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There are undeniably certain kinds of knowledge that must be of a general nature and, more
importantly, a certain cultivation of the mind and character that nobody can afford to be

without. People obviously cannot be good craftworkers, merchants, soldiers or businessmen
unless, regardless of their occupation, they are good, upstanding and – according to their

condition – well-informed human beings and citizens. If this basis is laid through schooling,
vocational skills are easily acquired later on, and a person is always free to move from one

occupation to another, as so often happens in life.

(Wilhelm von Humboldt, 1767-1835)

by Karl-Heinz Günther, in Prospects, Vol. 18, Issue 1,1988
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Abstract

Climate change is undeniable and devastating global warming is inevitable due to the inaction
of the international community. The assessment of the effect of climate change on water
resources is critical and necessary to evaluate adequately. The impact of climate change
on the mesoscale of hydrological cycles in large or inter-basin watersheds has had negative
results on the availability of water resources for agriculture, food and water security for the
many regions in developing countries such as Africa, and South East Asia, especially the
Mekong Delta.

Despite the importance of climate change, a lack of financial resources and observed
data mean, there are few studies recent years that attempt to evaluate thoroughly the effect
of climate change on hydraulic regimes and salinity intrusion at estuaries in Vietnamese
Mekong Delta (VMD). Nevertheless, this region is highly vulnerable to climate change and
climate-induced water problems. This study adds more current knowledge of these prob-
lems on VMD. Sea level rise and salinity intrusion in Mekong river estuaries has increased
rapidly over the last ten years. This thesis contributes new and additional understanding of
the effect of climate change on hydraulic regimes and salinity intrusion on the Hau River,
Mekong Delta. This research used 1D-MIKE 11 and 2D-MIKE 21 hydrodynamic modelling
and applied different statistical downscaling techniques to draw plausible consequences
of climate change derived from five GCM outputs for precipitation in the Mekong Delta.
Machine learning and deep learning for artificial intelligent systems were also employed
to improve the skill of precipitation and runoff prediction. The novelty of this work is the
combination of 1D model for the whole VMD and a 2D model for the Hau River estuary to
simulate the salinity intrusion at the present and in the future. Furthermore, Artificial Neural
Network (ANN) and Long Short Term Memory (LSTM) Recurrent neural network were also
developed to enhance the precipitation prediction in different hydrological stations in VMD.
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Zusammenfassung

Der Klimawandel und die globale Erwärmung sind unleugbar und aufgrund der Untätigkeit
der internationalen Gemeinschaft unvermeidlich. Der Einfluss des Klimawandels in dem
mesoskaligen Wasserkreislauf von großen Einzugsgebieten hat negative Auswirkungen auf
die Wasserressourcenverfügbarkeit, z.B. für die Landwirtschaft, was die Wassersicherheit und
die Lebensmittelsicherheit in viele Regionen der Welt beeinflusst, wie Entwicklungsländer
in Afrika oder in Südostasien, und insbesondere das Mekong Delta. In den letzten Jahren
gab es mehrere Arbeiten, die die Auswirkungen des Klimawandels auf die Wasserwirtschaft
und das Salzeintragen in das Mündungsgebiet des vietnamesischen Mekong-Deltas (VMD)
untersucht haben.

Die VDM-Region ist sehr anfällig für Klimawandelauswirkungen und klimabedingten
Wasserproblemen. Diese Arbeit trägt dazu bei, ein neues, zusätzliches Verständnis der Kli-
mawandelauswirkungen auf das Wasserhaushalt und das Salzeintragen des Hau Flusses im
VMD zu schaffen. Der Meerwasserspiegelanstieg und das Salzeintragen in das Mündungsge-
biet des VMD haben sich in den letzten Jahren rasant erhöht. Die hydrodynamische Modelle
1D-MIKE 11 und 2D- MIKE 21 sowie verschiedene Downscaling-Techniken wurden be-
nutzt, um plausible Konsequenzen des Klimawandels, abgeleitet aus fünf GCM-Ausgaben
für den Niederschlag im Mekong Delta, zu ziehen. Maschinelles Lernen und tiefes Ler-
nen für künstliche intelligente Systeme wurde ebenso benutzt, um die Vorhersagfähigkeit
für Niederschlag und Abfluss und das statische Downscaling zu verbessern. Die Neuheit
dieser Arbeit besteht in der Kombination eines 1D-Modells für das ganze VMD und eines
2D-Modells für die Hau-Flussmündung für die Simulation des derzeitigen und zukünftigen
Salzeintragens. Darüber hinaus, wurden ein Künstliches Neuronales Netz (ANN) und Langes
Kurzzeitgedächtnis (LSTM) - Wiederkehrendes neuronales Netz entwickelt, um die Qualität
des statistischen Downscaling und der Hervorsage des Niederschlags in verschiedenen mete-
orologischen und hydrologischen Stationen im VMD zu verbessern.

Schlüsselwörter: Mekong Delta, MIKE11, MIKE21, ANN, LSTM
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Chapter 1

Introduction

1.1 Background

Vietnam is one of five countries that is seriously impacted by climate change. From the study
of Ministry of Natural Resources and Environment, the climatic calculations over the past
50 year indicate the average temperature has increased 0.5 to 0.7°C and sea level rise 20
cm (MonRE, 2009). Climate change has made natural disasters including typhoon, floods
and droughts more severe, especially since sea level rise will change on hydraulic regime
and salt intrusion at estuaries will become increased. Most of developing countries depend
on agriculture for their development; the effect of global warming on productive croplands
will threaten the welfare of their population and the socio-economic development of the
country. Agriculture is strongly dependent on water resources and climatic conditions. In
the countries where technological buffering to droughts and floods is less advanced, and
where the main physical factors affecting production (soil, terrain, climate) are less suited to
farming, crop production is consequently extremely sensitive to large year-to-year weather
fluctuation (Iizumi and Ramankutty, 2015).

Prospective water resources management is very challenging in the 21st century due to
issues with water supply and utilization at the inter-basin level, both of which are exacerbated
by climate change, as is the case with the Mekong Delta (Gupta, 2005) . These circumstances
have a considerable effect on economic development and the livelihoods of people in riparian
countries (Todd et al., 2011). The Mekong delta is considered to be the most complex basin
in current times, as a number of countries manage the River simultaneously. So far, the lower
Mekong delta is very likely to be the most vulnerable area affected, not only sea level rise
and climate change but also by construction of a planned dams for upper basin (Hoanh et al.,
2010; Kingston, Thompson, and Kite, 2011). Moreover, salinity intrusion in the low part
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of delta in recent years has further aggravated the situation for integrated water resources
management in Vietnamese Mekong Delta.

The VMD plays a crucial role in the economic development of Vietnam; it has contributed
approximately twenty-seven percent of the country’s GDP, supporting sixteen million inhab-
itants (nearly twenty-two percent of the total population), providing about fifty percent of
the annual rice production (Dasgupta et al., 2009; Carew-Reid, 2008). However, Vietnam
is one of five countries that could be seriously impacted by climate change and sea-level
rise (Bernstein et al., 2007). Currently, the VMD is experiencing faster alteration due to
population growth and infrastructure development (Varis, Kummu, and Salmivaara, 2012;
Keskinen et al., 2010), which create substantial pressure on water resources utilization (Lebel,
Garden, and Imamura, 2005; Piman, Lennaerts, and Southalack, 2013). Moreover, dam
construction, operation and water diversion in upstream countries influence the changes to
the hydraulic regime in the VMD (Vastila et al., 2010; Kingston, Thompson, and Kite, 2011).
It is therefore necessary to evaluate and forecast the water resources in current and future
conditions for long-term sustainable development in this river basin.

Salinity intrusion is a natural phenomenon occurring in the lands, estuaries, and aquifers
adjacent to the sea. There is notable variability in estuaries depending on the differences
in tides, river flows and topography (Dyer, 1997). There are many factors affecting salinity
intrusion: discharge and river flow periods, topography, morphology, river bed slope, tides
on the sea, wind velocity and direction, water temperature, the friction of the flow, and others
(Pritchar, 1955; Cameron and Pritchard, 1963). One of the consequences of sea-level rise
impact on estuaries is the change of salinity. Seasonal and inter-annual variations of salinity
directly influence the physical, chemical, and biological processes of estuaries. Changes of
salinity will result in changes of horizontal and vertical salinity gradients, which will alter the
estuarine circulation (Hansen, 1965) and oxygen depletion (Kuo and Neilson, 1987; Boicourt,
1992).

The study of estuaries is very difficult because these water systems usually include com-
plex geometries, hydrodynamics, and transport patterns. In fact, the interface between fresh
and salt waters controlled by river discharges, tides and wind presents specific characteristics
that affect the mixing properties of the estuarine water masses. There is a large variability
in estuaries depending on the differences in the tides, river discharges and the way these
factors interact with topography (Dyer, 1997). The salinity distribution within the estuary is
commonly used for classification purposes (Cameron and Pritchard, 1963). However, the
estuaries salinity structure can be modified by changes of river discharges regime caused
by dam construction and bathymetric changes due to either sediment fluxes variation or
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sand removals. These modifications can significantly impact established water uses like
agricultural, domestic and industrial supply. The extent of salinity intrusion depends on the
balance between fresh water discharges and salt water flow from the sea. This phenomenon
can be reasonably predicted through to mathematical models supported by monitored data.
These tools can be used to quantify how much fresh water is required to counterbalance
salinity intrusion at the upstream water intakes.

1.2 Objectives of the research

The main objective of this research is to investigate the impact of upstream discharge,
precipitation in the whole Mekong delta and sea level rise by climate change on salinity
intrusion on the Hau River, Vietnam. To achieve this, the research has the specific objectives
to pursue:

1. To forecast the amount of future rainfall in the study area under climate change
conditions with different scenarios from 5 GCMs1 outputs using LSTM, ANN;

2. To develop a new model of Artificial Neural Network (ANN) and Recurrent neural
network – Long short term memory (LSTM) for predicting rainfall and runoff;

3. To apply 1D-MIKE 11 to simulate the total volume of rainfall at the VMD and the
effect of discharge from Kratie station as the sources and sinks in MIKE 21 input;

4. To apply 2D-MIKE 21 model to simulate hydraulic regime and salinity intrusion in the
Hau river under different scenarios;

5. To simulate fresh and salt water balance based on sea level rise and upstream water
level scenarios;

1.3 Scope of the work

The proposed study is conducted at Vietnamese Mekong delta, Vietnam. For this level, all
required data collected from the secondary sources include water level, discharge, rainfall,
salinity concentration, cross section of river, bathymetry, wind condition, tidal regime,
hydraulic works... Water resources plans, strategies, policies of Mekong River Committee in
operation and sharing water resources. . . are also collected.

1 General Circulation Models
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• Data collection on rainfall, evaporation, water level, discharge as secondary data
from meteorological and rain gauge stations and Tan Chau, Chau Doc, Can Tho
hydro-meteorological stations on Mekong River, Vietnam;

• Data collection on salinity concentration at Tran De, Dai Ngai, My Thanh stations
and tidal magnitude at My Thanh and offshore boundary is obtained from global tidal
model.

• Data collection on water availability, water supply and dam constructions, hydropower
plants and discharge at some stations along Mekong River;

• Elevation and digital map, cross section, bathymetry of Hau estuaries and offshore
area are collected to apply MIKE 21 model;

• The Representative Concentration Pathway (RCP) scenarios including RCP4.5 and
RCP 8.5 are selected and downloaded five GCM outputs for future periods of 2035-
2065 based on the reference periods of 1978 to 2001;

• Base on observed water levels and simulated data to calibrate and validate the MIKE
11 and MIKE 21 models;

• Apply MIKE 21 model to simulate salinity intrusion and salt and fresh water balance
on estuaries with different scenarios of sea level rise and discharges;

• Develop Artificial Neural network (ANN) and Recurrent neural network – Long Short
term memory (LSTM) model to improve the capacity of statistically downscaling and
prediction for rainfall – runoff in Vietnamese Mekong delta.

1.4 Outline of the thesis

In Chapter 2, the fundamental literature review of hydrodynamic models and downscaling
techniques are briefly reviewed in preparation for their application in Chapters 4, and 5. The
first part of this chapter introduces MIKE 11 and MIKE 21 model. The second part of this
chapter consists of a definition and explanation of climate change and general circulation
models. The last part of this chapter provides the basics of the downscaling technique and
bias correction applied in this study which are also described in terms of mathematical
meaning and applications.
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Chapter 3 described the concept and application of ANN, SANN and LSTM that are
applied this study. The structure of three models and mathematical expression will be explain
in this part.

Chapter 4 contains the main part of this research which provides the methodology and
study area which explains in detail how to obtain the objectives of study and also describes
the tools and models applyed in this study. The research framework is presented to clearly
define all tasks and sub-objectives using different tools.

Chapter 5 focuses on the model application with five sub-parts including application of
ANN, SANN and LSTM for rainfall and rainfall – runoff prediction. This chapter also
shows the development of the new model of machine learning using ANN, SANN and
LSTM for hydrological simulation. Deep learning of Long Short Term Memory (LSTM)
is also employed to train the model for rainfall prediction and rainfall – runoff relationship
prediction.

The hydrodynamic model for simulating hydraulic regimes on Mekong delta is the most
central objective of this research. 1D-MIKE 11 and 2D-MIKE 21 models and their applica-
tion for the whole Mekong Delta from Kratie to estuaries and the smaller domain from Can
Tho to the offshore area for 2D model for simulating salinity intrusion and hydraulic regime
which is given in this part. The results and discussion are are used to make a comprehensive
examination on climate change and upstream effect to lower Mekong Delta.

Chapter 6 makes some conclusions and recommendations of further research.





Chapter 2

Hydrodynamic modelling, climate
change and downscaling technique

2.1 1D-MIKE 11 model

The MIKE 11 model system is a commercial software package developed by the Danish
Hydraulic Institute. The system has four editor interfaces including a river network, cross
sections, boundary conditions, simulation and designing with various modules including
Hydrodynamic (HD), Advection Dispersion (AD), Water Quality (WQ), runoff and rainfall
(NAM), non-cohesive sediment transport, and flood forecasting (DHI, 2007).

The MIKE 11-HD is a model for one dimensional unsteady flow computation and can be
applied to looped networks and quasi-two dimensional flow simulation on floodplains. The
model has been designed to perform detailed modelling of rivers, including special treatment
of floodplains, road overtopping, culverts, gate openings and weirs. It is capable of using
the 1D Saint-Venant equations. The solution of the continuity and momentum equations is
based on an implicit finite difference scheme. Boundary types include water level (h), flow
discharge (Q) and Q/h relation (Fig. 2.1). The water level must be specified at either the
upstream or the downstream boundary of the model. The flow discharge can be applied to
either the upstream or the downstream boundary condition, and can also be applied to the
side tributary flow (lateral inflow). The lateral inflow is used to describe runoff. The Q/h
relation can only be applied to the downstream boundary. MIKE 11 is a modelling package
for the simulation of surface runoff, flow, sediment transport, and water quality in rivers,
channels, estuaries, and floodplains. The most commonly applied hydrodynamic (HD) model
is a flood management tool simulating the unsteady flows in complex rivers and channel
systems. It has been successfully applied in different river basins around the world. The main
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governing equations are known as Saint-Venant equations (Shooshtari, 2008) as follows.

∂Q
∂x

+
∂A
∂ t

= q (2.1)

∂Q
∂ t

+
∂

∂x

(
α

Q2

A

)
+gA

∂h
∂x

+
gQ |Q|
ARC2 = 0 (2.2)

Where: Q - discharge, m3 s−1 ; A - flow area, m2 ; q - lateral flow, m2s−1 ; h - depth above
datum, m;C - Chezy resistance coefficient, m1/2s−1; R - hydraulic radius, m;α- momentum
distribution coefficient.

Fig. 2.1 The solution of scheme of MIKE 11 model

2.2 2D-MIKE 21 model

The MIKE 21 is a dynamic modeling system used within coastal and estuarine environments.
The MIKE 21 comprises several modules: the Hydrodynamic Module, Advection – Disper-
sion module, Spectral Wave Module, Transport Module, etc. The mutual interaction between
salinity concentration and currents can be simulated using dynamic coupling between the
Hydrodynamic Module and Transport Module. (Fig. 2.2) shows the mechanism of the
two modules running with inputs, outputs and interaction for hydrodynamic and transport
modules applied in this study.

MIKE 21 model has been developed based the two-dimensional shallow water equa-
tions with several governing equations such as Reynolds-averaged Navier–Stokes equations
involving the assumption of Boussinesq and of hydrostatic pressure as well as the convec-
tion diffusion equation. Integrating the horizontal momentum equations and the continuity
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equation over depth the following two-dimensional shallow water equations are obtained:
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And the depth average transport equation for salt:
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+
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+
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Where: Fs is the horizontal diffusion term, s is salinity concentration.
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Dh =
A

σT
σT is the Prandlt number, A is the horizontal eddy viscosity.

Where:
t is the time; x, yz are the Cartesian co-ordinates; η is the surface elevation; dis the

still water depth; h = η + d is the total water depth; u, v are the depth average velocity
components in the x, y direction; f =2Ωsinϕ is the Coriolis parameter; gis the gravitational
acceleration; ρ is the density of water; Sxx,Sxy,Syx and Syy are components of the radiation
stress tensor; pa is the atmospheric pressure; ρo is the reference density of water. S is the
magnitude of the discharge due to point sources; (us, vs) is the velocity by which the water is
discharged into the ambient water; s is the depth average salinity concentration.

MIKE 21 FM is based on a flexible mesh approach. The spatial discretization of the
primitive equation is performed using a cell – centered finite volume method. The spatial
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domain is discretized by subdivision of the continuum into non-overlapping cell. The mesh
is divided by triangles or quadrilateral elements.

Fig. 2.2 The scheme of MIKE 21 HD and TR simulations (developed from (Manson, 2012))

2.3 Climate Change and General Circulation Models

2.3.1 Climate change

Climate change is widely recognized as the most urgent issue facing planet Earth and has
been involved in Summit G7 or G20 agendas. The Intergovernmental Panel on Climate
Change (Bernstein et al., 2007) defined the term of "climate change" as “A change in the

state of the climate that can be identified (e.g. using statistical tests) by changes in the mean

and/or the variability of its properties, and that persists for an extended period, typically

decades or longer. It refers to any change in climate over time, whether due to natural

variability or as a result of human activity”.
The United Nations Framework Convention on Climate Change defines climate change as

“change of climate which is attributed directly or indirectly to human activity that alters the

composition of the global atmosphere and which is in addition to natural climate variability

observed over comparable time periods” (Turner, 2013).
The global climate change is referred to long term changes of climate and weather pattern.

The consequences of climate change are attributed to both anthropogenic activities and
natural fluctuations over time. The main reason for global warming is the significant rise of
greenhouse gas emission such as carbon dioxide from fossil fuel burning and deforestation,
natural gas leakage, methane from agriculture, and ozone in the lower atmosphere from the
products of vehicle exhausts, all off which are widely agreed upon by scientist community
(Bernstein et al., 2007).
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According to IPCC’s Fifth Assessment Report (AR5), new evidence of climate change
based on many independent scientific analyses from the observations of the climate system,
paleoclimate archives, theoretical studies of climate processes and simulations using climate
models. We described briefly the main finding of AR5 in term of temperature changes,
precipitation alterations and sea level rise as following:

“Warming of the climate system is unequivocal, and since the 1950s, many of the

observed changes are unprecedented over decades to millennia. The atmosphere and ocean

have warmed, the amounts of snow and ice have diminished, sea level has risen, and the

concentrations of greenhouse gases have increased” (Stocker et al., 2013).

Fig. 2.3 Observed global mean combined land and ocean surface temperature anomalies,
from 1850 to 2012 from three data sets. Top panel: annual mean values. Bottom panel:
decadal mean values including the estimate of uncertainty for one dataset (black) (Stocker
et al., 2013)
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“Ocean warming dominates the increase in energy stored in the climate system, account-

ing for more than 90% of the energy accumulated between 1971 and 2010 (high confidence).

It is virtually certain that the upper ocean (0−700 m) warmed from 1971 to 2010 (see Fig.

2.3), and it likely warmed between the 1870s and 1971” (Stocker et al., 2013).
“The rate of sea level rise since the mid-19th century has been larger than the mean rate

during the previous two millennia (high confidence). Over the period 1901 to 2010, global

mean sea level rose by 0.19 [0.17 to 0.21] m” (Stocker et al., 2013).

Fig. 2.4 (a) change in global mean upper ocean (0–700 m) heat content aligned to 2006−2010,
and relative to the mean of all datasets for 1970; (b) global mean sea level relative to the
1900–1905 mean of the longest running dataset, and with all datasets aligned to have the
same value in 1993, the first year of satellite altimetry data

“Human influence has been detected in warming of the atmosphere and the ocean, in

changes in the global water cycle, in reductions in snow and ice, in global mean sea level
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rise, and in changes in some climate extremes. This evidence for human influence has grown

since AR4. It is extremely likely that human influence has been the dominant cause of the

observed warming since the mid-20th century”.

“Global surface temperature change for the end of the 21st century is likely to exceed

1.5°C relative to 1850 to 1900 for all RCP scenarios except RCP2.6. It is likely to exceed

2°C for RCP6.0 and RCP8.5, and more likely than not to exceed 2°C for RCP4.5. Warming

will continue beyond 2100 under all RCP scenarios except RCP2.6. Warming will continue

to exhibit interannual-to-decadal variability and will not be regionally uniform” (Stocker
et al., 2013)

Fig. 2.5 CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global
annual mean surface temperature relative to 1986–2005, (b) Northern Hemisphere sea ice
extent (5-year running mean)

Global mean sea level will continue to rise during the 21st century (see Fig. 2.6). Under
all RCP scenarios, the rate of sea level rise will very likely exceed that observed during 1971
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to 2010 due to increased ocean warming and increased loss of mass from glaciers and ice
sheets.

Fig. 2.6 Projections of global mean sea level rise over the 21st century relative to 1986–2005
from the combination of the CMIP5 ensemble with process-based models, for RCP2.6 and
RCP8.5

2.3.2 General Circulation Models

Numerical models (General Circulation Models or GCMs), representing physical processes
in the atmosphere, ocean, cryosphere and land surface, are the most advanced tools currently
available for simulating the response of the global climate system to increasing greenhouse
gas concentrations (Houghton et al., 2001) and use different equations based on the basic
laws of physics, fluid motion and chemistry (see Fig. 2.7). GCMs depict the climate using a
three dimensional grid over the globe, typically having a horizontal resolution of between
250 km and 600 km, 10 to 20 vertical layers in the atmosphere and sometimes as many as 30
layers in the oceans. Their resolution is thus quite coarse relative to the scale of exposure
units in most impact assessments. Moreover, many physical processes, such as those related
to clouds, also occur at smaller scales and cannot be properly modelled. The most powerful
tools available with which to assess future climate are coupled climate models, which include
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three-dimensional representations of the atmosphere, ocean, cryosphere and land surface
(Gates et al., 1996).

In 2008, IPCC promoted to make a new set of coordinated climate model experiments
so-called the fifth phase of the Coupled Model Inter-comparison Project (CMIP5). CMIP5
will notably provide a multi-model context for 1) assessing the mechanisms responsible for
model differences in poorly understood feedbacks associated with the carbon cycle and with
clouds, 2) examining climate predictability and exploring the ability of models to predict
climate on decadal time scales, and, more generally, 3) determining why similarly forced
models produce a range of responses. (https://pcmdi.llnl.gov/mips/cmip5/).
CMIP5 is meant to provide a framework for coordinated climate change experiments for the
next five years and thus includes simulations for assessment in the AR5 as well as others
that extend beyond the AR5. There are basically 20 GCM groups from around the world
for impact assessments. The list of GCM models are available for impact assessment is
presented in Table 2.1.

