
Empowering Self-Driving Networks
Patrick Kalmbach

1
Johannes Zerwas

1
Péter Babarczi

1
Andreas Blenk

1

Wolfgang Kellerer
1

Stefan Schmid
2

1
Technical University of Munich, Germany

2
University of Vienna, Austria

ABSTRACT
As emerging network technologies and softwareization render net-

works more flexible, the question arises of how to exploit these

flexibilities for optimization. Given the complexity of the involved

network protocols and the context in which networks are operating,

such optimizations are increasingly difficult to perform. An inter-

esting vision in this regard are “self-driving” networks: networks

which measure, analyze and control themselves in an automated

manner, reacting to changes in the environment (e.g., demand),

while exploiting existing flexibilities to optimize themselves.

A fundamental challenge faced by any (self-)optimizing network

concerns the limited knowledge about future changes in the de-

mand and environment in which the network is operating. Indeed,

given that reconfigurations entail resource costs and may take time,

an “optimal” network configuration for the current demand and

environment may not necessarily be optimal also in the near fu-

ture. Thus, it is desirable that (self-)optimizations also prepare the
network for possibly unexpected events.

This paper makes the case for empowering self-driving networks:
empowerment is an information-centric measure which accounts

for how “prepared” a network is and how much flexibility is pre-

served over time. While empowerment has been successfully em-

ployed in other domains such as robotics, we are not aware of any

applications in networking. As a case study for the use of empow-

erment in networks, we consider self-driving networks offering

topological flexibilities, i.e., reconfigurable edges.
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1 INTRODUCTION
The increasing complexity of communication networks, their con-

tinuously changing requirements (e.g., in terms of demands and

workloads), and their complex objective functions, render their

management in real time almost impossible for human operators

with today’s tools. Indeed, there is an increasing consensus that

network operations should be supported by data-driven, machine-

learning-based models revolving around high-level goals and a

holistic view of the underlying network [5]. An increased automa-

tion bears the potential to not only simplify network operations but

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SelfDN 2018, August 24, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5914-6/18/08. . . $15.00

https://doi.org/10.1145/3229584.3229587

Solutions

(a) Simple.

Manageable
Situations

(b) Robust.

Additional
preparation

(c) Empowerment.

Figure 1: Comparison of optimization approaches with re-
spect to the number of situations they can handle. Simple
is the optimization for specific inputs. Robust corresponds
to robust or stochastic optimization. Empowerment is the
envisioned optimization through an autonomous agent.

also enable more fine-grained optimizations, fully leveraging the

available network data rather than relying on predefined models.

A vision emerges of fully self-driving networks which measure,

analyze and control themselves continuously.

Another major motivation for self-driving networks comes from

the increasing flexibilities offered in modern communication net-

works. Indeed, networks have become more and more software-

defined and reconfigurable. However, exploiting such flexibilities is

non-trivial. Even with state-of-the-art machine learning algorithms

and utilizing all the available information about the current network

state and demands, any algorithm optimizing the network is faced

with the challenge that there is an inherent uncertainty regarding

the future: there may be an unexpected spike in the demand, an

edge failure or any other unexpected behavior of a component

internal or external to the network. Moreover, reconfigurations

typically come at a cost, e.g., wrt. resource consumption or time

(and hence service disruption), even for the most flexible and recon-

figurable self-driving network. Accordingly, in addition to adjusting

optimally to the current situation, a self-driving network should

also be prepared for the requirements that may come up in the near

future. That is, networks should be optimized robustly, accounting
for present and possible future demands.

This paper initiates the discussion of how to optimize (self-

driving) communication networks, and keep open as many options

as possible. Indeed, while the need for this additional “prepared-

ness” may seem intuitive and known on an anecdotal level, little

is known on how to actually prepare a self-driving network and

enhance it with the intelligence it will need to perform well also in

the future. Worse, today, we even lack good definitions and models

to capture such properties.

In order to fill this gap, in this paper we establish a connection

to an intriguing notion of preparedness, so far only used and suc-

cessfully applied in other domains, such as robotics. In particular,

we make the case for applying the framework of empowerment [13]

https://doi.org/10.1145/3229584.3229587
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to communication networks. Empowerment is an information-

theoretic measure to quantify the influence of an “agent” (or actor)

on its environment.

