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Abstract

D ense visual mapping and tracking is a fundamental problem in computer vision and
robotics. Many existing algorithms that explore the direct image methods and the

low-level features, while less investigated is how to infer and aggregate high-level under-
standings. This thesis aims to bridge this gap for RGB-D vision from several perspectives,
including dense 3D reconstruction, visual simultaneous localization and mapping (SLAM)
and machine learning. Our focuses hence are i) algorithms that extract high-level abstracts
and semantics from RGB-D data; and ii) methods that utilize such information to optimize
dense mapping, improve motion estimation and obtain meaningful scene representations.

One major contribution is using plane priors for mapping and tracking. Planar surfaces
are common features of indoor scenes, which often encodes semantics, e.g., walls, floors
and windows. This thesis developed methods to detect planar surfaces from different data
source. Using plane priors, we introduced algorithms to reduce redundancy in dense indoor
scanning and obtain compact reconstruction without losing geometrical and visual informa-
tion. Further, we proposed a full real-time RGB-D SLAM algorithm, known as CPA SLAM,
which models the indoor scenes with global planar maps, estimates camera motion with
a mixture of keyframe-based and model-based tracking method and optimizes the global
consistency using the planar maps.

Beyond plane priors, we contributed several algorithms to extract semantics from RGB-D
vision using deep convolutional neural networks (CNNs). Firstly we introduced FuseNet,
a novel network architecture that is shown to be efficient in learning features from single-
view RGB-D images. Further we proposed algorithms to regularize CNNs with multi-view
constraints based on geometry from RGB-D sequences and showed the better consistent
semantic mapping can be obtained. Another contribution is the introduction of discrete
wavelet transform (DWT) into encoder-decoder CNNs. Using DWT and inverse DWT to
perform unpooling and develop pyramids to obtain global context, we improved the level
of details in dense semantic segmentation.

Our last contribution is a semantic annotation algorithm with a close-loop labeling scheme.
A segmentation-based free-form mesh labeling with the human-aided scene completion is
proposed to produce consistent 3D labeled meshes and 2D annotated videos. Additionally,
we developed algorithms to obtain instance segmentation for 3D meshes by learning and
fusing 2D segmentation from annotated data. This close-loop labeling scheme is shown
beneficial for large-scale ground truth generation.
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PART I
Introduction and Preliminaries

1



Nobody ever figures out what life is all
about, and it doesn’t matter. Explore the
world. Nearly everything is really
interesting if you go into it deeply enough.

– Richard P. Feynman



CHAPTER 1
Introduction

A pproximately half a century ago, the problem - “let computer describe what it sees”
started to intrigue computer scientists, machine learning experts, and mathematicians.

Throughout the years of efforts, researchers have been pushing the limits of machine vision
to approximate the human visual system. However, many tasks that are natural and easy
for human reception, such as parsing visual contents up to any level of details, identifying
foreign stuffs as homogeneous objects, relating alien matters to familiar concepts, recogniz-
ing correspondences under extreme changes, still present significant challenges for machine
vision.

Within the big question and towards the application end where machine perception and
understandings are fundamental, consider the scenarios where an autonomous device need
to navigate around the environment and interact with its surroundings. Three problems are
confronted: how to map the environment, how to localize the device onto the map, and
what decisions to make. With decades of research, people develop solutions by modeling
the physical mechanics of the scene. More recent research start to explore the direction that
integrates abstract-level machine reasoning and exploits semantic visual understandings to
assist mapping, tracking and ultimately decision making. This direction where artificial
intelligence is employed to tackle the visual navigation and reconstruction is a closer ap-
proximation to how humans navigate and interact with the world.

1.1 Motivation and Scope

Naturally for humans, we use semantic concepts and understandings in almost every aspect
of our behavior. When we navigate and interact with the physical world, our perception and
reasoning is rather abstract than primitive. For humans, we often think of the world as a
composition of objects. Regardless how many parts an object can be broken into, every part
has a meaning. We hardly describe the world as a set of points, patterns or other low-level
primitives. The abstract understanding is also key to our decision making. Therefore, to
build a meaningful representation of the real world such that both machines and humans

3



1.2. Background and Related Works

can understand and interact with, the semantic knowledge is a crucial key.

In computer vision and robotics, visual mapping and tracking has a long history of develop-
ment, where many solutions have been developed for different types of sensors. In recent
years, the RGB-D cameras are introduced to the computer science and robotic community,
which measure the appearance and the geometry simultaneously in real-time and produce
synchronized color and depth videos. The increasing availability of the commodity RGB-D
cameras inspires many novel solutions to track the camera motion, to reconstruct the indoor
environment and to interact with the physical world.

Another revolutionary breakthrough in the computer vision and machine learning field,
comes from the rapid development of the deep learning algorithms with big data. Shown
in abundant works, the deep neural network provides a powerful model that is capable to
learn various sophisticated tasks, from classification, regression, to generative model predic-
tions. In particular for image processing, algorithms developed upon the deep convolutional
neural networks (CNNs) outperform many traditional model-based algorithms. For the task
of visual semantic understanding, the CNN-based methods hold the state-of-the-art perfor-
mances for almost every benchmark.

In this thesis, we investigate algorithms for semantic mapping and tracking based on the
RGB-D vision. Our objective is to bridge the gap between the traditional dense mapping and
tracking algorithms that rely on direct image methods and low-level features, to the emerg-
ing deep learning techniques that infer and aggregate high-level semantic understandings.
Towards this goal, we focus on i) algorithms to obtain high-level abstracts and semantic
understandings from RGB-D data and ii) methods to integrate such information to assist
dense mapping, improve motion estimation and produce meaningful scene representations.

1.2 Background and Related Works

In this section, we provide an overview of the related works. Three research topics are cov-
ered. Firstly, we discuss the dense mapping techniques, with a focus on large-scale dense
indoor reconstruction. Secondly, we overview the visual mapping and tracking algorithms,
with a focus on the algorithms developed for RGB-D vision. Last, we consider the deep
learning methods for visual understandings, with a focus on the convolutional neural net-
works for semantic segmentation.

1.2.1 Dense Large-scale Scene Reconstruction

Dense 3D reconstruction is a classical research topic in computer vision and graphics. With
years of development, many algorithms have been proposed to tackle the different input
data, the diverse output format and the scale of reconstruction. Consider RGB-D cameras
capture the dense geometry in real time, here we are interested in methods suitable for large-
scale scene reconstruction that are capable of processing video sequences and are robust to
the noise from data acquisition and errors in pose estimation.
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1. Introduction

Volumetric Approaches Particularly for RGB-D mapping, the volumetric representation
with signed distance function (SDF) is a commonly used method. Developed by Curless
and Levoy (1996), this method integrates multi-view depth measurements into a 3D volume,
where each voxel stores its signed distance to the surface. As a result, the 3D volume
implicitly describes the 3D shapes with the level sets, and encodes the actual surface by
the zero-level iso-surface. To extract the surface into meshes, the marching cubes algorithm
(Lorensen and Cline 1987) can be applied. The volumetric mapping has a high demand for
the memory usage, which is a critical bottleneck for the large-scale indoor mapping on the
GPUs. To address this problem, Steinbruecker et al. (2013) develop an multi-resolution
mapping solution using the octree. Niessner et al. (2013) develop an efficient volume
compress based on the hashing technique.

Mesh from Dense Point Clouds Many RGB-D mapping algorithms reconstruct the indoor
scenes into dense point cloud. Since points do not have volume, and point clouds cannot in-
fer occlusions or connectivity, the mesh reconstruction techniques are often applied to better
describe the underlying surfaces. Algorithms such as, the Delaunay triangulation (Domiter
and Zalik 2008; Fortune 1997), the ball-pivoting (Bernardini et al. 1999), and the greed pro-
jection triangulation (Gopi and Krishnan 2002; Marton et al. 2009) faithfully reconstruct
the geometry with different strategies to connect neighboring points. Due to the missing
surface measurements, these algorithms typically contain holes. When the watertight re-
construction is desired, the Poisson surface reconstruction algorithm (Kazhdan et al. 2006;
Kazhdan and Hoppe 2013) provides good approximations, which also de-noises the input
point clouds.

Semantic Mapping In the attempt to produce semantic maps, Hermans et al. (2014)
propose to train a random forest classifier to predict semantic RGB-D segmentation. The
individual frame segmentations are aggregated into a 3D volume to be smoothed by a fully
connected CRF. A consistent mapping is obtained with Bayesian fusion. Similarly, Stückler
et al. (2015) proposed a probabilistic fusion of the semantic segmentations from individual
RGB-D images from a random forest and integrate the predictions into multi-resolution
voxel maps. Armeni et al. (2016) proposed a hierarchical parsing method for large-scale 3D
point clouds of indoor environments. They first separate point clouds into disjoint spaces,
i.e., single rooms, and further cluster points at the object level with the help of handcrafted
features. Another closely related technique is developed by Häne et al. (2017), where class-
specified semantic priors are used to optimize semantic outdoor reconstruction from noisy
input.

1.2.2 Simultaneous Mapping and Tracking

In computer vision and robotics, a closely related research to infer 3D geometry and cam-
era motion from a sequence of 2D images is the technique of simultaneous localization and
mapping (SLAM), also known as structure from motion (SfM). SLAM is a core technique for
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robotics, which also have many applications in reconstruction, augmented/virtual reality.
The essential problem SLAM attempts to solve is, given an moving agent equipped with
sensors to measure an unknown environment, build a map of the scene from the sensor
data and localize the agent onto the map at the same time. The mapping and localization is
intertwined. To localize, a map is required, and to update the map, localization is needed.
Many sensors that measures the environments be used in a SLAM system, e.g., radar, lidar,
and cameras. In this section, we limit the discussions to camera-based visual SLAM. There
are three subproblems within visual SLAM: camera tracking, map update and global opti-
mization. Following we first review visual SLAM algorithms in general, then give a detailed
discussion on RGB-D SLAM, and finally review dense mapping techniques.

1.2.2.1 Visual SLAM in General

In literature, many different cameras have be used to develop visual SLAM algorithms,
including monocular, stereo and RGB-D. Independent of the cameras being used, following
we classify visual SLAM algorithms with respect to how tracking is formulated.

Frame-based, Keyframe-based and Model-based Tracking Depending on how the indi-
vidual frames are tracked, SLAM algorithms can be classified into: frame-to-frame track-
ing, frame-to-keyframe tracking, and frame-to-model tracking. The frame-to-frame tracking
methods estimate the current camera motion with respect to the previous frame. This meth-
ods accumulate errors from all previous frames, which is the problem known as tracking
drift. To reduce the problem, an better alternative is to employ the frame-to-keyframe track-
ing. In this scenario, keyframes are occasionally produced along the sequential tracking.
The motion of the current frame is estimated with respect to the last keyframe instead of
the last frame. Since every frame is tracked independently towards a keyframe, drifts are
only accumulated between keyframes and not for the regular frames. The third option is the
frame-to-model tracking, where the current frame is compared to the global model recon-
structed given existing measurements. Given an accurate map, the frame-to-model tracking
performs well, because every frame is tracked independently towards the model without
accumulating drift. However, it is often expensive to construct an accurate model. Addi-
tionally, with tracking and mapping intertwined in SLAM algorithms, the tracking errors
degrades the mapping performance and vice versa. Consequently, frame-to-model tracking
is sensitive to small intermediate error, which can be magnified by the tracking-mapping
feedback loop.

Direct versus Indirect One aspect distinguishes the different SLAM algorithms is the di-
rect methods versus the indirect methods. With indirect methods, feature points and feature
descriptors are used to establish correspondences for tracking. For example, the ORB SLAM
algorithm (Mur-Artal et al. 2015) is an indirect method based on the ORB features (Rublee
et al. 2011). On the contrast, the direct SLAM methods formulate camera tracking into
image alignment with the raw data. Direct methods consider images as continuous 2D do-
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main, where the neighborhood information provides important regularization, in particular
for monocular and stereo vision to estimate geometry. Some classic direct SLAM algorithms
include DTAM (Newcombe et al. 2011b), LSD SLAM (Engel et al. 2014), DSO SLAM (Engel
et al. 2017), KinectFusion (Newcombe et al. 2011a) and DVO SLAM (Kerl et al. 2013a).

Sparse versus Dense Another distinction among different SLAM algorithms is character-
ized by the sparse methods versus the dense methods. The sparse SLAM algorithms use
limited images points to perform tracking and consequently the reconstructed maps only
represent sparse geometry. These sparse points are either robust feature points as in ORB
SLAM (Mur-Artal et al. 2015) or sparsely sampled image pixels as in DSO SLAM (Engel
et al. 2017). Sparse SLAM methods are commonly applied for monocular and stereo vi-
sion, where dense depth estimation is difficult and expensive. Dense methods attempt to
recover the full 3D scene geometry for every 2D pixel. To this end, Newcombe et al. (2011b)
proposed the DTAM method, where dense depth estimation is achieved based on the small
baseline from consecutive monocular images. Engel et al. (2014) developed the LSD SLAM,
where camera tracking and inverse depth prediction are jointly formulated within a direct
tracking framework. Consequently LSD SLAM predicts semi-dense depth for monocular
sequences. With the RGB-D cameras, geometry measurements are directly available, which
motivates the development of many model-based SLAM methods (Dai et al. 2017b; New-
combe et al. 2011a; Whelan et al. 2016; Whelan et al. 2015b). Following we review these
dense RGB-D SLAM methods in more details.

1.2.2.2 Canonical RGB-D SLAM Methods

Most existing RGB-D SLAM algorithms are direct dense methods with either keyframe-
based tracking or predictive model-based tracking. One key difference between RGB-D
SLAM in comparison to the monocular and the stereo SLAM is the available dense depth
measurements. Despite the fact that depth images contain missing measurements due to
sensor limitations, depth estimation is no longer needed and consequently searching for
correspondences is easier. However, new challenges are introduced to RGB-D SLAM. In
addition to sensor noise and limited depth range, efficient mapping algorithms are required
to integrate dense depth images. Following, we review RGB-D SLAM algorithms given
different map representations.

Volumetric Map Representation KinectFusion developed by Newcombe et al. (2011a) is
considered to be the first RGB-D SLAM algorithm, which successfully demonstrates real-
time dense tracking and mapping from a single moving depth camera. KinectFusion in-
tegrates depth images into a volumetric representation using the signed distance function
(Curless and Levoy 1996). A predictive frame-to-model tracking is developed, where the
ICP algorithm (Besl and McKay 1992) is used to align the current depth to the de-noised
depth obtained from raycasting the SDF volume. KinectFusion is further studied and ex-
tended by many researchers. One of these extensions, known as Kintinuous by Whelan
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et al. (2012) develop the rolling volume technique to map unlimited space with KinectFu-
sion. Kintinuous also uses a volumetric color fusion to obtain colored mapping. Whelan
et al. (2015b) combines the visual odometry algorithm developed by Steinbruecker et al.
(2011) with ICP to improve the tracking accuracy. They further apply the iSAM graph opti-
mization (Kaess et al. 2008) to correct tracking errors and use spatial deformation technique
(Sumner et al. 2007) to optimize mapping. Another extension is proposed by Bylow et al.
(2013), where camera tracking is formulated directly on SDF for efficient computation. In
KinectFusion and its extensions, errors in fused volumetric mapping can be magnified with
a intertwined tracking and degrade subsequent SLAM performance. To address this issue,
Dai et al. (2017b) propose the BundleFusion algorithm, where the voxel hashing technique
(Niessner et al. 2013) is employed for efficient volumetric integration and de-integration.

Surfels Maps One limitation of KinectFusion alike RGB-D SLAM algorithms is the ex-
tensive memory consumption on GPU to store the volumetric data. An alternative map
representation is surfels (Pfister et al. 2000), which can be considered as extended 3D points
with attributes as location, orientation, dimension and color. Surfel maps was first applied
in RGB-D SLAM algorithms by Henry et al. (2012) to map large-scale environment with
a keyframe-based SLAM. For robust tracking, sparse visual features are combined with ICP.
With a keyframe-based tracking, Henry et al. (2012) also perform loop closure detection
and pose graph optimization to achieve global consistency. In this work, surfels are used as
a representation for 3D reconstruction. To use surfels for online tracking, Niessner et al.
(2013) develop a multi-resolution surfel registration algorithm with a probabilistic formu-
lation. An alternative tracking with surfels is developed in Whelan et al. (2016), which
predicts model depth and color to perform image alignment by rendering surfels.

Graph-based Representation: Decouple Tracking from Dense Mapping Most aforemen-
tioned SLAM algorithms attempt to perform tracking and dense mapping simultaneously,
so as to perform predictive tracking. To obtain real-time tracking, GPU is used to parallel
the intensive computations. Kerl et al. (2013a) proposed the DVO SLAM to decouple dense
mapping from tracking. With a keyframe-based tracking, DVO SLAM represents maps as
a pose graph consisting of all keyframes, which achieves real-time motion estimation and
global optimization in real-time on a single threaded CPU. The DVO SLAM also combines
the visual odometry method (Steinbruecker et al. 2011) with the direct depth alignment
into a robust least square minimization and yield robust tracking. There are two major ad-
vantages to decouple dense mapping from tracking. First, it is capable of real-time CPU
processing, and hence applicable to resource limited platform, e.g., quadcoptors. Second,
with a light-weight graph-based map representation, it is easier to correct tracking and map-
ping errors with a well-defined graph optimization framework (Grisetti et al. 2010). Note
that as long as the original RGB-D sequence is available, it is always possible to obtain dense
mapping at a post-processing step, for example using volumetric reconstruction algorithms
(Curless and Levoy 1996; Steinbruecker et al. 2013). Fully optimized camera trajectory
also yields better consistent dense mapping.
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1.2.2.3 Integrating Geometric Primitives and Semantics

Geometric Primitives Several attempts have been made to integrate primitives into RGB-
D SLAM. Dou et al. (2012) propose a SLAM method to combine planes and points of
interests in frame-to-frame matching and use bundle adjustment (Triggs et al. 1999) to op-
timize camera poses, plane estimation and feature points location. For plane detection, a
Hough-voting scheme is developed. The planes between frames are associated by RANSAC
and the plane correspondences are tracked throughout the sequence. Since there may exist
several tracks of the same plane entity, the planes are merged according to distance criteria.
Taguchi et al. (2013) also exploit interest points and planes to formulate a RGB-D SLAM

algorithm. They study various combinations of points and planes and use RANSAC to de-
termine correspondences and estimates camera poses. Trevor et al. (2012) use RANSAC to
find the dominant planes from dense RGB-D mapping and 2D laser measurements. SLAM
is performed with an extended Kalman filter (EKF) framework. Salas-Moreno et al. (2014)
integrate plane detection into surfel maps (Keller et al. 2013). By identifying planar surfels,
they compute geometry alignment error directly as point to plane distance.

Semantic Templates Towards semantic RGB-D SLAM, Salas-Moreno et al. (2013) develop
the SLAM++ algorithm to track and map at the object instance level. Given a predefined
object template, the SLAM++ algorithm recognizes the same objects in the scene and fur-
ther establishes constraints the between multiple observations of the same objects. These
constraints together with the matched object templates are used in the global optimization
to reduce the tracking error and to obtained the consistent reconstruction using the known
templates. Such method is limited to indoor scenes with many identical objects. In addition,
this method requires a predefined template database.

1.2.3 Convolutional Neural Networks for Semantic Scene Understanding

The topic of semantic scene understanding extends many dimensions. Here we limit the
discussions to the semantic image segmentation, instance image segmentation and 3D scene
parsing. Semantic image segmentation is the problem to predict a semantic label for every
image pixel. It can be considered as the dense classification at the pixel level. Instance
segmentation, takes on step further and predicts for every pixel the semantic meaning as
well as the object index. Instance segmentation therefore can be considered as a combination
of object detection and semantic segmentation. The problem of 3D scene parsing is an
extension of the 2D image segmentation to 3D modeling. As opposed to images, the forms
of 3D models are very diverse, ranging from unorganized point clouds, to surface manifolds
embedded into meshes, and to structured volumetric representations.

In recent years, deep neural networks have shown superior performances for many learning
tasks. With respect to learning from images, methods based on the state-of-the-art deep
CNNs (K. He et al. 2016a; Krizhevsky et al. 2012; Simonyan and Zisserman 2015;
Szegedy et al. 2015) continue to outperform the canonical model-based algorithms and
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hand-crafted features. Following, we overview CNN methods for scene understanding.

1.2.3.1 Semantic Instance Segmentation

Learning Semantic Features The early studies on CNNs have a focus on image classifica-
tion. This is because CNNs increase the receptive field by drastically reducing the spatial
resolution as the layers get deeper. While it is easy to downsample the input by pooling or
strided convolutions, it is not straight-forward to learn the upsampling and train CNNs to
for dense pixelwise predictions. One early attempt is proposed by Couprie et al. (2013),
where a three-stage CNN is trained on the multi-scale Laplacian image pyramid to produce
feature maps at different resolution. To achieve the final predictions, the features at all
scale are aggregated according to the superpixel image segmentation. To process RGB-D
images, the depth and color images are directly stacked into a four-channel input. Gupta
et al. (2014) propose a differe solution based on the R-CNN object detection network (Gir-
shick et al. 2014). The R-CNN extracts features from object region proposals, and further
applies the linear support vector machines (SVM) for classification. To obtain the seman-
tic segmentation, the object detection is further processed by the foreground-background
superpixel-based segmentation. Gupta et al. (2014) extends the R-CNN method on RGB-D
input. To this end, they propose to convert the depth image into a 3-channel image-alike
HHA embedding, which encodes the horizontal disparity, the height above the ground, and
the angle with the gravity.

End-to-End Semantic Segmentation An pioneering work in end-to-end semantic segmen-
tation with CNNs is proposed by Long et al. (2015) with fully convolutional networks
(FCNs). Using the transposed convolution introduced by M. D. Zeiler et al. (2010) to learn
upsampling, FCNs produce a higher-resolution prediction from the coarse feature maps of
1/32 input resolution. Inspired by FCNs and the auto-encoder CNNs (Bengio et al. 2007),
the encoder-decoder CNNs are proposed concurrently by Badrinarayanan et al. (2017) and
Noh et al. (2015) to achieve the prediction of the same resolution as the input. These

works design the encoder based on the VGGNet (Simonyan and Zisserman 2015) for fea-
ture extraction, and mirror the encoder in decoder for upsampling. To reverse the pooling
operation, the memorized unpooling proposed in M. D. Zeiler et al. (2011) are used. With
the success of the very deep CNNs (K. He et al. 2016a; K. He et al. 2016b), keeping the
decoder as the exact mirror of the encoder unnecessarily complicates the network design. To
solve this problem, several CNNs architectures are developed. Laina et al. (2016) develop
the up-projection layers for upsampling which effectively implements the upconvolution
proposed by Dosovitskiy et al. (2015b). G. Lin et al. (2017) propose a multi-resolution
refinement. Pohlen et al. (2017) utilize two CNN stream, where a full-resolution feature
map is always maintained by one stream.

There also exist many solutions besides encoder-decoder CNNs. Eigen and Fergus (2015)
concatenate multi-resolution CNNs to progressively refines the output resolution. L.-C.
Chen et al. (2018); L.-C. Chen et al. (2015) adopt the dilated convolution to output a
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median-resolution prediction, and obtain a full-resolution output by post-processing with
CRFs. G. Lin et al. (2016a); G. Lin et al. (2016b) formulate CNNs to learn the unary and
pairwise potentials of a CRF model with piecewise approximation, which are used in the
post-processing inference stage to obtain full-resolution predictions.

Instance Segmentations Beyond the semantic segmentation, impressive progress has been
made in instance understandings with CNNs. One state-of-the-art CNN methods is the
Mask RCNN algorithm developed by K. He et al. (2017). Mask RCNN is heavily built upon
the Faster RCNN by Ren et al. (2017), which performs fast object detection. More specifi-
cally, the Faster RCNN introduces a region proposal network to propose object candidates
in the form of bounding boxes. The method then extracts features from each bounding
box for object classification and precise bounding box regression. Mask RCNN adopts this
procedure, and further add a binary mask prediction for each bounding box to perform
segmentation. To decouple the mask prediction from the category prediction, masks are
generated for every class without competing, while the final prediction is decided by the
object classification. Since the core to Mask RCNN is object detection, the instance informa-
tion are naturally obtained. One limitation of the Mask RCNN is that not every pixels are
assigned with predictions.

1.2.3.2 Semantic Scene Parsing

In contrast to the abundant studies of CNNs for image processing, it is less explored to
apply CNNs for 3D data due the lack of structures in most 3D representations. The early
works apply CNNs on volumetric data to perform object classification (Wu et al. 2015). The
critical issue of the volumetric CNNs is the high memory consumption which limits the
resolution. To reduce the problem, Riegler et al. (2016) develop the OctNet, which enables
CNNs on a sparse octree to perform semantic segmentation on voxels. Recently Song et al.
(2017) proposed a CNN method to jointly classify each voxel and predict the occupancy,
which consequently produce a semantic volumetric mapping given a single view depth
input. Besides the volumetric representation, Qi et al. (2017a); Qi et al. (2017b) develop
the PointNet and PointNet++ to learn directly from point clouds. The key to these works
is to adopt the K-nearest neighbor to structure the data for convolutional layers, and apply
pooling to aggregate information.

1.2.3.3 Large-scale Semantic RGB-D Dataset

Large-scale semantic ground truth play a very important role in training CNNs and for the
development of any data-hungry algorithms. To facilitate semantic understandings from
RGB-D vision, many researchers dedicate great efforts to collect large-scale RGB-D dataset
and develop algorithms to generate ground-truth annotations annotate these dataset. Fol-
lowing, we summarize the existing benchmarks.
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Single-view Images NYUv2 developed by Silberman et al. (2012) is one of the early
available RGB-D dataset. It comprises 1,449 RGB-D images from 464 captures of 26 different
scenes types. Based on crowd sourcing using Amazon Machanical Turk (MTurk), dense
pixelwise labeling is obtained. In addition to the annotations, NYUv2 also inpaint the raw
depth images to provide ground-truth depth. Similar to NYUv2, the SUN RGB-D dataset is
introduced by Song et al. (2015), which provide 10,335 images by crow sourcing on MTurk.
SUN RGB-D obtains ground truth using LabelMe-style annotation (Russell et al. 2008),
which draws 2D polygons on images and places 3D bounding boxes on point clouds to label
objects. Consequently, SUN RGB-D provides 146,617 2D polygons and 64,593 3D bounding
boxes in addition to densely annotated images. SUN RGB-D captures many indoor scenes
and also includes data from NYUv2, Berkeley B3DO (Janoch et al. 2011) and SUN3D (Zeisl
et al. 2013). Four RGB-D cameras are used in data acquisition, including Microsoft Kinect
v1 and v2, Asus Xtion Pro and Intel RealSense.

Multi-view Sequence Moving towards RGB-D sequences and dense reconstruction, Hua
et al. (2016) introduce the SceneNN dataset. SceneNN provides 100 optimized mesh re-
construction of indoor scenes, where each mesh is fully annotated at vertex level and subse-
quently projected onto 2D images to obtain fully labeled video sequence. SceneNN obtains
the ground-truth label using the methods proposed in Nguyen et al. (2017), which 3D
meshes are annotated first and 2D image labeling are obtained by projection. To perform
mesh annotation, human interacts with mesh segments obtained from graph segmentation.
To provide ground truth at large scale, ScanNet is introduced by Dai et al. (2017a), which
collects 1513 fully annotated scenes with a total of 2.5 million views. ScanNet uses Bundle-
Fusion (Dai et al. 2017b) to obtain dense reconstruction. Similar to SceneNN, ScanNet labels
meshes from a graph-based segmentation and then projects the 3D annotations to achieve
fully labeled videos.

Matterport Recently, the Matterport system are developed and used to collect large-scale
indoor spaces. The Matterport consists of three RGB cameras and three depth cameras. In
one capture, it rotates and stops six times to provide 360° 1280× 1024 panorama RGB-D
image registered from a total of 18 views. Matterport also provide mesh reconstruction.
Matterport is first used by Armeni et al. (2017), where six indoor areas are collected and
annotated. Also relying on Matterport cameras, Chang et al. (2017) further release the
Matterport3D dataset with 90 building-scale scenes, where the screened Poisson algorithm
(Kazhdan and Hoppe 2013) is used to obtain the mesh reconstruction. For ground-truth
annotation, the large space is broken down into the scale of single rooms and then labeled
with the similar methods used in ScanNet.
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CHAPTER 2
Contributions

T he goal of this thesis is to incorporate semantic understanding into RGB-D mapping
and tracking algorithms. To this end, we have focused on the following two perspec-

tives. First, we have studied algorithms that extract higher-level abstracts and semantic
understandings from RGB-D data. Second, we have explored methods that utilize higher-
level understandings to optimize dense reconstruction, to enhance motion estimation, and
to obtain meaningful map representations.

2.1 Major Constructions

This thesis develops novel algorithms to incorporate semantics into RGB-D mapping and
tracking. The cumulative contents1 comprise five publications and one submission, includ-
ing Ma et al. (2013b), Ma et al. (2016), Hazirbas et al. (2017), Ma et al. (2017), Ma
et al. (2018b) and Ma et al. (2018a) ). Additionally, this thesis also presents supplementary
material2 based on four publications, including Ma et al. (2013c), Ma et al. (2013a), Ma
et al. (2015), and Whelan et al. (2015a). These publications are the joint work with Thomas
Whelan, Raphale Favier, Luat Do, Egor Bondarev, Peter H. N. de With, John McDonald,
Christian Kerl, Jörg Stückler, Daniel Cremers, Caner Hazirbas, Csaba Domokos, Tao Wu,
Julian Straub, Yufan Chen, Rohan Chabra, and Richard A. Newcombe. Eight of these works
are published in highly ranked, peer reviewed conferences or journals. Ma et al. (2018b) is
published in open access e-prints and Ma et al. (2018a) has been submitted to ACM 2018

SIGGRAPH ASIA. Table 2.1 presents an overview of all the publications that contribute to
this thesis. The complete list of our publications is given in the bibliography. Overall, the
contributions of this thesis are summarized into the followings.

1 The cumulative content is a compilation of our publications (manuscripts) with minimal edition to fit the thesis.
2 The supplementary materials are based on our publications to provide additional analysis.
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Table 2.1: Our publications that contribute to this thesis, listed in the chronological order.
The cumulative content (Part II) is a compilation of six publications marked in black. The
supplementary analysis (Part III) are based on the publications marked in gray. A detailed
contribution disclaimer is provided in Appendix.

Plane Segmentation and Decimation of Point Clouds for 3D Environment Reconstruction.
Lingni Ma, Raphale Favier, Luat Do, Egor Bondarev and Peter H. N. de With. In proc. of
IEEE 10th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV,
USA, 2013, pp. 43-49. issn: 2331-9852, doi: 10.1109/CCNC.2013.6488423.

3D Colored Model Generation Based on Multiview Textures and Triangular Mesh. Lingni
Ma, Luat Do, Egor Bondarev and Peter H. N. de With. In proc. of Seventh International
Conference on Distributed Smart Cameras (ICDSC), Palm Springs, 2013, pp. 1-6. isbn:
978-1-4799-2164-5, doi: 10.1109/ICDSC.2013.6778206.

Planar Simplification and Texturing of Dense Point Cloud Maps. Lingni Ma, Thomas
Whelan, Egor Bondarev, Peter H. N. de With and John McDonald. In proc. of European
Conference on Mobile Robots (ECMR), Barcelona, Spain, 2013, pp. 164-171. isbn: 978-1-
4799-0263-7, doi: 10.1109/ECMR.2013.6698837.

Multi-volume Mapping and Tracking for Real-time RGB-D Sensing. Lingni Ma, Egor
Bondarev and Peter H. N. de With. In SPIE Image Processing: Algorithms and Systems XIII,
San Francisco, 2015, vol. 9399, pp. 1-8. doi: 10.1117/12.2083350.
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2. Contributions

2.1.1 Dense Mapping with RGB-D Sequences

As an early work of this thesis, we explored algorithms to obtain photo-realistic dense 3D
reconstructions from multi-view RGB-D data. In “3D Colored Model Generation Based on
Multiview Textures and Triangular Mesh", Ma, Do, Bondarev and de With, in proc. of Sev-
enth International Conference on Distributed Smart Cameras (Ma et al. 2013a), we propose
a novel algorithm to reconstruct high-resolution colored models for triangular meshes re-
constructed from the multi-view RGB-D images. Instead of the direct texture mapping and
texture blending, we propose to use 3D points to process and store color information. To this
end, we develop techniques to perform adaptive 3D surface point upsampling and blend
color using those points to store multi-view texture information. We further develop an
algorithm to generate blended textures for textured model rendering. We demonstrate with
experiments that our algorithms produce visually appealing high-resolution 3D reconstruc-
tion, while being robust to noises from data acquisition.

Another contribution we made is a novel multi-volume RGB-D mapping and tracking al-
gorithm as proposed in “Multi-volume Mapping and Tracking for Real-time RGB-D Sensing",
Ma, Bondarev and de With, in SPIE Image Processing: Algorithms and Systems XIII (Ma
et al. 2015). Inspired by the RGB-D SLAM algorithm KinectFusion Newcombe et al. (2011a)
and its spatial extension Kintinuous Whelan et al. (2012), our multi-volume RGB-D SLAM
algorithm deploys one small volume of high voxel resolution to obtain detailed maps of
near-field objects, while utilizes another large volume of low voxel resolution to increase
the robustness of tracking by including far-field scenes. We show with experiments that
the proposed algorithm produces detailed reconstruction without sacrificing the tracking
performance.

2.1.2 Optimize Tracking and Mapping with Plane Prior

Towards the goal of semantic mapping and tracking, we have explored geometric primitives,
in particular planar surfaces. Planes are dominant features of the man-made environments.
These surfaces often represent certain structural semantics, e.g., walls, floors and ceilings.
With many dense methods, these surfaces of simple geometry are yet over-represented by
millions of points and polygons. In “Plane Segmentation and Decimation of Point Clouds for
3D Environment Reconstruction", Ma, Favier, Do, Bondarev and de With, in proc. of IEEE
10th Consumer Communications and Networking Conference (Ma et al. 2013c), we develop
an efficient plane detection algorithm based on the curvature to segment point cloud maps
into planar and non-planar region. Together with the work of “Planar Simplification and
Texturing of Dense Point Cloud Maps", Ma, Whelan, Bondarev, de With and McDonald, in
proc. of European Conference on Mobile Robots (Ma et al. 2013b), a hybrid mapping algo-
rithm is proposed to reduce the redundancy and achieve a compact reconstruction. More
specifically, we propose a quadtree-based algorithm to first decimate planar surface points
and then triangulate the sparse data. We also develop a texture generation algorithm to
preserve the visual information of the original dense input. Shown with experiments, our
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algorithm removes more than 90% planar points, leading to a triangulation with only 10%
of the amount triangles that is otherwise required by the original dense data. The proposed
decimation preserves the initial geometry and the texture generation method also provides
visually appealing 3D maps. In “Incremental and Batch Planar Simplification of Dense Point
Cloud Maps", Whelan, Ma, Bondarev, de With and McDonald, in Robotics Autonomous
Systems (Whelan et al. 2015a), we extend the proposed method to enable incremental batch
processing for gradually expanding point cloud maps and integrate the algorithm into real-
time RGB-D SLAM system.

Moving beyond mapping, in “CPA-SLAM: Consistent Plane-model Alignment for Direct RGB-
D SLAM", Ma, Kerl, Stückler and Cremers, in proc. of IEEE International Conference on
Robotics and Automation (Ma et al. 2016), we propose a real-time keyframe-based RGB-D
SLAM algorithm that consistently integrates plane priors into tracking and mapping. Our
method represents the 3D scene with a global planar map, which are concurrently extracted
from all the keyframes, and estimated in a global coordinates. We then formulate camera
tracking into a mixture of the direct image alignment towards a keyframe and the model-
based alignment towards the global plane model. We derive an equivalent probabilistic for-
mulation to solve the motion estimation with expectation-maximization (EM). Furthermore,
the planar map representation is used in a global graph optimization, where additional con-
strains are formulated between keyframes without overlapping views once a common plane
is observed. With these additional constrains, we can further reduce the tracking errors and
achieve better mapping consistency. We demonstrate with intensive experiments that our
method obtains the state-of-the-art tracking accuracy on challenging benchmarks.

2.1.3 Learning Semantics from Multi-view RGB-D Data

Going beyond plane priors, this thesis also investigates semantic scene understanding in
a broader perspective. To this end, we exploit the deep learning techniques, especially
the convolutional neural networks (CNNs) for single-view semantic segmentation and for
multi-view semantic mapping. In recent years, CNNs have attained a breakthrough in many
computer vision tasks. However, with the RGB-D data, it is less explored how to incorpo-
rate the depth information into the CNNs learning. To tackle this problem, we propose
a novel CNN architecture, namely FuseNet in “FuseNet: Incorporating Depth into Semantic
Segmentation via Fusion-based CNN Architecture", Hazirbas, Ma, Domokos and Cremers, in
proc. of Asian Conference on Computer Vision (Hazirbas et al. 2017). The designed net-
work consists of two separate branches to filter color and depth images, while constantly
fusing the depth features into the color features as the network goes deeper. To demonstrate
the efficiency of FuseNet, we apply it to an encoder-decoder network and show that our
method achieves competitive results on the SUN RGB-D semantic segmentation benchmark
(Song et al. 2015).

Following FuseNet, we develop it further to learn consistent semantic mapping for multi-
viwe RGB-D sequences with the work “Multi-view Deep Learning for Consistent Semantic
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Mapping with RGB-D Cameras", Ma, Stückler, Kerl and Cremers, in proc. of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (Ma et al. 2017). With the objective
to enforce the multi-view consistency, we regularize the network training using the camera
trajectories obtained by the SLAM algorithm. The principle is to warp network outputs
of multiple viewpoints into a reference view (in correspondence with the keyframe in a
SLAM setting) at different stages, where different approaches can be employed to learn the
invariant features under viewpoint changes. Based on warping, our semi-supervised train-
ing method also alleviates the need for large amounts of annotated data which is typically
expensive to obtain. Complementary to our training approach, we aggregate the predic-
tions of the trained network in keyframes to increase the segmentation accuracy at inference
time. The predictions of neighboring images are fused into the keyframe in a probabilistic
way. Shown in experiments, the proposed end-to-end training achieves state-of-the-art per-
formance on the NYUv2 dataset (Silberman et al. 2012) with single-view segmentation as
well as with multi-view semantic fusion. While the fused keyframe segmentation can be
directly used in robotic perception, our approach also provide a useful building block for
semantic SLAM.

Semantic segmentation with CNNs typically uses a encoder-decoder network architecture to
achieve dense pixel-wise prediction. This task consist of two concurrent goals: classification
with the encoder and localization with the decoders. While the classification is well stud-
ied by many works, the design of decoder to obtain detailed prediction remains challenging.
Motivated by the structural analogy between multi-resolution wavelet analysis and the pool-
ing/unpooling operations of CNNs, we introduce WCNN, a novel method that integrates
the discrete wavelet transform (DWT) into the encoder-decoder CNNs in “Detailed Dense
Inference with Convolutional Neural Networks via Discrete Wavelet Transform", Ma, Stückler, Wu
and Cremers, in In Arxiv preprint: arxiv:1808.01834 [cs.CV], (Ma et al. 2018b). In WCNN,
DWT is performed at encoder to decompose the feature maps into frequency bands when
the spatial resolution is reduced. The high-frequency components are then used jointly with
the corresponding coarse feature maps at the decoder to upscale the resolution with inverse
DWT. Based on DWT, we also developed two wavelet-based pyramids to bridge the encoder
and decoder with global context information. These pyramids, successively reduce the spa-
tial resolution to the finest scale and increase the receptive field to the entire input image
by building a multi-resolution wavelet transform. Based on DWT/iDWT, the pyramids sys-
tematically upscale the global context to the desired resolution. Shown with experiments,
WCNNs improve the fine-resolution prediction accuracy over the baseline CNNs and yield
the state-of-the-art performance for the Cityscape dataset (Cordts et al. 2016).

2.1.4 Towards the Generation of Large-scale Semantic RGB-D Dataset

Large-scale ground truth dataset plays a crucial role in many computer vision and ma-
chine learning algorithm, particularly for data-hungry methods, such as deep learning. To
this end, we propose a unified tool to obtain large-scale high-quality and geometrically
consistent semantic 3D dataset in “Human-in-the-loop Annotation for Large-scale 3D Seman-
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tic Datasets", Ma, Straub, Chen, Whelan, Chabra, Newcombe and Cremers, submitted to
ACM SIGGRAPH ASIA 2018 (Ma et al. 2018a). The proposed annotation presents three ad-
vantages in comparison to the existing algorithms. First, we propose a segmentation-aided
free-form mesh labeling method to ensure detailed and accurate labeling. Together with
a novel tree structure to organize the semantic annotations into hierarchies, our tool nat-
urally encodes the semantic and instance information, as well as the relationship between
different semantic categories. Second, we develop a human-aided geometry completion
technique, which enables human annotators to insert missing surfaces into the mesh recon-
struction. This enhances the labeling consistency when transferring the 3D annotations into
2D images via rendering. With a post-processing to refine the rendered labels with a joint
bilateral filter, our tool produces fully annotated RGB-D videos. Third, we propose a close-
loop annotation scheme. We train instance semantic annotations with deep CNNs based on
existing annotated data, and then aggregate the 2D network predictions into the mesh to
bootstrap annotations of the unlabeled data. To exam the efficiency of the proposed algo-
rithms, we show with experiments the developed algorithm achieve better labeling accuracy
and 2D/3D consistency in comparison to the existing methods. Furthermore, we collect
20 indoor scenes to valid the close-loop scheme, where the proposed algorithm predicts
instance segmentation for a large office areas with high accuracy.

2.2 Thesis Outline

This thesis is structured into four parts.

Part I presents the research problem and provides the supporting theoretical background. In
detail, Chapter 1 defines the research problem and gives an overview of the state-of-the-art
methods on 3D reconstruction, RGB-D SLAM and semantic visual understanding. Chapter 2

gives an overview the selected publications and summarizes the major contributions of
this thesis. Chapter 3 provides the necessary technical background to support this work,
including the fundamentals on mathematics, on RGB-D SLAM and on deep CNNs.

Part II provides the cumulative content as a compilation of six research publications. Start-
ing with the simple geometry primitive, planes, Chapter 4 proposes a 3D reconstruction
algorithm to efficiently decimate, triangulate and texture the dense colored point clouds by
exploiting planar structures (Ma et al. 2013b). Chapter 5 proposes a novel real-time RGB-D
SLAM algorithm to integrate planes into camera tracking, map representation, and global
optimization (Ma et al. 2016). Moving towards semantic understanding, Chapter 6 intro-
duces a novel CNN architecture FuseNet for RGB-D learning, which extracts complemen-
tary features from the depth and the color images with different branches and fuses them
consistently as the network goes deeper (Hazirbas et al. 2017). Based on FuseNet, Chapter 7

further explores solutions to constrain training RGB-D sequences with multi-view consis-
tency and achieves robust semantic segmentation (Ma et al. 2017). Chapter 8 introduces
discrete wavelet transform into encoder-decoder CNNs and improves the details in dense
pixelwise inference, e.g., semantic prediction (Ma et al. 2018b). Last, Chapter 9 proposes
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an annotation algorithm and a close-loop labeling scheme to generate large-scale semantic
ground-truth dataset (Ma et al. 2018a).

Part III presents the supplementary materials to Part II. The content originates from our
research publications that are either early exploration or extension of the work presented
in Part II. Chapter 10 discusses the dense RGB-D mapping algorithms to obtain visually
appealing 3D reconstructions, based on the work of Ma et al. (2013a) and Ma et al.
(2015). Chapter 11 describes the plane detection algorithm proposed in (Ma et al. 2013c),
which Chapter 4 is built upon. This chapter also presents the extension of Chapter 4 into
incrementally expanding point cloud maps based on Whelan et al. (2015a). Chapter 12

discusses an ablation study on network design of Chapter 7 and provides semantic mapping
results.

In Part IV Chapter 13 concludes this thesis and discusses the future research directions.
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CHAPTER 3
Theoretical Background

T his chapter summarizes the mathematical theories that are used throughout the thesis.
In addition, we provide the technical background for RGB-D mapping and tracking.

Last, an overview of the deep convolutional neural networks (CNNs) is presented.

3.1 Mathematical Preliminaries

Notations In this section, we use x for a scalar value, x ∈ Rk and (·)T for a k dimensional
vector, X and [·] for a matrix, and X and {·} for a set. The subscript is used to index data and
the bracket superscripts are used to index iterations or time stamps.

3.1.1 Probability Theory

Consider two random variables x and y, with the probability distribution p(x), and p(y).
The conditional distribution of variable x conditioned on y is p(x | y), the joint distribution
is p(x,y), and the marginal distribution p(x) =

∑
y p(x,y). The Bayesian rule yields

p(x | y) =
p(y | x)p(x)

p(y)
=

p(y | x)p(x)∑
y p(y | x)p(y)

. (3.1)

3.1.1.1 Parameter Estimation

Consider a general statistical model, with k dimensional parameters θ ∈ Rk and a set of
observations X = {x1, x2, · · · , xn}. The maximum likelihood (ML) estimation is defined by

θML = arg max
θ

p(X | θ) . (3.2)

The maximum a posterior (MAP) Estimation is defined by

θMAP = arg max
θ

p(θ | X) = arg max
θ

p(X | θ)p(θ)

p(X)
= arg max

θ

p(X | θ)p(θ) . (3.3)
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The function p(X | θ) is referred as the likelihood function, p(θ | X) as the posterior dis-
tribution and p(θ) as the prior distribution. Note that with a uniformly distributed prior,
MAP estimation is reduced to ML estimation. Unless otherwise stated, the observation X is
assumed to be independent and identically distributed (i.i.d. condition), hence,

θML = arg max
θ

n∏
i

p(xi | θ) = arg min
θ

n∑
i

− logp(xi | θ) (3.4)

θMAP = arg max
θ

n∏
i

p(xi | θ)p(θ) = arg min
θ

n∑
i

− logp(xi | θ) − logp(θ) . (3.5)

3.1.1.2 Multivariant Probability Distributions

Gaussian The k-dimensional Gaussian distribution takes the form

p(x | µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
, (3.6)

where µ ∈ Rk is the mean vector, and Σ ∈ Rk×k is the covariance matrix. The value
(x−µ)TΣ−1(x−µ) is the squared Mahalanobis distance. We now derive the ML estimation
for the parameters. First note the following partial derivatives (the equality holds true given
covariance matrix is positive semi-definite),

∂

∂x

(
xTΣ−1x

)
= 2Σ−1x , (3.7)

∂

∂Σ

(
xTΣ−1x

)
= −Σ−1xxTΣ−1 , (3.8)

∂

∂Σ
|Σ| = |Σ|Σ−1 . (3.9)

Using Equation (3.4), the ML estimation for Gaussian hence is,

∂ logp(x | µ,Σ)
∂µ

= 0 =⇒
n∑
i

Σ−1(xi − µ) = 0 =⇒ µML =
1

n

n∑
i

xi . (3.10)

∂ logp(x | µ,Σ)
∂Σ

= 0 =⇒
n∑
i

Σ−1
(
(xi − µ)(xi − µ)TΣ−1 − 1

)
= 0

=⇒ ΣML =
1

n

n∑
i

(xi − µ)(xi − µ)T . (3.11)

Student t-Distribution The k-dimensional student t-distribution takes the form

p(x | µ,Σ,ν) =
Γ (ν/2+ k/2)

Γ(ν/2)(πν)k/2|Σ|1/2

(
1+

(x− µ)TΣ−1(x− µ)

ν

)−(ν+k)/2

, (3.12)

where Γ(·) is the Gamma function. The parameter ν is called the degrees of freedom. With
ν = 1, the t-distribution becomes Cauchy distribution, while with limν→∞, t-distribution
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amounts to Gaussian with mean µ and covariance Σ. The t-distribution can be interpreted as
an infinite mixture of Gaussian having the same mean but different variance, resulting in a
heavy tailed distribution. Student t-distribution hence behaves as a generation of Gaussian,
whose ML parameter estimation is robust to outliers. We direct readers to Bishop (2006)
for detailed explanations.

