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Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Frank Pollmann
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Abstract

The present work reports the study of ultraslow magnetisation dynamics in the vicinity
of magnetic phase transitions. Namely, low-temperature magnetisation processes in the
pyrochlore oxide Yb2Ti2O7, spin wave excitations and dispersions in the archetypal ferro-
magnet Fe, and spin relaxation processes in the spin-glass FexCr1–x . The spin dynamics
in these systems were addressed by means of vibrating coil magnetometry (VCM) and
neutron resonance spin echo spectroscopy (NRSE) in the MIEZE mode (modulation of
intensity with zero effort).

VCM was employed to investigate Yb2Ti2O7. The ground state was found to be of
ferrimagnetic order, with spins splayed away from the 〈100〉 axes. The magnetic phase
diagram for applied field shows an unusual field dependence. Applying a field initially
increases the ordering temperature when applied along the 〈111〉 or 〈110〉 axes. This field
dependence is absent for field along 〈100〉. A Potts model for cubic ferromagnets describes
the low temperature behaviour of Yb2Ti2O7. However, the estimates do not model the
field strength of the phase transitions found in experiment. Frustrated interactions and
quantum effects might significantly renormalise the critical field, and might not only
account for the experimentally found critical temperatures, but also explain the reentrant
type phase diagram.

Spin waves in Fe and spin relaxations in FexCr1–x were addressed by MIEZE. To mea-
sure magnetisation dynamics in the vicinity of magnetic phase transitions, ultra high
energy resolution is indispensable. The highest resolution is achieved by neutron spin
echo spectrometers. Since instrumental development at the spin echo beamline RESEDA
was part of the present work, technical progress, development of instrument control and
data analysis software, and measures to reduce instrumental background are reported.

In Fe, the focus was on the inelastic excitations in the ferromagnetic phase, i.e. spin wave
excitation and dispersion. It was found that there is a clear deviation from the classical
Heisenberg ferromagnet, where the spin wave energy depends quadratic on q. Due to
the large magnetic moment of Fe, dipolar interactions had to be taken into account to
describe the observed spin wave dispersion.

In FexCr1–x , the ferromagnetism of Fe and the antiferromagnetism of Cr can be sup-
pressed by changing the Fe content x, and a putative quantum critical point is covered
by a dome of spin-glass behaviour. Three samples with antiferromagnetic, paramagnetic,
and ferromagnetic states above the spin-glass were investigated. The spin echo measure-
ments showed a broad distribution of spin relaxation times in and around the spin-glass
phase. This indicates the formation of different-sized domains, fluctuating on different
time scales, before freezing out at lowest temperatures.





Kurzdarstellung

Die vorliegende Arbeit behandelt ultralangsame Magnetisierungsdynamiken in der Nähe
zu magnetischen Phasenübergängen. Erforscht wurden Magnetisierungsprozesse im Py-
rochloroxid Yb2Ti2O7 bei tiefen Temperaturen, Anregungen und Dispersionen von Spin-
wellen im Ferromagneten Fe, sowie Spinrelaxationsprozesse im Spinglas FexCr1–x . Die
Spindynamiken in diesen Systemen wurden dabei mittels Spulenvibrationsmagnetometrie
(VCM) und Neutronen Resonanz Spin Echo Spektroskopie (NRSE) im MIEZE Modus
(modulation of intensity with zero effort) untersucht.

Der Grundzustand in Yb2Ti2O7 wurde mittels VCM als Ferrimagnet identifiziert. Dabei
sind die Spins weg von den 〈100〉 Richtungen leicht verkippt. Für angelegtes Feld zeigt
das magnetische Phasendiagramm eine unübliche Feldabhängigkeit. Anlegen eines Feldes
führt zu einer Erhöhung der Ordnungstemperatur, sofern es entlang der 〈111〉 oder der
〈110〉 Achsen angelegt ist. Für Feld entlang 〈100〉 wird diese Feldabhängigkeit nicht
beobachtet. Das Tieftemperaturverhalten von Yb2Ti2O7 konnte mit einem Potts Mod-
ell für kubische Ferromagneten beschrieben werden, welches jedoch die Feldstärken der
Phasenübergänge nicht exakt erklärt. Das kritische Feld könnte durch frustrierte Wech-
selwirkungen und Quanteneffekte stark renormalisiert sein, was nicht nur die Abweichung
zu den beobachteten kritischen Feldern beschreiben könnte, sondern auch die unübliche
Feldabhängigkeit.

MIEZE wurde genutzt um Spinwellen in Fe sowie die Spinrelaxationen in FexCr1–x zu
untersuchen. Um Magnetisierungsdynamiken in der Nähe magnetischer Phasenübergängen
zu beobachten, braucht es eine ultrahohe Energieauflösung. Die höchste Energieauflösung
in der Neutronenstreuung hat ein Neutronen Spin Echo Spektrometer. Die vorliegende Ar-
beit beinhaltet Entwicklungen am Spin Echo Instrument RESEDA. Technischer Fortschritt,
Entwicklungen der Instrumentensteuer- sowie Datenanalysesoftware, und die Maßnahmen
zur Reduzierung des instrumentellen Untergrunds werden berichtet.

In Fe lag der Fokus auf inelastischen Anregungen in der ferromagnetischen Phase,
i.e. Spinwellenanregung und -dispersion. Dabei wurde eine klare Abweichung zum klassis-
chen Heisenberg Ferromagneten beobachtet, in welchem die Spinwellenenergie quadratisch
in q ist. Um die Spinwellendispersion zu beschreiben, mussten, aufgrund des großen mag-
netischen Moments von Fe, dipolare Wechselwirkungen berücksichtigt werden.

In FexCr1–x wird der Ferromagnetismus von Fe, sowie der Antiferromagnetismus von Cr,
durch Änderung des Fe Anteils x unterdrückt. Dabei wird ein möglicher Quantenkritischer
Punkt durch eine Spinglas Phase verdeckt. Die Spin Echo Messungen zeigten eine breite
Verteilung von Spinrelaxationszeiten in der Umgebung der Spinglasphase. Dies deutet auf
die Bildung verschieden großer Domänen hin, welche alle auf unterschiedlichen Zeitskalen
fluktuieren, bevor sie bei tiefsten Temperaturen ausfrieren.
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1. Ultraslow Magnetisation Dynamics

Magnetism in condensed matter arises as a collective quantum phenomenon of magnetic
moments interacting with one another and is fundamentally different from the magnetic
behaviour of single atoms or molecules. With the discovery of new magnetic materials,
exotic forms of electronic and magnetic order emerge. To develop new applications in
solid state science exploiting these exotic states, it is necessary to explore and under-
stand the underlying physical phenomena. Determined from their interaction energies via
Heisenberg’s uncertainty principle

∆E∆τ ≥ ~
2 , (1.1)

a plethora of magnetic phenomena occur on various characteristic time scales. These may
range from a few femtoseconds for the exchange interaction between magnetic moments,
to several years for spin relaxation processes in frustrated magnets. Fig. 1.1 illustrates the
characteristic time scales of magnetisation dynamics for different physical phenomena.

In course of the present work, aspects of the magnetism in three different systems
were investigated, namely, low-temperature magnetisation processes in the pyrochlore
oxide Yb2Ti2O7, spin wave excitations and dispersions in the archetypal ferromagnet
iron, and spin relaxation processes in the spin-glass FexCr1–x . The time scales of the
dynamical processes investigated in these systems are marked in Fig. 1.1. Two different
measurement methods were chosen to address the spin dynamics. In the quasi-static
limit of milliseconds to seconds, measurements of the magnetisation using a bespoke
vibrating coil magnetometer were used to study the magnetic phase diagram and ground
state of Yb2Ti2O7. For measurements of spin waves in iron on the nanosecond scale, the
neutron spin echo method MIEZE was employed. The MIEZE technique was also used
for investigating spin relaxation processes in FexCr1–x .

The remainder of this chapter will discuss the emergence of unconventional magnetic
phenomena, briefly introduce the investigated systems, and give an outline of the present
work.

1



2 Chapter 1. Ultraslow Magnetisation Dynamics
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Figure 1.1.: Characteristic time scales of the magnetisation dynamics for various physical phe-
nomena ranging from 1 fs to several years. Marked in red are the time scales of the systems
investigated during the present work. The magnetic phase diagram and magnetic ground state
of Yb2Ti2O7 was measured using vibrating coil magnetometry. The spin waves in iron and the
spin relaxation processes in Fex Cr1–x were investigated with the neutron spin echo technique
MIEZE. Figure adapted from Ref. [1, 2].

1.1. Exotic Forms of Electronic and Magnetic Order

The magnetic properties of a system are primarily determined by the kind of interaction
between its magnetic moments. If the moments in a material are not interacting with
one another, the system shows dia- or paramagnetic behaviour. An interaction between
the magnetic moments may lead to an ordered ferro-, antiferro-, or ferrimagnetic state.
The latter three may be understood fundamentally by quantum mechanical exchange
interactions between the magnetic moments due to the Coulomb correlation of electrons
obeying the Pauli principle. In these materials, magnetic ordering is observed below a
material-specific temperature.

According to Ehrenfest, classical transitions between two phases can be classified as
first-order or second-order phase transitions. A phase transition can be characterised
by introducing an order parameter which is finite below some critical value of a control
parameter, and zero above [3, 4]. Characteristic for a first-order phase transition is a
coexistence of the two phases at the transition, and a discontinuously vanishing order
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parameter. While fluctuations of the order parameter typically are irrelevant in a first-
order phase transition, they are at the heart of second-order phase transitions. In a
second-order phase transition, there is no phase coexistence, and the macroscopic order is
destroyed continuously by fluctuations, hence, the order parameter vanishes continuously.

In some systems, the critical temperature of a second-order phase transition can be
suppressed by a non-thermal control parameter, like applied magnetic field or external
pressure, terminating in a quantum critical point at zero temperature. The phase tran-
sition is then driven by quantum rather than thermal fluctuations. Detailed reviews on
these so-called quantum phase transitions can be found in the literature, cf. Ref. [5–12]. In
other systems, putative quantum critical points are covered by a dome of emerging order,
such as the unconventional superconductivity in UGe2 [13], or the spin-glass behaviour in
FexCr1–x alloys [14, 15].

The emergence of exotic forms of electronic or magnetic order is often linked to a com-
petition between different phases, such as the classical or quantum transition between
magnetically ordered and disordered states. Hence, exotic phenomena are generally ob-
served when materials with strong electronic correlations are subject to extreme condi-
tions like low temperatures, applied magnetic field, or external pressure. Examples are
high-temperature superconductivity in cuprates [16, 17], unconventional superconductiv-
ity in heavy fermion systems [18–21], the breakdown of the model of electrons in a metal,
namely the Fermi liquid theory [22–26], or complex forms of magnetic order, for instance
spin-glasses [27] or spin-liquids [28, 29].

Besides the critical behaviour in the vicinity of classical and quantum phase transitions,
frustrated magnetic systems are good candidates for harbouring exotic ordering phenom-
ena. Frustration arises from competing interactions of the magnetic moments or from the
structure of the lattice of the solid, that may prevent the simultaneous satisfaction of all
interactions, leaving the system in a highly degenerate state. Systems with competing
interactions often attempt to resolve the underlying frustration by developing non-trivial
spatial correlations, resulting in a plethora of exotic ordering phenomena [28]. Exam-
ples for exotic magnetic states in frustrated systems are classical spin-ice with magnetic
monopole excitations [30–36], or quantum spin-liquids, a state of matter where quantum
fluctuations prevent the spins from entering a phase with magnetic long-range order even
at zero temperature, with photon-like excitations [29, 37–39].

1.2. Outline of this Thesis

In the present work, aspects of the magnetism in three different systems were inves-
tigated, employing two different measurement methods. Vibrating coil magnetometry,
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briefly introduced in Ch. 2, allows investigating magnetisation processes at millikelvin
temperatures. It was used to investigate the low temperature magnetisation process in
the pyrochlore oxide Yb2Ti2O7.

To address the spin dynamics in the vicinity of magnetic phase transitions in iron and
FexCr1–x , respectively, neutron resonance spin echo spectroscopy was used. As the energy
scale of quantum effects is very small, an ultra high energy resolution is indispensable for
studying magnetisation dynamics in the vicinity of classical and quantum phase transi-
tions. The highest energy resolution among neutron spectroscopy is achieved by neutron
spin echo spectrometers. Neutron spin echo uses the precession of neutrons to encode the
flight time of individual neutrons, thus achieving the ultra high energy resolution [40, 41].
A modification of neutron spin echo allows utilising a technique called modulation of in-
tensity with zero effort (MIEZE) [42–46]. In MIEZE, all neutron spin manipulation is
completed prior to the sample, making the method insensitive for beam depolarisation
at the sample position. The MIEZE method is ideally suited to study magnetisation
dynamics in the vicinity of magnetic phase transitions, thereby covering large time scales
from a few femto- to tens of nanoseconds. Since instrumental development of the spin
echo spectrometer RESEDA was part of the present work, Ch. 3 gives a more detailed
introduction into the fundamentals of neutron scattering, focusing on neutron spin echo
techniques.

The magnetic pyrochlore oxide Yb2Ti2O7, the topic of Ch. 4, received a lot of attention
in recent years, as strong quantum fluctuations significantly influence the system, and
since the nature of its ground state is still under debate to host a quantum spin-liquid
state at low temperatures [28, 37, 38]. The present work presents a detailed study of
the magnetic phase diagram and the transitions in and out of the ground state as a first
step to understand the physics in Yb2Ti2O7. Thereby, the ground state was found to be
of ferrimagnetic order, with spins slightly splayed away from one of the six 〈100〉 cubic
directions. The magnetic phase diagram for applied magnetic field shows an unusual field
dependence of a first-order phase boundary, notably an applied field initially increases the
ordering temperature when applied parallel to the crystalline 〈111〉 or 〈110〉 axes. This
unusual field dependence is absent for field along 〈100〉.

In Ch. 5, the present work continues a recent study where the prototypical continuous
phase transition from the para- to the ferromagnetic phase in iron was reported [47]. The
focus of the present study was on the inelastic excitations in the ferromagnetic phase,
i.e. spin wave excitation and dispersion. It was found that there is a clear deviation from
the classical Heisenberg ferromagnet, where the spin wave energy depends quadratic on
q. Due to the large magnetic moment of iron, dipolar interactions had to be taken into
account to describe the observed spin wave dispersion.
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Ch. 6 discusses the spin relaxation processes in a series of FexCr1–x alloys. In FexCr1–x ,
the ferromagnetic phase transition of iron, and the antiferromagnetic phase transition of
chromium, respectively, can be suppressed to lower temperatures, where a dome of spin-
glass behaviour covers a putative quantum critical point. The samples were chosen so that
the phase at temperatures above the spin-glass state is of antiferromagnetic, paramagnetic,
and ferromagnetic order, respectively. For all samples, the spin echo measurements showed
a broad distribution of relaxation times in and just above the spin-glass state. This
indicates the formation of different-sized domains, fluctuating on different time scales,
before freezing out at lowest temperatures. At higher temperatures, the distribution of
spin relaxation times depends on the iron concentration, and is broadest for the samples
with the lowest iron concentration, i.e. on the antiferromagnetic site.

In the final Ch. 7, a conclusion of the present work is drawn, and an outlook to future
work is given.





2. Vibrating Coil Magnetometry

The magnetisation of Yb2Ti2O7 as a function of temperature and field was measured
by means of a bespoke vibrating coil magnetometer (VCM) as combined with an Ox-
ford Instruments TL-400 top-loading dilution refrigerator [48, 49]. This chapter gives an
overview of the experimental methods used for the magnetisation measurements. The
basic concepts of a dilution refrigerator and its technical realisation, in particular of the
Oxford Instruments TL-400, are described in Sec. 2.1. A more detailed description of
the working principle of dilution refrigerators can be found in textbooks by, for instance,
Lounasmaa [50], Betts [51], or Enns and Hunklinger [52]. The integration of the vibrating
coil magnetometer into the Oxford Instruments TL-400 dilution refrigerator is described
in Sec. 2.2, cf. Ref. [48, 49, 53] for more details about the refurbishment and upgrades of
the TL-400 dilution refrigerator and the VCM. The chapter concludes with a detailed
description of the magnetisation data treatment in Sec. 2.3.

2.1. Dilution Refrigerator

Evaporation cryostats cool a liquid by pumping the vapour above it. Using 3He as re-
frigerant and exploiting its very high vapour pressure, temperatures as low as 0.24 K can
be achieved [54]. The dilution refrigerator is a more sophisticated variant of the evapo-
ration cryostat, making use of the unusual properties of dilute 3He/4He mixtures. The
fundamental idea using a mixture of the two isotopes 3He and 4He for cooling was first
suggested by London in 1951 [55]. Developments of the technique within the last decades
nowadays allow standard dilution refrigerators to reach temperatures below 0.01 K contin-
uously [50]. The Oxford Instruments TL-400 cryostat used in this work is equipped with
a 5 T superconducting magnet and possesses an integrated vibrating coil magnetometer.
The cryostat has a nominal cooling power of 400 µW at 0.1 K, and can reach temperatures
below 0.01 K.

7
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2.1.1. 3He/4He Dilution

In a dilution refrigerator the cooling power is provided by the enthalpy of mixing the two
helium isotopes 3He and 4He. Fig. 2.1 shows the phase diagram of a mixture of liquid 3He
and 4He as a function of the 3He concentration c3 = n3/ (n3 + n4). Pure 4He (c3 = 0)
becomes superfluid at a temperature of Tλ = 2.177 K. The Lambda transition, separating
the superfluid and normal-fluid 3He/4He mixtures, gets suppressed in temperature with
increasing 3He concentration and ends in a tricritical point at T = 0.87 K and c3 = 0.675.
At this point, the Lambda transition line meets an area in the phase diagram where the
3He and 4He phases separate entirely. In this miscibility gap one phase is rich in 3He
while the other is rich in 4He, where the less dense 3He-rich phase is floating atop the
4He-rich phase. By further decreasing the temperature below the tricritical point, the
concentrations of the two separated phases (c3,c

3He-rich (concentrated) and c3,d
4He-

rich (diluted)) follow the phase-separation line. For T → 0, the amount of 3He in the
concentrated phase goes to c3,d|T=0 = 1 whereas for the dilute phase the concentration
of 3He reaches a constant value of c3,d|T=0 = 0.064.

The finite solubility results from the different properties of the He isotopes: 3He carries
a spin S = 1/2, and hence, as a fermion, obeys the Fermi-Dirac statistic, while 4He
with S = 0 is a boson and obeys the Bose-Einstein statistic. At temperatures below

42 2. Experimentelle Methoden

die erste experimentelle Realisierung durch Das, De Bruyn und Mitarbeiter in Leiden. Sie
erreichten 0.22 K. Die folgenden Ausführungen der Funktionsweise sind im wesentlichen
den Lehrbüchern [73], [74] und [75] entnommen.

Abb. 2.2 zeigt das Phasendiagramm von 3He-4He Mischungen. Reines 4He (c3 = 0) wird
bei 2.177 K superfluid. Mit steigender 3He-Konzentration wird der superfluide Übergang
von 4He unterdrückt bis die Suprafluidität von 4He bei 0.87 K und c3 = 0.675. Die �–
Linie trifft auf einen Bereich, in dem sich die Phasen vollständig voneinander entmischen
(Grau in Abb. 2.2). In diesem Bereich ist eine Phase reich an 3He, die andere reich an
4He. Aufgrund der geringeren Dichte von 3He schwimmt die 3He reiche Phase oben auf.
Ähnlich einer Mischung aus Öl und Wasser gibt es keine homogene Mischung der beiden
Flüssigkeiten im Phasenseparationsgebiet. Im Rahmen der Fermi-Flüssigkeitstheorie lässt
sich 3He als ein wechselwirkendes Fermi-Gas beschreiben, dass in 4He gelöst ist. Das 4He
stellt dabei eine Art inerter suprafluider Hintergrund dar.

Abbildung 2.2.: Phasendiagramm einer Mischung aus 3He und 4He. Die Abb. ist [73] entnom-
men.

Das Interessante im Phasenseperationsgebiet passiert auf der 4He-reichen Seite. Selbst
für T ! 0 geht der 3He-Anteil nicht gegen Null, sondern erreicht mit 6.6% einen konstan-
ten Wert. Es gibt damit bei T = 0 eine endliche Löslichkeit von 3He in 4He. Dies ist die
Grundvoraussetzung für die Funktionsweise eines Entmischungskryostaten. Die Entmi-
schung von 3He und 4He sorgt aufgrund der endlichen Löslichkeit für einen adiabatischen
Kühleffekt, wie er aus der Verdampfungskühlung vom flüssigen in den gasförmigen Zu-
stand bekannt ist. Dabei hat das Transferieren von 3He-Atomen von der 3He-reichen
Phase in die 3He-arme Phase über die Phasengrenze eine Abkühlung des Systems zur
Folge, da bei jedem die Phasengrenze überschreitenden 3He-Atom latente Wärme frei
wird. Dieser Prozess findet in der Mischkammer des Kryostaten statt, wie in Abb. 2.3
schematisch gezeigt ist.

Durch eine quantenmechanische Beschreibung und das Fermi-Gasverhalten in der Misch-

Figure 2.1.: Phase diagram of liquid mixtures of 3He and 4He. The Lambda transition gets
suppressed in temperature with increasing 3He concentration, and ends in a tricritical point
where it meets the miscibility gap, i.e. where the solution separates into two distinct phases.
Figure taken from Ref. [52].
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several hundred millikelvin, 4He is in its quantum mechanical ground state, and hence
can be treated as thermal and hydrodynamic inert. This is not the case for the 3He where
the concentrated and dilute phases behave differently. The 3He in the dilute phase is
a Fermi liquid, whereas the 3He in the concentrated phase can be seen as a Fermi gas
under a pressure equal to the osmotic pressure of the 3He in the dilute phase. This leads
to a system of 3He quasi particles with increased mass m∗. In equilibrium, the chemical
potentials of 3He in both phases are equal with

µc(T, c3,c) = µd(T, c3,d). (2.1)

At absolute zero temperature, the concentrated phase consists of pure 3He. The energy
to remove a single 3He atom from the concentrated phase is given by the latent heat per
atom

L3/NA = −µc/NA, (2.2)

with the Avogadro constant NA. The energy necessary to add a 3He to the dilute phase,
however, depends on two factors. It consists of the released binding energy ε3(c3,d) of a
single atom and of the energy cost to fill an unoccupied state in the Fermi gas. The latter
is given by the Fermi energy EF = kBTF(c3,d) with the Fermi temperature TF(c3,d). The
chemical potential per atom in the dilute phase is therefore given by

µd(c3,d)/NA = −εd(c3,d) + kBTF(c3,d). (2.3)

And finally, for equilibrium at T = 0 follows

L3/NA = εd(c3,d)− kBTF(c3,d). (2.4)

The dependence of the binding energy ε3 from the 3He concentration in the dilute phase
c3,d can be determined from experimental data or theory. At absolute zero, Eq. (2.4) then
gives with c3,d(T = 0) = 0.0648 a finite solubility as a consequence of the fermionic
properties of 3He. The finite solubility obeys the third law of thermodynamics, since at
T = 0 only the ground state is occupied with Γ = 1 being the number of states; hence,
the entropy is given by S = kB ln (Γ) = 0 [50].

2.1.2. The Cooling Principle

The equilibrium of the 3He/4He mixture can be brought out of balance by removing
3He atoms from the dilute phase. To restore equilibrium, 3He atoms diffuse from the
concentrated towards the dilute phase which provides cooling, since the enthalpy of 3He
in the two phases is different. The enthalpy as a function of temperature is given by

H(T ) = H(0) +
∫ T

0
C3(T )dT, (2.5)
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with the enthalpy H(0) at T = 0. With experimental determined specific heat values for
T < 40 mK, the enthalpy for the concentrated phase is

Hc = Hc(0) + 12T 2 J/molK2 (2.6)

and for the dilute phase
Hd = Hd(0) + 96T 2 J/molK2. (2.7)

The process of a 3He atom diffusing from the concentrated to the dilute phase is en-
dothermic. From Eq. (2.6) and Eq. (2.7) follows ∆H < 0, hence this process removes
heat from the environment leading to an effective cooling. It can be seen as 3He atoms
evaporate into the 3He gas of the dilute phase, and is equivalent to an evaporation of a
liquid into vacuum.

In a dilution refrigerator, a continuous cooling process is realised by permanently pump-
ing 3He from the dilute phase into the concentrated phase. Thereby, the cooling power is
proportional to the 3He particle flux and the difference in enthalpy of the two phases

dQ
dt = dn

dt ∆H = dn
dt (Hd (TMC)−Hc (Thx)) , (2.8)

where the TMC is the temperature in the mixing chamber and Thx the temperature of the
3He entering the mixing chamber. The enthalpy of 3He in the dilute phase can be seen as
Hd(0) + T∆S where T∆S = ∆Q is the energy necessary for the evaporation process.

2.1.3. Technical Realisation

A schematic of a dilution refrigerator is shown in Fig. 2.2 (a). The cold part of the 3He/4He
circulation, essentially consisting of the mixing chamber (MC), the still and multiple
counterflow heat exchanger (hx), is located in a vacuum chamber immersed in a 4He bath.
The dilution refrigerator used during the present work further possesses a superconducting
magnet, also immersed in the 4He bath, as well as a liquid nitrogen jacket around the
whole unit, functioning as a radiation shield. Fig. 2.2 (b) shows the dilution unit of the
TL-400 Oxford Instruments refrigerator based on the principle shown in Fig. 2.2 (a).

The circulation is driven by continuously pumping the still, which is heated to ∼0.7 K
to increase efficiency of the pumping. Even though the 3He concentration of the liquid
in the still is only about 1%, due to its higher vapour pressure mainly 3He is evaporated.
Before the 3He is fed back into the system, it is purified and pre-cooled by a liquid nitrogen
trap, followed by a helium trap. The latter is also located in the helium bath of the unit.
The 3He then enters a thin capillary, the condenser, where it is liquefied and further pre-
cooled by the 1 K pot, which is a bath of liquid 4He that is pumped to a temperature of
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Figure 2.2.: Working principle of a dilution refrigerator. (a) Detailed schematic drawing of a
dilution refrigerator. Schematic taken from Ref. [56]. (b) Dilution unit of the Oxford Instruments
TL-400 dilution refrigerator.

about 1.5 K. The necessary pressure for liquefying the gas is maintained sufficiently high
by using a flow impedance. After the still, the 3He is led through two different types of
counterflow heat exchanger. The first one is a continuous heat exchanger and is made of
coiled concentric tubes. The second one is a step heat exchanger and consists of several
units made of sintered silver to increase the thermal contact area. After passing through
the heat exchangers, the 3He enters the concentrated phase in the mixing chamber. The
return line to the still starts below the phase boundary in the dilute phase. On its
way back to the still, the 3He again flows through the heat exchangers, and this way
cooling the incoming 3He, completing the cycle. Continuously pumping the still leads to
a concentration gradient, and, in turn, to an osmotic pressure, causing 3He flowing from
the mixing chamber to the still. The only possibility for the 3He to reach the still is by
crossing the phase boundary in the mixing chamber, which leads to cooling.
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2.2. Vibrating Coil Magnetometer

Most methods to measure the magnetisation of a material are based on Faraday’s law of
induction, where a time-varying magnetic field will always accompany a spatially-varying
electric field, and vice versa, according to the Maxwell-Faraday equation

∇×E = ∂B

∂t
. (2.9)

In such magnetometers the stray fields of a magnetic sample are detected by a set of
coils. Consider a magnetic sample magnetised by a homogeneous external magnetic field
µ0H generating a dipole field. A coil, parallel to µ0H and to the magnetisation of the
sample m, with N windings is placed in a distance z0 away from the centre of the dipole
field. Changing the distance z0 between sample and coil directly changes the magnetic
flux Φ through the surface of the coil due to the gradient of the dipole field. According
to Faraday’s law of induction a voltage Uind is induced in the coil. The induced voltage
is directly proportional to the magnetic moment of the sample, Uind ∝ m. In a vibrating
sample magnetometer (VSM) or vibrating coil magnetometer (VCM) the change in z0 is
an oscillatory movement with

z(t) = z0 + A sin (ωt), (2.10)

and the induced voltage is

Uind = −
(

dΦ
dz

)
z0

dz
dt ∝ m. (2.11)

Fig. 2.3 shows the working principles of a VSM in (a) and a VCM in (b), respectively. The
vibrating sample magnetometer, developed by Foner in 1959 [57], is the most common
implementation. Here, the detection coil is placed in the gradient of the dipole field of an
oscillating sample. The oscillatory movement of the sample induces a voltage in the coil
directly proportional to the magnetic moment of the sample according to Eq. (2.11).

However, vibrating sample magnetometer are not suitable for magnetisation measure-
ments in the millikelvin regime. This is due to the mechanical movement of the sample
causing parasitic heating. A vibrating coil magnetometer, as suggested by Smith in 1956
[58], avoids this problem by moving the detection coils rather than the sample. It therefore
allows measurements at much lower temperatures. Further developments in the 1960ies
made an effort to adapt the VCM technique to ultra-low temperatures. For example, to
avoid heat leaks the drive unit was placed at low temperatures [59].

In 2010, Legl et al. reported the development of a VCM as combined with a top-
loading dilution refrigerator for measurements of the magnetisation down to millikelvin
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(a) (b)

Figure 2.3.: Working principle of a vibrating sample magnetometer (VSM) (a) and vibrating
coil magnetometer (VCM) (b). In a VSM the sample is oscillating and the coils are at rest, while
in a VCM the coils are moving and the sample is at rest.

temperatures [48, 49]. Fig. 2.4 shows schematically the VCM integrated in the Oxford
Instruments TL-400 dilution refrigerator. The VCM is composed of three parts [48]. (i)
The vibration drive of the VCM below the mixing chamber, located in the zero-field region
of the superconducting sample magnet. It is attached to the inner vacuum chamber (IVC),
and therefore thermally coupled to the He bath of the cryostat and decoupled from the
mixing chamber and the sample holder. (ii) A transmission mechanism below the drive
unit composed of a a carbon-fibre tube. (iii) The detection coils in the centre of the
sample magnet.

As its main advantage, the VCM offers excellent thermal coupling without risk of
mechanical vibrations with respect to the applied magnetic field, which is highly homo-
geneous. This contrasts Faraday force magnetometers, in which the sample is exposed to
a field gradient, or extraction magnetometers, such as a VSM, where the sample is moved
with respect to the field.

The Oxford Instruments TL-400 dilution refrigerator is equipped with a 5 T super-
conducting magnet and has the vibrating coil magnetometer integrated as schematically
shown in Fig. 2.4. The cryostat has a nominal cooling power of 400 µW at 0.1 K, and can
reach temperatures below 0.01 K. Investigations of the spin-liquid properties of Tb2Ti2O7

[60], and of the first-order metamagnetic transition in Ho2Ti2O7 [61], established the vi-
brating coil magnetometry as an ideal technique for measurements of the magnetisation
at millikelvin temperatures.
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Figure 2.4.: Schematic of the vibrating coil magnetometer (VCM) integrated in the Oxford
Instruments TL-400 dilution refrigerator. The vibration drive (i) is below the mixing chamber,
located in the zero field region of the superconducting sample magnet. The vibration of the
drive unit is transmitted via a carbon-fibre tube (ii) to the detection coils in the centre of the
sample magnet (iii). The inset shows the area (iii), where the detection coils and the sample
holder with the sample are mounted. Schematic taken from Ref. [48].

2.3. Post-Measurement Data Treatment

For determination of the signal contribution of the sample, the empty sample holder was
remeasured and the background signal subtracted from the data. The signal of the empty
sample holder was found to be small, with a highly reproducible field dependence and
an essentially negligible temperature and sweep rate dependence. Fig. 2.5 shows typical
data of the induced voltage of the empty sample holder in the VCM as a function of
the applied magnetic field. Already for slightly higher fields, the background shows a
linear like behaviour. Non-linearities and the hysteresis around zero field are attributed to
magnetic impurities in the sample holder. The inset in Fig. 2.5 further shows two features.
First, a shift of the centre of the data to parasitic voltages. Second, a difference between
the zero-field cooled data, recorded at 15 mT min−1 and 25 mT min−1, respectively. The
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Figure 2.5.: Background signal of the empty VCM at 0.2 K and for sweep rates of 15 mT min−1

and 25 mT min−1, respectively. (a) Background signal for a hysteresis loop from 0 → 1 →
−1 → 1 T. The yellow and the red curve lie on top of each other. A zoom of the plot in (a) is
shown in (b), where an offset around the axis origin and a difference between the two zero-field
cooled measurements can be seen. The zfc data of the 15 mT min−1 measurement were taken
after eliminating the remnant field by degaussing. The zfc data of the 25 mT min−1 were taken
after heating up to ∼ 1 K and cooling back down to 0.2 K, without degaussing. The background
is highly reproducible, linear for higher fields, and independent of the sweep rate.

zfc data of the measurement at 15 mT min−1 were recorded after degaussing. The zfc data
of the 25 mT min−1 were recorded after heating to ∼ 1 K and cooling back down to 0.2 K,
without degaussing. This shows that the sample holder background changes slightly after
the first field sweep. To account for this effect, data recorded directly after mounting
the sample were corrected with the background measurement recorded after degaussing,
and data recorded thereafter were corrected with the background measurement recorded
without degaussing.

The signal of the sample was calibrated quantitatively at 3 K against the magnetisation
as measured in an Oxford Instruments VSM determined at 3 K. The VSM was calibrated
using a Ni sample. Fig. 2.6 illustrates the calibration of the VCM data by means of the
VSM measurements. In Fig. 2.6(a) the signal of the VSM is plotted in units µBYb−1

against the signal of the VCM. A fit with a second-order polynomial was used as the
calibration curve to convert the VCM signal from Volt to µB per Ytterbium. The origin
of the nonlinearities of the calibration curves were studied in great detail by Duvinage
[56]. Fig. 2.6(b) shows typical calibrated VCM data together with the data from the VSM
measurement. The quality of the calibration curve may be seen in Fig. 2.3(c), where the
difference of the VCM data and the calibrated VSM data is plotted. Deviations are below
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Figure 2.6.: VCM data calibration (a-c) and example data reduction of the magnetisation data
taken at T = 0.1 K for field along 〈111〉 (d-g). (a) Calibration of the VCM data of Yb2Ti2O7

against a Ni measurement in the VSM at 3 K. (b) Calibrated VCM data converted from V
to µBYb−1 together with the VSM data. (c) Absolute difference of the VSM data and the
calibrated VCM data shown in (b). (d) Raw data of the VCM signal induced by the empty
sample holder (red), and by the sample holder with mounted sample (black). (e) Contribution
of the sample to the signal, after the signal from the empty sample holder, i.e. background, was
subtracted. (f) Sample signal calibrated by means of a Ni standard and the magnetisation of
the Yb2Ti2O7 sample as measured at 3 K in an Oxford Instruments VSM. (g) Final data after
correction for demagnetising effects.

0.1 %. It should be noted that in Fig. 2.3(a) and (b) only every 50 data point was plotted
for clarity.

For the uniformly magnetised spherical sample, demagnetising effects were corrected
and the internal field calculated as follows

Bint = µ0Hext − µ0NM(Hext), (2.12)

where N is the demagnetisation factor and M the magnetisation. For the spherical
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sample studied, the demagnetisation factor is N = 1/3. Fig. 2.6(d-g) illustrates the
steps of data treatment for typical data. The raw sample and background signals are
plotted in Fig. 2.6(d). After background subtraction (e), the data are calibrated (f) as
described above and shown in Fig. 2.6(a-c). Finally, demagnetising fields are taken into
account (g). A background signal was also subtracted from the measured signal during
temperature scans. Features found in the temperature dependence were also corrected
for demagnetising effects.





3. Neutron Resonance Spin Echo
Spectroscopy

The critical spin wave dynamics in Fe and the spin relaxation processes in FexCr1–x

were studied by a modification of neutron spin echo spectroscopy. This chapter gives
an overview of neutron scattering and the techniques used for the studies in the present
work. It starts with a short introduction into the theory of neutron scattering in Sec. 3.1,
following Ref. [62–65]. As the energy scale of quantum effects is very small, an ultra high
energy resolution is indispensable for studying magnetisation dynamics in the vicinity of
classical and quantum phase transitions. The highest energy resolution among neutron
spectrometry is achieved by neutron spin echo spectrometers (NSE). Sec. 3.2 introduces
the basis of classical neutron spin echo, and its modifications neutron resonance spin echo
(NRSE) and modulation of intensity with zero effort (MIEZE). It is followed by a detailed
description of the process of spin echo data reduction in Sec. 3.3. Sec. 3.4 is dedicated
to the neutron resonance spin echo spectrometer RESEDA at the Heinz Maier-Leibnitz
Zentrum (MLZ), where the experiments were carried out.