Fig. 2.7 Schematic for General Circulation Models
(Source: McGuffie and Henderson-Sellers, 2005; D. Bice, 2009)

Table 2.1 The list of available GCM models for climate change impact assessment

CMIP5
Model ID

Institute and
Country of Origin

Ocean horz.
resolution

(°lat x °lon)

Atm. horz.
resolution

(°lat x °lon)

Atm. Eq. resolu-
tion
Latitude
(Km)

Longitude
(Km)

ACCESS-
1.0

CSIRO-BOM,
Australia

1.0×1.0 1.9×1.2 210 130
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ACCESS-
1.3

CSIRO-BOM,
Australia

1.0×1.0 1.9×1.2 210 130

BCC-
CSM1-1

BCC, CMA, China 1.0×1.0 2.8×2.8 310 310

BCC-
CSM1-1-M

BCC, CMA, China 1.0×1.0 1.1×1.1 120 120

BNU-ESM BNU, China 0.9×1.0 2.8×2.8 310 310
CanCM4 CCCMA, Canada 1.4×0.9 2.8×2.8 310 310
CanESM2 CCCMA, Canada 1.4×0.9 2.8×2.8 310 310
CCSM4 NCAR, USA 1.1×0.6 1.2×0.9 130 100
CESM1-
BGC

NSF-DOE-NCAR,
USA

1.1×0.6 1.2×0.9 130 100

CESM1-
CAM5

NSF-DOE-NCAR,
USA

1.1×0.6 1.2×0.9 130 100

CESM1-
FASTCHEM

NSF-DOE-NCAR,
USA

1.1×0.6 1.2×0.9 130 100

CESM1-
WACCM

NSF-DOE-NCAR,
USA

1.1×0.6 2.5×1.9 275 210

CMCC-
CESM

CMCC, Italy 2.0×1.9 3.7×3.7 410 410

CMCC-CM CMCC, Italy 2.0×1.9 0.7×0.7 78 78
CMCC-
CMS

CMCC, Italy 2.0×2.0 1.9×1.9 210 210

CNRM-
CM5

CNRM-
CERFACS,
France

1.0×0.8 1.4×1.4 155 155

CNRM-
CM5-2

CNRM-
CERFACS,
France

1.0×0.8 1.4×1.4 155 155

CSIRO-
Mk3-6-0

CSIRO-QCCCE,
Australia

1.9×0.9 1.9×1.9 210 210

EC-EARTH EC-EARTH,
Europe

1.0×0.8 1.1×1.1 120 120

FIO-ESM FIO, SOA, China 1.1×0.6 2.8×2.8 310 310
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GFDL-
CM2p1

NOAA, GFDL,
USA

1.0×1.0 2.5×2.0 275 220

GFDL-CM3 NOAA, GFDL,
USA

1.0×1.0 2.5×2.0 275 220

GFDL-
ESM2G

NOAA, GFDL,
USA

1.0×1.0 2.5×2.0 275 220

GFDL-
ESM2M

NOAA, GFDL,
USA

1.0×1.0 2.5×2.0 275 220

GISS-E2-H NASA/GISS, NY,
USA

2.5×2.0 2.5×2.0 275 220

GISS-E2-H-
CC

NASA/GISS, NY,
USA

1.0×1.0 1.0×1.0 110 110

GISS-E2-R NASA/GISS, NY,
USA

2.5×2.0 2.5×2.0 275 220

GISS-E2-R-
CC

NASA/GISS, NY,
USA

1.0×1.0 1.0×1.0 110 110

HadCM3 MOHC, UK 1.2×1.2 3.7×2.5 410 280
HadGEM2-
AO

NIMR-KMA, Ko-
rea

1.0×1.0 1.9×1.2 210 130

HadGEM2-
CC

MOHC, UK 1.0×1.0 1.9×1.2 210 130

HadGEM2-
ES

MOHC, UK 1.0×1.0 1.9×1.2 210 130

INMCM4 INM, Russia 0.8×0.4 2.0×1.5 220 165
IPSL-
CM5A-LR

IPSL, France 2.0×1.9 3.7×1.9 410 210

IPSL-
CM5A-MR

IPSL, France 1.6×1.4 2.5×1.3 275 145

IPSL-
CM5B-LR

IPSL, France 2.0×1.9 3.7×1.9 410 210

MIROC4h JAMSTEC, Japan 0.3×0.2 0.56×0.56 60 60
MIROC5 JAMSTEC, Japan 1.6×1.4 1.4×1.4 155 155
MIROC-
ESM

JAMSTEC, Japan 1.4×0.9 2.8×2.8 310 310
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MIROC-
ESM-
CHEM

JAMSTEC, Japan 1.4×0.9 2.8×2.8 310 310

MPI-ESM-
LR

MPI-N, Germany 1.5×1.5 1.9×1.9 210 210

MPI-ESM-
MR

MPI-N, Germany 0.4×0.4 1.9×1.9 210 210

MPI-ESM-
P

MPI-N, Germany 1.5×1.5 1.9×1.9 210 210

MRI-
CGCM3

MRI, Japan 1.0×0.5 1.1×1.1 120 120

MRI-ESM1 MRI, Japan 1.0×0.5 1.1×1.1 120 120
NorESM1-
M

NCC, Norway 1.1×0.6 2.5×1.9 275 210

NorESM1-
ME

NCC, Norway 1.1×0.6 2.5×1.9 275 210

Source: https://www.climatechangeinaustralia.gov.au/en/climate-projections

2.4 Downscaling techniques

Downscaling is the procedure that takes information known at large scales to make predictions
at local scales weather and climate. Other definition in climate change study stated that
downscaling is the process by which coarse-resolution GCM outputs are translated into finer
resolution climate information, so that they better account for regional climatic influences,
such as local topography (Flint and Flint, 2012). Figure 2.8 described the concept of spatial
downscaling from different GCM models to local scale needed in impact models. The two
main approaches to downscaling climate information are dynamical and statistical, both
implemented to obtain a finer spatial resolution: The dynamical methods, which create a
higher-resolution climate model by embedding this model into GCM, and the statistical
methods, which establish empirical relationships between GCM-resolution climate variables
and local climate. Each method has advantages and disadvantages as described in Table 2.2.
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Fig. 2.8 The concept of spatial downscaling from GCMs to local scale

Dynamical downscaling

Dynamical downscaling refers to the Regional Climate Models (RCMs). The large-scale
and lateral boundary conditions of GCMs are applied to produce higher resolution outputs
with 0.5o latitude and longitude spacing. Therefore, these models can reproduce more detail
regional climate characteristics like orographic precipitation (Frei et al., 2003), extreme
climate events (Fowler et al., 2005; Frei et al., 2006) and regional scale climate anomalies.
However, models strongly influenced on biases inherited from the driving GCM and the
presence and strength of regional scale forcing such as orography, land-sea contrast and
vegetation cover as well.

In addition, variance of internal parameterizations also creates significantly uncertainty.
Therefore, in climate change studies, the application of model ensembles with at least two
to three GCM models should be employed for satisfactory results. Haylock et al., 2006
compared two dynamical downscaling models regarding to their ability to downscale seven
seasonal indices of heavy precipitation for two station networks in northwest and southeast
England. Almost dynamic models are expensive in computation, are very time-intensive and
require super computer. The time window for which climate change projections are made is
limited to about 30 years from 1961–1990 and 2070–2100. This means that it is difficult to
assess climate change impacts for other periods.
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Table 2.2 Advantages and disadvantages of statistic and dynamic methods (Fowler and Kilsby,
2007

Statistical downscaling Dynamical downscaling
Advantages •Comparatively cheap and com-

putationally efficient;
•Can provide point-scale cli-
matic variables from GCM-
scale output;
•Can be used to derive variables
not available from RCMs;
•Easily transferable to other re-
gions;
•Based on standard and ac-
cepted statistical procedures;
•Able to directly incorporate ob-
servations into method;

•Produces responses based on
physically consistent processes;
•Produces finer resolution infor-
mation from GCM-scale output
that can resolve; atmospheric
processes on a smaller scale;

Disadvantages •Require long and reliable ob-
served historical data series for
calibration
•Dependent upon choice of pre-
dictors
•Non-stationarity in the
predictor-predictand relation-
ship
•Climate system feedbacks not
included
•Dependent on GCM boundary
forcing; affected by biases in un-
derlying GCM;
•Domain size, climatic region
and season affects downscaling
skill;

•Computationally intensive;
•Limited number of scenario en-
sembles available;
•Strongly dependent on GCM
boundary forcing.
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RCMs always produce small but non-negligible uncertainty by effect of GCM output.
Some researches pointed out that the RCM’s uncertainty is less than that from the emissions
scenarios for temperature prediction, but bigger for precipitation predictions. However, the
largest source of uncertainty derives from the structure and physics of the formulation of the
driving GCM (Fowler et al., 2007).

Déqué et al., 2005 examined the uncertainty obtaining from ten RCMs applied to eight
regions with the same emissions scenario. The research determined many factors that cause
uncertainty such as spatial domain, region, and season, boundary forcing i.e. selection
of GCM and particularly for temperature. There are numerous assessments of the RCMs’
capacity for simulating climate variables, particularly in water resources and hydrological
impact studies. Leung et al., 2004 stated that dynamical downscaling delivered a detailed
picture of climate change and its potential impacts, and a better simulation than by GCMs
because of orographic forcing and rainfall pattern effects. These models may improve the
simulation of meso-scale precipitation processes(Schmidli, Frei, and Vidale, 2006)with
longer duration, and higher spatial resolution. The assembled RCM simulations are necessary
to overall assessment of climate change effects. The simulation of RCMs are more accurate
due to higher spatial and temporal resolution especially for extreme events (Frei et al., 2006).
RCMs should be applied for different geographical features in various regions to find its
strengths and weaknesses (Wang et al., 2004). These researches have increased quantity of
RMCs application in climate change impact studies (Bergström et al., 2001; Wood et al.,
2004; Zhu et al., 2004; Graham et al., 2007).

Statistical downscaling (SD)

The purpose of downscaling techniques is to convert the climatic features of GCMs output
to small regions or point scale with a finer resolution. Statistical downscaling is most
popular in climate change studies. The simplest method is change factors (CFs), also called
the ‘perturbation method’ (Arnell, 1992; Chiew et al., 1995; Arnell and Reynard, 1996;
Prudhomme, Reynard, and Crooks, 2002). This method was only used for sensitivity studies,
and quick analysis of multiple climate change scenarios (Wilby, Wedgbrow, and Fox, 2004).
To reduce the uncertainty of the GCM outputs, it is recommended to use an ensemble of
simulations, rather than one single GCM’s result (Mitchell and Hulme, 1999). This method
has some assumptions including: (i) GCMs have a constant bias through time; (ii) CFs
only scale the mean, maximum and minimum of climatic variables but neglect changes in
variability and the spatial pattern of climate will remain constant (Diaz-Nieto and Wilby,
2005). Although the statistical characteristics of the historical record did not change (Wood,
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Lettenmaier, and Palmer, 1997), this method was widely applied in hydrology (Xu, 1999)
because of its simplicity and applicability.

There are three complex statistical downscaling methods as following: a) Regression
models, b) Weather typing schemes, c) Weather generators (WGs). The aim of these methods
is to determine the best correlation between large-scale atmospheric variables (predictors) and
local or regional climate variables (predictands) expressed as a stochastic and/or deterministic
function. There are 26 predictor variables applied for downscaling that describe large-scale
circulation such as sea-level pressure, humidity, and geopotential heights, etc. (Widmann
and Bretherton, 2000; Salathé, 2005).
Some key assumptions (Wilby et al., 2004) in statistical downscaling techniques include: (1)
predictor variables should be adequately reproduced by the GCM at the same spatial scales
used to condition the downscaled responses (Osborn and Hulme, 1998). (2) The relationship
between the predictors and predictands remains valid for periods outside of the base period.
(3) The predictor set sufficiently incorporates the future climate change ‘signal’ (Hewitson,
1999). (4) The predictors used for determining future local climate should not lie outside the
range of the climatology used to calibrate the SD model.

The selection of predictor variables is very important because this process significantly
affects to downscaled results (Wilby and Wigley, 2000). Some predictors may not play a
dominant role under present climate condition when applying a downscaling model, but these
predictors may become critical in the future (Wilby, Hassan, and Hanaki, 1998). For example,
radiative variables are of large to local temperature under a 2×CO2 scenario rather than
circulation changes (Schubert, 1998) but atmospheric predictors can considerably contribute
to better simulation results for local precipitation (Wilby, Hassan, and Hanaki, 1998). Until
now, there is much discussion on how to select predictor variables in the downscaling process.
When applying statistical downscaling, the most important requirement is long observation
and available resources (Cavazos and Hewitson, 2005). Almost GCMs were designed for
general circulation of which no predictor represents evaporation and moisture. Hence it does
not seems to be sufficient for precipitation simulation because precipitation mechanisms
are based on thermodynamics and vapor content. Therefore, humidity has recently been
used to downscale precipitation (Wilby and Wigley, 1997; Murphy, 2000; Beckmann and
Adri Buishand, 2002; Cavazos and Hewitson, 2005) assessed 29 NCEP reanalysis variables
by applying an artificial neural network downscaling method in 15 locations. Geopotential
heights and specific humidity predictors had good correlation with predictands in all locations
and seasons.
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Statistical methods are simpler than dynamical methods. However, disadvantages of
statistical methods are underestimated result and poorly simulated extreme events. Three
approaches frequently applied to downscale climate variables are: variable inflation, expanded
downscaling and randomization. Variable inflation increases variability by multiplying by a
suitable factor (Kilsby et al., 1998) proposed another approach namely randomization where
additional variability is added in the form of white noise, of which produced good results
examined by Kyselỳ, 2002). Bürger Bürger, 1996 developed the expanded downscaling
approach, a variant of canonical correlation analysis (CCA). A comparison of the three
methods revealed that the variable inflation approach did not produce acceptable spatial
correlations, whereas the randomization approach had well performing simulations but was
unable to model changes in variability. In contrast, expanded downscaling is sensitive to the
selection of statistical process used during its application (Fowler and Kilsby, 2007).

Regression models are a conceptually simple means of representing linear or nonlinear
relationships between predictands and a set of predictor variables. Multiple regression models
are constructed based on grid cell values of atmospheric variables as predictors for surface
temperature and precipitation (Murphy, 1999; Hellström and Chen, 2003; Schoof, Pryor,
and Robeson, 2007; Raje and Mujumdar, 2011). Nowadays, there are numerous innovations
in downscaling techniques including principal components (Kidson and Thompson, 1998;
Hanssen-Bauer et al., 2003); Artificial neutral network is nonlinear regression (Zorita and
Storch, 1997, Luk, Ball, and Sharma, 2000); Canonical Correlation Analysis (Karl et al.,
1990; Wigley et al., 1990; Storch, Zorita, and Cubasch, 1993; Busuioc, Chen, and Hellström,
2001); Singular value decomposition (Huth, 1999; Storch and Zwiers, 1999); Analog method
(Seguí et al., 2010; Wetterhall, Halldin, and Xu, 2005; Frias et al., 2006); Conditional
random field (Raje and Mujumdar, 2009); K-nearest neighbor (Gangopadhyay, Clark, and
Rajagopalan, 2005); Support vector machine (Smola and Schölkopf, 2004; Tripathi, Srinivas,
and Nanjundiah, 2006; Anandhi et al., 2008).

Weather typing schemes: Weather typing or classification methods gather days into a
limited number of distinct weather types based on their synoptic similarity. Typically, weather
classes are defined by applying cluster analysis (Kidson, 2000; Hewitson and Crane, 2002;
Fowler et al., 2005) or fuzzy rules (Bárdossy, Stehlík, and Caspary, 2002; Bardossy, Bogardi,
and Matyasovszky, 2005) to atmospheric pressure fields or using subjective circulation
classification schemes (Bardossy and Caspary, 1990; Jones, Hulme, and Briffa, 1993). In
both cases, the ‘nearest neighbor’ method is applied to group the similarities of weather
patterns. Classification-based methods are unable to capture the continuous characteristics
of wet and dry spells at site level (Wilby, 1994; Anandhi et al., 2011). New approaches
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have been developed as multi–site and multi–variate series (Bardossy and Van Mierlo, 2000;
Palutikof et al., 2002; Jeong et al., 2012; Jeong et al., 2013). One other approach is to classify
spatial rainfall occurrence patterns using hidden Markov models (Hughes and Guttorp, 1994;
Hughes, Guttorp, and Charles, 1999; Mehrotra and Sharma, 2005; Greene, Robertson, and
Kirshner, 2008, Ailliot, Thompson, and Thomson, 2009; Frost et al., 2011). This model
constitutes a double stochastic process, including a fundamental stochastic process that is
translated into another stochastic process that delivers the sequence of observations (Rabiner
and Juang, 1986).

Weather generators are models that modify the statistical characteristics of a local climate
variable (Wilks and Wilby, 1999). These models are based on daily precipitation with
two-state, first-order Markov chains: precipitation amounts on wet days using a gamma
distribution (Wilks, 1992) and secondary variables such as temperatures, humidity, and solar
radiation are modeled conditional on precipitation occurrence (Wilby et al., 2004; Burton
et al., 2008). The main advantage of WGs is that they can precisely simulate ensembles of
observed climate variables and can be broadly applied, particularly for risk analysis scenarios
and hydrologic impact assessment. The autocorrelation process can improve WGs in term of
distribution of wet and dry spell length and extreme events, both based on the probability
of precipitation on current and previous circulation pattern (Wilby, Dawson, and Barrow,
2002). The major disadvantage is that the parameters of precipitation are adjusted arbitrarily
for future climate change, and to the unforeseen effects that these changes may have on
secondary variables such as temperature, and humidity (Wilby, Wedgbrow, and Fox, 2004;
Kilsby et al., 2007) the simulation of WGs tends to underestimate inter-annual variability
(Semenov and Stratonovitch, 2010). In addition, WGs cannot be applied automatically for
all climatic features because of different characteristics of local climate relationships (Fowler
et al., 2007).

2.5 Bias correction

We define a bias as the systematic difference between a modelled property of the climate
system and the corresponding real property. Such properties could be mean temperature
variance or a 100-year return value. The term “systematic” refers to all differences that are
not due to sampling uncertainty. Biases are typically assumed to be time-independent, but
in principle may vary in time. Some authors define a bias as the time independent error
component of a model.
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As bias correction we consider all methods that calibrate an empirical transfer function
between simulated and observed distributional parameters, and apply this transfer function to
output simulated by the considered model. Bias correction according to this definition is a
mere post-processing steps (Maraun et al., 2017).

The first obvious aim of a bias correction is adjusting selected simulated statistics such
as means, variances or wet-day probabilities to match observations during a present-day
calibration period. But several decisions need to be drawn, and the different possibilities may
imply different specific assumptions to be fulfilled:

“– should a bias correction method be applied that preserves or alters the climate change

signal? A trend preserving bias correction is justified under the assumption that the model

bias is time invariant; a non-trend preserving method may sensibly be used if it can be

assumed that this method captures the time invariance of the bias, i.e. that it corrects the

simulated change.

– is downscaling to higher resolution or even point scales intended? In such a case, one

has to assume that the downscaling captures the required local variations at the time scales

of interest, as well as the response to climate change.

– which aspects of the climate distribution should be corrected? Most bias correction

methods adjust marginal aspects only. Should also spatial, temporal and multivariate aspects

be explicitly adjusted? In all cases, the underlying assumption is that the climate change

signal of the considered aspects, after bias correction, is plausibly represented”. (Maraun,
2016)

There are several bias correction methods for precipitation, each of which has advantages
and disadvantages. In climate change studies, the combination of different methods of bias
correction can reduce the errors and uncertainty. This part will briefly introduce five popular
method for precipitation bias correction including linear scaling (LS), local intensity scaling
(LOCI) and distribution mapping (DM), power transformation and delta-change. A list of all
variables and indices used is presented in Tables 2.3.
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Table 2.3 Definition of symbols and sub/superscript used in equation

Symbols Details Symbols Details
α Shape parameter of

Gamma distribution
∗ Shape parameter of

Gamma distribution
β Scale parameter of

Gamma distribution

′ Scale parameter of
Gamma distribution

d Daily γ Gamma Distribution
F Cumulative distribution

function (CDF)
m Within monthly interval

F−1 Inverse of CDF obs Observed
µ Mean re f RCM simulated 1980 –

2011
P Precipitation f ut RCM simulated 2012 -

2039
s Scaling factor th Threshold

a Linear scaling (LS)

Linear Scaling (Lenderink, Buishand, and Deursen, 2007) operates with monthly
correction values based on the differences between observed and RCM simulated
values during the reference period. Corrected RCM simulations monthly mean values
will perfectly agree with that of the observations. The adjusted daily precipitation for
reference and future period is obtained using Eqs. (2.11) and (2.12).

P′
re f (d) = Pre f (d)×

(
µm (Pobs (d))
µm
(
Pre f (d)

)) (2.11)

P′
f ut (d) = Pf ut (d)×

(
µm (Pobs (d))
µm
(
Pre f (d)

)) (2.12)

b Local intensity scaling (LOCI)

The wet-day frequency and intensity corrected by the LOCI method presented by
Schmidli, Frei, and Vidale, 2006 takes the linear scaling one step further and adjusts
the mean as well as both wet-day frequencies and intensities separately in three steps:
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(1) A precipitation threshold (Pth) is determined from the RCM simulated precipitation
days such that the threshold exceeding matches the number of observed days with
precipitation lager than 0 mm. Then the number of precipitation events for both
reference and future periods are corrected by applying the precipitation threshold:

P∗
re f (d) =

{
0, if Pre f (d)< Pth

Pre f (d) , otherwise
(2.13)

P∗
f ut (d) =

{
0, if Pf ut (d)< Pth

Pf ut (d) , otherwise
(2.14)

This step, all days with precipitation less than the threshold are redefined to dry days
with 0 mm.

(2) Second step, a linear scaling factor is estimated based on the long-term monthly
mean wet-day intensities. Taking only wet days of the observed days with precipitation
larger than 0 mm and the RCM simulated days with precipitation larger than the
precipitation threshold (Pth). The intensity scaling factor (s) is calculated by Eq.
[2.15].

s =
µm (Pobs (d) |Pobs (d)> 0 mm)

µm
(
Pre f (d) |Pre f (d)> Pth

)
−Pth

(2.15)

(3) Finally, the RCM-simulated precipitation of reference and future periods are
corrected as follows:

P′
re f (d) = P∗

re f (d)× s (2.16)

P′
f ut (d) = P∗

f ut (d)× s (2.17)

c Distribution mapping (DM)

The DM method (Teutschbein and Seibert, 2012) corrects the distribution shape of the
daily precipitation based on cumulative distribution functions (CDFs) constructed for
both the observed and the RCM simulated (1980-2010) for all days within a certain
month. Thereafter, the value of RCM simulated precipitation of day d within month
m was generated from the empirical cumulative distribution function (ECDFs) of
the RCM simulations together with its corresponding cumulative probability. Then,
the value of precipitation of same cumulative probability was located on the ECDFs
of observations. Finally, the daily precipitation for reference and future periods are
obtained by Eq. (2.18) and (2.19) in terms of the Gamma CDF (Fγ) and its inverse
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(F−1
γ ).

P′
re f (d) = F−1

γ

(
Fγ

(
Pre f (d) |αre f ,m,βre f ,m

)
|αobs,m,βobs,m

)
(2.18)

P′
f ut (d) = F−1

γ

(
Fγ

(
Pf ut (d) |αre f ,m,βre f ,m

)
|αobs,m,βobs,m

)
(2.19)

The Gamma distribution with shape parameter α and scale parameter β is often
assumed to be suitable for distribution of precipitation events:

fγ (x|α,β ) = xα−1.
1

β αΓ(α)
.e

−x
β x ≥ 0;α,β > 0 (2.20)

Fig. 2.9 Exemplary procedure of the distribution mapping (Teutschbein and Seibert, 2012)

d Power transformation of precipitation

While linear scaling account for a bias in the mean, it does not allow differences in the
variance to be corrected. Therefore, a non-linear correction in an exponential form a.Pb

(Leander and Buishand, 2007) can be used to specifically adjust the variance statistics
of a precipitation time series.

Parameter b is estimated with a distribution-free approach on a monthly bias using a 90-
day window cetered on the interval. First, b is identified by matching the coefficient of
variation (CV) of the corrected daily GCM precipitation (Pb) with the CV of observed
daily precipitation (Pobs) for each month m:

Find bm such that f (bm) = 0 =CVm(Pobs(d))−CVm(Pbm
contr(d))

=
σm(Pobs(d))
µm(Pobs(d))

−)− σm(Pbm
contr(d))

µm(Pbm
contr(d))
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P∗1
contr(d) = Pbm

contr(d) (2.21)

P∗1
scen(d) = Pbm

scen(d) (2.22)

This is done with a root-finding algorithm using Brent’s method. Therefore, the long
term monthly mean of observed precipitation is matched with the monthly mean of the
intermediary series P∗1

contr(d) by using the standard linear scaling parameter.

P∗
contr(d) = P∗1

contr(d).
[

µm(Pobs(d))
µm(P∗1

contr(d))

]
(2.23)

P∗
scen(d) = P∗1

scen(d).
[

µm(Pobs(d))
µm(P∗1

contr(d))

]
(2.24)

e Delta-change correction of precipitation

The underlying idea of the widely used delta-change method (Bosshard et al., 2011;
Graham et al., 2007) is to use the GCM-simulated future change for a perturbation
of observed data rather than to use the GCM-simulations of future condition directly.
The control run also known as baseline climatology, therefore corresponds to the
observed climate and cannot be used for a proper evaluation. For the future scenario,
the GCM-simulated anomalies between control and scenario runs are superimposed
upon the observation time series (Teutschbein and Seibert, 2012). This is usually done
on a monthly basis. A multiplicative correction is used for precipitation.

P∗
contr(d) = Pobs(d) (2.25)

P∗
scen(d) = Pobs(d).

[
µm(Pscen(d))
µm(Pcontr(d))

]
(2.26)





Chapter 3

Data-driven method and time series
prediction

In the past two decades, rapid development of data-driven methods has obtained considerable
achievement in handling the complex process of real-world modeling. Soft computing and
statistical models are two common groups of data driven models that could be employed
to solve water resources and environmental problems. Data-driven methods are often inex-
pensive, accurate, precise, and more importantly flexible, which make them able to handle a
wide range of real-world systems with different degrees of complexity based on our level
of knowledge and understanding about a system. These methods are useful for various
applications, such as hydrological prediction, flood forecasting, water quality monitoring,
quantitative and qualitative modeling of water resources, climatic data analysis, and general
function approximation (Araghinejad, 2013).