Following the ML estimation procedure as with Gaussian for parameter µ and Σ, yield

∂p(x | µ,Σ,ν)
∂µ

=

n∑
i

ν+ k

ν+ (xi − µ)TΣ−1(xi − µ)
(xi − µ) = 0 , (3.13)

∂p(x | µ,Σ,ν)
∂Σ

=

n∑
i

ν+ k

ν+ (xi − µ)TΣ−1(xi − µ)
(xi − µ)(xi − µ)TΣ−1 −Σ−1 = 0 . (3.14)

Compared to Gaussian, the closed-form solution does not exist for t-distribution. Setting

wi =

n∑
i

ν+ k

ν+ (xi − µ)TΣ−1(xi − µ)
, (3.15)

the mean and covariance can be estimated iteratively

µt+1 =

∑n
i w

(t)
i xi∑n

i w
(t)
i

, Σt+1 =

∑n
i w

(t)
i

(
xi − µ(t+1)

) (
xi − µ(t+1)

)T

n
. (3.16)

Mixture Distribution and Expectation Maximization By taking linear combinations of the
basic probability distribution, the mixture distributions can be formulated. In general, the
mixture model consists of m components of distribution p(x | Θ) takes the following forms

p(x | Θ) =

m∑
j

πjp(x | θj) , (3.17)

with the mixing coefficients πj sum to one, and Θ = {θ1,θ2, · · · ,θm}. The log-likelihood
function of a mixture model takes the form

logp(x | Θ) = log
n∏
i

m∑
j

πjp(xi | θj) =

n∑
i

log
m∑
j

πjp(xi | θj) , (3.18)

which is different to optimize due the sum inside the log function. To to find the ML estima-
tion for such probabilistic model, the iterative estimation method expectation-maximization
(EM) provides a general solution. The EM algorithm assumes there is a latent variable
z ∈ Rm for the observed data x, which takes the form of an one-hot indicator, i.e.,

∑m
j zj = 1

and satisfies,

p(z) =

m∏
j

π
zj
j , (3.19)

p(x | zj = 1) = p(x | θj) =⇒ p(x | z) =

m∏
j

p(x | θj)
zj . (3.20)
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With the latent variable, the likelihood distribution of the complete-data observation is given

p(x, z | Θ) =

n∏
i

m∏
j

(
πjp(xi | θj)

)zij , (3.21)

which brings back the log-likelihood to the form that is significantly easier to optimize. In
practice, the latent variable cannot be observed, but we can instead estimate the expected
complete data distribution, with respect to the posterior p(z | x,Θ). Given that

p(z | x,Θ) =
p(x, z | Θ)∑
z p(x, z | Θ)

∝ p(x, z | Θ) , (3.22)

The expectation of the indicator variable

E[zij]|p(z|x,Θ) =
πjp(xi | θj)∑m
j πjp(xi | θj)

:= γij , (3.23)

where γij also known as the responsibility. Combine Equation (3.21) and Equation (3.23), the
expectation of the complete-data log-likelihood is thus,

E [logp(z, x | Θ)]|p(z|x,Θ) =

n∑
i

m∑
j

γij
(
logπj + logp(xi | θj)

)
. (3.24)

Starting with some initial value of Θ and mixing coefficients πj, the EM algorithm is an
iteration of E-step and M-step. With E-step, the responsibilities γij are evaluated given
the current model parameters according to Equation (3.23). With M-step, parameters are
re-estimated by ML estimation of Equation (3.24). The algorithm terminate when the esti-
mation converges.

3.1.1.3 Bayesian Update

Consider a sequence of observations Xt = {x1, x2, · · · , xt} where the subscript t denotes the
time stamp. Each observation contributes a probability prediction to the same random vari-
able y with distribution p (yt | xt). To obtain the fused probability distribution p

(
Yt | Xt

)
,

the Bayesian update (also known as Bayesian fusion) is formulated as follows.

p(Yt | Xt) =
p
(
Xt | Yt

)
p(Yt)

p(Xt)
=
p
(
xt | X

t−1 ,Yt
)
p(Yt | Xt−1)p(Xt−1)

p(xt | Xt−1)p(Xt−1)
. (3.25)

Assuming observations satisfy the i.i.d. condition. Additionally, the fused prediction is
smooth, thus p

(
Yt | Xt−1

)
≈ p

(
Yt−1 | Xt−1) . Equation (3.25) can be further simplified into

p(Yt | Xt) =
p
(
xt | Y

t
)

p(xt)
p(Yt−1 | Xt−1) =

p
(
Yt | xt

)
p(xt)

p(Yt)p(xt)
p(Yt−1 | Xt−1) . (3.26)

Assuming the prior p(Yt) is constantly smooth, and hence can be viewed as a normalizing
factor, Equation (3.26) can be reduced to the form

p(Yt | Xt) =
p (yt | xt)

p(Yt
p(Yt−1 | Xt−1) =

∏
t p(yt | xt)∏

t p(Y
t)

. (3.27)
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Equation (3.27) is the Bayesian update formula, which can be interpreted as the fused pre-
diction at time t is the normalized element-wise product of the each individual prediction
p(yt | xt).

3.1.1.4 KL-divergence

The Kullback-Leibler (KL) divergence is a function that measures the difference between two
probability distributions p(x) and q(x). In the discrete settings, it is defined by

KL(p ‖ q) =
∑
x

p(x)
p(x)

q(x)
=

∑
x

p(x) logp(x) − p(x) logq(x) , (3.28)

where −p(x) logp(x) is the entropy of p(x), and −p(x) logq(x) is the cross entropy between
p(x) and q(x). The KL divergence is none negative and only equals to zero if the two
distributions are identical. It is also non-symmetric, where by convention, p(x) is the true
distribution and q(x) is the noisy estimation.

3.1.2 Optimization

An optimization problem is defined by an objective function f(x) (also referred as the cost
function or the loss function for machine learning, and the energy function for variational
methods) and constraints if any, the goal is find an optimizer such that the function value
is at its global optimum. Unless otherwise stated, we formulate all optimization as mini-
mization, given maximization can be converted by multiply negative one to the objective
function.

Gradient, Jacobian and Hessian The stationary points of a function define the local min-
imum or maximum. The minimum of all local minimum is the global minima. Given this
condition, an important step of optimization is to obtain the equation with the gradient
equals zero. With this in mind, we define the following terms. Given a multi-variable
functional f(x) : Rk 7→ R, the gradient ∇f is defined

∇f = (∇fi)T =

(
∂f

∂x1
,
∂f

∂x2
, · · · ,

∂f

∂xi

)T
∈ Rk , (3.29)

which defines the steepest direction to increase the function value at a given evaluation
point. For a vector-valued function, f(x) : Rk 7→ Rm, the gradient is generalized to the
Jacobian matrix

J =
[
Jij
]
=

[
∂fi

∂xj

]
∈ Rm×k . (3.30)

For functionals, the Jacobian of the gradient is the Hessian matrix H, defined by

H =
[
Hij

]
=

[
∂∇fj
∂xj

]
=

[
∂2f

∂xi∂xj

]
∈ Rk×k , (3.31)

which describes the local curvature of the function. Unless otherwise stated, the objective
function in this thesis are all functionals.
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Convexity When the objective function and the solution space are both convex, the local
minimizer is also the global one. Unfortunately this condition is not valid for most problems
in this thesis. Often non-convex optimizations are solved with iterative methods, where
good initialization is crucial. With a bad initialization, the optimization converges slowly,
converges to bad local minimum or even diverges. There are many advanced algorithms to
relax the problem, which are outside the scope of this thesis.

3.1.2.1 Approximation for Nonlinear Optimization

Linearization Consider an objective function that is non-linear with respect to the opti-
mizing variable, the gradient, Jacobian, and Hessian is not straight-forward to compute. A
common practice is to linearize the optimization and approximate the solution iteratively.
Starting with some initial guess, with iteration (k+ 1), the goal is to find an incremental up-
date ∆x such that x(k+1) = x(k) +∆x is the minimizer of the (k+ 1)-th linearized objective
function. Using the first-order Taylor expansion and omitting the higher order terms, the
linearized objective function at x(k) is described by

flin

(
x(k+1)

)
≈ f

(
x(k)

)
+∆xT∇f

(
x(k)

)
. (3.32)

Setting the derivation of flin to zero, yields the following equality for the minimizer,

H
(
x(k)

)
∆x = −∇f

(
x(k)

)
. (3.33)

As to be show in the following text, this equality defines the update equation to solve for ∆x
for all the iterative methods used in this thesis. The distinction among different optimization
methods mainly comes from how the Hessian is computed.

This thesis only considers functionals for objective function. For intermediate calculation,
the linearization of vector-valued function f(x) : Rk 7→ Rm takes the following form

flin(x+∆x) ≈ f(x) + J(x)∆x , (3.34)

with J(x) is the Jacobian matrix defined in Equation (3.30) evaluated at x.

Quadratic Approximation Similar to linear approximation, for functionals (at least C2

continuous) the local quadratic approximation can be obtained with the second-order Taylor
expansion,

fquad(x
(k+1)) ≈ f(x(k)) +∆xT∇f

(
x(k)

)
+
1

2
∆xTH

(
x(k)

)
∆x . (3.35)

Equation (3.35) can be interpreted to approximate the gradient with ∇f
(
x(k)

)
+H

(
x(k)

)
∆x.

Hence, the equality of Equation (3.33) also holds true for quadratic approximation. When
the function is locally quadratic, the second-order approximation yields much faster conver-
gence. However, Hessian is usually very expensive to compute for most problems.
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3.1.2.2 First-order Methods

Gradient Descent Gradient descent is the most common optimization method, where mini-
mization is achieved by iteratively moving in the negative gradient direction,

x(k+1) = x(k) − λ∇f
(
x(k)

)
, (3.36)

where the parameter λ defines the step size, also known as the learning rate in deep learning
(see Section 3.3). Compare to Equation (3.33), gradient descent amounts to approximate the
Hessian matrix with an arbitrary step size H ≈ η−1I with λ = η−1. Despite the gradient
defines the steepest direction for increase, the optimal step size for updating is unknown.
Hence, gradient descent suffers from slow convergence and the zig-zagging optimization
pattern.

Mini-batch Gradient Descent and Stochastic Gradient Descent One variant of the gra-
dient decent optimization is the mini-batch gradient descent. In large-scale applications, e.g.,
training deep neural networks with millions of images, evaluation of the gradient given the
entire training data is very expensive and often unnecessary to perform one update itera-
tion. In practice, the gradient is aggregated over a relatively small batch of data, which is
randomly sampled each iteration. For example, a batch of 256 images is the typical size to
train ResNet (K. He et al. 2016a) with ImageNet (Krizhevsky et al. 2012), which provides a
total number of 1.2 million training samples. This method is referred as mini-batch gradient
descent. Such method works because of the correlation between the data, where the data
distribution of a small batch size is a good approximation to the distribution given the entire
data, hence provide a good approximation to the gradient. An extreme case of mini-batch
gradient descent is to set the batch size to one, which is known as stochastic gradient descent
(SGD). With a slight abuse of terminology, we use mini-batch gradient descent and SGD
interchangeably.

Momentum In practice when applying SGD to train neural networks, momentum µ is used
to speed up the training process and to avoid stucking at local minimum (Bottou 2012). SGD
with momentum use the following updates,

x(k+1) = x(k) − λ∇f
(
x(k)

)
+ µx(k) . (3.37)

Gradient-based Methods for Neural Networks There exists many gradient-based opti-
mization methods developed to train deep neural networks, including AdaDelta by M. D.
Zeiler (2012), AdaGrad by Duchi et al. (2011), Adam by Kingma and Ba (2015), Nesterov
by Sutskever et al. (2013), and RMSprop by Tieleman and Hinton (2012). Among these
methods, Adam is the more popular one, which computes individual learning rates adap-
tively for different parameters using estimates of first and second moments of the gradients.
It combines the advantages of both AdaGrad and RMSprop. For each optimizing variable
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xi ∈ R at iteration (k+ 1), Adam estimates the first moment (mean) m(k+1)
i and the second

raw moment (biased variance) v(k+1)
i of the gradient with moving average,

m
(k+1)
i = β1m

(k)
i + (1−β1)∇f

(
x
(k)
i

)
, m̂

(k+1)
i = m

(k+1)
i /

(
1−βk+1

1

)
, (3.38)

v
(k+1)
i = β2v

(k)
i + (1−β2)∇f

(
x
(k)
i

)2
, v̂

(k+1)
i = v

(k+1)
i /

(
1−βk+1

2

)
, (3.39)

where the two hyper-parameters β1,β2 ∈ [0, 1) control the decay rate. Notice that m̂(k+1)
i

and v̂
(k+1)
i are the unbiased moment estimation. Given a base learning rate λ, Equa-

tion (3.38) and Equation (3.39), the update step for each parameter is defined

x
(k+1)
i = x

(k)
i − λ

m̂
(k)
i√

v̂
(k)
i + ϵ

= x
(k)
i − λ

√
1−βk

2

1−βk
1

m
(k)
i√

v
(k)
i + ϵ

, (3.40)

where ϵ is a very small value (i.e., 10−8) to improve numerical stability. A good value for
the hyper-parameters are β1 = 0.9 and β2 = 0.999 (Kingma and Ba 2015). Throughout this
thesis, we use either SGD with momentum or Adam to optimize cost functions for deep
neural network training.

3.1.2.3 Second-order Methods

Consider a class of optimization with quadratic cost function, which is the form arise in
least squares (see more details in Section 3.1.3). The objective function is denoted

f(x) =
1

2
r(x)Tr(x) with r(x) : Rk 7→ Rm , (3.41)

where the vector-valued function r(x) is referred as residual. We further assume a non-
trivial case, where the residual r is non-linear with respect to x.

Newton and Gauss-Newton The gradient of Equation (3.41) can be easily computed to be

∇f(x) =
(
∂r(x)

∂x

)T
r(x) = Jr(x)

Tr(x) (3.42)

with Jr(x) being the Jacobian of r(x) as defined in Equation (3.30). Taking the Jacobian for
the gradient, the Hessian is computed by

Hf(x) = ∇
(
Jr(x)

Tr(x)
)
= Jr(x)

TJr(x) +Hr(x)
Tr(x) . (3.43)

Insert Equation (3.42) and Equation (3.43) in Equation (3.33), yield the Newton optimization
update. The Newton iteration presents rapid convergence when the cost function is ap-
proximately quadratic near its minimal, but when the condition is not satisfied, it does not
obviously speed up the convergence. Additionally, computing Hessian can be expensive.
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Now with the further assumption that the linearization exists for the residual, the Hessian
Hr is hence zero and Equation (3.43) is simplified. The resulting update equation is the
Gauss-Newton optimization, described as

Jr(x)
TJr(x)∆x = −Jr(x)

Tr(x) . (3.44)

Gauss-Newton Equation (3.44) is known as the normal equation, and the value Jr(x)
TJr(x)

is often used as a good approximation for Hessian.

Levenberg-Marquardt Levenberg-Marquardt (LM) optimization uses the following up-
date (

Jr(x)
TJr(x) + ηI

)
∆x = −Jr(x)

Tr(x) . (3.45)

From the discussion in Section 3.1.2.2, we see that gradient descent is obtained by replacing
the Hessian with an arbitrary step size H = ηI. Therefore, the LM optimization is a com-
bination of Gauss-Newton and gradient descent. Note that depending on the result of the
current iteration, the value of η changes for the next iteration. If ∆x leads to minimization,
the value of η is divided by a factor (e.g., 10) for the next iteration. Otherwise, the value of
η is multiplied by a factor. In this thesis, we use LM for graph optimization.

3.1.3 Least Squares

Least squares (LS) optimization have several applications throughout this thesis. In general,
the LS problem can be described as follows. Consider a model f(x,θ) ∈ Rm with input xi ∈
Rp and model parameter θ ∈ Rk. With n observations f =

(
f(x1,θ), f(x2,θ), · · · , f(xn,θ)

)T,

and the corresponding ground-truth values f̂ =
(
f̂1, f̂2, · · · , f̂n

)T
, find the parameter θ∗ that

minimizes the following objective function

ELS(θ) =
1

2

n∑
i

∥∥∥f(xi,θ) − f̂i

∥∥∥2 . (3.46)

Define ri(θ) = f(xi,θ) − f̂i and use the matrix notation, the LS problem takes the form

θ∗ = arg min
θ

ELS(θ) = arg min
θ

1

2

n∑
i

ri(θ)
Tri(θ) . (3.47)

Linear versus Nonlinear It can be seen Equation (3.47) takes the same quadratic form as
Equation (3.41). Hence nonlinear LS can be linearized with Equation (3.32) and optimized
using the aforementioned second-order iterative method Gauss-Newton or LM algorithm.
With linear LS, there exists a close-form solution. Let ri(θ) = Aiθ+ bi with Ai ∈ Rm×k

and bi = −f̂i , yield

∂ELS(θ)

∂θ
=

n∑
i

∂ri

∂θ
ri =

n∑
i

AT
i (Aiθ+bi) = 0 =⇒ ATAθ = −ATb , (3.48)

where A =
∑n

i Ai and b =
∑n

i bi. If ATA is invertible, the solution is obtained as θ∗ =

−(ATA)−1ATb. If ATA is not full rank, Moore-Penrose pseudo inverse is required.
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A Probabilistic Equivalence From a probabilistic view, LS describes the ML estimation of
a zero-mean unit variance Gaussian distribution. To see this, assume r(θ) ∼ p (r(θ) | 0,Σ),
and seek θ∗ that maximize the likelihood. Using Equation (3.4), this is formulated by

θ∗ = arg min
θ

n∑
i

− logp (ri(θ) | 0,Σ) = arg min
θ

n∑
i

ri(θ)
TΣ−1ri(θ) . (3.49)

Set covariance Σ = σ2I, Equation (3.49) coincides with Equation (3.47) and it becomes
apparent LS optimization yield the ML estimation of a zero-mean unit variance Gaussian.

For Gaussian with a more general covariance, we now derive the iterative update. For sim-
plicity in notation, derivation is done for each individual term ri(θ), and the subscription
is dropped. Assuming a general case with nonlinear LS, the residual r(x) is linearized with
Equation (3.34). Set the derivative of Equation (3.49) to zero gives,

∂

∂θ
rlin(θ

(k+1))TΣ−1rlin(θ
(k+1)) = JT(θ(k))Σ−1

(
r(θ(k)) + J(θ(k))∆θ(k)

)
= 0 , (3.50)

Further Expand this result, and sum up all the residual terms, yield the following normal
equation,

n∑
i

Ji(θ
(k))TΣ−1Ji(θ

(k))∆θ =

n∑
i

−Ji(θ
(k))TΣ−1ri(θ

(k)) . (3.51)

To interpret this result, one way is that each dimension of the residual r is scaled accordingly
with respect to the (co-)variance. For many multi-variables problems, Σ−1 estimate the opti-
mal weights to combine the variables into the cost function, in comparison to some heuristic
weighting factor. Recall that the ML estimation for Gaussian is derived with Equation (3.11).

Iteratively Re-weighted Least Squares Given every residual term contributes quadrati-
cally to the cost function, LS is known to be sensitive to outliers and data noise. Furthermore,
we have seen that LS assumes Gaussian distribution, which is not always true in practical
application. One way to reduce the problem is to replace the quadratic error term with some
robust function ρ(·). Without a loss of generality, assume a real-valued residual r(xi,θ), and
denote it ri(θ) for simplicity. The revised robust optimization thus is formulated,

θ∗ = arg min
θ

E(θ) = arg min
θ

n∑
i

ρ
(
ri(θ)

)
. (3.52)

Note that by setting ρ to be the ℓ2 norm, Equation (3.52) falls back to the normal LS. To
minimize E(θ), taking the derivative and setting it to zero, yield

∂E(θ)

∂θ
=

n∑
i

∂ρ(r)

∂ri

∂ri(θ)

∂θ
=

n∑
i

∂ρ(r)

∂ri
· 1

ri(θ)
· ri(θ) ·

∂ri(θ)

∂θ
, (3.53)
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The value ψ(ri) :=
∂ρ(r)

∂ri(θ)
is called the influence function. Define w

(
ri(θ)

)
:=
ψ(ri)

ri(θ)
to be

the weight, the optimization defined in Equation (3.52) has an equivalent form

θ∗ = arg min
θ

EIRLS(θ) = arg min
θ

n∑
i

w
(
ri(θ)

)(1
2
r2i (θ)

)
. (3.54)

Apparently EIRLS has the form of weighted least squares, which has the same derivative
with E(θ) in Equation (3.52) and hence share the same minimizer. Note that the weight
w(ri(θ)) has an dependency on the residual, which changes every iteration. Therefore the
robust LS is also known as the iteratively re-weighted least squares (IRLS).

With the definition of influence function and weight, it is easy to obtained that with normal
LS defined in Equation (3.47), ψ(r) = r and w = 1. This is as expected since all the samples
contributed equally. For robust estimation, it is desirable that the influence function is even
and decreases drastically when the absolute of residual increases. One commonly used
robust function is the Huber norm hδ(·) with hyper-parameter δ, defined

hδ(r) =

{
1
2
r2 for |r| ⩽ δ
δ|r|− 1

2
δ2 for |r| > δ

, (3.55)

which increases quadratically with small value of r, and linearly otherwise. The influence
function and weight for Huber norm is

ψ(r) =

{
r for |r| ⩽ δ
δ sign(r) for |r| > δ

, w(r) =

1 for |r| ⩽ δ
δ

|r|
for |r| > δ

. (3.56)

Relation to M-estimator In literature, the robust error function ρ is also known as M-
estimators as proposed by Huber (1972), where M stands for maximum-likelihood. As
shown before, LS assumes Gaussian distribution, which amounts to using ℓ2-norm for ro-
bust function. We now derive t-distribution leads to IRLS optimization. Using the result of
Equation (3.49), and substitute r(θ) ∼ p(r(θ | 0,Σ,ν) instead of Gaussian, yield

θ∗ = arg min
θ

n∑
i

ν+ k

2
log
(
1+

ri(θ)
TΣ−1ri(θ)

ν

)
. (3.57)

This is already in the form of robust error function. Applying linearization, and sorting out
the math to obtain the minimizer at 0 gradient, yield

n∑
i

ν+ k

ν+ ri(θ
(k))TΣ−1r(θ(k))︸ ︷︷ ︸
wi(r)

·JT
i (θ

(k))Σ−1
(
r(θ(k)) + Ji(θ

(k))∆θ
)
= 0 , (3.58)

which gives the normal equation with by
n∑
i

wi(θ)J
T
i (θ

(k))Σ−1JT
i (θ

(k))θ = −

n∑
i

wi(θ)J
T
i (θ

(k))Σ−1ri(θ
(k)) . (3.59)

For detailed review of different robust estimators, we direct the readers to Huber (1972).
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3.2 Fundamentals on RGB-D Mapping and Tracking

In this section we provide the fundamentals on RGB-D cameras, direct dense tracking meth-
ods and 3D mapping techniques.

Notations Following the notations in Section 3.1, we further denote a 3D point by v =

(x,y, z)T and a 2D pixel by x = (u, v)T. The homogeneous coordinate is denoted with ∼

above, i.e., homogeneous 3D point ṽ = (x,y, z, 1)T and 2D pixel x̃ = (u, v, 1)T. An image or
2D structured data is considered as a 2D continuous domain Ω ⊂ R2. A color image I(x) is
a mapping Ω : R2 → R3, and a depth image D(x) is a mapping Ω : R2 → R.

3.2.1 Sensing with RGB-D Cameras

The RGB-D camera is a type of sensor that captures real-time, high-resolution videos with
paired1 color image and dense depth image. The availability of RGB-D cameras encouraged
rapid progress in algorithms that use dense depth measurements for visual SLAM, robotic
vision, dense 3D reconstruction, and augmented reality.

There are many popular commodity RGB-D cameras, e.g., Microsoft Kinect V1, Kinect V2,
Asus Xtion Pro and Intel RealSense. All these sensors have an active depth camera that emits
light, as opposed to passive cameras which only observe light. The techniques for depth
measurement are slightly different. The Kinect V1, Xtion Pro and RealSense are all based
structure light, where a known structured near-infrared pattern is projected into the scene
with a laser projector, and observed by an infrared camera. The depth is obtained with
stereo vision, where correspondences are searched between the projected and observed dot-
ted patterns, then triangulation is performed for successful matches to estimate depth. In
addition to occlusions caused by object shadows, depth measurements are often missing
for dark, reflective or thin surfaces. The measurements are typically accurate up to a few
meters and have near-field occlusion (invalid measurements within e.g., 0.3 meter). Outdoor
is another limitation, because the infrared light in sunlight overwhelms the infrared cam-
era. Kinect V2 uses time of flight (ToF) technology for depth, which emits light pulses and
measures the light travel time from the emission to receiving the reflection. Kinect V2 has a
large depth range, but is also heavier and requires more power.

Kinect V1 and Asus Xtion Pro are the two major RGB-D cameras used in this thesis. They
have very similar performance, where both provide synchronized 640 × 480 color video
and 640× 480 depth video at 30 Hz frame rate2. A detailed analysis of the depth noise is
provided by Khoshelham (2011).

1 A paired color and depth images are taken simultaneously in time. However, in practice, there is always a small
time difference. This is difference however is ignored in this thesis.

2 The intrinsic depth resolution is 320× 240, but standard drivers produce upsampled resolution. With reduced
resolution 320× 240, the sensor can capture at 60 Hz. Unless otherwise stated, 640× 480 is the resolution we
work with.
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Pinhole Camera Model The pinhole camera model approximates the projective mapping be-
tween 3D points and the corresponding 2D image coordinates. An ideal pinhole camera as-
sumes the aperture is a point and no lens is used to focus light. The model does not include
the geometric distortions, the blurring of unfocused objects, and the finite sized apertures.
The model validity depends on the quality of the camera and in general, the model accuracy
decreases from the center of the image to the edges as lens distortion increases.

The pinhole camera model consists of two set of parameters, the intrinsics and the extrinsics.
The extrinsic parameters describe the pose of a camera given some global coordinate system
(detailed in Section 3.2.2). The intrinsics describes the image formation with perspective
projection. Usually, the intrinsic parameters are organized into a matrix K given by

K =


fx γ cx

0 fy cy

0 0 1

 , (3.60)

where fx and fy are the focal length of the horizontal X and vertical Y direction in pixel
units, respectively. The parameters cx and cy describe the principal point on the image
plane, which is the center of the image providing no distortion. The parameter γ is the skew
coefficient between the X and Y axis. Unless otherwise stated, γ is set 0 in this thesis. The
process of obtaining the intrinsics is done with camera calibration.

Given a pinhole camera and the intrinsics, the perspective projection ρ : R3 7→ R2 is defined

x̃ = ρ(v) =
1

z
Kv , =⇒

{
u = xfx/z+ cx

v = yfy/z+ cy
, (3.61)

which obtains the continuous 2D pixel coordinates given a 3D point. Given the depth value
d, the inverse ρ−1 : R2 7→ R3, known as the back-projection, is given by

v = ρ−1(x) = dK−1x̃ =⇒


x = (u− cx)d/fx

y = (v− cy)d/fy

z = d

. (3.62)

3.2.2 Direct Methods for Motion Estimation

The extrinsics of pinhole camera describe how a local camera coordinate is transformed
to align with the global coordinates. The calculation of the extrinsics is referred as cam-
era tracking, motion estimation or pose estimation. Tracking with vision data, i.e., using
sequences of images, is also known as the problem of visual odometry.

3.2.2.1 Representations of Rigid Body Motion

This thesis only considers rigid body motion, which is composed of a 3D rotation and a 3D
translation with in total six degrees of freedom (6 DoF). Rigid transformation preserves the
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distance between any pair of points as well as their orientations. The space of all rigid
body motions forms a Lie group, known as the special Euclidean group SE(3). Hence rigid
body motion is also called the special Euclidean transformation. Following we discuss the
common representations for rigid body motion.

Transformation Matrix A common representation of the rigid body motion is the transfor-
mation matrix M ∈ R4×4, also known as the homogeneous representation,

M =

[
R t

0T 1

]
=


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 , (3.63)

where R is the rotation matrix and t is the translation vector. In particular, the rotation
matrix R belongs to the special orthogonal group SO(3), which preserves the orientation,

SO(3) =
{
R ∈ R3×3

∣∣RTR = I , det(R) = 1
}

. (3.64)

The special Euclidean group SE(3) is therefore defined

SE(3) =

{[
R t

0T 1

]∣∣∣∣∣R ∈ SO(3) , t ∈ R3

}
. (3.65)

The inverse transformation can be easily computed to be

M−1 =

[
R t

0T 1

]−1

=

[
RT −RTt

0T 1

]
. (3.66)

To transform a 3D point, this is given

t(M, v) = Rv+ t = Mṽ . (3.67)

The transformation matrix provides a straight-forward computation to transform a point
with matrix multiplication. With incremental transformation, it can be obtained easily with
left matrix multiplication. The disadvantage is that the transformation matrix is an over-
parameterization of the 6 DoF rigid body motion. This causes to complications in parameter
optimization, where extra constraints must be introduced to ensure R is orthonormal.

Exponential Coordinates A minimum parameterization of the rigid body motion can be
obtained with the canonical exponential coordinates, also known as the twist coordinate. The
exponential coordinates ξ is defined

ξ = (ν1,ν2,ν3,ω1,ω2,ω3)
T =

(
νT,ωT)T ∈ R6 , (3.68)
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where ν = (ν1,ν2,ν3)T is the linear velocity and ω = (ω1,ω2,ω3)
T is the angular velocity.

The exponential coordinates define the twist ξ̂ by

ξ̂ =


0 −ω3 ω2 ν1

ω3 0 −ω1 ν2

−ω2 ω1 0 ν3

0 0 0 0

 =

[
[ω]× ν

0T 0

]
. (3.69)

The operator [·]× generates a skew-symmetric matrix from a vector. The space of all skew-
symmetric matrices forms the tangent space of the SO(3) group,

so(3) =
{
[a]× ∈ R3×3

∣∣ a ∈ R3
}

. (3.70)

The set of all exponential coordinates forms the tangent space, also known as Lie algebra, of
SE(3) group

se(3) =

{
ξ̂ =

[
[ω]× ν

0T 0

]∣∣∣∣∣ [ω]× ∈ se(3) ,ν ∈ R

}
. (3.71)

The conversion between the exponential coordinates and the transformation matrix is ob-
tained by the exponential map g : se(3) 7→ SE(3),

M = g(ξ) = exp
(
ξ̂
)
= I+ ξ̂+

ξ̂
2

2!
+ . . .+

ξ̂
n

n!
+ . . . . (3.72)

For small motion, i.e., ξ ≈ 0, the exponential map can be approximated around the identity
M ≈ I+ ξ̂. Using the Rodriguez’ formula, a closed-form solution can be obtained,

R = exp
(
[ω]×

)
= I+

sin
(
‖ω‖

)
‖ω‖

[ω]× +
1− cos (‖ω‖)
‖ω‖2

[ω]2× , (3.73)

t =

(
I+

1− cos
(
‖ω‖

)
‖ω‖2

[ω]× +
‖ω‖− sin

(
‖ω‖

)
‖ω‖3

[ω]2×

)
ν . (3.74)

Denote the closed-form solution evaluated by ξk by R = (r1, r2, r3). The Jacobian of g(ξ)
with respect to ξ is calculated to be

∂g(ξ)

∂ξ
=


0 −[r1]×

0 −[r2]×

0 −[r3]×

I −[t]×

 ∈ R12×6 , with
r1 = (r11, r21, r31)T

r2 = (r12, r22, r32)T

r3 = (r13, r23, r33)T
. (3.75)

The inverse of the exponential map g(ξ) is the logarithm map g−1 : SE(3) 7→ se(3),

ξ = g−1(M) = log(M) . (3.76)

35



3.2. Fundamentals on RGB-D Mapping and Tracking

The exponential coordinates are not defined in the Euclidean manifold. Therefore, the Eu-
clidean vector addition cannot be used to add twists. We define the motion composition
operator ⊕ with the left multiplication by,

ξ⊕∆ξ = g−1
(
g(∆ξ)g(ξ)

)
. (3.77)

For simplicity, the inverse motion is denoted ξ−1, defined by

ξ−1 = g−1
(
g(ξ)−1

)
. (3.78)

The rigid body transformation with the twist representation is given by,

t(ξ, v) = g(ξ)v . (3.79)

Let vt ≡ t(ξ, v), using the result from Equation (3.75), the Jacobian of t(ξ, v) with respect to
ξ can be obtained by

∂t(ξ, v)
∂ξ

=
∂t(ξ, v)
∂g

· ∂g(ξ)
∂ξ

=
(
I − [vt]×

)
∈ R3×6 . (3.80)

Quaternion Quaternion is another alternative to represent rotations, which in combination
with a translation vector t ∈ R3 can be used to parameterize the rigid body motion. Quater-
nions are defined by a generalized complex number q = q0 +q1i+q2j+q3ij, with i2 = −1,
j2 = −1 and ij = −ji. The rotation group SO(3) can be fully represented by the set of all
unit quaternions q,

S3 =
{
q = (qx,qy,qz,qw)T ∣∣ ‖q‖2 = q2x + q2y + q2z + q

2
w = 1

}
. (3.81)

The unit quaternion S3 describes the unit sphere in R4. Unit quaternions provide a smooth
representation without singularity. In comparison to exponential coordinates, unit quater-
nions are less ambiguous. One rotation is mapped to two unit quaternions, whereas to
infinite many exponential coordinates. Additionally, quaternions are defined in Euclidean
space. Therefore two quaternions can be directly added and then normalized to have unit
length. The conversion to the rotation matrix is defined

R =


1− 2q2y − 2q2z 2qxqw − 2qwqz 2qxqz + 2qyqw

2qxqy + 2qzqw 1− 2q2x − 2q2z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2x − 2q2y

 . (3.82)

3.2.2.2 Direct Camera Tracking

Consider two RGB-D images (I1,D1) and (I2,D2), the goal is to estimate the 6 DoF rigid
body transformation from the second image to the first image, ξ12.
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Direct Tracking with Color: the Lukas-Kanade Image Alignment Algorithm One canon-
ical solution to estimate the transformation between two color images is the Lukas-Kanade
(LK) image alignment algorithm (Baker and Matthews 2004). Under the photo-consistency
assumption, the error function of LK algorithm is formulated by

ELK(ξ12) =
∑

xi∈Ω2

rx
2
i (ξ12) =

∑
xi∈Ω2

(
I1
(
ω(ξ12, xi)

)
− I2(xi)

)2 , (3.83)

where xi ∈ R2 is the i-th pixel in the second image. The function ω defines the warping
from the second image I2 to the first image I1. Using Equation (3.61), Equation (3.62) and
Equation (3.79), warping is defined

ω(ξ, xi) = ρ
(
t
(
ξ, ρ−1(xi)

))
. (3.84)

The warping function requires depth estimation for back-projection ρ−1, which is directly
available with RGB-D cameras. The major problem with the LK algorithm is the bright-
ness consistency assumption, which only holds true for surfaces with Lambertian reflec-
tion. However, most natural materials are not Lambertian, where the brightness of surfaces
changes given different view directions. Additionally, RGB-D cameras often have auto-
exposure, and lighting conditions vary during capture. Note that the depth measurement
from RGB-D cameras also contain noise. These noise source all contribute to outliers on a
quadratic error formulation. To improve the robustness, Kerl et al. (2013b) proposed the
robust LK formulation for RGB-D data with M-estimators.

Direct Tracking with Depth: the Iterative Closest Point Algorithm Consider two 3D
shapes, represented by point clouds, the iterative closest point (ICP) algorithm (Besl and
McKay 1992; Y. Chen and Medioni 1991) attempts to find the optimal transformation
between the shapes such that the total alignment error is minimized. To measure the align-
ment error, the point-to-point distance is used in Y. Chen and Medioni (1991), and the
point-to-plane distance is proposed in Besl and McKay (1992). Given a depth image, a
dense point cloud can be obtained by back-projection. Therefore direct image alignment
can be formulated with ICP.

Assume the surface normal is be estimated to be N1(x) : R2 7→ R3. Further assume a set
of correspondences can be obtained3, where pixel x ∈ R2 in the second image is associated
with pixel x′ in the first image. The error function of point-to-plane ICP is formulated,

EICP(ξ12) =
∑

xi∈Ω2

rx
2
i (ξ12) =

∑
xi∈Ω2

(
N1(x

′
i)

T (t(ξ12, ρ−1(xi)
)
− ρ−1(x′i)

) )2
. (3.85)

Consider the noisy depth measurement from RGB-D cameras, there are several solutions
to improve the robustness. Newcombe et al. (2011a) proposed to align the current depth

3 One solution is to use the projective data association proposed in Newcombe et al. (2011a), which uses warping
as defined in Equation (3.84) to initialize data association and only accepts correspondences when the points
are geometrically consistent.
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image to a de-noised depth, which can be considered as an average depth estimation.
Kerl et al. (2013a) proposed to use robust least squares. Gutierrez-Gomez et al. (2016)
proposed to use inverse depth, given that the disparity has Gaussian noise.

Jacobian Computation The error functions Equation (3.83) and Equation (3.85) are both
nonlinear least squares, which can be solved iteratively with Gauss-Newton. We now derive
the Jacobian for the residual. For simplicity, the subscript is dropped. Linearize the residual
with Equation (3.34) at the last iteration ξ

(k)
12 , apply the chain rule to calculate the gradient

and use the result of Equation (3.80), the gradient of LK and ICP both take the form,

J =
(
aT (vt ×a)T )∣∣

ξ
(k)
12

∈ R6 , (3.86)

where vt = t (ξ, ρ(x)) = (xt, yt, zt)T evaluated at ξ(k)
12 . With the LK algorithm, the term ai

is computed to be

aLK =

(
gxfx

zt
,
gyfy

zt
, −

gxfx + gyfy

z2t

)T
, (3.87)

where gx,gy are the image gradient, fx, fy are the focal length. For the ICP algorithm,

aICP = N1(x
′) = (n′

x,n′
y,n′

z)
T . (3.88)

Summing up the Jacobian with respect to all the correspondences, and insert into Equa-
tion (3.44), the incremental update ∆ξ can be obtained by solving the normal equation. The
composition of motion is then performed in the tangent space ξ(k+1) = ∆ξ⊕ξ(k) as defined
in Equation (3.77).

Consider visual and geometrical measurements are often complementary to each other, it is
desirable to combine the LK and ICP algorithm for RGB-D tracking. Such methods proposed
by Gutierrez-Gomez et al. (2016); Kerl et al. (2013a); Whelan et al. (2015b) have shown to
improve tracking accuracy. In this thesis, we develop our tracking algorithm based on both
the LK algorithm and the ICP algorithm.

3.2.3 3D Geometry

3.2.3.1 Map Representation

There are many ways to represent 3D maps, e.g., point clouds, surfels, meshes, range maps,
depth images, occupancy map, signed distance function (SDF) and others. This thesis
mainly uses point clouds, meshes and SDFs embedded in volumetric representation.

Point Cloud, Mesh A point cloud provides one simple map representation in the form
of 3D points

{
pi | pi(xi,yi, zi) ∈ R3

}
. Optionally, each point can have other attributes,

e.g., color value c ∈ R3, surface normal n ∈ R3, curvature ζ ∈ R. Usually point clouds
are unorganized. The KdTree provides an efficient solution to find the neighboring points.
With synchronized RGB-D images, it is straight-forward to obtain an organized colored
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point cloud maintaining the same neighborhood as images. However, it is also important to
note two points adjacent in the 2D image are not necessarily close in 3D.

Point clouds are good for visualization, but they do not provide useful a description about
the surfaces and topology. Points do not have size, therefore they cannot infer occlusion
either. The alternative is to use meshes, where points (referred as vertices) are connected into
polygons (referred as faces) to describe the surfaces. Usually meshes do not mix different
polygon types, and this thesis only considers triangular meshes or quad meshes. Meshes can
be considered as a graph G = {V,E}, where vertices V are connected by edges E. Using this
connectivity, neighborhood searches over the mesh manifold can be done along the edges.

Volumetric Signed Distance Function Given a set Ω and a point x, the signed distance
function (SDF) is a level set that yields the distance of a point to the boundary of the Ω.
Usually the value is positive for points inside Ω and negative for points output Ω. Pro-
posed in Curless and Levoy (1996), a 3D volumetric presentation is used to store the SDFs,
where surfaces are embedded into the zero isosurface. Voxels in front of surfaces get positive
SDF values, and negative otherwise. To integrate multiple measurements into a de-noised
complete model, a weighted fusion for the SDF can be applied. Given a 3D SDF volume
denoted by S(x) : R3 7→ R, and the associated weight W(x) : R3 7→ R, the individual SDF
measurement is given by di(x), fusion as proposed in Curless and Levoy (1996) is defined

S(x) =

∑
iwi(x)di(x)∑

iwi(x)
, W(x) =

∑
i

wi(x) . (3.89)

If weight wi(x) is set to uniform, this fusion essentially assumes Gaussian noise in the
measurements. Equation (3.89) is equivalent to the following incremental update

Si+1(x) =
Wi(x)Si(x) +wi+1(x)di+1(x)

Wi(x) +wi+1(x)
, Wi+1(x) = Wi(x) +wi+1(x) . (3.90)

The SDF represents surfaces implicitly as level sets. To extract meshes embedded in the
zero-isosurface, the marching cubes algorithm by Lorensen and Cline (1987) is usually
applied.

The volumetric SDF representation is shown useful by Newcombe et al. (2011a) to inte-
grate multi-view depth images from Kinect into consistent 3D reconstructions. Further
Newcombe et al. (2011a) proposed to truncate the SDF for efficiency and to saturate W(x)

to a predefined threshold to give priority for newer measurements. Whelan et al. (2015b)
proposed to fuse the color images similar to depth fusion, and consequently reconstruct col-
ored meshes. In this thesis, we use SDF volumes for RGB-D fusion and investigate different
weighting strategies as detailed in Chapter 10.

3.2.3.2 Principal Component Analysis in R3

Principal component analysis (PCA) performs the orthogonal projection of data onto a lower
dimensional principal subspace, such that the variance of the projection is maximized. For
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3D data, PCA can be used to estimate important local properties, e.g., surface normal and
curvature. Given a set of k observations {xi} with the data mean and variance

µx =
1

k

k∑
i

xi , Σx =
1

k

k∑
i

(xi − µ)(xi − µ)T =


σ2xx σ2xy σ2xz

σ2yx σ2yy σ2yz

σ2zx σ2zy σ2zz

 . (3.91)

With covariance Σx being positive semi-definite, the principal values and principal vectors
coincide with the eigenvalues λ1, λ2, λ3 and eigenvectors u1,u2,u3 of Σx. Unless otherwise
stated, this thesis assumes λ1 ⩽ λ2 ⩽ λ3.

Surface Normal, Curvature A common estimate for surface normal and curvature is based
on PCA (Mitra et al. 2004; Pauly et al. 2002). Given a 3D point, PCA can be performed
given k nearest neighbors (kNN). The surface normal can be approximated by u1 and the
surface curvature can be approximated with

ζ =
λ1

λ1 + λ2 + λ3
. (3.92)

3.2.3.3 Plane Fitting

There are many ways to describe a plane, e.g., with three non-colinear points, two distinct
but intersecting lines or two parallel lines. Each of these method contributes a way for
parameterization. In this thesis, a plane is characterized by the Hessian normal form π =

(nT,d)T ∈ R4. With this parameterization, the unit vector n points to the normal of the
plane, and nTx+ d measures the distance of a point x to the plane.

Fitting Plane to Points Consider k,k ⩾ 3 number of 3D points xi, the estimation of π can
be formulated into a LS minimization

π∗ = arg min
π

E(π) = arg min
π

1

k

k∑
i

(
nTxi + d

)2
. (3.93)

Setting the derivative with respect to d to zero, yields to following

1

k

k∑
i

nxi + d = 0 =⇒ d = nT 1

k

k∑
i

xi = nTµx . (3.94)

The mean µx is also known as the centroid. Insert Equation (3.94) back into Equation (3.93)
to optimize with respect to n and use the covariance defined in Equation (3.91), yield

n∗ = arg min
n

1

k

k∑
i

nT(xi − µx)(xi − µx)
Tn = arg min

n

nTΣxn , (3.95)

The eigenvector ui corresponding to the smallest eigenvalue of Σx is the minimizer to Equa-
tion (3.95). With n solved, d becomes apparent with Equation (3.94). We remark the residual
of plane fitting is given by λ1.
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Incremental Plane Merging LS plane fitting requires to evaluate the mean and covariance
of the points, and performs the eigenvalue decomposition on the covariance. Consider
two clusters of points of size n1 and n2, where LS is performed separately to estimate
plane, the merged plane estimation can then be computed using the existing calculation of
µ1,µ2,Σ1,Σ2. Denote the merged centroid and covariance with µ12,Σ12,

µ12 =
n1µ1 +n2µ2

n1 +n2

; Σ12 =
n1Σ1 +n2Σ2

n1 +n2

− (n1Σ1) ◦ (n2Σ2) , (3.96)

with the operator ◦ denoting the element-wise Hadamard product. To see this result, we
make use of the equality σ2xy = E((x − µx)(y − µy)) = E(xy) − E(x)E(y) for covariance
estimation. The incremental plane merging provides an efficient solution to detect planar
surfaces with batch processing. We use this method to detect planes given organized point
cloud obtained from depth images (detailed in Chapter 5).

3.3 Convolutional Neural Networks in A Nutshell

Deep convolutional neural networks (CNNs) have been shown to be a powerful model for many
machine learning and computer vision problems. The term neural network originates from
the attempt to find a mathematical representation that models biological neural systems
with respect to how information is processed. The term convolutional points out the two
distinctions of the CNNs to the other types of artificial neural networks (ANNs), local fully
connection with weight sharing and feed-forward inference with error back-propagation.
Last the word deep emphasizes that the networks consist of a large number of hidden layers
as opposed to traditional ANNs with a few fully-connected layers.

Notations Consider a mini batch data B. We denote the input and output of a layer by
X = {x}B and Y = {y}B. Both X and Y are 4D tensors of the shape B× K×H×W, with
batch size B, channel number K, spatial height H and spatial width W. Except the batch
size, all other three dimensions may differ between the input and the output. Without loss
of generality, we drop the batch notation and denote x =

(
x(1), x(2), · · · , x(K)

)
, and use xkij

to refer the spatial location of channel k. For simplicity we occasionally drop the indices
and use x without causing confusion.

Model of Single Neurons The core component of a neural network is how biological
neurons are represented by a mathematical model. Consider a simplified biological model,
a neuron collects the input signals through multiple dendrites, processes them inside the cell
and outputs the signals along a single axon in the form of biological impulse. The end of
axon are terminals, which are connected to other neurons via synapses for message passing.
To model this process, the mathematical model is defined as

y = f

(
k∑
i

wixi +w0

)
. (3.97)
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The term
∑k

i wixi +w0 imitates the input, where the signal received from each dendrite
as xi through synapse as wi are linearly combined. The function f(·) referred as activation,
produces nonlinearity to resemble the output impulse.

