
TU München

Fakultät für Informatik

Machine Learning for Connectomics

Benedikt Sebastian Staffler

Vollständiger Abdruck der von der promotionsführenden Einrichtung Fakultät für Informatik der

Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Julien Gagneur

Prüfer der Dissertation:

1. Prof. Dr. Patrick van der Smagt

2. Prof. Dr. Bjoern Menze

3. Prof. Dr. Moritz Helmstaedter

Die Dissertation wurde am 01.08.2018 bei der Technischen Universität München eingereicht und

durch die Fakultät für Informatik am 23.11.2018 angenommen.

Abstract

Neuroscientific research has gained considerable insights into brain function over the past decades.

However, it has not been possible yet to extract the fundamental principles of information pro-

cessing in the brain to an extent that the capabilities of the brain can be artificially reproduced.

While the properties of single nerve cells and their modes of signal transmission have been stud-

ied in great detail, the knowledge about the neural network formed by interconnected nerve cells

is still limited for most species and brain areas. Consequently, substantial effort is currently be-

ing made to acquire and analyze wiring diagrams obtained from neural networks of organisms.

Modern 3-dimensional (3D) electron microscopy allows to image large volumes of brain tissue

at nanometer-scale resolution. The reconstruction of neural networks from the 3D image data re-

quires to follow the processes of each nerve cell and to detect the locations of signal transmission

between nerve cells (these signal transmission sites are called synapses). For all but the smallest

neural networks manual reconstruction is prohibitively time consuming making the development

of algorithms for automated reconstruction necessary.

In this thesis, algorithms for automated synapse detection and volume segmentation for 3D elec-

tron microscopy data were developed and applied for circuit reconstruction from a dataset imaged

by serial block-face electron microscopy.

In the first part of this thesis, a novel synapse detection method for chemical synapses (SynEM) is

proposed, which formulates the task of synapse detection as a classification of interfaces between

neuronal processes. For classification, a hand-designed feature representation of interfaces is used

that explicitly incorporates the local pre- and postsynaptic process. Based on the performance of

single synapse detection, precision and recall rates above 97% were estimated for binary neuron-

to-neuron connections.

In the second part of this thesis, deep learning approaches for image processing were used to

further improve the performance of SynEM. First, the hand-designed features of SynEM were re-

placed with features learned by fully convolutional networks, which improved performance over

the hand-designed features. In addition, the generalization performance of different classifiers

to a new dataset without retraining was evaluated. Second, the volume segmentation underlying

the SynEM interface definition was improved using fully convolutional networks for membrane

prediction.

In the last part of this thesis, SynEM was used in combination with manual proofreading to detect

all synapses onto the dendritic tree of a spiny stellate cell in layer 4 of mouse somatosensory

cortex. The distribution of synapse sizes, which are correlated to the synaptic weights, is shown

to be well described by a lognormal distribution. Furthermore, the distances of synapses from the

soma are examined.

The methods presented in this thesis provide critical advances towards a high-throughput recon-

struction of connectomes from 3D electron microscopy data. The improvements are especially

relevant to make the dense reconstruction of all processes and their connections in large-scale 3D

datasets feasible.

ii

Zusammenfassung

Die neurowissenschaftliche Forschung der letzten Jahrzehnte konnte beträchtliche Erkenntnisse

über die Funktionsweise des Gehirns erzielen. Trotzdem war es bisher nicht möglich, die fun-

damentalen Prinzipien der Informationsverarbeitung des Gehirns in einem Ausmaß abzuleiten,

welches es möglich macht, die Leistungsfähigkeit des Gehirns künstlich zu reproduzieren. Wäh-

rend die Eigenschaften einzelner Nervenzellen und deren Mittel zur Signalübermittlung bereits in

vielen Details studiert wurden, ist das Wissen über das neuronale Netzwerk aus verbundenen Ner-

venzellen in den meisten Spezies und Gehirnregionen noch sehr begrenzt. Infolgedessen werden

derzeit beträchtliche Anstrengungen zur Messung und Analyse des Netzwerkes aus Nervenzellen

im Nervensystem von Organismen unternommen. Dazu werden dreidimensionale (3D) Bilderse-

rien von Nervengewebe im Nanometerbereich mittels Elektronenmikroskopie aufgenommen. Um

die neuronalen Netzwerke aus den Bilddaten zu rekonstruieren müssen die Fortsätze der Nerven-

zellen kartographiert und deren Verbindungsstellen, die Synapsen, detektiert werden. Die manu-

elle Rekonstruktion der Bilddaten ist so aufwendig, dass damit nur kleine Netzwerke analysiert

werden können, weshalb automatisierte Methoden für die Analyse großer Datensätze benötigt

werden.

In dieser Dissertation werden Methoden für die automatische Detektion von Synapsen und zur Vo-

lumensegmentierung von 3D Elektronenmikroskopiedaten entwickelt und für die Analyse eines

Datensatzes angewandt, der mittels serial block-face electron microscopy aufgenommen wurde.

Im ersten Teil der Dissertation wird eine neue Methode zur automatischen Detektion chemischer

Synapsen (SynEM) vorgestellt. In SynEM wird die Detektion von Synapsen als Klassifikation

von Berührungsflächen zwischen neuronalen Fortsätzen formuliert. Die Berührungsflächen wur-

den durch manuell erstellte Merkmale beschrieben, welche explizit die pre- und postsynaptischen

Fortsätze mit einbeziehen. Basierend auf den Fehlerraten der Detektion einzelner Synapsen wur-

den Fehlerraten für das korrekte Auffinden von synaptisch verbundenen Nervenzellen von weni-

ger als 3% abgeschätzt.

Im zweiten Teil der Dissertation werden künstliche neuronale Netzwerke zur Verbesserung der

Leistung von SynEM verwendet. Als erstes wurden die manuell erstellen Merkmale von Berüh-

rungsflächen durch Merkmale ersetzt, welche von Fully Convolutional Networks gelernt wurden,

was zu einer verbesserten Leistung führte. Zusätzlich wurde die Generalisierbarkeit verschiedener

Klassifizierer bestimmt, indem sie ohne erneutes Training auf einem neuen Datensatz ausgewer-

tet wurden. Als zweites wurde die Volumensegmentierung, welche die Grundlage zur Berechnung

der Berührungsflächen in SynEM darstellt, verbessert, indem Fully Convolutional Networks zur

Detektion von Zellmembranen verwendet wurden.

Im letzten Teil der Dissertation wird SynEM in Kombination mit manuellem Korrekturlesen ver-

wendet, um alle Synapsen zu detektieren, welche die Dendriten einer Sternzelle in Schicht 4 des

primären somatosensorischen Kortex einer Maus innervieren. Es wird gezeigt, dass sich die Ver-

teilung der Größen von Synapsen, welche zu den Stärken von Synapsen korreliert sind, durch

eine Logarithmische Normalverteilung beschreiben lässt. Zudem wird die Position von Synapsen

entlang der Dendriten untersucht.

iii

Die Methoden, welche in dieser Dissertation dargelegt werden, stellen wichtige Fortschritte auf

dem Weg zur automatisierten Rekonstruktion von Konnektomen aus 3D Elektronenmikroskopie-

daten dar. Die Verbesserungen sind insbesondere für die dichte Analyse aller Nervenzellen und

deren Verbindungen in großen Datensätzen relevant, welche dadurch erst realisierbar werden.

iv

Acknowledgements

First and foremost, I would like to thank Moritz Helmstaedter for conceiving and supervising

the project as well as Patrick van der Smagt for supervision and excellent support and advice.

Furthermore, I would like to thank Tobias Rose for additional supervision.

I thank Manuel Berning, Kevin Boergens and Anjali Gour for the successful collaboration, many

discussions and comments on the manuscript.

I thank my colleagues Emmanuel Klinger, Alessandro Motta, Sahil Loomba, Philipp Bastians,

Jakob Straehle, Florian Drawitsch, Ali Karimi, Yungfeng Hua, Philip Laserstein, Martin Schmidt,

Christian Schramm, Thomas Kipf, Meike Schurr, Marcel Beining, Kun Song and Helene Schmidt

from the Max Planck Institute for Brain Research as well as my colleagues Agneta Gustus, Grady

Jensen, Sebastian Urban, Justin Bayer, Christian Osendorfer, Markus Kühne, Nutan Chen, Max-

imilian Karl and Maximilian Sölch from the group of biomimetic robotics and machine learning

at the Technical University of Munich for many fruitful discussions, comments on manuscripts

and a constructive working atmosphere.

Finally, I would like to thank my family and in particular my girlfriend Jenny Pfeiffer for all

support and patience during the work on this thesis.

v

Contents

Abstract .. ii

Zusammenfassung .. iii

Acknowledgements ... v

1 Introduction... 1
1.1 Neurons and Neuronal Networks... 1

1.2 The Connectomics Reconstruction Challenge ... 2

1.3 Insights from Structural Data .. 5

1.4 Research Questions and Contributions ... 6

2 Background ... 8
2.1 Structural Neurobiology and Connectomics.. 8

2.1.1 Introduction to Neural Circuits .. 8

2.1.2 Volume Electron Microscopy .. 11

2.1.3 The Connectome.. 13

2.2 Computer Vision for Connectomics ... 14

2.2.1 Digital Images ... 14

2.2.2 Image Transformations ... 15

2.2.3 Image Segmentation... 17

2.3 Machine Learning ... 18

2.3.1 Supervised Learning .. 18

2.3.2 Decision Trees... 20

2.3.3 Ensemble Methods and Boosting ... 21

2.3.4 Artificial Neural Networks and Deep Learning .. 22

2.3.5 Convolutional Neural Networks... 23

2.3.6 Performance Evaluation Metrics .. 25

3 Automated Synapse Detection for EM-based Connectomics 27
3.1 Introduction.. 27

3.2 Related Work.. 29

3.3 SynEM: Synapse Detection by Interface Classification .. 30

3.3.1 Interface Definition and Feature Representation....................................... 30

3.3.2 Detailed Feature Definition ... 33

3.3.3 Classifier Training.. 39

3.3.4 Connectome Error Estimation ... 40

3.4 Experiments ... 42

3.4.1 SBEM Dataset and Label Data Generation.. 43

3.4.2 Synapse Detection Performance Evaluation .. 45

3.4.3 Biological Plausibility .. 50

vi

Contents

3.4.4 ATUM Dataset .. 51

3.4.5 Application to Connectomes ... 52

3.5 Discussion.. 59

4 Deep Learning for Semantic Segmentation in Connectomics......................... 61
4.1 Introduction.. 61

4.2 Related Work.. 62

4.3 Interface Classification with Learned Texture Filters ... 64

4.3.1 Feature Learning for SynEM ... 64

4.3.2 Experiments .. 65

4.3.3 Discussion .. 74

4.4 Cell Segmentation in EM Data.. 76

4.4.1 Network Architectures.. 76

4.4.2 Network Training... 79

4.4.3 Volume Segmentation Generation .. 80

4.4.4 Performance Evaluation Metric ... 80

4.4.5 Experiments .. 81

4.4.6 Discussion .. 85

4.5 Conclusion ... 91

5 Application to Circuit Reconstruction ... 92
5.1 Introduction and Related Work ... 92

5.2 Methods... 92

5.3 Results... 94

5.4 Discussion.. 95

6 Conclusion and Outlook .. 99
6.1 Summary ... 99

6.2 Future Directions .. 100

6.3 Conclusion ... 100

Glossary ...101

List of Figures ..103

List of Tables ..105

Bibliography ...106

vii

1. Introduction

The nervous system of animals is the central unit of control that integrates, processes and dis-

tributes information from different parts of the body. In vertebrates, the nervous system is classi-

fied into two main parts, the central nervous system consisting of the brain and the spinal cord and

the peripheral nervous system consisting of the nerve tissue outside the central nervous system.

In particular the brain and its largest part, the cerebral cortex, play a key role in higher cognitive

functions including learning, memory, emotion and decision making (Kandel et al., 2000). How-

ever, many functional principles of the brain are still poorly understood both from an algorithmic

(Lake et al., 2017; Hassabis et al., 2017) as well as from a medical perspective (Fornito et al.,

2015).

1.1. Neurons and Neuronal Networks

On a microscopic level, it has widely been accepted that the nervous system consists of a spe-

cialized cell type called neuron (neuron doctrine; based on Golgi, 1873; y Cajal, 1888). Neurons

can transmit electrical signals along thin filaments emanating from the cell body, which are called

neuronal processes or neurites. The neuronal processes contain synapses, specialized structures

which emit electrical or chemical signals to contact other neurons forming a (biological) neural

network of interconnected cells. The complexity of the brain compared to other organs arises

from the multitude of subtypes of neurons and, maybe even more importantly, from the high de-

gree of local and long range communication between neurons (Lichtman and Denk, 2011). To

understand how the brain performs its computations it is thus necessary to study both the sin-

gle neurons comprising the network as well as their connections. The analysis of single neurons

includes their morphological, physiological and functional properties, which determine each neu-

rons’ response properties to stimuli, as well as their means and modes of signal transmission. The

study of connections between neurons is the focus of the neuroscientific field of connectomics.

Figure 1.1: Neuron drawings. Drawing of Purkinje
cells (A) and granule cells (B) from pigeon
cerebellum by Santiago Ramón y Cajal, 1899.
Instituto Santiago Ramón y Cajal, Madrid, Spain.
(Wikimedia Commons:
https://commons.wikimedia.org/wiki/File:PurkinjeCell.jpg)

1

1 Introduction

The goal of connectomics is to generate a comprehensive map of connections between neurons or

populations of neurons, which is called a wiring diagram or connectome (Sporns et al., 2005). On

the macroscale, connectomics investigates the long-range interaction between brain regions for

example using diffusion tensor imaging with a typical resolution larger than a cubic millimeter.

A mesoscale connectome encompasses the connections between populations of a few hundred

neurons. The generation of a mesoscale connectome has already been achieved for the whole

mouse brain (Oh et al., 2014). This thesis focuses on microscale or nanoscale connectomics that

maps neural circuits on the scale of single neurons and single synapses. Nanoscale connectomics

necessarily requires datasets with a resolution that is high enough to identify synapses and to

follow every neuronal process in each direction back to its soma. In mouse neocortex, the minimal

required resolution is on the order of 30 nm while it can be even lower for other circuits, for

example in the fruit fly (Helmstaedter, 2013). Conventional light microscopic techniques are

limited in their resolution to a few hundred nanometers due to the diffraction limit rendering

this technique insufficient for nanoscale connectomics even when using two-photon excitation or

confocal detection (Lichtman and Denk, 2011). Modern super-resolution techniques, however,

are able to overcome the diffraction barrier and achieve resolutions of a few dozen nanometers

(Rust et al., 2006), but still have to overcome other problems such as the low penetration depth into

tissue and the labeling density (Lichtman and Denk, 2011; Lakadamyali et al., 2012; Ke et al.,

2016). In addition to the resolution requirement, the imaged volume needs to be large enough

to contain the neural circuit of interest. While the cell bodies of neurons are not particularly

large compared to other cells, the neuronal processes can extend to volumes that are 3-4 orders

of magnitudes larger than the cell body with a total path length on the order of centimeters for

mice and even meters for humans (Lichtman and Denk, 2011). Thus, to study even local cortical

circuits from mouse neocortex requires datasets with several hundred micrometers edge length

(Helmstaedter, 2013). Currently, electron microscopy (EM) (Knoll and Ruska, 1932) is the only

imaging technique that is both able to provide the high resolution requirement and the possibility

to image datasets that are large enough to contain considerable parts of local neural circuits.

Modern volume EM techniques allow for the acquisition of a cubic dataset with an edge length

of 300 µm in about 1000 hours (Helmstaedter, 2013). Methodological advances promise further

speed-up of data acquisition, for example Eberle et al. (2015) increased imaging speed by a factor

close to two orders of magnitude by imaging a sample with multiple electron beams.

1.2. The Connectomics Reconstruction Challenge

Datasets produced by modern EM techniques easily range into the petabyte scale and can contain

thousands of neurons and glia cells as well as a diverse set of ultrastructure with similar visual ap-

pearance. A dataset of size 250× 250× 250 µm3 from mouse neocortex contains roughly 2500

neurons, which have neurites with an overall path length of approximately 81 meters forming

about 15.5 million synapses (Figure 1.2a, b; White and Peters, 1993; Braitenberg and Schuez,

1991; Merchán-Pérez et al., 2014). The reconstruction of a neural circuit requires the identifica-

tion of all synapses and the corresponding pre- and postsynaptic processes have to be traced back

to their respective somata, which is called neurite or cable reconstruction. The task of synapse

2

1 Introduction

a S1 Cortex (mouse)

L4

WM

Pia

1 mm
250 μm

L1

L5

L2/3

L6

b

Syn. (#
)

Axons (m
m)

Dendr. (m
m)

Neurons (#)

Spines (m
m)

Exc.
Inh.

102

109

A
m

ou
nt

 p
er

vo
lu

m
e 2503 μm3

1 mm3

c

103

1010

Ti
m

e
pe

r
vo

l.
(h

)

Syn. axon

basedSyn. vol.

searchSkelet.

Contour (d)
(e)

d

e

Figure 1.2: The connectomics reconstruction challenge. (a) Connectomic reconstruction in mouse somatosensory cortex (S1)
requires a minimal dataset size with an edge length of at least 250 µm for a local circuit (’barrel’) from layer 4 (L4) and a dataset
with an edge length of 1mm to cover the whole cortical depth. (b) Expected number of synapses and neurons as well as the
expected path length of axons, dendrites and spines for the two example datasets in (a) (White and Peters, 1993; Braitenberg and
Schuez, 1991; Merchán-Pérez et al., 2014). (c) Estimated reconstruction time for neuronal processes by contouring (Contour) and
skeletonization (Skelet.) and for manual synapse detection by volume search (Syn. vol. search., see d) and axon-based search (Syn.
axon based, see e). Arrows: WebKnossos (Boergens et al., 2017) allows for a further speed-up of skeletonization of 5 to 10-fold. (d)
Synapse detection by volume search requires scanning the 3D image stacks while keeping track of already inspected locations
taking about 0.1 h/mm. (e) Axon-based synapse detection by inspection of boutons for previously reconstructed axons taking about
1 minute per bouton. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 1
https://doi.org/10.7554/eLife.26414.003 licensed under CC BY 4.0)

detection consists of locating all synapses based on their ultrastructural appearance as well as

identifying the corresponding pre- and postsynaptic partner. Note that, depending on the kind of

tissue, a single synapse can have multiple postsynaptic partners, for example in the mammalian

retina or the fly optical system (Helmstaedter, 2013). Once the pre- and postsynaptic partners have

been identified, they need to be associated with the neurons in the dataset they belong to. This

is not only difficult because neurites can become very small and intertwined but mainly because

errors along the path of neurites can have correlated effects, for example the wrong assignment of

a neurite branch causes all the synapses and thus all connections along the branch to be wrong as

well (Helmstaedter, 2013). Since the neurites of a single neuron can extend over several millime-

ters to meters of path length, many small errors can lead to a macroscopically altered and even

biologically implausible neuron reconstruction, for example a neuronal process connecting two

somata, that can potentially falsify conclusions drawn from the connectome.

The manual reconstruction of all but the smallest neural circuits is typically prohibitively expen-

sive (Figure 1.2c). Manually creating a volume segmentation by contouring of processes, i.e. a

3

https://doi.org/10.7554/eLife.26414.003
https://creativecommons.org/licenses/by/4.0/

1 Introduction

grouping of all voxels that belong to the same process by outlining the border of the process, takes

about 2800 years of continuous work for a single person for 81 meters of neuronal wiring at a

speed of 300 hours for a millimeter of neurite path length (Helmstaedter et al., 2011). A signifi-

cant speed-up can be achieved by following only the center lines of processes, an approach called

skeletonization. Reconstruction by skeletonization results in a 50-fold reduction of manual anno-

tation time over contouring to about 50 years (Helmstaedter et al., 2011). Further improvements

in data visualization and delivery reduced skeletonization time by another factor of roughly 10

to about 5.5 years (Boergens et al., 2017). Manual synapse detection by volume search requires

scanning the 3D data for synapse locations while keeping track of the already annotated synapses

taking an additional 180 years (Staffler et al., 2017a). Assuming that the axons are already re-

constructed, for example if the skeletonization approach for neurite reconstruction was taken, an

annotation strategy focused only on the boutons of axons can further reduce synapse detection

time to about 21 years (Staffler et al., 2017a). This highlights the necessity of automated methods

for connectomic reconstruction.

The automation of circuit reconstruction for connectomics faces several computational challenges

(Lichtman et al., 2014). Even for manual reconstruction, the large amounts of image data pro-

duced by modern 3D EM techniques require a computational infrastructure that allows to ef-

ficiently store and retrieve the data from arbitrary locations for visualization and analysis, for

example by exploiting the spatial locality of the 3D data (Saalfeld et al., 2009; Boergens et al.,

2017). Due to the sequential 2D nature of the EM imaging potentially involving several tiles

per imaging plane, a necessary first step for every analysis is the alignment of image tiles and

consecutive sections into a single coherent 3D image volume. Proper image alignment is crucial,

in particular for automated methods, and can affect all subsequent data analysis steps. Despite

advances in automatic image alignment and registration (Kaynig et al., 2010; Saalfeld et al., 2012;

Yoo et al., 2017), imaging artifacts often require manual intervention in the alignment process.

Neurite reconstruction is often formulated as the computer vision task of image segmentation.

However, due to the correlation of errors along processes, algorithms for neurite reconstruction

require very high accuracy to avoid false reconstructions (Helmstaedter, 2015). Even though

current automated segmentations often have error rates that are too high to faithfully reconstruct

whole processes, they can still be used to provide the local shape of processes in conjunction

with manual skeleton tracings which provide the long-range connections (Berning et al., 2015).

Similarly, synapse detection can be formulated as a segmentation problem as well, however, the

detection of pre- and postsynaptic partners often requires additional steps. The design of algo-

rithms for the analysis of 3D EM data faces several big data challenges such as the data size

and the computational complexity (Lichtman et al., 2014) and typically requires domain exper-

tise. Machine learning algorithms can learn to solve data analysis tasks based on examples and

are often designed to be highly parallel and scalable with a performance that is often superior to

human-designed algorithms and are thus heavily used for connectomics reconstruction.

4

1 Introduction

1.3. Insights from Structural Data

Generating a connectome using EM-based connectomics poses challenges both in terms of im-

age acquisition as well as from a data analysis perspective and requires substantial amounts of

resources. The first full connectome comprising 302 neurons and roughly 7000 connections was

generated for the nematode Caenorhabditis elegans (White et al., 1986) and required more than

ten years of manual reconstruction time. More recent reconstructions in the mouse retina (Helm-

staedter et al., 2013) or the drosophila visual system (Takemura et al., 2013) still required substan-

tial human labor of tens of thousands of working hours. This raises the question what actually

can be learned from generating a connectome for the brain of an organism. A lot of criticism

against the nanoscale connectomics approach has been voiced ranging from potentially unnec-

essary (Sporns et al., 2005) to the impossibility of reading connectomes (Bargmann, 2012) (see

also Morgan and Lichtman, 2013 for some common arguments against connectomics). One of the

most obvious concerns is that the brain is highly variable on the synaptic level but the connectome

can only provide a snapshot of the connections at one specific point in time of a single animal

(Sporns et al., 2005). It also has been pointed out that brain circuits are subject to neuromod-

ulation, which is not captured in EM datasets (Bargmann and Marder, 2013). However, many

scientists believe that nevertheless a lot can be learned even from a single connectome about

fundamental wiring principles that are present across time and individuals (Lichtman and Denk,

2011). At the very least, connectomics should be able to constrain computational models of the

brain and potentially falsify them (Denk et al., 2012). It might even be possible that connectomics

provides the means of reading out memory, since neuroscientists have hypothesized for long that

memories are stored in the patterns of synaptic connections of neurons and their strength (Seung,

2009). Beyond the hypothetical benefits of a dense wiring diagram, the field of connectomics has

already provided insights into the nervous system that would have been difficult or even impos-

sible to obtain by other means (see also Table 1 in Kornfeld and Denk, 2018). Mishchenko et al.

(2010) and Kasthuri et al. (2015) refuted subcellular versions of Peter’s rule, which states that

spatial proximity of axons and dendrites can predict a connection or even the number of synapses

between processes (see also Rees et al., 2017). Briggman et al. (2011) showed how a wiring

asymmetry could contribute to the direction selectivity of retinal ganglion cells. Helmstaedter

et al. (2013) identified a new cell type in the retina based on its connectivity. Schmidt et al.

(2017) showed a sorting of synapses along the axons of excitatory neurons based on the identity

of the postsynaptic neuron. Kornfeld et al. (2017) showed the existence of a neural circuit that

could explain a synaptic-chain model. A general conclusion from these studies seems to be that

wiring diagrams are often necessary but not sufficient to understand a neural system motivating

the combination of purely structural connectivity analysis with other measurements, for example

functional activity.

5

1 Introduction

1.4. Research Questions and Contributions

The gap between imaging and reconstruction time and the promising insights from previous con-

nectomic studies have spurred substantial development for automated solutions for connectomic

reconstruction. In this thesis, I address and contribute to the following research questions.

Research question 1: Can existing synapse detection approaches be adapted to medium-resolution

data obtained using serial block-face electron microscopy (SBEM)?

In the first part of chapter 3 and Staffler et al. (2017a,b), SynEM, a novel approach to synapse

detection is proposed that formulates synapse detection as binary classification of interfaces be-

tween segments from a volume segmentation. A feature representation of interfaces is developed

based on their textural and geometrical properties. For classification, a Machine Learning ap-

proach is used to infer the decision rules from training data. SynEM is evaluated on two EM

datasets obtained using different EM imaging modalities.

Research question 2: How do error rates in synapse detection affect the error rates of neuron-to-

neuron connections?

In subsection 3.3.4 and Staffler et al. (2017a,b), a statistical estimate for connectome error rates is

developed based on synapse detection error rates. The estimate only requires the distribution of

synapses between connected neurons and the overall connectivity ratio between neurons, which

are available for different cell types in rodent somatosensory cortex.

Research question 3: Can features learned by artificial neural networks improve upon commonly

used hand-designed feature representations for the task of synapse detection?

In section 4.3, the output of fully convolutional networks (FCNs) trained on a semantic segmen-

tation task is used to modify the SynEM feature representation. Different feature representations

are compared in subsection 4.3.2 showing an improved performance of learned features over

hand-designed features. The best performance was achieved with a combination of learned and

hand-designed features.

Research question 4: How well does SynEM generalize to novel EM datasets without retrain-

ing?

In the second part of subsection 4.3.2, the performance of SynEM and several interface classifiers

using features learned by FCNs is evaluated on a novel dataset without any retraining or fine-

tuning. All classifiers were able to provide reasonable generalization performance with a maximal

drop of 5.4% in F1 score. The best result was achieved by the SynEM classifier using only hand-

designed features.

6

1 Introduction

Research question 5: Can the volume segmentation provided by SegEM underlying the interface

definition of SynEM be further improved using artificial neural networks?

In section 4.4, FCNs were trained to predict membranes between cellular processes followed by

a watershed segmentation step. A novel multi-resolution architecture is introduced and compared

to other architectures. The networks are evaluated on the SegEM challenge (Berning et al., 2015)

showing a substantial improvement over the performance of SegEM.

Research question 6: How can the developed methods be used to analyze wiring principles in

the brain? In particular, what can be learned about the input strength distribution of all synapses

innervating single cells?

In chapter 5, SynEM is applied in combination with manual proofreading to detect all synapses

onto a spiny stellate neuron in a dataset from layer 4 of mouse somatosensory cortex. The distri-

bution of synapse size, which is correlated to synapse strength, are shown to be well described by

a lognormal distribution. The distribution of distances of synapses from the soma showed a shift

to more proximal locations for shaft synapses then for spine synapses.

The relevant manuscripts that were published during the course of this thesis are

• Staffler, B., Berning, M., Boergens, K. M., Gour, A., van der Smagt, P., and Helmstaedter, M.

(2017). SynEM: Automated synapse detection for connectomics, bioRxiv,

doi:10.1101/099994

• Staffler, B., Berning, M., Boergens, K. M., Gour, A., van der Smagt, P., and Helmstaedter, M.

(2017). SynEM, automated synapse detection for connectomics, eLife,

doi:10.7554/eLife.26414

The following manuscript is not directly addressed in this thesis

• Parag, T., Berger, D., Kamentsky, L., Staffler, B., Wei, D., Helmstaedter, M., Lichtman, J.

W. & Pfister, H. (2018). Detecting Synapse Location and Connectivity by Signed Proximity

Estimation and Pruning with Deep Nets. arXiv preprint arXiv:1807.02739.

7

https://doi.org/10.1101/099994
https://doi.org/10.1101/099994

2. Background

This chapter provides the necessary background on neuroscience, computer vision and machine

learning that will be used in the main chapters of this thesis. The chapter is aimed at making this

thesis self-contained and can be skipped if the reader is familiar with the subject. Note that the

sections in this chapter will not cover the corresponding topics exhaustively but only to the degree

that will be required later on.

2.1. Structural Neurobiology and Connectomics

This section introduces the neuroscientific background and terms that are used in the main part of

the thesis. The focus of this chapter is on circuit components of biological neural networks and

their appearance in the 3D electron microscopy (EM) data used for circuit reconstruction.

2.1.1. Introduction to Neural Circuits
The nervous system consists of two kinds of cells, neurons and glia. The human brain for example

contains roughly 85 billion neurons and the same amount of glia cells (Azevedo et al., 2009).

Neurons are capable of communicating in a fast and precise way with other neurons. Glia cells

have a range of functions, e.g. in brain metabolism, providing insulating sheaths called myelin

for neurons that enable fast conduction of electrical signals and recent findings suggest an active

participation in information coding and signaling (Perea et al., 2014). While glia cells are an

important part of neural circuits, the focus of this thesis is on neurons and their connections. The

following description is based on Kandel et al. (2000).

The intracellular and intercellular signaling between neurons is enabled by their morphological,

chemical and electrical properties. Neurons have a cell body (soma) containing the nucleus and

two kind of filaments called neurites emanating from the soma: an axon that is used to transmit

signals to other neurons and dendrites that mainly receive input from other neurons (Figure 2.1

and Figure 2.2a). The neurites can extend over long distances up to centimeters in mouse and

meters in human potentially covering volumes that are several orders of magnitude larger than

the cell body (Lichtman and Denk, 2011). Along their path, axons typically form varicosities

called presynaptic terminals or synaptic boutons that are filled with spherical structures called

synaptic vesicles (Figure 2.2b). The synaptic vesicles belong to synapses at the bouton, a structure

that enables chemical signal transmission to other neurons. Axons can partly be surrounded

by an insulating sheath formed by glia cells called myelin (Figure 2.2c). Dendrites form tree-

like morphologies that are typically highly branching. The entirety of dendritic processes of

a neuron is called the dendritic tree. Some dendrites contain thin processes along their main

branches called (dendritic) spines that are up to several micrometers in length and often receive

synaptic input from other neurons (Figure 2.2d). Spines consist of a typically very thin spine

neck that can expand at the tip of the spine into the spine head. The contents of the cell enclosed

8

2 Background

Figure 2.1: Schematic representation of the main structural components of a neuron. See subsection 2.1.1 for details. The
main information flow along the neuron is indicated by red arrows.

by the neuronal membrane except for the nucleus are called cytoplasm and comprise the liquid

cytosol and substructures of the cell called organelles. Examples of organelles that are frequently

encountered in EM are mitochondria which are important for the cellular metabolism and the

spine apparatus which occurs in some spines and that, among other things, is involved in local

protein synthesis and trafficking (Figure 2.2d, e).

The intracellular signaling of a neuron is achieved by electrical currents that are conducted along

the neurites. The signal conduction in dendrites is mainly passive, i.e. a local change in the

electrical potential results in a spread of charged particles from the site of depolarization in both

directions along the dendrite but the magnitude of the polarization diminishes with increasing

distance. For signal transmission, however, neurons are able to actively propagate an electrical

signal along their axons that does not diminish as it is conducted along the axon. Similar to other

cells, neurons create a difference in electrical potential between the exterior and the interior of the

cell called membrane potential by active and passive ion transport through the membrane typically

resulting in a negative voltage in the interior of the cell. A depolarization of the membrane beyond

a threshold causes a rapid reversal of the membrane potential called an action potential or spike

that propagates along the axon by depolarizing neighboring membrane patches. The generation

of an action potential typically happens at the soma if the sum of incoming signals is high enough

to cause a depolarization beyond the spike initiation threshold.

For intercellular signaling, neurons connect to each other by transmitting chemical or electrical

signals at specialized structures called synapses in a process called synaptic transmission typi-

cally contacting 1000 to 10000 other neurons (Braitenberg and Schuez, 1991, chapter 6; Murre

and Sturdy, 1995). There are two different kinds of synapses with different means of conveying

signals. Electrical synapses, also called gap junctions, provide a direct electrical coupling be-

tween two neurons allowing ions to flow between the two neurons in both directions (Robertson,

1953, 1963; Revel and Karnovsky, 1967). Chemical synapses, which are simply referred to as

synapses if the context is clear, release chemical substances called neurotransmitters from the

9

2 Background

Figure 2.2: Neuronal ultrastructure in EM. Neuronal ultrastructure in EM images from mouse primary somatosensory cortex
(S1) layer 4 (L4) (dataset 2012-09-28_ex145_07x2; Boergens and Helmstaedter, 2012b) at a pixel size of 11.24× 11.24 nm2

imaged using serial block-face electron microscopy (SBEM) (see subsection 2.1.2). (a) Soma of a neuron containing the nucleus and
two processes emanating from it (red arrows). The volume around the soma is densely filled with neuronal processes from other
neurons and a blood vessel at the bottom right with an almost white texture. (b) Axon forming two boutons along its path (red
arrows) each containing synaptic vesicles and a synapse to a neighboring process. Note that at this resolution single vesicles are not
clearly visible but only the entirety of the vesicle agglomeration in the bouton. (c) Axon surrounded by a myelin sheath (red arrows)
that briefly ends where the axon branches but starts again for both branches (only right branch visible here). (d) Short dendritic spine
containing a spine apparatus (red arrow) and a potential synaptic innervation from above. (e) Mitochondria in different processes cut
at different angles (three mitochondria are marked by red arrows). Scale bars: 5 µm in (a) and 2 µm in (b-e).

sending neuron (also called presynaptic neuron) that elicit an electrical current in the receiving

neuron (also called postsynaptic neuron). The release of neurotransmitter is typically triggered

by a presynaptic depolarization, for example from an action potential that travels along an axon.

Connections made by chemical synapses as described here thus only transmit a unidirectional sig-

nal and hence represent an asymmetric connection between neurons. If the current elicited in the

postsynaptic neuron causes a depolarization of the membrane potential bringing it closer towards

the threshold for spike initiation, the synapse is called excitatory and the current that can be mea-

sured in the postsynaptic neuron is called an excitatory postsynaptic potential (EPSP). Conversely,

if the current elicited in the postsynaptic neuron causes a hyperpolarization that makes spike ini-

tiation less likely, the synapse is called inhibitory and the potential in the postsynaptic neuron is

called an inhibitory postsynaptic potential (IPSP). The invention of EM (Knoll and Ruska, 1932)

allowed neuroscientists to study the ultrastructure of the brain (Palay and Palade, 1955) and its

synapses (Robertson, 1953; Palay, 1956; Gray, 1959; Colonnier, 1968) in detail (see also Peters

and Palay, 1996; Harris and Weinberg, 2012). Presynaptically, synaptic vesicles located in axonal

boutons contain the neurotransmitter. A single bouton can be the site of multiple synapses to

different postsynaptic partners. For synaptic transmission, vesicles dock to the plasma-membrane

at the synapse location called the active zone and release the neurotransmitter into the synaptic

cleft between pre- and postsynaptic neuron, which is about 20 nm to 40 nm wide (Kandel et al.,

2000, chapter 8). The neurotransmitter binds to receptor proteins within the plasma-membrane

of the postsynaptic neuron causing a local change of the electrical potential in the postsynaptic

neuron. The high protein density at the membrane of the postsynaptic neuron can typically be

10

2 Background

Figure 2.3: Examples of synapses from mouse neocortex in EM. Examples of excitatory (glutamateric) synapses (A, B, C) onto
dendritic spines and presumed inhibitory (GABAergic) synapses (D, E, F) onto dendritic shafts. Excitatory synapses show round
clear vesicles while inhibitory synapses show flattened dark vesicles and a less pronounced PSD. Scale bar: 200 nm. (Korogod,
Petersen, Knott, 2015, eLife, http://dx.doi.org/10.7554/eLife.05793.013 licensed under CC BY 4.0 / Additional
textural descriptions (red) were added to the original)

seen in EM images as a thickening or blurring of the postsynaptic membrane, in particular for

excitatory synapses, and is called postsynaptic density (PSD) (Figure 2.3). Synapses are classi-

fied based on their ultrastructural appearance into Gray type I or asymmetric, which were shown

to be mostly glutamatergic, and excitatory and Gray type II or symmetric synapses, which are

mostly GABAergic and inhibitory (Gray, 1959; Colonnier, 1968; Peters and Palay, 1996; Petilla

Interneuron Nomenclature Group et al., 2008). The likelihood of a single action potential trig-

gering synaptic transmission that leads to a signal in the postsynaptic cell is called the synaptic

reliability. The efficacy or strength of a synapse refers to the mean amplitude of the postsynap-

tic current after an action potential in the presynaptic neuron which thus depends on both the

synaptic reliability as well as the magnitude of the postsynaptic current (Kandel et al., 2000,

chapter 12). While this is a functional definition of synapse strength, many structural properties

of synapses like the area of the PSD, the area of the presynaptic active zone or the number of

docked presynaptic vesicles are highly correlated with the presynaptic release property and the

efficacy of synapses thus serving as structural correlates for synapse strength (Bartol Jr et al.,

2015). There are less specific forms of chemical signal transmission between neurons, e.g. by

diffusion of neurotransmitters (cf. Vizi, 2000) also called volume transmission, often considered

in the context of neuromodulation (Marder, 2012; Bucher and Marder, 2013) which are difficult

to access in current connectomic EM datasets and will not be considered here.

2.1.2. Volume Electron Microscopy
EM is currently the only imaging technique that is both able to provide the high resolution re-

quirement and the possibility to image datasets that are large enough to contain substantial parts

of neural circuits. To capture the three dimensional structure of brain tissue, EM imaging tech-

niques require to take two dimensional images at different depths of a tissue sample that are

11

http://dx.doi.org/10.7554/eLife.05793.013
https://creativecommons.org/licenses/by/4.0/

2 Background

Figure 2.4: Overview of volume EM techniques. See subsection 2.1.2 for details. (a) Serial section transmission electron
microscopy (ssTEM). (b) Automated tape-collecting ultramicrotome scanning electron microscope (ATUM-SEM). (c) Serial block
face-scanning electron microscopy (SBEM). (d) Focused ion beam milling scanning electron microscopy (FIB-SEM). Reprinted
with permission from "Volume electron microscopy for neuronal circuit reconstruction" by Kevin L. Brigmann and Davi D. Bock,
2012, Current Opinion in Neurobiology, 22, p. 156. Copyright 2011 by Elsevier Ltd.

subsequently combined into a three dimensional image stack. Such techniques are often referred

to as 3D or volume EM (see Briggman and Bock 2012 for a review, and Figure 2.4). In brief, these

methods provide different image resolution, slice thickness and maximal dataset dimensions. Two

main approaches are used: Slice-based methods, which first cut the tissue sample into ultra-thin

sections that are subsequently imaged by EM, and block-face methods, which alternate between

imaging the surface of a block of tissue and abrading the topmost layer of the block.