3.1. Theoretical Background

Neutron scattering is a very powerful tool for investigating structures and excitations in
solid state physics, thanks to the unique character of the neutron. Neutron scattering is
highly complementary to X-ray scattering.

One of the properties of the neutron is that it is uncharged and, hence, interacts directly
with the atomic nucleus since there is no Coulomb barrier to overcome, and not with the
electronic shell as X-rays do. Therefore, the scattering cross section does not depend
on the atomic number of the chemical element. This not only allows to distinguish
atoms of comparable atomic number, but also to distinguish isotopes of the same element.
The neutrality also allows a large penetration depth. This is beneficial not only for the
study of bulk properties, but also to study under extreme conditions such as very low
or very high temperature, high pressure, or high magnetic or electric fields, where the
neutron beam must penetrate sophisticated sample environments. The wavelength of

19
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cold and thermal neutrons are of the order of interatomic distances in solids. Further,
the energy of cold and thermal neutrons is of the same order as that of many elementary
excitations in condensed matter. Last but not least, the neutron carries a magnetic
moment, allowing the interaction with magnetic structures and magnetic excitations. For
all these reasons, neutrons are ideally suited to investigate the structure and excitations
in solid state physics under extreme conditions.

A neutron scattering experiment aims to determine the probability that a neutron with
incident wave vector ki and spin state σi is scattered into a state with wave vector kf
and spin state σf . Thereby, the scatterer changes its state from λi to λf . The momentum
transfer during a scattering process is described by

~q = ~ (ki − kf ) , (3.1)

with the scattering vector q. The corresponding energy transfer is given by

~ω = ~2

2m
(
k2
i − k2

f

)
. (3.2)

For the scattering process, the momentum and energy are conserved. The probability of
the scattering process from above can be described by the neutron scattering cross-section,
which corresponds to the number of neutrons scattered per second into a small solid angle
with a certain energy transfer, divided by the incident neutron flux. Starting from a
system where an initial state λi goes to a final state λf with the transition probability
described by Fermi’s Golden Rule, the double differential scattering cross-section follows
to

d2σ

dΩdω =
(

m

2π~2

)2 kf
ki

∑
λf ,σf

∑
λi,σi

pλi
pσi

∣∣∣〈kf ,σf , λf |Û |ki,σi, λi〉∣∣∣2 δ (~ω + Eλi
− Eλf

)
,

(3.3)

where λi is the initial state of the scatterer with energy Eλi
, and the probability to find

the scatterer in this state pλi
. λf denotes the final state of the scatterer. The spin states of

the incoming and scattered neutrons are σi and σf , respectively, with the probability pσi

to find the spin state in σi. The energy distribution of the scattered neutrons is described
by a δ-function including the conservation of energy. The interaction between scatterer
and neutron is described by the potential Û . This interaction potential depends on the
specific scattering process, which can be nuclear or magnetic.
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3.1.1. Nuclear Scattering

For neutron scattering from nuclei at fixed positions Rj, the interaction potential is well
approximated by the Fermi pseudopotential

Û(r) = 2π~2

m

∑
j

bjδ(r −Rj), (3.4)

where r is the position of the neutron, and bj is the scattering length depending on the
nuclei and is of the order 10−15 m. The incoming and outgoing neutrons may be described
by plane waves

|ki〉 = exp{(iki · r)} (3.5)
(3.6)

and

|kf〉 = exp{(ikf · r)}. (3.7)

Considering an unpolarised neutron beam, therefore neglecting σi and σf in Eq. (3.3), and
introducing Heisenberg operators, the final cross-section formula for nuclear scattering of
an unpolarised beam is given by

d2σ

dΩdω = 1
2π~

kf
ki

∑
j,j′

bjbj′

∫ +∞

−∞
〈exp

{
−iq · R̂j′(0)

}
exp

{
−iq · R̂j(t))

}
〉 exp{−iωt} dt.

(3.8)

Various properties of the scattering system are included in the correlation functions in-
troduced by Van Hove in 1954 [66]. The operator part in Eq. (3.8) corresponds to the
intermediate pair correlation function, or intermediate scattering function,

I(q, t) = 1
N

∑
j,j′
〈exp

{
−iq · R̂j′(0)

}
exp

{
−iq · R̂j(t))

}
〉, (3.9)

where N is the number of nuclei in the scattering system. The space-time pair correlation
function is defined as

G(r, t) = 1
(2π)3

∫
I(q, t) exp{−iq · r} dq. (3.10)

The intermediate scattering function is the Fourier transform of Eq. (3.10) in space. The
scattering function of the system, also known as the dynamical structure factor or the
scattering law, as it is directly related to the cross section in Eq. (3.8), is the Fourier
transformation of Eq. (3.9) in time, and the Fourier transform of Eq. (3.10) in space and
time. It is given by

S(q, ω) = 1
2π~

∫
I(q, t) exp{−iωt} dt. (3.11)
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3.1.2. Magnetic Scattering

Due to the magnetic moment of the neutron, a magnetic interaction between the neutron
and the unpaired electrons in the atom occur. The operator of the magnetic dipole
moment of the neutron is given by

µn = −γµNσ (3.12)

with the nuclear magneton

µN = e~
2mp

, (3.13)

the mass of the neutron mn and proton mp, respectively, the gyromagnetic ratio γ =
1.913, and the Pauli spin operator for the neutron σ. Analogous, the operator of the
magnetic dipole moment of the electron is

µe = −2µBs, (3.14)

where

µB = e~
2me

(3.15)

is the Bohr magneton, me is the mass of the electron, and s is the spin angular momentum
operator for the electron in units of ~.

The interaction potential is given by

Û = µn ·H = −γµNσ ·H , (3.16)

where the neutron interacts with the magnetic field H , generated by the unpaired elec-
trons in the sample. A single electron with velocity ve generates a magnetic field at a
point R from the electron with

H = HS +HL = ∇×
(
µe ×R
|R|3

)
− e

c

ve ×R
|R|3

, (3.17)

where e is the elementary charge, and c is the speed of light. The first term in Eq. (3.17),
HS, comes from the magnetic dipole moment of the electron, and the second term, HL,
arises from its orbital motion.

The calculation of the matrix element in Eq. (3.3), using the interaction potential in
Eq. (3.16), is calculated in detail in Ref. [62, 65]. The magnetic scattering cross section
for unpolarised neutrons and spin-only scattering by ions with localised electrons is given
by

d2σ

dΩdω = (γr0)2 kf
ki
F 2(q) exp{−2W (q)}

∑
α,β

(
δαβ −

QαQβ

Q2

)
Sαβ (q, ω) , (3.18)
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where F (q) is the magnetic form factor, exp{−2W (q)} the Debye-Waller factor, and γr0

takes the same role as the scattering length b for nuclear scattering. Sαβ (q, ω) is the
magnetic scattering function:

Sαβ (q, ω) =
∑
j,j′

exp{iq(Rj −Rj′)}
∑
λi,λf

pλi
〈λi|Ŝαj′|λf〉〈λf |Ŝβj |λi〉δ

(
~ω + Eλi

− Eλf

)
,

(3.19)

where Ŝαj (α = x, y, z) is the spin operator of the jth ion at site Rj.
Besides the magnetic scattering function, Eq. (3.8) is governed by the magnetic form

factor F (q) and the polarisation factor (δαβ − QαQβ/Q
2). The latter states that the

neutron can only couple to magnetic moments or spin fluctuations perpendicular to q.
The strength of the magnetic cross section is of the order of the nuclear cross section.

So far, spin-only scattering was described where the orbital angular momentum of
the magnetic ions was regarded as zero. A theoretical treatment of scattering by ions
considering both, spin and orbital angular momentum, was given by Johnston in 1966
[67]. The calculation is quite tedious and, therefore, only the result will be quoted here.
For more detail see Ref. [62, 65, 67]. The scattering function in Eq. (3.19) translates to

Sαβ (q, ω) = 1
2π~

∑
j,j′

∫ +∞

−∞
exp{iq(Rj −Rj′)}〈Ŝαj (0)Ŝβj′(t)〉 exp{−iωt} dt, (3.20)

with the spin operator

Ŝαj = 1
2gĴ

α
j , (3.21)

the thermal average of the time-dependent spin operators 〈Ŝαj (0)Ŝβj′(t)〉, the Landé split-
ting factor g, and an effective angular momentum operator Ĵαj . Eq. (3.20) gives the
probability that, if the magnetic moment of the j′th ion at Rj′ at t = 0 has some specific
value, the magnetic moment of the jth ion at Rj has some other specific value at the
time t. It corresponds to the van Hove pair correlation function introduced in Sec. 3.1.1.
This allows to connect the magnetic scattering function in Eq. (3.19) to the fluctuation-
dissipation theorem

Sαβ(q, ω) = N~
π

(
1− exp

{
− ~ω
kBT

})−1

Imχαβ(q, ω), (3.22)

where N is the total number of magnetic ions and χαβ the generalised susceptibility
tensor. Physically speaking, the neutron may be considered a magnetic probe generating
a perturbing magnetic field Hβ(q, ω) in the scatterer, and detecting its response Mα(q, ω)
to the generated field by the relation

Mα(q, ω) = χαβ(q, ω)Hβ(q, ω). (3.23)
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3.1.3. Spin Polarisation

The neutron spin with quantum number s = 1/2 is described by the spin operator

Ŝ = (Sx, Sy, Sz) (3.24)

with the two eigenvalues ± ~/2 with respect to an arbitrary quantisation axis. The eigen-
value condition can be written as

Ŝ|χ〉 = ±~
2 |χ〉, (3.25)

where |χ〉 describe the spin state. The operator σ̂ = 2Ŝ/~ is represented by the Pauli
matrices

σx =
0 1

1 0

 , σy =
0 −i
i 0

 , σz =
1 0

0 −1

 , (3.26)

and can therefore be written as

Ŝ = ~
2 σ̂, (3.27)

with σ̂ = (σx, σy, σz). The general spin wave function of a neutron can be written as

χ = a|χ↑〉+ b|χ↓〉 = a

1
0

+ b

0
1

 =
a
b

 , (3.28)

where the two complex quantities a and b must fulfil the normalisation condition

χ†χ = |a|2 + |b|2 = 1. (3.29)

The spin states |χ↑〉 and |χ↓〉 correspond to the spin up and spin down states with eigen-
values +1 and −1 for the operator σz, therefore the z-axis was chosen as polarisation and
quantisation axis. The polarisation of a single neutron is defined as the expectation value
of the spin operator

p = 〈2Ŝ
~
〉 = 〈σ̂〉. (3.30)

For a single neutron the polarisation is always |P | = 1. Considering a neutron beam,
the polarisation is given by the average over the individual polarisation of the neutrons

P = 1
N

∑
j

pj, (3.31)
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with 0 ≤ |p| ≤ 1. For a beam partly polarised along the z-direction without a component
along the x- and y-direction, the fraction of neutrons in the |χ↑〉 state is given by

n+ = 1 + Pz
2 , (3.32)

and the fraction of neutrons in the |χ↓〉 state is given by

n− = 1− Pz
2 , (3.33)

with

Pz = n+ − n−. (3.34)

3.1.4. Neutrons in a Magnetic Field

In an external magnetic field the magnetic moment of the neutron will perform a Larmor
precession about the external magnetic field H . The spin-1/2 system is again represented
by the Pauli matrices in Eq. (3.26). The spin operator and the general spin wave function
obeying the normalisation condition are also as described in Sec. 3.1.3, Eq. (3.27) through
Eq. (3.29). The consequence of a magnetic field on the spin operator is described by the
Hamiltonian

Ĥ = γH · Ŝ, (3.35)

where γ is the gyromagnetic ratio of the neutron. With the external magnetic field along
the z-direction, i.e.H = Hẑ, the Schrödinger equation for the spin component χ,

−i~ ∂
∂t
χ = Ĥχ (3.36)

can be solved using the ansatz

a = α exp{iωat} and b = β exp{iωbt}, (3.37)

resulting in

ωa = γH

2 and ωb = −γH2 . (3.38)
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With the spin wave function in Eq. (3.28), the expectation value of the spin operator is
given by

〈S〉 = 〈χ?|Ŝ|χ〉 = ~
2 〈
a
b

?|σ|
a
b

〉 (3.39)

=


αβ (exp{−iωa − ωbt}+ exp{iωa − ωbt})
iαβ (exp{iωa − ωbt} − exp{−iωa − ωbt})

α2 − β2

 (3.40)

=


2αβ cos (ωLt)
−2αβ sin (ωLt)

α2 − β2

 , (3.41)

introducing the Larmor frequency

ωL = ωa − ωb = γH. (3.42)

Choosing 2αβ = sin (θ) and α2 − β2 = cos (θ) gives

〈S〉 =


sin (θ) cos (ωLt)
− sin (θ) sin (ωLt)

cos (θ)

 . (3.43)

Therefore, 〈S〉 is a vector whose azimuth is precessing about the z-axis at a fixed incli-
nation angle θ.

If the direction of the magnetic field is changing as the neutrons travel through it, two
different cases have to be considered. First, if the transition frequency ωH , at which the
field changes from H to H ′, is much larger than the Larmor frequency of the precession,
the precession vector will follow the magnetic field if they were parallel before. If the
precession vector was tilted away from the magnetic field with a finite angle, its precession
cone will follow the magnetic field during the transition. This transition is called adiabatic
and shown in Fig. 3.1(a). If the change of the magnetic field is fast compared to the Larmor
frequency of the precession, the polarisation will start to precess about the new magnetic
field direction. This is called non-adiabatic transition and shown in Fig. 3.1(b). Neutron
spin manipulation via both, adiabatic and non-adiabatic transitions, are crucial for the
realisation of the spin echo technique, as will become apparent in the following Sec. 3.2.

3.2. Principles of Neutron Spin Echo Techniques

Neutron Spin Echo (NSE) spectroscopy, proposed by Mezei in 1972 [40, 41], is a time-of-
flight technique where information about the flight time of individual neutrons is encoded
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Figure 3.1.: Polarised neutron beam in an external magnetic field. (a) Adiabatic transition of
a neutron beam in a magnetic field changing from H to H ′ with ωH � ωL. The polarisation
vector follows the changing field. (b) Non-adiabatic transition. The field direction changes
rapidly at y0 from H to H ′. The polarisation vector starts precessing about the new field
direction.

in the Larmor precession phases in known magnetic fields before and after the scattering
process. A NSE spectrometer possesses an extremely high energy resolution and allows
to investigate large domains in time and space. Since its invention in 1972, the method
has been further developed, increasing the field of application. In 1987, Golub and Gähler
proposed to replace the highly homogeneous constant field regions in NSE by a combi-
nation of a constant and an oscillating field, a method called Neutron Resonance Spin
Echo (NRSE) [42]. A major disadvantage of classical NSE and NRSE is that depolarising
conditions at the sample position lead to a loss of information of the spin phase. A modifi-
cation of NRSE overcoming this obstacle is the Modulation of IntEnsity with Zero Effort
(MIEZE) [43–46]. In MIEZE all neutron spin manipulation is completed prior to the
sample, making the method insensitive for beam depolarisation at the sample position.

3.2.1. Neutron Spin Echo Spectroscopy (NSE)

Fig. 3.2(a) schematically shows a depiction of a neutron spin echo spectrometer. An
incoming neutron with velocity v1 travels along the y-direction of the spectrometer. After
being polarised along the z-axis, it enters the first homogeneous and static magnetic field
region of length L1 and field B1. According to the Larmor precession, the neutron spin
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Figure 3.2.: Schematic of a NSE spectrometer. (a) The neutron beam travels along the y-axis
of the spectrometer, passing the polariser, the first and second precession field, and the analyser
before reaching the detector. (b) Polarisation of the neutron beam throughout its flight path.
(c) Splitting of the potential energy Epot of the spin up (χ↑) and spin down (χ↓) eigenstates of
the neutron along the flight path due to the presence of a static magnetic field B0. (d) Splitting
of the kinetic energy Ekin of the eigenstates compensating the splitting of the potential energy so
that the total energy is conserved. (e) Flight time difference ∆t of the up and down eigenstates
along the flight path. The magnitude of the splitting at the sample position determines the time
resolution of the spectrometer τNSE. Figure adapted from Ref. [68].

starts to precess about the external magnetic field, thereby accumulating a spin phase φ1

which is proportional to the time spent in the field region,

φ1 = γB1t1 = γB1
L1

v1
. (3.44)

After the first spectrometer arm the neutron travels through the sample region be-
fore entering the second magnetic field region of length L2 and field B2. In the second
spectrometer arm the neutron accumulates a spin phase φ2 of

φ2 = γB2t2 = γB2
L2

v2
, (3.45)
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before getting analysed along the z-axis, and finally reaching the detector. The total spin
phase that the neutron accumulates while travelling through the instrument is therefore
given by

φ = φ1 + φ2 = γ BL
( 1
v1
− 1
v2

)
, (3.46)

with B1 = −B2 = B and L1 = L2 = L. Considering an elastic scattering process, or
no interaction with the sample at all, the total spin phase for v1 = v2 = v is

φ = γ BL
(1
v
− 1
v

)
= 0. (3.47)

The initial neutron polarisation is recovered, completing the spin echo. It becomes ap-
parent that this is also true for a neutron beam with a finite velocity distribution, as
the recovering of the polarisation is made for each neutron individually. Therefore, the
resolution for measuring the change in velocity after quasi- or inelastic scattering can be
much better than the resolution of the width of the incident beam. This is why spin echo
spectrometers use a velocity selector at the entrance of the instrument, selecting a wave-
length band with a width of about ∆λ

λ
= 10 − 20%. This allows a very high resolution

while maintaining a high intensity, and is one of the greatest advantages of NSE over
spectrometers depending on well defined monochromatic neutron beams.

Assuming an exchange of energy with the sample, the neutron velocity upon entering
the second field region has changed to v2 = v + ∆v. The total spin phase is then given
by

φ = γ BL
(1
v
− 1
v + ∆v

)
= γBL

(
∆v

v2 + v∆v

)
. (3.48)

In a quasielastic scattering process the energy change is small, and hence is the change in
velocity ∆v � v. This allows to Taylor expand Eq. (3.48) to

φ = γBL

(
∆v

v2 + v∆v

)
≈ γBL

∆v
v2 . (3.49)

The change in velocity due to the scattering process in terms of energy transfer

∆E = ~ω = mn

2
(
(v + ∆v)2 − v2

)
(3.50)

= mn

2
(
2v∆v + ∆v2

)
(3.51)

≈ mnv∆v (3.52)

allows to rewrite the total spin phase in Eq. (3.49) to

φ = γBL
~

mnv3ω =: ωτNSE, (3.53)
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with the spin echo time defined as

τNSE = γ~BL
mnv3 . (3.54)

The spin echo time is a measure for the resolution of a spin echo spectrometer and in-
corporates the key instrumental parameter, i.e. the magnetic field integral BL. For high
resolution, i.e. large spin echo times τNSE, large magnetic field integrals are required, and
a larger neutron wavelength is of advantage.

In the following, the whole neutron beam rather than a single neutron is considered.
The polarisation of the neutron beam along a particular direction is given by the average
of all spin phases in the beam. In the schematic shown in Fig. 3.2(a), the neutron beam
is polarised along z, hence

Pz = 〈cos (φ)〉 =
∫
S(q, ω) cos (ωτNSE) dω, (3.55)

where the probability that a neutron is scattered with the energy transfer ~ω is given by
the scattering function S(q, ω) dω. The cosine of the spin phase describes the projection
of the spin onto the polarisation axis. The expression in Eq. (3.55) is the Fourier transform
of S(q, ω) in space and time, known as the intermediate scattering function S(q, τ). The
scattering functions were introduced in Sec. 3.1, and will be discussed in more detail in
Sec. 3.3.1.

Neutron spin echo can also be explained from a semi-classical point of view, delivering a
more intuitive explanation of the spin echo principle. From a quantum mechanical point
of view a neutron is a spin-1/2 particle with two spin eigenstates with respect to any
quantisation axis defined by an external magnetic field. Assuming the neutron beam is
fully polarised along z, hence all neutrons are in one of the eigenstates. If the magnetic
field is applied perpendicular to the polarisation axis, all neutrons are in a mixed state.
With the quantisation axis along x the initial spin state is given by

χz↑ = 1√
2
(
χx↑ + χx↓

)
. (3.56)

The up eigenstate χx↑ has a magnetic moment anti-parallel to the constant magnetic field
B0, while the down eigenstate χx↓ has a magnetic moment parallel to B0. This leads to a
splitting of the potential energies of the two eigenstates in the magnetic field

E
↑/↓
pot = ±∆E

2 = ±~ωL
2 = ±~

2γB. (3.57)

The splitting of the potential energies is shown in Fig. 3.2(b). Since the total energy in
a magnetic field which is constant in time is conserved, this shift in potential energy is
accompanied by a shift in kinetic energy, see Fig. 3.2(c),

E
↑/↓
kin = E0 − E↑/↓pot = E0

1− E
↑/↓
pot

E0

 , (3.58)
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with the total energy

E0 = mnv
2
0

2 . (3.59)

Regarding the two spin states as individual wave packets, the spin-up state is delayed
by a magnetic field region, while the spin-down state is accelerated. From the different
kinetic energies for each spin state, the difference in velocity is given by

v↑/↓ =

√√√√2E
↑/↓
kin
mn

=

√√√√2E0 − E↑/↓pot

mn
= v0

√√√√1− E
↑/↓
pot

E0
. (3.60)

Since Epot � E0, Taylor expanding the square root yields

v↑/↓ ≈ v0

1− E
↑/↓
pot

2E0

 . (3.61)

Therefore, the temporal splitting of the two spin states at the sample position is given by
the different flight time through the magnetic field region with length L

t↑/↓ = L

v↑/↓
≈ L

v0

1 + E
↑/↓
pot

2E0

 , (3.62)

to

t↑ − t↓ = L

v0

(
E↓pot − E↑pot

2E0

)
= γ~BL

mnv3
0

= τNSE, (3.63)

which is equal to the spin echo time defined in Eq. (3.54). The temporal splitting at the
sample position is shown in Fig. 3.2(d).

From this semi-classical point of view it becomes apparent that, by regarding the neu-
tron beam as wave packets, the first magnetic field region coherently splits the wave
packets. The second field region coherently reverses the splitting, leading to a construc-
tive interference of the two states. The polarisation is restored. If the sample structure
changes in the time interval between scattering of the first and second split wave packet,
the interference will not be perfect, resulting in a loss of polarisation.

3.2.2. Neutron Resonance Spin Echo Spectroscopy (NRSE)

Neutron resonance spin echo is a modification of NSE, where the energetic splitting of
the spin states is induced by resonantly oscillating magnetic fields in combination with
a static field and, therefore, the precession field regions can be replaced by zero field
regions. A schematic of a NRSE spectrometer is shown in Fig. 3.3(a). Each spectrometer
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arm possesses two resonant spin flipper coils, known as NRSE coils, separated by the
distance L. Such a spin flipper consists of a constant magnetic field B0 perpendicular to
the precession plane, and a rotating magnetic field Brf , rotating with frequency ω in the
precession plane. Upon entering the spectrometer, the neutron beam is again polarised
along the z-axis. The magnetic field vector inside a NRSE coil is given by

B =


Brf cos (ωt)
Brf sin (ωt)

B0

 . (3.64)

Neutrons entering the NRSE coil start to precess about B0. The effect of the rotating
field Brf can be understood by assuming a reference frame rotating around the z-axis
with frequency ω. If this field rotates with a frequency equal to the Larmor frequency of
the neutron, i.e. γB0 = ωL = ω, the field in the reference frame of the rotation reduces
to

B =


Brf

0
0

 . (3.65)

In the rotating reference frame the neutron spin precesses about the x-axis. The total
spin phase depends on the accumulated precession phase during the flip, and on the time
spent in the rf-field. The accumulated precession phase with respect to the z-axis after
a π-flip around Brf is twice the phase difference between spin and field. Therefore, the
total spin phase is

φ = φ0 + 2 (φ1 − φ0) + ωt = 2φ1 + ωt− φ0, (3.66)

with the phase of the rf-field φ1, the phase of the incoming spins φ0, and the time t spent
in the rotating field with frequency ω. The accumulated spin phase at the sample position
is determined by considering two rf-flippers separated by a distance L. Thereby, the phase
of the incoming spins for the second rf-flipper is the phase accumulated in the first flipper

φ = 2φ2 + ωt− (2φ1 + ωt− φ0) = φ0 + 2 (φ2 − φ1) , (3.67)

and the phase change depends only on the difference of the phases of the oscillating fields

∆φ = 2 (φ2 − φ1) . (3.68)

Under the assumption that both rf-fields are oscillating in phase lock, φ2 is given by the
flight time between the two rf-fields:

∆φ = 2
(
φ1 + ω

L

v
− φ1

)
= 2 ωL

v
= 2γB0L

v
. (3.69)
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Figure 3.3.: Schematic of a NRSE spectrometer. (a) The neutron beam travels along the y-
axis of the spectrometer, passing the polariser, the first and second precession region, and the
analyser before reaching the detector. In contrast to NSE, the precession regions consist of two
resonant spin flippers rather than a solenoid. (b) Polarisation of the neutron beam throughout
its flight path. (c) Splitting of the potential energy Epot of the spin up (χ↑) and spin down (χ↓)
eigenstates of the neutron along the flight path due to the superposition of a static magnetic
field B0 and a rotating magnetic field Brf in the π-flippers. (d) Splitting of the kinetic energy
Ekin of the eigenstates. Energy is transferred in form of resonant emission of absorption of
photons from the radiation field. (e) Flight time difference ∆t of the up and down eigenstates
along the flight path. The magnitude of the splitting at the sample position determines the time
resolution of the spectrometer τNRSE and is analogous to τNSE for NSE. Figure adapted from
Ref. [68].

Comparing to classical NSE where the neutron travels through a constant magnetic field
B0 of length L, cf. Eq. (3.44), travelling through the precession regions of two NRSE coils
with the same constant field B0 and the same distance L gives twice the precession angle.

The precession angle is determined by the amplitude of the rotating field and the flight
time inside the rf-field, and is tuned so that the neutron performs a π-flip. From a
quantum mechanical point of view, two conditions must be fulfilled for the neutron to
perform a π-flip. First, the resonance condition

ω = ωL = γB0, (3.70)



34 Chapter 3. Neutron Resonance Spin Echo Spectroscopy

and, second, the π-flip condition

π
!= γBrft = γBrf

l

v
⇒ Brf = πv

γl
, (3.71)

with the length of the rf-field l, and the velocity of the neutron v.
If the initial polarisation is perpendicular to the quantisation axis given by the static

field B0, the up and down spin eigenstates are equally populated. With both above
mentioned conditions fulfilled, the two spin states are flipped: the spin eigenstate initially
in the down state is now in the up state and vice versa. Fig. 3.3(b) shows the difference in
potential energy between the two states given by the static field B0. Due to the difference
in potential energy, energy is transferred in form of resonant emission or absorption of
photons from the radiation field. Therefore, the two states travel with different kinetic
energies through the region between the two rf-flippers, see Fig. 3.3(b). At the second
rf-flipper coil, the spin states are flipped again, and the energy split is reversed. This can
be seen as a simulated magnetic field of strength 2B0 and length L. Following Eq. (3.57)
through (3.63) gives the spin echo time for NRSE, analogous to that for classical NSE,

τNRSE = 2γ~BL
mnv3 = 2~ωL

mnv3 = 2τNSE. (3.72)

The temporal splitting of the two spin states is shown in Fig. 3.3(d).

3.2.3. Modulation of Intensity with Zero Effort (MIEZE)

Modulation of intensity with zero effort (MIEZE) is a spin echo option, and only feasible
with resonantly oscillating magnetic field coils, therefore limited to NRSE spectrometers.
The MIEZE set-up is schematically shown in Fig. 3.4(a) and consists of two NRSE coils
in the first spectrometer arm, separated by the distance L1. The distance between the
second rf-coil and the detector is L2, and the distance between sample and detector is
LSD. In contrast to NRSE, the two rf-fields run at different frequencies ωA and ωB, with
corresponding rotating fields Brf,A and Brf,B, and static fields B0,A and B0,B. Both NRSE
coils are tuned to perform a π-flip in the neutron.

The calculation of the phase difference for MIEZE is analogues to the calculation for
NRSE. From Eq. (3.66), the phase φA′ after the first rf-flipper is

φA′ = 2φA + ωAt− φ0, (3.73)
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Figure 3.4.: Schematic of a MIEZE spectrometer. (a) The neutron beam travels along the
y-axis of the spectrometer, passing the polariser, the precession region, and the analyser before
reaching the detector. (b) Polarisation of the neutron beam throughout its flight path. (c)
Splitting of the potential energy Epot of the spin up (χ↑) and spin down (χ↓) eigenstates of
the neutron along the flight path due to the superposition of a static magnetic field B0 and a
rotating magnetic field Brf in the π-flippers. The potential energy splitting is overcompensated
in the second π-flipper. (d) Splitting of the kinetic energy Ekin of the eigenstates. Energy is
transferred in form of resonant emission of absorption of photons from the radiation field. (e)
Flight time difference ∆t of the up and down eigenstates along the flight path. The magnitude of
the splitting at the sample position determines the time resolution of the spectrometer τMIEZE.
In contrast to NSE and NRSE, the overcompensation of the potential energy leads to a maximal
temporal splitting at the second π-flipper, which is only compensated when the detector position
is reached. Figure adapted from Ref. [68].

with the phase of the rf-field φA, the phase of the incoming spins φ0, and the time t spent
in the rotating field with frequency ωA. The spin phase after the second rf-flipper follows
to

φB′ = 2φB + ωBt− φA′ (3.74)
= 2 (φB − φA) + t (ωB − ωA) + φ0, (3.75)

where the time spent in ωA and ωB are equal with t = l
v
, l being the length of a rf-field.
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With φA = ωAtA and φB = ωBtB = ωB(tA + L1/v), the total accumulated spin phase
after the second rf-flipper is given by

φB′ = 2tA (ωB − ωA) + 2ωB
L1

v
+ l

v
(ωB − ωA) + φ0 (3.76)

= 2tA∆ω + 2ωB
L1

v
+ l

v
∆ω + φ0. (3.77)

Thereby, tA and tB are the times the neutron arrives at the rf-field A and B, respectively.
The MIEZE condition is given by the fact that at a certain point D, where the detector

will be placed, at a distance L2 from the second rf-flipper, all velocity dependent contri-
butions to the spin phase must cancel out. The time the neutron arrives at this position
is given by

tD = tA + L1

v
+ L2

v
, (3.78)

and, therefore, the spin phase at D is

φD = 2tD∆ω + 2ωA
(
L1

v
+ L2

v

)
− 2ωB

L2

v
+ l

v
∆ω + φ0. (3.79)

With the above mentioned condition for MIEZE

2ωA
(
L1

v
+ L2

v

)
− 2ωB

L2

v
+ l

v
∆ω != 0, (3.80)

and by choosing

∆ω
ωA

= L1

L2 − l/2
, (3.81)

all velocity dependent contributions to the spin phase cancel out.
With φ0 = 0 remains a rotating polarisation at position D, dependent only on the

difference between the frequencies of the two flippers and the time of flight between the
second flipper and the detector,

φD = 2tD (ωB − ωA) = 2tD∆ω. (3.82)

Placing a spin analyser somewhere between second coil and detector converts the rotating
polarisation to a modulated intensity, given by the cosine projection of the polarisation
on the analyser axis. This results in an intensity oscillation in time

I(t) = I0

2 (cos (2∆ωt) + 1) , (3.83)

with the probability of a neutron transmitting through the analyser

T = 1
2 (cos (φ) + 1) . (3.84)
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For a totally depolarised beam the cosine is zero and half of the neutrons are transmitted.
For full polarisation along the quantisation axis the cosine is one and all neutrons are
transmitted, while for full polarisation against the quantisation axis the cosine is minus
one and no neutron gets through.

Considering a sample being placed at a position LSD upstream of the detector, as shown
in Fig. 3.4(a). Further, assuming quasielastic scattering given by the scattering function
S(q, ω) with an energy transfer ~ω � 1

2mv
2 and being symmetric around ω = 0. This

leads to a delayed time of arrival as a function of flight distance LSD

∆t = LSD

v −∆v/2 −
LSD

v + ∆v/2 = L∆v/v2

1− (∆v/v)2 , (3.85)

and for ∆v � v Taylor expansion gives

∆t ≈ LSD∆v
v2 = LSD~ω

mnv3 . (3.86)

The altered time of flight from sample to detector results in a deviation from the spin
echo condition, ultimately leading to a decrease in intensity. Introducing the time delay
due to the scattering process into the oscillating intensity in Eq. (3.83) gives

I(tD) = I0

2 (cos (2∆ωtD + 2∆ω∆t) + 1) . (3.87)

Further, introducing the scattering process S(q, ω) results in

I(tD) = I0

2

∫
(cos (2∆ωtD + 2∆ω∆t) + 1)S(q, ω) dω (3.88)

= I0

2

∫
(cos (2∆ωtD) cos (2∆ω∆t) + 1)S(q, ω) dω (3.89)

= I0

2

(∫
cos (2∆ωtD) cos (2∆ω∆t)S(q, ω) dω + 1

)
. (3.90)

Due to the symmetry of the scattering function, Eq. (3.88) can be rewritten to Eq. (3.89).
From Eq. (3.89) to Eq. (3.90) it is used that

∫
S(q, ω) dω = 1.

Comparing Eq. (3.90) with Eq. (3.83), there is a reduction in contrast of the oscillation
given by

C :=
∫

cos (2∆ωtD) cos (2∆ω∆t)S(q, ω) dω
cos (2∆ωtD) (3.91)

=
∫

cos (2∆ω∆t)S(q, ω) dω (3.92)

=
∫

cos (2∆ω~LSD

mnv3ω)S(q, ω) dω (3.93)

=
∫

cos (τMIEZEω)S(q, ω) dω, (3.94)
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with the time resolution of a MIEZE spectrometer defined as

τMIEZE = 2~
mnv3LSD∆ω = m2

n
πh2λ

3LSD ∆ω. (3.95)

The contrast is the Fourier transform of S(q, ω) in space and time, and takes the role of
the polarisation in NSE, cf. Eq. (3.55).

Following the quantum mechanical approach as for NRSE, a simple energetic considera-
tion also delivers the MIEZE condition and the time resolution of a MIEZE spectrometer.
The difference in potential and kinetic energy of the two spin states is shown in Fig. 3.4(b-
c). The change in velocity for the two spin states due to the presence of a magnetic field
from Eq. (3.60) is

∆v = v
Epot

2E0
= ~ω

mnv
, (3.96)

for a simulated magnetic field with frequency ω. This leads to a temporal splitting as
function of flight distance L of

∆t = L

v −∆v −
L

v + ∆v = 2L∆v/v2

1− (∆v/v)2 , (3.97)

and for ∆v � v Taylor expansion gives

∆t ≈ 2L∆v
v2 = 2L~ω

mnv3 . (3.98)

For fulfilling the MIEZE condition, the temporal splitting must be zero at the position of
the detector,

∆t = 2L1~ωA
mnv3 −

2L2~∆ω
mnv3

!= 0 (3.99)

⇒ ∆ω
ωA

= L1

L2
. (3.100)

Comparing this result with the MIEZE condition obtained earlier, in Eq. (3.81) the thick-
ness of the NRSE coils are taken into account, while it is neglected here. While the
temporal splitting is zero at the detector position, it is finite at the position of the sam-
ple and defines the time resolution of a MIEZE spectrometer, shown in Fig. 3.4(d). The
MIEZE time is defined by the temporal splitting at the sample position in consideration
of the MIEZE condition in Eq. (3.100),

∆t = 2~
mv3 (L1ωA − (L2 − LSD) ∆ω) , (3.101)

with ∆ω
ωA

= L1

L2

⇒ τMIEZE = 2~
mnv3LSD∆ω = m2

n
πh2λ

3LSD ∆ω. (3.102)
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(i). MIEZE and Large Energy Transfers

The considerations made so far were under the assumption of quasielastic scattering with
an energy transfer between neutron and sample much smaller than the energy of the
incoming neutron, i.e. ∆v � v, giving the expression of the approximated spin echo time
in Eq. (3.102). In case of a larger energy transfers, the spin echo approximation fails.

