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Abstract

Operational risk measurement has become an important research area for the financial

industry in recent years. In order to accurately estimate the required capital reserves as

well as to obtain a deeper understanding into this complex risk category, an appropri-

ately specified dependence model for loss incidents attributed to different risk factors and

business units is indispensable. Hence the current thesis is dedicated to exploring various

proposals for dependence modelling in operational risk, and subsequently focusing on a

straightforward to apply, yet flexible enough approach based on compound Poisson pro-

cesses and Lévy copulas. Similar to the rationale of ordinary copulas, the Lévy measure

of a multivariate Lévy process is fully characterised by its marginal components and the

associated Lévy copula. Besides an in-depth theoretical treatment of bivariate models,

extensive simulation and real application examples are provided.



Contents

1 Introduction 1

1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A literature review of dependence modelling . . . . . . . . . . . . . . . . . 2

1.2.1 Inter-cell frequency dependence . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Inter-cell severity dependence . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Inter-cell aggregate loss dependence . . . . . . . . . . . . . . . . . . 9

1.2.4 Inter-cell frequency and severity dependence . . . . . . . . . . . . . 12

1.2.5 Intra-cell dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.6 Inter- and intra-cell dependence . . . . . . . . . . . . . . . . . . . . 15

2 Preliminaries 19
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Chapter 1

Introduction

Operational risk belongs to one of the three primary risk types encountered in the finance

industry. The other two categories are market and credit risk, respectively. The commonly

recognised definition of operational risk was first introduced in the second of the Basel

Accords1, which constitute the most important international regulatory framework for

financial institutions and are issued by the Basel Committee on Banking Supervision.

Accordingly, operational risk is the risk of loss resulting from inadequate or failed internal

processes, people and systems or from external events, including legal risk2 but excluding

strategic and reputational risk. This definition is preserved in the latest finalisation of the

Basel III framework from December 20173.

Despite the increasing attention devoted to operational risk management, the financial

sector continues suffering from significant losses due to operational failures. Alone in

2017, for example, the ten largest operational losses worldwide exceeded $11.6 billion

as reported by [Ris18a]. The largest loss was caused by fraudulent transactions at the

Brazilian development bank totalling $2.52 billion. Secondly, employees at the Shoko

Chukin Bank in Japan improperly granted $2.39 billion of loans by falsifying approval

documents. In third place, the U.S. Securities and Exchange Commission brought charges

against the Woodbridge Group of Companies with running a $1.22 billion Ponzi scheme.

Besides the rare events cited above, operational losses of smaller but still considerable

sizes do occur at every financial institute, not least because of the progresses made in

financial technology and the increasing complexity and interdependence of operations

in the corresponding industry. This concern emphasises the importance of operational

risk quantifications and reliable estimation methods for sufficient capital reserves against

potential incidents. Hence in the present work we put our focus on dependence modelling

for operational losses, which should be part of any solid operational risk model. First,

a brief outline of the thesis is provided in Section 1.1, as well as an overview of various

approaches for capturing dependence in Section 1.2, before the main approach based on

1See [Ban06].
2As explained in [Ban06], legal risk includes, but is not limited to, exposure to fines, penalties, or

punitive damages resulting from supervisory actions, as well as private settlements.
3See [Ban17].
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CHAPTER 1. INTRODUCTION 2

compound Poisson processes and Lévy copulas is discussed in the subsequent chapters.

1.1 Outline of the thesis

The remaining chapters of this thesis are structured as follows. To begin with, Chapter 2

reviews the definition and essential properties of Lévy processes and their associated Lévy

measures. Most importantly, a version of Sklar’s theorem for Lévy copulas is explained

in detail, which builds the theoretical foundation for the multivariate dependence model

introduced in Chapter 3. The marginal components of our dependence model are given

by the familiar compound Poisson processes originating from actuarial risk theory. In

order to demonstrate how Lévy copulas simultaneously shape frequency and severity

interdependence among the marginal processes, the features of a bivariate model are

explored in detail and illustrated through examples. Going one step further, the estimation

of such a dependence model is enabled by specifying the corresponding likelihood function.

As more accurate risk exposure calculations constitute a major incentive of dependence

modelling, Chapter 4 is devoted to presenting closed-form risk measure approximations

for high confidence levels. The restrictions when generalising univariate results to higher

dimensions and some potential extensions are discussed as well. The sensitivity of risk

measure estimations towards different model components is addressed in Chapter 5, where

the quality of maximum likelihood estimates and various approaches to assessing the

goodness of fitted dependence structures are also investigated by means of simulation.

Drawing on real-world loss data, Chapter 6 exemplifies our modelling approach by pro-

viding the entire procedure of verifying model assumptions, estimating model parameters

and evaluating the reasonableness of obtained models. The possible insufficiency of loss

observations within a single financial institute and the incorporation of external loss in-

formation are briefly covered as well. Finally, concluding remarks and directions for future

research follow in Chapter 7.

1.2 A literature review of dependence modelling

According to the currently effective Basel requirements for the quantitative modelling of

operational risk, activities within a financial institute are divided into eight business lines,

each of them exposed to seven potential loss event types. For a detailed description of

the categorisation we refer to Appendix A. Hence there are 56 different combinations of

business line and event type, usually called risk cells. The determination of operational

risk capital is built upon the explicit estimation of frequency and severity distributions for

losses assigned to each risk cell. This method is often referred to as the loss distribution

approach.

Owing to the individual data availability and business organisation, financial institutes

may deviate from the matrix of 56 risk cells and adopt a substructure of it for statistical
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modelling. Therefore, let d denote the number of risk cells being generally considered.

Inspired by the classical actuarial risk theory, the aggregate loss amount up to time t in

risk cell i ∈ {1, . . . , d} is given by a compound stochastic process

Si(t) =

Ni(t)∑
k=1

Xik, t ≥ 0, (1.1)

where Ni(t) denotes the loss frequency process with starting value Ni(0) = 0 and Xik,

k ≥ 1, are random positive loss severities from a continuous distribution. The probability

of no loss occurring until time t is given by P(Si(t) = 0) = P(Ni(t) = 0). Under the

standard assumption, the individual losses Xik within the same risk cell i are i.i.d. with

distribution function FXi satisfying FXi(0) = 0 and are independent from the number of

losses Ni(t).

The overall operational loss process of a financial institute is obtained by summing up

over all d risk cells, that is,

S+(t) =
d∑
i=1

Si(t), t ≥ 0. (1.2)

In order to estimate the necessary capital reserves against future losses, the risk mea-

sure value at risk (VaR) is typically applied. More precisely, we introduce the following

definition.

Definition 1.1 (Operational VaR).

Let Gi,t(x) = P(Si(t) ≤ x) denote the distribution function of the aggregate loss Si(t) in

risk cell i ∈ {1, . . . , d}. Then the stand-alone operational VaR of risk cell i until time t at

confidence level α ∈ (0, 1) is the α-quantile of Si(t) and given by the generalised inverse

VaRi,t(α) = G←i,t(α) = inf {x ∈ R |Gi,t(x) ≥ α} . (1.3)

Accordingly, the distribution function of S+(t) is denoted by G+,t(x) and the overall

operational VaR of a financial institution until time t at level α ∈ (0, 1) is defined as

VaR+,t(α) = G←+,t(α) = inf {x ∈ R |G+,t(x) ≥ α} . (1.4)

The standard risk measure specified by the Basel Committee is the VaR at level 99.9%

for a one-year holding period4. In other words, the value of VaR+,1(99.9%) is to calculate,

when assuming the time scaling t = 1 corresponds to one calender year. However, even the

compound distribution Gi,1 of a single risk cell generally does not possess a closed-form

expression, let alone the distribution G+,1 of the overall loss process, which further involves

the dependence structure among the d risk cells. For this reason, financial institutions

are requested to add up the stand-alone measures VaRi,1(99.9%), i ∈ {1, . . . , d}, for

4Paragraph 667 of [Ban06] states “... Whatever approach is used, a bank must demonstrate that its

operational risk measure meets a soundness standard comparable to that of the internal ratings-based

approach for credit risk, (i.e. comparable to a one year holding period and a 99.9th percentile confidence

interval).”
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calculating the overall capital reserve, unless they can provide a well-founded dependence

model for the risk cells5.

The provision of simple accumulation may be due to the fact that for any subadditive risk

measure the summation of all stand-alone measures represents an upper bound for the

same risk measure directly applied to the sum S+. However, it is well-known that VaR

lacks subadditivity and its potential superadditivity is particularly pronounced in case of

heavy-tailed severity distributions which are commonly encountered in operational risk

context. Theoretical explanations for the latter can be found in [BK08] and [CEN06], as

well as for empirical evidences we refer to [CA08], [GFA09] and [MPY11].

Moreover, the assumption of the equivalence between VaR+ and
∑d

i=1 VaRi corresponds

to the implicit adoption of perfectly positive dependence among the aggregate losses

S1, . . . , Sd, as been proved in Proposition 7.20 in [MFE15], for instance. In contrast, empir-

ical studies show that the dependence between aggregate losses is generally rather weak.

For example, [CA08] examines international operational losses collected by the ORX6

consortium and finds Kendall’s rank correlations among the losses, aggregated either at

business line or at event type level, commonly less than 0.2 and rarely exceeding 0.4. Sim-

ilarly, study of the Italian DIPO7 database by [BCP14] results in empirical Kendall’s τ

values ranging from −0.14 to 0.30. Further examples can be found in [Cha+04], [FVG08],

[Gia+08] and [GFA09], where the authors study anonymised loss data from individual

banks.

In summary, the simple addition of stand-alone VaRs could either over- or underestimate

the true overall risk exposure and the comonotonic scenario among different risk cells is

seen unjustified in reality. Therefore, a strong incentive to explicitly model dependence

structures arises and a fruitful research on this issue emerges both in academia and prac-

tice. The latter gives the ground for the literature review in the current section.

At this point it should also be noticed that a new non-model based method, the stan-

dardised approach, is introduced in the recently published finalisation of the Basel III

framework8. From the 1st of January 2022 on, the standardised approach shall replace

all existing methodologies for measuring minimum operational risk capital requirements

under Pillar I of the Basel standards. The new approach is supposed to improve the

comparability and simplicity of operational risk capital calculations. On the other hand,

concerns have been raised that a non-model based approach cannot sufficiently respect

the complexity and firm-specific characteristics of operational losses and hence lacks risk

sensitivity, for example as reported in [Coo18] and [Ris18b]. As a result, it is expected

5Paragraph 669(d) of [Ban06] states “Risk measures for different operational risk estimates must be

added for purposes of calculating the regulatory minimum capital requirement. However, the bank may be

permitted to use internally determined correlations in operational risk losses across individual operational

risk estimates, provided it can demonstrate to the satisfaction of the national supervisor that its systems

for determining correlations are sound, implemented with integrity, and take into account the uncertainty

surrounding any such correlation estimates ....”
6Operational Riskdata eXchange Association.
7Database Italiano delle Perdite Operative.
8See [Ban17].
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that sophisticated approaches based on mathematical modelling would retain their impor-

tance as well as be employed for assessing economic capital and Pillar II capital support.

Furthermore, a reasonable dependence model should not only contribute to an accurate

assessment of regulatory capital, but also improve the understanding of the overall opera-

tional risk structure within financial institutions and support risk management procedures.

The objective of the subsequent sections is to explore different approaches of relaxing

the perfect dependence assumption among the d risk cells as well as the independence

assumption of loss counts and loss sizes within a single risk cell. We do not strive for a full

treatment of all possible dependence models, as that would fill a separate textbook. Instead

we highlight the state-of-the-art techniques and summarise some practical experiences

with operational loss data. In order to give the overview a clear structure, we subdivide

all dependence concepts as follows:

(1) inter-cell dependence based on frequencies N1(t), . . . , Nd(t),

(2) inter-cell dependence based on severities X1k, . . . , Xdk,

(3) inter-cell dependence based on aggregate losses S1(t), . . . , Sd(t),

(4) inter-cell dependence based on frequencies N1(t), . . . , Nd(t) and on severities

X1k, . . . , Xdk,

(5) intra-cell dependence introduced between frequency Ni(t) and severities Xik for risk

cell i ∈ {1, . . . , d},

(6) both inter- and intra-cell dependence.

For notational convenience, whenever the observation time horizon is regarded as fixed,

for example at t = 1, we may omit the time index t from the notations introduced in (1.1)-

(1.4). From a mathematical perspective, the total loss process of risk cell i ∈ {1, . . . , d}
then reduces to a compound random variable Si, represented as a sum of Ni random single

losses.

1.2.1 Inter-cell frequency dependence

One of the most popular methods is to characterise the dependence structure among the

frequencies of different risk cells via parametric copulas. Let CN : [0, 1]d → [0, 1] be a d-

variate copula and let FNi denote the distribution function of the loss frequency Ni in risk

cell i ∈ {1, . . . d}. Then a joint distribution FN of N = (N1, . . . , Nd)
> can be constructed

by

FN(n1, . . . , nd) = CN (FN1(n1), . . . , FNd(nd)) , (n1, . . . , nd)
> ∈ Nd

0. (1.5)

Commonly utilised candidates for the marginal distribution FNi are the Poisson distribu-

tion and the negative binomial distribution, where the latter can be seen as the randomi-

sation of the Poisson parameter through a gamma distribution and hence accounts for



CHAPTER 1. INTRODUCTION 6

over-dispersion. However, with regard to VaR estimations, the difference between Poisson

and negative binomial distributed frequencies can be negligible as theoretically shown in

[BK05] as well as empirically observed by [AK07] and [Val09].

The theoretical foundation of (1.5) is provided by the well-known Sklar’s theorem. Since

the copula CN can be chosen arbitrarily, the current approach allows for both positive

and negative dependence among N1, . . . , Nd. Nevertheless, we would like to mention the

dependence structure of N1, . . . , Nd is not solely determined by the copula, which follows

from the non-uniqueness of copula for discrete random variables. Consequently, drawing

inference for the parameters of the copula CN could be tricky.

In order to circumvent the above difficulty, [SV14] employs the idea of “jittering” for mod-

elling multivariate insurance claim numbers, which can be readily applied in operational

risk context as well. The discrete frequencies N1, . . . , Nd are jittered by subtracting an

independent standard uniform random variable from each of them, such that the usual

maximum likelihood inference for continuous distributions can be carried out. Rank-based

dependence measures, such as Kendall’s τ , are preserved within the jittering procedure.

Another variation of frequency dependence modelling via copulas is proposed by [WSZ16],

in which mutual information from the entropy framework is utilised as the correlation

parameters for a Gaussian copula. The mutual information I(Ni, Nj) between two random

variables Ni and Nj, i 6= j, measures the information of Ni contained in Nj and vice versa.

It is symmetric among its two arguments and can be calculated through

I(Ni, Nj) = H(Nj)−H(Nj|Ni) = H(Ni)−H(Ni|Nj)

= H(Ni) +H(Nj)−H(Ni, Nj),

where H(Ni) and H(Nj) denote the entropy of Ni and Nj, respectively, H(Nj|Ni) and

H(Ni|Nj) are the conditional entropy, and H(Ni, Nj) is the joint entropy. The value of

I(Ni, Nj) is always non-negative and equals to zero if and only if Ni and Nj are indepen-

dent. Hence the mutual information between Ni and Nj can be considered as a measure

of dependence between these variables. As the correlation parameters in a Gaussian cop-

ula have to lie in the interval [0, 1], the global correlation coefficient is introduced as a

standardised version of mutual information and it is given by

ρIij =
√

1− exp[−2I(Ni, Nj)]. (1.6)

The authors of [WSZ16] apply the above method to calculate the operational risk capital

charge for the overall Chinese banking industry.

An alternative to utilising copulas is to directly specify the joint distribution of N as a

d-variate mixed Poisson distribution. More precisely, the authors of [Bad+14] and [Tan16]

adopt a multivariate Erlang mixture with a common scale parameter as the mixing dis-

tribution, such that the random vector N follows a d-variate Pascal mixture distribution,

that is, a negative binomial distribution with a positive integer shape parameter. All

parameters are estimated by an expectation maximisation (EM) algorithm, whose M-

step converges to a unique global maximum and is supposed to outperform copula-based

estimations in high dimension.
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In addition, the issue of left-truncated severities is addressed, as often only losses exceeding

certain recording thresholds c1, . . . , cd are collected in practice. If the loss frequency of risk

cell i is redefined as N rec
i =

∑Ni
k=1 1{Xik>ci}, then the joint distribution of N rec

1 , . . . , N rec
d

still belongs to the class of multivariate Pascal mixtures with modified scale parameters.