From the canonical machine learning perspective, the model of a single neuron takes a
similar form as the linear regression and classification models, which is defined

y(x,w) = f

(
k∑
i

wiϕi(x) +w0

)
. (3.98)

The function ϕi(x) is a set of fixed nonlinear basis functions, which is linearly combined
with parameter w and bias with the parameter b. The activation function f(·) is nonlinear
for classification and identity mapping for regression (Bishop 2006). With neural networks,
the basis functions are represented by neurons. Instead of defining the basis functions,
ANNs use learning to find the best configurations.

Feed-forward Inference and Error Back-propagation One important property of CNNs is
the feed-forward inference, which means the output of layer ℓ only depends on the preceding
layers, and not on any succeeding layers. Assume for a given layer ℓ, the mapping from
the input to the output takes the form y(ℓ) = g

(
x(ℓ),w(ℓ)

)
, where w(ℓ) denotes the layer

parameters if any and note x(ℓ) = y(ℓ−1), the inference of CNN can be described

y(ℓ)(x,w) = g(ℓ)
(
x(ℓ),w(ℓ)

)
(3.99)

= g(ℓ)
(
g(ℓ−1)

(
· · ·g(2)

(
g(1)

(
x(1),w(1)

)
,w(2)

)
, · · · ,w(ℓ−1)

)
,w(ℓ)

)
. (3.100)

This expresses CNNs as a composition of functions. Consider a CNN with cost E(x,w) and
total number of layers L. The gradient of the layer parameter w(ℓ) can be obtained by the
chain rule. Using Equation (3.100), yields

∂E(x,w)

∂w(ℓ)
=
∂E(x,w)

∂g(L)
∂g(L)(x(L),w(L))

∂g(L−1)
· · · ∂g

ℓ+1(x(ℓ+1),w(ℓ+1))

∂gℓ
∂gℓ(x(ℓ),w(ℓ))

∂wℓ
, (3.101)

which shows the gradient at layer ℓ can be composed from the gradient of all succeeding
layers. More specifically, two gradients are evaluated by every layer evaluates at training.
First, the gradient with respect to the current parameters∇g(ℓ)

w(ℓ) is computed and multiplied
with gradients accumulated from all succeeding layers, so as to update w(ℓ). Second, the
gradient with respect to the current input ∇g(ℓ)

x(ℓ) is calculated and propagated further to the
preceding layers. This parameter update scheme is referred as error back-propagation LeCun
et al. (1989); Rumelhart et al. (1986).

Comparison to Other Neural Networks The regular ANNs is usually fully-connected.
This means each neuron in the previous hidden layer is connected to every other neuron in
the next layer. ANNs are known as universal approximators (Bishop 2006; Stinchcombe
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and White 1989). A network with one hidden layer can uniformly approximate any continu-
ous function, provided sufficient amount of hidden units. CNNs are a class of ANNs, hence
they are also universal approximators. But instead of increasing the amount of neurons
within a single layer, CNNs gain the approximation power from stacks of convolutional
layers and increasing receptive field with pooling layers. As opposed to regular ANNs,
CNNs require data being structured into a 4D tensor of the shape B× K×H×W4, and
maintain such structure across all layers in order to perform convolution. Another impor-
tant property of CNNs is the feed-forward architecture, which enables training with error
back-propagation. Compared to the recurrent neural networks (RNNs) (Graves et al. 2009)
and the long short-term memory networks (LSTMs)5 by Hochreiter and Schmidhuber (1997),
CNNs contain no memory of the past information, and are less suitable for learning from
sequential data.

3.3.1 Basic Layers

3.3.1.1 Convolution

Convolutional layers are the core of CNNs. One convolutional layer is a collection of train-
able linear filters (also known as kernels), which have small spatial resolution but fully
extend along the input channel dimension. To perform filtering, each kernel convolves the
input volume along the spatial dimension and produces one channel of the output volume.
Given a C-channel input, apply a convolutional kernel with F× F spatial resolution at input
location (i, j) yields,

C∑
k

F∑
h

F∑
l

wk
l,hx

k
h+i−F,l+j−F + b , (3.102)

where xki,j denotes the input neurons, wk
l,h denotes the weight parameter, and b is the bias

parameter. The typical spatial resolution for convolutional filters is 3× 3 and it hardly gets
larger than 11× 11. However, the number of filters contained by a convolutional layer varies
from less than a hundred to a few thousands as the network gets deeper (typically doubles
as the spatial resolution halves). This design of filtering, i.e., spatially convolving small
but deep filters over a volume of neurons is referred as local fully connected with parameter
sharing. It is especially suitable for filtering images, which are naturally organized and
locally correlated. The local fully connected layers are also essential to learn spatial invariant
features. Due to the convolving operation, CNNs require structured data, and it is important
that every hidden layer produces structured outputs where the spatial ordering is strictly
maintained.

The output neuron volume of a convolutional layer is determined by four parameters: kernel
size F, kernel numbers C and the input stride S and input padding P. Given an input of the
shape Bi × Ci ×Hi ×Wi, the output shape after convolutional layer is Bi × C×Ho ×Wo,

4 The order of the dimension can be different given the implementation.
5 LSTMs are a special class of RNNs.
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with
Ho = b(Hi − F+ 2P)/Sc+ 1 ; Wo = b(Wi − F+ 2P)/Sc+ 1 . (3.103)

1×1 Convolution Proposed in M. Lin et al. (2013), 1×1 convolution is a special configura-
tion of convolution layers. As the convolution operation extends the full channel dimension,
a 1× 1 convolutional layers with Co filters projects an input with Ci channels to an output
with Co channels with a linear transformation. The 1× 1 convolution is therefore often used
to adjust the volume depth, e.g., for the bottleneck unit of ResNet by K. He et al. (2016a).

Dilated Convolution The dilated convolution (also known as atrous convolution) is pro-
posed concurrently by Yu and Koltun (2016) and L.-C. Chen et al. (2015). The motiva-
tion for dilated convolution is to increase the receptive field of a kernel without increasing
the amount of parameters. For this purpose, the input is sampled with a stride to con-
volve with a kernel. Assume the input stride Si, a kernel of size F effectively increases to
(F− 1)× (Si − 1) + F. Notice that a normal convolution have input stride Si = 1. The dilated
convolution is shown to improve the network performance for both classification (Yu and
Koltun 2016) and segmentation (L.-C. Chen et al. 2015). However, the memory consump-
tion of dilated CNNs is significantly higher, which is undesirable for training with large
batch size. Therefore, in this thesis we do not use dilated convolution.

Fully-Connected Layers Fully-connected (FC) layers are the major layer type for canonical
ANNs and commonly used as the last few layers in CNN classifiers. FC layers typically
requires a lot of parameters, given every single neuron of the previous layer is connected
to every single neuron in the current layer with a different weight. FC layers therefore
have the receptive field of the entire input. Suggested in Long et al. (2015), FC layers can
be converted by convolutional layers, e.g., a FC layer over 7× 7 spatial input is equivalent
to a convolutional layer with 7× 7 kernel size, convolved with stride 7 and zero padding.
Replacing FC with convolutional layers also has the advantage that the same network can
be used with different input image size. In this thesis, we use construct fully convolutional
CNNs.

Transposed Convolution Many works in the literature, often misuse deconvolution to
mean transposed convolution. In this thesis, we distinguish these two concepts. We re-
fer deconvolution strictly as the mathematical operation to reverse the effect of convolution
on data 6. Transposed convolution, also known as fractional convolution, sub-pixel convo-
lution or upconvolution, is a layer that combines upscaling and convolution into one single
operation. Transposed convolution was first introduced in M. D. Zeiler et al. (2010), fur-
ther developed in M. D. Zeiler et al. (2011). It became a popular technique for upsampling
after M. D. Zeiler and Fergus (2014) used it to visualize network features and Long et al.

6 Consider a model f ⋆ g = h, where f is the true signal, g is the noise and h is the observed signal, deconvolution
attempts to recover f from observation h.
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(2015) applied it to produce image segmentations. Conceptually, transposed convolution is
equivalent to inserting zeros in-between two consecutive neurons and then convolve with a
regular kernel.

3.3.1.2 Activation

Activation layers are element-wise operations to resemble the spikes of biological neurons to
transmit signals. Convolution is a purely linear operation, to introduce nonlinearity CNNs
rely on activation layers. These layers acts like switches that direct different information to
be filtered through different paths. The common activation layers are listed below.

Sigmoid and Tanh The sigmoid activation is defined

f(x) ≡ σ(x) = 1

1+ exp(−x)
. (3.104)

The sigmoid function takes in a real-valued scalar, and squashes it to the interval (0, 1) with a
monotonically increasing mapping. Sigmoid nicely resembles how biological neurons send
out signal given the strength of input, with a continuous rate. However, sigmoid suffers
two drawbacks that make it undesirable in deep CNNs. When the activation is close to
either zero or one, the derivative saturates to zero, which kills all the signals from back-
propagation and stops CNNs from learning. This problem is referred as vanishing gradient.
Furthermore, sigmoid is not centered on zero, which always produces positive signals to
the later layers. This may lead to undesirable dynamics in optimization, e.g., zig-zagging
patterns. A slightly preferred activation over sigmoid is the tanh function,

f(x) ≡ tanh(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

= 2σ(2x) − 1 . (3.105)

which linearly transforms σ(x) to be zero-centered. However tanh(x) still suffers from the
vanishing gradient problem. In this thesis, we do not use sigmoid or tanh for activation.
However, sigmoid is also the logistic regression function, so they are often used in output
layer for binary classification.

Rectified Linear Unit (ReLU), Leaky ReLU, Parameterized ReLU (pReLU) Proposed by
Krizhevsky et al. (2012) for ImageNet classification, the rectified linear unit (ReLU) is one
of most commonly used activation function. ReLU is defined

f(x) ≡ ReLU(x) = max(0, x) , (3.106)

which is simply a thresholding over zero. As shown in Krizhevsky et al. (2012), ReLU sig-
nificantly accelerate the convergence in comparison to sigmoid/tanh. ReLU does not suffer
from gradient vanish, but it can cause neurons to die during training. Due to the linear map-
ping, large gradients can be back-propagated via ReLU and eventually lead parameters to
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be updated in the direction that some neurons become irreversibly inactivate. One attempt
to fix this problem is to use the leaky ReLU defined by

f(x) ≡ pReLU(x) = max(0, x) +αmin(0, x) , (3.107)

where the hyper-parameter α is a very small constant (e.g., 0.01) to enable gradient flow
through negative activation. K. He et al. (2015) proposed to learn the hyper-parameter α
and hence the naming parameterized ReLU. However, pReLU does not leads to consistent
improvement as reported in literature.

Exponential Linear Unit (ELU) More recently proposed, the exponential linear unit(ELU)
by Clevert et al. (2015) is computed by

f(x) =

{
x if x > 0

α (exp(x) − 1) if x ⩽ 0
, (3.108)

with hyper-parameter α being a small constant to control when the negative activation
saturates. As with ReLU, ELU also diminishes the vanishing gradient problem. Experiments
also show ELUs help CNNs to converge faster and to better local minima.

3.3.1.3 Pooling and Unpooling

Pooling Pooling is a channel-wise operation that is important to reduce the space reso-
lution and increase the receptive field. Typically pooling is performed by convolving a
2× 2 window with stride 2 over each channel slice and extracting the maximum or average
value for each filter location. This effectively reduces the spatial resolution by a factor of
2. Recently Springenberg et al. (2015) proposed to replace pooling with convolution. For
simplicity, all the CNNs in this thesis use max pooling.

Unpooling Unpooling layers aim to increase the spatial resolution, which is important
for CNNs to perform dense predictions. In Long et al. (2015) upsampling is done with
transposed convolution, which requires cropping to achieve the desirable output resolution
and therefore the receptive field is not well-aligned. An alternative is to use memorized
unpooling proposed by M. D. Zeiler et al. (2011). This method works with paired pooling
and unpooling layers, where the exact pooling locations are cached, and later used at un-
pooling to restore upsampling from low resolution input accordingly. The unpooled layers
therefore are sparse, and further filtering is required to densify the output. In this thesis,
we experiment with memorized unpooling in Chapter 6 and Chapter 7, and further explore
other unpooling techniques in Chapter 8.

3.3.1.4 Auxiliary Layers

Dropout The dropout layer (Srivastava et al. 2014; Wager et al. 2013) introduces impor-
tant regularization to CNNs to prevent over-fitting at training. As the name suggests, the
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3. Theoretical Background

dropout layer randomly turns off some neuron activations only at training. The dropout
can be considered to sample a full network and only update parameters given the current
sampling. Since no dropout is performed at testing, it can be interpreted as an averaging of
a set of subnetworks. Implementation-wise dropout is achieved by keeping a neuron active
with probability p, or setting it to zero otherwise. With this scheme, at training the expected
neuron output is px. To maintain the same expectation at testing, the layer output needs to
be scaled by p. To avoid scaling at test, a better solution is to scale active neurons by 1/p at
training. This thesis use a default dropout rate p = 0.5.

Batch Normalization Batch normalization (also known as BatchNorm) is proposed by
Ioffe and Szegedy (2015), which has become a common practice in neural networks, in
particular for very deep networks. This layer is developed to reduce the problem of internal
covariance shift in network training. This problem refers to the fact that, as the parameters
of previous layers change during training, the input distribution of all the following layer
also varies. This phenomenon cause difficulties in training, which requires lower training
rate and careful initialization for the network to converge to a good local minimal. To
address the problem, Ioffe and Szegedy (2015) proposed to enforce signal whitening before
convolution layers. Given a mini batch B, each input channel is normalized independently
across the batch. The output is hence defined by

y
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x
(k)
ij − µ

(k)
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σ
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2
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The variables γ and β are the scaling and shifting parameters to be learned from training.
The parameter ϵ is a small constant to improve numerical stability. Setting γ = 1,β = 0

and ignoring ϵ, the batch normalization whitens the input signal to zero mean and unit
variance. Batch normalization therefore preforms pre-processing on the layer input. With
a non-trivial γ,β, the network learns the optimal linear transformation of the whitened
signal. At inference time, γ and β are fixed to the global mean and variance recomputed
given all the training data and the learned parameters. A common practice however is to
aggregate γ,β with a moving average during training. In this thesis, we always apply batch
normalization.

Shortcut Shortcut, also known as skip connection, is not a layer but a direct connection
from a layer output to one of its succeeding layer, where at least one intermediate layer is
skipped. Shortcut introduces identity mapping to CNNs, which is shown to be crucial for
error back-propagation in very deep CNNs by K. He et al. (2016a). The identity mapping

47



3.3. Convolutional Neural Networks in A Nutshell

with shortcut is also useful to improve dense pixelwise predictions for encoder-decoder
CNNs, where early-stage features from encoder are directly combined in the decoder (Long
et al. 2015; Ronneberger et al. 2015).

3.3.1.5 Loss Layers

Cross-Entropy Loss for Multi-class Classification The cross-entropy loss for k-class clas-
sification is defined

E(x,w) =

k∑
i

−qi logpi(x,w) =

k∑
i

−Ji = cgK logpi(x,w) , (3.111)

where qi denotes the true class probability and pi is the predicted class probability. The
cross-entropy loss then minimizes the KL divergence as defined in Equation (3.28). Further
assume that the class distribution is one-hot with the true label cg, yields the equivalent
defnition as in Equation (3.111). To obtain the class probability, a popular choice is the
softmax function, defined

σi(x,w) =
exp (gi(x,w))∑k
j exp

(
gj(x,w)

) , (3.112)

where gi(x,w) is the classification score produced by the output layer (e.g., with convo-
lutional layer). The softmax function has a simple derivative, which is further simplified
in combination with cross-entropy loss (also more stable numerically). The derivative is
calculated to be

∂σi(x,w)

∂gj
=

{
σi − σiσj if i = j

−σiσj if i 6= j
=⇒ ∂− logσi(x,w)

∂gj
=

{
σj − 1 if i = j

σj if i 6= j
. (3.113)

The two-class softmax is the logistic regression function defined in Equation (3.104). There
exist other loss functions for classification, e.g., the hinge loss7 which is often used in support
vector machines. This thesis only uses the cross-entropy loss given its simple gradient com-
putation and comparable performance with hinge loss. For semantic image segmentation,
the loss is obtained by the summation over pixelwise cross-entropy.

Euclidean Loss For regression tasks, the Euclidean loss is often used. Defined as

E(x,w) =
∑
‖g(x,w) −y‖2 , (3.114)

the Euclidean loss forms CNNs into a LS optimization. As discussed in Section 3.1.3, robust
cost function can be used to reduce the influence of outliers.

7 The hinge loss is defined E(x,w) =
∑

i ̸=cg
max

(
0,gi(x,w) − gcg

(x,w) +∆
)
, with the ground-truth label cg

and margin ∆. The hinge loss accumulates penalty if the classification score for the correct label does not
exceeds the ∆ margin in comparison to any the wrong classes. In practice, it is sufficient to set ∆ = 1.
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Regularization One important way to prevent networks from over-fitting is to add regu-
larization for training. Two commonly used regularizations are the ℓ1 norm and the ℓ2 norm
on parameters. Consider the data loss is given by Ed(x,w), with ℓ2 regularizer, the total loss
takes the form

w∗ = arg min
w

Ed(x,w) + ηEr(w) = arg min
w

Ed(x,w) + ηwTw , (3.115)

where η is weight for balancing. The ℓ2 regularizer is known as weight decay, which assumes
the parameters have a zero-mean Gaussian prior. Note that without regularization, the
original optimization is ill-posed. To see this, let w∗ be the minimizer of Ed(x,w), it is
obvious the scaled version αw∗ is also a minimizer. In this work, all the CNNs optimizations
are regularized with ℓ2.

3.3.2 State-of-the-art CNN Architectures

3.3.2.1 CNNs for Classification, Feature Extraction

LeNet proposed by Lecun et al. (1998) is widely recognized as the first CNN, which is
developed to recognize handwritten digits. The LeNet architecture is very simple, which
contains two convolutional layers, each followed by a pooling layer. Afterwards, two addi-
tional FC layers are used to output the classification of a single image. AlexNet developed by
Krizhevsky et al. (2012) is the first deep CNN which made CNNs really popular, which was
developed for ImageNet (Russakovsky et al. 2015) classification task and outperformed the
existing algorithms by a significantly large margin. AlexNet is much deeper and larger than
LeNet. It also presents a key difference to previous CNNs, instead of immediately followed
by pooling layers, few convolutional layers were stacked together to introduce more nonlin-
earity. The next breakthrough came from the development of GoogleNet of Szegedy et al.
(2015) and VGGNet by Simonyan and Zisserman (2015). The GoogleNet introduced the
inception block, which significantly reduced the amount of parameters needed by AlexNet
and gave better performance. The VGGNet has a consistent design, where all the convolu-
tions have 3× 3 spatial resolution. The original VGGNet contains over a hundred million
parameters, where the first FC layer (fc6 in Table 3.1) contributes most of them. It is later
found, most parameters in fc6 can be removed. With the CNNs get deeper, it was found
that naively stacking convolutional layers degenerates rather than improve the performance
of CNNs. One explanation is the arising difficulties in gradient back-propagation for very
deep CNNs. To address this problem, K. He et al. (2016a) proposed the residual network
(ResNet) which heavily uses identity mapping and batch normalization to help gradient
back-propagation. The building block of ResNet is the residual unit, which describes the
mapping from input to the output by y(ℓ+1) = g(ℓ)

(
x(ℓ),w(ℓ)

)
+ x(ℓ). Followed by further

development in K. He et al. (2016b), ResNet variants is successfully trained with 34-layer
model up to 1000-layers model. Many ResNet based CNNs also produce the state-of-the-art
performances for various benchmarks.
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In this thesis, we developed algorithms based on VGG16 and ResNet101. The comparison of
the network configuration as developed in the original works is presented in Table 3.1. For
1000-class image classification task, ResNet contains much more parameters, but yet signifi-
cantly smaller amount of FLOPS and better accuracy than VGGNet. A detailed comparison
of different CNNs and their accuracy on ImageNet is studied by Canziani et al. (2016).

3.3.2.2 CNNs for Dense Pixelwise Prediction

The aforementioned CNN architectures are developed for to produce a single output, e.g., to
classify one image as a whole. However, many applications require dense predictions, e.g.,
image segmentation, flow estimation, depth prediction, generative modeling and etc. The
regular CNNs typically downsample the input by a factor of 32 by pooling or large-stride
convolutional layers. The downsampling is essential for CNNs to increase the receptive
field, such that features can be extracted given the global context. One of the first CNNs to
recover the full input resolution for dense prediction was proposed by Long et al. (2015),
where transposed convolution was used for upsampling and up to 1/8 input resolution
was recovered. Later Badrinarayanan et al. (2017) and Noh et al. (2015) concurrently
proposed the encoder-decoder CNNs. Based on VGGNet for feature extraction (referred as
the encoder), the proposed network mirror the downsampling layers to perform upsampling.
Additionally, the memorized unpooling is applied to reverse the pooling operations. With
CNNs layers gets deeper and deeper as in ResNet, having a decoder as a mirror of encoder
become less feasible. An alternative is to remove decoder by increasing the output resolution
of CNNs to a reasonable level, such that the full resolution prediction can be achieved by
regular image processing techniques. To this end, L.-C. Chen et al. (2018); L.-C. Chen et al.
(2015) proposed the dilated VGGNet and dilated ResNet, which output prediction at 1/8 of
the input resolution using the dilated convolution. The output is then bilinear upsampled
and refined by a fully-connected CRF (Krähenbühl and Koltun 2011). One limitation of
the dilated CNNs is the significantly higher memory consumption to maintain the spatial
resolution. Therefore, many works aim to design decoders based on regular CNNs (Laina
et al. 2016; G. Lin et al. 2017; Pohlen et al. 2017).

One major focus of this thesis is the use of CNNs for semantic image segmentation. For this
purpose, we have exploited the VGG16 based encoder-decoder architecture in Chapter 6

and Chapter 7, and further explore the ResNet101 based encoder-decoder architecture in
Chapter 8.

3.3.3 Training

Deep Learning Framework There are many deep learning library alternatives. Some pop-
ular options include Caffe and Caffe2 (Jia et al. 2014), Torch (Collobert et al. 2002) and
PyTorch (Paszke et al. 2017), Theano (Bergstra et al. 2010) and TensorFlow (Abadi et al.
2016). This thesis is developed upon Caffe and TensorFlow. Both libraries are written in C++
and CUDA. TensorFlow is a symbolic library, where CNNs are defined as computational
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Table 3.1: The standard layer configuration of VGGNet by Simonyan and Zisserman (2015) and ResNet by K. He et al. (2016a)
for 1000-class classification task, assuming the input resolution is 224 × 224. The notation [a × a,b ] × c reads as stacking c
convolutional layers, each with b kernels of a× a spatial resolution.

layer name output res. VGG 16 VGG 19 layer name output res. ResNet 50 ResNet 101

conv1_x 224× 224 [ 3× 3, 64 ] × 2 [ 3× 3, 64 ] × 2 conv1_x 112× 112 [ 7× 7, 64 ] [ 7× 7, 64 ]
maxpool1 112× 112 [ 2× 2 ], stride 2 [ 3× 3, 64 ] × 2 maxpool1 56× 56 [ 2× 2 ], stride 2 [ 2× 2 ], stride 2

conv2_x
maxpool2

112× 112
56× 56

[ 3× 3, 64 ] × 2
[ 2× 2 ], stride 2

[ 3× 3, 64 ] × 2
[ 2× 2 ], stride 2 conv2_x 56× 56

[ 1× 1, 64

3× 3, 64

1× 1, 256

]
× 3

[ 1× 1, 64

3× 3, 64

1× 1, 256

]
× 3

conv3_x
maxpool3

56× 56
28× 28

[ 3× 3, 128 ] × 3
[ 2× 2 ], stride 2

[ 3× 3, 128 ] × 4
[ 3× 3, 128 ] × 2 conv3_x 28× 28

[ 1× 1, 128

3× 3, 128

1× 1, 512

]
× 4

[ 1× 1, 128

3× 3, 128

1× 1, 512

]
× 4

conv4_x
maxpool4

28× 28
14× 14

[ 3× 3, 256 ] × 3
[ 2× 2 ], stride 2

[ 3× 3, 256 ] × 4
[ 2× 2 ], stride 2 conv4_x 14× 14

[ 1× 1, 256

3× 3, 256

1× 1, 1024

]
× 6

[ 1× 1, 256

3× 3, 256

1× 1, 1024

]
× 23

conv5_x
maxpool5

14× 14
7× 7

[ 3× 3, 512 ] × 3
[ 2× 2 ], stride 2

[ 3× 3, 512 ] × 4
[ 2× 2 ], stride 2 conv5_x 7× 7

[ 1× 1, 512

3× 3, 512

1× 1, 2048

]
× 3

[ 1× 1, 512

3× 3, 512

1× 1, 2048

]
× 3

fc_6

fc_7

1× 1
1× 1

[ 7× 7, 4096 ]
[ 1× 1, 4096 ]

[ 7× 7, 4096 ]
[ 1× 1, 4096 ] avgpool_2 1× 1 [ 7× 7 ], stride 1 [ 7× 7 ], stride 1

output 1000-d fc, softmax
Parameters 13.8× 10e6 14.4× 10e6 25.6× 10e6 44.6× 10e6

FLOPS 15.3× 10e6 19.6× 10e9 3.8× 10e9 7.6× 10e9



graphs. TensorFlow provides a good python interface and well supports distributed compu-
tation across multiple GPUs, whereas with Caffe, the python interface is very light-weighted
but modification of the backend source code is easier.

Data Preprocessing: Augmentation, Normalization, Random Shuffling Providing lim-
ited training data, image augmentation attempts to prevent over-fitting by introducing noise
into the training set with augmentation. Method exploited by this thesis includes resizing,
cropping, flipping, gamma correction and contrast modification. At each iteration, for ev-
ery individual image, these augmentation methods are performed with randomly chosen
parameters given a predefined range.

Input normalization whitens the signals to be zero mean and unit variance, which conse-
quentially improves the dynamics of optimization. One common normalization approach is
to estimate the mean and variance for each input channel based on the entire training set
and use these values at training and testing. When training with RGB or grayscale images,
an alternative is to apply the transform (2x/255.0− 1.0) for each pixel in each channel. The
later is used in this thesis.

Data shuffling is another important tip for network training, which is especially important
for stochastic gradient descent and training with small datasets. Shuffling prevents CNNs
tuning towards the correlations from observing the same mini batches with the same order
repeatedly. In our training, the order of images are shuffled after every epoch.

Weight Initialization versus Transfer Learning Training CNNs is a process of solving
highly non-convex optimizations with a huge number of parameters, where weight initial-
ization is very important. Consider the input data are properly normalized to be zero-mean,
it is reasonable to assume weights will be zero-centered Gaussian distribution. Based on
this assumption, the naive initialization for convolutional kernel is to sample from Gaus-
sian distributions w ∼ N(0, 1). The problem with such initialization is that the gradient of
layers with different amount of neurons will be different. To address this problem, Glorot
and Bengio (2010) proposed to scale the zero-mean unit Gaussian by 2/(ni + no), where
ni,no are the number of input and output neurons of the convolutional layer. Later, K. He
et al. (2015) proposed the proper scale should be 2.0/

√
nℓ, where nℓ is the total number of

weights contained in a convolutional kernel.

The above described weights initialization techniques refer to training CNNs from scratch.
In practice, training from scratch is very demanding, which requires a lot data, hardware
support and careful parameter tuning. Therefore, it is more common and beneficial to
initialize weights from pre-trained models and perform transfer learning, also refer as fine-
tuning. When the data distribution between original dataset used to obtain the pre-trained
model and the current dataset are similar, transfer learning is more likely to be beneficial.
In our work, we always fine-tuned from CNN models pre-trained on ImageNet.
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Equations are just the boring part of
mathematics. I attempt to see things in
terms of geometry.

– Stephen Hawking



CHAPTER 4
Planar Simplification and Texturing of Dense

Point Cloud Maps

A bstract Dense RGB-D based SLAM techniques and high-fidelity LIDAR scanners are
examples from an abundant set of systems capable of providing multi-million point

datasets. These large datasets quickly become difficult to process and work with due to
the sheer volume of data, which typically contains significant redundant information, such
as the representation of planar surfaces with hundreds of thousands of points. In order to
exploit the richness of information provided by dense methods in real-time robotics, tech-
niques are required to reduce the inherent redundancy of the data. In this paper we present
a method for efficient triangulation and texturing of planar surfaces in large point clouds.
Experimental results show that our algorithm removes more than 90% of the input planar
points, leading to a triangulation with only 10% of the original amount of triangles per
planar segment, improving upon an existing planar simplification algorithm. Despite the
large reduction in vertex count, the principal geometric features of each segment are well
preserved. In addition to this, our texture generation algorithm preserves all color informa-
tion contained within planar segments, resulting in a visually appealing and geometrically
accurate simplified representation.

4.1 Introduction

The generation of 3D models of real-world environments is of high interest to many ap-
plication fields including professional civil engineering, environment-based game design,

© 2013 IEEE. Reprinted, with permission, from Lingni Ma, Thomas Whelan, Egor Bondarev, Peter H. N. de
With and John McDonald, Planar Simplification and Texturing of Dense Point Cloud Maps, in proc. European
Conference on Mobile Robots (ECMR), Sept 2013. Revised layout, minor adaptations and extended visualization
for Figure 4.1.
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Figure 4.1: Scene triangulation showing a simplified mesh (right) for planar segments
with non-planar features highlighted, as opposed to the dense reconstruction by traditional
method (left).

3D printing and robotics. Industrial Light Detection And Ranging (LIDAR) platforms and
extended scale RGB-D mapping systems can output dense high-quality point clouds, span-
ning large areas that contain millions of points (Henry et al. 2012; Whelan et al. 2012). Key
issues with such large-scale multi-million point datasets include difficulties in processing
the data within reasonable time and a high memory requirement. In addition to this, some
features of real-world maps, such as walls and floors, end up being over-represented by
thousands of points when they could be more efficiently and intelligently represented with
geometric primitives. In particular the use of geometric primitives to represent a large 3D
map to localize against is emerging as a feasible means of robot localisation (Fallon et al.
2012). In this paper, we examine the problem of planar surface simplification in large-scale
point clouds with a focus on quality and computational efficiency.

4.2 Related Work

In the literature triangular meshing of 3D point clouds is a well-studied problem with many
existing solutions. One class of triangulation algorithms computes a mathematical model
prior to triangulation to ensure a smooth mesh while being robust to noise (Jalba and
Roerdink 2009; Kazhdan et al. 2006). This type of algorithm assumes surfaces are continu-
ous without holes, which is usually not the case in open scene scans or maps acquired with
typical robotic sensors. Another class of algorithms connects points directly, mostly being
optimized for high-quality point clouds with low noise and uniform density. While these
algorithms retain fine details in objects (Bernardini et al. 1999; Scheidegger et al. 2005),
they are again less applicable to noisy datasets captured with an RGB-D or LIDAR sensor,
where occlusions create large discontinuities.

With real-world environment triangulation in mind, the Greedy Projection Triangulation
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(GPT) algorithm has been developed (Gopi and Krishnan 2002; Marton et al. 2009). The
algorithm creates triangles in an incremental mesh-growing approach, yielding fast and ac-
curate triangulations. However, the GPT algorithm keeps all available points to preserve
geometry, which is not always necessary for point clouds containing surfaces that are easily
approximated by geometric primitives. To solve this problem a hybrid triangulation method
was developed by Ma et al. (2013c), where point clouds are segmented into planar and
non-planar regions for separate triangulation. The QuadTree-Based (QTB) algorithm was
developed to decimate planar segments prior to triangulation. The QTB algorithm signifi-
cantly reduces the amount of redundant points, although a number of limitations degrade
its performance. For example, the algorithm does not guarantee that final planar points
will lie inside the original planar region, which can lead to noticeable shape distortion. The
algorithm also produces duplicate vertices, overlapping triangles and artificial holes along
the boundary.

To summarize, existing triangulation algorithms perform poorly in removing redundancy
in dense point clouds, or are not suited to the kind of data typically acquired with com-
mon robotic sensors. In this paper we address these problems with two main contributions
based on the work of Ma et al. (2013c). Firstly we present an accurate and robust algo-
rithm for planar segment decimation and triangulation. In comparison to the existing QTB
algorithm, our algorithm guarantees geometrical accuracy during simplification with fewer
triangles, without duplicate points, artificial holes or overlapping faces. Secondly we present
a method to automatically generate textures for the simplified planar mesh based on dense
colored vertices. Our experimental results show that the presented solutions are efficient in
processing large datasets, through the use of a multi-threaded parallel architecture.

4.3 System Overview

4.3.1 Building Blocks

Our system architecture is shown in Figure 4.2. It takes a point cloud as input and generates
a triangular mesh as output. If the input is a colored point cloud, the output can also be a
textured 3D model. The processing pipeline consists of three main blocks.

Plane Detection segments the input into planar and non-planar regions to enable separate
triangulation and parallel processing. This design is especially beneficial for real-world
environments, where multiple independent planar surfaces occur frequently. In our system
we apply a local curvature-based region growing algorithm for plane segmentation by Ma
et al. (2013c).

Non-Planar Segment Triangulation generates a triangular mesh for non-planar segments
using the GPT algorithm by Marton et al. (2009). Given a colored point cloud, we preserve
the color information for each vertex in the output mesh. Dense triangular meshes with
colored vertices can be rendered (with Phong interpolation) to appear similar to textured
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(colored)
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Figure 4.2: Parallel system architecture to process point clouds of large-scale open scene
scans or maps.

models. Additionally, as opposed to using textures, maintaining color in vertices of non-
planar segments provides easier access to appearance information for point cloud based
object recognition systems.

Planar Segment Triangulation triangulates planar segments and textures the mesh after-
wards, if given a colored point cloud. In our system we improve the decimation algorithm
by Ma et al. (2013c) and further develop a more accurate and robust solution for triangu-
lation. A detailed description of our algorithm is provided in Section 4.4. Our method for
planar segment texture generation is described in Section 4.5.

4.3.2 Computationally Efficient Architecture

To improve computational performance, a multi-threaded architecture is adopted, exploit-
ing the common availability of multi-core CPUs in modern hardware. We apply a coarse-
grained parallelization strategy, following the Single Program Multiple Data (SPMD) model
(Darema et al. 1988). Parallel triangulation of planar segments is easily accomplished by
dividing the set of segments into subsets that are distributed across a pool of threads. For
maximum throughput of the entire pipeline, segmentation and triangulation overlap in ex-
ecution. With an n-core CPU, a single thread is used for segmentation and the remaining
n− 1 threads are used for triangulation, each with a queue of planar segments to be pro-
cessed. Upon segmentation of a new planar region, the segmentation thread checks all
triangulation threads and assigns the latest segment to the thread with the lowest number
of points to be processed. This strategy ensures even task distribution among all threads.
When plane segmentation is finished, the segmentation thread begins the non-planar trian-
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Figure 4.3: Undesirable planar triangulation: the left GPT mesh over-represents the shape
while the right boundary-based Delaunay triangulation produces unnatural skinny trian-
gles.

gulation in parallel to the other triangulation threads.

4.4 Triangulation of Planar Segments

In this section, our algorithm for planar segment decimation and triangulation is described.
A simplified mesh of a planar segment is generated by removing redundant points that
fall within the boundary of the segment. In the following text the input planar segment
is denoted as P, made up of points p ∈ R3. With colored point clouds, each point p also
contains (R,G,B) color components.

4.4.1 QuadTree-Based Decimation

Planar segments have a simple shape which can be well described by points on the boundary
of segment. Interior points only add redundancy to the surface representation and compli-
cate the triangulation results. Figure 4.3 shows such an example, where the planar segment
is over-represented with thousands of triangles generated with the GPT algorithm using all
planar points. However, a naïve solution to remove all interior points and triangulate only
with boundary points normally leads to skinny triangles, again shown in Figure 4.3. With
these observations in mind, the quadtree proves to be a useful structure to decimate the
interior points of a segment while preserving all boundary points for shape recovery (Ma
et al. 2013c).

4.4.1.1 Preprocessing

To prepare a planar segment for decimation it is first denoised and aligned to the x-y axes.
We employ Principal Component Analysis (PCA) over the planar segment to compute a
least-squares plane fit as well as an affine transformation T for x-y axes alignment. The
aligned planar segment is denoted as Pt. Afterwards, the boundary points of Pt are ex-
tracted as an α-shape (Duckham et al. 2008; Pateiro-López and Rodríguez-Casal 2010).

59



4.4. Triangulation of Planar Segments

(a) (b) (c) (d) (e) (f)

Figure 4.4: Planar decimation and triangulation (boundary and interior points are red and
blue, respectively). The sub-figures: (a) initialize by subdividing the quadtree bounding box;
(b) classify nodes into interior (blue), boundary (red) and exterior (black); (c) merge interior
nodes; (d) generate vertices; (e) point-based triangulation; (f) polygon-based triangulation.

We denote the boundary as the concave hull H of the planar segment, which is an ordered
list of vertices describing a polygon for which ∀p ∈ Pt and p /∈ H, p is inside the polygon.

4.4.1.2 Decimation

Planar segment point decimation consists of four steps as shown in Figure 4.4. Firstly,
a quadtree is constructed by subdividing the bounding box of Pt into a uniform grid of
small cells. Typically the 2D bounding box is non-square, in which case the smallest side
is extended to equalize width and height. The resulting bounding box b is composed of a
minimum point bmin and a maximum point bmax, with a dimension s = bmax − bmin.
Secondly, the quadtree nodes are classified as either interior, boundary or exterior. An
interior node is fully contained within the polygon H, while an exterior node is fully outside.
All others are boundary nodes, which intersect H. Thirdly, the interior nodes of the quadtree
are merged to create nodes of variable size, typically largest around the center and becoming
increasingly fine-grained when approaching the boundary. When a parent node contains
only interior children, the four children nodes are merged into one. The merged node is
then also classified as interior, allowing further recursive merging with its siblings. Finally,
the corner points of the remaining interior nodes are extracted as the new internal vertices
I of Pt, while all boundary points H are preserved.

4.4.2 Triangulation

We provide two methods for triangulation of a simplified planar segment: 1) a low-complexity
Point-Based Triangulation and 2) an alternative Polygon-Based Triangulation. Both methods
make use of the Constrained Delaunay Triangulation (CDT) by Domiter and Zalik (2008).

4.4.2.1 Point-Based Triangulation

The point-based approach is a low-complexity triangulation method, where CDT is directly
applied to the decimated segment. The ordered boundary vertices H serve as constraining
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Figure 4.5: Degree grid of the upper planar segment in Figure 4.4 (0-valued cells hidden).
The underlined bold values are the degrees of the inner vertices I.

edges and the inner vertices I are used as input points. An example output is shown in
Figure 4.4. Point-based triangulation has all of the advantages of Delaunay triangulation
but does produce more triangles than the polygon-based approach described next.

4.4.2.2 Polygon-Based Triangulation

The regular grid pattern of the inner vertices I immediately lends itself to a simple triangu-
lation strategy, where two right-angled triangles are created over each interior node of the
merged quadtree. To complete the triangulation, the space between the interior right-angled
triangles and the boundary points H is triangulated using CDT. Two sets of constraining
edges are input to the CDT, one being H and the other being a rectilinear isothetic polygon
that bounds interior triangles. This two-step triangulation is similar to the QTB algorithm
by Ma et al. (2013c). However, a major difference lies in how the boundary points are con-
nected. With our CDT-based approach, we avoid overlapping triangles and artificial holes
that would normally be produced by the QTB algorithm.

Efficient computation of the polygon which exactly bounds the interior vertices I is non-
trivial, since the interior nodes provide only sparse spatial information for geometric opera-
tions. We invoke a solution that maps the interior vertices onto a binary image, where the
bounding polygon can be easily extracted using a greedy nearest-neighbour tracing algo-
rithm normally used in image processing (Marquegnies 2011).

The binary image is represented by an n×n array, where n = 2d+1+ 1 and d is the quadtree
depth. This provides a 2D grid large enough to represent empty space between the two
vertices of any edge. To project a vertex v ∈ I onto the array, a mapping function f : R3 →
N2 is defined by

f(v) =
n(v−bmin)

s
, (4.1)

where b is the bounding box and s is its dimension. The division is performed on an
element-by-element basis. Given that I is aligned to the x-y axes, function f effectively maps

61



4.5. Texture Generation

Figure 4.6: Texture generation: (left) plane segment from a colored point cloud; (right)
generated texture.

from R2 to N2. We associate two elements with each array cell: a reference to the mapped
vertex (effectively implementing f−1) and a degree value to quantify vertex connectivity.
Initially, the degree is zero for all cells. During the triangulation of I, the degree grid
is populated. When a vertex is extracted from the merged quadtree, the reference of the
corresponding cell is updated and its degree is increased by 1. This policy alone cannot
fully recover the degree of a given vertex, since only the two ends of an edge are obtained
from quadtree vertices. To overcome this problem, all cells between the two ends of an
edge also have their degree increased by 2. Figure 4.5 shows a part of the degree grid of
the planar segment in Figure 4.4. If we consider the interior triangulation to be a graph,
the 2D degree grid resolves the degree of each vertex. All non-zero cells are treated as “1-
valued” foreground pixels and the rest as “0-valued” background pixels in the binary image
representation.

4.5 Texture Generation

In this section we present our texture generation algorithm for planar segments using dense
colored point clouds. Due to the significant loss of colored vertices during decimation, the
appearance of a simplified planar segment is greatly diminished. We therefore generate
textures prior to decimation for the purpose of texture mapping the simplified planar mesh.

We generate textures by projecting the vertex colors of the dense planar segment onto a 2D
RGB texture E(x,y) ∈ N3. We define a texture resolution d as some resolution factor r
times s, where s assumes the dimension of the bounding box b. In our experiments a value
of r = 100 provides good-quality textures. The resolution factor can also be automatically
computed based on point cloud density. Each pixel a ∈ E is first mapped to a 3D point v by
a mapping function g : N2 → R3, defined as

g(a) =
as

d
+bmin, (4.2)
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4. Planar Simplification and Texturing of Dense Point Cloud Maps

ALGORITHM 4.1: Vertex color to texture.
Input: Pt set of transformed input vertices
Input: H concave hull of Pt

Output: E 2D RGB texture
1 foreach pixel p in E do
2 v← g(p);
3 if v is inside H then
4 n← nearest-neighbour of v in Pt;
5 p← (nR,nG,nB);

6 else
7 p← (0, 0, 0);

ALGORITHM 4.2: uv texture coordinate calculation.
Input: O set of final face vertices
Output: U uv texture coordinates for O

1 foreach vertex v in O do
2 a← g−1(v);
3 u← ax

dx
;

4 v← 1.0− ay

dy
;

5 Add (u, v) to U;

with an element-by-element calculation. Since Pt is aligned to the x-y axes, the function
g effectively maps to R2. A corresponding colored point to v in Pt is found by a nearest
neighbor search using a kd-tree. We have chosen this approach as it produces good-quality
textures while being computationally inexpensive. However, it can be easily extended to
produce even higher-quality textures by averaging a number of k-nearest neighbours. Algo-
rithm 4.1 describes the texture generation process. Figure 4.6 shows an input planar segment
and the output texture.

When texture mapping the final planar mesh, the uv texture coordinates U for the vertices
O of each face are computed with the inverse function g−1 : R3 → N2, derived from
Equation (4.2) as

g−1(v) =
d(v−bmin)

s
. (4.3)

With x-y axes aligned points, g−1 is actually mapping from R2. Algorithm 4.2 describes the
uv-coordinates computation. The list U guarantees a 1-to-1 mapping to the set O.

Any objects lying on a planar segment are completely excluded from the texture and not
projected onto the plane. In fact, the generated texture implicitly provides the Voronoi
diagram of the face of the object lying on any plane, which in turn provides position and
orientation information of any object lying on a segmented plane, as shown in Figure 4.8.
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Figure 4.7: Triangulation quality measured with the angle distribution of planar meshes.

Table 4.1: Planar point reduction with our decimation algorithm in comparison to the QTB
algorithm.

data 1 data 2 data 3 data 4

Total points 890,207 1,094,910 2,799,744 5,641,599

Planar points 540,230 708,653 1,303,012 2,430,743

QTB decimation 105,663 303,348 189,772 457,678

Our decimation 47,457 84,711 43,257 76,624

4.6 Evaluation and Results

In this section we evaluate our work with a series of experiments. We ran our C++ im-
plementation on Ubuntu Linux 12.04 with an Intel Core i7-3930K CPU at 3.20 GHz with
16 GB of RAM. Four colored point clouds of real-world environments were used in the ex-
periments, as shown in Figure 4.10 (a). These datasets encompass a wide variation in the
number of points, planar segments and their geometry. All four datasets have been acquired
with an implementation of the Kintinuous dense RGB-D mapping system by Whelan et al.
(2013).

4.6.1 Triangulation Performance

To assess the triangulation performance, qualitative and quantitative evaluations are pre-
sented. A comparison of the triangulation algorithms is shown in Figure 4.10. Additionally
we present map fly-throughs in a video submission available at http://www.youtube.com/

watch?v=dn6ccmFXSzQ . It can be seen that both algorithms produce a highly simplified
triangulation, while preserving the principal geometry of the segment.

Further assessment of mesh quality is done by measuring the angle distribution across
meshes. A naïve simplified planar mesh is set as a baseline, which applies Delaunay tri-
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4. Planar Simplification and Texturing of Dense Point Cloud Maps

Table 4.2: Planar mesh simplification with our triangulation algorithms measured with tri-
angle counts, in comparison to GPT and the QTB algorithm.

data 1 data 2 data 3 data 4

GPT 1,020,241 1,350,004 2,293,599 4,665,067

QTB 90,087 288,833 182,648 433,953

Point-based 85,653 161,270 79,988 143,396

Polygon-based 76,367 130,642 66,413 118,275

angulation to only the boundary points of a planar segment. The normalized distribution
is shown in Figure 4.7, collected from the 400 planar segments of the four datasets. It can
be seen that approximately 80% of the triangles from the polygon-based triangulation are
isosceles right-angle triangles, resulting from the quadtree-based triangulation. With point-
based triangulation, the angles spread over 30°-90°, whereas the naïve boundary-based trian-
gulation shows an even more random distribution. Defining a skinny triangle as one with a
minimum angle <15°, the percentages of skinny triangles with boundary-based, point-based
and polygon-based triangulation are 28%, 10% and 10%, respectively.

The effectiveness of planar segment decimation is also evaluated. Table 4.1 shows the point
count for planar point decimation. Approximately 90% of the redundant points are removed
with our algorithm, which is 15% more than the QTB algorithm, despite the fact that both
algorithms are based on a quadtree. Part of this reduction gain comes from our triangulation
methods, which add no extra points once decimation is done, unlike the QTB algorithm. In
Table 4.2, the mesh simplification statistics with triangle counts are also given. We take the
triangle count of GPT for non-decimated planar segments as the baseline. In accordance
with the point count reduction, both of our algorithms require no more than 10% of the
amount of triangles of a non-decimated triangulation, and both perform better than the
QTB algorithm.

4.6.2 Texture Generation Performance

In Figure 4.10, generated textures are shown. The output textures incorporate almost all
visual information contained in the original dense point cloud, enabling a photo-realistic
and aesthetically-pleasing textured 3D model.