Starting with the spin phase after the second rf-flipper in Eq. (3.76),

φB′ = 2tA (ωB − ωA) + 2ωB
L1

v
+ l

v
(ωB − ωA) + φ0. (3.103)

The time the neutron arrives at the detector is given by

tD = tA + L1

v
+ L2S

v
+ LSD

v + ∆v , (3.104)

where L2S is the distance between second rf-flipper and sample. The spin phase at the
detector is therefore written as

φD = 2(ωB − ωA)
(
tD −

L1 + L2S

v
− LSD

v + ∆v

)
+ 2ωB

L1

v
+ (ωB − ωA) l

v
− φsub + φ0,

(3.105)

introducing a field subtraction coil between the two rf-flippers giving the contribution φsub

to the spin phase. This additional accumulated spin phase is generated by a DC magnetic
field, and hence given by

φsub = γBlsub

v
= γJsub

v
, (3.106)

with the length of the field subtraction coil lsub, the field generated by the coil B, the
neutron velocity v, and the gyromagnetic ratio of the neutron γ = 29.16 MHz T−1. This
field subtraction coil allows easier tuning of a MIEZE spectrometer and gives access to
the smallest spin echo times. With φ0 = 0 and neglecting the length of the rf-flippers
l ≈ 0, the expression in Eq. (3.105) reduces to

φD = 2(ωB − ωA)
(
tD −

L1 + L2S

v
− LSD

v + ∆v

)
+ 2ωB

L1

v
− Φsub. (3.107)

The MIEZE condition is again given by the fact that at the detector all velocity dependent
contributions to the spin phase must cancel out,

2ωA
L1 + L2S

v
− 2ωB

L2S

v
− 2(ωB − ωA) LSD

v + ∆v
!= 0, (3.108)

which is true for

L1 + L2S = ωBL1

ωB − ωA
− LSD. (3.109)
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With Eq. (3.109), the spin phase at the detector in Eq. (3.107) follows to

φD = 2(ωB − ωA)
(
tD + LSD

v
− LSD

v + ∆v

)
− γJsub

v
. (3.110)

Introducing the time delay due to the scattering process into the oscillating intensity in
Eq. (3.83) gives

I(tD) = I0

2

(
cos

(
2(ωB − ωA)

(
tD + LSD

v
− LSD

v + ∆v

)
− γJsub

v

)
+ 1

)
(3.111)

= I0

2

cos
2(ωB − ωA)

tD + LSD

v
− LSD√

2~ω
mn

+ v2

− γJsub

v

+ 1
 , (3.112)

with the energy transfer

~ω = mn

2
(
(v + ∆v)2 − v2

)
(3.113)

⇔ ∆v =
√

2~ω
mn

+ v2 − v. (3.114)

A comparison between the explicit calculation of the spin phase in Eq. (3.110) and
Eq. (3.112), and the simpler case under the assumption of the spin echo approximation in
Eq. (3.82) and Eq. (3.87), is conducted in Sec. 3.3.2.

3.3. Spin Echo Data Reduction

Recording the intermediate scattering function S(q, τ) is measuring the polarisation P or
contrast C for NSE and NRSE or MIEZE, respectively. Throughout this section, polar-
isation and contrast will be treated synonymously. Spin echo data must be normalised
with the instrumental resolution and corrected for instrumental background to extract
the sample contribution to the measured signal.

3.3.1. Spin Echo Group and Intermediate Scattering Function

The polarisation is measured by measuring its projection onto the analyser axis. After
passing through the analyser, the intensity of the neutron beam is given by

I(∆J) = I0

2 (1 + C cos (φ(∆J))) . (3.115)
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The intensity is a function of an additional spin phase φ due to a field integral ∆J the
neutron experiences throughout the spectrometer. The spin echo group, i.e. the intensity
as a function of the field integral, is recorded by an asymmetric scan of the field integral
in one spectrometer arm for NSE and NRSE. In the case of MIEZE, the spin echo group
is recorded by changing the frequency of one NRSE coil in the primary spectrometer arm,
hence scanning the field integral. The spin echo point is defined for ∆J = 0. With
Eq. (3.55), and assuming a monochromatic beam, the intensity can be written as

I(τ,∆J) = I0

2

(
1 + cos (φ(∆J))

∫
S(q, ω) cos (ωτ)dω

)
, (3.116)

introducing the scattering function of the system. The extra spin phase comes from the
energy transfer in the scattering process, leading to a reduction of contrast/polarisation.
For a finite wavelength distribution of the incoming neutron beam, Eq. (3.115) becomes

I(τ,∆J) = I0

2

(
1 +

∫
f(λ)dλ cos (φ(∆J))

∫
S(q, ω) cos (ωτ)dω

)
. (3.117)

The integral over the wavelength distribution envelopes the spin echo group described
by the field integral. The second integral describes the physics in the sample and gives
the amplitude of the oscillation, i.e. the contrast/polarisation. Fig. 3.5(a) shows the spin
echo group for a monochromatic neutron beam after a purely elastic scattering process,
i.e. polarisation is one. Considering a triangular shaped wavelength distribution, as it is
the case for the velocity selector at RESEDA, the spin echo group for an elastic scattering
process is shown in Fig. 3.5(b). The triangular wavelength distribution envelopes the spin
echo group for a width of the distribution of ∆λ/λ = 0.12 and 0.2, respectively.

To measure the reduction of the polarisation by the sample, the amplitude of the spin
echo group must be determined. Since measuring the whole spin echo group is time
consuming, the spectrometer is tuned so that the spin echo point is known precisely. The
amplitude is now determined by measuring several points of one oscillation of the spin
echo group around the spin echo point and fitting a sinus to these points. The frequency
of the oscillation is defined by instrumental parameters and, hence, known precisely. At
least four points separated by π/2 are required to determine the amplitude and phase of
the oscillation, shown in Fig. 3.5(b). Kindervater et al. discussed the advantages of the
2-, 4- and 20-point-echo methods, finding the 4-point-echo method the most efficient for
NSE and NRSE [69].

In case of the MIEZE method, where the intensity is modulated in time, a time re-
solved detector measures 16 points in one oscillation to obtain amplitude and phase of
the oscillation. The contrast is then given by

C(τ) = A

B
, (3.118)
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Figure 3.5.: Modulated intensity signal for mono- and polychromatic neutron beams. (a) Spin
echo group for a monochromatic neutron beam. (b) Spin echo group for a triangular shaped
wavelength distribution, centred at λ = 6 Å with a width of the distribution of ∆λ/λ = 0.12
and 0.2, respectively. Increasing the width of the wavelength distribution decreases the width
of the spin echo group. The green markers are four points separated by π/2 measured during
the 4-point-echo method.

where A is the amplitude of the oscillation and B the average count rate.
In most cases, the intensity in Eq. (3.117) can be seen as the intermediate scattering

function S(q, τ). It is the spatial Fourier transform of the time-dependent pair-correlation
function of the scattering system, cf. Eq. (3.9) and Eq. (3.10). From the intermediate scat-
tering function, the scattering function S(q, ω) is obtained by the time Fourier transform
in Eq. (3.11). Measuring the intermediate scattering function hence allows to directly ob-
serve the life-time of excitations in a system, as the measurement takes place in the time
domain. To obtain a full spin echo data set, the intermediate scattering function, i.e. the
contrast/polarisation, is measured as a function of spin echo time τ . Fig. 3.6 shows on



3.3. Spin Echo Data Reduction 43

-2 -1 0 1 2
(meV)

0

0.5

1.0

S
(q
,

)(
a
.u
.)

(a)

elastic
quasielastic
inelastic

10 4 10 3 10 2 10 1

(ns)

0.5

0

0.5

1.0

S
(q
,
)/
S
(q
,0
)

(b)

Figure 3.6.: Scattering function S(q, ω) and intermediate scattering function S(q, τ) for dif-
ferent scattering processes. (a) S(q, ω) as function of energy transfer ~ω for an elastic, a
quasielastic, and an inelastic scattering process. (b) S(q, τ) as a function of Fourier time τ .
The intermediate scattering function can be directly measured in neutron spin echo spectroscopy.

an example a comparison between a measurement in the energy- and time-domain for an
elastic, a quasielastic, and an inelastic scattering process:

elastic : S(q, ω) ∝ δ(ω = 0) FT←→ S(q, τ) ∝ 1 (3.119)

quasielastic : S(q, ω) ∝ Γ
ω2 + Γ2

FT←→ S(q, τ) ∝ exp{−Γτ} (3.120)

inelastic : S(q, ω) ∝ Γ
(ω ± ω0)2 + Γ2

FT←→ S(q, τ) ∝ exp{−Γτ} cos (ω0τ). (3.121)

Without an energy transfer, an elastic scattering process is a delta-function at zero
energy transfer in the energy-domain. In the time-domain, this becomes a constant con-
trast/polarisation of 1, shown as blue lines in Fig. 3.6. Quasielastic scattering shows a
Lorentzian centred around zero energy transfer in the energy-domain. Its Fourier trans-
form into the time-domain gives a single exponential decay, shown as orange lines in
Fig. 3.6. In case of an inelastic scattering process, the energy-domain shows Lorentzian
peaks at ±ω0 6= 0. This results in an oscillation damped by an exponential decay in the
time-domain, shown as green lines in Fig. 3.6.
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3.3.2. Spin Echo Approximation vs Explicit Calculation in MIEZE

As already mentioned in Sec. (i), the spin echo approximation in Eq. (3.98) breaks down
for large energy transfers, where ∆v � v is not valid any more. To quantify where the
spin echo approximation is still valid, the additional spin phase the neutron collects due
to an energy transfer during the scattering process has to be regarded, comparing the spin
echo approximation with the explicit calculation. From Eq. (3.82) and Eq. (3.98) follows
the additional spin phase due to scattering with small energy transfers, i.e. ∆v � v, to

φapprox. = 2LSD~ω
mv3 ∆ω. (3.122)

Explicitly calculating the additional spin phase, i.e. using Eq. (3.110), gives

φexplicit = 2LSD

1
v
− 1√

2~ω
m

+ v2

∆ω. (3.123)

Fig. 3.7 shows the difference in the spin phase as function of energy transfer for differ-
ent MIEZE frequencies for the approximated and explicit calculation, respectively. The
calculations are for a monochromatic neutron beam with λ = 6 Å, which gives a neutron
energy of En = 2.27 meV, and a sample to detector distance of LSD = 2.25 m. The spin
echo approximation can be used for small MIEZE frequencies. From the calculation it
further becomes apparent that in the proximity of ~ω ≈ 0, the spin echo approxima-
tion is valid with φapprox. ≈ φexplicit. The explicit calculation of the spin phase becomes
important for large energy transfers, and also for increasing MIEZE frequencies.

To illustrate the importance of the explicit calculation of the spin phase, Fig. 3.8 com-
pares the differences between spin echo approximation and explicit calculation on the
example of inelastic scattering processes with energies of the excitations ranging from
0.2 meV to 1.3 meV. The intermediate scattering function was calculated with

S(q, τ) =
∫ λ0(1+∆λ/λ0)

λ0(1−∆λ/λ0)

∫ ∞
−E(λ)

f(λ)I(tD)S(q, E) dE dλ, (3.124)

assuming a triangular wavelength distribution f(λ) with λ0 = 6 Å, which gives a neutron
energy of En = 2.27 meV, a width of the wavelength distribution of ∆λ/λ0 = 0.12, and
a sample to detector distance of LSD = 2.25 m. I(tD) is given by Eq. (3.87) in case of the
spin echo approximation, and by Eq. (3.112) in case of the explicit calculation. Fig. 3.8(a)
shows the scattering function S(q, ω) for inelastic scattering with ~ωq = 0.2 meV, 0.6 meV
and 1.3 meV and a width of Γq = 0.1 meV, 0.2 meV and 0.3 meV, respectively. Fig. 3.8(b-d)
show the intermediate scattering function S(q, τ) for the three different inelastic scatter-
ing processes, comparing spin echo approximation and explicit calculation. For an energy
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Figure 3.7.: Spin phase as function of energy transfer for different MIEZE frequencies ∆ν =
ν2 − ν1. Comparison between spin echo approximation (dashed) and explicit calculation (solid)
of the spin phase for MIEZE frequencies of 10 Hz, 300 Hz and 1000 Hz, respectively. The dashed
vertical line shows the neutron energy of En = 2.27 meV, corresponding to a wavelength of
λ = 6 Å as used for the calculation.

transfer of 0.2 meV, Fig. 3.8(b), approximation and explicit calculation are almost identi-
cal. For an energy transfer of 0.6 meV, Fig. 3.8(c), the approximation already started to
fail. Fig. 3.8(d) shows the case for an energy transfer of 1.3 meV, where the energy trans-
fer during the scattering process is in the same order of magnitude as the energy of the
incoming neutron, i.e. ∆v ≈ v. The differences between approximation and explicit cal-
culation are severe, showing that the explicit calculation is indispensable for large energy
transfers.

3.3.3. Normalisation and Background Correction

Depolarisation effects such as imperfect tuning, field inhomogeneities, or beam divergence
lead to a reduced polarisation even in the absence of a sample. At very small spin echo
times, due to small frequencies, the polarisation can be further reduced due to the fail of
the rotating wave approximation [70]. The polarisation obtained so far includes both, the
sample contribution and the instrumental contribution

Psample = S(q, τ)Pres(q, τ), (3.125)

where Pres(q, τ) is the contribution of the instrument, which can be obtained by measuring
an elastic scatterer under the same conditions as the investigated sample. The dynamic
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Figure 3.8.: Scattering law S(q, ω) and intermediate scattering function S(q, τ) for three in-
elastic scattering processes. For the calculation a wavelength of 6 Å and a sample to detector
distance of 2.25 m was chosen. (a) Scattering law S(q, ω) with ~ωq = 0.2 meV, 0.6 meV and
1.3 meV and a width of Γq = 0.1 meV, 0.2 meV and 0.3 meV, respectively. (b-d) Intermediate
scattering function S(q, τ) for the three inelastic scattering processes in (a). S(q, τ) is cal-
culated with the spin echo approximation and explicitly. A comparison shows that the explicit
calculation becomes indispensable for large energy transfers.
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structure factor S(q, ω) of an elastic scatterer can be assumed as a delta-function, yielding
S(q, τ) = 1, reducing the measured signal to

Pres = Pres(q, τ), (3.126)

directly giving the contribution of the instrument. Accounting for the instrumental con-
tribution, the normalised intermediate scattering function is given by

S(q, τ)
S(q, 0) = Psample

Pres
= Asample/Bsample

Ares/Bres
. (3.127)

The instrumental background can be obtained by measuring under the same conditions
without any scatterer at the sample position. The neutron beam should either be atten-
uated so that after the sample position the beam intensity is equal to the transmitted
intensity through the sample, or the background measurement should be corrected for the
transmission through the sample. Background subtraction can be performed in two ways:
(i) Combining the raw counts and fitting the spin echo group after the subtraction. This
only works if the phase for each spin echo time is fixed. (ii) First fitting the sample data
and the background data and combining the spin echo amplitude and average counts.
The statistics in the background data must be sufficient to allow fitting. This ultimately
gives the background corrected and normalised intermediate scattering function to

S(q, τ)
S(q, 0) = (Asample − Abg)/(Bsample −Bbg)

(Ares − Abg)/(Bres −Bbg) . (3.128)

Fig. 3.9 shows the contrast of one spin echo time in on an example MIEZE data set,
taken just above the Curie temperature in the paramagnetic phase of iron. The instru-
mental resolution (a), the sample (b), and the background (c) are shown at τ = 0.016 ns.
The intensity of the sample and resolution measurements are in the same order of magni-
tude, while the contrast of the sample at τ = 0.016 ns has already dropped, as compared
to the resolution. The background signal is smaller by three orders of magnitude. A full
MIEZE data set is obtained by measuring the contrast of the instrumental background
resolution, the sample, and the background at all desired spin echo times τ .

Fig. 3.10 shows the data reduction on an example MIEZE data set. The contrast was
measured as described in Sec. 3.3.1 and shown in Fig. 3.9 for a set of spin echo times
in a resolution sample, i.e. an elastic scatterer, and the sample. Since the instrumental
background is smaller by three orders of magnitude, subtracting the background would
not be necessary. Background subtraction becomes very important for samples with
poor signal to noise ratios. The contrast measured in the resolution function shown in
Fig. 3.10(a) is almost constant over the whole dynamic range, while the contrast measured
in the sample drops to zero between 10−3 ns and 10−1 ns. The normalised intermediate
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Figure 3.9.: MIEZE signal evaluated at 0.026 Å−1 and τ = 0.016 ns for an example data set.
The signal of the (a) resolution, (b) sample, and (c) background was measured at a detector with
16 time channels set to record one full oscillation. The solid lines are fits to the data yielding
the amplitude and phase of the oscillation as well as the average count rate. The contrast C
is given by the ratio of the amplitude A of the oscillation and the average count rate B of the
spin echo group.

scattering function of the sample is shown in Fig. 3.10(b). The dashed line in Fig. 3.10(a)
and (b) indicates the spin echo time for the example determination of the contrast shown
in Fig. 3.9.

3.3.4. Grouping Pixels on a Position Sensitive Detector

A time resolved CASCADE area detector is used during MIEZE measurements, allowing
the study of dynamic processes on a large range in reciprocal space. This is very important
for instance for the investigation of critical scattering in the vicinity of second-order
phase transitions, as the q-dependence of the inverse lifetime of the fluctuation provides
important information on the critical behaviour.

As the count rate in a single pixel during one measurement can be very low, combining
several pixels can be used to get meaningful statistics. Combining several pixels to one
region requires that the phase of the spin echo is not varying over that region. The count
rate in each pixel, or the desired region, must be large enough to allow a reliable fit to the
MIEZE signal. Two types of grouping routines were used for analysing the MIEZE data.
In a pre-grouping (i), the count rate of all pixels in the desired region are summed up, and
then fitted. In a post-grouping (ii), each pixel is fitted separately, and all amplitudes and
average counts of the pixels in the group are summed up. Both routines can be combined.
In a first step, the detector is pre-grouped using a mask summing the counts of arrays of,
e.g. 5×5 pixels each. The MIEZE signal is then fitted to these combined counts to extract
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Figure 3.10.: Example reduction of a spin echo data set. (a) Contrast of the resolution measured
in a graphite sample and the critical scattering from iron at Tc. Dashed lines connecting the
data points are guides to the eye. Data were measured with the MIEZE set-up at RESEDA. (b)
Normalised intermediate scattering function of the data from iron in (a), after subtracting the
background and correcting for the instrumental resolution. The solid line is a fit to the data
using an exponential decay. The vertical dashed line indicate the spin echo time for the example
determination of the contrast shown in Fig. 3.9.

amplitude and average counts with sufficient statistics. Finally, amplitude and average
counts are summed in areas as defined by the post-grouping. This procedure of pre-
and post-grouping allows to extract the intermediate scattering function with sufficient
statistics, while keeping a high MIEZE contrast. The reduction of data from area sensitive
detectors using pre- and post-grouping is also discussed in Ref. [47, 71–73].

3.4. The NRSE/MIEZE Spectrometer RESEDA

High resolution spin echo measurements were performed at the REsonance Spin Echo for
Diverse Applications beamline RESEDA at the Heinz Maier-Leibnitz Zentrum (MLZ) [74].
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The spectrometer is operated by the Technical University of Munich (TUM) and installed
at the cold neutron guide NL5-S in the neutron guide hall west of the MLZ. The neutron
guide provides the instrument with a cold wavelength spectrum ranging from 3.5 Å to
15 Å. A mechanical velocity selector at the entrance of the spectrometer allows adjusting a
wavelength bandwidth of a triangular distribution with ∆λ/λ = 8.8−17.2%. The original
set-up of RESEDA consisted of one primary and two identical secondary spectrometer
arms, allowing to measure at two scattering vectors simultaneously [75]. This set-up
employed transversal NRSE coils, i.e. the constant field in the NRSE coils is perpendicular
to the neutron beam, making it necessary to shield the flight path between the NRSE
coils with mu-metal to preserve the spin polarisation. In 2013/2014, the instrument was
extensively reconstructed, and the transverse NRSE was replaced by longitudinal NRSE
[76, 77]. This set-up was based on the demonstrations by Häußler et al. at the beamline
IN11 of the Institute Laue-Langevin (ILL) [78–80]. There are several major advantages
of longitudinal NRSE over transverse NRSE. The biggest is the self-correction of beam
divergence due to the symmetrical geometry of the fields. Another major point is the
possibility of using longitudinal guide fields preserving the polarisation, making the mu-
metal shielding obsolete. Further, longitudinal NRSE allows field integral subtraction,
making very small spin echo times accessible [80]. With implementing longitudinal NRSE,
this second set-up was further upgraded with the MIEZE option [46].

In the last years, the instrument was again reconstructed to a more reliable and per-
manent longitudinal NRSE/MIEZE set-up. Among other developments, primary goals
were to increase the dynamic range, increase the intensity at the sample position, and
drastically lower the instrumental background. The following sections discuss the current
state of the art at RESEDA.

3.4.1. NRSE and MIEZE Options at RESEDA

The primary spectrometer arm for both, the NRSE and MIEZE option, is identical until
after the second NRSE coil. In case of MIEZE, a nose is attached to the primary spec-
trometer arm carrying the spin analyser and a collimator. The secondary spectrometer
arms for NRSE and MIEZE, respectively, are shown in Fig. 3.11. The secondary spec-
trometer arm for NRSE in Fig. 3.11(a) is the mirrored primary spectrometer arm with an
analyser and helium-3 detector at the end.

Fig. 3.11(b) shows the secondary spectrometer arm for the MIEZE option. Since all
neutron spin manipulation is completed prior to the sample, the secondary spectrometer
arm only consists of flight tubes, collimation, and the detector. For MIEZE, a detec-
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tor with a very high time resolution is required. RESEDA utilises a position sensitive
CASCADE detector which covers an area of 20× 20 cm with 128× 128 pixels [81–83].

RESEDA can choose wavelengths between 3.5 Å ≤ λ ≤ 15 Å, with a wavelength spread
of 0.088 ≤ ∆λ/λ ≤ 0.172. The maximum flux is at λ = 4.5 Å. With the current set-up,
RESEDA covers a dynamic range of up to 1.8 ns at 6 Å, and a large reciprocal space of
0.01 Å−1

≤ q ≤ 1.8 Å−1, whereas the strength of RESEDA is on small scattering angles
q < 0.1 Å−1.

Figure 3.11.: Secondary spectrometer arms at RESEDA. (a) NRSE set-up. The secondary arm
has the same components as the primary spectrometer arm, i.e. NRSE coils, NSE coils, flippers,
and guide fields. The neutron spin is flipped at the end of the arm before being analysed and
detected by a 3He detector. (b) MIEZE set-up. Since all neutron spin manipulation is completed
prior to the sample position, the secondary arm only needs the CASCADE detector. For reducing
the background, the arm is equipped with an evacuated flight tube, covering most of the neutron
flight path. The distance between the evacuated flight tube and the detector is flooded with
helium, since a pressure difference between vacuum and detector can break the detector window.
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3.4.2. RESEDA 3.0

Instrumental developments over the last decade required RESEDA to be a very flexible
construction, with parts easy replaceable and modifiable. With the establishment of the
longitudinal NRSE and MIEZE methods in the last years, RESEDA was reconstructed
as a permanent longitudinal NRSE/MIEZE instrument. Besides the technical progress,
software for instrumental control and data analysis was developed. Further, a major focus
was on the reduction of background signal.

(i). Reconstruction of the Spectrometer

In course of the reconstruction, the primary spectrometer arm and the two secondary
spectrometer arms, i.e. NRSE and MIEZE, were build up new, fitting the requirements
for NRSE and MIEZE, respectively. The new spectrometer arms now allow a reproducible
switching between NRSE and MIEZE.

Among the most recent improvements on RESEDA are new hardware components. A
new polariser at the entrance of the spectrometer now provides an increased polarisation,
a cleaner beam, and a reduced background. Further, the new polariser now allows to
use wavelengths of up to 15 Å. Compared to the old analyser, which cut off wavelengths
above 10 Å, this upgrade increases the dynamic range of the spectrometer significantly.
For the MIEZE set-up, a new transmission bender analyser was installed. Compared
to the old 5-V-cavity analyser, the transmission bender gives a higher polarisation, a
cleaner beam, and has less parasitic scattering. Both, the “stripes” on the beam profile
and a lot of parasitic scattering came from the 5-V-cavity edges of the old analyser.
Neutron guides were installed in the first spectrometer arm to increase the flux at the
sample position. The guides are evacuated and covered with sapphire windows to reduce
background. Since neutron guides increases the beam divergence, optional collimation can
be installed for studies requiring very low beam divergence. New power supplies now allow
a higher precision and better control of the neutron phase. The detector electronics for
the CASCADE, the monitor, and the 3He-detector were rewired and optically decoupled,
which significantly reduced noise.

(ii). Background Reduction

In a spectrometer, where the investigated signal often becomes very small, it is of utmost
importance to reduce the background to a minimum. This is of highest priority especially
when using the MIEZE method, as a lot of parasitic scattering is scattered under small
angles, contaminating the signal.
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Several studies at RESEDA showed a sample independent drop to a constant, lower than
expected, contrast at about 0.01 ns, cf. Fig. 3.12. This spurious loss of contrast is more
pronounced for weaker sample signal, and vanishes for very high signal to noise ratios.
Both suggest that this feature is a sample independent, constant instrumental background.
Fig. 3.12(a) shows this step in an example data set, i.e. Fe0.175Cr0.825 at q = 0.032Å−1 for
temperatures between 4 K to 100 K. In this system, the spins are expected to be frozen out
in the observed dynamic range at low temperatures. Nonetheless, the measurement at 4 K
drops from ∼0.7 to a contrast of ∼0.2. The resolution measurement on a graphite sample
does not show the step, which is due to the much better signal to noise ratio as compared
to the FexCr1–x sample. Therefore, correcting for instrumental resolution with a resolution
sample is not possible. This can be seen in Fig. 3.12(b), where the intermediate scattering
function, obtained by using the graphite measurement as instrumental resolution, still
shows the pronounced step. Correcting for the instrumental resolution by measuring the
same sample in a static state, i.e. where the dynamics are frozen, allows to correct also for
the spurious loss of contrast. However, this kind of resolution correction is only possible
in samples which become static at a temperature accessible during the measurements.

There are several possible causes for background and, especially, for the spurious loss of
contrast. Components in the neutron beam lead to parasitic background scattering in the
small angle regime. In contrast to a dedicated SANS instrument, where almost nothing
is in the neutron beam, a NRSE spectrometer has to have key components placed in the
neutron flight path, i.e. NRSE coils, spin flippers, and spin analyser. The contribution
to the background of some of these components was investigated at SANS-1 at MLZ
[84], showing only a reasonable contribution to the background. Another major cause for
background is air scattering. The above mentioned step in the MIEZE measurements is
not a loss of contrast over the full dynamic range, but only from a certain point on. This
leads to the assumption that the background causing this feature is dynamic, and the
most probable cause is air humidity.

To reduce the background, parasitic scattering from instrument components and air,
which is scattered out of the neutron beam flight path, is removed by a set of apertures
throughout the primary spectrometer arm. Air scattering is drastically reduced by evac-
uating the neutron guides. A flight tube on the secondary spectrometer arm allows to
evacuate the space between sample and detector. It was found that already a few cen-
timetres of air hit by the direct beam between the exit of the flight tube and the entrance
of the detector cause a huge background. Therefore, flight tube and detector were con-
nected, and the space between them filled with helium at atmospheric pressure. It is not
possible to evacuate this space, since the window of the detector is very thin and might
break under pressure.
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Figure 3.12.: Comparison of spin echo curves before and after the reduction of the instrumental
background. (a) Data taken in October 2014, before reducing the background of the instrument.
Spurious background signal leading to a step in the spin echo curve of the data at ∼10−2 ns.
Due to a much higher signal to noise ratio, the resolution (brown) shows the tuned contrast. At
low temperatures, i.e. at 4 K, the spins in Fex Cr1–x are expected to be frozen out and, therefore,
the spin echo curve at this temperature should lie on top of the resolution measurement. (b)
Data in (a) corrected for instrumental resolution by measuring a graphite standard sample, not
allowing to correct for the spurious loss of contrast. (c) Data taken in March 2017, after reducing
the background of the instrument significantly. The spurious background is gone and no step in
the spin echo signal is observed. As expected, the low temperature measurement lies on top of
the resolution measurement. (d) Data in (c) corrected for instrumental resolution by measuring
a graphite standard sample. Solid lines are fits to the data using an exponential decay.



3.4. The NRSE/MIEZE Spectrometer RESEDA 55

Further, a very strong direct beam hitting the detector leads to false signal readouts
of the detector close to pixels with very high count rates. Therefore, each experiment
uses an individual beam stop placed close to the detector, blocking the direct beam and
simultaneously allowing to investigate under very small scattering angles.

(iii). Software

The IGOR Pro software for data analysis was completely rewritten in Python. The im-
proved code is now more transparent and much faster. It allows to visualise each step of
the complex data treatment process. New data fitting options were implemented, includ-
ing the explicit calculation of the spin phase, cf. Sec. 3.3.2. Another feature is summing of
CASCADE detector foils during MIEZE, tremendously increasing the intensity [85, 86].

Parallel to the IGOR Pro instrument control software, the Python based NICOS in-
strument control was implemented. This upgrade significantly improves RESEDA as it
allows for a more reliable control of the instrument. In NICOS, a simultaneous control of
multiple devices is possible, resulting in a significant saving of time during measurements.
Further, monitoring of instrumental device statuses and live feeds of data collection is
possible. Moreover, NICOS is supported by the FRM II instrument control software
group.





4. Magnetic Phase Diagram of
Yb2Ti2O7

The magnetic pyrochlore oxide Yb2Ti2O7 received a lot of attention in recent years, as
strong transverse quantum fluctuations significantly influence the system, and since the
nature of its ground state is still under debate to host a spin-liquid quantum state at
low temperatures [28, 37, 38]. This chapter discusses the orientation dependence of the
magnetic phase diagram of Yb2Ti2O7, inferred from magnetometry down to millikelvin
temperatures, and further addresses the question of the ground state of Yb2Ti2O7. The
magnetic phase diagram for applied magnetic field shows an unusual field dependence
of a first-order phase boundary, notably an applied field initially increases the ordering
temperature when applied parallel to the crystalline 〈111〉 or 〈110〉 axes. This unusual
field dependence is absent for field along 〈100〉. Further, a theoretical model describing the
low-temperature magnetisation data was proposed by Tchernyshyov and collaborators at
Johns Hopkins University in Baltimore. An introduction to the materials class of magnetic
pyrochlore oxides, in particular Yb2Ti2O7, in Sec. 4.1, is followed by a brief description of
the Potts model describing cubic ferromagnets in Sec. 4.2. The experimental set-up and
the experimental results are presented in Sec. 4.3 and Sec. 4.4, respectively. The chapter
concludes with a summary of the present study and an outlook, cf. Sec. 4.5.

4.1. Geometric Frustration in Pyrochlore Systems

The magnetism of pyrochlore oxides often shows unconventional behaviour connected to
geometric frustration [31, 87]. Pyrochlore oxides are described by the chemical formula
A2B2O7, where the A site is occupied by a magnetic rare-earth ion and the B site by a
non-magnetic transition metal. The sites A and B form each a sub-lattice of corner sharing
tetrahedra, inter-penetrating each other. Pyrochlore oxides crystallise in the face-centred
cubic (fcc) structure with Fd3̄m symmetry, i.e. space group number 227, illustrated in
Fig. 4.1.

In the following Sec. 4.1.1, the concept of frustration will be introduced. The realisation
of a geometrical frustrated system in the family of rare-earth pyrochlore oxides will be

57
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Figure 4.1.: Unit cell of the pyrochlore structure with chemical formula A2B2O7. (a) All atoms
in the unit cell. The A site (green) is occupied by a magnetic rare-earth ion, and the B site
(blue) by a non-magnetic transition metal. The oxygen atoms are shown in red. A and B form
each a sub-lattice of corner-sharing tetrahedra, inter-penetrating each other. (b) Atoms in the
unit cell reduced to the magnetic ions. The magnetic behaviour of rare-earth pyrochlore oxides
is governed by the magnetic ion and the crystal electric field of the oxygen in the centre of the
tetrahedra.

presented, thereby addressing the exotic properties emerging in spin-ice, cf. Sec. 4.1.2,
and quantum spin-ice, cf. Sec. 4.1.3. Sec. 4.1.4 summarises the current state of research in
Yb2Ti2O7, focussing on the debate about the nature of its ground state.

4.1.1. Forms of Frustration Effects

At low temperatures, magnetic materials typically develop long-range order, such as ferro-
magnetic, ferrimagnetic, and/or antiferromagnetic order [88, 89]. In frustrated magnetic
systems, however, material-specific properties prevent the simultaneous satisfaction of all
interactions, leaving the system in a highly degenerate state. Frustration originates from
two primary causes: frustration of interactions, also known as random frustration, and
geometrical frustration.

An example for the first case are diluted spin-glasses, such as Au1–xFex or Cu1–xMnx

[90, 91], where the random distribution of the magnetic ions leads to a competition be-
tween ferromagnetic and antiferromagnetic interactions due to the oscillatory RKKY-
interactions (Ruderman-Kittel-Kasuya-Yosida) between the Fe and Mn atoms, respec-
tively [27, 92]. Random frustration will be addressed later in Ch. 6 in the context of
spin-glasses.

In contrast, in geometrically frustrated systems, the structure of the lattice precludes
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simultaneous satisfaction of the magnetic interactions. Regarding the classical isotropic
nearest-neighbour Heisenberg exchange Hamiltonian given by

H = −J
∑
〈ij〉
Si · Sj. (4.1)

The model with 1, 2, and 3 components of the spin S corresponds to the Ising, XY,
and Heisenberg model, respectively. The nearest-neighbour exchange constant is J > 0
for ferromagnetic interactions and J < 0 for antiferromagnetic interactions. Fig. 4.2(a)
shows Ising spins, i.e. spins that can only be in one of two states, up and down, with
nearest-neighbour ferromagnetic interactions on the corners of a two dimensional trian-
gular lattice. In this case, all interactions are satisfied simultaneously. An important
example for geometric frustration is shown in Fig. 4.2(b), where the Ising spins are in-
teracting with a nearest-neighbour antiferromagnetic exchange on the same triangular
lattice. If one antiferromagnetic interaction is satisfied with two spins anti-parallel, it is
impossible for the third spin to satisfy both antiferromagnetic bonds with its two neigh-
bours. This concept was first introduced by Wannier in 1950 describing that, in case of
antiferromagnetic interactions on a two dimensional triangular Ising net, no transition into
a magnetically ordered state is predicted down to lowest temperatures, due to geometric
frustration [93, 94]. The degree of frustration in magnetic systems may be measured in
terms of the ratio

f = |θCW|
T ?

, (4.2)

with the Curie-Weiss temperature θCW, characterising the nature and strength of the
magnetic interactions, and T ? being the transition temperature to an ordered or glassy
state [95]. Strong geometrical frustrated systems show f > 10 [95].

In three dimensions, geometric frustration may be realised by magnetic moments on the
corners of a tetrahedron, as shown in Fig. 4.2(c) and (d). An antiferromagnetic interaction
between the spins, cf. Fig. 4.2(c), leads to frustration, since it is not possible to arrange the
spins in a way all interactions are satisfied. The absence of long-range magnetic order in
three dimensions was first reported by Anderson in 1956 in an Ising pyrochlore antiferro-
magnet [96]. In 1979, Villain observed the absence of long-range order in the Heisenberg
pyrochlore antiferromagnet [97]. Mean field theory [98], Monte Carlo simulation [99], and
numerical studies [100, 101] confirmed the absence of long-range order in the studies of
Anderson [96] and Villain [97].