3.1 Artificial Neural Network (ANN)

ANN is a broad term covering a large variety of network architectures, the most common of
which is a multilayer feedforward neural network. Fig.3.1 shows the general structure of an
ANN model (Shahin, Jaksa, and Maier, 2008). The multi-layer feedforward neural network is
the most popular application in many field studies which usually uses the technique of error
back propagation to train the network configuration. The architecture of the ANN consists of
a number of hidden layers and neurons in the input layer, and hidden layers in the output
layer as described in Fig.3.1. ANNs with one hidden layer are commonly used in hydrologic
modeling (Dawson and Wilby, 2001; De Vos and Rientjes, 2005) since these networks are
considered to provide enough complexity to accurately simulate the nonlinear-properties of
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the hydrologic process.
Neurons are mathematical expressions that filter the signal through the net. From the
connected neurons in the previous layer, an individual neuron receives its weighted inputs
that are usually summed along with a bias unit. The bias unit is used to scale the input to a
useful range in order to improve the convergence properties of the neural network. The result
of this combined summation is passed through a transfer function to produce the output of
the neuron. This output is then passed through weighted connections to neurons in the next
layer, where the process is repeated. The weight vectors connecting the different nodes of
the network are found by the so-called error back-propagation method. During training, the
values of these parameters are varied so that the ANN output becomes similar to the measured
output on a known data set (Haykin, 1994; Bhattacharya, Price, and Solomatine, 2007). A
trained response is achieved by changing the connections’ weights in the network according
to an error minimization criterion. A validation process can be used during training in order
to prevent overfitting. Once the network has been trained to simulate the best response to
input data, the configuration of the network is fixed and a test process is conducted to evaluate
the performance of the ANN as a predictive tool (Bui et al., 2015).

Fig. 3.1 Multilayer feedforward artificial network with one hidden layer

3.2 Seasonal ANN (SANN)

A seasonal time series forecasting problem can be thought of as a function approximation
problem. So, SANN may improve on the ordinary ANN (Section 3.1) by taking into account
the seasonal fluctuations of the series and successfully forecast with a proper ANN structure
(Hamzaçebi, 2008). Using the s parameter for determining the input neurons number may
help to make better predictions. The s parameter presents the series structure, such as;
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monthly, etc... In this kind of network structure ith seasonal period observations are values of
input neurons and (i+1)th seasonal period observations output neurons values. The suggested
model is called Seasonal Artificial Neural Network (SANN) using Levenberg-Marquardt
(LM) learning algorithm. The input layer, m = (k×s) nodes, where s =12 (for monthly
time series), and k is a coefficient representing the type of preprocessing method. The hidden
layer consists of n = 3, 5, 8, 10 and 15 neurons, and the output layer with one node. The
Tan-sigmoid function is used as transfer function in the hidden layer for all cases.

The SANN architecture is given by the following eq.3.1:

Yt+l =
n

∑
j=1

LW jl f

(
m=ks

∑
i=1

IWi jYt−i +b j

)
+bl (3.1)

where Yt+l (l = 1,2, . . . ,m) represents the predictions for the future s periods; Yt−i (i =

1,2, . . . ,m) are the observations of the previous s periods; IWi j (i= 1,2, . . . ,m; j = 1,2, . . . ,n)
are weights of connections from input layer neurons to hidden layer neurons; LWjl ( j =

1,2, . . . ,n; l = 1,2, . . . ,m), are weights of connections from hidden layer neurons to output
layer neurons; bl (l = 1,2, . . . ,m) and b j ( j = 1,2, . . . ,n) are weights of bias connections and
f is the activation function, n is the number of neurons in the only hidden layer, and t is the
current time step.

3.3 Long Short Term Memory (LSTM)

Though RNNs have proven successful on tasks such as speech recognition (Vinyals et al.,
2015) and text generation (Sutskever, Vinyals, and Le, 2014), it can be difficult to train them
to learn long-term dynamics, likely because of the vanishing and exploding gradients problem
(Hochreiter and Schmidhuber, 1997). This phenomenon can result from propagating the
gradients down through the many layers of the recurrent network, each of which corresponds
to different time steps. LSTMs provide a solution by incorporating memory units that allow
the network to learn when to forget previous hidden states and when to update hidden states
with new information.
LSTMs extend RNN with memory cells, instead of recurrent units, to store and output
information, easing the learning of temporal relationships on long time scales. The major
innovation of LSTM is its memory cell which essentially acts as an accumulator of the state
information. LSTMs make use of the concept of gating: a mechanism based on component-
wise multiplication of the input, that defines the behavior of each individual memory cell. The
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LSTM updates its cell state according to the activation of the gates. One advantage of using
the memory cell and gates to control information flow is that the gradient will be trapped in
the cell and be prevented from vanishing too quickly, a critical problem for the classic RNN
model (Hochreiter and Schmidhuber, 1997; Pascanu, Mikolov, and Bengio, 2013). The input
provided to an LSTM is fed into different gates that control which operation is performed on
the cell memory: write (input gate), read (output gate) or reset (forget gate). The activation
of the LSTM units is calculated like they are in the RNNs. The computation of the hidden
value ht of an LSTM cell is updated at every time step t. The vectoral representation (vectors
denoting all units in a layer) of the update of an LSTM layer is denoted as input gate it , a
forget gate ft , an output gate ot , a memory cell ct and a hidden state ht .

As research on LSTMs has progressed, hidden units with varying connections within
the memory unit have been proposed. We use the LSTM unit as described in Figure 3.2,
which is a slight simplification of the one described in Graves and Jaitly, 2014. The sigmoid
nonlinearity which squashes real-valued inputs varies in a [0; 1] range, and the hyperbolic
tangent nonlinearity, similarly squashing its inputs changes in a [-1; 1] range, the LSTM
updates for time step t given inputs xt ,ht−1 and ct−1are:

it = σ (Wxixt +Whiht−1 +bi) (3.2)

ft = σ
(
Wx f xt +Wh f ht−1 +b f

)
(3.3)

ot = σ (Wxoxt +Whoht−1 +bo) (3.4)

gt = φ (Wxcxt +Whcht−1 +bc) (3.5)

ct = ft ⊙ ct + it ⊙gt (3.6)

ht = ot ⊙ (ct) (3.7)

where i, f, o, c and g are respectively the input gate, forget gate, output gate and cell
activation, input modulation gate vectors; all of them are the same size as vector h defining
the hidden value. Terms σ represent an element-wise application of the sigmoid (logistic)

function. The term xt the input to the memory cell layer at time; Wxi,Wx f ,Wxo,Wxc are weight
matrices, with subscripts; bi,b f ,bo,bc representing from-to relationships (the input-input
gate matrix, the hidden-input gate matrix, etc.) are bias vectors; φ stands for an element-wise
application of the tanh function; denotes ⊙ elementwise multiplication.
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Fig. 3.2 A diagram of a LSTM network (left) and LSTM memory cell (right) (Donahue et al.,
2015)





Chapter 4

Study area

4.1 Vietnamese Mekong Delta

The Mekong River is a major and the longest river in south-eastern Asia. From its source in
China’s Qinghai province near the border with Tibet, the Mekong generally flows southeast
to the South China Sea, a distance of 4,200 km (2,610 mi). The Mekong crosses Yunnan
Province, China, and forms the border between Myanmar (Burma) and Laos and most of the
border between Laos and Thailand. It then flows across Cambodia and southern Vietnam
into a rich delta before emptying into the South China Sea. In the upper course are steep
descents and swift rapids, but the river is navigable south of Louangphrabang in Laos. The
delta plain of the Mekong River Delta is about 62,520 km2 of which 52,100 km2 is located
in Vietnam and the remainder in Cambodia. In Vietnam, the Mekong River Delta is occupied
by eleven provinces with a population of 14.8 million. The region represents a national rice
bowl providing agricultural products not only to Vietnam but also to other countries.

The Vietnamese Mekong River stems from the Cambodian border, where it splits into
two primary distributaries, namely the Tien and Hau Rivers, with a total area of 19,500 km2

(MRC, 2007a) (Fig. 4.2). The topography of the VMD is relatively flat; most of the elevations
are approximately 0.5m to 1.0m above mean sea level. There is a complex channel network
as a result of agricultural activities and the developments of transportation infrastructure
over a long period of time. The total length of the channel network is about 91,000 km,
and includes 193 spills, 409 reservoirs, 29 sluices, 749 floodplains and more than 20,000
kilometers of protection dykes that prevent early floods (Van et al., 2012; Tuan et al., 2007).
The mean annual flow is 15,000 m3/s, the maximum discharge is about 60,000 m3/s in the
flood season and the minimum discharge is around 2,000 m3/s in the dry season (MRC, 2005;
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Trung et al., 2013). The VMD river network has highly complicated hydraulic conditions,
influenced by the discharges at Kratie and from Tonle Sap Lake as well as the sea level along
the South China Sea and the Gulf of Thailand.

The climate of the VMD has tropical monsoon characteristics, with two separate seasons
per year. The rainy season normally runs from May to October, whereas the dry season
ordinarily lasts from December to March (De, 2006). In general, the mean annual precipita-
tion for the entire VMD is 1500 mm and its range varies from 1600 mm to 2400 mm/year.
The total precipitation in the rainy season contributes nearly ninety percent of the annual
precipitation (Huu-Thoi and Gupta, 2001). The average discharge in the dry season fluctuates
extraordinarily, from 1,700 m3/s to 6,000 m3/s between January and May, causing water
shortages for the irrigation of the 1.5 million hectares of agricultural cultivation (Tuan et al.,
2007). There are two types of tidal regime, namely the semi-diurnal and diurnal tides affect-
ing the hydraulic condition in estuaries of the East and West seas, respectively (Nguyen and
Savenije, 2006). The salinity intrusion in the VMD—and in all the river networks has been
substantial in recent years, particularly in the dry season, during which about 2.1 million
hectares in the Mekong Delta suffered from salinity intrusion (Wassmann et al., 2004; Tuan
et al., 2007). The tidal amplitude fluctuations in the South China Sea are between 1.0m and
3.5m, leading to changes in the daily water level in the rivers, especially in the dry season
that is effect by the tidal regime (Van et al., 2012). The Tien River carries about 80% of the
total discharge of the entire delta. The Hau River is linked to the Tien River by the Vam Nao
River, and the annual discharge is about 1,500 to 6,500 m3/s (MRC, 2007b).

The hydrological cycle of the VMD has specific characteristics driven by the tropical
monsoon climate, with two prevalent directions: the Southwest and the Northeast Monsoons
(Costa-Cabral et al., 2008; Delgado, Merz, and Apel, 2012). The Southeast direction prevails
from May to September, while the Northeast Monsoon is active from November to February
(Delgado, Merz, and Apel, 2012). The hydrological characteristics of the VMD with its
two distinct flow hydrographs have developed through typical monsoon occurrences. Lager
distributions of the annual discharge are significantly concentrated during the rainy season
(July–December). Approximately 75 to 85% of the total annual flow in the rainy season
leads to flooding in the large area in the downstream delta (MRC, 2005; Hoang et al., 2016).
However, this flooding could beneficially contribute to the area’s highly fertile alluviums and
fish productivity (Eastham et al., 2008; Hapuarachchi et al., 2008).
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Fig. 4.1 Study area of Vietnamese Mekong delta
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Fig. 4.2 The river network of Mekong delta
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4.2 Data collection sources

Time series data of selected parameters were collected at provincial level. The data were
collected from several agencies (water, bathymetry, and hydro-climate) and the data collecting
institutions (General Statistic Office, Statistical Bureau, Statistic Division. . . ). For hydro-
climate data, data length has the duration of 1978 – 2011. Bathymetric data has the duration
of 2010 by Department of rivers transportation management in Southern Vietnam. The
summary of collected data was presented in Table 4.1 below.

The data is collected by several agencies as following:

• General Statistical Office (GSO);

• Vietnam Mekong river committee (MRC);

• Southern Regional Hydrometeorology Center (SRHMC);

• South Institute of Water Resources Planning (SIWRP),

• National Institute of Agricultural Planning and Projection (NIAPP),

• District People’s Committee (DPC);

Hydro-climate data that have been selected from the specific stations have data lengths of at
least 30 past years. The sea level data is collect at Vung Tau station with a length of 10 years.
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Table 4.1 Data collection from secondary sources

No Name of data Length Spatial scale Sources
A Climate and water resource
1 Rainfall at 7 station in VMD 30 years 1978 – 2011 SRHMC
2 Evapotranspiration, Radia-

tion
30 years 1978 – 2011 SRHMC

3 Wind speed, Humidity 30 years 1978 – 2011 SRHMC
4 Discharge at Kratie, Chau

Doc, Can Tho
5 years 2005 – 2011 SIWRP

5 Water level at 10 stations 2 years 2010 - 2011 SIWRP
6 Water demand (domestic, irri-

gation and industry) and fore-
casting to 2030

5 years 2005 – 2011 SIWRP

B Geographical data
1 Bathymetry of estuary and

offshore
1 years 2010 - 2011 DHI

2 Water level at Tan Chau sta-
tion

2 years 2010 - 2011 SRHMC

3 Sea level at Vung Tau station 10 years 2001 - 2010 SRHMC
4 Cross section of Mekong river

network
7 years 2005-2011 SIWRP

5 Digital map of Tien river 1 years 2011 SIWRP
6 Wind direction and speed

from East Sea
1 years 2011 SIWRP

4.3 Research Methodology

This part describes step-by-step methodologies to achieve the objectives of the study. Fig 4.3
shows the methodology scheme to study the impact of climate change on hydraulic regime
and salinity intrusion in Hau River, Vietnamese Mekong delta by through the use of upstream
discharge variability, rainfall alteration and sea level rise by climate change.
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Fig. 4.3 The schema of research methodology (revised from Dasgupta et al., 2015)

To explain in detail the objectives and tools applied in this research, the research frame-
work should be provided to clearly define all steps and methods used. The detail tasks and
tools that obtain the main objectives are illustrated in Table 4.2.
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Chapter 5

Model applications

5.1 ANN, seasonal ANN and LSTM for rainfall prediction

5.1.1 Data collection

Monthly rainfall data obtained from the Ca Mau hydrological gauging station at Ca Mau
province, Vietnam (Location: 9o10’24” N latitudes and 104°42’ - 105o09’16” E longitudes)
by the Southern Hydro-Meteorological Center was used to train and test all the models
developed in this study. The rainfall data covers 39 years from 1971 to 2010. Three subsets
of the data, training, validation and testing are required to build the model. To achieve this,
the data from January 1, 1979 to December 31, 2004 (85% of total data) were used for
training and validation, and the data from January 1, 2005 to December 31, 2010 (15% of
total data) were used as the testing set.

A general statistical summary of the monthly rainfall data at Ca Mau Station and its
subdivided periods are provided in Table. 5.1, including minimum, maximum, mean, standard
deviation (Sd), skewness coefficient (Cs), and autocorrelations at 1 day lag to 3 day lag (R1,
R2, and R3). It should be noted that data driven methods as ANN perform best when they
do not extrapolate beyond the range of data used for model training and when the extreme
values of the available data are included in the training set. It can be seen from Table. 6.6,
the extreme values of R is in the range of the training set. Skewness coefficients are low for
all datasets, which is better suited for ANN models. High skewness coefficients generally
have considerable negative effect on model performance (Altun, Bilgil, and Fidan, 2007).
In general, we find that there is good similarity between the training the validation subsets,
especially in terms of autocorrelation coefficients.
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Table 5.1 The statistical analysis for training, validation, testing and all data sets

Statistical parameters Training set Validation set Testing set All data

Min 0 0 0 0
Max 782.1 748.7 656 782.1
Mean 198.29 223.798 196.655 202.43
Sd 170.266 176.683 166.183 170.53
Cs 0.568 0.559 0.437 0.543
R1 0.568 0.480 0.629 0.565
R2 0.297 0.239 0.339 0.298
R3 -0.003 0.057 0.049 0.023

5.1.2 Model setup

5.1.2.1 Model selection

In this study, three different models are applied to predict rainfall in the following month.
The three models are applied to predict monthly rainfall and evaluate the efficiency of these
model (Fig. 5.1). Ranging the number of neuron from 3 to 15 in hidden layer and the number
of memory blocks from 10 to 30 in LSTM ensure that the best structure of neural network
can be determined during the training process.

Fig. 5.1 The structure of study
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The original data is divided into three sets of training, validation and testing sets. Finally,
the divided data sets data are imposed to ANN or SANN, LSTM models to predict the
rainfall. Since there is no especial rule for ANN SANN or LSTM models development,
a trial and error method must be used to find the best network’s configuration. However,
using Kolmogorov’s theorem, Marquez, White, and Gill, 2001 and Hornik, Stinchcombe,
and White, 1989 proved that for many problems, only one hidden layer can be sufficient to
ensure that the structure has the properties of a universal approximator given there are enough
neurons in the hidden layer (Bui et al., 2015). Moreover, studies of Zhang, Patuwo, and Hu,
1998; Dawson and Wilby, 2001; and De Vos and Rientjes, 2005 further proved an ANN
with only one hidden layer can be used for different hydraulic and hydrologic modelling.
It is shown that these networks are considered to provide enough complexity to accurately
simulate the nonlinear features of the hydrological processes, therefore increasing the number
of hidden layers would not significantly improve the performance of network (Rajaee, 2011;
Bui et al., 2015). It is also validated that the Levenberg-Marquardt method is by far the most
powerful learning algorithm which may be used for neural network training (Schmitz, Zemp,
and Mendes, 2006, Wu, Chau, and Li, 2009).

Another important concern is the type of selected activation function for nodes. The
Sigmoid and linear activation functions are most frequently employed for hidden and output
nodes, respectively, to make an ANN model more effective (Rajaee, 2011). As a result,
we fixed the number of hidden layers, and the type of activation functions, and learning
algorithm and investigate the optimum network architectures by only varying the number of
hidden neurons. By minimizing the difference among the neural network predicted values
and the desired outputs the optimum network architecture was selected. The training of the
neural network models is stopped when either the acceptable level of error is achieved or the
number of iterations exceed a prescribed value. Each modification of hidden neurons was
tested with fifty trials, which served as the basis for performance assessment of mean values.
After a trial and error procedure, an optimal ANN, SANN, and LSTM for rainfall prediction
was found for each combination.

5.1.2.2 Model evaluation

Legates and McCabe, 1999 suggested that a perfect evaluation of the model performance
should include at least one goodness-of-fit or relative error measure (e.g., correlation coeffi-
cient, R) and at least one absolute error measure (e.g. root mean square error, RMSE or mean
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absolute error, MAE). We employ a range of statistical measures to evaluate the performance
of our new model, including R, RMSE, and MAE as formulated below:
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where x is the observed monthly rainfall, yis the predicted outcome based on various
model combinations, and nis the total number of months in the time-series. The R expresses
degree of similarity between predicted and actual data, where a value closer to 1 indicates
greater similarity and values close to -1 indicate vice versa RMSE on the other hand, repre-
sents the average distance of a data point from the fitted line measured along a vertical line,
MAE indicates how close predictions are to the measured outputs. Low RMSE and MAE
values indicate high confidence in the model-predicted values.

5.1.3 Result and discussion

The three models previously mentioned were applied for predicting monthly rainfall time
series at Ca Mau station, Vietnam. The LSTM, ANN and SANN to were to utilized to predict
the monthly rainfall time series. The LSTM model was first applied and the results were
compared with a single ANN, and SANN in terms of statistical performance. In general,
the efficiency of LSTM models were examined in this paper. Tables 5.2 to 5.5 present the
statistical performance indices of the three previously mentioned models, for the testing and
all data set, respectively. As can be seen from these tables, the LSTM results yield a better
performance than ANN and SANN for the testing phase. The obtained results indicate that
deep learning LSTM can capture particular features of the data set.

According to four Tables, in Ca Mau rainfall data, the LSTM model trained with complex
architecture including an input gate, output gate, forget gate and 30 memory blocks provides
the best efficiency as described by the highest value of R = 0.9892 and the lowest RMSE =
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24.150 (mm) and MAE = 17.315 (mm). For ANN, SANN models, the network trained with
5 to 8 neurons show acceptable results with the statistical performance including R, RMSE,
and MAE are 0.8061, 98.311, 74.054 (mm) and 0.829, 92.886, 74.225 (mm), respectively.
The results demonstrate that both ANN and SANN yield low performance in term of these
statistical indices compared to those of the LSTM simulation. In general, ANN and SANN
models have capacity to cope with the non-stationary time series data that may include
seasonal features as rainfall but are less accurate than LSTM model for the same data set.
This proves the advantages of using LSTM in sequence forecasting problems.

From Table 5.4 and 5.5, the accuracy of LSTM model depends significantly on numbers
of memory blocks and numbers of loops. Increasing the number of memory blocks and
numbers of loops may better captures the highlight pattern of input data, for example extreme
peaks. The proposed LSTM model also applied dropout technique to overcome the overfitting
problem during training model.

The temporal variations of the observed and predicted rainfall using the best performance
of the three models are illustrated in Figs. 5.2 and 5.3. Moreover, the predicted rainfall are
plotted against observed rainfall in these figures. As can be seen, the LSTM with 1 million
loops and 30 memory blocks yield better results for rainfall prediction than the other two
models. On the other hand, the results of these models are closer to 45o straight line in the
scatter plots compared to those of the others. It is also clear that LSTM results generally
tend to overestimate measured data while ANN and SANN models almost under-estimate
measured values. The most accurate result belongs to the LSTM, where the predicted peaks
fit relatively well and consistent with the observed rainfall peaks.