Moreover, in case that loss severities are discretised and satisfy the standard independent

assumption as detailed after (1.1), the joint distribution of the aggregate losses S1, . . . , Sd
constitutes a compound negative binomial distribution and possesses a closed-form ex-

pression. Hence VaR calculations can be carried out through Panjer’s recursion instead

of Monte Carlo simulation. As numerical illustration, the above procedure is applied to

the operational loss data of a North American financial institution comprising eight risk

cells.

Another adaptation of Poisson mixtures to characterising multivariate loss frequencies is

proposed in the lecture notes [Sch17] about an extension of the CreditRisk+ framework.

Interestingly, the industry model CreditRisk+ from the world of credit risk management

actually stems from actuarial mathematics and is now in turn utilised to analyse oper-

ational risk, whose basic model assumptions are also based upon actuarial risk theory

as already indicated. More specifically, obligors and non-idiosyncratic risk factors from

the extended CreditRisk+ model are interpreted in the operational risk setting as busi-

ness lines and event types, respectively. Furthermore, the evaluation of compound loss

distributions and VaRs can be achieved via a variation of Panjer’s recursion.

Besides specifying the joint distribution of N1, . . . , Nd either directly or via copulas, inter-

cell frequency dependence can also be replicated through a common shock structure. More

precisely, losses of different risk cells are considered to be related to a series of underly-

ing independent common shocks, such as electric failures, internal miscommunications or

cybersecurity breaches. In particular, consider m independent Poisson random variables

Ñ1, . . . , Ñm with positive rate parameters λ̃1, . . . , λ̃m, respectively. Each of these random

variables represents an underlying process which can be assigned to one or more risk cells

and the assignment is recorded in the indicator variables

δij =

{
1, shock j has an impact on cell i,

0, otherwise,
i ∈ {1, . . . , d}, j ∈ {1, . . . ,m}.

Then the observable frequency Ni of risk cell i has the expression

Ni =
m∑
j=1

δijÑj,

and is also Poisson distributed with mean λi =
∑m

j=1 δijλ̃j. Note that only positive cor-

relations between frequencies can be captured through this approach and an empirical

support is provided by [FRS04], in which the authors observed a high number of external

fraud events in case of increasing occurrence of internal fraud events.

In terms of parameter estimation, [PRT02] suggests a two-step procedure. First, the pa-

rameter λi of the observable frequency Ni, i ∈ {1, . . . , d}, is estimated by its empirical

mean, which is equivalent to the maximum likelihood estimate (MLE) in the current Pois-

son case. In the second step, the underlying intensities λ̃j, j ∈ {1, . . . ,m}, are computed
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as the solution of a constrained quadratic optimisation problem. The objective function is

defined as the difference between the empirical and the theoretical covariance matrices in

Frobenius norm, under the constraints of non-negative Poisson parameters and matching

with the estimators from the first step. The property of equal mean and variance of a

Poisson distribution is essential for the formulation of the optimisation problem.

A more flexible dependence structure is obtained through replacing the indicator variables

by Bernoulli random variables Bij ∼ Ber(pij), i ∈ {1, . . . , d}, j ∈ {1, . . . ,m}. Then

common shock j causes with probability pij ∈ [0, 1] a loss in risk cell j. Furthermore, the

authors of [LM03] advocate taking into account dependent severities caused by the same

common shock in a similar manner.

We conclude this section about inter-cell frequency dependence by a brief discussion of

its influence on the implied dependence strength among the compound losses S1, . . . , Sd.

Different investigations of real loss data, for example of a French bank by [FRS04], a

German bank by [AK07] and an Italian bank by [Bee05], show that even with strong

frequency correlations the implied correlations between S1, . . . , Sd are rather weak, as

long as loss severities are assumed being independent. This phenomenon is argued to be

particularly true for heavy-tailed severity distributions, which are commonly encountered

in operational risk and dominate any frequency dependence structures. Of course, this

observation also has an important implication for the overall risk measure VaR+, and its

value is expected to resemble the case of independent compound losses S1, . . . , Sd despite

potentially varying frequency correlations.

1.2.2 Inter-cell severity dependence

Obviously, a dependence structure among the single loss sizes from different risk cells

can also be calibrated by means of parametric copulas. A real-life application is provided

by [GH12], in which the authors in particular use pair-copula constructions to estimate

the capital requirement for the French semi-cooperative banking group Caisse d’Epargne

based upon its historical loss data. Both nested Archimedean and D-vine architectures

are fitted to the ten risk cells being considered, whereas the bivariate building blocks are

chosen from the Gumbel, Clayton, Frank, Galambos, Husler-Reiss and Tawn copulas. All

compound loss distributions are built as a convolution with Poisson frequency, although

the authors have also tested alternative frequency distributions such as the binomial and

the negative binomial ones, and conclude the VaR estimates are insensitive to the choice

of frequency distributions.

In the above example, the method of semi-parametric pseudo maximum likelihood esti-

mation (PMLE) is employed to fit the copula parameters. In order to clarify terms, we

briefly recall the three most common methods for copula estimation, as this also plays a

relevant role in the subsequent sections.

The first method is of course the classical MLE, whereby the joint density is maximised

simultaneously with respect to both the copula and the marginal distribution parameters.



CHAPTER 1. INTRODUCTION 9

Hence this method is often referred to as the full parametric MLE and presents the com-

putationally most expensive one. In order to reduce computational complexity, especially

in higher dimensions, the next two approaches both rely on the idea of separating the

margins from the copula estimation. Depending on how the marginal distributions are

treated, one differentiates between the inference function for margins (IFM) technique

and the aforementioned PMLE.

The IFM is often called stepwise parametric as the marginal distributions and the copula

are estimated parametrically in two successive steps. Firstly, the parameters of the margins

are estimated via MLE. Then the marginal parameters are considered as fixed and plugged

into the joint likelihood of the copula and the margins, which is maximised solely with

respect to the copula parameter in the second step. Equivalently, the second step can be

interpreted as maximising the copula density based on the so-called pseudo copula data,

which are obtained through applying the estimated marginal distribution functions to the

original observed loss data.

In contrast, the PMLE is called semi-parametric, as empirical marginal distribution func-

tions are computed in the first stage and utilised to transform original data into pseudo

copula data in the second stage. One rationale for this procedure is to avoid potential

parametric restrictions on the margins when estimating the dependence structure, which

is of course only sensible if sufficient loss data are available to ensure a good approxi-

mation through empirical distribution functions. Under mild regularity conditions on the

copula family, the copula parameter estimate is shown by [GGR95] to be asymptotically

normal.

1.2.3 Inter-cell aggregate loss dependence

As discussed at the end of Section 1.2.1, pure frequency dependence modelling may only

result in a very limited range of aggregate loss dependence, hence another popular ap-

proach is to directly consider a dependence structure at the level of the compound losses

S1, . . . , Sd.

A straightforward way for this purpose is again by means of parametric copulas. As before,

let Gi, i ∈ {1, . . . , d}, denote the distribution function of the compound loss in risk cell i,

and let CS : [0, 1]d → [0, 1] be a d-variate copula. Then the expression

G(x1, . . . , xd) = CS (G1(x1), . . . , Gd(xd)) , (x1, . . . , xd)
> ∈ Rd

+,

specifies a joint distribution G of S = (S1, . . . , Sd)
>. Note that the marginal distributions

Gi, i ∈ {1, . . . , d}, are calculated by compounding the severity distribution via the fre-

quency of the corresponding cell, whereas the standard independent assumptions following

(1.1) hold. Common choices for fitting loss frequency include the Poisson, the negative

binomial and the geometric distributions. In order to take rare loss occurrence in certain

risk cells into account, a zero-inflated version of the aforementioned distributions can be

considered. With respect to loss severity, the gamma distribution, the Weibull distribu-

tion, the lognormal distribution, the Pareto distribution as well as the generalised Pareto
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distribution (GPD) are widely employed.

As already stated, the compound distributions usually do not have a closed-form expres-

sion and have to be accessed via recursion or simulation. Furthermore, in order to obtain

a sufficiently large sample for copula parameter estimation, loss data are often aggregated

on a quarterly or monthly basis, although the VaR estimate with respect to the annual

loss amount is of primary interest for capital reserves. The implicit assumption made here

is the dependence structure over a one-year time horizon corresponds to that of shorter

periods.

The current copula approach is followed by many literature sources and we summarise

below some variations worthy of mentioning. Instead of fitting a plain distribution to

loss severities, [CR04] and [GFA09] utilise a spliced distribution with lognormal body

and GPD tail. The theoretical foundation to this originates from extreme value theory

(EVT), in which the well-known Pickands-Balkema-de Haan theorem ensures that the

excess distribution over a high threshold can be well approximated through a GPD for

all commonly encountered distribution functions. Similarly, the authors of [Gia+08] use

a variation of heavy-tailed α-stable distributions to model the body of loss severities

and both symmetric and skewed Student’s t copulas to model dependence among the

compound losses.

The application of EVT is further elaborated by [ABF12] such that the upper tail of

a t copula is substituted by the upper tail of a multivariate GPD copula in a continu-

ous way. The result constitutes a well-defined copula which is supposed to capture the

heavy-tailed nature of operational losses more adequately. The authors exemplify their

approach by an analysis of the SAS OpRisk Global Data, which is an external database

containing worldwide publicly reported operational losses. For ease of model calibration,

the thresholds chosen for the marginal spliced distributions are also used for estimating

the spliced copula.

An alternative to maximum likelihood based methods is suggested in [Ang+09], where

an EM algorithm is employed for frequency and severity parameter estimation in case of

left truncated loss data. An empirical illustration is provided by evaluating the external

dataset from the company OpVantage, in which losses exceeding $1 million are collected

from public sources. Apart from this, the authors of [Val09] adopt a Bayesian model for

analysing the losses of an anonymous bank, as they argue Bayesian statistics are in par-

ticular suitable when dealing with scarce operational risk data and incorporating prior

information brought by experts. Parameters of both the marginal distributions as well

as the Gaussian and Student’s t copulas are computed via Markov chain Monte Carlo

(MCMC) methods. A further utilisation of Gaussian and t copulas is incorporated by

[PG09] into a graphical model. More precisely, each node in the graph represents the

random total loss for a combination of business line and event type. The joint distri-

bution of nodes within a connected subgraph is then formed via a copula whereas the

interdependence between connected subgraphs is subject to hyper Markov properties.

On the other hand, the authors of [BCP14] extend the current copula approach by explic-

itly modelling potential zero observations in certain risk cells, as the non-occurrence of
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losses should also convey information about dependence characteristics. For this purpose,

a Bernoulli random variable Bi is introduced for each risk cell i ∈ {1, . . . , d} and has the

interpretation

Bi =

{
1, if no loss occurs in cell i,

0, otherwise.

If S+
i denotes the strictly positive and continuous part of the total loss Si in risk cell i,

then the total loss can be expressed as Si = (1− Bi)S
+
i ≥ 0. Additionally, let pB denote

the multivariate probability mass function of B = (B1, . . . , Bd)
> and let b = (b1, . . . , bd)

>

be a realisation of B. Then we introduce D(b) = {i ∈ {1, . . . , d} | bi = 0} as the set of all

indices, for which the corresponding component of b is equal to 0. The |D(b)|-dimensional

density of {S+
i | i ∈ D(b)}, is denoted by g{S+

i | i∈D(b)}. By assuming the non-occurrence of

losses is independent from the distribution of strictly positive losses, the joint density of

the total losses S1, . . . , Sd can be written as

gB,S(b, x) = pB(b)gS|B(x|b) = pB(b)g{S+
i | i∈D(b)}(xi, i ∈ D(b)), b ∈ {0, 1}d, x ∈ Rd

+.

In this way, the dependence modelling of zero losses is separated from the dependence

modelling of strictly positive losses. Whereas the latter has already been extensively dis-

cussed in the current section, in principle any d-variate copula can also be used to calibrate

the joint distribution of B. However, the authors recommend elliptical copulas for reason

of computational efficiency and exemplify the proposed model by analysing the aforemen-

tioned DIPO data from Italian banks.

Another analysis of the DIPO database is conducted in [MPY11] and the authors examine

the impact of different fitted copulas on the overall risk capital estimate VaR+,1(99.9%).

The dependence structure is calibrated based upon losses aggregated monthly and accord-

ing to event type. Considered copulas include the elliptical as well as the Archimedean

families. Simulation-based VaR+,1(99.9%) estimates under a copula model are found to

be up to 30% higher than the value obtained through simply adding up the stand-alone

estimates VaRi,1(99.9%), i ∈ {1, . . . , d}. Nonetheless, the authors argue that the observed

increase in VaR estimates is attributed to two reasons, that is, the potential superaddi-

tivity of the VaR measure on the one hand and the possibly insufficient number of Monte

Carlo iterations on the other hand. In order to disentangle the two effects to a certain

degree, theoretical asymptotic bounds for VaRs are computed under the assumption of

different underlying copulas and any resulting estimates outside the bounds should be

caused by the simulation setting and are discarded.

To conclude the copula approach to modelling aggregate loss dependence, we would like

to mention a few more literature references including [Cha+08], [EP08] and [Li+14a],

as well as the observation described in [FVG08] and [Val09], that heavy-tailed marginal

severity distributions have a much larger impact on the VaR estimation outcome than the

specific choice of copula. Furthermore, differences between the Poisson and the negative

binomial distribution for frequency calibration are found to be insignificant.

Without utilising copulas, the authors of [Li+14b] combine the variance-covariance ap-

proach, known from market risk management, with the concept of mutual information
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in order to assess the operational risk capital for the Chinese banking industry. The sug-

gested procedure consists of two stages. First, the stand-alone measures VaRi,1(99.9%),

i ∈ {1, . . . , d}, are estimated based on simulated annual losses. Second, the linear corre-

lation coefficients in the common variance-covariance method are replaced by the global

correlation coefficients introduced in (1.6) and the overall VaR estimate is calculated

through

VaR+,1(99.9%) =

√√√√ d∑
i=1

d∑
j=1

VaRi,1(99.9%)ρIijVaRj,1(99.9%).

As the global correlation coefficients are supposed to capture both linear and non-linear

dependence across risk cells, they are considered to be superior to their liner counter-

parts. The authors also argue that the simple adaptation of linear correlation may lead

to underestimation of VaR values.

1.2.4 Inter-cell frequency and severity dependence

The proposal of [EP08] is to model inter-cell dependence in frequency and in severity both

via parametric copulas, respectively. In addition, the authors discuss the issue of possibly

different resulting VaR estimations caused by differently designed risk cells, for example,

either aggregated across business lines or across event types. By means of simulation they

conclude that the discrepancy of the VaR+,1(99.9%) estimates is more sensitive to the

interdependence among severities than to the interdependence among frequencies, and

generally decreases with increasing dependence governed by the fitted copulas. Moreover,

the Gaussian copula is found to yield a reduction of all quantile estimates compared to

the Gumbel copula which allows for asymptotic upper tail dependence.

Alternatively, the joint distribution of the k-th severities from different cells can be speci-

fied via a mixed distribution instead of copulas, as this was already presented for the pure

frequency dependence modelling through a Poisson mixture in Section 1.2.1. Following

the idea of [Res08], the marginal severities comply with exponential distributions sharing

a gamma distributed random variable as parameter, such that the joint severity has a

multivariate Pareto distribution. Furthermore, frequency and severities within one cell

are still assumed to be independent and the joint frequency follows a multivariate nega-

tive binomial distribution as the result of a Poisson mixture also with gamma distributed

parameters.

By utilising the notion of point processes, one can explicitly characterise dependence

between the k-th severities, between the k-th event inter-arrival times or between the

k-th event times of different risk cells. Clearly, for this purpose the time component in the

compound sum expression (1.1) is assumed to progress in a continuous manner. Following

the approach in [CEN06], the frequency process Ni(t) of risk cell i ∈ {1, . . . , d} with rate

parameter λi > 0 is formulated as a Poisson point process. Given a fixed time interval [0, T ]

and a risk cell i, let NT
i be a Poisson random variable with mean λiT and independent

from i.i.d. random variables Tik, k ≥ 1, distributed according to the uniform distribution
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on [0, T ]. Then the frequency process of risk cell i can be written as the random sum

Ni(t) =
∑NT

i
k=1 1{Tik≤t} for t ∈ [0, T ].