In a system with ferromagnetic nearest-neighbour interactions, as it is the case shown
in Fig. 4.2(d), geometric frustration is possible when the spins are arranged in a non-
collinear way, when the spins directly point either towards or away from the centre of the
tetrahedron. This is the case in rare-earth pyrochlore oxides, where long-range dipolar
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Figure 4.2.: Illustration of geometrical frustration in two and three dimensions. (a) Ferromag-
netic nearest-neighbour interactions between spins on a two dimensional triangular lattice does
not lead to frustration. Anti-ferromagnetic nearest-neighbour interactions between spins on a
two dimensional triangular lattice (b) and on a three dimensional tetrahedron (c) frustrate the
system. The system shown in (d), where the spins point either towards or away from the centre
of the tetrahedron, frustrates for ferromagnetic nearest-neighbour interactions.

interactions lead to ferromagnetic coupling, and strong local 〈111〉-Ising anisotropy ar-
ranges the spins [28]. On a pyrochlore lattice with cubic symmetry, the Ising and XY
models are only physically sensible, when a local Ising direction zi or local XY plane
normal to zi parallel to a local 〈111〉 is regarded.

The ground state of frustrated systems is highly degenerate and no magnetic order is
predicted down to absolute zero temperature, leading to a residual entropy. This violates
the third law of thermodynamics, and the system eventually must find a ground state. In
this case, perturbative interactions lead to the development of order out of the spin-liquid
state [28]. The magnetic ground state of the pyrochlore oxides is therefore governed by the
nature of the exchange interactions between the nearest-neighbour and further neighbour
spins, the character of the spin anisotropy, dipolar interactions, and anisotropic exchange.
These numerous physical aspects influencing the nature of the ground state might lead
to quantum spin fluctuations and unconventional exotic magnetic phases such as spin-
glasses [102], classical [30, 31, 33] and quantum spin-ices [37, 103], or quantum spin-liquids
[29, 38].

4.1.2. Classical Spin Ice

The most prominent example among the pyrochlore oxides is classical spin-ice first iden-
tified in Ho2Ti2O7 and Dy2Ti2O7 [30–34]. The spins in these systems can be described as
Ising-like along the local 〈111〉 due to strong crystal electric fields, giving rise to a strong
magnetic anisotropy. To describe the interactions in the classical nearest-neighbour spin-
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ice model (CSI), Eq. (4.1) further includes easy axis anisotropy, and the Hamiltonian reads
as

HCSI = −Jzz
∑
〈ij〉
Szi · Szj −∆

∑
K,κ

(δκ · SK,κ)2 , (4.3)

where ∆ is the strength of the easy axis anisotropy. The easy axes δκ, with κ running
over the number of easy axes directions, i.e. four in case of a local 〈111〉 symmetry, and
the spin on the corner κ of the tetrahedron K is given by SK,κ.

Compared to an antiferromagnetic nearest-neighbour Heisenberg exchange coupling on
the pyrochlore lattice, cf. Eq. (4.1) and Fig. 4.2(b), which leads to frustration [96], an anti-
ferromagnetic nearest-neighbour exchange in the case of the classical spin-ice model leads
to an ordered ground state [104, 105]. This ground state is two-fold degenerate, with
either all four spins pointing in or out of one tetrahedron (all-in/all-out) as depicted in
Fig. 4.3(a). The frustration in the classical spin-ice model arises from nearest-neighbour
ferromagnetic interactions, cf. Fig. 4.2(d). The ferromagnetic exchange energy is min-
imised when two spins point in and two spins point out of one tetrahedron (two-in/two-
out), as shown schematically on two adjacent tetrahedra in Fig. 4.3(b). Even though
there are six equivalent spin configurations fulfilling the two-in/two-out constraint in a
single tetrahedron, there is an infinite number of ground states for a macroscopic sample,
resulting in a ground state residual entropy.

The similarity of the spin configuration to the proton structure in water ice, which is
also degenerate and shows a high residual entropy [106–108], gives the spin-ice its name.

(a) (b)

Figure 4.3.: Ground state in the classical spin-ice model on the pyrochlore lattice, where strong
Ising anisotropy force spins on local 〈111〉-axes. (a) Antiferromagnetic nearest-neighbour ex-
change leads to an all-in/all-out ground state. (b) For ferromagnetic nearest-neighbour exchange,
the magnetic moments obey the two-in/two-out spin-ice constraint.
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Ho2Ti2O7 and Dy2Ti2O7 both have pre-dominant ferromagnetic interactions, in agree-
ment with a positive Curie-Weiss temperature θCW of 1.9 K [30] and 0.5 K [32], respec-
tively, and classical spins with a strong Ising anisotropy. According to Eq. (4.3), ferro-
magnetic interactions and a strong Ising anisotropy lead to the spin-ice configuration.
However, trivalent rare-earth ions possess a large magnetic moment resulting in dipolar
interactions being relatively strong compared to the weak exchange interactions inferred
from the Curie-Weiss temperature. Including dipolar interactions, the classical spin-ice
Hamiltonian in Eq. (4.3) is written as

HDSIM = −Jzz
∑
〈ij〉
Szi
i · S

zj

j +Dr3
nn
∑
j>i

Szi
i · S

zj

j

|rij|3
−

3(Szi
i · rij)(S

zj

j · rij)
|rij|5

, (4.4)

with the dipole energy scale D = (µ0/4π)g2µ2/r3
nn, and the distance between nearest-

neighbours rnn. The nearest-neighbour exchange energy is given by Jnn = J/3, and
the nearest-neighbour dipole-dipole interaction by Dnn = 5D/3. For Ho2Ti2O7 and
Dy2Ti2O7 the constants are Jnn ∼ −1.2 K and Dnn ∼ 2.35 K [104, 105]. Given that,
the nearest-neighbour exchange is antiferromagnetic, and the nearest-neighbour dipole-
dipole interaction is ferromagnetic. If the antiferromagnetic exchange dominates, the
system undergoes a phase transition into an all-in/all-out ground state, cf. Fig. 4.3(a).
For a dominating ferromagnetic exchange, however, the system displays a spin-ice state,
cf. Fig. 4.3(b). A critical value of Jnn/Dnn ∼ −0.9 between the all-in/all-out and the spin-
ice state was determined by mean-field theory and Monte Carlo simulations [109, 110].
Therefore, both Ho2Ti2O7 and Dy2Ti2O7 are spin-ices with a two-in/two-out ground state
and may be described by the dipolar spin-ice model (DSIM) in Eq. (4.4).

Excitations in spin-ice were first introduced by Ryzhkin as quasiparticle-like [111]. In
2008, Castelnovo et al. described excitations above the ground-state manifold in spin-ices
as magnetic monopoles with Coulomb interactions between them [35]. Such an excitation
is obtained when flipping one spin on the pyrochlore lattice, locally violating the two-
in/two-out ice rule in Fig. 4.3(b). The spin flip generates a three-in/one-out state in
one tetrahedron, and a one-in/three-out state in the adjoining tetrahedron, as shown in
Fig. 4.4(a). If each spin is seen as a pair of opposite magnetic charges, such a spin flip
generates a monopoles-antimonopole pair in the two adjacent tetrahedra. Once created,
the two monopoles can diffuse through the magnetic sub-lattice away from each other by
flipping the spins on their way. This creates a ferromagnetic chain of spins connecting
the pair of separated monopoles shown in Fig. 4.4(b), which is known as a Dirac string
[35, 36].

Exciting monopoles in spin-ices is achieved by applying a magnetic field along a 〈111〉
crystallographic direction. A field along 〈111〉 first partially magnetises the system, re-
taining the two-in/two-out ground state. Increasing the field further breaks the ice rule,
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Figure 4.4.: Magnetic monopoles in spin-ice. (a) A spin flip violates the two-in/two-out spin-ice
constraint, creating a monopole-antimonopole pair. (b) The two monopoles can diffuse through
the lattice by additional flipping of spins, generating a chain of inverted spins known as Dirac
string.

flipping one spin to the three-in/one-out (one-in/three-out) state in all tetrahedra. This
spin flips may be viewed as the condensation of emergent magnetic monopoles [35, 61, 111],
what may explain the first-order phase transition for field along 〈111〉 found in Dy2Ti2O7

by Sakakibara et al. [112], and later in Ho2Ti2O7 by Krey et al. [61].

4.1.3. Quantum Spin Liquid and Quantum Spin Ice

In a spin-liquid state the spins are highly correlated due to interactions between them, but
do not order at very low or even zero temperature [38]. In classical spin-ice, as discussed
in the previous section, the frustration of the magnetic moments give rise to a classical
spin-liquid with Coulombic interactions and emergent electrostatic charges, the magnetic
monopoles [35, 36, 113]. By lowering the temperature, the spins in classical spin-ice freeze
at some finite temperature. This is due to the energy barrier between the different spin-ice
states, which can not be overcome by the weak quantum effects [29, 34].

A quantum spin-liquid (QSL), on the other hand, is a state of matter where quantum
fluctuations prevent the spins from entering a phase with magnetic long-range order even
at zero temperature [37]. If quantum fluctuations perturbing a spin-ice state, the ground
state is a quantum spin-liquid with a U(1) gauge symmetry, and the same properties as
the classical spin-ice, i.e. Ising anisotropy along the local 〈111〉 directions, fulfilling the ice
rule constraint two-in/two-out [37, 114]. This state of matter is called quantum spin-ice
(QSI).
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The ice rule constraint two-in/two-out is equivalent to stating that a spin field B is
divergence-free on each tetrahedron: ∇ ·B = 0. This divergence-free constraint can be
viewed as an emergent gauge invariance B = ∇ × A, with a vector potential A that
leaves the divergent free condition invariant. Spin flips out of the spin-ice manifold break
this divergent free condition and create a field source of magnetic charges that interact
with the emergent electromagnetic field [37]. Hence, these charges behave like particles
of light [37].

To describe quantum spin-ice, the classical nearest-neighbour spin-ice model in Eq. (4.3)
could be extended by transverse nearest-neighbour exchange couplings, in addition to
the longitudinal Ising exchange. This gives a minimal model for a quantum spin-ice,
containing quantum dynamics within the spin-ice and reads as

HQSI = HCSI +H⊥
= HCSI − J±

∑
〈ij〉

(
S+
i S
−
j + S−i S

+
j

)
, (4.5)

with J± � Jzz, so that the ice rule is obeyed with spins slightly canted away from the
local 〈111〉 direction. The J± is a perturbation of the classical spin-ice ground state, lifting
the degeneracy of the classical spin-ice.

The hierarchy of energy scales in rare-earth pyrochlore oxides make them ideal can-
didates for quantum spin-ice behaviour. In such materials the spin-orbit coupling is
stronger than the crystal electric field, hence the ground state is well protected, and the
spin is highly anisotropic. Further, the ground states often are well-isolated low-energy
doublets where the spin dynamics may be reduced to that of spin-1/2 moments [37]. Es-
pecially for odd-numbered electron ions, i.e. Kramers, the ground state is very robust,
and other nearest-neighbour couplings lead to strong quantum effects [37]. Therefore,
the low-temperature properties can be described by an effective pseudospin-1/2 Hamilto-
nian including all the symmetry-allowed nearest-neighbour couplings. The most general
nearest-neighbour symmetry-allowed anisotropic Hamiltonian on the pyrochlore lattice is
then given by [37, 103]

Heff, 1
2

=
∑
〈ij〉

{
JzzS

z
i S

z
j − J±

(
S+
i S
−
j + S−i S

+
j

)
+ J±±

(
γijS

+
i S

+
j + γ∗ijS

−
i S
−
j

)
+ Jz±

(
Szi
(
ζijS

+
j + ζ∗ijS

−
j

)
+ i↔ j

) }
, (4.6)

where 〈ij〉 describes the nearest-neighbour sites of the pyrochlore lattice, γij is a 4 × 4
complex unimodular matrix, with ζ = −γ∗, describing the cubic rotations and local bases
of the pyrochlore lattice [103]. The first term, proportional to Jzz, describes the classical
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Ising spin-ice. The other terms, i.e. J±, J±±, and Jz±, are additional nearest-neighbour
terms allowed by the symmetry on the pyrochlore lattice, that do not commute with the
classical spin-ice term and, hence, lead to quantum dynamics within the classical spin-ice
[37]. Discussing the physical origin, besides the Ising term, the other three nearest-
neighbour interactions can be seen as follows [37, 115, 116]: J± as isotropic interactions
of the form JisoSi · Sj, J±± as pseudo-dipolar exchange interactions Jpd(Si · Sj − 3Si ·
r̂ij r̂ij · Sj), and Jz± as Dzyaloshinskii-Moriya interactions JDM(d̂ij · Si × Sj).

The effective pseudospin-1/2 Hamiltonian in Eq. (4.6) was analysed by means of gauge
mean-field theory (gMFT), and the zero temperature phase diagram was computed for
systems with Kramers ions [117] and non-Kramers ions [118]. Fig. 4.5(a) shows the calcu-
lated phase diagram for Kramers ions in the space of nearest-neighbour couplings, where
phases emerge from the classical spin-ice point at J± = 0 and Jz± = 0. The quantum
spin-liquid appears from perturbation theory in the vicinity of the classical spin-ice point
at the origin of the phase diagram. The Coulomb ferromagnetic phase (CFM) shows dipo-
lar ferromagnetic long-range order and displays the same excitations as in the quantum
spin-ice. The two other phases show ferromagnetic (FM) and antiferromagnetic (AFM)
long-range order, where the states are six-fold degenerate with net moments along one of
the 〈100〉 directions for the ferromagnetic state, and moments perpendicular to the local
〈111〉 directions for the antiferromagnetic state. It becomes apparent that for J± being
the leading perturbation with J± � Jzz, and being sufficiently larger than J±± and Jz±,
there is a region where the quantum spin-liquid is predicted [37, 114, 117–119]. It should

(a)

U 1 QSL AFQ

noncoplanar FQ

Spin Ice
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Figure 4.5.: Gauge mean-field phase diagram in the exchange parameter space of the Hamilto-
nian in Eq. (4.6). (a) For Kramers ions with J±± = 0. The phases are a quantum spin-liquid
(QSL), a Coulomb ferromagnet (CFM), a standard ferromagnet (FM), and a standard antifer-
romagnet (AFM). The classical spin-ice point is at J± = 0 and Jz± = 0. Figure taken from
Ref. [117]. (b) For non-Kramers ions with Jz± = 0. The phases are a quantum spin-liquid and
two quadrupolar phases (FQ and AFQ). The classical spin-ice point is at J±± = 0 and J± = 0.
Figure taken from Ref. [118].
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be noted that Savary and Balents also addressed the finite temperature phase diagram,
which will not be discussed here [119]. In case of non-Kramers ions, cf. Fig. 4.5(b), besides
the quantum spin-liquid, there exist a long-range ordered ferroquadrupolar (FQ) phase,
and a long-range ordered antiferroquadrupolar (AFQ) phase.

Among the pyrochlore oxides, quantum spin-ice candidates are systems with Kramers
ions, such as Yb2Ti2O7, or with even-numbered electron ions, i.e. non-Kramers, such as
Tb2Ti2O7, and a magnetic ground state doublet [103, 120–124]. In a pyrochlore oxide
with a weaker rare earth moment as compared to Ho2Ti2O7 and Dy2Ti2O7, dipolar in-
teractions become less important and, as a consequence, exchange interactions become
more important. The spin anisotropy, derived from the crystal electric field effects and
the hierarchy of energy scales in the pyrochlore oxide, leads to an XY anisotropy in the
case of Yb2Ti2O7 and Tb2Ti2O7 [125].

4.1.4. State of the Art of Quantum Spin Ice Candidate Yb2Ti2O7

Yb2Ti2O7 is an insulator crystallising in the cubic pyrochlore structure with a lattice
constant a = 10.03 Å [126]. The magnetic behaviour of Yb2Ti2O7 originates from the
Yb3+ (4f 13) ions at the vertices of the A sub-lattice of the corner sharing tetrahedra.
Since the 3d0 Ti4+ on the inter-penetrating B sub-lattice has no valence electrons, the
magnetic behaviour of the Yb3+ ions is isolated from any interfering magnetic interactions.
Yb2Ti2O7 possesses a single ion ground state doublet protected by Kramers degeneracy,
with its ground state Kramers doublet extremely well separated from the first excited
state by a crystal field gap of ∆ ∼ 600 K [103, 123, 127, 128]. The hierarchy of energy
scales in Yb2Ti2O7, together with the pyrochlore structure, leads to an XY anisotropy of
the spins on the rare earth site [125]. The Curie-Weiss temperature is small and positive,
with θCW = 0.76 K [126], suggesting predominantly ferromagnetic interactions [126, 129].

The magnetic properties of Yb2Ti2O7 are still under debate. An obstacle in identifying
the true ground state of Yb2Ti2O7 are the experimental inconsistencies of different samples
concerning the measured low-temperature transition. Subtle structural differences and
the proximity to magnetic order presumably lead to small perturbation in the exchange
parameters, and, hence, significant changes in the nature of the magnetic ground state
[119, 130–132]. For instance, Ross et al. identified that stuffing of the transition metal
ion site in single crystals grown by optical float zoning introduce additional exchange
bonds and local lattice deformations, leading to instabilities of the magnetic ground state
[133]. Arpino et al. suggested that these differences are due to a systematic material
discrepancy, indicating that a better and more consistent method of crystal growth is
needed [126].
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The earliest experimental study on selected magnetic pyrochlore oxides, by Blöte et al.
in 1969, observed a sharp peak in the specific heat of Yb2Ti2O7 at a critical temperature
of ∼0.214 K [129], suggesting a transition to long-range order. Indeed, a transition into
a state with long-range magnetic order was reported by several groups [120, 134–139].
However, several other studies reported a lack of long-range order [121, 140–143].

From a theoretical point of view, the ferromagnetic interactions along the local axis
of the tetrahedra together with the well protected ground state Kramers doublet sug-
gest, that Yb2Ti2O7 forms a quantum spin-ice at low temperatures [103, 120–123]. The
magnetic interactions of Yb2Ti2O7 are therefore best described by the nearest-neighbour
symmetry-allowed anisotropic effective pseudospin-1/2 Hamiltonian in Eq. (4.6).

The exchange parameter of the Hamiltonian in Eq. (4.6) were determined by Ross et al.,
and used to compute specific heat, entropy, and magnetisation by means of numerical
linked-cluster calculation [120, 121]. However, placing their parameters in the gauge
mean-field theory phase diagram calculated by Savary and Balents in Fig. 4.5(a), suggests
a ferromagnetic ground state. Robert et al. determined the exchange couplings by ap-
plying the Hamiltonian to zero-field diffuse scattering, and to the spin wave spectrum in
the field polarised state [131]. Their analysis found Yb2Ti2O7 at the border between a
ferromagnetic and an antiferromagnetic state, hence the ground state to be governed by
quantum fluctuations due to phase competition [131]. A recent inelastic neutron scat-
tering study by Thompson et al. applied the Hamiltonian to a large set of data and
determined the exchange parameters [144]. They identified the transverse exchange Jz±
as leading perturbation, and not J± as would be necessary for a quantum spin-liquid
according to the gauge mean-field theory by Savary et al. [117].

Tab. 4.1 summarises the exchange parameters of the Hamiltonian in Eq. (4.6) obtained
for Yb2Ti2O7 found in the literature. The couplings J1, J2, J3, and J4 are linear combi-
nations of the exchange in Eq. (4.6), given by

J1

J2

J3

J4

 = 1
3


−1 4 2 2

√
2

1 −4 4 4
√

2
−1 −2 −4 2

√
2

−1 −2 2 −
√

2




Jzz

J±

J±±

Jz±

 . (4.7)

Further, the g-tensor for the spins was determined from spin wave theory. It contains
the two components gzz along, and gxy transverse to the local 〈111〉 axes. The obtained
g-tensor components for the different spin wave studies fit well the g-tensors obtained
from crystal field studies [127, 128, 145]. Their resulting g-tensor components all imply
local XY anisotropy.

Yan et al. determined the expected classical ground state phases for pyrochlore oxides
with anisotropic exchange interactions [146]. Fig. 4.6 shows the classical ground state
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Table 4.1.: Exchange parameter of the effective pseudospin-1/2 Hamiltonian in Eq. (4.6) esti-
mated from experiments on Yb2Ti2O7 by Ross et al. [103], Robert et al. [131], and Thompson
et al. [144].

Ross et al. Robert et al. Thompson et al.

Jzz (meV) 0.17(4) 0.07 0.026(3)
J± (meV) 0.05(1) 0.085 0.074(2)
J±± (meV) 0.05(1) 0.04 0.048(2)
Jz± (meV) −0.14(1) −0.15 −0.159(2)
J1 (meV) −0.09(3) −0.03 −0.028(4)
J2 (meV) −0.22(3) −0.32 −0.326(4)
J3 (meV) −0.29(2) −0.28 −0.272(4)
J4 (meV) 0.01(2) −0.02 0.049(2)
gzz 1.8 2.06 2.14(3)
gxy 4.32 4.09 4.17(2)

phase diagram in the exchange parameter space for vanishing Dzyaloshinskii-Moriya in-
teractions J4 = 0, as expected for XY pyrochlore oxides. The phase diagram shows
four different magnetic phases, with their spin configuration shown schematically on
two tetrahedra in Fig. 4.6. The phases are a non-collinear ferromagnetic phase (FM),
a Palmer-Chalker antiferromagnetic state (ψ4), a coplanar antiferromagnetic state (ψ2),
and a non-coplanar antiferromagnetic state (ψ3). The exchange parameters determined
by Ross et al., Robert et al., and Thompson et al., all suggest that the ground state of
Yb2Ti2O7 is a non-collinear ferromagnetic phase. All set of parameters place Yb2Ti2O7

in the vicinity to a coplanar antiferromagnetic phase. This suggests that already modest
changes to the exchange parameters may change the magnetic ground state [125].

To summarise: Simple mean-field calculations by Ross et al. [103], ground state minimi-
sation by Wong et al. [147], sophisticated gauge mean-field theory by Savary and Balents
[117, 119], a thermodynamic properties study by Hayre et al. [121], and neutron scat-
tering studies by Robert et al. [131] and Thompson et al. [144], all predict conventional
long-range ferrimagnetic order. In this ferrimagnetic state, the spins are aligned along one
of the six 〈100〉 cubic directions, but slightly splayed away from a perfect alignment. This
compares with the magnetic properties of Yb2Sn2O7, another quantum spin-ice candidate
[148]. On the basis of these calculations, Yb2Ti2O7 is predicted to be in a semi-classical
splayed ferromagnetic (s-FM) state, and might be either very close to long-range anti-
ferromagnetic order [130, 131, 144], or a quantum spin-liquid phase [135, 144, 149]. The
close proximity of Yb2Ti2O7 to these different phases arises from dominant quantum ex-
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Figure 4.6.: Classical ground state phase diagram of pyrochlore oxides with anisotropic exchange.
The phase diagram is shown in exchange parameter space of the nearest-neighbour exchange
Hamiltonian in Eq. (4.6) in the limit of vanishing Dzyaloshinskii-Moriya interactions J4 = 0. In
the vicinity of the origin, four long-ranged ordered phases emerge. A non-collinear ferromagnetic
phase (FM), a Palmer-Chalker antiferromagnetic state (ψ4), a coplanar antiferromagnetic state
(ψ2), and a non-coplanar antiferromagnetic state (ψ3). The spin configurations of these phases
are depicted on two tetrahedra. Red, green, and blue markers correspond to the exchange
parameters for Yb2Ti2O7 found by Ross et al. [103], Robert et al. [131], and Thompson et al.
[144], respectively. The axes coordinates are linear combinations of the couplings in Eq. (4.6),
cf. Eq. (4.7). Figure taken from Ref. [125, 146].

change terms found by Thompson et al. [144]. Further, quantum fluctuations reflecting
the competition between different phases identify Yb2Ti2O7 as a candidate par excellence
for a quantum spin-liquid (QSL) [103].

An unresolved issue in Yb2Ti2O7 concerns its sensitivity to disorder, such as Yb3+

stuffing on Ti4+ sites [133]. As the observed amount of disorder and strength exceeds
a critical value, the resulting random frustration would be expected to drive the system
first to form a semi-classical spin-glass. This was not reported so far [37].

The objective of the work reported in this thesis was to better understand the nature of
the ground state of Yb2Ti2O7. To advance the understanding, the temperature and field
dependence of the magnetisation was measured at millikelvin temperatures. Measure-
ments were carried out on stoichiometric single crystals, grown by the travelling solvent
floating zone technique by Arpino et al. [126], and carefully polished into a spherical
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shape. It was confirmed that the ground state is of ferrimagnetic nature, with spins
slightly splayed away from one of the six 〈100〉 cubic directions. Further, differences for
applied fields along the three main symmetry directions, i.e. 〈111〉, 〈110〉, and 〈100〉, were
determined. A theoretical model was proposed by Tchernyshyov and collaborators based
on the Potts model [150–154]. The model allows to describe the low temperature magneti-
sation data for the three main symmetry directions on the basis of a cubic ferromagnet
with six easy 〈100〉 directions.

4.2. The Potts Model of Cubic Ferromagnets

In 1952, Potts suggested a statistical mechanical model to describe the interactions of
spins on a crystalline lattice [150]. Thereby, a spin can be in one of q states. The Potts
model may be described by a Hamiltonian of the form

Hc = Jc
∑
i,j

cos (θsi
− θsj

), (4.8)

with the discrete angular positions θn = 2πn
q

of the spins on a circle with n = 1, ..., q.
This is also known as the clock model, a two-dimensional planar model. In the limit
q → ∞ the Potts model equals the XY model, where spins choose any state on the easy
plane. The standard Potts model is written as [150, 155]

Hp = −Jp
∑
i,j

δ(si, sj), (4.9)

where δ(si, sj) is the Kronecker delta. For q = 2, Eq. (4.9) describes the Ising model with
Jp = −2Jc and, therefore, the Potts model can be regarded a generalisation of the Ising
model. For q = 3 the Potts model is equivalent to the three-state vector Potts model
with Jp = −3

2Jc.
Applying an external magnetic field alters the standard Potts Hamiltonian to

Hh =
∑
i,j

Jijδ(si, sj)− β−1∑
i

hisi, (4.10)

where h is an external magnetic field and β = 1
kBT

the inverse temperature [150].
In theoretical studies by Baxter [156], and Straley and Fisher [157], the two-dimensional

(q ≤ 4)-Potts model exhibits a continuous phase transition in zero field. Landau theory,
however, predicts a discontinuous phase transition for the q = 3 Potts model [151]. On
the other hand, a first-order nature of the phase transition in the theoretical model was
confirmed by renormalisation-group calculations and Monte Carlo simulations [158–160].
In 1976, Mukamel et al. addressed the question of the order of the phase transition in
the Potts model by studying the phase diagram of a cubic ferromagnet [151].
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A ferromagnet with cubic anisotropy and the three easy axes [100], [010] and [001]
in a magnetic field along [111] realise the three-dimensional (q = 3)-Potts model [151].
Fig. 4.7(a) shows the schematic magnetic phase diagram of a cubic ferromagnet at a fixed
temperature below TC within the (q = 3)-Potts model. The model was calculated in
accordance with mean-field and Landau theories, and was shown to be equivalent to the
(q = 3)-Potts model [151]. A planar cut through the phase diagram, together with the
corresponding magnetisation along the three main symmetry directions, i.e. 〈111〉, 〈110〉,
and 〈100〉, is shown in Fig. 4.7(b). The magnetisation was calculated with mean-field
theory.

(a) (b)

(i)

(ii)

[11
1]

[110]

Figure 4.7.: Phase diagram and field dependence of the magnetisation in a cubic ferromagnet.
(a) H = (Hx, Hy, Hz) space of the schematic phase diagram. Bold lines denote magnetic triple
points, along 〈111〉. Dashed lines are along 〈110〉. The twelve planes are of first-order, and must
terminate in critical edges of Ising character, denoted by thin lines. The tricritical points, T1−3,
are connected by a bold line to the quadruple points Q. Figure taken from Ref. [151]. (b) In (i), a
planar cut through the phase diagram from (a) is shown, where the critical points C and C0, the
tricritical point T1, and the quadruple point Q are shown. The bold line again represents a first-
order, and the thin line a second-order phase transition. In (ii), the corresponding magnetisation
for field along the three main symmetry directions is shown, with a first-order phase transition for
〈111〉 at Q, and a second-order phase transition for 〈110〉 at C0. Figure taken from Ref. [151].

In zero field, the cubic anisotropy selects six ground states with magnetisation along
the six equivalent easy directions ± x̂, ± ŷ, and ± ẑ. The fraction of these domains n± x̂,
n± ŷ, and n± ẑ add up to 1:

n+x̂ + n−x̂ + n+ŷ + n−ŷ + n+ẑ + n−ẑ = 1. (4.11)
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The average magnetisation is given by

M = M0 (n+x̂x̂− n−x̂x̂+ n+ŷŷ − n−ŷŷ + n+ẑ ẑ − n−ẑ ẑ, ) (4.12)

where M0 is the length of n in a single-domain state, where all these six states are equally
represented.

Applying a weak magnetic field H stabilises the easy direction closest to the direction
of the external field. Varying H || 〈111〉 yields a first-order phase transition with a jump
in magnetisation [151]. Field along 〈110〉 shows a second-order transition, cf. Fig. 4.7(b).

Tchernyshyov and collaborators at Johns Hopkins University in Baltimore worked out a
simple model to describe the behaviour of Yb2Ti2O7 at low temperatures below 0.2 K and
in weak magnetic fields below 0.1 T. The model assumes the above mentioned selection of
six ground states within the Potts model, whereas energy of domain walls are negligible.
The energy is a sum of the Zeeman energy EZ in an applied magnetic field H

EZ = −µ0

∫
V
M ·HdV (4.13)

= −µ0
4π
3 R3M ·H , (4.14)

and of the magnetostatic term EMS

EMS = 1
6µ0

∫
V
M 2dV (4.15)

= 4π
3 R3µ0M

2

6 , (4.16)

integrated over the volume of a spherical sample. One third of the magnetostatic energy
is stored in a uniform field H = −1

3M inside the sphere, and two thirds in the dipolar
field outside. The total energy is then given by

E = EZ + EMS

= −µ0
4π
3 R3M ·H + 4π

3 R3µ0M
2

6 . (4.17)

Both terms, EZ and EMS, are proportional to the volume of the sphere, which can be
divided out. The total energy may then be discussed in terms of energy density

U = −µ0H ·M + µ0M
2

6 . (4.18)

With Eq. (4.12), U in terms of domain fractions is given by

U = mu0M
2
0

6

[ (
nx̂ − n−x̂ −

3Hx

M0

)2
+
(
nŷ − n−ŷ −

3Hy

M0

)2
+
(
nẑ − n−ẑ −

3Hz

M0

)2 ]

−
(3µ0

2

)2 (
H2
x +H2

y +H2
z

)
(4.19)
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Minimising the energy in Eq. (4.19) with respect to the fractions gives
dU

d(nâ − n−â)
= µ0M

2
0

3

(
nâ − n−â −

3Ha

M0

)
!= 0

⇒ (nâ − n−â) = +3Ha

M0
(4.20)

with a = x, y, z and â = x̂, ŷ, ẑ. Therefore, for any direction of H ,

M = 3H . (4.21)

For high enough fields, the fractions reach saturation dependent on the field direction.
For field along [100]:

H = H (1, 0, 0)
nx̂ = 1 and n−x̂ = n+ŷ = n−ŷ = n+ẑ = n−ẑ = 0

the fractions reach saturation, according to Eq. (4.21), for an applied magnetic field of

H ≥ M0

3 . (4.22)

For field along [110]:

H = H

(
1√
2
,

1√
2
, 0
)

nx̂ = nŷ = 1
2 and n−x̂ = n−ŷ = n+ẑ = n−ẑ = 0

the fractions reach saturation for an applied magnetic field of

H ≥ M0

3
√

2
. (4.23)

For Field along [111]:

H = H

(
1√
3
,

1√
3
,

1√
3

)

nx̂ = nŷ = nẑ = 1
3 and n−x̂ = n−ŷ = n−ẑ = 0

the fractions reach saturation for an applied magnetic field of

H ≥ M0

3
√

3
. (4.24)

Hence, these saturation fields and spontaneous magnetisation for applied magnetic field
H along the three directions 〈100〉, 〈110〉, and 〈111〉 are in ratios

Hext,〈100〉 : Hext,〈110〉 = M0,〈100〉 : M0,〈110〉 = 1 : 1√
2

(4.25)

Hext,〈100〉 : Hext,〈111〉 = M0,〈100〉 : M0,〈111〉 = 1 : 1√
3
. (4.26)
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4.2.1. Experimental Challenges

The magnitude of the discontinuity in the order parameter varies depending on the system
and also on the field. In the framework of Landau theory, the discontinuity depends on
the magnitude of the cubic invariant. If the latter vanishes, the discontinuity becomes
continuous.

Mukamel et al. considered a ferromagnet with fourth-order anisotropy parameter, de-
termining the jump in magnetisation for field along 〈111〉 to be 32

3% of M0 at T = 0.
Further, their calculation yields that only a misalignment of up to 0.25° is acceptable in
order to observe the discontinuity at all. Both, detecting such a small discontinuity and
aligning the sample with such a high accuracy is very difficult to realise experimentally.
In rare-earth systems, however, sixth-order anisotropy has to be included. This quantita-
tively changes the phase diagram without violating the equivalence with the Potts model,
since the model is based upon symmetry considerations only [152].

Based on the theory by Mukamel et al., calculation on DyAl2 predicted a jump of more
than 25% at low temperatures [151, 152]. This led to one of the clearest experimental
realisation of the Potts model, showing the first-order phase transition in a 〈111〉 field
in DyAl2 [152]. Further, the alignment of the external field with respect to the sample
orientation is relaxed relative to the case with only fourth-order anisotropy [152]. Other
experimental realisations of the (q = 3)-Potts model can be found in further RAl2 inter-
metallic compounds, where the R=Pr, Tb, Dy [152, 161].

To sum up, there are four main challenges to observe the behaviour predicted by the
Potts model in real systems. (i) Detecting a very small discontinuity, which depends
on the sample. (ii) Accurately aligning the sample with respect to the external field.
(iii) Measuring the magnetisation at temperatures well below TC, i.e. in case of Yb2Ti2O7

TC ∼ 0.214 K [129]. (iv) Scanning the field dependence of the magnetisation with a very
high resolution, in order not to miss the tiniest features.

4.3. Experimental Set-up

The magnetisation of Yb2Ti2O7 was measured by means of vibrating coil magnetome-
try at millikelvin temperatures as described in Ch. 2. This sections presents the sample
preparation process in Sec. 4.3.1, and the definition of the protocols for the temperature
and field dependent measurements of the magnetisation in Sec. 4.3.2.
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4.3.1. Sample Preparation

A high quality single crystal Yb2Ti2O7 was grown by the travelling solvent floating zone
technique (TSFZ) by Arpino et al. The solvent was 30 wt% rutile TiO2 and 70 wt%
Yb2Ti2O7. The crystal is identical to a single crystal characterised, alongside a doped
series of Yb2+xTi2–xO7–δ polycrystalline samples, within the study of Arpino et al. [126].
The sample is of very high quality, indicated by its clear and colourless appearance.
Another sign for the very high quality is a stuffing of Ti on Yb site of only∼0.25 % to 0.5 %,
as determined by X-ray diffraction [162]. All magnetisation measurements were carried
out on a ∼4.7 mm diameter, ∼0.40 g sphere, which was ground from the stoichiometric
single crystal and polished into a spherical shape. Fig. 4.8(a) and (b) show the large
single crystal and the polished sphere, respectively. A spherical shape was chosen to
minimise inhomogeneities of the demagnetising fields, this way also permitting straight
forward computation of the internal field values. Further, for the spherical sample shape
used, any crystallographic orientation could be studied on the same sample and sample
geometry with respect to the applied magnetic field and the detection coils.

(a)

(b)
4.7mm

(c)

samplesample
holder

cold
finger

2
5
m
m

Figure 4.8.: Yb2Ti2O7 sample and sample holder for magnetisation measurements. (a) Trav-
elling solvent floating zone technique (solvent = 30 wt% rutile TiO2 and 70 wt% Yb2Ti2O7)
produces a large single crystal of Yb2Ti2O7 that is clear and colourless. Image taken from
Ref. [126]. (b) Spherical sample ground from the stoichiometric single crystal, and the oxygen-
free Cu sample holder, composed of two matching sections fitting accurately the size of the
sphere. (c) Sample holder mounted on a cold finger, which is then bolted into the Cu tail
attached to the mixing chamber of the dilution refrigerator.