4.6.3 Computational Performance

Lastly, we evaluate the computational efficiency of our algorithms and the parallel system
for large-scale data processing. The baseline for comparison is standard serial processing
with the GPT and QTB algorithms. Table 4.3 shows the execution times. The point-based
and polygon-based triangulations are approximately of the same speed, both 2 to 3 times
faster than the GPT and QTB algorithms. The results also show that the texture generation
algorithm is fast in execution, processing multi-million point datasets in less than 2 seconds.
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Table 4.3: Efficiency of triangulation and the parallel architecture, measured in seconds. The
1:x ratio denotes 1 segmentation thread with x triangulation threads.

data 1 data 2 data 3 data 4

Number of planar segments 101 116 66 117

Serial GPT 18.6 24.3 44.2 91.1
Serial QTB 16.7 18.7 38.3 73.1

Serial point-based 6.9 9.8 17.7 40.2
Serial polygon-based 6.9 9.5 17.8 40.0

Serial polygon-based (texture) 8.3 10.0 20.3 41.4
1:1 Polygon-based 6.4 8.1 15.1 33.8

1:1 Polygon-based (texture) 7.6 8.5 17.4 35.2
1:3 Polygon-based 3.6 4.2 8.3 19.2

1:3 Polygon-based (texture) 4.4 4.1 9.2 19.6
1:5 Polygon-based 3.7 3.5 7.9 16.1

1:5 Polygon-based (texture) 4.7 3.5 8.7 16.2

Examining the bottom half of Table 4.3, it is clear that the parallel system architecture has a
profound effect on the overall performance. The execution time decreases with an increasing
number of triangulation threads. An effect of diminishing returns becomes apparent as the
number of triangulation threads increases, due to the overhead associated with the parallel
implementation. However, as the per-thread workload increases, such as inclusion of texture
generation, the overhead of parallelization becomes overshadowed.

4.6.4 Discussion

Both point-based and polygon-based triangulation yield accurate and computationally ef-
ficient planar segment triangulations with significant point and triangle count reductions,
both exceeding the performance of the QTB algorithm. The point-based approach is of
low complexity and maintains good triangular mesh properties that are desirable for light-
ing and computer graphics operations. The polygon-based approach yields higher point
and triangle count reductions with a more regularized mesh pattern, capturing information
about the scene in the form of principal geometric features, such as the principal orientation
of a planar segment. While the polygon-based method produces less triangles, it does gen-
erate T-joints in the mesh. Such feature is detrimental when employing Gouraud shading
and other lighting techniques to render a mesh with colored vertices. The polygon-based
and point-based methods offer a trade-off depending on the desired number of triangles or
the intended use of the final triangulation. With robot navigation in mind, the low polygon-
count models achieved with our system are suitable for use in a primitives-based localization
system, such as the KMCL system of Fallon et al. (2012).

The gaps between planar and non-planar triangulations are apparent. The gap can also
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Figure 4.8: Implicit object information from texture generation, from left to right: (a) input
colored point cloud; (b) generated texture with implicit Voronoi diagrams and locations of
objects resting on the plane highlighted.

Figure 4.9: Joining of GPT mesh with planar segment triangulations. Left shows unjoined
segments and right shows segments joined with interpolated boundary vertices.
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be closed by including the boundary vertices of the segmented planes into the non-planar
segment GPT triangulation, as shown in Figure 4.9. The number of boundary vertices can
be increased with a smaller alpha value when computing the concave hull of each segment
or by linearly interpolating between boundary vertices. Extra vertices can also be extracted
from the vertex degree grid used in polygon-based triangulation. In our system we chose
to leave these gaps open, as this separation gives an easier visual understanding of any
map, implicitly providing a separation between structural features (like walls, table tops)
and “object” features, useful in automatic scene understanding, manipulation and surface
classification.

4.7 Conclusions

In this paper we have studied the problem of triangulation of planar segments from dense
point clouds with a focus on quality and efficiency. Three significant contributions are
made. Firstly, we have made a strong improvement on planar segment reconstruction. Both
of the presented point-based and polygon-based triangulation methods produce a more ac-
curate, simpler and robust planar triangulation than the existing QTB algorithm. With these
two algorithms approximately 90% of input planar points are removed, and the planar seg-
ments are triangulated with no more than 10% of the amount of triangles required without
decimation. Secondly, we have developed a computationally inexpensive algorithm to auto-
matically generate high-quality textures for planar segments based on colored point clouds.
Last, our parallel system multi-threaded architecture enhances the efficiency in processing
large-scale datasets. The results show that our system provides a computationally man-
ageable map representation for real-world environment maps and also generates a visually
appealing textured model in a format useful for real-time robotic systems.
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4. Planar Simplification and Texturing of Dense Point Cloud Maps

(a) Four dense colored point clouds used for evaluation, numbered 1 to 4 from left to right.

(b) Point-based triangulation: planar and non-planar meshes shown in blue and red.

(c) Polygon-based triangulation: planar and non-planar meshes shown in blue and red.

(d) Textured simplified planar segments from each dataset.

(e) Complete 3D model with our proposed system.

Figure 4.10: Four evaluated datasets (numbered 1 to 4 from left to right) with various trian-
gulation results and texturing results.
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CHAPTER 5
CPA-SLAM: Consistent Plane-Model
Alignment for Direct RGB-D SLAM

A bstract Planes are predominant features of man-made environments which have
been exploited in many mapping approaches. In this paper, we propose a real-time

capable RGB-D SLAM system that consistently integrates frame-to-keyframe and frame-to-
plane alignment. Our method models the environment with a global plane model and –
besides direct image alignment – it uses the planes for tracking and global graph optimiza-
tion. This way, our method makes use of the dense image information available in keyframes
for accurate short-term tracking. At the same time it uses a global model to reduce drift.
Both components are integrated consistently in an expectation-maximization framework. In
experiments, we demonstrate the benefits our approach and its state-of-the-art accuracy on
challenging benchmarks.

5.1 Introduction

Man-made environments are composed of many objects with simple geometric properties
that can be used for reference in visual simultaneous localization and mapping (SLAM) sys-
tems. In this process, these objects represent higher-level semantic information in the map,
which could be used, e.g., for robots to reason about the world, to communicate informa-
tion, or to display information to users, for instance, using virtual reality devices. The object
states can be concurrently estimated with the motion of the camera. Integrated consistently,
camera motion and object state estimation can benefit from each other.

© 2016 IEEE. Reprinted, with permission, from Lingni Ma, Christian Kerl, Jörg Stückler and Daniel Cremers,
CPA-SLAM: Consistent Plane-model Alignment for Direct RGB-D SLAM, in proc. of IEEE International Conference
on Robotics and Automation (ICRA), May 2016. Revised layout, minor adaptations and extended visualization
for Figure 5.1, Figure 5.6.
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5.1. Introduction

Figure 5.1: Demo of the CPA SLAM algorithm. First row: plane segmentation and associ-
ation of all keyframes (minimal overlapping required), which contains false detections, e.g.,
objects on the table. Second row: the average soft labeling of plane from tracking with an
EM framework. The probability of plane drops from yellow to blue. Third Row: the final
mapping and the plane-keyframe constraints for graph optimization. Last row: colored
model and the camera trajectories before (red) and after (blue) optimization.

In this paper, we propose a novel formulation for including planes as a global model into
a direct, keyframe-based SLAM approach with an expectation-maximization (EM) frame-
work. For tracking and map optimization, we propose an image alignment method that
tracks the camera motion towards a reference keyframe and, at the same time, aligns the
image with the planes in a global model. The model planes are concurrently extracted from
the keyframes and estimated in global coordinates using graph optimization. By including
both local frame-to-keyframe and global frame-to-model constraints in direct image align-
ment, we significantly reduce drift that is a typical problem of pure keyframe-based SLAM
methods. Graph constraints between keyframes without overlapping views can be estab-
lished if they observe the same model plane. An additional benefit of our method is that it
provides a compact planar scene representation.

We name our algorithm CPA-SLAM and show a demo in Figure 5.1. On the first row we
visualize for all keyframes their segmentation into planes and the association of these planes
based on a minimal overlap criterion. It can be seen that there are some false segmentations,
e.g., small objects on and close to surfaces such as walls and tables are included into the
plane segments. Shown one the second row, we illustrate that our EM tracking automatically
determines not to align these pixels with the plane model. The final models on last two rows
demonstrate the accurate mapping achieved with our method. It also shows the constraints
between non-overlapping keyframes that are otherwise difficult to establish without the
plane model. The major contributions of this work are summarized as follows:

• We develop an RGB-D SLAM approach that consistently tracks camera motion through
direct image alignment towards a keyframe (as in Kerl et al. (2013a) ) and a global plane
model in an EM framework.

• We further use this alignment method to obtain spatial constraints between keyframes and
the global plane model. These are jointly optimized with alignment constraints between
keyframes for global consistency.
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• We demonstrate a real-time capable SLAM system.

We compare our method to state-of-the-art approaches on challenging benchmark datasets
and demonstrate improvements in trajectory estimation accuracy in relation to these ap-
proaches.

5.2 Related Work

Several approaches to visual SLAM have exploited planes as typical features in man-made
environments. Gee et al. (2007) use planes to reduce the amount of interest points in a
monocular Kalman-filter-based SLAM approach. In Servant et al. (2008), planes are also
included in the state space of an EKF method to monocular SLAM. Their focus is on the
incremental optimization of the planes in a global frame for augmented reality applications.
In Stückler and Behnke (2008), orthogonality of planes in indoor environments is exploited
to improve the consistency of plane models and SLAM. Martinez-Carranza and Calway
(2010) propose a unified parameterization for points and planes in a monocular EKF-SLAM
system.

In RGB-D SLAM, dense depth enables the detection of texureless planes. Dou et al.
(2012) combine planes and interest points in frame-to-frame matching and bundle adjust-
ment. They detect planes using a Hough-voting scheme. The corresponding planes between
frames are found through RANSAC which yields plane tracks throughout the RGB-D se-
quence. Global planes are instantiated from the tracks and used within bundle adjustment.
Since there may exist several tracks of the same plane entity, the planes are merged according
to distance criteria. Taguchi et al. (2013) also use interest points and planes for SLAM with
RGB-D sensors. They directly use various combinations of point and plane observations in
a RANSAC framework to determine correspondence and camera pose between frames and
a global map. Trevor et al. (2012) use RANSAC to find the major planes in a scene from
RGB-D and 2D laser measurements. SLAM is performed in an EKF framework, associating
plane observations with global planes in the map. Salas-Moreno et al. (2014) integrate
incremental plane mapping into point-based fusion (Keller et al. 2013). Besides isolated
surfels, they also label surfels to belong to the same planar structure and enforce planarity
constraints in their estimates.

Some works also have tackled the problem of including object detection into SLAM. Salas-
Moreno et al. (2013) detect objects from a model database and estimate their poses in
individual frames. The poses of these objects in the global frame are then estimated through
graph optimization. Another similar work is semantic bundle adjustment by Fioraio and
Stefano (2013) in which the objects are detected and tracked, and included as 6-DoF land-
marks in a bundle adjustment framework. In contrast to our approach, both methods do not
handle a seamless transition between object and remaining image measurements already in
the camera tracking part.

Our method applies direct alignment towards keyframe and plane model consistently in an
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EM framework to estimate camera motion. We also use both keyframes and planes to obtain
spatial constraints for global graph optimization.

5.3 Direct SLAM with Model Planes

Our SLAM system has a mixed nature of frame-to-keyframe and frame-to-model online
tracking. As a global model, we maintain a set of planes that originate from keyframe
segmentation to present the large smooth regions in the scene. We optimize the global
plane model with all observations from the keyframes.

Figure 5.2 illustrates our SLAM system. At the front-end tracking, each RGB-D frame is
aligned towards its nearest keyframe as well as the global plane model in an EM framework.
An RGB-D frame becomes a new reference keyframe, if the certainty of motion estimation
drops below a threshold. When a new keyframe is produced, an iteration of back-end
optimization starts. In this process, we first segment the keyframe and associate the detected
planes with the global model. Planes that are failed to be associated with existing planes in
the model are included as new planes into the model. We further search for loop closures
between keyframes and establish constraints between keyframe and the global model given
the keyframe plane observations. The graph is then optimized to correct the keyframe poses
and the plane model. The front-end tracking and back-end optimization can be processed
in parallel.

In the following section, we will first explain the incremental construction of the plane
model. We then detail our algorithm for camera tracking through direct image alignment
towards a keyframe and the plane model. Last, we explain how we optimize the plane
model and the camera poses through graph optimization.

5.3.1 Preliminaries

We denote the index of a keyframe by k and the current frame by i. An image is considered
as a 2D continuous domain Ω ⊂ R2 which can be segmented into disjoint regions Ωj. We
denote a 3D point by v, its unit normal by n, and a 2D pixel by x. The projection of a 3D
point onto the 2D image is x = ρ(v), and the back-projection is v = ρ−1(x). To represent
the rigid body motion in SE(3), we use the minimal parameterization with twist coordinate
ξ of Lie algebra se(3). The exponential map g(ξ) = exp(ξ̂) converts the twist coordinate
to a transformation matrix, and the log map g−1 operates vice versa. The subscript of
ξ specifies direction: ξji transforms from frame i to j, and ξi = ξwi transforms from
frame i to the world. The inverse motion is denoted by ξ−1

i = ξiw. We further define
function t(ξ, v) = g(ξ)v to transform 3D points, and ω(ξ, x) = ρ

(
t
(
ξ, ρ−1(x)

))
to warp

pixels between frames.

We parametrize planes using the Hessian form π = (nT ,d)T, where n is the unit plane
normal, and −d is the distance from the plane to the origin. The distance of any point v to
the plane is calculated by rd = nTv+ d. A plane observed in frame k is transformed into

74



5. CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM

current
frame

current
keyframe

global plane
model

EM pose
estimation

+

+

⇓

Front-end Tracking

loop closure
detection

plane
segmentation

plane
association

graph
optimization

pose constraints

plane constraints

Back-end Optimization

Figure 5.2: The schematic pipeline of the CPA SLAM system. At the front-end, the current
frame is aligned to a keyframe and the global plane map in the EM motion estimation
framework. A frame is classified as a keyframe if the tracking undertainty drops below
threshold. Once a new keyframe is produced, the back-end optimization starts. Plane
segmentation is performed and the detected segments are either associated with an existing
plane, or is added as a new plane to the map. We then perform graph optimization to jointly
estimate the optimal keyframe poses and the global plane map.

world coordinates by

t(ξk,π) = g(ξk)
−Tπ . (5.1)

5.3.2 Global Plane Model

We define the global plane model as a set of planes in the world coordinates
{
π
g
m

}
. This

model represents large flat surfaces in a scene. Each plane π
g
m in the model is associated

with a list of independent local observations πmk in the keyframes. The global plane model
is estimated through graph optimization using all local observations, which we detail in
Section 5.3.6.

The global plane model is augmented incrementally. Whenever a new keyframe is produced,
it is segmented into K regions, where Ω0 is the non-planar region and Ωj , j > 0 is the
jth plane. For efficient plane detection, we apply the agglomerative hierarchical clustering
(AHC) algorithm proposed by Feng et al. (2014). For each plane segment, least squares
plane fitting is used to estimate its parameters. We then associate the local observations
with the global model. A correspondence is found if the angle between the plane normals is
small (< 15°) and their distances to the origin are similar. We further confirm the association
by warping the current plane segment into other keyframes and examine the overlaps. If
a local plane observation fails to be associated, it is added to the global model as a new
element.
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5.3.3 Tracking towards Keyframe and Plane Model

We now describe motion estimation from the current frame i to the keyframe k by minimiz-
ing both photometric error rI and geometric error rG. To simplify the notation, we drop the
subscript of ξ in this section.

5.3.3.1 Formulation

The photometric residual is defined on the intensity image assuming photoconsistency as

rI = Ik
(
ω(ξ, x)

)
− Ii(x) . (5.2)

The geometric residual is defined by

rG =

{
nT
k

(
g(ξ, vi) − vk

)
if ω(ξ, xi) ∈ Ω0

nT
πjg(ξ, vi) + dj if ω(ξ, xi) ∈ Ωj

, (5.3)

which depends on whether the current pixel xi is warped to the non-planar region Ω0 or
the jth planar region Ωj of the keyframe. In case of Ω0, the geometric residual resembles
a variant of ICP (Besl and McKay 1992). Otherwise, the residual is the distance to the
corresponding global plane transformed into the keyframe, thus, (nT

πj,dj)
T = t(ξ−1

k ,πg
m) .

Combining the photometric and geometric error into one variable r = (rI, rG)T, and with
N correspondences between keyframe and current frame, we find the camera motion by
minimizing the following non-linear weighted least squares,

ξ∗ = arg min
ξ

N∑
n

K∑
k

γnkwnkr
T
nΣ

−1
k rn . (5.4)

The weight wnk is used to enhance the robustness against outliers and can be iteratively
estimated. In our case, the weights are derived from a Student-t distribution as proposed
in Kerl et al. (2013a). The variable γn ∈ RK is the labeling that indicates which region
the residual belongs to. Accordingly, γn0 refers to non-planar region Ω0 and γnj refers
planar region Ωj. Instead of a hard labeling γnk ∈ {0, 1}, we use the soft labeling γnk ∈
[0, 1] to increase robustness. This objective can be efficiently optimized with the Gauss-
Newton method. In the following we will address how to concurrently determine γ,w,Σ
in a probabilistic formulation.

5.3.3.2 A Probabilistic View on Motion Estimation

The optimization problem in Equation (5.4) cannot be solved directly, because the param-
eters γ,w,Σ also need to be estimated in addition to the motion ξ. To solve for both, we

More detailed analysis on t-distribution and EM estimation for mixture models are given in Section 3.1. The
related direct tracking formulation and solutions to Jacobian computation is described in Section 3.2
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motivate the same energy function from a probabilistic point of view and show that opti-
mizing Equation (5.4) is equivalent to optimizing a mixture of bivariate t-distributions in an
EM framework.

Suppose that K− 1 planes are visible in the keyframe. For each pixel observation with resid-
ual rn, there is a corresponding indicator zn ∈ BK that tells which segment the geometric
observation comes from. As an indicator, zn satisfies znk ∈ {0, 1} and

∑K
k znk = 1. Now,

assume the following probability

p(znk = 1) = ηk (5.5)

p(rn | znk = 1) = pt(rn ; 0,Σk,νk), (5.6)

which can also be written in a compact form,

p(zn) =

K∏
k

η
znk

k , p(rn | zn) =

K∏
k

pt(rn ; 0,Σk,νk)znk . (5.7)

The marginal probability of rn is therefore,

p(rn) =

K∑
k

ηkpt(rn ; 0,Σk,νk), (5.8)

which is a mixed model of bivariate t-distributions. Seeking motion ξ by maximum-likelihood
estimation, yields

ξ∗ = arg max
ξ

logp(r | ξ) = arg max
ξ

N∑
n

log
( K∑

k

ηkpt(rn; 0,Σk,νk)
)

.

With the distribution of r being a mixed model, the logarithm acts outside the summation
and the direct optimization no longer yields a weighted least squares form. Even worse,
there is no closed-form solution for the hyper-parameter Σk.

The indicator zn is a latent variable which we cannot observe directly. Therefore, the ob-
served data r are incomplete, while {r, z} are complete. Using Equation (5.7), the complete
log-likelihood is,

logp(r, z) = log
N∏
n

K∏
k

(
ηkpt(rn ; 0,Σk,νk)

)znk

=

N∑
n

K∑
k

znk log
(
ηkpt(rn ; 0,Σk,νk)

)
. (5.9)

This shows that with the knowledge of the indicators z we can regain the simple form of
the optimization problems to estimate motion and hyper-parameters.
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5.3.3.3 Tracking as Expectation-Maximization

The EM algorithm provides a probabilistic formalism to estimate the parameters of posterior
probability functions with latent variables as in Equation (5.9). It constructs a lower bound
on the log-likelihood by optimizing the Kullback-Leibler divergence between a simpler ap-
proximation and the actual posterior probability (see Bishop (2006) for details). In EM, one
therefore optimizes the conditional expectation of the log joint probability, conditioned on
the posterior probability of the latent variables. In our case, this is

Ep(z|r)

[
logp(r, z)

]
=

N∑
n

K∑
k

γnk log
(
ηkpt(rn ; 0,Σk,νk)

)
, (5.10)

where we define the mixing coefficient

γnk = Ep(z|r)[znk] = p(znk | rn). (5.11)

Further writing out the EM objective function yields,

Ep(z|r)

[
logp(r, z)

]
=

N∑
n

K∑
k

γnk ·
νk + 2

νk + rT
nΣ

−1
k rn

· rT
nΣ

−1
k rn. (5.12)

Apparently, this corresponds to the previous objective function in Equation (5.4) by setting

wnk =
νk + 2

νk + rT
nΣ

−1
k rn

. (5.13)

Now we can deduct the EM steps. In the (t+ 1) E-step, we estimate the posterior probability
of z holding parameters ξ,η,Σ from the t M-step fixed. Working out the mathematical
details, this yields

γt+1
nk =

ηtkpt
(
rn; 0,Σt

k,νk
)∑K

j=1 η
t
jpt

(
rn; 0,Σt

j ,νk
) . (5.14)

In the (t+ 1) M-step, we in turn solve for the motion estimation holding the mixing coef-
ficients from the (t+ 1) E-step fixed. To this end, Equation (5.12) is iteratively linearized
with first-order Taylor approximation of r. At each iteration, this yields a normal equation
to solve for an increment ∆ξ on the motion,

N∑
n

K∑
k

γt+1
nk w

t+1
nk JT

nΣ
−1
k Jn∆ξ = −

N∑
n

K∑
k

γt+1
nk w

t+1
nk JT

nΣ
−1
k rn. (5.15)

The hyper-parameters are then updated by

ηt+1
k = arg max

ηk

pt(rn ; 0,Σk,νk)
)
=
1

N

N∑
n

γt+1
nk , (5.16)

Σt+1
k = arg max

Σk

pt(rn ; 0,Σk,νk)
)
=

∑N
n γ

t+1
nk w

t+1
nk rnr

T
n∑N

n=1 γ
t+1
nk

. (5.17)
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(a) keyframe(b) keyframe plane segmentation

(c) hard labeling(d) EM, shown with 1− γn0

0

0.25

0.5

0.75

1

Figure 5.3: Comparison between the hard labeling and EM soft labeling to associate planar
points in the current frame. The soft labeling is more robust against the false segmentation
in the keyframe, e.g., the keyboard and the book are assigned 0 probability to being on the
plane of the table.

0 0.25 0.5 0.75 1

(a) (c)

(b) (d)

Figure 5.4: Properties of our tracking method: (a) keyframe; (b) plane segmentation; (c)
the 1st, 11th, 21st, 31st and 44th (the last) frames that are registered to the keyframe; (d)
corresponding EM soft labeling of (c), shown value of 1−γn0. While EM trusts the keyframe
data more when the current frame has a small temporal and spatial distance to the keyframe,
it relies more on the global planar map otherwise.
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From the above deduction, we see the alternating optimization principle of EM. The E-step
computes the soft labeling given the current parameter values, while the M-step reestimates
the parameters based on the latest soft labeling. To implement the EM framework, we use
projective data association (Newcombe et al. 2011a) to guide the iterative EM steps. At each
M-step, we warp the current frame into the keyframe and find correspondences for pixels
if possible. With the segmented keyframe, the data association propagates the keyframe
labeling to the current frame. Since we have small motion between frames and a good initial
guess through tracking, the label propogation is mostly correct. Therefore, if a point is
associated with plane j, we compute γnj according to Equation (5.14) and set γn0 = 1−γnj.
Otherwise, we set γn0 = 1. This implementation efficiently approximates the original EM
solution due to the fact that a point most likely belongs to only one plane (up to plane
intersections).

5.3.4 Properties of the EM Formulation

While our tracking method estimates camera motion, it also estimates the segmentation of
the current frame via soft labeling. Note that a hard labeling can be easily obtained using
projective data association. However, soft labeling is preferred, as it is more robust against
false segmentation. We illustrate this in Figure 5.3, where the plane segmentation contains
outliers (e.g., the keyboard and the book). These false detections are difficult to avoid due
to noise and extreme scenarios with two close parallel planes.

Another property of our EM tracking is demonstrated in Figure 5.4, which shows the soft la-
beling of subsequent frames that are aligned to the same keyframe. In this example, tracking
trusts the keyframe data more when the current frame has a small temporal and spatial dis-
tance to the keyframe, while it trusts the global plane model more when the current frame
is further away. This is logical and as expected. With frames being close to the keyframe,
the measurements very well correspond to keyframe data and, hence, direct alignment to
the keyframe yields reliable and accurate registration. However, when a frame moves away
from the keyframe both temporally and spatially, the difference between the measurements
increases and drift accumulates. In such cases, the global plane model becomes beneficial.

5.3.5 Keyframe Selection and Loop Closure Detection

Following the work of Kerl et al. (2013a), keyframes are selected by examining the uncer-
tainty of motion estimation. The normal equation (5.15) provides an approximate Hessian
matrix H,

H =

N∑
n

K∑
k

γt+1
nk w

t+1
nk JT

nΣ
−1
k Jn. (5.18)

Its inverse gives a lower bound on the covariance of the estimated motion, i.e., Σξ ≈ H−1.
Assuming ξ ∼ N(ξ∗,Σξ), we can extract the uncertainty embedded in covariance into a
scalar value using the differential entropy h(ξ) = 3

(
1 + ln(2π)

)
+ 0.5 ln(|Σξ|). Given the

current keyframe k, we test the entropy ratio for every consecutive frame tracked towards
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the keyframe by α = h(ξk+j)/h(ξk+1). Whenever α drops below a pre-defined threshold,
the (k+ j)th frame is selected as the new keyframe. Empirically, we find the value range
0.9 ∼ 0.95 to generate good performance.

Whenever a new keyframe is produced, we find loop closures by comparing the current
keyframe to previous keyframes via a spatial search. To register two keyframes, we use
direct image alignment and initialize the estimation with the transformation computed from
their poses. The same ratio test is performed to determine a successful closure. After the
last keyframe being produced, we run an additional loop closure search for all keyframes.

5.3.6 Joint Pose and Plane Graph Optimization

On the global scale, we optimize the keyframe poses and the model planes for consistency
in a graph

Θ∗ = arg min
Θ

∑
i,j

eT
ijHijeij, (5.19)

where eij is the error of the edge connecting vertices i, j and Hij is the information ma-
trix. The variable Θ is the list of the parameters to be optimized. In our case, Θ =

(ξ1,ξ2, . . . ,ξN,πg
1 ,πg

2 , . . . ,πg
M). Since there are two types of vertices, keyframe poses and

global planes, the graph also consists of two types of edges: between two poses and between
a plane and a keyframe pose.

For an edge connecting two poses ξi and ξj with the measured constraint ξji, the edge error
is calculated by

eij = g
−1
(
g(ξ−1

i )g(ξj)g(ξji)
)
, (5.20)

The Hessian in Equation (5.18) is used as the information matrix.

Now we define the error for an edge connecting a global plane π
g
j and a keyframe pose

ξi, given the local plane observation πji in the keyframe. Notice that the Hessian plane
equation is an over-parameterization of 3D planes, since a plane has only three degrees
of freedom. Therefore, the Hessian form will lead to complications in the optimization,
which requires extra constraints to ensure the unit length of the plane normal. To avoid
this problem, we use the minimal parameterization τ = (ϕ,ψ,d), where ϕ and ψ are the
azimuth and elevation angle of the normal, respectively. The following conversion between
the Hessian and the minimal representation applies,

τ = q(π) =

(
ϕ = arctan

ny

nx
,ψ = arccosnz,d

)T
, (5.21)

q−1(τ) =
(

cosϕ cosψ, sinϕ cosψ,− sinψ,d
)T. (5.22)

To avoid the singularities of the minimal representation, we force the angle to fall into
(−π,π]. The error for plane-keyframe edges is then defined as

eij = q
(
π
g
j

)
− q

(
t(ξi,πji)

)
. (5.23)
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Figure 5.5: Comparison of accumulated point cloud from keyframes, left to right: tracking
without planes, hard labeling the planes, and soft labeling the planes.

The information matrix for plane-keyframe edges is set to isotropic using σ−2
π I. We optimize

the graph when a new keyframe is inserted into the graph using the g2o framework by
Kümmerle et al. (2011).

5.4 Experimental Results

In this section, we evaluate our EM tracking method and the overall SLAM algorithm. Two
public datasets with ground-truth trajectories are used in the assessment: the TUM RGB-D
benchmark (Sturm et al. 2012) and the ICL-NUIM synthetic scenes (Handa et al. 2014). We
also evaluate our algorithm with the Stanford scene3D dataset by Zhou and Koltun (2013),
which has longer and more complicated trajectories. The EM tracking is implemented with
CUDA and run on an NVidia GTX780 GPU with 2304 cores, 3.7 GHz, and 3 GB memory.
The remaining SLAM methods are implemented in C++ to run on CPU and evaluated with
an Intel Core i7-2660, 3.4 GHz and 8 GB RAM.

Table 5.1: The RMSE of absolute trajectory error (no final optimization) of frame-to-keyframe
tracking methods: without plane model, plane model with a hard labeling and plane model
with soft labeling (bold marks the best).

dataset without plane hard labeling soft labeling

fr1/desk 0.034 0.080 0.030
fr1/plant 0.050 0.072 0.073

fr2/desk 0.097 0.134 0.095
fr3/office 0.086 0.077 0.076
fr3/structure_texture_near 0.049 0.028 0.036

fr3/nst 0.076 0.032 0.032
iclnuim/lr3 0.002 0.049 0.002
iclnuim/lr3noisy 0.028 0.024 0.019

In the first experiment, we evaluate the performance of our EM tracking method by com-
paring with two other variants: a) tracking without planes and b) tracking with planes
using hard-labeling. We set α = 0.9 for keyframe selection in all methods and compare the

82



5. CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM

Table 5.2: Comparison of our CPA SLAM to other SLAM algorithms using planes. The
RMSE of the absolute trajectory error (m) are shown and the results of other methods are
cited from the original papers (bold marks the best).

dataset CPA SLAM planar SLAM [160] point-plane SLAM [182]

iclnuim/lr0noisy 0.007 0.246 –
iclnuim/lr1noisy 0.006 0.017 –
fr1/xyz 0.011 – 0.024

fr1/floor 0.085 – 0.065

Table 5.3: The RMSE of the absolute trajectory error (m) of CPA SLAM, in compari-
son to state-of-the-art algorithms: DVO SLAM (Kerl et al. 2013a), Kintinuous with de-
formable mapping (Whelan et al. 2015b), MRSMap (Stückler and Behnke 2012), and RGB-D
SLAM (Endres et al. 2012). The best results are marked in bold.

dataset CPA SLAM DVO SLAM Kintinous MRSMap RGB-D SLAM

fr1/desk 0.018 0.021 0.037 0.043 0.023

fr1/desk2 0.029 0.046 0.071 0.049 0.043

fr1/plant 0.029 0.028 0.047 0.026 0.091

fr1/room 0.055 0.053 0.075 0.069 0.084

fr1/rpy 0.024 0.020 0.028 0.027 0.026

fr1/xyz 0.011 0.011 0.017 0.013 0.014

fr2/desk 0.046 0.017 0.034 0.052 0.095

fr2/xyz 0.014 0.018 0.029 0.020 0.026

fr3/office 0.025 0.035 0.030 0.042 –
fr3/nst 0.016 0.038 0.031 1.530 –
iclnuim/lr2noisy 0.089 0.339 0.129 0.331 –
iclnuim/lr3noisy 0.009 0.152 0.864 1.127 –

obtained trajectories without the final graph optimization. Table 5.1 shows the root mean
square error (RMSE) of the absolute trajectory error (ATE) and Figure 5.5 gives a visual
comparison of the alignment results. It can be seen that our tracking improves trajectory
accuracy and yields better consistent models.

In the second experiment, we evaluate the benefits of the global plane model in our full
CPA-SLAM system. Table 5.2 presents a comparison between our method and two other
SLAM algorithms that use planes: dense planar SLAM by Salas-Moreno et al. (2014) and
point-plane SLAM by Taguchi et al. (2013). Our EM-based algorithm achieves much bet-
ter accuracy on the sequences. These improvements come from joining the advantages of
keyframe-based and model-based tracking into a flexible and robust EM framework.

We also compare our CPA-SLAM algorithm to several state-of-the-art RGB-D SLAM systems,
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Figure 5.6: Fused model from our SLAM methods. The trajectories with and without graph
optimization are shown in blue and red, and the constraints between pose and planes are
shown in gray.

Table 5.4: The average runtime performance of our algorithm, measured in millisecond.
Frame tracking runs well within the typical camera frame rate of 30fps. Plane segmentation
and association has to run only for each keyframe. The comparably slow graph optimization
runs in a background thread. Therefore, our RGB-D SLAM is able to perform in realtime.

fr3/office fr3/nst iclnuim/lr3noisy

keyframes/ frames 118/ 2489 66/ 1637 59/ 1241

global planes/ local planes 18/ 197 1/ 66 7/ 64

frame tracking (ms) 20.9 24.1 23.2
plane segmentation (ms) 9.3 14.4 9.8
plane association (ms) 10.7 8.4 8.4
graph optimization (ms) 75.8 24.0 22.0

including DVO-SLAM from Kerl et al. (2013a), Kintinuous with deformable mapping from
Whelan et al. (2015b), MRSMap from Stückler and Behnke (2012), and RGB-D SLAM from
Endres et al. (2012). We report the ATE of the final trajectories in Table 5.2. The results show-
case that our SLAM algorithm performs better or on par with the state-of-the-art algorithms
on the sequences. For sequences with many planar structures or containing heavy noise,
e.g., fr3/nst, iclnuim/lr2noisy and iclnuim/lr3noisy, our algorithm demonstrates most ad-
vantages in reducing tracking errors. Figure 5.6 shows the output of our SLAM methods. It
can be seen that with a global plane model, constraints between non-overlapping keyframes
are established, as long as they observe the same global plane. As can be seen, geometry is
accurately reconstructed from the estimated trajectory.

Table 5.4 presents the runtime of the computationally intensive parts of our method. Track-
ing achieves real-time performance with approximately 50 fps. Plane segmentation is also
efficiently performed with approximately 100 fps. Combining frame tracking, plane segmen-
tation and association, our implementation requires around 40 ms to process one keyframe.
Searching loop closures and optimizing the graph requires relatively long time, however,
this can be run on parallel CPU threads. As a result, our method is capable of real-time
performance for 30 fps RGB-D mapping.
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5.5 Conclusion

In this paper, we proposed a novel method that combines direct image alignment and global
model alignment for RGB-D SLAM. Our method tracks camera motion towards the nearest
keyframe and the global plane model in an EM framework. This reduces drift and es-
tablishes constraints among non-overlapping keyframes that observe the same plane. The
keyframe poses and the plane model are optimized in one graph concurrently. Our method
exhibits state-of-the-art accuracy on publicly available benchmark datasets and is capable of
real-time performance. In future work, we will consider the integration of further types of
geometric shapes and complex objects into our SLAM system. One important question here
is how to learn and acquire object models on-the-fly, and how to come to adequate object
hypotheses.
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CHAPTER 6
FuseNet: Incorporating Depth into Semantic

Segmentation via Fusion-based CNN
Architecture

A bstract With the availability of RGB-D cameras, it is expected that additional depth
measurement will improve the accuracy. Here we investigate a solution how to incorpo-

rate complementary depth information into a semantic segmentation framework by making
use of convolutional neural networks (CNNs). Recently encoder-decoder type fully convolu-
tional CNN architectures have achieved a great success in the field of semantic segmentation.
Motivated by this observation we propose an encoder-decoder type network, where the en-
coder part is composed of two branches of networks that simultaneously extract features
from RGB and depth images and fuse depth features into the RGB feature maps as the net-
work goes deeper. Comprehensive experimental evaluations demonstrate that the proposed
fusion-based architecture achieves competitive results with the state-of-the-art methods on
the challenging SUN RGB-D benchmark obtaining 76.27% global accuracy, 48.30% average
class accuracy and 37.29% average intersection-over-union score.

6.1 Introduction

Visual scene understanding in a glance is one of the most amazing capability of the human
brain. In order to model this ability, semantic segmentation aims at giving a class label for
each pixel on the image according to its semantic meaning. This problem is one of the most
challenging tasks in computer vision, and has received a lot of attention from the computer

© Springer. Reprinted, with permission, from Caner Hazirbas, Lingni Ma, Csaba Domokos and Daniel Cremers,
FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture, In proc. of Asian
Conference on Computer Vision (ACCV), Nov 2016. Revised layout, minor adaptations.
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Figure 6.1: An exemplar output of FuseNet. From left to right: input RGB and depth images,
the predicted semantic labeling and the probability of the corresponding labels, where white
and blue denote high and low probability, respectively.

vision community (Byeon et al. 2015; Gupta et al. 2014; G. Lin et al. 2016b; Long et al.
2015; Noh et al. 2015; Pinheiro and Collobert 2014; Zheng et al. 2015).

Convolutional neural networks (CNNs) have recently attained a breakthrough in various
classification tasks such as semantic segmentation. CNNs have been shown to be powerful
visual models that yields hierarchies of features. The key success of this model mainly lies
in its general modeling ability for complex visual scenes. Currently CNN-based approaches
(L.-C. Chen et al. 2015; Long et al. 2015; Zheng et al. 2015) provide the state-of-the-art
performance in several semantic segmentation benchmarks. In contrast to CNN models, by
applying hand-crafted features one can generally achieve rather limited accuracy.

Utilizing depth additional to the appearance information (i.e., RGB) could potentially im-
prove the performance of semantic segmentation, since the depth channel has complemen-
tary information to RGB channels, and encodes structural information of the scene. The
depth channel can be easily captured with low cost RGB-D sensors. In general object classes
can be recognized based on their color and texture attributes. However, the auxiliary depth
may reduce the uncertainty of the segmentation of objects having similar appearance infor-
mation. Couprie et al. (2013) observed that the segmentation of classes having similar
depth, appearance and location is improved by making use of the depth information too,
but it is better to use only RGB information to recognize object classes containing high vari-
ability of their depth values. Therefore, the optimal way to fuse RGB and depth information
has been left an open question.

In this paper we address the problem of indoor scene understanding assuming that both
RGB and depth information simultaneously available (see Figure 6.1). This problem is rather
crucial in many perceptual applications including robotics. We remark that although indoor
scenes have rich semantic information, they are generally more challenging than outdoor
scenes due to more severe occlusions of objects and cluttered background. For example,
indoor object classes, such as chair, dining table and curtain are much harder to recognize
than outdoor classes, such as car, road, building and sky. The contribution of the paper can
be summarized as follows:
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• We investigate a solution how to incorporate complementary depth information into a
semantic segmentation framework. For this sake we propose an encoder-decoder type
network, referred to as FuseNet, where the encoder part is composed of two branches
of networks that simultaneously extract features from RGB and depth images and fuse
depth features into the RGB feature maps as the network goes deeper (see Figure 6.2).

• We propose and examine two different ways for fusion of the RGB and depth channels.
We also analyze the proposed network architectures, referred to as dense and sparse
fusion (see Figure 6.3), in terms of the level of fusion.

• We experimentally show that our proposed method is successfully able to fuse RGB and
depth information for semantic segmentation also on cluttered indoor scenes. Moreover,
our method achieves competitive results with state-of-the-art methods in terms of seg-
mentation accuracy evaluated on the challenging SUN RGB-D dataset (Song et al. 2015).

6.2 Related Work

A fully convolutional network (FCN) architecture has been introduced in Long et al. (2015)
that combines semantic information from a deep, coarse layer with appearance informa-
tion from a shallow, fine layer to produce accurate and detailed segmentations by applying
end-to-end training. Noh et al. (2015) have proposed a novel network architecture for
semantic segmentation, referred to as DeconvNet, which alleviates the limitations of fully
convolutional models (e.g., , very limited resolution of labeling). DeconvNet is composed of
deconvolution and unpooling layers on top of the 16-layer VGGNet (Simonyan and Zisser-
man 2015). To retrieve semantic labeling on the full image size, M. D. Zeiler and Fergus
(2014) have introduced a network composed of deconvolution and unpooling layers. Con-
currently, a very similar network architecture has been presented in Badrinarayanan et al.
(2017) based on the 16-layer VGGNet (Simonyan and Zisserman 2015), referred to as Seg-
Net. In contrast to DeconvNet, SegNet consists of smoothed unpooled feature maps with
convolutions instead of deconvolutions. Kendall et al. (2015) further improved the seg-
mentation accuracy of SegNet by applying dropout (Srivastava et al. 2014) during training
and inference (Gal and Ghahramani 2016).

Some recent semantic segmentation algorithms combine the strengths of CNN and con-
ditional random field (CRF) models. It has been shown that the poor pixel classification
accuracy, due to the invariance properties that make CNNs good for high level tasks, can be
overcome by combining the responses of the CNN at the final layer with a fully connected
CRF model (L.-C. Chen et al. 2015). CNN and CRF models have also been combined in
Zheng et al. (2015). More precisely, the method proposed in Zheng et al. (2015) applies
mean field approximation as the inference for a CRF model with Gaussian pairwise poten-
tials, where the mean field approximation is modeled as a recurrent neural network, and
the defined network is trained end-to-end refining the weights of the CNN model. Recently,
G. Lin et al. (2016a); G. Lin et al. (2016b) have also combined CNN and CRF models for
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learning patch-patch context between image regions, and have achieved the current state-
of-the-art performance in semantic segmentation. One of the main ideas in G. Lin et al.
(2016a) is to define CNN-based pairwise potential functions to capture semantic correla-
tions between neighboring patches. Moreover, efficient piecewise training is applied for
the CRF model in order to avoid repeated expensive CRF inference during the course of
back-propagation.

In Pinheiro and Collobert (2014) a feed-forward neural network has been proposed for
scene labeling. The long range (pixel) label dependencies can be taken into account by
capturing sufficiently large input context patch, around each pixel to be labeled. The method
by Pinheiro and Collobert (2014) relies on a recurrent convolutional neural networks
(RCNN), i.e., a sequential series of networks sharing the same set of parameters. Each
instance takes as input both an RGB image and the predictions of the previous instance of
the network. RCNN-based approaches are known to be difficult to train, in particular, with
large data, since long-term dependencies are vanished while the information is accumulated
by the recurrence (Byeon et al. 2015).

Byeon et al. (2015) have presented long short term memory (LSTM) recurrent neural net-
works for natural scene images taking into account the complex spatial dependencies of
labels. LSTM networks have been commonly used for sequence classification. These net-
works include recurrently connected layers to learn the dependencies between two frames,
and then transfer the probabilistic inference to the next frame. This allows to easily memo-
rize the context information for long periods of time in sequence data. It has been shown
in Byeon et al. (2015) that LSTM networks can be generalized well to any vision-based task
and efficiently capture local and global contextual information with a low computational
complexity.

State-of-the-art CNNs have the ability to perform segmentation on different kinds of input
sources such as RGB or even RGB-D. Therefore a trivial way to incorporate depth informa-
tion would be to stack it to the RGB channels and train the network on RGB-D data assuming
a four-channel input. However, it would not fully exploit the structure of the scene encoded
by the depth channel. This will be also shown experimentally in Section 6.4. By making use
of deeper and wider network architecture one can expect the increase of the robustness and
the accuracy. Hence, one may define a network architecture with more layers. Nevertheless,
this approach would require huge dataset in order to learn all the parameter making the
training infeasible even in the case when the parameters are initialized with a pre-trained
network.

6.2.1 The State of the Arts on RGB-D Data

A new representation of the depth information has been presented by Gupta et al. (2014).
This representation, referred to as HHA, consists of three channels: disparity, height of the
pixels and the angle between of normals and the gravity vector based on the estimated
ground floor, respectively. By making use of the HHA representation, a superficial improve-
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RGB Encoder

Depth Encoder

RGB-D Decoder

Figure 6.2: The architecture of FuseNet proposed in this paper, where the layers are color
coded. The network contains two branches to extract features from the RGB and the depth
input, and the feature maps from depth is constantly accvfused into the RGB branch, de-
noted with the red arrows. In our architecture, fusion layer is implemented as element-wise
summation, as detailed in the dashed box.

ment was achieved in terms of segmentation accuracy (Gupta et al. 2014). On the other
hand, the information retrieved only from the RGB channels still dominates the HHA rep-
resentation. As we shall see in Section 6.4, the HHA representation does not hold more
information than the depth itself. Furthermore, computing HHA representation requires
high computational cost. In this paper we investigate a better way of exploiting depth infor-
mation with less computational burden.

Z. Li et al. (2016b) have introduced a novel LSTM Fusion (LSTM-F) model that captures
and fuses contextual information from photometric and depth channels by stacking several
convolutional layers and an LSTM layer. The memory layer encodes both short- and long-
range spatial dependencies in an image along vertical direction. Moreover, another LSTM-F
layer integrates the contexts from different channels and performs bi-directional propagation
of the fused vertical contexts. In general, these kinds of architectures are rather complicated
and hence more difficult to train. In contrast to recurrent networks, we propose a simpler
network architecture.

6.3 FuseNet: Unified CNN Framework for Fusing RGB and Depth Channels

We aim to solve the semantic segmentation problem on RGB-D images. We define the label
set as L = {1, 2, . . . ,K}. We assume that we are given a training set

D =
{
(Xi,Yi) | Xi ∈ RH×W×4,Yi ∈ LH×W ∀i ∈ {1, . . . ,M

}
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consisting of M four-channel RGB-D images (Xi), having the same size H×W, along with
the ground-truth labeling (Yi). Moreover, we assume that the pixels are drawn as i.i.d.
samples following a categorical distribution. Based on this assumption, we may define a
CNN model to perform multinomial logistic regression.

The network extracts features from the input layer and through filtering provides clas-
sification score for each label as an output at each pixel. We model the network as a
composition of functions corresponding to L layers with parameters denoted by W =(
w(1) ,w(2) , . . . ,w(L)

)T
, that is

f (x;W) = g(L)(g(L−1)
(
· · ·g(2)

(
g(1)

(
x;w(1)

)
;w(2)

)
· · · ;w(L−1));w(L)

)
. (6.1)

The classification score of a pixel x for a given class c is obtained from the function fc(x;W),
which is the cth component of f(x;W). Using the softmax function, we can map this score
to a probability distribution

p(c | x,W) =
exp (fc(x;W))∑K

k=1 exp (fk(x;W))
. (6.2)

For the training of the network, i.e., learning the optimal parameters W∗, the cross-entropy
loss is used, which minimizes the KL-divergence between the predicted and the true class
distribution:

W∗ = arg min
W

1

2
‖W‖2 − λ

MHW

M∑
i=1

HW∑
j=1

logp
(
yij | xij,W

)
, (6.3)

where xij ∈ R4 stands for the jth pixel of the ith training image and yij ∈ L is its ground-
truth label. The hyper-parameter λ > 0 is chosen to apply weighting for the regularization
of the parameters (i.e., ℓ2-norm of W).

At inference, a probability distribution is predicted for each pixel via softmax normaliza-
tion, defined in Equation (6.2), and the labeling is calculated based on the highest class
probability.

6.3.1 FuseNet Architecture

We propose an encoder-decoder type network architecture as shown in Figure 6.2. The
proposed network has two major parts: 1) the encoder part extracts features and 2) the decoder
part upsamples the feature maps back to the original input resolution. This encoder-decoder
style has been already introduced in several previous works such as DeconvNet (Noh et
al. 2015) and SegNet (Badrinarayanan et al. 2017; Kendall et al. 2015) and has achieved
good segmentation performance. Although our proposed network is based on this type of
architecture, we further consider to have two encoder branches. These two branches extract
features from RGB and depth images. We note that the depth image is normalized to have
the same value range as color images, i.e., into the interval of [0,255]. In order to combine
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(b) Dense fusion (FuseNet-DF)

Figure 6.3: Illustration of different fusion strategies at the second (CBR2) and third (CBR3)
convolution blocks of VGG 16-layer net. (a) The fusion layer is only inserted before each
pooling layer. (b) The fusion layer is inserted after each CBR block.

information from both input modules, we fuse the feature maps from the depth branch into
the feature maps of the RGB branch. We refer to this architecture as FuseNet (see Figure 6.2).