Hence the random variables Tik, k ≥ 1, precisely correspond to the loss arrival times of

cell i and two kinds of elementary dependence structures under the current model setting

are the following. On the one hand, the joint distribution of the arrival times T1k, . . . , Tdk
can be specified via a d-variate copula. This construction is interpreted as the presence of

a common underlying effect causing losses in different risk cells at different times. On the

other hand, a copula dependence structure can be imposed among the total counts of losses

NT
1 , . . . , N

T
d in the interval [0, T ]. These two constructions are exemplified in [CEN06] with

a Frank copula which allows for both positive and negative dependence. In addition, the

above two construction methods can be combined with each other via superposition and

thinning of different Poisson processes. In order to also take dependence between loss

severities into account, the random variables Tik are extended to 2-dimensional random

vectors (Tik, Xik)
> for k ≥ 1 and i ∈ {1, . . . , d}.

1.2.5 Intra-cell dependence

In the current section the risk cell index i ∈ {1, . . . , d} is suppressed, as we solely consider

dependence characterisations within one risk cell whose model components constitute the

compound sum expression given by (1.1).

In the appendix of [FRS04], a simple concept is adopted for modelling the dependence

between loss frequency N and loss severities Xk, k ≥ 1. The Poisson distribution is cho-

sen for frequency and the lognormal distribution for severity. Furthermore, let (µ, σ2)>

denote the lognormal parameters and let λ be the Poisson parameter estimated under

the standard independence assumption between N and Xk, k ≥ 1. Next, the indepen-

dence assumption is relaxed by introducing a weight parameter c ∈ [0, 1] which represents

the proportion of the mean and the variance of the logarithm of Xk explained by N .

More precisely, the conditional distribution of Xk given N is specified through a lognor-

mal distribution with logarithmic mean µ(N) = (1 − c)µ + cµ
λ
N and standard deviation

σ2(N) = (1− c)σ2 + cσ
2

λ
N . Hence conditional on N , the severities Xk, k ≥ 1, are indepen-

dent, whereas the parameter c controls the dependence strength between frequency and

severity.

On the other hand, the authors of [GCX17] directly model the parameters µ, σ2 and

λ as random variables. Then a dependence structure is imposed by fitting either a 3-

dimensional Gaussian or Student’s t copula to the random distribution parameters. The

authors illustrate their model calibration and VaR estimation procedure by using simu-

lated and publicly available financial market losses, which contain remarkably more data

points than common operational risk datasets. Hence the performance of the proposed

methodology in operational risk context is subject to further research.

As mentioned previously, a compound random sum of form (1.1) is one of the prime

components appearing in actuarial models. Therefore, below we also include several de-
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pendence concepts which are originally proposed for modelling non-life insurance claims

and have potential application possibilities for modelling operational risk losses. A further

reason for this treatment is that the dependence between loss frequency and loss severity

in operational risk management has been by far not as extensively studied as in non-life

insurance context.

The first approach we consider is a joint regression model whose margins are given by

univariate generalised linear models (GLM) and then linked together via a copula. As

suggested in [Cza+12], the loss number N is characterised by a Poisson GLM

N ∼ Poi(λ) with ln(λ) = ln(e) + z>α,

and the average loss size X = 1
N

∑N
k=1 Xk by a gamma GLM

X ∼ Gamma(µ, ν2) with ln(µ) = z>β,

where z denotes the covariate vector, the offset e gives the known time length in which loss

events occur, and the parameter ν is assumed to be known as well. A bivariate Gaussian

copula with a single correlation parameter ρ is used to reflect the dependence between X

and N . The unknown parameters α, β and ρ are estimated through a maximisation by

parts (MBP) algorithm which is originally developed by [SFK05]. More precisely, the log-

likelihood function is decomposed as l(α, β, ρ) = lm(α, β) + lc(α, β, ρ). The first summand

lm is independent of ρ and its maximisation provides an initial estimate for the marginal

parameters (α, β)>. Then the second summand lc is used to estimate the copula parameter

ρ as well as to update the estimate for (α, β)>. In other words, the overall log-likelihood

l is maximised by iteratively updating the estimators for (α, β)> and ρ.

The more recent publication [Krä+13] extends the above approach by considering

Archimedean copulas to connect the marginal GLMs and by utilising the likelihood ratio

test of Vuong for the selection of copula families.

A further approach involving GLMs, but without employing copulas, is proposed by

[GGS16]. This approach shares similarity with the one presented at the beginning of

the current section and treats the loss frequency N as a covariate in the GLM for the

average loss size X. If hN and hX denote the link function for N and X, respectively,

whereas the remaining notations stay the same, then the marginal GLMs can be written

as

λ = E[N |z] = h−1
N (z>α) and µθ = E[X|N, z] = h−1

X
(z>β + θN). (1.7)

Hence the parameter θ ∈ R controls the degree of dependence between N and X. Besides

the covariate vector z describing fixed effects, the authors of [Jeo+17] extend (1.7) by

adding a multivariate normally distributed covariate R to capture random effects.

Clearly, all previous stated dependence concepts based on GLMs need to be transferred

with care when applying to operational risk data. First, the characterisation of the severity

distribution highly relies on its expectation, which is certainly not sufficient in case of

heavy-tailed operational losses. Moreover, the specification of covariates in operational risk
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context is not as straightforward as in non-life insurance, in which rating factors serve as

a natural choice. Nevertheless, potential impacts of economic and political environments

as well as firm-specific factors on operational loss events have been reported in empirical

studies and some initial work has been done in incorporating covariates into operational

risk modelling. For more details we refer to Section 1.2.6 where more dependence concepts

directly related to operational risk are presented.

The last proposal accounting for intra-cell dependence is found in [AT06] and [CMM10],

for which the time component in the compound sum (1.1) is not considered as fixed but

continuously evolving. In other words, the frequency component N(t) is represented by

a homogeneous Poisson process and the aggregate loss S(t) accordingly by a compound

Poisson process. In order to overcome the potential inconvenience when fitting a copula

with discrete margins, the authors suggest to impose a copula between the single loss

amount and its corresponding inter-arrival time instead of the loss number itself. Note that

the inter-arrival times are i.i.d. exponential random variables under the current Poisson

assumption. Besides the commonly used elliptical and Archimedean families, the Farlie-

Gumbel-Morgenstern copula

C(u1, u2) = u1u2 + θu1u2(1− u1)(1− u2), (u1, u2)> ∈ [0, 1]2,

with a single parameter θ ∈ [−1, 1] is highlighted due to its simplicity and tractability.

This copula includes the independence copula for θ = 0, as well as allows for both positive

and negative dependence. Numerical examples in [CMM10] show that the dependence

parameter θ has a significant impact on the ruin measures in actuarial context, so to

expect a similar effect when estimating VaR in operational risk.

1.2.6 Inter- and intra-cell dependence

Of course, a model respecting both inter- and intra-cell dependence can be constructed

by appropriately combining the concepts from Sections 1.2.1-1.2.4 with those from Sec-

tion 1.2.5. Hence, below we shall focus on dependence models inherently developed for

both inter- and intra-cell dependence.

Structural models with common factors, already widely applied in credit risk management,

can also be adopted for modelling dependence in operational risk. For this purpose, the

time component is treated in a discrete fashion, that is, t ≥ 1 represents time periods of

equal length, usually in annul units. Then the dependence among loss frequencies Ni(t),

i ∈ {1, . . . , d}, and loss severities Xik(t), k ≥ 1, is in particular driven by their common

dependence on a set of risk factors which are modelled stochastically and may change in

the course of time.

As illustration we consider a one-factor model based on Gaussian copulas as suggested

in Chapter 12.5 of [CPS15]. Let Ω(t) denote the common factor, Wi(t) the idiosyncratic

component of Ni(t), and Vik(t) the idiosyncratic component of Xik(t), respectively, and

assume they are all independent random variables from the standard normal distribution.

As noted before, the frequency distribution of risk cell i is given by FNi and the severity
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distribution by FXi . If Φ denotes the distribution function of a standard normal random

variable, then a one-factor model can be constructed as follows,

Ni(t) = F−1
Ni

(Φ(Ñi(t))) with Ñi(t) = ρNiΩ(t) +
√

1− ρ2
Ni
Wi(t),

Xik(t) = F−1
Xi

(Φ(X̃ik(t))) with X̃ik(t) = ρXiΩ(t) +
√

1− ρ2
Xi
Vik(t),

for k ∈ {1, . . . Ni(t)} and i ∈ {1, . . . d}. Hence given Ω(t), the frequencies and severities

are independent, but unconditionally they are dependent if the corresponding correlation

coefficients ρNi and ρXi are non-zero.

From another perspective, the proposed one-factor model can also be used to identify

dependent risk cells based on whether the corresponding coefficients ρNi and ρXi are close

to zero. The obtained knowledge may help to calibrate more sophisticated dependence

models. Furthermore, the extension to incorporating more than one common factor is

readily achieved by assuming the joint distribution of Ω1(t), . . . ,ΩJ(t) to be a multivariate

normal distribution with zero means, unit variances, and some correlation matrix. Another

modification is found in [MY09] where the authors consider Archimedean copulas instead

of a Gaussian dependence structure.

Usually, the common factors are interpreted as macroeconomic variables as well as certain

internal factors of each individual bank. Some factors are typically considered to affect

frequencies only, for example system automations, some to affect severities only, for exam-

ple changes in the legal environment, and some to affect both frequencies and severities,

for example system security. Empirical evidence of such dependence is reported, amongst

others, in [AB07], [Moo11], [CJY11] and [PP16].

The authors of [AB07] examine a sample of financial intermediaries and conclude that

factors such as GDP, unemployment, equity indices, interest rates, foreign exchange rates,

and changes in the regulatory environment have a considerable influence on operational

risk. In addition, an analysis of the relationship between the unemployment rate and the

operational loss events at American firms is carried out in [Moo11]. The results show a

significant positive association between the unemployment rate and the loss severity on

the one hand and an insignificant relation to the loss frequency on the other hand.

Apart from that, the sensitivity of operational risk with respect to firm-internal factors

is explored in the empirical study [CJY11] based on the Algo FIRST database9, which

is an external database comprising publicly known loss events mainly occurred in North

America. The loss incidence is found to be positively correlated with equity volatility,

credit risk, a high number of anti-takeover provisions, and CEOs with a large amount of

option and bonus-based compensation relative to salary. Moreover, quantifiable measures

of the internal situation of a firm, such as capital ratios and number of employees, are

identified to play a role in loss severities resulting from the event types of internal fraud

or improper business and market practice by the more recent study [PP16], where the

authors perform a multiple regression analysis on the ÖffSchOR10 database containing

9Provided by the company Algorithmics at the time of the empirical study. Today Algorithmics is

acquired by IBM.
10Öffentliche Schadenfälle OpRisk, provided by the Association of German Public Banks.
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loss events occurred in German-speaking countries and culled from public sources.

Instead of imposing a dependence structure among the frequency and severity variables

themselves, dependence can also be characterised by treating their underlying distribution

parameters as random and modelling the corresponding joint distribution via a copula.

The logic behind this is similar to that for the previous model based on common factors,

that is, the distribution parameters are not constant but rather changing stochastically

and jointly driven by the regulatory and economic environment or certain firm charac-

teristics. With regard to actually fitting a model, [PSW09] advocates the use of Bayesian

inference methodology which further allows for combining internal data, external data and

expert opinions in the estimation procedure. The authors apply slice sampling, a special

MCMC simulation algorithm, to obtain samples from the resulting posterior distribution

and to estimate the model parameters.

As already indicated, dependence between severities and frequencies of different risk cells,

as well as within one cell, can be achieved by explicitly incorporating covariates into

a model. To this end, recall from EVT the peaks over threshold (POT) technique for

characterising extreme loss events. The excesses of i.i.d. or stationary loss severities over

a high threshold are independent GPD random variables and the excess times constitute

a Poisson process. In order to properly depict the trends and uncertainties due to various

external and internal factors which may be present in operational risk data, the classical

POT method is modified by [CEN06] such that the GPD shape and scale parameters,

as well as the Poisson intensity parameter, are dependent on time and covariates. More

precisely, a smooth function is employed to describe the time dependence, an indicator

function for the mapping to a certain risk cell, and a discontinuity indicator to capture a

significant increase in loss frequency observed in the studied anonymised real loss data.

The discontinuity in loss numbers is attributed to the often encountered reporting bias

in operational risk, as loss events have been more frequently as well as more accurately

recorded after the strengthening of regulations in the latest years.

The more recent publication [CEH16] by the same main author formalises the incorpora-

tion of covariates as a semi-parametric generalised additive model for location, scale, and

shape (GAMLSS), that is,

h(θ) = z>θ βθ +
J∑
j=1

hθ,j(zθ,j),

where θ is either the Poisson parameter, the GPD scale parameter or the GPD shape

parameter; h is a monotonic link function; zθ is a vector of linear predictors and βθ their

corresponding coefficients; zθ,j is the j-th non-linear predictor for θ and hθ,j a smooth

function, for example composed of cubic splines. The proposed methodology is applied

both to simulated data and to an external database provided by Willis Professional Risks

containing losses collected from public media.

Going even one step further, the above model is extended by [Ham+16] to a so-called

Markov-switching GAMLSS. Motivation for this extension is that the effect of a covariate

may vary according to the state of unobservable environmental and economic factors.
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Hence, the model components βθ and hθ,j, j ∈ {1, . . . , J}, are allowed to evolve over

time and governed by an unobservable Markov chain. The applicability of the proposed

approach is illustrated by fitting a model to the real losses resulting from external frauds

and occurred at the Italian bank UniCredit. For computational simplicity, the authors

utilise a stationary two-state model and assume the Markov chain that drives the vary-

ing dependence on covariates to be identical for frequency and severity. The estimation

procedure is based on a forward recursion and the maximisation of a penalised likelihood

function. Incorporated covariates include the percentage of revenue coming from fees, the

Italian unemployment rate and the VIX index as a measure for market volatility.



Chapter 2

Preliminaries

The objective of this chapter is to prepare the theoretical ground for the upcoming de-

pendence model for operational risk. In Section 2.1, the multivariate compound Poisson

process is formally introduced as a special case of the more general class of Lévy processes.

We present some of its essential properties which should be useful in future chapters. Fur-

thermore, the notion of Lévy copulas is defined in Section 2.2 and shall be utilised to

characterise the dependence structure among the marginal processes. As the theoretical

framework of Lévy processes and Lévy copulas is quite comprehensive in its full length,

and the current thesis rather focuses on their application in operational risk, we provide

shortened proofs with adequate references in this chapter. Nonetheless, we detail the in-

centive of each selected theorem and proposition, as well as illustrate the new concept of

dependence modelling via Lévy copulas by means of various examples and highlight their

similarities and distinctions in comparison to ordinary copulas.

2.1 From Lévy processes to compound Poisson pro-

cesses.

Definition 2.1 (Lévy Process).

Let (Ω,F ,P) be a probability space. A càdlàg1 stochastic process S(t), t ≥ 0, on (Ω,F ,P)

with values in Rd and S(0) = 0 a.s. is called a Lévy process if it satisfies the following

properties:

(1) for all n ∈ N and every increasing sequence of times 0 ≤ t0 < · · · < tn < ∞, the

increments S(t0), S(t1)− S(t0), . . . , S(tn)− S(tn−1) are independent,

(2) for all h ≥ 0 the distribution of S(t+ h)− S(t) is independent of t ≥ 0,

1The acronym càdlàg comes from the French “continue à droite, limite à gauche”, which translates to

“right-continuous with left limits”. Although the càdlàg assumption does not have to be imposed on the

definition of Lévy processes, every Lévy process has a unique modification satisfying the càdlàg property.

Hence we assume the càdlàg property without loss of generality.

19
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(3) the process S(t), t ≥ 0, is continuous in probability, which means for all ε > 0 there

holds lim
h→0

P(|S(t+ h)− S(t)| ≥ ε) = 0.

An important subclass of Lévy processes are compound Poisson processes, which con-

tribute as the foundation of the dependence model later on.

Definition 2.2 (Compound Poisson process (CPP)).

