize the sum of variance 

errors, relative to any orthogonal function set 

in 𝐿2(Ω, ℝ𝑛). 

Figure 6 compares the accuracy of the 

multivariate EOLE with the one of two corre-

lated univariate EOLE expansions (corrE-

OLE). It is shown that the EOLE performs 

better than corrEOLE at any number of ran-

dom variables in the representation. This is 

because in corrEOLE, each univariate EOLE 

representation is determined by minimizing 

the point-wise variance error of the corre-

sponding random field. That is, the accuracy 

of the expansion depends on the autocorrela-

tion functions of the two random fields, while 

their cross-correlation function is not consid-

ered. On the other hand, the spatial functions 

of the multivariate EOLE representation are 

found by minimizing the sum of variances of 

the two component random fields, which al-

lows accounting for their cross-correlation. 

This is clearly seen in Eq. (44), wherein the 

matrix function 𝚺𝑞(𝐭) expresses the covari-

ance matrix function of the random field eval-

uated at a set of points. 
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Figure 5.  Sum of variance errors against number of 

random variables for the multivariate KL and 

EOLE methods.  

 

 
Figure 6.  Sum of variance errors against number of 

random variables for the multivariate EOLE and 

for two correlated EOLE representations. 

8 Conclusion 

This paper reviewed series expansion methods 

for discretization of multivariate random 

fields and proposed a new method, namely the 

extension of EOLE to multivariate fields. The 

method is based on linear estimation theory 

for interpolation of dependent spatial data, i.e. 

the so-called co-kriging method. It was shown 

that the EOLE can be viewed as a numerical 

multivariate KL expansion. We also discussed 

the discretization of multivariate random 

fields with correlated univariate EOLE repre-

sentations. It was shown that the multivariate 

EOLE is more efficient than correlated uni-

variate EOLE representations because it ac-

counts for the cross-correlation function of the 

random field in determining the spatial func-

tions in the expansion. 
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