The sphere was oriented using a Multiwire Laboratories real time X-ray Laue backscat-
tering camera system, MWL120, with an accuracy better than 0.2°. North Star Orien-
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tation software was used for indexing the obtained Laue reflection patterns. Fig. 4.9(a-c)
show typical Laue X-ray diffraction patterns obtained for the different orientations in
Yb2Ti2O7, together with the indexing calculated by the North Star Orientation software.
The diffraction patterns of a cubic lattice, as for Yb2Ti2O7, show for the 〈111〉 direc-
tion a three-fold symmetry, cf. Fig. 4.9(a), for the 〈110〉 direction a two-fold symmetry,
cf. Fig. 4.9(b), and for the 〈100〉 direction a four-fold symmetry, cf. Fig. 4.9(b). The sample
was oriented better than ∼0.2° for 〈111〉, ∼0.4° for 〈110〉, and ∼0.7° for 〈100〉, respectively.

After orientation, the sample was fixed with GE varnish inside the two matching sections
of the sample holder, which accurately fit the size of the sphere, see Fig. 4.8(b). The
oxygen-free Cu sample holder was then mounted on a cold finger which then was firmly
bolted into the Cu tail attached to the mixing chamber of the dilution refrigerator, as
shown in Fig. 4.8(c). This provided excellent thermal anchoring of the sample across
the entire surface of the sphere during all measurements, while keeping its position rigidly
fixed mechanically without exerting strain. The position of the sample holder in Fig. 4.8(c)
inside the dilution refrigerator can be seen in the enlarged inset of area (iii) in Fig. 2.4.

4.3.2. Temperature and Field Measurement Protocols

Prior to the work carried out as part of the present thesis, Yb2Ti2O7 was already known
to display strong hysteretic behaviour for temperatures below several hundred millikelvin.
Therefore, magnetisation data were recorded following well-defined field and temperature
histories.

Measurements were performed along the three main symmetry directions 〈111〉, 〈110〉,
and 〈100〉. Data were recorded at temperatures down to ∼0.022 K, and under magnetic
fields up to 5 T. The VCM operated at a low excitation frequency of 19 Hz, and a small ex-
citation amplitude of ∼0.5 mm. The sample temperature was measured with a calibrated
RuO2 sensor mounted next to the sample, and additionally monitored with a calibrated
RuO2 sensor attached to the mixing chamber in the zero-field region.

Three temperature versus field histories were used: (i) After cooling at zero magnetic
field starting at ∼1 K, the magnetic field was applied at base temperature and data col-
lected while heating monotonically at a rate between 5 mK min−1 and 10 mK min−1, de-
pending on the desired measurement. This is referred to as zero-field cooled / field heated
(zfc-fh). (ii) Data were recorded while cooling in the same unchanged applied magnetic
field starting at ∼1 K. This is referred to as field cooled (fc). (iii) Following initial cool
down in the applied magnetic field, data were recorded while heating monotonically at a
rate of 5 mK min−1 and 10 mK min−1, respectively, in the same unchanged magnetic field.
These data are referred to as field cooled / field heated (fc-fh).
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(a)
〈111〉

(b)
〈110〉

(c)
〈100〉

Figure 4.9.: X-ray Laue diffraction pattern and calculated diffraction pattern for Yb2Ti2O7 along
the three main symmetry directions. (a) Three-fold symmetry for the 〈111〉 direction oriented
better than ±0.2°. (b) Two-fold symmetry for the 〈110〉 direction oriented better than ±0.4°.
(c) Four-fold symmetry for the 〈100〉 direction oriented better than ±0.7°.

Similarly, the magnetic field dependence was determined according to one of the fol-
lowing three different protocols: (iv) After zero-field cooling, field sweeps were carried out
either from 0 → 1 T or 0 → 5 T. They are denoted (A1) and (A1’), respectively. (v) Field
sweeps starting at a high field, notably from 1 T→−1 T, are denoted (A2). (vi) Related
field sweeps from −1 T→ 1 T are denoted (A3).

For temperatures above 0.05 K, all data were recorded while sweeping the field con-
tinuously at 15 mT min−1, whereas measurements at the lowest temperatures accessible,
i.e. 0.022 K and 0.028 K, were carried out at sweep rates of 1 mT min−1 and 1.5 mT min−1,
respectively, to minimise eddy current heating by the Cu tail. High temperature field
sweeps, i.e. for temperatures ≥ 1.5 K, were measured continuously with a sweep rate of
30 mT min−1.

A more detailed list of the measurements performed can be found in App. A.1, Tab. A.1
and A.2 for field along the crystallographic 〈111〉 direction, Tab. A.3 and A.4 for field
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along the crystallographic 〈110〉 direction, and Tab. A.5 and A.6 for field along the crys-
tallographic 〈100〉 direction, respectively.

4.4. Experimental Results

In the following, the experimental results of the magnetisation measurements in Yb2Ti2O7

will be presented. The section will first report the orientation dependence of the magnetic
phase diagram of Yb2Ti2O7 in Sec. 4.4.1, before turning to the detailed measurements of
the temperature and field dependent magnetisation. The temperature dependence will
be presented in Sec. 4.4.2, followed by field dependent measurements in Sec. 4.4.3 and
Sec. 4.4.4. The section concludes with a comparison of the experimental data with a
theoretical model, cf. Sec. 4.4.5.

4.4.1. Phase Diagram

The temperature and field dependence of the magnetic phase diagram of Yb2Ti2O7 was
inferred from the magnetisation measurements discussed in detail in Sec. 4.4.2, Sec. 4.4.3,
and Sec. 4.4.4. Fig. 4.10 shows the magnetic phase diagram of Yb2Ti2O7 as a function
of temperature and internal magnetic field for fields along the three main symmetry
directions. For fields along 〈111〉, see Fig. 4.10(a), the high temperature state in zero field
is a paramagnet. Cooling the system leads to a first-order phase transition into a splayed
ferromagnetic state (s-FM) below TC ∼ 0.28 K. At a temperature of ∼0.1 K and zero
field, an irreversibility reminiscent of spin freezing is observed. Under small fields the spin
frozen state vanishes. A magnetic field initially causes the first-order phase boundary to
shift up in temperature, reaching a maximum temperature of ∼0.43 K at an internal field
of ∼0.23 T. The width of the temperature hysteresis at the tip of the nose is ∼0.06 K.
This hysteresis in the temperature dependence vanishes at a temperature of ∼0.24 K and
an internal field of ∼0.56 T. The absence of hysteresis, while still being within the splayed
ferromagnetic phase pocket, might indicate a change of order in the transition. At T = 0,
the phase diagram shows a field driven phase transition at ∼0.63 T. In high fields, above
the upper phase boundary, the system gradually polarises with spins along the applied
magnetic field.

The reentrant type of the phase diagram is also present for fields along 〈110〉, shown in
Fig. 4.10(b). In zero field, a first-order transition from a para- to a splayed ferromagnet
at ∼0.28 K is observed, and a spin frozen state emerges for temperatures below ∼0.1 K,
which is suppressed already for small applied fields. For field along 〈110〉, the splayed
ferromagnetic phase pocket is slightly distorted along the field axis and stretched along
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Figure 4.10.: Field orientation dependent magnetic phase diagram of Yb2Ti2O7. Fields are
applied along 〈111〉 (a), 〈110〉 (b), and 〈111〉 (c). Red markers denote the critical temperature
TC obtained from temperature sweeps, see Fig. 4.11(a,b), whereas the red shaded area indicates
the hysteresis upon heating versus cooling during temperature sweeps. The blue markers indicate
the critical field obtained from zero-field cooled field sweeps, see Fig. 4.11(c,d). The blue shaded
area shows the observed hysteresis in the field loops, see Fig. 4.17. The red line in zero field for
T ≤ Tsf indicate the spin frozen state.

the temperature axis as compared to 〈111〉. The tip of the nose is located at ∼0.54 K
∼0.3 T, with a width of ∼0.02 K. The hysteresis in the temperature scans closes at
a temperature of ∼0.38 K at an internal field of ∼0.51 T. A field driven transition is
observed at ∼0.57 T.

For fields along 〈100〉, cf. Fig. 4.10(c), a clear signature of the transition between splayed
ferromagnetic and field polarised state can not be discerned. In zero field, as for the other
directions, the system shows a first-order phase transition from a para- to a splayed fer-
romagnetic state at ∼0.28 K. Below a temperature of ∼0.1 K, spin freezing occurs, which
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is again suppressed in an applied magnetic field. The first-order transition is observed up
to an internal field of ∼0.07 T at ∼0.33 K, where the hysteresis is already very small with
a width of ∼0.02 K. At slightly higher fields, no transition into the splayed ferromagnetic
state is observed.

Fig. 4.11 shows on an example the definition of the transition temperatures and fields,
respectively. Fig. 4.11(a) and (b) show the magnetisation as a function of temperature for
an applied field of 0.01 T along 〈111〉, where the important features in the temperature
sweeps are marked. The inflection points of the field cooled and field heated data are given
by T+

C and T−C , respectively. Their mean value was defined as the transition temperature
TC. The transition temperature TC was determined as long as the temperature scan
showed a hysteresis between the field cooled and field heated measurements. Further, the
temperature in the zero-field cooled branch below which the magnetisation is changing
its slope, indicating spin freezing, Tsf , is shown. In Fig. 4.11(c) and (d) the magnetisation
as function of internal magnetic field and its numerical derivative are shown, where the
kink/jump HC is defined. These feature were tracked in all experimental data throughout
this section, cf. Sec. 4.4.2-4.4.4.

4.4.2. Temperature Dependence

The temperature dependence of the magnetisation in Yb2Ti2O7 as a function of an applied
magnetic field along the three main symmetry directions 〈100〉, 〈110〉, and 〈111〉 was
measured following the measurement protocols described in Sec. 4.3.2 and in App. A.1,
Tab. A.1, A.3 and A.5.

Fig. 4.12 shows the magnetisation as a function of temperature for different cooling
histories and crystallographic directions. For field along 〈111〉, cf. Fig. 4.12(A1 to A5),
data were recorded for temperatures between 0.05 K and 0.9 K and magnetic fields up to
0.9 T, cf. App. A.2, Fig. A.1. For small applied magnetic fields, i.e. 0.01 T, starting at high
temperatures, the magnetisation increases monotonically with decreasing temperature.
Further cooling reveals a strongly hysteretic transition at TC ∼ 0.28 K. The hysteresis
in the temperature sweeps suggests a first-order phase transition into a ferromagnetic
state, as previously reported in the literature [135, 163]. The transition is accompanied
by a jump in the magnetisation. Just below the transition, at ∼0.25 K, the zero-field
cooled and field cooled magnetisation differ. Whereas the latter increases with decreasing
temperature, the zero-field cooled branch decreases. A clear change of slope of the zero-
field cooled branch is observed for temperatures below ∼0.1 K. Such a behaviour is often
attributed to a freezing of domains. In larger magnetic fields, these differences are strongly
reduced, becoming fully suppressed for fields greater than 0.05 T.
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Figure 4.11.: Definition of the transition temperatures and fields in the temperature and field
dependence of the magnetisation as illustrated by means of typical data. (a,b) Magnetisation
as a function of temperature for an applied field of 0.01 T along 〈111〉. (a) Temperature scan
from 0.05 K to 0.9 K. (b) Splitting of the zero-field cooled and field cooled branches for low
temperatures, and spin freezing feature below 0.1 K. (c) Magnetisation as a function of internal
magnetic field along 〈111〉. (d) Susceptibility dMdH−1 calculated from the magnetisation data.

Further increasing the field initially causes TC to increase, reaching a maximum tem-
perature of ∼0.43 K at an internal field of ∼0.23 T when demagnetisation effects are
corrected. At even higher fields, the transition is suppressed again and finally vanishes
for fields greater than ∼0.6 T. The jump in the magnetisation, found in small fields, at
first displays rounding and eventually becomes a kink for higher fields. Here the transi-
tion reaches the highest temperature before decreasing again. After this point, the kink
becomes a peak and the magnetisation below the transition temperature is slightly lower
than before. The transition eventually vanishes at ∼0.6 T. In fields higher than 0.6 T, the
magnetisation increases monotonically with decreasing temperature. The slope remains
finite, down to the lowest temperatures investigated.

For fields along 〈110〉, shown in Fig. 4.12(B1 to B5), data were recorded between 0.05 K
and 0.9 K for fields up to 0.8 T, cf. App. A.2, Fig. A.2. Cooling down from high temper-
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Figure 4.12.: Temperature dependence of the magnetisation of Yb2Ti2O7 in applied magnetic
fields. (A1-A5) Field along 〈111〉. (B1-B5) Field along 〈110〉. (B1-B5) Field along 〈100〉. In
vanishingly small fields, a distinct difference between data recorded under zero-field cooling and
field cooling emerges below ∼0.25 K. For higher fields, the zero-field cooled and field cooled
data are identical. The transition temperature TC is defined as the mean value of the inflection
points of the field cooled and field heated data. The data show a similar behaviour, but on a
different temperature and field scale, for fields along 〈111〉 and 〈110〉. For field along 〈100〉, the
system behaves different as compared to the other field directions.
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atures shows the first-order transition into a ferromagnetic state. The zero-field cooled
branch also shows a spin freezing below ∼0.1 K. Under increasing field the transition
shifts up in temperature, reaching a maximum value of ∼0.54 K at an internal field of
∼0.3 T before decreasing again. The transition vanishes for fields exceeding ∼0.57 T.
Even though the field dependence of the transition is reminiscent of that observed for
〈111〉, it does not develop a significant peak for higher fields. Also the kink is not as
pronounced, and the hysteresis is slightly smaller. In high field, the magnetisation first
grows monotonically and reaches saturation for temperatures below ∼0.25 K.

In Fig. 4.12(C1 to C5), the magnetisation as function of temperature for fields along
the 〈100〉 direction is shown. Data were recorded between 0.05 K and 0.9 K and fields
up to 0.6 T, cf. App. A.2, Fig. A.3. At low fields, the temperature dependence of the
magnetisation compares with the other directions, exhibiting a jump at∼0.28 K. Applying
higher fields lead to a different behaviour entirely. In low fields, the zero-field cooled and
field cooled branches show again a splitting below ∼0.25 K, with a reduction characteristic
of spin freezing in the zero-field cooled branch below ∼0.1 K. The splitting persists up to
∼0.05 T before disappearing. The jump in the magnetisation displays a rounding with a
small hysteresis already at ∼0.07 T, without developing a kink. The hysteresis entirely
disappears above ∼0.15 T, showing no signs of the reduction at larger fields as observed
for 〈111〉 and 〈110〉. In high fields, the magnetisation grows monotonically for decreasing
temperature, and saturates for temperatures below ∼0.5 K.

Comparing the three field directions, the qualitative shape of the curves is the same for
all three directions at small fields, showing a strongly hysteretic transition at ∼0.28 K.
For field along 〈100〉, the hysteresis vanishes below ∼0.15 T, and the system enters a field
polarised state already at small fields. The temperature dependent magnetisation behaves
similarly for the other two directions up to ∼0.4 T, where the curves develop a peak with
a considerable hysteresis observed for field along 〈111〉. Below the peak the magnetisation
drops to a constant value. This feature is less strongly observed for field along 〈110〉, and
not observed for field along 〈100〉. Further, for 〈111〉 the system fully polarises at slightly
larger fields as compared to 〈110〉, i.e.> 0.63 T for fields along 〈111〉 and > 0.57 T for fields
along 〈110〉.

4.4.3. Field Dependence after Zero-Field Cooling

The magnetic field dependence of the magnetisation in Yb2Ti2O7 for field along the three
main symmetry directions was measured at various temperatures according to the protocol
described in Sec. 4.3.2 and in App. A.1, Tab. A.2, A.4 and A.6.
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Figure 4.13.: Magnetisation dependence of Yb2Ti2O7 for field along 〈111〉. (a) Magnetisation
as a function of internal magnetic field after zero-field cooling and correction of demagnetising
fields. The magnetisation has a kink/jump that decreases in field with increasing temperature
until it disappears at high temperatures. The inset shows a close-up of the region where the
kink/jump appears. (b) Susceptibility dMdH−1 calculated from the magnetisation data. A
discontinuity in the field driven transition is observed. (c) Spontaneous magnetic moment M0

as a function of temperature. The spontaneous magnetisation is temperature independent and
vanishes discontinuously above the same transition temperature TC observed in the temperature
dependence of the magnetisation. The transition temperature in the limit of very small fields is
marked in red, with the red shaded area representing the difference of the transition temperature
upon heating and cooling.

Besides the magnetisation measurements at low temperatures using the vibrating coil
magnetometer, measurements between 3 K and 50 K for fields up to 9 T were performed
in a standard Oxford instruments vibrating sample magnetometer. At high temperatures,
Yb2Ti2O7 shows typical paramagnetic behaviour in applied magnetic field, that will not
be shown and discussed in detail.

Fig. 4.13(a,b) shows the field dependence of the magnetisation and its calculated deriva-
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tive, i.e. the magnetic susceptibility dMdH−1, for temperatures between 0.028 K and 0.9 K
and field along 〈111〉. The data shown were recorded after zero-field cooling. Following
correction of demagnetising fields, data is plotted against internal magnetic field Bint.
Apart from shifting characteristic features in the magnetisation towards lower fields, de-
magnetisation effects do not affect the conclusions presented in the following. At low tem-
peratures, below the first-order phase transition observed in the temperature dependence,
a temperature independent spontaneous magnetic moment is observed that vanishes for
temperatures above the transition temperature as shown in Fig. 4.13(c). This supports
the formation of a ferromagnetic state. The spontaneous magnetisation was obtained by
extrapolating the low field behaviour of the zero-field cooled magnetisation data linearly
to zero field. The red line represents the transition temperature determined by the tem-
perature dependence of the magnetisation at vanishingly small field, and the red shaded
area indicates the difference in the transition temperature upon heating versus cooling.
The initial jump in magnetisation reaches a value of M0 ∼ 0.68µBYb−1. A discussion
about the strength of the spontaneous magnetic moment as a function of field direction
will be presented at the end of this section, together with a comparison with theoretical
predictions.

After the initial jump, the magnetisation increases monotonically with increasing field.
For fields between ∼0.25 T and ∼0.45 T, a cross-over between the different temperatures
is observed. This cross-over is reversed after the magnetisation shows a kink that defines
HC. Above HC, the magnetisation increases monotonically with a smaller slope as for
fields below HC. The kink defining HC can be seen as a smeared out jump in the mag-
netisation, which is supported by regarding the calculated magnetic susceptibility shown
in Fig. 4.13(b). This discontinuity suggests a first-order transition at ∼0.63 T for the low-
est temperature. For increasing temperature, this phase transition shifts towards smaller
fields, before it vanishes for temperatures above 0.35 K. This field driven phase transition
is still present for temperatures above the transition temperature found in the tempera-
ture dependence, which is consistent with the initial increase in the ordering temperature
under applied fields. For temperatures above TC, no spontaneous magnetic moment is
observed in the field dependence. At highest temperatures, the magnetisation asymp-
totically approaches the saturation magnetisation for increasing fields, without any field
driven phase transition.

Shown in Fig. 4.14(a,b) is the field dependence of the magnetisation and the magnetic
susceptibility for temperatures between 0.090 K and 0.6 K, and field along 〈110〉. In con-
trast to the measurements for field along 〈111〉 in Fig. 4.13, data for field along 〈110〉 in
Fig. 4.14 were recorded without zero-field cooling, after finding no significant differences
between data recorded with and without zero-field cooling when swept in the same direc-
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tion. The data is plotted against internal magnetic field. The field dependence compares
qualitatively with that observed for 〈111〉, showing a spontaneous magnetic moment for
temperatures below the transition temperature TC as inferred from the temperature de-
pendence of the magnetisation. The spontaneous moment M0 as function of temperature,
shown in Fig. 4.14(c), is with M0 ∼ 0.83µBYb−1 slightly larger than M0 observed for
〈111〉.

The magnetisation increases monotonically with increasing field, and shows a kink that
defines HC. In contrast to the magnetisation for fields along 〈111〉, the kink does not
show a discontinuity in the magnetisation, as can be seen in the calculated magnetic
susceptibility shown in Fig. 4.14(b).

For fields along 〈100〉 the system behaves differently compared to the other field direc-
tions, i.e. 〈111〉 and 〈110〉, consistent with the temperature dependence presented above.
Fig. 4.15(a,b) shows the field dependence of the magnetisation and its calculated mag-
netic susceptibility for temperatures between 0.065 K and 0.9 K. Data were recorded after
zero-field cooling and is plotted as a function of internal magnetic field. At low temper-
atures, below TC inferred from the temperature dependence, the magnetisation jumps to
a spontaneous magnetic moment of M0 ∼ 1.20µBYb−1. This is significantly larger than
the values observed for fields along 〈111〉 and 〈110〉. The spontaneous moment M0 as
function of temperature is shown in Fig. 4.15(c). For increasing fields, the magnetisation
is approaching its saturation asymptotically, without a field driven phase transition.

Fig. 4.16(a) compares the field dependence of the magnetisation and the calculated
susceptibility for applied fields up to 5 T along 〈111〉, 〈110〉, and 〈100〉, respectively. Fol-
lowing the change of slope for field along 〈111〉 and 〈110〉, respectively, the magnetisation
reaches the same value and has the same slope as for field along 〈100〉. This suggests
that at these points, for field along 〈111〉 and 〈110〉, respectively, the system enters the
same state as for field along 〈100〉. Beyond the change of slope, the magnetisation shows
no further features. For field along 〈100〉, no field driven feature can be seen, which is
also supported by the calculated susceptibility of the data. At an applied field of 5 T, the
magnetisation is not yet saturated.

Magnetisation measurements at 3 K for applied fields up 9 T using a vibrating sample
magnetometer along the three main symmetry directions are shown in Fig. 4.16(b). The
magnetisation for temperatures at and above 3 K is identical for the three main symmetry
directions. At 9 T, the magnetisation has reached a value of ∼1.75µBYb−1, but still shows
a very small, but finite, slope. This suggests, that the system is almost saturated at
∼1.75µBYb−1, which is in excellent agreement with Lhotel et al. for compacted powder
of Yb2Ti2O7 in fields up to 7 T [137].

For any field direction, the magnetisation increases asymptotically towards saturation,
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Figure 4.14.: Magnetisation dependence of Yb2Ti2O7 for field along 〈110〉. (a) Magnetisation
as a function of internal magnetic field after correction of demagnetising fields. The magneti-
sation has a kink that decreases in field with increasing temperature until it disappears at high
temperatures. The inset shows a close-up of the region where the kink appears. (b) Susceptibil-
ity dMdH−1 calculated from the magnetisation data. In contrast to field along 〈111〉, the field
driven transition shows no discontinuity. (c) Spontaneous magnetic moment M0 as a function of
temperature. The spontaneous magnetisation is temperature independent and vanishes discon-
tinuously above the same transition temperature TC observed in the temperature dependence of
the magnetisation. The transition temperature in the limit of very small fields is marked in red,
with the red shaded area representing the difference of the transition temperature upon heating
and cooling.

and very high fields are required to reach saturation. This is a characteristic signature
of systems with strong anisotropic interactions, which do not have rotational symmetry
around the field axis. In this case, zero-point quantum fluctuations are present at all
fields, reducing the magnetisation compared to the fully possible value, and the field only
gradually polarises the system [144, 164].

A significant difference between the three field directions may be seen in the sponta-
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Figure 4.15.: Magnetisation dependence of Yb2Ti2O7 for field along 〈100〉. (a) Magnetisation
as a function of internal magnetic field after zero-field cooling and correction for demagnetising
fields. (b) Susceptibility dMdH−1 calculated from the magnetisation data. (c) Spontaneous
magnetic moment M0 as a function of temperature. The spontaneous magnetisation is tem-
perature independent and vanishes discontinuously above the same transition temperature TC

observed in the temperature dependence of the magnetisation. The transition temperature in
the limit of very small fields is marked in red, with the red shaded area representing the difference
of the transition temperature upon heating and cooling.

neous magnetisation. The spontaneous magnetic moment increases when going from the
〈111〉 via 〈110〉 to the 〈100〉 direction. Only at higher temperatures, i.e. above 3 K, the
magnetisation as a function of internal field is essentially isotropic. A more detailed study
of the spontaneous magnetisation including comparison with theory will be presented in
Sec. 4.4.5.

The susceptibility calculated from the magnetisation data reveals differences in the field
driven phase transition between field along 〈111〉 and 〈110〉. For field along 〈111〉, the
magnetisation shows a smeared out jump, while for field along 〈110〉, the magnetisation
displays a kink, rather than a jump. At 0.25 K, just below the phase transition found in
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Figure 4.16.: Comparison of the magnetisation as a function of internal magnetic field of
Yb2Ti2O7 along 〈111〉, 〈110〉, and 〈100〉. (a) Data were recorded at 0.1 K after zero-field
cooling for applied fields up to 5 T. Data were featureless for field along 〈100〉. For fields along
〈111〉 and 〈110〉, data for fields above the change of slope are featureless and the magnetisation
reaches the same value and slope as for field along 〈100〉. (b) Magnetisation measurements
recorded with a vibrating sample magnetometer at 3 K as a function of field up to 9 T along
〈111〉, 〈110〉, and 〈100〉, respectively. All three magnetisation curves are essentially identical.
At 9 T the magnetisation is nearly saturated at ∼1.75µBYb−1.

the temperature dependence of the magnetisation, the initial jump in the magnetisation
at the start of the sweep is smeared out for field along 〈111〉, while it is unchanged sharp
for the other two field directions. At 0.3 K, the initial increase in magnetisation is no
longer vertical, i.e. no spontaneous magnetic moment is observed, for any direction.

4.4.4. Magnetic Field Dependence of Hysteresis Loops

The magnetic field dependence of hysteresis loops was measured according to the protocol
described in Sec. 4.3.2. While Sec. 4.4.3 focused on the zero-field cooled field dependence,
hysteresis loops of the magnetisation for different temperatures will be presented in the
following. Data were recorded following the sequence 0 → +1 T → −1 T → +1 T.
Zero-field cooled branches following the sequence +1 T → −1 T → +1 T are not shown.

Fig. 4.17(A1, B1, C1) show the field dependence of the magnetisation for different
temperatures along 〈111〉, 〈110〉, and 〈100〉, respectively. Data are shown as a function
of internal magnetic field, after correcting the effects of demagnetising fields. As the
magnetic field dependence for fields along all three main symmetry directions is point
symmetric with respect to the B = 0, only the first quadrant of the hysteresis loop
is shown. The susceptibility calculated from the measured magnetisation are plotted in
Fig. 4.17(A2, B2, C2). For better visibility, data are shifted vertically by a constant.

The field driven feature for field along 〈111〉 and 〈110〉, respectively, shows the same
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Figure 4.17.: First quadrant of the hysteresis loops for field along the three main symmetry
directions in Yb2Ti2O7. Field dependence of the magnetisation as function of internal magnetic
field for field along 〈111〉 (A1), 〈110〉 (B1), and 〈100〉 (C1). The numerical derivative of the
experimental data are shown in panels A2, B2, and C2. The curves are shifted with respect
to each other to better illustrate the hysteretic behaviour. The coloured arrows indicate the
direction of the field sweep, i.e. increasing and decreasing field sweeps. As an example, the
measurement at 0.35 K shows where the transition field for increasing and decreasing sweeps
were taken.
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temperature dependence as for the zero-field cooled magnetisation. Namely, for field
along 〈111〉, the feature shifts to smaller fields for increasing temperature, and eventually
vanishes.

For field along 〈111〉, the discontinuity in the magnetisation shows hysteretic behaviour.
For field sweeps up to ±1 T, the phase transition is located at the same field as for the
zero-field cooling. Further, the qualitative field dependence of the magnetisation is the
same. In comparison, under decreasing field starting from ±1 T, the transition shifts
to lower fields with increasing temperature, and gets rounded and smeared out. The
hysteresis is most pronounced for the highest temperature at which the transition can
still be discerned. With decreasing temperatures the hysteresis is no longer visible below
∼0.1 K. This is counter-intuitive, as a first-order phase transition is expected to show
hysteretic behaviour even in the low temperature limit. Interestingly, the temperatures
where the hysteresis vanishes coincides with the spin freezing observed in the temperature
dependence of the magnetisation. In comparison, the field driven feature for field along
〈110〉 shows no hysteretic behaviour at all.

All three directions show a small hysteresis with respect to zero field. This hystere-
sis vanishes for temperatures below ∼0.1 K. For increasing temperature, the hysteresis
increases, and vanishes for temperatures where the system no longer enters the ferromag-
netic state.

4.4.5. Comparison with Theory

The experimental data may be described to some extent by the theoretical model intro-
duced in Sec. 4.2. Besides the general aspects of the Potts model summarised in Sec. 4.2,
the experimental challenges applying the Potts model to an experimental realisation are
discussed in Sec. 4.2.1. The model was found to describe the systems low field behaviour,
and also predicts the first-order phase transition for field along 〈111〉, as well as a higher-
order phase transition for field along 〈110〉. In the following, the experimental data are
compared to the theoretical predictions.

Assuming cubic anisotropy selecting six ground states within the Potts model. This
allows to predict the applied magnetic field necessary for reaching the spontaneous mag-
netisation M0, i.e. without correcting for demagnetising fields, as well as the strength of
M0, as a function of field direction, cf. Eq. (4.25-4.26). This saturation field was obtained
by the magnetisation data not corrected for demagnetising fields as shown in Fig. 4.18(a),
where the zero-field cooled magnetisation data taken at 0.1 K are plotted against applied
field. The saturation field was defined where the initial increase in magnetisation ends,
i.e. the spontaneous jump in magnetisation when correcting for demagnetising fields as
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shown in Fig. 4.18(b). The spontaneous magnetic moment was obtained as described in
Sec. 4.4.3, by extrapolating the low field behaviour of the zero-field cooled magnetisation
data linearly to zero field.
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Figure 4.18.: Magnetic field dependence of the magnetisation of Yb2Ti2O7 up to 0.25 T. Data
were recorded at 0.1 K after zero-field cooling as a function of applied magnetic field along
〈111〉, 〈110〉, and 〈100〉. (a) Magnetisation data before correcting for demagnetising fields.
The dashed lines mark the saturation fields, which are: 0.074 T for 〈100〉; 0.050 T for 〈110〉;
0.041 T for 〈111〉. (b) Magnetisation data after correction of demagnetisation effects. Adding
the demagnetising field to the applied field turns the initial linear rise in (a) to a vertical line.

Tab. 4.2 summarises the spontaneous magnetic moment and the applied field to reach
that moment, i.e. the saturation field, obtained from the experimental data, and compares
them to the theoretical predictions. Relative relations between the spontaneous moments
are found to be

M0,〈100〉 : M0,〈110〉 = 1 : 0.69,
M0,〈100〉 : M0,〈111〉 = 1 : 0.56,

and for the applied field necessary to reach the spontaneous moments

Hext,〈100〉 : Hext,〈110〉 = 1 : 0.68,
Hext,〈100〉 : Hext,〈111〉 = 1 : 0.55.

The ratios are in excellent agreement with the ratios predicted by the model given in
Eq. (4.25) and Eq. (4.26).

Fig. 4.19 compares the experimental data of the magnetisation of Yb2Ti2O7 recorded at
0.1 K, shown in panels (a) and (b), with mean-field calculations at T = 0 performed by
Tchernyshyov [154], shown in panels (c) and (d). The model considers a simple statistical
mechanical model based on a unit vector of magnetisation with fourth- and sixth-order
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Table 4.2.: Spontaneous magnetic moment and saturation field required to reach this moment
from the experimental data of Yb2Ti2O7 for field along 〈100〉, 〈110〉, and 〈111〉. The ra-
tios between the spontaneous moments and the corresponding saturation fields are in excellent
agreement with the predicted ratios in Eq. (4.25) and Eq. (4.26).

field M0 ratio µ0Hext ratio ratio
direction (µBYb–1) M0/M0,100 (T) Hext/Hext,100 theory
〈100〉 1.20 1 0.074 1 1
〈110〉 0.83 0.69 0.05 0.68 1/

√
2

〈111〉 0.68 0.56 0.041 0.55 1/
√

3

cubic anisotropies, as suggested by Cullen and Callen [165]. The approximation is based
on a coarse-grained description in which spins of each tetrahedron were represented by
a magnetic moment of fixed length. The length of these effective spins increases with
increasing field, as microscopic ionic moments turn toward the direction of the field. This
realises the (q = 3)-Potts model discussed in Sec. 4.2. Therefore, the model takes into
account a cubic anisotropy and the Zeeman field. M is treated as a unit vector and the
scale of H is arbitrary. The mean-field calculation shown in Fig. 4.19(c) uses parameters
obtained by Ross et al. [103].

Regarding the theoretical magnetisation, a field along the 〈100〉 polarises the system
featureless. Magnetising along 〈111〉 and 〈110〉 are accompanied by a distinct change of
slope. The field strength of this change of slope along 〈111〉 is lower than for 〈110〉. The
latter is not in agreement with the experimental data, were the upper critical field for
〈111〉 is higher than for 〈110〉. Even at higher fields, a finite susceptibility is observed
experimentally, characteristic of an increasing magnetisation. This is not accounted for
in the theoretical model, as additional fluctuations are not included. Overall, the trends
at low temperatures are described rather well by the model.

The discontinuous onset of saturation for field along 〈111〉 is in accord with Landau
theory of this transition, cf. Sec. 4.2. This also could explain the hysteresis observed in
magnetisation at high fields for temperatures above 0.1 K, but not the absence of the
hysteresis at lowest temperatures which, empirically, may be related to the spin freezing
process, cf. Fig. 4.4.4 A2.

The transition in the magnetisation for field along 〈110〉 is continuous in theory, again
consistent with Landau theory, and no hysteresis is expected at high fields. The data
show a kink in the magnetisation. This is consistent with theory, as well as the absence
of a hysteresis, cf. Fig. 4.4.4 B2.

Only the wrong sorting of the upper critical field for 〈111〉 and 〈110〉 is inconsistent with
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Figure 4.19.: Experimental and theoretical magnetisation of Yb2Ti2O7. (a) Magnetic field
dependence of the magnetisation of Yb2Ti2O7 at 0.1 K for field along 〈111〉, 〈110〉, and 〈100〉.
(b) Susceptibility dMdH−1 calculated from the magnetisation data. (c) Mean-field calculation
at T = 0, taking into account a cubic anisotropy and the Zeeman field. M is treated as a unit
vector and the scale of H is arbitrary. (d) Susceptibility calculated from the theoretical model
of the magnetisation shown in panel (c). Calculations in (c) and (d) are taken from Ref. [154].

the theoretical model. A recent study by Changlani discusses the influence of quantum
mechanical effects on the properties of Yb2Ti2O7 [166]. Changlani showed that frustrated
interactions and quantum effects significantly renormalise the critical field and, hence,
quantum calculations are necessary to describe the discrepancies between experiment and
classical theories [166]. Comparing the experimental data for upper critical field with
theoretical calculations including quantum effects [166, 167] gives for

field along 〈111〉 : HC, exp. ∼ 0.63 T and HC, theo. ∼ 0.58 T,
field along 〈110〉 : HC, exp. ∼ 0.57 T and HC, theo. ∼ 0.30 T.

The calculations show fields which are significantly lower than classical estimations, and
account for a higher critical field along 〈111〉 than along 〈110〉, which both is in good
agreement with the experimental data.

4.5. Conclusions and Outlook

The magnetic phase diagram of Yb2Ti2O7 for applied magnetic field shows an unusual field
dependence of a first-order phase boundary, wherein an applied field initially increases the
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ordering temperature, giving a reentrant type phase diagram. Thereby, the direction of
the applied field strongly influences the phase diagram.

In zero field, the phase transition from the paramagnet to the splayed ferromagnet was
found to be of first-order. A first-order nature is supported by the strong hysteresis found
in the temperature dependence of the magnetisation, and also by the fact that the phase
transition is observed in finite fields. If the phase transition would be of second-order
within Landau theory, applying a magnetic field would break time reversal symmetry.
Since applying a magnetic field also breaks time reversal symmetry, a second-order phase
transition would strictly only occur for zero field. If the transition is of first-order, however,
the transition would survive for finite fields, which is consistent with the experimental data
in the present work and Ref. [144].

For applying higher fields along 〈111〉 and 〈110〉, the phase boundary sweeps back until
it terminates at T = 0, indicating a field driven quantum phase transition. This was
confirmed in theoretical calculations, were the reorganisation of the energy levels was
found as evidence for a quantum phase transition [166, 167]. Between field along 〈111〉
and 〈110〉, the phase boundary is distorted along the field axis and stretched along the
temperature axis. Whereas for field along 〈100〉, the upper phase boundary is absent.