Let N(t), t ≥ 0, be a homogeneous Poisson process with intensity parameter λ > 0 and let

Xk, k ≥ 1, be i.i.d. random variables in Rd with distribution function F . Assume further

the process N(t) is independent from Xk for all k ≥ 1, and the distribution F of the latter

has no atom at zero. Then a d-dimensional compound Poisson process S(t), t ≥ 0, with

intensity λ and jump size distribution F is a stochastic process given by

S(t) =

N(t)∑
k=1

Xk, t ≥ 0.

For notational convenience we summarise the key ingredients of a compound Poisson

process into the abbreviation S(t) ∼ CPP(λ, F ).

Proposition 2.3. A stochastic process S(t), t ≥ 0, is a compound Poisson process if and

only if it is a Lévy process and its sample paths are piecewise constant functions.

Proof. See Chapter 3, Proposition 3.3 in [CT04].

Proposition 2.4 (Characteristic function of compound Poisson processes).

Let S(t) ∼ CPP(λ, F ) be a compound Poisson process on Rd. Then its characteristic

function has the representation

E
[
ei〈u,S(t)〉] = exp

{
λt

∫
Rd

(
ei〈u,x〉 − 1

)
F (dx)

}
, u ∈ Rd. (2.1)

Proof. Let φX(u) =
∫
Rd e

i〈u,x〉F (dx) denote the common characteristic function of the

i.i.d. jump sizes Xk, k ≥ 1, of S(t). Then for any n ∈ N, the characteristic function of the

sum
∑n

k=1 Xk is given by φnX(u). By the tower property of conditional expectation and

the independence between N(t) and Xk for all k ≥ 1, we calculate

E
[
ei〈u,S(t)〉] = E

E
i〈u, N(t)∑

k=1

Xk

〉∣∣∣∣∣∣N(t)

 =
∞∑
n=1

E

[
i

〈
u,

n∑
k=1

Xk

〉]
P (N(t) = n)

=
∞∑
n=1

φnX(u)
e−λt(λt)n

n!
= exp {λt(φX(u)− 1)}

= exp

{
λt

∫
Rd

(
ei〈u,x〉 − 1

)
F (dx)

}
.
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Comparing (2.1) to the characteristic function exp{λt(eiu − 1)} of a Poisson process,

we see that a compound Poisson process S(t) can be interpreted as the superposition

of independent Poisson processes with the same intensity λ, but different jump sizes

determined by the distribution function F . In other words, the total intensity of jump

sizes in the interval [x, x+ dx] is given by λF (dx). This gives rise to the introduction of a

new measure Π(·) = λF (·) on (Rd,B(Rd)). Note that for simplicity we use the notation F

both for the distribution as well as for the distribution function of the jump sizes. Hence

formula (2.1) can be rewritten as

E
[
ei〈u,S(t)〉] = exp

{
t

∫
Rd

(
ei〈u,x〉 − 1

)
Π(dx)

}
, u ∈ Rd. (2.2)

The above formula is a special case of the so-called Lévy-Khinchin representation for

Lévy processes and the measure Π is the corresponding Lévy measure having the formal

definition:

Definition 2.5 (Lévy measure).

Let S(t), t ≥ 0, be a Lévy process on Rd and let ∆S(t) = S(t) − S(t−) denote its jump

at time point t. The measure ν on Rd \ {0} defined by

ν(B) = E [ # {∆S(t) ∈ B | t ∈ [0, 1] ∧ ∆S(t) 6= 0} ] , B ∈ B(Rd \ {0}),

is called the Lévy measure of S(t).

Hence the Lévy measure ν(B) of a Borel set B is the expected number of non-trivial

jumps per unit time interval with size in B. It is easy to verify that the above definition is

indeed in accordance with our derivation of the measure Π(·) = λF (·) for the special case

of compound Poisson processes. Recall the Poisson process N(t) has up to time t = 1 a

finite expected number of jumps equal to its intensity parameter λ and it is independent

from the jump sizes Xk for all k ≥ 1. Moreover, all non-trivial jumps of S(t) are fully

characterized by the distribution function F of Xk, k ≥ 1, and the latter are a.s. non-zero.

The distribution of a general Lévy process is also uniquely determined by its characteristic

function, which is given by the Lévy-Khinchin formula:

Theorem 2.6 (Lévy-Khinchin formula for Lévy processes).

Let S(t), t ≥ 0, be a Lévy process on Rd. Then there exist

(1) a positive definite matrix A ∈ Rd×d,

(2) a Radon measure2 ν on Rd \ {0} satisfying the conditions
∫
|x|≤1
|x|2ν(dx) <∞ and∫

|x|≥1
ν(dx) <∞,

(3) and a vector γ ∈ Rd,

2Let E be a subset of Rd. A Radon measure on (E,B(E)) is a measure µ such that µ(B) < ∞ for

every compact measurable set B ∈ B(E).
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such that the characteristic function of S(t) has the representation

E
[
ei〈u,S(t)〉] = etΨ(u), u ∈ Rd

with Ψ(u) = −1

2
〈u,Au〉+ i〈γ, u〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1{|x|≤1}

)
ν(dx).

The triplet (A, ν, γ) is called the characteristic triplet of the process S(t).

Proof. See Chapter 3, Theorem 3.1 in [CT04].

As before, the measure ν is referred to as the Lévy measure. The Lévy-Khinchin rep-

resentation induces that a Lévy process is fully determined by its characteristic triplet.

In case of a compound Poisson process S(t) ∼ CPP(λ, F ), we have seen that its Lévy

measure is given by ν(·) = Π(·) = λF (·). Furthermore, it is easy to verify that the charac-

teristic function (2.1) coincides with the Lévy-Khinchin formula if we choose A = 0 and

γ =
∫
|x|≤1

xΠ(dx).

In addition, the class of Lévy processes is invariant under linear transformations:

Theorem 2.7. Let S(t), t ≥ 0, be a Lévy process on Rd with characteristic triplet (A, ν, γ)

and let M be an m× d matrix. Then S̃(t) = MS(t), t ≥ 0, is a Lévy process on Rm with

characteristic triplet (Ã, ν̃, γ̃) specified through

Ã = MAM>,

ν̃(B) = ν({x |Mx ∈ B}), B ∈ B(Rm),

γ̃ = Mγ +

∫
Rm

x
(
1{|x|≤1}(x)− 1D(x)

)
ν̃(dx), (2.3)

where D = {My | y ∈ Rd ∧ |y| ≤ 1} is the image of a closed unit ball in Rd under M .

Proof. See Chapter 4, Theorem 4.1 in [CT04].

In particular, the above theorem implies the margins of a Lévy measure can be com-

puted in an analogous manner to the margins of a probability measure. The margins of

a Lévy measure ν can be seen as the one-dimensional Lévy measures associated with the

marginal processes S1(t), . . . , Sd(t) of S(t). For example, the first marginal process S1(t)

is obtained by setting M equal to the first standard basis vector (1, 0 . . . , 0)>. Then its

one-dimensional Lévy measure ν1(B) is given by

ν1(B) = ν(B × (−∞,∞)× · · · × (−∞,∞))

for any Borel set B ∈ B(R \ {0}). Lévy measures of the remaining marginal processes are

computed in a similar way.

Furthermore, we deduce that the margins of a multivariate compound Poisson process

are themselves univariate compound Poisson processes. As already mentioned, the i-th

marginal process can be accessed by setting M to the i-th standard basis vector. Then
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the corresponding marginal Lévy measure Πi is simply given by the projection of Π onto

the i-th component. Due to the elementary choice of M , the second summand in (2.3)

vanishes and only the term γi =
∫
|x|≤1

xiΠ(dx) =
∫
|x|≤1

xΠi(dx) remains. By inserting the

triplet (0,Πi, γi) into the Lévy-Khinchin formula, we see that the i-th marginal process

indeed has the characteristic function of a one-dimensional compound Poisson process.

Similarly, it can be shown that the sum of an arbitrary subset of the margins constitutes

a compound Poisson process as well.

2.2 Tail integrals and Lévy copulas

When modelling the dependence structure of multivariate Lévy processes, a natural ap-

proach is by transferring the concept of copulas for random vectors to a dependence

concept for Lévy processes. The dependence among the margins, or more precisely, the

dependence among the marginal jumps, of a multivariate Lévy process can be charac-

terised by the so-called Lévy copulas, which have many common properties with the

ordinary copulas, but are defined on a different domain. In order to distinguish between

the two copula concepts, in the sequel we shall refer to copulas for random variables

as ordinary copulas and use the regular capital letter C for notation. Copulas for Lévy

processes shall be referred to as Lévy copulas and denoted by the calligraphic letter C.

The notion of Lévy copula was first introduced in 2003 by Tankov in [Tan03] for Lévy

processes only admitting positive jumps. Shortly thereafter, in [KT06] Kallsen and Tankov

presented an extension for Lévy processes with possibly negative jumps. In the following

we shall concentrate on the theory for Lévy copulas and Lévy measures supported on

[0,∞]d, as the main application of this dependence concept in the present thesis is the

modelling of positive loss amounts in operational risk.

In order to formally define a Lévy copula, at first we need to review the notion of d-

increasing functions. For this purpose, we denote a half-open interval in (−∞,∞]d by

(a, b] = (a1, b1]× · · · × (ad, bd],

where the vectors a = (a1, . . . , ad)
> and b = (b1, . . . , bd)

> satisfy the property ai ≤ bi
for all i ∈ {1, . . . d}. We are interested in the behaviour of functions on these half-open

intervals.

Definition 2.8 (F -volume and d-increasing functions).

Let D ⊂ (−∞,∞]d be a non-empty set and F : D → (−∞,∞] a d-variate function. The

F -volume of an half-open interval (a, b] in D is defined as

VF ((a, b]) =
2∑

j1=1

· · ·
2∑

jd=1

(−1)j1+···+jd F (u1j1 , . . . , udjd)

with ui1 = ai and ui2 = bi for all i ∈ {1, . . . d}. The function F is called d-increasing if

the F-volume VF ((a, b]) is non-negative for all half-open intervals (a, b] in D.
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In other words, the F -volume is the sum of function values at each vertice of the d-

dimensional interval (a, b], whereby a vertice contributes with positive sign, if an even

number of its components belongs to the vector a, and with negative sign otherwise.

Note that a d-variate probability function F always satisfies the d-increasing property, as

the corresponding F -volume VF ((a, b]) just reflects the respective probability measure of

(a, b]. In the two-dimensional case, the F -volume reduces to the measure of a rectangle

(a1, b1]× (a2, b2] given by

VF ((a, b]) = F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2).

Definition 2.9 (Positive Lévy copulas).

A d-dimensional Lévy copula for Lévy processes with positive jumps, or for short, a positive

Lévy copula, is a function C : [0,∞]d → [0,∞] such that

(1) C is grounded, which means C(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . d},

(2) C is d-increasing,

(3) C has uniform margins, that is, Ci(ui) = C(∞, . . . ,∞, ui,∞ . . . ,∞) = ui for all

i ∈ {1, . . . d} and ui ∈ [0,∞].

Similarly to ordinary copulas, Lévy copulas are Lipschitz continuous with Lipschitz con-

stant equal to one:

Lemma 2.10. Let C : [0,∞]d → [0,∞] be a Lévy copula. Then for every (u1, . . . , ud)
>

and (v1, . . . , vd)
> ∈ [0,∞)d it holds that

|C(u1, . . . , ud)− C(v1, . . . , vd)| ≤
d∑
i=1

|ui − vi| .

Proof. See Lemma 3.2 in [KT06].

In particular, this smooth property of Lévy copulas allows us to exchange the copula C

with limit-taking of its arguments in subsequent sections.

Before we state the main theorem for the interaction between Lévy copulas and Lévy

processes, which is an analogue to Sklar’s theorem on ordinary copulas, we shall think a

little more about the appropriate input arguments for a Lévy copula. Recall that ordinary

copulas are introduced on the basis of distribution functions associated with probability

measures, and Lévy measures play the same role for the jumps of Lévy processes as

probability measures for random variables. Therefore, an appropriate input argument

for Lévy copulas must be built upon the Lévy measure and the following notion of tail

integrals evolves.

Definition 2.11 (Tail integral of Lévy processes).

Let ν be a Lévy measure on [0,∞)d\{0}. Its tail integral is a function ν : [0,∞]d → [0,∞]
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defined as

ν(x1, . . . , xd) =


0, if xi =∞ for at least one i ∈ {1, . . . d},
ν([x1,∞)× · · · × [xd,∞)) if (x1, . . . , xd)

> ∈ [0,∞)d \ {0},
∞ if (x1, . . . , xd)

> = 0.

As the Lévy measure ν is a Radon measure, its tail integral ν is finite except at zero. In

addition, the i-th margin of the tail integral ν is given by

νi(xi) = ν(0, . . . , 0, xi, 0, . . . , 0), xi > 0,

which corresponds to the tail integral of the i-th marginal Lévy measure νi, that is,

νi(xi) = νi([xi,∞)).

The following theorem parallelises the dependence characterisation through copulas on

the level of Lévy processes and the role of distribution functions in the ordinary Sklar’s

theorem is now played by tail integrals.

Theorem 2.12 (Sklar’s theorem for Lévy processes).

(a) Let ν denote the tail integral of a Lévy process on [0,∞)d and let ν1, . . . , νd be the

tail integrals of its components. Then a Lévy copula C : [0,∞]d → [0,∞] exists such

that for all (x1, . . . , xd)
> ∈ [0,∞]d the relation

ν(x1, . . . , xd) = C(ν1(x1), . . . , νd(xd)) (2.4)

holds. If the marginal tail integrals ν1, . . . , νd are continuous, then the Lévy copula

C is unique. Otherwise it is unique on the product of the range of the marginal tail

integrals.

(b) Conversely, if C is a d-dimensional Lévy copula and ν1, . . . , νd are tail integrals

of one-dimensional Lévy measures, then the function ν defined by (2.4) is the tail

integral of a Lévy process on [0,∞)d having marginal tail integrals ν1, . . . , νd.

Proof. See Theorem 3.1 an well as Theorem 3.4 in [Tan03].

The above theorem shows that Lévy copulas connect multidimensional tail integrals to

their margins in the same way as ordinary copulas connect multivariate probability dis-

tribution functions to their margins. Furthermore, the role of Lévy copulas is twofold.

First, they provide a complete characterisation of the possible dependence structures for

the jump part of multidimensional Lévy processes. Second, Lévy copulas enable the con-

struction of a multidimensional Lévy process from a given collection of one-dimensional

Lévy processes complying with a particular dependence structure.

Hereinafter we give several examples of Lévy copulas and see how some of them can

actually be constructed from ordinary copulas. Of course, one fundamental dependence

structure is the independence case and to this we need at first the following criterion

characterising independent Lévy processes.
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Lemma 2.13 (Independence of Lévy processes).

Let S(t) = (S1(t), . . . , Sd(t))
> be a Lévy process on [0,∞)d such that its characteristic

triplet has the form (0, ν, γ). Then its margins S1(t), . . . , Sd(t) are independent if and

only if ν is completely supported by the coordinate axes, which means for any Borel set

B ∈ B([0,∞)d \ {0}) it holds that

ν(B) = ν1(B1) + · · ·+ νd(Bd),

where for every i ∈ {1, . . . , d} the measure νi is the Lévy measure belonging to the marginal

process Si(t) and Bi = {xi | (0, . . . , 0, xi, 0, . . . , 0) ∈ B} is the projection of the set B onto

the i-th coordinate axis.

Proof. The independence of a Lévy process translates to that its marginal processes never

jump at the same time. Both directions of the statement in Lemma 2.13 can be shown

by elementary manipulations of the characteristic function, that is, the Lévy-Khinchin

representation of S(t). See also Lemma 4.1 in [Tan03].

Given a Lévy process S(t) with discontinuous marginal tail integrals, there might be more

than one Lévy copula satisfying equation (2.4) in Sklar’s theorem for Lévy copulas. In

general, we say C is the or a Lévy copula of a process S(t), if together with the tail integrals

equation (2.4) is fulfilled. In this sense we can derive one possible copula corresponding

to Lévy processes with independent margins:

Proposition 2.14 (Independence Lévy copula).