The encoder part of FuseNet resembles the 16-layer VGG net (Simonyan and Zisserman
2015), except of the fully connected layers FC6, FC7 and FC8, since the fully connected layers
reduce the resolution with a factor of 49, which increases the difficulty of the upsampling
part. In our network, we always use batch normalization (BN) after convolution (Conv) and
before rectified linear unit1 (ReLU) to reduce the internal covariate shift (Ioffe and Szegedy
2015). We refer to the combination of convolution, batch normalization and ReLU as CBR
block, respectively. The BN layer first normalizes the feature maps to have zero-mean and
unit-variance, and then scales and shifts them afterwards. In particular, the scale and shift
parameters are learned during training. As a result, color features are not overwritten by
depth features, but the network learns how to combine them in an optimal way.

The decoder part is a counterpart of the encoder part, where memorized unpooling is ap-
plied to upsample the feature maps. In the decoder part, we again use the CBR blocks. We
also did experiments with deconvolution instead of convolution, and observed very similar
performance. As proposed in Kendall et al. (2015), we also apply dropout in both the
encoder and the decoder parts to further boost the performance. However, we do not use
dropout during test time.

The key ingredient of the FuseNet architecture is the fusion block, which combines the
feature maps of the depth branch and the RGB branch. The fusion layer is implemented as
element-wise summation. In FuseNet, we always insert the fusion layer after the CBR block.

1 The rectified linear unit is defined as σ(x) = max(0, x).
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6.3. FuseNet: Unified CNN Framework for Fusing RGB and Depth Channels

By making use of fusion the discontinuities of the features maps computed on the depth
image are added into the RGB branch in order to enhance the RGB feature maps. As it can
be observed in many cases, the features in the color domain and in the geometric domain
complement each other. Based on this observation, we propose two fusion strategies: a)
dense fusion (FuseNet-DF), where the fusion layer is added after each CBR block of the
RGB branch. b) sparse fusion (FuseNet-SF), where the fusion layer is only inserted before
each pooling. These two strategies are illustrated in Figure 6.3.

6.3.2 Fusion of Feature Maps

In this section, we reason the fusion of the feature maps between the RGB and the depth
branches. To utilize depth information a simple way would be just stacking the RGB and
depth images into a four-channel input. However, we argue that by fusing RGB and depth
information the feature maps are usually more discriminant than the ones obtained from
the stacked input.

As we introduced before in Equation (6.1), each layer is modeled as a function g that maps
a set of input x to a set of output a with parameter w. We denote the kth feature map in the
lth layer by g(l)k . Suppose that the given layer operation consists of convolution and ReLU,
therefore

x
(l+1)
k = g

(l)
k

(
x(l);w(l)

k

)
= σ

(
〈w(l)

k , x(l)〉+ b(l)k

)
.

If the input is a four-channel RGB-D image, then the feature maps can be decomposed

as x =
(
aT ,bT

)T
, where a ∈ Rd1 , b ∈ Rd2 with dim(x) := d = d1 + d2 are features

learned from the color channels and from the depth channel, respectively. According to this
observation, we may write that

x
(l+1)
k = σ

(
〈w(l)

k , x(l)〉+ b(l)k

)
= σ

(
〈u(l)

k ,a(l)〉+ c(l)k + 〈v(l)k ,b(l)〉+ d(l)k

)
= max

(
0, 〈u(l)

k ,a(l)〉+ c(l)k + 〈v(l)k ,b(l)〉+ d(l)k

)
⩽ max(0, 〈u(l)

k ,a(l)〉+ c(l)k ) + max
(
0, 〈v(l)k ,b(l)〉+ d(l)k

)
(6.4)

= σ
(
〈u(l)

k ,a(l)〉+ c(l)k

)
+ σ

(
〈v(l)k ,b(l)〉+ d(l)k

)
,

where we applied the decomposition of w(l)
k =

(
u
(l)T

k , v(l)
T

k

)T
and b(l)k = c

(l)
k + d

(l)
k .

Based on the inequality in Equation (6.4), we show that the fusion of activations of the color
and the depth branches (i.e., their element-wise summation) produces a stronger signal
than the activation on the fused features. Nevertheless, the stronger activation does not
necessarily lead to a better accuracy. However, with fusion, we do not only increase the
neuron-wise activation values, but also preserve activations at different neuron locations.
The intuition behind this can be seen by considering low-level features (e.g., edges). Namely,
due to the fact that the edges extracted in RGB and depth images are usually complementary
to each other. One may combine the edges from both inputs to obtain more information.
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Input RGB-D RGB branch Depth branch Sum before ReLU Proposed

Figure 6.4: Comparison of two out of 64 feature maps produced at the CBR1_1 layer. The
features from RGB and depth mostly compensate each other, where the textureless region
usually have rich structure features and structureless regions usually present texture fea-
tures. This visually illustrates that the proposed fusion strategy better preserves the infor-
mative features from color and depth than applying element-wise summation followed by
ReLU.

Consequently, these low-level features help the network to extract better high-level features,
and thus enhance the ultimate accuracy.

To demonstrate the advantage of the proposed fusion, we visualize the feature maps pro-
duced by CBR1_1 in Figure 6.4, which corresponds to low-level feature extraction (e.g.,
edges). As it can be seen the low-level features in RGB and depth are usually complemen-
tary to each other. For example, the textureless region can be distinguished by its structure,
such as the lap against the wall, whereas the structureless region can be distinguished by
the color, such as the painting on the wall. While combining the feature maps before the
ReLU layer fail to preserve activations, however, the proposed fusion strategy, applied after
the ReLU layer, preserves well all the useful information from both branches. Since low-
level features help the network to extract better high-level ones, the proposed fusion thus
enhances the ultimate accuracy.

6.4 Experimental Evaluation

In this section, we evaluate the proposed network through extensive experiments. For this
purpose, we use the publicly available SUN RGB-D scene understanding benchmark (Song
et al. 2015). This dataset consists of 10335 synchronized RGB-D pairs, where pixel-wise
annotation is available. There is a standard trainval-test split, with 5050 images for testing
and 5285 images for training/validation. The SUN RGB-D benchmark is a collection of im-
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ages captured with different types of RGB-D cameras. The dataset also contains in-painted
depth images, obtained by making use of multi-view fusion technique. In the experiments
we also used the standard training and test split with in-painted depth images. However,
we excluded 587 training images that are originally obtained with RealSense RGB-D camera.
This is due to the fact that raw depth images from the aforementioned camera consist of
many invalid measurements, therefore in-painted depth images have many false values. We
remark that the SUN RGB-D dataset is highly unbalanced in terms of class instances, where
16 out of 37 classes rarely present. To prevent the network from over-fitting towards un-
balanced class distribution, we weighted the loss for each class with the median frequency
class balancing (Eigen and Fergus 2015). In particular, the class floormat and shower-curtain
have the least frequencies and they are the most challenging ones in the segmentation task.
Moreover, approximately 0.25% pixels are not annotated and do not belong to any of the
target 37 classes.

6.4.0.1 Training

We trained the all networks end-to-end. Therefore images were resized to the resolution
of 224× 224. To this end we applied bilinear interpolation on the RGB images and nearest-
neighbor interpolation on the depth images and the ground-truth labeling. The networks
were implemented with the Caffe framework (Jia et al. 2014) and were trained with stochas-
tic gradient descent (SGD) solver (Bottou 2012) using a batch size of 4. The input data
was randomly shuffled after each epoch. The learning rate was initialized to 0.001 and was
multiplied by 0.9 in every 50,000 iterations. We used a momentum of 0.9 and set weight
decay to 0.0005. We trained the networks until convergence, when no further decrease in
the loss was observed. The parameters in the encoder part of the network were fine-tuned
from the VGG 16-layer model (Simonyan and Zisserman 2015) pre-trained on the ImageNet
dataset (Russakovsky et al. 2015). The original VGGNet requires a three-channel color im-
age. Therefore, for different input dimensions we processed the weights of first layer (i.e.,
conv1_1) as follows:

1. averaged the weights along the channel for a single-channel depth input;

2. stacked the weights with their average for a four-channel RGB-D input;

3. duplicated the weights for a six-channel RGB-HHA input.

6.4.0.2 Testing

We evaluated the results on the original 5050 test images. For quantitative evaluation, we
used the following three criteria. Let TP, FP, FN denote the total number of true positive,
false positive, false negative and N denote the total valid (annotated) pixels, we define the
following criteria:
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1. Global accuracy, referred to as global, is the percentage of the correctly classified pixels,
defined as

global accuracy :=
1

N

K∑
c=1

TPc .

2. Mean accuracy, referred to as mean, is the average of classwise accuracy, defined as

classwise accuract :=
1

K

K∑
c=1

TPc

TPc + FPc
.

3. Intersection-over-union (IoU), is average value of the intersection of the prediction and
ground truth regions over the union of them, defined as

classwise IoU :=
1

K

K∑
c=1

TPc

TPc + FPc + FNc
.

Among these three measures, the global accuracy is relatively less informative due to the
unbalanced class distribution. In general, the frequent classes receive a high score and hence
dominate the less frequent ones. Therefore we also measured the average class accuracy and
IoU score to provide a better evaluation of our method.

6.4.1 Quantitative Results

In the first experiment, we compared our FuseNet to the state-of-the-art methods. The
results are presented in Table 6.1. We denote the SparseFusion and DenseFusion by FuseNet-
SF, FuseNet-DF, respectively, following by the number of fusion layers used in the network
(e.g., , FuseNet-SF5). The results shows that our FuseNet outperforms most of the existing
methods with a significant margin. FuseNet is not as competitive in comparison to the
Context-CRF by G. Lin et al. (2016a). However, it is also worth noting that the Context-CRF
paper trains the network with a different loss function that corresponds to piecewise CRF
training. It also requires mean-field approximation at the inference stage, followed by a
dense fully connected CRF refinement to produce the final prediction. Applying the similar
loss function and post-processing, FuseNet is likely to produce on-par or better results.

In the second experiment, we compare the FuseNet to network trained with different rep-
resenation of depth, in order to futher evaluate the effectiveness of depth fusion and differ-
ent fusion variations. The results are presented in Table 6.2. The upper part of the table
provides the results of network trained with RGB, depth and different combination and rep-
resentation of depth. It can be seen that stacking depth and HHA into color gives slight
improvements over network trained with only color, depth or HHA. In contrast, with the
depth fusion of FuseNet, we improve over a significant margin, in particular with respect
to the IoU scores. We remark that the depth fusion is in particular useful as a replacement
for HHA. Instead of preprocessing a single channel depth images to obtain hand crafted
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Table 6.1: Segmentation results on the SUN RGB-D dataset (37 classes) in comparison to
the state of the art. Our methods FuseNet-DF1 and FuseNet-SF5 outperforms most of the
existing methods, except for the Context-CRF by G. Lin et al. (2016a).

global accuracy classwise accuracy classwise IoU
FCN-32s [123] 68.35 41.13 29.00

FCN-16s [123] 67.51 38.65 27.15

Bayesian SegNet (RGB) [97] 71.20 45.90 30.70

LSTM [114] - 48.10 -
Context-CRF (RGB) [116] 78.40 53.40 42.30

FuseNet-SF5 76.27 48.30 37.29

FuseNet-DF1 73.37 50.07 34.02

Table 6.2: Segmentation results of FuseNet in comparison to the networks trained with RGB,
depth, HHA and their combinations. The second part of the table provides the results of
different variations of FuseNet. We show that FuseNet obtained significant improvments by
extracting more informative features from depth.

global accuracy classwise accuracy classwise IoU
Depth 69.06 42.80 28.49

HHA 69.21 43.23 28.88

RGB 72.14 47.14 32.47

RGB-D 71.39 49.00 31.95

RGB-HHA 73.90 45.57 33.64

FusetNet-SF1 75.48 46.15 35.99

FusetNet-SF2 75.82 46.44 36.11

FusetNet-SF3 76.18 47.10 36.63

FusetNet-SF4 76.56 48.46 37.76

FusetNet-SF5 76.27 48.30 37.29

FusetNet-DF1 73.37 50.07 34.02

FusetNet-DF2 73.31 49.39 33.97

FusetNet-DF3 73.37 49.46 33.52

FusetNet-DF4 72.83 49.53 33.46

FusetNet-DF5 72.56 49.86 33.04
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three-channel HHA representation, FuseNet learns high dimensional features from depth
end-to-end, which is more informative as shown by experiments.

With Table 6.2, we also analyzed the performance of different variations of FuseNet (shown
in the lower part). Since the original VGG 16-layer network has 5 levels of pooling, we
increase the number of fusion layers as the network gets deeper. The experiments show
that segmentation accuracy gets improved from FuseNet-SF1 to FuseNet-SF5, however the
increase appears saturated up to the fusion after the 4th pooling, i.e., , FuseNet-SF4. The
possible reason behind the accuracy saturation is that depth already provides very distin-
guished features at low-level to compensate textureless regions in RGB, and we consistently
fuse features extracted from depth into the RGB-branch. The same trend can be observed
with FuseNet-DF.

In the third experiment, we further compare FuseNet-SF5, FuseNet-DF1 to the network
trained with RGB-D input. In Table 6.3 and Table 6.4, we report the classwise accuracy and
IoU scores of 37 classes, respectively. For class accuracy, all the three network architectures
give very comparable results. However, for IoU scores, FuseNet-SF5 outperforms in 30 out
of 37 classes in comparison to other two networks. Since the classwise IoU is a better mea-
surement over global and mean accuracy, FuseNet obtains significant improvements over
the network trained with stacked RGB-D, showing that depth fusion is a better approach
to extract informative features from depth and to combine them with color features. In
Figure 6.5, we show some visual comparison of the FuseNet.

6.5 Conclusions

In this paper, we have presented a fusion-based CNN network for semantic labeling on
RGB-D data. More precisely, we have proposed a solution to fuse depth information with
RGB data by making use of a CNN. The proposed network has an encoder-decoder type
architecture, where the encoder part is composed of two branches of networks that simulta-
neously extract features from RGB and depth channels. These features are then fused into
the RGB feature maps as the network goes deeper.

By conducting a comprehensive evaluation, we may conclude that the our approach is a com-
petitive solution for semantic segmentation on RGB-D data. The proposed FuseNet outper-
forms the current CNN-based networks on the challenging SUN RGB-D benchmark (Song
et al. 2015). We have also investigated two possible fusion approaches, i.e., dense fusion and
sparse fusion. By applying the latter one with a single fusion operation we have obtained a
slightly better performance. Nevertheless we may conclude that both fusion approaches pro-
vide similar results. Interestingly, we can also claim that HHA representation itself provides
a superficial improvement to the depth information. We also remark that a straight-forward
extension of the proposed approach can be applied for other classification tasks such as
image or scene classification.
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Table 6.3: Classwise segmentation accuracy of 37 classes. We compare FuseNet-SF5, FuseNet-DF1 to the network trained with
stacked RGB-D input.

■ wall ■ floor ■ cabin ■ bed ■ chair ■ sofa ■ table ■ door ■ wdw ■ bslf
RGB-D 77.19 93.90 62.51 74.62 71.22 59.09 66.76 42.27 62.73 29.51

FuseNet-SF5 90.20 94.91 61.81 77.10 78.62 66.49 65.44 46.51 62.44 34.94
FuseNet-DF1 82.39 93.88 56.97 73.76 78.02 62.85 60.60 45.43 67.22 28.79

■ desk ■ shelf ■ ctn ■ drssr ■ pillow ■ mirror ■ mat ■ clthes ■ ceil ■ books
RGB-D 12.12 9.27 63.26 40.44 52.02 52.99 0.00 38.38 84.06 57.05
FuseNet-SF5 25.63 20.28 65.94 44.03 54.28 52.47 0.00 25.89 84.77 45.23

FuseNet-DF1 20.98 14.46 61.43 48.63 58.59 55.96 0.00 30.52 86.23 53.86

■ towel ■ shwr ■ box ■ board ■ person ■ stand ■ toilet ■ sink ■ lamp ■ btub
RGB-D 27.92 4.99 31.24 69.08 16.97 42.70 76.80 69.41 50.28 65.41

FuseNet-SF5 21.05 8.82 21.94 57.45 19.06 37.15 76.77 68.11 49.31 73.23

FuseNet-DF1 27.14 1.96 26.61 66.36 30.91 43.89 81.38 66.47 52.64 74.73
■ pic ■ cnter ■ blinds ■ fridge ■ tv ■ paper ■ bag mean

RGB-D 64.66 48.19 48.80 34.90 45.77 41.54 24.90 49.00

FuseNet-SF5 67.39 40.37 43.48 34.52 34.83 24.08 12.62 48.30

FuseNet-DF1 67.50 39.89 44.73 32.31 53.13 36.67 25.80 50.07



Table 6.4: Classwise IoU scores of 37 classes. We compare FuseNet-SF5, FuseNet-DF1 to the network trained with stacked RGB-D
input.

■ wall ■ floor ■ cabin ■ bed ■ chair ■ sofa ■ table ■ door ■ wdw ■ bslf
RGB-D 69.46 86.10 35.56 58.29 60.02 43.09 46.37 27.76 43.3 19.70

FuseNet-SF5 74.94 87.41 41.70 66.53 64.45 50.36 49.01 33.35 44.77 28.12
FuseNet-DF1 69.48 86.09 35.57 58.27 60.03 43.09 46.38 27.78 43.31 19.75

■ desk ■ shelf ■ ctn ■ drssr ■ pillow ■ mirror ■ mat ■ clthes ■ ceil ■ books
RGB-D 10.19 5.34 43.02 23.93 30.70 31.00 0.00 17.67 63.10 21.79

FuseNet-SF5 18.31 9.20 52.68 34.61 37.77 38.87 0.00 16.67 67.34 27.29
FuseNet-DF1 15.61 7.44 42.24 28.74 31.99 34.73 0.00 15.82 60.09 24.28

■ towel ■ shwr ■ box ■ board ■ person ■ stand ■ toilet ■ sink ■ lamp ■ btub
RGB-D 13.21 4.13 14.21 40.43 10.00 11.79 59.17 45.85 26.06 51.75

FuseNet-SF5 16.55 6.06 15.77 49.23 14.59 19.55 67.06 54.99 35.07 63.06
FuseNet-DF1 13.6 1.54 15.47 45.21 15.49 17.46 63.38 48.09 27.06 56.85

■ pic ■ cnter ■ blinds ■ fridge ■ tv ■ paper ■ bag mean
RGB-D 36.24 25.48 29.11 22.69 31.31 12.05 12.38 31.95

FuseNet-SF5 46.84 27.73 31.47 31.31 31.64 16.01 9.52 37.29
FuseNet-DF1 36.30 25.44 29.12 23.63 37.67 16.45 12.92 34.02



RGB Depth Groundtruth Depth only RGB only Stacked RGB-D FuseNet-DF1 FuseNet-SF5

Figure 6.5: Qualitative segmentation results for different architectures. The first three columns contain RGB and depth images
along with the groundtruth, respectively, followed by the segmentation results. Last two columns contain the results obtained by
our FuseNet-DF1 and FuseNet-SF5 approaches. The color notation is as indicated in Table 6.3 and Table 6.4.



CHAPTER 7
Multi-View Deep Learning for Consistent
Semantic Mapping with RGB-D Cameras

A bstract Visual scene understanding is an important capability that enables robots to
purposefully act in their environment. In this paper, we propose a novel deep neural

network approach to predict semantic segmentation from RGB-D sequences. The key inno-
vation is to train our network to predict multi-view consistent semantics in a self-supervised
way. At test time, its semantics predictions can be fused more consistently in semantic
keyframe maps than predictions of a network trained on individual views. We base our net-
work architecture on a recent single-view deep learning approach to RGB and depth fusion
for semantic object-class segmentation and enhance it with multi-scale loss minimization.
We obtain the camera trajectory using RGB-D SLAM and warp the predictions of RGB-D
images into ground-truth annotated frames in order to enforce multi-view consistency dur-
ing training. At test time, predictions from multiple views are fused into keyframes. We
propose and analyze several methods for enforcing multi-view consistency during training
and testing. We evaluate the benefit of multi-view consistency training and demonstrate that
pooling of deep features and fusion over multiple views outperforms single-view baselines
on the NYUDv2 benchmark for semantic segmentation. Our end-to-end trained network
achieves state-of-the-art performance on the NYUDv2 dataset in single-view segmentation
as well as multi-view semantic fusion.

© 2017 IEEE. Reprinted, with permission, from Lingni Ma, Jörg Stückler, Christian Kerl and Daniel Cremers,
Multi-view Deep Learning for Consistent Semantic Mapping with RGB-D Cameras, in proc. of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sept. 2017. Revised layout, minor adaptations
and extended visualization for Figure 7.4, Figure 7.5.
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Figure 7.1: We train our CNN to predict multi-view consistent semantic segmentations
for RGB-D images. The key innovation is to enforce consistency by warping CNN feature
maps from multiple views into a common reference view using the SLAM trajectory and to
supervise training at multiple scales. Our approach improves performance for single-view
segmentation and is specifically beneficial for multi-view fused segmentation.

7.1 Introduction

Intelligent robots require the ability to understand their environment through parsing and
segmenting the 3D scene into meaningful objects. The rich appearance-based information
contained in images renders vision a primary sensory modality for this task.

In recent years, large progress has been achieved in semantic segmentation of images. Most
current state-of-the-art approaches apply deep learning for this task. With RGB-D cameras,
appearance as well as shape modalities can be combined to improve the semantic segmen-
tation performance. Less explored, however, is the usage and fusion of multiple views onto
the same scene which appears naturally in the domains of 3D reconstruction and robotics.
Here, the camera is moving through the environment and captures the scene from multiple
view points. Semantic SLAM aims at aggregating several views in a consistent 3D geometric
and semantic reconstruction of the environment.

In this paper, we propose a novel deep learning approach for semantic segmentation of RGB-
D images with multi-view context. We base our network on a recently proposed deep con-
volutional neural network (CNN) for RGB and depth fusion by Hazirbas et al. (2017) and
enhance the approach with multi-scale deep supervision. Based on the trajectory obtained
through RGB-D simultaneous localization and mapping (SLAM), we further regularize the
CNN training with multi-view consistency constraints as shown in Figure 7.1. We propose
and evaluate several variants to enforce multi-view consistency during training. A shared
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principle is using the SLAM trajectory estimate to warp network outputs of multiple frames
into the reference view with ground-truth annotation. By this, the network not only learns
features that are invariant under view-point change. Our semi-supervised training approach
also makes better use of the annotated ground-truth data than single-view learning. This
alleviates the need for large amounts of annotated training data which is expensive to ob-
tain. Complementary to our training approach, we aggregate the predictions of our trained
network in keyframes to increase segmentation accuracy at testing. The predictions of neigh-
boring images are fused into the keyframe based on the SLAM estimate in a probabilistic
way.

In experiments, we evaluate the performance gain achieved through multi-view training and
fusion at testing over single-view approaches. Our results demonstrate that multi-view max-
pooling of feature maps during training best supports multi-view fusion at testing. Overall
we find that enforcing multi-view consistency during training significantly improves fusion
at test time versus fusing predictions from networks trained on single views. Our end-
to-end training achieves state-of-the-art performance on the NYUDv2 dataset in single-view
segmentation as well as multi-view semantic fusion. While the fused keyframe segmentation
can be directly used in robotic perception, our approach can also be useful as a building
block for semantic SLAM using RGB-D cameras.

7.2 Related Work

Recently, remarkable progress has been achieved in semantic image segmentation using
deep neural networks and, in particular, CNNs. On many benchmarks, these approaches
excell previous techniques by a great margin.

Image-based Semantic Segmentation. As one early attempt, Couprie et al. (2013) pro-
pose a multiscale CNN architecture to combine information at different receptive field reso-
lutions and achieved reasonable segmentation results. Gupta et al. (2014) integrate depth
into the R-CNN approach by Girshick et al. (2014) to detect objects in RGB-D images.
They convert depth into 3-channel HHA, i.e., disparity, height and angle encoding and
achieve semantic segmentation by training a classifier for superpixels based on the CNN
features. Long et al. (2015) propose a fully convolutional network (FCN) which enables
end-to-end training for semantic segmentation. Since CNNs reduce the input spatial reso-
lution by a great factor through layers pooling, FCN presents an upsample stage to output
high-resolution segmentation by fusing low-resolution predictions. Inspired by FCN and
auto-encoders (Bengio et al. 2007), encoder-decoder architectures have been proposed to
learn upsampling with unpooling and deconvolution (Noh et al. 2015). For RGB-D images,
Eigen and Fergus (2015) propose to train CNNs to predict depth, surface normals and se-

mantics with a multi-task network and achieve very good performance. FuseNet (Hazirbas
et al. 2017) proposes an encoder-decoder CNN to fuse color and depth cues in an end-to-end
training for semantic segmentation, which is shown to be more efficient in learning RGB-D
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Figure 7.2: The CNN encoder-decoder architecture used in our approach. Input to the network are RGB-D sequences with
corresponding poses from SLAM trajectory. The encoder contains two branches to learn features from RGB-D data as inspired
by FuseNet Hazirbas et al. (2017). The obtained low-resolution high-dimension feature maps are successively refined through
deconvolutions in the decoder. We warp feature maps into a common reference view and enforce multi-view consistency with
various constraints. The network is trained in a deeply-supervised manner where loss is computed at all scales of the decoder.
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features in comparison to direct concatenation of RGB and depth or the use of HHA. Re-
cently, more complex CNN architectures have been proposed that include multi-resolution
refinement by G. Lin et al. (2017), dilated convolutions by Yu and Koltun (2016) and
residual units (e.g., Wu et al. (2016) ) to achieve state-of-the-art single image semantic seg-
mentation. Z. Li et al. (2016a) use a LSTM recurrent neural network to fuse RGB and depth
cues and obtain smooth predictions. G. Lin et al. (2016a); G. Lin et al. (2016b) design
a CNN that corresponds to a conditional random field (CRF) and use piecewise training
to learn both unary and pairwise potentials end-to-end. Our approach trains a network on
multi-view consistency and fuses the results from multiple view points. It is complementary
to the above single-view CNN approaches.

Semantic SLAM. In the domain of semantic SLAM, Salas-Moreno et al. (2013) developed
the SLAM++ algorithm to perform RGB-D tracking and mapping at the object instance level.
Hermans et al. (2014) proposed 3D semantic mapping for indoor RGB-D sequences based

on RGB-D visual odometry and a random forest classifier that performs semantic image seg-
mentation. The individual frame segmentations are projected into 3D and smoothed using
a CRF on the point cloud. Stückler et al. (2015) perform RGB-D SLAM and probabilisti-
cally fuse the semantic segmentations of individual frames obtained with a random forest in
multi-resolution voxel maps. Recently, Armeni et al. (2016) propose a hierarchical parsing
method for large-scale 3D point clouds of indoor environments. They first seperate point
clouds into disjoint spaces, i.e., single rooms, and then further cluster points at the object
level according to handcrafted features.

Multi-View Semantic Segmentation. In contrast to the popularity of CNNs for image-
based segmentation, it is less common to apply CNNs for semantic segmentation on multi-
view 3D reconstructions. Recently, Riegler et al. (2016) apply 3D CNNs on sparse octree
data structures to perform semantic segmentation on voxels. Nevertheless, the volumetric
representations may discard details which are present at the original image resolution.
McCormac et al. (2016) proposed to fuse CNN semantic image segmentations on a 3D surfel
map (Whelan et al. 2016). Y. He et al. (2017) propose to fuse CNN semantic segmentations
from multiple views in video using superpixels and optical flow information. In contrast to
our approach, these methods do not impose multi-view consistency during CNN training
and cannot leverage the view-point invariant features learned by our network. Kundu
et al. (2016) extend dense CRFs to videos by associating pixels temporally using optical
flow and optimizing their feature similarity. Closely related to our approach for enforcing
multi-view consistency is the approach by Su et al. (2015) who investigate the task of 3D
shape recognition. They render multiple views onto 3D shape models which are fed into
a CNN feature extraction stage that is shared across views. The features are max-pooled
across view-points and fed into a second CNN stage that is trained for shape recognition.
Our approach uses multi-view pooling for the task of semantic segmentation and is trained
using realistic imagery and SLAM pose estimates. Our trained network is able to classify
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single views, but we demonstrate that multi-view fusion using the network trained on multi-
view consistency improves segmentation performance over single-view trained networks.

7.3 CNN Architecture for Semantic Segmentation

In this section, we detail the CNN architecture for semantic segmentation of each RGB-D
image of a sequence. We base our encoder-decoder CNN on FuseNet by Hazirbas et al.
(2017) which learns rich features from RGB-D data. We enhance the approach with multi-
scale loss minimization, which gains additional improvement in segmentation performance.

7.3.1 RGB-D Semantic Encoder-Decoder

Figure 7.2 illustrates our CNN architecture. The network follows an encoder-decoder design,
similar to previous work on semantic segmentation (Noh et al. 2015). The encoder extracts
a hierarchy of features through convolutional layers and aggregates spatial information by
pooling layers to increase the receptive field. The encoder outputs low-resolution high-
dimensional feature maps, which are upsampled back to the input resolution by the decoder
through layers of memorized unpooling and deconvolution. Following FuseNet (Hazirbas
et al. 2017), the network contains two branches to learn features from RGB (Frgb) and depth
(Fd), respectively. The feature maps from the depth branch are consistently fused into the
RGB branch at each scale. We denote the fusion by Frgb ⊕Fd.

The semantic label set is denoted as L =
{
1, 2, . . . ,K

}
and the category index is indicated

with subscript j. Following notation convention, we compute the classification score S =

(s1 , s2 , . . . , sK)T at location x and map it to the probability distribution P = (p1 ,p2 , . . . ,pK)T

with the softmax function σ(·). Network inference obtains the probability

pj(x,W | I) = σ
(
sj(x,W)

)
=

exp
(
sj(x,W)

)∑K
k=1 exp (sk(x,W))

, (7.1)

of all pixels x in the image for being labeled as class j, given input RGB-D image I and
network parameters W. We use the cross-entropy loss to learn network parameters for
semantic segmentation from ground-truth annotations lgt,

L(W) = −
1

N

N∑
i=1

K∑
j=1

J j = lgt K logpj
(
xi,W | I

)
, (7.2)

where N is the number of pixels. This loss minimizes the Kullback-Leibler (KL) divergence
between predicted distribution and the ground-truth, assuming the ground-truth has a one-
hot distribution on the true label.

7.3.2 Multi-Scale Deep Supervision

The encoder of our network contains five 2× 2 pooling layers and downsamples the input
resolution by a factor of 32. The decoder learns to refine the low resolution back to the

108



7. Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

Figure 7.3: Example of multi-scale ground-truth and predictions. Upper row: successive
subsampled of ground-truth annotation obtained through stochastic pooling. Lower row:
CNN prediction on each scale. The resolutions are coarse to fine from left to right with
20× 15, 40× 30, 80× 60, 160× 120 and 320× 240.

original one with five memorized unpooling followed by deconvolution. In order to guide
the decoder through the successive refinement, we adopt the deeply supervised learning
method (Dosovitskiy et al. 2015a; Lee et al. 2015) and compute the loss for all upsample
scales. For this purpose, we append a classification layer at each deconvolution scale and
compute the loss for the respective resolution of ground-truth which is obtained through
stochastic pooling (M. Zeiler and Fergus 2013) over the full resolution annotation (see Fig-
ure 7.3 for an example).

7.4 Multi-View Consistent Learning and Prediction

While CNNs have been shown to obtain the state-of-the-art semantic segmentation perfor-
mances for many datasets, most of these studies focus on single views. When observing a
scene from a moving camera such as on a mobile robot, the system obtains multiple differ-
ent views onto the same objects. The key innovation of this work is to explore the use of
temporal multi-view consistency within RGB-D sequences for CNN training and prediction.
For this purpose, we perform 3D data association by warping multiple frames into a com-
mon reference view. This then enables us to impose multi-view constraints during training.
In this section, we describe several variants of such constraints. Notably, these methods can
also be used at test time to fuse predictions from multiple views in a reference view.

7.4.1 Multi-view Data Association Through Warping

Instead of single-view training, we train our network on RGB-D sequences with poses es-
timated by a SLAM algorithm. We define each training sequence to contain one reference
view Ik with ground-truth semantic annotations and several overlapping views Ii that are
tracked towards Ik. The relative poses ξ of the neighboring frames are estimated through
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tracking algorithms such as DVO SLAM (Kerl et al. 2013a). In order to impose temporal
consistency, we adopt the warping concept from multi-view geometry to associate pixels
between view points and introduce warping layers into our CNN. The warping layers syn-
thesize CNN output in a reference view from a different view at any resolution by sampling
given a known pose estimate and the known depth. The warping layers can be viewed
as a variant of spatial transformers by Jaderberg et al. (2015) with fixed transformation
parameters.

We now formulate the warping. Given 2D image coordinate x ∈ R2, the warped pixel
location

xω = ω(x,ξ) = π
(
T (ξ)π−1

(
x,Zi(x)

))
, (7.3)

is determined through the warping function ω(x,ξ) which transforms the location from
one camera view to the other using the depth Zi(x) at pixel x in image Ii and the SLAM
pose estimate ξ. The functions π and its inverse π−1 project homogeneous 3D coordinates
to image coordinates and vice versa, while T (ξ) denotes the homogeneous transformation
matrix derived from pose ξ.

Using this association by warping, we synthesize the output of the reference view by sam-
pling the feature maps of neighboring views using bilinear interpolation. Since the interpola-
tion is differentiable, it is straight-forward to back-propagate gradients through the warping
layers. With a slight abuse of notation, we denote the operation of synthesizing the layer
output F given the warping by Fω := F (ω(x,ξ)).

We also apply deep supervision when training for multi-view consistency through warping.
As shown in Figure 7.2, feature maps at each resolution of the decoder are warped into
the common reference view. Despite the need to perform warping at multiple scales, the
warping grid is only required to be computed once at the input resolution, and is normalized
to the canonical coordinates within the range of [−1, 1]. The lower-resolution warping grids
can then be efficiently generated through average pooling layers.

7.4.2 Consistency Through Warp Augmentation

One straight-forward solution to enforce multi-view segmentation consistency is to warp
the predictions of neighboring frames into the ground-truth annotated keyframe and com-
puting a supervised loss there. This approach can be interpreted as a type of data aug-
mentation using the available nearby frames. We implement this consistency method by
warping the keyframe into neighboring frames, and synthesize the classification score of the
nearby frame from the keyframe’s view point. We then compute the cross-entropy loss on
this synthesized prediction. Within RGB-D sequences, objects can appear at various scales,
image locations, view perspective, color distortion given uncontrolled lighting and shape
distortion given rolling shutters of RGB-D cameras. Propagating the keyframe annotation
into other frames implicitly regulates the network predictions to be invariant under these
transformations.
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7.4.3 Consistency Through Bayesian Fusion

Given a sequence of measurements and predictions at test time, Bayesian fusion is frequently
applied to aggregate the semantic segmentations of individual views. Let us denote the
semantic labeling of a pixel by y and its measurement in frame i by zi. We use the notation zi

for the set of measurements up to frame i. According to Bayes rule,

p(y | zi) =
p(zi | y, zi−1)p(y | zi−1)

p(zi | zi−1)
(7.4)

= ηi p(zi | y, zi−1)p(y | zi−1) . (7.5)

Suppose measurements satisfy the i.i.d. condition, i.e., p(zi | y, zi−1) = p(zi | y), and equal
a-priori probability for each class, then Equation (7.4) simplifies to

p(y | zi) = ηi p(zi | y)p(y | zi−1) =
∏
i

ηi p(zi | y) . (7.6)

Put simple, Bayesian fusion can be implemented by taking the product over the semantic
labeling likelihoods of individual frame at a pixel and normalizing the product to yield
a valid probability distribution. This process can also be implemented recursively on a
sequence of frames.

When training our CNN for multi-view consistency using Bayesian fusion, we warp the
predictions of neighboring frames into the keyframe using the SLAM pose estimate. We
obtain the fused prediction at each keyframe pixel by summing up the unnormalized log
labeling likelihoods instead of the individual frame softmax outputs. Applying softmax on
the sum of log labeling likelihoods yields the fused labeling distribution. This is equivalent
to Equation (7.6) since ∏

i p
ω
ij∑K

k

∏
i p

ω
ik

=

∏
i σ
(
sωij

)
∑K

k

∏
i σ
(
sωik
) = σ

(∑
i

sωij

)
, (7.7)

where sωij and pωij denote the warped classification scores and probabilities, respectively,
and σ(·) is the softmax function as defined in Equation (7.1).

7.4.4 Consistency Through Multi-View Max-Pooling

While Bayesian fusion provides an approach to integrate several measurements in the proba-
bility space, we also explore direct fusion in the feature space using multi-view max-pooling
of the warped feature maps. We warp the feature maps preceeding the classification layers
at each scale in our decoder into the keyframe and apply max-pooling over correspond-
ing feature activations at the same warped location to obtain a pooled feature map in the
keyframe,

F = max_pool
(
Fω
1 ,Fω

2 , . . . ,Fω
N

)
. (7.8)

The fused feature maps are classified and the resulting semantic segmentation is compared
to the keyframe ground-truth for loss calculation.
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Table 7.1: Single-view semantic segmentation accuracy of our network in comparison to the
state-of-the-art methods for NYUDv2 13-class and 40-class segmentation tasks.

methods input pixelwise classwise IoU

N
Y

U
D

v2
1
3

cl
as

se
s

Couprie et al. [37] RGB-D 52.4 36.2 -
Hermans et al. [81] RGB-D 54.2 48.0 -
SceneNet [72] DHA 67.2 52.5 -
Eigen et al. [49] RGB-D-N 75.4 66.9 52.6
FuseNet-SF3 [3] RGB-D 75.8 66.2 54.2
MVCNet-Mono RGB-D 77.6 68.7 56.9
MVCNet-Augment RGB-D 77.6 69.3 57.2
MVCNet-Bayesian RGB-D 77.8 69.4 57.3
MVCNet-MaxPool RGB-D 77.7 69.5 57.3

N
Y

U
D

v2
4
0

cl
as

se
s

RCNN [69] RGB-HHA 60.3 35.1 28.6
FCN-16s [123] RGB-HHA 65.4 46.1 34.0
Eigen et al. [49] RGB-D-N 65.6 45.1 34.1
FuseNet-SF3 [3] RGB-D 66.4 44.2 34.0
Context-CRF [116] RGB 67.6 49.6 37.1
MVCNet-Mono RGB-D 68.6 48.7 37.6
MVCNet-Augment RGB-D 68.6 49.9 38.0
MVCNet-Bayesian RGB-D 68.4 49.5 37.4
MVCNet-MaxPool RGB-D 69.1 50.1 38.0

7.5 Evaluation

We evaluate our proposed approach using the NYUDv2 RGB-D dataset (Silberman et al.
2012). The dataset provides 1449 pixelwise annotated RGB-D images capturing various in-
door scenes, and is split into 795 frames for training/validation (trainval) and 654 frames
for testing. The original sequences that contain these 1449 images are also available with
NYUDv2, whereas sequences are unfortunately not available for other large RGB-D seman-
tic segmentation datasets. Using DVO-SLAM (Kerl et al. 2013a), we determine the cam-
era poses of neighboring frames around each annotated keyframe to obtain multi-view se-
quences. This provides us with in total 267,675 RGB-D images, despite that tracking fails
for 30 out of 1449 keyframes. Following the original trainval/test split, we use 770 se-
quences with 143,670 frames for training and 649 sequences with 124,005 frames for testing.
For benchmarking, our method is evaluated for the 13-class (Couprie et al. 2013) and 40-
class (Gupta et al. 2013) semantic segmentation tasks. We use the raw depth images without
inpainted missing values.
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Table 7.2: Multi-view segmentation accuracy of our network using Bayesian fusion for
NYUDv2 13-class and 40-class segmentation.

methods pixelwise classwise IoU

N
Y

U
D

v2
1
3

cl
as

se
s

FuseNet-SF3 [3] 77.19 67.46 56.01

MVCNet-Mono 78.70 69.61 58.29

MVCNet-Augment 78.94 70.48 58.93

MVCNet-Bayesian 79.13 70.48 59.04
MVCNet-MaxPool 79.13 70.59 59.07

N
Y

U
D

v2
4
0

cl
as

se
s

FuseNet-SF3 [3] 67.74 44.92 35.36

MVCNet-Mono 70.03 49.73 39.12

MVCNet-Augment 70.34 51.73 40.19
MVCNet-Bayesian 70.24 51.18 39.74

MVCNet-MaxPool 70.66 51.78 40.07

7.5.1 Training Details

We implemented our approach using the Caffe framework (Jia et al. 2014). For all experi-
ments, the network parameters are initialized as follows. The convolutional kernels in the
encoder are initialized with the pre-trained 16-layer VGGNet (Simonyan and Zisserman
2015) and the deconvolutional kernels in the decoder are initialized using He’s method (K.
He et al. 2015). For the first layer of the depth encoder, we average the original three-channel
VGG weights to obtain a single-channel kernel. We train the network with stochastic gradi-
ent descent (SGD) (Bottou 2012) with 0.9 momentum and 0.0005 weight decay. The learning
rate is set to 0.001 and decays by a factor of 0.9 every 30k iterations.

All the images are resized to a resolution of 320× 240 pixels as input to the network and the
predictions are also up to this scale. To downsample, we use cubic interpolation for RGB
images and nearest-neighbor interpolation for depth and label images. During training, we
use a mini-batch of 6 that comprises two sequences, with one keyframe and two tracking
frames for each sequence. We apply random shuffling after each epoch for both inter and
intra sequences. The network is trained until convergence. We observed that multi-view
CNN training does not require significant extra iterations for convergence. For multi-view
training, we sample from the nearest frames first and include 10 further-away frames every
5 epochs. By this, we alleviate that typically tracking errors accumulate and image overlap
decreases as the camera moves away from the keyframe.

7.5.2 Evaluation Criteria

We measure the semantic segmentation performance with three criteria: global pixelwise ac-
curacy, average classwise accuracy and average intersection-over-union (IoU) scores. These
three criteria can be calculated from the confusion matrix. With K classes, each entry of

113



7.5. Evaluation

the K× K confusion matrix cij is the total amount of pixels belonging to class i that are

predicted to be class j. The global pixelwise accuracy is computed by
∑K

i cii/
(∑K

i

∑K
j cij

)
,

the average classwise accuracy is computed by
1

K

∑K
i

(
cii/

∑K
j cij

)
, and the average IoU

score is calculated by
1

K

∑K
i

(
cii/

(∑K
i cij +

∑K
j cij − cii

))
.

7.5.3 Single Frame Segmentation

In a first set of experiments, we evaluate the performance of several variants of our net-
work for direct semantic segmentation of individual frames. This means we do not fuse
predictions from nearby frames to obtain the final prediction in a frame. We predict seman-
tic segmentation with our trained models on the 654 test images of the NYUDv2 dataset
and compare our methods with state-of-art approaches. The results are shown Table 7.1.
Unless otherwise stated, we take the results from the original papers for comparison and
report their best results (i.e., SceneNet-FT-NYU-DO-DHA model for SceneNet (Handa et al.
2016), VGG-based model for Eigen and Fergus (2015) ). The result of Hermans et al.
(2014) is obtained after applying a dense CRF (Krähenbühl and Koltun 2011) for each
image and in-between neighboring 3D points to further smoothen their results. We also
remark that the results reported here for the Context-CRF model are finetuned on NYUDv2

like in our approach to facilitate comparison. Furthermore, the network output is refined
using a dense CRF (Krähenbühl and Koltun 2011) which is claimed to increase the accu-
racy of the network by approximately 2%. The results for FuseNet-SF3 are obtained by our
own implementation. Our baseline model MVCNet-Mono is trained without multi-view
consistency, which amounts to FuseNet with multiscale deeply supervised loss at decoder.
However, we apply single image augmentation to train the FuseNet-SF3 and MVCNet-Mono
with random scaling between [0.8, 1.2], random crop and mirror. This data augmentation is
not used fro multi-view training. Nevertherless, our results show that the different variants
of multi-view consistency training outperform the state-of-art methods for single image
semantic segmentation. Overall, multi-view max-pooling (MVCNet-MaxPool) has a small
advantage over the other multi-view consistency training approaches (MVCNet-Augment
and MVCNet-Bayesian).

7.5.4 Multi-View Fused Segmentation

Since we train on sequences, in the second set of experiment, we also evaluate the fused
semantic segmentation over the test sequences. The number of fused frames is fixed to 50,
which are uniformly sampled over the entire sequence. Due to the lack of ground-truth for
neighboring frames, we fuse the prediction of neighboring frames in the keyframes using
Bayesian fusion according to Equation (7.7). This fusion is typically applied for semantic
mapping using RGB-D SLAM. The results are shown Table 7.2. Bayesian multi-view fusion
improves the semantic segmentation by approx. 2% on all evaluation measures towards
single-view segmentation. Also, the training for multi-view consistency achieves a stronger
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Table 7.3: NYUDv2 13-class semantic segmentation IoU scores. Our method achieves best per-class accuracy and average IoU.

method be
d
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class frequency 4.08 7.31 3.45 12.71 1.47 9.88 3.40 2.84 3.42 24.57 4.91 2.78 0.99

si
ng

le
-v

ie
w

Eigen et al. [49] 56.71 38.29 50.23 54.76 64.50 89.76 45.20 47.85 42.47 74.34 56.24 45.72 34.34 53.88

FuseNet-SF3 [3] 61.52 37.95 52.67 53.97 64.73 89.01 47.11 57.17 39.20 75.08 58.06 37.64 29.77 54.14

MVCNet-Mono 65.27 37.82 54.09 59.39 65.26 89.15 49.47 57.00 44.14 75.31 57.22 49.21 36.14 56.88

MVCNet-Augment 65.33 38.30 54.15 59.54 67.65 89.26 49.27 55.18 43.39 74.59 58.46 49.35 38.84 57.18

MVCNet-Bayesian 65.76 38.79 54.60 59.28 67.58 89.69 48.98 56.72 42.42 75.26 59.55 49.27 36.51 57.26

MVCNet-MaxPool 65.71 39.10 54.59 59.23 66.41 89.94 49.50 56.30 43.51 75.33 59.11 49.18 37.37 57.33

m
ul

ti
-v

ie
w

FuseNet-SF3 [3] 64.95 39.62 55.28 55.90 64.99 89.88 47.99 60.17 42.40 76.24 59.97 39.80 30.91 56.01

MVCNet-Mono 67.11 40.14 56.39 60.90 66.07 89.77 50.32 59.49 46.12 76.51 59.03 48.80 37.13 58.29

MVCNet-Augment 68.22 40.04 56.55 61.82 67.88 90.06 50.85 58.00 45.98 75.85 60.43 50.50 39.89 58.93

MVCNet-Bayesian 68.38 40.87 57.10 61.84 67.98 90.64 50.05 59.70 44.73 76.50 61.75 51.01 36.99 59.04

MVCNet-MaxPool 68.09 41.58 56.88 61.56 67.21 90.64 50.69 59.73 45.46 76.68 61.28 50.60 37.51 59.07



Rows from top to bottom: (a) input RGB image and groundtruth labelling, (b) predictions of Eigen and Fergus (2015), (c) predictions
of FuseNet-SF3 Hazirbas et al. (2017), (d) predictions of our method MVCNet-Mono (baseline method without multi-view consistency
constrains).

Figure 7.4: Qualitative semantic segmentation results of our methods and several state-of-the-art baselines on NYUDv2 13-class
segmentation (see Table 7.3 for color coding, left columns: semantic segmentation, right columns: falsely classified pixels, black
is void). Our multi-view consistency trained models produce more accurate and homogeneous results than single-view methods.
Bayesian fusion further improves segmentation quality (e.g., MVCNet-MaxPool-F). Continued on the following page.