Regarding to the LSTM performance, from Fig. 5.4, it can be seen that when increasing
the number of LSTM blocks and loops, the model can capture the highlight characteristic of
the data, for example the extreme peaks of sequences. Moreover, increasing in the number
of loops leads to a significant reduction RMSE by around 70% while a slightly increase in
correlation coefficient about 10%.
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Table 5.2 The statistical performance of ANN and SANN models (Test data set)

Model
Statistical

performance
Number of neurons
3 5 8 10 15

ANN

R 0.7948 0.8092 0.8061 0.7770 0.7248
RMSE 103.9385 101.4842 98.3109 104.9657 114.1420
MAE 84.3679 80.4982 74.0538 78.6600 82.7604

SANN
R 0.8300 0.8287 0.8049 0.8171 0.8112
RMSE 94.8723 92.8862 99.5541 96.0473 97.0712
MAE 78.8377 74.2247 79.1828 78.0073 76.7192

Table 5.3 The statistical performance of ANN and SANN models (All data set)

Model
Statistical

performance
Number of neurons
3 5 8 10 15

ANN
R 0.7185 0.7389 0.7496 0.7323 0.7340
RMSE 119.3717 116.1545 112.7167 116.2497 115.5481
MAE 92.9199 90.6317 82.9759 85.3620 85.2603

SANN
R 0.8010 0.8164 0.8070 0.8200 0.8213
RMSE 102.2606 97.1078 100.3804 96.7091 96.1686
MAE 79.9284 70.2974 73.5328 73.3155 71.8607
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Table 5.4 The statistical performance of different LSTM models (Test data set)

Model
Statistical

performance
Number of memory blocks
10 15 20 25 30

Loops = 50,000
R 0.7015 0.8406 0.8745 0.7015 0.8650
RMSE 105.6511 79.3030 72.1195 105.6511 74.7602
MAE 73.1524 56.2781 50.7898 73.1524 48.8809

Loops = 100,000

R 0.9242 0.8550 0.9022 0.9390 0.8975
RMSE 62.3216 86.7532 70.5206 57.1235 73.0849
MAE 39.4369 67.1348 47.4715 41.3648 54.4961

Loops = 500,000

R 0.9784 0.8714 0.9586 0.9900 0.9651
RMSE 34.5020 81.4141 47.0062 24.4243 42.8520
MAE 24.8728 59.5547 33.5047 18.9671 30.9974

Loops = 1,000,000

R 0.8786 0.9584 0.9250 0.9058 0.9892
RMSE 80.6690 47.1973 60.3078 71.5457 24.1500
MAE 59.9050 34.6075 42.9468 53.1203 17.3154
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Table 5.5 The statistical performance of different LSTM models (All data set)

Model
Statistical

performance
Number of memory blocks
10 15 20 25 30

Loops = 50,000
R 0.6875 0.8238 0.8570 0.6875 0.8477
RMSE 111.9902 84.0612 76.4467 109.8771 77.75061
MAE 76.0785 58.5292 54.3451 78.2731 52.3026

Loops = 100,000

R 0.9057 0.8379 0.8841 0.9202 0.8795
RMSE 66.0609 91.9584 74.7518 59.4084 76.0083
MAE 41.0144 69.8202 50.7945 43.0194 56.6759

Loops = 500,000

R 0.9588 0.8539 0.9394 0.9702 0.9458
RMSE 35.1920 89.5555 48.8865 24.9128 44.5661
MAE 25.1215 66.7013 35.8500 20.2948 31.9273

Loops = 1,000,000

R 0.8610 0.9392 0.9065 0.8877 0.9694
RMSE 82.2824 49.0852 63.3232 74.4075 24.8745
MAE 61.1031 34.9536 45.9531 56.3075 18.0080



5.1 ANN, seasonal ANN and LSTM for rainfall prediction 53

Fig. 5.2 Predicted rainfall using (a) ANN and SANN (b)
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Fig. 5.3 Predicted rainfall using LSTM for the testing period; (a) 25 memory blocks with
100,000 loops, (b) 25 memory blocks with 500000loops, (c) 30 memory blocks with

1000,000 loops
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Fig. 5.4 Variations of correlation coefficient and RMSE respect to numbers of loops and
memory blocks
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5.2 ANN and LSTM for rainfall - runoff prediction

5.2.1 Data collection

Chau Doc and Can Tho, two rain gauge stations on the Hau River of the Vietnamese Mekong
delta, are considered as case studies. The Hau River, a second branch of Mekong River, is
located in Southern Vietnam. The daily collected data includes rainfall, runoff (better known
as discharge). The data period of the Chau Doc station spans 16 years from January 1, 1996
to December 31, 2011, and the Can Tho station data spans 12 years from January 1, 2000
to December 31, 2011. The daily rainfall data and runoff data are measured at two rain
gauges and two hydrological stations with the same respective names located at the upper
region and middle of Hau River. The average discharge at Chau Doc is about 3200 m3/s
with an average annual rainfall of 1700 mm. At Cau Tho, the average discharge is about
9200 m3/s with an average annual rainfall of 1300 mm. Fig. 5.5 demonstrates the rainfall
and runoff time series in the two stations. The data represents various types of hydrological
conditions, wthi flow ranging from low to very high for a long time, rendering; these data
are relatively sufficient for ANN model. The entire input–output dataset in each station is
divided into three subsets, namely a training set, cross-validation set and testing set with 70%
of total data for training and 15% for cross-validation and 15% for testing. The training set
serves the model training and the testing set is used to evaluate the performances of models.
The cross-validation set has two functions: one is to implement an early stopping approach
to avoid overfitting of the training data, and the second is to select best predictions from
various ANN’s runs. Moreover, ANN employs the hyperbolic tangent function as the transfer
function in both hidden and output layers. Table 1 presents statistical information on rainfall
and streamflow data, including mean (µ), standard deviation (Sx), skewness coefficient (Cs),
minimum (Xmin), and maximum Xmax).
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Table 5.6 Statistical information on rainfall and streamflow data

Hydrological stations
and datasets

Statistical parameters
µ Sx Cs Xmin Xmax

Chau Doc
Rainfall (mm)
Original data 3.741 10.825 7.354 0 294.5
Training 3.746 11.084 8.260 0 294.5
Cross-validation 4.231 11.162 4.231 0 94.10
Testing 3.055 9.092 5.027 0 105.8
Runoff (m3/s)
Original data 2583 2146 0.649 133 8210
Training 2570 2153 0.658 133 8150
Cross-validation 2361 1901 0.607 214 6420
Testing 2868 2312 0.543 238 8210
Can Tho
Rainfall (mm)
Original data 4.254 10.908 5.769 0 230.4
Training 4.281 11.213 6.139 0 230.4
Cross-validation 3.801 8.763 3.103 0 60.90
Testing 4.232 10.975 4.872 0 109.0
Runoff (m3/s)
Original data 6371 4928 0.592 0 34190
Training 6165 4836 0.637 0 34190
Cross-validation 6968 4582 0.288 0 16600
Testing 6736 5581 0.601 0 19600
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Fig. 5.5 Daily rainfall-runoff time series (a) Chau Doc and (b) Can Tho

5.2.2 Model setup

5.2.2.1 Potential input variables

Screening the possible variables for model inputs in the neural network method is an important
step to select the optimal architectures of models. The causal variables in the rainfall–runoff
relationship may include rainfall, evaporation, temperature, etc. The number of different
variables depend on the availability of data and objectives of the studies. Most studies have
applied rainfall and past discharges with different time steps and combinations as inputs (Xu
and Li, 2002; Jeong and Kim, 2005; Senthil Kumar et al., 2005; Sivapragasam, Liong, and
Pasha, 2001) while other studies attempted to apply other factors such as temperature or
evapotranspiration, or relative humidity (Coulibaly, Anctil, and Bobee, 2000; Abebe and
Price, 2003; Solomatine and Dulal, 2003; Wilby, Abrahart, and Dawson, 2003; Hu, Wu,
and Zhang, 2007; Toth and Brath, 2007; Solomatine and Shrestha, 2009). However, some
studies noted that evaporation or temperature as an input variable were unnecessary and
may lead to noisy and chaotic results during the training model (Abrahart, See, and Kneale,
2001; Anctil, Perrin, and Andréassian, 2004; Toth and Brath, 2007). Anctil, Perrin, and
Andréassian, 2004 pointed out that potential evapotranspiration did not improve the ANN
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performance of rainfall-runoff model. In addition, Toth and Brath, 2007 also concluded that
considering potential evapotranspiration data did not enhance model performance, and may
instead yield worse results when compared to models that do not use this data. This may be
explained by the fact that the addition of evapotranspiration (or temperature measures) input
nodes increase the network complexity, and therefore the risk of overfitting (Wu and Chau,
2011). That being said, in the present study, we use rainfall and streamflow as final input
variables in model development.

5.2.2.2 Designed models

This study developed three rainfall-runoff models as ANN and LSTM for the two hydrological
stations on Hau River. The general representative data-driven model can be defined as:

Q̂t = f (Xt) = f
(
Qt−1, Qt−2, Qt−3, . . . , Rt−1, Rt−2,Rt−3

)
(5.4)

where Q̂t stands for the predicted flow at time instance t; Qt−1, Qt−2, Qt−3 is the antecedent
flow (up to t −1, t −2 and t −3 time steps); Rt−1, Rt−2 and Rt−3 are the antecedent rainfall
(t −1, t −2 and t −3 time steps). The predictability of future behavior is a consequence of
the correct identification of the system transfer function of f(.). Based on Table 5.7, the auto-
correlations (lag time) for discharge, the autocorrelation between Q and Qt−1, Qt−2, Qt−3

are still high while the autocorrelations for rainfall between R and Rt−1, Rt−2, Rt−3 reduce
significantly, meaning the later antecedent rainfall from t −4 time step does not contribute
considerably to the forecast performance. Therefore, we consider the antecedent flow and
rainfall from t to t − 3 time step. Moreover, based on previous research, the appropriate
antecedent flow and rainfall are limited to t – 4 time steps which significantly improves
the model performance. Senthil Kumar et al., 2005 investigated 18 combination of input
variables and found that the better model with t −3 time steps of the antecedent flow and
current rainfall performed best. Several researches used cross-correlation analysis between
rainfall and runoff, however, their approach only considers on a linear relationship between
variables and not the nonlinear residual dependencies (Senthil Kumar et al., 2005). Wu and
Chau, 2011 tested the appropriate lags for inputs using partial auto-correlation (PACF) and
concluded that the proper lags for two data sets are lag 4 (t −4 time steps) for flow and lag 3
(t −3 time steps) for rainfall. Similar researches had aslo selected the antecedent flow and
rainfall limited to t – 2 time steps for optimizing model performance (Jeong and Kim, 2005;
Jain and Srinivasulu, 2006; Modarres, 2009; Machado et al., 2011).
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ANN rainfall-runoff model was developed using a multilayer feedforward ANN with one
hidden layer according to Kolmogorov’s theorem. Marquez, White, and Gill, 2001 stated
that with one hidden layer should be sufficient to ensure the structure has the properties
of a universal approximator for various problems. Moreover, Dawson and Wilby, 2001,
Zhang, Patuwo, and Hu, 1998; De Vos and Rientjes, 2005 further prove an ANN with only
one hidden layer can be used for different hydraulic and hydrologic modelling. The input
and target data were normalized in the range from zero to one because a sigmoid function
purposed as the transfer function. From the input layer to the hidden layer, the log sigmoid
function has been commonly used in hydrologic ANN models. From the hidden layer to
the output layer, a linear function was purposed as the transfer function because the linear
function is known to be robust for a continuous output variable. For the learning algorithm
and the regulation procedure of traning models, this study used the Levenberg-Marquardt
Back-Propagation (LMBP) algorithm for training models. It was also validated that the
Levenberg-Marquardt method is the most powerful learning algorithm that can be used for
neural network training (Schmitz, Zemp, and Mendes, 2006; Wu, Chau, and Li, 2009).

Since the appropriate number of hidden layers and dependent nodes for the models is
unknown, a trial and-error method was used to find the network’s best configuration. An
optimal architecture was determined by changing the number neurons from 3 to 15 for
ANN and 10, 15, 20, 25, 30 memory blocks for LSTM, with the goal of minimizing the
difference between the neural network predicted values and the desired outputs. The training
of the neural network models was stopped when either the acceptable level of error was
achieved or the number of iterations exceeded a prescribed value. The neural network model
configuration that minimized the MAE and RMSE and optimized the R was selected as the
optimum, an analysis that was repeated several times. The ANN and LSTM architecture was
modified by changing the number of hidden layers and its neurons, of the initial weights,
as well as the type of input and output functions. Each modification was tested with one
hundred trials, which served as the basis for performance assessment of mean values.

The LSTM rainfall-runoff model was developed based on the recurrent neural network
but has a network structure is more complicated with input, output and forget gates in memory
blocks. The input units are fully connected to a hidden layer consisting of memory blocks
with one cell each. The cell outputs are fully connected to the cell inputs, to all gates, and to
the output units. All gates, the cell itself and the output unit are biased. Bias weights to input
and output gates are initialized block-wise: -0.5 for the first block, -1.0 for the second, -0.5
for the third, and so forth. Forget gates are initialized with symmetric positive values: +0.5
for the first block, +1 for the second block, etc. These are standard values that we use for all
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experiments. All other weights are initialized randomly in the range [-0.1; 0.1]. The cell’s
input squashing function g is a sigmoid function with the range [-1.0; 1.0]. The squashing
function of the output unit is the identity function.

A critical concern in the ANN and LSTM application is how to select the best model
structure from the possible input variables and defining the number of hidden nodes. Un-
fortunately, there is no general rule to deal with this problem. Therefore, the trial-and-error
procedure is a unique technique to handle this task. To select the input variables of ANN
and LSTM, we propose the input combination based on correlation and lag analysis and the
candidate input variables as rainfall and runoff at different time steps. There are six selected
combinations of input variables for model training and the construction of model structure:

C1:R(t −1),Q(t −1)

C2:R(t −1),Q(t −1),Q(t −2)

C3:R(t −1),R(t −2),Q(t −1),Q(t −2)

C4:R(t −1),R(t −2),Q(t −1)

C5:R(t −1),Q(t −1),Q(t −2),Q(t −3)

C6:R(t −1),R(t −2),Q(t −1),Q(t −2),Q(t −3)

Table 5.7 The autocorrelation from 1 to 3 lag days for two data sets for discharge (Q) and
rainfall (R) at Chau Doc and Can Tho stations

Lag days
Chau Doc Can Tho
Q R Q R

R1 0.999 0.160 0.985 0.168
R2 0.997 0.105 0.978 0.139
R3 0.995 0.100 0.970 0.080
R4 0.981 0.078 0.940 0.050

5.2.2.3 Evaluation of model performances

The evaluation of model performance is based on the statistical properties of model output.
Legates and McCabe, 1999 found that the correlation coefficient (R) is an inappropriate
measure in hydrologic model evaluation. Therefore we applied the correlation coefficient,
a good index for presenting goodness-of-fit. Furthermore, Legates and McCabe, 1999 also
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suggested that a complete assessment of model performance should include at least one
absolute error measure (e.g., RMSE or MAE) to supplement a relative error measure. To
better compare the performance of different models, the present study additionally uses
another statistical index. The index, mean absolute percentage error (MAPE), is defined
below. The MAPE is a statistical measure of predictive accuracy expressed as a percentage.
The MAPE is useful for evaluating the performance of predictive models due to its relative
values. MAPE effectively reflects relative differences between model results since it is
unaffected by the size or unit of actual and predicted values (Kaveh, Bui, and Rutschmann,
2017). Four measures are therefore used in this study, and are listed below:
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∑
i=1

(
Qi − Q̂i

)2 (5.5)

MAE =
1
n

n

∑
i=1

∣∣Qi − Q̂i
∣∣ (5.6)

MAPE =
1
n

n

∑
i=1

∣∣Qi − Q̂i
∣∣

|Qi|
×100% (5.7)

R =

n
n
∑

i=1

(
QiQ̂i

)
−
(

n
∑

i=1
Qi

)(
n
∑

i=1
Q̂i

)
√√√√[n

n
∑

i=1
Q2

i −
(

n
∑

i=1
Qi

)2
]
×

[
n

n
∑

i=1
Q̂2

i −
(

n
∑

i=1
Q̂i

)2
] (5.8)

Where n is the number of observations, Q̂iis predicted flow, Qirepresents observed flow.

5.2.3 Results and discussion

The prediction is performed by ANN and LSTM models for both hydrological stations and
all input combinations. Tables 5.8 and 5.9 present the respective obtained results for ANN
and LSTM models, respectively. According to Table 5.8, the ANN model using input data
of combination 5 (C5) produces the best results for Chau Doc station in the testing period.
In this combination, the ANN structure consists of 15 neurons in its hidden layer. The best
result of ANN model for Can Tho station is obtained from the input combination 4 with 15
neurons in the hidden layer.

According to Table 5.9, for the Chau Doc station, the LSTM model trained using combi-
nation 5, with 20 memory blocks and 20,000 loops provides the best efficiency with a high
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value of R = 0.9994 and the lowest RMSE = 89.571 m3/s and MAE = 66.348 m3/s in the
testing phase. From this table, it is also seen that for the Can Tho station, the LSTM using
input combination 2 performs better than the models using other combinations. This model
uses 25 memory blocks and 10,000 loops.

Table 5.8 Performance of the ANN model for discharge estimation in both stations

Combination C1 C2 C3 C4 C5 C6

Station Chau Doc
ANNs: Neu-
rons in hidden
layer

13 13 8 5 15 10

R 0.9991 0.9993 0.9993 0.9991 0.9993 0.9993
RMSE 89.009 79.582 81.719 89.220 78.353 81.313
MAE 66.111 56.197 58.797 66.597 56.006 58.401

Station Can Tho

ANNs: Neu-
rons in hidden
layer

14 14 13 15 4 10

R 0.9912 0.9906 0.9906 0.9912 0.9910 0.9910
RMSE 785.529 812.056 817.403 785.525 789.431 793.708
MAE 588.200 607.044 603.240 587.317 591.317 595.753
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Table 5.9 Performance of the LSTM model for discharge estimation in both stations

Combination C1 C2 C3 C4 C5 C6

Station Chau Doc
LSTM: Mem-
ory blocks

30 30 20 20 20 25

Number of
loops

10,000 50,000 100,000 100,000 20,000 100,000

R 0.9992 0.9994 0.9994 0.9980 0.9994 0.9994
RMSE 104.907 96.405 97.760 155.187 89.571 94.784
MAE 80.535 71.237 75.468 117.602 66.348 71.802

Station Can Tho

LSTM: Mem-
ory blocks

20 25 25 10 15 30

Number of
loops

10,000 10,000 10,000 10,000 10,000 10,000

R 0.9714 0.9941 0.9938 0.9710 0.9855 0.9858
RMSE 2084.928 691.829 712.482 2020.234 1021.185 1021.969
MAE 991.933 534.328 546.898 1263.875 790.801 792.322

Comparing Tables 5.8 and 5.9 shows that the LSTM model can significantly improve the
prediction efficiency in the testing period for Can Tho station. According to these tables,
the best LSTM model improves the RMSE, MAE, and R value from 785.525, 587.317, and
0.9912 to 691.829, 534.328, and 0.9941, respectively. However these values are not substain-
tially improved using the LSTM model for the Chau Doc station in the testing period. For
this station, the results of ANN and LSTM models are comparable with the ANN performing
slightly better.

The temporal variations of the observed and predicted discharge using both models and
the best input combinations (C5 and C4 for ANN, and C5 and C2 for the LSTM) for Chau
Doc and Can Tho stations are respectively shown in Fig. 5.6 and 5.7. Moreover, the predicted
discharges are plotted against observed discharges.
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As seen in Fig. 5.8, the LSTM model yields better results for discharge prediction than
those predicted by the ANN model. It is also obvious that both models underestimate the
discharge peaks. However, in this case, the LSTM model performs better than the ANN
model, and the results obtained by the LSTM model are closer to the 45°straight line in the
scatter plots. The same conclusion is also obvious in the temporal plot where the LSTM
model shows agree better with the peaks of the observed time series than the ANN model.

Fig. 5.6 Discharge values predicted for the Can Tho station in the testing period (a) ANN-C4,
(b) LSTM-C2

Fig. 5.8 shows the performance index MAPE of the ANN and LSTM models for both
stations and all attempted input combinations. As can be observed, the ANN models perform
better than the LSTM for all input combinations in Chau Doc station. The LSTM model
shows the lowest MAPE value (0.0096) using the second combination for the Can Tho
station, while the lowest value obtained by ANN is 0.0101 which belongs to combination 4.
For Chau Doc station, the lowest MAPE of the ANN is 0.0011 belonging to combination 2,
while the lowest MAPE value of LSTM is 0.0018 when using combination 3. The difference
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between two values for both models is very small. This proves that both models can work
efficiently to predict rainfall-runoff relationship.

Fig. 5.7 Discharge values predicted for the Chau Doc station in the testing period (a)
ANN-C5, (b) LSTM-C5

Fig. 5.8 Performance index MPAE for different input combinations (a) Chau Doc station, (b)
Can Tho station
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5.3 Statistical downscaling and bias correction for rainfall
prediction

5.3.1 Bilinear interpolation and selection of GCM models

The Bilinear interpolation is usually applied in image transformation and manipulation tech-
niques, as it is often necessary to employ some sort of interpolation or filtering to obtain a
good image quality. The outputs of GCM models are gridded data with a spatial resolution in
the range 100 – 300km of which is too coarse for impact assessments. To use the outputs
of GCM models in impact studies, the downscaling techniques or bias correction should be
applied. Improving the accuracy of the downscaling process, bilinear interpolation is used as
a pre-processing technique to obtain finer resolution of GCM outputs and can be used for
bias correction.

We can best understand bilinear interpolation by studying Figure 5.9. The green P dot
represents the point where we want to estimate. The four red Q dots represent the nearest
pixels from the original image. The color of these four Q pixels is known. In this example,
P lies closest to Q12, so it is only appropriate that the color of Q12 contributes more to the
final color of P than the 3 other Q pixels. The calculation of function R1 and R2 as equation
below:

f (R1)≈
x2−x
x2−x1

f (Q11)+
x−x1

x2−x1
f (Q21) (5.9)

f (R2)≈
x2−x
x2−x1

f (Q12)+
x−x1

x2−x1
f (Q22) (5.10)

After the two R values are calculated, the value of P can finally be calculated by a weighted
average of R1 and R2.

f (P)≈ y2−y
y2−y1

f (R1)+
y−y1

y2−y1
f (R2) (5.11)



68 Model applications

Fig. 5.9 Spatial interpolation of four points

The grid resolutions of GCM normally vary from 1.1o to 2.5o equal to 112 km to 276 km
as described in Table 2.1. Proper selection of GCMs for impact assessments is important to
reduce uncertainty and provide a plausible range of future climate change. The most recent
CMIP5 climate projection was issued in 2013 to provide a multitude of GCMs for impact
studies. We have based the selection of a proper GCM model in this research on several
studies. Huang et al., 2014 assessed the CMIP5 models efficiency for the Mekong basin
and suggested BCC-CSM1-1, CSIROMK3-6-0, HadGEM2-ES, and MIROC-ESM-CHEM
as the better-performing models. Hasson et al., 2016 evaluated the GCM’s performance
in simulating seasonal precipitation specific to monsoonal activities for three major river
basins in South and Southeast Asia, including the Mekong. They concluded that the MPI,
MIROC5 and CSIRO-Mk3-6-0, CCSM4, CESM1-CAM5, GFDL-ESM2G, IPSL-CMAMR,
MIROC-ESM, and MIROC-ESM-CHEM perform better than other GCMs. Furthermore,
Sillmann et al., 2013 stated that ACCESS-1.0, CCSM4, MPI models, and HadGEM2-ES
are amongst the better-performing models in climate extremes presentation. Based on these
GCM evaluations, we selected five GCMs for this study as described in Table 5.17. The
selection of grid resolution as presented in Figure 5.10.
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Fig. 5.10 Selection of grid size for VMD domain

5.3.2 Scheme of bias correction

Bias correction is another technique of statistical downscaling methods that is applied when
adequate observations are available to adjust the model outputs. To improve the accuracy
of forecasting of GCM models, bilinear interpolation to 0.5o×0.5o resolution for GCM’s
raw gridded data and process bias correction between GCM outputs and observed data
for different locations were conducted (Fig. 5.10). In this study, we develop a robust and
practical statistical bias correction including three distinct methods. These include linear
scaling (LS), local intensity scaling (LOCI) and distribution mapping (DM) which we apply
and validate using five GCM outputs over Mekong delta. The methodology described below
was applied to the simulated daily precipitation data from five GCM models over Mekong
delta interpolated onto the 50×50 km grid. Fig 5.11 described the procedure of bias correction
in this study.
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Fig. 5.11 The scheme of downscaling technique in this study

5.3.3 Statistical evaluation of bias correction procedures

According to the calculated performance measures, all precipitation-bias corrections im-
proved the raw GCM simulations. Bias correction were applied for Can Tho, Chau Doc rain
gauge stations. Based on the performance statistics, most bias correction methods performed
equally well from March to December except January and February (Fig. 5.12). Only the
local intensity scaling approach performed badly in two months, which was indicated by
larger variability intervals in the calculated statistics. Furthermore, the local intensity scaling
approach was not able to adjust the standard deviation to some extent, as apparent in January
(Fig. 5.12 c & d). The other methods were able to improve the raw GCM precipitation much
better and with less variability in the statistical measures. It should be mentioned that for the
distribution mapping approach the current conditions coincide with the observed values by
definition.

There were slight differences between the correction methods in the daily precipitation
series’ standard deviation, coefficient of variation (Fig. 5.13). Especially linear scaling and
LOCI, both of which showed larger variability ranges and biases of a similar magnitude
to the uncorrected precipitation. However, the major dissimilarities were identified by the
probability of dry days and the intensity of wet days. Apart from the LOCI approach, which
corresponded to the observations by definition, linear scaling and distribution mapping were
able to adjust these two statistical measures of the daily precipitation series. Overall, all bias
correction methods were able to correct monthly mean values of precipitation. The methods
could be sorted according to their performance (Table 5.10) that describes their ability to
match with the CDF fit (i.e., the calculated MAE). The distribution mapping performed best,
followed by the linear scaling, and LOCI approach.
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Table 5.10 The statistical performance of three methods for Chau Doc and Can Tho station

Model
Chau Doc Can Tho
RMSE MAE R RMSE MAE R

LS 6.95 4.84 0.993 8.96 5.94 0.994
DM 5.38 3.79 0.994 6.51 4.71 0.996
LOCI 8.64 6.34 0.991 7.46 5.31 0.993

Table 5.11 Best statistical performance (DM method) of bias correction for five GCM outputs
at Chau Doc and Can Tho stations

Model
Chau Doc Can Tho
RMSE MAE R RMSE MAE R

ACCESS 6.90 4.65 0.992 8.30 5.85 0.994
CCSM 3.22 2.20 0.998 6.05 4.12 0.996
CSIRO 48.15 17.57 0.924 5.37 3.84 0.997
HadGEM 5.50 3.30 0.995 5.79 4.23 0.997
MPI 5.93 5.04 0.994 5.90 4.63 0.998

There were substantial differences in the ability of GCMs to reproduce precipitation data
under current climate conditions (Teutschbein and Seibert, 2012). The biases were found to
vary substantially depending on the analyzed climate variable and the locations. For monthly
mean precipitation (Table 5.11), the ensemble mean fitted the observations well except for
the CSIRO model with the Chau Doc station. In Chau Doc and Can Tho station, the GCMs
tended to slightly overestimate in dry season. We obtained a robust signal, although the
projections were more variable in January and February for CSIRO and MPI models. There
was a strong tendency of all GCMs to simulate too many low-intensity rain events (drizzle).
The ensemble means for the different station generally overestimated spring precipitation.
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Fig. 5.12 Bias correction results for ACCESS model (a), CCSM (b), CSIRO model (c) MPI
(d), HadGEM (e) for Chau Doc and (f) HadGEM for Can Tho station
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Fig. 5.13 Bias correction results for ACCESS model (a), CCSM (b), CSIRO model (c) and
MPI (d) for Can Tho station

Fig. 5.14 Boxplot for annual precipitation for three methods in 1980-2011 and (b) Future
averaged precipitation of three methods for Can Tho station

5.3.4 Statistical downscaling for rainfall using ANN and LSTM

5.3.4.1 Hydrological data

The observed daily precipitation data over a period of 33 years (1978– 2011), was taken
from two main rain gauges of the Southern Hydro-Meteorological Center (SRHMC) for the
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Vietnamese Mekong delta station, located in the South of Vietnam. Figure 5.15 shows the
location of representative stations and the GCM resolution in VMD. The coordinates (latitude,
longitude) for Chau Doc and Can Tho are 105o07’30" E, 10o42’20"N and 105o47’00" E,
10o02’00" N, respectively.