Let S(t) = (S1(t), . . . , Sd(t))
> be a Lévy process on [0,∞)d such that its characteristic

triplet has the form (0, ν, γ). Then the marginal processes S1(t), . . . , Sd(t) of S(t) are

independent if and only if its Lévy copula (or one of them if there are many) is given by

C⊥(u1, . . . , ud) = u11{u2=∞,...,ud=∞} + · · ·+ ud1{u1=∞,...,ud−1=∞}.

Proof. As the tail integrals ν1, . . . , νd are finite except at zero, Lemma 2.13 implies the

marginal processes S1(t), . . . , Sd(t) are independent if and only if the tail integral ν of

S(t) has the form

ν(x1, . . . , xd) = ν1(x1)1{x2=0,...,xd=0} + · · ·+ νd(xd)1{x1=0,...,xd−1=0}.

Then the assertion directly follows from Sklar’s theorem for Lévy processes.

Besides independent margins, another important basis dependence structure is the com-

plete dependence case. To this we proceed as before and specify first the notion of complete

dependence for Lévy processes. In the second step the corresponding Lévy copula will be

computed.

Definition 2.15 (Complete dependence of Lévy processes).

(a) A subset E of [0,∞)d is called increasing if two arbitrary and different vectors

a = (a1, . . . , ad)
> and b = (b1, . . . , bd)

> in E satisfy either ai < bi for all i ∈ {1, . . . d},
or ai > bi for all i ∈ {1, . . . d}.
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(b) Let S(t) = (S1(t), . . . , Sd(t))
> be a Lévy process on [0,∞)d. Its jumps are called

completely dependent or comonotonic, if an increasing set E ⊂ [0,∞)d \ {0} exists

such that every non-trivial jump ∆S(t) = S(t)− S(t−) 6= 0 of S(t) belongs to E.

Proposition 2.16 (Complete dependence Lévy copula).

Let S(t) = (S1(t), . . . , Sd(t))
> be a Lévy process on [0,∞)d. If its jumps are completely

dependent, then a possible Lévy copula of S(t) has the form

C‖(u1, . . . , ud) = min(u1, . . . , ud).

Conversely, if all marginal tail integrals of S(t) are continuous and the Lévy copula of

S(t) is given by C‖, then the jumps of S(t) are completely dependent.

Proof. According to Definition 2.15, the jumps of S(t) are completely dependent if and

only if an increasing set E ⊂ [0,∞)d \ {0} exists such that the Lévy measure ν of S(t)

is concentrated on E. Then the assertion follows from the property of increasing sets

and Sklar’s theorem for Lévy processes. For more details also see Proposition 4.3 in

[Tan03].

Note that the complete dependence Lévy copula C‖ has the same form as the ordi-

nary comonotonicity copula, under which a random vector has perfectly positive de-

pendent components. On the other hand, the ordinary independence copula is given by

C⊥(u1, . . . , ud) =
∏d

i=1 ui and has an entirely different structure than the independence

Lévy copula. This is due to the fact that the independence concept defined for Lévy

processes is different from the stochastically independence underlying random vectors,

whereas both the ordinary and the Lévy version of the comotonicity copula are based on

the idea that the marginal components are almost surely strictly increasing functions of

each other.

Encouraged by the class of ordinary copulas known as Archimedean copulas, an analo-

gous class of Archimedean Lévy copulas can be constructed from the so-called generator

functions:

Proposition 2.17 (Archimedean Lévy copulas).

Let φ : [0,∞] → [0,∞] be a strictly decreasing continuous function such that φ(0) = ∞
and φ(∞) = 0. Furthermore, suppose the inverse function φ−1 has derivatives up to order

d on (0,∞) and satisfies the condition (−1)d ddφ−1(x)
dxd

≥ 0. Then the d-dimensional function

C : [0,∞]d → [0,∞] defined through

C(u1, . . . , ud) = φ−1(φ(u1) + · · ·+ φ(ud)) (2.5)

is a positive Lévy copula.

Proof. The statement can be shown by verifying the three defining properties of a Lévy

copula given in Definition 2.9. For more details see also Proposition 4.5 in [Tan03].
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Recall that ordinary Archimedean copulas have the same defining structure as (2.5),

whereas the generator function must satisfy equivalent conditions besides possessing a

different domain. Writing ψ for a valid generator of an ordinary Archimedean copula, it

maps [0, 1] onto [0,∞] with ψ(1) = 0. For comparison, the generator functions of some

common Archimedean copula families are summarised in Table 2.13.

Copula family Ordinary generator ψ(u) Lévy generator φ(u)

Clayton u−θ − 1, θ > 0 u−θ, θ > 0

Gumbel (− lnu)θ, θ ≥ 1 [ln(u+ 1)]−θ, θ > 0

Ali-Mikhail-Haq ln
(

1−θ
u

+ θ
)
, θ ∈ [−1, 1) ln

(
1−θ
u

+ 1
)
, θ ∈ [−1, 1)

Table 2.1: Comparison of Archimedean generators for ordinary and Lévy copulas.

The Clayton Lévy copula was already introduced in the fundamental work [Tan03] of Lévy

copulas by Tankov and hence has the longest history among the Archimedean families.

Similar to its ordinary counterpart, the Clayton Lévy copula has the convenient properties

that it is governed by a single parameter and comprises the complete dependence copula

for θ ↑ ∞ as well as the independence copula for θ ↓ 0 as limiting cases. Since in practice

often only a limited amount of data are available for the estimation of a dependence model,

it is not surprising that the one-parametric Clayton family with a wide range of possible

dependence strength counts to the most commonly used Lévy copulas. Its application in

operational risk context will be demonstrated in the upcoming chapters. For examples in

other practical fields, the interested readers are referred to [MM13] for modelling spark

spreads on energy markets, to [LDD16] for maintenance optimisation, and to [Okh16] for

VaR calculation of portfolios constructed on classic stocks as well as on cryptocurrencies.

We conclude this theoretical chapter with a method of constructing Lévy copulas from

ordinary ones.

Proposition 2.18. Let C : [0, 1]d → [0, 1] be an ordinary copula and f : [0, 1]→ [0,∞] a

strictly increasing function with f(0) = 0, f(1) = ∞, and non-negative derivatives up to

order d on (0, 1). Then the function C : [0,∞]d → [0,∞] defined as

C(u1, . . . , ud) = f
(
C
(
f−1(u1), . . . , f−1(ud)

))
(2.6)

is a positive Lévy copula.

Proof. The properties of groundedness and uniform margins can be established through

simple calculations. For the d-increasingness of C we refer to Theorem 5.1 in [Tan04].

As many parametric families of ordinary copulas have been well studied, Proposition 2.18

substantially enlarges the available families of Lévy copulas. Hereinafter we call any func-

3The representation of the Gumbel and Ali-Mikhail-Haq Lévy generators is found in [BB11], primarily

used to optimise insurance portfolios.
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tion f satisfying the required conditions a construction function. Because we mainly con-

centrate on two-dimensional compound Poisson processes later on, some examples of f in

order to define a valid bivariate Lévy copula are given by

f(x) =
x

1− x
,

f(x) = − ln(1− x),

and f(x) = (x−θ − 1)−
1
θ , θ > 0.

For illustration, consider the ordinary independence copula C(u1, u2) = u1u2 and the

construction function f(x) = x
1−x . By applying formula (2.6) we obtain the Lévy copula

C(u1, u2) = u1u2
u1+u2+1

which assembles the Ali-Mikhail-Haq Lévy copula with parameter

θ = 0 as given in Table 2.1.



Chapter 3

Dependence modelling via compound

Poisson processes and Lévy copulas

Being well prepared by the previous chapter, we now are able to establish a multivariate

model based on compound Poisson processes and Lévy copulas. After introducing the

model definition in Section 3.1, Section 3.2 works out the properties of a bivariate process

in detail, and the impact of Lévy copulas on both frequency and severity interdependence

becomes clear. Thereafter, the associated likelihood function, either under a continuous

or a discrete observation scheme, is provided and proved in Section 3.3. As a result, MLE

of our dependence model is made possible and the behaviour of its resulting estimators

will be studied in Chapter 5 under various distribution assumptions.

3.1 A multivariate compound Poisson model for op-

erational risk

In line with the loss distribution approach introduced in Section 1.2, let us consider a

financial institution maintaining d operational risk cells. Moreover, suppose a sufficient

degree of homogeneity within each risk class is ensured such that the losses allocated to

the same cell may be reasonably assumed as i.i.d and the corresponding loss frequency

may be described by a homogeneous Poisson process. Then justified by Theorem 2.12, the

dependence characterisation among the d risk cells can be detached from the modelling of

the marginal processes. More specifically, we follow the approach of [BK10] and formalise

the subsequent multivariate model.

Definition 3.1 (Multivariate compound Poisson model).

(a) Marginal cell processes: The aggregate loss amount in each risk cell i ∈ {1, . . . , d}
is given by a one-dimensional compound Poisson process

Si(t) =

Ni(t)∑
k=1

Xik, t ≥ 0,

30
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where Ni(t) is a homogeneous Poisson process with intensity parameter λi > 0 and

Xik, k ≥ 1, are i.i.d. single losses following an absolutely continuous distribution

function FXi with FXi(0) = 0. The loss frequency process Ni(t) is independent of

the loss severities Xik for all k ≥ 1.

(b) Dependence structure: For i ∈ {1, . . . , d}, let Πi : [0,∞]→ [0,∞] denote the tail

integral associated with the marginal process Si(t), and let C : [0,∞]d → [0,∞] be

a Lévy copula. Then the d-variate tail integral defined by

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)), (x1, . . . , xd)
> ∈ [0,∞]d, (3.1)

constitutes the tail integral of the d-dimensional compound Poisson process

S(t) = (S1(t), . . . , Sd(t))
>, t ≥ 0.

(c) The overall loss process: The overall loss process is given by the one-dimensional

compound Poisson process

S+(t) =
d∑
i=1

Si(t), t ≥ 0.

There are several convenient properties of the above model worth mentioning. First,

under the assumption of absolutely continuous severity distributions, the tail integral

of the marginal process Si(t) ∼ CPP(λi, FXi), i ∈ {1, . . . , d}, is simply given by

Πi(xi) = λiFXi(xi) for xi > 0. Second, as a consequence of Part (b) in Theorem 2.12,

the d-dimensional process S(t) = (S1(t), . . . , Sd(t))
> defined via the tail integral in equa-

tion (3.1) indeed forms a compound Poisson process. Last but not least, due to the in-

variance of compound Poisson processes under linear transformations as detailed in The-

orem 2.7, the overall loss process S+(t) constitutes itself a univariate compound Poisson

process with tail integral

Π+(x) = Π
({

(x1, . . . , xd)
> ∈ [0,∞)d \ {0}

∣∣x1 + · · ·+ xd ≥ x
})
, x ≥ 0. (3.2)

On the whole, Definition 3.1 presents a flexible model for characterising operational loss

events, which can be readily built by taking any collection of d one-dimensional compound

Poisson processes and linking them together via an arbitrary Lévy copula.

3.2 Detailed analysis of bivariate compound Poisson

models

In this section we focus on bivariate compound Poisson models and give an in-depth

analysis of their properties. One reason for this is to become familiar with the concept of

dependence modelling through Lévy copulas, as in a low-dimensional setting we can break

down the relationships between the different model components in a detailed manner.

Another reason is that models of higher dimension are often most easily built based upon

bivariate processes.
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3.2.1 Construction and properties

In line with Definition 3.1, a bivariate compound Poisson model is specified through

S(t) = (S1(t), S2(t))> =

N1(t)∑
j=1

X1j,

N2(t)∑
l=1

X2l

> , t ≥ 0, (3.3)

where N1(t) and N2(t) denote the marginal frequency processes, and X1j as well as X2l

are the marginal loss severities in the first and the second risk cell, respectively. On the

other hand, the two-dimensional compound Poisson process S(t) has by Definition 2.2

a representation through a single Poisson frequency process N(t), t ≥ 0, and i.i.d. non-

negative bivariate loss severities, that is,

S(t) =

N(t)∑
h=1

Yh =

N(t)∑
h=1

(Y1h, Y2h)
>, t ≥ 0. (3.4)

Note that the components Y1h and Y2h of the bivariate losses are not the same as the

univariate marginal losses X1j and X2l from equation (3.3). Bear in mind not to confuse

them with each other and their relation will be developed in the course of this section.

We assume the dependence structure of the bivariate compound Poisson model, that is, the

dependence between the marginal processes S1(t) and S2(t), is given by a Lévy copula C.

Furthermore, the dependence between the margins of the bivariate losses Yh = (Y1h, Y2h)
>,

h ≥ 1, shall comply with an ordinary survival copula Cs. Recall that a survival copula

connects the marginal survival distributions to the joint survival distribution and the

following lemma holds as a direct consequence of Sklar’s theorem for ordinary copulas.

Lemma 3.2 (Sklar’s theorem for survival functions).

Let F : Rd → [0, 1] be a d-variate survival function and let F 1, . . . , F d : R→ [0, 1] be the

corresponding marginal survival functions. Then an ordinary copula C : [0, 1]d → [0, 1]

exists such that for all (x1, . . . , xd)
> ∈ Rd there holds

F (x1, . . . , xd) = C(F 1(x1), . . . , F d(xd)). (3.5)

Conversely, if C is an ordinary copula and F 1, . . . , F d are univariate survival func-

tions, then the function F defined by (3.5) is a d-variate survival function with margins

F 1, . . . , F d. The link between F and C is one-to-one if all survival functions F 1, . . . , F d

are continuous, otherwise C is unique on the product of the range of the marginal survival

functions.

On the other hand, a Lévy copula operates on the level of tail integrals, which are closely

linked to the severity distribution tails, that is, the survival functions. Hence it is a

natural question whether there is a tangible relationship between the Lévy copula C and

the survival copula Cs. Before we state the result shortly, we shall first take a closer look

at the domain of the survival copula Cs.
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Assume the i.i.d. loss vectors Yh = (Y1h, Y2h)
>, h ≥ 1, have a common distribution function

FY , and let Y = (Y1, Y2)> be a generic random vector with this distribution. In other

words, FY (x1, x2) = P(Y1 ≤ x1, Y2 ≤ x2) holds for (x1, x2)> ∈ [0,∞)2. The marginal laws

shall be denoted by FYi , i ∈ {1, 2}, and the corresponding survival functions are given by

F Yi(xi) = 1− FYi(xi) = P(Yi > xi), xi ≥ 0, i ∈ {1, 2}.

Although the distribution function FY is not allowed to have an atom at zero by Defini-

tion 2.2 of compound Poisson processes, the marginal distributions FY1 and FY2 can have

positive measure at zero, for which we write

pi = P(Yi = 0) = FYi(0) ∈ [0, 1), i ∈ {1, 2}.

If we, in addition, assume the distribution of Y is absolutely continuous everywhere except

at zero, then the marginal survival functions F Y1 and F Y2 have the range [0, 1 − p1] and

[0, 1− p2], respectively. As a consequence, given the marginal survival functions F Y1 and

F Y2 , every survival copula Cs for Y is unique on the rectangle [0, 1− p1]× [0, 1− p2].

Following the above notations, the subsequent relationship between the Lévy copula C

and the survival copula Cs can be derived.

Proposition 3.3. Assume the Poisson frequency process in representation (3.4) of S(t)

has an intensity parameter λ > 0 and the bivariate single loss distribution FY is absolutely

continuous everywhere except at zero. Then for all (u1, u2)> ∈ [0, 1− p1]× [0, 1− p2], the

Lévy copula C and the survival copula Cs satisfy the equation

λCs(u1, u2) = C(λu1, λu2). (3.6)

Proof. Recall from Chapter 2 that for (x1, x2)> ∈ [0,∞)2 \ {0} the tail integral of the

bivariate compound Poisson process S(t) = (S1(t), S2(t))> is given by

Π(x1, x2) = λP(Y1 ≥ x1, Y2 ≥ x2).

Thus the marginal tail integral Π1 of Π, which also constitutes the tail integral of the

marginal process S1(t), can be computed from Π for x1 > 0 as

Π1(x1) = Π(x1, 0) = λP(Y1 ≥ x1, Y2 ≥ 0) = λP(Y1 > x1) = λF Y1(x1), (3.7)

where we have used that Y1 is absolutely continuous on (0,∞) and Y2 is completely

supported by [0,∞). The tail integral of the marginal process S2(t) is obtained in an

analogous manner and given by Π2(x2) = λF Y2(x2) for x2 > 0.