(continued from the previous page) Rows from top to bottom: (a) predictions of our method MVCNet-Augment, (b) predictions of our
method MVCNet-Bayesian, (c) predictions of our method MVCNet-MaxPool and (d) predictions of our method MVCNet-MaxPool-F.



Figure 7.5: Challenging cases for MVCNet-MaxPool-F (from left column to right column: RGB image, ground-truth, single-view
prediction on keyframe, multi-view prediction fused in keyframe). On the left, the network fails to classify the objects for all
frames. In the middle, the network makes some errors in single-view prediction, but through multi-view fusion, some mistakes
are corrected. On the right, multi-view fusion degenerates performance due to the mirror reflections.
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gain over single-view training (MVCNet-Mono) when fusing segmentations compared to
single-view segmentation. This performance gain is observed in the qualitative results in
Figure 7.4. It can be seen that our multi-view consistency training and Bayesian fusion pro-
duces more accurate and homogeneous segmentations. Figure 7.5 shows typical challenging
cases for our model.

We also compare classwise and average IoU scores for 13-class semantic segmentation on
NYUDv2 in Table 7.3. The results of Eigen and Fergus (2015) are from their publicly
available model tested on 320× 240 resolution. The results demonstrate that our approach
gives high performance gains across all occurrence frequencies of the classes in the dataset.

7.6 Conclusion

In this paper we propose methods for enforcing multi-view consistency during the train-
ing of CNN models for semantic RGB-D image segmentation. We base our CNN design on
FuseNet (Hazirbas et al. 2017), a recently proposed CNN architecture in an encoder-decoder
scheme for semantic segmentation of RGB-D images. We augment the network with multi-
scale loss supervision to improve its performance. We present and evaluate three different
approaches for multi-view consistency training. Our methods use an RGB-D SLAM tra-
jectory estimate to warp semantic segmentations or feature maps from one view point to
another. Multi-view max-pooling of feature maps overall provides the best performance
gains in single-view segmentation and fusion of multiple views.

We demonstrate the superior performance of multi-view consistency training and Bayesian
fusion on the NYUDv2 13-class and 40-class semantic segmentation benchmark. All multi-
view consistency training approaches outperform single-view trained baselines. They are
key to boosting segmentation performance when fusing network predictions from multiple
view points during testing. On NYUDv2, our model sets a new state-of-the-art performance
using an end-to-end trained network for single-view predictions as well as multi-view fused
semantic segmentation without further post-processing stages such as dense CRFs. In future
work, we want to further investigate integration of our approach in a semantic SLAM system,
for example, through coupling of pose tracking and SLAM with our semantic predictions.
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CHAPTER 8
Detailed Dense Inference with Convolutional

Neural Networks via Discrete Wavelet
Transform

A bstract Dense pixelwise prediction such as semantic segmentation is an up-to-date
challenge for deep convolutional neural networks (CNNs). Many state-of-the-art ap-

proaches either tackle the loss of high-resolution information due to pooling in the encoder
stage, or use dilated convolutions or high-resolution lanes to maintain detailed feature maps
and predictions. Motivated by the structural analogy between multi-resolution wavelet
analysis and the pooling/unpooling layers of CNNs, we introduce discrete wavelet trans-
form (DWT) into the CNN encoder-decoder architecture and propose WCNN. The high-
frequency wavelet coefficients are computed at encoder, which are later used at the de-
coder to unpooled jointly with coarse-resolution feature maps through the inverse DWT.
The DWT/iDWT is further used to develop two wavelet pyramids to capture the global con-
text, where the multi-resolution DWT is applied to successively reduce the spatial resolution
and increase the receptive field. Experiment with the Cityscape dataset, the proposed WC-
NNs are computationally efficient and yield improvements the accuracy for high-resolution
dense pixelwise prediction.

8.1 Introduction

Dense pixelwise prediction tasks such as semantic segmentation, optical flow or depth esti-
mation remain up-to-date challenges in computer vision. They find rapidly rising interests
for applications such as autonomous driving, robotic vision and image scene understanding.
Succeeded by its remarkable success in image recognition by Krizhevsky et al. (2012), deep
convolutional neural networks (CNNs) have achieved state-of-the-art performances in dense
prediction tasks such as semantic segmentation (G. Lin et al. 2017; Pohlen et al. 2017; Zhao
et al. 2017) or single-image depth estimation (Laina et al. 2016).

Many dense prediction tasks consist of two concurrent goals: classification and localization.
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Classification is well tackled by an end-to-end trainable CNN architecture, e.g., VGGNet
by Simonyan and Zisserman (2015) and ResNet by K. He et al. (2016a), which typically
stacks multiple layers of successive convolution, nonlinear activation, and pooling. A typical
pooling step, which performs either a subsampling or some strided averaging on an input
volume, is favorable for the invariance of prediction results to small spatial translations in
the input data as well as for the boost of computational efficiency via dimension reduction.
Its downside, however, is the loss of resolution in output feature maps, which renders high-
quality pixelwise prediction challenging.

Several remedies for such a dilemma have been proposed in the literatures. As suggested in
Badrinarayanan et al. (2017); Noh et al. (2015), one may mirror the encoder network by a de-
coder network. Each upsampling (or unpooling) layer in the decoder network is introduced
in symmetry to a corresponding pooling layer in the encoder network, and then followed
by trainable convolutional layers. Alternatively, one may use dilated (also known as atrous)
convolutions in a CNN encoder as proposed in L.-C. Chen et al. (2018); L.-C. Chen et al.
(2015); Yu and Koltun (2016). This enables the CNN to expand the receptive fields of pixels
as convolutional layers stack up without losing resolution in the feature maps, however, at
the cost of significant computational time and memory. Another alternative is to combine
a CNN low-resolution classifier with a conditional random field (CRF) Krähenbühl and
Koltun (2011); Krähenbühl and Koltun (2013), either as a stand-alone post-processing step
L.-C. Chen et al. (2018); L.-C. Chen et al. (2015) or combined with a CNN in an end-to-end
trainable architecture G. Lin et al. (2016b); Zheng et al. (2015). The latter also comes with
an increased demand in run-time for training and inference.

Motivated by close analogy between pooling (resp. unpooling) in an encoder-decoder CNN
and decomposition (resp. reconstruction) in multi-resolution wavelet analysis, this paper
proposes a new class of CNNs with wavelet unpooling and wavelet pyramid. We name
the network WCNN. The first contribution with WCNN is to achieve unpooling with the
inverse discrete wavelet transform (iDWT). To this end, DWT is applied at the encoder
to decompose feature maps into frequency bands. The high frequency components are
skip-connected to the decoder to perform iDWT jointly with the coarse-resolution feature
maps. The wavelet unpooling does not require any additional parameters over baseline
CNNs, where the overhead only comes from the memory to cache frequency coefficients
from encoder. The second contribution of WCNN are two wavelet-based pyramid variants
to bridge the standard encoder and decoder. The wavelet pyramids obtain global context
from a receptive field of the entire image by exploiting multi-resolution DWT/iDWT. The
experiments over the dataset Cityscape show that the proposed WCNN yields systematically
improvements in dense prediction accuracy.

8.2 Related Work

Many challenging tasks in computer vision such as single image depth prediction or se-
mantic image segmentation require models for dense prediction, since they either involve
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regressing quantities pixelwise or classifying the pixels. Most current state-of-the-art meth-
ods for dense prediction tasks are based on end-to-end trainable deep learning architectures.
Early methods segment the image into regions such as superpixels in a bottom-up fashion.
Predictions for the regions are determined based on deep neural network features (Farabet
et al. 2013; F. Liu et al. 2015; Yan et al. 2015). The use of image-based bottom-up regions
supports adherence of the dense predictions to the boundaries in the image.

Long et al. (2015) propose a FCN architecture for semantic image segmentation which
successively convolves and pools feature maps of an increasing number of feature channels.
The semantic segmentation is predicted on an intermediate lower resolution within the net-
work. Feature maps at this and lower resolutions are concatenated and further classified
to form the final prediction. This design allows for the use of pretrained CNNs that are
trained on other tasks such as large-scale object recognition Krizhevsky et al. (2012). Since
the introduction of FCNs, many variants are proposed, which are trained end-to-end and
outperform the early two-stage methods. Hariharan et al. (2015) classify pixels based on
feature vectors that are extracted at corresponding locations across all feature maps in a
CNN. This way, the method combines features across all layers available in the network,
capturing high-resolution detail as well as context in large receptive fields. However, this
approach becomes inefficient in deep architectures with many wide layers. Noh et al.
(2015) and Dosovitskiy et al. (2015a) propose encoder-decoder CNN architectures which
successively unpool and convolve the lowest resolution feature map of the encoder back to
a high output resolution. Since the feature maps in the encoder lose spatial information
through pooling, Noh et al. (2015) exploint the memorized unpooling (M. D. Zeiler et al.
2011) to upscale coarse feature maps at the decoder stage, where the pooling locations are
used to unpool accordingly. The FCN of Laina et al. (2016) uses the deep residual network
(K. He et al. 2016a) as an encoder, where most pooling layers are replaced by stride-two
convolution. For upscaling, the upprojection block is developed as an efficient implementa-
tion of upconvolution. The principle of upconvolution is developed by Dosovitskiy et al.
(2015b), which first unpools a feature map by putting activations to one entry of a 2× 2
block and then filter the sparse feature map with convolution. Details in the predictions
of such encoder-decoder FCNs can be improved by feeding the feature maps in each scale
of the encoder to the corresponding scale of the decoder (skip connections, e.g., Dosovit-
skiy et al. (2015a) ). In RefineNet by G. Lin et al. (2017), the decoder feature maps are
successively refined using multi-resolution fusion with their higher resolution counterparts
in the encoder. In this paper, we also reincorporate the high-frequency information that is
discarded during pooling to successively refine feature maps in the decoder.

Some FCN architectures use dilated convolutions in order to increase receptive field without
pooling and maintain high-resolution of the feature maps (L.-C. Chen et al. 2018; L.-C. Chen
et al. 2015; Yu and Koltun 2016). These dilated CNNs trade high-resolution output with the
high memory consumption, which quickly become a bottleneck for training with large batch
size for encoder-decoder CNNs. The full-resolution residual network (FRRN) by Pohlen et
al. (2017) is an alternative model which keeps features in a high-resolution lane and at the
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same time, extracts low-resolution higher-order features in an encoder-decoder architecture.
The high-resolution features are successively refined from residuals computed through the
encoder-decoder lane. While the model is highly demanding in memory and training time,
it achieves high-resolution predictions that well adhere to segment boundaries. Ghiasi
and Fowlkes (2016) take inspiration from Laplace image decompositions for their network
design. They successively refine the high-frequency parts of the score maps in order to
improve predictions at segment boundaries. Structured prediction approaches integrate
inference in CRFs with deep neural networks in end-to-end trainable models (Chandra
and Kokkinos 2016; G. Lin et al. 2016b; Z. Liu et al. 2015; Zheng et al. 2015). While
the models are capable of recovering high-resolution predictions, inference and learning
typically requires tedious iterative procedures. In contrast to those approaches, we aim to
provide detailed predictions in a swift and direct forward pass. Recently, the pyramid scene
parsing network (PSPNet) from Zhao et al. (2017) extracts global context features using
a pyramid pooling module, which shows the benefit of aggregation global information for
dense predictions. The pyramid design in PSPNet relies multiple average pooling layers
with heuristic window size. In this work, we also propose a more efficient pyramid pooling
stage based on multi-resolution DWT.

8.3 WCNN Encoder-Decoder Architectures

Recently, CNNs have demonstrated impressive performance on many dense pixelwise pre-
diction tasks, including image semantic segmentation, optical flow estimation, and depth
regression. CNNs extract image features through successive layers of convolution and non-
linear activation. In encoder architectures, as the stack of layers gets deeper, the dimension
of the feature vectors increases while the spatial resolution is reduced. For dense predic-
tion tasks, CNNs with encoder-decoder architecture are widely applied in which the feature
maps of the encoder are successively unpooled and deconvolved. Research on architectures
for the encoder part is relatively mature, e.g., the state-of-the-art CNNs such as VGGNet
(Simonyan and Zisserman 2015) and ResNet (K. He et al. 2016a) are commonly used in
various applications. In contrast, the design of the decoder has not yet converged to a uni-
versally accepted solution. While it is easy to reduce spatial dimension by either pooling or
strided convolution, recovering a detailed prediction from a coarse and high-dimensional
feature space is less straight-forward. In this paper, we make an analogy between CNN
encoder-decoders to the multi-resolution wavelet transform (see Figure 8.1). We match the
pooling operations of the CNN encoder with the multilevel forward transformation of a
signal by a wavelet. The decoder performs the corresponding inverse wavelet transform for
unpooling. The analogy is straight-forward: the wavelet transform successively filters the
signal into frequency subbands while reducing the spatial resolution. The inverse wavelet
transform successively composes the frequency subband back to full resolution. While the
encoder and the decoder transform between different domains (e.g., image-to-semantic seg-
mentation versus image-to-image in wavelet transforms), we find that wavelet unpooling
provides an elegant mechanism to transmit high-frequency information from the image do-
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main to the semantic segmentation. It also imposes a strong architectural regularization, as
the feature dimensions between the encoder and the decoder need to match through the
wavelet coefficients.

8.3.1 Discrete Wavelet Transform

We briefly introduce main concepts of DWT (see Mallat (2009) for a comprehensive intro-
duction). The multi-resolution wavelet transform provides localized time-frequency analysis
of signals and images. Consider a 2D input data X ∈ R2M×2N, ϕ ∈ R2 and ψ ∈ R2 as 1D
low-pass and high-pass filters, respectively. Denote the indexed array element by xij, the
single-level DWT is defined as follows,

yllkl =
∑
l

∑
k

x2i+k,2j+lϕkϕl, ylhkl =
∑
l

∑
k

x2i+k,2j+lϕkψl,

yhl
kl =

∑
l

∑
k

x2i+k,2j+lψkϕl, yhh
kl =

∑
l

∑
k

x2i+k,2j+lψkψl.
(8.1)

All the convolutions above are performed with stride 2, yielding a subsampling of factor 2

along each spatial dimension. Let the low-low frequency component Yll := {yllkl}, the low-
high frequency component Ylh := {ylhkl }, the high-low frequency component Yhl := {yhl

i,j },
and the high-high frequency component Yhh := {yhh

i,j }. The DWT results in {Yll, Ylh, Yhl, Yhh} ∈
RM×N. Conversely, supplied with the wavelet coefficients, and provided that {ϕ,ψ} and
{ϕ̃, ψ̃} are bi-orthogonal wavelet filters, the original input X can be reconstructed by the
inverse DWT as

xij =
∑
l

∑
k

yllklϕ̃i−2kϕ̃j−2l + y
lh
klϕ̃i−2kψ̃j−2l + y

hl
klψ̃i−2kϕ̃j−2l + y

hh
kl ψ̃i−2kψ̃j−2l . (8.2)

A cascaded wavelet decomposition successively performs Equation (8.1) on low-low fre-
quency coefficients {(·)ll} from fine to coarse resolution, while the reconstruction works
reversely from coarse to fine resolution. In this sense, decomposition-reconstruction in
multi-resolution wavelet analysis is in analogy to the pooling-unpooling steps in an encoder-
decoder CNN (e.g., Noh et al. (2015) ). Moreover, it is worth noting that, while the low-
frequency coefficients {(·)ll} store local averages of the input data, its high-frequency coun-
terparts, namely {(·)lh}, {(·)hl}, and {(·)hh} encode local textures which are vital in recovering
sharp boundaries. This motivates us to make use of the high-frequency wavelet coefficients
to improve the quality of unpooling during the decoder stage and, hence, improve the accu-
racy of CNN in pixelwise prediction.

Throughout this paper, we extensively use the Haar wavelet for its simplicity and effective-
ness to boost the performances of the underlying CNN. In this scenario, the Haar filters
used for decomposition, see Equation (8.1), are given by

ϕ =

(
1

2
,
1

2

)
, ψ =

(
1

2
, −

1

2

)
. (8.3)
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The corresponding reconstruction filters in Equation (8.2) are given by ϕ̃ = 2ϕ, ψ̃ = 2ψ, and
hence the inverse transform reduces to a sum of Kronecker products (denoted with ⊗)

X = Yll ⊗ ϕ̃⊤ ⊗ ϕ̃+ Ylh ⊗ ϕ̃⊤ ⊗ ψ̃+ Yhl ⊗ ψ̃⊤ ⊗ ϕ̃+ Yhh ⊗ ψ̃⊤ ⊗ ψ̃ . (8.4)

With CNNs, data at every layer are structured into 4D tensors, i.e., along the dimensions
of the batch size, the channel number, the width and the height. To perform the wavelet
transform for CNNs, we apply DWT/iDWT channelwise. Without confusion, the remaining
text adopts the shorthand notations Gh(X) for the Haar DWT and G−1

h (Yll, Ylh, Yhl, Yhh)

for the corresponding iDWT.

8.3.2 Wavelet CNN Encoder-Decoder Architecture

We propose a CNN encoder-decoder that resembles multi-resolution wavelet decomposition
and reconstruction by its pooling and unpooling operations. In addition, we introduce two
pyramid variants to capture global contextual features based on the wavelet transformation.

Figure 8.1 gives an overview of the proposed WCNN architecture. WCNN employs ResNet
developed by K. He et al. (2016a) for the encoder. In ResNet, the input resolution is succes-
sively reduced by a factor of 32 via one max-pooling layer and four stride-two convolutional
layers, i.e., conv1, conv3_1, conv4_1 and conv5_1. In order to restore the input resolution
with the decoder, WCNN inserts three DWT layer after conv2, conv3 and conv4 to de-
compose the corresponding feature maps into four frequency bands. The high frequencies
Ylh, Yhl, Yhh are skip-connected to the decoder to perform unpooling via the iDWT layers,
which we will discuss in details with Section 8.3.2.1. We add three convolutional residual
block K. He et al. (2016a) to filter the unpooled feature maps further before the next un-
pooling stage. As illustrated in Figure 8.1, the three iDWT layers upsample the output to 1/4
input resolution. The full-resolution output is obtained with two upconvolutional blocks by
transposed convolution. To bridge the encoder and decoder, the contextual pyramid with
wavelet transformation is added. Section 8.3.2.2 will detail the pyramid design.

8.3.2.1 Wavelet Unpooling

WCNN achieves the unpooling through iDWT layers. To this end, the DWT layers are added
consistently into the encoder to obtain high-frequency components. The idea is straight-
forward. At encoder, the DWT layers decompose the feature map into four frequency bands
channelwise, where each frequency band is half-resolution of the input. The high-frequency
components are skip-connected to the decoder where the spatial resolution needs to be
upscaled by a factor of two. Taking the layer idwt_4 in Figure 8.1 as an example, the input
to this layer are four components of spatial resolution 1/32 to perform iDWT. The pyramid
output serve the low-low frequency Ỹll, while the output of the dwt4 layer operating on
the conv4 provide the three high-frequency components Ylh, Yhl, and Yhh. With iDWT, the
spatial resolution is upscaled to 1/16. The output of layer idwt4 is finalized by adding the
1/16 resolution direct output of conv4, which is a standard skip connection commonly used
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Figure 8.1: The encoder-decoder architecture of the proposed WCNN, where the data flow is indicated by black arrows and
shortcuts are by blue arrows. Assume the input resolution is 1, the output resolution of each building block is denoted by 1/x.
WCNN employs ResNet (K. He et al. 2016a) for the encoder, which reduces the input resolution by a factor of 32 via stride-two
convolutional layers, except for one maxpool layer after conv1. To restore the input resolution, WCNN inserts three DWT layer
after conv2, conv3 and conv4. The high frequencies from DWT layers are used in the decoder to perform unpooling by the iDWT
layers. To extract global context, WCNN introduces two pyramid variants to bridge the encoder and decoder, which also exploits
DWT/iDWT layers (see details in Figure 8.2).
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(a) wavelet pyramid variant:
low frequency propagation (LFP)
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Figure 8.2: The proposed wavelet pyramid variants, with the data flow indicated by black
arrows and shortcuts by blue arrows. Both pyramids take conv5 as input and produce
conv_pyr as output, without changing the spatial resolution. Both pyramids build a multi-
resolution wavelet pyramid via successive DWT. The LFP pyramid only utilizes the low-low
frequency Yll, where each Yll is filtered by further convolutions, bilinear upsampled to the
input resolution and concatenated. The FFC pyramid employs the high frequency bands for
upscaling via iDWT.

by many state-of-the-art encoder-decoder CNNs to improve the upsampling performance.
The iDWT layer can thus be described by

G−1
h (Ỹll, Ylh, Yhl, Yhh) +X . (8.5)

We denote this appproach of upscaling the decoder feature map with the wavelet coefficients
from the encoder as wavelet unpooling.

Typically, CNNs extract feature with many layers of convolution and nonlinear operations,
which transform and embed the feature space differently layer by layer. The wavelet un-
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pooling aims to maintain the similar frequency structure throughout CNNs. By replacing
the low-frequency of the encoder with the corresponding output of the decoder to perform
iDWT with the high-frequency bands from the encoder, the wavelet unpooling aims to en-
force learning feature maps of invariant frequency structure under layers of filtering. The
skip connections of the signals before DWT also support learning such consistency.

In comparison to the other unpooling methods, for example to upsampling by transposed
convolution as proposed in Long et al. (2015), wavelet unpooling does not require any
parameters for both DWT and iDWT layers. Compare to the memorized unpooling as
proposed in M. D. Zeiler et al. (2011), or the method to map the low-resolution feature
map to the top-left entry of a 2× 2 block (Dosovitskiy et al. 2015b), the wavelet unpooling
aims to restore every entries according to the frequency structure.

8.3.2.2 Wavelet Pyramid

With CNNs that are designed for classification task, the last few layers typically reduce
the spatial resolution to 1× 1. Such feature maps have the receptive field of the entire in-
put image and therefore capture the global context. Recent works have demonstrated that
capturing global context information is also crucial for accurate dense pixelwise prediction
(L.-C. Chen et al. 2015; Zhao et al. 2017). While it is straight-forward to obtain global con-
text with fully-connected layer or with convolutional layers of large filter size, it is difficult
to bridge an encoder with drastically reduced spatial resolution to a proper decoder. Most
state-of-the-art CNN encoder reduce the spatial resolution by a factor of 32, which produces
7× 7 output given 224× 224 input dimensions. If the global context is captured by a simple
fully-connected layer, learning 7× 7 upsampling kernels is challenging.

One solution is to use the dilated convolutions, which increase the perceptive field with
the same amount of parameters (L.-C. Chen et al. 2018; L.-C. Chen et al. 2015). Building
on the dilated CNNs, the pyramid spatial pooling network PSPNet by Zhao et al. (2017)
introduces a pyramid on the feature map with multiple average pooling of different window
sizes. Noticeably, the dilated convolutions demand considerably larger amounts of memory
to host the data, which quickly becomes the bottleneck for training with large batch size.
In this work, we base our network design on non-dilated CNNs and instead construct the
pyramids through wavelet transformations. We propose two wavelet pyramids variants,
namely the low frequency propagation (LFP) and the full frequency composition (FFC) as
shown in Figure 8.2.

Low-Frequency Propagation Wavelet Pyramid Shown in Figure 8.2 (a), the LFP pyramid
successively performs DWT on the low-low frequency components Yll. At each pyramid
level, the extracted Yll component is further transformed with a convolutional layer, which
is then bilinear upsampled to the same spatial resolution as the pyramid input, i.e., conv5.
We then concatenate these the upsampled feature maps to aggregate the global context
that are captured at different scale. This concatenated feature map is combined with the
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skip-connected conv5 by an elementwise addition, which sis then filtered with a 1× 1 con-
volutional layer to match the channel dimension of the decoder.

With LFP, a multi-resolution wavelet pyramid is constructed, where only the low-low fre-
quency bands of each level are used. The LFP pyramid resembles the pyramid proposed by
the PSPNet (Zhao et al. 2017). In particular, with the Haar wavelet, the low-low frequency
is equivalent to the average pooling by a 2× 2 window. However, the difference is the PSP-
Net design average pooling with a multiple heuristic window size, whereas LFP pyramid
is strictly performed accordingly to frequency decomposition. Despite the Haar wavelet
is used in this work, the LFP pyramid can be easily generalized with other wavelet base
functions.

Full-Frequency Composition Wavelet Pyramid The LFP pyramid only uses the low-low
frequency bands. In order to make full use of the frequency decomposition, the FFC pyra-
mid is developed. Shown in Figure 8.2 (b), the FFC pyramid amounts to a small encoder-
decoder with wavelet unpooling. Start from the input conv5, DWT is performed to obtain
the four frequency bands. The low-low frequency band Yll is filtered by an additional con-
volutional layer and the high frequency bands Ylh, Yhl, Yhh are cached for unpooling. The
filtered low-low frequency is then further decomposed by DWT into the finer level and the
same operation repeats until the finest feature map is obtained. To upscale from the finest
level, we again adopt the wavelet unpooling as described by Equation (8.5). To this end,
the iDWT is first performed using the cached high frequency bands, and then the output is
further fused with the skip connection. The wavelet unpooling successively restore the spa-
tial resolution to the same as the input to the pyramid. Finally, we skip connect conv5 with
the wavelet output by an elementwise addition, and project the global context with a 1× 1
convolution to bridge the following decoder. It can be seen that, the FFC pyramid mimic
the encoder-decoder design, which naturally reduces the spatial resolution and restore it in
the consistent manner with the remaining network.

8.4 Evaluations

In this section, we evaluate the proposed WCNN method for the task of semantic image
segmentation. To this end, we use the Cityscape benchmark dataset Cordts et al. (2016)
which contains 2,975 training, 500 validation and 1,525 test images that are captured in 50

different cities from a driving car. All the images are densely annotated into 30 commonly
observed objects classes occurring in urban street scenes from which 19 classes are used for
evaluation. The Cityscape benchmark provides all the images with the same high resolution
of 2048× 1024. The ground truth for the test images is not publicly available and evaluations
on the test set are submitted online1 for fair comparison.

1 http://www.cityscapes-dataset.com
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8.4.1 WCNN Configurations

Table 8.1 presents the network configurations of the proposed WCNN. We take the state-
of-the-art ResNet101 K. He et al. (2016a) for the encoder. The ResNet101 uses stride-two
convolution to reduce spatial resolution. To implement WCNN, we preserve the stride-two
convolution layers and insert three DWT layers dwt2, dwt3, dwt4 into the decoder conv2_x,
conv3_x, conv4_x, respectively to obtain the frequency bands. At each upscaling stage at
the decoder, the corresponding frequency bands are used, then followed by several residual
blocks before the next upscaling stage. The last two upscaling stages are implemented as
upconvolution, where transposed convolution is first applied to scale up the resolution by
a factor of two, then residual blocks are used to further filter the intermediate output. In
WCNN, we reply heavily on the residual blocks proposed in ResNet K. He et al. (2016a),
where each block is a stack of three convolutional layers with the second layer of 3× 3 for
feature extraction and the first and third layers as 1× 1 convolutions for feature projection.

In this work, we develop CNNs for high-resolution predictions. An input image of 512×
1024 yields conv5_x to have the spatial resolution of 16× 32. Therefore, we design both LFP
and FFC pyamids to have four levels of DWT, which produce the four levels of frequency
components of 8× 16, 4× 8, 2× 4 and 1× 2, respectively. The finest pyramid level thus has
the receptive field of the entire input. The details of the LFP and FFC pyramids are given in
Table 8.2.

To evaluate the proposed network, the baseline CNN is designed to have minimum dif-
ference with WCNN. Taking the WCNN configuration in Table 8.1, the baseline model 1)
removes all DWT layers at encoder 2) replaces the pyramid by one 1× 1, 1024 convolutional
layer, and 3) replaces the iDWT layers by transposed convolution to upscale the feature map
by a factor of 2. The rest layers are the same with WCNN. In the following experiment, we
compare the baseline model, the baseline model with LFP and FFC pyramid, the WCNN
with LFP and FFC pyramids.

8.4.2 Implementation Details

We have implemented all our methods based on the TensorFlow (Abadi et al. 2016) machine
learning framework. For network training, we initialize the parameters of the encoder layers
from pretrained ResNet model on ImageNet and initialize the convolutional kernels on
the decoder with the initialization methods proposed by K. He et al. (2015). We run the
training with batch size of four on the Nvidia Titan X GPU. For both training, we minimize
the cross-entropy loss using the Stochastic Gradient Descent (SGD) solver with Momentum
of 0.9. The initial learning rate is set to 0.001 and decrease with a factor of 0.9 every 10

epoch. We train the network until convergences. For cityscapes, all the variants of our
experiments converges around 60K iterations. Following Pohlen et al. (2017), we apply
bootstrapping loss minimization for Cityscapes benchmark in order to speed up the training
and boost the segmentation accuracy. For all Cityscapes experiments, we fix the threshold
of bootstrapping to the top 8192 most difficult pixels per images.
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Table 8.1: The layer configurations of the proposed WCNN (see Figure 8.1). The encoder is
based on ResNet101 K. He et al. (2016a). The resblock is the residual block from ResNet,
where (x,y)× z denotes stacking z blocks of [(1× 1, x), (3× 3, x), (1× 1,y)] convolutional
layers. For upconvolution, the transposed convolution is first used to upscale the input by
a factor of two, followed by residual blocks. We denote the stride-two operations with s2,
and elementwise addition with ⊞. The dimension of the layer output assumes the spatial
resolution of input image is normalized to 1, and the second entry denotes the depth of the
feature maps.
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dwt2 Gh conv2_x 1/8, 256

conv3_1 resblock (128, 512), s2 conv2_x 1/8, 512

conv3_x resblock (128, 512)× 3 conv3_1 1/8, 512

dwt3 Gh conv3_x 1/16, 512

conv4_1 resblock (256, 1024), s2 conv3_x 1/16, 1024

conv4_x resblock (256, 1024)× 22 conv4_1 1/16, 1024

dwt4 Gh conv4_x 1/32, 1024

conv5_1 resblock (512, 2048), s2 conv4_x 1/32, 2048

conv5_x resblock (512, 2048)× 2 conv5_1 1/32, 2048

pyramid conv5x 1/32, 1024
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idwt4 G−1
h pyramid, Ylh4 , Yhl

4 , Yhh
4 1/16, 1024

dconv4_x resblock (256, 512)× 3 idwt4 ⊞ conv4_x 1/16, 512

idwt3 G−1
h dconv4_x, Ylh3 , Yhl

3 , Yhh
3 1/8, 512

dconv3_x resblock (128, 256)× 3 idwt3 ⊞ conv3_x 1/8, 256

idwt2 G−1
h dconv3_x, Ylh2 , Yhl

2 , Yhh
2 1/4, 256

dconv2_x resblock (64, 128)× 3 idwt2 ⊞ conv2_x 1/4, 128

upconv2_x upconv (64, 64)× 3 dconv2_x 1/2, 64

upconv1_x upconv (64, 64)× 2 upconv2_x 1/1, 64
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Table 8.2: The configurations of the proposed LFP and FFC pyramids (see Figure 8.2). As-
suming conv5 has a resolution of 16× 32, 2048, both LFP and FFC pyramids have four levels.
For simplicity, the outer two levels are presented in the table, whereas the inner two levels
repeats the same patterns. The operator ⋆a denotes bilinear upsample by a factor of a and
the operator ⊞ denotes elementwise addition.
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conv_p2 (1× 1, 512) Yllp2 4× 8, 512

...
...

...
...

concat concatenation Yllp1 ⋆ 2, Y
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p2 ⋆ 4Y
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p4 ⋆ 16 16× 32, 2048
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dwt_p1 Gh conv5 8× 16, 2048

conv_p1 (1× 1, 2048) Yllp1 8× 16, 2048

dwt_p2 Gh conv_p1 4× 8, 2048

conv_p2 (1× 1, 2048) Yllp2 4× 8, 2048

...
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...
...

idwt_p2 G−1
h conv_p2⊞ idwt_p3, Ylh2 , Yhl

2 , Yhh
2 8× 16, 2048

idwt_p1 G−1
h conv_p1⊞ idwt_p2, Ylh1 , Yhl

1 , Yhh
1 16× 32, 2048

conv_pyr (1× 1, 1024) idwt_p1⊞ conv5 16× 32, 1024

To train all the variants of the baseline and our model, we fix the input to the network to
quarter resolution of the original dataset, i.e., 512× 1024. For evaluation on the validation
dataset, we upsample the output logits bilinear to half of the resolution (to match the net-
work input resolution) and compute the intersection-over-union (IoU) score for each class
and on average. We also experiment with test time data augmentation, where we randomly
scale the input images and feed them through the network before fuse the score.

8.4.3 Cityscapes

We evaluate segmentation accuracy using the commonly used evaluation metric of IoU. Ta-
ble 8.3 gives the class-wise IoU and the mean IoU over the 19 classes. It can be seen that
adding LFP and FFC pyramids to the baseline network already significantly improves the
segmentation performance over the baseline. The FFC pyramid consistently outperforms
the LFP pyramid. With WCNN we gain another increase in mean IoU of up to 1.2 over
the corresponding baseline. With multi-scale test time augmentation, the accuracy of each
model is increased, but the similar rank is observed among the different methods. Our vari-
ants strongly benefit, while the combination of wavelet unpooling and FFC wavelet pyra-
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Figure 8.3: Qualitative exemplary semantic segmentation results on the Cityspaces dataset.
From top to bottom: RGB image, ground-truth segmentation, baseline-LFP-MS, baseline-
FFC-MS, WCNN-LFP-MS, WCNN-FFC-MS. The semantic color coding is given in Table 8.3.
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Table 8.3: Cityscapes 19-class semantic segmentation IoU scores on val set. All test results are obtained by comparing to half
resolution ground-truth labeling, which is the resolution of input images into our networks. The second part of the table report
the performance with multi-scale test time data augmentation, indicated by the MS suffix.

method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic

tr
af

fic
lig

ht

ve
ge

ta
ri

an

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

avg

frequency 37.7 5.4 21.9 0.7 0.8 1.5 0.2 0.7 17.2 0.8 3.4 1.3 0.2 6.6 0.3 0.4 0.1 0.1 0.7
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8.5. Conclusion

Table 8.4: IoU scores for the Cityscapes 19-class and category semantic segmentation on
the test set (benchmark). All test results are obtained by testing on half resolution and
comparing to full resolution groundtruth labeling through upsampling.

method class mIoU category mIoU

FRRN (Pohlen et al. 2017) 71.8 88.9
WCNN-FFC 70.9 86.1
WCNN-FFC-MS 73.7 88.3

mid achieves best increase in performance towards the baseline (6.0 mIoU). These results
demonstrate that wavelet unpooling as well as the FFC wavelet pyramid improve the dense
prediction of the baseline model. The qualitative comparisons are shown in Figure 8.3. It
can be seen that the WCNN approach recovers fine-detailed structures such as fences, poles
or traffic signs with higher accuracy than the baselines.

Table 8.4 compares our method with the current state-of-the-art method FRRN Pohlen et
al. (2017) on the same input resolution (2x subsampling) on the Cityscapes benchmark. It
can be seen that our method WCNN-FFC-MS outperforms FRRN by 1.9 mean IoU over the
19-classes while it is worse (0.6 mIoU) on the category level. Notably, WCNN is much less
memory demanding than FRRN.

8.5 Conclusion

This paper introduce WCNN, a novel encoder-decoder CNN architecture for dense pixel-
wise prediction. The key innovation is to exploits the discrete wavelet transform (DWT)
and inverse DWT to design the unpooling operation. In the proposed network, the high-
frequency coefficients extracted by DWT at the encoder stage are cached and later combined
with coarse-resolution feature maps at the decoder to perform accurate upsampling and
hence, ultimate pixelwise prediction. Further, two wavelet pyramid variants are introduced,
i.e., the low frequency propagation (LFP) pyramid and the full frequency composition (FFC)
pyramid. Both pyramid extract the global context from the encoder output with multi-
resolution wavelet decomposition. Shown in experiment, WCNN outperforms the variant
baseline CNNs and achieve the state-of-the-art semantic segmentation performance on the
Cityscapes dataset.

In the future work, we will evaluate WCNNs for different dense pixelwise prediction tasks,
e.g., depth estimation and optical flow estimation. We will also perform ablation study of
the wavelet pyramid to evaluate different pyramid configuration. It is also interesting to
extend the WCNN for different wavelet base functions or ultimately learn the optimal base
functions with CNNs.
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CHAPTER 9
Human-in-the-loop Annotation for Large-scale

3D Semantic Datasets

A bstract We propose a unified tool to generate high quality, geometrically consistent
3D semantic annotation for large scale static scenes. Our novel tool enables an individ-

ual or team to annotate large scale, fine grained meshes with class and instance labels. We
show experimentally that the proposed tool produces a clean 3D segmentation and the ge-
ometric consistency of the labels enables automatic generation of 2D image segmentations,
both of which are useful in many state-of-the-art ML based computer vision and AI tasks be-
yond the segmentation task itself including modern joint depth and semantic segmentation
from passive image data and embodied question answering challenges.

9.1 Introduction

Semantic scene understanding is a fundamental problem in computer vision, robotics and
graphics. To facilitate the research, large-scale high-quality ground-truth datasets are crucial
to data-hungry algorithms, such as deep learning. Recently, there have been some releases
of large-scale semantic RGB-D datasets. While these datasets have an impressive scale, little
work focuses on how to efficiently obtain detailed annotations that also preserve consistency
between multi-view 2D images and 3D reconstruction. In this paper, we develop a tool that
not only enables humans to annotate directly on 3D meshes, but also enables clean up of
mesh geometry to enhance semantic propagation between 2D and 3D. Aiming for large-
scale ground truth collection, we propose a closed-loop workflow, that learns from existing
semantic segmentations to bootstrap future annotations.

State-of-the-art annotation tools either label 2D images (Russell et al. 2008; Silberman et al.
2012) or operate on segmented 3D meshes (Dai et al. 2017a; Nguyen et al. 2017). Shown
in Figure 9.2, the existing annotations are often contaminated with labeling noise, the corre-
spondence between 2D and 3D labels are either absent or inconsistent, and it is difficult to

137



9.1. Introduction

(a) 3D reconstruction

(b) semantic segmentation

(c) instance segmentation (d) zoomed-in views of semantic and instance segmentation

floor wall table chair bin ceiling sofa cabine
plant door shades monitor screen blanket window unknown

Figure 9.1: The semantic instance segmentation of an approximately 2500m2 office space,
obtained by training deep convolutional neural network (Mask-RCNN by K. He et al.
(2017) ) from 20 indoor scenes annotated by our algorithm and fusing 2D predictions onto
3D mesh reconstruction. With the proposed pipeline, most surfaces are correctly initialized,
which bootstraps human effort for further annotations.
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obtain detailed annotations that respect object boundaries. Additionally, 3D datasets heavily
rely on structured light depth sensor for dense reconstruction. Because of occlusions and
lack of coverage and sensor limitations, missing surfaces are common in the reconstruction.
This fact leads to erroneous data associations when projecting 3D to 2D image space and
vice versa. This severely limits the use of semantic 3D datasets to train and benchmark 2D
machine learning algorithms. With the aim of large-scale annotations, annotation efficiency
is an important concern. Along those lines, we investigate whether existing annotations can
assist further labeling. This work makes the following key contributions:

• A segmentation-aided free-form mesh labeling algorithm, which yields hierarchical anno-
tation with better detail and efficiency.

• A human-aided geometry correction technique to insert missing surfaces to enhance
2D/3D association.

• A closed-loop bootstrapping annotation scheme, which trains instance semantic annota-
tions from annotated data, and integrates the predictions back into a mesh segmentation.

To demonstrate the effectiveness of our method, we show experimentally that compared to
a theoretically optimal accuracy of a segment-based annotation, we increases the accuracy
by at least 5%. We demonstrate that the reconstruction amended by our method reduces
rendering faults and produces better ground-truth annotation. In comparison to the state-
of-the-art segmentation-based algorithm, our annotated model renders 2D label images that
gives approximately 20% better accuracy. To demonstrate the close-loop annotation pipeline,
we collect and annotated 20 indoor scenes with our method and used them to learn semantic
instance prediction in 2D images with the state-of-the-art deep neural network Mask-RCNN
by K. He et al. (2017). With the novel fusion method proposed in this work, we demonstrate
that even with comparatively little data, our pipeline produces reasonable semantic and
instance 3D mesh segmentation. Shown in Figure 9.1, the method automatically initialized
95% of the surface annotations of an entire office floor.

9.2 Related Works

RGB-D Annotation One early work for interactive 3D semantic annotation is developed by
SemanticPaint by Valentin et al. (2015) to label indoor scene reconstruction and is extended
to outdoor with passive stereo cameras by Miksik et al. (2015). The algorithm takes in RGB-
D sequences, reconstruct the scene with KinectFusion (Newcombe et al. 2011a) and labels
each voxels with limited human interaction, i.e., briefly painting strokes on raycasted views.
The authors then perform online learning with a random forest to train a semantic classifier
based on a human annotation. The classifier provides the unary energy for a dynamic
fully connected CRF (Krähenbühl and Koltun 2011) over the voxels, which enables label
propagation from limited human annotation to the entire model.
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Figure 9.2: The limitations of state-of-art RGB-D annotations. NYUv2 (Silberman et al. 2012)
and SUN-RGBD (Song et al. 2015) use polygon-based annotation, which leads to label incon-
sistency between multiple viewpoints. ScanNet (Dai et al. 2017a) and SceneNN (Nguyen
et al. 2017) proposed segment-based mesh annotations, where objects are not accurately ex-
tracted and details are lost. In both scenarios, 2D labels are offset with respect to the actual
object boundary.

In the effort to generate a large-scale semantic RGB-D dataset, many annotation strategies
have been proposed. One solution is to ignore the depth and multi-view information and
directly annotate in 2D. Based on drawing 2D polygons around objects, NYUv2 (Silber-
man et al. 2012) obtained a total amount of 1449 annotated images with semantic labels.
The drawback of single-view annotation is inconsistency in labeling between different view-
points and the inefficiency of annotating the same scene parts multiple times. To solve this
problem, Song et al. (2015) propose the SUN-RGBD dataset, where 3D point cloud is anno-
tated by drawing gravity-aligned 3D bounding box around object instances and projecting
the result back onto 2D images. However, not all objects can be extracted by bounding box.
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As a result, labels are still inconsistent and annotation by projecting 3D bounding box leads
to labeling noise. Given RGB-D dataset are typically a sequence of video rather than single
view images, Hua et al. (2016) propose to perform annotation on a reconstructed 3D model.
The annotation is initialized with an over-segmentation of mesh, and human effort is ded-
icated to merge, extract and split segments to create annotations. This annotation pipeline
is further developed by Nguyen et al. (2017), where repetitive objects are searched using
a sliding window to obtain automatic label transfer. The authors additionally propose to
project 3D labels to 2D images to generate fully annotated video sequences. To compensate
projection misalignment, a bipartite graph matching method is applied for boundary refine-
ment. Based on similar segmentation-based 3D mesh annotation method, Dai et al. (2017a)
proposed a large-scale semantic dataset by crowd-sourcing annotation. One drawback of the
segmentation-based labeling is that the error in segments, such as offset to object boundary,
loss of instance details are propagated into the final annotation results. Recently, the Mat-
terport cameras, which provide 360° RGB-D panoramas, are used to collect very large-scale
indoor scenes by Armeni et al. (2017) and Chang et al. (2017). To obtain the groundtruth
label, each panorama is annotated separately, and then aggregated via voting to annotate
the mesh. The labeling process used in ScanNet (Dai et al. 2017a) is adopted with crowd
sourcing.

Geometry Correction Indoor scene reconstruction with RGB-D scanning has made remark-
able advances in recent years. With the state-of-the-art reconstruction algorithms (Dai et al.
2017b; Newcombe et al. 2011a; Whelan et al. 2016), dense large-scale 3D reconstruction
achieves very faithful representation of the real world. However, due to the sensor limitation
and imperfect capture coverage, the 3D model usually contains missing surfaces. To solve
this problem, many geometry completion algorithms have been proposed. Dzitsiuk et al.
(2017) propose to complete shape by detecting planar surfaces and augmenting surfaces by
plane fitting. J. Huang et al. (2017) further regulate plane extrapolation by estimating in-
tersection. Beyond planar surfaces and with the focus to reconstruct thin arterial structures,
Motif is proposed in Yin et al. (2014) to reconstruct incomplete cylinder-alike shape via
curve editing. They estimate a set of curves to represent cross-section and object axis, and
complete the reconstruction by sweeping curves. A similar idea is proposed by G. Li et al.
(2010) to reconstruct thin structures by representing surface as arterial snakes. With the
advance of deep learning algorithms, attempts have been made to learn 3D reconstruction
completion (Dai et al. 2017c; Song et al. 2017). However, the resolution of these methods
remains rather low.

Instance Semantic Segmentation Recently, impressive progress has been made in instance
semantic understanding. In particular with the success of deep learning algorithms and con-
volutional neural networks (CNNs). The state-of-the-art networks (K. He et al. 2017; Red-
mon and Farhadi 2017), trained on large-scale 2D image datasets such as ImageNet (Rus-
sakovsky et al. 2015) and MSCOCO (T.-Y. Lin et al. 2014), performs at considerably high
accuracy in instance semantic predictions. Learning with 3D data is more challenging due to
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Figure 9.3: The proposed closed-loop pipeline to generate large-scale semantic annotations
in 3D. First, the system takes 3D meshes, computes geometry-based segmentations to as-
sist human annotation while allowing free-form labeling. Then, the annotated meshes are
rendered to obtain fully annotated 2D sequences, which are used to train deep learning
algorithms for semantic understanding. Last, for a new mesh the trained model predicts
semantics, fuses the prediction into a geometry-based 3D segmentation and bootstraps an-
notation.

the fact that 3D data are typically unstructured. Early attempts extend 2D convolution to 3D
volumetric data (Dai et al. 2017a; Dai et al. 2017c; Song et al. 2017), where the resolution is
highly limited by memory. Recently, attempts have been made to learn directly from point
clouds (Qi et al. 2017a; Qi et al. 2017b) or over the geometric manifold of meshes (Masci
et al. 2015; Monti et al. 2017).

9.3 Algorithm Overview

Figure 9.3 shows the proposed closed-loop pipeline to generate large-scale semantic anno-
tations in 3D. First, the system takes 3D meshes, computes geometry-based segmentations
to assist human annotation. An annotator then refines and semantically annotates the pre-
segmentation using free-form mesh painting. Then, the annotated meshes are rendered to
obtain fully annotated 2D sequences, which are used to train deep learning algorithms for
semantic understanding. Given enough human segmented and annotated meshes, we can
close the loop by using the trained model to infer semantics in image space and fusing these
prediction into a consistent segmentation on the 3D mesh.

9.3.1 Preliminaries

A 3D colored mesh M is a manifold defined by a set of vertices V = {vi ∈ R3}, edges
E = {eij}, and polygon primitives P = {pi}. The attributes of a vertex vi contain unit
normal ni ∈ R3, and color ci ∈ R3. Mesh M can be partitioned into disjoint segments
Mi and assigned to label ℓk. The instance and semantic partition is denoted by Ms

i and
M

q
i , respectively. An RGB-D recording is a sequence S of color image, depth image and

the correspondin 6DoF camera pose
{
It ∈ R3,Dt ∈ R,ξt ∈ R6

}
with time stamp t. In this

work, the 6DoF rigid body motion ξt is assumed known for each frame. Given a camera
model, the projection of a 3D point v onto the 2D image is denoted by x = π(v), with x ∈ R2
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Figure 9.4: A semantic annotation tree encodes different categories and their hierarchical
relationship. The level 0 represents only non-semantic segments. The level 1 encodes ob-
ject instances, where instances of the same category are further grouped into semantic class
representations at level 2. The level 3 and the above further encodes the hierarchical relation-
ship between different categories. The second row shows the corresponding label rendering
for each tree levels.

and the back-projection by v = π−1(x). To compute color distance, we always use CIELab
color space instead of RGB, and ∆(ci, cj) denotes the Euclidean color distance in CIELab
space.