OurContributions. In this position paper, wemake the case for in-

troducing empowerment in future self-driving networks: networks

for which specifying complex objective functions is undesirable and

cumbersome and which should not only optimize for the current

demand but also be prepared for upcoming changes. We describe

the challenges involved in enhancing communication networks

with empowerment and present a concrete proposal based on a

basic case study revolving around emerging reconfigurable net-

work designs. Our preliminary experiments demonstrate that using

empowerment as a driver for action selection, high reconfiguration

costs and potentially harmful situations may be avoided.

Novelty and Related Work. Our approach radically differs from

classical approaches which use utility functions to guide optimiza-

tions and suffer from the drawback of having to design and tweak

the functions on a case by case basis. The concept of empowerment

itself was introduced in [13], and studied by many authors subse-

quently, e.g., [1, 18, 20]. Successful examples of empowerment to

control tasks are, e.g., the inverted pendulum [9], the control of a

bipedal robot [10] or the control of a human follower [15]. Empow-

erment can be used as a task-independent, intrinsic motivation to

restructure the environment: in our case the network. In general,

the need and benefits of being “flexible” [11] or “prepared” is an

ever-green topic in networking research, and one of the goals in

Robust Optimization (RO) and Stochastic Optimization (SO) [3].

RO and SO can handle parameter uncertainty and are thus not

sensitive to perturbations in the input parameters, as opposed to

deterministic optimization methods. One prominent example of

RO in networking is oblivious routing [2], where routes need to

be defined without full knowledge of the traffic matrix, or resilient

routing where edges themselves are uncertain [14, 21].

The benefit we see in empowerment compared to RO and SO is

the ability of agents to learn empowerment from data, and thus do

not need a comprehensive mathematical model of the system, i.e.,

the network. The idea is to enable the network to learn controlling

itself through experience. We see empowerment as a possibility

to drive a system that is too complex to model (as is the case for

today’s networks [5]) towards a state of “preparedness“, maximizing

situations the system can cope with.

To the best of our knowledge, we are the first to consider em-

powerment in the context of communication networks, motivated

by the advent of self-driving networks.

2 EMPOWERMENT IN NETWORKS
In this section, we introduce the concept of empowerment, discuss its
application in communication networks, and initiate the discussion

of a case study of a reconfigurable network which needs to serve

routing requests.

2.1 General Concepts
Empowerment is a concept from information theory. It is motivated

by the observation that living organisms strive for states that give

them maximum control or influence over their environment: Ev-

erything else being equal, states are preferable which (1) keep as

many options open as possible, or (2) in which actions have the

largest influence on the direct environment [13, 19]. The concept

of empowerment is an attempt to formalize and quantify the influ-

ence an agent has on its environment. This contrasts with current

approaches in communication systems, such as RO, SO and simple

optimization (which does not include parameter uncertainty).

Fig. 1 illustrates this difference abstractly. The top layer repre-

sents an initial system state that should be adapted. The middle

layer corresponds to solutions, and the bottom layer to situations

that can be addressed by the system, e.g., a different demand as

expected or hardware failures. Fig. 1a shows a simple optimization

with specified input parameters. While the solution might be opti-

mal for this specific input, it might restrict the number of situations

that can be handled. RO and SO address this problem and model

uncertainty in the input. Therefore, more situations can potentially

be handled, as illustrated in Fig. 1b. However, the required mathe-

matical model necessarily makes assumptions and abstractions of

the system, which might impact the number of manageable situ-

ations [3]. Empowerment, in contrast, is based on data obtained

from the system utilizing it to restructure the system towards states

that maximize the number of options, leading to a potentially larger

number of manageable situations, as illustrated in Fig. 1c.

A key aspect of empowerment is the agent’s embodiment: The
sensomotoric capabilities of an agent [18]. The interplay of agent

and environment can be represented as a perception-action loop,

where the agent influences the environment through its actua-

tors, and receives a perception of the resulting environmental state

through its sensor [18]. In networking, actuators could, e.g., change

the topology or adapt routing weights, while sensors could be Qual-

ity of Service measures or the number of routed flows.