In serial section transmission electron microscopy (ssTEM), ultra-thin slices of brain tissue are

first cut and subsequently imaged using a regular transmission electron microscope. It is the

oldest volume EM technique that was already used in the beginning of structural study of brain

tissue using EM (Birch-Andersen, 1955) as well as for the first dense connectome of the whole

nervous system of the nematode C. elegans (White et al., 1986). SsTEM allows a very high

resolution of the imaged slices of typically only a few nanometers voxel size (in-plane resolution)

with a slice thickness of about 50 nm (Harris et al., 2006). However, the manual handling of

slices is error prone and can lead, for example, to folded slices or the loss of complete sections

making it likely that processes cannot be traced anymore across a lost section. Section handling is

automated in the automated serial section tape-collection scanning electron microscopy (ATUM-

SEM) approach, which cuts the slices and collects them on a tape for later imaging (Hayworth

12

2 Background

et al., 2006), allowing for a smaller slice thickness of typically 30 nm

Block-face techniques make use of scanning electron microscopy (SEM) to image the surface

of a block of tissue. Subsequently, the previously imaged surface is removed and the process is

repeated. Hence, block face techniques do not suffer from section loss or image distortions thus

facilitating data analysis. On the other hand, since the removal of the block face is a destructive

process, it is not possible to image a slice again once it has been removed and it is not possible to

parallelize imaging over different microscopes (Wanner et al., 2015). In focused ion beam scan-

ning electron microscopy (FIBSEM), the block face is removed using an ion-beam to evaporate

the tissue (Knott et al., 2008). FIBSEM allows for a very small cutting thickness of about 5 nm

combined with a high in-plane resolution of a few nanometers as well. Thus, FIBSEM is able to

generate high-resolution isotropic dataset making it the method of choice for circuits with small

processes. However, the dataset size is currently limited to roughly 50 µm along the direction of

the ion beam, although newer techniques are being developed to overcome this limitation (Hay-

worth et al., 2015). In serial block-face electron microscopy (SBEM), a diamond knife is used to

cut away ultra-thin section from the block face (Denk and Horstmann, 2004). The slice thickness

is limited to about 20 nm while the imaging resolution is typically about 10 nm

The volume EM techniques presented above are currently largely complementary in terms of

resolution and total dataset size (Lichtman and Denk, 2011). Except for FIBSEM, all volume EM

techniques are in principle able to provide datasets with an edge length in the order of millimeters.

Advances in EM imaging techniques like multi-beam scanning electron microscopy (mSEM)

promise further speed up of close to two orders of magnitude in imaging time that will make

larger or even whole brain datasets for some species possible with imaging times in the order of

weeks rather than years (Eberle et al., 2015).

To image biological tissue using EM, specific sample preparation techniques are required that

may affect tissue properties and the final EM images. Common EM staining methods cause

tissue shrinkage, which alters the volume of processes, and the loss of extracellular space (ECS)

that separates them (Korogod et al., 2015). More recently proposed sample preparation methods

allow to preserve or even enhance ECS (Pallotto et al., 2015).

2.1.3. The Connectome
A comprehensive map of all connections in the brain is called a connectome or wiring diagram

(Sporns et al., 2005). From a mathematical perspective, the connectome constitutes a graph con-

sisting of neural elements and their connections. A graph is represented by an ordered pair

G = (V,E) of a set of vertices or nodes V and edges E ⊂ V × V . If the edges have a di-

rection, i.e. each edge e ∈ E is an ordered tuple pointing from one node to another, the graph

is called directed and undirected otherwise. In nanoscale connectomics, the nodes of the wiring

diagram are given by single neurons and the edges correspond to synaptically coupled neurons

that are directed for chemical synapses. Here, only chemical synapses are considered such that

the connectome will be defined as a directed graph. The connectome is often represented by its

13

2 Background

adjacency matrix A = (aij)
N
i,j=1 whose entries aij are 1 if a directed connection between neuron

i (the presynaptic or source neuron) and neuron j (the target or postsynaptic neuron) exists and 0

otherwise, where each neuron was assigned an integer label 1, . . . , N , i.e.

aij =

1 if there is a synapse from neuron i to neuron j

0 otherwise.
(2.1)

A connectome specifying whether two neurons are connected or not is called a binary connec-

tome. Since neurons can be connected by multiple synapses, the connectome can also be repre-

sented by a weighted adjacency matrix whose entries do not only contain the information that a

connection exists but how many synapses it consists of, i.e. each entry aij is an integer specifying

the number of synapses between the corresponding neurons. Note that these definitions are not

universal, e.g. a weighted connectome could also use other correlates of the connection strength

between two neurons such as total active zone area or the connectome could be defined as a multi-

graph where each synapse constitutes a single edge. The nodes and edges of the connectome are

typically enriched with additional (biological) information, e.g. the neuron type for the nodes and

the total contact area, the active zone/PSD area and synapse type or sign (excitatory, inhibitory)

for the edges.

2.2. Computer Vision for Connectomics

Connectomics produces large amounts of data in the form of 3D digital images. The reconstruc-

tion of neural circuits from the images in an automated fashion requires analyzing their contents

with computers which is the subject of the field of computer vision.

2.2.1. Digital Images
For the purposes of this thesis, a d-dimensional digital signal I is given by a mapping that assigns

an intensity value to each signal location x ∈ G ⊂ Zd, i.e.

I : G → I, (2.2)

where I is the set of possible intensity values and d ∈ N is the dimensionality of the signal.

Digital images are 2D signals and their locations are called pixels while image stacks are 3D

signals and their locations are called voxels. Signals are called binary if I = {0, 1}, grayscale

if I = {0, . . . , 255} and RGB if I = {0, . . . , 255}3. If the dimensionality of I is larger than

one, e.g. corresponding to multiple measurements at each signal location, the signal is sometimes

called a multi-channel signal. EM datasets are typically 3D grayscale image stacks. In practice,

digital signals have a finite number of signal locations |G| <∞, which are typically arranged on

a rectangular grid. For d = 2 and G = {1, . . . , N} × {1, . . . ,M} images can be conveniently

represented as matrices I ∈ IN×M , where N is the image height and M is the image width in

pixels, and analogously for higher dimensions. For notational simplicity, signals are assumed to

be zero outside their domain G. The connectivity or neighborhoodN (x) ⊂ G of a signal location

14

2 Background

x ∈ G is a set of locations around x, which are called the neighbors of x. For example, all image

locations with a maximum distance (Chebyshev distance) less than one to the pixel of interest

result in the 8 neighborhood in 2D

N8(x) = {y ∈ Z2 | ‖x− y‖max ≤ 1} (2.3)

and the 26 neighborhood in 3D images

N26(x) = {y ∈ Z3 | ‖x− y‖max ≤ 1}. (2.4)

2.2.2. Image Transformations
The abstract definition of signals allows transforming them using mathematical operations with

the goal of extracting signal features that provide a high-level understanding, e.g. the recogni-

tion of patterns and objects. For notational simplicity and clarity, this section introduces basic

signal transformations for images, which analogously can be defined for general d-dimensional

signals.

Geometrical transformations change the coordinate system of the location grid G resulting e.g.

in a translation or rotation of an image. For practical purposes, the image locations are typically

embedded in R2 and non-integer image locations are calculated by interpolation from nearby

locations, which for example can be necessary for rotations by arbitrary angles or non-rigid image

deformations.

Image filtering operations apply transformations to the intensity values of an image. In its most

general form, a filter f takes an input image I : G → I and produces an output image fI : G → Ĩ,

where I and Ĩ are the intensity values of the image and the filter response respectively, which can

be different from each other. Thus, a filter constitutes an operator

f : GI → GĨ , (2.5)

where GI := {f : G → I} denotes the set of all functions from G to I. Important examples

of image filtering operations for binary images are morphological operations, which allow the

manipulation of the shape of objects. Two fundamental morphological operations are the erosion

and dilation operation for expanding or contracting objects. The derived operations of opening

and closing are used to remove small objects or close small holes.

An important part of many image filtering operations are linear filters, where the output is a linear

function of the input pixel values. The discrete convolution is a frequently encountered example

of a linear filter. For an image I : Z2 → R and a filter kernel w : Z2 → R the result of the discrete

convolution F : Z2 → R is given by

F (i, j) = (I ∗ w)(i, j) :=
∑
k,l∈Z

I(k, l)w(i− k, j − l) =
∑
k,l∈Z

I(i− k, j − l)w(k, l), (2.6)

15

2 Background

for i, j ∈ Z, and analogously for higher dimensions. For a finite dimensional image I ∈ RN×M

and a kernel w ∈ Rk1×k2 with support in {− bk1/2c , . . . , bk1/2c} × {−bk2/2c , . . . , bk2/2c},
this can also be written as

(I ∗ w)(i, j) =

bk1/2c∑
l1=−bk1/2c

bk2/2c∑
l2=−bk2/2c

w(l1, l2)I (r1i+ l1d1, r2j + l2d2) , (2.7)

where r = (r1, r2) ∈ N2 is an optional stride and d = (d1, d2) ∈ N2 is an optional dilation

ratio. A stride that is larger than one in dimension i corresponds to a subsampling of the output

in this dimension by considering only every ri-th pixel. For finite dimensional images, a strided

convolution reduces the image size in dimension i by factor ri. A dilation ratio that is larger

than one in dimension i is equal to the convolution with a kernel where di − 1 zeros are inserted

between all kernel entries in the corresponding dimension. For finite dimensional images and

kernels, the output of the convolutional operation (Equation 2.7) can only be evaluated at locations

that only depend on pixels in the input image and kernel domain, resulting in an output image

with size (N − (k1 − 1))× (M − (k2 − 1)), which is sometimes called the valid convolution.

The specification of boundary conditions such as a zero-padding of the input can result in larger

outputs that can have the same size as the input image ("same convolution") and a maximal

output size of (N + k1 − 1)× (M + k2 − 1) ("full convolution"). The convolution is a linear and

associative operation. An important property of the convolution is translation equivariance, i.e. if

the image pixels are shifted, then the output of a convolution is shifted by the same translation.

More formally, let x ∈ Zd and Tx be the translation operator acting on a d-dimensional signal

f as Txf(y) = f(x + y), i.e. it is a geometrical transformation that shifts the signal locations,

then

Tx(f ∗ g) = (Txf) ∗ g = f ∗ (Txg). (2.8)

Thus, a convolutional filter detects the same features in terms of the response magnitude in dif-

ferent parts of the image. A convolutional kernel w is called separable if it can be written as a

convolution of other kernels wi

w = w1 ∗ w2 ∗ · · · ∗ wn. (2.9)

The separability of a kernel can be used to reduce the computational complexity of a filter. As-

sume that a 2D kernel can be written as the convolution of two 1D kernels w = w1 ∗ w2, where

1D refers to a kernel that only has non-zero entries along one axis. Then, due to the associativity

of the convolution, a convolution of an image I ∈ RN×M with this kernel can be calculated as

I ∗ w = I ∗ (w1 ∗ w2) = (I ∗ w1) ∗ w2 (2.10)

resulting in two 1D convolutions along different axes instead of one 2D convolution. However,

in a naive implementation of the convolution (not using fast Fourier transform (FFT)), the 2D

convolution requires NMk1k2 multiplications and NM(k1k2 − 1) additions (same boundary

condition), whereas the two consecutive 1D convolutions require NM
∑

i ki multiplications and

NM(
∑

i ki−1) additions, which scales more favorably with respect to the kernel size resulting in

16

2 Background

a faster computation and less memory usage. The construction of image transformations that yield

useful features for a task is called feature design. This can e.g. consist of the explicit specification

of a convolutional kernel. An alternative to feature design is to learn relevant features from the

data using machine learning as discussed in the next section.

2.2.3. Image Segmentation
Many connectomic reconstruction tasks can be formulated as segmentation tasks, i.e. the group-

ing of voxels into segments (sometimes also called supervoxels or regions) that typically repre-

sent the objects of interest or boundaries between objects (see also Pal and Pal, 1993; Pham et al.,

2000). A segmentation S of a d-dimensional signal I : G → I is a map

S : G → L, (2.11)

where L ⊂ N is a set of segmentation ids. A segment consists of all locations with the same id

i, i.e. the preimage of S−1(i) of i, and is thus uniquely identified by its id. Segments are some-

times also called regions or supervoxels. Note that in contrast to classical image segmentation,

segments are not required to be connected, which is sometimes called pixel classification (Pham

et al., 2000). An example of a segmentation in connectomics is a volume segmentation of EM

data, which groups all voxels belonging to the same cellular process. The segments in a volume

segmentation are given by individual processes which are assigned arbitrary unique ids. Further

examples are given by the segmentation of ultrastructure such as mitochondria. In this case, one

possibility would be to assign binary labels L = {0, 1} corresponding to mitochondria and back-

ground, which in turn could be turned into a segmentation of individual mitochondria by further

processing the binary maps e.g. using connected components.

The region adjacency graph of a segmentation consists of the segments as nodes with edges be-

tween adjacent segments. The adjacency of segments is typically defined using a neighborhood

relation of the underlying voxels. The volume segmentations of 3D EM data considered here

are often generated using the watershed segmentation algorithm (Beucher and Lantuéjoul, 1979),

which can produce a segmentation in which segments are separated by a one-voxel boundary such

that voxels within a segment only have other voxels from that segment or wall voxels in their 26

neighborhood. Wall voxels are assigned the distinguished id 0. The region adjacency graph for

such a volume segmentation consists solely of segments with a positive id, i.e. wall voxels are

ignored, and two segments are called adjacent if there is a wall voxel that contains ids from both

segments in its 26 neighborhood. Volume segmentations can contain two kinds of errors: Two

segments that belong to the same biological process constitute a split error that is associated with

the corresponding edge of the supervoxel graph. A segment that spans two or more biological

processes is called a merge error which is associated with the corresponding segment. The as-

sociation of segmentation errors with different objects of the region adjacency graph, namely its

edges for split errors and its nodes for merge errors, highlights the conceptual difference of the

errors. Split errors can be resolved by an agglomeration procedure, which removes edges from

the supervoxel graph that constitute split errors and merges the corresponding segments. In terms

of the underlying segmentation, this only requires a relabeling of segmentation ids, which can

17

2 Background

even be done virtually by introducing equivalence classes of segments from the same biological

process, i.e. lists of segments in the same processes. Merge errors on the other hand require

to split a segment into several parts, which typically requires to either correct the segmentation

locally or to allow segments to be part of multiple objects, e.g. using overlapping segments lists.

A segmentation is called an oversegmentation if it has the tendency to split the target objects into

multiple segments and an undersegmentation if it has the tendency to merge objects.

2.3. Machine Learning

Machine learning aims to provide algorithms that can automatically analyze data without being

explicitly programmed (Samuel, 1959). Instead of following static instructions to solve a partic-

ular task, the relevant decision criteria are learned from sample data. The data-driven approach

of machine learning enables the detection of domain-specific patterns that can be used to make

predictions for unseen samples or solve decision making tasks. This chapter is based on Murphy

(2012), Bishop (2007) and Goodfellow et al. (2016).

2.3.1. Supervised Learning
The goal of supervised learning is to infer a relation between inputs x ∈ X and outputs y ∈ Y
given a set of labeled training samples D = {(xi, yi)}Ni=1, where N is the number of training

samples and X and Y are the input and output space, respectively. Labeled in this case means

that for each input xi the corresponding output yi is known. In the simplest case, the relation

between inputs and outputs is given by a function f : X → Y . More generally, a probabilistic

approach specifies the relation by a conditional distribution p(y|x). If the data model p(y|x) is

specified using a fixed set of parameters θ, the model is called a parametric model, otherwise, if

the number of parameters grows based on the training data, the model is called nonparametric.

The input and output spaces X and Y can in principle be any set. General inputs are typically

represented in a feature space by a mapping φ : X → Rd that describe characteristic properties

of the object. For example, in image processing the raw input data are typically images of a

fixed size N ×M resulting in the input space X = RM×N and a feature representation of an

image could be the result of a set of image filters called a feature map. Choosing a good feature

representation, a process known as feature construction or design, is an important factor for many

machine learning models and is often done by human experts. Selecting the most predictive input

features for a task from a large set of features is known as feature selection. Algorithms such

as artificial neural networks are able to automatically learn hierarchical feature representations

directly from the input data (see subsection 2.3.4). If Y is a finite categorical set, i.e. without

loss of generality (wlog) Y = {1, . . . , C}, then the problem is called a classification or pattern

recognition task while for Y = Rd it is called a regression task.

For parametric models the learning or training consists of estimating the parameters given the

training data set. In the non-probabilistic setting, the parameters can be fitted by minimizing an

error or loss function L(η(x), y) on the training data, where η is the model prediction for an input

x and y is the corresponding true output value. There is, however, no distinguished loss function

18

2 Background

in the non-probabilistic setting. A simple choice for a classification task could be the 0-1 loss

L(η, y) = I(η = y), where I is the indicator function given by

I(η = y) =

1 if η = y

0 otherwise.
(2.12)

However, the 0-1 loss is not smooth or even differentiable, which is why surrogate loss func-

tions are often used. Examples are the hinge loss L(η, y) = max(0, 1 − ηy), which is used for

classification in support vector machines (SVM), or the exponential loss L(η, y) = exp(−ŷiη)

for AdaBoost (see 2.3.3), where ŷi ∈ {−1, 1}. In the probabilistic setting, there are more nat-

ural choices for parameter estimators. The full knowledge about the parameters is given by the

posterior distribution p(θ|D), which in most cases is analytically intractable or computationally

difficult to calculate. Instead, point estimators are often considered that result in some frequently

used loss function. A common estimator is the maximum likelihood estimate (MLE)

θ̂ = arg max
θ

log p(D | θ). (2.13)

The MLE is equivalent to the minimization of the negative log likelihood (NLL)

NLL(θ) = − log p(D | θ). (2.14)

If the training samples are assumed to be independent and identically distributed, the NLL can be

written as

NLL(θ) = −
N∑
i=1

log p(yi | xi, θ). (2.15)

For a Gaussian model of the form p(y | x, θ) = N (y | fθ(x), σ2), whereN is the density function

of the Gaussian distribution, fθ : X → Y is a function with parameters θ and σ is the fixed

standard deviation, the minimization of the NLL is equivalent to the minimization of the sum of

squares error

Lse(θ) =
1

2

N∑
i=1

(yi − fθ(xi))2, (2.16)

which is often used for regression tasks. Assuming a fixed but different standard deviation for

each training sample results in the weighted sum of squares error

Lse(θ) =
1

2

N∑
i=1

wi(yi − fθ(xi))2, (2.17)

where wi ∈ R are the weights associated with each training sample. Similarly, for a binary

model of the form p(y | x, θ) = B(y | σ(fθ(x))), where B is the Bernoulli distribution, σ(x) =
1

1+exp(−x) and fθ : X → Y , the NLL results in the cross-entropy error

NLL(θ) = −
N∑
i=1

yi log σ(fθ(xi)) + (1− yi) log(1− σ(fθ(xi))), (2.18)

19

2 Background

which is often used for binary classification. Using the softmax function for C ∈ N classes

σ : RC → [0, 1]C , σi(x) =
exp(xi)∑C
j=1 exp(xj)

, (2.19)

where σi denotes the i-th component of σ, this can be generalized to a multi-class classification

y ∈ {1, . . . , C} using the model p(y | x, θ) = σ(fθ(x)) with fθ : X → RC resulting in the

cross-entropy error for multiple classes

NLL(θ) = −
N∑
i=1

C∑
c=1

yic log σ(fθ(xi))c. (2.20)

Another common parameter estimator is the maximum a posteriori (MAP)

θ̂ = arg max
θ

log(p(D | θ)p(θ)) = arg max
θ

log p(D | θ) + log p(θ), (2.21)

where p(θ) is the prior distribution over the model parameters. Assuming p(θ) = N (0, 1) this

results in the L2-regularization term

‖θ‖22 =
∑
k

θ2k (2.22)

that is added to the MLE estimate. In the following, two particular machine learning models and

examples of learning algorithms to train them are introduced.

2.3.2. Decision Trees
Decision trees are a popular machine learning model due to their simplicity and interpretability

(see also Murphy, 2012). The input spaceX ⊂ Rd is recursively partitioned by axis aligned splits

using each partition as the input for the next step. The final model can be written as

f(x) =
∑
i

wiI(x ∈ Ri), (2.23)

where Ri ⊂ X is the i-th region and wi ∈ Y is the region prediction, i.e. a real value for

regression or ordinal values for classification tasks. The evaluation of a decision tree for an input

x consists of traversing a binary tree until a leaf node containing the tree response is reached. The

child node of a node k is selected by a simple thresholding procedure xjk ≤ tk, where tk ⊂ R is

the threshold at node k of the tree and xjk is the jk-th dimension of x. The learning consists of

determining the structure of the tree as well as the decision threshold tk and feature dimension jk
for each node k.

Since finding the optimal partition is NP-complete (Hyafil and Rivest, 1976), decision trees are

typically constructed in a greedy fashion. This is for example done in the classification and

regression trees (CART) framework that computes a locally optimal MLE solution (Breiman et al.,

1984). Consider a node of a binary decision tree and a set of training data points {xi, yi}. The

decision criterion for the node is determined by choosing a feature j and a threshold t that results

20

2 Background

in the smallest loss at this node, i.e.

(ĵ, t̂) = arg min
j={1,...,d}

min
t∈Tj

L({xi, yi : xij ≤ t}) + L({xi, yi : xij > t}), (2.24)

where Tj is the set of possible thresholds for dimension j, e.g. the unique values of all training

samples for the corresponding dimension and xij denotes the j-th dimension of the data point xi.

Typical loss functions are the squared loss with respect to the mean of the data for regression

and the misclassification rate, entropy or gini index for classification. If the optimal feature j

and threshold t are determined, the training data is distributed accordingly and the procedure is

repeated for both newly constructed nodes. The splitting stops if predefined criteria are met, e.g.

if the tree reaches a maximal depth or the data in the node is sufficiently homogeneous (e.g. all

labels are in the same class). If a node is not split anymore, its response is calculated from the

data in the node either as the mean target value of or from the class label distribution.

2.3.3. Ensemble Methods and Boosting
Ensemble methods combine weighted base models into a larger model of the form

FM (x) =

M∑
m=1

wmfm(x), (2.25)

where wm is the weight for the m-th base model fm. One approach to construct ensembles is the

meta-learning technique boosting that typically uses an iterative training procedure to construct

and combine base models called weak learners. Probably the most famous boosting algorithm for

binary classification is AdaBoostM1 (Freund and Schapire, 1997) that optimizes the exponential

loss L(FM (x), y) = exp(−yFM (x)), where y ∈ {−1, 1}. In each iteration of the AdaBoostM1

training algorithm, the classifiers Fn−1 of the previous steps are fixed and the current classifier fn
is trained to minimize

L(fn) =
∑
i

exp (−yi(Fn−1(xi) + βfn(xi))) , (2.26)

where β ∈ R is a constant that is optimized in addition to fn. The solution to the optimization

problem is a classifier fn trained on a weighted version of the training data set where the weights

are determined by the errors of the previous models Fn−1 (see Freund and Schapire, 1997 and

Murphy, 2012 for details). However, due to the use of the exponential loss, AdaBoostM1 is

sensitive to outliers and does not admit a probabilistic interpretation. To overcome these issues,

boosting algorithms have been developed for other loss functions, e.g. the LogitBoost algorithm

(Friedman et al., 2000) that uses the log-loss

L(FM (x), y) = log(1 + exp(−yFM (x))), (2.27)

where y ∈ {−1, 1} as before. By its very definition the log-loss is the logarithm of a probability

mass function and outliers only contribute linearly.

21

2 Background

2.3.4. Artificial Neural Networks and Deep Learning
Artificial neural networks (ANNs) are inspired by functional principles of biological neural net-

works. In the following, feed-forward ANNs are considered as they are typically used in deep

learning algorithms for computer vision. ANNs consist of artificial neurons that are wired to-

gether with learned connection. Each artificial neuron calculates a weighted sum of its inputs

x ∈ Rd that is passed through a non-linear activation function h resulting in the response z ∈ R
of the neuron given by

z = h

(
w0 +

d∑
i=1

wixi

)
= h

(
w0 + wTx

)
, (2.28)

where wi ∈ R are input weights of the neuron and wTx denotes the scalar product of vectors.

For notational simplicity the bias term w0 can be subsumed into the input weights by extending

the input vector with an additional dimension with fixed value one, i.e. by defining x̂ = (1, x) ∈
Rd+1. The non-linearity h is typically chosen as a differentiable sigmoidal function such as the

logistic sigmoid, or the hyperbolic tangent. Other non-linearities such as the rectified linear unit

(relu) given by

relu(x) = max(0, x), (2.29)

which is differentiable almost everywhere, have been found to be superior in many applications

(Glorot et al., 2011). In fully-connected feed forward networks, the neurons are arranged in layers

with each neuron receiving input from all neurons in the previous layer. The output zl ∈ RN of

layer l consisting of N neurons can be conveniently expressed as a matrix multiplication of a

weight matrix Wl where each row corresponds to the weights of one neuron in the layer with the

output of the previous layer zl−1 followed the point-wise application of a non-linearity h

zl = h(Wlzl−1). (2.30)

The neuron activities in the last layer L contain the network predictions f(x) and the layer is

called the output layer of the network. The layers between the input layer and the output layer

are called hidden layers. An ANN with a single hidden layer is a universal approximator, i.e. it

can model suitably smooth functions arbitrarily close given enough hidden units (Hornik, 1991).

However, deeper networks consisting of several hidden layers are often computationally more

efficient (in terms of parameters) when representing a function compared to shallow networks

with only a few hidden layers (Bengio et al., 2009). The term deep learning refers to the usage of

ANNs models with more than one hidden layer.

A standard way for training ANNs is to assume that the output constitutes the mean of a Gaussian

model p(y|x) = N (y|f(x), σ2) with fixed standard deviation σ or a binomial model p(y|x) =

B(y|f(x)). The MLE for these models corresponds to the minimization of the sum of squares

error (Equation 2.16) or the cross-entropy error (Equation 2.18), respectively. If the non-linearities

in the network are differentiable almost everywhere, the minimization of the loss function L =

L(θt) can be done by gradient descent, i.e. by iteratively changing the model parameters θ in the

opposite direction of the gradient of the loss function ∇θL(θt) = ∂L(θt)
∂θ . The calculation of the

22

2 Background

error gradient involves the application of the chain rule to calculate the gradients of the parameters

in the hidden layers and is called the backpropagation algorithm (Rumelhart et al., 1986). In the

simplest version of gradient descent, the parameters θ are updated by a scaled version of the

gradient

θt+1 → θt − ηt∇θL(θt), (2.31)

where ηt > 0 is the learning rate that constitutes an optimization hyperparameter that can depend

on the current iteration. Note that the sum of squares error and the cross-entropy error can be

written as a sum of terms for each training examples that can be interpreted as an expectation

with respect to the data distribution pD on X × Y

L(D) =

N∑
i=1

L(f(xi), yi) = Ex,y∼pD [L(f(x), y)]. (2.32)

This expectation can be approximated by sampling only a small number of training examples

from the training data called a minibatch. Training the network with gradients calculated from

minibatches is called batch gradient descent. In the extreme case of a single training example it is

called stochastic gradient descent. Batch and stochastic gradient descent result in a noisy estimate

of the gradient which, however, is much faster to compute in particular for very large datasets and

also allows for online training. A simple but typically substantial acceleration method of the

default gradient descent algorithm is to update the velocity instead of the position in weight space

by adding a momentum term

θt+1 → θt + ∆θt = θt +m∆θt−1 − ηt∇θL(θt), (2.33)

where ∆θt and ∆θt−1 are the current and previous weight update, respectively, and m ∈ (0, 1)

specifies the relative contribution of the momentum term to the current gradient (Rumelhart et al.,

1986). Note that other extensions of the default gradient descent method exist using e.g. adaptive

learning rates such as in AdaGrad (Duchi et al., 2011) or Adam (Kingma and Ba, 2014).

2.3.5. Convolutional Neural Networks
Instead of using ANNs with fully connected layers, the network architecture can be constrained

to include a-priori knowledge about the task. For structured data such as images, an efficient

strategy is to maintain their structural properties such as the locality of pixels in the network ar-

chitecture. Convolutional neural networks (CNNs) for image analysis achieve this by ordering

the neurons in each layer in two-dimensional grids, where all neurons in one grid share the same

parameters and receive input from local patches in the grids of the previous layer that are slightly

shifted for each neuron (LeCun et al., 1989). The parameter sharing in CNNs results in a sub-

stantial reduction of trainable parameters and, together with the localized field of view, introduces

translation equivariance of the calculated features. Consequently, the basic operation of CNNs is

the convolution defined in Equation 2.6. For image data, a CNN typically operates on 3D image

stacks z ∈ RN1×N2×c, where N1, N2 are the spatial dimensions of the data, i.e. width and height

for images, and c is the number of channels also called number of feature maps. If the network

is trained on raw image data then the channels of the input layer are set corresponding to the type

23

2 Background

of input image, i.e. c1 = 1 for grayscale images or c1 = 3 for RGB images. Each layer l of

a CNN in its most basic form calculates multiple 3D convolution of the output of the previous

layer zl−1 ∈ RN
l−1
1 ×N l−1

2 ×cl−1 with kernels wli ∈ Rkli1×kli1×cl−1 , i = 1, . . . , cl to produce the

outputs

zli = h(zl−1 ∗ wli + bli) ∈ RN
l
1×N l

2×1, (2.34)

where bli ∈ R is an additive bias. The single outputs zli of a layer are stacked in the third di-

mension to again produce a 3D output zl ∈ RN l
1×N l

2×cl . Note that for the 3D convolution, the

channel dimension is typically treated differently than the spatial dimensions, i.e. the size of the

convolutional kernel in the channel dimension is equal to the total number of channels and there is

typically no dilation or stride included in this dimension. This corresponds to the network doing

separate 2D convolutions for each input channel that are added up to produce one output channel.

The principle of convolutional neural networks is not limited to 2D images but can be generalized

to arbitrary d-dimensional signals such as audio and image stacks/videos.

Another common operation in CNNs are pooling layers that combine feature map responses of

nearby pixels and often reduce the size of the feature maps in a layer. The most prominent example

is the max-pooling layer that corresponds to a strided maximum filter. In brief, a max-pooling

layer calculates the maximal response in a rectangular neighborhood of all pixels on a regular grid

of a feature map, i.e. in the case of 3D network layers

zl+1(x, y, z) = max
w∈W,h∈H

zl(xk1 + w, yk2 + h, z), (2.35)

where W,H ⊂ Z define the size of the max-pooling window and k1, k1 ∈ N the pooling stride.

The pooling is typically done separately for each image channel as defined in Equation 2.35. The

size of the output in dimension i is smaller by a factor ki. Other examples of pooling operations

are average pooling that calculates the average of each input window or strided convolutions that

only evaluate the output of the convolution on a sparse grid instead of all pixel locations.

Each layer of ANNs described above constitutes a differentiable transformation which are chained

together to give the network result. The chain structure can be generalized to directed acyclic

computation graphs representing a differentiable transformation of an input variable to an output

variable. Since the composition of differentiable transformations is differentiable, the parameter

gradients with respect to some loss function can be calculated by automatic differentiation (Rall,

1981) allowing for optimization by gradient descent. Thus CNNs are not limited to the strict se-

quence of layers as described above but can contain e.g. skip connections or parallel processing

pathways. Furthermore, other transformations that are differentiable can be used in the computa-

tion graph as well such as the fully connected layers described in the previous section. However,

a fully connected layer takes an input of a fixed size and produces a fixed-sized output whereas

a convolutional or pooling layer can process inputs of arbitrary size. A CNN is called a fully

convolutional network (FCN) if it can process inputs of arbitrary size producing spatially dense

outputs of corresponding size (Long et al., 2015; Springenberg et al., 2014). The receptive field

of an output pixel from a FCN is given by all pixels in the input image that contribute the output

24

2 Background

value. Putting it another way, a default CNN can be thought of as non-linear function while a

FCN is non-linear filter (Long et al., 2015).

2.3.6. Performance Evaluation Metrics
Ultimately, the goal of using machine learning models is to make predictions on data that has not

been used during training. To estimate the performance on novel data, the generalization error of

a model f is defined as the expected error with respect to some loss function L and the distribution

p(x, y) on X × Y that is used for future predictions (see also Murphy, 2012; Goodfellow et al.,

2016), i.e.

Ep(x,y)[L(f(x), y)]. (2.36)

The distribution p(x, y) for which the generalization error is calculated is typically the same dis-

tribution from which the training set was generated. However, the training error is typically not

a good estimator for the generalization error because complex models might be able to perfectly

fit the training data but show a high generalization error which is called overfitting. The general-

ization error can be approximated by an independent test set, also called ground truth, which was

not used for training.

In general, the loss function L might not contain all information of interest, e.g. the 0-1 loss does

not include whether a specific class is misclassified while the exponential loss of AdaBoost is

difficult to interpret for a classification task, motivating the use of additional quantities to measure

the algorithm performance. For binary classification, a set of common performance evaluation

quantities are the confusion matrix, the receiver operator characteristic (ROC) curve, precision,

recall, area under curve (AUC) and the F1 score (see also Murphy, 2012). Let y ∈ {0, 1}, where

y = 1 is called the positive class and y = 0 the negative class, which is known for all data points

in the test set. Furthermore, let f(x) be the output of a classifier, e.g. the probability p(y = 1|x)

or another measure of confidence that y = 1. The classification decision amounts to choosing a

threshold τ and assigning the predicted class ŷ as

ŷ(x) =

1 if f(x) ≥ τ

0 otherwise.
(2.37)

For each choice of τ , the confusion matrix reports the classification performance by counting the

number of true positive (TP: y = ŷ = 1), false positive (FP: y = 0, ŷ = 1), false negatives (FN:

y = 1, ŷ = 0) and true negative (TN: y = ŷ = 0) predictions that occur in the test set (see

Table 2.1). Typically, the confusion matrix is not used directly for performance assessment but

error metrics derived from it (see Table 2.1). The recall or true positive rate specifies the fraction

of retrieved positive ground truth instances

Recall =
TP

TP + FN
. (2.38)

25

2 Background

Ground truth

y = 1 y = 0

Prediction
ŷ = 1 TP FP Precision: TP

TP+FP

ŷ = 0 FN TN

Recall: TP
TP+FN FPR: FP

FP+TN

Table 2.1: Confusion matrix and derived error metrics. TP: true positives, FP: false positives, FN: false negatives, TN: true
negatives, recall (Equation 2.38), FPR: false positive rate (see Equation 2.39) and precision (Equation 2.40).

The false positive rate (FPR) is given by

FPR =
FP

TN + FP
. (2.39)

The precision specifies the fraction of relevant correct instances among all positively classified

instances

Precision =
TP

TP + FP
. (2.40)

Instead of using a fixed threshold τ , the confusion matrix entries and the derived quantities can

be considered as functions of τ . The ROC curve consisting of the FPR and the recall is often used

to assess the performance of a classifier. However, for a large class-imbalance with many more

negative than positive samples, the FPR is typically very small making the ROC curve difficult

to read. Furthermore, in tasks such as object detection, there might not even be a reasonable

way to define the negative class. In these cases, precision and recall are often used to describe the

classifier performance because they only depend on the positive class. To compare ROC curves or

precision recall curves from different classifiers, there are several ways to summarize the curves

by a single number. A common way to do this is to calculate the AUC score that corresponds to

the total area below the respective curve. The F1-score is an alternative performance metric that

combines precision and recall into a single quantity by taking the harmonic mean

F1 = 2
1

1
Recall + 1

Precision
. (2.41)

26

3. Automated Synapse Detection for EM-based
Connectomics

In this chapter, a novel approach for synapse detection in large-scale 3D electron microscopy

(EM) datasets called SynEM is described. SynEM detects synapses by classifying interfaces be-

tween neuronal processes extracted from a volume segmentation of the data. In section 3.3, the

SynEM approach to synapse detection is defined and evaluated in section 3.4 on two datasets

imaged using serial block-face electron microscopy (SBEM) and automated serial section tape-

collection scanning electron microscopy (ATUM-SEM). For applications in connectomics, the

neuron-to-neuron errors are estimated based on the prediction errors of single synapses (subsec-

tion 3.3.4) showing that SynEM achieves precision and recall rates above 97% for binary cortical

connectomes (subsection 3.4.5).

This chapter is an extension of the publications Staffler et al. (2017a,b).

3.1. Introduction

Synapse detection in large-scale 3D EM datasets, although considered an easier task than neurite

reconstruction, is currently the bottleneck in connectomic data analysis and more than a factor of

three slower than neurite reconstruction in terms of manual annotation time as outlined in sec-

tion 1.2 (see also Dorkenwald et al., 2017; Staffler et al., 2017a). From a connectomics perspec-

tive, the foremost goal of synapse detection is to determine whether two neurons are connected.

This requires the detection of the synapse itself, but also the identification of the corresponding

pre- and postsynaptic neuron which is called the partner detection task. Conceptually, synapse

detection requires the localization of a precise arrangement of contextual cues: A vesicle cloud

agglomeration at the presynaptic membrane, a synaptic cleft and a postsynaptic density (PSD).

In addition, further properties of synapses can be of interest such as the area of the active zone

or the PSD, which can serve as structural correlates for synaptic strength (Bartol Jr et al., 2015).

The task of partner detection requires one to discern the correct postsynaptic partner or partners

among all incidental touches of the presynaptic bouton. If neuronal processes are represented by a

volume segmentation, partner detection amounts to the specification of the pre- and postsynaptic

segmentation id of a synapse. Thus, synapse detection for connectomics typically needs to take

both the raw image data for the localization of synapses as well as the segmentation for partner

identification into account.

The focus of this thesis is on synapse detection for cortical synapses obtained using SBEM. Due

to the in-plane resolution of typically around 10 nm, the appearance of synapses can be slightly

different from high resolution data. Figure 3.1 shows an example of an excitatory spine synapse

at a pixel size of 11.24× 11.24 nm2. Note that single vesicles might not be discernible, however,

the shape of the vesicle cloud as a whole is still clearly outlined and in particular it is possible to

27

3 Automated Synapse Detection for EM-based Connectomics

synaptic vesicles

spine head

postsynaptic density
(PSD)

bouton

mitochondrion

spine apparatus

Figure 3.1: Excitatory synapse in serial block-face EM. Example of an excitatory synapse onto a spine head in a single slice at a
pixel size of 11.24× 11.24 nm2 from the serial block-face EM dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter,
2012b). The synaptic bouton is filled with vesicles that only attach to the membrane towards the postsynaptic spine head
accompanied by a darkening and thickening of the corresponding membrane due to the postsynaptic density (PSD). Scale bar:
500 nm (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, on page 1 in
https://doi.org/10.7554/eLife.26414.034 licensed under CC BY 4.0)

see whether there is an actual apposition of the vesicle cloud to a membrane. Furthermore, there is

typically no synaptic cleft visible between pre- and postsynaptic process and the PSD can be less

pronounced than in data with higher resolution (cf. Figure 2.3), which can make the identification

of the active zone and hence the postsynaptic partner detection more difficult in particular for

inhibitory synapses (Figure 3.2). Although the identification of synapses from a single slice might

be difficult, the volume imaging substantially improves synapse detection, because it is possible

to inspect synapses in multiple consecutive slices (Helmstaedter, 2013; see also Supplementary

Material 4 in Staffler et al., 2017a for a description of synapse detection in SBEM datasets). Due to

the resolution limitation, the distinction of excitatory (Gray type I or asymmetric) and inhibitory

(Gray type II or symmetric) synapses according to structural properties, such as the shape of

vesicles and the cleft size, is often difficult even when using the 3D context. However, a further

advantage of connectomic datasets is that several synapses along an axon can be inspected. Since

inhibitory synapses are predominantly innervating dendritic shafts and somata (see e.g. Kubota

et al., 2016; Santuy et al., 2018), the distribution of targets along axons can be used in addition to

structural properties of single synapses.