Fig. 5.15 The study are and downscaled meteorological stations

The precipitation scenarios can be generated from the most updated CMIP5 using five
GCMs: ACCESS 1.0, CCSM4, CSIRO-Mk 3.6, HadGEM and MPI-ESM-LR (Huang et al.,
2014; Basheer et al., 2016 and Sillmann et al., 2013) (see. Table 5.17). Although all GCMs
contain similar levels of projected trends, different GCM models could provide different
results because of GCM structures, mathematical equations used, and boundary conditions
applied (Kingston, Thompson, and Kite, 2011). Therefore, as suggested by Todd et al., 2011)
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and recommended by Wilby et al., 2004, the ensembles of CMIP5-GCMs were proposed to
cover a range of plausible future scenarios and reduce these uncertainties. The daily total
precipitation was obtained from an approximately 1.25o×1.9o resolution of five GCMs within
two periods, from 1978 to 2001 and future period of 2036 - 2065. Bilinear interpolation
was applied to downscale to the same resolution of 0.5o×0.5o grid before obtaining the
normalization process for training model. Further, we selected two precipitation RCPs,
namely RCP 4.5 and RCP 8.5. The RCP 4.5 is a medium scenario with a stabilization
of radiative forcing to 4.5 Wm2 by 2100 (Thomson et al., 2011). The RCP 8.5 is a high
scenario with a radiative forcing reaching to 8.5 Wm2 by 2100 (Riahi et al., 2011). We did
not consider RCP 2.6 and RCP 6.0 because RCP 2.6 slightly affects the hydrology cycle due
to low radiation forcing, and RCP 6.0 is close to the RCP 4.5 as well as in line with the range
of RCP 4.5 to RCP 8.5 (Hoang et al., 2016). We expect to capture a reasonable range of
climate change scenarios to simplify and reduce the combined scenarios.

5.3.4.2 Downscaling process

In this study, the overall methodology of proposed statistical downscaling process is displayed
in Fig. 5.16. All the GCM daily precipitation for two present and future periods were interpo-
lated to the same resolution 0.5o×0.5o grid through bilinear interpolation, prior to statistical
downscaling. Subsequently, the GCM precipitation need to pass through standardization
(normalization) to improve the efficiency of the LSTM, ANN training as well as avoiding
training to get trapped in local minima. The GCM precipitation was used to train two models
and obtain the nonlinear relationship from historical data and then we apply these equations
to the future precipitation data. We use five GCMs under two Representative Concentration
Pathways (RCPs)- RCP 4.5 and RCP8.5 scenario, to statistically downscale the precipitation
at two hydrological stations for present (1978–2001) and future climates (2035–2065). The
observed precipitation from 2002-2011 for Can Tho and Chau Doc stations are used to
validate LSTM and ANN models. The outputs of the statistical downscaling of the GCMs
include both the present-day (PD) and future datasets (FU) for two RCP4.5 and RCP8.5
scenarios. The observed data period of the Can Tho and Chau Doc station spans 33 years
from January 1, 1978 to December 31, 2011. The GCM’s precipitation from 1978 – 2001 was
applied to train models and derived nonlinear relationship function. The entire input–output
dataset in each station is divided into three subsets including a training set, cross-validation
set and testing set. 70% of total data is allocated for training, 15% for cross-validation, and
15% for testing and observed precipitation from 2002 – 2011 was used to validate against
models. The trained LSTM model through 3,000; 5,000; 8,000; 10,000 loop iterations with
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20, 25, 30 neurons/cell memory blocks is applied to obtain projections of precipitation. The
number of neurons in the ANN varies from 5, 8, 10, 12, 15 and are iterated 50 times to
optimize the best architecture.

Fig. 5.16 Schematization of statistical downscaling using LSTM and ANN

5.3.4.3 Model training and validation

We use recurrent neural network (LSTM) and feed forward neural network (ANN) to evaluate
the model efficiency with the testing data set. The training period for both models were
set to 23 years, from 1978 to 2001, and with 8395 trained-values daily precipitation from
five GCMs and observed data. Afterward, the observed precipitation at Can Tho and Chau
Doc in a period of 2002 – 2011 are used to validate model to obtain corrected network for
futre forecasting during 2035–2065. The performances of testing set for two models are is
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evaluated using correlation coefficient (R), root mean square error (RMSE), mean absolute
error (MAE).

The statistical indices (R, RMSE, MAE) for the five GCM precipitation correlated to the
two hydrological stations for LSTM and ANN models are presented in Table 5.12 and 5.13,
respectively. The statistical indices for LSTM simulation are relatively better for Chau Doc
dataset than for Can Tho dataset with higher R and lower RMSE and MAE. The correlation
coefficient for testing dataset with LSTM model at Chau Doc ranges from 0.908 – 0.974
while at Can Tho, the correlation coefficient varies from 0.916 to 0.957 (Table 5.12). The
statistical performance for both Chau Doc and Can Tho stations are very reasonable with R
>0.90. However, the statistical indices for ANN model are lower than the performance of
LSTM. The correlation coefficient obtained from ANN model at Chau Doc is in the range of
0.605 – 0.856 whereas the correlation coefficient at Can Tho is falls between 0.665 to 0.846
(Table 5.13). Obviously, the performance of LSTM is considerably better than ANN, due to
the highlight advantages of LSTM.

The scatter plots of the five GCM data during the testing periods using both LSTM and
ANN models, for Can Tho and Chau Doc in daily scale are shown in Fig. 5.17 - 5.20. From
Fig. 5.17 and Fig. 5.18, the LSTM simulations slightly underestimate the high peaks (blue
dotted) for the five GCMs. It can be noted that considerable fluctuation between heavy
precipitation days and dry days with zero values exist, meaning that the models may not
capture the high peaks during training process even though the normalization process is
applied before training models. On the other hand, the statistical performances between
observed and predicted data of ANN for both hydrological stations is not good match with
large dispersion and standard deviation (Fig. 5.19 & Fig.5.20).
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Table 5.12 Statistical performances of LSTM model (testing data) for two precipitation
stations under five GCM outputs

Statistics ACCESS 1.0 CCSM4 CSIRO-Mk3.6 HadGEM2 MPI-ESM

Can Tho
RMSE (mm) 1.6272 2.7049 1.9657 1.8098 2.7515
MAE (mm) 0.9726 1.3208 0.8504 1.0256 1.6925
R 0.9513 0.9225 0.9566 0.9561 0.9157
Chau Doc
RMSE (mm) 1.4693 2.6243 1.5010 1.5689 2.2404
MAE (mm) 0.8186 1.2569 0.7129 0.9285 1.3664
R 0.9735 0.9081 0.9645 0.9578 0.9287

Table 5.13 Statistical performances of ANN model (testing data) for two precipitation stations
under five GCM outputs

Statistic ACCESS 1.0 CCSM4 CSIRO-Mk3.6 HadGEM2 MPI-ESM

Can Tho
RMSE (mm) 3.5153 4.4907 3.1138 3.5465 4.3050
MAE (mm) 2.1463 2.6382 1.8028 2.1609 2.7228
R 0.7793 0.6650 0.8460 0.7613 0.6490
Chau Doc
RMSE (mm) 3.2012 4.1824 2.5501 3.0868 0.6437
MAE (mm) 1.8635 2.4081 1.4421 1.8953 2.3447
R 0.7535 0.6045 0.8561 0.7544 0.6437
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Fig. 5.17 Scatter plot of five GCM outputs correlated to daily precipitation at Can Tho
station training by LSTM. a) ACCESS 1.0, b) CCSM4, c) CSIRO-mk3.6, d) HadGEM2 and

e) MPI-ESM.
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Fig. 5.18 Scatter plot of five GCM outputs correlated to daily precipitation at Chau Doc
station training by LSTM. a) ACCESS1.0, b) CCSM4, c) CSIRO-mk3.6, d) HadGEM2 and

e) MPI-ESM.
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Fig. 5.19 Scatter plot of five GCM outputs correlated to daily precipitation at Can Tho
station training by ANN. a) ACCESS 1.0, b) CCSM4, c) CSIRO-mk3.6, d) HadGEM2 and e)

MPI-ESM.
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Fig. 5.20 Scatter plot of five GCM outputs correlated to daily precipitation at Chau Doc
station training by ANN. a) ACCESS 1.0, b) CCSM4, c) CSIRO-mk3.6, d) HadGEM2 and e)

MPI-ESM.

5.3.4.4 Future precipitation over VMD

In order to assess the future rainfall, downscaled five GCMs precipitation under two RCP
scenarios were used in the study. These GCMs form an ensemble dataset, which could
give a range of uncertainties of the future climate. Firstly, the comparisons of present-day
climate and future precipitation are implemented for five GCM projections at two observed
hydrological stations. Afterward, three statistical indices of rainfall extremes are tested and
presented.

Future precipitation predictions from five downscaled models under two scenarios show
that precipitation magnitude and intensity increase at Can Tho and Chau Doc from 2035 –
2065. According to the comparison of five downscaled models to observed data (Table 5.14),
the precipitation at Can Tho during the dry season decreases by approximately – 9.3% to
22.3%. This result was made using the ACCESS 1.0 projections and considering RCP4.5
and RCP8.5, respectively. The worst-case scenario belongs to CSIRO-mk3.6 projection with
precipitation decreasing by 15.9% and 28.1% when compared to baseline for RCP4.5 and
RCP8.5, respectively. In contrast, only MPI-ESM projects an increase in precipitation at Can
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Tho by 5.5%, and 10% in dry season under RCP4.5 and RCP8.5, respectively; and 19.7%
and 26.6% under RCP4.5 and RCP8.5, respectively in wet season. Similarly, a projection by
MPI-ESM for Chau Doc station generated an increase of precipitation in the range of 8.6%
and 16.8% in dry season using RCP4.5 and RCP8.5, respectively and 19.4% and 29.2% in
wet season under RCP4.5 and RCP8.5, respectively (Table 5.14).

Table 5.14 Percentage changes (%) of five GCMs downscaled precipitation compared to
baseline (1978 – 2001) during dry and wet seasons for two hydrological stations.

Stations
ACCESS 1.0 CCSM4 CSIRO-

mk3.6
HadGEM MPI-ESM

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Can Tho
Dry season -9.3 -22.3 -21.7 -14.5 -15.9 -28.1 12.1 -15.6 5.5 10.0
Wet season 34.1 32.8 14.4 17.2 -3.9 -4.1 36.9 30.0 19.7 26.6
Chau Doc
Dry season -13.7 -26.4 -18.8 -7.9 4.1 -14.5 16.7 -17.6 8.6 16.8
Wet season 31.6 33.2 19.1 27.9 18.4 11.1 32.3 31.7 19.4 29.2

Similar trends of decreasing precipitation in dry season also occured at Chau Doc station
with a maximum decrease of 26.4% when using ACCESS 1.0 projections and considering
RCP8.5. In all scenarios, the largest projected increases of precipitation in wet season
during 2035 – 2065 is 33.2% using ACCESS 1.0 projections and considering RCP8.5. The
projection with the lowest precipitaiton increase is 11.1% determined using CSIRO-mk3.6
projection under RCP8.5. It is observed that the average precipitation reduction across the
five GCMs in dry season are -10%, -5.3% when compared to baseline at Can Tho, Chau
Doc, respectively and an average precipitation increase across five GCMs in wet season
are +20.4% and +25,4% at Can Tho and Chau Doc, respectively (Table 5.15). The results
from five models outputs under two RCP scenarios indicate that precipitation will continue
increasing in wet season and decrease in dry season during 2035 – 2065.
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Table 5.15 Average precipitation and percentage changes (%) compared to baseline for dry
and wet season at two hydrological stations.

Seasons
Precipitation (mm) in
baseline (1978-2001)

Future projections
(2035 – 2065) (mm)

Relative changes
(%)

Can
Tho

Chau
Doc

Can
Tho

Chau
Doc

Can
Tho

Chau
Doc

Dry season 84.78 74.16 76.32 70.26 -10.0 -5.30
Wet season 190.25 138.08 228.98 173.13 20.4 25.4

The results for statistical downscaling from five GCMs including the present-day (PD)
climate and their future projections (FU) and observed data from two hydrological stations
are displayed in Fig. 5.21 and Fig. 5.22 as box plots of both datasets. These comparisons
have been done to compare observed precipitation and GCMs projections. From boxplots
of Fig. 5.21 and Fig. 5.22, it is obvious that median changes of the downscaled GCMs also
indicate increases in precipitation over the future climate when compared to the present day.
Especially, the boxplots of ACCESS and HadGEM clearly show an increasing trend in the
future precipitation compared to the present-day conditions. Overall, there is an agreement in
increasing precipitation during the wet season, for all five GCMs and decreasing precipitation
during the dry season for both Can Tho and Chau Doc stations. The increase is different for
all GCMs during the wet season, from lowest of CCSM4 – RCP8.5 (-7.9 %) to highest of
ACCESS 1.0 – RCP8.5 (33.2%) (Table 5.14). The ensemble results between five GCMs is
the average of the five, which is equal to 20.4 % and 25.4 % in wet season at Can Tho and
Chau Doc, respectively. This signifies that Vietnamese Mekong Delta might experience more
flooding conditions during the rainy season in the future.
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Fig. 5.21 Boxplot for rainfall at Can Tho station, observed, present (1978-2001) and RCP4.5
and RCP8.5 for five GCM outputs.

Fig. 5.22 Boxplot for rainfall at Chau Doc station, observed, present (1978-2001) and
RCP4.5 and RCP8.5 for five GCM outputs.
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5.3.4.5 Change in extreme precipitation indices

Comprehensive assessment of climate change not only consider mean values but also take
into account extreme events to understand mean and variability. As recommended by the
European Commission-funded project (STARDEX), we select 3 indices to evaluate future
precipitation including Annual maximum wet day frequency (Prcp, day); 95th percentile of
precipitation (P95p, mm) and maximum 5-day consecutive rain (R5d, mm) (Vu et al., 2016).

The relative changes, for these indices, were calculated from the projected precipitation
(2035–2065) with respect to the present day (1978-2001) for Can Tho and Chau Doc stations
as presented in Fig. 5.23 – 5.25. We use Cumulative Gamma Distribution Function (CDF)
to present three statistical indices for both present day and future, so it is easy to visually
compare the differences between current and future climate. The distributions were calculated
for the fitted cumulative gamma probability distribution functions of these indices for baseline
period (plotted as dashed line) and future period (continuous line). The present day climate
is abbreviated as ’PD’, and the future ’FU’. Each downscaled GCM is displayed in different
colors and line patterns, for better visualization. There are ten curves in each statistical
index plot to represent both present-day and future climates as per the five downscaled
GCMs. Results indicate that the overall trend for the future wet indices (Prcp, P95p, R5d,)
are on the increase. However, maximum 5-day consecutive rain (R5d) index in Fig. 5.25
shows significant differences between two RCP scenarios at both Can Tho and Chau Doc
stations. Especially, the projections of CSRIO-mk3.6 model for R5d index (blue color) are
far from other GCMs results. This means that this model may have different structure and
mathematical expression; the results therefore could increase uncertainties for further basin
assessment. Generally, the maximum 5-day consecutive rain index at the two hydrological
stations discovers that future climate is likely to be dominated by increases in the precipitation
during the rainy season. These can have strong implications as an increase in intensity of
extreme rainfall events over the Mekong delta during rainy season may induce large flooding
and inundation of the area.
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Fig. 5.23 Cumulative gamma distribution function of statistical indices for downscaled
rainfall at Can Tho, both present (1978-2001) (PD) and projection (FU) for five GCMs under

two RCP. (a) P95p - RCP4.5 (b) P95p -RCP8.5, (c) Prcp - RCP4.5 and (d) Prcp- RCP8.5
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Fig. 5.24 Cumulative gamma distribution function of statsitical indices for downscaled
rainfall at Chau Doc, both present (1978-2001) (PD) and projection (FU) for five GCMs
under two RCP. (a) P95p - RCP4.5 (b) P95p -RCP8.5, (c) Prcp - RCP4.5 and (d) Prcp-

RCP8.5
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Fig. 5.25 Cumulative gamma distribution function of maximum 5-day consecutive rain for
downscaled rainfall at Can Tho and Chau Doc, both present (PD) and projection (FU) for

five GCMs under two RCPs. (a) R5d - RCP4.5-Cantho, (b) R5d -RCP8.5-Cantho, (c) R5d -
RCP4.5-Chaudoc and (d) R5d- RCP8.5-Chaudoc
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5.4 1D-MIKE 11 model for hydraulic regime of lower Mekong
delta

5.4.1 Data collection

5.4.1.1 River network and hydraulic data

The river network, digital cross sections and topography of the VMD was provided by
Southern Institute of Water Resources Research (SIWRR) and has been frequently updated
from 1999 to 2010 from data collected on several field campaigns between 2005 and 2010.

The hourly discharge and water levels at ten stations were collected from the Vietnam’s
Southern Regional Hydro-meteorological Center (SRHMC) and SIWRR. The water demand
data for agriculture, industry and domestic use were collected from the Southern Institute
for Water Resources Planning (SIWRP) in the period from 2005 to 2011. The water level
time-series was measured at 10 main stations: Vung Tau, Vam Kenh, Binh Dai, An Thuan,
Ben Trai, My Thanh, Ganh Hao, Song Doc, Rach Gia, and Xeo Ro (see station location in
Figure 5.26). The hourly discharges were used for model calibration and validation at Chau
Doc, Tan Chau, Can Tho, and My Thuan stations during 2009 – 2011 period.
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Table 5.16 Input data for the simulations

Input data Observed Projection (if any)
Precipitation Daily precipitation at 7 sta-

tions (see Fig. 1)
Period: 1978 - 2011
Source: SRHMC

Projected precipitation
based on statistical
downscaling and bias-
correction approaches
Period: 2036-2065
Source: CMIP5

River discharge
at Kratie

Daily discharge
Period: 1978-2011
Source: MRC & SIWRR

Four scenarios with annual
changes of -20%, -15%,
-10% and +10%, respec-
tively

River discharge Hourly discharge and wa-
ter level at 10 stations (see
Fig. 1)
Period: 2005-2011
Source: SIWRR

NA

Sea water level Period: 2005-2011
Source: SIWRR

Two scenarios with +23
cm and +35 cm relative
sea level rise

Hydraulic
network
(cross sections,
main rivers and
channels)

Period: 2005-2011
Source: SIWRR

Water with-
drawal for
irrigation and
domestic uses

Period 2050 - 2011 2030 – 2050
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5.4.1.2 Hydrological data

Daily observed precipitation data during a period of 33 years (1978–2011) were taken from
20 rain gauges of the Southern Regional Hydro-meteorological Center (SRHMC). The daily
evapotranspiration was calculated using the averaged mean value of all gauging stations in
the VMD during a period of 3 years (2009–2011). We selected seven rain gauge stations
that were spatially distributed over the whole delta to represent the rainfall features of the
VMD (see Fig. 5.26). All seven rain gauges were compared to the APHRODITE (Asian
Precipitation Highly Resolved Observational Data Integration Towards Evaluation) dataset
(Yagatai et al., 2012) and showed good consistency between two datasets.

Fig. 5.26 Measured precipitation in 2011 at seven main stations

5.4.1.3 Rainfall projection data

The precipitation scenarios were developed from output data of five CMIP5 GCMs namely
ACCESS 1.0, CCSM4, CSIRO-Mk 3.6, HadGEM and MPI-ESM-LR (Huang et al., 2014;
Basheer et al., 2016 and Sillmann et al., 2013) (see. Table 5.17). To account for possible
disagreement between individual GCMs (Kingston et al., 2011); we used a relatively large
GCM ensemble, which covers a wide range of plausible future scenarios (Todd et al., 2011).
The daily total precipitation data were obtained from the GCMs at spatial resolutions of
1.25o ×1.9o for two periods, from 1978 to 2001 and from 2036 to 2065. Bilinear interpolation
was applied to downscale to a 0.5o ×0.5o grid before applying bias correction.

Future climate scenarios for precipitation were generated using the best methods of
bias correction, including Linear Scaling (LS) (Lenderink, Buishand, and Deursen, 2007,
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Local Intensity Scaling (LOCI) (Schmidli, Frei, and Vidale, 2006) and Distribution Mapping
(DM) (Sennikovs and Bethers, 2009; Block et al., 2009). These methods are based on the
assumption that the relationship between the global mean precipitation and the response
pattern is linear and stationary or time invariant (Piani et al., 2010). Detailed information on
these three bias correction methods is available in Teutschbein and Seibert, 2012.

Table 5.17 Emission scenarios and spatial resolution of different GCMs

GCM Abbreviation Country Original Spa-
tial Resolution

ACCESS 1.0 ACCESS Australia 1.25o ×1.875o

CCSM4 CCSM4 NCAR/USA 0.94o ×1.25o

CSIRO-Mk 3.6 CSIRO Australia 1.875o ×1.875o

HadGEM2-ES HadGEM2 Hadley/UK 1.25o ×1.875o

MPI-ESM-LR MPI Germany 1.875o ×1.875o

Daily precipitation data during the future period of 2036-2065 from five GCMs (Table
5.17 and two RCPs (Table 5.20) are statistically downscaled to station scale using bias cor-
rection methods. The corrected data are then compared to the monthly averaged observations
spanning the period (1978-2001) at the two stations (Can Tho and Chau Doc) and to each
other (Fig. 5.27). The statistical performances of daily precipitation for five GCMs are
relatively good with the best method being Distribution Mapping. Since we only assessed
hydrological changes for the VMD, we excluded the upper area from Kratie Station (i.e.
North of latitude 12.47o N) for studying the projection of future precipitation. In general, the
monthly precipitation in the VMD is projected to decrease in dry seasons (Jan – June) and
increase in rainy seasons (July – Dec.) in all GCM and RCP simulations (Fig. 5.28). That
means, in the future there could be more drought in dry seasons and higher flooding in rainy
seasons in the VMD. All GCMs project higher monthly precipitation, where we find more
of an increase in the RCP8.5 than the RCP4.5. In particular, the RCP8.5 ensemble shows
an increase of 6.1% to 57.13% and a decrease of -0.66% to -31.28% whereas the RCP4.5
ensemble projects an increase of 8.03% - 34.33% in rainy seasons and a decrease of -6.1%
to -19.79% in dry seasons. Among five GCMs and RCPs the monthly average precipitation
trends significantly differ. The lowest basin-average precipitation in dry seasons is projected
by the CSIRO-RCP4.5; a similar trend is seen in the HadGEM-RCP8.5 projections while
the ACCESS-RCP4.5 and RCP8.5 project the largest increase in precipitation of +88.52%.
Projected results using ACCESS show considerable ranges of precipitation in both dry and
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rainy seasons. The general tendencies of projected precipitation are relatively similar for all
GCMs and scenarios. However, projected results from the CSIRO model (for both RCP4.5
and RCP8.5) show somewhat different results as compared to the rest of the GCMs. The
calculated results show a larger range of basin-wide precipitation changes under the RCP8.5
(i.e. between -87.39% and +88.52%) compared to that under the RCP4.5 (i.e. between
-19.79% and 34.33%).

Fig. 5.27 Bias correction results for ACCESS model (a) and CCSM (b), CSIRO (c) and
HadGEM- GCM models (d) at Can Tho station

All scenarios have a large variation of precipitation between rainy and dry seasons (Fig.
5.28). CSIRO-GCM projection is lower than baseline for both RCP4.5 and RCP8.5 scenarios,
while four other GCM projections exhibit obvious increased trends during the rainy season.
Similar consequences in terms of trend and magnitude are proved by downscaling and
bias correction for Chau Doc station, but are not presented here because of limited pages.
Finally, the spatial patterns of precipitation change show a considerable deviation between
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the individual GCM projections. The among in projected precipitation highlight the high
degree of uncertainty in reproducing future precipitation cycles in the VMD.

Fig. 5.28 The prediction of precipitation in Chau Doc station for (a) RCP4.5 and (b) RCP8.5
scenarios and Can Tho station for (c) RCP4.5 and (d) RCP8.5 scenarios

5.4.1.4 Upstream discharge variation and sea level rise

To assess the Mekong Delta’s future hydraulic regime, we developed four scenarios of
changing boundary conditions accounting for future sea level rise, upstream river discharges
and in-delta precipitation (Table. 5.20). Sea level rise scenarios were based on the regional
projection proposed by MONRE (2012). Our sea level rise scenarios project average increase
of 23 cm during the 2030 – 2040 period and 35 cm during the 2050 – 2060. Scenarios for
upstream river discharges were based on projection results conducted by Lauri et al., 2012
and Hoang et al., 2016. Lauri et al., 2012 modelled the Mekong’s flows under future climate
change and reservoir developments during 2032-2042, a study that indicated the discharge
at Kratie will range from −11% to +15% for the wet season and −10% to +13% for the
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dry season. The changes in discharge due to planned reservoir operations result in 25–160%
higher dry season flows and 5–24% lower flood peaks at Kratie. Hoang et al., 2016 assessed
climate change impacts on river discharges using a large ensemble of the CMIP5 climate
change scenarios. Their study projected annual discharge changes ranging between -3% to
+5% at Kratie for the 2036-2065 relative to 1971-2000 periods. However, both studies of
Lauri et al., 2012 and Hoang et al., 2016 did not involve the other anthropogenic factors such
as irrigated land expansion, urbanization, and inter-basin water transfer. All these factors will
likely have significant impacts on the flow, especially low flow during the dry season (Hoanh
et al., 2010; MRC, 2010). In addition, Kingston, Thompson, and Kite, 2011 discovered that
the flow will alter from -17.8% to 6.5% under 2oC scenario by HadCM3-GCM. It can be
understood that the different results of these researches is due to wide range of boundary
condition and time scale considerations. We therefore selected a range of annual discharge
change at Kratie between -20% and +10% for our scenarios to expand the plausible range
of hydrological variability. These changes were then applied on the hydrograph of 2011 to
develop four upstream discharge scenarios. Lastly, precipitation scenarios were based on
the downscaled and bias corrected GCM data. Further, we selected two precipitation RCPs,
namely RCP 4.5 and RCP 8.5. The RCP 4.5 is a medium scenario with a stabilization of
radiative forcing to 4.5 Wm2 by 2100 (Thomson et al., 2011). The RCP 8.5 is a high scenario
with a radiative forcing reaching to 8.5 Wm2 by 2100 (Riahi et al., 2011). All in all, the two
consider RCPs are expected to cover a realistic range of future climatic and hydrological
changes in our study.