Sensors and actuators are thereby connected through the envi-

ronment. An agent chooses an action for the next time step based

on the sensory information of the current time step. The action

influences the state of the environment, which in turn affects the

sensor input. The cycle then repeats itself. This perception-action

loop can be modeled formally through Random Variables (RVs):

• the sensor S taking values s ∈ S,

• the actuator A taking values a ∈ A,

• the rest of the environment R taking values r ∈ R,

which allows tomodel noise. The relationship between S ,A andR,
i.e., the perception-action loop, can be expressed as a time-unrolled

Causal Bayesian Network, where At depends on St , Rt on At−1,
and St on Rt . The perception-action loop can be understood as a

probabilistic channel, and empowerment is defined as the channel

capacity between the agent’s actuator At and sensor St+1:

E := C(At → St+1) = max

p(at )
I (St+1,At ), (1)

where I (St+1,At ) is the mutual information between two random

variables [19]:

I (St+1,A) :=
∑
s ∈S

p(s)
∑
a∈A

p(a | s) logp(a | s) −
∑
s ∈S

p(s) logp(s).

(2)

The first term corresponds to the conditional entropy, and the sec-

ond term to the standard Shannon entropy. The Shannon entropy

measures the uncertainty of a random variable. The conditional
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entropy measures the uncertainty in St+1 once A is known. Mu-

tual information then measures the average information one can

gain about St+1 by observing A [19]. Thus, empowerment can be

understood as a measure of how much influence an agent has on

its environment given its actuator and sensor. If, e.g., all actions

result in the same states, then the agent has no empowerment. The

same is true if the actions have no perceivable influence on the

environment, e.g., when the environment changes randomly. Thus,

the effect of the actuators has to be perceivable by the sensor.

From the formal definition of empowerment in Eq. (2) we see that

the agent needs a causal model of how its action At in the current

state of the environment Rt influences the sensor reading St+1. A
model is needed that tells the agent how its actions influence future

readings for the actual states of the world. Such a causal model can

be obtained efficiently from observations [10].

It is important to note that empowerment represents the poten-
tial information flow. The agent calculates how it could affect the

environment, and does not materialize its potential [20]. A way

to act upon empowerment could be to greedily select an action

resulting in the state with highest empowerment.

Empowerment provides a number of desirable properties [18]:

• It is agent-centric:Only information accessible to the agent

is used, i.e., samples from the perception action loop (sensi-

motoric data).

• It features locality: No global knowledge of the world is

necessary.

• It is well-defined and computable: Due to the channel

formulation, standard information-theoretic quantities and

established methods can be used for its calculation

• It is semantically unbiased: No external reward system is

introduced.

Especially the last point sets empowerment apart from traditional

Reinforcement Learning (RL) approaches [16, 17] and mathematical

optimization [2, 14, 21]. In RL and optimization, the designer has to

define a specific reward signal or objective (e.g., related to Quality

of Service or Quality of Experience measures). Defining a specific

objective function is often non-trivial. The objective might be multi-

dimensional and potentially depends on many aspects (e.g., on

routing latency, resilience, etc.). In contrast, empowerment depends

only on the agent’s embodiment and the environment. This makes

empowerment easily applicable to self-driving networks since, no

extensive world (or network) model is required, and empowerment

can be used to maximize future options. Specific measures like

latency or throughput might implicitly be optimized as well [13].

2.2 Application: Reconfigurable Networks
We are concerned with the question of how to leverage empow-

erment in the context of (self-driving) communication networks.

We specify the different components: the environment, actions and

sensors, for a specific application in networking: routing in recon-
figurable networks. We choose this case study because it is rather

general (allowing not only to select and adapt routing requests

but also edges) and challenging; hence, it shows the potential and

limitations of empowerment. Moreover, reconfigurable networks

are an emerging and not well-understood paradigm [4, 6, 7].

The Context.We model the network as a capacitated graph G =
(N , E,b, c), where the function b : E → N gives the capacity of an

edge in routing units, and the function c : E → R the cost of using

an edge. We also have a set of possible routing requests (demand)

D. We model a request as a source-destination pair given by the

triple (s, t ,d), where s ∈ N is the source, t ∈ N the destination and

d ∈ N the requested capacity (in routing units). A subset D ′ ⊆ D

is eventually revealed, and must then be served by the network.

We consider reconfigurable networks whose edges can be ad-

justed, e.g., using free-space optics in datacenters [6, 7] or recon-

figurable optical switches in Wide-Area Networks [4, 8]. Similar

to [6] and [8], we allow the formation of multiple edges between

any pair of nodes, assume equal capacity on all edges, and restrict

the maximum number of edges incident to a node v to be at most k .
Reconfigurable topologies are helpful in the face of changing traffic

patterns, since they allow the network to adapt to a new pattern,

and thus mitigate e.g., congestion [6] or increase throughput [8].