Despite previous work on automated synapse detection approaches, methods for datasets with

medium in-plane resolution as produced by SBEM are still scarce and the methods developed

for data with high in-plane resolution such as focused ion beam scanning electron microscopy

(FIBSEM) or serial section transmission electron microscopy (ssTEM) often show a considerable

drop in performance when applied to medium resolution data.

Here, a novel method for automated synapse detection in 3D EM data called SynEM is presented.

SynEM is based on an automated volume segmentation and combines synapse and partner detec-

tion into a single classification task. SynEM achieves 88% precision and recall rates for cortical

synapses in a SBEM dataset and estimated binary neuron-to-neuron precision and recall rates of

97%.

28

https://doi.org/10.7554/eLife.26414.034
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

a b c

Figure 3.2: Tentatively inhibitory synapse in SBEM. All images are from a dataset from mouse primary somatosensory cortex
(S1) layer 4 (L4) (2012-09-28_ex145_07x2; Boergens and Helmstaedter, 2012b) at a pixel size of 11.24× 11.24 nm2 (a) Soma
synapse of a large bouton with a clear vesicle agglomeration towards the somatic membrane (red arrow) but not towards any other
process touching the bouton. (b) Shaft synapse of a medium-size bouton again indicated by the clear vesicle agglomeration only
towards the shaft membrane (red arrow). (c) Secondary spine head innervation indicated by the vesicle agglomeration towards the
common membrane (red arrow) and potentially a slight thickening of the postsynaptic membrane. Note the second more distinct
synapse onto the spine head below the labeled synapse. Scale bar: 1 µm (a - c)

3.2. Related Work

Several methods for automated synapse detection have been proposed for different EM modalities

(see also Supplementary File 1 in Staffler et al., 2017a). Mishchenko et al. (2010) used a 2D PSD

recognition algorithm for ssTEM data that classifies voxels on boundaries between axonal and

dendritic processes from a volume segmentation using features (integrals) calculated in the direc-

tion orthogonal to the membrane. The actual synapse detection and partner identification were

combined by considering the total PSD score of all voxels on boundaries between axon-dendrite

pairs. Kreshuk et al. (2011) used a voxelwise PSD classification based on a set of image filters for

isotropic FIBSEM data and extended the approach in Kreshuk et al. (2014) by a subsequent object

classification step for highly anisotropic ssTEM data. Becker et al. (2013) extended the method of

Kreshuk et al. (2011) with contextual cues by considering additional locations around the voxel

of interest that are placed in a local reference frame with a consistent orientation at synapse lo-

cations. Neila et al. (2016) did a voxelwise classification similar to Kreshuk et al. (2011), which

was refined by a subsequent regularization using conditional random fields to improve the result-

ing segmentation, which they apply to mitochondria and synaptic junction segmentation. Perez

et al. (2014) used a cascaded hierarchical model for pixelwise classification and binarization us-

ing active contours to segment different kind of ultrastructure (mitochondria, lysosomes, nuclei

and nulceolus). The method was also considered for the task of synapse detection in Dorkenwald

et al. (2017). Other approaches leverage the remarkable progress that has been made in computer

vision in the last couple of years using deep learning techniques. Roncal et al. (2015) compared a

voxelwise approach using image filters and a random forest classifier (vesicle-rf) to a 2D convo-

lutional neural network (CNN) (vesicle-cnn) and showed that even using only 2D information the

CNN performance is superior. While the previous approaches focus on voxelwise classification of

a single type of ultrastructure such as PSD or mitochondria, the SyConn reconstruction approach

(Dorkenwald et al., 2017) consisted of a multi-class voxelwise classification into mitochondria,

vesicles and synaptic junctions using recursive 3D CNNs thus sharing the learned features and

exploiting the co-occurrence of these classes. Heinrich et al. (2018) used a 3D encoder-decoder

29

3 Automated Synapse Detection for EM-based Connectomics

type CNN for voxelwise prediction of synaptic clefts formulated as a regression task. Parag et al.

(2018) used a 3D encoder-decoder type CNN to learn regression labels for pre- and postsynaptic

partners, which were called signed proximities. In contrast to default synaptic cleft labels, signed

proximities allow to infer the synapse orientation directly from the voxel predictions. Other ap-

proaches have been developed for synapse specific staining (Navlakha et al., 2013) or for synapses

with features that are tissue-specific such as rabbit retinal ribbon synapses (Jagadeesh et al., 2014)

or synapses in Drosophila (Plaza et al., 2014; Huang and Plaza, 2014).

The task of partner detection on the other hand has initially received less attention than synapse

detection. Kreshuk et al. (2015) proposed an approach for multi-target synapses in insect brains

based on a probabilistic graphical model. SyConn (Dorkenwald et al., 2017) contained a ded-

icated partner detection step subsequent to the voxel-based synapse detection, which classified

contacts between segments from a local segmentation around neuron skeletons using the over-

lap with the voxel-based synapses and geometrical features. Huang et al. (2016) also included a

dedicated partner detection step that consisted of classifying interfaces between identified presy-

naptic segments containing a T-bar and neighboring segments. The interfaces were defined as the

overlap of two segments dilated by varying amounts and were thus neither restricted to the actual

processes nor did they consider the pre- and postsynaptic process separately. More recently, ad-

ditional methods for partner detection have been developed. Buhmann et al. (2018) proposed a

method for partner detection directly from raw EM data using a 3D encoder-decoder type CNN

to predict pairs of voxels in the pre- and postsynaptic processes of synapses. Parag et al. (2018)

used a dedicated partner detection step to prune synapse candidates inferred from the voxelwise

prediction of signed proximities that were overlapped with a volume segmentation. For candidate

pruning, the raw EM data, the output of the voxelwise prediction of signed proximities and bi-

nary segmentation masks of two neighboring processes from a volume segmentation were used

as input to a 3D CNN.

3.3. SynEM: Synapse Detection by Interface Classification

3.3.1. Interface Definition and Feature Representation
In SynEM, the task of synapse detection is formulated as a binary classification of interfaces be-

tween neuronal processes (see also Mishchenko et al., 2010; Kreshuk et al., 2014; Huang and

Plaza, 2014; Dorkenwald et al., 2017). Neuronal processes are represented by a volume segmen-

tation S : Z3 → L of the image data, i.e. a partitioning into regions that represent processes from

different cells which are separated by a one-voxel thick boundary (see also subsection 2.2.3).

Boundary voxels are assigned the distinguished id 0 while segments have strictly positive ids.

The border surfaces between two segments are given by the connected components of all bound-

ary voxels that contain both segments in their 26 neighborhood N26 (see also Equation 2.4), i.e.

for two segments with ids i and j the border surfaces B(i, j) are given by

B(i, j) = CC26({x ∈ S−1(0) | i ∈ S(N26(x)) and j ∈ S(N26(x))}), (3.1)

30

3 Automated Synapse Detection for EM-based Connectomics

where CC26 refers to the set of connected components of a set of voxels using the 26 neigh-

borhood. The single connected components of a border are denoted by b(i, j)k ⊂ Z3, k =

1, . . . , |B(i, j)| or simply b(i, j) if the specific border surface does not matter. Thus, each border

is associated with exactly two segments. Segments that have a non-empty border are called adja-

cent. The region adjacency graph, abbreviated with supervoxel graph, consists of all segments of

the volume segmentation with edges between adjacent segments.

Borders between segments in a volume segmentation encode all available information about pos-

sible locations and orientations of synaptic junctions assuming that there are no merger errors

at synapse locations. Furthermore, classifying borders as synaptic or non-synaptic includes both

synapse detection as well as partner identification. However, the main features of synapses are

not only located at borders, that is at the membranes between processes, but extend into the pre-

and postsynaptic process: a vesicle cloud in the presynaptic terminal extending at least 100 nm–

200 nm away from the membrane and a postsynaptic PSD with a width of about 20 nm–30 nm.

The regions in segments close to borders are included by defining subvolumes that extend up to

a maximal distance from a border. For a border b(i, j) and a maximal distance d, the subvolume

for supervoxel i is defined by

subd(i) = {x ∈ S−1(i) | distnm(x, b(i, j)) ≤ d} ⊂ Z3, (3.2)

where the distance is measured in nanometers to account for the data anisotropy. The interface

I(i, j) of a border b(i, j) is defined as an ordered tuple of interface volumes vn ⊂ Z3, i.e. sets of

voxels, consisting of the border itself and 2k ∈ N subvolumes with distances d1, . . . , dk

I(i, j) = (b(i, j), subd1(i), subd1(j), . . . , subdk(i), subdk(j)). (3.3)

The ordering of subsegments of an interface is called the interface direction. For each segment of

a border, three subvolumes with distances of 40 nm, 80 nm and 160 nm were used to account for

synaptic features at various distances from the membrane (Figure 3.3). Presynaptically, all three

subvolumes are expected to be filled with vesicles, in particular also the 40 nm subvolume where

vesicles fuse to the active zone, which is not the case for incidental non-synaptic touches, i.e. for

locations where a bouton touches another process but without forming a synapse. Postsynapti-

cally, the 40 nm subvolume contains the PSD, while larger subvolumes can help to discern the

process identity, for example spine heads are typically mostly void of any ultrastructure making

a synapse very likely while the presence of vesicles in the postsynaptic process indicates an axon

and thus eliminates the possibility of a synapse. Interface classification thus contains border clas-

sification as a special case when no subvolumes are considered but allows one to take additional

context around borders into account. Note that while the definition of a border is symmetric, i.e.

b(i, j) = b(j, i) this is not true for interfaces anymore due to the ordering of the subsegments in

the interface definition. However, since synapses naturally have a direction from the presynaptic

to the postsynaptic process, two versions of binary interface classification were considered which

were called directed and undirected. For undirected interface classification, binary labels (synap-

tic or non-synaptic) were assigned to interfaces irrespective of the order of segments i and j in the

31

3 Automated Synapse Detection for EM-based Connectomics

a b 160

D
is

t.
fro

m
bo

rd
er

 (n
m

)

0

160

Figure 3.3: Interface definition. (a) The raw data (left, here from the dataset 2012-09-28_ex145_07x2; Boergens and
Helmstaedter, 2012b) is volume segmented (middle, here using SegEM; Berning et al., 2015) and neighboring segments are
identified (right). (b) For each pair of adjacent segments, the border (red) and the subvolumes with maximal distances of 40nm,
80nm and 160nm (green and blue) are calculated. Scale bar: 500 nm (a-b). (Staffler, Berning, Boergens, Gour, van der Smagt,
Helmstaedter 2017, eLife, Figure 2 https://doi.org/10.7554/eLife.26414.005 licensed under CC BY 4.0)

a

DoG Int./var.

Syn.

Non-
syn.

b

Int./var.

Vo
xe

ls
 (#

)

0

2000

-6000 -2000

-6000 -2000
0

4000

Syn.

Non-syn.

Figure 3.4: Texture feature calculation. (a) Filter responses of the Difference of Gaussians (DoG) and intensity/variance (Int./Var)
filter calculated on the dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b). Arrows point to examples of a
synaptic (red) and a non-synaptic (blue) interface. (b) Distribution of the filter responses for the interface border (red) and largest
subvolumes (green and blue; see also Figure 3.3) separately for the synaptic and non-synaptic interface highlighted in (a). Median
responses for the subvolumes are indicated on the x-axis (arrows). Scale bar: 500 nm (a). (Staffler, Berning, Boergens, Gour, van
der Smagt, Helmstaedter 2017, eLife, Figure 2 https://doi.org/10.7554/eLife.26414.005 licensed under CC BY
4.0)

interface definition. This also offers the obvious data augmentation strategy of considering both

directions of an interface with the same label during training. For directed interface classification,

the synapse label is assigned to an interface I(i, j) only if i corresponds to the presynaptic process

and j to the postsynaptic process and a non-synaptic label otherwise.

For classification, a feature representation of interfaces was developed based on texture features

as well as shape features. Texture features were calculated by applying 3D image filters to the

raw data and pooling the filter response over the interface volumes using summary statistics. A

set of 9 summary statistics was used consisting of quantiles (0, 0.25, 0.5, 0.75 and 1 quantile) and

(standardized) moments (mean, variance, skewness and kurtosis) to describe the shape of the filter

response distribution over the subvolumes (for an illustration see Figure 3.4). The texture features

are summarized in subsection 3.3.2 and Table 3.1. In brief, eleven image filters were used that

capture different textural properties of the raw data like edge detectors and band-pass filters: The

identity filter (raw data), eigenvalues of the Structure Tensor and the Hessian matrix, Gaussian

smoothing filter, Difference of Gaussians (DoG), Laplacian of Gaussian (LoG), Gauss Gradient

magnitude, local standard deviation, intensity/variance feature, local entropy and a sphere average

(see also Kreshuk et al., 2011; Becker et al., 2013). Shape features were calculated for the point

32

https://doi.org/10.7554/eLife.26414.005
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.26414.005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

clouds of voxel locations in the interface subvolumes. To account for data anisotropy, the voxel

locations were scaled by the voxel size of the data. Five shape features were calculated based on

the interface volume, the principal axes and the convex hull of the border surface and the largest

subvolumes (subsection 3.3.2 and Table 3.2). The feature vectors from the single texture and

shape features were concatenated to give the overall interface feature vector of length 3224. A

more detailed definition of the texture and shape features is given in subsection 3.3.2.

3.3.2. Detailed Feature Definition
The proposed set of interface texture features consisted of seven image filters based on Kreshuk

et al. (2011) and Becker et al. (2013) and four additional filters. Each filter Fθ was applied

to an input image stack I and outputs a response for each voxel FθI : Z3 → Rc, where c

specifies the number of filter channels and θ denotes the filter parameters. For each filter channel

F iθI : Z3 → R, i = 1, . . . , c the filter response was evaluated for all voxels in each subvolume v

of an interface I and pooled using 9 summary statistics

sum_stats{F iθI(x) | x ∈ v}. (3.4)

A set of 5 quantiles (0, 0.25, 0.5, 0.75, 1) and 4 moments (mean, variance skewness, kurtosis) was

used as summary statistics resulting in a feature vector of length 7·9 = 63 (number of subvolumes

times number of summary statistics) for each filter channel. Different sets of parameters for a filter

were treated as independent channels. The total number of texture features for a single interface

was 3213 (see also Table 3.1).

Filters were calculated on patches of image data around an interface large enough such that no

boundary effects, for example due to convolutions, were present at any interface voxel. The

definition of the filters below is based on Staffler et al. (2017a). In the following I ∗w denotes the

discrete convolution (see Equation 2.6) of a 3D image stack I with a 3D convolution kernel w.

The Gaussian convolutional kernel gσ with standard deviation σ = (σx, σy, σz) ∈ R3 and a filter

size f = (fx, fy, fz) ∈ N3
>0 was defined by evaluating the unnormalized 3D Gaussian density

function

ĝσ(x, y, z) = exp

(
− x2

2σ2x
− y2

2σ2y
− z2

2σ2z

)
, (3.5)

in a rectangular bounding box (x, y, z) ∈ [−fx, fx]× [−fy, fy]× [−fz, fz]∩Z3 and normalizing

the result by the sum over its elements

gσ(x, y, z) =
ĝσ(x, y, z)∑

(x′,y′,z′)∈U ĝσ(x′, y′, z′)
. (3.6)

Derivatives of Gaussian filters were defined as derivatives of the Gaussian density gσ resulting in

the convolutional kernels
∂

∂x
gσ(x, y, z) = gσ(x, y, z)

−x
σ2x

, (3.7)

∂2

∂x2
gσ(x, y, z) = gσ(x, y, z)

(
x2

σ2x
− 1

)
1

σ2x
, (3.8)

33

3 Automated Synapse Detection for EM-based Connectomics

Filter Parameters Channels N

Identity (raw data) n. a. 1 (1) 63

Eigenvalues of Structure Tensor (σw, σd) ∈ {(s, s), (s, 2s), 15 (3) 945

(2s, s), (2s, 2s), (3s, 3s)}

Eigenvalues of Hessian σ ∈ {s, 2s, 3s, 4s} 12 (3) 756

Gaussian smoothing σ ∈ {s, 2s, 3s} 3 (1) 189

Difference of Gaussians (DoG) (σ, k) ∈ {(s, 1.5), (s, 2), 5 (1) 315

(2s, 1.5), (2s, 2), (3s, 1.5)}

Laplacian of Gaussian (LoG) σ ∈ {s, 2s, 3s, 4s} 4 (1) 252

Gauss gradient magnitude σ ∈ {s, 2s, 3s, 4s, 5s} 5 (1) 315

Local standard deviation U = 15×5×5 1 (1) 63

Intensity/variance U = {13×3×3, 15×5×5} 2 (1) 126

Local entropy U = 15×5×5 1 (1) 63

Sphere average r ∈ {3, 6} 2 (1) 126

Total 3213

Table 3.1: SynEM texture features overview. Filters used for texture feature calculation as described in subsection 3.3.1 were
calculated for the specified parameter sets. For filters involving Gaussian kernels, the standard deviation in voxel space is specified
in terms of s ∈ R3 with si = 12

voxelSizei
, i = 1, 2, 3, and the corresponding filter size was set to σ

s
ceil(2s). Neighborhoods or

structuring elements are denoted by 1x×y×z referring to a matrix filled with ones of size x× y × z in the respective dimension.
Channels: Total number of filter channels used for summary statistic calculation including the number of different parameters
(number of channels for each parameter is specified in parenthesis). N: All channels of a feature are separately pooled over the 7
interface volumes and summarized by 9 summary statistics resulting in 63 features per channel as described in subsection 3.3.1
summing up to a total number of N features for the corresponding filter.

34

3 Automated Synapse Detection for EM-based Connectomics

and
∂

∂x

∂

∂y
gσ(x, y, z) = gσ(x, y, z)

xy

σ2xσ
2
y

, (3.9)

and analogously for the other partial derivatives. Gaussian derivatives of images were defined as

the convolution with the corresponding derivative of the Gaussian kernel and are denoted by

Iσx (x, y, z) = I ∗ ∂

∂x
gσ(x, y, z), (3.10)

and

Iσxy(x, y, z) = I ∗ ∂2

∂x∂y
gσ(x, y, z), (3.11)

and analogously for the other partial derivatives. The partial Gauss derivatives can be summarized

as a vector-valued filter called the Gauss Gradient given by

∇σI = (Iσx , I
σ
y , I

σ
z) (3.12)

which outputs a 3D vector for each voxel.

In the following let I denote a 3D raw data volume and σ ∈ R3
>0 the standard deviation for a

Gaussian kernel. The Gaussian smoothing filter was defined as

FGaussian
σ I = I ∗ gσ (3.13)

corresponding to a low-pass filter resulting in a denoised or blurred version of the original im-

age.

The DoG filter was defined as

FDoG
σ,k I = I ∗ gσ − I ∗ gkσ, (3.14)

where the standard deviation of the second Gaussian filter results from the pointwise multiplica-

tion of σ with a positive scalar k > 0.

The Gauss gradient magnitude filter was defined as

FGaussGradMag
σ I = ‖∇σI‖2 =

√
(Iσx)2 + (Iσy)2 + (Iσz)2, (3.15)

where the sum over images is defined pointwise.

The Structure Tensor S = (Sij)
3
i,j=1 was defined as a matrix valued filter with output compo-

nents

Sij(I) = (Iσdi Iσdj) ∗ gσw , (3.16)

where Iσdi denotes the Gaussian derivative image of image I in the i-th dimension, σd is the

standard deviation of the Gaussian derivative and σw is the standard deviation of a Gaussian

35

3 Automated Synapse Detection for EM-based Connectomics

density filter called the window function. The multiplication of images is defined pointwise.

Using the Gauss gradient, the structure tensor can be written in the compact form

S(I) = ∇σI(∇σI)T . (3.17)

This shows that the Structure Tensor is a positive symmetric matrix which thus has three real

valued and positive eigenvalues which allow the definition of the eigenvalues of the Structure

Tensor filter given by

F EVsStructTensor
σd,σw

I = eig(Sσd,σw(I)), (3.18)

where eig denotes the eigenvalues of S sorted in increasing order of their absolute value. To

ensure exact symmetry only the lower triangular part of the Structure Tensor was calculated.

The LoG filter was defined as

F LoG
σ I = Iσxx + Iσyy + Iσzz. (3.19)

The Hessian matrix H = (Hij)
3
i,j=1 was defined as the second Gauss derivatives of an image

Hij(I) = Iσij , (3.20)

where Iσdij denotes the second Gaussian derivative image of image I in the i-th and j-th dimen-

sion. The Hessian is symmetric if the partial derivatives commute and thus has real eigenvalues.

To enforce that H is symmetric only the lower triangular entries of H were calculated and the

upper triangular entries were set to the corresponding entries from the lower triangular part. The

eigenvalues of the Hessian matrix filter were defined as

F EVsHessian
σ I = eig(Hσ(I)), (3.21)

where eig denotes the eigenvalues of S sorted in increasing order of their absolute value as

above.

The local entropy filter was defined as the entropy of voxel intensities L ∈ {0, . . . , 255} in a

neighborhood U(p) ⊂ Z3 around a voxel p ∈ Z3, i.e.

F LocEnt
U I(p) = −

∑
L∈{0,...,255}

pU(p)(L) log2 pU(p)(L), (3.22)

where pU (L) is the relative frequency of voxel intensityL = L(I) of image I in the neighborhood

U .

The local standard deviation filter was defined as the standard deviation for all voxels in a neigh-

36

3 Automated Synapse Detection for EM-based Connectomics

Raw data/ Id.

S.T. Hessian GSmooth DoG LoG

GGrad LocStd LocEnt Int./Var. SphAvg

Figure 3.5: Texture filter examples used for interface feature calculation. All examples were calculated from the dataset dataset
2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b). Left: Identity filter corresponding to the raw data. Top row from left
to right: Largest Eigenvalue of Structure Tensor (S.T.), Largest Eigenvalue of Hessian (Hessian), Gaussian smoothing filter
(GSmooth), Difference of Gaussians filter (DoG), Laplace of Gaussian filter (LoG). Bottom row from left to right: Gauss gradient
magnitude filter (GGrad), local standard deviation (LocStd), local entropy (LocEnt), intensity/variance filter (Int./Var.), sphere
average (Sph.avg). Scale bars: 1 µm.

borhood U(p) ⊂ Z3 around the voxel of interest p ∈ Z3

F LocStd
U I(p) =

√√√√√ 1

|U(p)| − 1

∑
p′∈U(p)

I(p′)− 1

|U(p)|(|U(p)| − 1)

 ∑
p′∈U(x)

I(p)

2

, (3.23)

where |U | denotes the number of voxels in U .

The intensity/variance filter was defined similar to the local standard deviation but without the

normalization factors

F Int/var
U I(p) =

∑
p′∈U(p)

I(p′)−

 ∑
p′∈U(p)

I(p′)

2

. (3.24)

The sphere average filter was defined as the mean of all voxels in a spherical neighborhood Ur
around the voxel (x, y, z) of interest given by

Ur =
{

(x, y, z) ∈ Z3 | x2 + y2 + (2z)2 ≤ r2
}
, (3.25)

and hence

F SphereAvg
r I =

1

|Ur|
∑

(x′,y′,z′)∈Ur

I(x′, y′, z′). (3.26)

An exemplary output for each texture filter is displayed in Figure 3.5.

Five shape features were calculated for the points clouds given by the interface volumes v ⊂ Z3

(Table 3.2). For anisotropic data, the voxel grid coordinates were converted to physical units by

multiplying each voxel location by the voxel size s ∈ R3 resulting in the scaled point clouds vs =

{x · s | x ∈ v}, where v is an interface volume and · denotes the componentwise multiplications

of vectors. Due to the redundancy in the shape information for different subvolumes, only the

37

3 Automated Synapse Detection for EM-based Connectomics

Feature Subsegments N

Volume Bo., 160 3

Diameter Bo. 1

Principal axis length Bo. 1

Principal axes product 160 1

Convex hull Bo., 160 3

All 11

Table 3.2: SynEM shape features overview. Feature: Name of the shape feature. Subsegments: Shape features for the interface
feature representation were calculated for the interface border (Bo) and the two largest subvolumes (160). N: Length of the feature
vector for the corresponding shape features.

interface border and the largest subvolumes were used. The volume feature was defined as the

number of voxels in a subvolume F V olume(v) = |v| and was calculated for the border and largest

subvolumes. The diameter feature was defined as the radius of a sphere with the same volume as

an interface volume v, i.e.

FDiameter(v) = 3
√

6π|v|prod(s), (3.27)

where prod(s) denotes the volume of a voxel given by the product of the components of the voxel

size s, and was calculated for the border volume. The principal axes length feature was defined

as the eigenvalues of the covariance matrix for the points in vs and calculated for the border

volume. The principal axis product feature was defined as the scalar product of the first principal

components for the two largest subvolumes of an interface corrected for anisotropy. The convex

hull feature was defined as the volume of the convex hull without the anisotropy correction and

was calculated for the border and largest subvolumes. The resulting feature vector for shape

features had a dimensionality of eleven.

The calculation of texture and shape features was implemented in Matlab. All filters involving

Gaussians kernels or derivatives of Gaussian kernels were implemented as separable filters, i.e.

instead of convolving the image data with a 3D convolutional kernel it is convolved consecutively

by 3 1D kernels along different axes of the data (see also subsection 2.2.2). The eigenvalue

calculation was done using an explicit formula for real symmetric 3 × 3 matrices implemented

as a Matlab mex-function based on an implementation from the C++ matrix library Eigen. The

local standard deviation filter and the local entropy filter were calculated using Matlab functions

(entropyfilt and stdfilt) and the local standard deviation was later replaced by a custom

separable implementation. The convex hull feature was calculated using the Matlab convhull

function.

38

3 Automated Synapse Detection for EM-based Connectomics

Data Ann.
label Undir.

syn

syn

no syn

Augment.

syn

syn

syn

syn

no syn

no syn

Directed

Ø

Label sets

syn

syn

no syn

no syn

no syn

no syn

a b

Figure 3.6: Training data annotation. (a) Matlab graphical user interface for neuronal interface annotation used for training and
validation data generation (see subsection 3.3.3 for a detailed description). (b) Interface labeling strategies based on the subsegment
ordering of interfaces exemplified for three different interfaces (rows). Human interface annotations consist of the identity of
interfaces (synaptic, non-synaptic) as well as the synapse direction in terms of the subsegment ordering (Ann. label). The undirected
label set (Undir.) uses one arbitrary interface orientation and assigns it with the interface identity (synaptic, non-synaptic). The
augmented label set (Augment.) considers both orientations of an interface each with the same label as the undirected label set. The
directed label set (Directed) also considers both orientations but only labels the direction pre- to postsynaptic subsegment of
synapses as synaptic and the inverse direction as non-synaptic. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter
2017, eLife, Figure 3 https://doi.org/10.7554/eLife.26414.008, Figure 3 - Figure supplement 1
https://doi.org/10.7554/eLife.26414.010 licensed under CC BY 4.0)

3.3.3. Classifier Training
The interface feature representation consisting of texture and shape features developed in the pre-

vious section was used to classify interfaces as synaptic or non-synaptic. For classification, an

ensemble of boosted decision trees was trained using AdaBoostM1 (Freund and Schapire, 1997)

or LogitBoost (Friedman et al., 2000) on a training set D = {(xi, yi)}Ni=1 of annotated interfaces.

Decision trees were restricted to a depth of one (decision stumps), i.e. each weak learner consists

of a threshold for a single dimension of x. For classifier training, the implementations of Ad-

aBoostM1 and LogitBoost from the Matlab Statistical Toolbox (fitensemble) were used with

a learning rate of 0.1, a total number of 1500 weak learners and a misclassification cost of 100 for

the synaptic class.

For training data annotation, a custom Matlab graphical user interface was implemented (Fig-

ure 3.6a) that allows for direct one-click annotation of interfaces sequentially for all interfaces

in a data volume. The user is presented an interface as a video (image stack) with the option

to highlight the border and both subsegments in different colors (red, green, blue) centered on

the center of mass of the interface border. For a consistent display of interface orientation, the

raw data was rotated such that the second and third principal components of the interface border

in a small window of 15 × 15 × 7 voxels around its center of mass define the axes of the dis-

played image. Each interface is annotated with its identity (synaptic, non-synaptic) and in case of

a synaptic interface also its direction by specifying which subsegment in the current orientation

corresponds to the presynaptic process, for example green to blue. The human annotation labels

(see Ann. label in Figure 3.6b) were used to define different label sets for interfaces as described

above (subsection 3.3.1). More precisely, consider an interface I(i, j) and its inverse orientation

I(j, i). The undirected label set assigns the interface identity label to one of the two orientations

and discards the inverse orientation, i.e. I(i, j) ∈ {0, 1} but I(j, i) is not part of the training

39

https://doi.org/10.7554/eLife.26414.008
https://doi.org/10.7554/eLife.26414.010
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

a

 Cw

γnn
P

re
sy

na
pt

ic

Cbin

n sy
n

Postsynaptic

0

4

co
nn

b

Avg.

71
0

0.4

Fr
eq

ue
nc

y

nsyn per exc. connection

L4 -> L4
L4 -> L2/3

L2/3 -> L2/3

L5A -> L5A
L5B -> L5B

0

0.7

0

0.7
0

0.7

1 7

4

Figure 3.7: Cortical neuron-to-neuron connections. (a) A weighted connectome that reports the number of synapses per
neuron-to-neuron connection (left) is transformed into a binary connectome (right) by considering only neuron pairs with at least
γnn synapses as connected. (b) Distribution of the number of synapses between connected excitatory neuron pairs obtained from
paired recordings in rodent cerebral cortex (Feldmeyer et al., 1999, 2002, 2006; Frick et al., 2008; Markram et al., 1997). (Staffler,
Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 5
https://doi.org/10.7554/eLife.26414.019 licensed under CC BY 4.0)

set. The augmented label set uses the interface identity to label both directions of an interface

I(i, j) = I(j, i) ∈ {0, 1}. The directed label set incorporates the synapse direction for synaptic

interfaces by assigning interfaces with a synaptic label I(i, j) = 1 only if the interface is synap-

tic and i is the presynaptic segment and as non-synaptic otherwise. The different label sets are

illustrated in (Figure 3.6b).

3.3.4. Connectome Error Estimation
For the connectomic reconstruction of a dataset, the synapses and corresponding pre- and post-

synaptic processes that are detected by SynEM are combined with a neurite reconstruction to

yield the weighted connectome of a circuit containing the number of synapses between pairs of

neurons. For some applications such as network analysis, a binary connectome containing only

the information whether two neurons are connected or not is already sufficient. Binary connec-

tomes can easily be obtained from weighted connectomes by considering neurons with at least

γnn ∈ N synapses as connected (Figure 3.7a). Neurons in mammalian cortex are known to estab-

lish synaptic connections via multiple synapses (Feldmeyer et al., 1999, 2002, 2006; Frick et al.,

2008; Markram et al., 1997, 2004; Gupta et al., 2000; Hoffmann et al., 2015; Koelbl et al., 2015).

Thus, if only the binary connectivity information is of interest, it is enough to detect only a subset

of all synapses connecting two neurons in order to recover the neuron-to-neuron connection. This

was formalized by estimating the neuron-to-neuron connectivity precision Pnn and recall Rnn
based on the single synapse detection precision Ps and recall Rs measured on the test set.

For the estimate of neuron-to-neuron connectivity recall Rnn, the probability of detecting at least

γnn synapses between a pair of neurons was estimated using a binomial model with a success

probability equal to the single synapse recall Rs and a distribution p(n) over the number of

synapses between connected neurons

Rnn = P (k ≥ γnn | Rs) =
∑
n>0

Bin(k ≥ γnn | n,Rs)p(n). (3.28)

The distribution p(n) for excitatory neurons was calculated by pooling the number of synapses

40

https://doi.org/10.7554/eLife.26414.019
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

Publication Source -> Target No. cell pairs (No. syn.)

Feldmeyer et al. (1999) L4 exc. -> L4 exc. 2(2), 5(3), 2(4), 2(5)

Feldmeyer et al. (2002) L4 exc. -> L2/3 pyr. 6(4), 7(5)

Feldmeyer et al. (2006) L2/3 exc. -> L2/3 pyr. 2(2), 5(3), 1(4)

Frick et al. (2008) L5A pyr. -> L5A pyr. 1(1), 3(3), 1(5), 1(6)

Markram et al. (1997) L5B pyr. -> L5B pyr. 2(4), 9(5), 4(6), 3(7), 1(8)

- combined 1(1), 4(2), 13(3), 11(4), 19(5), 5(6),

3(7), 1(8)

Table 3.3: Number of synapses between excitatory connected neurons. Published studies of paired recordings about the number
of synapses between connected neuron pairs. Middle column: Neuronal cell type and layer of the source and target neurons. Last
column: Distribution over the number of synapses per connected neuron pair reported as the number of cell pairs (No. cell pairs) for
the synapse count specified in parenthesis (No. syn.), i.e. 5(3) indicates that 5 pairs were found each connected by 3 synapses.
(Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Supplementary File 2
https://doi.org/10.7554/eLife.26414.032 licensed under CC BY 4.0)

between connected neuron pairs from published studies for excitatory neurons in rodent S1 (Feld-

meyer et al., 1999, 2002, 2006; Frick et al., 2008; Markram et al., 1997) (Figure 3.7b and Ta-

ble 3.3). For inhibitory neurons a fixed value of 6 was used based on Gupta et al. (2000); Hoff-

mann et al. (2015); Koelbl et al. (2015); Markram et al. (2004) (Table 3.4). Note that in this model

false positive synapse detections do not contribute to the neuron-to-neuron recall.

To estimate the neuron-to-neuron connectivity precision Pnn, the false positive predictions made

by a synapse classifier are distributed uniformly among all neuron-to-neuron connections. Con-

sider a dataset with a total number of N neurons, Ncon connected neurons pairs, Nsyn synapses,

an average number of synapses per connected neuron pair of nsyn =
Nsyn
Ncon

and a connectivity

ratio of

cr =
Ncon

N2
. (3.29)

According to the definition of precision and recall, the number of false positive synapse detection

can be estimated by

FPs =
1− Ps
Ps

RsNsyn. (3.30)

The false positive predictions are uniformly distributed among all N2 possible neuron-to-neuron

connections with a rate of

rFP =
FPs
N2

=
1− Ps
Ps

Rs
Nsyn

Ncon

Ncon

N2
=

1− Ps
Ps

Rsnsyncr. (3.31)

The number FPnn of unconnected neuron-to-neuron pairs that get at least γnn false positive

detections assigned was estimated by

FPnn = N2(1− cr)Poi (x ≥ γnn | rFP) , (3.32)

41

https://doi.org/10.7554/eLife.26414.032
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

Publication Source -> Target Average number of synaptic con-
tacts

Koelbl et al. (2015) L4 FS PV -> L4 exc. spiny 3.7± 1.3 (range 2− 6)

Hoffmann et al. (2015) L2/3 inh. -> L2/3 pyr. 6.2± 2 (range 3− 10)

Gupta et al. (2000) GABAergic F1 9.3± 3.1

GABAergic F2 16± 5.5

GABAergic F3 16.7± 11.9

Markram et al. (2004) LBC -> pyr. 14.5± 1.7

NBC -> pyr. 15.8± 4.1

SBC -> pyr. 20.5± 10.5

BTC -> pyr. 15.0± 7.1

MC -> pyr. 11.2± 5.5

Table 3.4: Number of synapses between inhibitory connected neurons. Published studies of paired recordings about the number
of synapses between connected neuron pairs. Middle column: Neuronal cell type of the source and target neuron populations. See
corresponding publications for abbreviation of cell types. Last column: Average number of synapses per connection (mean ± std.)
and range if available. (modified from Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Supplementary
File 3 https://doi.org/10.7554/eLife.26414.033 licensed under CC BY 4.0)

where N2(1− cr) is the number of unconnected neuron-to-neuron pairs and Poi(x) refers to the

Poisson distribution. Together with the number of true positive neuron-to-neuron connections

TPnn = N2crRnn, (3.33)

this yields the neuron-to-neuron connection precision

Pnn =
TPnn

TPnn + FPnn
=

crRnn
crRnn + (1− cr)Poi (x ≥ γnn | rFP)

. (3.34)

Note that the neuron-to-neuron connectivity precision Pnn (Equation 3.34) does not depend on

any absolute quantity (N , Ncon, Nsyn) anymore but only on the average number of synapses per

connected neuron pair nsyn and the connectivity ratio cr. For calculations in rodent S1 cortex the

connectivity ratio was set to cr = 0.2 for excitatory (Feldmeyer et al., 1999) and cr = 0.6 for

inhibitory connections (Gibson et al., 1999; Koelbl et al., 2015).

3.4. Experiments

The main SynEM evaluation was performed on a SBEM dataset from mouse S1 L4. The relevance

of several design steps was quantified such as the interface subvolumes, the label sets and the

feature representation. In addition, this dataset was used to compare the detection performance of

42

https://doi.org/10.7554/eLife.26414.033
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

SynEM to previously published synapse detection methods. To examine the applicability of the

SynEM approach to different volume EM data, SynEM was further evaluated on an ATUM-SEM

dataset (Kasthuri et al., 2015) and compared to a state-of-the art approach for this dataset. The

single synapse detection performance was used in the connectome error estimation framework

developed in subsection 3.3.4 to estimate the neuron-to-neuron error, which is exemplified for a

sparse connectome consisting of 104 axonal and 100 postsynaptic processes in subsection 3.4.5.

3.4.1. SBEM Dataset and Label Data Generation
The dataset used for the development and main evaluation of SynEM is a SBEM dataset from

mouse S1 L4 of size 93× 60× 93 µm3 imaged at a voxel size of 11.24× 11.24× 28 nm3 (dataset

2012-09-28_ex145_07x2, Boergens and Helmstaedter, 2012b; see also Berning et al., 2015;

Staffler et al., 2017a). In brief, the tissue was conventionally en-block stained (Briggman et al.,

2011) without extra-cellular space preservation (see for example Pallotto et al., 2015). A centered

volume of size 86× 52× 86 µm3 of the dataset was segmented using the SegEM segmentation al-

gorithm (Berning et al., 2015). Membrane prediction was done using CNN 20130516T2040408,3.

For training data generation, segmentation parameters optimized for whole cell segmentations

were used (rse = 0; θms = 50; θhm = 0.25). For test data generation, the segmentation parame-

ters rse = 0; θms = 50; θhm = 0.39 were used (see Berning et al., 2015, Table 2).