5.4.2 Model setup

5.4.2.1 MIKE 11

The MIKE 11 HD is a model for one dimensional unsteady flow computation and can be
applied to looped networks and quasi-two dimensional flow simulation on floodplains. The
model has been designed to perform detailed modelling of rivers, including special treatment
of floodplains, road overtopping, culverts, gate openings and weirs. It is capable of using
the 1D Saint-Venant equations. The solution of the continuity and momentum equations is
based on an implicit finite difference scheme. Boundary types include water level (h), flow
discharge (Q) and Q/h relation. The water level must be specified at either the upstream
or the downstream boundary of the model. The flow discharge can be applied to either
the upstream or the downstream boundary condition, and can also be applied to the side
tributary flow (lateral inflow). The lateral inflow is used to describe runoff. The Q/h relation
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can only be applied to the downstream boundary. MIKE 11 is a modelling package for the
simulation of surface runoff, flow, sediment transport, and water quality in rivers, channels,
estuaries, and floodplains. The most commonly applied hydrodynamic (HD) model is a flood
management tool simulating the unsteady flows in complex rivers and channel systems. It
has been successfully applied in different river basins around the world.

Reliable predictions of the hydraulic regime of the upper basin, as affected by dam
constructions and changing hydrological cycle due to climate change and other water bodies,
are needed to develop watershed management plans (Hoanh et al., 2010; MRC, 2010) and
to predict plausible future variability due to the factors driving the changes. Among others,
the MIKE 11 model has been widely applied by local and international institutions and
universities also in Vietnam to evaluate the impact of climate change on salinity intrusion
(Hoanh et al., 2010; Johnston and Kummu, 2012). For example, Luu et al., 2010 applied
MIKE 11 to simulate the hydrological regime and water budget of the Red River Delta.
Manh et al., 2014 conducted the sediment transport and sediment deposition in the Mekong
Delta using 1D MIKE 11 and the quasi-2D hydrodynamic model has been developed by
Dung et al., 2011. In a similar manner, Doan et al., 2014 employed MIKE 11 to simulate the
influence of river flow and salinity intrusion on the Mekong River estuary.

During the setting up of the 1D models there are several obstacles that need to be dealt
with, as follows: (1) numerous closed dike systems with different crests were constructed to
protect agricultural fields. The question is how to deal with the hydraulic interaction of water
storage between the block compartments and the branches and main rivers. The solution is
to convert all floodplains into artificial branches that have shallow and wide cross sections
that have been extracted directly from the Digital Elevation Model (DEM) with a horizontal
resolution of 90m, and link those branches to the channels by control structures (Dung et al.,
2011). (2) There are also a multitude of internal water exchanges for irrigation, industry and
domestic uses. Calculation of water demands for different purposes should be considered by
taking into account diverse aspects and potential sources.

5.4.2.2 Boundary conditions and modelling scenarios

Boundary conditions used for the VMD model forcing include discharge at Kratie for the
upper boundary, sea water level in both the West and East seas for the lower boundaries,
and wind, rainfall, as well as evapotranspiration over the whole domain. In addition to the
discharge of the Tonle Sap and other tributaries in Cambodia, the flows from Sai Gon and
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Dong Nai river basins were also incorporated as upper boundary conditions. Sea water levels
at lower boundaries were based on the mean average forecasted tide in both East and West
seas for the period of 2009-2011. The precipitation was calculated and transferred to runoff
by using the distributed NAM model (rainfall-runoff model). As topic is lesser importance
part to this study, the details of structure and parameters in NAM model are not presented
in this part. The description of this model is available in Dang, Cochrane, and Arias, 2018.
The water demand in the VMD for 120 sub-basins was calculated by the SIWRP based on
irrigation, domestic and industry requirements and has been updated up to the year 2010.
Because the water demand is in terms of daily withdrawal discharges for 120 sub-basins are
considered as inputs of distributed sources in the model.

5.4.3 Model calibration and validation

The MIKE 11 model provided hourly water levels and mean velocities at every cross sections
of the network. The observed discharge and water level were applied for model calibration
during the period from January to December 2011, and for model validation during the period
from January 2009 to December 2010 because catastrophic flooding occurred in 2011 and
tremendous drought in 2009-2010.

The entire VMD model was calibrated by adjusting the Manning’s coefficient for three
main areas: the upper and middle areas as well as the area near the sea. The result of this
adjustment is shown in Table 5.18. Chau Doc, Tan Chau, Can Tho, and My Thuan gauging
stations were used as the main calibration locations, being the most important stations with
the most accurate data. Moreover, the model performance was tested by using two data
sets including the flood event in 2000 and the driest year in 2005. The match between
simulated and observed discharges and water levels was evaluated using the Nash-Sutcliffe
efficiency coefficient E (Nash and Sutcliffe, 1970), root mean square error (RMSE) and
correlation coefficient (R). The robustness of the calibrated model was then validated for the
period of 2009-2010 by using the previously calibrated parameters and comparing the model
accuracies between the validation and the calibration period at all four main river stations
mentioned above.

Due to relatively large and highly complex networks with numerous human activities in
the study domain, calibration of the model by adjusting the parameters is not an easy task.
A successful model calibration can be quantified by obtaining a good agreement between
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calculated results and observed data.

The model agreement between the modelled and observed data is good at four main
stations (Chau Doc, Tan Chau, Can Tho, and My Thuan) for the calibration period (Fig. 5.29
& 5.30) but the coefficient E values at Vam Nao, Long Xuyen stations had the lowest values.
The lower E values can be partially explained the transfer of water use between internal
compartments for agricultural activities and inter-exchange water between main rivers and
compartments for both calibration and validation periods. (Table. 5.19). Generally, the
agreement between observed and modelled time series was good for both the calibration and
validation periods (i.e. E = 0.84 to 0.98). We therefore concluded that the model is suitable
for predicting future hydraulic regime changes in the VMD.

Table 5.18 The calibrated Manning coefficients in the distinct parts of the river system

Components Manning coeffi-
cient range

Remark

1. Main Tien and Hau river n = 0.017- 0.030

• Upstream river

n = 0.028-0.030 Chau Doc to Long xuyen

• Middle delta

n = 0.022-0.026 Long xuyen to Can Tho

• Near the sea

n = 0.017-0.022 Dai Ngai to Tran De

2. Primary channels n = 0.022-0.030
3. Field channels n = 0.028-0.032
4. Floodplain n = 0.028-0.032
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Table 5.19 Statistical performances of the model for discharge and water level simulated with
daily time-step

Stations
Calibration (2011) Validation (2009-

2010)
E RMSE

(m)
R E RMSE

(m)
R

Chau Doc 0.93 0.46 0.98 0.91 0.49 0.98
Tan Chau 0.91 0.31 0.98 0.89 0.34 0.93
My Thuan 0.86 0.19 0.96 0.86 0.23 0.95
Can Tho 0.85 0.23 0.96 0.84 0.21 0.96
Vam Nao 0.84 0.26 0.93 0.83 0.22 0.88
Long Xuyen 0.87 0.42 0.91 0.89 0.46 0.85

Discharge E RMSE
(m3/s)

R E RMSE
(m3/s)

R

Chau Doc 0.95 514.5 0.97 0.92 625.3 0.96
Tan Chau 0.93 2946 0.96 0.91 3203 0.95
Can Tho 0.93 2491 0.97 0.94 2679 0.96
My Thuan 0.87 2503 0.96 0.88 2160 0.97

Table 5.20 Four selected scenarios for discharge alteration, sea level rise and precipitation
scenarios

Modelling
scenarios

Sea level
rise (cm)

Changes upstream
discharge

Precipitation sce-
narios

Original
source

MONRE
2012,
CMIP3

Kingston et al. 2011
and Lauri et al. 2012
(CMIP3); Hoang et
al. 2016 (CMIP5)

Following Hoang et
al. 2016 (CMIP5)

Scen. 1 23 +10% RCP 4.5, 8.5
Scen. 2 23 -10% RCP 4.5, 8.5
Scen. 3 35 -15% RCP 4.5, 8.5
Scen. 4 35 -20% RCP 4.5, 8.5
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Table 5.21 Statistical performance of the bias corrections of five GCMs

GCM-Models
Can Tho Chau Doc
RMSE
(mm)

MAE
(mm)

R RMSE
(mm)

MAE
(mm)

R

ACCESS 8.30 5.85 0.994 6.90 4.65 0.992
CCSM 6.05 4.12 0.996 3.22 2.20 0.998
CSIRO 5.37 3.84 0.997 48.15 17.57 0.924
HadGEM 5.79 4.23 0.997 5.50 3.30 0.995
MPI 5.90 4.63 0.998 5.93 5.04 0.994

Fig. 5.29 Daily discharge scenarios at Kratie (2010 – 2011) (a); Representative tidal level at
East and West Sea (b); Daily discharges at Chau Doc (c) and Can Tho (d) for calibration and

validation periods (2009-2011).
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Fig. 5.30 Calibrated daily water levels at Tau Chau (a), Chau Doc (b), Can Tho (c) and My
Thuan (d) in 2011

5.4.4 Model results

The impacts of climate change, sea level rise, and upstream flow variation at Kratie are as-
sessed by modelling four scenarios presented in the following sections 5.4.4.1 – 5.4.4.4. The
statistically downscaled GCM outputs and three bias-correction approaches for precipitation
(LS, LOCI and DM) are used to create inputs for the hydrodynamic model. For climate
change scenarios, we selected the baseline (1978-2001) and future period (2036-2065) based
on available data and reliable assessment. The hydrodynamics model runs using combination
of GCMs outputs, RCP ensembles of precipitation, upstream flow changes and sea level rise
scenarios.

The simulations of the hydraulic regime were based on four scenarios described in Table
5.20. This section presents changes in the daily river discharges at the Tien and Hau Rivers
as a result of Kratie’s flow variations and in-delta precipitation change. Daily changes are
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presented for all four mainstream stations (Chau Doc, Tan Chau, Can Tho, and My Thuan).
We limit the remaining results to four representative stations to preserve the focus of the
paper. For each scenario, an analysis of the future hydraulic regime in terms of seasonal,
annual discharges and water levels is presented separately, as follows:

5.4.4.1 Scenario 1: 10% increase Kratie’s discharge and 23cm sea level rise

We consider the discharge at Kratie in 2011 as the baseline and simulate the predicted hy-
drodynamic for the 2036 – 2065 future scenarios. Figure 5.31a presents the simulated daily
discharge of four main stations mentioned above. Overall, the model predicts substantially
lower discharges in the dry season and also in the early stages of the flooding season at
Tan Chau, My Thuan and Can Tho stations. For instance, the different ranges of monthly
discharges vary from -20.2% to 122.2%, -5.0% to +19.7%, -18.1% to +18.1% and -39.6%
to +117.8% compared to the baselines at Chau Doc, Tan Chau and My Thuan and Can Tho,
respectively (Table 5.23). The predicted discharge at Chau Doc exhibits an increase from
9.2% to 122.2% during the wet season. In contrast to the predicted directions, the three
remaining stations (Tan Chau, Can Tho and My Thuan) have a decreasing trend of daily
discharge in both dry and rainy seasons. In general, the annual flows of all stations tend to
decrease: by 9.6%, 30.3%, 38.2% and 42.3% for Chau Doc, Tan Chau, My Thuan and Can
Tho, respectively.

Figure 5.31a shows changes in daily water level compared to baseline in scenario 1.
Overall, the model projects higher water levels at Tan Chau and Chau Doc stations during
the rainy season and decreasing levels in the dry season, approximately 0.04m to 0.5 m and
-0.03 m to -0.41 m. respectively. However, the decrease in the water level at Long Xuyen and
Can Tho ranges from 0.1 m to 0.3 m and 0.08m to 0.23 m, respectively. Although the Kratie
discharge increased by 10% in Scenario 1, the discharges at Tan Chau and Chau Doc reduced
up to 40% (Table. 5.22). These contrasting trends could be attributed to the increasing in
future water demand for irrigation, domestic and industry. Additionally, reduced discharges
are due to the decrease in the local precipitation. Slight increases in the water levels at Tan
Chau and Chau Doc (0.19 m and 0.03 m, respectively) are attributed to sea level rise. From
Table 5.22 and 5.23, the annual averaged water level at Tan Chau station slightly increased
but the annual averaged discharge decreased significantly. This is due to the substantially
decreased discharge in dry season but not so much in wet season, so the average values of
discharge at Tan Chau are negative. However, the differences of monthly water level at Tan
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Chau between dry season and wet season are small, so the averages of water level are only
slightly increased.

5.4.4.2 Scenario 2: 10% decrease in Kratie’s discharge and 23cm sea level rise

The results of simulation under scenario 2, presented in Fig. 5.31b and Fig. 5.32b, show
the differences of projected discharges and water levels at the considered stations located
on the Tien and Hau Rivers. In this scenario, the discharges at Tan Chau, Can Tho, and My
Thuan decrease dramatically in both dry and wet seasons whereas the discharge at Chau Doc
decreases only in the dry season and increases by 32.92% in the wet season. The changes of
the daily discharge at these stations vary from -11% to -94.3%, -6.8% to -89.8%, -5.4% to
-87.5% for Tan Chau, Can Tho, and My Thuan, respectively. In addition, the relative changes
in annual discharges reduce to -38.2% at Tan Chau, followed by -48.4% at Can Tho and
-51.2% at My Thuan (Table 5.22).

The average water levels at Tan Chau and Chau Doc decrease by 0.2 m and 0.19 m in the
dry season, respectively while the predicted water levels at Long Xuyen, Can Tho and My
Thuan decrease by of 0.46 m, 0.2 m, and 0.15 m in the rainy season, respectively.

5.4.4.3 Scenario 3: 15% decrease in Kratie’s discharge and 35cm sea level rise

From Table 5.23, the relative changes of annual discharges reduce to -40.64 % at Tan Chau,
followed by -27.234 % at Chau Doc, -51.27% at Can Tho and -54.03 % at My Thuan
compared to baseline. the relative changes of discharge in dry season at these stations vary
from -68.7%, -68.5 %, -100.1 % and -82.5 % for Tan Chau, Chau Doc, Can Tho, and My
Thuan, respectively. The calculated results showed that, generally, the annual discharges at
all considered stations were slightly reduced compared to the results for scenario 2. The
differences in relative changes between scenarios 2 and 3 are approximately 2.45% to 3.75%,
while the flow discharge at Kratie decreased relatively by 5% and the water level at the
downstream boundary increased relatively by 12cm.

In this scenario, the water levels at all considered stations slightly increased, approx-
imately 0.06 – 0.10m compared to scenario 2, while the water level at the downstream
boundary increased relatively by 12 cm. It can be surmised that the tidal level is the main
driving force behind water level changes near sea stations (i.e. Can Tho and My Thuan).
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5.4.4.4 Scenario 4: 20% decrease in Kratie’s discharge and 35cm sea level rise

To investigate the impact of upstream discharge and climate change in the VMD, the most
extreme scenario 4 was generated to compare with other cases. Figures 5.31d and 5.32d
present the discharges and water levels at four considered stations. The discharges at these
stations will decrease substantially during the dry season, with a large range of relative
changes from -69.16% to -100.2% (Table. 5.23), while the discharges will slightly reduce,
from roughly 7.7% to 29.7%, except for an increase of 7.3% at Chau Doc station during the
wet season. The discharge at Can Tho will be considerably diminished at a double rate, up to
100%, compared to baseline. The water levels at all considered stations will decrease slightly
compared to scenario 3.

Table 5.22 Annual averaged discharges and water level changes during the time period (2036
– 2065) compared to baseline

Scenarios
Relative changes of annual aver-
aged discharge (%)

Relative changes of annual aver-
aged water level (m)

Tan
Chau

Chau
Doc

Can
Tho

My
Thuan

Tan
Chau

Chau
Doc

Can
Tho

My
Thuan

Scen. 1 -30.3 -9.5 -38.2 -42.3 0.19 0.03 -0.01 0.04
Scen. 2 -38.2 -23.5 -48.4 -51.2 0.09 -0.25 -0.08 -0.01
Scen. 3 -40.6 -27.2 -51.3 -54.0 0.10 -0.24 0.02 0.08
Scen. 4 -42.9 -30.9 -53.9 -56.3 0.02 -0.31 0.01 0.07

Table 5.23 Annual averaged changes in seasonal river discharges at four stations for 2036 –
2065, relative to baseline 2011

Scenarios
Relative changes in dry sea-
son (%)

Relative changes in wet sea-
son (%)

Tan
Chau

Chau
Doc

Can
Tho

My
Thuan

Tan
Chau

Chau
Doc

Can
Tho

My
Thuan

Scen. 1 -66.5 -65.7 -99.5 -79.7 5.8 46.6 23.2 -4.9
Scen. 2 -68.0 -68.0 -99.9 -81.2 -8.3 21.0 3.2 -21.1
Scen. 3 -68.7 -68.5 -100.1 -82.5 -12.5 14.0 -2.4 -25.5
Scen. 4 -69.2 -69.1 -100.2 -82.9 -16.6 7.2 -7.7 -29.7
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Fig. 5.31 Predicted daily discharges at four stations during the period 2036 – 2065 and for
four scenarios
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Fig. 5.32 Predicted daily water levels at four stations during the period 2036 – 2065 and for
four scenarios

5.4.5 Discussion

5.4.5.1 Impact of climate change on precipitation

Climate change is predicted to alter rainfall patterns on a global scale, particularly in the
Mekong Delta (Lauri et al., 2012; Hoanh et al., 2010). Changes in hydrological circulation
in terms of rainfall and runoff depend on both local characteristics and large scale climate
oscillations (Field et al., 2014). Precipitation is the primary driving force to change the runoff,
surface water and hydraulic regime at the basin level. According to the downscaled results
and bias corrections of the GCMs used in this paper, precipitation in the VMD is broadly
projected to decrease in the dry season and increase in the wet season (Fig. 5.28). However,
the downscaled results of five GCMs show large differences in projections through all RCP
simulations, indicating high uncertainty not only in the magnitude, but also in the direction
of hydrological behaviors due to climate change. It is therefore necessary to apply ensembles
of GCMs and RCP scenarios to cover appropriate ranges of climate change (Christensen
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et al., 2007).

Improvement of spatial resolutions and performances in the CMIP5 climate change
scenarios has provided the motivation to conduct a new simulation and gain an updated
perspective to the current knowledge of the VMD. As a result, our study provides updates
of and insight into climate change in the VMD, driven by five CMIP5-GCMs and various
downscaled and bias correction methods. Furthermore, the results also contribute to the
ongoing study of the effect of climate change on salinity intrusion in Tien and Hau Rivers by
using 2D models. Although the VMD is relatively large and highly complex, we attempt to
focus only on main factors that deal with the climate change issue. In general, our derived
precipitation, downscaled from five GCMs and three bias correction methods, is in line with
findings from most previous studies (Hoanh et al., 2010; Lauri et al., 2012; Vastila et al.,
2010) for the whole Mekong Basin. However, as Hoanh et al., 2010 and Vastila et al., 2010
only used one GCM, their study results did not reflect the uncertainty. Kingston, Thompson,
and Kite, 2011 and Eastham et al., 2008 compared seven and eleven GCMs, respectively, but
non-downscaling was applied to reduce bias and uncertainties.

Moreover, a various research (Hoang et al., 2016; Manh et al., 2014; Dung et al., 2011) has
been conducted, focusing on the Vietnamese Mekong Delta, to provide detailed descriptions
of current and future hydrological conditions. It is difficult to compare these studies to our
results for accuracy because of different boundary conditions and assumptions. However,
despite differences in GCM selection, downscaling approaches, boundary conditions and
modelling applications, similar trends of an increased precipitation during the wet season
have been clearly and confidently confirmed by Dinh et al., 2012 and Van et al., 2012.

5.4.5.2 Impact of both upstream flows and climate change

Because of the limited scope of this study, we have considered four scenarios with different
flows at Kratie station, based on the study conducted by Lauri et al., 2012. Our investigation
is also based on the premise of the previous studies carried out by Van Manh et al., 2015 and
Van et al., 2012 to focus on climate change and the hydraulic regime in the VMD.

Lauri et al., 2012 conducted research to consider the impacts of climate change and
reservoir operations, using both separate and cumulative assessments. The annual discharge
changes varied from a decrease of 4% to an increase of 12%, as indicated in their findings.
These results are similar to those in the study of Hoanh et al., 2010. Therefore, we consider
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the range of variabilities of discharge at Kratie from +10% to -20% to be plausible for
possible future scenarios. Our results show large differences of discharges throughout all
RCP scenarios at the four main considered stations. For example, the magnitudes of the
monthly discharge significantly vary between all scenarios. The discharge in Hau River is
likely to increase from 7.25% to 46.66% for four scenarios in the wet season and decrease by
approximately 67.8% in the dry season, while other discharges (i.e. Tan Chau, Can Tho, My
Thuan) may decrease significantly in both dry and wet seasons throughout scenarios 2, 3,
4. It can be explained that the hydraulic regime in the VMD are strongly influenced by the
upper hydrological conditions (i.e. building and planning dam construction, changes in land
use, climate change, etc.).

Two available studies (Van et al., 2012 and Manh et al., 2014) were conducted on sediment
dynamics and flood propagation in the VMD for the different time frames. Manh et al., 2014
used a baseline of 2000-2010 and a future period of 2050-2060 and Van et al., 2012 applied
a baseline of 2000 and forecasted a period of 2050, whereas our study employed a baseline
of 2011. Moreover, Manh et al., 2014 concentrated mostly on sediment transport, while
Van et al., 2012 focused more on immediate spatial flooding during the monsoon season.
However, to some extent, the increasing trends of flooding during the wet season are similar
in both studies due to sea level rise and increases in precipitation.

5.4.5.3 Limitation, remaining challenges and further research

The scope of this paper is to assess the VMD’s hydraulics responses to the upstream dis-
charge boundary, climate change related to changing precipitation, and sea level rise. This
is the first step in the impact assessment process related to water management. In order to
fully understand the environmental, social and economic impacts, further study should be
considered to assess all relevant factors, including hydrology, ecosystems and anthropogenic
activities (Commission, 2010; Lamberts and Koponen, 2008). For example, irrigation expan-
sion, inter-basin water transmission, land use changes and urbanization (Pech and Sunada,
2008) might significantly contribute to changes in hydrology and water resources. Moreover,
due to a limited availability of evapotranspiration data we therefore choose climate change
models do not include it. We acknowledge the limitation of lacking this information, as
evapotranspiration may substantially contribute to the hydrology of this region.

One limitation of this study is to create different scenarios using the predicted discharge at
Kratie given by Lauri et al., 2012 without new updated simulations of the upper hydrological
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regime for current and future conditions. However, the results of this paper may be considered
acceptable because of its plausible range of different scenarios. Another limitation is that
we did not consider all meteorological stations in the VMD for downscaling of climate
data; to maintain the focus of the paper we attempted to downscale only the main rainfall
stations belonging to the Tien and Hau Rivers. Finally, our study has shown that the MIKE 11
model is able to simulate the hydraulic regime of the VMD with a relatively good accuracy.
Nevertheless, there are uncertainties as a result of inaccuracies in input data, model structure,
parametrization (Lauri et al., 2012) and the complexity of the VMD system.