The Problem. The design of a topology that can serve as many

requests with as few reconfigurations as possible. We impose a

maximum number of reconfigurations that can be performed due to

the effort of reconfigurations. The topology should then be designed

such that (1) many requests can immediately be served, and (2)

reconfigurable resources can be used to maximum effect (a similar

problem is considered in [6]).

The Solution. Empowerment presents itself naturally as a solution

to this problem. Here an agent uses empowerment to restructure the

network, consequently actions correspond to the configuration of

edges, and the sensor relates to routed flows or packets. Intuitively,

an agent has high empowerment if the edges it can reconfigure

result in many different sets of routed requests.

The Challenge. The actuators and sensors for the agent need to

be formulated with care. If, for example, the changes made in the

environment are not perceivable with the sensor, then the agent

has empowerment 0 (by Eq. (2)) and the approach is bound to fail.

If the actuators and sensors are too complex, i.e., have high dimen-

sionality, then calculation of empowerment can be computationally

expensive since the perception-action loop needs to be sampled

many times, which can be costly. The calculation of empowerment

must be fast to allow the agent to react quickly.

The Environment. Includes the graph G as well as the routed

requests. Thus, for a given demand D, the environment is defined

as R := {(Dr , E
′) | Dr ∈ 2

D , E ′ ∈ 2
N×N}, where Dr is the set of

routed requests and E ′
the set of realized edges.

The Agent is equipped with a set of actuators and one sensor,

which together form its embodiment. We consider one single

agent that influences the environment (edges and routed requests)

through its actuators and makes observations through its sensors.

The Actuators: To achieve a large empowerment, the agent’s

actuators must be able to have an impact on the environment. We

define five actuators:

• EdgePlacer (EP) establishes an arbitrary edge in the network,
taking values AEP := N ×N . If an existing edge is chosen,

the placement of the edge corresponds to an increase of the

capacity on that edge.

• EdgeRemover (ER) removes an arbitrary existing edge. It

takes values AER := {e | e ∈ E ′}.
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• RequestPlacer (RP) chooses an arbitrary request fromD that

is not yet routed,ARP := D/Dr , and tries to find a shortest

path in the graph. On success, the demanded resources are

allocated.

• RequestRemover (RR) removes an arbitrary routed request

from the graph, ARR := Dr .

• Idler corresponds to “do nothing”; this actuator does not
change the environment.

The Sensors: Similar to the actuators, if empowerment is to be

meaningful, the sensors must relate to the environment. We define

the following two sensors as functions of an environment state

r ∈ R and a positive number l ∈ R+:

• ExactReqests (EQR): EQR(r , l) := Dr if | Dr |> l else ∅
returns the set of currently realized requests, if the number

of realized requests is larger than a specific value. Else, the

empty set is returned. The size of S grows exponential with

the maximum number of requests that can be routed.

• NumReqests (NQR): NQR(r , l) :=| Dr | if | Dr |>

l else 0, returns the number of currently realized requests, if

that number is larger than l . Else zero is returned. The size

of S grows linear with the maximum number of requests

that can be routed.

The intuition behind the sensor threshold l is to help the agent

to cope with the combinatorial complexity of the problem. The

method to approximate empowerment of a state in the environment,

introduced in the next section, is limited and has difficulties when

S is large. Threshold adaptation helps the agent to cope with the

large space of sensor readings, as we will show later.

A sensor reading is obtained by sequentially performing shortest

path routing for all requests from demand D. To mitigate the effect

of request ordering, we take the sensor reading corresponding to the

largest amount of routed requests out of ten random permutations

or subsets of D.

We examine four embodiments in our evaluation: ExactBuilder

(EB), SimpleBuilder (SB), ExactController (EC) and SimpleCon-

troller (SC) with the following actions/sensor:

• EB := ({EP, ER, Idler},EQR)
• SB := ({EP, ER, Idler},NQR)
• EC := ({EP, ER, Idler,RP,RR},EQR)
• SC := ({EP, ER, Idler,RP,RR},NQR)

Exact indicates that the embodiment uses the EQR sensor and

Simple the NQR one. Builder indicates that the agent has only con-
trol over the graph of the network, i.e., can place and remove edges.