Training and validation labels for interface classification were generated for 40 non-overlapping

rectangular volumes (39 of size 5.6× 5.6× 5.6 µm3 and one of size 9.6× 6.8× 8.3 µm3; Fig-

ure 3.8a). Interface volumes as defined in subsection 3.3.1 were extracted using subsegments with

distances of 40 nm, 80 nm and 160 nm. Interfaces with a center of mass closer than 1.124 µm to

the training cube border were discarded. Interface annotation was done using the custom Matlab

graphical user interface described in subsection 3.3.3. The resulting label set consisted of 75, 383

interfaces out of which 1858 were synaptic. Eight label volumes comprising 391 synaptic and

11906 non-synaptic interfaces were used as validation set while the remaining 32 were used for

training. If the directed label set was used for training then the predictions on the validation set

for the different directions of an interface were combined using a logical OR operation. The fea-

ture calculation was done as described in subsection 3.3.2. For training of the voxel classification

methods proposed by Kreshuk et al. (2011) and Becker et al. (2013), voxel labels for synaptic

junctions and non-synaptic voxels were made using Ilastik (Sommer et al., 2011). Sparse voxel

labels were made for five regions of size 3.4× 3.4× 3.4 µm3 in the center of five training vol-

umes. Synaptic labels were made by annotating parts of the PSD of 115 synapses that were also

annotated in the training cubes (note that Becker et al., 2013 only used 7-20 synapses during

training). Non-synaptic labels were created iteratively by creating non-synaptic labels for two

training cubes first and then adding non-synaptic labels for the remaining three training cubes

based on misclassified locations using the interactive prediction mode in Ilastik. At the end, the

non-synaptic labels in the first two training cubes were also extended based on misclassified lo-

cations resulting in roughly twice as many non-synaptic voxel labels than synaptic ones. For the

object classification step in Kreshuk et al. (2014), the graph cut segmentation with label smooth-

ing ([1, 1, 0.5] voxel standard deviation), a voxel probability threshold of 0.5 and a graph cut

43

3 Automated Synapse Detection for EM-based Connectomics

soma centers

training
volume
(blue)

test volume
(red)

92 μm

93 μm

58 μm

validation volumes
(green) dataseta b s1

s1

s2

s2 x

Figure 3.8: SynEM training and test data. (a) Spatial locations of training, validation and test volumes within the dataset
2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b) used for SynEM training and evaluation. (b) Top: Two synapses from
the SBEM test set (s1 and s2 marked by arrows). Bottom: Overlay with the test set segmentation showing that synapse s2 consists
of two interfaces while s1 consists of a single interface (black circles). Examples of non-synaptic interfaces are marked by red
circles. Interfaces that overlap with a synapse PSD annotation but are not part of the synapse are not labeled as synaptic, for example
the interface in the presynaptic axon of synapse s1 marked by a red x. Scale bar: 500 nm (b). (a taken from: Staffler, Berning,
Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 3 - Figure Supplement 2
https://doi.org/10.7554/eLife.26414.011 licensed under CC BY 4.0)

constant of λ = 0.5 was used. Object detections were annotated in the center of five training

cubes of size 3.4× 3.4× 3.4 µm3 different form the cubes used for voxel prediction resulting in

299 labels (101 synaptic, 198 non-synaptic). The label cubes for training of the multi-class CNN

approach SyConn (Dorkenwald et al., 2017) were made by annotating six out of the 32 training

volumes densely with voxel labels for synaptic junctions, vesicle clouds and mitochondria result-

ing in a total labeled training volume of 225 µm3. For vesicle cloud and mitochondria annotation,

the predictions of a CNN trained on membranes, mitochondria and vesicle clouds were proofread

by undergraduate students and twice by an expert annotator. An expert neuroscientist used the

annotated synapses in the training cubes to add voxel labels for synaptic junctions.

For testing, a volume of size 5.75× 5.75× 7.17 µm3 (512 × 512 × 256 voxels; bounding box

[3713, 2817, 129, 4224, 3328, 384]) disjunct from all training and validation volumes was ran-

domly selected such that it did not contain a soma or dominantly large dendrites. Synapse de-

tection was done in a multi-step procedure involving three expert annotators. First, an expert

neuroscientist did a volume search for synapses using webKnossos (Boergens et al., 2017). Sub-

sequently, the same expert traced the axons for all detected synapses and inspected vesicle clouds

along axons for further synapses. The previous step was repeated for any missed boutons that

were found. In total, the first expert detected 335 potential synapse locations. Based on the anno-

tations of the first expert, a second expert added additional 8 potential synapse locations resulting

in a total number of 343 potential synapse locations. All potential synapse locations were again

44

https://doi.org/10.7554/eLife.26414.011
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

independently annotated by both experts as synaptic and non-synaptic and the disagreeing loca-

tions were jointly resolved (282 were labeled as synaptic by each annotator out of which 261

were in agreement). After this procedure, a total of 278 synapses were identified with a precision

and recall of the single expert annotators with respect to the consensus tracing of 93.6%, 94.6%

(expert 1) and 97.9%, 98.9% (expert 2). Afterwards, expert 1 added voxel labels for all synaptic

junctions (PSD). In addition, all shaft synapses were labeled by expert 1 and proofread by ex-

pert 2 resulting in 36 shaft synapses. All interfaces with a border that had any overlap with the

voxel labels of one of the 278 synapses were extracted and labeled as synaptic or non-synaptic by

expert 1. Interfaces closer than 160 nm to the test set boundary were discarded resulting in 235

remaining synapses out of which 31 were labeled as shaft synapses.

To determine inhibitory synapse detection performance for connectome error estimation, an ad-

ditional test set with interfaces along inhibitory axons was created. Skeleton tracings of three

inhibitory axons were used by the same two experts as above to detect all synapse locations along

the axons. Disagreeing locations were jointly resolved by both annotators resulting in a test set

of 171 synapses. All segments in a postsynaptic process close to a synapse location were anno-

tated and all interfaces between the axon and the postsynaptic process were associated with the

corresponding synapse.

After training, SynEM was applied to the whole segmented volume of the dataset. Interface

calculation was done on non-overlapping cubes of size 512×512×256 and the feature calculation

on larger cubes of size 548× 548× 268 voxels with an overlap of 72× 72× 24 voxels in x, y and

z-direction respectively to ensure that no feature boundary effects were present at any interface

voxels. The synapse count for the whole dataset was obtained by clustering synaptic interfaces for

the optimal single synapse threshold θs of the test set using hierarchical clustering with a distance

cutoff of 320.12 nm, which was optimized on the test set.

3.4.2. Synapse Detection Performance Evaluation
SynEM was evaluated for different label sets, feature representations and classifiers (Figure 3.9

and Table 3.5). The initial classifier used only the 160 nm interface subvolumes, the texture

features described in Kreshuk et al. (2011), the volume shape feature, quantiles as summary

statistics and was trained using AdaBoostM1 on the undirected label set resulting in an optimal

F1 score of 0.734. Then, additional features (texture and shape), subvolumes (40 nm and 80 nm

subvolumes) and summary statistics (moments) were added increasing the optimal F1 score to

0.779. Substantial improvements were observed when either changing the classification algorithm

from AdaBoostM1 to LogitBoost or using the directed label set resulting in F1 scores of 0.835 and

0.839 respectively. Training with both the directed label set and a LogitBoost classifier resulted

in the best validation set performance with an F1 score of 0.865 (Figure 3.9a).

For the evaluation on the test set, a synapse was considered detected if at least one of the synaptic

interfaces overlapping with the synapse was detected (TP). A synapse was considered missed if

none of the overlapping interfaces were detected (FN). An interface prediction was considered a

45

3 Automated Synapse Detection for EM-based Connectomics

Classifier Subvols. Features Sum. stats. Train. algo. Label F1

Init. 160

Identity, EVs of
Structure Tensor
and Hessian,
Gauss. Smooth,
LoG, Gauss
Grad. Magn.,
Volume

quant. AdaBoostM1 Undir. 0.734

Add feat. 160 all quant. AdaBoostM1 Undir. 0.753

Add
subvol.

all all quant. AdaBoostM1 Undir. 0.763

Add
stats.

all all all AdaBoostM1 Undir. 0.779

Direct all all all AdaBoostM1 Dir. 0.839

Logit all all all LogitBoost Undir. 0.835

Augment
& Logit

all all all LogitBoost Augm. 0.839

Direct
& Logit

all all all LogitBoost Dir. 0.865

Table 3.5: SynEM classifier development. Hyperparameter choices for the classifiers compared on the validation set (see
Figure 3.9). Subvols.: Subvolumes used in interface definition in nanometers. ’all’ refers to 40nm, 80nm and 160nm. Features:
Features used in the interface feature representation (see Table 3.1 and Table 3.2). Sum. stats.: Summary statistics used for texture
feature calculation. ’quant.’ refers to 5 quantiles only while ’all’ refers to all 9 summary statistics consisting of quantiles and
moments. Train. algo.: Training algorithm used for classifier training. Label: Undirected (Undir.), augmented (Augm.) or directed
(Dir.) label set used for training (see Figure 3.6). F1: Optimal F1 score on the validation set.

46

3 Automated Synapse Detection for EM-based Connectomics

a

0

0.2

0.4

0.6

0.8

1

Init
Add feat
Add subvol
Add stats
Direct

Direct & Logit
Augment & Logit
Logit

0 0.2 0.4 0.6 0.8 1

S
yn

ap
se

 p
re

ci
si

on
 (V

al
. s

et
)

b

S
yn

ap
se

 p
re

ci
si

on
 P

s
(T

es
t s

et
)

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

Synapse recall Rs (Test set)
0 1

Synapse recall (Validation set)

θs

θnn

Exc. spine syn.
All syn.

Figure 3.9: SynEM SBEM evaluation. (a) Validation set performance of SynEM on the 3D SBEM data for different features,
aggregation statistics, classifier parameters (see Table 3.5) and label sets (see Figure 3.6). If not otherwise stated, the undirected label
set and AdaBoostM1 was used. Classifier hyperparameters were set as described in subsection 3.3.3. Init: Initial classifier using
only the 160 nm interface subvolumes, a subset of all features (Identity, Eigenvalues of Structure Tensor and Hessian, Gaussian
smoothing, LoG, Gauss gradient magnitude, volume) and quantiles as summary statistics. The initial classifier was extended by
using all features (’Add feat’, see Table 3.1 and Table 3.2), 40nm and 80nm subvolumes (’Add subvol’) and moments as additional
summary statistics (’Add stats’). Direct: Classifier trained on the directed label set. Logit: Classifier trained using LogitBoost.
Augment and Logit: LogitBoost classifier trained on the augmented label set. Direct and Logit: LogitBoost classifier trained on the
directed label set. (b) Test set performance of SynEM on 3D SBEM data for the best classifier on the validation set (Direct & Logit)
for all synapses (All syn., solid line) and for spine synapses only (exc. spine syn., dashed line). The SynEM interface thresholds for
optimal single synapse detection performance (θs, black circle) and optimal connectome reconstruction performance (θnn, black
square; see subsection 3.3.4) are listed in Table 3.7. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife,
Figure 3, legend modified, https://doi.org/10.7554/eLife.26414.008 licensed under CC BY 4.0)

false positive detection if the interface did not overlap with any ground truth synapse (FP) (see

also Figure 3.8b). Note that this evaluation strategy was different to the validation set, where each

synaptic interface needed to be detected irrespective of whether another interface overlapping

with the same synapse was detected as well. Thus, the test set evaluation strategy focused on the

actual synapse detection performance and prevented FN detections at small interfaces overlapping

with synapses, which was more frequent for the test set compared to the validation set due to the

stronger oversegmentation.

The best classifier from the validation set (’Direct & Logit’) achieved an optimal F1 score of

0.8839 and precision and recall rates of 88% on the test set. Restricted to spine synapses, the

classifier performance was even better with an F1 score of 0.91 (94% precision and 89% recall).

Classification examples at the threshold θs for optimal single synapse performance are shown in

Figure 3.10a. Qualitatively, typical errors for false negative detections were small vesicle clouds,

small PSDs or mitochondria in the pre- and/or postsynaptic process. False positive errors were

due to vesicle clouds close membranes without an actual synaptic contact (Figure 3.10a FP) and

mitochondria. Furthermore, segmentation errors were often found close to misclassified inter-

face locations. To quantify the local segmentation quality, the FP and FN detection errors were

inspected revealing that 26 out of 28 FNs and 22 out of 27 FPs were located close to segmen-

tation errors. A local correction of these errors resulted in correct classification for 22 of the 48

cases (46%) indicating that improvements in volume segmentation quality could further improve

47

https://doi.org/10.7554/eLife.26414.008
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

a b
10-5 10-2

1

300

3224

Feature importance

Fe
at

ur
e

id
x 10-3 10-2

10-3 10-2

med
25 p
var

skew
min

max

75 p
kurt

mean

10-5 10-2

ST
Hess
DoG

Ggrad
Int./var.

LEntrop.
PC1

Norm
Id

LoG
Avg

Volume
LStd.

Convhull

Fe
at

ur
e

qu
al

ity

S
ub

vo
lu

m
e

160

nm0

160

P
oo

lin
g

st
at

is
tic

s

FN FP

1

2 1
z = 0

z = 56

z = 112

TN

x

x

TP

1

2
x

Figure 3.10: SynEM classification examples and feature importance. (a) Examples from the confusion matrix (TP, TN, FN, TP)
for the SynEM classification from the dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b) at the optimal
classification threshold θs (circle in Figure 3.9) shown in 3 image planes spaced by 56 nm, i.e. every second slice. Blue arrows
indicate the classified interface. 1 and 2 mark the pre- and postsynaptic process respectively, while x marks processes that do not
form a synapse at the displayed location. Note that the presynaptic process (1) in the FP example innervates a spine head but the FP
detection was made onto another process (x) that is non-synaptic at this location. (b) Ranked importance of SynEM features
determined from the tree-based classifier after training: All features (top left), relevance of image filters (bottom left), subvolumes
used for pooling (top right) and summary/pooling statistics (bottom right). 378 out of 3224 features were relevant for the best
performing classifier. Scale bar: 500 nm (a). (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 4,
legend modified, https://doi.org/10.7554/eLife.26414.016 licensed under CC BY 4.0)

SynEM performance.

The relevance of different features used for interface classification was assessed using that features

in boosted decision trees can be ranked by their classification importance (Figure 3.10b). Out of

all 3224 features, the classifier only used 378. Leaving out unused features does not impede

classification accuracy and can thus be used to speed up prediction for large dataset. The 10

single most important features contained 2 image filters and a shape features that were not part

of the initial classifier (Table 3.6). Furthermore, the corresponding features originated from all

subvolumes using several different quantiles and moments. The total importance of image filters,

subvolumes and summary statistics was calculated by aggregating the feature importance of all

features for the corresponding category. This reveals that the most important subvolumes are the

160 nm presynaptic volume, the interface border and the 40 nm postsynaptic volume suggesting

that the classifier was able to learn the asymmetry of synapses and utilize the different information

content of the interface subvolumes.

Next, the performance of SynEM was compared to previously published synapse detection meth-

ods (Figure 3.11). Since each method is typically developed and evaluated on a different type of

EM data, the published implementations of previously proposed synapse detection methods were

used to train and evaluate classifiers on the SynEM test set (Figure 3.11). SynEM was compared

to the approaches proposed by Kreshuk et al. (2011, 2014); Becker et al. (2013) and Dorkenwald

et al. (2017) which were shown to be the best performing methods superior to Perez et al. (2014)

and Neila et al. (2016). Methods developed for specific types of synapses (Jagadeesh et al., 2014;

48

https://doi.org/10.7554/eLife.26414.016
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

Rank Feature Parameters Subvol. Sum. stat.

1 EVs of Struct. Tensor (largest) σw = 2s, σD = s 160 nm, S1, Median

2 EVs of Struct. Tensor (smallest) σw = 2s, σD = s 160 nm, S1, Median

3 Local entropy U = 15×5×5 160 nm, S2 Variance

4 Difference of Gaussians σ = 3s, k = 1.5 Border 25th perc

5 Difference of Gaussians σ = 2s, k = 1.5 Border Median

6 EVs of Struct. Tensor (middle) σw = 2s, σD = s 40 nm, S2 Min

7 Int./var. U = 13×3×3 Border 75th perc

8 EVs of Struct. Tensor (largest) σw = 2s, σD = s 80 nm, S1 25th perc

9 Gauss. gradient magnitude σ = s 40 nm, S2 25th perc

10 Principal axes length (2nd) - Border -

Table 3.6: SynEM feature importance. Feature importance ranked by the boosted ensemble. For features see Table 3.1 and
Table 3.2. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Table 2
https://doi.org/10.7554/eLife.26414.018 licensed under CC BY 4.0)

Plaza et al., 2014; Huang et al., 2016) were not considered. Note that due to the voxel-based na-

ture of these approaches, the ground truth synaptic junction segmentation of the test set and voxel

training data describe in subsection 3.4.1 were used instead of the SynEM interface annotations.

The classifier training for Kreshuk et al. (2011, 2014); Becker et al. (2013) was done using the

implementation provided by Ilastik (Sommer et al., 2011). For the voxel classification step in

Kreshuk et al. (2011) and Kreshuk et al. (2014), all features up to a standard deviation of 5 voxels

were used. For the object classification step in Kreshuk et al. (2014), all features provided by

Ilastik were used. For the method by Becker et al. (2013), all features proposed by the authors

and 200 weak learners were used. For classification, the test set was tiled into four cubes of size

256 × 256 × 256 voxels (2.9× 2.9× 7.2 µm3) with a boundary of 280 nm and the prediction

was thresholded and morphologically closed using a cubic structuring element of 3 voxels side

length. Only components with size larger than 50 voxels were kept. The recursive CNN training

for SyConn (Dorkenwald et al., 2017) on synaptic junctions, mitochondria and vesicle clouds was

done using same architectures and hyperparameters as described by the authors. Only the output

channel for synaptic junctions was used for performance comparison and only connected com-

ponents of synapse predictions with at least 250 voxels were kept. Synapse detection precision

and recall rates for all methods were calculated based on the overlap of the predicted synapse

segmentations with the ground truth synapse segmentation. Ground truth synapses that had any

overlap with a predicted synapse were defined as TP detections and otherwise, if they did not

overlap with any predicted synapse, as FN detections. To minimize boundary effects, predicted

synapses at the center of the test set of size 484× 484× 246 voxels that did not overlap with any

ground truth synapse were defined as FP detections. The performance of SynEM in comparison

49

https://doi.org/10.7554/eLife.26414.018
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

10
6
3

200

E
M

 e
xp

er
im

en
t

du
ra

tio
n

(d
/m

m
3)

101

105

Im
g.

 s
pe

ed
(M

H
z)

1y

Syn. &
partner
det.

Syn.det.

Voxel size (103 nm3)
0 4

1

F1
 s

co
re

 (a
ll

sy
na

ps
es

) SynEM

1 2 3

0.7

0.8

0.9

0
0 1

1

Recall

P
re

ci
si

on

Exc. spine syn.
All syn.

Becker et al.
SyConn

SynEM

0.2 0.4 0.6 0.8 0 1
Recall

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0

1

P
re

ci
si

on

0.2

0.4

0.6

0.8

a b c

Becker et al.

Kreshuk et al.,
2011

Kreshuk et al.,
2014

SynEM

Figure 3.11: Synapse detection method comparison. (a) Top: Duration of a 3D EM experiment as a function of the imaging
resolution and the imaging speed exemplified for a dataset of size 1mm3. Note that for most current EM experimental setups with
an imaging speed less than 10 MHz, experiments are only realistic for smaller voxel sizes. Bottom: Performance of published
synapse detection methods reported as F1-score as a function of the voxel size: dark blue, (Mishchenko et al., 2010); cyan,
(Kreshuk et al., 2011); light gray, (Becker et al., 2013); dark gray, (Kreshuk et al., 2014); red, (Roncal et al., 2015); green,
(Dorkenwald et al., 2017); purple, SynEM; Direct performance comparison of SynEM with Roncal et al. (2015) on the ATUM-SEM
dataset (Kasthuri et al., 2015) (see subsection 3.4.4) and SynEM with SyConn (Dorkenwald et al., 2017) on the SynEM dense test
set. Note that the top and bottom plot share the same x-axis. (b) Precision-recall curves of SynEM, SyConn (Dorkenwald et al.,
2017) and the method of Becker et al. (2013) on the SynEM test set for all synapses (solid lines) and excitatory spine synapses only
(dashed line). Note that SyConn was shown to outperform all previously proposed synapse detection methods (Dorkenwald et al.,
2017) while Becker et al. (2013) was shown to outperform Kreshuk et al. (2011) (see also panel c). (c) Precision-recall curves of
SynEM, the methods of Kreshuk et al. (2011), Kreshuk et al. (2014) and Becker et al. (2013) on the SynEM test set all for synapses
(solid lines) and for excitatory spine synapses only (dashed line). (a and b from Staffler, Berning, Boergens, Gour, van der Smagt,
Helmstaedter 2017, eLife, Figure 3, https://doi.org/10.7554/eLife.26414.008 licensed under CC BY 4.0)

to the two best performing competing methods (Becker et al., 2013; Dorkenwald et al., 2017) is

shown in Figure 3.11b. SynEM outperforms the other methods by a substantial margin except in

a high recall regime where SyConn (Dorkenwald et al., 2017) is superior.

3.4.3. Biological Plausibility
To further validate the SynEM interface classification approach, the predicted synapse density of

the dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b) was calculated. SynEM

was applied to the whole dataset 2012-09-28_ex145_07x2 at the optimal single synapse threshold

θs determined on the test set (see Figure 3.9 and Table 3.7). The runtime for the total volume of

384 592 µm3 was 2.6 hours on a cluster with 480 CPU cores and 16 GB RAM per core implying

a total runtime of 279.9 days for a dataset of size 1 mm3, which is orders of magnitude faster than

human annotation (105 to 106 hours, see Figure 1.2) without any particular speed optimizations

(plain Matlab code). The predicted synaptic interfaces were clustered to account for synapses that

were split into multiple interfaces resulting in a total number of 195644 synapses for half of the

dataset corresponding to a synapse density of 1.02 synapses per µm3, which is consistent with

previous reports (Merchán-Pérez et al., 2014).

To account for systematic biases in synapse detection due to synapse size, the axon-spine interface

area (ASI) of the ground truth spine synapses retrieved by SynEM on the test set was measured

(Figure 3.12). For a spine synapse detected at the optimal single synapse threshold θs, the ASI

was calculated as the sum of the area of all ground truth interfaces associated to the synapse

resulting in an average ASI of 0.264± 0.206 µm2 (mean ± s.d.; range 0.033 µm2–1.189 µm2,

n = 181). The spine synapse ASI was compared to the ASI distributions of de Vivo et al. (2017)

50

https://doi.org/10.7554/eLife.26414.008
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

a

Area of axon-spine
interface ASI (μm2)

0 1.2
0

5

D
en

si
ty

log (ASI)
-4 1

D
en

si
ty

0

0.6

SynEM TP
spine synapses
(test set)

deVivo et al., 2017 (SW)
deVivo et al., 2017 (EW)

b

Figure 3.12: Synapse size comparison in SBEM data. (a) Histogram of the axon-spine interface area (ASI) of spine synapses in
the SynEM test set from the dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b) detected by SynEM (purple)
overlaid with the ASI distributions found in de Vivo et al. (2017) under the two wakeful conditions (SW: spontaneous wake, yellow;
EW: enforced wake, red). Note that while both datasets are from mouse S1, the resolution of the SynEM test set was
11.24× 11.24× 28 nm3 while the dataset of de Vivo et al. (2017) had a resolution of 5.9 nm (xy plane) with a section thickness
of 54.7± 4.8 nm (SW) and 51.4± 10.3 nm (EW). (b) The distributions of (a) shown on a natural logarithmic scale (log ASI
SynEM: −1.60± 0.74, n = 181; log ASI SW: −1.56± 0.83, n = 839; log ASI EW: −1.59± 0.81, n = 836, mean ± s.d.).
The distributions are indistinguishable (p = 0.52 for SynEM vs. SW and p = 0.83 for SynEM vs. EW; two-sample two-tailed
t-test) indicating that SynEM does not have a bias depending on synapse size. (Staffler, Berning, Boergens, Gour, van der Smagt,
Helmstaedter 2017, eLife, Figure 7, legend modified, https://doi.org/10.7554/eLife.26414.029 licensed under CC
BY 4.0)

for the spontaneous wake (SW) and enforced wake (EW) conditions (de Vivo et al., 2017, Table

S1) assuming that their ASI distributions are lognormal to convert the sample mean and standard

deviation into the corresponding lognormal distribution parameters. Two-sample two-tailed t-tests

were performed to compare the logarithmic values of the ASI of the SynEM test set detections

with the lognormal distributions from de Vivo et al. (2017) (log ASI−1.56± 0.83, n = 839, SW;

−1.59± 0.81, n = 836, EW; mean ± s.d.) showing that the distributions are indistinguishable

(p = 0.5175, SW; p = 0.8258, EW). This shows that synapses detected in lower resolution

SBEM data (in-plane resolution of 11.24 nm with a section thickness of 26 nm–30 nm for 2012-

09-28_ex145_07x2) yields a similar size distribution as higher resolution data (in-plane resolution

of 5 nm with a section thickness of about 50 nm in de Vivo et al., 2017) indicating that reliable

synapse detection in this data is possible and that SynEM has no obvious synapse detection bias

depending on synapse size.

3.4.4. ATUM Dataset
To test the applicability of SynEM to volume EM data acquired using imaging techniques dif-

ferent from SBEM, a dataset from mouse S1 imaged using ATUM-SEM with a voxel size of

3× 3× 30 nm3 was used (Kasthuri et al., 2015). The raw data (kasthuri11cc), the volume seg-

mentation (kat11segments) and synapse segmentation (kat11synapses) that are publicly available

at openconnecto.me were downloaded at resolution 1 corresponding to 6× 6× 30 nm3 in the

bounding box [2432, 7552; 6656, 10112; 769, 1537] using the Matlab CAJAL API1 . Note that the

1 https://github.com/neurodata-arxiv/CAJAL

51

https://doi.org/10.7554/eLife.26414.029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

segmentation in this bounding box is not dense, i.e. not every single process in the bounding

box is segmented. However, interface detection between neighboring segmented processes is still

possible. Furthermore, the segmentation from Kasthuri et al. (2015) was created manually and

does not have the one-voxel thick boundary between processes required in the SynEM definition

of borders (cf. Equation 3.1). To post-hoc introduce a one-voxel boundary between processes,

the segmentation was tiled into non-overlapping cubes of size [1024, 1024, 512] and each seg-

ment was separately eroded by a cubic structuring element with 3 voxels side length. Then, a

watershed segmentation was run on the distance transform of the eroded segmentation. Since the

watershed produces a dense segmentation, unlabeled regions in the adapted segmentation were

recovered by settings the ids of voxels with a segment id of 0 in the original segmentation that

did not have any positive segment id within a distance of 2 voxels (maximum distance) to 0 in

the adapted segmentation as well. In addition, the ground truth synapse segmentation was mod-

ified by keeping only synapse objects that are marked as ’sure’. For interface classification, the

bounding box [2817, 6912; 7041, 10112; 897, 1408] was tiled into non-overlapping cubes of size

512 × 512 × 256 voxels. Interface and feature calculation was done for each tile using interface

subvolumes with distances of 40 nm, 80 nm and 160 nm and Gaussian kernels adapted to the data

voxel size of 6× 6× 30 nm3. For interface label generation, the pre- and postsynaptic segments

of all synapses in the ground truth were annotated in webKnossos (Boergens et al., 2017). The

interfaces between all pre- and postsynaptic segments of a synapse with an interface centroid at

a maximal distance of 750 nm to the corresponding synapse centroid that were also overlapping

with the corresponding ground truth synapse segmentation object were associated to that synapse

and assigned a unique id. All interfaces with a center of mass in the region ac3 with the bounding

box [5472, 6496; 8712, 9736; 1000, 1256] were collected and used as the test set for performance

evaluation. All interfaces with a center of mass at a distance of at least 2 µm to ac3 were used for

training. In addition, interfaces with a center of mass at a distance of at least 1 µm to ac3 were

used for training if there was no interface in the test set between the same segment ids.

SynEM was trained with the same hyperparameter as for the SBEM dataset using LogitBoost

with 1500 weak learners, a learning rate of 0.1, a cost of 100 for the synaptic class (see sub-

section 3.3.3) and the directed label set. The evaluation on the test set was done based on all

interfaces for a synapse as described in subsection 3.4.1, i.e. a synapse was considered detected

(TP) if any interface associated to the synapse was detected. The performance of SynEM and the

performance of VesicleCNN as reported in Roncal et al. (2015) are shown in Figure 3.13. SynEM

outperforms VesicleCNN, which was developed specifically for this dataset and evaluated on the

region ac3 as well. Note that the VesicleCNN output is a voxel probability map and the evaluation

in Roncal et al. (2015) was done based on overlap of ground truth objects with predicted objects

and not on interfaces between segmented processes.

3.4.5. Application to Connectomes
Next, the test set performance of SynEM was used to estimate neuron-to-neuron errors based

on the detection performance for single synapse (see subsection 3.3.4). The recall of excitatory

neuron-to-neuron connections by SynEM was estimated using that cortical connections are typ-

52

3 Automated Synapse Detection for EM-based Connectomics

00 1

1

Recall

P
re

ci
si

on

SynEM

VesicleCNN

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 3.13: Synapse detection performance on an ATUM dataset. SynEM performance (purple) on a dataset from mouse S1
(Kasthuri et al., 2015) and comparison to VesicleCNN (Roncal et al., 2015). (Staffler, Berning, Boergens, Gour, van der Smagt,
Helmstaedter 2017, eLife, Figure 3 - Figure supplement 4, legend modified,
https://doi.org/10.7554/eLife.26414.014 licensed under CC BY 4.0)

ically established by multiple synapses (Feldmeyer et al., 1999, 2002, 2006; Frick et al., 2008;

Markram et al., 1997, range 1 - 8, 4.3± 1.4 (mean ± std.) for excitatory connections; see Ta-

ble 3.3) thus requiring only a subset of all synapses to be detected. For a binarization threshold

of γnn = 1, i.e. if a single detected synapse is enough to consider two neurons as connected, a

single synapse detection recall Rs of 65.1% results in a neuron-to-neuron recall Rnn of 97.1%

(Figure 3.14a). The corresponding single synapse precision at this recall was 99.4%. The neuron-

to-neuron precision was calculated by randomly distributing false positive synapse detections

across all neuron-to-neuron connections and estimating the probability that a previously uncon-

nected pair is assigned a false positive synapse detection. The number of false positive synapse

detections was estimated based on the classifier performance as well as the connectivity ratio

cr which is about 20% for local excitatory connections in rodent cortex (Feldmeyer et al., 1999).

SynEM achieved a neuron-to-neuron precision Pnn of 95.5% at the score threshold corresponding

to a neuron-to-neuron recall Rnn of 97.1% (Figure 3.14b).

To estimate the neuron-to-neuron error for inhibitory connections, a fixed number of 6 synapses

per connected neuron pair (Gupta et al., 2000; Hoffmann et al., 2015; Koelbl et al., 2015; Markram

et al., 2004; see also Table 3.4) and a connectivity ratio of cr = 0.6 (Gibson et al., 1999; Koelbl

et al., 2015) was used. Since the single synapse detection performance rates used for excitatory

connections were calculated on a dense test set with a high fraction of excitatory synapses, a

separate inhibitory test set was generated (see subsection 3.4.2). The inhibitory test set consisted

of all interfaces between three inhibitory axons and all neighboring processes. As for the dense

test set, all interfaces overlapping with a synapse were grouped resulting in a total number of 171

synapses and 9430 non-synaptic interfaces in the inhibitory test set. Performance evaluation was

done using precision and recall curves as described for the dense test set requiring that only one of

the interfaces overlapping with a synapse needed to be detected to consider the synapse detected.

A synapse was considered a FN detection if none of the overlapping interfaces were detected.

Predicted synaptic interfaces not overlapping with any ground truth synapse were considered

FPs. The best performance on the inhibitory test set was achieved at 75% recall and 82% preci-

53

https://doi.org/10.7554/eLife.26414.014
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

Synapse recall Rs

N
eu

ro
n-

N
eu

ro
n

re
ca

ll
R

nn

a

0 10

1

γnn = 1
γnn = 2 b

Synapse precision Ps

N
eu

ro
n-

N
eu

ro
n

pr
ec

is
io

n
P

nn

0 10

1

cr

c

P
re

di
ct

ed
re

m
ai

ni
ng

 N
N

-e
rr

or
(fu

lly
 a

ut
.)

in
 %

0
ATUM SBEM

Mouse S1 cortex

1

2

3

ee i

SynEM

Figure 3.14: Estimated neuron-to-neuron error rates. (a) Estimated neuron-to-neuron recall Rnn as a function of the recall Rs
for single synapse detection and the number of synapses γnn to consider a neuron-to-neuron pair connected (binarization threshold,
see Figure 3.7a). (b) Estimated neuron-to-neuron precision Pnn as a function of the precision Ps for single synapse detection and
the binarization threshold γnn. (c) Predicted remaining neuron-to-neuron error calculated as (1 - F1) score from the SynEM
performance on the ATUM-SEM test dataset (created from the data of Kasthuri et al., 2015) and the SBEM dense and inhibitory test
datasets using the excitatory and the inhibitory neuron-to-neuron error model, respectively. The connectivity ratios were set to
cre = 20% in the excitatory and cri = 60% in the inhibitory model. Error bars, indicated by black lines, specify the range of the
error for cre = 5%, 10%, 30% in the excitatory model and cre = 20%, 40%, 80% in the inhibitory model. (Staffler, Berning,
Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 5c-e, https://doi.org/10.7554/eLife.26414.019
licensed under CC BY 4.0)

Threshold score Single synapse Ps/Rs Neuron-to-neuron Pnn/Rnn

γnn = 1 γnn = 2

θs = −1.67 (exc) 88.5%/88.1%. 72.5%/99.7% 98.1%/95.6%

θnn = −0.08 (exc) 99.4%/65.1%. 98.5%/97.1% 100%/83.4%

θs = −2.06 (inh) 82.1%/74.9%. 77.1%/100% 92.7%/99.5%

θnn = −1.58 (inh) 88.6%/67.8%. 84.7%/99.9% 97.3%/98.5%

Table 3.7: SynEM score thresholds. Overview of the SynEM score thresholds for the dataset 2012-09-28_ex145_07x2 (Boergens
and Helmstaedter, 2012b) at the optimal single synapse performance θs and the optimal estimated neuron-to-neuron performance
θnn for the excitatory and the inhibitory connectivity model at binarization thresholds of γnn = 1 and γnn = 2 with the
corresponding single synapse precision Ps and single synapse recall Rs and the the estimated neuron-to-neuron precision Pnn and
recall Rnn, respectively. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Table 3
https://doi.org/10.7554/eLife.26414.028 licensed under CC BY 4.0)

sion (Figure 3.15). The corresponding precision and recall rates of inhibitory neuron-to-neuron

connections were estimated at 98% and 97%, respectively.

The remaining neuron-to-neuron error achieved by SynEM was less than 3% (measured as (1 −
F1 Score), see Figure 3.14c). The results were stable against variations in the underlying con-

nectivity rates between 5% and 30% for excitatory (cre) and 20% to 80% for inhibitory (cri)

connections. The performance of SynEM is thus likely to be sufficient for most analyses of bi-

nary connectomes due to the inherent variations in synaptic connectivity that have been found

in biological circuits so far (Helmstaedter et al., 2013). The thresholds for the optimal single

synapse performance and the estimated neuron-to-neuron error rates for both the excitatory and

the inhibitory connectivity model are summarized in Table 3.7.

54

https://doi.org/10.7554/eLife.26414.019
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.26414.028
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

0
0

1

1

Recall

P
re

ci
si

on
SynEM(i)

s 1

1
0.9

0.9

SynEM(i)
nn

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.95

0.95

Figure 3.15: Inhibitory synapse detection performance. SynEM performance on a test set of all interfaces along 3 inhibitory
axons (171 synapses, 9430 interfaces; dataset 2012-09-28_ex145_07x2 by Boergens and Helmstaedter, 2012b) for single synapses
(SynEM(i)

s , solid line) and the estimated neuron-to-neuron errors (SynEM(i)
nn, dashed line) assuming 6 synapses for connected

neurons. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 5c-e,
https://doi.org/10.7554/eLife.26414.034 licensed under CC BY 4.0)

Local Cortical Connectome

To exemplify the application of SynEM for connectomics, a sparse local connectome between 104

axons and 100 postsynaptic processes was reconstructed from the dataset 2012-09-28_ex145_-

07x2 (Boergens and Helmstaedter, 2012b; Figure 3.16). The neurites were reconstructed by

skeletonization using webKnossos (Boergens et al., 2017) with 1-5 fold redundancy for axons

and one-fold redundancy for postsynaptic processes. 10 out of the 104 axons were classified as

inhibitory while the remaining 94 were excitatory. The nodes of the skeleton reconstructions were

overlapped with the segments of the SegEM segmentation for this dataset (see subsection 3.4.1;

Berning et al., 2015) to yield a volume reconstruction for the pre- and postsynaptic processes

(Figure 3.16a). For each pair of processes all interfaces were determined and the total border

area was calculated using the area calculation proposed in Berning et al. (2015) (Figure 3.16b).

Afterwards, each interface was classified by SynEM using the threshold θnn (Table 3.7) optimized

for neuron-to-neuron error resulting in estimated precision and recall rates of 98.5% and 97.1%

for excitatory neuron-to-neuron connections and 97.3% and 98.% for inhibitory neuron-to-neuron

connections (Figure 3.16c). To account for synapses that were split into multiple interfaces due to

the SegEM oversegmentation, the detected synaptic interfaces were clustered if they were closer

than 1.5 µm and between the same process pre- and postsynaptic process (Figure 3.17). The

weighted connectome was thresholded with a binarization threshold γnn = 1 for excitatory and

γnn = 2 for inhibitory connections (Figure 3.16d). The resulting binary connectome contained

a total number of 536 connections with estimated neuron-to-neuron precision and recall rates of

98.5% and 97.1% for excitatory and 97.3% and 98.5% for inhibitory connections, respectively.

The total synapse count restricted to the identified connections was 880.

55

https://doi.org/10.7554/eLife.26414.034
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

52
μm

86 μm86 μm

Axons
n = 104

Dendrites
n = 100

b Postsynaptic dendrites

P
re

sy
na

pt
ic

 a
xo

ns

Contactome

To
ta

l c
on

ta
ct

 a
re

a
(μ

m
2)

0

9

c

Connectome Cw

S
yn

ap
se

s
(#

)

0

6

7
in

h.
ex

c.

θnnd

In
h.

 c
on

n.

Post.
partners (#)

P
re

.
pa

rtn
er

s
(#

)

Connectome Cbin

0
20

0 20

E
xc

. c
on

n.