5.5 2D-MIKE 21 model for salinity intrusion in Hau River
estuary

5.5.1 Data collection

Distributed hydrological models are frequently applied in water resources assessments at the
Mekong basin level, but little attention is paid to the hydraulic regimes in the estuaries due
to the highly complex river-estuary-ocean interactions. The existing modelling frameworks
are not well-designed to cope with the complex hydrodynamic relationship between river
flow, tides and anthropogenic activities. To address this challenge, we propose a combination
of hydrological models and hydrodynamic models. Therefore, the objective of this study
is to integrate 1D-MIKE 11 and 2D-MIKE 21 hydrodynamic models to investigate the
hydraulic regimes of and salinity intrusion in specific river sections, namely the Hau River,
which stretches between Can Tho and Tran De and Dinh An estuaries. To achieve this
objective, we first applied a 1D model to simulate the entire hydrodynamic of the VMD
with different scenarios of upstream discharge and downscaled precipitation from five GCMs
using two RCP scenarios from CMIP5. We used the simulated discharges by MIKE 11
simulation as described in Duong et al. (2018). Next, we employed statistical downscaling
and bias-correction treatments, as shown in detail in the paper “Modelling Seasonal Flows
Alteration in the Vietnamese Mekong due to Kratie Discharge Changes, Rainfall and Sea
Level Rise”. The outputs of the downscaled daily precipitation for 2036–2065 were used in a
rainfall-runoff model required to simulate runoff for 1D hydrodynamic simulations. Finally,
we used the results of Can Tho and branch discharge along the Hau River from the MIKE
11 simulation as a boundary condition of the 2D hydrodynamic model to force it include
river-estuary-ocean interaction simulations. As such, our modelling framework allows one
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to evaluate the combined impacts of changing upstream discharges, the variabilities of
precipitation and sea level rise from climate change on salinity intrusion in Hau River, VMD.

5.5.1.1 Hydrological and hydraulic data

The hydrological input data for the MIKE 11 model includes river discharges at the delta
inlet at Kratie (Cambodia), outlet water levels, precipitation, evapotranspiration and water
demands for agriculture, industry and domestic sectors in the entire VMD. The hourly Kratie
discharge and hourly water levels at 10 major stations, including Vung Tau, Vam Kenh, Binh
Dai, An Thuan, Ben Trai, My Thanh, Ganh Hao, Song Doc, Rach Gia and Xeo Ro, were
measured from 2009 to 2011 and all input data is summarized in Table 5.24. More details
about these data can be found in Duong et al. 2018.

The daily precipitation scenarios for boundary conditions in the MIKE 11 model were
generated from the CMIP5 using five GCMs: ACCESS 1.0, CCSM4, CSIRO-Mk 3.6,
HadGEM and MPI-ESM-LR, with two RCP4.5 and RCP8.5 scenarios (Table 5.25). The
bilinear interpolation was applied to downscale climate data to 0.5o×0.5o resolution before
applying the bias correction. Future precipitation change scenarios were generated using
three bias correction methods, including Linear Scaling (Lenderink, Buishand, and Deursen,
2007), Local Intensity Scaling (Schmidli, Frei, and Vidale, 2006) and Distribution Mapping
(Sennikovs and Bethers, 2009; Block et al., 2009). The motivations for selecting the GCMs
and RCP scenarios were explained in detail in Hoang et al., 2016 and Duong et al., 2018.

The hydraulic data for the MIKE 21 model consists of hourly discharge at Can Tho
station, offshore tidal levels and salinity concentration at Tran De and Dai Ngai stations,
in the years 2011 and 2010 for calibrating and validating the models, respectively. The
tidal levels in the years 2010 and 2011 were derived from the Global Tidal Model in the
MIKE Zero Toolbox and were calibrated with tidal levels data at My Thanh station, provided
by the Institute of Coastal and Offshore Engineering (http://www.icoe.org.vn/index.php).
Furthermore, the branch discharges along the Hau River were simulated from the MIKE 11
model, for five main intakes, including Mang Thit, Rach Mop, Cau Quan, Nga Bay and Dai
Ngai. The future discharges at Can Tho were simulated from MIKE 11 with four scenarios
of upstream discharges at Kratie and precipitation in the VMD.

Regarding the wind data for the MIKE 21 simulation, there are two dominant wind
directions; the wind blows south-west in the wet season and northeast in the dry season, with
stronger speeds as a result of the monsoon in the South China Sea. The average north-east
wind speed varied between 3 and 6 m/s, and the maximum speed was approximately 15–20
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m/s towards the east, blowing from the sea. The predominant wind directions were calculated
and are shown in Table 5.26.

Table 5.24 Main input data for the hydrological simulations

Model Input data Observed Projection (if any)

MIKE 11

Precipitation Daily precipitation from 7
stations (locations in Fig. I)
Period: 1978 - 2011
Source: SRHMC

Projected precipitation
based on downscaled
and bias-corrected GCM
simulations.
Period: 2036-2065
Source: CMIP5

River discharge
at Kratie

Daily discharge data
Period: 2078-2011
Source: MRC + SIWRR

NA

River discharge
in the Mekong
Delta

Daily discharges and water
levels at 10 stations (loca-
tions in Fig I)
Period: 2005-2011
Source: SIWRR

NA

Sea water level
and tides

Period: 2005-2011
Source: SIWRR

Hydraulic
network

Period: 2005-2011
Source: SIWRR

MIKE
21

Discharges at
Can Tho

Hourly discharge
Cali. Period 2011
Vali. Period 2010
Source: SRHMC+DHI

Future Period 2036-2065

Tidal magni-
tudes

Period 2010-2011
Source: SRHMC+DHI

Future Period 2036-2065

Branches dis-
charges

Five main channels/rivers
connecting Hau river
Period 2010-2011

SRHMC: Southern Regional Hydro-meteorological Center, SIWRR: Southern Institute
of Water Resources Research.
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Table 5.25 Downscaled GCMs, emission scenarios used, and spatial resolution of each GCM

GCM Abbreviation Country Spatial Resolution
ACCESS 1.0 ACCESS Australia 1.25o ×1.875o

CCSM4 CCSM4 NCAR/USA 0.94o ×1.25o

CSIRO-Mk 3.6 CSIRO Australia 1.875o ×1.875o

HadGEM2-ES HadGEM2 Hadley/UK 1.25o ×1.875o

MPI-ESM-LR MPI Germany 1.875o ×1.875o

Table 5.26 Direction of Wind, Southern Vietnam (SIWRR, 2011)

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Direction NE NE E SE SE SW SW SW SW NW ENE NE

Note: E = east; ENE = east-northeast; NE = northeast; NW = northwest; SE =

southeast; and SW = southwest.
Salinity data was used for calibrating and validating the MIKE 21 model for the years

2011 and 2010, respectively. The salinity concentration in the Hau River significantly
changed during the dry season and reached its largest value between March and May (see
Figure 5.33. The Dinh An and Tran De estuaries are characterized by an irregular semi-
diurnal tide, which has a strong effect due to tidal oscillations (Nguyen, 2013, Duy Vinh et al.,
2016). Similar to salinity, the discharge at Can Tho shows considerable fluctuation within
one day, and the diurnal differences are evident. The salinity and tidal levels showed phase
differences, with the maximum salinity at the Dai Ngai station occurring during the spring
tide. The maximum salinity in 2011 at the Tran De station was about 23.0 PSU (practical
salinity unit; 1 PSU equals 1% ) and the minimum value was 0.5 PSU (CGIAR, 2016). The
salinity concentration at Dai Ngai station was smaller than Tran De because this station was
located about 31 km further inland. In 2011, the maximum value of salinity level in Dai Ngai
reached 11.0 PSU, and minimum values varied between 0.0 and 0.5 PSU.
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Fig. 5.33 The salinity concentration at Tran De (a) and Dai Ngai (b) stations in the year 2011

5.5.2 Model setup

5.5.2.1 Model schematization

The detailed bathymetry in numerical modelling plays a critical role in achieving accurate
hydrodynamic simulations. In the present study, the bottom topography data in the coastal
area and the Hau River estuary were obtained from the DHI Vietnam (Danish Hydraulic
Institute), the Department of Transportation in Ho Chi Minh City, and the Southern Institute
of Water Resources Research (SIWRR). The modelling domain in the horizontal plane covers
100×110 km including the main river stream and the coastal sea. The greatest depth in
the study area is 20 m below mean sea level, near the south-east corner of the modelling
domain in the coastal sea. It is important to consider the model stability by satisfying the
Courant–Friedrich–Levy number: the selection of time step (∆t) and grid step (∆x) is crucial
in order to balance the trade-off between numerical stability and computational time. The
simulation grid cell selection for the study area is flexible mesh (FM) or unstructured mesh,
where triangular cells of bathymetry are used to optimize the simulation, with small sizes
in river domain and larger sizes in offshore settings. The triangular element sizes are about
80–100 m in the river and 800–1000 m offshore, with the total triangular being 35,000
elements and 28,000 nodes. Bathymetry was constructed with the MIKE zero tool and
obtained from an updated digitizing map in 2011 from the Southern Institute for Water
Resource Planning and DHI Vietnam. The bathymetry and grid resolution is presented in
Figure 5.34.
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Fig. 5.34 a) Mesh; b) Bathymetry and c) spatial Manning number distribution

5.5.2.2 MIKE11 hydrodynamic model

The MIKE 11 is an unsteady 1-dimensional hydrodynamic model, which is based on one-
dimensional equations and solves the vertically integrated equations regarding conservation
of continuity and momentum. The solution of continuity and momentum equations are
employed as an implicit finite difference scheme with a 6-point Abbott scheme (Abbott and
Ionescu, 1967). The main governing equations are Saint-Venant equations (Shooshtari, 2008).
In order to effectively simulate floodplain and field areas, and to connect main channels and
rivers, we employed the quasi-2D modelling approach developed by Dung et al., 2011. The
rice fields and the floodplain are considered to be artificial channels or “virtual channels”,
having wide cross sections and were extracted from the digital elevation model (DEM). The
calibration process of these channels and crest of dikes was explained in detail in Manh et al.,
2014 and Dung et al., 2011.
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5.5.2.3 MIKE21 hydrodynamic model

The MIKE 21 is a dynamic modelling system applicable for coastal and estuarine envi-
ronments. The MIKE 21 comprises several modules, including the hydrodynamic module,
advection–dispersion module, spectral wave module, and transport module. This model is
based on the numerical solution of the two dimensional incompressible Reynolds-averaged
Navier–Stokes equations with the assumptions of Boussinesq and hydrostatic pressure. It
comprises continuity, momentum, temperature, salinity and density equations (MIKE21 and
MIKE3 Flow Model, 2009).

This study applies MIKE 21 with two modules, namely hydrodynamic (HD) and transport
modules (TR), using a flexible mesh. The mutual interaction between the flow, wind, and
velocity and sea tide is considerable. The wind is specified as a spatially constant value
for the entire domain and temporally variable values. The schematic presentation of the
modelling framework is shown in (Fig. 5.35).

Fig. 5.35 The research methodology for combined modelling

5.5.2.4 Model parameterization

The model parameters to be defined for the HD model are the roughness coefficient (n),
or Manning number, and for the AD model, the horizontal dispersion coefficient (Dh),
eddy viscosity, Courant–Friedrich–Levy (CFL) and Smagorinsky coefficient. In order to
realistically reproduce the physical phenomena of river mechanics, the Manning number is
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defined as a function of water depth (h) and bed river type, and can be calculated based on
depth and drag coefficient (David, 2010; Soulsby, 1997) (see Figure 5.34c). In the MIKE 21
manual, the Manning number was defined via the drag coefficient in below equation with g
as gravity constant:

Cd=
g(

Mh1/6
)2 ,

which Cd can define through total water depth and empirical drag coefficient (at 1m
above the bed) for different bottom types (from mud to gravel):

Cd=

(
1

0.32h

)1/7

C100

C100 = 0.022 ÷0.0047, and a table of full empirical drag coefficients can be found in
Soulsby, 1997. The Manning numbers were available for each grid and varied from estuary
to upstream river in the entire domain. The range of the Manning number varied from 20
to 40 m1/3/s, and depends on grainsize (rippled sand – gravels) and water depth (shallow
to deep water) during model calibration. We adjusted the Manning number throughout the
revision of C100 by defining the type of riverbed and seabed. The eddy viscosity was defined
in a Smagorinsky formulation and was adjusted during calibration with a range 0.25–0.27,
with an initial value of 0.28.

5.5.2.5 Boundary condition

For the delta-wide modelling with MIKE 11, we proposed four scenarios to cover future
changes of upstream discharges, sea level rise and in-delta precipitation changes, and used
these scenarios as boundary conditions for our modelling exercises (5.27). More detailed
information about rationales and designs of the scenarios can be found in Duong et al. 2018.
Results from the Mike 11 modelling, particularly the discharge data at Can Tho, were then
used as boundary conditions for the salinity intrusion simulation using MIKE 21. The
changes in upstream discharges at Kratie are selected with a range of +10% to -20% relative
to baseline discharge in 2011, based on literature review on projected future flow changes
of Lauri et al., 2012 and Hoang et al., 2016. Notably, both studies did not consider the
other anthropogenic factors such as irrigated land expansion, urbanization, and inter-basin
water transfer. In addition, other studies (Kingston, Thompson, and Kite, 2011; Thomson
et al., 2011) show different ranges of future hydrological changes due to differences in GCM
outputs and climate change scenarios selection. Therefore, we extended the range of inflow



118 Model applications

changes at Kratie to capture possible future hydrological alterations in the upper Mekong
Delta. For the climate change scenarios, we selected two RCPs for precipitation, namely
RCP4.5 and RCP8.5.
Our sea level rise scenarios were obtained from the scenarios provided by the Ministry of
Natural Resources and Environment. We selected an average of the predicted sea level
rise, resulting in an increasing 23 cm between 2030 and 2040 and 35 cm between 2050
and 2065 (MonRE, 2009). For the MIKE 21 simulation, the hourly discharges at the Can
Tho station were taken from the MIKE 11 simulation with four distinct time series of flows.
The predicted sea levels were calculated linearly based on the averaged multi-annual tidal
magnitudes from the global tidal model (Andersen and Knudsen, 2009). The seawater density
was assumed to be constant and the salinity level at sea was predicted to remain at 35.0 PSU
in the future condition. There are two approaches to obtaining the sea level rise condition.
One is to impose an instantaneous elevation of sea level at coastal sea boundaries by applying
linear adjustment of the mean sea level from the long observed sea level; the other is to run
the hydrodynamic model over a long period to obtain predicted sea level. In this study, we
obtained the sea level rise projection from the Vietnamese Ministry of Natural Resources and
Environment (MONRE) and applied linear adjustment for predicted sea level rise during the
2036–2065 period.
The boundary condition for the MIKE 21 modelling includes the upstream hourly discharge
at Can Tho station and tidal magnitude at downstream boundaries in the coast (Figure 1). To
obtain salinity boundary conditions under future sea level rise and to reduce the influence of
the boundary conditions on the in-delta modelling, a larger offshore domain that covers Hau
estuary and adjacent shelf area was used. Secondly, five river branches connecting to the Hau
River include Mang Thit, Rach Mop, Cau Quan, Nga Bay and Dai Ngai, were simulated as
the sources and sinks. Thirdly, wind speeds and directions data were collected at the Vung
Tau hydrological station and applied for the entire domain. Finally, time series of water level
at My Thanh, Dai Ngai and Tran De stations were measured during 2010–2011 for model
calibration and validation. For salinity at downstream boundaries, we set up the salinity
concentration as 35.0 PSU and assumed the salinity in upstream to be 0.1 PSU.
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Table 5.27 Four scenarios of changing of discharges and sea level rise, precipitation

Scenarios Sea level
rise (cm)

Changes
upstream
discharge

Precipitation
scenarios

Scen. 1 23 +10% RCP 4.5, 8.5
Scen. 2 23 -10% RCP 4.5, 8.5
Scen. 3 35 -15% RCP 4.5, 8.5
Scen. 4 35 -20% RCP 4.5, 8.5

5.5.2.6 Computation of Flushing Time

The flushing time can be determined by the freshwater fraction approach (Lauff, 1967; Dyer,
1997), which can be determined from the salinity distributions. This technique provides an
estimation of the time scale over which contaminants and/or other material (saltwater in this
study) released in the estuary are removed from the system. Using the freshwater fraction
method, the flushing time (Tf) in an estuary can be expressed as:

Tf =
F
Q

=

∫
vol

f .d(V )

Q

where F is the accumulated freshwater volume in the estuary, which can be calculated by
integrating the freshwater volume, d(V), in all the sub-divided model grids over a period of
time. In estuaries with unsteady river flow and tidal variations, F and Q are the approximate
average freshwater volume and average freshwater input, respectively, over several tidal
cycles for a period of time. The term “f” is the freshwater content or the freshwater fraction,
which is described by:

f =
So −S

So

where So is the salinity in the ocean and S is the salinity at the study location.

5.5.3 Model calibration and validation

5.5.3.1 Model calibration

The MIKE 21 FM-HD and TR models were first calibrated with the observed averaged water
level and salinity concentration at the middle cross section of the Hau River’s estuaries. The
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calibration period was from January to December 2011 for hydrodynamic simulation, and
six months from January to June 2011 for salinity simulation. The water levels measured at
My Thanh and Dai Ngai were used to calibrate the model. In the inlet of the model at Can
Tho station, initial salinity values were set at 0.1 PSU (% ). In the outlet of model (offshore),
the salinity concentration was set at 35 PSU.
Several parameters of the HD and TR modules of MIKE 21 were adjusted to improve
model performance. The calibration process aims to match simulated results and observed
data, including water level and salinity concentration in different locations, by changing
the Manning number and CFL in MIKE 21 HD and TR. In the simulations we applied
a value of 0.8 for CFL-number and Smagorinsky coefficient within the range 0.25 and
0.27. Model calibration results have achieved the realistic results and indicated that the
selected parameters were reasonable, as shown in Figure. 5.36. To compare the observed and
simulated water levels and salinity concentrations, the latter were taken at the center point
of the cross section, as mean values for comparing with observed values. The performance
indices include mean absolute error (MAE), root mean square error (RMSE) and correlation
coefficients (R). The comparison between modelling results and observed salinity data also
reveals a strong correlation and an excellent prediction, with the R-value higher than 0.8
(Table 5.28).
Figure 5.37 compares the observed and simulated salinity concentrations at the Tran De and
Dai Ngai stations. The simulated salinity time series compared favorably with the discrete
salinity measurements at the two aforementioned stations. Overall, the model reflected the
large dynamic variation of salinity between 0 and 30 PSU over a tidal cycle, with decreasing
values of mean salinity as freshwater discharge increased.

5.5.3.2 Model validation

The MIKE 21 model was further validated with the calibrated parameters, focusing on water
levels and salinity concentration. The time series data of hourly discharge at the Can Tho
station in 2010 was used as upstream boundary conditions to drive the model simulations. The
hourly tidal values taken from a global tide model were adopted as a forcing function at the
coastal sea boundaries. The hourly tidal data and daily freshwater discharges were collected
from SIWRR and the Southern Regional Hydro-Meteorological Center (SRHMC). The water
level and salinity concentrations from Tran De and Dai Ngai stations were employed to
evaluate the model. The comparison of observed data and simulated results for water level
and salinity concentration is verified to check the model’s performance.
Figure 5.38 compares the simulated water levels and observed data with the time series at
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My Thanh and Dai Ngai during the period between 29 April and 11 May 2010. In general,
the modelling results show realistically simulated water level variations. The comparison
demonstrates the model’s capability to reproduce the water levels, even under large variations
of daily freshwater influx from the upstream Can Tho station. To compare the observed and
simulated water levels and salinity concentrations, the simulated water level and salinity were
taken at the center point of the cross section, as mean values for comparing with observed
values. Overall, the model satisfactorily simulated the water level at My Thanh and Dai
Ngai on the Hau River. The calibrated model parameters were, therefore, adopted for our
modelling exercises and scenario analyses.
Table 5.28 displays the performance of the model simulation and measured data for water
levels and salinity concentration. The performance indices include mean absolute error
(MAE), root mean square error (RMSE) and correlation coefficients (R). The MAE values in
calibration and validation for water level at My Thanh and Dai Ngai, respectively, are 0.23
and 0.11 m and 0.26 m and 0.14 m. The RMSE values for water level at My Thanh and Dai
Ngai, respectively, are 0.29 and 0.13 m for calibration and 0.31 m and 0.16 m for validation.
R values at My Thanh and Dai Ngai are 0.923 and 0.997 for calibration and 0.913 and 0.967
for validation, respectively. The comparison between modeling results and observed data
in water level indicates a strong correlation and an excellent prediction. Through the model
validation, the calibrated parameters are adopted in the model for prediction.

Table 5.28 Statistical performance of calibration result at three station

Stations
Calibration(2011) Validation (2010)
RMSE
(m)

MAE
(m)

R RMSE
(m)

MAE
(m)

R

Water level
at My Thanh

0.29 0.23 0.923 0.31 0.26 0.913

Water level
at Dai Ngai

0.13 0.11 0.997 0.16 0.14 0.967
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Fig. 5.36 Calibration of water level at My Thanh (a) and Dai Ngai station (b)

Fig. 5.37 Calibration of salinity concentration at Tran De and Dai Ngai stations

Fig. 5.38 Validation of water level at My Thanh and Dai Ngai station
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5.5.4 Results and discussion

5.5.4.1 Changes in salinity intrusion

Simulating the spatial variations of salinity in the estuary and further upstream of the Hau
River shows the detailed changes in the salinity dynamics under different discharges, sea level
rise (SLR) and rainfall scenarios. The discharge at Can Tho varied significantly throughout
the year, with a maximum discharge less than 20,000 m3/s in the wet season and a minimum
discharge of -15,000 m3/s (Figure 5.39). The inverse flow direction in the dry season is
caused by the tidal flow. Discharges at Can Tho were influenced not only by the upstream
flow from Tan Chau, Vam Nao, but also by tidal regimes from the East Sea. The tidal feature
in South China Sea is semidiurnal asymmetry; the peak spring tide reaches 3.0 m between
December and January every year and reaches its lowest levels from June to August with a
variability of around 0.5 m.

Fig. 5.39 Discharge at Can Tho for four scenarios obtaining from MIKE results

In order to quantify the spatial variations in the salinity concentrations along the river,
the minimum and maximum difference in salinity concentrations between the baseline and
four scenarios was calculated and is presented in Table 5.29

Figure 5.40 and 5.41 presents the spatial distributions of maximum and average salinity
levels along the Hau River estuary under the four scenarios, respectively. The result shows
radical changes in the salinity levels across the entire estuary. Compared to the reference
isohaline of 4.0 PSU, the salinity profile with 4.0 PSU moves farther upstream by 48.55,
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49.13, 49.16 and 49.18 km from Scenario 1 to Scenario 4, respectively (Table 5.30). The
relative changes compared to the baseline are 3.29, 3.87, 3.90, and 3.92 km for the four
scenarios, respectively (Table 5.31). Scenario 4 shows the farthest salinity intrusion, which
is explained by strong upstream discharge reduction and substantial sea level rise of 35 cm
(5.42). Similarly, Scenario 1 shows weaker salinity intrusion from the sea compared to other
scenarios. This is explained by slight increases in the upstream discharge and the sea level
rise of 25 cm. Figure 12 presents the salinity distribution under four scenarios at different
points along the river: from the river mouth (My Thanh station) to upstream (Can Tho station)
in spring tide (Fig. 5.43a) and neap tide simulations (Fig5.43b). The mean values are taken
at the middle point of the cross-section. Figure 5.41 shows the difference in salinity between
the four scenarios and the distance of salinity intrusion from the river mouth.
Here we discuss our results for salinization modelling in view of the relevant studies on this
topic. Smajgl et al., 2015 studied the effects of a wide range of driving factors on salinization,
including land use changes, sea level rise of 30 cm, development of all proposed upstream
reservoir and irrigation, and an increasing number of dry years. The results stated that the
isohaline of 4.0 PSU is relocated throughout the Hau River, with distance from the river
mouth reaching approximately 70 km. Considerable differences in the 4.0 PSU isohaline
between this study and Smajgl et al., 2015 can be attributed to differences between the
scenario setups and boundary conditions in the two studies. Nguyen and Savenije, 2006
tested analytical solutions of salinity simulation in the Mekong estuaries based on observed
data in 2005 for the Co Chien, Cung Hau and Hau estuaries. The results showed that salinity
intrusion distances from the river mouth were 41 km and 23 km for spring tide and neap tide
during the dry season in 2005, respectively. Furthermore, the finding by Trieu and Phong,
2015 concluded that the salinity intrusion of 1.0 PSU in Hau River was approximately 55–60
km for the dry season of 2010. This projection is higher than our results for all scenarios. All
in all, results from this study show a strong dependency of salinization on upstream inflow
and the changing tidal dynamics under sea level rise. Such a mechanism is also commonly
reported in large river deltas of the world, including the Bangladesh Delta Bhuiyan and Dutta,
2012, Nobi and Gupta, 1997 and the Dutch Delta Oude Essink, Van Baaren, and De Louw,
2010.
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Table 5.29 Max and min salinity at Dai Ngai and Tran De station

Stations
Max and min Salinity (PSU)
Scenario
1

Scenario
2

Scenario
3

Scenario
4

Max Min Max Min Max Min Max Min

Dai Ngai 5.44 0.076 5.74 0.071 5.83 0.066 5.91 0.054
(1st June)
Tran De 29.41 25.02 30.39 25.31 30.27 25.20 30.31 25.44
(1st June)

Fig. 5.40 Maximum salinity level across the modelling domain under for four scenarios
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Fig. 5.41 Mean salinity distribution across the modelling domain under for four scenarios
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Fig. 5.42 The difference of max salinity distribution of four scenarios compared with
baseline

5.5.4.2 Changes in salt intrusion length

We further assessed the changes in salinity intrusion length under the four future scenarios.
The salinity intrusion length is defined as the distance from the estuary mouth to the location
upstream with mean salinity at the cross section. There are three types of intrusion length:
intrusion length at low water slack, intrusion length at high water slack, and tidal average
intrusion length, which is considered to be an average of low and high (Vd Burgh, 1972;
Savenije, 1993and Prandle, 2004). The salinity intrusion length is defined in this study as
the distance from the Hau River mouth to the upstream limit location where the bottom
salinity level drops down to a certain threshold, e.g., 1 PSU or 4 PSU. Figure 5.42 presents
salinity distribution along the river for four scenarios, under spring tide and neap tide. Table
5.30 shows that the salinity intrusion lengths under spring tide are larger than those under
neap tide. By comparing the baseline to the four scenarios, it can be seen that the intrusion
lengths for all scenarios are consistently farther than that of the baseline. In Scenario 1, river
discharge increases by 10% at Kratie, and therefore the inflow at Can Tho is also slightly
higher than the other scenarios. This explains the difference in salinity intrusion length
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between the baseline and Scenario 1. For Scenarios 2, 3 and 4, (with sea level rises of 23
cm, 35 cm and 35 cm, respectively) the differences in salinity intrusion lengths between
the baseline and these three scenarios are relatively small. In essence, the results show that
upstream discharge changes do not substantially affect salinity intrusion lengths, in contrast
to the more dominant impacts of tidal regime.
Under sea level rise scenarios, salinity intrusion length in the Hau River would increase
between 3.29 and 3.92 km (for 1.0 PSU salinity level) compared to the baseline in the spring
tide condition. During neap tide, this length ranges between 4.36 and 4.65 km for the 1.0
PSU salinity level (Table 5.30). Scenario 4 shows the longest salinity intrusion length for
spring and neap tide (Table 5.31) for both 1.0 PSU and 4.0 PSU isohaline. Such variation
in the magnitude of salinity intrusion length is caused by changes in the stratification of the
estuary. As the sea level rises, the river depth increases and the horizontal gradient of salinity
changes, resulting in increased estuarine circulation. The model simulations indicate that the
location of 4 PSU isohaline would migrate up from 43.58 to 44.27 km if sea level rises from
23 to 35 cm and the upstream discharges change from +10% to -20% at Kratie.