The ground state was found to be of ferromagnetic like order. Applying a magnetic
field spontaneously selects the direction of the ferromagnetic polarisation along one of
the six cubic axes. The canting of the magnetic moments is towards the local 3-fold
〈111〉 axes, forming the splayed ferromagnetic state. For field along 〈100〉 the paramagnet
and the ordered phase have the same symmetry without a phase transition needed [144],
consistent with the high spontaneous moment and the absence of a field driven phase
transition in the data.

For fields as high as observed during the present work, i.e. up to 5 T at low temperatures,
and up to 9 T at higher temperatures, the data show an increasing magnetisation. The
field gradually polarises the system with spins along the applied magnetic field, struggling
additional fluctuations.

Tab. 4.3 summarises the observed phase transitions in Yb2Ti2O7 for field along 〈111〉,
〈110〉, and 〈100〉. The schematics in Tab. 4.3 illustrate the spin arrangement on one
tetrahedron for the different phases found in Yb2Ti2O7.

Further, a simple classical model based on the Potts model for cubic ferromagnets de-
scribes the low temperature behaviour of Yb2Ti2O7 to some extent. The model predicts
the first-order field driven phase transition along 〈111〉, and a higher-order phase transi-
tion for field along 〈110〉, as well as the absence of a field driven phase transition along
〈100〉. However, the classical estimates of the field strength of these phase transitions are
inconsistent with the experimental data found in the present work. Frustrated interac-
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Table 4.3.: Phase transitions in Yb2Ti2O7 for field applied along 〈111〉, 〈110〉, and 〈100〉. The
type of transition from paramagnetic (PM) to splayed ferromagnetic (FM) state, from splayed
ferromagnetic to the field polarised (FP) state, and from paramagnetic to field polarised state
are shown.

Hext || PM → s-FM s-FM → FP PM → FP

〈111〉
1st-order 1st-order crossover

〈110〉
1st-order 2nd-order crossover

〈100〉
1st-order crossover crossover

tions and quantum effects significantly renormalise the critical field, making it necessary
to take quantum effects into account [166]. Including quantum calculations explains
the discrepancies between experimental data and classical calculations [166, 167]. These
renormalisation effects might also be responsible for the reentrant type phase diagram
[166].



5. Critical Spin Wave Dynamics in Iron

Iron is one of the archetypical ferromagnets, and allows to study the critical fluctuations
at a continuous phase transition. In a recent study the behaviour of the critical dynamics
at the transition from the para- to the ferromagnetic phase in iron was reported, em-
ploying the high resolution spin echo technique MIEZE [47]. Thereby, the focus was on
temperatures above the Curie temperature, i.e.T > TC, where the spin echo signal is
described by a single exponential decay, characteristic for critical fluctuations in the para-
magnetic regime. The study in the present work continues the previous investigation of
the critical phenomena at continuous phase transitions for temperatures below TC, in the
ferromagnetic phase in iron. When going below TC, inelastic scattering of spin waves in
the ferromagnetic phase drastically alters the excitation spectrum. The spin echo signal
takes the form of a cosine oscillation damped by an exponential decay, where the frequency
of the oscillation is a measure for the energy of the excitation. The MIEZE technique is
ideally suited for investigating magnetic phase transitions, as it allows measuring under
depolarising conditions with spin echo energy resolution. A position sensitive detector
further allows covering a large region in reciprocal space. Experiments were performed
at the beamline RESEDA at the MLZ using the longitudinal MIEZE option. The chap-
ter starts with a brief introduction into the critical dynamics of dipolar ferromagnets,
cf. Sec. 5.1. The introduction is followed by the experimental set-up in Sec. 5.2, and the
experimental results in Sec. 5.3. The chapter concludes with a summary of the present
study, and an outlook, cf. Sec. 5.4.

5.1. Critical Dynamics of Dipolar Ferromagnets

The foundation to study critical dynamics at continuous phase transitions are the concepts
of scaling laws [168], universality [168], and renormalisation [169]. In scaling theory, one
important quantity is the correlation length ξ of the order parameter, which diverges
at the transition. The inverse correlation length κ = 2π

ξ
was used by Halperin and

Hohenberg to define three regions for the critical behaviour of a system [170], as shown
in the (q, T )-diagram in Fig. 5.1: (i) the spin wave region: the ordered phase below the
Curie temperature and for q < κ; (ii) the transition region: for q > κ which extends

97
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to q = 0 at TC, as ξ diverges; (iii) the hydrodynamic region: the paramagnetic phase
above the Curie temperature and for q < κ. In each of these regions, different correlation
functions describe the behaviour of the system.
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Figure 5.1.: Schematic diagram describing the three regions for different critical phenomena
near the Curie temperature. (i) spin wave region: T < TC and q < κ; (ii) transition region:
q > κ; (iii) hydrodynamic region: T > TC and q < κ. Figure adapted from Ref. [170, 171].

(i). Spin Wave Region

At low temperatures T < TC, and for q < κ, the system is in the ferromagnetically ordered
spin wave region. In this region propagating spin wave modes are observed. Spin waves
in dipolar ferromagnets can be described by taking exchange and dipolar interactions into
account. In the absence of an external magnetic field, the classical Heisenberg ferromagnet
is described by the isotropic nearest-neighbour exchange Hamiltonian

Hexchange = −J
∑
〈ij〉
Si · Sj, (5.1)

with three components of the spin S, and the nearest-neighbour exchange constant J > 0
for ferromagnetic interactions. With dipolar interactions the Hamiltonian takes the form

H = Hexchange +Hdipolar. (5.2)

A full Hamiltonian including dipolar interactions was introduced within the spin wave
theory by Holstein and Primakoff [172], and summarised by Keffer [173]. From the Hamil-
tonian follows the spin wave energy

Esw(q) =
√
A2
q − |Bq|2, (5.3)
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where Aq describes exchange interactions and interactions between the local dipolar field
and the spin waves, and Bq contains further dipolar contributions. Including only nearest-
neighbour and next-nearest-neighbour interactions, and for small q, the exchange inter-
action part of Aq takes the isotropic form

Eexchange(q) = Dq2, (5.4)

where D is the spin wave stiffness. With the dipolar contributions, the spin wave energy
takes the form

Esw(q) =
√
Dq2(Dq2 + Edipolar), (5.5)

with the energy of the dipolar exchange

Edipolar = gµBµ0〈sin2 θq〉M(T ), (5.6)

the Landé factor g, the Bohr magneton µB, the magnetic field constant µ0, the angle
θq between q and the direction of the magnetisation, and the temperature dependent
magnetisation M(T ). The determination of the dipolar energy in iron is described in
App. B.3.2. From dynamical scaling theory follows the temperature dependence of the
spin wave stiffness D close to the critical point

D = D0

(
1− T

TC

)β
; β = 1

3 . (5.7)

Approaching TC from the ordered phase, the spin wave energy Esw and stiffness D de-
crease. Further, more and more spin waves are thermally excited, reducing the magneti-
sation M(T ), hence also the dipolar energy Edipolar.

The neutron scattering cross section for spin wave scattering was derived by Lowde
[174] from the cross section for magnetic scattering of unpolarised neutrons given in
Eq. (3.18). The delta function in the scattering function, cf. Eq. (3.19), links the energy
loss/gain of the neutron to the energy of the created/annihilated excitation, implying that
scattering only occurs at discrete energy transfers ∆E = ±~ω [174]. Following Sec. 3.3.1,
the scattering function for inelastic scattering of spin waves in the ferromagnetic regime
shows a double Lorentzian centred at finite energy transfer of the created/annihilated
excitation. This signal changes at TC. The scattering function for critical fluctuations
in the paramagnetic regime is described by a Lorentzian centred at zero energy transfer.
The scattering function is hence given by

S(q, ω) ∝


1

Γq

(
Γ2

q

(ω−ωq)2+Γ2
q

+ Γ2
q

(ω+ωq)2+Γ2
q

)
, for T < TC

1
Γq

(
Γ2

q

ω2+Γ2
q

)
, for T ≥ TC,

(5.8)
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with the energy E(q) = ~ωq and the width Γq of the excitation. The expected spin echo
signal, i.e. the intermediate scattering function S(q, τ) corresponding to the scattering
function S(q, ω), for inelastic scattering of spin waves is a cosine oscillation damped
by an exponential decay, where the frequency of the oscillation gives the energy of the
excitation. For quasielastic scattering of critical fluctuations in the paramagnetic regime,
the signal changes to a single exponential decay. The intermediate scattering function is
therefore given by

S(q, τ) ∝

exp{−Γqτ} cos (ωqτ), for T < TC

exp{−Γqτ}, for T ≥ TC.
(5.9)

With increasing temperature, the spin waves renormalise until the correlation length
ξ becomes infinite, which defines the critical point TC, and spin waves cease to exist.
Further, the linewidth of the spin waves increases upon approaching TC. The latter
makes a high energy resolution necessary, as otherwise close to TC the spin waves appear
as a single, quasielastic-like excitation.

(ii). Transition Region

At the critical point spin waves are no longer present, and the critical behaviour is de-
scribed by diffusive modes. Scaling theory predicts that the inverse lifetime of the critical
fluctuations is given by

Γ = Aqz, (5.10)

with a material specific constant A expressing the energy scale of the exchange interaction,
and the critical exponent z = 2.5.

(iii). Hydrodynamic Region

In the hydrodynamic region diffusive modes describe the critical fluctuations, and dynam-
ical scaling theory predicts that the inverse lifetime of these critical fluctuations is given
by

Γ = f(κ/q, qD/κ)Aqz, (5.11)

with the dynamical scaling function f(κ/q, qD/κ) and qD being the dipolar wave number,
the material specific constant A, and the critical exponent z = 2.5.
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In the hydrodynamic regime of the itinerant ferromagnet iron, systematic deviations
of the dynamic scaling function f(κ/q, qD/κ) from the expectation for isotropic critical
behaviour are observed [47]. To retain isotropic critical behaviour, a temperature depen-
dence of the dipolar wave number qD was introduced by Kindervater et al., allowing to
describe the hydrodynamic behaviour in iron within dynamical scaling theory. The de-
viation of the dipolar wave number from the literature value qD = 0.033 Å−1 due to the
temperature dependence may be understood as an additional damping of the transverse
magnetic fluctuations by spin-flip excitation of the conduction electrons [47].

The goal of the present work was to investigate the spin wave dynamics in the ferro-
magnetically ordered phase in iron. Thereby, the focus was on temperatures below and
close to TC, and small scattering vectors.

5.2. Experimental Set-up

Spin echo measurements were performed at RESEDA in the MIEZE mode, cf. Sec. 3.4.
The distance between the first and second NRSE coil was 1.875 m, the distance between
the second NRSE coil and the detector 3.700 m. With the sample as close to the primary
spectrometer arm as possible, the sample detector distance was 2.250 m. For a high
neutron flux and to cover the desired dynamic range, the wavelength was set to 6 Å with
a wavelength spread ∆λ/λ = 0.12. With this configuration, and frequency differences in
the resonant coils between ∼1 Hz and 600 kHz, a dynamic range from ∼6 · 10−6 ns to 2 ns
was accessible.

Measurements were performed between room temperature and ∼1125 K. The sample
was heated using a high temperature furnace, with a resistive niobium double cylinder
heating element. Temperature was controlled with a Eurotherm 2404 controller. The
furnace covers a temperature range between room temperature and ∼2200 K. The tem-
perature stability was about ∼0.05 K and no hysteresis effects were observed. Both was
verified by means of several temperature scans.

The sample used in the present study is a bcc iron single crystal of cylindrical shape
with a diameter of ∼9 mm and a length of ∼25 mm. A 〈110〉 axis is aligned approximately
10° off the cylinder axis. The bcc α-Fe structure is stable for temperatures up to ∼1180 K,
before undergoing a phase transition into the fcc γ-Fe. Therefore, temperatures above
1180 K must be avoided in order to preserve the bcc structure. The sample was mounted
vertically in the neutron beam, and a circular aperture with a diameter of 7 mm defined
the illuminated sample volume. This study uses the very same single crystal as previous
studies by Collins et al. in 1969 [171], Wicksted et al. in 1984 [175], and Kindervater
et al. in 2017 [47].
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5.3. Experimental Results

The following sections present the experimental results of the neutron scattering measure-
ments in iron. Sec. 5.3.1 discusses the temperature dependence of the critical scattering,
which was used to identify the Curie temperature. Further, temperature scans were used
to assess temperature stability and hysteresis effects due to sweeping the temperature.
The results of the spin echo measurements are presented in Sec. 5.3.2.

5.3.1. Temperature Dependence of the Critical Scattering

The temperature dependence of the small angle scattering was used to identify the Curie
temperature TC of iron, and to examine temperature stability and hysteresis effects. The
detector image was evaluated according to the masks shown in Fig. 5.2(a). The masks
define circular ring-segments centred at the direct beam with an opening of 60° and a
width of 5 pixels, hence describing regions of constant 2θ.

The temperature dependence of the critical scattering is shown in Fig. 5.3. Panel
Fig. 5.3(a) shows the critical small angle scattering, evaluated in the different q-regions.
In panel Fig. 5.3(b), the transmission through the sample is shown. A sharp, q indepen-
dent peak in the scattered intensity, and a sharp minimum in the transmission through
the sample at TC = 1045.15 K are the characteristic signatures of the Curie temperature.
The very narrow peak at TC suggests that there is no temperature gradient in the sample.
However, the observed Curie temperature has an offset of ∼2 K to the literature value
of 1043 K [89], that originates from a small temperature gradient between sample and
thermocouple. Temperature scans were performed first while heating and subsequently
during cooling the sample at the same rate, thereby, no hysteretic effects were observed.
The very pronounced suppression of the transmission at TC in Fig. 5.3(b) is a vivid exam-
ple of critical opalescence at a continuous phase transition, where critical fluctuations on
all time- and length-scales tremendously increase the scattering cross section, making the
sample almost opaque. A broadened peak at a temperature T ? < TC in the ferromagnetic
phase is observed. This feature shifts to lower temperatures with increasing scattering
vector, and may presumably be attributed to elastic small angle scattering from shrinking
ferromagnetic domains when approaching the Curie temperature [47]. A similar effect was
observed in EuO by Als-Nielsen et al. [176].

5.3.2. Quasi- and Inelastic Measurements

Measurements were performed in the SANS geometry with the direct beam in the lower
right corner of the CASCADE detector, as shown in Fig. 5.2(c) and (d). With a wavelength
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Figure 5.2.: Detector Mask used for evaluating the experimental data. (a) Masks used for the
evaluation of the elastic scattering, representing circular ring-segments around the direct beam
with an opening angle of 60° and a width of 5 pixels. Transmission through the direct beam
was evaluated in a mask centred at the direct beam with a radius of 4 pixels. (b) Pre-grouping
masks. The 128× 128 pixels of the detector are combined in regions of n× n pixels (black and
white squares). (c) Masks used for the evaluation of the MIEZE scans. The masks are segments
with a width of 2 pixels and a height of 20 pixels, centred at the direct beam, and starting at
the edge of the beam stop indicated by the grey hatched area. (d) Schematic of the set-up
during MIEZE scans, showing how the beam stop blocks the view on the grey hatched area on
the detector in (c).

of 6 Å, and taking into account the blocked view on the detector by the beam stop, this
configuration allows covering a q-range of:

horizontal : 0.018 Å−1
≤ q ≤ 0.075 Å−1

vertical : 0.021 Å−1
≤ q ≤ 0.078 Å−1

diagonal : 0.026 Å−1
≤ q ≤ 0.108 Å−1

.

Data were taken in the ferro- and paramagnetic regime, in the temperature range TC −
21 K ≤ T ≤ TC. The spin echo data reduction to extract the normalised intermediate scat-
tering function follows Sec. 3.3. Comparing data evaluation using different masks showed,
that choosing masks with a width of 2 pixels and a height of 20 pixels, i.e. approximately
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Figure 5.3.: Temperature dependence of the critical scattering around the Curie temperature
in iron. (a) Critical small angle scattering for different q-regions as function of temperature.
A sharp peak identifies the Curie temperature TC = 1045.15 K, marked by the dashed line.
(b) Transmission through the sample as function of temperature. The sharp minimum of the
transmission defines the Curie temperature, and is at the same temperature as the maximum of
the critical scattering in panel (a).
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the height of the illuminated sample at the detector, allows to evaluate very narrow q-
regions while simultaneously retaining high statistics in the region of interest. At low
spin echo times, as used in the present study, phase changes generally extend over large
spatial regions. Hence, the phase within one mask does not change, and pre-grouping
the detector pixels is not necessary. The procedure of pre-grouping the detector is de-
scribed in Sec. 3.3.4. A comparison between evaluating the data using a pre-grouping of
the detector pixels, as seen in Fig. 5.2(b), and without pre-grouping showed no significant
difference. Therefore, data were evaluated using the masks shown in Fig. 5.2(c), without
pre-grouping the detector. A previous study revealed that at small q the influence of
the dipolar interactions on the critical fluctuations above TC are strongest [47]. Due to
the geometry of the sample and the position of the beam stop, the smallest q-values can
be evaluated horizontally, cf. Fig. 5.2(c). Data from the iron sample were normalised to
the measurement of a standard graphite sample, using the very same sample environ-
ment, sample shape, and apertures. The process of normalisation is explained in detail
in Sec. 3.3.3.

Fig. 5.4 shows the normalised intermediate scattering functions for temperatures be-
tween TC − 21 K ≤ T ≤ TC for five selected q-values, 0.018 Å−1

≤ q ≤ 0.041 Å−1.
Statistics did not allow for reliable data treatment of higher q-values. Also due to statis-
tics, data taken at TC − 21 K were only analysed for up to ∼0.035 Å−1. The normalised
intermediate scattering functions of all other data sets discussed in this chapter are shown
in App. B.3.1, Fig. B.8-B.2. The experimental data were fitted by taking into account the
wavelength distribution f(λ) of the incoming neutron beam, the intensity measured at
the detector I(tD), and the scattering function of the scattering process S(q, ω), given
in Eq. (5.8). Since at high temperatures, where kBT � ~ω, the probabilities for neutron
energy gain and loss during the scattering event are equal, the detailed balance factor
could be neglected for measurements close to TC in iron. From now on S(q, ω) = S(q, E)
will be used, as the energy transfer during the scattering process ±~ω corresponds to the
energy of the excited/annihilated excitation ±E. A numerical integration over the wave-
length distribution and all possible energy transfers, ranging from −Eλ, i.e. the maximum
energy the incoming neutrons can lose during scattering, to infinity, gives the intermediate
scattering function describing the scattering process

S(q, τ) =
∫ λ0(1+∆λ/λ0)

λ0(1−∆λ/λ0)

∫ ∞
−E(λ)

f(λ)I(tD)S(q, E) dE dλ. (5.12)

The determination of the intermediate scattering function for spin waves in iron relies
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on the explicit calculation of the spin phase as discussed in Sec. 3.3.2. The triangular
wavelength distribution is described by

f(λ) =



2(λ−a)
(b−a)(λ0−a) , for a ≤ λ < λ0

2
b−a , for λ = λ0

2(b−λ)
(b−a)(b−λ0) , for λ0 < λ ≤ b

0, otherwise,

(5.13)

with the mean value of the incoming neutron beam λ0 = 6 Å and the width of the
wavelength distribution ∆λ/λ0 = 0.12 defining the lower boundary a = λ0(1−∆λ/λ0)
and the upper boundary b = λ0(1 + ∆λ/λ0). The fit to the data are shown as solid lines
in Fig. 5.4 and Fig. B.8-B.2. From the obtained fit results, the scattering function S(q, E)
was calculated, and plotted in Fig. 5.5.

For T < TC, in the ferromagnetic phase, well-defined spin waves are present, cf. Fig. 5.4(a-
f). Increasing the temperature, Fig. 5.4(a) to (f), the oscillation shifts to longer times,
i.e. the frequency of the oscillation, associated with the energy of the spin waves, decreases.
Regarding the intermediate scattering function at one temperature, the frequency of the
oscillation increases, for increasing scattering vector q. Hence, the energy of the spin
waves decreases for increasing temperature and for decreasing scattering vector.

When crossing the Curie temperature from the ferro- to the paramagnetic phase, as
can be seen in Fig. 5.4(f) to (g), the intermediate scattering function changes. In the
ferromagnetic phase, the signal is an exponentially damped oscillation, as expected for
inelastic scattering of spin waves, cf. Eq. (5.9). For temperatures T ≥ TC the intermediate
scattering function changes to a single exponential decay, typical for quasielastic scattering
at critical fluctuations.

However, as can be seen in Fig. 5.4(g), a weak inelastic signal is still observable at
TC. This becomes even more apparent when regarding the scattering function S(q, E)
in Fig. 5.5(g). This signal indicates propagating modes in the critical region close to the
critical point. As found in literature, Collins et al. were not able to observe this weak
signal of a double peak close to and at TC, due their instrumental resolution [171]. The
instrumental resolution for the measurements by Collins et al. was calculated from their
instrumental set-up given in Ref. [171] via the approach by Cooper and Nathans [177],
and is indicated as horizontal bars in Fig. 5.5. The existence of a double peak at TC

was also discussed in further literature. Theoretical work by Beeby and Hubbard [178],
and Lowde [179] discussed the existence of spin wave like excitations at TC. Görlitz
et al. [180] observed a crossover from a single Lorentzian to a double peak structure in
EuS when approaching TC from high temperatures. This crossover was only observed
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Figure 5.4.: Normalised intermediate scattering function as measured at TC, and in the fer-
romagnetic phase in iron. Data were recorded using neutrons with a mean wavelength of
λ = 6.0 Å. Data are shown for (a) TC − 21 K, (b) TC − 11 K, (c) TC − 4 K, (d) TC − 2 K, (e)
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horizontal bars indicate the highest energy resolution used by Collins et al. close to TC.
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after maximum entropy deconvolution of the experimental data obtained by Böni et al.
[181]. This double shape corresponds to the longitudinal paramagnetic spin fluctuations
predicted by mode-coupling theory [180, 182], and is not associated to spin waves.

Collins et al. discussed the possibility of a third peak in the spin wave region due to the
diffusive longitudinal component of the static susceptibility near the critical temperature
[171]. Such a peak would be centred at zero energy transfer, but was not observed during
their study. Fitting the data of the present work with a third peak did not improve χ2,
and showed no evidence for the existence of such a diffusive component. This is hardly
surprising as it is impossible to separate this longitudinal component from the transverse
component, i.e. spin waves, without polarisation analysis [176]. Experimental evidence
of the longitudinal and transverse spin fluctuations below TC was found with polarised
neutrons, e.g. in Ni [183], MnSi [184], and EuS [185].

(i). Spin Wave Energy and Spin Wave Stiffness

The spin wave energy Esw as function of the scattering vector q is shown in Fig. 5.6(a).
It was obtained by fitting the intermediate scattering function as described in the first
part of Sec. 5.3.2. The data quantitatively show the decrease of the spin wave energy with
increasing temperature and decreasing scattering vector.

The grey shaded area in Fig. 5.6(a) shows the region in (q, E) where the spectrometer
is not able to measure. This region is determined by all combinations of (q, E) where the
scattering triangle is not closed, that is where the momentum and energy transfer given in
Eq. (3.1) and Eq. (3.2), respectively, are not conserved. The boundary of the grey shaded
area is the maximum energy transfer that the spectrometer can reach with a wavelength
of the incoming neutrons of λ = 6 Å and a wavelength spread of ∆λ/λ = 0.12. The
determination of this limit is described in App. B.1. Data taken at TC− 21 K are entirely
beyond the limit of maximum energy transfer observable. Data taken at TC − 11 K are
partially in this limit. It should be noted that it can be possible to measure the observed
energies just beyond the limit, as the spectrometer used a finite wavelength spread. This
cross-over region is indicated by the grey hatched area in Fig. 5.6(a). Further, the cal-
culation for the maximum energy transfer does not take into account the instrumental
resolution, which will be discussed later on. Data points for TC − 21 K at higher energies
and wave vectors show a trend towards the boundary, while data taken at TC − 11 K en-
tirely lie in the hatched cross-over region. Therefore, data taken at these two temperatures
are fitted, but excluded from the following discussion of the spin wave stiffness.

The spin wave energy was fitted using Eq. (5.5), taking into account dipolar interactions,
and convolved with the instrumental momentum resolution of the spectrometer. The
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Figure 5.6.: Spin wave dispersion in iron at different temperatures. (a) Spin wave energy Esw

as function of scattering vector q. Data are corrected for direct beam offset. The solid lines
are fits to the data using Eq. (5.14). The grey shaded area gives the maximum energy transfer
described in App. B.1, taking into account the wavelength spread around λ = 6 Å. (b) Spin
wave stiffness D as function of temperature. The solid and dashed lines are fits to the data
using Eq. (5.7) with β = 0.37 and β = 0.33, respectively. The shaded and hatch-shaded areas
denote the 1σ standard deviation of the fit for β = 0.37 and β = 0.33, respectively. Data were
fitted only for T > TC − 11 K due to the maximum energy transfer shown in panel (a). The
blue data are taken from Ref. [171].

instrumental resolution was analytically derived by taking into account the two main
contributions to the resolution of a small angle neutron scattering instrument, following
the theoretical work by Pedersen et al. [186], and Hammouda and Mildner [187]: (i)
resolution due to a finite wavelength spread, and (ii) resolution due to finite collimation.
The derivation of the instrumental resolution function for RESEDA is given in App. B.2.

Finally, a direct beam offset was taken into account. The direct beam, defined by the
sample aperture, is absorbed by the beam stop as shown in Fig. 5.2(d). Therefore, it is
impossible to define the precise position where the direct beam would hit the detector,
making it necessary to include a direct beam offset q0 in the model.

The fit function is then given by

(Esw ∗R)(q − q0) =
∫
D
Esw(q′ − q0)R(q − q′ − q0, σq−q′−q0) dq′, (5.14)

with the spin wave energy Esw in Eq. (5.5), and the resolution function R in App. B.2,
Eq. (B.17). As expected, the offset of the direct beam was found to be small and temper-
ature independent with q̄0 ≈ 0.0046 Å−1. Data shown in Fig. 5.6(a) are corrected for this
offset.
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Regarding the model it becomes apparent that the spin wave energy at q = 0 is not
zero, as would be expected from theory. This is due to the convolution of the spin wave
energy with the instrumental resolution: at q = 0 the instrument measures contributions
from finite q. These contributions should be equal for energy gain and energy loss, hence
level out to E = 0. However, spin echo is unable to distinguish between energy gain and
energy loss, hence a finite instrumental resolution leads to a finite measured energy at
q = 0.

Fig. 5.6(b) shows the spin wave stiffness as a function of temperature, obtained from
fitting the spin wave energy in (a). Data from the present work (orange) are compared
to the temperature dependent spin wave stiffness in iron obtained by Collins et al. (blue)
[171]. A more detailed discussion of the spin wave data of Collins et al. is given in
App. B.3.3.

The data points in Fig. 5.6(b) were fitted with the power law in Eq. (5.7), using a fixed
parameter β = 0.33 (dashed lines) from theory. Since Collins et al. observed a deviation
from the theoretical critical exponent β = 0.33 to β = 0.37± 0.03, data were also fitted
using a fixed parameter β = 0.37 (solid lines). The orange hatch-shaded and shaded
areas denote the 1σ standard deviation of the fit due to the error for D for β = 0.33 and
β = 0.37, respectively. Tab. 5.1 summarises the obtained fit results, and compares them
with the results from Collins et al.

The power law behaviour for the spin wave stiffness in Eq. (5.7) describes the data
within 1σ standard deviation for temperatures above TC − 11 K for both β = 0.33 and
β = 0.37. Comparing the material specific spin wave stiffness D0 in Tab. 5.1, shows that
D0 found in the present work is significantly larger than reported by Collins et al.

Table 5.1.: Comparison of the spin wave stiffness given by Collins et al. (i), to the results
obtained by fitting their data with Eq. (5.7) (ii), and to the results of the present study (iii).
While the critical exponent β is within the margin of errors, the spin wave stiffness D0 differs
significantly.

(i) Collins et al. (ii) own fit of Collins data (iii) this work

β 0.37± 0.03 0.37 (fixed) 0.33 (fixed) 0.37 (fixed) 0.33 (fixed)
D0 (meVÅ2) 281± 10 328± 6 305± 5 603± 68 479± 53
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5.4. Conclusions and Outlook

The present study continued the investigation of continuous phase transitions, following
up on a previous study of the critical dynamics close to the transition temperature in the
hydrodynamic and transition region in iron [47]. The focus was on critical phenomena in
the transition and spin wave region in iron, especially focusing on the inelastic excitations
of spin waves. The elastic data in Sec. 5.3.1 show how the critical fluctuations on all time-
and length-scales increase upon approaching the Curie temperature, providing a textbook
example of critical opalescence at a continuous phase transition. The quasi- and inelastic
spin echo data discussed in Sec. 5.3.2 show the presence of spin waves in the ferromagnetic
phase.

The temperature and q dependence of the spin wave energy shows the expected be-
haviour: with increasing temperature, the energy of the spin waves decreases. The energy
of the spin waves increases with increasing q, when going from the centre to the boundary
of the Brillouin zone. There is a clear deviation from the classical Heisenberg ferromagnet,
where the spin wave energy depends quadratic on q. Due to the large magnetic moment
of iron, dipolar interactions were taken into account to describe the observed spin wave
energy. Eq. (5.5) is based on the theory by Holstein and Primakoff [172], and includes
dipolar interaction. This model for the spin wave energy describes the data very well.

The temperature dependence of the spin wave stiffness fits the power law behaviour
predicted by scaling theory. Data were fitted with a critical exponent of β = 0.33, as
theoretically predicted, as well as with β = 0.37, as experimentally found by Collins et al.
Both critical exponents fit the data within 1σ standard deviation. It should be noted that
only data taken at temperatures between TC− 1 K and TC− 6 K were included in the fit.
The combination of (q, E) at lower temperatures does not close the scattering triangle,
hence is not observable with RESEDA in the used configuration. This limitation can be
circumvented by using a smaller wavelength of ∼4.5 Å. This would decrease the upper
limit of the dynamic range of the instrument, but allow to investigate higher energies at
smaller q.

The temperature dependent spin wave stiffnesses D was found to be larger by a factor
of ∼2 as compared to what was reported by Collins et al. Hence, also the material specific
spin wave stiffness constant D0 is significantly larger than what was found by Collins et al.

Due to energy resolution, Collins et al. observed over-critical damping of the spin waves
for temperatures above TC − 3 K. Therefore, they were unable to say whether D goes
to zero at TC, as predicted by scaling theory, cf. Eq. (5.7). The high energy resolution
of RESEDA allowed to observe spin waves until just below TC. Fitting the spin wave
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stiffness with the power law within scaling theory, the data suggest that the spin wave
stiffness goes to zero at the Curie temperature.

The present study shows the advantages of the NRSE MIEZE technique for the inves-
tigation of critical phenomena. MIEZE allows to investigate in the small angle scattering
regime under depolarising conditions with sub-µeV energy resolution. Thus, resolving
very weak signals that were not accessible before, cf. double peak Lorentzian at the Curie
temperature in iron. Compared to triple-axis spectroscopy, spin echo is not limited to a
very narrow wavelength band to retain high energy resolution. Spin echo allows to use
a broad wavelength band, yielding much higher intensities. With the position sensitive
CASCADE detector, a large region in reciprocal space can be measured simultaneously,
further reducing measurement time. The present study proved that the MIEZE method
at RESEDA is ideally suited to study quasi- and inelastic excitations in the vicinity of
magnetic phase transitions.

(i). Deviations from Literature

In inelastic neutron scattering, differing results within an order of magnitude are often
reported, especially close to critical points as it is the case in the present work. For
example Böni et al. [188] reported a linewidth of the critical fluctuations at TC in EuO a
factor of two higher than observed by Passell et al. [189]. Another example is the critical
exponent z for the linewidth Γ ∼ qz in EuS, which was reported to be z = 2.09± 0.6 by
Bohn et al. [190], and later found to be z = 2.54± 0.1 in accordance with scaling theory
for a Heisenberg ferromagnet by Böni et al. [191].

Although the dispersion of the spin waves in iron as observed with RESEDA is in
accordance with spin wave theory including dipolar interactions, the resulting spin wave
stiffness constant differs from the literature value. To address this issue, a second study
on the very same bcc iron single crystal using the triple-axis spectrometer (TAS) MIRA
at MLZ was performed. A more detailed description of the TAS study can be found in
App. B.3.4. Fig. 5.7 shows the spin wave stiffness as a function of temperature as obtained
with TAS. Data from the present work (red) are compared to data obtained by Collins
et al. (blue). The data obtained from the present TAS study agree with the data from
Collins et al. within 1σ standard deviation.

The cause of the discrepancy between data obtained with RESEDA and data obtained
with MIRA and Collins et al., respectively, was still an open question at the time the
present thesis was submitted. The present study is the first extensive investigation of
inelastic excitations using spin echo spectroscopy, leading to new challenges, with one of
the greatest being data analysis of inelastic signals and signals with large energy transfers.
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Figure 5.7.: Spin wave stiffness D as function of temperature. The solid and dashed lines are
fits to the data using Eq. (5.7) with β = 0.37 and β = 0.33, respectively. The shaded and
hatch-shaded areas denote the 1σ standard deviation of the fit for β = 0.37 and β = 0.33,
respectively. The blue data are taken from Ref. [171].

Using the explicit calculation of the spin phase, cf. Ch. 3.3.2, the main difficulty lies in
solving the integral in Eq. (5.12) numerically. With the recent developments at RESEDA,
the code for data analysis is still under development, hence might be the cause of the
discrepancy between the spin wave stiffness constant found at RESEDA and reported in
literature.



6. Spin Relaxation in FexCr1 – x

In iron chromium alloys, FexCr1–x , reentrant spin-glass behaviour is observed, where the
spin-glass forms from a ferromagnetically or antiferromagnetically ordered high temper-
ature state. The present study investigates the spin relaxation processes in FexCr1–x

for different iron concentrations x. Depending on the iron concentration, the samples
show either ferromagnetic, antiferromagnetic, or paramagnetic high temperature states.
Measuring samples with different iron concentrations allows to compare the relaxation
process depending on the particular state at high temperatures. A broad distribution of
relaxation times, characteristic for spin-glasses, is found over a broad range of the phase
diagram above and in the spin-glass dome. This behaviour suggests that clusters of dif-
ferent size and single spins in between the clusters are present, all fluctuating on different
time scales. The chapter starts with a brief introduction into spin-glasses, in particular
the reentrant spin-glass FexCr1–x , cf. Sec. 6.1. The introduction is followed by the experi-
mental set-up in Sec. 6.2, and the experimental results in Sec. 6.3. The chapter concludes
with a summary of the present study and an outlook, cf. Sec. 6.4.

6.1. Introduction to Spin Glasses

A spin-glass is defined as a magnetic system where randomness or disorder, competing
interactions, anisotropy, and frustration lead to a random, yet collective, freezing of the
spins at a freezing temperature Tf . The frozen state below this temperature is highly
irreversible and metastable, and long-range magnetic order is absent. The freezing into
a metastable state can be seen as being analogue to the freezing in real glasses, hence
the name spin-glass. A more detailed introduction into spin-glasses can be found in the
textbook by Mydosh [27], on which this section is oriented.

The evolution of the cooperative freezing starts at high temperatures T � Tf , where all
spins are independent due to dominant thermal fluctuations. Lowering the temperature
leads to a formation of clusters, in which the spins are correlated. These clusters form in
various shapes and sizes due to the random distribution of competing interactions. Since
the fluctuation rate of a cluster depends on its size, a large distribution of relaxation times
for the clusters formed already above Tf is observed. There are still spins remaining, which
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do not belong to any of these clusters. These spins take part in interactions between the
clusters. Further cooling towards Tf , the dynamics within the clusters slow down, until the
system eventually finds one of its many ground states and freezes. The spins outside the
clusters fluctuate rapidly, until slowing down too. However, even in the frozen state, single
spins and small clusters are present, contributing to faster relaxation rates as compared
to larger clusters. This cooperative phase transition is not yet fully understood. For
temperatures T < Tf , the system is in a glassy, metastable state. This state shows
neither ferromagnetic nor antiferromagnetic long-range order.