In contrast, the Controller embodiment has additionally control

over the routed requests. Builder embodiments can influence their

corresponding sensor only indirectly by placing or removing edges

and thus enabling or disabling requests. The Controller embodi-

ments have direct influence on their sensor due to their ability of

adding/removing requests.

3 PRELIMINARY EXPERIMENTS
In order to shed first light on the potential benefits but also limi-

tations of using empowerment in networks, we conducted a case

study of a self-driving networkwhich adjusts to the routing requests

it has to serve. We consider a simple discrete system where an agent

chooses, at each time step, the action maximizing empowerment.

3.1 Algorithms
One of the main objectives considered in literature is to maximize

the number of accepted and routed requests in the network [6, 8].

Thus, for comparison, we introduce an Integer-Linear-Program

(ILP) that serves as an optimal baseline. Since ILPs are computation-

ally expensive, we introduce a Simulated Annealing (SA) heuristic.

Due to space we keep the algorithm descriptions short, but will

release our source code to aid reproducibility
1
.

Exact Baseline (ILP). The problem we are considering can be

modeled as a robust optimization problem. Let D be the set of all

possible demands, and f : D,N × N → D be a function which,

given a set of requests and a specific configuration of edges, returns

all requests that can be routed. Given a set DRO ⊆ 2
D

of requests

that should be served, the robust objective is then:

max

D′∈DRO

(
min

E∈2N×N

��D ′/f (D ′, E)
��) , (3)

subject to additional constraints. We assume DRO := 2
D
, then

optimizing Eq. (3) trivially reduces to:

min

E∈2N×N
|D/f (D, E)| . (4)

Given this fact, our goal is then to compute a network which

maximizes the number of routed requests, while minimizing the

bandwidth cost as a secondary objective:

min

∑
h∈D

∑
e ∈E

c(e) · xh (e) − γ
∑
h∈D

r (h), (5)

where r (h) is a binary variable, which is one if demand h is routed.

xh (e) is a binary variable which is one if demand h is routed along

edge e , and γ is a large positive constant, e.g., γ >
∑
c(e).

For the sake of modeling, we extend the undirected graphG with

unit cost and zero capacity (b(e) = 0) edges to a full-mesh graphGM
.

InGM
every edge is replaced by two anti-parallel arcs with identical

cost and capacity values with its corresponding (undirected) edge.

The following constraints are required:

∀h ∈ D,∀i ∈ N :∑
j ∈N:(i, j)∈E

xh (i, j) −
∑

j ∈N:(j,i)∈E

xh (j, i) =


r (h) , if i = s

−r (h) , if i = t
0 , else

, (6)

∀(i, j) ∈ E :

∑
h∈D

dh [xh (i, j) + xh (j, i)] ≤ p(i, j), (7)

∀(i, j) ∈ E : p(i, j) = p(j, i), (8)

∀i ∈ N :

∑
j ∈V :(i, j)∈E

p(i, j) − b(i, j)

c(i, j)
≤ u, (9)∑

e ∈E

[p(e) − b(e)] ≤ 2I , (10)∑
e ∈E

|p(e) − b(e)| ≤ 2B. (11)

Eq. (6) formulates the flow conservation for every routed demand.

The additionally deployed capacity p(e) is set in Eq. (7)-(8) for every

1
https://github.com/tum-lkn/empowernets
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undirected edge in the original graph G by summing up the flow

values on its corresponding directed arcs. The total number of

reconfigurable edges per node is bounded in Eq. (9), whereu = kb(e)
with e ∈ E is a multiple of the bandwidth, which is the same for all

edges. In Eq. (10)-(11) the capacity increase I and reconfigurations

B are bounded (multiplied by two because we have to perform them

on both bi-directional arcs), respectively.

Simulated Annealing (SA). Is a heuristic approximation method

motivated by the Metropolis-Hastings algorithm [12]. We use it

to place and move edges in an initial topology in such a way that

the number of routed flows is maximized. The algorithm works

as follows: Starting from an initial solution (any set of edges), it

randomly decides to place or remove an edge. The probability of

the two events depends on the number of edges that can still be

deployed. We will refer to this number as inventory. If the inventory

is empty an edge is taken with high probability and vice verca. In

case of an edge placement the algorithm filters out all those nodes

in the network that already have a maximum degree k . The starting
node of the edge is sampled with probability proportional to the

number of request sources and destinations located at each node.