γnn

a

Figure 3.16: Local sparse connectome obtained for a SBEM dataset using SynEM. (a) Volume reconstructions of 104 axonal
(presynaptic) and 100 dendritic (postsynaptic) processes from skeleton tracings in a volume of size 86× 52× 86 µm3 of the
dataset 2012-09-28_ex145_07x2 from mouse S1 L4 (Boergens and Helmstaedter, 2012b). (b) Contactome reporting the total
contact area between pre- and postsynaptic processes. (c) Weighted connectome reporting the total number of synapses at the
SynEM threshold θnn optimized for neuron-to-neuron performance for the respective presynaptic type (excitatory, inhibitory) (see
Table 3.7). (d) Binary connectome obtained from the weighted connectome by thresholding at γnn = 1 for excitatory and γnn = 2

for inhibitory connections resulting in predicted precision and recall rates of 98% and 98% for excitatory and 98% and 97% for
inhibitory connections, respectively. (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 6,
https://doi.org/10.7554/eLife.26414.025 licensed under CC BY 4.0)

56

https://doi.org/10.7554/eLife.26414.025
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

d

ba

c d

SynEM

SegEM

+ skeletons

x x

Figure 3.17: Synapse detection for the sparse local connectome. (a) The SegEM segmentation (Berning et al., 2015) of the
dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b) depicted for an axonal (bottom) and dendritic (top) process of
the local connectome. Note that an oversegmentation with a bias towards splits was used. (b) Synaptic interfaces (black lines)
detected by SynEM between the pre- and postsynaptic process. (c) Skeletons were combined with the segmentation to yield the full
neurite volume reconstructions. (d) Synaptic interfaces between the same pre- and postsynaptic process were clustered if they were
closer than d = 1.5 µm (hierarchical clustering) to obtain the synapse counts in the final connectome (Figure 3.16). Scale bar:
500 nm (a-d). (Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017, eLife, Figure 6 - Figure supplement 1,
https://doi.org/10.7554/eLife.26414.027 licensed under CC BY 4.0)

57

https://doi.org/10.7554/eLife.26414.027
https://creativecommons.org/licenses/by/4.0/

3 Automated Synapse Detection for EM-based Connectomics

a b

-20 10
100

104

non-synaptic

synaptic

SynEM score θ

In
te

rfa
ce

 c
ou

nt
 o

n
te

st
 s

et
 (#

)

single synapse
(θ = -4.4 .. -0.1)

Proofreading range for 99% P/R

neuron-to-neuron
(θ = -1.1 .. 0.8)

101

106

0
0.9 1

0.9

1

Neuron-to-Neuron
Recall Rnn

N
eu

ro
n-

to
-N

eu
ro

n
P

re
ci

si
on

 P
nn

Ti
m

e
pe

r
ba

rr
el

 (h
)

θs
1 θs

2

Figure 3.18: Focused proofreading. (a) Score distribution for synaptic and non-synaptic interfaces on the test set. SynEM score
ranges for focused proofreading with target precision and recall rates of 99% for single synapse performance (solid, θs1, θ

s
2) and

estimated neuron-to-neuron error (dashed). (b) Estimated neuron-to-neuron precision and recall rates and associated focused
proofreading cost in hours linearly extrapolated from the test set assuming 10 seconds per interface manual annotation time. The
gray area corresponds to the fully automated SynEM performance and can be achieved with 0 proofreading hours. Note that the time
colorbar scale is logarithmic. (b is an updated version of Staffler, Berning, Boergens, Gour, van der Smagt, Helmstaedter 2017,
biorXiv, Figure 3f, https://doi.org/10.1101/099994 licensed under CC BY NC ND 4.0)

Focused Proofreading

To improve the accuracy of synapse detection beyond the fully automated result, the SynEM pre-

dictions can be used to focus human proofreading. After the specification of the required precision

and recall rates for single synapses or neuron-to-neuron connections, it is enough to proofread the

SynEM predictions in a limited score range [θ1, θ2]. The lower score θ1 is determined by the

required recall while the upper score θ2 is determined by the required precision. The lower and

upper score thresholds can be estimated from the performance on a test set: The lower threshold

θ1 is chosen as the highest threshold for which the SynEM classifier achieves the desired recall.

The upper threshold is defined implicitly as the threshold θ2 such that after discarding all non-

synaptic interfaces in the range [θ1, θ2] the classifier achieves the desired precision. Alternatively,

the upper threshold can be chosen as the lowest threshold for which the SynEM classifier achieves

the desired precision potentially resulting in a higher overall precision and thus additional proof-

reading effort. For SynEM, single synapse precision and recall rates of 99% require to proofread

all interfaces in the score range [−4.4, 0.1], while neuron-to-neuron recall and precision rates of

99% result in the score range [−1.1, 0.8] (Figure 3.18a). The annotation cost can be estimated

from the test set as well based on the number of interfaces in the determined score range. Thus, for

each pair of desired precision and recall rates, the required annotation time for a specified single

synapse performance or neuron-to-neuron performance can be estimated and extrapolated to esti-

mate the annotation time for large datasets such as a barrel dataset of size 250× 250× 250 µm3

(Figure 3.18b).

58

https://doi.org/10.1101/099994
https://creativecommons.org/licenses/by-nc-nd/4.0/

3 Automated Synapse Detection for EM-based Connectomics

3.5. Discussion

SynEM, a novel method for the automated detection of chemical synapses in EM-based connec-

tomic datasets was reported. In addition to synapse size and location, SynEM provides the pre-

and postsynaptic partners and the synapse direction which is required for connectomic recon-

struction. The fully automated performance of SynEM achieves error rates for binary neuron-to-

neuron connections below 3% in the mammalian cortex thereby removing synapse detection as

the bottleneck in connectomic reconstruction.

In contrast to previous synapse detection methods, SynEM combines the detection of synapses

and the partner detection task into a single classification step. This is achieved by classifying inter-

faces between segments from volume segmentation of the EM data. The formulation of synapse

detection as interface classification allows including prior knowledge about possible synapse lo-

cations, their orientation and the natural inclusion of the partner detection step. The SynEM

feature representation solely relied on local texture and shape features partially based on Kreshuk

et al. (2011) and Becker et al. (2013) and did not explicitly include the biological identity of

processes such as axons and dendrites or even subcellular classes such as spine, shaft or somatic

segments. However, the biological identity of segments could easily be incorporated as additional

features if available. Training data annotation for interface classification is also simpler and less

time-consuming compared to voxel-based approaches because each synapse only requires the an-

notation of the pre- and postsynaptic partner at the synapse location instead of voxel labeling

(Kreshuk et al., 2011; Becker et al., 2013; Roncal et al., 2015; Dorkenwald et al., 2017) which is

often ambiguous for medium resolution data. Furthermore, interface classification offers a simple

strategy for focused proofreading of SynEM predictions to improve the accuracy beyond what can

be achieved fully automatically. On the other hand, the quality of the volume segmentation affects

the SynEM prediction in a non-trivial way. Experiments with local improvements of the segmen-

tation quality at synapse locations indicated that better segmentations also result in higher synapse

detection performance (see subsection 3.4.2). However, it is not clear whether the approach of

SynEM to consider the whole contact surface for classification is beneficial in all situations, for

example when a synapse has a very large contact area but only a small active zone/PSD as is often

the case for shaft or soma synapses. In such cases, a more locally confined classification could

have advantages.

SynEM does not distinguish between excitatory or inhibitory synapses and the identification of

synapse types for the local cortical connectome (subsection 3.4.5) was based on the identity of the

presynaptic axons which was determined manually. Traditionally, the identification of synapse

types in EM datasets could only be done based on the appearance of the single synapse itself

(Gray, 1959; Colonnier, 1968) due to the limitation of dataset sizes to a few slices or even only

a single slice containing the synapse. In large-scale 3D EM datasets, however, whole axons can

be classified based on multiple synapses along the axon (Kasthuri et al., 2015), including their

postsynaptic target structures (shaft/spines/somata) or even on the neuron morphology in case the

axon and the corresponding cell body are mostly contained in the dataset. The classification of

59

3 Automated Synapse Detection for EM-based Connectomics

synapse types can thus be replaced by the identification of the presynaptic process, which is part

of the SynEM classification, and a separate type classification for presynaptic processes. Since

different types of synapses can have slightly different textural appearance thus affecting the cer-

tainty of the interface classification, the classification can be optimized separately for different

classes of pre- and postsynaptic processes. A simple approach was exemplified for the inhibitory

test set (subsection 3.4.2), where the same classifier was used for excitatory and inhibitory ax-

ons with decision thresholds optimized for the respective synapse types, which is motivated by

the fact that inhibitory synapses typically have a less pronounced PSD than excitatory synapses.

Alternatively, different synapse types could be learned directly by a multi-class interface classi-

fier or using dedicated classifiers trained only on synapses between specific classes of pre- and

postsynaptic processes.

Automated synapse detection methods have first been proposed for high-resolution datasets, for

example obtained by FIBSEM with an isotropic resolution of 4 nm–8 nm, which evidently facil-

itates synapse detection (Figure 3.11a). However, the generation of large connectomic datasets

containing substantial parts of brain circuitry is currently only realistic by compromising reso-

lution for speed (Figure 3.11a). Furthermore, synapse detection methods developed for high-

resolution datasets showed a substantial drop in performance when applied to medium-resolution

datasets (Figure 3.11). SynEM was explicitly designed to allow for synapse detection in lower

resolution datasets that is scalable to large volumes. The superior performance of SynEM on a

high-resolution anisotropic ATUM-SEM dataset (Figure 3.13) indicates that segmentation-based

interface classification can also improve synapse detection for a wider range of 3D EM methods

even beyond the benefit of the integrated partner detection.

While the imaging resolution is limited by the employed EM technique, special fixation proce-

dures that preserve or even enhance extracellular space (ECS) were also reported to aid human

annotators with synapse detection (Pallotto et al., 2015). ECS separates most cellular processes

making a direct touch between neurons much more indicative of a synaptic contact (chemical

or electrical) which should thus facilitate automated synapse detection as well. SynEM was

evaluated on conventionally stained and fixated EM data without post-staining or ECS preser-

vation showing its applicability to this widely used data that does not require any special fixation

protocols. Changes to the data generation process that facilitates synapse detection for human

annotators are thus likely to also improve the performance of SynEM further.

Together, SynEM provides a substantial improvement towards fully automated synapse detection

for cortical connectomics in mammals, shifting the analysis bottleneck again towards cellular

process reconstruction.

60

4. Deep Learning for Semantic Segmentation
in Connectomics

In this chapter, the application of techniques from deep learning for semantic segmentation tasks

in connectomics are described. Semantic segmentation refers to the voxelwise prediction of se-

mantic classes (see also subsection 2.2.3). In section 4.3, the SynEM interface representation is

modified with feature maps learned by fully convolutional networks (FCNs) trained on a multi-

class classification of synaptic junctions, vesicles and mitochondria. The resulting synapse classi-

fication performance is compared to the classifier using the hand-designed feature representation

from chapter 3. In section 4.4, FCNs are used for membrane prediction between cellular processes

with the goal to improve the volume segmentation underlying the SynEM interface definition.

The results were evaluated on the data from the SegEM segmentation challenge (Berning et al.,

2015).

4.1. Introduction

Artificial neural networks (ANNs) and in particular deep learning techniques such as convolu-

tional neural networks (CNNs) have enabled remarkable progress in computer vision in recent

years in domains such as image classification and object detection (Krizhevsky et al., 2012; Si-

monyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016), semantic segmentation

(Long et al., 2015) and image generation (Rezende et al., 2014; Goodfellow et al., 2014; Gatys

et al., 2016). Deep learning has also widely been applied for automated reconstruction in con-

nectomics. CNNs are commonly used to create volume segmentations of cellular processes (Jain

et al., 2010b) but also for the segmentation of various ultrastructure such as synaptic junctions

and myelin (Dorkenwald et al., 2017). Other use-cases are the automated agglomeration of seg-

ments in volume segmentations (Bogovic et al., 2013), the automatic detection of errors in volume

segmentations (Zung et al., 2017; Rolnick et al., 2017) and image alignment (Jain, 2017).

The focus of this chapter is on two semantic segmentation tasks with the aim to replace the

hand-designed feature representation of SynEM by a learned representation and to improve the

underlying volume segmentation used to define interfaces in SynEM. The interface feature rep-

resentation of SynEM proposed in subsection 3.3.1 is based on hand-designed texture and shape

features. However, feature design is a difficult task that requires domain knowledge and the fea-

ture representation potentially needs to be adapted to different datasets. Furthermore, it has been

shown that learned features are competitive to hand-designed features for the task of agglomera-

tion of volume segmentations by boundary classification in connectomics (Bogovic et al., 2013).

In section 4.3, all image filters in the SynEM interface feature representation were replaced by the

output channels of FCNs trained to predict synaptic junctions, vesicle clouds and mitochondria,

which improved classification performance compared to the hand-designed image filters. Similar

to Bogovic et al. (2013), the combination of hand-designed and learned representation resulted in

61

4 Deep Learning for Semantic Segmentation in Connectomics

the best performance.

Taking a step back, the definition of interfaces itself was based on a volume segmentation, and the

quality of the segmentation affected the performance of SynEM (subsection 3.4.2), for example

when a synapse is split into multiple small interfaces with less context or, obviously, if the synaptic

location is not admissible due to a merge error. The generation of volume segmentations is often

done in a multi-stage process starting with the calculation of an initial over-segmentation that is

subsequently refined by an agglomeration procedure. Two main approaches are currently used to

produce the initial over-segmentation based either on boundary or affinity maps that subsequently

need to be partitioned into single objects, for example using simple connected components or a

watershed procedure (Jain et al., 2010b). Affinity maps indicate whether two voxels belong to the

same object (Turaga et al., 2010). Boundary maps specify which voxels separate two processes,

for example voxels that belong to membranes between cellular processes, thus containing less

information than affinity maps which is, however, often sufficient (Berning et al., 2015). Both

boundary maps and affinity graphs have been calculated using a variety of methods, however, it

has been shown that in both cases CNNs typically outperform other approaches (Jain et al., 2007;

Turaga et al., 2010; Jain et al., 2010b; Ciresan et al., 2012). In section 4.4, FCNs were used to gen-

erate boundary maps from electron microscopy (EM) data to create an initial oversegmentation in

a segmentation procedure as proposed by SegEM (Berning et al., 2015). Multiple network archi-

tectures were compared including regular FCNs built from successive convolutional and pooling

operations, a novel multi-resolution architecture that processes features at different resolutions

and networks with an encoder-decoder structure (Ronneberger et al., 2015; Funke et al., 2018).

The best network showed an improvement of the segmentation result of SegEM (Berning et al.,

2015) by a factor larger than two of the inter-error distance (IED). Furthermore, an ensemble of

networks gave the overall best result.

4.2. Related Work

The success of deep learning in fields such as image classification has led to a rapid adoption of

techniques from deep learning for tasks in semantic segmentation (see for example Long et al.,

2015; Chen et al., 2018). The inherent challenge of semantic segmentation is to combine long

range context required for semantic classification with local information about the exact location

of objects (Long et al., 2015). CNNs are ideally suited for voxelwise prediction due to their ability

of processing arbitrarily sized inputs efficiently. In connectomics and in particular for membrane

prediction, CNNs have been shown to outperform other methods early on (Jain et al., 2007; Turaga

et al., 2010; Jain et al., 2010b; Ciresan et al., 2012). However, methods that used CNNs solely

consisting of convolutional layer (Jain et al., 2010a; Turaga et al., 2010; Berning et al., 2015) were

typically limited by a small field of view or required large filter sizes to achieve sufficient image

context. To increase the available image context, CNNs often contain pooling operations that

downsample the spatial resolution thus enlarging the field of view. Ciresan et al. (2012) proposed

to train a CNN that classifies the center pixel from the field of view of the network as membrane

or non-membrane which is repeated for all pixels of an image. This shift and stitch approach is

62

4 Deep Learning for Semantic Segmentation in Connectomics

computationally inefficient, but it is possible to convert a CNN for classification, which can only

process inputs of a fixed size, into a FCN by using what has been called skip kernels (Sermanet

et al., 2014), filter rarefaction (Long et al., 2015), dilated or atrous convolutions and was used

for example in the ZNN framework (Zlateski et al., 2016). An alternative is the max-pooling

fragment approach (Giusti et al., 2013; Masci et al., 2013), which produces several independent

outputs at each pooling layer corresponding to all possible offsets of the pooling window that are

separately processed by the remaining network layers. Max-pooling fragment was, for example,

implemented by the elektroNN1 framework that was used in SyConn (Dorkenwald et al., 2017) to

train classifiers for several kinds of ultrastructure including membrane maps. However, networks

with pooling layers compromise a larger field of view with less localized predictions since the

filters cannot access information at all scales anymore. To overcome the trade-off between lo-

calization and sufficiently large image context, encoder-decoder network architectures have been

proposed (Long et al., 2015). In encoder-decoder networks, the semantic information is extracted

by the encoder that typically gradually reduces the size of the input image while the decoder

recovers the high-resolution spatial information. Encoder-decoder networks form the basis of

many current semantic segmentation algorithms and have been combined with multi-resolution

methods such as spatial pyramid pooling (He et al., 2014) and atrous convolutions (Chen et al.,

2018). An example of such a network is the u-net architecture (Ronneberger et al., 2015), which

uses contracting and expanding pathways that are connected by skip connections to combine fea-

tures from different resolutions. The u-net architecture has been widely adopted in medical image

analysis including membrane prediction in connectomics (Lee et al., 2017; Funke et al., 2018;

Drozdzal et al., 2018). U-net is fully convolutional although not translation equivariant (cf. Equa-

tion 2.8) and used an overlap-tile strategy to combine predictions from adjacent input volumes.

Other approaches that process information at multiple scales include the usage of multiple parallel

convolutions of different sizes in each layer (Grais et al., 2017) or networks where each feature

map has a different dilation ratio (Pelt and Sethian, 2018).

The generation of an initial over-segmentation from boundary maps in connectomics is typically

done using simple thresholding followed by connected components (Turaga et al., 2010; Jain

et al., 2010b) or a watershed procedure (Berning et al., 2015; Funke et al., 2018) that can be

learned as well (Wolf et al., 2017). A recent approach with promising results called flood-filling

networks (Januszewski et al., 2017) deviates from the two-step process of boundary map calcu-

lation followed by a partitioning procedure and combines them into a single step by iteratively

refining a binary mask that constitutes a single cellular process. The object mask creation is then

repeated for all cellular processes in a dataset.

To compare volume segmentations, several metrics have been proposed for segmentations in gen-

eral, but also particularly for the task of neurite reconstruction in connectomics (see also Arganda-

Carreras et al., 2015). The most basic metrics are voxelwise errors such as the cross-entropy

(Equation 2.18) or sum of squares error (Equation 2.16) that can both be used as a loss func-

tions for CNN training (Ciresan et al., 2012; Berning et al., 2015). Region or segmentation based

1 elektronn.org

63

elektronn.org

4 Deep Learning for Semantic Segmentation in Connectomics

metrics compare a proposed segmentation with a ground truth segmentation and can typically be

used as loss functions for learning such as the rand error (Unnikrishnan et al., 2007; Turaga et al.,

2009), the warping error (Jain et al., 2010a), the variation of information (Arbelaez et al., 2011;

Kroeger et al., 2013) and the tolerant edit distance (Funke et al., 2017). Evaluation metrics spe-

cific to connectomics typically measure the path length of reconstructed processes by comparing

a volume segmentation to ground truth skeletons that serve as a sparse approximation to the un-

derlying cellular processes such as the split-merge metric (Berning et al., 2015) and the expected

run length (Januszewski et al., 2017). Note that the tolerant edit distance (Funke et al., 2017) can

be used to compare a predicted segmentation to a ground truth skeletonization as well.

The segmentation of ultrastructure other than cellular membranes has received less attention in

connectomics so far as discussed in context of synapse detection (see section 3.2). Several ap-

proaches for the segmentation of synaptic junctions (Kreshuk et al., 2011; Becker et al., 2013;

Kreshuk et al., 2014; Neila et al., 2016) and other ultrastructure such as mitochondria (Perez et al.,

2014; Neila et al., 2016) have been proposed that rely on hand-designed features. Dorkenwald

et al. (2017) used the elektroNN framework to train CNNs to classify synaptic junctions, vesicle

clouds and mitochondria and separate CNNs for myelin, somata and blood-vessels. Furthermore,

Dorkenwald et al. (2017) showed that their CNN-based approach is superior to all previously

proposed methods relying on hand-designed features and to the 2D CNN of VesicleCNN (Ron-

cal et al., 2015). The most recent approaches used encoder-decoder type FCNs based on u-net

(Ronneberger et al., 2015) with more refined training procedures. Heinrich et al. (2018) used a

u-net like architecture for synaptic cleft segmentation formulated as a regression task. The net-

work architecture was optimized for an isotropic field of view in the hidden layers of the network.

Parag et al. (2018) used a u-net like architectures to predict separate labels for pre- and postsy-

naptic processes formulated as a regression task, which allowed to estimate synapse orientation

in addition to synapse locations from the voxelwise predictions.

4.3. Interface Classification with Learned Texture Filters

In this section, the texture features of the SynEM interface representation were replaced or ex-

tended by feature maps learned by CNNs and the result was compared to the performance of the

hand-designed feature representation (subsection 3.3.1).

4.3.1. Feature Learning for SynEM
To extend SynEM with learned feature maps, the outputs of CNNs were used as additional texture

features in the SynEM interface representation (see subsection 3.3.1). To generate relevant fea-

tures for synapse detection, the CNNs were first trained for voxelwise classification of the 3D EM

data into synaptic junctions, vesicle clouds and mitochondria (Figure 4.1) as in Dorkenwald et al.

(2017). For comparison, several CNNs with different architectures (Table 4.1), each with tanh as

hidden activations, a softmax output non-linearity were trained using the elektroNN2 framework.

2 elektronn.org

64

elektronn.org

4 Deep Learning for Semantic Segmentation in Connectomics

a b

Figure 4.1: CNN ultrastructure prediction in SBEM. (a) Raw data image from the dataset 2012-09-28_ex145_07x2 (Boergens
and Helmstaedter, 2012b) from mouse primary somatosensory cortex (S1) layer 4 (L4). (b) Multi-class voxelwise output of a CNN
(cnn17_4_large, see also Table 4.1) for synaptic junctions (red), vesicle clouds (green) and mitochondria (blue) overlaid with the
raw data from (a). Examples of false positive prediction are marked by arrows for a synaptic junction (center), vesicle cloud (soma
in bottom left) and mitochondria (in myelin at top right). Scale bar: 1 µm (a-b).

The multi-class cross-entropy loss (Equation 2.20) was used as loss function with the four classes

synaptic junctions, vesicle clouds, mitochondria and a class for background that corresponds to

all voxels that do not belong to the first three classes. Each CNN consisted of a sequence of

convolutional and max-pooling layers with sizes specified in Table 4.1. ElektroNN ensures full

translation equivariance using a volume-based training with sparse outputs and max-pooling frag-

ment for prediction (Giusti et al., 2013; Masci et al., 2013).

For each CNN, three interface feature representations were defined as follows. The first rep-

resentation used only the raw data and the CNN output channels (synaptic junctions, vesicles,

mitochondria, background) as feature maps for texture features and the interface volume and

principal axes as shape features and is called "CNN out" in the following. The second representa-

tion consisted of the raw data, all feature maps in the last hidden layer and the output layer of the

CNN as texture features as well as the interface volume and principal axes as shape features and

is called "CNN out & hidden" in the following. The third representation used the CNN output

channels in addition to all hand-designed texture features and all shape features from the original

SynEM feature representation (subsection 3.3.1) and is called "CNN out & hand" in the follow-

ing. Each interface classifier is thus uniquely specified by a CNN architecture and the type of

feature representation.

4.3.2. Experiments
Classifier Training

Classifier training and evaluation was done on the dataset 2012-09-28_ex145_07x2 from mouse

S1 L4 (Boergens and Helmstaedter, 2012b; see also Berning et al., 2015; Staffler et al., 2017a),

which was also used for SynEM evaluation (see subsection 3.4.1). For CNN training, the voxel-

based training data generated for the comparison of SynEM to SyConn consisting of six training

regions of size 3.4× 3.4× 3.4 µm3 (300×300×120 voxels) was used (see subsection 3.4.1) and

extended by one additional training region of size 5.8× 5.8× 7.2 µm3 (512× 512× 256 voxels)

annotated in the same fashion. The input data was globally normalized to [0, 1] by dividing it

65

4 Deep Learning for Semantic Segmentation in Connectomics

Name FOV Params Filters sizes Pooling window sizes FMs Lr
cnn17* [79 79 29] 227740 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],

[3 3 3],[3 3 2],[3 3 2],[1 1 1]
[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 48
48 48 48 4]

1.00E-03

cnn17_2 [79 79 29] 227740 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 48
48 48 48 4]

5.00E-04

cnn17_2_re [79 79 29] 227740 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 48
48 48 48 4]

1.00E-03

cnn17_2_large [79 79 29] 322628 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[16 16 32 32 48
48 64 64 4]

5.00E-04

cnn17_5 [79 79 29] 227740 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 48
48 48 48 4]

1.00E-03

cnn17_6 [79 79 29] 227740 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 48
48 48 48 4]

1.00E-03

cnn17_3 [79 79 29] 227740 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 48
48 48 48 4]

1.00E-03

cnn17_4_large [79 79 29] 322628 [8 8 4],[5 5 3],[5 5 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 2],[3 3 2],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[16 16 32 32 48
48 64 64 4]

1.00E-03

cnnCD_1 [57 57 23] 249646 [5 5 3],[5 5 3],[5 5 3],[5 5 3],[5 5 3],
[5 5 3],[5 5 3],[5 5 3],[5 5 2],[5 5 2],
[5 5 2],[5 5 2],[5 5 2],[5 5 2],[1 1 1]

[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1]

[12 12 12 12 12
18 18 18 18 18
24 24 24 24 4]

1.00E-4,
5.00E-5

cnnCD_2 [57 57 23] 249646 [5 5 3],[5 5 3],[5 5 3],[5 5 3],[5 5 3],
[5 5 3],[5 5 3],[5 5 3],[5 5 2],[5 5 2],
[5 5 2],[5 5 2],[5 5 2],[5 5 2],[1 1 1]

[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1]

[12 12 12 12 12
18 18 18 18 18
24 24 24 24 4]

1.00E-4,
5.00E-5

cnnDK_1 [111 111 13] 189724 [6 6 1],[4 4 1],[4 4 4],[4 4 2],[4 4 2],
[1 1 1]

[2 2 1],[2 2 1],[2 2 2],[2 2 2],[1 1 1],
[1 1 1]

[12 24 36 48 48 1.00E-3,
5.00E-4

cnnDK_2 [111 111 13] 189724 [6 6 1],[4 4 1],[4 4 4],[4 4 2],[4 4 2],
[1 1 1]

[2 2 1],[2 2 1],[2 2 2],[2 2 2],[1 1 1],
[1 1 1]

1.00E-3,
5.00E-4

svm_1 [47 47 15] 204580 [12 12 6],[7 7 3],[5 5 3],[1 1 1] [2 2 1],[2 2 2],[2 2 2],[1 1 1] [16 32 48 4] 1.00E-3,
5.00E-4

svm_2a [63 63 25] 245748 [8 8 2],[5 5 2],[3 3 2],[3 3 2],[3 3 3],
[3 3 3],[1 1 1]

[1 1 1],[2 2 1],[2 2 2],[2 2 2],[1 1 1],
[1 1 1],[1 1 1]

[16 16 32 48 64
64 4]

1.00E-3,
5.00E-4

svm_2b [87 87 37] 245748 [8 8 2],[5 5 2],[3 3 2],[3 3 2],[3 3 3],
[3 3 3],[1 1 1]

[1 1 1],[2 2 1],[2 2 2],[2 2 2],[2 2 2],
[1 1 1],[1 1 1]

[16 16 32 48 64
64 4]

1.00E-3,
5.00E-4

svm_2c [103 103 41] 246772 [8 8 3],[5 5 2],[3 3 2],[3 3 2],[3 3 3],
[3 3 3],[1 1 1]

[2 2 1],[2 2 2],[2 2 2],[1 1 1],[2 2 2],
[1 1 1],[1 1 1]

[16 16 32 48 64
64 4]

1.00E-3,
7.50E-4

svm_3a [69 69 27] 237892 [8 8 2],[3 3 2],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 3],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[1 1 1],[2 2 2],
[1 1 1],[1 1 1],[2 2 2],[1 1 1],[1 1 1]

[12 12 24 24 24
48 48 48 48 4]

1.00E-3,
5.00E-4

svm_3b [81 81 33] 238660 [8 8 3],[3 3 2],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 3],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[1 1 1],[2 2 2],[1 1 1],[1 1 1],[1 1 1]

[12 12 24 24 24
48 48 48 48 4]

5.00E-4,
3.70E-4

svm_3c [113 113 49] 230884 [8 8 3],[3 3 2],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 3],[1 1 1]

[1 1 1],[2 2 1],[1 1 1],[2 2 2],[1 1 1],
[2 2 2],[1 1 1],[2 2 2],[1 1 1],[1 1 1]

[12 12 24 24 36
36 48 48 48 4]

1.00E-3,
7.50E-4

svm_4a [75 75 31] 374080 [8 8 2],[3 3 1],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 3],[1 1 1]

[1 1 1],[1 1 1],[2 2 1],[1 1 1],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1],[1 1 1],[1 1 1]

[12 12 12 24 24
24 48 48 48 48
48 48 4]

1.00E-4,
7.50E-5

svm_4b [103 103 45] 374080 [8 8 2],[3 3 1],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 3],[3 3 3],
[3 3 3],[3 3 3],[1 1 1]

[1 1 1],[1 1 1],[2 2 1],[1 1 1],[1 1 1],
[2 2 2],[1 1 1],[1 1 1],[2 2 2],[1 1 1],
[1 1 1],[1 1 1],[1 1 1]

[12 12 12 24 24
24 48 48 48 48
48 48 4]

1.00E-4,
7.50E-5

svm_5a [79 79 33] 329512 [8 8 3],[3 3 2],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 2],[3 3 2],
[3 3 3],[3 3 3],[3 3 2],[3 3 3],[3 3 3],
[1 1 1]

[1 1 1],[1 1 1],[1 1 1],[1 1 1],[2 2 1],
[1 1 1],[1 1 1],[1 1 1],[1 1 1],[2 2 2],
[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1]

[12 12 12 12 12
24 24 24 24 24
48 48 48 48 48
4]

1.00E-4,
7.50E-5

svm_5b [117 117 47] 172552 [8 8 3],[3 3 2],[3 3 2],[3 3 2],[3 3 2],
[3 3 2],[3 3 3],[3 3 3],[3 3 2],[3 3 2],
[3 3 3],[3 3 3],[3 3 2],[3 3 3],[3 3 3],
[1 1 1]

[1 1 1],[1 1 1],[1 1 1],[2 2 1],[1 1 1],
[1 1 1],[1 1 1],[2 2 2],[1 1 1],[1 1 1],
[1 1 1],[2 2 2],[1 1 1],[1 1 1],[1 1 1],
[1 1 1]

[12 12 12 12 18
18 18 18 24 24
24 24 36 36 36
4]

1.00E-4,
7.50E-5

svm_segEM [51 51 21] 248144 [11 11 5],[11 11 5],[11 11 5],[11 11
5],[11 11 5],[1 1 1]

[1 1 1],[1 1 1],[1 1 1],[1 1 1],[1 1 1],
[1 1 1]

1.00E-4,
3.00E-5

Table 4.1: CNNs trained on synaptic junctions, vesicle clouds and mitochondria. Name: Internal name used for the architecture;
FOV: Field of view of the CNN in voxels for the in x, y, z dimension, respectively; Params: Total number of trainable parameters;
Filters sizes: Size of the convolutional filter in voxels for the respective dimension and layer; Pooling window sizes: Max-pooling
window size in voxels for the respective dimension and layer which is applied after the convolutional filter (pooling operations with
a size of 1 in all dimensions correspond to the identity transformation and are not executed in the actual implementation). FMs:
Number of output feature maps of the corresponding convolutional layer. Lr: Initial learning rate of the CNN. (*) cnn17 was only
trained on the data used for comparison of SynEM with SyConn

66

4 Deep Learning for Semantic Segmentation in Connectomics

name FM F1 val F1 test AUC val AUC test

cnn17_4_large out & hand 0.914 0.892 0.961 0.952

cnn17 out 0.898 0.898 0.950 0.949

svm_2a out & hidden 0.897 0.890 0.951 0.943

SynEM_tr2 hand 0.865 0.874 0.932 0.93

SynEM hand 0.865 0.858 0.926 0.921

Table 4.2: SynEM with learned features validation set performance. Performance of best classifiers on the validation set ranked
by F1 score specified using their feature representation and the underlying CNN architecture. For each type of feature map, the best
classifier on the validation set is specified. SynEM refers to the original SynEM classifier trained on the training set from
subsection 3.4.1 and on the extended interface training set (SynEM_tr2). name: Internal name used for the CNN architecture as
specified in Table 4.1. FM: Type of feature map using only the CNN output layer (out), the CNN output and last hidden layer (out &
hidden) and the CNN output and hand-designed feaures (out & hand).

by 255 and data augmentation was done using random rotations (in x-y dimension) and flips as

well as histogram-based data augmentation as provided by elektroNN. Each CNN was trained for

four days using stochastic gradient descent with an initial learning rate as specified in Table 4.1

(multiple learning rates correspond to successive runs of four days each), a momentum of 0.9 and

a learning rate decay of 0.997 every 1000 steps. Interface classifier training was done using the

same classifier setup as for SynEM (see subsection 3.3.3) consisting of an ensemble of boosted

decision stumps trained using LogitBoost (Friedman et al., 2000), 1500 weak learners, a learning

rate of 0.1 and a cost of 100 for the synaptic class. The SynEM interface training data was used

and extended by two additional cubes of size 5.8× 5.8× 7.2 µm3 (512× 512× 256 voxels) each

from a newly aligned version of the dataset 2012-09-28_ex145_07x2 (2012-09-28_ex145_07x2_-

ROI2017, Boergens and Helmstaedter, 2012c; size 96× 64× 96 µm3) with a volume segmenta-

tion generated by SegEM using the same segmentation parameters as for the SynEM test set (see

subsection 3.4.1) resulting in a total number of 2066 synaptic and 84974 non-synaptic interfaces

in the training set. For comparison, the SynEM classifier was also retrained using the additional

interface training data.

Classifier Evaluation

All interface classifiers were evaluated on the validation set of SynEM (Figure 4.2). The best

performance on the validation set according to both F1 score and area under curve (AUC) score

of the precision-recall curve were attained by classifiers using a combination of CNN features

and hand-designed features ("CNN out & hand") outperforming classifiers that use only the CNN

output layer ("CNN out") or the CNN output and last hidden layer ("CNN out & hidden"). The

best classifiers with respect to the three different types of feature representations are listed in

Table 4.2.

The best classifiers from the validation set ranked by F1 score for each feature representation

67

4 Deep Learning for Semantic Segmentation in Connectomics

cnn17_4_large
cnn17_2_re
cnn17
svm_1
cnn17_6
SynEM
SynEM_tr2

cnn17
cnn17_5
cnnCD_1
cnn17_2
cnnCD_2

svm_2a
cnnCD_2
svm_3a
cnn17
cnn17_5

Best AUCBest F1

Best F1 (CNN out) Best F1 (CNN out & hidden)

Recall (Val. set) Recall (Val. set)

P
re

ci
si

on
 (V

al
. s

et
)

P
re

ci
si

on
 (V

al
. s

et
)

a b

c d

all FMs:
out & hand

all FMs:
out

all FMs:
out & hidden

all FMs:
out & hand

svm_3b
cnn17_5
cnn17
svm_3a
cnnCD_2
SynEM
SynEM_tr2

0.5 10.6 0.7 0.8 0.9

0.5 10.6 0.7 0.8 0.9 0.5 10.6 0.7 0.8 0.9

0.5 10.6 0.7 0.8 0.9
0.5

1

0.6

0.7

0.8

0.9

0.5

1

0.6

0.7

0.8

0.9

0.5

1

0.6

0.7

0.8

0.9

0.5

1

0.6

0.7

0.8

0.9

Figure 4.2: SynEM with learned features validation set performance. (a) The five best classifiers (specified using the feature
representation and the underlying CNN) ranked by F1 score on the validation set. SynEM refers to the SynEM classifier using only
hand-designed features trained on the SynEM training data and extended training data (SynEM_tr2), respectively. Note that all of
the classifiers in (a) and (b) used the feature map "out & hand" consisting of a combination of CNN and hand-designed features. (b)
The five best classifiers ranked by AUC score of the precision-recall curve on the validation set. (c) The five best classifiers using
only the CNN output (CNN out) as texture features ranked by F1 score on the validation set. (d) The five best classifiers using the
CNN output and hidden layer as texture features (CNN out & hidden) ranked by F1 score on the validation set.

68

4 Deep Learning for Semantic Segmentation in Connectomics

0.5
0.5

0.5
1

11
a b

Recall (Test set) Recall (Test set)

P
re

ci
si

on
 (T

es
t s

et
)

Full test set Original SynEM test set

cnn17_4_large
out & hand
cnn17 out
svm_2a
out & hidden
SynEM
SynEM_tr2
cnn17 out & hand

0.6

0.6

0.7

0.7

0.8

0.8

0.9 0.5 10.6 0.7 0.8 0.9

0.9

0.6

0.7

0.8

0.9

Figure 4.3: SynEM with learned features test set performance. (a) Test set performance of the best classifiers from the validation
set for the different feature maps, as well as for SynEM and SynEM with extended training data (SynEM_tr2). Note that the
classifier with best validation score (cnn17_4_large) is worse than the best classifier using the feature map based on the CNN output
(cnn17 out), which in turn is worse than the corresponding CNN output combined with the hand-designed features (cnn17 out &
hand). (b) Test set performance restricted to the test set volume that was used for the evaluation of SynEM in subsection 3.4.2. Note
that the original SynEM classifier performs better than the retrained version using the extended training data (SynEM_tr2), which is
not true on the larger test set in (a).

were evaluated on a test set of dense synapse annotations within three regions distinct from the

training and validation regions (Figure 4.3). The test set consisted of the SynEM test set (subsec-

tion 3.4.1) and two additional volumes of size 5.8× 5.8× 7.2 µm3 (512×512×256 voxels) from

the newly aligned version of the dataset 2012-09-28_ex145_07x2 (2012-09-28_ex145_07x2_-

ROI2017, Boergens and Helmstaedter, 2012c) described above. Annotation of the additional test

regions was done by the first expert annotator of the SynEM test set by first going through all

predictions of SynEM at a recall of 95% and a subsequent search for synapses at missed bou-

tons. For each synapse, all segments in the pre- and postsynaptic process at the synapse location

were annotated and all interfaces between any pre- and postsynaptic segment were associated

with the corresponding synapse. Interfaces with a center of mass closer than 160 nm to the bor-

der were discarded. If a synapse contained at least one interface with a center of mass further

than 160 nm to the boundary, then all interfaces of the corresponding synapses were kept. One

identified ground truth synapse did not overlap with any interface larger than 150 voxels and is

thus always counted as a missed synapse (FN). The resulting test set comprised a total number of

532 synapses. Performance evaluation was done as for SynEM requiring that at least one of the

interfaces overlapping with a synapse needs to be detected to consider the synapse detected (see

subsection 3.4.2). The precision-recall curves on the test set show that all CNN-based classifiers

outperform the purely hand-designed approach (Figure 4.3a). In contrast to the validation set,

the classifier using only the CNN output (cnn17 out) performed best on the test set. Note that

the interface classifier using the cnn17 output and hand-designed features (cnn17 out & hand in

Figure 4.3) performed even better than the classifier using only the cnn17 output but has a lower

validation set F1 score than the classifier cnn17_4_large out & hand (rank 3 in Figure 4.2a). For

69

4 Deep Learning for Semantic Segmentation in Connectomics

0 0.012

Identity
CNN out (c1)
CNN out (sj)
CNN out (vs)
CNN out (mi)

EVsStructT (c1)
EVsStructT (c2)
EVsStructT (c3)

EVsHess (c1)
EVsHess (c2)
EVsHess (c3)

GaussFilter
DoG
LoG

GaussGradMag
StdFilter2

EntropyFilter
IntVar2

AverageFilter border
subseg1 (pre)
subseg2 (post)

0 0.02

Identity

CNN out (c1)

CNN out (sj)

CNN out (vs)

CNN out (mi)

CNN out

Identity

0 0.03

CNN hidden

cnn17_4_large
out & hand

cnn17 out svm_2a
out & hidden

a b c

Feature Importance Feature Importance Feature Importance

Figure 4.4: Feature importance for interface classification with learned features. Feature importance of texture features for the
best interface classifiers on the validation set using the three different types of feature maps with learned features. Feature channels
are indicated in brackets with sj: synaptic junctions, vs: vesicles and mi: mitochondria or c1 to c4 for unspecific channels in (a) and
(b). (a) Best classifier using the CNN (cnn17_4_large) output and all hand-designed features of SynEM. (b) Best classifier using
only the CNN (cnn17) output channels. (c) Best classifier using the CNN (svm_2a) output channels and the last hidden layer. Color
code in (b) and (c) is the same as (a).

a better comparison to the results of the SynEM classifier (subsection 3.4.2), the results on the

original SynEM test set are shown in Figure 4.3b.