The most prominent example are diluted spin-glasses, such as Au1–xFex or Cu1–xMnx

[90, 91], where only a few atomic percent of magnetic ions are added to the alloys,
i.e.x � 1. This yields a random distribution of the magnetic ions, what leads to a
competition between ferromagnetic and antiferromagnetic interactions due to the oscil-
latory RKKY-interactions (Ruderman–Kittel–Kasuya–Yosida) between the Fe and Mn
atoms, respectively [27, 92]. Diluted spin-glasses can be described by the Hamiltonian

HRKKY = −
∑
〈ij〉

J (Ri −Rj)Si · Sj, (6.1)

with Heisenberg spins Si,j of the magnetic ions i, j at locationsRi,j. The RKKY exchange
interaction J (R) oscillates between ferromagnetic and antiferromagnetic interaction as
a function of distance between the magnetic ions. Thereby, the frustration arises from
the random distribution of competing interactions, and is different to the geometrically
frustrated systems which were the topic of Ch. 4, cf. Sec. 4.1.1. Due to the frustration,
spin-glasses possess a multidegenerate ground state.

Increasing the number of magnetic ions in the system, the spin can not be seen as
diluted any more, and a concentrated spin-glass is formed, also known as cluster glass or
mictomagnet. In such systems, a large number of interacting magnetic moments might
lead to the formation of large clusters which then might dominate the magnetic behaviour.
This leads to a spin-glass with incipient long-range magnetic order. Further increasing
the concentration of magnetic ions eventually leads to the percolation limit, where each
magnetic site has at least one magnetic nearest neighbour. Depending on the lattice and
the type of interaction between the magnetic moments, beyond the percolation limit the
system might show long-range magnetic order [27].

If the system is close to its percolation limit towards long-range ferromagnetic order,
it is possible to observe spin-glass behaviour at low temperatures, with a ferromagneti-
cally ordered state at higher temperatures. When cooling, these systems freeze without
long-range magnetic order. The name reentrant spin-glasses comes from the reentering of
a magnetically disordered state from an ordered state. In these systems either a temper-
ature dependent random anisotropy appears, or some mechanism related to the freezing
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temperature leads to the anisotropy, such as the freezing of transverse spin components
[27, 192]. If this anisotropy grows strong enough, it leads to the formation of a spin-glass
phase out of a magnetically ordered state.

One major question in spin-glasses is the dynamical behaviour over the whole cooper-
ative freezing process. This was addressed mainly by neutron scattering, in particular by
neutron spin echo spectroscopy [193–200]. An observation often found in the literature is
a wide spectral distribution of relaxation times, which is found continuously from high to
low temperatures [195]. This broad distribution of relaxation times is a result of different
sized clusters, and spins surrounding these clusters, all fluctuating with different rates.
Cooling down, the spin relaxation slows down continuously through the transition into
the spin-glass phase.

The majority of the neutron scattering studies found in the literature were performed on
conventional spin-glasses, where also a q-independence of the spin relaxation was observed.
The absence of a dispersion was taken as evidence that spin conserving forces, such as
dipolar or spin-orbit interactions, are crucial in spin-glasses [195, 196]. In 1985, Shapiro
et al. employed neutron spin echo spectroscopy on two samples of the reentrant spin-glass
EuxSr1–xS with a high temperature paramagnetic and ferromagnetic state, respectively
[199]. In contrast to conventional spin-glasses, both samples showed a weak q-dependence
of the spin relaxation. Apart from that, the behaviour of the spin relaxation over the
freezing process in reentrant spin-glasses was found to be as in conventional spin-glasses.

In the ferromagnetic regime of the reentrant spin-glasses FexAl1–x and FexCr1–x , inelas-
tic neutron scattering was used to investigate inelastic excitations in the ferromagnetic
and spin-glass phases [201–205]. It was found that spin waves are present in the ferromag-
netic phase of FexAl1–x and FexCr1–x , which vanish when entering the spin-glass phase.
Applying a magnetic field to the FexCr1–x sample leads to an emergence of spin waves
also in the spin-glass phase [202]. In contrast, in FexAl1–x no spin waves could be induced
in the spin-glass phase [204]. This might be due to the fact that in FexAl1–x the spin-
glass phase and the ferromagnetic phase are separated by a paramagnetic regime, while
in FexCr1–x the ferromagnetic phase directly goes over into the spin-glass state [204].

6.1.1. Introduction to FexCr1 – x

In iron chromium alloys, FexCr1–x , the magnetic order changes from itinerant ferromag-
netism to itinerant antiferromagnetism by substituting iron atoms by chromium atoms.
Pure iron shows a Curie temperature TC = 1043 K, which can be suppressed by adding
chromium. Properties of pure iron were already discussed in Ch. 5. In contrast, pure
chromium is a spin-density wave antiferromagnet with a Néel temperature of TN = 311 K
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[206]. Its Néel temperature is reduced gradually by adding iron, retaining the spin-density
wave antiferromagnetism until the antiferromagnetic order is fully suppressed [207, 208].

Fig. 6.1 shows the magnetic phase diagram of FexCr1–x as a function of the iron concen-
tration x in zero field. Changing the iron content x might lead to disorder, anisotropy, and
a deformation of the electronic band structure, hence influencing the magnetic behaviour
of the system. By suppressing the ferromagnetic or antiferromagnetic order, respectively,
a spin-glass dome emerges, covering a putative quantum critical point. At low temper-
atures, this spin-glass phase extends into both, the ferromagnetic and antiferromagnetic
states. FexCr1–x crystallises in the body-centred cubic (bcc) crystal structure with Im3̄m
symmetry, i.e. space group number 229, over the entire range from pure Fe to pure Cr.
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Figure 6.1.: Concentration dependence of the magnetic phase diagram of Fex Cr1–x in zero
field. (a) Data shown were obtained by means of neutron scattering and low-field magnetisation
by Burke et al. (square symbols) [209–211], via ac susceptibility and magnetisation measure-
ments by Benka (triangular symbols) [212], and by neutron scattering in the present work (star
symbols). With increasing iron concentration x, the system shows a transition from an itinerant
antiferromagnet (AFM; green) to an itinerant ferromagnet (FM; blue). In the vicinity between
these two phases, a dome showing spin-glass (SG; orange) behaviour covers a putative quantum
critical point. The three dashed vertical lines indicate the iron concentrations investigated in the
present work. The red marked area indicates the region of interest, which is enlarged in (b).

The ferromagnetic and antiferromagnetic transitions in FexCr1–x were mainly addressed
by measurements of bulk properties [15, 213–215] and neutron scattering studies [216–
218]. The first reports on spin-glass behaviour was by Shull et al. [14] and Loegel et al.
[15], where magnetisation and transport measurements suggested a superparamagnetic
phase. This behaviour is similar to what was found in AuFe [92]. In 1983, Burke et al.
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reported the evolution of magnetic order in FexCr1–x over a wide composition range using
neutron scattering and magnetisation measurements, mapping out the phase diagram in
detail [209–211], cf. Fig. 6.1.

An extensive study of bulk properties on a wide range of FexCr1–x compositions by
Benka found an extended ferromagnetic regime, spanning the concentration range from
the ferromagnet to the antiferromagnet above the spin-glass phase, cf. Fig. 6.1. The study
by Benka also suggest that the magnetic behaviour in the spin-glass phase in FexCr1–x

with x = 0.10 to 0.25 is at the border between a superparamagnet and a cluster glass.
Thus, a cluster glass is on the low and a superparamagnet on the high concentrated side.

In a recent study using neutron depolarisation imaging [219], Schmakat suggested a
scenario for the evolution of the magnetism in a sample of FexCr1–x with a ferromagnetic
high temperature phase. The suggested scenario is illustrated in Fig. 6.2. For T < TC,
cf. Fig. 6.2(a), ferromagnetic clusters form. These are surrounded by fluctuating magnetic
moments, rather than developing domain walls. Cooling below the spin-glass temperature
Tf , cf. Fig. 6.2(b), the fluctuating moments outside the clusters couple antiferromagnet-
ically, thus enhancing the frustration between the ferromagnetic clusters. Cooling even
further T � Tf , cf. Fig. 6.2(c), the antiferromagnetic surrounding stabilises, and the sys-
tem slows down significantly, freezing the spin system.

T<TC T<Tf T ≪ Tf(a) (b) (c)

Figure 6.2.: Possible scenario for the magnetic behaviour in an Fex Cr1–x sample with a high
temperature ferromagnetic state, as suggested by Schmakat [219]. (a) For T < TC, ferromag-
netic domains form, which are surrounded by fluctuating magnetic moments. (b) For T < Tf ,
the moments outside the clusters couple antiferromagnetically. (c) For T � Tf , the antiferro-
magnetic regions grow at the cost of the ferromagnetic clusters, leading to an effective freezing
of the spin system due to frustration. Figure taken from Ref. [219].

The objective of the present work was to investigate the spin relaxation processes of
the reentrant spin-glass FexCr1–x over the whole collective freezing process. Measure-
ments were performed on samples with different iron concentrations, comparing the spin
relaxation processes depending on the particular state at high temperatures.
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6.2. Experimental Set-up and Samples

Spin relaxation processes in FexCr1–x were measured at RESEDA in the MIEZE mode, as
introduced in Sec. 3.4. The distance between the first and second NRSE coil was 1.875 m,
the distance between the second NRSE coil and the detector 3.700 m. With the sample
as close to the primary spectrometer arm as possible, the sample detector distance was
2.335 m. For a high neutron flux and to cover the desired dynamic range, the wavelength
was set to 6 Å with a wavelength spread ∆λ/λ = 0.12. With this configuration, and
frequency differences between the RF coils between ∼1 Hz and 600 kHz, a dynamic range
from ∼6 · 10−6 ns to 2 ns was accessible. For the present study, the dynamic range was
limited to 10−4 ns to 1 ns.

Measurements were performed between ∼4 K and 300 K. The sample was cooled using a
top-loading closed cycle refrigerator (CCR) with a diameter of the sample tube of 80 mm.
The temperature was controlled using a Lakeshore 336 temperature controller with two
Cernox sensors close to the sample. The temperature stability was about ∼0.05 K and
no hysteresis effects were observed. Both was verified by means of several temperature
scans.

The samples used in the present study were polycrystalline FexCr1–x specimens with
iron concentrations of x = 0.145; 0.175; 0.210. The crystals are of cuboidal shape with a
thickness of ∼8 mm. The samples were mounted vertically in the neutron beam, and a cir-
cular aperture with a diameter of∼10 mm defined the illuminated sample volume. Tab. 6.1
lists the samples used in the present study alongside the samples used by Schmakat [219]
and Benka [212] during their studies using neutron depolarisation, ac susceptibility, mag-
netisation, electrical transport, and heat capacity measurements.

Regarding the phase diagram in Fig. 6.1, the chosen samples provide different high tem-
perature states according to the different iron concentrations. The sample with x = 0.145
and x = 0.210 enter the spin-glass phase from an antiferromagnetic and ferromagnetic
phase, respectively. With an iron concentration of x = 0.175, FexCr1–x is a paramagnet
for higher temperatures. In the study by Benka, samples between x = 0.150−0.190 were
found to pass through a small temperature region with ferromagnetic order before enter-
ing the spin-glass phase, whereas the study of Burke et al. suggest that these samples
enter the spin-glass state directly from a paramagnetic phase [209–212]. The elastic mea-
surements in Sec. 6.3.1 confirm a small ferromagnetic phase in the sample with x = 0.175,
consistent with the observations of Benka.
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Table 6.1.: Sample overview for Fex Cr1–x studies conducted by Schmakat [219] and Benka
[212], and in the present work. The studies contained measurements of the ac susceptibility
and magnetisation (ACMS), ac electrical transport (ACT), heat capacity (HC), neutron depo-
larisation (depol), and NRSE MIEZE (MIEZE). The samples used in the present work, written
in bold, were provided by Shapiro and grown by Motoya [202, 203].

at.% Fe Sample from ACMS ACT HC depol MIEZE
0 Benka Benka - - - -
5.0 Benka Benka - - - -
10.0 Benka Benka - - - -
14.5 Shapiro/Motoya Benka - - - this work
15.0 Benka Benka Benka Benka Schmakat -
16.0 Benka Benka - - Schmakat -
17.0 Benka Benka - - Schmakat -
17.5 Shapiro/Motoya - - - - this work
18.0 Benka Benka - - Schmakat -
19.0 Benka Benka - - Schmakat -
20.0 Benka Benka - - Schmakat -
21.0 Benka Benka - - Schmakat -
21.0 Shapiro/Motoya - - - - this work
22.0 Benka Benka - - Schmakat -
25.0 Benka Benka - - - -
30.0 Benka Benka - - - -

6.3. Experimental Results

In the following, the experimental results of the neutron scattering measurements in
FexCr1–x will be presented for iron concentrations x = 0.145; 0.175; 0.210. Sec. 6.3.1
discusses the temperature and q-dependence of the small angle scattering, which was
mainly used to identify the transition temperatures, and to assess the temperature sta-
bility and hysteresis effects due to sweeping the temperature. The results of the spin
echo measurements are presented in Sec. 6.3.2. The discussions focus on similarities and
differences between FexCr1–x with different iron concentrations, and thus different states
above the spin-glass phase.
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6.3.1. Elastic Scattering

The small angle scattering of FexCr1–x for the investigated iron concentrations, i.e.x =
0.145; 0.175; 0.210, was evaluated using the masks shown in Fig. 6.3(a). As no magnetic
scattering was observed at high temperatures, the measurements at ∼300 K were used as
background and subtracted from the experimental data. The temperature dependence
of the background corrected SANS data is shown in Fig. 6.4(a-c) for six selected q-values
in the range 0.025 Å−1

≤ q ≤ 0.070 Å−1. The data were used to identify the transition
temperatures of the ferromagnetic state at TC, and the onset of spin-glass behaviour at
Tf . Since no antiferromagnetic scattering intensity can be observed in the vicinity of the
[000]-Bragg peak, a transition into an antiferromagnetic state can not be identified by
SANS. The shaded areas in Fig. 6.1 indicate the antiferromagnetic (green), ferromagnetic
(blue), and spin-glass (orange) phases as observed with ac susceptibility and magnetisation
measurements by Benka [212].

The scattering intensity as a function of temperature for iron concentrations x = 0.145
and x = 0.175 are very similar. Lowering the temperature leads to an increase in intensity
as expected for a transition into a ferromagnetically ordered state. The point of inflection
is used to define the transition temperature TC. When entering the spin-glass phase, the
system is static on the time-scales probed by SANS, hence the temperature Tf where the
intensity has a change of slope towards a plateau defines the transition into the spin-glass
state. In case of the sample with x = 0.210, a plateau region could not be observed,

(a)
mask #1 25

direct

beam

beam stop

(b)
mask #1 11

direct

beam

beam stop

Figure 6.3.: Detector masks used for evaluating the experimental data. (a) Masks used for the
evaluation of the elastic scattering, representing circular ring-segments around the direct beam
with an opening angle of 90° and a width of 4 pixels. (b) Masks used for the evaluation of the
MIEZE scans. The masks are circular ring-segments around the direct beam with an opening
angle of 60° and a width of 10 pixels. The grey hatched area in (a) and (b) represents the
blocked view on the detector due to the beam stop, cf. Fig. 5.2(d).
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*

Tf

TC
Tf

Tf TC

Figure 6.4.: Temperature dependence of the SANS data of Fex Cr1–x . Samples with iron
concentrations of x = 0.145 (a), x = 0.175 (b), and x = 0.210 (c) were evaluated at different
q-regions using the masks shown in Fig. 6.3(a). The shaded areas indicate the phases according
to the phase diagram in Fig. 6.1: AFM (green), FM (blue), SG (orange). Dashed lines indicate
the transitions observed with SANS.

but only a slight change of slope which is very close to the transition temperature found
by Benka. As mentioned above, the transition into the antiferromagnetic state for the
sample with x = 0.145 can not be detected. Even though the sample with x = 0.145
is supposed to enter the spin-glass state from an antiferromagnetic state, the increase
in intensity suggests ferromagnetic order due to the formation of iron clusters. This
is in accordance with Benka, who found an extended ferromagnetic transition down to
x = 0.15, which is at the border to the antiferromagnetic regime. The red dotted line in
Fig. 6.1 shows how the ferromagnetic transition might extend into the antiferromagnetic
state as found for x = 0.145 in the present SANS data.

For the sample with x = 0.210 a broad feature with a maximum at ∼80 K defines



124 Chapter 6. Spin Relaxation in FexCr1–x

TC, followed by a sharp increase in intensity. As mentioned above, a slight change in
the slope of the increase of the low temperature intensity was observed, which is very
close to Tf from the study by Benka, and therefore was defined as Tf in the present work.
The features found in neutron scattering are indicated by dashed lines in Fig. 6.4. The
discrepancy between the features in neutron scattering from the present work, and the
phase boundaries from ac susceptibility and magnetisation by Benka, might be due to
the use of different samples and due to the different time-scales probed by the different
measurement methods.

The q-dependence of the SANS data of FexCr1–x is shown in Fig. 6.5(a-c). Again,
the data recorded at ∼300 K were used as background, and are subtracted from the
experimental data recorded at low temperatures. With decreasing temperature, not only
the intensity increases, but also the slope of the q-dependence of the scattering changes.

Long-range ferromagnetic order was inferred in SANS from Porod scattering from mag-
netic domains [220, 221]. The intensity as a function of scattering vector q thereby follows
a power law behaviour

I ∝ q−n, (6.2)

where, according to Porod, n = 4. It should be noted that the Porod law is only
valid for rather large q, when q ∼ 2π/D with D being the size of the probed structure
[222]. Deviations from the Porod law may give information on the surface of the probed
structures.

Fig. 6.5(d-f) shows the exponent n as a function of the temperature, obtained from fit-
ting the experimental data in Fig. 6.5(a-c) with the power law in Eq. (6.2). The exponents
found in FexCr1–x are much smaller than the exponent expected for Porod scattering. For
decreasing temperatures, the exponent n increases from ∼0.5 to ∼1.5 − 2 at Tf . In the
spin-glass phase, and for x = 0.175 and x = 0.210, the exponent n was found to be con-
stant with n ∼ 2. For an iron concentration of x = 0.145 the exponent in the spin-glass
phase was constant with n ∼ 1.5.

An exponent of n = 2 was found in the perovskite manganite Pr1–xCaxMnO3, and it
was attributed to sheets of inter-penetrating ferromagnetic and antiferromagnetic phases
[223]. In the same material, Viret et al. found n = 1.6 − 1.7. In comparison to the
literature on polymers, n = 1.6− 1.7 was attributed to filamentary ferromagnetic chains
[224].

6.3.2. Quasielastic Measurements

Data were recorded in the SANS geometry with the direct beam centred at the right hand
side of the detector, cf. Fig. 6.3(b). Using a wavelength of 6 Å allowed to cover a q-range of
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Figure 6.5.: q-dependence of the SANS data of Fex Cr1–x . Samples with iron concentrations of
x = 0.145 (a,d), x = 0.175 (b,e), and x = 0.210 (c,f) were evaluated at different temperatures.
(a-c) Intensity as a function of scattering angle q. The accessible q-range was ∼0.02 Å−1

<

q <∼0.08 Å−1. Solid lines are fits to the data using the power law given by Eq. (6.2). (d-f)
Temperature dependence of the exponent n obtained from fitting the experimental data in (a-c).
Solid lines are guides to the eye. The shaded areas indicate the phases according to the phase
diagram in Fig. 6.1: AFM (green), FM (blue), SG (orange). Dashed lines indicate the transitions
observed with SANS.

0.018 Å−1
≤ q ≤ 0.085 Å−1 when evaluating the data horizontally. Data were recorded

in the temperature range 4 K ≤ T ≤ 300 K. The spin echo data reduction to extract the
normalised intermediate scattering function follows Sec. 3.3. To retain high statistics over
the investigated q-range, masks were defined as circular ring-segments with respect to the
direct beam with an opening of 90° and a width of 4 pixels, cf. Fig. 6.3(b). At low spin
echo times, as used in the present study, neutron spin phase changes generally extend over
large spatial regions. Hence, the neutron spin phase within one mask does not change,
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and pre-grouping the detector pixels is not necessary. The procedure of pre-grouping the
detector is described in Sec. 3.3.4.

A comparison between evaluating the data using a pre-grouping of the detector pixels,
and without pre-grouping showed no significant difference. Therefore, data were evaluated
using the grouping masks shown in Fig. 6.3(b), without pre-grouping the detector. Data
were normalised by means of data recorded at the base temperature, i.e.∼4 K, assuming
that the spin dynamics in FexCr1–x is frozen at temperatures well below Tf [200]. This
minimises systematic errors as the same sample environment, sample shape, and apertures
are used for resolution and data measurements. The process of normalising spin echo
spectra is explained in detail in Sec. 3.3.3.

The normalised intermediate scattering functions in the temperature range 4 K ≤ T ≤
150 K at a selected q = 0.044 Å−1 for the three investigated concentrations are shown
in Fig. 6.6(a-c) around the freezing temperature T ∼ Tf , and in Fig. 6.7(a-c) at higher
temperatures T > Tf . The intermediate scattering functions evaluated over the full
measured q-range are shown in App. B.4, Fig. B.16-B.21. The experimental data were
fitted with a stretched exponential decay of the form

S(q, τ) = (1− A) + A exp
{
− (Γτ)β

}
; 0 < β ≤ 1, (6.3)

with the decay rate Γ, i.e. the inverse spin relaxation time, and were 0 < β < 1 stretches
the usual exponential decay, i.e.β = 1. A stretched exponential decay accounts for
the broad distribution of relaxation times expected in spin-glasses. Evaluating the data
comparing different decay models found in literature, cf. Ref. [193, 195–197, 199, 200, 225],
a stretched exponential decay was found to best describe the experimental data.

Regarding the intermediate scattering functions in Fig. 6.6(a-c) and Fig. 6.7(a-c), at first
glance the three investigated samples show similar behaviour. At low temperatures, below
∼4 K, the spin dynamics are frozen. For temperatures below the freezing temperature
Tf ∼ 15 K, the systems are still almost static in the dynamic range investigated during the
present study, i.e.∼10−4 ns to ∼1 ns. The spin relaxation starts to decay for temperatures
around the freezing temperature Tf . Increasing the temperature shifts the spin relaxation
to shorter spin echo times in all samples. At high temperatures, T ≥ 150 K, the spin
relaxation remains constant for all three samples, cf. Fig. 6.7.

The spin echo curves for temperatures up to 34 K do not drop to zero, but drop to a
finite, constant value. This indicates that there are parts of the sample, which are static
on the time-scales probed during the measurements, i.e. clusters that might fluctuate
on much longer time-scales. With increasing temperature, these clusters also start to
fluctuate on time-scales observed during the measurements, hence further decreasing the
intermediate scattering function, eventually reaching a minimum for temperatures above
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Figure 6.6.: Normalised intermediate scattering function as measured around the freezing tem-
perature Tf in Fex Cr1–x . Data were recorded using neutrons with a mean wavelength of
λ = 6.0 Å. Data are shown for (a) x = 0.145, (b) x = 0.175, (c) x = 0.210, at q = 0.044 Å−1.
The solid lines are fits to the data using Eq. (6.3). The dashed lines show usual exponential de-
cays calculated from the fit results of the corresponding stretched exponential decay, showing
the deviations from a stretched behaviour.

34 K. It should be noted that the different samples show different elastic background,
as can be seen in the limited drop of the spin echo signal at the highest temperatures,
cf. Fig. 6.7. The spin echo signal drops to a minimal value of ∼0.25 for x = 0.145, ∼0.15
for x = 0.175, and ∼0.1 for x = 0.210. This might have its reason in the magnetic signal
to noise ratio, which is better for higher iron concentrations. This is also in accordance
with the temperature scans in Fig. 6.4, where the intensity of the magnetic scattering is
strongest for x = 0.210, and weakest for x = 0.145.

Also directly visible from the intermediate scattering functions is the different shape
of the exponential decay. The usual exponential behaviour is calculated from the fit
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Figure 6.7.: Normalised intermediate scattering function as measured above the spin-glass phase
T > Tf in Fex Cr1–x . Data were recorded using neutrons with a mean wavelength of λ = 6.0 Å.
Data are shown for (a) x = 0.145, (b) x = 0.175, (c) x = 0.210, at q = 0.044 Å−1. The solid
lines are fits to the data using Eq. (6.3). The dashed lines show usual exponential decays
calculated from the fit results of the corresponding stretched exponential decay, showing the
deviations from a stretched behaviour.

results of the stretched exponential decay, and shown as dashed lines in Fig. 6.6(a-c)
and Fig. 6.7(a-c). For the sample with x = 0.145, the decay strongly deviates from a
normal exponential over the entire temperature range. For the samples with x = 0.175
and x = 0.210, respectively, the exponential decay is stretched around Tf , and rather
exponential for higher temperatures. A discussion of the stretched exponential constant
β follows below.

When considering the decay rate Γ, shown in Fig. 6.8(a-c), more differences between
the three samples become apparent. Data are shown for temperatures where the fit of the
intermediate scattering function in Fig. 6.6 and Fig. 6.7 delivered a physical meaningful Γ.



6.3. Experimental Results 129

There are two main reasons for when this is not the case. First, when a very broad distri-
bution of relaxation times is present, hence the exponential decay is strongly stretched.
Therefore, a single dominant relaxation time, i.e. a single dominant Γ, does not represent
the decay. Second, when a poor signal to noise ratio does not allow for proper fitting, as
it may be the case for highest temperatures. The data where these two reasons prevent
extracting a physical meaningful Γ are shown in App. B.4, Fig. B.22.

The solid lines in Fig. 6.8(a-c) are fits to the data using a power law dependence

Γ ∝ qz, (6.4)

with the exponent z as a free fit parameter. For all three samples, the exponential decay is
strongly stretched around and below the freezing temperature, hence a single dominant Γ
is not observed for T ∼ Tf . For x = 0.145, Γ could be extracted for temperatures where
a ferromagnetic signal was observed, i.e. 25 K ≤ T ≤ 34 K. At even higher temperatures,
the exponential decay is strongly stretched and a single dominant relaxation time could
not be determined. The sample with x = 0.175 allows to analyse Γ for temperatures
between 25 K ≤ T < 150 K. For x = 0.210, Γ could be extracted for all temperatures
above the freezing temperature Tf . For all concentrations, Γ depends on q according to
the relation given in Eq. (6.4). Thereby, the exponent z in Eq. (6.4) was found to be below
2 with z = 1.30− 1.76. Fig. 6.9(a-c) shows the exponent z as a function of temperature.
A q-dependence seems to be present, as long as there is some ferromagnetic order.

The dashed lines in Fig. 6.8(a-c) are fits to the data using Eq. (6.4) with a fixed z = 2.0.
The spin diffusion model Γ ∝ q2.0 was found by Tajima et al. to describe the q-dependence
of Γ in the Invar alloy Fe65Ni35 in a rather wide q-range [226]. A z = 2.0 was explained
by impurity scattering of the electrons. The exponent z found for FexCr1–x in the present
study will be addressed in more detail in the following discussion at the end of this chapter.

In Fig. 6.9(d-f), the stretched exponential constant β, cf. Eq. (6.3), is shown as a function
of temperature for x = 0.145 (a), x = 0.175 (b), and x = 0.210 (c). The constant β
provides an estimate how broadened the spectrum of relaxation times is. The solid lines
in Fig. 6.9(d-f) are guides to the eye. For the sample with x = 0.145, the exponent
β ∼ 0.5 indicates a wide spread of relaxation times at high temperatures above TN.
In the antiferromagnetic regime, below TN, β > 0.6 is observed. It should be noted
again, that no antiferromagnetic scattering intensity can be observed in the vicinity of
the [000]-Bragg peak, hence during the present study. The Néel temperature TN is taken
from literature [212, 217]. Approaching Tf , β drops drastically, indicating a very wide
spectrum of relaxation times. For x = 0.175, β ∼ 0.9 at high temperatures, dropping
to β ∼ 0.7 upon approaching Tf . The sample with x = 0.210 has β ∼ 1.0 throughout
the ferromagnetic phase until ∼20 K when cooling close to Tf . All samples show a drastic
drop of β upon approaching Tf , indicating a wide spectrum of relaxation times.
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Figure 6.8.: Decay rate Γ as function of scattering vector q. Data are shown for (a) x = 0.145,
(b) x = 0.175, (c) x = 0.210, and temperatures where the fit of the intermediate scattering
function in Fig. 6.6 and Fig. 6.7 delivered meaningful Γ (for details see text). The solid lines
are fits to the data using Eq. (6.4). The shaded areas indicate the 1σ standard deviation of the
fit. The dashed lines are fits to the data using Eq. (6.4) with z = 2.0. Data are shifted by
0.0175 meV as indicated by the horizontal dashed lines.

6.4. Conclusions and Outlook

The present study focused on the investigation of the spin relaxation processes in a set
of FexCr1–x samples with x = 0.145, x = 0.175, and x = 0.210. The samples were
chosen so that the study allows to compare the spin relaxation at high temperatures and
down into the spin-glass state with different high temperature phases. The sample with
x = 0.145 and x = 0.210 enter the spin-glass phase from an antiferromagnetic and
ferromagnetic phase, respectively. With an iron concentration of x = 0.175, FexCr1–x

shows ferromagnetic signal in a small gap between the spin-glass and the paramagnet.
In a first step, the elastic SANS data in Sec. 6.3.1 gave insight into the magnetic struc-

ture of the different samples. Surprisingly, the sample with x = 0.145 shows ferromag-
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Figure 6.9.: Temperature dependence of the fit parameters z and β. (a-c) Exponent z from
the model in Eq. (6.4) as function of temperature. (d-f) Stretched exponential constant β
from the model in Eq. (6.3) as function of temperature. Data are shown for (a,d) x = 0.145,
(b,e) x = 0.175, (c,f) x = 0.210. The shaded areas indicate the phases according to the phase
diagram in Fig. 6.1: AFM (green), FM (blue), SG (orange). Dashed lines indicate the transitions
observed with SANS. The solid lines in (a-c) are guides to the eye.

netic intensity, even though the sample is expected to have an antiferromagnetic high
temperature state. Benka found an extended ferromagnetic transition down to x = 0.15
[212]. Clustering of Fe might lead to a formation of ferromagnetic domains, explaining
the observed ferromagnetic signal for the sample with x = 0.145.

Further explained by the extended ferromagnetic transition is the similarity between
the samples with x = 0.145 and x = 0.175, both showing ferromagnetic ordering. The
sample with x = 0.210 clearly shows the ferromagnetic transition at high temperatures,
as expected from the literature.

The q-dependence of the SANS data indicates that the magnetic structure in the spin-
glass phase of the three samples is rather complex. A comparison with studies on the
perovskite manganite Pr1–xCaxMnO3 might suggest that the magnetic structure in the
spin-glass phase of FexCr1–x is either composed of sheets of inter-penetrating ferromag-
netic and antiferromagnetic phases [223], or has separated phases with filaments of ferro-
magnetic order [224]. A recent study by Wagner et al. characterised the microstructure of
a FexCr1–x sample with x = 0.175 by means of atomically resolved atomic probe tomog-
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raphy, and found local concentration fluctuations of Fe and Cr on length scales between
2 nm and 5 nm [227].

The quasielastic spin echo data are discussed in Sec. 6.3.2, addressing differences and
similarities of the spin relaxation process in FexCr1–x for different iron concentrations.
The q-dependence of the decay rate Γ can be extracted from the experimental data for
temperatures above the freezing temperature Tf . Very broad distributions of relaxation
times, as it is the case for T ∼ Tf , lead to a strongly stretched exponential decay.
Therefore, a single dominant relaxation time, i.e. a single dominant Γ, does not represent
the decay.

The q-dependence of the decay rate Γ is proportional to qz, with an exponent z ∼
1.30 − 1.76. The experimental data were also fitted with a fixed z = 2.0, which fits
the data to some extent of the q-range. According to dynamic scaling theory, the spin
diffusion in the hydrodynamic region is described by Γ ∝ q2.0, where the spins move
without correlation. When the system is critical, theory predicts the critical exponent to
be z = 2.5 for ferromagnetic and z = 1.5 for antiferromagnetic correlation, respectively.

A heuristic explanation for the critical exponent found in FexCr1–x might be the im-
portance of the Cr atoms for the development of a spin-glass phase. Due to the presence
of Cr atoms in ferromagnetic Fe clusters, the system might never reach criticality, and a
z = 2.0 would be expected. The spin diffusion model Γ ∝ q2.0 was found by Tajima et al.
to describe the q-dependence of Γ in the Invar alloy Fe65Ni35 in a rather wide q-range
[226]. Tajima et al. argued, that the system never reaches criticality, i.e. z = 2.5 for fer-
romagnetically correlated spins, due to impurity scattering of the electrons. However, this
explanation does not account for z < 2.0, as found in the present study. As frustration
in FexCr1–x arises from the competition between antiferromagnetic correlations due to Cr
and ferromagnetic correlations due to Fe, a certain amount of Cr needs to be present in
the sample. A dominance of Cr might lead to a critical exponent of z = 1.5, according to
dynamic scaling theory. It appears that the spins in FexCr1–x might be weakly correlated
antiferromagnetically, hence reducing the exponent z further below z = 2.0. This might
give an effective critical exponent between z = 1.5 for antiferromagnetic correlations and
z = 2.0 as expected in the hydrodynamic regime.

The exponential decay of the intermediate scattering function was further investigated
in terms of how strongly the exponential is stretched, i.e. how broad is the spectrum of
relaxation times. For all iron concentrations, a very broad range of relaxation times is
present in the vicinity of the spin-glass regime. This indicates the formation of different
sized domains, fluctuating on different time scales, before freezing out at lowest tem-
peratures. Thereby, a broad distribution of relaxation times is already present at high
temperatures in the sample with x = 0.145. For the sample with x = 0.210, on the
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other hand, a single relaxation time describes the exponential decay at high tempera-
tures. For all samples, the exponent β drops drastically when approaching Tf , indicating
the development of a very broad range of relaxation times. The non-exponential decay in
spin-glasses and glassy systems was discussed by Campbell et al. in terms of percolation
theory [228, 229]. Their calculation showed that the stretched exponent β approaches
β = 1/3 at Tf when the system is close to its percolation limit. The stretched expo-
nent observed in the present work is close to β = 1/3 at Tf for all samples. But as the
drop is very sharp, and the density of data points around Tf rather scarce, a quantitative
agreement with the predictions by Campbell et al. can not be made.

In the literature, spin waves were reported in the ferromagnetic phase of FexCr1–x for
samples with x = 0.240− 0.340, where the spin wave stiffness decreases drastically with
decreasing iron concentration [201, 202]. Thereby, the spin wave stiffness extrapolates to
zero at an iron concentration x = 0.217 [202]. In accordance with the literature, the
sample with x = 0.210, which is just below the threshold of x = 0.217, shows no signs
of spin waves. As a side note, the spin wave energies reported in literature would be
measurable at RESEDA.

To summarise, FexCr1–x shows a broad distribution of relaxation times characteristic for
spin-glasses. The stretched behaviour close to the freezing temperature further suggests
that FexCr1–x is close to its percolation limit. The sample with antiferromagnetic order,
i.e.x = 0.145, shows a broad distribution of relaxation times already at high temperature.
For increasing iron content, hence increasing ferromagnetic order, a single relaxation time
is observed to describe the exponential decay at high temperatures. The q-dependence
of Γ was found to agree the power law behaviour in Eq. (6.4) with z ∼ 1.30 − 1.76.
The exponent z < 2.0 might be explained by Cr dissolved in Fe-clusters, giving rise
to a weakly antiferromagnetically system. The present study shows that the MIEZE
technique allows to perform high resolution spin-echo spectroscopy despite the presence
of ferromagnetic domains that may depolarise the neutron beam in conventional spin echo.
Samples with ferromagnetic, antiferromagnetic, or paramagnetic high temperature states
above the spin-glass state can therefore be investigated with the very same instrument
and sample environment. The very high energy resolution of RESEDA resolves the spin
relaxation processes for the different samples down to lowest q-values.





7. Concluding Remarks

In the present work, ultraslow magnetisation dynamics were addressed by means of vi-
brating coil magnetometry and neutron resonance spin echo spectroscopy. Thereby, the
spin echo beamline RESEDA was improved in terms of increased dynamic and momentum
range, reduced instrumental background, and new development of instrumental control
and data analysis software. The main focus was on the low-temperature magnetisation
processes in the pyrochlore oxide Yb2Ti2O7, spin wave excitations and dispersions in the
archetypal ferromagnet iron, and spin relaxation processes in the spin-glass FexCr1–x .