Now we use Sklar’s theorem for survival functions as well as Sklar’s theorem for Lévy

processes to verify the claimed relationship between the survival copula Cs and the Lévy

copula C. First, it follows from Sklar’s theorem for Lévy processes that the tail integral

Π has the representation

Π(x1, x2) = C(Π1(x1),Π2(x2)) = C(λF Y1(x1), λF Y2(x2)), (x1, x2)> ∈ (0,∞)2. (3.8)
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On the other hand, the tail integral Π(x1, x2) can be expressed by means of the joint

survival function of Y = (Y1, Y2)> through

Π(x1, x2) = λP(Y2 ≥ x2, Y2 ≥ x2) = λF Y (x1, x2), (x1, x2)> ∈ (0,∞)2, (3.9)

as by assumption the distribution of Y is absolutely continuous except at zero. Next we

apply Sklar’s theorem for survival functions with the survival copula Cs for Y and obtain

F Y (x1, x2) = Cs(F Y1(x1), F Y2(x2)), (x1, x2)> ∈ (0,∞)2. (3.10)

Putting everything together, from equations (3.8)-(3.10) it follows that

λCs(F Y1(x1), F Y2(x2)) = C(λF Y1(x1), λF Y2(x2)), (x1, x2)> ∈ (0,∞)2.

Then by setting u1 = F Y1(x1) and u2 = F Y2(x2), we have verified equation (3.6) for

(u1, u2)> ∈ (0, 1 − p1) × (0, 1 − p2). Furthermore, the validity of (3.6) can be extended

onto the domain of [0, 1− p1]× [0, 1− p2] by the continuity of the survival copula Cs as

well as the Lévy copula C.

In view of the above proposition, it would be false to conclude that the relevant domain of

the Lévy copula C associated with a bivariate compound Poisson process is solely given by

the set [0, λ(1−p1)]×[0, λ(1−p2)]. According to Theorem 2.12, the Lévy copula is unique on

the range product of the marginal tail integrals. Note the relationship Πi(xi) = λF Yi(xi),

i ∈ {1, 2}, only holds for xi > 0, as the tail integral at zero is always fixed as infinity

by Definition 2.11. Therefore, the Lévv copula C is actually unique on the domain of

([0, λ(1−p1)]∪{∞})× ([0, λ(1−p2)]∪{∞}). Nevertheless, with regard to the estimation

of C, for example, its behaviour on the sets [0, λ(1 − p1)] × {∞}, {∞} × [0, λ(1 − p2)]

and {∞} × {∞} is of minor interest. This is due to the fact that a valid Lévy copula

must have uniform margins, meaning that C(u1,∞) = u1 for every u1 ∈ [0,∞], and

similarly, C(∞, u2) = u2 for every u2 ∈ [0,∞]. Hence the behaviour of C outside the range

[0, λ(1− p1)]× [0, λ(1− p2)] does not contribute to the understanding of the dependence

structure between the marginal processes. As a result, in the case of a bivariate compound

Poisson model we assume the relevant domain of the corresponding Lévy copula is given

by the rectangle [0, λ(1− p1)]× [0, λ(1− p2)] in the sequel.

As promised at the beginning of the present section, now we are going to derive the

relationship between the bivariate losses Yh = (Y1h, Y2h)
>, h ≥ 1, and the univariate

losses X1j, j ≥ 1, and X2l, l ≥ 1, of the marginal processes S1(t) and S2(t), respectively.

More precisely, we assume representation (3.4) of the bivariate compound Poisson process

S(t) to be known, that is, the intensity parameter λ > 0 of the Poisson frequency process

and the bivariate single loss distribution FY shall be given. Based upon these information,

we want to find the parameters behind representation (3.3) of S(t).

For simplicity of notation, we again consult a generic random vector Y = (Y1, Y2)> with

distribution function FY . As already mentioned, the marginal distributions FYi , i ∈ {1, 2},
can have positive measure at zero. On the other hand, by Definition 2.2 the single losses

of the one-dimensional compound Poisson processes Si(t), i ∈ {1, 2}, must not have an
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atom at zero. As a result, it is a natural approach to introduce two new random variables

X1 and X2 only taking the non-zero values of Y1 and Y2, respectively:

X1
d

:= Y1 |Y1 > 0 and X2
d

:= Y2 |Y2 > 0.

Recall the definition of the constants pi = P(Yi = 0), i ∈ {1, 2}. Then the distribution

function FXi of Xi, i ∈ {1, 2}, is computed for xi ≥ 0 as

FXi(xi) = P(Xi ≤ xi) = P(Yi ≤ xi |Yi > 0) (3.11)

=
P(0 < Yi ≤ xi)

P(Yi > 0)
=

P(Yi ≤ xi)− P(Yi = 0)

1− P(Yi = 0)
=

FYi(xi)− pi
1− pi

.

Now we claim that the single loss distributions of the marginal compound Poisson pro-

cesses Si(t) are exactly given by FXi , i ∈ {1, 2}, and the intensities of the underlying

marginal Poisson processes can be calculated by

λi = λ(1− pi) > 0, i ∈ {1, 2}. (3.12)

To see this, we make use of the uniqueness of the characteristic function for Si(t),

i ∈ {1, 2}. From Section 2.1 we know the characteristic function of the one-dimensional

compound Poisson process Si(t) is fully determined by its associated Lévy measure Πi,

which has a one-to-one relationship to the tail integral Πi. In (3.7) we have already estab-

lished that the tail integrals are given by Πi(xi) = λF Yi(xi), i ∈ {1, 2}. In order to obtain

a representation through FXi instead of F Yi , we first utilise the previous calculation (3.11)

and solve for FYi(xi), that is,

FYi(xi) = (1− pi)FXi(xi) + pi, i ∈ {1, 2}.

Then the survival functions of Yi, i ∈ {1, 2}, can be expressed in terms of the survival

functions of Xi, i ∈ {1, 2}, respectively:

F Yi(xi) = (1− pi)FXi(xi), i ∈ {1, 2}. (3.13)

Consequently, together with the definition of λi = λ(1− pi), i ∈ {1, 2}, it follows that

Πi(xi) = λF Yi(xi) = λ(1− pi)FXi(xi) = λiFXi(xi), i ∈ {1, 2}.

Note the distributions of Xi, i ∈ {1, 2}, have by definition no atom at zero. Therefore,

due to the specific form of the characteristic function of compound Poisson processes and

the uniqueness of characteristic functions, the marginal process Si(t) must have FXi as

severity distribution and λi as frequency intensity parameter for i ∈ {1, 2}.

3.2.2 A useful decomposition

The following decomposition lemma proves itself to be especially useful for the estimation

and simulation of a bivariate compound Poisson model. Its theoretical background can be

found in Section 5.5 of [CT04] and its proof is partially inspired by [Böc08].
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Lemma 3.4 (Decomposition of a bivariate compound Poisson model).

Let S(t) = (S1(t), S2(t))>, t ≥ 0, be a bivariate compound Poisson model in accordance

with Definition 3.1 and let the dependence structure between its margins be given by a

Lévy copula C. The marginal frequency processes Ni(t), i ∈ {1, 2}, shall have intensity

parameters λi > 0, i ∈ {1, 2}, and the marginal severity distribution functions are given

by FXi, i ∈ {1, 2}. Then the following holds:

(a) Each marginal loss process Si(t), i ∈ {1, 2}, can be decomposed into the sum of two

compound Poisson processes S⊥i (t) and S
‖
i (t) with the representation

S1(t) = S⊥1 (t) + S
‖
1(t) =

N⊥1 (t)∑
j=1

X⊥1j +

N‖(t)∑
k=1

X
‖
1k, t ≥ 0, (3.14)

S2(t) = S⊥2 (t) + S
‖
2(t) =

N⊥2 (t)∑
l=1

X⊥2l +

N‖(t)∑
k=1

X
‖
2k, t ≥ 0, (3.15)

where the one-dimensional processes S⊥1 (t) and S⊥2 (t) describe the losses exclusively

occurring in risk cell one and risk cell two, respectively, and the bivariate process

S‖(t) = (S
‖
1(t), S

‖
2(t))> describes the simultaneous losses of both cells. The corre-

sponding frequency processes are denoted by N⊥1 (t), N⊥2 (t) and N‖(t), the corre-

sponding single losses by X⊥1j, X
⊥
2l and X

‖
k = (X

‖
1k, X

‖
2k)
>. Moreover, the processes

S⊥1 (t), S⊥2 (t) and S‖(t) are independent from each other.

(b) The intensity parameter of the common loss frequency process N‖(t) is explicitly

given by

λ‖ = C(λ1, λ2).

Subsequently, the intensities of the individual frequency processes N⊥1 (t) and N⊥2 (t)

are calculated as

λ⊥1 = λ1 − λ‖ and λ⊥2 = λ2 − λ‖.

Moreover, the joint survival function of the common severities (X
‖
1k, X

‖
2k)
>, k ≥ 1,

can be expressed in terms of the Lévy copula C as

F
‖
(x1, x2) =

1

λ‖
C(λ1FX1(x1), λ2FX2(x2)), (x1, x2)> ∈ [0,∞)2. (3.16)

Accordingly, the survival functions of the individual severities X⊥1j, j ≥ 1, and X⊥2l ,

l ≥ 1, are given by

F
⊥
1 (x1) =

1

λ⊥1

[
λ1FX1(x1)− C(λ1FX1(x1), λ2)

]
, x1 ≥ 0,

and F
⊥
2 (x2) =

1

λ⊥2

[
λ2FX2(x2)− C(λ1, λ2FX2(x2))

]
, x2 ≥ 0,

respectively.
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Proof. A straightforward proof is based on the decomposition of the Lévy measure Π

associated with the process S(t) = (S1(t), S2(t))>.

(a) By Definition 2.5, the Lévy measure Π(B) of a Borel set B ∈ B([0,∞)2 \ {0}) is

the expected number of non-trivial losses per time unit with size in B, which can

be formalised for the bivariate case as

Π(B) = E [ # {(∆S1(t),∆S2(t)) ∈ B | t ∈ [0, 1] ∧ (∆S1(t) 6= 0 ∨∆S2(t) 6= 0)} ] .

Among the non-trivial losses with size in B we differentiate between the losses with

a non-zero entry in the first dimension, the losses with a non-zero entry in the

second dimension, and finally the losses with non-zero entries in both dimensions.

Accordingly, the measure Π(B) can be split into

Π(B) = Π̃⊥1 (B) + Π̃⊥2 (B) + Π‖(B),

where the three summands are given by

Π̃⊥1 (B) = E [ # {(∆S1(t), 0) ∈ B | t ∈ [0, 1] ∧ ∆S1(t) 6= 0} ] ,

Π̃⊥2 (B) = E [ # {(0, ∆S2(t)) ∈ B | t ∈ [0, 1] ∧ ∆S2(t) 6= 0} ]

and Π‖(B) = E [ # {(∆S1(t),∆S2(t)) ∈ B | t ∈ [0, 1] ∧ (∆S1(t) 6= 0 ∧∆S2(t) 6= 0)} ] .

By introducing the notations B1 = {x1 | (x1, 0) ∈ B} and B2 = {x2 | (0, x2) ∈ B},
the measures Π̃⊥1 and Π̃⊥2 can be replaced by their one-dimensional projections:

Π⊥1 (B1) = Π̃⊥1 (B) = Π(B1 × {0}),
Π⊥2 (B2) = Π̃⊥2 (B) = Π({0} ×B2).

Note the three measures Π⊥1 , Π⊥2 and Π‖ are well-defined Lévy measures according to

Definition 2.5. Recall the characteristic function of S(t) has a representation through

an integral with respect to Π as given in (2.2). Together with the decomposition of

Π stated above, we obtain for arbitrary u = (u1, u2)> ∈ R2 that

E
[
ei〈u,S(t)〉] = E

[
eiu1S1(t)+iu2S2(t)

]
= exp

{
t

∫ ∞
0

∫ ∞
0

(
eiu1x1+iu2x2 − 1

)
Π(dx1 × dx2)

}
= exp

{
t

∫ ∞
0

∫ ∞
0

(
eiu1x1+iu2x2 − 1

)
(Π̃⊥1 + Π̃⊥2 + Π‖)(dx1 × dx2)

}
= exp

{
t

∫ ∞
0

(
eiu1x1 − 1

)
Π⊥1 (dx1)

}
exp

{
t

∫ ∞
0

(
eiu2x2 − 1

)
Π⊥2 (dx2)

}
exp

{
t

∫ ∞
0

∫ ∞
0

(
eiu1x1+iu2x2 − 1

)
Π‖(dx1 × dx2)

}
, (3.17)

where for the last equality we have used the fact that the measures Π̃⊥1 and Π̃⊥2
are solely supported by the sets {(x1, 0) |x1 ∈ [0,∞)} and {(0, x2) |x2 ∈ [0,∞)},
respectively. Hence the corresponding integrals reduce to one-dimensional integrals

with respect to the measures Π⊥1 and Π⊥2 .
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Now observe that each of the three integrals in (3.17) has the form of the character-

istic function of a compound Poisson process as given in (2.2). The corresponding

Lévy measures are given by the one-dimensional measures Π⊥1 , Π⊥2 , and the two-

dimensional measure Π‖, respectively. On these grounds, we first introduce a uni-

variate compound Poisson process S⊥1 (t) determined by the measure Π⊥1 , which only

records losses in the first risk cell, when no loss occurs in the second cell at the same

time. Conversely, let S⊥2 (t) denote the compound Poisson process determined by Π⊥2 ,

and it only records losses in cell two, when no loss occurs in cell one. Hence in the

sequel we call S⊥1 (t) and S⊥2 (t) the independent parts of S(t). On the other hand, the

third integral in (3.17) corresponds to a two-dimensional compound Poisson process

having the Lévy measure Π‖. We denote this process by S‖(t) = (S
‖
1(t), S

‖
2(t))> and

call it the dependent part of S(t), as S‖(t) describes the simultaneous losses in both

risk cells.

Up to now we have established the decomposition of (S1(t), S2(t))> as given in (3.14)

and (3.15). Only the independence between the processes S⊥1 (t), S⊥2 (t), and S‖(t)

remains to be shown. But this is easy to see when we once again look at the product

of the three integrals in (3.17) and recall that the characteristic function of the

sum of independent random variables is given by the product of the characteristic

functions of the single random variables.

(b) As the marginal severity distributions FX1 and FX2 are absolutely continuous by

assumption, the marginal intensity parameters can be recovered from the corre-

sponding marginal tail integrals through

λ1 = lim
x1↓0

λ1FX1(x1) = lim
x1↓0

Π1(x1) (3.18)

and λ2 = lim
x2↓0

λ2FX2(x2) = lim
x2↓0

Π2(x2). (3.19)

On the other hand, we can utilise the decomposition of the Lévy measure Π, as this

was explained in Part (a) of the proof, in order to obtain another representation of

the tail integrals Π1 and Π2. More precisely, it holds for x1 > 0 that

Π1(x1) = Π(x1, 0) = Π([x1,∞)× [0,∞))

= Π([x1,∞)× {0}) + Π([x1,∞)× (0,∞))

= Π⊥1 ([x1,∞)) + lim
x2↓0

Π‖([x1,∞)× [x2,∞))

= Π
⊥
1 (x1) + lim

x2↓0
Π
‖
(x1, x2)

= Π
⊥
1 (x1) + lim

x2↓0
C(Π1(x1),Π2(x2)), (3.20)

whereby we have used the continuity of the Lévy measure Π‖ on its support (0,∞)2

and its coincidence with the measure Π in the same domain, so that Sklar’s theorem

for Lévy processes applies and the second summand in the last line is replaced by a

representation through the Lévy copula C and the marginal tail integrals. Next, by

taking the limit x1 ↓ 0 on both sides of the equation and the continuity of the Lévy



CHAPTER 3. DEPENDENCE MODELLING VIA CPPS AND LÉVY COPULAS 39

copula C, we obtain

lim
x1↓0

Π1(x1) = lim
x1↓0

Π
⊥
1 (x1) + lim

x1,x2↓0
C(Π1(x1),Π2(x2))

= lim
x1↓0

Π
⊥
1 (x1) + C(lim

x1↓0
Π1(x1), lim

x2↓0
Π2(x2)).

Together with (3.18) and (3.19), it follows that

λ1 = lim
x1↓0

Π
⊥
1 (x1) + C(λ1, λ2).