Only nodes with a degree smaller than the limit are considered. A

target node is then drawn uniformly at random from all requests

that have the source node of the edge as source. In case of an edge

removal any existing edge is removed uniformly at random.

Empowerment Algorithm. We will focus on a discrete and de-

terministic world model: We assume state transitions are determin-

istic and sensor readings, as well as actions are discrete. In this

case Eq. (2) reduces to the logarithm of perceivable sensor readings

given an initial state [20].

We also note that the characteristics of the agent-environment

interaction, that is, the effect of placing or removing an edge, might

become distinguishable only after several steps. Accordingly, we

consider n-step empowerment: We consider not a single action At
but a sequence of variables for then next time-steps, (At , . . . ,At+n ),
and consider only the sensor reading St+n+1 [19].

With increasing sequence length becomes the computation of

exact empowerment values quickly intractable, since the evalua-

tion of | A |n action sequences would be required. Therefore, we

use sparse sampling [20] to approximate n-step empowerment. In

sparse sampling m action sequences of length n are sampled at

random, and them sensor readings St+n+1 are used to approximate

empowerment. Sparse sampling works under the assumption that

the number of all perceivable sensor readings | S | is small com-

pared to the number of ways to obtain them. This assumption is

not met by the EQR sensor, during the evaluation we will show

how filter adaptation can mitigate this limitation.

Since empowerment represents how the agent could potentially

affect the environment, we need a way to actually choose an action.

We consider here a greedy policy that chooses the action resulting

in the state withmaximumn-step empowerment. To select an action

we thus have to performm | A | action sequences once, and can

store the result in a table for later reuse. Empowerment at a specific

state is computed using the actual world model, that is the agent

knows exactly how the world will develop.
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Figure 2: Accepted requests in percent relative to the ILP for
sequence length n = 5 and n = 15. A positive value indicates
an improvement, a negative value a degradation compared
to the ILP. Error bars shows the 95% confidence interval.

3.2 Evaluation
We investigate how greedy optimization of empowerment relates

to solutions from ILP and SA, and the effect of threshold adaptation.

We consider an undirected graph with 30 nodes. Each node has at

most k = 3 reconfigurable edges, resulting in a maximum number

of 45 edges. Edges have unit capacity and cost: ∀e ∈ E : b(e) =
1, c(e) = 1, and we consider as potential requests D all s-t pairs
with unit demand, i.e., D := {(s, t , 1) | (s, t) ∈ N × N ∧ s , t},
resulting in | D |= 1

2
| N | (| N | −1) = 435 requests.

All agent embodiments start from an empty network, and maxi-

mize n-step empowerment for tmax = max(500, t̂ + 100) time steps,

where t̂ is the time step in which the most recent best empower-

ment value was obtained. In this way early stopping is avoided,

i.e., stopping the agent even though there might be room for im-

provement. In addition, we vary the sensor threshold l . In one set of

experiments we keep l = 0 constant, in another set of experiments

the agent dynamically adapts the threshold by setting it to the

average number of accepted requests observed over the executed

action sequences. Threshold adaptation is abbreviated with an F ,
i.e., ECF indicates the usage of the ExactController-Embodiment,

where the sensor threshold l is dynamically adapted. ILP and SA

maximize the number of accepted requests out of D. We give the

ILP an infinite action budget for this purpose.

After obtaining topologies from agent embodiments, ILP and SA,

we evaluate the ”preparedness” of these topologies by drawing 100

demands D ′
1
, . . . ,D ′

100
having 45 requests each without replace-

ment uniformly at random fromD. We then use the ILP with action

budgets of B ∈ {5, 15} to get the maximum number of routable

requests for each D ′
i for each topology. The action budget B and

sequence length n coincide, e.g., for B = 5 we consider topologies

created from agents with n = 5.

Comparing Preparedness. Fig. 2 shows the difference in accepted

requests as percent relative to the ILP. A simple greedy policy for

empowerment maximization can indeed result in topologies, which

are able to accept more requests. Fig.2a shows that for n = 5 the

topology designed by the EB is able to accept 4 % more requests on

average compared to the ILP, and 5 %more forn = 15. Embodiments

with the EQR sensor always outperform the ILP. In contrast, Fig. 2a

shows that embodiments with the NQR sensor always perform

worse for n = 5, while for n = 15 (Fig. 2b) SB and SC outperform

the ILP. All embodiments always perform at least as good as SA.
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Figure 3: Chosen actions and empowerment for the EB with
sequence length n = 10.
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Figure 4: Number of routed requests and average path length
for EC with and without filtering, with n = 10.