The feature importance of the texture features and subvolumes of the classifiers evaluated on the

test set is shown in Figure 4.4. For all three classifiers, the CNN output for synaptic junctions

at the interface border volume as well as vesicles in the interface presynaptic subvolume had a

high importance as expected, whereas the mitochondria output channel had a comparably low

importance. Note that the raw data (identity feature) contributed to the border subvolume for all

classifiers despite the explicit CNN output for synaptic junctions. The most important features for

the classifier using both CNN and hand-designed features (cnn17_4_large out & hand) were the

CNN outputs for synaptic junctions and vesicles but many hand-designed filters also contributed

to the classification, in particular for the postsynaptic subvolume (Figure 4.4a). Similarly, for

the classifier using only the CNN output (cnn17 out) the raw data had a large contribution, in

particular for the postsynaptic volume (Figure 4.4b). The classifier using the CNN output as

well as the last hidden layer (svm_2a out & hidden) also used mainly the output layer, however,

the hidden layers again largely contribute to the classification, in particular for the postsynaptic

subvolume.

Examples of classification errors on the test set for SynEM and for the classifier cnn17_4_large

(out & hand) are shown in Figure 4.5. As expected, the additional information contained in the

CNN channels was beneficial to avoid false positive detections at mitochondria (Figure 4.5a, first

row) but also near myelin and in somata as well as in large dendrites. In addition to the high-level

semantic output of the CNN, which was preferentially used by the interface classifier even when

other texture features were available (see Figure 4.4), the voxelwise CNN prediction was inde-

pendent of the segmentation and had a large field of view compared to the hand-designed texture

features. This can be beneficial to detect synapses that are split into several interfaces each cov-

ering only a small part of the synapse thus providing only limited context for the hand-designed

70

4 Deep Learning for Semantic Segmentation in Connectomics

texture features, which was frequently the case for SynEM FN detections (Figure 4.5b). Similar

to SynEM, FP detection of the CNN-based classifier often occurred at incidental non-synaptic

touches of a bouton with a neighboring process (Figure 4.5c), however, these FP detections often

were at difficult locations that also showed other synaptic features such as a thickening of the

corresponding membrane e.g. due to an oblique orientation of the membrane with respect to the

imaging plane. FN detections often occurred at small synapses with only a few vesicles and weak

indication of a postsynaptic density (PSD) (Figure 4.5d).

The best classifier from the validation set ranked by F1 score (cnn17_4_large out & hand) as

well as the best classifier using only the CNN output (cnn17 out) were in addition evaluated on

the SynEM inhibitory test set (Figure 4.6a), which consisted of 171 inhibitory synapses along 3

inhibitory axons (see subsection 3.4.1). Despite the improved performance on the dense test set,

the CNN based interface classifiers did not show an overall improvement on the inhibitory test set

but only for high recall values larger than 80% for which, however, the precision is already below

70%.

The distribution of synapse scores over the whole dataset 2012-09-28_ex145_07x2 is shown in

Figure 4.6b. In comparison to SynEM, the CNN-based classifiers show a stronger bimodality

with more interfaces that either have very low or very high scores, which is most distinctive for

the classifier using only CNN texture features (cnn17 out). Interestingly, the SynEM classifier

produces a set of outliers with very high scores corresponding to FP detections in somata and

blood vessels, which were not contained in the original SynEM training data. Due to the inclu-

sion of somata in the extended interface classifier training data, the somata FP detections mostly

vanished for the SynEM_tr2 classifier, however, the blood vessel FPs were still present. The score

distributions of the CNN-based classifier on the other hand do not show systematic FP detections

with very high scores despite the fact that also the voxel-based training data did not contain blood

vessels.

Generalization to Novel Datasets

To assess the generalization capabilities of interface classifiers, the serial block-face electron mi-

croscopy (SBEM) dataset 2017-11-16_ex144_st08x2 (Boergens and Helmstaedter, 2012a; abbre-

viated with ex144 in the following) from mouse S1 layer 2/3 (L2/3) of size 97× 61× 196 µm3

with a voxel size of 12× 12× 26 nm3 was used. The raw data was segmented using SegEM

(Berning et al., 2015). In brief, for membrane prediction the raw data was normalized using

the standard score using a global mean of 166.8 and a global standard deviation of 21.0 and the

watershed segmentation was run with parameters rse = 0, θms = 10, θhm = 0.25.

For testing, a volume of size 6.14× 6.14× 6.66 µm3 (512 × 512 × 256 voxels; bounding box

[4737, 5377, 3457, 5248, 5888, 3712]) was randomly selected. Test set annotation was done by

the first expert annotator of the SynEM test set as described in the previous section using the

predictions of several classifiers (SynEM, SynEM_tr2, cnn17_4_large out & hand, cnn17 out

71

4 Deep Learning for Semantic Segmentation in Connectomics

a b

c d

SynEM FP cnn17_4 TN SynEM FN cnn17_4 TP

cnn17_4 FPSynEM TN SynEM TP cnn17_4 FN

x x

x

1

1

1

1

2

2

2

2

x

x

Figure 4.5: Qualitative classification error comparison. Comparison of errors on the test set made by the classifiers SynEM and
cnn17_4_large (out & hand) on the dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b). In each panel, the raw
data (left column) and the corresponding CNN output channels for synaptic junctions (red), vesicle clouds (green) and mitochondria
(blue) overlaid with the raw data (right column) are shown. The processes of interest are marked in the raw data images only with 1
and 2 for pre- and postsynaptic, respectively, while x marks interfaces between processes that are non-synaptic. Note that a synapse
can consist of multiple interface which is not shown here. (a) False positive (FP) detections of SynEM that were correctly classified
as non-synaptic by the cnn17_4_large classifier (TN). (b) False negative (FN) detections of SynEM that were correctly classified as
synaptic by the cnn17_4_large classifier (TP). (c) False positive (FP) detections of the cnn17_4_large classifier that were correctly
classified as non-synaptic by SynEM (TN). (d) False negative (FN) detections of the cnn17_4_large classifier that were correctly
classified as synaptic by SynEM (TP). Scale bar: 500 nm (a). Scale bar in (a) applies to all images in (a-d).

72

4 Deep Learning for Semantic Segmentation in Connectomics

 cnn17_4_large
out & hand
cnn17 out
SynEM

Recall

P
re

ci
si

on

0
0

1

1

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

a b

0

2

4

6

8

10 × 105

Synapse score
-20 -10 0 10

In
te

rfa
ce

 c
ou

nt

-20 -10 0 10100

102

104

106

Figure 4.6: SynEM with learned features inhibitory test set performance. (a) Precision-recall curve for the classifier with best
overall performance (cnn17_4_large out & hand), the best classifier using only the CNN output features (cnn17 out) and the original
SynEM classifier using the hand-designed feature representation on the SynEM inhibitory test set. (b) Classification score histogram
for the classifiers in (a) on the dataset 2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b) from mouse S1 L4 for all
interfaces with a size above 150 voxels. Inset, score histogram with counts on a logarithmic scale. The large number SynEM outliers
with very high scores correspond to FP detections in somata and blood vessels which were not represented in the SynEM training
data. Note that the voxel-based training data for CNN training and the extended synapse detection training data did contain parts of
somata and the corresponding classifiers do not show systematic FP detections with high scores.

at the threshold corresponding to a recall of 95% on the test set of 2012-09-28_ex145_07x2)

in combination with a search for synapses at missed boutons. A second expert neuroscientist

selectively proofread the annotations of the first annotator as well as all synapses marked as unsure

by the first annotator. The second expert revoked 20 synapse annotations marked as unsure by

the first expert and none of the certain synapses. Interface labeling and evaluation was done as

described in the previous section. The resulting total number of synapses in the test set was 246.

For performance evaluation, it was required that at least one of the interfaces of a synapse was

detected to consider the synapse detected (see subsection 3.4.2).

Performance evaluation on the test set from the dataset ex144 was done for several classifiers from

the previous section, which were trained only on the dataset 2012-09-28_ex145_07x2 (abbrevi-

ated with ex145 in the following) but not on the dataset ex144. The SynEM classifiers (SynEM,

SynEM_tr2), the best classifiers from the validation set from the dataset ex145 using the CNN

output features (cnn17 out) and the combined feature representation of CNN and hand-designed

features (cnn17_4_large out & hand) as well as the classifier with highest F1 score from the test

set of the dataset ex145 (svm_3a out & hand) were used. For feature calculation, the raw data

of the dataset ex144 was scaled to match the global mean and the global standard deviation of

the dataset ex144 (unnormalized mean: 122; unnormalized SD: 22; Berning et al., 2015). The

raw data transformation was done by first calculating the standard score for each voxel using the

global mean and standard deviation of the dataset ex144 and then the inverse standard score us-

ing the global mean and standard deviation of the dataset ex145. Feature calculation was done

without any adaption of the features of the classifiers trained on the dataset ex145. The resulting

precision-recall curves are shown in Figure 4.7a. For each classifier, the comparison of the opti-

73

4 Deep Learning for Semantic Segmentation in Connectomics

0 1
0

1

Recall
0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8
P

re
ci

si
on

SynEM
SynEM_tr2
cnn17_4 out & hand
cnn17 out
svm_3a out & hand

a b

0.8 10.9
SynEMSynEM_tr2cnn17 out

cnn17_4

out & hand

svm_3a

out & hand

F1 score
AUC

ex145
ex144

F1 score/AUC

Figure 4.7: Interface classifier generalization performance. (a) Precision and recall curves on the test set of
2017-11-16_ex144_st08x2 (Boergens and Helmstaedter, 2012a) for several classifiers trained on the dataset
2012-09-28_ex145_07x2 (Boergens and Helmstaedter, 2012b). (b) Comparison of F1 score (cross) and AUC (asterisk) for the
dataset 2017-11-16_ex144_st08x2 (ex144, red) and the test set of 2012-09-28_ex145_07x2 (ex145, blue).

mal F1 scores and AUC scores of the precision recall curves for the test set from 1x145 and the

test set from the dataset ex144 are shown in Figure 4.7b.

4.3.3. Discussion
Fully convolutional networks (FCNs) were used to learn texture features directly from the raw

data for the SynEM interface classification approach for synapse detection. A feature representa-

tion based only on learned texture features resulted in a performance improvement of more than

2% in F1-score. A combination of learned and hand-designed features performed even better on

the validation set but was slightly inferior to the fully learned texture feature representation on

the test set. Typically, learned features in combination with hand-designed features outperformed

the purely learned features (see for example cnn17 in Figure 4.3). In addition, the generalization

performance to novel SBEM dataset from mouse S1 layer 2/3 without retraining was examined

showing even slightly improved performance for the hand-designed feature representation but a

drop of all CNN-based classifiers, which is strongest for the fully learned texture features.

Feature design has a substantial impact on the classification performance of a machine learning

algorithm and requires expertise and domain knowledge. Deep learning techniques such as CNNs

allow learning features directly from raw data rendering the need for manual feature design un-

necessary. The learned representation potentially yields a set of features that is more finely tuned

for the particular task than hand-designed features. Furthermore, feature learning allows adapt-

ing an algorithm to new datasets by simply supplying additional or novel training data instead of

manually changing the feature representation. In particular for connectomic data analysis, feature

learning can make the application of the same algorithm to different datasets easier by fine-tuning

the underlying features to the novel dataset.

The most relevant texture features of synapses in EM data are the presynaptic vesicle cloud and

the PSD, while mitochondria often cause false detections (see subsection 3.4.2). Following the

74

4 Deep Learning for Semantic Segmentation in Connectomics

approach of SyConn (Dorkenwald et al., 2017), multi-class CNNs were trained to detect these

structures and exploit their co-occurrence. The evaluation was done on a larger test set to have a

greater diversity of ultrastructure and to evaluate the classifier performance at different locations

of the dataset (Figure 4.3). The larger test set revealed a substantial drop in performance from a

F1 score of 0.884 to 0.858 of the SynEM classifier reported in chapter 3, which partially disap-

peared when using additional training cubes that contain myelinated processes, parts of somata

and a segmentation that had a stronger split rate which was closer to the test set segmentation.

This highlights the importance of distributed test sets covering a wide range of ultrastructure at

different locations of the dataset. Interestingly, the feature representation based on the output

and last hidden layer of a CNN resulted in almost the same classification performance as the

representation using only the output layer indicating that the additional information contained

in the last hidden layer did not substantially differ from the output layer. While all classifiers

using learned features showed improved performance on the dense test set (Figure 4.3), this im-

provement did not directly transfer to inhibitory synapse classification, where the CNN-based

approaches showed a lower classification performance for large parts of the precision-recall curve

(Figure 4.6). A main reason for this seemed to be a higher number of FP detections at incidental

touches of processes that are split into multiple interfaces due to the employed undersegmentation:

If a contact between two neurites is split into multiple interfaces, the CNN-based classifiers often

assigned similar scores to each interface, i.e. most of the interfaces overlapping with a synapse

had high scores. An incidental touch between processes, however, can result in multiple FP in-

terface detections whereas SynEM often only detects one interface in such cases. Thus, although

these errors showed up for the segmentation used in the test set, they would not be visible in a

better segmentation potentially resulting in a better performance of the CNN-based classifiers for

inhibitory synapses as well. Furthermore, the CNN-based classifiers seemed to be slightly more

sensitive to small synapses with little sign of a PSD but vesicles close to the membrane potentially

also causing additional FP detections at locations which are often also difficult for expert human

annotators. To resolve difficult locations, human annotators often use additional biological prior

information such as the existence of other synapses of the same bouton or the identity (axonal,

dendritic or glial) of postsynaptic processes to make a decision. A promising direction to increase

the performance, in particular for inhibitory synapses, would thus be to add an additional step

following interface classification that can include biological information such as comparing all

synapses of a bouton or including the process identity based on larger parts of processes and not

just the interface location.

The applicability of SynEM to image data obtained by different EM techniques was already shown

in subsection 3.4.4. However, even datasets imaged by the same EM technique show variations

in imaging quality and image statistics making the application of an algorithm to another dataset

non-trivial. In particular, the generalization of interface classifiers to novel datasets without re-

training is of interest for practical applications. To determine the performance of interface clas-

sifiers on novel SBEM datasets without retraining, interface classifiers that were trained on one

SBEM dataset were used to predict synapses on a different SBEM dataset. All examined inter-

face classifiers were able to generalize to a novel dataset using only a simple global raw data

75

4 Deep Learning for Semantic Segmentation in Connectomics

normalization showing only a slight drop in performance for the CNN-based classifiers and even

an increase in performance for the fully hand-designed feature representation of SynEM. Inter-

estingly, the drop in performance is largest for the fully learned feature representation whereas

it is less for the combination of CNN-based and hand-designed features. The reasons for the

inferior performance of CNN-based classifiers compared to SynEM on this data did not seem to

have a unique phenotype. A source of FN errors seems to be that the novel dataset contained a

large number of small synapses with only few vesicles and only weak signs of PSD which had

low scores in the voxelwise CNN prediction thus also causing the interface classifier to miss it.

For larger synapses, the CNN classification often worked equally well as on the dataset on which

it was trained. This could indicate that the different image statistics or the different resolution

caused the CNNs to miss out on small vesicle clouds and PSDs.

The multi-class CNN output for synaptic junctions, mitochondria and vesicle clouds was used

as texture features for synapse detection via interface classification, but could be beneficial for

other classification tasks as well. Beyond that, the multi-class output itself can be used for bio-

logical analyses. For example, Dorkenwald et al. (2017) found that the firing rate of cell types

is correlated with the density of vesicle clouds and mitochondria of the corresponding neurites.

The output for synaptic junctions corresponds to the area of the PSD of synapses, which is highly

correlated to synaptic strength (Harris and Stevens, 1989). In particular for inhibitory synapses or

soma synapses, the PSD area could provide a more precise measure of synaptic strength then the

total contact area from the interface classification approach. This raises the question as to why the

CNN output is not used directly to detect the partners by a simple overlap procedure? Despite the

reasons mentioned in Dorkenwald et al. (2017) that a dedicated classification step can combine

fractured synapses and resolve overlaps with multiple neurons, the SynEM interface represen-

tation proved to be superior to a simple voxel-based overlap (cf. Figure 3.11) and it allows to

consider additional features, such as shape descriptors or the hand-designed texture features, to

further increase classification performance.

In summary, the usage of learned features in the SynEM interface representation further improved

the performance of the interface classification approach. Furthermore, CNNs can be easily fine-

tuned to novel datasets or be replaced by different networks rendering an explicit adaption of the

feature representation unnecessary.

4.4. Cell Segmentation in EM Data

In this section, CNNs were used to predict membranes between neuronal processes with the aim of

segmenting cellular processes, called a volume segmentation, which is the basis for the interface

definition of SynEM (subsection 3.3.1).

4.4.1. Network Architectures
All networks used for voxelwise membrane prediction were fully convolutional. A regular CNN

architecture with pooling operations such as max-pooling or strided convolutions can be trans-

76

4 Deep Learning for Semantic Segmentation in Connectomics

formed into a translation equivariant FCN by using dilated convolutions in all layers subsequent

to pooling layers and setting all strides in the original network to one (see also Zlateski et al.,

2016), which is also known as the à trous algorithm in wavelet analysis (Mallat, 1999; Long

et al., 2015). More precisely, a dilation ratio dl ∈ Nk is introduced for each layer l = 1, . . . , L,

where k is the spatial dimensionality of the input data, i.e. k = 2 for images and k = 3 for

image stacks. Let sl ∈ Nk be the stride of layer l. dl is calculated recursively with d1 = 1 in all

dimensions and the dilation ratio of the next layer is given by the pointwise product of the stride

sl and the current dilation ratio

dl+1 = dl · sl, (4.1)

i.e. the dilation ratio is the cumulative product of the network strides. After the dilation ratio

was calculated for all layers, all strides in the network are set to one, i.e. sl = 1 for each layer

l. All convolutions in the network are replaced by dilated convolution with the corresponding

dilation ratios dl (see Equation 2.7). The dilated convolution corresponds to a sparsification of

the convolutional filter by replacing it with a d-regular filter containing d − 1 zeros between

each non-zero entry. Let w ∈ RL be a one-dimensional filter of length L. The d regular filter

wd ∈ RL+(d−1)(L−1) is defined by inserting d− 1 zeros between entries of w, i.e.

wd(i) =

w(1 + k) if i = 1 + kd for some k ∈ {0, . . . , L− 1}

0 otherwise.
(4.2)

For d = 2 andw = (w1, w2, w3) the d-regular filter with d = 2 is given byw2 = (w1, 0, w2, 0, w3),

and analogously for higher dimensional filter.

In addition to default CNN architectures that consist of successive convolutional and pooling

layers, a multi-resolution network model was used that processes the input in several parallel

pathways at different resolutions. The resolutions were realized by using convolutions with dif-

ferent dilation ratios. This is inspired by the inception layer architecture (Szegedy et al., 2015)

and multi-resolution methods such as u-net (Ronneberger et al., 2015; Grais et al., 2017; Zung

et al., 2017; Pelt and Sethian, 2018; Chen et al., 2018). Each layer in the multi-resolution network

consisted of three parallel pathways operating on the full image resolution (no dilation), a medium

resolution (dilation factor 2 in the x and y dimension) and a low resolution (dilation factor of 4 in

x and y direction and 2 in z direction) using one or multiple consecutive convolutions with filter

sizes 3 × 3 × 2 in the high resolution layer and dilated convolutions with filter sizes 3 × 3 × 3

in the low resolution layers (Figure 4.8). The outputs of pathways with a resolution lower than

the image resolution were concatenated to the full resolution pathway as soon as both pathways

had the same field of view with respect to the layer input. After the output of the pathway with

lowest resolution is merged into the high-resolution pathways, the result is passed through a final

convolutional operation that can further reduce or expand the total number of output feature maps

and furthermore ensures an anisotropy factor of 2.5 between the first two and the third image

dimensions to match the anisotropy of the dataset 2012-09-28_ex145_07x2 (Boergens et al., un-

published; see also subsection 4.4.5). The high-resolution path used residual blocks (He et al.,

2016). If the input to the high-resolution pathway had less feature maps than the number of fea-

77

4 Deep Learning for Semantic Segmentation in Connectomics

Dropout Conv
3x3x1Concat

Conv
3x3x3

dilat. 4x4x2

Conv
3x3x3

dilat. 2x2x1

Conv
3x3x2

Conv
3x3x2

Concat

Emb.
Conv
1x1x1

Emb.
Conv
1x1x1

+

Conv
3x3x3

dilat. 2x2x1

Conv
3x3x2

Conv
3x3x2

Concat

+

Input Output

Figure 4.8: Multi-resolution network layer. The input is processed in three parallel pathways characterized by different dilation
ratios (dilat.): Full resolution (no dilation, green), medium resolution (dilation factor 2× 2× 1, yellow), low resolution (dilation
factor 4× 4× 2, red) (see also Pelt and Sethian, 2018; Grais et al., 2017). The number of feature maps along a pathway is kept
constant. If the number of feature maps of the input is less than the number of feature maps in the high-resolution pathway, the input
is passed through an embedding layer (Emb.) to increase its number of feature maps to the number of feature maps in the pathway,
otherwise the embedding layer is omitted. A non-linearity is applied after each convolution operation and is not depicted separately.
Circles containing a plus indicate the voxelwise sum of two data volumes which is used for residual blocks (He et al., 2016) in the
high-resolution pathway.

ture maps along the pathway, then the data was processed by an embedding layer consisting of a

1 × 1 × 1 convolution that increases the number of feature maps. If the number of feature maps

in the input to the high-resolution pathway was higher than the number of feature maps along

the pathway, only the first feature maps of the input were used in the skip connections and the

embedding layer was omitted. Dropout (Srivastava et al., 2014) was applied to the input of each

multi-resolution layer and a non-linearity was applied after each convolution operation. After the

last multi-resolution layer a 1×1×1 convolutional layer followed by a non-linearity was used as

the output layer. Due do the exclusive usage of convolutional layer, the multi-resolution network

described here is fully convolutional and translation equivariant.

Furthermore, a 3D u-net architecture (Ronneberger et al., 2015) similar to Funke et al. (2018) was

used (Figure 4.9). The contracting pathway consisted of four different resolutions. For downsam-

pling to a lower resolution, 3D max-pooling layer were used. The first max-pooling layer had a

window size of 2 × 2 × 1 to partially account for the data anisotropy and all subsequent max-

pooling layer used a window size of 2 × 2 × 2. At each resolution, two successive convolutions

were performed with a size of 3×3×3 at the two highest resolutions and 3×3×3 and 3×3×1

at the lower resolutions to account for the data anisotropy. In the expanding pathway, features

from lower resolution are upsampled and combined with features from higher resolutions. Up-

sampling was done using transposed convolutions with filter sizes that equal the corresponding

max-pooling window during the contracting pathway. The concatenated features are then further

processed by two consecutive 3D convolutions of size 3 × 3 × 3. The output is mapped to the

required number of output channels using a 1× 1× 1 convolution. Each convolutional operation

was followed by a pointwise non-linearity. The resulting u-net architecture had a field of view of

88 × 88 × 36 voxels corresponding to approximately 1 µm in all dimensions (cf. Funke et al.,

2018).

78

4 Deep Learning for Semantic Segmentation in Connectomics

Conv 12
3x3x3
3x3x3

Conv 60
3x3x3
3x3x3

Conv 300
3x3x3
3x3x1

Conv 300
3x3x3
3x3x3

Conv 60
3x3x3
3x3x3

Conv 12
3x3x3
3x3x3

Conv 1
1x1x1

Conv 1500
3x3x3
3x3x1

MP
2x2x1

MP
2x2x2

MP
2x2x2

Up 300 & Cat
2x2x2

ConvT #fm
2x2x2

Concat

Up 60 & Cat
2x2x2

Up 12 & Cat
2x2x1

Input Output
a

b Input

Input low
res

Output

Figure 4.9: U-net architecture. The u-net architecture (Ronneberger et al., 2015) based on Funke et al. (2018) used for membrane
prediction. (a) Computation graph for the u-net architecture (arrows correspond to data, boxes to transformations of the data).
Convolutional blocks ("Conv #fm") consist of multiple successive convolutions with filter sizes indicated in the corresponding box
each followed by a non-linearity with a fixed number of feature maps #fm along the path. Max-pooling layers ("MP") are used to
downsample the data to a lower resolution level with non-overlapping max-pooling windows with size indicated in the
corresponding box. In the upsampling pathway, features from a resolution level in the donwsampling path are concatenated to
upsampled features from a lower resolution ("Up #fm & Cat"). Upsampling is done using transposed convolutions of the specified
filter size and #fm output channels followed by a non-linearity. (b) Detailed description of an "Up #fm & cat" transformation
depicted in (a) that combines features from a resolution level ("Input") with features from a lower resolution ("Input low res"). The
low-resolution data is upsampled using a transposed convolution ("ConvT #fm") and reduced to #fm channels followed by a
non-linearity and the result is concatenated with features from the current resolution level.

4.4.2. Network Training
CNN training was done using a custom 3D CNN framework implemented in Matlab and a

tensorflow (Abadi et al., 2015) implementation that both used max-filtering and skip-kernels

(Sermanet et al., 2014; Long et al., 2015) to efficiently implement CNNs with pooling oper-

ations. The Matlab framework implemented convolutions using fast Fourier transform (FFT)

adapted for dilated convolutions in the following way. Let FN = (ω
(k−1)(l−1)
N)Nk,l=1 be the ma-

trix representing the discrete Fourier transformation of an N dimensional input, where ωN =

exp(−2πi/N). If N is divisible by d, then the submatrix (FN)k,l for k = 1, . . . , N/d and

l = 1, 1 + d, 1 + 2d, . . . , 1 + (N/d − 1)d is equal to FN/d by definition of FN and FN/d.

Furthermore, since

ω
(k+n1

N
d
−1)(1+n2d−1)

N = ω
(k−1)(1+n2d−1)
N ω

n1n2
N
d
d

N = ω
(k−1)(1+n2d−1)
N , (4.3)

for n1, n2 ∈ N, the rows of the corresponding columns of FN specified above are repeated

after d steps. Hence, (FN)k,l = FN/d, where k = k̃, . . . , k̃ + N/d separately for each k̃ =

1, 1 + d, . . . , 1 + (N/d− 1)d and l = 1, 1 + d, 1 + 2d, . . . , 1 + (N/d− 1)d. Thus, the output of

FNwd is equal toFN/dw replicated d times. If the input size was not divisible by d it was enlarged

with trailing zeros. All architectures used a scaled tanh of the form h(x) = 1.7159 tanh(0.66x)

as non-linearity (LeCun et al., 1998) in all layers including the output layer and a sum of squares

error (Equation 2.16) normalized to the number of voxels in the output to make the learning rate

independent of the batch size. Unless stated otherwise, dropout (Srivastava et al., 2014) was used

before each convolutional layer. For the multi-resolution architecture, dropout was only applied

to the input of a layer as shown in Figure 4.8. No dropout was used in the u-net architecture.

79

4 Deep Learning for Semantic Segmentation in Connectomics

4.4.3. Volume Segmentation Generation
Volume segmentations were generated from the image complement of the voxelwise membrane

predictions using a marker-based watershed algorithm with three different procedures of marker

generation. The first two procedures were proposed in SegEM (Berning et al., 2015). In the

first procedure, local minima with a depth below θhm were suppressed and the remaining minima

above a size threshold of θms voxels were used as markers. In the second procedure, the input

was thresholded at θmg and the resulting connected components above a size threshold of θms
voxels were used as markers. In the third procedure, the input was thresholded at θdt and a

distance transform was calculated on the binary output. The distance transform was then used as

the input to the local minimum procedure above (see also Funke et al., 2018). For the watershed

transform itself, the Matlab function watershed was used in 3D with the 26 connectivity of

voxels (Equation 2.4).

4.4.4. Performance Evaluation Metric
For performance evaluation, split merger rates based on ground truth skeletons were used (Bern-

ing et al., 2015). Consider Nt ground truth skeletons, each consisting of a set of nodes xi,

i = 1, . . . , Nt with a total path length L. Let S be a proposal segmentation consisting of

Ns segments with ids j = 1, . . . , Ns. A skeleton-segment overlap matrix Aij , i = 1, . . . , Nt,

j = 1, . . . , Ns was constructed from Nt and S, where each entry contains the number of nodes

of skeleton i that lie within the segment j

Aij = |{xi ∩ S−1(j)}| ∈ N0, (4.4)

i.e. each row of A represents a skeleton and each column a segment. To avoid that skeleton nodes

are placed in watershed boundaries, the segmentation regions were post-hoc dilated to fill up the

whole volume (see also Berning et al., 2015). A binarized version Âij of the skeleton-segment

overlap matrix was calculated by introducing a node threshold θn which was set to one in all

experiments, i.e.

Âij =

1 if Aij ≥ θn
0 otherwise

. (4.5)

The number of mergers nmerger and splits nsplits were calculated from Âij as

nmerger =

Ns∑
j=1

max

(
0,

(
Nt∑
i=1

Âij

)
− 1

)
(4.6)

and

nsplits =

Nt∑
i=1

max

0,

 Ns∑
j=1

Âij

− 1

 , (4.7)

respectively. The average distances between mergers dm and splits ds were calculated as dm =

L/nmergers and ds = L/nsplits respectively. The inter-error distance (IED) was defined as

IED =
1

1/ds + 1/dm
=

L

nmerger + nsplits
(4.8)

80

4 Deep Learning for Semantic Segmentation in Connectomics

a b

x

x
x

x
x x x

x
x

x
x

x x

x

x
x

x x

Figure 4.10: Merge-free path length. (a) Illustration of a volume segmentation (different segments displayed in different colors)
that contains a merger error (red segment) between two processes for which the cellular membranes are indicated by dashed black
lines. For the calculation of the ground truth skeleton path length, SegEM (Berning et al., 2015) used the whole path length of all
ground truth skeletons (solid black lines with markers ’x’ for skeleton nodes) irrespective of any errors in the proposed
segmentation. (b) The merge-free path length is calculated for ground truth skeletons after all nodes in segments that contain nodes
from several skeletons (red segment) are deleted. Note that the merge-free path length is only used to calculate the average distance
between mergers and thus acknowledges that merge errors have a finite extend in contrast to split errors.

Furthermore, an adapted average path length between mergers d̃m was calculated that only con-

siders the ground truth skeleton path length in segments without merge errors (Figure 4.10). Let

Sm be the set of segments in a segmentation that contain nodes from at least two skeletons, i.e.

Sm = {i ∈ im(S)|∃k, l : S−1(i) ∩ xk 6= ∅ ∧ S−1(i) ∩ xl 6= ∅}, (4.9)

where im(S) is the image of S that is all segmentation ids of S. Sm is thus the set of all segments

that constitute a merge error. For each ground truth skeleton, all nodes in segments with merger

errors were deleted, i.e. the new skeleton nodes were given by

x̃i = {x ∈ xi|x /∈ S−1(Sm)}. (4.10)

Edges to deleted nodes in the skeletons were deleted as well. The total path length of the remain-

ing skeleton nodes is called the merge-free path length L̃. The adapted average distance between

mergers was then defined in terms of the merge-free path length L̃ as

d̃m =
L̃

nmergers
. (4.11)

The modified average distance between mergers d̃m gives rise to a corresponding adapted IED

given by

adapted IED = ˜IED =
1

1/ds + 1/d̃m
. (4.12)

4.4.5. Experiments
All experiments were done on the dataset 2012-09-28_ex145_07x2 from mouse S1 L4 (Boergens

and Helmstaedter, 2012b; see also Berning et al., 2015; Staffler et al., 2017a) using the data from

the SegEM segmentation challenge (Berning et al., 2015). The SegEM segmentation challenge

consists of volume training data for 243 training regions of size 100 × 100 × 100 voxels each

81

4 Deep Learning for Semantic Segmentation in Connectomics

N
am

e
FO

V
Pa

ra
m

s
Ly

r
Fi

lte
r

si
ze

s
Po

ol
in

g
FM

s
L

r
w

m
em

Se
gE

M
[5

0,
50

,2
0]

19
36

41
5

[5
x[

11
,1

1,
5]

]
-

[4
x1

0,
1]

-
-

cn
n2

l
[5

0,
50

,2
0]

28
75

93
9

[[
7,

7,
3]

,[
5,

5,
3]

,[
4,

4,
2]

,2
x[

5,

5,
3]

,2
x[

5,
5,

2]
,2

x[
3,

3,
2]

]

4:
[2

,2
,2

]
[4

x2
4,

4x
32

,1
]

1
e−

4
6,

12
,6

cn
n1

7l
[7

8,
78

,2
8]

33
04

01
8

[[
8,

8,
4]

,2
x[

5,
5,

3]
,3

x[
3,

3,
3]

,

2x
[3

,3
,2

]]

2:
[2

,2
,1

],
4:

[2
,2

,2
],

6:
[2

,2
,

2]

[2
x1

6,
2x

32
,3

x6
4]

,1
]

1
e−

4
12

C
D

[5
6,

56
,2

2]
32

94
73

14
[8

x[
5,

5,
3]

,6
x[

5,
5,

2]
]

-
[9

x1
6,

4x
32

,1
]

1
e−

5
12

C
D

2
[6

6,
66

,2
6]

52
59

13
16

[[
7,

7,
3]

,9
x[

5,
5,

3]
,6

x[
5,

5,
2]

]
-

[5
x1

6,
5x

24
,5

x3
2,

1]
1
e−

5
6,

10

C
D

3
[7

4,
74

,3
0]

51
62

73
20

[[
7,

7,
3]

,9
x[

5,
5,

3]
,6

x[
5,

5,
2]

,

4x
[3

,3
,2

]]

-
[7

x1
6,

6x
24

,6
x3

2,
1]

1
e−

5
6,

12

m
r_

1d
[6

0,
60

24
]

33
34

57
7

6
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[6

x1
6,

1]
1
e−

4
6,

12

m
r_

1e
[6

0,
60

24
]

36
68

93
7

6
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[6

x2
0,

1]
1
e−

2
6,

12

m
r_

1f
[6

0,
60

24
]

46
72

01
7

6
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[6

x3
2,

1]
1
e−

3
6,

12

m
r_

1g
[6

0,
60

24
]

87
31

21
7

6
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[6

x[
32

,1
6,

16
],

1]
1
e−

3
12

m
r_

2a
[7

0,
70

28
]

39
11

85
8

7
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[7

x1
6,

1]
1
e−

2
6,

12

82

4 Deep Learning for Semantic Segmentation in Connectomics

m
r_

2d
[7

0,
70

28
]

43
09

61
8

7
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[7

x2
0,

1]
1
e−

2
6,

12

m
r_

2e
[7

0,
70

28
]

47
07

37
8

7
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[7

x2
4,

1]
1
e−

2
6,

12

m
r_

3c
[5

0,
50

20
]

38
41

13
6

5
m

rl
ay

er
&

ou
tp

ut
la

ye
r

-
[5

x3
2,

1]
1
e−

4
6,

12

un
et

_1
a

[8
8,

88
,3

6]
41

16
96

1
-

se
e

Fi
gu

re
4.

9
-

[3
2,

64
,1

28
,2

56
]

1
e−

3
12

un
et

_1
b

[8
8,

88
,3

6]
41

16
96

1
-

se
e

Fi
gu

re
4.

9
-

[3
2,

64
,1

28
,2

56
]

1
e−

3
12

un
et

_2
a

[8
8,

88
,3

6]
10

29
87

3
-

se
e

Fi
gu

re
4.

9
-

[1
6,

32
,6

4,
12

8]
1
e−

2
12

un
et

_2
b

[8
8,

88
,3

6]
10

29
87

3
-

se
e

Fi
gu

re
4.

9
-

[1
6,

32
,6

4,
12

8]
1
e−

3
12

un
et

_3
a

[8
8,

88
,3

6]
56

06
73

-
se

e
Fi

gu
re

4.
9

-
[1

6,
32

,4
8,

64
]

1
e−

2
12

un
et

_3
b

[8
8,

88
,3

6]
56

06
73

-
se

e
Fi

gu
re

4.
9

-
[1

6,
32

,4
8,

64
]

1
e−

3
12

un
et

_4
a

[8
8,

88
,3

6]
45

16
18

69
-

se
e

Fi
gu

re
4.

9
-

[1
6,

60
,3

00
,1

50
0]

1
e−

3
12

un
et

_4
b

[8
8,

88
,3

6]
45

16
18

69
-

se
e

Fi
gu

re
4.

9
-

[1
6,

60
,3

00
,1

50
0]

1
e−

2
12

un
et

_4
c

[8
8,

88
,3

6]
45

16
18

69
-

se
e

Fi
gu

re
4.

9
-

[1
6,

60
,3

00
,1

50
0]

1
e−

3
12

Ta
bl

e
4.

3:
C

N
N

ar
ch

ite
ct

ur
es

us
ed

fo
r

m
em

br
an

e
pr

ed
ic

tio
n.

N
am

e:
In

te
rn

al
na

m
e

of
th

e
ne

tw
or

k
ar

ch
ite

ct
ur

e;
FO

V
:3

D
fie

ld
of

vi
ew

in
vo

xe
ls

;P
ar

am
s:

To
ta

ln
um

be
ro

ft
ra

in
ab

le
pa

ra
m

et
er

s;
Ly

r:
N

um
be

ro
f

ne
tw

or
k

la
ye

rs
w

he
re

a
m

ul
ti-

re
so

lu
tio

n
(m

r)
la

ye
ra

nd
th

e
co

m
bi

na
tio

n
of

a
co

nv
ol

ut
io

n
an

d
a

po
ol

in
g

op
er

at
io

n
ar

e
co

ns
id

er
ed

as
a

si
ng

le
la

ye
r;

Fi
lte

rs
iz

es
:S

pa
tia

ls
iz

e
of

th
e

fil
te

rs
in

ea
ch

la
ye

ri
n

vo
xe

ls
,c

on
se

cu
tiv

e
la

ye
rs

w
ith

th
e

sa
m

e
fil

te
rs

ha
pe

ar
e

de
no

te
d

by
n
×

fil
te

rs
iz

e;
Po

ol
in

g:
L

ay
er

nu
m

be
ra

nd
sp

at
ia

ls
iz

e
of

th
e

m
ax

-p
oo

lin
g

w
in

do
w

;F
M

s:
Fe

at
ur

e
m

ap
s

fo
re

ac
h

la
ye

r,
co

ns
ec

ut
iv

e
la

ye
rs

w
ith

th
e

sa
m

e
nu

m
be

ro
ff

ea
tu

re
m

ap
s

ar
e

de
no

te
d

by
n
×

fe
at

ur
e

m
ap

.F
or

m
ul

ti-
re

so
lu

tio
n

ne
tw

or
ks

,t
he

fe
at

ur
e

m
ap

s
ar

e
ei

th
er

sp
ec

ifi
ed

se
pa

ra
te

ly
fo

re
ac

h
of

th
e

th
re

e
pa

th
w

ay
s

(m
r_

ne
t_

1g
)o

ra
s

a
si

ng
le

nu
m

be
rf

or
al

lp
at

hw
ay

s
(a

ll
ot

he
rm

r_
ne

t
ar

ch
ite

ct
ur

es
).

L
r:

L
ea

rn
in

g
ra

te
us

ed
du

ri
ng

tr
ai

ni
ng

;w
m

em
:W

ei
gh

tf
or

th
e

m
em

br
an

e
cl

as
s,

m
ul

tip
le

nu
m

be
rs

co
rr

es
po

nd
to

co
ns

ec
ut

iv
e

tr
ai

ni
ng

ru
ns

.

83

4 Deep Learning for Semantic Segmentation in Connectomics

with labels for membrane and intracellular voxels and the surrounding raw EM data with a total

border of 100×100×50 voxels. Furthermore, it contains two regions where each cellular process

is traced by a skeleton, which were used for hyperparameter search and performance evaluation.