Annotation is the process of a human interacting with a 3D mesh. To compute where an
annotators clicks on the mesh, we use OpenGL to render the polygon index into a frame
buffer and read out the index under the mouse position. We find this solution more efficient
than ray tracing. Similarly, to obtain 2D labeling from annotated meshes, the label value is
looked up through a rendered primitive index.

9.4 Segmentation-Aided Free-form Annotation With Geometry Correction

In this section, we propose an annotation algorithm to generate accurate semantic instance
labeling on the 3D mesh and 2D renderings from it. Our goal is to assist humans to effi-
ciently label semantic objects accurately, ensure label consistency between observations from
different viewpoints, and maintain a tight association of 3D reconstruction and 2D images.

To this end, the proposed tool operates on 3D colored meshes. The algorithm initializes
the annotation with a geometric segmentation. Annotation is an iterative process between
joining segments and changing segments to correctly capture details via free-form painting
along the mesh manifold. View rendering is applied to propagate the annotation results
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from 3D to 2D. To compensate rendering errors due to imperfect reconstruction, we intro-
duce human-aided geometry completion.

9.4.1 Hierarchical Annotation with Semantic Tree

The process of annotation is to create a mapping from primitives to the label domain
f : pi 7→ ℓj. When the mapping f is one-to-one, it is trivial to organize the results. However,
considering how annotated models are used in practice, it is desirable to support a multi-
valued mapping, i.e., the same primitive can be a rug in for one application, and floor for
another. Similarly, hierarchical relationships are fundamental to semantic relationships. For
example almost any object can be broken down into smaller parts or grouped into new cate-
gories. To support one-to-many mapping and hierarchical relationships in the segmentation,
we introduce the semantic tree. Figure 9.4 illustrates this idea. In our work, leaf nodes con-
tain sets of primitives that correspond to segments generated either by the pre-segmentation
algorithm or free-form painting. These leaves are connected into a tree to represent different
semantics. In this work, the hierarchy is defined as follows: level 0 represents the aforemen-
tioned non-semantic leaf segmentations, level 1 represents object instances, level 2 represents
object classes, level 3 and above encodes higher-level semantic sets. With this definition, ren-
dering the tree at different levels naturally yields different aspects of the annotation. This is
shown in Figure 9.4, up to level 3 of the semantic tree.

9.4.2 Geometry-based Mesh Segmentations

To extract a sensible initial segmentation, we rely on the following robust planar segmen-
tation algorithm: (1) run directional segmentation via the DP-vMF-means algorithm by
Straub et al. (2014) and (2) run connected component analysis for each of the directional
segments along the manifold of the mesh. We classify a segment as planar by analyzing the
eigenvalues λ1 < λ2 < λ3 of the covariance matrix of all points in the segment. Only if both
λ1 � λ2 and λ1 � λ3 do we accept the segment as a plane. We refine any segments of the
mesh that are not classified as planar via the Felsenszwalb segmentation algorithm (Felzen-
szwalb and Huttenlocher 2004). This leads to a finer segmentation of all non-planar seg-
ments that are more useful for the next step of free-form segmentation adjustment and
semantic annotation.

To further clean up the resulting segmentation we run a 3D bilateral filter as the final step
in the pre-segmentation. The bilateral filter works along the manifold of the mesh with the
following weighting function:

ωj = exp
(
−
∆(cj, ci)2

σ2c
−

|vj − vi|
2

σ2v

)
. (9.1)

9.4.3 Segmentation Refine with Free-form Painting

In many situations, joining segments does not lead to the desired annotation. This is be-
cause 1) boundary of segments often misaligns with the actual object, 2) some segments
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ALGORITHM 9.1: Free-form painting along 3D mesh manifold.

1 Input: 3D colored mesh M and a seed primitive ps
2 Parameter: αt angle threshold, dt distance threshold, δt color threshold
3 Output: New segment Mk

4 queue: Q← ps
5 while Q 6= ∅ do
6 pop primitive pk
7 if pk ∈Mk then
8 continue

9 Nj = findNeighboringPrimitives(pk)
10 for each neighbor pk in Nj do
11 if |nT

kns| > cosαt and ‖pk −ps‖ < dt and ∆(ck, cs) < δt then
12 Q← pk; Mk ← pk

13 return Mk

connect multiple object parts, and 3) heuristic pre-segmentation algorithms fail to distin-
guish objects, e.g., to separate rug and floor. To solve this problem, SceneNN (Nguyen et al.
2017) generates segmentations, and allows annotators to break large segments by switch-
ing from coarse to fine segmentation. We argue that a pre-segmentation should not limit
annotations, but rather support the annotator. Therefore, we propose free-form painting
along mesh manifold to refine segments. From a user selected seed primitive, Algorithm 9.1
describes the painting method. It uses region growing along the mesh to locate segments.
Region growing is regulated with three parameters. Parameter αt regulates the smoothness
by comparing the normal direction, parameter dt limits the Euclidean distance to the seed
primitive, and parameter δt regulates the color similarity. With a proper combination of
these parameters, the region growing is flexible in selecting any surface patches, from large
planar structures to small curved areas. It also enables extracting detailed texture patterns,
such as posters on the wall.

The free-form painting introduces topology changes to the semantic tree. To reflect these
changes and to preserve the tree structure, affected tree branches are detected and their
empty twin branches created. Leaves affected by painting are split into two. The unselected
primitives remain unchanged, the selected ones are extracted and transferred to the twin
branch.

9.4.4 Human-Aided Surface Repairing

Many indoor reconstructions rely on structure light sensor to obtain dense reconstruction.
Due to sensor limitations and imperfect capture coverage, the resultant mesh typically con-
tains missing surfaces. This leads to wrong projection, where surfaces behind the missing
reconstructions get projected onto 2D images (see Figure 9.5). Comparing the rendered
depth to raw depth images can detect some errors, however, depth is not always available.
To maintain a tight association between 3D annotations and 2D images, we propose two
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(a) original model M vs. complete model Mc with our tool

(b) rendered RGB images and its photometric error of M vs. Mc

(c) rendered label images by annotated M vs. annotated Mc

Figure 9.5: The influence of surface repairing on 2D rendering. The top row visualizes
a more complete reconstruction produced by our algorithm. The middle row shows the
rendering error as the photo-consistency between input RGB and the rendered RGB, with
brighter color indicating larger error. The last row compares label rendering, where our
method prevents rendering erroneous labels into 2D views and yields more complete anno-
tations.

simple yet effective techniques to repair reconstructions.
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Patching of Planar Holes Observing that often missing surfaces are planar, our method
lets annotators mark a polygon Bi around a planar hole. The plane equation parameterized
by ρi := (ni,d) is then estimated by least-square plane fitting,

arg min
ni,d

∑
vi∈Bi

(
nT
i vi + d

)2
. (9.2)

To stitch the mesh, the planar patches are directly integrated into SDF volume which are
used to reconstruction the model. To update the voxels around target holes, the SDF value
F(v) is calculated as the distance between voxel center v and the target plane

F(vi) =
W(vi)F(vi) +ω(nTvi + d)

W(vi) +w
,

W(vi) =W(vi) +ω .
(9.3)

Once the SDF values are updated, the mesh is regenerated via the standard Marching Cubes
algorithm (Lorensen and Cline 1987). The augmented polygons are automatically assigned
to the most likely boundary primitive label.

Extrapolation of Cylindrical Structures To complete the missing surfaces of cylindrical
structures, e.g., the partially reconstructed pillars in Figure 9.5, we implement a technique
inspired by Yin et al. (2014). The idea is to first estimate the curve of an objects central
axis and cross-section shape, and then to complete the missing surfaces by sweeping the
cross-section curve along central axis. Considering our target application we note that there
are mostly straight dominant supporting structures that cause rendering errors. Hence, we
simplified the original work. Instead of estimating the L1-medial skeleton axis (H. Huang
et al. 2013) to approximate central axis, we estimate the objects central axis as follows. First
the dominant principal component is computed via PCA to approximate the central axis.
Then neighboring vertices are projected onto the tangent plane and the cross-section shape
is estimated by fitting a non-uniform rational basis spline (NURBS) by Wang et al. (2006).
Finally the axis is adjust to the center of cross-section NURBS. In addition, the sweeping
direction is adjustable by annotators to achieve optimal results.

These two techniques do not optimally correct reconstruction faults. However, they effec-
tively reduce the most common rendering errors and yield better label propagation from 3D
model to 2D images.

9.5 Closing Annotation Loop by Learning from Accumulation

Annotation is an expensive process, therefore, it is important to incorporate machine intel-
ligence to assist the human operator. In this section, we describe the close-loop annotation
scheme to bootstrap large-scale semantic annotation collection. Inspired by the recent break-
through of 2D deep learning, this work builds upon the state-of-the-art instance segmenta-
tion algorithm Mask-RCNN. To propagate the understanding from multi-view 2D images
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to obtain consistent predictions of 3D meshes, we develop a novel method for multi-view
semantic instance fusion onto a 3D mesh. Furthermore, we introduce a technique to bridge
the gap between vision-based and geometry-based segmentation.

9.5.1 Generate Video Annotation

The first step towards closing the loop of annotation is to train machine learning algorithms.
In this work, we base our development on Mask-RCNN. In order to train the 2D convolu-
tional neural network, we render the 3D semantic mesh into the corresponding camera view
to obtain densely annotated video sequence. Due to the noise and errors in pose estimation,
model reconstruction, and camera calibration, the rendered label images do not always fully
respect the object boundary in the original color image. The missing labels in mesh anno-
tation and missing surfaces in reconstruction also contribute to noises in label rendering.
To correct these artifacts, we apply 2D joint bilateral filter to smooth the rendering, while
preserving the edges. Similar to 3D bilateral filter,

ωj = γi exp
(
−
∆(cj, ci)2

σ2c
−

|vj − vi|
2

σ2v
−

|xj − xi|
2

σ2p

)
, (9.4)

where σ2c, σ2x and σ2v are the variance in color, 2D pixel coordinate and 3D Euclidean. The
weight parameter γj is an estimation of rendered label certainty. We observe in the exper-
iment that, the rendered label is more prone to error around object boundaries and label
jumps. Therefore, a combined edge map is estimated as the strong image gradient plus the
label boundary. The weighting map γ is then calculated as the distance towards the nearest
edge point and then normalized to the range of [0, 1]. The value γi is also used to compute a
dynamic filter window. Given a maximum window size K, the filter size for pixel i is given
by γjF.

9.5.2 Instance Segmentation on a 3D Mesh

The following develops an approach for computing instance-level semantic segmentation in
3D, which more precisely, is to find a tuple of semantic and instance ids, (Ms

i , Mq
i ), for each

primitive pi on a mesh M. Shown in Algorithm 9.2, the approach operates in three main
phases. First, a Mask-RCNN model is used to detect objects in each image frame It in a
raw video capture sequence S (line 5-6). Specially, Mask-RCNN finds a list of object masks
{dk}, each of which is associated with a semantic class ck and a confidence score αk. Using
the projection function found during 3D reconstruction, each of the detections in 2D can be
mapped onto the 3D mesh (line 8-10). Each mapped detection consists of the same semantic
class ck, a set of face ids mk on the 3D mesh, and the corresponding confidence score
rk that combines Mask-RCNN’s prediction score αk and the mesh’s geometry information
(i.e., camera pose with respect to the mesh). In the second phase, the set of individual
detections D are fused together to obtain semantic-level segmentation s as shown in line 10.
In the third phase, since each instance is constrained to have one semantic id, instance-level
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ALGORITHM 9.2: 3D instance segmentation.

1 Input: A video sequence S and camera model for projection π
2 A Mask-RCNN model R : I 7→ (c1,α1,d1), . . . , (cIn,αIn ,dIn)
3 Output: Semantic and instance segmentation Ms,Mq

4 D← ∅ // initialize set of instance detections on mesh
5 for each image (It,ξt) in S do
6 (ct1,αt1,dt

1), . . . , (c
t
In,αtIn ,dt

In
)← R(It)

7 for each detection ot
k = (ctk,αtk,dt

k) do
8 (ctk, rtk,mt

k)← projectionAndAggregate (ok, It,ξt; π)

9 D← D ∪
{
(ct1, rt1,mt

1), . . . , (c
t
In

, rtIn ,mt
In
)
}

10 Ms ← semanticFusion(D)
11 Mq ← 0

12 for each semantic unique class sk in Ms do
13 Dsk ← {o|o ∈ D s.t. detection o has classId sk}
14 msk ← {mi|smi

= sk}
15 M

q
sk ← instanceFusion(Dsk , msk )

16 Mq ← extendIds(Mq
sk )

17 return s,q

segmentation can be performed separately for each semantic class sk, as shown in lines
12-16. Details of the latter two phases are presented below.

Semantic Fusion Outlined in Algorithm 9.3, semantic fusion finds a partition s of the mesh
by aggregating individual detections in D. Specifically, the confidence counts rtk of each
detection are cumulated over the instance’s 3D volume mt

k (set of face ids on the mesh) in
lines 6-8; and a partition is obtained by assigning each face id to the semantic class with the
most counts in line 9. The aggregation process is repeated several times to remove detection
instances that are inconsistent (line 7) with the current partition, which is important for
removing false-positive detections by Mask-RCNN. In this work, consistency is determined
by whether more than half of the detection volume mt

k is assigned the predicted semantic
class ctk in the partition Ms.

Instance Fusion Instance-level segmentation is more difficult because instance ids between
different observations cannot be associated directly. For example, an chair in image A could
correspond to any or none of the chairs in image B. More importantly, since the detections
are originally derived from 2D images, different detections of the same object instance could
correspond to images from different view points and thus have little in overlap on the
3D mesh. To address this challenge, Algorithm 9.4 is developed to find an instance-level
partition Mq

sk when given a set of detections Dsk for each semantic class sk.

The proposed method works similarly to expectation maximization. In particular, the algo-
rithm iterates between (i) finding a soft assignment zt for each detection (line 9-14), and (ii)
aggregating the assigned detections’ confidence counts {uh} to update the instance partition
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(a) target reconstruction (b) geometry-based segmentation

(c) Mask-RCNN semantic prediction (d) estimated label confidence

(e) uniform semantic transfer (f) weighted semantic transfer

(g) Mask-RCNN instance prediction (h) weighted instance transder

Figure 9.6: Conditioned label transfer to integrate Mask-RCNN prediction and geometry-
based segmentation.
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ALGORITHM 9.3: Semantic fusion

1 Input: Semantic class, masks and confidence scores of instance-level detections on a 3D mesh

2 D =
{
(ct1, rt1,mt

1), . . . , (c
t
In

, rtIn ,mt
In
)
}

3 Output: Semantic partition of the mesh Ms

4 Ms ← 0 // initialize a partition vector
5 while not converged do
6 {uh ← 0} // initialize confidence counts for each semantic class h
7 for each detection (ot

k = (ctk, rtk,mt
k) in D do

8 if first iteration or isConsistent(ot
k, s) then

9 uctk
← cumulateCounts(uctk

, rtk,mt
k)

10 Ms ← arg max (u1, . . . ,us)

11 return s

M
q
sk (line 15-19). In this work, we compute the intersection over union (IoU) of a detection

with each of the existing partitions (line 11-13). 1 A key distinction here from the classical
clustering problem is that an observation t can have multiple correlated detections. 2 For
example, two detections from the same image should correspond to separate instances, and
thus the soft assignment step in line 14 needs to take into account the IoU between each pair
of detections and instance partitions. Furthermore, for semantic classes with instances of
large physical size, such as door and wall, each detection typically only gets a small, partial
view of an object instance. The IoU matrix can also be used as a metric to determine whether
multiple partitions should be merged into a single object (line 17-18).

9.5.3 Conditioned Label Transfer

At the early stage of data collection, available annotated data is rather limited. This leads
to the fused semantic and instance segmentation from Mask-RCNN fails to always make
correct predictions for every mesh primitive. Shown in Figure 9.6(c) as an example, it can
be seen the half of the mesh do not get predictions. However, given our conservative fusion
strategy, most valid predictions are correct. Notice that the geometry-based segmentation
shown in Figure 9.6(b) also provides clean and useful predictions on object classes. In
particular, the structural surfaces, e.g., floors and walls, are well-segmented. Based on this
observation, we proposed to transfer the semantic predictions conditioned on the geometry
segments.

For this purpose, one trivial solution is to use maximum likelihood (ML) estimation, by
assigning each segment the label that dominants the corresponding segment. The ML es-
timation does not yield optimal solution, as shown in Figure 9.6(c). The correct labels are
rejected due to a slightly lower occurrence frequency. To resolve this problem, we propose

1 To account for a camera’s limited field of view, the union calculation between a detection and an instance
partition is restricted to the part of the mesh visible to a detection’s corresponding image.

2 Recall Mark-RCNN can find multiple instances of the same semantic class in an image.
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ALGORITHM 9.4: Instance fusion

1 Input: Instance-level detections from a single semantic class,

2 Dsk =
{
(ct1, rt1,mt

1), . . . , (c
t
In

, rtIn ,mt
In
)
}

s.t. cth = sk ∀t,h
3 A set of mesh indices msk whose semantic class is sk
4 Output: Instance-level partition Mq

sk for the set of indices msk

5 M
q
sk ← randomPartition(msk) // initialize instance partition

6 while not converged do
7 {uh ← 0} // initialize confidence counts for each instanceId h in q

8 S← 0 // initialize an instance merge/split count matrix
9 for each observation t in Dsk do
10 iouMat← 0

11 for each of kth detection (ctk, rtk,mt
k) from observation t do

12 for each instanceId h in Mq
sk do

13 iouMat[k,h]← computeIoU(rtk,mt
k, Mq

sk , h)

14 zt ← assignDectectionToInstance(iouMat)
15 for each of kth detection (ctk, rtk,mt

k) from observation t do
16 uztk

← cumulateCounts(uztk
, rtk,mt

k)

17 S← updateMergeSplitCounts(S, iouMat)

18 {uh}← mergeSplitInstance(S, {uh})
19 M

q
sk ← arg max ({uh})

20 return q

to estimate the label confidence based on the semantic meaning and the assumption of Man-
hattan world. Taking a Mask-RCNN segmentation, the gravity direction is first estimated by
taking the dominant segments that are labeled floor. The least square plane fitting is then
performed to obtain the parameter (ng,dg)T. The estimated plane normal serves as gravity
direction. For primitive pi that is predicted to be floor, the label confidence is estimated by

ηi = nT
i ng · exp

(
−(nT

gvi + dg)
2
)

. (9.5)

Assuming the reconstruction is a Manhattan world, objects that are typically perpendicular
to gravity direction, e.g., desk and ceiling, are assigned confidence ηi = |nT

i ng|. Whereas,
objects that are typically parallel to gravity, e.g., wall, doors and monitors, are assigned
confidence ηi = 1.0 − |nT

i ng|. For object classes where the surface orientation is difficult
to be described in by Manhattan world, the confidence is set to a empirical values which
reflect the overall prediction confidence. Such confidence map is showed in Figure 9.6(d).
Using the confidence values, a weighted voting is performed in label transfer, which leads
to obvious improvements in Figure 9.6(f).

9.6 Experimental Results
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9.6.1 Groundtruth Generation

To examine the efficiency and accuracy of the 3D annotation algorithm and the consistency
from propagating 3D labels to 2D image, we capture one apartment in great details, and
apply the geometry correct techniques described in Section 9.4.4 to fill-in missing surfaces.
The comparison of the original and the corrected reconstruction is visualized in Figure 9.5.
This model is carefully annotated by a professional annotator to obtain a highly detailed
label for every primitive and the result is used as ground truth for further evaluations.
Figure 9.7 shows the annotation for both instance and semantics. This golden standard
annotation is referred to GTApt in the remaining section.

To evaluate the proposed close-loop annotation pipeline, we further collect 20 scans of of-
fices and process them with our tool, naming BS20Scene (Figure 9.8). Using the techniques
described in Section 9.5.1, we rendered 8475 labeled images with precise instance-level se-
mantic segmentation, consisting 32 common categories, such as chairs, dining tables, and
floor. To achieve better generalization and prevent over-fitting, we add MSCOCO into train-
ing Mask-RCNN. To combine with our BS20scene, a subset of MSCOCO with 50 frequent
indoor categories were added to training, which amounts to 68 classes of 102147 images.

9.6.2 Evaluations

In first experiment, we evaluate the annotation efficiency and accuracy of the proposed
segment-based free-form annotation method. In order to obtain fair comparison to the
state-of-the-art segment-based annotation methods by Dai et al. (2017a) and Nguyen et
al. (2017), we compute mesh segmentations with different algorithms. Taking the human
annotation GTApt as ground truth, and the theoretical optimal accuracy of segment-based
annotation is calculated. Assuming annotators only combining segments to annotate and
they make no mistake, the optimal accuracy is calculated by

A∗ =
1

N

N∑
i=1

|Mi ∩Mg
k

∣∣
|Mi|

, (9.6)

where the i-th segment Mi is associated to the k-th ground-truth segment Mg
k by the high-

est IoU score. Taking three segmentation results from BS20Scene, the optimal parameter is
searched for each algorithm and the results are reported in Table 9.1 and the visual segmen-
tation comparison is shown in Figure 9.9. The baseline is Felzenszwalb segmentation (FS),
for which we also report the accuracy with its extreme parameter settings. It can be observe
that the theoretical optimal accuracy typically increase with a higher number of segments.
Ideally, when each primitive is a segment, the accuracy will reach 100%. However, larger
amounts of segments indicates higher demand for human annotation. The proposed Pla-
neExtractor usually yields smaller amount of segments. Overall, combining PlaneExtractor
with Felzenszwalb and smooth the results with 3D bilateral filter gives best performance.
The result from Table 9.1 also shows that segment-based annotation is prone to 5% error,
which is the accuracy gain obtained by amending segments as proposed by our method.
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(a) instance mesh annotation

(b) semantic mesh annotation (overlaid with the colored mesh)

(c) semantic 2D label rendered into camera view (overlaid with the RGB images)

Figure 9.7: The ground-truth apartment annotation created by a professional 3D annotator
using our tool, which contains 300+ object instances from 60+ semantic categories.
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(a) BS20Scene instance annotation.

(b) BS20Scene semantic annotation.

Figure 9.8: The BS20Scene dataset annotated by our method and used to generate 2D labels
to bootstrap automatic annotations of large scale office labelling as shown in Figure 9.1
(showing the views without structure completion).
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groundtruth FS-ext FS

PE-CC PE-FS PE-FSBR

Figure 9.9: Comparison of mesh segmentation algorithms. The theoretical optimal accuracy
for each algorithm is presented in Table 9.1.

Table 9.1: Theoretical optimal accuracy for segment-based mesh annotation, comparison
between segmentations produced by Felzenszwalb(FS), its extreme setting (FS-ext), PlaneEx-
tractor with connected components (PE-CC), PlaneExtractor with Felzenszwalb (PE-FS) and
additionally with 3D bilateral refinement (PE-FSBR).

room A room B room C
algorithm num. seg optimal acc num. seg optimal acc num. seg optimal acc
FS-ext 21,137 97.38% 3,053 96.90% 2,124 98.02%
FS 4,446 94.48% 620 95.31% 391 95.70%
PE-CC 1,318 91.14% 1,199 94.00% 642 92.30%
PE-FS 2,830 94.03% 1,376 95.54% 786 94.09%
PE-FSBR 2,425 93.65% 527 94.53% 414 93.17%
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no paint coarse paint (BF)coarse paint fine paint fine paint (BF) ground truth

Figure 9.10: Rendered 2D label images with different annotation in comparison to ground
truth (BF indicates with bilateral filtering). The corresponding quantitative results are given
in Table 9.2.

Many practical applications require 2D annotated images. In the second experiment, we
investigate how different annotation influence the consistency on label propagation from
3D meshes to 2D images. We also investigate the effectiveness of the proposed surface cor-
rection on rendering. For comparison, the ground-truth labels of the GTApt reconstruction
(contain surface correction) is rendered into the original RGB camera trajectory that is used
to reconstruct the model. Taking every 10th frames, we obtain approximately 4000 views for
quantitative evaluation. Three annotations are obtained as follows: a) annotation by joining
segments, b) annotation by adding 30min free-form painting to amend results from a), and
last a fully detailed annotation from our method. Table 9.2 gives the quantitative results
and Figure 9.10 shows visual comparison. The results shows that segment-based annotation
yields the lowest accuracy, whereas a quick adjustment of segments increases accuracy by
10%. The major reason is explained in Figure 9.10, where the pre-segmentation algorithm
fail to extract rug from the floor. We argue, these scenarios are very common in real data,
which motivates the importance of the ability to correct the segmentation. Comparing the
rendering before and after 2D bilateral filter, it can be seen label boundary become better
aligned to objects. Figure 9.10 also shows the effectiveness of surface correction, which
prevents rendering the floor into computer through the missing surface. This rendering
improvement is further evaluate by comparing the photo-consistency between rendered col-
ored image and input RGB. As shown in Table 9.3, with model completion the photometric
error decreases and the amount of pixels that are closer to the input RGB images increases.
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Table 9.2: Accuracy of 2D rendered semantic label in comparison to geometry corrected
detailed annotations.

join segment coarse paint fine paint 2D refine render accuracy
✓ 76.71%
✓ ✓ 77.01%

✓ 87.22%
✓ ✓ 87.66%
✓ ✓ 96.93%
✓ ✓ ✓ 97.36%

Table 9.3: Photometric consistency between input and rendered RGB images from recon-
struction. The per pixel error is computed in CIELab color space, and ∆-10 is the percentage
of pixels within 10 color distance. The results * denote the subset of images that are affected
by geometry correction.

algorithm average std ∆-10

baseline 8.47 12.93 78.9%
with completion 8.25 11.86 79.1%
baseline* 8.27 12.70 79.2%
with completion* 7.79 10.70 79.4%

9.7 Conclusions

This work presented an annotation tool for producing high-quality 3D reconstruction and
semantic segmentation datasets. In particular, existing 3D datasets often have large areas
with missing or incorrect geometry information (e.g., thin structures and holes in dimly
lit areas) due to limitations in sensors technologies and data capture procedures. The pro-
posed method addressed this challenge by allowing human annotators to amend the missing
geometries. Furthermore, the work provided an efficient method for annotating object in-
stances and semantic information directly on the reconstructed 3D mesh. The annotated
3D data was used to render 2D images for training a state-of-the-art object detection model.
Finally, a novel semantic fusion algorithm is developed, which combines object detections
from individual 2D images onto the 3D mesh. This closes a 2D/3D loop, where the ground
truth data is used to train/improve an object detection model, which subsequently, generates
initial annotation (for human annotators to refine) on new data sequences. The proposed
approach is evaluated extensively on an indoor dataset of 20 rooms, and used to generate
automatic semantic annotation for a large office space.
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All models are wrong, but some are useful.

– George E. P. Box



CHAPTER 10
Dense RGB-D Reconstruction

D ense 3D colored models of real-world environments are of high relevance to many
applications including mixtured/virtual reality, serious gaming, professional civil en-

gineering and 3D printing. In this chapter, we discuss algorithms to obtain such detailed
models from common RGB-D SLAM methods. Two scenarios are considered. First, we
consider an off-line processing, where the input consist of a triangular mesh and a set of
multi-view RGB-D images with known 6 DoF. The primary objective is to produce visually
appealing 3D colored models that are robust to various noise in data acquisition. In the
second setting, we consider an on-line volumetric color fusion for KinectFusion Newcombe
et al. (2011a) alike RGB-D SLAM algorithms. The objective in this scenario is to obtain
a detailed reconstruction given the trade-off between tracking accuracy and limited GPU
memory.

10.1 Dense Colored Model from Multi-view Textures and Triangular Mesh 1

In this section, we consider an off-line processing to obtain dense colored mapping from
an input consists of a triangular mesh and a set of RGB-D images with given poses. An
example input is shown in Figure 10.1.

10.1.1 Related Works

Given a mesh model reconstructed from RGB-D SLAM and the multi-view textures, the
object is to obtain a consistent colored model. To this end, we need to be aware of the
various noise from data acquisition. First of all, textures from commodity RGB-D cameras
have relatively low quality, e.g., low pixel resolution, image blur caused by motion blur
and distortions due to rolling shutter cameras. Second, brightness is not consistent, due to

1 © 2013 IEEE. Textual materials, figures, tables reused with permission from Lingni Ma, Luat Do, Egor Bondare-
vand Peter H. N. de With, 3D Colored Model Generation Based on Multiview Textures and Triangular Mesh. in proc.
of Seventh International Conference on Distributed Smart Cameras (ICDSC), Oct 2013.
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10.1. Dense Colored Model from Multi-view Textures and Triangular Mesh

(a) mesh with the viewpoint of the camera (b) samples of multi-view textures

Figure 10.1: Example input to the proposed algorithm, consisting of a triangular mesh and
a set of multi-view textures with known poses.

uncontrolled lighting during data capturing, auto exposure settings, and varying brightness
from non-Lambertian materials. The third error source comes from the imperfect camera
calibration and errors from motion estimation. Additionally, mesh reconstruction does not
accurately reflect the true geometry, with over smooth geometry, missing reconstructions
and wrong surface modeling. With these error sources in mind, it is desirable to have
robust coloring algorithms.

In computer graphics, texture mapping is one of the most applied techniques to generate
colored models, where each mesh polygon is associated with a 2D texture patch. Textured
models provide an efficient representation to embed visual information, In comparison to
store color by mesh vertices, textured model can store more detailed appearance context.
These advantages in particular benefit meshes with large-sized polygons. The drawback
of textured models is the inflexible structure. With the separation between geometry and
appearance, the surface continuity is not often not maintained in the texture domain, which
creates difficulties in applying image filtering techniques to the disconnected texture patches.
To combine the flexibility from colored mesh and the representation capacity from texture,
Yuksel et al. (2010) proposed the mesh colors representation. With mesh colors, color is not
only assigned to vertices, but color samples are also interpolated for edges and faces such
that their appearance can be better presented even with large triangles.

When using multi-view textures to color a mesh, a key concern is how to obtain proper
coloring given the inconsistent observations from multiple viewpoints. One solution is
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10. Dense RGB-D Reconstruction

to apply texture blending. To this end, Lensch et al. (2003) proposed a triangle-based
blending algorithm to smoothen adjacent triangles that are mapped to different viewpoints.
The blending performance is highly sensitive to the triangle size, where small triangles are
under filtered and large triangles are overly smoothed. To address this problem, pixelwise
blending is developed in (Alshawabkeh and Haala 2005; Grammatikopoulos et al. 2007).
This method synthesizes textures, where pixels from different viewpoints that correspond
to the same point in geometry are blended. The quality of the colored model is highly
dependent on the resolution of the textures and their selected viewpoints.

10.1.2 The Methods

To develop a flexible representation for robust coloring, our solution is to use 3D surface
points as processing primitive to store and filter visual information. To this end, we exploit
the structured mesh colors (Yuksel et al. 2010) to perform adaptive point upsampling and
to produce render-friendly dense maps. We further develop an algorithm to generate multi-
view textures for straight-forward texture mapping.

10.1.2.1 Adaptive Point Upsampling and Point-Based Color Blending

We now present a point-based algorithm, which uses 3D surface points as primitive to
process and associate color information. These points come from the original vertices as well
as from upsampled surface points based on the mesh. The goal is to assign a reasonable
color value for each point and output a colored model represented as a colored point cloud
constrained in a mesh structure.

In this section, we present our point-based algorithm to generate 3D colored models. We
store color information by surface points and provide appropriate coloring via blending.
Our algorithm is robust to errors from texture deficiencies, camera calibration and mesh
modeling. Let us now describe the three processing steps in more detail.

Associate Mesh Polygons to Multi-view Textures Given a mesh and texture, determine
the visible triangles in the given view is the first step prior to any processing. One solution
is to use ray tracing to obtain the visible triangle. An more efficient alternative however, is
through mesh rendering. The mesh rendering is a process of radiosterilization and depth
test. In particular using the functionality from OpenGL, the index of the visible mesh trian-
gles can be directly read out from a frame buffer.

Adaptive Point Upsampling With the attempt to preserve all visual information of a dense
RGB video into a point-based representation, the amount of input vertices from a mesh is
often insufficient. In order to avoid loss of details, we propose to upsample points before
coloring. Naturally, the projection area of a triangle onto a 2D texture directly influences the
amount of information needs to be represented by the face. The larger the projection, the
more pictorial details are contained. It is therefore reasonable to upsample points propor-
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R = 1 R = 2 R = 3 R = 4 R = 5

Figure 10.2: Mesh colors with different resolution R, where blue, red and green denote
vertices, edge points and face points, respectively.

tional to the projection area. Usually, the projected area varies with respect to the intrinsic
triangle size and the camera pose. With these observations, an adaptive point upsampling
organized by the mesh colors structure is suitable for our purpose.

As proposed in Yuksel et al. (2010), the mesh colors structure is an extension of vertex
colors, where colors are not only assigned to vertices, but additional color samples are also
added to edges and faces. The mesh colors thus resembles a texture patch, except that the
color values are directly associated to the geometry. For the triangular mesh, a resolution
factor R is specified for each triangle such that R − 1 points are added to each edge and
(R− 1)(R− 2)/2 points are added to the face. Figure 10.2 depicts some examples of mesh
colors structures with different resolution factors. All points belonging to a triangle are
evenly spaced, so that they are easily computed using barycentric coordinates with respect
to the triangle vertices. Let point pij belong to a triangle with 0 ⩽ i ⩽ R and 0 ⩽ j ⩽ i, its
barycentric coordinates are given by Λij = (i/R, j/R, (1− i− j)/R). All points on the triangle
can then be calculated by a coordinate matrix Λ, with

Λ =



Λ00 Λ01 · · · Λ0(R−1) Λ0R

Λ10 Λ11 · · · Λ1(R−1) O
...

... O O

Λ(R−1)0 Λ(R−1)1 · · · O O

ΛR0 O · · · O O


. (10.1)

In accordance to Figure 10.2, we denote the coordinates of vertices, edge points and face
points with blue, red and green, respectively. The matrix Λ is an upper triangular matrix,
where O = (0, 0, 0) are coordinates of non-existing points.

For adaptive upsampling, we determine the resolution factor R for each triangle according
to its maximum projected area αm among all visible textures. The number of pixels inside
the projected triangle serves as an estimation for the projected area. The resolution R is
then specified by R =

⌈√
αm

⌉
with Rmin = 1. This policy ensures that any three closest

color samples that form an equilateral triangle, encompass at most one pixel. Consequently,
we approximate the least amount of points required to store the necessary appearance. In
this design, upsampled points and original mesh vertices are stored as one point cloud and

164



10. Dense RGB-D Reconstruction

(a) color by the closest view criteria (b) color by smallest view angle criteria

(c) color by proposed blending (d) the proposed blending with upsampling

Figure 10.3: 3D colored point clouds generated with different color assignment criteria.

referenced to triangles by indices. They can also be arranged in the required format to
directly render the mesh colors structure.

10.1.2.2 Point-based Color Blending

Given RGB-D sequences, texture blending reduces undesirable color changes. The unap-
pealing coloring is illustrated in Figure 10.3 (a) and (b), where color values are selected by
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10.1. Dense Colored Model from Multi-view Textures and Triangular Mesh

the closest view distance and smallest view angle, respectively. In addition to abrupt color
changes, the errors from imperfect camera calibration as well as inaccurate mesh modeling
lead to wrongly assigned color values. To achieve better coloring, the point-based blending
is proposed. First, color samples are collected for every point given all visible viewpoints.
When projecting a point to a texture image, bilinear interpolation is used to calculate the
color value. Second, color outliers are removed by statistical analysis. For this, we compute
the baseline color CM = (RM,GM,BM) as the median of all color samples for each individ-
ual color channel. The color distance between a color sample (Ri,Gi,Bi) and the baseline
color is defined by

dC = max
{
|Ri − RM|, |Gi −GM|, |Bi −BM|

}
. (10.2)

Any color sample with dC larger than threshold dT is considered to be an outlier. By remov-
ing outliers, we reject most of wrong color values resulting from calibration and modeling
errors. In our experiment, dT = 50 yields good results. Last, the blended color is computed
as a weighted average of the remaining valid color samples. We have developed a new em-
pirical weight for the valid color sample, which is inserted in a blending function. Given N
valid color samples, the blending function is defined by

C =

∑N
i=1(| cos θi|/di)×Ci∑N

i=1(| cos θi|/di)
, (10.3)

where variable i denotes the ith color sample, θi is the angle between the point normal and
camera viewpoint, di is the distance to the viewpoint and vector C represents the (R,G,B)
color value. The point normal is estimated with local least-squares plane fitting. With
this blending function, we assume a color sample is more reliable when it is closer to the
camera and the local surface is more orthogonal to the viewpoint. Figure 10.3 (c) shows
the point cloud colored with the proposed blending. In comparison to Figure 10.3 (a) and
(b), a clean and smooth coloring is obtained without artificial color changes. Figure 10.3
(d) depicts a dense colored point cloud with adaptive point upsampling prior to coloring.
Obviously, more appearance information is available with upsampling, yielding a more
visually appealing colored model.

10.1.2.3 Multi-view Texture Generation

With the dense colored model obtained from last section, we can additionally generate multi-
view textures to approximate the input color sequences and enable straight-forward texture
mapping. In this process, textures are generated for each rendered depth image obtained
in Section 10.1.2.1, where a color value is assigned to pixels with valid depth value. To
do this, every depth pixel is back-projected by Equation (3.62) and transformed into the
world coordinate by Equation (3.67) to obtain its global coordinate g. The nearest point
to p in the dense colored model is searched and its color is assigned tothe corresponding
pixel. Figure 10.4 shows the generated texture in comparison to the original color image. It
can be seen that our inexpensive color assignment yields good texture with well-preserved
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10. Dense RGB-D Reconstruction

Figure 10.4: Generated texture from colored point cloud on the right, in comparison to the
input color image from the same viewpoint on the left.

appearance. However, due to blending of low-quality textures, imperfect calibration and
errors in mesh modeling, the generated texture is less sharp and slightly distorted.

Using the generated texture, a straight-forward texture mapping can be obtained. Given the
generated textures are based on a blended colored point cloud, a triangle can be mapped
to any visible texture patches without producing artificial color changes. However, to pro-
vide more pictorial details for rendering, we assign a weight to the visible texture patches
by ωi = αi · | cos θi|, where αi and θi are the area and angle between point normal and
viewpoint of the ith patch, respectively. The patch with highest weight is assigned to the
triangle. Figure 10.5 presents a comparison of the dense colored model and the textured
model obtained from the proposed processing. It can be seen, the two colored models are
highly consistently with visually appealing texturing.

10.2 Online Multi-volume RGB-D Mapping and Tracking 2

We now consider an on-line mapping scenario. In this setting, we study the real-time RGB-
D SLAM algorithms with a volumetric representation, similar to KinectFusion (Newcombe
et al. 2011a) and Kintinuous (Whelan et al. 2012). With KinectFusion alike algorithms,
the core (colored) TSDF volumes perform two important functionality: reconstruction and
prediction. With reconstruction, multi-view measurements are integrated into a continuous

2 © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Textual materials, figures,
tables reused with permission from Lingni Ma, Egor Bondarev and Peter H. N. de With, Multi-volume Mapping
and Tracking for Real-time RGB-D Sensing, in SPIE Image Processing: Algorithms and Systems XIII, 2015.
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10.2. Online Multi-volume RGB-D Mapping and Tracking

Figure 10.5: Generated texture from colored point cloud on the right, in comparison to the
input color image from the same viewpoint on the left.

function while being discretized by voxels. With prediction, a depth image is obtained
by raycasting the TSDF volume and subsequently used to formulate geometric residual in
tracking. For reconstruction purpose, smaller voxel size is important to represent details.
Whereas, for robust tracking, large volume size is essential to ensure wider field of view.
Given limited GPU memory, trade-offs need to be made. The objective of this section is
therefore, to develop a better solution to satisfy the needs of both ends.

Usually a single voxel requires 32 bits memory to store both TSDF and color values. Given
the total memory usage grows cubically with respect to the volume resolution, the amount
of voxels rarely exceeds 5123 for 2 GB GPU. As a result, a commonly used (3 m)3 volume
gives voxels of (5.86 mm)3 dimension, which is insufficient to fully preserve the visual
information and the fine geometrical details. To provide a better leverage between recon-
struction and prediction needs, we derive at is a multi-volume solution. We now describe
this technique in detail.

10.2.1 Volume Configuration

With the objective to provide detailed mapping without sacrificing the accuracy and robust-
ness of tracking, two volumes are allocated on the GPU. We refer these two volumes as the
constructor and the helper. The constructor volume is responsible for detailed mapping of
the geometry and the appearance. To this end, it is configured to have a relatively small
dimension and a high voxel resolution. In this thesis, it is found that the constructor of
(1.5 m)3 dimension and 5123 voxel resolution yields a good mapping quality. While the de-
tailed mapping is achieved with the constructor volume, tracking however becomes prone
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x

y

z

Figure 10.6: Initial position of the constructor volume (in dark color) and the helper volume
(in light color). The two volumes are centered and aligned to the xy plane. The camera is
placed along the z axis.

(a) the camera is fixed at one location,
while rotating 360° to map its surroundings

(b) the camrea moves along a circle
to map objects from all perspectives

Figure 10.7: Illustration of volume shifting with an analogical 2D plot. The constructor and
the helper volumes are depicted in dark color and light color, together with the arrow to
indicate the camera pose.

to failure due the limited vision. To overcome this problem, the helper volume is designed
to have a large spatial dimension with a low resolution, e.g., a (3 m)3 volume of 2563 voxels.

Each voxel in the constructor is associated with a 8 bit TSDF value, a 8 bit TSDF weight,
a 12 bit RGB color value and a 4 bit color weight. This ensures that both depth and color
frames are properly fused. In contrast to the constructor volume, only a 8 bit TSDF value
and a 8 bit TSDF weight are stored by each voxel of the helper volume. Since the helper
volume is used to assist in tracking, only depth frames are integrated into it. As a result, a
2563 helper volume requires 64 MB of extra memory, which is marginal to the 1 GB memory
demanded by the constructor volume. It should be noted that, even the helper volume is
of 5123 voxel resolution and requires 512 MB extra memory, the total memory demands by
both volumes still fit in the memory of a modern GPU.
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10.2. Online Multi-volume RGB-D Mapping and Tracking

10.2.2 Object-Oriented Volume Shifting

In order to map unbounded space with limited GPU memory, the rolling volume technique
(Whelan et al. 2012) is applied. In placing and shifting the volumes with respect to the cam-
era, an object-oriented shifting approach is developed. The principle idea is to ensure good
perceptive field for the camera and to maximize volume occupancy during the mapping
process.

Since the constructor volume and the helper volume are used for different purposes, we
shift them independently. Figure 10.6 shows the initial position of the constructor and the
helper volumes. The two volumes are centered and aligned in the xy plane, while the
camera is placed along the z axis pointing to the volume centers. When the camera moves,
both constructor and helper volumes are adjusted accordingly. To determine how to shift
the volumes, the following parameters are defined. First, we define vision center Vc of a
camera to be a 3D point Vc = (0, 0,R)T in the camera coordinates. We further define a range
parameter R to be computed by R = 0.5Dv + d, where Dv is the volume dimension and d is
a displacement factor. Consider that RGB-D camera usually have a near-field occlusion (e.g.,
0.8 m is typical for the Kinect camera in far-range mode), the displacement factor d can be
used to compensate such occlusion by keeping the camera over d distance away from the
volume. The displacement factor can also be used to adjust the camera to be of an arbitrary
distance away from the volume center. In a special case with d = −0.5Dv, the camera is
placed exactly at the volume center.

With the previous definitions, the initial vision centers of the constructor and the helper
coincide with their volume centers. During camera movement, we check the current vision
center of the ith frame in the volume coordinate system by computing V

(i)
c = TiVc. The

transformation matrix Ti is the estimated camera pose from the ith camera coordinate to
the current volume coordinate. Whenever the current vision center deviates more than dth

distance away from the volume center, the volume is shifted accordingly to realign both.

To further illustrates our volume shifting methods, Figure 10.7 depicts two scenarios. In the
first scenario, the camera is fixed at one location, while rotating 360° to map its surroundings.
Both constructor and helper volumes move approximately along a circular trajectory. In the
second scenario, the camera moves along a circular trajectory around the constructor with
the objects at the center. With a circle radius equal to the view range of the constructor,
the constructor volume remains in a static position, whereas the helper volume will be
shifted around the constructor. Notice that in both scenarios, despite the volumes are shifted
independently, the helper always ensures wide vision for tracking.

The physical interpretation of this volume shifting strategy is that the volume remains its
position as long as the camera moves within certain thick sphere layer around the volume
and it is pointing to the volume center. Since the camera vision center is usually where the
objects of interests are, this volume shifting strategy tends to optimize the voxel occupancy.
We name this strategy object-oriented volume shifting. In contrast to the shifting strategy
which places the camera at the volume center (Whelan et al. 2012), this shifting strategy
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10. Dense RGB-D Reconstruction

Figure 10.8: Synthetic view by ray casting the volumes. The colored and gray scale pixels are
obtained from the constructor and the helper, respectively. Notice how the helper volume
fills in the missing pixels to assist tracking.

enables an adjustable distance to the volume center and a more flexible choice of volume
sizes. Compared to the strategy to transform volumes with arbitrary rotation and translation
(Roth and Vona 2012), our method transforms the camera with respect to the volume and
hence no interpolation is required to remap the voxel values.

10.2.2.1 Volume Fusion and Ray Casting

Following the scheme of volumetric mapping (Curless and Levoy 1996; Newcombe et al.
2011a), each pair of depth and color frames are first integrated into the volumes to update
the 3D model with an implicit representation, and then a synthetic depth frame is generated
by ray casting for tracking of the next frame. To perform volume fusion and ray casting,
the camera poses with respect to both the constructor volume and the helper volume are
required. In our algorithm, we estimate the camera pose with respect to the constructor
volume. Since the constructor and the helper are always axis-aligned, the pose with respect
to the helper can be calculated by concatenating the translation from the constructor volume
to the helper volume.

At the data fusion stage, the TSDF and color values associated to voxels, are updated ac-
cording to Equation (3.90). To compute the weight, we set wi+1(x) = 10 · | cos θ|, where θ is
the angle between the camera viewpoint and the surface normal. Consider that the depth
measurements around object boundaries are often noisy, the weight of boundary pixels are
set to zero and thus excluded from fusion.

At the ray casting stage, we first ray cast the constructor volume, and then fill the missing
pixels by ray casting the helper volume. Since the constructor volume is of a higher resolu-
tion than the helper volume, its raycasted values are also of a higher accuracy. Figure 10.8
shows the synthetic views from ray casting. The reader should note the detailed coloring
from the constructor and the wide vision coverage from the helper.
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input color frame voxel size 6mm3 voxel size 5mm3

voxel size 4mm3 voxel size 3mm3 voxel size 2mm3

Figure 10.9: The quality of color maps generated with voxel of different sizes, in comparison
to the input images.