Similarly, the intensity parameter λ2 associated with the marginal process S2(t) can

be decomposed into

λ2 = lim
x2↓0

Π
⊥
2 (x2) + C(λ1, λ2).

Now we set λ‖ = C(λ1, λ2) and convince ourselves that λ‖ is indeed the parameter

of the Poisson process underlying the bivariate dependence part S‖(t) of S(t). This

follows from the fact that, by construction, the Lévy measure Π‖ of the bivariate

compound Poisson process S‖(t) is only supported by (0,∞)2. Therefore, the inten-

sity parameter λ‖ can be actually computed by taking the limit of the corresponding

tail integral limx1,x2↓0 Π
‖
(x1, x2), which results in the above definition of λ‖. Further-

more, the frequency parameters of the univariate independent loss processes S⊥1 (t)

and S⊥2 (t) are given by

λ⊥1 = lim
x1↓0

Π
⊥
1 (x1) = λ1 − C(λ1, λ2)

and λ⊥2 = lim
x2↓0

Π
⊥
2 (x2) = λ2 − C(λ1, λ2).

Finally, only the expressions for the survival functions of the independent as well as

the dependent single losses remain to be shown. Again, note the Lévy measure Π‖

is completely supported by (0,∞)2, thus the survival function F
‖

can be retrieved

from the corresponding tail integral Π
‖

for (x1, x2)> ∈ [0,∞)2, that is,

F
‖
(x1, x2) =

1

λ‖
Π
‖
(x1, x2) =

1

λ‖
C(Π1(x1),Π2(x2))

=
1

λ‖
C(λ1FX1(x1), λ2FX2(x2)).

Likewise, in order to compute the severity survival function F
⊥
1 underlying the

independent marginal process S⊥1 (t), we replace the tail integrals in equation (3.20)

by the corresponding products of intensity parameter and survival function, yielding

λ1FX1(x1) = λ⊥1 F
⊥
1 (x1) + lim

x2↓0
C(λ1FX1(x1), λ2FX2(x2))

= λ⊥1 F
⊥
1 (x1) + C(λ1FX1(x1), λ2), x1 ≥ 0.

Then by simply rearranging the terms, the claimed representation of the survival

function F
⊥
1 follows. The severity survival function F

⊥
2 of the independent loss pro-

cess S⊥2 (t) is computed in an analogous manner.
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Let X‖ = (X
‖
1 , X

‖
2 )> be a generic random vector having the same distribution as the

dependent severities X‖ = (X
‖
1k, X

‖
2k)
>, k ≥ 1. Given formula (3.16) of the joint survival

function, the marginal survival functions can be calculated as

F
‖
1(x1) = lim

x2↓0
F
‖
(x1, x2) =

1

λ‖
C(λ1FX1(x1), λ2), x1 ≥ 0, (3.21)

and F
‖
2(x2) = lim

x1↓0
F
‖
(x1, x2) =

1

λ‖
C(λ1, λ2FX2(x2)), x2 ≥ 0. (3.22)

By construction, X‖ has absolutely continuous margins. As a direct consequence of Sklar’s

theorem for survival functions, there exists a unique survival copula C
‖
s : [0, 1]2 → [0, 1]

satisfying

F
‖
(x1, x2) = C‖s (F

‖
1(x1), F

‖
2(x2)), (x1, x2)> ∈ [0,∞)2. (3.23)

At this point it is understandable to ask for the relationship between the survival copula

C
‖
s of the dependent severities X‖ and the survival copula Cs of the severity vector Y

introduced in Section 3.2.1. For this purpose, we utilise the relationship between Cs and

the Lévy copula C established in Proposition 3.3 and calculate

λ‖ = C(λ1, λ2) = λCs
(
λ1λ

−1, λ2λ
−1
)
.

According to equation (3.12), the product λiλ
−1 is given by 1− pi for i ∈ {1, 2}, whereby

the constant pi is the probability of the marginal variable Yi attaining the value zero.

Hence we further rewrite λ‖ as

λ‖ = λCs(1− p1, 1− p2) = λCs(F Y1(0), F Y2(0)) = λF Y (0, 0). (3.24)

Similarly, it holds that

C(λ1FX1(x1), λ2FX2(x2)) = λCs(λ1λ
−1FX1(x1), λ2λ

−1FX2(x2))

= λCs((1− p1)FX1(x1), (1− p2)FX2(x2))

= λCs(F Y1(x1), F Y2(x2))

= λF Y (x1, x2),

and

C(λ1FX1(x1), λ2) = λCs(F Y1(x1), F Y2(0)) = λF Y (x1, 0),

C(λ1, λ2FX2(x2)) = λCs(F Y1(0), F Y2(x2)) = λF Y (0, x2),

where we have used relation (3.13) between the survival functions of Yi and Xi with

i ∈ {1, 2}, respectively. Putting things together, the joint survival function of X‖ can be

rewritten as

F
‖
(x1, x2) =

1

λ‖
C(λ1FX1(x1), λ2FX2(x2)) =

F Y (x1, x2)

F Y (0, 0)
,
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and the corresponding marginal survival functions are given by

F
‖
1(x1) =

1

λ‖
C(λ1FX1(x1), λ2) =

F Y (x1, 0)

F Y (0, 0)

and F
‖
2(x2) =

1

λ‖
C(λ1, λ2FX2(x2)) =

F Y (0, x2)

F Y (0, 0)
.

As a result, the marginal severities X
‖
1 and X

‖
2 have the same distribution as the condi-

tional random variables

X
‖
1

d
:= Y1 |Y1, Y2 > 0 and X

‖
2

d
:= Y2 |Y1, Y2 > 0,

respectively. Hence the survival copula C
‖
s of X‖ = (X

‖
1 , X

‖
2 )> must comply with

F Y (x1, x2)

F Y (0, 0)
= C‖s

(
F Y (x1, 0)

F Y (0, 0)
,
F Y (0, x2)

F Y (0, 0)

)
.

As already explained, the survival copula Cs of Y = (Y1, Y2)> is only unique on the

rectangle [0, 1−p1]×[0, 1−p2], as the marginal distributions FY1 and FY2 may have an atom

at zero. Therefore, by viewing the random variables X
‖
1 and X

‖
2 as the conditional version

of Y1 and Y2 on the requirement Y1, Y2 > 0, the survival copula C
‖
s of X‖ = (X

‖
1 , X

‖
2 )> is

precisely the normalised version of Cs onto the unit square [0, 1]2.

Unfortunately, there is no general closed-form expression characterising the copula C
‖
s

in relation to the ordinary survival copula Cs or to the Lévy copula C. Only in the

special case of Archimedean Lévy copulas of the form C(u1, u2) = φ−1[φ(u1) + φ(u2)],

elementary manipulations of equation (3.23) show that C
‖
s has a representation in terms

of the generator function φ as

C‖s (u1, u2) =
1

λ‖
φ−1

[
φ(λ‖u1) + φ(λ‖u2)− φ(λ‖)

]
(3.25)

for (u1, u2)> ∈ [0, 1]2. In particular, expression (3.25) is independent of the time t as well

as the marginal severity distributions FX1 and FX2 .

3.2.3 Attainable range of frequency correlation

It is worth taking a moment to think about the attainable values of the frequency param-

eter λ‖ underlying the dependent loss process S‖(t) and the implication thereof for the

dependence structure within a bivariate model, when assuming the marginal frequency

parameters λ1 and λ2 are already given. As the independent loss intensities are calculated

as the difference λ⊥i = λi − λ‖ for i ∈ {1, 2}, which must be non-negative, it is natural to

restrain λ‖ to the range of

0 ≤ λ‖ ≤ min{λ1, λ2}. (3.26)

Intuitively speaking, the case of λ‖ = 0 implies that losses in the two risk cells never occur

at the same time and this reflects the understanding of independence in the framework of
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Lévy processes. In the other extreme case of λ‖ = min{λ1, λ2}, the expected number of

simultaneous losses in a time interval is equal to the expected number of losses in the risk

cell with the lower frequency parameter during the same period. The latter presents the

strongest possible frequency dependence in a bivariate compound Poisson model. From a

more theoretical point of view, from Lemma 3.4 we already know the value of λ‖ directly

depends on the underlying Lévy copula and is given by the formula λ‖ = C(λ1, λ2). Now

recall from Chapter 2 the definition of the independence and the complete dependence

Lévy copula. The application of these two special copulas results in

C⊥(λ1, λ2) = 0 and C‖(λ1, λ2) = min{λ1, λ2},

respectively. Therefore, the theoretical result matches our natural understanding of de-

pendence and independence in compound Poisson models. Going one step further, it is

easy to verify that all well-defined Lévy copulas C indeed provide a value of λ‖ within

the bounds given in (3.26). The lower bound is trivial as all positive Lévy copulas are

functions onto [0,∞]. The upper bound is more interesting and can be shown by utilising

Proposition 3.3 as follows:

λ‖ = C(λ1, λ2) = λCs
(
λ1λ

−1, λ2λ
−1
)
≤ λmin

{
λ1λ

−1, λ2λ
−1
}
,

where for the last equation we have used the upper Fréchet-Hoeffding bound for ordinary

copulas. Therefore, the upper bound in (3.26) is precisely attained if the survival copula

Cs of the bivariate losses (Y1h, Y2h)
>, h ≥ 1, is given by the ordinary comonotonic copula

and if λ = max{λ1, λ2} holds. The latter translates to the situation where the expected

number λ of the bivariate losses, which may have one component equal to zero but not

both, is equal to the expected total number of losses in the risk cell with the higher

frequency parameter. This is just an equivalent interpretation of the greatest possible

positive dependence between the two risk cells and once again we see how the two concepts

of dependence characterisation through C and Cs fit together.

As already indicated in Section 1.2, one of the popular approaches for dependence mod-

elling in operational risk is to incorporate a dependence structure among the frequency

distributions or processes of different risk cells. Hence for comparison purpose, we state be-

low the implied Pearson’s correlation coefficient between the marginal Poisson frequency

processes N1(t) and N2(t) in terms of the parameters λ‖, λ1 and λ2. Since at any time

point t the frequency count Ni(t), i ∈ {1, 2}, is Poisson distributed with parameter λit,

its variance is simply given by Var[Ni(t)] = λit. Moreover, by utilising the decomposition

Ni(t) = N⊥i (t) +N‖(t) from Lemma 3.4, the covariance can be calculated through

Cov[N1(t), N2(t)]

= Cov[N⊥1 (t) +N‖(t), N⊥2 (t) +N‖(t)]

= Cov[N⊥1 (t), N⊥2 (t)] + Cov[N⊥1 (t), N‖(t)] + Cov[N⊥2 (t), N‖(t)] + Cov[N‖(t), N‖(t)].

Because the processes N⊥1 (t), N⊥2 (t) and N‖(t) are mutually independent, only the last

summand remains and it is equal to Var[N‖(t)] = λ‖t. Altogether we obtain the correlation

coefficient

Corr[N1(t), N2(t)] =
Cov[N1(t), N2(t)]√
VarN1(t)

√
VarN2(t)

=
λ‖√
λ1λ2

.
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In particular, the correlation is independent of t and can only attain non-negative values.

3.2.4 Examples of bivariate Lévy copulas

At the end of Chapter 2 we have already listed some examples of Archimedean Lévy

copulas. In the current section, we want to enlarge our toolbox and introduce several more

parametric families of Lévy copulas. As the focus currently lies on the case of bivariate

compound Poisson models, we state below the copulas in their bivariate form.

In Lemma 3.4 we have seen how dependence in both frequency and severity is influenced

by the underlying Lévy copula. Of course, this modelling scheme shall also cover the

special case in which the components of the common losses X
‖
k = (X

‖
1k, X

‖
2k)
>, k ≥ 1, are

independent, whereas dependence between the marginal frequencies is allowed. This gives

rise to the pure common shock Lévy copula introduced by [ACW11].

Example 3.5 (Pure common shock Lévy copula).

A pure common shock Lévy copula is specified through the marginal Poisson intensity

parameters λ1, λ2 ≥ 0 and a third parameter 0 ≤ θ ≤ min{λ−1
1 , λ−1

2 } adjusting the

strength in frequency dependence. For any (u1, u2)> ∈ [0,∞]2, the Lévy copula has the

form

C(u1, u2) = θmin{u1, λ1}min{u2, λ2}
+ (u1 − θλ2 min{u1, λ1})1{u2=∞} + (u2 − θλ1 min{u2, λ2})1{u1=∞}.

The pure common shock Lévy copula is indeed a well-defined positive Lévy copula, as it

satisfies all three necessary properties therefore from Definition 2.9. By Lemma 3.4, the

intensity parameter λ‖ underlying the dependent loss process S‖(t) can be calculated as

λ‖ = C(λ1, λ2) = θλ1λ2. Hence the full possible range of frequency dependence given in

(3.26) is attainable through varying the parameter θ between 0 and min{λ−1
1 , λ−1

2 }. Fur-

thermore, the survival copula C
‖
s associated with the dependent losses X

‖
k = (X

‖
1k, X

‖
2k)
>,

k ≥ 1, can be explicitly derived from its defining equation (3.23) and is simply given by

the ordinary independence copula C
‖
s (u1, u2) = u1u2. This shows the Lévy copula model

is a very general concept and encompasses certain inter-cell frequency dependence models

introduced in Section 1.2.

Besides the named Archimedean Lévy generators presented in Table 2.1, there are three

more Lévy copulas of Archimedean type encountered in literature, for example see

[ACW11], [BL07] and [Ket12].

Example 3.6 (More Archimedean Lévy copulas).

(1) Generated by φ(u) =
(
eθu − 1

)−1
with θ > 0:

C(u1, u2) =
1

θ
ln

[(
1

eθu1 − 1
+

1

eθu2 − 1

)−1

+ 1

]
.
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(2) Generated by φ(u) = (eu − 1)−θ with θ > 0:

C(u1, u2) = ln

( 1

(eu1 − 1)θ
+

1

(eu2 − 1)θ

)− 1
θ

+ 1

 .
(3) Generated by φ(u) = exp(u−θ)− 1 with θ > 0:

C(u1, u2) =
[
ln
(
exp(u−θ1 ) + exp(u−θ2 )− 1

)]− 1
θ .

The third example is sometimes called the complementary Gumbel Lévy copula, as its

generator is the inverse function of the generator for the Gumbel Lévy copula, when

reparameterising θ to θ−1 in either formulation.

At this point is should be noticed that the full range of frequency dependence given

in (3.26) cannot be attained by all introduced Lévy copulas. More specifically, the

Archimedean family in Example 3.6 (1) does not approach the independence Lévy copula

C⊥ as its parameter θ tends to zero, but instead the limit lim
θ↓0

C(u1, u2) = u1u2
u1+u2

holds.

Nonetheless, this Lévy copula approaches the complete dependence Lévy copula C‖ for

θ ↑ ∞. Furthermore, the Ali-Mikhail-Haq Lévy copula from Table 2.1 tends to neither

of the extreme dependence structures for limiting values of its parameter θ. In contrast,

the limit relations lim
θ↓−1

C(u1, u2) = u1u2
2+u1+u2

and lim
θ↑1

C(u1, u2) = u1u2
u1+u2

hold. On the other

hand, the Clayton, the Gumbel, the complementary Gumbel and the second Lévy copula

in Example 3.6 approach the independence copula as their corresponding parameter falls

down to zero, as well as tend to the complete dependence copula as the parameter rises

up to infinity.

Obviously, all so far presented copulas satisfy the symmetry property C(u1, u2) = C(u2, u1)

for arbitrary (u1, u2)> ∈ [0,∞]2. However, it is desirable to capture potential asymmetric

dependence structures between the marginal processes as well. Hence we introduce the

following skewed Lévy copula from [MM13] with three parameters.

Example 3.7 (Skewed Clayton Lévy copula).

Given parameters θ > 0, ω > 0, and 0 < κ ≤ θ + 1, the function C : [0,∞]2 → [0,∞]

defined as

C(u1, u2) =
[(
ωu−κ2 + 1

)
u−θ1 + u−θ2

]− 1
θ .

is a valid Lévy copula.