This analysis shows that depending on the embodiment

empowerment-driven agents are indeed able to structure a network

towards the specific purpose of accepting varying future demands.

Chosen Actions. Do agents show a behavior in the choice of ac-

tions? Fig. 3 shows how often the EB and EBF chooses an action

as cumulative sum over time, averaged across ten executions. The

shaded area corresponds to one standard deviation. The results

are exemplary and similar for the respective actuators across all

embodiments. The agent chose actions with purpose. Fig. 3a and 3b

show that the corresponding agent prefers the placement of edges

during the first 100 time steps. After that, the curve for the Idler
actuator increases, indicating that the agents actively do nothing.

This behavior is more pronounced for the EB with threshold adap-

tation. The curves for EP and ER become parallel, indicating that

they are sampled in equal measure due to random tie breaks.

Thus, the agent displays purpose behind the choice of actions.

In the beginning edge placement increases empowerment, since

requests can be routed, resulting in different sensor readings. The

EBF requires an increasing number of routed requests to obtain new

readings due to threshold adaptation, and is thus more eager to

place edges. After a certain time, empowerment cannot be improved

any further by placing edges, and the agents idle or take actions at

random due to tie breaks. This behavior is similar across all embod-

iments. Fig. 4b shows a prototypical development of empowerment

for the EC, where empowerment strongly increases during the first

100 time steps and then flattens out.

Sensor Adaptation and Request Selection. To understand how

threshold adaptation impacts selection of routed requests and topol-

ogy design, we investigate the average path length and number

of routed requests in the graph for the EC and ECF with sequence

lengthn = 10.We chose the average path length because it indicates

how well the requests picked by EC and ECF utilize the bandwidth

resources. Fig. 4a plots the average path length against the number

of routed requests, and shows that threshold adaptation leads to

an increase in routed requests, and a decrease in the path length.

Thus the ECF learned to place edges and choose requests such that

requests are routed with low resource footprint.

Filter adaptation thereby addresses two issues: (1) The indiffer-

ence of agents wrt. the number of routed requests, and (2) limits of

sparse sampling used to approximaten-step empowerment. The em-

powerment for the EC is 9.88 corresponding to 942 sensor readings,

which is close to the possible 1 000 readings of sparse sampling.

Increasing the number of action sequencesm can in theory counter-

act this problem. However, due to the indifference of empowerment

with respect to the size of routed request sets a very large number of

sequences would be needed. An agent maximizing empowerment

is not concerned with increasing the number of requests in the

network if this does not result in more readings. Due to the agents’

indifference, the number of possible readings is doubled with each

request that can be routed, i.e, grows exponentially.

Sensor adaptation guides the agent toward a specific region of the

state space by shaping the empowerment landscape. Fig. 4b depicts

the development of empowerment as observed by the agent for

the EC and ECF. Fig. 4b shows that empowerment reaches a plateau

close to 10 after 100 time steps for the EC. In contrast, empowerment

decreases after an initial surge for the ECF, fluctuates, and always

stays well below the curve of the EC.
The fluctuations are caused by threshold adaptation, which re-

duces the number of sensor readings, resulting in lower estimated

n-step empowerment. This reduction helps the agent to overcome

the limitations of sparse sampling and actually increases its empow-

erment further: If | Dr |= 10 then the agent can obtain 2
10

different

readings (the threshold of sparse sampling) within a time horizon

of n = 1. If | Dr |= 20 then 2
20 >> 2

5
readings are possible, an

effect that becomes more pronounced with increasing n. Since we
are using the average over the size of observed routed requests, the

threshold will saturate and not increase endlessly. Threshold adap-

tation thus enables the usage of sparse-sampling and the benefit of

reduced computational effort in a large sensor space.

4 CONCLUSION
We understand our work as a first step in the application of empow-

erment to self-driving networks and believe that empowerment

opens many interesting directions for future research. So far we

have focused on a single and simplistic case study only. We plan

to extend this case study towards realistic scenarios and additional

aspects, utilizing real world demands and networks. For instance,

we think that it would be interesting to use empowerment in faulty

networks, where e.g., links or middle-boxes might fail, and to inves-

tigate the impact empowerment maximization has on traditional

Quality of Service and Quality of Experience measures.
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