Our findings about increasing salinity intrusion length are in line with observed data,
which confirms that when river discharge reduces in the Hau River, saline water moves
upstream to Can Tho (Trieu and Phong, 2015, Williams, 1986). Any increase in the magnitude
or duration of salinity intrusion at the location of the irrigation water intake would likely
affect crop yield and aquaculture in Mekong Delta.

Table 5.30 The distance from the mouth river for different scenarios

Scenarios
Distance from the mouth (km)
Spring tide Neap tide
1.0 PSU 4.0 PSU 1.0 PSU 4.0 PSU

Baseline 45.26 41.46 25.49 20.13
Scenario 1 48.55 43.58 29.85 22.03
Scenario 2 49.13 44.05 30.44 23.01
Scenario 3 49.16 44.17 30.07 22.48
Scenario 4 49.18 44.27 30.14 22.59
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Table 5.31 The relative change of saline intrusion for four scenarios compared to baseline

Scenarios
Relative changes of saline intru-
sion (km)
Spring tide Neap tide
1.0 PSU 4.0 PSU 1.0 PSU 4.0 PSU

Scenario 1 3.29 2.12 4.36 1.90
Scenario 2 3.87 2.59 4.95 2.88
Scenario 3 3.90 2.71 4.58 2.35
Scenario 4 3.92 2.81 4.65 2.46

Fig. 5.43 Salinity distribution at center line of cross-section along river from the mouth to
upstream (a) spring tide and (b) neap tide

5.5.4.3 Changes in flushing time

To examine the effect of river discharge changes on the temporal dynamics of salinity
intrusion in the Hau River, we calculate flushing time with varying discharge conditions for
baseline and four future scenarios. Flushing time is defined as the time required to replace
the existing saltwater in the estuary using inflows at certain discharge levels (Dyer, 1973;
Williams, 1986).To calculate the flushing time in the estuary, different freshwater discharges
were selected based on maximum and minimum discharges from the dry season in 2011,
with a range of 400 to 4500 m3/s. The simulated flushing times for the baseline and the four
scenarios were calculated and are presented for different discharge values in Figure 5.44.

The flushing time varies considerably under all considered scenarios, ranging between 10
h (at discharge 4500 m3/s) and 109 h (at discharge 400 m3/s). For the most extreme scenario
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(i.e., Scenario 4), flushing time varies within a range from 20.7 h to 182 h. The results also
indicate that, for high flow, the flushing time under Scenario 1 is lower than under baseline
conditions, while Scenarios 2, 3 and 4 consistently exhibit longer flushing time than the
baseline. Longer flushing time caused by reducing discharges means that it would require a
higher volume of freshwater to push saltwater back to the river mouth in the future.

Reductions in river discharge also cause the salinity boundary to move further upstream
(Fig. 5.42). Salinity deceases substantially when river discharge increases, and as a result the
salinity intrusion boundary migrates farther downstream. As freshwater discharge increases
from 400 to 4500 m3/s with different sea levels, the flushing time reduces significantly from
87.72 h to 10 h for Scenario 1, and 150 h to 20.7 h for Scenario 4.

Fig. 5.44 Estimated flushing time and flow rate (Q, m3/s) for four scenarios

5.5.4.4 Uncertainties, limitations and further research

The hydraulic models, including 1D-MIKE 11 and 2D-MIKE 21 HD and TR used in this
study, entail limitations and assumptions. These limitations and assumptions exist in both
the data and modelling approach. The major data used in this study were predicted river
discharge, rainfall scenarios under climate change, and sea level rise. The climate change
and sea level rise scenarios used in this study were obtained from different sources, such as
GCMs outputs, SRHMC and SIWRR, and therefore our results might be subjected to errors
caused by data inconsistencies. However, we implemented quality checks on our input data
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and controlled for inconsistencies. Additionally, we acknowledge that climate change is a
non-stationary and dynamic process; while the projected salinity intrusion from upstream
discharge changes, rainfall and sea level rise alterations were treated in this study as part of
a steady-state system. That means we assume that the relationship between these driving
factors are also valid in the future and did not include their interrelations in the simulations.
This assumption could lead to biases in future discharge and rainfall estimates, which in
turn result in uncertainties in the simulated salinity intrusion. However, we think that the
hydraulic and salinity dynamics in the Hau River of the Mekong Delta are primarily driven
by changes in the considered driving factors and their interrelations play marginal roles.
Therefore, the developed modelling approaches are useful and applicable for our modelling
purposes.

Furthermore, we employed a two-step modelling procedure (see Section 3—Methodology
and Model setup) for assessing changes in salinity intrusion in the Mekong Delta. A 1D
model was applied to simulate delta-wide hydrodynamic conditions (i.e., discharge and
water level), thereby providing boundary conditions for the more detailed hydrodynamic
and salinity simulation with the 2D-MIKE 21 model. While the current data availability and
computational capacity does not allow for detailed 2D simulation for the whole Mekong
Delta domain, we suggest gradually increasing the domain size to cover larger areas in future
studies. Last but not least, while our calibrated parameter set yields realistic simulation results
for the current state of the delta system (i.e., 2010–2011), we did not consider changing delta
settings and its hydraulic characteristics in the future. Therefore, we suggest focusing on this
topic in future studies.





Chapter 6

Conclusions

6.1 Summary and results

The aim of this study was to expan on the knowledge of climate change impact on hydraulic
regime and salinity intrusion on Hau River, Vietnamese Mekong delta. The objectives of
this research were formulated as: (i) to forecast the amount of future rainfall in the study
area under climate change conditions with different scenarios from 5 GCMs outputs; (ii) to
develop a new model of Artificial Neural Network (ANN) and Recurrent neural network –
Long short term memory (LSTM) for predicting rainfall and runoff; (iii) to apply 1D-MIKE
11 to simulate the total volume of rainfall at the VMD and the effect of discharge from Kratie
station as the sources and sinks in MIKE 21 input; (iv) to apply 2D-MIKE 21 model to
simulate hydraulic regime and salinity intrusion in the Hau river under different scenarios;
and (v) to simulate fresh and salt water balance based on sea level rise and upstream water
level scenarios. With the results presented in the previous chapters, these objectives have
been met. As a result, a number of conclusions and recommendations have been formulated,
which are presented below:

1) The Vietnamese Mekong River Basin is highly vulnerable to climate change, however
its impacts together with the impacts of the upstream hydrological variabilities remains
a challenge. In the present work, we attempted to deal with part of these challenges to
provide more understanding the hydrological and hydraulic response of delta. This was done
by conducting hydrodynamic modelling, using a combination of climate projection from
five GCMs, two RCP scenarios, and four different discharge scenarios of upstream inflow
variabilities. The possible alterations of future hydraulic regimes in the delta were predicted
to show that negative consequences like shortage of water resources and salinity intrusion
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are inevitable.

Our finding proved that climate change will most likely increase precipitation in the
rainy season, for all GCM outputs within two time periods (1978–2001 vs. 2036–2065).
Nevertheless, the ranges between GCMs are relatively large, depending not only on in-
dividual GCMs but also on RCP scenarios and considered locations. Moreover, among
the two RCP scenarios applied, RCP4.5 and RCP8.5, there are significant variabilities in
downscaled results and in bias correction of precipitation from five GCMs. In general, all
precipitation projections of GCMs show similar trends of increasing precipitation in wet
seasons and a decrease in dry seasons. To some extent, however, even the precipitation
forecasting of a few GCMs remains uncertain. That means there is a certain degree of
confidence in prediction that the VMD will suffer more droughts in dry seasons and higher
floods in rainy seasons. Therefore, to reduce uncertainties, it is important to apply GCMs and
RCP ensembles for assessing possible climate change impacts on the VMD hydraulic regime.

Our study also shows that the upstream flow condition in four considered scenarios is
a driving force behind the changes in the hydraulic regime, whereas a sea level rise of 23
cm will have a smaller impact. Among the four considered scenarios of inflow, precipitation
changes and sea level rise, we found that the simulated discharges at four main stations of the
VMD change substantially, ranging from -2.45% to -100.21%. Furthermore, the predicted
seasonal discharges show a remarkable reduction in the dry season in all scenarios. The
calculated wet season discharges reduce significantly for scenarios 2, 3 and 4, but not for
scenario 1.

This assessment of the impact of upstream flow alterations, climate change, and sea level
rise on the VMD contribute a better understanding of the current and future hydraulic regime
of the basin. Consequently, results from this study could be used as boundary conditions
for further investigating the impact of climate change on salinity intrusion in Tien and Hau
Rivers using a suitable 2D model. The results of such study could be useful to advance the
currently limited body of knowledge about the saline distribution variation in the VMD.

2) The combination of 1D-MIKE 11 and 2D-MIKE 21 hydrodynamic (HD) and salt
transport models (TR) was established to simulate the hydrodynamics and salinity distri-
butions in the Hau (Bassac) River estuary of the Mekong delta in Southern Vietnam. The
model was calibrated and verified using observational water level and salinity distribution
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and tidal amplitudes from 2010 to 2011. The model simulation results agree well with the
field observations during calibration and validation periods. The calibrated model was used
to simulate future salinity intrusion to identify the potential impacts of upstream discharges,
rainfall variabilities and sea level rise on salinity intrusion length and transport time scales
including flushing time. The model results indicate that salinity intrusion moves farther
upstream by 4855, 4913, 4916 and 4918 m from scenario one to four for the period of 2036 –
2065, respectively. The flushing time is between 125 hours and 13.5 hours under the baseline
condition, and between about 180 hours and 10 hours under the four scenarios (equal to 7.5
days and half of day). We found that the flushing time for scenario 4 is higher in comparison
to the other scenarios and the baseline, while the flushing time for scenario 1 is lowest under
both low and high flow conditions. It will be more difficult to re-establish the freshwater
condition in the estuary in the future due to salinity intrusion. Particularly for scenario
4, the flushing time required to replace saltwater with freshwater at the estuaries tend to
increase between 7.27 hours for maximum discharge of 4500 m3/s and 58.95 hours ( more
2.5 days) for discharge of 400 m3/s. We found that upstream discharge changes, rainfall
alterations and sea level rise, not only affects salinity intrusion, but also induce changes
in the upstream flows from Kratie and the required time to flush the saltwater out to the
sea. Sea level rise would alter the location of the river estuary, thereby causing a change in
marine diversity in the ecological system. Sea level rise would move the hydraulic regime
backward, changing the habitats of fishing communities in the estuarine system, please
add consequences for agriculture and freshwater supply. Increasing salinization along the
Hau River will have detrimental consequences for crop production, freshwater supplies and
freshwater ecosystems, requiring timely countermeasures. Moreover, Vietnamese Mekong
delta in general and Hau River will be extremely vulnerable to climate change impacts
and sea level rise because of low lying topography. It was found that the vulnerability
of assets in the Mekong delta differ widely from economic sectors (agriculture sector to
industry and service) and there is urgency to adapt with climate change and salinity intrusion.

2) An attempt was made in this thesis to investigate the use of the LSTM model for pre-
dicting the daily rainfall – runoff at the Chau Doc and Can Tho stations, Vietnamese Mekong
River. To achieve this aim, the Python programming language was utilized to construct
LSTM models using the Adam optimizer algorithm, and the MATLAB tool box was used
to build ANN models based on the LM learning algorithms. Comparisons of the predicted
results indicated that the models trained with the LSTM and ANN models were comparable
in terms of accuracy and efficiency and they had great ability for predicting the daily rainfall
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– runoff. To build the best possible ANN and LSTM models, six input combinations were
tested for each model. The results show that the LSTM model performed better for discharge
prediction than those predicted by the ANN model in the Can Tho station, especially on
the peaks. For the high discharge values in this station, the results obtained by the LSTM
model were closer to the 45°straight line in the scatter plots. The results for the Chau Doc
stations were close to each other while the ANN model provided slightly better predictions.
Moreover, the obtained results of MAPE indicated that for the most input combinations,
ANN yielded lower values compared to LSTM, however the differences between the two
models were small and both models had an acceptable performance index. Finally, it can
be concluded that both models in this study showed good performance in rainfall – runoff
prediction and can be used as alternatives to improve the prediction of hydrological data.

3) A new time-series prediction model has been proposed in this study that applies state
of the art model – LSTM and compares the model efficiency with Seasonal Artificial Neural
Network (SANN) and Artificial Neural Network (ANN). The new model has been validated
with monthly rainfall data from Ca Mau rain gauges, located in the South of Vietnam. The
model has been developed using MATLAB (Matrix Laboratory) based on its Levenberg-
Marquardt algorithm. The LSTM model was implemented in Python. In comparison to
ANN and SANN results, the validation results of LSTM indicated it has best performance
in predicting monthly rainfall. Compared to other methods such as ANN and SANN, the
LSTM show the ability to forecast sequential data per several statistical tests. It was also
found that the LSTM model had very good accuracy in monthly rainfall data. Based on
this combination, the estimated value of correlation coefficient (R), the root mean square
error (RMSE), and the mean absolute error (MAE) were 0.989, 24.150 (mm) and 17.315
(mm), respectively, which is better than ANN and SANN in terms of statistical performance.
Finally, LSTM is a promising model in hydro-meteorological and climatic applications for
estimating more realistic precipitation forecasts.

6.2 Recommendation and further work

This research is to assess the response of hydraulics and salinity intrusion circumstance in
Hau River estuary by the effect of the upstream discharge boundary, climate change related to
changing precipitation, and sea level rise. It is suggested to take into account environmental,
social and economic impact assessments, further study should be considered to assess all
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relevant factors, including hydrology, ecosystems and anthropogenic activities.

The purpose of this study is to create different scenarios using the predicted discharge at
Kratie given by Lauri et al., 2012 without new updated simulations of the upper hydrological
regime for current and future conditions. It is recommended that the discharge scenarios at
Kratie station should be calculated based on simulations for the upper Mekong delta with
different updated climate change scenarios and future hydrology conditions.

There are several kinds of uncertainty in this study consisting of (i) insufficient meteoro-
logical and hydraulic data, (ii) coarse resolution in GCM models and drawback of statistical
downscaling technique, (iii) the disadvantages of bias correction methods (iv) approximation
of the hydrodynamic model and model structure, parametrization (v) future land cover and
land use changes are not taken into account in this study. To solve five main problems as
mentioned, extensive efforts in hydraulic study, climate change and hydrodynamic modelling
should be developed in long term not only in water resources engineering but also in meteo-
rological and climate change study.

Increasing the number of meteorological observation stations, continous measurements
and smaller time steps significantly contribute to the accuracy of the modelling simulations.
It is therefore recommended to extend data collection to include additional meteorological
observation and stream flow data so the model can achieve better predictability. Improving
the forecasted capacity of GCM model with higher horizontal resolution is a crucial task for
the hydrological and meteorological community around the world.

The greatest obstacle in climate change study is the selection and combination of down-
scaling methods and RCP scenarios because this contributes largely uncertainty to model
results. Therefore, it is recommended that the ensemble approach is a priority with a combi-
nation of different climate change scenarios, statistical downscaling methods and various
bias correction techniques to account for all possible climate change effect on hydraulic and
water resource assessments.
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Hamzaçebi, Coşkun (2008). “Improving artificial neural networks’ performance in seasonal
time series forecasting”. In: Information Sciences 178.23, pp. 4550–4559.

Hansen, Donald V (1965). “Gravitational circulation in straits and estuaries”. In: J. mar. Res.
23, pp. 104–122.

Hanssen-Bauer, Inger, Eirik J Førland, JE Haugen, and OE Tveito (2003). “Temperature and
precipitation scenarios for Norway: comparison of results from dynamical and empirical
downscaling”. In: Climate Research 25.1, pp. 15–27.

Hapuarachchi, Hapu Arachchige Prasantha, Kuniyoshi Takeuchi, Maichun Zhou, Anthony
Stuart Kiem, Mikhail Georgievski, Jun Magome, and Hiroshi Ishidaira (2008). “Inves-
tigation of the Mekong River basin hydrology for 1980–2000 using the YHyM”. In:
Hydrological processes 22.9, pp. 1246–1256.

Hasson, Shabeh ul, Salvatore Pascale, Valerio Lucarini, and Jürgen Böhner (2016). “Seasonal
cycle of precipitation over major river basins in South and Southeast Asia: A review of
the CMIP5 climate models data for present climate and future climate projections”. In:
Atmospheric Research 180, pp. 42 –63. ISSN: 0169-8095.

Haykin, Simon (1994). Neural networks, a comprehensive foundation. Tech. rep. Macmilan.
Haylock, Malcolm R, Gavin C Cawley, Colin Harpham, Rob L Wilby, and Clare M Goodess

(2006). “Downscaling heavy precipitation over the United Kingdom: a comparison of
dynamical and statistical methods and their future scenarios”. In: International Journal
of Climatology 26.10, pp. 1397–1415.

Hellström, Cecilia and Deliang Chen (2003). “Statistical downscaling based on dynamically
downscaled predictors: application to monthly precipitation in Sweden”. In: Advances in
Atmospheric Sciences 20.6, pp. 951–958.

Hewitson, BC and RG Crane (2002). “Self-organizing maps: applications to synoptic clima-
tology”. In: Climate Research 22.1, pp. 13–26.

Hewitson, Bruce C (1999). Deriving regional precipitation scenarios from general circulation
models. Water Research Commission.

Hoang, L. P., H. Lauri, M. Kummu, J. Koponen, M. T. H. van Vliet, I. Supit, R. Leemans,
P. Kabat, and F. Ludwig (2016). “Mekong River flow and hydrological extremes under



144 References

climate change”. In: Hydrology and Earth System Sciences 20.7, pp. 3027–3041. DOI:
10.5194/hess-20-3027-2016. URL: https://www.hydrol-earth-syst-sci.net/20/3027/2016/.

Hoanh, Chu Thai, Kittipong Jirayoot, Guillaume Lacombe, Vithet Srinetr, et al. (2010).
Impacts of climate change and development on Mekong flow regimes. First assessment-
2009. Tech. rep. International Water Management Institute.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735–1780.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer feedforward
networks are universal approximators”. In: Neural networks 2.5, pp. 359–366.

Houghton, John Theodore, YDJG Ding, David J Griggs, Maria Noguer, Paul J van der
Linden, Xiaosu Dai, Kathy Maskell, and CA Johnson (2001). Climate change 2001: the
scientific basis. The Press Syndicate of the University of Cambridge.

Hu, Tiesong, Fengyan Wu, and Xiang Zhang (2007). “Rainfall–runoff modeling using
principal component analysis and neural network”. In: Hydrology Research 38.3, pp. 235–
248.

Huang, Yong, Fengyou Wang, Yi Li, and Tijiu Cai (2014). “Multi-model ensemble simulation
and projection in the climate change in the Mekong River Basin. Part I: temperature”. In:
Environmental monitoring and assessment 186.11, pp. 7513–7523.

Hughes, James P and Peter Guttorp (1994). “A class of stochastic models for relating synoptic
atmospheric patterns to regional hydrologic phenomena”. In: Water resources research
30.5, pp. 1535–1546.

Hughes, James P, Peter Guttorp, and Stephen P Charles (1999). “A non-homogeneous hidden
Markov model for precipitation occurrence”. In: Journal of the Royal Statistical Society:
Series C (Applied Statistics) 48.1, pp. 15–30.

Huth, Radan (1999). “Statistical downscaling in central Europe: evaluation of methods and
potential predictors”. In: Climate Research 13.2, pp. 91–101.

Huu-Thoi, Nguyen and Ashim Das Gupta (2001). “Assessment of Water resources and
salinity intrusion in the Mekong Delta”. In: Water international 26.1, pp. 86–95.

Iizumi, Toshichika and Navin Ramankutty (2015). “How do weather and climate influence
cropping area and intensity?” In: Global Food Security 4, pp. 46–50.

Jain, Ashu and Sanaga Srinivasulu (2006). “Integrated approach to model decomposed flow
hydrograph using artificial neural network and conceptual techniques”. In: Journal of
Hydrology 317.3-4, pp. 291–306.

Jeong, Dae-Il and Young-Oh Kim (2005). “Rainfall-runoff models using artificial neural net-
works for ensemble streamflow prediction”. In: Hydrological processes 19.19, pp. 3819–
3835.

Jeong, Dae Il, André St-Hilaire, Taha BMJ Ouarda, and Philippe Gachon (2013). “A multi-site
statistical downscaling model for daily precipitation using global scale GCM precipitation
outputs”. In: International Journal of Climatology 33.10, pp. 2431–2447.

Jeong, DI, A St-Hilaire, TBMJ Ouarda, and P Gachon (2012). “Multisite statistical down-
scaling model for daily precipitation combined by multivariate multiple linear regression
and stochastic weather generator”. In: Climatic Change 114.3-4, pp. 567–591.

Johnston, Robyn and Matti Kummu (2012). “Water resource models in the Mekong Basin: a
review”. In: Water Resources Management 26.2, pp. 429–455.

Jones, PD, M Hulme, and KR Briffa (1993). “A comparison of Lamb circulation types
with an objective classification scheme”. In: International Journal of Climatology 13.6,
pp. 655–663.

https://doi.org/10.5194/hess-20-3027-2016
https://www.hydrol-earth-syst-sci.net/20/3027/2016/


References 145

Karl, Thomas R, Wei-Chyung Wang, Michael E Schlesinger, Richard W Knight, and David
Portman (1990). “A method of relating general circulation model simulated climate
to the observed local climate. Part I: Seasonal statistics”. In: Journal of Climate 3.10,
pp. 1053–1079.

Kaveh, Keivan, Minh Duc Bui, and Peter Rutschmann (2017). “A comparative study of three
different learning algorithms applied to ANFIS for predicting daily suspended sediment
concentration”. In: International Journal of Sediment Research 32.3, pp. 340–350.

Keskinen, M, S Chinvanno, M Kummu, P Nuorteva, A Snidvongs, O Varis, and K Västilä
(2010). “Climate change and water resources in the Lower Mekong River Basin: putting
adaptation into the context”. In: Journal of Water and Climate Change 1.2, pp. 103–117.

Kidson, John W (2000). “An analysis of New Zealand synoptic types and their use in defining
weather regimes”. In: International journal of climatology 20.3, pp. 299–316.

Kidson, John W and Craig S Thompson (1998). “A comparison of statistical and model-based
downscaling techniques for estimating local climate variations”. In: Journal of Climate
11.4, pp. 735–753.

Kilsby, CG, PD Jones, A Burton, AC Ford, HJ Fowler, C Harpham, P James, A Smith, and
RL Wilby (2007). “A daily weather generator for use in climate change studies”. In:
Environmental Modelling & Software 22.12, pp. 1705–1719.

Kilsby, CG, PSP Cowpertwait, PE O’connell, and PD Jones (1998). “Predicting rainfall
statistics in England and Wales using atmospheric circulation variables”. In: International
Journal of Climatology: A Journal of the Royal Meteorological Society 18.5, pp. 523–539.

Kingston, DG, Jonathan R Thompson, and Geoff Kite (2011). “Uncertainty in climate change
projections of discharge for the Mekong River Basin”. In: Hydrology and Earth System
Sciences 15.5, pp. 1459–1471.

Kuo, Albert Y and Bruce J Neilson (1987). “Hypoxia and salinity in Virginia estuaries”. In:
Estuaries 10.4, pp. 277–283.
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