Since the membrane segmentation of the volume training data was artificially enlarged for SegEM

causing small processes to vanish almost completely, the original volume tracings of processes

that were generated by contouring were used, which mark cellular processes with positive ids

(received from the SegEM authors upon personal request). All voxels in the volume tracings that

did not belong to any process, i.e. had an id of zero, were considered as membrane voxels. To

introduce a boundary between directly adjacent processes, all voxels that belong to a process but

that also have the id of a different process in their 8 neighborhood in the x-y plane (2D) were

considered membrane voxels as well. Target values for membranes were set to −1 and for non-

membranes to 1. A weight of 6 to 12 was used for the membrane class to bias the subsequent wa-

tershed segmentation step towards splits. The input data was augmented using random rotations

by multiples of 90 degree in the x-y plane and random mirroring along the z dimension. Network

training was done until no significant change in the training loss was observed anymore which

typically took 8 to 16 days on a single GPU. To compare to the results of Funke et al. (2018),

the architectures unet_4a, unet_4b, unet_4c were used, which closely resemble their architecture.

Unet_4a was trained using the same optimizer and hyperparameter settings as reported by Funke

et al. (2018) whereas unet_4b and unet_4c were trained using stochastic gradient descent with

momentum. The trained network architectures are summarized in Table 4.3. Ensemble of the

trained networks were considered by combining the membrane predictions of different networks

using a voxelwise mean or minimum operation (Table 4.4).

The evaluation of volume segmentations was done using split and merger rates on the ground

truth skeletons provided by SegEM. For each classifier, the membrane predictions were calcu-

lated for the regions of the training and test skeletons. Segmentations were generated from the

boundary maps using three different segmentation procedures based on the watershed algorithm

as described in subsection 4.4.3. The skeleton training set was used for hyperparameter search

of the watershed procedure and the evaluation of split and merger rates was done on the skele-

ton test set. The watershed parameters that resulted in the largest adapted IED (Equation 4.12)

were individually determined for each network architecture using a grid search. The adapted IED

was used for this due to the treatment of merger errors in the IED proposed in SegEM that can

decrease the error when merging two segments (see also Januszewski et al., 2017). Afterwards,

the segmentation procedure (consisting of a network architecture and the previously determined

watershed parameters) with the highest IED on the skeleton training set was determined. For

SegEM, the segmentation parameters for the optimal IED determined in Berning et al. (2015)

were used. The optimal split-merge results on the skeleton training set are summarized for the

individual networks in Table 4.5 and for the ensembles in Table 4.6. For all networks, the best

segmentation was obtained using the first watershed procedure based on local minima suppres-

sion and small object removal. The best network (mr_net_1g) and the best ensemble (ens_mr_3)

were evaluated on the skeleton test set and compared to SegEM (Table 4.7). Note that the best

ensemble even resulted in a higher IED than the approach of Funke et al. (2018) (see Table 1 in

84

4 Deep Learning for Semantic Segmentation in Connectomics

Name Mode No Networks

ens_CD mean 3 CD, CD2, CD3

ens_CD_min min 3 CD, CD2, CD3

ens_mr_1 mean 3 mr_1g, mr_2e, mr_3c

ens_mr_1_min min 3 mr_1g, mr_2e, mr_3c

ens_mr_2 mean 3 mr_1g, mr_1e, mr_1f

ens_mr_2_min min 3 mr_1g, mr_1e, mr_1f

ens_mr_3 mean 8 mr_1d, mr_1e, mr_1f, mr_1g, mr_2a, mr_2d, mr_2e, mr_3c

ens_mr_3_min min 8 mr_1d, mr_1e, mr_1f, mr_1g, mr_2a, mr_2d, mr_2e, mr_3c

ens_1 mean 6 CD, CD2, CD3, mr_1g, mr_2d, mr_3c

ens_1_min min 6 CD, CD2, CD3, mr_1g, mr_2d, mr_3c

ens_2 mean 5 unet_1a, unet_1b, mr_1g, mr_2d, mr_3c

ens_2_min min 5 unet_1a, unet_1b, mr_1g, mr_2d, mr_3c

Table 4.4: Ensembles of CNN architectures used for membrane prediction. Name: Internal name of the ensemble; Mode: Mode
of combination of the single CNN outputs which was either a mean or minimum operation for each voxel. Note that the target label
is -1 for membrane voxels and 1 otherwise motivating the use of the minimum operation. No: Number of networks in the ensemble;
Networks: Names of the individual networks in the ensemble according to Table 4.3.

Funke et al., 2018) although no agglomeration procedure was used. The split-merger curves on

the test set are shown in Figure 4.11. The membrane prediction output and the segmentation for

a single test set section is displayed in Figure 4.12.

4.4.6. Discussion
Fully convolutional networks (FCNs) were trained to predict membranes between cellular pro-

cesses as part of the volume segmentation procedure for EM data suggested by SegEM (Berning

et al., 2015). A novel multi-resolution architecture was proposed that uses dilated convolutions

instead of subsampling to process the input without reducing the spatial density of the predic-

tions. The multi-resolution architecture was compared to regular CNN architectures, which are

built from successive convolutional and pooling layers, and to the u-net architecture (Ronneberger

et al., 2015), which uses an encoder-decoder structure. Despite having substantially less parame-

ters, the multi-resolution networks were found to perform better than different variants of a u-net

architecture similar to Funke et al. (2018), which was proposed for volume segmentation in con-

nectomics using affinity maps. Almost all networks were found to outperform SegEM by a sub-

stantial margin of a factor larger than 2 in the IED metric on the SegEM segmentation challenge.

The overall best result was achieved using an ensemble of multiple networks.

85

4 Deep Learning for Semantic Segmentation in Connectomics

Name θhm, θms dm d̃m ds ad. IED IED

mr_net_1g 0.27, 10 18.51 10.15 5.67 3.64 4.34

mr_net_2e 0.51, 0 17.72 9.15 5.37 3.38 4.12

mr_net_2d 0.41, 0 15.59 7.77 5.49 3.22 4.06

mr_net_1e 0.27, 100 18.85 10.67 5.13 3.47 4.03

mr_net_1f 0.33, 0 19.38 10.78 5.05 3.44 4.00

CD3_2 0.27, 100 16.46 9.10 5.21 3.31 3.96

unet_1b 0.43, 0 21.60 13.36 4.71 3.48 3.87

mr_net_3c 0.29, 100 19.75 11.71 4.79 3.40 3.85

unet_1a 0.35, 0 18.03 9.10 4.83 3.16 3.81

mr_net_2a 0.27, 100 16.72 8.95 4.83 3.14 3.75

unet_3b 0.31, 10 17.43 9.28 4.59 3.07 3.63

CD2_2 0.39, 0 16.46 8.55 4.65 3.01 3.63

unet_2b 0.27, 100 18.03 10.35 4.51 3.14 3.61

unet_3a 0.39, 0 16.86 8.45 4.55 2.96 3.58

mr_net_1d 0.35, 0 16.86 8.79 4.46 2.96 3.53

unet_4c 0.23, 50 17.43 9.08 4.41 2.97 3.52

unet_2a 0.23, 0 15.83 7.67 4.07 2.66 3.24

CD_1 0.35, 100 16.33 9.26 3.96 2.77 3.19

unet_4b 0.29, 50 15.25 7.86 3.91 2.61 3.11

cnn2l_14 0.59, 0 16.46 10.01 2.76 2.16 2.36

unet_4a 0.10, 50 8.68 3.11 2.39 1.35 1.87

cnn17l_3 0.41, 0 12.27 6.82 1.86 1.46 1.61

segEM 0.58, 50 9.38 5.03 1.49 1.15 1.29

Table 4.5: Volume segmentation validation set results. Results are sorted by decreasing IED. Name: Name of the CNN according
to Table 4.3; θ: Parameters for local minima based watershed procedure; dm: Average distance between mergers in µm; d̃m:
Adapted average distance between mergers in µm; ds: Average distance between splits in µm; ad. IED (µm): Adapted inter-error
distance in µm. IED: Inter-error distance in µm;

86

4 Deep Learning for Semantic Segmentation in Connectomics

Name θhm, θms dm d̃m ds ad. IED IED

ens_mr_3 0.57, 0 18.68 10.64 7.08 4.25 5.13

ens_mr_1 0.53, 50 20.13 11.56 6.60 4.20 4.97

ens_2 0.51, 0 22.54 13.43 6.15 4.22 4.83

ens_1 0.49, 0 19.94 11.49 6.25 4.05 4.76

ens_mr_1_min 0.65, 0 22.30 13.65 5.91 4.12 4.67

ens_mr_3_min 0.80, 0 22.79 13.97 5.87 4.14 4.67

ens_mr_2 0.37, 0 21.83 13.28 5.79 4.03 4.58

ens_1_min 0.69, 0 24.11 15.64 5.62 4.13 4.56

ens_mr_2_min 0.45, 0 25.92 16.83 5.47 4.13 4.52

ens_2_min 0.67, 0 24.69 15.79 5.41 4.03 4.44

ens_CD_min 0.59, 0 15.36 7.67 5.70 3.27 4.16

ens_CD 0.37, 0 19.38 10.95 4.90 3.39 3.91

Table 4.6: Volume segmentation ensemble validation set results. Results are sorted by decreasing IED. Name: Name of the
ensemble according to Table 4.4; θ: Parameters for local minima based watershed procedure; dm: Average distance between
mergers in µm; d̃m: Adapted average distance between mergers in µm; ds: Average distance between splits in µm; ad. IED (µm):
Adapted inter-error distance in µm. IED: Inter-error distance in µm;

Name dm d̃m ds ad. IED IED

ens_mr_3 15.58 10.96 7.10 4.31 4.88

Funke et al. (2018) 21.34 - 6.27 - 4.84

mr_net_1g 13.06 8.27 5.96 3.47 4.09

SegEM (Berning et al., 2015) 3.48 - 2.89 - 1.58

SegEM (redo) 3.50 1.02 1.90 0.66 1.23

Table 4.7: Volume segmentation test set results. Results are sorted by decreasing IED. Name: Name of the network/ensemble
according to Table 4.3 and Table 4.4 or reference of the corresponding publication (Berning et al., 2015; Funke et al., 2018). SynEM
(redo) refers to the results that was achieved in a reproduction of the SegEM results using the same segmentation parameters as
specified in Berning et al. (2015) without the moving average calculation. θ: Parameters for local minima based watershed
procedure; dm: Average distance between mergers in µm; d̃m: Adapted average distance between mergers inµm; ds: Average
distance between splits in µm; ad. IED (µm): Adapted inter-error distance in µm. IED: Inter-error distance in µm;

87

4 Deep Learning for Semantic Segmentation in Connectomics

10-1

10-1 100

100

101

101

102

102

103

Average path length
between mergers dm (μm)

Av
er

ag
e

pa
th

 le
ng

th
be

tw
ee

n
sp

lit
s

d s
(μ
m
)

10-1

10-1 100

100

101

101

102

102

103

Average adapted path length
between mergers dm (μm)

~

ens_mr_3
mr_1g
SegEM

Figure 4.11: Volume segmentation test set result. Split-merge curves of the best ensemble of networks (mr_mr_3; red) and the
best single network (mr_1g; yellow) in comparison to SegEM (blue; Berning et al., 2015) with respect to the average path length
between mergers (left) and the adapted average path length between mergers (right). The segmentations with optimal IED according
to the training set are marked by circles (ens_mr_3: 4.88 µm; mr_1g: 4.09 µm; SegEM: 1.23 µm).

Raw data
SegEM mr_net_1g ens_mr_3

IED = 1.23 μm IED = 4.09 μm IED = 4.88 μm

a b

c

Figure 4.12: Volume segmentation examples. (a) Section of the raw data from the SegEM skeleton test set (z = 150; Berning
et al., 2015). (b) Membrane predictions for SegEM (left), mr_net_1g (middle) and ens_mr_3 (right). (c) Segmentation at the optimal
segmentation parameters found on the skeleton training set for the corresponding prediction in (b) (see also Table 4.5 and Table 4.6).
Scale bars: 1 µm (a, b). Scale bar in (b) applies to all images in (b) and (c).

88

4 Deep Learning for Semantic Segmentation in Connectomics

Techniques from deep learning, in particular in the form of FCNs, have provided remarkable

advances in semantic segmentation (Long et al., 2015; Ronneberger et al., 2015; Chen et al.,

2018). However, commonly used encoder-decoder network architectures do not produce trans-

lation equivariant outputs and typically use a high number of trainable parameters (Ronneberger

et al., 2015). The multi-resolution architecture presented here is not based on an encoder-decoder

structure but uses multiple resolutions in each layer of the network realized through dilated convo-

lutions resulting in a dense output that is translation equivariant. The architecture combines ideas

from Pelt and Sethian (2018) and Grais et al. (2017) and is easy to implement in existing deep

learning frameworks such as tensorflow (Abadi et al., 2015). The shortest flow of information

from input to output through the network along low-resolution pathways provides spatial context

for semantic classification which is frequently merged with the high-resolution pathway allowing

the network to provide the necessary localization and to choose the most appropriate resolution

for further processing. The proposed approach merges pathways only if they have the same field

of view thus limiting the overall field of view of the network by the high-resolution pathway. An

alternative would be to consider less successive convolutions in the high-resolution pathways and

crop their outputs to the size of a lower-resolution pathway before merging them. In the most

extreme case, only one convolution for each dilation rate could be used followed by a concatena-

tion similar to Grais et al. (2017). The number of parameters in a multi-resolution network that

resulted in a similar performance as commonly used encoder-decoder architectures (Ronneberger

et al., 2015; Funke et al., 2018) was substantially lower as also noted by Pelt and Sethian (2018).

The computational cost on the other hand is typically higher since feature maps are not explicitly

downsampled. For SBEM data, however, the original data resolution already compromises high

spatial information with a larger field of view, which makes it easier to achieve sufficient classifi-

cation context without exceedingly deep networks, motivating network architectures with a high

focus on the native data resolution that are able to detect the smallest processes.

The volume segmentation underlying the SynEM interface definition (subsection 3.3.1) was pro-

vided by SegEM and previous experiments indicated that a better segmentation improves the

performance of SynEM (subsection 3.4.2). Beyond potential benefits for synapse detection, the

generation of high quality volume segmentations is crucial for the automation of the connectomic

reconstruction (see section 1.2). The SegEM segmentation procedure for the cortex dataset of

the SegEM challenge consists of a membrane prediction step using a CNN followed by a wa-

tershed segmentation to produce an initial oversegmentation of the EM data, which is similar

to other segmentation procedure used in connectomics (Funke et al., 2018). The CNN used in

SegEM consisted of five convolutional layers with large filter sizes (11, 11, 5 in the x, y, z dimen-

sion, respectively). Since much progress has been made in semantic segmentation using more

refined network architectures, the performance of the SegEM segmentation procedure for differ-

ent network architectures was evaluated. No additional agglomeration was done subsequent to

the watershed step which is expected to further improve the segmentation quality substantially

(Funke et al., 2018). Segmentation quality was measured using the IED proposed by Berning

et al. (2015), which compares a proposal segmentation with a dense skeletonization of all pro-

cesses in a test region. However, similar to Januszewski et al. (2017), the IED was found to

89

4 Deep Learning for Semantic Segmentation in Connectomics

be problematic because merging two segments can decrease the total number of merger errors

and thus increase the average distance between mergers. To counteract this behavior of the IED,

which is strongest in an undersegmentation regime, the merge-free path length was introduced.

For the calculation of the merge-free path length, the path length in segments with merge errors is

subtracted from the total path length. The merge-free path length gives rise to an adapted average

distance between mergers and an adapted IED. The adapted average distance between mergers is

bounded from below by zero and provides a more intuitive inter-error distance by acknowledg-

ing the finite extend of merger errors in contrast to split errors. While the adapted IED does not

modify the counting procedure of merger errors in the IED, it typically resulted in split-biased

segmentations in practice. Thus, the adapted IED was used to select the best watershed param-

eters on the skeleton training set separately for each network architecture (Table 4.5). After the

best watershed parameters were determined for each network, the IED was used to select between

the networks on the skeleton training set for performance comparison on the skeleton test set (Ta-

ble 4.7). Architectures with less than 10 layers that employ pooling to increase their field of view

showed only minor improvements over the SegEM baseline (cnn2l and cnn17l). Deeper networks

with 14 or more layers and without any pooling operations were already able to achieve good

results (CD_1, CD2_2, CD3_2) which were even better than the u-nets on the skeleton training

set. Interestingly, the architecture unet_4a, which was designed close to Funke et al. (2018) and

trained exactly as they described (using the Adam optimizer; Kingma and Ba, 2014), showed a

remarkably similar performance to their baseline model whereas unet_4c, which had the same

architecture but a different optimizer (stochastic gradient descent with momentum), resulted in a

much better performance. The multi-resolution architecture proposed here was able to outperform

the other architectures providing the best result of a single network with an IED of 4.09 µm, which

is more than a factor 2.5 higher than the IED of 1.58 µm of SegEM (see Table 2 in Berning et al.,

2015). To achieve even better segmentation results, ensembles of networks were used as they have

been shown to typically outperform single networks (Hansen and Salamon, 1990). Ensembles of

networks can be constructed for example by averaging the output of different networks (Ciresan

et al., 2012; Drozdzal et al., 2018) or using the same network on slightly altered inputs such as

rotated versions of the same field of view (Ronneberger et al., 2015). Here, the outputs of dif-

ferent architectures were combined by voxelwise averaging or a voxelwise minimum operation.

The performance of each ensemble was found to be better than the performance of the individual

networks. The overall best result was achieved by an ensemble of eight networks resulting in an

IED of 4.88 µm which is more than a factor of 3 higher than for SegEM and comparable to the

result of Funke et al. (2018) even without any agglomeration subsequent to the watershed step.

The segmentation approach used here is fundamentally impeded by the sequential two-step pro-

cess of boundary prediction and watershed partitioning. Even a single misclassified voxel along

a membrane can result in a merge error which is often dealt with by using a distance transform

watershed in the partitioning step (Beier et al., 2017; Funke et al., 2018). Conversely, the training

procedure used here consisting of a voxelwise sum of squares error does not directly optimize the

membrane predictions for the subsequent watershed step which requires specific loss functions

(see for example Turaga et al., 2009; Jain et al., 2010a; Kroeger et al., 2013). Split errors occur

90

4 Deep Learning for Semantic Segmentation in Connectomics

if two seeds are placed within the same process requiring a subsequent agglomeration step. Fur-

thermore, the employed watershed procedure of the SegEM approach results in cellular processes

that are separated by a one-voxel thick boundary which can be problematic for thick membranes

and frequently causes merge errors close to myelin (see Figure 4.12). Relaxing this condition by

stopping the watershed at a maximal value could prevent errors in such cases but would require

an adaption of subsequent processing steps such as the SynEM interface definition that requires

a one-voxel thick boundary. Flood-filling networks (Januszewski et al., 2017) are a recently pro-

posed approach that combines membrane prediction and partitioning into a single algorithm that

can also naturally be used for agglomeration. A flood-filling network consist of a recursive CNN

that iteratively refines a binary segmentation mask corresponding to a single process. The clas-

sifier is trained end-to-end and intrinsically results in a large penalty for merge errors since all

voxels in the reconstructed objects contribute to the error.

In summary, more refined network architectures are able to improve upon the SegEM segmenta-

tion result by a substantial margin. A novel multi-resolution architecture was able to outperform a

previously proposed u-net architecture (Ronneberger et al., 2015; Funke et al., 2018) and regular

CNNs on medium-resolution SBEM data.

4.5. Conclusion

In conclusion, it was shown that fully convolutional networks (FCNs) can further improve the

performance of SynEM as well as the segmentation provided by SegEM (Berning et al., 2015)

underlying the interface definition of SynEM. Replacing the hand-designed features of SynEM

with features learned by a FCN does not only improve performance over the hand-designed fea-

tures but also renders the need for feature design unnecessary. In addition, despite the inferior

performance on a new dataset without retraining, FCNs offer a straightforward strategy to fine-

tune the representation to new datasets. The proposed multi-resolution architecture was shown to

outperform other architectures for membrane detection on a medium resolution SBEM dataset.

The substantial improvements for volume segmentations over SegEM, although likely benefi-

cial for synapse detection as well, are particularly relevant for the dense reconstruction of large

datasets. Only if the average distance between errors in the volume segmentation is large enough

such that focused annotation is faster than dense skeletonization, the progress in segmentation

methods can actually be leveraged to reduce manual annotation time.

91

5. Application to Circuit Reconstruction

In this chapter, the SynEM interface classification method was used to analyze all synapses inner-

vating the dendritic tree of a spiny stellate neuron in layer 4 (L4) of mouse primary somatosen-

sory cortex (S1). The distribution of sizes of synaptic contacts is shown to be well described a

lognormal distribution for all synapses as well as for spine and shaft synapses separately. The dis-

tribution of distances from synapses along the dendrites to the soma indicates that shaft synapses

are formed more proximally than spine synapses.

5.1. Introduction and Related Work

Synaptic plasticity, which refers to the change of strength of synapses over time due to variations

in their activity, has long been related to learning and memory (Hebb, 1949; Lynch, 2004; Whit-

lock et al., 2006). The distribution of synaptic weights should thus contain information about the

underlying plasticity and learning rules (Barbour et al., 2007). Electrophysiological recordings

have shown that the distribution of synaptic strength, defined as the peak excitatory postsynaptic

potential amplitude, follows a lognormal distribution (Song et al., 2005, see also Buzsaki and

Mizuseki, 2014). The synaptic strength is highly correlated with structural properties of synapses

such as the area of the postsynaptic density (PSD) (Harris and Stevens, 1989), the area of the

active zone (Schikorski and Stevens, 1997) and the axon-spine interface area (ASI) for excitatory

synapses (Cheetham et al., 2012) which can be investigated in electron microscopy (EM) datasets.

Several studies have investigated the distributions of synapse sizes for all synapses in EM datasets

showing that they also follow a lognormal distribution and that shaft synapses are significantly

larger than spine synapses (Merchán-Pérez et al., 2014; Santuy et al., 2018).

Here, the distribution of synapse sizes was examined for all synapses onto the dendritic tree of

a spiny stellate neuron in a serial block-face electron microscopy (SBEM) dataset from mouse

S1 L4. Unlike previous studies, the synapses share a common postsynaptic partner and thus

correlate with the distribution of input weights onto a spiny stellate neuron. It is shown that

also in the case of synapses with a common postsynaptic partner, the distribution of synapse sizes

follows a lognormal distribution for all synapses as well as for shaft and spine synapses separately.

Furthermore, the distribution of path length from synapses to the soma shows that shaft synapses

are placed more proximal to the soma along the dendritic tree compared to spine synapses, which

is in accordance to previous studies (Anderson et al., 1994; Kornfeld et al., 2017).

5.2. Methods

The SBEM dataset 2012-09-28_ex145_07x2 from mouse S1 L4 (Boergens and Helmstaedter,

2012b; see also Berning et al., 2015; Staffler et al., 2017a) and the SegEM segmentation (Berning

et al., 2015) in a centered bounding box of size 86× 52× 86 µm3 calculated for the SynEM

92

5 Application to Circuit Reconstruction

test set was used (see subsection 3.4.1). The border area of each interface was calculated as

suggested in Berning et al. (2015). SynEM was applied to the whole dataset to generate synapse

scores for each interface. A spiny stellate neuron with a soma location roughly in the center

of the dataset (soma bounding box [4700, 6300; 2500, 3600; 1200, 1800]) was selected and

reconstructed by skeletonization. The skeleton was split into separate trees for the dendritic and

axonal processes. The tree corresponding to the axonal process was discarded and all segments

of the SegEM segmentation were collected which contained at least one node of the skeleton.

Afterwards, all interfaces between the segments of the spiny stellate neuron and any other segment

were extracted. A list of segments in the soma of the spiny stellate neuron was available and

interfaces between skeleton segments and segments contained in the soma were discarded. For

synapse detection, the focused proofreading strategy proposed in subsection 3.4.5 was applied

using the SynEM test set of 2012-09-28_ex145_07x2 to determine the thresholds for synapse

detection. To determine the thresholds for focused proofreading, all non-synaptic interfaces of

the test set were used. For each synapse of the test set, only the interface with highest score

overlapping with the synapse was kept. Then, the highest possible score θ1 with a single synapse

recall of 95% and the lowest possible score θ2 with a synapse precision of 95% were determined.

The interfaces of the spiny stellate with a score above θ2 were labeled as synaptic. 2025 interfaces

had a score in the range [θ1, θ2] and were proofread by an expert neuroscientist using webKnossos

(Boergens et al., 2017) taking a total annotation time of 387 minutes (6 hours and 27 minutes)

corresponding to 11.5 seconds per interface. In addition, all interfaces with an area larger than

0.35 µm2 were also manually proofread in webKnossos which applied to 165 interfaces taking

a total annotation time of 10 minutes (3.6 s per interfaces). After focused annotation, a total of

2327 interfaces of the spiny stellate neuron were labeled as synaptic.

The skeleton of the spiny stellate neuron was used to classify synaptic interfaces as spine or shaft

synapses. For shaft synapse extraction, all spines were deleted from the spiny stellate skeleton by

eroding all degree one nodes of the skeleton until a degree three node was reached. Degree one

nodes inside the soma bounding box were not considered for spine identification. All segments

that contained a skeleton node after erosion of the degree one nodes were considered as shaft

segments. The segments of the spiny stellate neuron that were not labeled as shaft segments were

labeled as spine segments. Synaptic interfaces onto a spine segment of the spiny stellate neuron

were labeled as spine interfaces while all others as were labeled as shaft interfaces.

To account for synapses split into multiple interfaces, the 2327 synaptic interfaces were clustered

using hierarchical clustering with single linkage and a distance cutoff of 350 nm resulting in

a total number of 1334 interface clusters which were called synapses. Three of the resulting

synapses contained both shaft and spine interfaces and were manually assigned to the correct

class resulting in 970 spine and 364 shaft synapses. A second clustering was done separately for

spine and shaft interfaces with a distance threshold of 450 nm for spine interfaces and 500 nm

for shaft interfaces resulting in 880 spine synapses and 285 shaft synapses. The border area for

synapses, also called synapse size, was calculated by summing up the area of all interfaces in the

cluster. The comparison of the area distributions of spine and shaft synapses was done using a

93

5 Application to Circuit Reconstruction

two-sided Kolmogorov-Smirnov test using the Matlab kstest2 function. The distributions of

synapse sizes for all synapses and for spine synapses and shaft synapses separately were fitted

individually with a lognormal distribution using the Matlab fitdist function. One-sample

Kolmogorov-Smirnov tests were performed to compare the empirical area distributions and the

fitted lognormal distributions.

To calculate the distance from a synapse to the soma, all skeleton nodes in any presynaptic seg-

ment of all interfaces in a synapse cluster were considered. For each postsynaptic skeleton node

of a synapse, the shortest path to any skeleton node in the soma bounding box was calculated.

The distance from a synapse to the soma was then calculated as the mean over all the shortest

paths. Synapses for which all postsynaptic skeleton nodes were inside the soma bounding box

were discarded. For statistical comparison of the distributions of distances from synapses to the

soma for shaft and spine synapses, a two-sided t-test and the Wilcoxon rank sum test were done

both using the Matlab functions ttest2 and ranksum, respectively.

5.3. Results

SynEM was used to analyze all synapses onto the soma and dendritic tree of a spiny stellate neuron

in the SBEM dataset 2012-09-28_ex145_07x2 from mouse S1 L4 (Boergens and Helmstaedter,

2012b) segmented by SegEM (Berning et al., 2015). The spiny stellate neuron was reconstructed

using webKnossos (Boergens et al., 2017) and all segments of the SegEM segmentation that

overlapped with a skeleton node were collected. All interfaces between the segments of the spiny

stellate neuron and any other process were classified by SynEM and grouped into spine and shaft

segments using the skeleton tracing. The focused proofreading strategy of SynEM proposed in

subsection 3.4.5 (see also Figure 3.18) was used with the thresholds θ1 at 95% recall and θ2 at

95% precision according to the SynEM test. Synaptic interfaces with a score in the range [θ1, θ2]

were proofread while synapses with a score above θ2 were automatically accepted as synaptic

resulting in expected synapse detection precision and recall rates of 95%. Synaptic interfaces that

were closer than 350 nm were clustered to merge synaptic interfaces overlapping with the same

synapse. The resulting synapse input map of the spiny stellate contained 1334 synapses out of

which 970 (72.7%) were onto spines and 364 (27.3%) onto shafts (Figure 5.1). The interface area

was calculated for each synaptic interface and aggregated for all interfaces of a synapse cluster

to yield the synapse sizes (Figure 5.2). An average synapse size of 0.27± 0.20 µm2 (mean ±
s.d.; range 0.02 µm2–1.55 µm2 , n = 1334) was found (Figure 5.2a). The average size of spine

synapses was 0.24± 0.17 µm2 (mean ± s.d.; range 0.02 µm2–1.32 µm2, n = 970) and of shaft

synapses 0.34± 0.26 µm2 (mean ± s.d.; range 0.02 µm2–1.55 µm2, n = 364) (Figure 5.2a).

The distributions of spine and shaft synapse sizes are significantly different (p < 10−9, two-

sample Kolmogorov-Smirnov test). The distributions of synapse sizes could be well fitted with

a lognormal distribution for all synapses (p = 0.25, one-sample Kolmogorov-Smirnov test, see

Figure 5.2b) as well as for spine synapses (p = 0.46, one-sample Kolmogorov-Smirnov test,

see Figure 5.2c) and shaft synapses (p = 0.35, one-sample Kolmogorov-Smirnov test, see Fig-

ure 5.2d) separately. This result was stable for different clustering distance thresholds for both

94

5 Application to Circuit Reconstruction

Figure 5.1: Spiny stellate neuron input distribution. Spiny stellate neuron from the SBEM dataset 2012-09-28_ex145_07x2
(Boergens and Helmstaedter, 2012b) from mouse S1 L4 in a volume of size 86× 52× 86 µm3 (blue isosurface: dendritic tree and
soma; red isosurface: axon) shown in the x-y plane. Synapses (green balls) consist of interfaces clustered with a distance threshold
of d = 350 nm. Scale bar: 10 µm

spine synapses (p = 0.14, one-sample Kolmogorov-Smirnov test, for a clustering threshold of

450 nm) and shaft synapses (p = 0.55, one-sample Kolmogorov-Smirnov test, for a clustering

threshold of 500 nm).

To examine the distribution of synapses along the dendritic tree of the spiny stellate neuron,

the path length from the soma to each synapse along the dendritic tree was calculated for all

non-somatic synapses (Figure 5.3). The average distance of spine synapses to the soma was

42.74± 13.72 µm (mean± s.d.; range 4.98 µm–87.57 µm, n = 970, Figure 5.3a, b) while the av-

erage distance to the soma for shaft synapses was 29.04± 16.80 µm (mean± s.d.; range 1.84 µm–

79.51 µm, n = 255, note that only non-somatic shaft synapses were considered, Figure 5.3a, b)

which is significantly different (p < 10−31, t-test and Wilcoxon rank sum test). The fraction of

shaft synapses among all synapses closer than 40 µm to the soma was 30.0%, while it was only

10% for all synapses with a distance larger than 40 µm.

5.4. Discussion

The input map comprising all synapses innervating the dendritic tree of a spiny stellate neuron

from a SBEM dataset in mouse S1 L4 was reconstructed using SynEM. In combination with

manual annotation of less than 7 hours for a single person, an accuracy of 95% for single synapses

was achieved. The distribution of synapse size was found to be well described by a lognormal

distribution for all synapses as well as for spine and shaft synapses separately. The average path

length from synapses to the soma along the dendrites was found to be smaller for shaft synapses

95

5 Application to Circuit Reconstruction

ba

c d
Area (μm2)

Area (μm2) Area (μm2)

S
yn

ap
se

 c
ou

nt

S
yn

ap
se

 c
ou

nt
S

pi
ne

 s
yn

ap
se

 c
ou

nt

S
ha

ft
sy

na
ps

e
co

un
t

All synapses
Spine synapses
Shaft synapses

Area (μm2)
0 0.4 0.8 1.2 1.6

0 0.4 0.8 1.2 1.6

0

50

100

150

200

250

0

25

75

100

0 0.4 0.8 1.2 1.6
0

50

100

150

200

0 0.4 0.8 1.2 1.6
0

50

100

150

200

250

Area (μm2)

C
D

F

0

1

0 1.6

Empirical distribution
Lognormal fit (p=0.25)

Empirical dist.
Lognormal fit (p=0.46)

Empirical dist.
Lognormal fit (p=0.35)

50

Figure 5.2: Spiny stellate neuron input synapse size distribution. (a) Histogram of synapse area for all synapses (blue) and
separately for spine (red) and shaft (yellow) synapses with cumulative density function (CDF) inset at a clustering threshold of
d = 350 nm. (b) Histogram of synapse area for all synapses (blue) with a lognormal fit and the p-value associated to the fit
(p = 0.25) using a one-sample Kolmogorov-Smirnov test. (c) Same as b but only for spine synapses resulting in a fit with p = 0.46
(one-sample Kolmogorov-Smirnov test). (d) Same as b but only for shaft synapses resulting in a fit with p = 0.35 (one-sample
Kolmogorov-Smirnov test).

96

5 Application to Circuit Reconstruction

a b

0

50

100

150
All
Spine
Shaft

Path length to soma (μm) Path length to soma (μm)

S
yn

ap
se

 c
ou

nt

20 40 60 80 1000 20 40 60 80 1000

sh

sp

all

Figure 5.3: Synapse location along the dendritic tree. (a) Distribution of path length from synapse to soma measured from the
nodes of the spiny stellate neuron skeleton for all synapses (blue), as well as for spine (red) and shaft (yellow) synapses separately.
(b) Box-plot of the path length distributions in (a) for all, spine (sp) and shaft (sh) synapses. For each box (blue) the central mark
(red) indicates the median and the left and right edges indicate the 25th and 75th percentiles, respectively. Whiskers extend to
smallest and largest points that are not considered as outliers. Outliers are marked with a red plus symbol.

than for spine synapses.

The definition of synapse size used here was the total border area of identified synaptic interfaces.

Nearby synaptic interfaces were clustered and their areas were summed up to account for synapses

that were split into multiple interfaces. For spine synapses, it was shown (see subsection 3.4.3)

that this area measure yields a size distribution that is indistinguishable from the ASI used by

de Vivo et al. (2017) assuming that all interfaces of a synapse are detected. For shaft synapses, the

total border area of the interface is potentially larger than measures of synapse size involving the

PSD or active zone area such as the synaptic apposition surface (SAS) from Santuy et al. (2018),

which could result in a heavier tail than expected by a lognormal distribution. Furthermore, due

to the larger contact area of shaft synapses typically resulting in a larger number of overlapping

interfaces, the clustering procedure is more important and potentially had a stronger effect on

the area distribution for shaft synapses than for spine synapse. However, the conclusion that

the distribution of synapse size can be fitted by a lognormal distribution was stable for different

clustering thresholds.

The finding that shaft synapses are formed to a higher degree near the soma is in accordance

with earlier studies for cortical neurons (Anderson et al., 1994) as well as for other brain regions

(Megias et al., 2001; Kornfeld et al., 2017), potentially indicating a non-selective veto function

by proximal and somatic inhibition (Megias et al., 2001). Note that the analysis of the path length

distribution was restricted to the proximal parts of the dendritic tree due to the size of the dataset

of 86× 52× 86 µm3 resulting in a maximal dendrite distance (Euclidean distance) to the soma

of at most 40 µm in x- and z-dimension and 20 µm in y direction.

In contrast to previous studies (Anderson et al., 1994; Megias et al., 2001; Kornfeld et al., 2017),

synapse types (excitatory, inhibitory) were not identified based on their ultrastructural appearance

97

5 Application to Circuit Reconstruction

but synapses were grouped into spine and shaft synapses. The distinction into spine and shaft

synapses is not equivalent to the synapse type (Santuy et al., 2018) potentially resulting in slightly

different distributions although the results were consistent.

In conclusion, the combination of SynEM with manual annotation allows answering connectomic

questions that previously would have required substantial manual annotation effort. The measured

distributions were consistent with previous findings from electrical recordings and EM studies.

The population of synapses studied here, namely all synapses that share a common postsynaptic

partner, potentially provides an even stronger restriction to models of synaptic plasticity than

previously studies synapse populations.

98

6. Conclusion and Outlook

6.1. Summary

Connectomes - comprehensive maps of neuronal connections of the nervous system of an organ-

ism - could help to advance our understanding of the structural as well as the functional principles

of the brain. On the nanoscale, this requires to map large volumes of neural tissue at the reso-

lution of single synapses, which is currently only possible using 3D electron microscopy (EM).

The reconstruction of a neural network from 3D image data requires to identify all neuronal pro-

cesses and to detect the synapses between them. Manual reconstruction is prohibitively expensive

for all but the smallest neural circuits necessitating the development of automated reconstruction

techniques in connectomics. Advances in automated reconstruction of neuronal processes have

rendered synapse detection the bottleneck of current connectomic reconstruction approaches. In

this thesis, methods for automated synapse detection and volume segmentation for 3D EM-based

nanoscale connectomics were developed.

The proposed synapse detection algorithm SynEM formulated synapse detection as binary clas-

sification of interfaces between cellular processes from a volume segmentation (chapter 3). The

definition of interfaces explicitly included separate subvolumes of the adjacent processes to ac-

count for synaptic features extending into the pre- and postsynaptic process. The interface for-

mulation intrinsically includes the partner detection step and allows to naturally incorporate the

synapse direction. Interfaces were represented in a feature space using textural and shape de-

scriptors calculated over the interface volumes. SynEM was evaluated on a medium-resolution

serial block-face electron microscopy (SBEM) dataset and a high-resolution automated serial sec-

tion tape-collection scanning electron microscopy (ATUM-SEM) dataset showing superior per-

formance to previously proposed methods. Based on the single synapse prediction performance,

the remaining error rates for binary neuron-to-neuron connections were estimated to be less than

3%. The performance of the SynEM interface classification approach was further improved by

using texture features learned by convolutional neural networks (CNNs) (chapter 4) while at the

same time rendering the need for hand-designed features unnecessary. In addition, several in-

terface classifiers using different feature representations were applied to a novel dataset without

retraining or fine-tuning indicating that a simple normalization of the raw data is often enough to

get good generalization performance. To improve the segmentation underlying the SynEM inter-

face definition, CNNs were trained to classify membranes between cellular processes followed by

a watershed procedure (chapter 4). A novel multi-resolution architecture was proposed showing

a substantial improvement over the SegEM baseline (Berning et al., 2015) and to outperform reg-

ular CNN architectures and a popular encoder-decoder network architecture (u-net; Ronneberger

et al., 2015; Funke et al., 2018). The best segmentation result was achieved using an ensemble

of networks. Finally, the SynEM classifier in combination with manual proofreading was used

to identify all synapses innervating the dendritic tree of a spiny stellate neuron in a dataset from

99

6 Conclusion and Outlook

mouse primary somatosensory cortex (S1) layer 4 (L4) (chapter 5). The distribution of synapse

size, which is correlated to synapse strength, was shown to be well described by a lognormal dis-

tribution. Furthermore, the distributions of path lengths from synapses to the soma showed that

shaft synapses innervate the spiny stellate more proximal to soma than spine synapses.

6.2. Future Directions

The explicit model of interfaces used by SynEM allows taking all available information about

synapse location, orientation and synapse direction into account. The formulation of synapse de-

tection as conditional classification of interfaces provides the additional information contained in

a volume segmentation and is thus expected to facilitate the classification task. It is less clear

whether other conceptual choices of the SynEM classification approach such as the size and num-

ber of subvolumes or the summary statistics are optimal. In the future, more general interface

classification setups could be considered that make less explicit assumptions, e.g. by only con-

sidering the raw data and binary mask for the involved segments as inputs.