10.2.3 Evaluations

To objectively evaluate the improvements of the visual quality by multi-volume processing,
we examine the color maps generated with different voxel sizes. For this purpose, we obtain
maps with a single volume of 5123 voxel resolution and different voxel sizes. The synthetic
views are rendered from the camera poses after obtaining the final mapping. Taking the
corresponding input images as a reference, the Peak-Signal-to-Noise Ratio (PSNR) and the
Structure Similarity Index Matrix (SSIM) of the rendered images are computed. Figure 10.9
shows the rendered images using different voxel sizes. It can be observed that the pictorial
details get sharper with a smaller voxel dimension. The PSNR and the SSIM measurements
of 650 frames are given in Table 10.1. The results show that the PSNR and the SSIM increase
with smaller voxel and the maximum quality is achieved with (3mm)3 voxel size. The
(2 mm)3 voxel does not produce the highest quality because the volume size becomes too
small ((1 m)3 with 5123 voxels) which leads to a dropping accuracy in tracking.
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Table 10.1: Colored maps generated from voxels of different sizes. The visual quality is
measured with PSNR and SSIM of rendered images.

voxel PSNR (dB) SSIM
configuration min max median std min max median std

(6 mm)3 16.169 21.569 19.485 1.363 0.617 0.839 0.749 0.067

(5 mm)3 16.305 21.724 19.564 1.636 0.617 0.839 0.769 0.066

(4 mm)3 16.511 22.741 19.974 1.309 0.669 0.861 0.785 0.038

(3 mm)3 17.371 24.277 21.096 1.181 0.712 0.876 0.819 0.039

(2 mm)3 16.430 23.161 20.181 1.356 0.651 0.849 0.762 0.041

173





CHAPTER 11
RGB-D Mapping with Plane Priors

T his chapter presents further analysis to Chapter 4 in two aspects. First, we describe
the curvature-based plane detection algorithm to segment point cloud maps into planar

and non-planar surfaces. Second, we discuss how to extend these algorithms for incremental
and batch processing for gradually expanding point cloud maps.

11.1 Curvature-Based Plane Segmentation Algortihm 1

Planes are characterized by their perfect flatness and can be described as sets of points that
have zero curvature. In practice, open scene point cloud data can be quite noisy and points
belonging to planes do not have a curvature of exactly zero. However, the curvature of
points lying on planes is still low enough to distinguish them from points belonging to
non-planar surfaces. This observation motivates the functionality of our algorithm, which
is built upon the work of Rabbani et al. (2006).

11.1.1 Method

Given a dense point cloud, the curvature-based algorithm segments planar surfaces itera-
tively, the pseudo code of this algorithm is given in Algorithm 11.1. At each iteration, the
point with the lowest curvature among the remaining unsegmented points is selected. This
initiates a region growing process, where the selected point become the first seed point, and
its normal is used as an estimation for the underlying plane. To grow the underlying planar
surface incrementally, the k-nearest neighbors of the current seed point are determined and
their normals are compared to the estimated plane normal. A neighboring point is added to
the current segment if its normal is consistent with the plane normal within an angle thresh-
old. A qualified point is also enqueue as a new seed point for further region growing if its

1 © 2013 IEEE. Textual materials, figures, tables reused with permission from Lingni Ma, Raphale Favier, Luat
Do, Egor Bondarevand Peter H. N. de With, Plane Segmentation and Decimation of Point Clouds for 3D Environment
Reconstruction, in proc. of IEEE 10th Consumer Communications and Networking Conference (CCNC), 2013.
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ALGORITHM 11.1: Curvature-based plane segmentation.

1 Input: 3D point cloud made of points pi ∈ R3 with normals ni and curvatures ci
2 Parameter: θth angle threshold, cth curvature threshold
3 Output: A set of planar segments
4 while points remain unsegmented or the queue is not empty do
5 if the queue is empty then
6 pick a seed point ps with the lowest curvature
7 set the plane normal np to be the normal of ps

8 else
9 pop out a seed point ps from the queue

10 mark ps as segmented
11 compute the k-nearest neighbours of ps

12 foreach unsegmented neighbour pi do
13 if arccos (np,ni) < θth then
14 add pi to the current segment, mark pi segmented if ci < cth then
15 add pi to the queue

16 if the queue is empty then
17 output the current segment as a plane

curvature is sufficiently small. When no more points can be added to the current segment,
a plane surface is produced. Afterwards, the whole process restarts with the remaining
points, until the entire cloud has been processed. An early termination is reached, when
the lowest curvature among the remaining points exceeds a threshold, meaning no further
planar surfaces can be formed.

This curvature-based algorithm works with two parameters. The first parameter θth speci-
fies the maximum angle between the estimated plane normal and the normal of a potential
point on the plane. Typically a 10° angle works well for noisy point clouds. The second
parameter cth is the curvature threshold, which is used to verify whether a point should be
designated as a seed point for region growing. Empirically this threshold is set to a value
below 0.1.

There are two major differences between this algorithm and the method of Rabbani et al.
(2006). The first difference is how new points are accepted into the current segment. The
original algorithm always updates the normal used for the integration to be the current
seed point. In our algorithm, the normal for comparison is fixed to the normal of the first
seed point throughout the entire region growing process. Consider the first seed point has
the lowest curvature, its normal can be assumed to be a good estimation for the normal
of the entire planar segment. With this modification we avoid the detection of smoothly-
connected shapes such as spheres and cylinder-like structures. The second modification
concerns the estimation of point curvature. In Rabbani et al. (2006), curvature is estimated
to be the residual of local LS plane fitting. In our algorithm, the curvature is estimated using
Equation (3.92) (Pauly et al. 2002). The two estimations are related. Assume the principal
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Figure 11.1: Plane detection with the RANSAC-based algorithm (left) and the curvature-
based segmentation (right). Each detected plane is marked with a different color and points
marked as black do not belong to any planes.

values produced by the PCA of the local points to be λ1 , λ2 , λ3, with λ1 ⩽ λ2 ⩽ λ3, the
residual of local LS plane fitting is given by λ1 as discussed in Section 3.2.3.3. Therefore,
Rabbani et al. (2006) directly uses λ1, whereas λ1 is normalized by λ1 + λ2 + λ3 in our

estimation to be more robust.

11.1.2 Comparison to RANSAC

One common algorithm to detect planes is the RANSAC. In Figure 11.1, we give a visual
comparison between our algorithm and RANSAC. In both algorithms, we accept planes with
a size larger than 5% of the total points. It can be seen that planes detected by RANSAC
contain fractions from different disconnected objects, which are considered to best fit a plane
model. In contrast, our algorithm detects complete and continuous planes, which have a
physical representation, such as the wall, the floor, the table, etc. This property enables the
further processing steps for 3D reconstruction to be more reliable and reasonable.

In addition to the accuracy of plane detection, the computational efficiency of our algorithm
is also examined. In Table 11.1, the execution times of the curvature-based algorithm and
RANSAC are compared. To ensure satisfying results, 100 iterations are used for RANSAC.
The comparison shows that the curvature-based algorithm is on average 2 to 7 times faster
in execution than RANSAC. The computational efficiency is especially beneficial for large
point clouds. For experiment, the algorithm is implemented on Ubuntu 11.10 on an Intel
Core i5 CPU 750 of 2.67GHz with 3.8GB memory.
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Table 11.1: Comparison of the computational efficiency for the RANSAC-based algorithm
and our algorithm. The execution time is measured in second.

num. points RANSAC (s) our algorithm (s)
74,756 1.35 0.63

288,011 9.60 2.66

650,284 12.22 5.82

1,174,824 20.96 10.30

2,311,672 159.69 20.94

11.2 Incremental Planar Simplification for Gradually Expanding Maps2

Many RGB-D SLAM algorithms produce dense point cloud maps incrementally in real-
time, e.g., Kintinuous from Whelan et al. (2015b). In this section, we extend the algorithms
detailed in Chapter 4 and the plane segmentation method in Section 11.1 to batch process
incrementally expanding point cloud maps.

11.2.1 Segment Merging and Growing

Our method involves maintaining a pool of unsegmented points which are either segmented
as new planes, added to existing planes or deemed to not belong to any planar segment.
Firstly we define a distance-based plane merging method that determines whether or not to
merge two planar segments based on the distance between the points in each segment. We
list this as Algorithm 11.2 and henceforth refer to it as the mergePlanes method.

Assuming the input to our system is a small part of a larger point cloud map that is being
built up over time we must define a method for growing existing planar segments that were
found in our map in the previous timestep of data acquisition. We maintain a persistent pool
of unsegmented points M where each point Mi ∈ R3 and also contains a timestep value
Mit , initially set to zero. When a new set of points are added to the map, they are added to
the set M, which is then sorted by the curvature of each point. A batch segmentation of M
is then performed (as described in Chapter 11), producing a set of newly segmented planes
N. From here we perform Algorithm 11.3, which will grow any existing segments and also
populate the set S, that maintains a list of planes which are similar in orientation but not
close in space. Algorithm 11.4 lists the method for merging similar planes that eventually
grow close enough in space to be merged together.

Each time new data is added to the map Algorithm 11.3 and Algorithm 11.4 are run, after
which the timesteps values of all remaining unsegmented points in M are incremented by
one. Points with a timestep value above a specified threshold are removed from the point

2 © 2014 Elsevier B.V.. Textual materials, figures, tables reused with permission from Thomas Whelan, Lingni Ma,
Egor Bondarev, Peter H. N. de Withand John McDonald, Incremental and Batch Planar Simplification of Dense Point
Cloud Maps, in Robotics Autonomous Systems, July 2015.
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11. RGB-D Mapping with Plane Priors

ALGORITHM 11.2: Method for merging two planar segments.

1 Input: A planar segment with normal An and point cloud AC

2 B planar segment with normal Bn and point cloud BC
3 BH concave hull of B
4 Parameter: dth distance threshold
5 Output: True or False if segments were merged or not
6 foreach point hi in BH do
7 if ∃ACk

s.t.
∥∥hi −ACk

∥∥
2
< dth then

8 An ← (An|AC|+Bn|BC|)/(|AC|+ |BC|)
9 At ← 0

10 append BC to AC

11 compute KD-tree of AC

12 return True

13 return False

(a) (b) (c) (d)

Figure 11.2: Incremental planar segmentation shown with point cloud and camera trajec-
tory (in pink) shown above and resulting planar segments below. From left to right: (a)
initially there are four segments extracted from the point cloud; (b) as the camera moves
and more points are provided, the three segments on the left are grown (as described in
Algorithm 11.3); (c) the upper-right most segment grows large enough to be merged with
the small segment on the right (as in Algorithm 11.4); (d) once the camera has moved far
enough away from the two upper segments they are finalised.

pool and marked as non-planar. Algorithm 11.3 will add new segments to the map, grow
recently changed segments and ensure similar planes that have the potential to grow into
each other are kept track of. By including both spatial and temporal thresholds it ensures
that the process scales well over time and space. Algorithm 11.4 merges segments which
may not have initially been close together in space but have grown near to each other over
time. Figure 11.2 shows an example of the incremental planar segmentation process in
action.
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11.2. Incremental Planar Simplification for Gradually Expanding Maps

ALGORITHM 11.3: Method for growing planar segments.

1 Input: N set of new planar segments with normals Nin , point clouds NiC and timesteps Nit

2 Q set of existing planar segments with normals Qin , point clouds QiC and timesteps Qit

3 Ct current position of sensor producing the map
4 Parameters: nth normal merge threshold, tth timestep threshold, tdth timestep distance

threshold
5 Output: S set of similar but non-merged segments
6 foreach newly segmented plane Ni do
7 R← ∅
8 gotPlane← False
9 foreach existing plane Qi do
10 if !Qifinalised

and arccos (Nin ,Qin) < nth then
11 compute concave hull H of Ni

12 gotPlane← mergePlanes(Qi,Ni,H)
13 if gotPlane then
14 break

15 else
16 add Qi to R

17 if !gotPlane then
18 compute KD-tree of NiC
19 Nit ← 0

20 add Ni to Q
21 foreach similar plane Ri do
22 add (Ni, Ri) tuple to S

23 remove all points NiC from M

24 foreach existing plane Qi do
25 Qit ← Qit + 1
26 if Qit > tth and ∀q ∈ QiC , ‖Ct −q‖2 > tdth then
27 Qifinalised

← True

28 foreach similar plane Si do
29 if Si1finalised or Si2finalised then
30 delete Si

11.2.2 Evaluation of the Incremental Segmentation

To evaluate the proposed algorithms, we ran the C++ implementation on Ubuntu Linux
12.04 with an Intel Core i7-3930K CPU at 3.20 GHz with 16 GB of RAM. The same data
as shown in Figure 4.10 are used to compare the batch segmentations to the incremental
segmentations qualitatively and quantitatively. We use the open source software Cloud-
Compare3 to align the batch and incremental models of each dataset together to compute
statistics. We quantify the quality of the incremental segmentation versus the batch segmen-
tation by using the “cloud/mesh" distance metric provided by CloudCompare. The process

3 http://www.danielgm.net/cc/
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11. RGB-D Mapping with Plane Priors

ALGORITHM 11.4: Merging segments that have grown closer.

1 Input: S set of similar but non-merged segments with point clouds SiC and alpha values Siα
2 Q set of existing planar segments
3 Output: S set of merged segments
4 foreach similar plane Si do
5 gotPlane← False
6 if |Si1C | > |Si2C | then
7 swap Si1andSi2
8 if Si1α ! = |Si1C | then
9 compute concave hull Si1H of Si1

10 Si1α ← |Si1C |

11 gotPlane← mergePlanes(Si2 ,Si1 ,Si1H)
12 if gotPlane then
13 foreach existing plane Qi do
14 if Qi == Si1 then
15 delete Qi

16 break

17 foreach similar plane Sj do
18 if Si == Sj then
19 continue

20 if Sj1 == Si1 then
21 Sj1 ← Si2

22 else if Sj2 == Si1 then
23 Sj2 ← Si2

24 if Sj1 == Sj2 then
25 delete Sj

26 delete Si

involves densely sampling the batch planar model mesh to create a point cloud model which
the incremental model is finely aligned to using ICP (Besl and McKay 1992). Then, for each
vertex in the incremental planar model, the closest triangle in the batch model is located
and the perpendicular distance between the vertex and closest triangle is recorded. Five
standard statistics are computed over the distances for all vertices in the incremental model:
Mean, Median, Standard Deviation, Min and Max. These are listed for all four datasets
in Table 11.2. Figure 11.3 shows heatmap renderings of the “cloud/mesh” error of each
incremental segmentation compared to the batch segmentation. Notably in each dataset
there are a number of highlighted green planes, these are planes which were not detected
in the incremental segmentation model but exist in the batch segmentation. In general the
incremental segmentation occasionally fails to segment small planar segments whereas the
batch segmentation always finds all planes that match the criterion set out in Algorithm 11.1.
Additionally, as the incrementally grown planes use a moving average for the planar seg-
ment normal, some planes may have a slightly different orientation when compared to the
batch model. This is evident in particular in Figure 11.3 (a) and (c). Taking this qualitative
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11.2. Incremental Planar Simplification for Gradually Expanding Maps

Table 11.2: Incremental versus batch planar segmentation statistics. All values shown are in
meters, on the distances between all vertices in the incrementally segmented model and the
nearest triangles in the batch segmented model.

Dataset 1 2 3 4

Mean 0.020 0.038 0.111 0.028

Median 0.015 0.004 0.015 0.010

Std. 0.021 0.108 0.251 0.065

Min 0.000 0.000 0.000 0.000

Max 0.157 0.823 1.389 0.719

Figure 11.3: Heat maps based on the distances between all vertices in the incrementally seg-
mented model and the nearest triangles in the batch segmented model for all four datasets.
Colour coding is relative to the error obtained where blue is zero and tends towards green
and red as the error increases. This figure is best viewed in full colour. All values shown
are in meters.

information into account as well as the statistics in Table 11.2 we find that the incremental
segmentation algorithm produces segmentations extremely close to what would be achieved
using the batch process and is suitable to use in a real-time system that must generate and
use the planar model online.
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CHAPTER 12
Semantic RGB-D Mapping

I n Chapter 7, we discussed training CNN with multi-view constrains to obtain consistent
semantic segmentation on RGB-D sequences. Here, we provide further details on CNN

training and describe the method to fuse a sequence of semantic segmentations of individual
RGB-D images into semantic 3D maps.

12.1 Efficiency with Deep Supervision

In Chapter 7, we formulate CNN training with multi-scale loss minimization. In this abla-
tion study, we analyze the benefit of multiscale loss in guiding decoder with the upsampling.
To this end, we take FuseNet-SF1 (Hazirbas et al. 2017) as the baseline and incrementally
add extra loss to penalize the training at different output resolution from fine to coarse. We
denote the different configurations by MSLM-lossx, where x refers to the number of output
scale contributes to the total loss. Hence, the baseline FuseNet-SF1 is trained with loss pe-
nalization only at the finest resolution, whereas MSLM-loss5 is trained with penalization on
all scales. The obtained segmentation accuracy is compared in Table 12.1. As the results
demonstrate, adding additional loss increases the performance consistently. This indicates
that penalizing the low-resolution prediction guides the upsampling process in the decoder.
In Figure 12.1, we also show the loss curve of these different configurations obtained from
training with the same hyper-parameters. Interestingly, adding multi-scale loss penaliza-
tions speeds up the training process with a much better convergence rate. With MSLM-loss5,
the network converges significantly faster than the baseline. The loss curves also show that
training is more stable with multi-scale loss minimization where less oscillation is observed.
These results indicate that MSLM potentially relaxed the original non-convex minimization
problem into a better convex one.

In the second study, we visualize the uncertainty of the network predictions in Figure 12.2.
To obtain the visualization, we show the probability of the most likely class prediction. It can
be seen that CNN predictions are very certain inside object, where uncertainty only increases
approaching the segmentation boundaries. On interesting application of the uncertainty
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12.2. Semantic Mapping with Dense CRFs

Table 12.1: Semantic segmentation accuracy of our network with different level of loss for
NYUv2 13-class semantic segmentation tasks. We take the FuseNet-SF1 (Hazirbas et al.
2017) as the baseline and add loss terms successively to guide the upsampling process at
different scales.

network variant pixelwise accuracy classwise accuracy average IoU

FuseNet-SF1 74.46 64.90 52.06

MSLM-loss2 74.96 64.67 52.48

MSLM-loss3 75.47 66.19 53.42

MSLM-loss4 75.78 67.19 54.13

MSLM-loss5 76.07 67.55 54.55

Figure 12.1: Training curves for network with different level of loss penalization. With mul-
tiscale loss minimization, training converges much faster and with less oscillations, which
suggests the proposed MSLM possibly to relax the overall loss minimization into a better
convex problem.

map is therefore to obtain instance information.

12.2 Semantic Mapping with Dense CRFs

To obtain semantic maps from the sequence of individual predictions, Hermans et al. (2014)
proposed to construct a fully connected CRFs (Krähenbühl and Koltun 2011) from all avail-
able pixels for spatial smoothing, and then fuse the de-noised predictions with Bayesian
fusion into consistent semantic maps. To obtain the unaries for CRF, Hermans et al. (2014)
trains random forests. In our work, we experiment with a similar pipeline. Consider a
keyframe-based RGB-D SLAM, we construct the semantic maps with a two-stage fusion
and smoothing.

At the first stage, we smooth the keyframe prediction using the predictions from neighbor-
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12. Semantic RGB-D Mapping

Figure 12.2: The uncertainty of CNNs semantic segmentation prediction (color code: the
uncertainty increases from low to high corresponds to color from white to dark).

ing frames. With the known transformations from SLAM, the pixelwise classification score
is warped into the keyframe and fused together with Bayesian update. The same processing
technique developed in Section 7.4.3 is applied.

In the second stage, we apply spatial smoothing for all the keyframes with a dense CRF. To
this end, we construct a graph G(V,E), where each node Vi is a pixel xi from a keyframe and
edges are densely connected E ⊂ V×V. With every pixel connected to every other pixel, the
CRF thus imposes label smoothing over the whole map. Let each pixel xi takes a possible
labeling yi ∈ RK, the CRF graph defines the Gibbs distribution that encodes the following
conditional probability

p(y | x) =
1

Z(x)
exp

(
− E(y, x)

)
, (12.1)

where, Z(x) =
∑

y∈Y exp
(
− E(y, x)

)
is known as the partition function for normalization.

The Gibbs energy E(y, x) can be further expressed with the unary potential Ei and the
pairwise potential Eij by,

E(y, x) =
∑
i∈V

Ei(yi; xi) +
∑
ij∈E

Eij(yi,yj; xi, xj) . (12.2)

We define the unary potential given the CNN prediction,

Ei(yi = ci, xi) = − logpi(xi) , (12.3)

where the probability pi(xi) of pixel xi having label j is defined in Equation (7.1). Following
Krähenbühl and Koltun (2011), the pairwise energy is defined to be Gaussian potentials.
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Figure 12.3: Two example semantic 3D maps obtained with the complete processing pipeline
with our methods. For visualization references, we also show the colored meshes.

Since each pixel i in RGB-D can be back-projected to a colored 3D point, we denote the 3D
coordinates by αi ∈ R3 and the color value by βi ∈ R3, and define pairwise to be

Eij(yi,yj) = Jyi 6= yjKω exp

(
−
|αi −αj|

2

2θ2α
−

|βi −βj|
2

2θ2β

)
. (12.4)

The parameter ω is the weighting factor for the pairwise term, and θα, θβ are the stan-
dard deviation for the 3D position and color, respectively. We use the Lab color space as
Hermans et al. (2014) suggests. The inference of Equation (12.2) is solved via mean-field
approximation. The naive mean-field approximation assumes all nodes are independent in
the graph, and attempts to find a Gibbs distribution (Equation (12.1)) of the new graph, that
minimizes the KL-divergence between the Gibbs distribution of the original graph. With
Gaussian pairwise potential, this approximation can be efficiently achieved with iterative
convolution (Krähenbühl and Koltun 2011).

The mean-field approximation performs a MAP inference, and outputs an optimal label
for each node. To obtain the final semantic mapping, the keyframes are fused given an
volumetric representation, where voxels are labeled by voting. When extracting meshes from
the TSDF volume, the vertices then inherit labels from the corresponding voxel. Figure 12.3
present the semantic maps obtained by the proposed processing pipeline with the same
color coding used in Table 7.3.



PART IV
Closure
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After all, tomorrow is another day.

– Scarlett O’Hara
“Gone with the Wind”

by Margaret M. Mitchell



CHAPTER 13
Conclusions and Future Works

T his thesis studied the problem of semantic mapping and tracking with RGB-D data.
To this end, we have focused on algorithms to extract plane prior and integrate this

information into multiple aspects of dense mapping, camera tracking and global consistency
optimization. Additionally, we developed several deep learning algorithms to obtain higher-
level semantic understandings from RGB-D vision. Last, we explored a human-in-the-loop
annotation algorithm to obtain large-scale semantic ground truth for both 3D meshes and
2D RGB-D videos. This chapter we summary the individual conclusions from the major
chapters and discuss the future research directions.

13.1 Thesis Summary

13.1.1 Dense RGB-D Mapping

In Chapter 10 (Dense RGB-D Reconstruction), we explored algorithms to obtain photo-realistic
dense 3D reconstructions from RGB-D sequences. Given a coarse mesh and with the goal
to store all multi-view textural information by surface points, we developed algorithms to
adaptively upsample the points and perform color blending based on points. The dense
colored colored point cloud was constrained by the input mesh, which enabled texture
generation to obtained blended textures for textured model rendering. The experimental
results showed that our algorithms produced the visually appealing high-resolution 3D
reconstruction, while being robust to various noise from the data acquisition.

Furthermore, we introduced a novel multi-volume RGB-D SLAM algorithm. The method
deployed one small volume of high voxel resolution to obtain detailed maps of near-field
objects, and utilized another large volume of low voxel resolution to increase the robustness
of tracking by including far-field scenes. The experimental results showed that our multi-
volume processing scheme achieved an objective quality gain of 2 dB in PSNR and 0.2 in
SSIM. The proposed approach was capable of real-time sensing with approximately 30 fps
and can be implemented on a modern GPU.
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13.1. Thesis Summary

Dense Mapping and Tracking with Plane Priors

In Chapter 4 (Planar Simplification and Texturing of Dense Point Cloud Maps), we focused on
efficient reconstruction of dense point clouds with plane priors and proposed a hybrid map-
ping algorithm to process planar and non-planar surfaces separately. In this work, we first
developed an efficient segmentation algorithm to detect planar surfaces as detailed in Chap-
ter 11 (RGB-D Mapping with Plane Priors). For planar surfaces, we introduced a quadtree-
based decimation method, which removed approximately 90% of the redundant input pla-
nar points. We further proposed two triangulation techniques to produce a compact mesh
reconstruction of the decimated planar surfaces. Our methods yielded the triangulation with
no more than 10% of the amount of triangles required without decimation. In addition, we
developed a computationally inexpensive algorithm to automatically generate high-quality
textures for simplified planar surfaces, which preserved the visual context embedded in the
original dense colored point clouds. We demonstrated with a parallel multi-threaded im-
plementation, the algorithm enhanced the processing efficiency particularly for large-scale
indoor datasets. The experimental results showed that the textured models produced by the
algorithm were compact, geometrically accurate and visually appealing, which were also
in a useful format for many robotic applications. Further in Chapter 11, we introduced a
computationally feasible and strong performing extension of the aforementioned algorithm
to incrementally process gradually expanding point cloud maps.

Moving beyond mapping, in Chapter 5 (CPA-SLAM: Consistent Plane-Model Alignment for Di-
rect RGB-D SLAM) we integrated plane priors into a full real-time RGB-D SLAM algorithm,
and proposed the CPA-SLAM algorithm. In this work, we represented the global model
with planar map instead of dense mapping. The algorithm detected individual planes from
the depth image of keyframes, properly associated the keyframe observations in the global
map and optimized the map in a global optimization. Based on the planar map representa-
tion, a novel tracking method was proposed to combine the direct image alignment and the
global model alignment into a probabilistic formation. Consequently, our method tracked
camera motion towards the nearest keyframe and the global plane model in an expectation-
maximization framework. This reduced per-frame tracking drift and established additional
constraints among non-overlapping keyframes once a common plane was observed. The
keyframe poses and the plane model were optimized in one graph concurrently. The CPA-
SLAM algorithm exhibited the state-of-the-art accuracy on public benchmarks and was ca-
pable of real-time performance.

Learning Semantics from RGB-D Vision

Going beyond plane priors, this thesis also investigated semantic scene understanding with
deep CNNs. As a fundamental work for single-view RGB-D learning, Chapter 6 (FuseNet:
Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture) proposed
a novel fusion-based CNN network, namely FuseNet. Based on the observation that vi-
sual and depth features usually complemented each other, FuseNet exploited two network
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branches to filter the color and the depth images separately, while consistently combined
the learned depth features into the color branch via fusion layer as the network goes deeper.
Shown with experiments, our approach outperformed the existing CNN-based networks on
the challenging RGB-D semantic segmentation benchmark. For ablation studies, we investi-
gated two possible fusion strategies, i.e., dense fusion and sparse fusion. The experimental
results indicated that multi-stage sparse fusion yields better performance. We also showed
that a single-stage fusion already produced better performance in comparison to learning
from a directly stacked four-channel RGB-D input or a comprehensive depth representation
HHA. We remark that a straight-forward extension of the proposed approach can be applied
for other classification tasks such as image or scene classification.

Following the work on FuseNet, we further extended it to learn consistent semantic mapping
from multi-view RGB-D data. Discussed in Chapter 7 (Multi-View Deep Learning for Consis-
tent Semantic Mapping with RGB-D Cameras), we introduced several multi-view consistency
regularizations into network training. Using the camera trajectories obtained by RGB-D
SLAM algorithm, our method warped the network outputs of multiple viewpoints into a
common reference view (in correspondence with the keyframe in SLAM settings) at differ-
ent stages to enforce invariant feature learning under viewpoint changes. We demonstrated
the superior performance of multi-view consistency training and the Bayesian fusion on the
NYUDv2 13-class and 40-class semantic segmentation benchmark. All multi-view consis-
tency training approaches outperformed the single-view trained baselines. They were key
to boosting segmentation performance when fusing network predictions from multiple view
points during testing. On NYUDv2, our methods set a new state-of-the-art performance us-
ing an end-to-end trained network for single-view predictions as well as multi-view fused
semantic segmentation without further post-processing stages such as dense CRFs. With
additional analysis in Chapter 12 (Semantic RGB-D Mapping), we demonstrated the seman-
tic RGB-D mapping by fusing multi-view semantic segmentations from RGB-D sequences
in a probabilistic way. Additionally, we showed the importance of multi-resolution deep
supervision in boost the training performance.

In Chapter 8 (Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet
Transform), we studied the problem of training CNNs for detailed semantic segmentation, or
in a more general concept the dense pixelwise predictions. Motivated by the structural anal-
ogy between multi-resolution wavelet analysis and the pooling/unpooling layers in CNNs,
we introduced the discrete wavelet transform (DWT) into encoder-decoder CNNs and de-
veloped a wavelet-based network architecture, namely WCNN. In the proposed network,
DWT is used to decompose the feature maps into frequency bands when downsampling is
performed. The high-frequency components are later used at the unpooling in the decoder
together with the coarse feature maps to achieve upscaling by the inverse DWT. We also
proposed two wavelet-based pyramids to bridge the encoder and decoder with global con-
textual features. These pyramids built a multi-resolution DWT to successively reduce the
spatial resolution and increase the receptive field to the entire input. Experimented with the
Cityscape dataset, we showed that the proposed WCNN yield improvements in dense pre-
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diction accuracy systematically and achieved the state-of-the-art performance for semantic
segmentation.

Towards Large-scale RGB-D Semantic Ground-truth Dataset

Consider the importance of high-quality large-scale RGB-D semantic ground-truth datasets,
in Chapter 9 (Human-in-the-loop Annotation for Large-scale 3D Semantic Datasets), we proposed
a close-loop annotation algorithm. At the annotation stage, we developed a unified semantic
instance labeling tool to perform segmentation-aided free-form annotation over 3D meshes,
as well as to inpaint missing surface reconstructions with human aid. We further rendered
the labeled 3D mesh into RGB-D sequences to obtain fully annotated video and optimized
the rendered labels with the joint bilateral filtering to respect object boundaries in 2D images.
As shown in experiments, the proposed method produced detailed annotations with high
consistency between 3D meshes and 2D videos. We further developed a close-loop labeling
scheme for large-scale dataset collection. With the objective to alleviate human annotation
effort, the existing annotations were used to train instance segmentation CNNs. We then de-
veloped algorithms to fuse the 2D instance predictions into the 3D mesh given the geometric
cues. This process closed the annotation loop, where the ground truth data were used to
train and improve an object detection model, which subsequently, generated the initial anno-
tation (for human annotators to refine) on new data sequences. The proposed approach was
evaluated by training an indoor dataset of 20 scenes, which generated automatic semantic
annotation for a large office space of approximately 2500m2 where the majority of surfaces
were corrected labeled at the instance level.

13.2 Future Research

Following, we discuss several interesting future research directions.

Learning from Sequences: Multi-view Geometry and Temporal Consistency

Despite the impressive development in deep learning, it is less explored how to train deep
neural networks with sequential vision data. With our work multi-view CNNs for semantic
segmentation, we already see that using the scene geometry and temporal consistency em-
bedded in multi-view sequences, learning can be better regularized and supervision signals
can also be relaxed. One interesting questions hence is, how to combine and take inspira-
tions from the classic geometry modeling methods and SLAM algorithms to improve deep
neural networks. It is desired to design efficient network architecture to process sequential
image data at both training and inference time. One possible direction is to consider the
recurrent neural networks (RNNs) or LSTMs.
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13. Conclusions and Future Works

Online Semantic SLAM

With respect to SLAM algorithms, the problem of how to integrate semantics into a full
online SLAM system is far from solved. With the CPA-SLAM algorithm, we proposed one
possible solution to formulate SLAM with plane priors. One straight-forward extension is
to integrate other geometric priors. But, such models will have limited representation capa-
bility and cannot infer the actual semantics about the observations. The work of SLAM++
(Salas-Moreno et al. 2013) provides another semantic SLAM formulation, however, prede-
fined templates are required. With the impressive development of deep learning to obtain
semantic understandings, the question is how to interact the building blocks of SLAM algo-
rithms with deep neural networks towards a semantic SLAM formulation. In development
of such solutions, one needs to consider the proper design of the network. Some questions
of concerns are, whether instance semantic segmentation is preferred over pixelwise seman-
tic segmentation, whether networks should only aim for semantic understandings or target
at multi-tasks learning to include depth prediction, normal estimation, feature detection and
ultimately towards end-to-end motion estimation. Another interesting direction to explore
is how to integrate the feedback from the SLAM algorithms to improve learning, considering
the fact that the conflicting predictions can be easily detected with SLAM algorithms.

Deep Learning on 3D Data

In this thesis, we perform deep learning with 2D image data. However, RGB-D data is
2.5D and geometry representations are naturally in 3D. Recently, several attempts have been
made to derive efficient geometric learning. The volumetric 3D learning (Dai et al. 2017c;
Song et al. 2017; Wu et al. 2015) is a natural extension of 2D convolutional neural networks.
However, such methods is limited by the high memory consumption and thus the cur-
rent volumetric learning is only feasible with low resolution predictions. Some promising
solutions are the recently developed using the geometric deep learning on non-euclidean
manifolds techniques (Bronstein et al. 2017; Masci et al. 2015; Monti et al. 2017). It is
interesting to incorporate such geometric learning techniques into semantic mapping and
tracking.

Large-scale RGB-D Semantic Benchmark

Despite many large-scale semantic 3D dataset are available (Chang et al. 2017; Dai et al.
2017a; Hua et al. 2016), there is no large-scale dataset that provides all the desired properties
including, accurate complete 3D reconstruction, 2D video sequences with (approximately)
error-free pose estimation, semantic instance ground-truth annotations that are consistent
between 3D and 2D. Such ground-truth dataset will enable many learning possibilities. In
addition to the classical tasks as semantic segmentation, depth estimation, motion estima-
tion, it will also allow researchers to develop and evaluate problems including, the afore-
mentioned learning from sequential data, geometric deep learning for indoor scene parsing,
navigation planning, semantic SLAM etc. To this end, our proposed annotation pipeline sets
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up the framework for close-loop scheme. For future development, some important concerns
are better shape completion strategy, more robust de-noising methods for labeling render-
ing, online automatic annotation suggestions and better bootstrapping algorithms to learn
the initial annotation.
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You must see with eyes unclouded by hate.
See the good in that which is evil, and the
evil in that which is good. Pledge yourself
to neither side, but vow instead to preserve
the balance that exists between the two.

– Hayao Miyazaki
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Zusammenfassung

D ichtes, visuelles SLAM (Simultaneous Localization and Mapping) ist ein fundamen-
tales Problem in Computer Vision und Robotik. Viele existierende Algorithmen basieren

auf direkten Methoden und primitiven Landmarken während komplexere, globale Zusam-
menhänge oft ignoriert werden. Diese Dissertation schließt die Lücke zwischen verschiede-
nen RGB-D Ansätzen - inklusive dichter 3D Rekonstruktion, visueller Lokalisierung und
maschinellem Lernen. Der Fokus liegt 1) auf Algorithmen, die komplexe Zusammenhänge
und Semantik aus RGB-D Daten extrahieren und 2) auf Methoden, die diese Informatio-
nen zur Optimierung von flächendeckender Lokalisierung, Bewegungsabschätzung und
aussagekräftigen Szenendarstellung benutzen.

Ein bedeutender Beitrag dieser Arbeit ist die Benutzung von planaren Prioren für SLAM.
Planare Oberflächen sind häufig in Innenräumen zu finden und gehören zu semantisch
wichtigen Objekten, zum Beispiel Wänden, Böden oder Fenstern. Diese Dissertation en-
twickelt Methoden um planare Oberflächen in verschiedenartigen Quellen zu finden und
Redundanz in dichten Innenraumrekonstruktionen zu verringern, was zu kompakteren
Repräsentationen führt allerdings ohne geometrische oder visuelle Informationen zu ver-
lieren. Zusätzlich wird ein kompletter Echtzeit-SLAM Algorithmus - CPA SLAM - vorgestellt,
der Innenräume mit globalen, planaren Karten ausstattet, die die Kamerabewegung mit
einer Mischung aus Schlüsselbildern und Model basiertem Tracking approximiert und glob-
ale Übereinstimmung von allen Daten forciert.

Zusätzlich zu planaren Prioren stellt die Arbeit mehrere Algorithmen vor, die semantische
Informationen aus RGB-D Daten mit Hilfe von convolutional Neural Networks (CNNs) ex-
trahieren. FuseNet ist eine neue Netzwerkarchitektur, die beweisbar effizient im Lernen von
Eigenschaften basierend auf einzelnen RGB-D Bildern ist. Zusätzlich wurde ein Algorith-
mus entwickelt, der CNNs reguliert, wenn Ansichten von mehreren Seiten zur Verfügung
stehen, was die Geometrie und konsistente Semantiken optimiert. Ein weiterer Beitrag ist
die Einführung von diskreten Wavelet Transformationen (DWT) in Encoder-Decoder CNNs.
Durch die Benutzung von DWTs und inversen DWTs können Pooling- und Unpooling-
operationen ersetzt werden, was die Detailgenauigkeit der semantischen Segmentierung
verbessert.

Der letzte Beitrag ist ein Framework zur semantischen Datenannotation mit menschlicher
Interaktion für die Beschriftung. 3D Oberflächen und 2D Videos können mit diesem Al-
gorithmus konsistent und effizient segmentiert und beschriftet werden. Dabei lernt ein
Algorithmus diese Segmentierungen für Oberflächen automatisch aus 2D Segmentierungen
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und Annotationen zu erstellen. Die Arbeit zeigt, dass diese Folgerichtigkeit die Annotation
von großen Datenmengen, die für Deep Learning nötig sind, erheblich vereinfacht.
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Samenvatting

H et visueel inmeten van een scene met hoge dichtheid is een fundamenteel probleem in
computervisie en robotica. Veel bestaande algoritmen hebben directe beeldmethoden

en functies op laag niveau verkend, maar hoe ze op hoog niveau kunnen worden geïnter-
preteerd en geaggregeerd is aanzienlijk minder onderzocht. Dit proefschrift heeft als doel
deze kloof voor RGB-D-visie te overbruggen vanuit verschillende perspectieven, waaronder
compacte 3D-reconstructie, visuele simultane lokalisatie en mapping (SLAM) en machine
learning. Daarom focust dit proefschrift zich op de volgende punten: i) algoritmen die ab-
stracties op hoog niveau en semantiek uit RGB-D-data halen en ii) methoden die dergelijke
informatie gebruiken om dichte mapping te optimaliseren, bewegingsschatting te verbeteren
en betekenisvolle scene-representaties verkrijgen.

Een belangrijke bijdrage van dit proefschrift is het gebruik van a priori vlakmodellen voor
het visueel inmeten van een scene. In binnenscènes komen vlakke opervlakken vaak voor
en zeggen ze iets over de semantiek van de scene, zoals muren, vloeren, ramen en dergeli-
jke. In dit proefschrift worden methoden geïntroduceerd om vlakke oppervlakken in data
van verschillende gegevensbronnen te detecteren. Met behulp van a priori vlakmodellen
hebben we algoritmen ontwikkeld om redundantie te verminderen in de representatie bij
het maken van scans binnenshuis en een compacte reconstructie te verkrijgen zonder ge-
ometrische en visuele informatie te verliezen. Verder hebben we een volledig real-time RGB-
D SLAM-algoritme ontwikkeld, bekend als CPA SLAM, dat (i) de scènes binnenshuis met
globale vlakken modelleert, (ii) camerabeweging schat met een combinatie van kernframe-
gebaseerde en modelgebaseerde volgmethoden en (iii) de globale consistentie optimaliseert
door middel van vlakmodellen.

Naast de a priori vlakmodellen, hebben we verschillende algoritmen bijgedragen om de se-
mantiek uit de RGB-D-visie te halen met behulp van diepe convolutionele neurale netwerken
(CNN’s). Eerst introduceren we FuseNet, een nieuwe netwerkarchitectuur die efficiënt is in
het leren van functies van RGB-D-beelden met enkel beeld. Verder introduceren we al-
goritmes om CNN’s te regulariseren met multi-viewbeperkingen. Dit doen we op basis
van geometrie uit RGB-D-reeksen en door aan te tonen dat een semantische afbeelding
kan worden verkregen met een betere consistentie. Een andere bijdrage die in dit proef-
schrift beschereven wordt is de introductie van discrete wavelet-transformatie (DWT) in zo-
genaamde encorder-decoder CNN’s. Met behulp van DWT en inverse DWT om de pooling-
en unpool-bewerkingen respectievelijk te vervangen, hebben we het detailniveau in dichte
semantische segmentatie verbeterd. De laatste bijdrage is een semantisch annotatiealgo-
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ritme, waarbij de waarheidslabels met behulp van menselijke interactie verkregen worden.
Er wordt een op segmentatie gebaseerde vrije-vorm-maas-labeling voorgesteld, waarbij de
scene door de mens wordt gecompleteerd, om zo consistente 3D-gelabelde mazen en 2D
geannoteerde video’s te produceren. Daarnaast hebben we algoritmen ontwikkeld om bi-
jvoorbeeld segmentatie voor 3D-mazen te verkrijgen door 2D-segmentatie van geannoteerde
gegevens te leren en samen te voegen. Dit gesloten-lus-label methode is aantoonbaar vo-
ordelig voor grootschalige waarheidlabel generatie.
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Semantic Mapping and Tracking with RGB-D Cameras

F or the past half a century, computer scientists, machine learning experts and mathe-
maticians have been researching about the problem - “let computer describe what it sees”.

Within the big question, consider the scenarios where autonomous devices need to navigate
around the environment and interact with the surroundings. Three problems are fundamen-
tal: how to map the environment, how to localize itself onto the map, and what decisions
to make. With decades of research, people have been developing direct image methods and
exploiting low-level features to model the physical mechanics of the scene. Less explored is
how to infer and aggregate high-level abstracts and semantic understandings to assist map-
ping, tracking and ultimately decision making. In recent years, the increasing availability
of RGB-D cameras has inspired many novel solutions to motion estimation, dense recon-
struction and visual understandings. In this thesis, we explore algorithms that extract and
utilize semantic understandings to optimize dense mapping, improve motion estimation
and obtain meaningful scene representations.

Towards the goal of semantic mapping and tracking, we first explore simple geometric prim-
itives, and introduce plane priors for real-time dense mapping and RGB-D SLAM. Planar
surfaces are common features of indoor scenes, which often encodes semantics, e.g., walls,
floors and ceilings. In Chapter 4 (Planar Simplification and Texturing of Dense Point Cloud
Maps), we focus on reconstruction of dense point clouds and propose a hybrid mapping
algorithm to process planar and non-planar surfaces separately. To this end, we develop
a plane segmentation algorithm in Chapter 11 (RGB-D Mapping with Plane Priors), which
performs more efficiently and yields better sensible segments in comparison to the classic
RANSAC-based detection. Further, we introduce a quadtree-based decimation method to
reduce approximately 90% of the redundant input planar points. The proposed decimation
algorithm enables two triangulation techniques where both produce compact mesh recon-
structions for planar surfaces. Our method yields triangulation with no more than 10% of
the amount of triangles required without decimation. To transfer the visual context em-
bedded in the dense input to the sparse output, a computationally inexpensive algorithm
is developed to generate textures for simplified planar surfaces. We demonstrate our al-
gorithm enhances processing efficiency in particular for large-scale indoor datasets with
a parallel multi-threaded implementation. The output models are compact, geometrically
accurate and visually appealing, which are also in a useful format for many robotic applica-
tions. This algorithm is further extended in Chapter 11 to incrementally process gradually
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expanding point cloud maps.

Beyond dense reconstruction, Chapter 5 (CPA-SLAM: Consistent Plane-Model Alignment for
Direct RGB-D SLAM) integrates plane priors into a real-time RGB-D SLAM algorithm, and
proposes the CPA-SLAM algorithm. With CPA-SLAM, instead of building a dense map from
all available RGB-D data, we represent the scene model as global planar map. To this end,
the individual planes are detected from the depth image of keyframes, properly associated
across all keyframes and optimized in a global graph optimization. Based on the planar
map representation, a novel tracking method is proposed that combines direct image align-
ment and global model alignment into a probabilistic formation and estimates the motion
with expectation-maximization. This tracking formulation reduces per-frame tracking drift
and establishes additional constraints among non-overlapping keyframes once a common
plane is observed. The keyframe poses and the plane model are optimized concurrently in
one graph. Our method exhibits state-of-the-art accuracy on publicly available benchmark
datasets and is capable of real-time performance.

Moving towards semantics, this thesis also investigates semantic scene understanding with
deep CNNs. As a fundamental work to learn from RGB-D data, Chapter 6 (FuseNet: Incor-
porating Depth into Semantic Segmentation via Fusion-based CNN Architecture) proposes a novel
fusion-based CNN network, namely FuseNet. FuseNet exploits two network branches to fil-
ter the color and the depth images separately, while consistently combines the depth features
into the color branch as the network goes deeper. Shown in experiments, FuseNet outper-
forms the existing CNN-based networks on the challenging RGB-D semantic segmentation
benchmark. Following the work on FuseNet for single-view learning, Chapter 7 (Multi-
View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras) extends it to learn
consistent semantic mapping from multi-view RGB-D sequences. Using the camera trajecto-
ries obtained by RGB-D SLAM algorithm, our method warps network outputs of multiple
viewpoints into a common reference view (in correspondence with the keyframe in SLAM
settings) at different stages to enforce invariant feature learning under viewpoint changes.
We demonstrate the superior performance of multi-view consistency training and Bayesian
fusion on the NYUDv2 13-class and 40-class semantic segmentation benchmark, which sets
a new state-of-the-art performance using an end-to-end trained network for single-view pre-
dictions as well as multi-view fused semantic segmentation without further post-processing.
In Chapter 12 (Semantic RGB-D Mapping), we demonstrate semantic RGB-D mapping by
fusing multi-view segmentations from RGB-D sequences in a probabilistic formation.

In Chapter 8 (Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet
Transform), we explore CNN architectures to learn detailed semantic segmentation, or in
a broader perspective dense pixelwise predictions. Motivated by the structural analogy
between multi-resolution wavelet analysis and the pooling/unpooling operations in CNNs,
we introduce discrete wavelet transform (DWT) into the encoder-decoder CNNs and develop
wavelet-based networks, namely WCNN. In the proposed network, pooling in the encoder
and unpooling in the decoder are replaced by DWT and inverse DWT, respectively. The
low-frequency wavelet coefficients considered as the output of pooling, are processed with
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further convolutional layers. The high-frequency wavelet coefficients are cached during the
encoder stage, and later combined with the corresponding coarse-resolution feature map to
compose inverse DWT at decoder with skip connections. We show that without additional
training parameters over the baseline CNNs, WCNNs systematically improve fine-resolution
predictions.

Consider the importance of high-quality large-scale RGB-D semantic ground-truth datasets,
Chapter 9 (Human-in-the-loop Annotation for Large-scale 3D Semantic Datasets) proposes a close-
loop annotation algorithm. At the annotation stage, we develop a unified semantic instance
labeling tool to perform segmentation-based free-form annotation on meshes, and addi-
tionally inpaint missing surface reconstructions with human aid. We further rendered the
labeled 3D mesh into RGB-D sequences to obtain fully annotated video and optimize the re-
sults with joint bilateral filtering. As shown in experiments, the proposed method produces
detailed annotations that are consistent between 3D meshes and 2D images. A human-
in-the-loop labeling scheme is further developed to alleviate human efforts for large-scale
dataset collection. To this end, the existing annotations are used to train CNNs for 2D in-
stance segmentation and the predictions are fused back to 3D meshes based on geometric
cues. Evaluated on an indoor dataset of 20 rooms, the proposed approach generate almost
correct semantic segmentation for human to refine over a large office space.
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