7.1. Conclusion

One part the present work focused on the magnetic phase diagram and the ground state
of Yb2Ti2O7 as inferred from magnetisation measurements at millikelvin temperatures.
Ch. 2 gave a brief introduction into vibrating coil magnetometry.

In the magnetic pyrochlore oxide Yb2Ti2O7, the topic of Ch. 4, frustration arises from
the geometry of the lattice, suppressing the development of magnetic order to lowest
temperatures. Over the last years, experimental inconsistencies of different samples con-
cerning the low-temperature magnetic properties of Yb2Ti2O7 were reported. It turned
out, that these inconsistencies are linked to systematic material discrepancy, making very
high quality single crystals necessary [126]. Moreover, as the system is believed to be
influenced by strong transverse quantum fluctuations, Yb2Ti2O7 is still under debate to
host a quantum spin-liquid at low temperatures [28, 37, 38]. Hence, the open question
remained: What is the true nature of the ground state of Yb2Ti2O7? The present work
presents a detailed study of the low-temperature magnetisation processes in a high-quality
single crystal of Yb2Ti2O7 as inferred from vibrating coil magnetometry. The ground state
was found to be of ferromagnetic like order, where applying a magnetic field selects the
direction of the ferromagnetic polarisation along one of the six 〈100〉 cubic directions.
Thereby, the magnetic moments are not perfectly aligned along these axes, but slightly
canted towards the local 3-fold 〈111〉 axes, forming a splayed ferromagnetic state. The
magnetic phase diagram was mapped out for applied magnetic field along the three main
symmetry directions, i.e. 〈111〉, 〈110〉, and 〈100〉. The phase diagram shows an unusual
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field dependence of a first-order phase boundary. Applying field along 〈111〉 and 〈110〉,
respectively, initially increases the ordering temperature before sweeping back and eventu-
ally terminating at T = 0. For field along 〈100〉, this unusual field dependence is absent.
Further, a classical model based on the Potts model for cubic ferromagnets describes the
low temperature behaviour of Yb2Ti2O7 to some extent. However, the classical estimates
of the field strength of these phase transitions are inconsistent with the experimental
data found in the present work. A recent study by Changlani revealed that frustrated
interactions and quantum effects significantly renormalise the critical field, making it nec-
essary to take quantum effects into account [166]. These renormalisation effects are also
responsible for the reentrant type phase diagram [166].

The critical phenomena in the vicinity of magnetic phase transitions were investigated
with high-resolution neutron spectroscopy. An ultra-high energy resolution is indispens-
able for such studies, as the addressed energy scales are very small. Neutron spin echo
(NSE) spectrometers possess the highest energy resolution among neutron spectroscopy.
However, in classical NSE it is not possible to measure under depolarising conditions
such as ferromagnetic samples or applied magnetic fields. The neutron resonance spin
echo (NRSE) technique modulation of intensity with zero effort (MIEZE) circumvents
this problem by completing all spin manipulation prior to the sample position. Com-
bining spin echo resolution with depolarising samples and sample environments makes
the MIEZE technique ideally suited to study magnetisation dynamics in the vicinity of
magnetic phase transitions. Ch. 3 gave a brief introduction into the fundamentals of
neutron scattering, and a more detailed introduction on neutron spin echo techniques.
Since instrumental development of the spin echo spectrometer RESEDA was part of the
present work, Ch. 3 further contains a description of the advancements made to RESEDA.
With the establishment of the longitudinal NRSE and MIEZE methods in the last years,
RESEDA was reconstructed as a permanent longitudinal NRSE/MIEZE instrument. Be-
sides the technical progress, software for instrumental control and data analysis were
developed. Further, a major focus was on the reduction of background signal.

Ch. 5 reports a MIEZE study of the spin wave excitations and dispersions in the ferro-
magnetic phase of iron. The present study continued a recent study of the prototypical
continuous phase transition from the para- to the ferromagnetic phase in iron, for T ≥ TC

[47]. Going below the Curie temperature, the results of the present work are in good
agreement with spin wave theory, when including dipolar interactions. There is a clear
deviation from the classical Heisenberg ferromagnet, where the spin wave energy depends
quadratic on q. The large magnetic moment of iron makes it necessary to include dipolar
interaction to describe the observed spin wave dispersion. Although the spin wave dis-
persion is in accordance with spin wave theory, the resulting spin wave stiffness constant
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obtained with RESEDA differs from the value observed during a triple axis spectroscopy
(TAS) measurement performed in course of the present work, as well as from the value
found in literature [171]. The cause for this discrepancy is still an open question. As the
present study is the first extensive investigation of inelastic excitations using spin echo
spectroscopy, data analysis proofed to be a great challenge. The code for data analysis at
RESEDA when it comes to higher energy transfers is still under development, harbouring
an unresolved issue which might account for the discrepancy between data measured at
RESEDA and data obtained with TAS and found in literature, respectively.

Ch. 6 discussed a MIEZE study of the spin relaxation processes in a series of FexCr1–x

alloys. FexCr1–x shows a transition from itinerant antiferromagnetism to itinerant ferro-
magnetism by substituting Cr by iron atoms. By changing the iron content x, the ferro-
magnetic phase transition of iron, and the antiferromagnetic phase transition of chromium,
respectively, can be suppressed to lowest temperatures. Thereby, a putative quantum
critical point is covered by a dome of emerging order showing spin-glass behaviour. The
present study investigated three sample concentrations, where the different samples show
antiferromagnetic, paramagnetic, and ferromagnetic order above the spin-glass phase, re-
spectively. The spin echo measurement showed a broad distribution of relaxation times
in all samples. This indicates the formation of different-sized domains, fluctuating on
different time scale, before freezing out at lowest temperatures. This behaviour is char-
acteristic for spin relaxations in spin-glasses. At higher temperatures, the distribution of
spin relaxation times depends on the iron concentration. The distribution of relaxation
time thereby is broadest for the samples with the lowest iron concentration, i.e. on the
antiferromagnetic site. The broadness of the distribution close to the freezing tempera-
ture further suggests that FexCr1–x is close to its percolation limit. The q-dependence of
the decay rate Γ was found to show a power law behaviour Γ ∝ qz with z ∼ 1.30− 1.76.
As frustration in FexCr1–x arises from the competition of antiferromagnetic correlations
due to Cr and ferromagnetic correlations due to Fe, a dominance of Cr might lead to a
critical exponent of z = 1.5. It appears that the spins in FexCr1–x are weakly correlated
antiferromagnetically, giving an effective critical exponent between an antiferromagnetic
z = 1.5 and z = 2.0 as expected in the hydrodynamic regime.

In conclusion, the present work investigated ultraslow magnetisation dynamics on dif-
ferent time-scales, employing two measurement methods. Millikelvin magnetometry al-
lowed to investigate and better understand the low-temperature magnetisation processes
in Yb2Ti2O7. The present work further demonstrated that the MIEZE technique allows
performing high resolution spin-echo spectroscopy despite the presence of depolarising
conditions such as ferromagnetic domains or applied magnetic fields. This allowed the
study of low-energy inelastic excitations in the ferromagnetic state of iron with spin echo
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resolution. Further, the study of FexCr1–x samples with ferromagnetic, antiferromagnetic,
or paramagnetic high temperature states above the spin-glass state could be performed
with the very same instrument and sample environment.

7.2. Outlook

With the instrumental developments over the last years, RESEDA improved significantly.
Besides the ultra-high energy and momentum resolution, RESEDA covers a huge dynamic
range from time-of-flight over triple axis to spin echo methods. The possibility to use
MIEZE to investigate under depolarising conditions with spin echo resolution allows to
address exotic forms of magnetic and electronic order under extreme conditions. Examples
are the spin dynamics arising from geometric frustration in the pyrochlore oxides, such as
Yb2Ti2O7, over a wide temperature range. In a most recent study, MIEZE was employed
to measure crystal field excitations in Ho2Ti2O7 [230], which are much higher in energy
as compared to the spin waves in iron, making data analysis even more challenging.

Spin echo data analysis will remain a big topic in the future, especially for high energy
transfers and inelastic signals. Further developments on the software are necessary to
keep track with the increasing potential of the spectrometer. This is crucial to understand
discrepancies such as the one observed in iron in the present study.

In FexCr1–x , a question to address would be the atomic short range correlations in
comparison to the magnetic correlations. Depending on the orientation and clustering
of the Fe and Cr, a neutron diffraction study, for example, would allow investigate the
short range correlations. Another approach would be electron diffraction in an electron
microscope with a nanometre sized beam, focusing on the concentrations of Fe and Cr,
hence gaining information of short range order. This might allow to quantitatively assign
the spin relaxation processes to certain structural clusters and concentrations of Fe and
Cr.

The study in Yb2Ti2O7 in the present work showed that the behaviour of the system is
highly sensitive to slight misalignment of the sample with respect to the applied magnetic
field. Further investigations of Yb2Ti2O7 should include a study of the magnetisation
using a vector magnet. Such a study would be able to reveal the transition from the
field driven phase transition for field applied along 〈111〉 towards field along 〈110〉, and
whether there is a tricritical point as proposed by the Potts model.



A. Magnetisation of Yb2Ti2O7

This appendix chapter comprises additional information on the magnetisation measure-
ments in Yb2Ti2O7, cf. Ch. 2 and Ch. 4. The measurement protocols are given in App. A.1,
and the plots of all measured temperature and field dependence data are shown in
App. A.2.

A.1. Measurement Protocols

Three temperature versus field histories were used: (i) After cooling at zero magnetic field
starting at ∼1 K, the magnetic field was applied at base temperature and data collected
while heating monotonically at a rate between 5 mK min−1 and 10 mK min−1, depending
on the desired measurement. This is referred to as zero-field cooled / field heated (zfc-
fh). (ii) Data were recorded while cooling in the same unchanged applied magnetic field
starting at ∼1 K. This is referred to as field cooled (fc). (iii) Following initial cool down
in the applied magnetic field, data were recorded while heating monotonically at a rate of
5 mK min−1 and 10 mK min−1, respectively, in the same unchanged magnetic field. These
data are referred to as field cooled / field heated (fc-fh). Measurement protocols of the
temperature dependence of the magnetisation for field along the three main symmetry
directions are summarised in Tab. A.1, Tab. A.3, and Tab. A.3.

Similarly, the magnetic field dependence was determined according to one of the fol-
lowing three different protocols: (iv) After zero-field cooling, field sweeps were carried
out either from 0 → 1 T or 0 → 5 T. They are denoted (A1) and (A1’), respectively. (v)
Field sweeps starting at a high field, notably from 1 T→−1 T or 1 T→ 0, are denoted
(A2) and (A2’), respectively. (vi) Related field sweeps from −1 T→ 1 T are denoted (A3).
Measurement protocols of field dependence of the magnetisation for field along the three
main symmetry directions are summarised in Tab. A.2, Tab. A.4, and Tab. A.6.
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Table A.1.: Temperature dependence of
the magnetisation for fields along 〈111〉.
The table lists applied fields, covered
temperature ranges, and sweep rates.
µ0Hext sweep protocol sweep rate
(T) T (K) (mK min−1)

0.01 0.050
g1
�g2 0.9 5

0.02 0.050
g1
�g2 0.9 10

0.02 0.055
g1
�g2 0.9 5

0.05 0.050
g1
�g2 0.9 5

0.75 0.060
g1
�g2 0.6 5

0.15 0.050
g1
�g2 0.9 5

0.2 0.050
g1
�g2 0.9 5

0.3 0.100
g1
�g2 0.9 5

0.37 0.150
g1
�g2 0.9 5

0.45 0.100
g1
�g2 0.9 5

0.6 0.060
g1
�g2 0.9 5

0.9 0.100
g1
�g2 0.9 5

Table A.2.: Field dependence of the
magnetisation for fields along 〈111〉. The
table lists temperatures, covered field
ranges, and sweep rates.
T sweep protocol sweep rate
(K) µ0Hext (T) (mT min−1)

0.028 0 → 1 1.5
0.06 0 → 1 → −1 → 1 15
0.1 0 → 1 → −1 → 1 15
0.1 0 → 5 15
0.15 0 → 1 → −1 → 1 15
0.2 0 → 1 → −1 → 1 15
0.25 0 → 1 → −1 → 1 15
0.27 0 → 1 → −1 → 1 15
0.3 0 → 1 → −1 → 1 15
0.35 0 → 1 → −1 → 1 15
0.4 0 → 1 → −1 → 1 15
0.5 0 → 1 15
0.6 0 → 1 → −1 → 1 15
0.9 0 → 1 → −1 → 1 15
2 0 → 5 30
3 0 → 5 30
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Table A.3.: Temperature dependence of
the magnetisation for fields along 〈110〉.
The table lists applied fields, covered
temperature ranges, and sweep rates.
µ0Hext sweep protocol sweep rate
(T) T (K) (mK min−1)

0.01 0.090
g1
�g2 0.9 10

0.75 0.100
g1
�g2 0.9 10

0.3 0.250
g1
�g2 0.9 10

0.4 0.250
g1
�g2 0.9 10

0.45 0.100
g1
�g2 0.9 10

0.5 0.100
g1
�g2 0.9 10

0.55 0.100
g1
�g2 0.9 10

0.6 0.100
g1
�g2 0.9 10

0.8 0.080
g1
�g2 0.9 10

Table A.4.: Field dependence of the
magnetisation for fields along 〈110〉. The
table lists temperatures, covered field
ranges, and sweep rates.
T sweep protocol sweep rate
(K) µ0Hext (T) (mT min−1)

0.09 0 → 1 → 0 15/30/60
0.1 0 → 1 → 0 15/30/60
0.2 0 → 1 → 0 15/30/60
0.27 0 → 1 → 0 15/30/60
0.3 0 → 1 → 0 15/30/60
0.4 0 → 1 → 0 15/30/60
0.45 0 → 1 → 0 15/30/60
0.5 0 → 1 → 0 15/30/60
0.6 0 → 1 → 0 15
0.9 0 → 1 → 0 50
2 0 → 5 30
3 0 → 5 30
5 0 → 5 30
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Table A.5.: Temperature dependence of
the magnetisation for fields along 〈100〉.
The table lists applied fields, covered
temperature ranges, and sweep rates.
µ0Hext sweep protocol sweep rate
(T) T (K) (mK min−1)

0.01 0.05
g1
�g2 0.9 10

0.05 0.05
g1
�g2 0.9 10

0.7 0.05
g1
�g2 0.9 10

0.15 0.10
g1
�g2 0.9 10

0.3 0.10
g1
�g2 0.9 10

0.6 0.10
g1
�g2 0.9 10

Table A.6.: Field dependence of the
magnetisation for fields along 〈100〉. The
table lists temperatures, covered field
ranges, and sweep rates.
T sweep protocol sweep rate
(K) µ0Hext (T) (mT min−1)

0.065 0 → 1 → −1 → 1 10
0.065 0 → 5 10
0.1 0 → 1 → −1 → 1 15
0.1 0 → 5 15
0.15 0 → 1 15
0.2 0 → 1 → −1 → 1 15
0.25 0 → 1 → −1 → 1 15
0.3 0 → 1 → −1 → 1 15
0.4 0 → 1 → −1 → 1 15
0.475 0 → 1 → −1 → 1 15
0.55 0 → 1 → −1 → 1 15
0.9 0 → 1 → −1 → 1 10
1.5 0 → 3 30
2 0 → 5 30
3 0 → 5 30
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A.2. Temperature and Field Dependence

All measured temperature and field dependence of the magnetisation for field along the
three main symmetry directions are plotted in Fig. A.1-A.6.
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Figure A.1.: Temperature dependence of the magnetisation of Yb2Ti2O7 in applied magnetic
fields between 0.01 T and 0.9 T along the crystallographic 〈111〉 direction. In small applied
fields, i.e. below 0.05 T (panels (a) and (b)) a distinct difference between data recorded under
zero-field cooling (zfc) and field cooling (fc) emerges below T ∼ 0.25 K. For fields higher than
0.05 T zfc and fc data are identical.



144 Appendix A. Magnetisation of Yb2Ti2O7

T (K)

0.1

0.2
M

(
BY

b
1 )

Hext || 110
0Hext = 0.01 T

(a)
zfc-fh
fc
fc-fh

T (K)0.9

1.0

1.1

M
(

BY
b

1 )

0.3 T

(c)

T (K)
1.1

1.2

M
(

BY
b

1 )

0.45 T

(e)

T (K)

1.2

1.3

M
(

BY
b

1 )

0.55 T

(g)

0 0.2 0.4 0.6 0.8
T (K)

1.3

1.4

M
(

BY
b

1 )

0.8 T

(i)

T (K)
0.4

0.8

M
(

BY
b

1 )

0.075 T

(b)

T (K)

1.1

1.2

M
(

BY
b

1 )

0.4 T

(d)

T (K) 1.1

1.2

M
(

BY
b

1 )

0.5 T

(f)

0 0.2 0.4 0.6 0.8
T (K)

1.2

1.3

M
(

BY
b

1 )

0.6 T

(h)

Figure A.2.: Temperature dependence of the magnetisation of Yb2Ti2O7 in applied magnetic
fields between 0.01 T and 0.8 T along the crystallographic 〈110〉 direction. In small applied
fields, i.e. below 0.075 T (panel (a)) a distinct difference between data recorded under zero-field
cooling (zfc) and field cooling (fc) emerges below T ∼ 0.25 K. For higher fields zfc and fc data
are identical.
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Figure A.3.: Temperature dependence of the magnetisation of Yb2Ti2O7 in applied magnetic
fields between 0.01 T and 0.6 T along 〈100〉.
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Figure A.4.: Magnetisation of Yb2Ti2O7 as a function of internal magnetic field along 〈111〉
after correction for demagnetisation fields for temperatures in the range 0.06 K to 0.9 K. Field
sweeps were measured according to the following protocol: 0 → +1 T → −1 T → +1 T with
zfc from ambient. Data shown is the hysteresis loop without the zfc branch.
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Figure A.5.: Magnetisation of Yb2Ti2O7 as a function of internal magnetic field along 〈110〉
after correction for demagnetisation fields for temperatures in the range 0.09 K to 0.6 K. Field
sweeps were measured according to the following protocol: 0 → +1 T → 0. Data shown is the
hysteresis loop without the zfc branch.
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Figure A.6.: Magnetisation of Yb2Ti2O7 as a function of internal magnetic field along 〈100〉
after correction for demagnetisation fields for temperatures in the range 0.065 K to 0.9 K. Field
sweeps were measured according to the following protocol: 0 → +1 T → 0. Data shown is the
hysteresis loop without the zfc branch.



B. Neutron Scattering

This appendix chapter comprises additional information on the neutron scattering per-
formed in the present work, cf. Ch. 3 and Ch. 5-6. The maximum energy transfer achiev-
able with neutron scattering is discussed in App. B.1. In App. B.2, details of the instru-
mental resolution of the spin echo spectrometer RESEDA are given. Additional infor-
mation on the measurements in iron are given in App. B.3, and on the measurements in
FexCr1–x in App. B.4.

B.1. Maximum Energy Transfer

The maximum energy transfer that can be realised by neutron scattering can be deter-
mined from the equations for momentum and energy transfer:

Q = (ki − kf ) , (B.1)

and

~ω = ~2

2m
(
k2
i − k2

f

)
, (B.2)

to

|Q|2 = |kf |2 + |ki|2 − 2|kf ||ki| cos (2θ). (B.3)

From Eq. (B.1) follows

kf = −Q+ ki (B.4)
|kf |2 = Q2 + k2

i − 2|Q||ki| cos (](Q, ki)), (B.5)
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which has its maximum for ](Q, ki) = 0. This is the case for kf ‖ ki, and |Q|2 follows to

|Q|2 = |kf |2 + |ki|2 − 2|kf ||ki| (B.6)

= 2mn

~2 Ef + 2mn

~2 Ei − 22mn

~2

√
Ef
√
Ei (B.7)

= 2mn

~2

(
Ef + Ei − 2

√
Ef
√
Ei

)
(B.8)

= 2mn

~2

(√
Ef −

√
Ei

)2
(B.9)

= 2mn

~2

(√
Ei + ∆E −

√
Ei

)2
(B.10)

= 2mn

~2

√Ei
√

1 + ∆E
Ei
−
√
Ei

2

. (B.11)

This gives for ∆E:

∆E =
(
|Q|2~2

2Eimn
+
√

2|Q|~√
Eimn

+ 1
)
Ei − Ei (B.12)

= |Q|
2~2

2mn
+
√

2Ei|Q|~√
mn

+ Ei − Ei (B.13)

= |Q|
2~2

2mn
+
√

2Ei|Q|~√
mn

(B.14)

= |Q|2Ei
k2
i

+ |Q|2
√
Ei~2
√

2mn
(B.15)

= Ei|Q|
(
|Q|
k2
i

+ 2
ki

)
. (B.16)

Fig. B.1 shows the observable (q/ki, E/Ei)-space during a neutron scattering experiment.
A constant angle ](Q, ki) corresponds to a parabolic trajectory. The observable q, E-
spaces for RESEDA during the iron measurements (red), as well as for Collins set-up
(blue) are shown in Fig. B.1.

B.2. Instrumental Resolution of RESEDA

The resolution was analytically derived by taking into account the two main contribution
to the resolution of a small angle neutron scattering instrument, following the theoretical
work by Pedersen et al. [186], and Hammouda and Mildner [187]: (i) resolution due to
a finite wavelength spread; (ii) resolution due to finite collimation. The SANS resolution



B.2. Instrumental Resolution of RESEDA 151

Figure B.1.: Observable (q/ki, E/Ei)-space during a neutron scattering experiment. (a) Scat-
tering parabolas for ](Q, ki) = 0, π/2, and π are shown as solid and dashed lines, respectively.
The grey shaded area shows the (q, E)-space which is inaccessible during neutron scattering.
The red and blue shaded areas show the (q, E)-space of RESEDA and Collins et al. [171],
respectively. (b) shows a zoom of the region of interest during the investigations in iron.

function is represented by a Gaussian distribution of standard deviation σq, where q is
the scattering vector:

R(q, σq) =
√√√√ 1

2πσ2
q

exp
{
− q2

2σ2
q

}
, (B.17)

with

σ2
q = (σ2

q )λ + (σ2
q )coll. (B.18)

= q2
(
σλ
λ

)2
+ 4π2

λ2
σ2
x + σ2

y

L2
SS

(B.19)

= q2
(

∆λ√
6λ

)2

+
(2π
λ

)2 σ2
x + σ2

y

L2
SS

. (B.20)

In the last step, a triangular wavelength distribution was assumed. The spatial variance
is divided in a horizontal contribution

σ2
x =

(
LSD

LSS

)2 r2
1
4 +

(
LSS + LSD

LSD

)2 r2
2
4 + 1

3

(
∆x3

2

)2

, (B.21)

and a vertical contribution

σ2
x =

(
LSD

LSS

)2 r2
1
4 +

(
LSS + LSD

LSD

)2 r2
2
4 + 1

3

(
∆y3

2

)2

. (B.22)
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The instrumental configuration at RESEDA was:

radius source aperture: r1 = 0.02 m
radius sample aperture: r1 = 0.005 m
source-sample distance: LSS = 3.0 m
sample-detector distance: LSD = 2.25 m
horizontal pixel width: ∆x = 0.003125 m
vertical pixel width: ∆y = 0.003125 m
wavelength: λ = 6.0 Å
wavelength spread: ∆λ/λ = 0.12.

B.3. Measurements in Iron

This appendix section comprises additional information on the measurements in iron,
cf. Ch. 5. The plots of all measured temperatures are shown in App. B.3.1. In App. B.3.2,
the calculations of the dipolar energy of iron is given. App. B.3.3 summarises the re-
sults obtained on iron by Collins et al. in 1969 [171]. The data obtained via triple-axis
spectroscopy (TAS) at the beamline MIRA are presented in App. B.3.4.

B.3.1. MIEZE Results

MIEZE scans in iron for all measured temperatures are shown in Fig. B.2-B.8.
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Figure B.2.: Normalised intermediate scattering function as measured in iron at TC − 21K.
Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown for
the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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Figure B.3.: Normalised intermediate scattering function as measured in iron at TC − 11K.
Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown for
the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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Figure B.4.: Normalised intermediate scattering function as measured in iron at TC − 6K.
Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown for
the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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Figure B.5.: Normalised intermediate scattering function as measured in iron at TC − 4K.
Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown for
the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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Figure B.6.: Normalised intermediate scattering function as measured in iron at TC − 2K.
Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown for
the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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Figure B.7.: Normalised intermediate scattering function as measured in iron at TC − 1K.
Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown for
the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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Figure B.8.: Normalised intermediate scattering function as measured at the Curie point in
iron. Data was recorded using neutrons with a mean wavelength of λ = 6.0 Å. Data is shown
for the evaluated q-region, i.e. 0.018 Å−1 to 0.042 Å−1. The solid lines are fits to the data using
Eq. (5.12).
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B.3.2. Dipolar Energy

The dipolar exchange energy for iron was calculated by

Edipolar = gµBµ0 sin2 θqM(T ), (B.23)

with the Landé factor for iron g = 2, the Bohr magneton µB, the magnetic constant
µ0, and the temperature dependent magnetisation M(T ). The temperature dependent
magnetisation was determined using the experimental data from Ref. [231–235], shown in
Fig. B.9(a). Since during the experiment the iron sample was not magnetised, the domains
in the sample were assumed to be randomly distributed and, hence, the angle between
scattering vector and magnetisation can take any value:

〈sin2 θq〉 = 1
4π

∫ 2π

0

∫ π

0
sin θq sin2 θqdθqdφ (B.24)

= 1
2

∫ π

0
sin3 θqdθq (B.25)

= 2
3 . (B.26)

The dipolar energy, shown in Fig. B.9(b), used for determining the spin wave energy was
calculated by using the fit to the experimental data, rather than the strict power law
behaviour introduced in Sec. 5.1.

0 300 600 900
T (K)

0

0.5

1.0

1.5

2.0

M
(1
0
6
A
/m

)

Msat = 1.745 106 A/m TC =
1043K

(a)

= 0.33

Msat(1 T/TC) + . . .

Msat(1 T/TC)

960 990 1020
T (K)

0

0.02

0.04

0.06

0.08

E
d
ip
o
la
r
(m

e
V
)

TC =
1043K

Edipolar = g B 0M(T)sin2( q)

(b)

Figure B.9.: Magnetisation and dipolar energy of iron. (a) Magnetisation as function of tem-
perature. Experimental data taken from Ref. [231–235]. The blue solid line is a fit to the data.
The dashed orange line describes the power law behaviour, cf. Sec. 5.1. (b) Calculated dipolar
energy for the fit to the data, and the power law behaviour from (a), respectively. Black dots
indicate at what temperatures data was taken during the present study.
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B.3.3. Data Collins et al.

In 1969, Collins et al. [171] studied the critical scattering in iron for a wide temperature
range in the spin wave and transition region introduced in Sec. 5.1. As compared to the
model describing the dispersion relation of the spin waves in the present work, cf. Eq. (5.5),
Collins et al. included a higher order term:

Esw(q) =
√

(Dq2 + Eq4) ((Dq2 + Eq4) + Edipolar), (B.27)

with an additional exchange constant E. Since this higher order term becomes important
only for larger q, it was neglected in the data treatment of the present study. Collins
et al. show their constant q scans and the fit results for the spin stiffness D, without
showing the dispersion relations for all investigated temperatures. Fig. B.10 shows the
spin stiffness D from Ref. [171] Fig. 7 as a function of temperature. Data is plotted as in
Ref. [171], cf. Fig. B.10(a, c, e), and plotted as during the present work, cf. Fig. B.10(b, d,
f).

Data from Collins et al. was fitted with fixed parameter β = 0.33 (a, b), with fixed
parameter β = 0.37 (c, d), and with leaving β free (e, f). Tab. B.1 compares the different
fit results for β and D0. Collins et al. reported β = 0.37±0.03 and D0 = 281±10 meVÅ2.
Fitting their data and leaving β free gives β = 0.38, which is within the margin of error of
β = 0.37±0.03. The spin wave stiffness constant, however, is with D0 = 334±6 meVÅ2

significantly larger than what was reported by Collins et al.

Table B.1.: Comparison of the fit results for the spin wave stiffness given by Collins et al. to
the results obtained by fitting their data for the spin wave stiffness. While the critical exponent
β is within the margin of errors, the spin wave stiffness D differs significantly.

Collins et al. own fit of Collins data

β 0.37± 0.03 0.33 (fixed) 0.37 (fixed) 0.38 (free)
D0 (meVÅ2) 281± 10 305± 5 328± 6 334± 6
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Figure B.10.: Spin wave stiffness obtained by Collins et al. The left row (a, c, e) is plotted on
a log-log scale, while the right row (b, d, f) is plotted on a linear scale. (a, b) β fixed to 0.33.
(c, d) β fixed to 0.37, as obtained by Collins et al. (e, f) β fitted as a free parameter, giving
β = 0.38.
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B.3.4. TAS Results

Triple-axis spectroscopy (TAS) was performed at the MIRA beamline, MLZ [236, 237].
Data was taken in the vicinity of the [000]-Bragg peak, with a fixed final wave-vector
kf = 1.36 Å−1. The neutron beam was collimated before and after the sample with a 30′

collimator.
Measurements were performed between room temperature and ∼1125 K. The sample

was heated using a high temperature furnace, with a resistive niobium double cylinder
heating element. It should be noted that this experiment used the HTF-03, while the spin
echo studies used the HTF-01, both from the sample environment of FRM II. Temperature
was controlled with a Eurotherm 2404 controller. The furnace covers a temperature range
between room temperature and ∼2200 K. The temperature stability was about ∼0.05 K
and no hysteresis effects were observed. Both was verified by means of several temperature
scans.

The sample used in the present study is the same bcc iron single crystal as used for the
spin echo measurements, cf. Ch. 5. Data was analysed using the Convofit tool from the
Takin software package [238, 239]. Thereby, the physical model

Esw(q) =
√
Dq2(Dq2 + Edipolar), (B.28)

describing the dispersion relation of the spin wave energy, cf. Ch. 5.1, was convolved with
the instrumental resolution of the spectrometer using the Popovici algorithm [240].



164 Appendix B. Neutron Scattering

E (meV)
0

2.00

4.00
TC 1K
0.031Å 1

D = 31.8meVÅ2

E (meV)

0

1.00

2.00

In
te
n
si
ty
(1
0

2
ct
s/
m
o
n
)

0.039Å 1 D = 31.3meVÅ2

E (meV)
0

0.50

1.00

1.50
0.046Å 1 D = 31.6meVÅ2

0.2 0 0.2
E (meV)

0

0.20

0.40

0.60 0.062Å 1 D = 31.0meVÅ2

E (meV)

0.10

0.20

0.077Å 1 D = 30.0meVÅ2

E (meV)

0.10

0.12

0.14

In
te
n
si
ty
(1
0

2
ct
s/
m
o
n
)

0.093Å 1 D = 26.6meVÅ2

E (meV)

0.06

0.07

0.108Å 1 D = 30.5meVÅ2

0.2 0 0.2
E (meV)

0.03

0.04
0.124Å 1 D = 31.0meVÅ2

Figure B.11.: Spin-waves in iron at TC − 1 K. Constant q scans with a fixed final wave-vector
kf = 1.36 Å−1. Solid lines are fits to the data using Eq. (B.28) convolved with the instrumental
resolution.
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Figure B.12.: Spin-waves in iron at TC − 2 K. Constant q scans with a fixed final wave-vector
kf = 1.36 Å−1. Solid lines are fits to the data using Eq. (B.28) convolved with the instrumental
resolution.
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Figure B.13.: Spin-waves in iron at TC − 4 K. Constant q scans with a fixed final wave-vector
kf = 1.36 Å−1. Solid lines are fits to the data using Eq. (B.28) convolved with the instrumental
resolution.
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Figure B.14.: Spin-waves in iron at TC − 6 K. Constant q scans with a fixed final wave-vector
kf = 1.36 Å−1. Solid lines are fits to the data using Eq. (B.28) convolved with the instrumental
resolution.
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Figure B.15.: Spin-waves in iron at TC− 11 K. Constant q scans with a fixed final wave-vector
kf = 1.36 Å−1. Solid lines are fits to the data using Eq. (B.28) convolved with the instrumental
resolution.
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B.4. Measurements in FexCr1 – x

This appendix section comprises additional information on the measurements in FexCr1–x ,
cf. Ch. 6. The plots of all measured MIEZE scans are shown in App. B.4.1.

B.4.1. MIEZE Results

MIEZE scans in FexCr1–x for all measured temperatures are shown in Fig. B.16-B.21. In
Fig. B.22, the decay rate Γ is shown for temperatures, where the extraction of a physical
meaningful Γ was not possible.
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Figure B.16.: Normalised intermediate scattering function as measured in Fex Cr1–x with x =
0.145 for temperatures between 4 K and 30 K. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Data is shown for the evaluated q-region, i.e. 0.016 Å−1 to 0.085 Å−1.
The solid lines are fits to the data using Eq. (6.3).
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Figure B.17.: Normalised intermediate scattering function as measured in Fex Cr1–x with x =
0.145 for temperatures between 34 K and 295 K. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Data is shown for the evaluated q-region, i.e. 0.016 Å−1 to 0.085 Å−1.
The solid lines are fits to the data using Eq. (6.3).
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Figure B.18.: Normalised intermediate scattering function as measured in Fex Cr1–x with x =
0.175 for temperatures between 4 K and 25 K. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Data is shown for the evaluated q-region, i.e. 0.016 Å−1 to 0.085 Å−1.
The solid lines are fits to the data using Eq. (6.3).
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Figure B.19.: Normalised intermediate scattering function as measured in Fex Cr1–x with x =
0.175 for temperatures between 30 K and 295 K. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Data is shown for the evaluated q-region, i.e. 0.016 Å−1 to 0.085 Å−1.
The solid lines are fits to the data using Eq. (6.3).
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Figure B.20.: Normalised intermediate scattering function as measured in Fex Cr1–x with x =
0.210 for temperatures between 4 K and 34 K. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Data is shown for the evaluated q-region, i.e. 0.016 Å−1 to 0.085 Å−1.
The solid lines are fits to the data using Eq. (6.3).
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Figure B.21.: Normalised intermediate scattering function as measured in Fex Cr1–x with x =
0.210 for temperatures between 50 K and 295 K. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Data is shown for the evaluated q-region, i.e. 0.016 Å−1 to 0.085 Å−1.
The solid lines are fits to the data using Eq. (6.3).
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Figure B.22.: Decay rate Γ as function of scattering vector q. Data is shown for (a) x = 0.145,
(b) x = 0.175, (c) x = 0.210, and temperatures where the fit of the intermediate scattering
function in Fig. 6.6 and Fig. 6.7 did not deliver meaningful Γ. There are two main reasons for
when the fit fails to deliver a meaningful Γ. First, when a very broad distribution of relaxation
times is present, hence the exponential decay is strongly stretched. Therefore, a single relaxation
time, i.e. a single Γ, does not represent represent the decay. Second, when a poor signal to noise
ratio does not allow for proper fitting, as it may be the case for highest temperatures. Data is
shifted by 0.015 meV as indicated by the horizontal dashed lines.
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[75] W. Häussler, B. Gohla-Neudecker, R. Schwikowski, D. Streibl, and P. Böni, RESEDA
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[188] P. Böni and G. Shirane, Paramagnetic Neutron Scattering from the Heisenberg
Ferromagnet EuO, Phys. Rev. B 33, 3012 (1986).

[189] L. Passell, O. W. Dietrich, and J. Als-Nielsen, Neutron Scattering from the Heisen-
berg Ferromagnets EuO and EuS. I. The Exchange Interactions, Phys. Rev. B 14,
4897 (1976).

[190] H. G. Bohn, A. Kollmar, and W. Zinn, Spin Dynamics in the Cubic Heisenberg
Ferromagnet EuS, Phys. Rev. B 30, 6504 (1984).
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ferenzen, Summer-/Winterschools, Workshops, etc. teilzunehmen. Es macht wirklich
Spaß, in deinem Team zu arbeiten.
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Antic, Andreas Buchner, für die super Zusammenarbeit und stete Hilfsbereitschaft.
Ein großer Dank geht auch an die Zentralwerkstatt um Manfred Pfaller, für die im-
mer schnelle Hilfe bei dringenden Konstruktionsproblemen. Andi Mantwill für die vielen
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