Human annotators often use biological considerations or prior information to resolve difficult

or ambiguous locations. These priors can come in the form of hard-constraints that cannot be

violated, e.g. that two somata are not connected by neurites or that dendrites are not myelinated, or

soft-constraints that make specific configurations more unlikely, e.g. multiple excitatory synapses

onto the same spine head. Future models could introduce dependencies between segments and

interfaces which allow including various forms of prior information.

6.3. Conclusion

In this thesis, methods for the automated reconstruction of neural circuits from 3D EM data in

nanoscale connectomics were presented. The novel synapse detection method SynEM was shown

to remove synapse detection as the bottleneck in connectomic reconstruction. The performance

of SynEM was further improved by using CNNs to learn features directly from the raw image

data. The volume segmentation underlying the SynEM interface definition was improved using

a novel multi-resolution architecture. The developed methods were shown to provide substantial

advances for the automated reconstruction of 3D EM-based connectomes and, in combination

with minimal manual proofreading effort, to be readily usable for biological analyses.

100

Glossary

A
ANN - artificial neural network ... 22–24, 61

ASI - axon-spine interface area... 50, 51, 92, 97

ATUM-SEM - automated serial section tape-collection scanning electron microscopy 12, 27, 43,

50, 51, 54, 60, 99

AUC - area under curve... 25, 26, 67, 74

C
CART - classification and regression trees ... 20

CNN - convolutional neural network..... 23–25, 29, 30, 44, 49, 61–65, 67–77, 79, 85, 89, 91, 99,

100

D
DoG - Difference of Gaussians ... 32, 35

E
ECS - extracellular space... 13, 60

EM - electron microscopy 2, 4–6, 8–14, 17, 27–30, 43, 48, 50, 51, 59, 60, 62, 64, 74, 75, 84, 85,

89, 92, 98–100

F
FCN - fully convolutional network 6, 7, 24, 25, 61–64, 74, 77, 85, 89, 91

FFT - fast Fourier transform... 16, 79

FIBSEM - focused ion beam scanning electron microscopy 13, 28, 29, 60

FPR - false positive rate.. 26

I
IED - inter-error distance.. 62, 80, 81, 84–90

L
L2/3 - layer 2/3... 71

L4 - layer 4... 10, 29, 42, 43, 56, 65, 73, 81, 92, 94, 95, 100

LoG - Laplacian of Gaussian.. 32, 36

M
MAP - maximum a posteriori .. 20

MLE - maximum likelihood estimate.. 19, 20, 22

mSEM - multi-beam scanning electron microscopy ... 13

N
NLL - negative log likelihood.. 19

101

Glossary

P
PSD - postsynaptic density 11, 14, 27–29, 31, 43–45, 47, 59, 60, 71, 74–76, 92, 97

R
ROC - receiver operator characteristic.. 25, 26

S
S1 - primary somatosensory cortex... 10, 29, 41–43, 51, 56, 65, 71, 73, 74, 81, 92, 94, 95, 100

SAS - synaptic apposition surface .. 97

SBEM - serial block-face electron microscopy ... 6, 10, 13, 27, 28, 42–44, 47, 51, 52, 54, 56, 71,

74, 75, 89, 91, 92, 94, 95, 99

SEM - scanning electron microscopy.. 13

ssTEM - serial section transmission electron microscopy.................................... 12, 28, 29

W
wlog - without loss of generality .. 18

102

List of Figures

1.1 Neuron drawings... 1

1.2 Connectomics reconstruction challenge ... 3

2.1 Schematic representation of the main structural components of a neuron 9

2.2 Neuronal ultrastructure in EM .. 10

2.3 Synapses in EM .. 11

2.4 Overview of volume EM techniques. ... 12

3.1 Synapse in SBEM ... 28

3.2 Inhibitory synapses in SBEM ... 29

3.3 SynEM interface definition... 32

3.4 SynEM texture feature calculation... 32

3.5 SynEM texture filters... 37

3.6 Binary from weighted connectome .. 39

3.7 Cortical neuron-to-neuron connections .. 40

3.8 SynEM label data .. 44

3.9 SynEM SBEM evaluation .. 47

3.10 SynEM classification examples and feature importance 48

3.11 Synapse detection method comparison... 50

3.12 Synapse size comparison in SBEM data... 51

3.13 Synapse detection on ATUM data ... 53

3.14 Estimated neuron-to-neuron error.. 54

103

LIST OF FIGURES

3.15 SynEM inhibitory synapse detection performance ... 55

3.16 Local connectome ... 56

3.17 Local connectome synapse detection ... 57

3.18 Focused proofreading .. 58

4.1 CNN ultrastructure prediction in SBEM... 65

4.2 SynEM with learned features validation set performance 68

4.3 SynEM with learned features test set performance... 69

4.4 Feature importance for interface classification with learned features...................... 70

4.5 Qualitative classification error comparison ... 72

4.6 SynEM with learned features inhibitory test set performance................................ 73

4.7 Interface classifier generalization performance.. 74

4.8 Multi-resolution network layer.. 78

4.9 U-net architecture.. 79

4.10 Merge-free path length... 81

4.11 Volume segmentation split-merge curves.. 88

4.12 Volume segmentation examples .. 88

5.1 Spiny stellate neuron input distribution .. 95

5.2 Spiny stellate neuron input synapse size distribution.. 96

5.3 Synapse location along the dendritic tree.. 97

104

List of Tables

2.1 Confusion matrix .. 26

3.1 SynEM texture features overview.. 34

3.2 SynEM shape features overview.. 38

3.3 Number of synapses between excitatory connected neurons 41

3.4 Number of synapses between inhibitory connected neurons.................................. 42

3.5 SynEM classifier development .. 46

3.6 SynEM feature importance ... 49

3.7 SynEM score thresholds... 54

4.1 CNNs trained on synaptic junctions, vesicle clouds and mitochondria 66

4.2 SynEM with learned features validation set performance 67

4.3 CNN architectures used for membrane prediction ... 83

4.4 Ensembles of CNN architectures used for membrane prediction 85

4.5 Volume segmentation validation set results... 86

4.6 Volume segmentation ensemble validation set results .. 87

4.7 Volume segmentation test set results .. 87

105

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,

Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,

Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,

Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,

Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous

systems. Software available from tensorflow.org.

Anderson, J. C., Douglas, R. J., Martin, K. A. C., and Nelson, J. C. (1994). Map of the synapses

formed with the dendrites of spiny stellate neurons of cat visual cortex. The Journal of Com-

parative Neurology, 341(1):25–38.

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hierarchi-

cal image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(5):898–916.

Arganda-Carreras, I., Turaga, S. C., Berger, D. R., Cireşan, D., Giusti, A., Gambardella, L. M.,

Schmidhuber, J., Laptev, D., Dwivedi, S., Buhmann, J. M., Liu, T., Seyedhosseini, M., Tas-

dizen, T., Kamentsky, L., Burget, R., Uher, V., Tan, X., Sun, C., Pham, T. D., Bas, E., Uzunbas,

M. G., Cardona, A., Schindelin, J., and Seung, H. S. (2015). Crowdsourcing the creation of

image segmentation algorithms for connectomics. Frontiers in Neuroanatomy, 9:142.

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., Lent,

R., Herculano-Houzel, S., et al. (2009). Equal numbers of neuronal and nonneuronal cells make

the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology,

513(5):532–541.

Barbour, B., Brunel, N., Hakim, V., and Nadal, J.-P. (2007). What can we learn from synaptic

weight distributions? Trends in Neurosciences, 30(12):622 – 629.

Bargmann, C. I. (2012). Beyond the connectome: how neuromodulators shape neural circuits.

Bioessays, 34(6):458–465.

Bargmann, C. I. and Marder, E. (2013). From the connectome to brain function. Nature methods,

10(6):483–490.

Bartol Jr, T. M., Bromer, C., Kinney, J., Chirillo, M. A., Bourne, J. N., Harris, K. M., and Se-

jnowski, T. J. (2015). Nanoconnectomic upper bound on the variability of synaptic plasticity.

Elife, 4:e10778.

Becker, C., Ali, K., Knott, G., and Fua, P. (2013). Learning context cues for synapse segmentation.

IEEE transactions on medical imaging, 32(10):1864–1877.

106

BIBLIOGRAPHY

Beier, T., Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D. D., Cardona, A., Knott, G. W.,

Plaza, S. M., Scheffer, L. K., Koethe, U., Kreshuk, A., and Hamprecht, F. A. (2017). Multicut

brings automated neurite segmentation closer to human performance. Nat Methods, 14(2):101–

102.

Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and trends® in Machine

Learning, 2(1):1–127.

Berning, M., Boergens, K. M., and Helmstaedter, M. (2015). Segem: efficient image analysis for

high-resolution connectomics. Neuron, 87(6):1193–1206.

Beucher, S. and Lantuéjoul, C. (1979). Use of watersheds in contour detection. In In International

Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, volume

132.

Birch-Andersen, A. (1955). Reconstruction of the nuclear sites of salmonella typhimurium from

electron micrographs of serial sections. Microbiology, 13(2):327–329.

Bishop, C. (2007). Pattern recognition and machine learning (information science and statistics),

1st edn. 2006. corr. 2nd printing edn. Springer, New York.

Boergens, K. M., Berning, M., Bocklisch, T., Bräunlein, D., Drawitsch, F., Frohnhofen, J., Herold,

T., Otto, P., Rzepka, N., Werkmeister, T., et al. (2017). webknossos: efficient online 3d data

annotation for connectomics. Nature Methods.

Boergens, K. M. and Helmstaedter, M. (2012a). 3D SBEM Dataset: Primary somatosen-

sory cortex layer 2/3 of P28 C57BL/6 male mouse (size: 97× 61× 196 µm3, voxel size:

12× 12× 26 nm3), 2017-11-16_ex144_st08x2. Unpublished data.

Boergens, K. M. and Helmstaedter, M. (2012b). 3D SBEM Dataset: Primary somatosen-

sory cortex layer 4 of P28 C57BL/6 male mouse (size: 93× 60× 93 µm3, voxel size:

11.24× 11.24× 28 nm3), 2012-09-28_ex145. Partly published: https://segem.rzg.

mpg.de/, https://demo.webknossos.org/datasets/2012-09-28_ex145_

07x2_demo/view and http://synem.rzg.mpg.de/.

Boergens, K. M. and Helmstaedter, M. (2012c). 3D SBEM Dataset: Primary somatosen-

sory cortex layer 4 of P28 C57BL/6 male mouse (size: 96× 64× 96 µm3, voxel size:

11.24× 11.24× 28 nm3), 2012-09-28_ex145_ROI2017. Unpublished data.

Bogovic, J. A., Huang, G. B., and Jain, V. (2013). Learned versus hand-designed feature repre-

sentations for 3d agglomeration. arXiv preprint arXiv:1312.6159.

Braitenberg, V. and Schuez, A. (1991). Anatomy of The Cortex. Statistics and Geometry. Berlin:

Springer-Verlag.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and regression

trees. Wadsworth Advanced Books and Software, Belmont, CA.

107

https://segem.rzg.mpg.de/
https://segem.rzg.mpg.de/
https://demo.webknossos.org/datasets/2012-09-28_ex145_07x2_demo/view
https://demo.webknossos.org/datasets/2012-09-28_ex145_07x2_demo/view
http://synem.rzg.mpg.de/

BIBLIOGRAPHY

Briggman, K. L. and Bock, D. D. (2012). Volume electron microscopy for neuronal circuit re-

construction. Current opinion in neurobiology, 22(1):154–161.

Briggman, K. L., Helmstaedter, M., and Denk, W. (2011). Wiring specificity in the direction-

selectivity circuit of the retina. Nature, 471(7337):183–188.

Bucher, D. and Marder, E. (2013). Snapshot: Neuromodulation. Cell, 155(2):482–482 e1.

Buhmann, J., Krause, R., Lentini, R. C., Eckstein, N., Cook, M., Turaga, S., and Funke, J.

(2018). Synaptic partner prediction from point annotations in insect brains. arXiv preprint

arXiv:1806.08205.

Buzsaki, G. and Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect

network operations. Nat Rev Neurosci, 15(4):264–78.

Cheetham, C. E., Barnes, S. J., Albieri, G., Knott, G. W., and Finnerty, G. T. (2012). Pansy-

naptic enlargement at adult cortical connections strengthened by experience. Cerebral cortex,

24(2):521–531.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018). Deeplab: Seman-

tic image segmentation with deep convolutional nets, atrous convolution, and fully connected

crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):834–848.

Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012). Deep neural networks

segment neuronal membranes in electron microscopy images. In Pereira, F., Burges, C. J. C.,

Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems

25, pages 2843–2851. Curran Associates, Inc.

Colonnier, M. (1968). Synaptic patterns on different cell types in the different laminae of the cat

visual cortex. an electron microscope study. Brain Res, 9(2):268–87.

de Vivo, L., Bellesi, M., Marshall, W., Bushong, E. A., Ellisman, M. H., Tononi, G., and Cirelli,

C. (2017). Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science,

355(6324):507–510.

Denk, W., Briggman, K. L., and Helmstaedter, M. (2012). Structural neurobiology: missing

link to a mechanistic understanding of neural computation. Nature Reviews Neuroscience,

13(5):351–358.

Denk, W. and Horstmann, H. (2004). Serial block-face scanning electron microscopy to recon-

struct three-dimensional tissue nanostructure. PLoS biology, 2(11):e329.

Dorkenwald, S., Schubert, P. J., Killinger, M. F., Urban, G., Mikula, S., Svara, F., and Kornfeld,

J. (2017). Automated synaptic connectivity inference for volume electron microscopy. Nature

Methods, 14(4):435–442.

Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Jorio, L. D., Tang, A., Romero, A.,

Bengio, Y., Pal, C., and Kadoury, S. (2018). Learning normalized inputs for iterative estimation

in medical image segmentation. Medical Image Analysis, 44:1 – 13.

108

BIBLIOGRAPHY

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Eberle, A., Mikula, S., Schalek, R., Lichtman, J., Tate, M. K., and Zeidler, D. (2015). High-

resolution, high-throughput imaging with a multibeam scanning electron microscope. Journal

of microscopy, 259(2):114–120.

Feldmeyer, D., Egger, V., Lubke, J., and Sakmann, B. (1999). Reliable synaptic connections be-

tween pairs of excitatory layer 4 neurones within a single ’barrel’ of developing rat somatosen-

sory cortex. J Physiol, 521 Pt 1:169–90.

Feldmeyer, D., Lubke, J., and Sakmann, B. (2006). Efficacy and connectivity of intracolumnar

pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol, 575(Pt 2):583–

602.

Feldmeyer, D., Lubke, J., Silver, R. A., and Sakmann, B. (2002). Synaptic connections between

layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology

and anatomy of interlaminar signalling within a cortical column. J Physiol, 538(Pt 3):803–22.

Fornito, A., Zalesky, A., and Breakspear, M. (2015). The connectomics of brain disorders. Nat

Rev Neurosci, 16(3):159–72.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 55(1):119–139.

Frick, A., Feldmeyer, D., Helmstaedter, M., and Sakmann, B. (2008). Monosynaptic connections

between pairs of l5a pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb

Cortex, 18(2):397–406.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view

of boosting. Annals of Statistics, 28(2):337–374.

Funke, J., Klein, J., Moreno-Noguer, F., Cardona, A., and Cook, M. (2017). Ted: A tolerant

edit distance for segmentation evaluation. Methods, 115:119 – 127. Image Processing for

Biologists.

Funke, J., Tschopp, F. D., Grisaitis, W., Sheridan, A., Singh, C., Saalfeld, S., and Turaga, S. C.

(2018). Large scale image segmentation with structured loss based deep learning for connec-

tome reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages

1–1.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional neural

networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

2414–2423.

Gibson, J. R., Beierlein, M., and Connors, B. W. (1999). Two networks of electrically coupled

inhibitory neurons in neocortex. Nature, 402(6757):75–9.

109

BIBLIOGRAPHY

Giusti, A., Ciresan, D. C., Masci, J., Gambardella, L. M., and Jürgen Schmidhuber (2013). Fast

image scanning with deep max-pooling convolutional neural networks. 2013 IEEE Interna-

tional Conference on Image Processing, pages 4034–4038.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Gordon,

G., Dunson, D., and Dudík, M., editors, Proceedings of the Fourteenth International Confer-

ence on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning

Research, pages 315–323, Fort Lauderdale, FL, USA. PMLR.

Golgi, C. (1873). Sulla struttura della sostanza grigia del cervello. Gazzetta Medica Italiana.

Lombardia, 33:244–246.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:

//www.deeplearningbook.org.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A. C., and Bengio, Y. (2014). Generative adversarial nets. In NIPS.

Grais, E. M., Wierstorf, H., Ward, D., and Plumbley, M. D. (2017). Multi-resolution fully convo-

lutional neural networks for monaural audio source separation. CoRR, abs/1710.11473.

Gray, E. G. (1959). Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron

microscope study. Journal of anatomy, 93(Pt 4):420.

Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a diversity of gabaergic

interneurons and synapses in the neocortex. Science, 287(5451):273–8.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Trans. Pattern Anal.

Mach. Intell., 12:993–1001.

Harris, K. M., Perry, E., Bourne, J., Feinberg, M., Ostroff, L., and Hurlburt, J. (2006). Uniform se-

rial sectioning for transmission electron microscopy. Journal of Neuroscience, 26(47):12101–

12103.

Harris, K. M. and Stevens, J. K. (1989). Dendritic spines of ca 1 pyramidal cells in the rat

hippocampus: serial electron microscopy with reference to their biophysical characteristics.

Journal of Neuroscience, 9(8):2982–2997.

Harris, K. M. and Weinberg, R. J. (2012). Ultrastructure of synapses in the mammalian brain.

Cold Spring Harbor perspectives in biology, 4(5):a005587.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. M. (2017). Neuroscience-

inspired artificial intelligence. Neuron, 95 2:245–258.

Hayworth, K., Kasthuri, N., Schalek, R., and Lichtman, J. (2006). Automating the collection of

ultrathin serial sections for large volume tem reconstructions. Microscopy and Microanalysis,

12(S02):86.

110

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

Hayworth, K. J., Xu, C. S., Lu, Z., Knott, G. W., Fetter, R. D., Tapia, J. C., Lichtman, J. W.,

and Hess, H. F. (2015). Ultrastructurally smooth thick partitioning and volume stitching for

large-scale connectomics. Nature methods, 12(4):319–322.

He, K., Zhang, X., Ren, S., and Sun, J. (2014). Spatial pyramid pooling in deep convolutional

networks for visual recognition. In Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors,

Computer Vision – ECCV 2014, pages 346–361, Cham. Springer International Publishing.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Hebb, D. O. (1949). The organization of behavior: A neurophysiological approach.

Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J., and Saalfeld, S. (2018). Synaptic cleft

segmentation in non-isotropic volume electron microscopy of the complete drosophila brain.

arXiv preprint arXiv:1805.02718.

Helmstaedter, M. (2013). Cellular-resolution connectomics: challenges of dense neural circuit

reconstruction. Nature methods, 10(6):501–507.

Helmstaedter, M. (2015). The mutual inspirations of machine learning and neuroscience. Neuron,

86(1):25–8.

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy neurite reconstruction

for high-throughput neuroanatomy. Nature neuroscience, 14(8):1081–1088.

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., and Denk, W.

(2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature,

500(7461):168–174.

Hoffmann, J. H., Meyer, H. S., Schmitt, A. C., Straehle, J., Weitbrecht, T., Sakmann, B., and

Helmstaedter, M. (2015). Synaptic conductance estimates of the connection between local

inhibitor interneurons and pyramidal neurons in layer 2/3 of a cortical column. Cereb Cortex,

25(11):4415–29.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural net-

works, 4(2):251–257.

Huang, G. B. and Plaza, S. (2014). Identifying synapses using deep and wide multiscale recursive

networks. arXiv preprint arXiv:1409.1789.

Huang, G. B., Scheffer, L. K., and Plaza, S. M. (2016). Fully-automatic synapse prediction and

validation on a large data set. arXiv preprint arXiv:1604.03075.

Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision trees is np-complete.

Information Processing Letters, 5(1):15 – 17.

Jagadeesh, V., Anderson, J., Jones, B., Marc, R., Fisher, S., and Manjunath, B. (2014). Synapse

classification and localization in electron micrographs. Pattern Recognition Letters, 43:17–24.

111

BIBLIOGRAPHY

Jain, V. (2017). Adversarial image alignment and interpolation. arXiv preprint arXiv:1707.00067.

Jain, V., Bollmann, B., Richardson, M., Berger, D. R., Helmstaedter, M. N., Briggman, K. L.,

Denk, W., Bowden, J. B., Mendenhall, J. M., Abraham, W. C., Harris, K. M., Kasthuri, N.,

Hayworth, K. J., Schalek, R., Tapia, J. C., Lichtman, J. W., and Seung, H. S. (2010a). Bound-

ary learning by optimization with topological constraints. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 2488–2495.

Jain, V., Murray, J. F., Roth, F., Turaga, S., Zhigulin, V., Briggman, K. L., Helmstaedter, M. N.,

Denk, W., and Seung, H. S. (2007). Supervised learning of image restoration with convolutional

networks. In 2007 IEEE 11th International Conference on Computer Vision, pages 1–8.

Jain, V., Seung, H. S., and Turaga, S. C. (2010b). Machines that learn to segment images: a

crucial technology for connectomics. Current opinion in neurobiology, 20(5):653–666.

Januszewski, M., Kornfeld, J., Li, P. H., Pope, A., Blakely, T., Lindsey, L., Maitin-Shepard, J. B.,

Tyka, M., Denk, W., and Jain, V. (2017). High-precision automated reconstruction of neurons

with flood-filling networks. bioRxiv, page 200675.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., Hudspeth, A. J., et al. (2000).

Principles of neural science, volume 4. McGraw-hill New York.

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles-Barley,

S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., et al. (2015). Saturated reconstruction

of a volume of neocortex. Cell, 162(3):648–661.

Kaynig, V., Fischer, B., Müller, E., and Buhmann, J. M. (2010). Fully automatic stitching and

distortion correction of transmission electron microscope images. Journal of structural biology,

171(2):163–173.

Ke, M.-T., Nakai, Y., Fujimoto, S., Takayama, R., Yoshida, S., Kitajima, T. S., Sato, M., and Imai,

T. (2016). Super-resolution mapping of neuronal circuitry with an index-optimized clearing

agent. Cell reports, 14(11):2718–2732.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Knoll, M. and Ruska, E. (1932). Das elektronenmikroskop. Zeitschrift für Physik A Hadrons and

Nuclei, 78(5):318–339.

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning electron mi-

croscopy of adult brain tissue using focused ion beam milling. Journal of Neuroscience,

28(12):2959–2964.

Koelbl, C., Helmstaedter, M., Lubke, J., and Feldmeyer, D. (2015). A barrel-related interneuron

in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. Cereb Cortex,

25(3):713–25.

112

BIBLIOGRAPHY

Kornfeld, J., Benezra, S. E., Narayanan, R. T., Svara, F., Egger, R., Oberlaender, M., Denk,

W., and Long, M. A. (2017). Em connectomics reveals axonal target variation in a sequence-

generating network. eLife, 6:e24364.

Kornfeld, J. and Denk, W. (2018). Progress and remaining challenges in high-throughput volume

electron microscopy. Current Opinion in Neurobiology, 50:261 – 267. Neurotechnologies.

Korogod, N., Petersen, C. C., and Knott, G. W. (2015). Ultrastructural analysis of adult mouse

neocortex comparing aldehyde perfusion with cryo fixation. Elife, 4.

Kreshuk, A., Funke, J., Cardona, A., and Hamprecht, F. A. (2015). Who is talking to whom:

synaptic partner detection in anisotropic volumes of insect brain. In International Conference

on Medical Image Computing and Computer-Assisted Intervention, pages 661–668. Springer.

Kreshuk, A., Koethe, U., Pax, E., Bock, D. D., and Hamprecht, F. A. (2014). Automated detec-

tion of synapses in serial section transmission electron microscopy image stacks. PloS one,

9(2):e87351.

Kreshuk, A., Straehle, C. N., Sommer, C., Koethe, U., Cantoni, M., Knott, G., and Hamprecht,

F. A. (2011). Automated detection and segmentation of synaptic contacts in nearly isotropic

serial electron microscopy images. PloS one, 6(10):e24899.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convo-

lutional neural networks. In NIPS.

Kroeger, T., Mikula, S., Denk, W., Koethe, U., and Hamprecht, F. A. (2013). Learning to seg-

ment neurons with non-local quality measures. In International Conference on Medical Image

Computing and Computer-Assisted Intervention, pages 419–427. Springer.

Kubota, Y., Karube, F., Nomura, M., and Kawaguchi, Y. (2016). The diversity of cortical in-

hibitory synapses. Frontiers in Neural Circuits, 10:27.

Lakadamyali, M., Babcock, H., Bates, M., Zhuang, X., and Lichtman, J. (2012). 3d multicolor

super-resolution imaging offers improved accuracy in neuron tracing. PLOS ONE, 7(1):1–10.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. (2017). Building machines that

learn and think like people. The Behavioral and brain sciences, 40:e253.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,

L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Comput.,

1(4):541–551.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient backprop. In Neural

networks: Tricks of the trade, pages 9–50. Springer.

Lee, K., Zung, J., Li, P., Jain, V., and Seung, H. S. (2017). Superhuman accuracy on the snemi3d

connectomics challenge. arXiv preprint arXiv:1706.00120.

Lichtman, J. W. and Denk, W. (2011). The big and the small: challenges of imaging the brain’s

circuits. Science, 334(6056):618–623.

113

BIBLIOGRAPHY

Lichtman, J. W., Pfister, H., and Shavit, N. (2014). The big data challenges of connectomics. Nat

Neurosci, 17(11):1448–54.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic seg-

mentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3431–3440.

Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84(1):87–136.

PMID: 14715912.

Mallat, S. (1999). A wavelet tour of signal processing. Academic press.

Marder, E. (2012). Neuromodulation of neuronal circuits: back to the future. Neuron, 76(1):1–11.

Markram, H., Lubke, J., Frotscher, M., Roth, A., and Sakmann, B. (1997). Physiology and

anatomy of synaptic connections between thick tufted pyramidal neurones in the developing

rat neocortex. J Physiol, 500 (Pt 2):409–40.

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004).

Interneurons of the neocortical inhibitory system. Nat Rev Neurosci, 5(10):793–807.

Masci, J., Giusti, A., Ciresan, D. C., Fricout, G., and Jürgen Schmidhuber (2013). A fast learn-

ing algorithm for image segmentation with max-pooling convolutional networks. 2013 IEEE

International Conference on Image Processing, pages 2713–2717.

Megias, M., Emri, Z., Freund, T. F., and Gulyas, A. I. (2001). Total number and distribution

of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience,

102(3):527–40.

Merchán-Pérez, A., Rodríguez, J.-R., González, S., Robles, V., DeFelipe, J., Larrañaga, P., and

Bielza, C. (2014). Three-dimensional spatial distribution of synapses in the neocortex: A dual-

beam electron microscopy study. Cerebral Cortex, 24(6):1579–1588.

Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., and Chklovskii, D. B. (2010).

Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron,

67(6):1009–1020.

Morgan, J. L. and Lichtman, J. W. (2013). Why not connectomics? Nature methods, 10(6):494–

500.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Murre, J. and Sturdy, D. P. (1995). The connectivity of the brain: multi-level quantitative analysis.

Biological cybernetics, 73(6):529–545.

Navlakha, S., Suhan, J., Barth, A. L., and Bar-Joseph, Z. (2013). A high-throughput framework

to detect synapses in electron microscopy images. Bioinformatics, 29(13):i9–i17.

114

BIBLIOGRAPHY

Neila, P. M., Baumela, L., González-Soriano, J., Rodríguez, J.-R., DeFelipe, J., and Merchán-

Pérez, A. (2016). A fast method for the segmentation of synaptic junctions and mitochondria

in serial electron microscopic images of the brain. Neuroinformatics, 14(2):235–250.

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan,

L., Henry, A. M., et al. (2014). A mesoscale connectome of the mouse brain. Nature,

508(7495):207–214.

Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition,

26:1277–1294.

Palay, S. L. (1956). Synapses in the central nervous system. The Journal of Cell Biology,

2(4):193–202.

Palay, S. L. and Palade, G. E. (1955). The fine structure of neurons. The Journal of biophysical

and biochemical cytology, 1(1):69.

Pallotto, M., Watkins, P. V., Fubara, B., Singer, J. H., and Briggman, K. L. (2015). Extracellular

space preservation aids the connectomic analysis of neural circuits. Elife, 4.

Parag, T., Berger, D., Kamentsky, L., Staffler, B., Wei, D., Helmstaedter, M., Lichtman, J. W., and

Pfister, H. (2018). Detecting synapse location and connectivity by signed proximity estimation

and pruning with deep nets. arXiv preprint arXiv:1807.02739.

Pelt, D. M. and Sethian, J. A. (2018). A mixed-scale dense convolutional neural network for

image analysis. Proceedings of the National Academy of Sciences, 115(2):254–259.

Perea, G., Sur, M., and Araque, A. (2014). Neuron-glia networks: integral gear of brain function.

Frontiers in Cellular Neuroscience, 8:378.

Perez, A. J., Seyedhosseini, M., Deerinck, T. J., Bushong, E. A., Panda, S., Tasdizen, T., and

Ellisman, M. H. (2014). A workflow for the automatic segmentation of organelles in electron

microscopy image stacks. Frontiers in neuroanatomy, 8.

Peters, A. and Palay, S. L. (1996). The morphology of synapses. J Neurocytol, 25(12):687–700.

Petilla Interneuron Nomenclature Group, G., Ascoli, G. A., Alonso-Nanclares, L., Anderson,

S. A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., Buzsaki, G., Cauli, B., Defe-

lipe, J., Fairen, A., Feldmeyer, D., Fishell, G., Fregnac, Y., Freund, T. F., Gardner, D., Gardner,

E. P., Goldberg, J. H., Helmstaedter, M., Hestrin, S., Karube, F., Kisvarday, Z. F., Lambolez,

B., Lewis, D. A., Marin, O., Markram, H., Munoz, A., Packer, A., Petersen, C. C., Rockland,

K. S., Rossier, J., Rudy, B., Somogyi, P., Staiger, J. F., Tamas, G., Thomson, A. M., Toledo-

Rodriguez, M., Wang, Y., West, D. C., and Yuste, R. (2008). Petilla terminology: nomenclature

of features of gabaergic interneurons of the cerebral cortex. Nat Rev Neurosci, 9(7):557–68.

Pham, D. L., Xu, C., and Prince, J. (2000). Current methods in medical image segmentation.

Annual review of biomedical engineering, 2:315–37.

115

BIBLIOGRAPHY

Plaza, S. M., Parag, T., Huang, G. B., Olbris, D. J., Saunders, M. A., and Rivlin, P. K. (2014).

Annotating synapses in large em datasets. arXiv preprint arXiv:1409.1801.

Rall, L. B. (1981). Automatic differentiation: Techniques and applications. Springer Verlag,

Berlin.

Rees, C. L., Moradi, K., and Ascoli, G. A. (2017). Weighing the evidence in peters’ rule: Does

neuronal morphology predict connectivity? Trends Neurosci, 40(2):63–71.

Revel, J. P. and Karnovsky, M. J. (1967). Hexagonal array of subunits in intercellular junctions

of the mouse heart and liver. J Cell Biol, 33(3):C7–C12.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approxi-

mate inference in deep generative models. In ICML.

Robertson, J. D. (1953). Ultrastructure of two invertebrate synapses. Proceedings of the Society

for Experimental Biology and Medicine, 82(2):219–223.

Robertson, J. D. (1963). The occurrence of a subunit pattern in the unit membranes of club

endings in mauthner cell synapses in goldfish brains. The Journal of Cell Biology, 19(1):201–

221.

Rolnick, D., Meirovitch, Y., Parag, T., Pfister, H., Jain, V., Lichtman, J. W., Boyden, E. S.,

and Shavit, N. (2017). Morphological error detection in 3d segmentations. arXiv preprint

arXiv:1705.10882.

Roncal, W. G., Pekala, M., Kaynig-Fittkau, V., Kleissas, D. M., Vogelstein, J. T., Pfister, H.,

Burns, R., Vogelstein, R. J., Chevillet, M. A., and Hager, G. D. (2015). Vesicle: Volumetric

evaluation of synaptic interfaces using computer vision at large scale. In Xie, X., Jones, M. W.,

and Tam, G. K. L., editors, Proceedings of the British Machine Vision Conference (BMVC),

pages 81.1–81.13. BMVA Press.

Ronneberger, O., P.Fischer, and Brox, T. (2015). U-net: Convolutional networks for biomed-

ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 9351 of LNCS, pages 234–241. Springer. (available on arXiv:1505.04597

[cs.CV]).

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-

propagating errors. nature, 323(6088):533.

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical

reconstruction microscopy (storm). Nature Methods, 3:793.

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). Catmaid: collaborative

annotation toolkit for massive amounts of image data. Bioinformatics, 25(15):1984–6.

Saalfeld, S., Fetter, R., Cardona, A., and Tomancak, P. (2012). Elastic volume reconstruction

from series of ultra-thin microscopy sections. Nature methods, 9(7):717–720.

116

BIBLIOGRAPHY

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal

of Research and Development, 3(3):210–229.

Santuy, A., Rodríguez, J.-R., DeFelipe, J., and Merchán-Pérez, A. (2018). Study of the size

and shape of synapses in the juvenile rat somatosensory cortex with 3d electron microscopy.

eNeuro, 5(1).

Schikorski, T. and Stevens, C. F. (1997). Quantitative ultrastructural analysis of hippocampal

excitatory synapses. Journal of Neuroscience, 17(15):5858–5867.

Schmidt, H., Gour, A., Straehle, J., Boergens, K. M., Brecht, M., and Helmstaedter, M. (2017).

Axonal synapse sorting in medial entorhinal cortex. Nature, 549(7673):469–475.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014). Overfeat:

Integrated recognition, localization and detection using convolutional networks. International

Conference on Learning Representations (ICLR).

Seung, H. S. (2009). Reading the book of memory: sparse sampling versus dense mapping of

connectomes. Neuron, 62(1):17–29.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556.

Sommer, C., Straehle, C., Kothe, U., and Hamprecht, F. A. (2011). Ilastik: Interactive learning

and segmentation toolkit. 2011 8th Ieee International Symposium on Biomedical Imaging:

From Nano to Macro, pages 230–233.

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly nonrandom

features of synaptic connectivity in local cortical circuits. PLOS Biology, 3(3).

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: A structural description

of the human brain. PLOS Computational Biology, 1(4).

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity:

The all convolutional net. arXiv preprint arXiv:1412.6806.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learning Re-

search, 15:1929–1958.

Staffler, B., Berning, M., Boergens, K. M., Gour, A., Smagt, P. v. d., and Helmstaedter, M.

(2017a). Synem, automated synapse detection for connectomics. eLife, 6:e26414.

Staffler, B., Berning, M., Boergens, K. M., Gour, A., van der Smagt, P., and Helmstaedter, M.

(2017b). Synem: Automated synapse detection for connectomics. bioRxiv.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke,

V., and Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1–9.

117

BIBLIOGRAPHY

Takemura, S. Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K., Katz, W. T.,

Olbris, D. J., Plaza, S. M., Winston, P., Zhao, T., Horne, J. A., Fetter, R. D., Takemura, S.,

Blazek, K., Chang, L. A., Ogundeyi, O., Saunders, M. A., Shapiro, V., Sigmund, C., Rubin,

G. M., Scheffer, L. K., Meinertzhagen, I. A., and Chklovskii, D. B. (2013). A visual motion

detection circuit suggested by drosophila connectomics. Nature, 500(7461):175–81.

Turaga, S. C., Briggman, K. L., Helmstaedter, M., Denk, W., and Seung, H. S. (2009). Maximin

affinity learning of image segmentation. In NIPS.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., Denk, W., and

Seung, H. S. (2010). Convolutional networks can learn to generate affinity graphs for image

segmentation. Neural computation, 22(2):511–538.

Unnikrishnan, R., Pantofaru, C., and Hebert, M. (2007). Toward objective evaluation of image

segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(6):929–944.

Vizi, E. S. (2000). Role of high-affinity receptors and membrane transporters in nonsynaptic

communication and drug action in the central nervous system. Pharmacol Rev, 52(1):63–89.

Wanner, A., Kirschmann, M., and Genoud, C. (2015). Challenges of microtome-based serial

block-face scanning electron microscopy in neuroscience. Journal of microscopy, 259(2):137–

142.

White, E. L. and Peters, A. (1993). Cortical modules in the posteromedial barrel subfield (sml) of

the mouse. Journal of Comparative Neurology, 334(1):86–96.

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The structure of the nervous

system of the nematode caenorhabditis elegans: the mind of a worm. Phil. Trans. R. Soc. Lond,

314:1–340.

Whitlock, J. R., Heynen, A. J., Shuler, M. G., and Bear, M. F. (2006). Learning induces long-term

potentiation in the hippocampus. Science, 313(5790):1093–1097.

Wolf, S., Schott, L., and Köthe and Fred A. Hamprecht, U. (2017). Learned watershed: End-to-

end learning of seeded segmentation. 2017 IEEE International Conference on Computer Vision

(ICCV), pages 2030–2038.

y Cajal, S. R. (1888). Estructura de los centros nerviosos de las aves. Jiménez y Molina.

Yoo, I., Hildebrand, D. G. C., Tobin, W. F., Lee, W.-C. A., and Jeong, W.-K. (2017). ssemnet:

Serial-section electron microscopy image registration using a spatial transformer network with

learned features. In DLMIA/ML-CDS@MICCAI.

Zlateski, A., Lee, K., and Seung, H. S. (2016). Znn – a fast and scalable algorithm for training 3d

convolutional networks on multi-core and many-core shared memory machines. In 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages 801–811.

118

BIBLIOGRAPHY

Zung, J., Tartavull, I., Lee, K., and Seung, H. S. (2017). An error detection and correction

framework for connectomics. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,

R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing

Systems 30, pages 6821–6832. Curran Associates, Inc.

119

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Neurons and Neuronal Networks
	The Connectomics Reconstruction Challenge
	Insights from Structural Data
	Research Questions and Contributions

	Background
	Structural Neurobiology and Connectomics
	Introduction to Neural Circuits
	Volume Electron Microscopy
	The Connectome

	Computer Vision for Connectomics
	Digital Images
	Image Transformations
	Image Segmentation

	Machine Learning
	Supervised Learning
	Decision Trees
	Ensemble Methods and Boosting
	Artificial Neural Networks and Deep Learning
	Convolutional Neural Networks
	Performance Evaluation Metrics

	Automated Synapse Detection for EM-based Connectomics
	Introduction
	Related Work
	SynEM: Synapse Detection by Interface Classification
	Interface Definition and Feature Representation
	Detailed Feature Definition
	Classifier Training
	Connectome Error Estimation

	Experiments
	SBEM Dataset and Label Data Generation
	Synapse Detection Performance Evaluation
	Biological Plausibility
	ATUM Dataset
	Application to Connectomes

	Discussion

	Deep Learning for Semantic Segmentation in Connectomics
	Introduction
	Related Work
	Interface Classification with Learned Texture Filters
	Feature Learning for SynEM
	Experiments
	Discussion

	Cell Segmentation in EM Data
	Network Architectures
	Network Training
	Volume Segmentation Generation
	Performance Evaluation Metric
	Experiments
	Discussion

	Conclusion

	Application to Circuit Reconstruction
	Introduction and Related Work
	Methods
	Results
	Discussion

	Conclusion and Outlook
	Summary
	Future Directions
	Conclusion

	Glossary
	List of Figures
	List of Tables
	Bibliography