Figure 3.1 illustrates two Clayton Lévy copulas with different asymmetry degree compared

to a symmetric Clayton Lévy copula with the same parameter θ. The density plots in the

bottom panel are especially informative with respect to demonstrating the diverse induced

dependence structures. Note that small values of u1 and u2 correspond to large loss sizes

in the compound Poisson setting, since severity survival functions enter as arguments into

the Lévy copula. Hence all three copulas depicted in Figure 3.1 share the feature that the
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(a) Symmetric Clayton Lévy copula

with θ = 15.
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(b) Skewed Clayton Lévy copula

with θ = 15, ω = 15 and κ = 0.05.
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(c) Skewed Clayton Lévy copula

with θ = 15, ω = 100 and κ = 0.05.

Figure 3.1: Comparison of symmetric and skewed Clayton Lévy copulas with increasing asym-

metry from left to right. Top panel: copula function. Bottom panel: copula density.

induced loss severities tend to be simultaneously large in both risk cells, as the density

is increasingly concentrated on small u1 and u2. On the other hand, for the same value

of u1 the density under a skewed copula is more concentrated on smaller values of u2 in

comparison to the symmetric copula. As a result, the same loss size in the first component

is more likely to be accompanied by a larger loss in the second component.

We complete our example list of bivariate Lévy copulas by constructing two elliptical

Lévy copulas from their ordinary counterparts in the spirit of Proposition 2.18.

Example 3.8 (Elliptical Lévy copulas).

Let f be a construction function satisfying the properties specified in Proposition 2.18.

(1) The Gaussian Lévy copula is given by

C(u1, u2) = f ◦ Φ2

(
Φ−1 ◦ f−1(u1), Φ−1 ◦ f−1(u2) ; ρ

)
,

where Φ(u) denotes the distribution function of the standard univariate normal

distribution and Φ2(u1, u2; ρ) is the bivariate normal distribution function with zero

means, unit variances and correlation ρ.

(2) Similarly, the Student’s t Lévy copula is constructed as

C(u1, u2) = f ◦ T2

(
T −1
ν ◦ f−1(u1), T −1

ν ◦ f−1(u2) ; ν, ρ
)
,

where Tν(u) is the distribution function of the standard univariate t distribution

with ν degrees of freedom and T2(u1, u2; ν, ρ) represents the bivariate t distribution

function with ν degrees of freedom, zero means, unit variances and correlation ρ.
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3.3 Maximum likelihood estimation of bivariate com-

pound Poisson models

Under the assumption of parametric Lévy copulas and absolutely continuous marginal

severity distributions, the likelihood function of a bivariate compound Poisson model

S(t) = (S1(t), S2(t))>, t ≥ 0, can be derived with the help of Lemma 3.4. In Section 3.3.1

we first treat the case of a continuous observation scheme. That is, given a fixed time

interval [0, T ], the size and the occurrence time of all losses are known accurately. Con-

sequently, all recorded single losses can be assigned either to the dependent part S‖(t) of

the process S(t), or to one of the independent parts S⊥1 (t) and S⊥2 (t), respectively. On the

other hand, if the loss times are only known up to a short period, for example within one

week, then we speak of a discrete observation scheme and the corresponding estimation

method is presented in Section 3.3.2.

To begin with, we have to clarify the parameters to be estimated under the assumption of

a bivariate compound Poisson model. First, we want to obtain the intensity parameters

λi > 0, i ∈ {1, 2}, of the marginal Poisson frequency processes. Next, let fXi(xi; θi)

denote the marginal severity density of risk cell i, i ∈ {1, 2}, where θi represents the

corresponding parameter vector to be estimated. Finally, the parameter θC of the Lévy

copula C(u1, u2; θC) is of interest as well.

3.3.1 MLE under a continuous observation scheme

For now suppose we can gather the following information from the observed data:

• the observation interval [0, T ],

• the number n⊥1 of losses occurred in risk cell one without losses occurring in risk

cell two at the same time, and similarly, the number n⊥2 of the independent losses

in risk cell two,

• the number n‖ of losses simultaneously occurred in both risk cells and thus belonging

to the bivariate dependent process S‖(t),

• the univariate severities x⊥11, . . . , x
⊥
1n⊥1

attributed to the independent process S⊥1 (t)

and the univariate severities x⊥21, . . . , x
⊥
2n⊥2

attributed to the independent process

S⊥2 (t),

• the bivariate loss severities (x
‖
11, x

‖
21)>, . . . , (x

‖
1n‖
, x
‖
2n‖

)> attributed to the dependent

process S‖(t).

In order to apply MLE, we first specify the likelihood function:

Theorem 3.9 (Likelihood function under a continuous observation scheme).

Consider a parametric bivariate compound Poisson model as described above and assume
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for all (u1, u2)> ∈ (0, λ1)× (0, λ2) the density ∂2

∂u1∂u2
C(u1, u2; θC) of the Lévy copula exists.

Furthermore, let λ
‖
θC

= C(λ1, λ2; θC) denote the frequency parameter of the common losses

which depends on the copula parameter θC. Accordingly, the frequency parameters of the

individual losses are given by λ⊥iθC = λi − λ‖θC, i ∈ {1, 2}. Then the likelihood function of

the bivariate compound Poisson model is computed as

L(λ1, λ2, θ1, θ2, θC) (3.27)

= (λ1)n
⊥
1 e
−λ⊥1θCT

n⊥1∏
j=1

[
fX1(x

⊥
1j; θ1)

(
1− ∂

∂u1

C(u1, λ2; θC)

∣∣∣∣u1=λ1FX1
(x⊥1j ;θ1)

)]

× (λ2)n
⊥
2 e
−λ⊥2θCT

n⊥2∏
l=1

[
fX2(x

⊥
2l; θ2)

(
1− ∂

∂u2

C(λ1, u2; θC)

∣∣∣∣u2=λ2FX2
(x⊥2l;θ2)

)]

× (λ1λ2)n
‖
e
−λ‖θCT

n‖∏
k=1

[
fX1(x

‖
1k; θ1)fX2(x

‖
2k; θ2)

∂2

∂u1∂u2

C(u1, u2; θC)

∣∣∣∣u1=λ1FX1
(x
‖
1k;θ1),u2=λ2FX2

(x
‖
2k;θ2)

]
.

Proof. The likelihood function mainly draws upon the decomposition of S = (S1, S2)>

into the three independent compound Poisson processes S⊥1 , S⊥2 and S‖ made possible

by Lemma 3.4. Let LS⊥i (λ⊥iθC , θi, θC), i ∈ {1, 2}, denote the likelihood corresponding to

the process S⊥i , and let LS‖(λ
‖
θC
, θ1, θ2, θC) denote the likelihood of S‖. Then the joint

likelihood is readily given by the product

L(λ1, λ2, θ1, θ2, θC) = LS⊥1 (λ⊥1θC , θ1, θC)LS⊥2 (λ⊥2θC , θ2, θC)LS‖(λ
‖
θC
, θ1, θ2, θC).

The likelihood function of a compound Poisson process observed over a fixed period [0, T ]

is well studied and its general form can be found at the beginning of Chapter 6, Section 4

in [BR80], for example. Here we explain the derivation of LS⊥1 in detail and state the

similar results for LS⊥2 as well as for LS‖ later on.

By construction of the model, the losses x⊥11, . . . , x
⊥
1n⊥1

attributed to the process S⊥1 took

place according to a homogeneous Poisson process with intensity λ⊥1θC . If t⊥1,1, . . . , t
⊥
1,n⊥1

are the time points at which the losses occurred, the inter-arrival times t⊥1,j − t⊥1,j−1 with

j = 1, . . . , n⊥1 and t⊥1,0 = 0 are i.i.d. according to the exponential distribution with den-

sity f(t) = λ⊥1θCe
−λ⊥1θC t. Therefore, the Poisson frequency part of S⊥1 contributes to the

likelihood through

e
−λ⊥1θC

(
T−t⊥

1,n⊥1

) n⊥1∏
j=1

[
λ⊥1θCe

−λ⊥1θC(t⊥1,j−t⊥1,j−1)
]

=
(
λ⊥1θC

)n⊥1 e−λ⊥1θCT ,
whereby the first factor on the left side of the equation is the probability that no more

losses occurred after x⊥
1n⊥1

until the end of the observation period [0, T ]. With regard to

the severity part of S⊥1 , we make use of the survival function F
⊥
1 (x1) specified in Part (b)

of Lemma 3.4 and obtain the lose size density as

f⊥1 (x1) = − ∂

∂x1

F
⊥
1 (x1) (3.28)
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= − ∂

∂x1

((
λ⊥1θC

)−1 [
λ1FX1(x1; θ1)− C(λ1FX1(x1; θ1), λ2; θC)

])
=
(
λ⊥1θC

)−1
λ1fX1(x1; θ1)

(
1− ∂

∂u1

C(u1, λ2; θC)

∣∣∣∣u1=λ1FX1
(x1;θ1)

)
.

Putting the severity and frequency parts of S⊥1 together, we arrive at its likelihood function

LS⊥1 (λ⊥1θC , θ1, θC) =
(
λ⊥1θC

)n⊥1 e−λ⊥1θCT n⊥1∏
j=1

f⊥1 (x⊥1j),

which reflects the second line of (3.27) after rearranging the terms. By symmetry, the

likelihood LS⊥2 associated with the process S⊥2 is exactly given by the third line of (3.27).

Only the likelihood LS‖ of the bivariate compound Poisson process S‖ = (S
‖
1 , S

‖
2)> remains

to be determined. As its frequency component follows a homogeneous Poisson process with

intensity λ
‖
θC

, the corresponding likelihood can be derived in the same manner as above.

To obtain the density of the bivariate loss sizes, we utilise their joint survival function

F
‖
(x1, x2) from Part (b) of Lemma 3.4 and calculate the twofold partial derivative

f ‖(x1, x2) =
∂2

∂x1∂x2

F
‖
(x1, x2) (3.29)

=
∂2

∂x1∂x2

[
(λ
‖
θC

)−1C
(
λ1FX1(x1; θ1), λ2FX2(x2; θ2); θC

)]
= (λ

‖
θC

)−1λ1λ2fX1(x1; θ1)fX2(x2; θ2)
∂2

∂u1∂u2

C (u1, u2; θC)|u1=λ1FX1
(x1;θ1),u2=λ2FX2

(x2;θ2) .

As a result, the likelihood function of the bivariate process S‖ is given by

LS‖(λ
‖
θC
, θ1, θ2, θC) =

(
λ
‖
θC

)n‖
e
−λ‖θCT

n‖∏
k=1

f ‖(x
‖
1k, x

‖
2k),

After simple reformulation, the likelihood LS‖ resembles the last line of equation (3.27)

and this completes the proof.

In view of the practical estimation of the parameters (λ1, λ2, θ1, θ2, θC)> underlying a

bivariate compound Poisson model S(t) = (S1(t), S2(t))>, there are two common ap-

proaches. The first one is the full maximum likelihood method, requiring the maximisation

of L(λ1, λ2, θ1, θ2, θC) with respect to all its arguments simultaneously. Mostly this results

in a highly non-trivial optimisation problem, given the typically large dimension of the

parameter vector (λ1, λ2, θ1, θ2, θC)>. As operational losses are known for possessing high

skewness, high kurtosis and a heavy tail, their characterisation often involves distribution

families with at least two parameters. Hence the components θ1 and θ2 already account

for four dimensions.

Nevertheless, the full MLE is appealing due to the typically expected convenient properties

of its resulting estimates. Under mild regularity conditions on the random information



CHAPTER 3. DEPENDENCE MODELLING VIA CPPS AND LÉVY COPULAS 49

matrix, [Swe80] shows that maximum likelihood estimators are weakly consistent and

asymptotically normal for the observation horizon T approaching infinity. In addition,

the subsequent publication [Swe83] by the same author supplements that the estimators

are efficient in the sense of having asymptotically maximum probability of concentration

in convex symmetric sets around the true parameter values. For more details on the

existence, uniqueness and asymptotic properties of maximum likelihood estimates for

stochastic processes we refer to Chapter 8 in [KS97].

The second approach resembles the IFM method, which is originally developed for the

estimation of multivariate models based upon ordinary copulas. Its main idea relies on the

decomposition of the joint distribution into marginal laws and copula, in order to overcome

the numerical problems associated with the full MLE. The IFM concept consists of the

following two steps:

(1) The marginal compound Poisson processes S1(t) and S2(t) are estimated separately.

For each i ∈ {1, 2}, an estimate for the marginal parameter vector (λi, θi)
> is ob-

tained by maximising the marginal likelihood function

LSi(λi, θi) = (λi)
n⊥i +n‖ e−λiT

n⊥i∏
j=1

fXi(x
⊥
ij; θi)

n‖∏
k=1

fXi(x
‖
ik; θi)

and by utilising all observed losses x⊥i1, . . . , x
⊥
in⊥i

;x
‖
i1, . . . , x

‖
in‖

occurred in the corre-

sponding risk cell i. The resulting parameters shall be denoted by (λ̂1, λ̂2, θ̂1, θ̂2)>.

(2) The marginal estimators are considered as fixed and plugged into the likelihood

function L(λ̂1, λ̂2, θ̂1, θ̂2, θC) given in Theorem 3.9. Then the likelihood is maximised

as a function solely of the Lévy copula parameter θC and this ultimately yields the

estimate θ̂C.

Clearly, the resulting estimates of the full MLE and the IFM method most likely differ from

each other. The striking advantage of the latter is the reduction of numerical complexity.

As the joint likelihood is maximised only over the copula parameter in the second step, a

Lévy copula family with more than one parameter could be imposed to capture complexer

dependence characteristics such as asymmetry. Certainly, it is also possible to combine

the two concepts, for example by using the estimators obtained through IFM as starting

values of a full maximum likelihood procedure. Another approach of taking the advantage

of both methods is to first choose a copula family from various potentially suitable Lévy

copulas via IFM, then apply the full MLE to finalise the parameter estimation. Last but

not least, the likelihood function as detailed in Theorem 3.9 can be utilised within a

Bayesian estimation scheme as well, in which expert knowledge is incorporated in form of

prior distributions.

3.3.2 MLE under a discrete observation scheme

In practice, it is not unusual that operational losses are only reported on a weekly or

even a monthly basis, and we shall call this the reporting period in the sequel. Against
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this background, within one reporting period the dependent losses (X
‖
1k, X

‖
2k)
> cannot be

distinguished from the independent losses X⊥1j and X⊥2l , respectively, although all loss sizes

are documented exactly. As a result, the likelihood function given in Theorem 3.9 cannot

be applied and a new estimation method is needed.

Following the proposal by [Vel12], suppose the entire observation horizon [0, T ] consists

of n reporting periods with equal length. In other words, the bivariate compound Poisson

model S(t) = (S1(t), S2(t))> shall be observed over an equidistant grid

0 = t0 < t1 < · · · < tn = T with ts − ts−1 = ∆t =
T

n
, s ∈ {1, . . . , n}.

Moreover, losses from disjoint reporting periods are assumed to be too far apart to be

caused by common reasons. Similar to Theorem 3.9, if the Lévy copula C is continuously

differentiable of second order on (0, λ1) × (0, λ2), then a closed-form likelihood function

for S(t) can be derived based upon the maximum loss sizes within each reporting period.

Hence assume the following loss data are available:

• the number nis of losses occurred in risk cell i, i ∈ {1, 2}, and within the reporting

period (ts, ts−1], s ∈ {1, . . . , n},

• the maximum loss amount xis in risk cell i, i ∈ {1, 2}, and within the reporting

period (ts, ts−1], s ∈ {1, . . . , n}.

Let the corresponding random variables be denoted by Nis and Mis with i ∈ {1, 2} and

s ∈ {1, . . . , n}, respectively. Because the compound Poisson process S(t) has independent

and stationary increments, whose distribution only depends on the length of the interval,

the random vectors (N1s, N2s,M1s,M2s)
> are i.i.d. for s ∈ {1, . . . , n}. Therefore, the

overall likelihood can be factorised into

LD(λ1, λ2, θ1, θ2, θC) =
n∏
s=1

LDn1s,n2s,x1s,x2s
(λ1, λ2, θ1, θ2, θC),

whereby LDn1s,n2s,x1s,x2s
is the likelihood attributed to the reporting period (ts, ts−1] and

evaluated at the corresponding observation. Of course, the likelihood of each reporting

period has the same form and we write LDn1,n2,x1,x2
for simpler notation. In order to make

LDn1,n2,x1,x2
tangible, we differentiate between four cases of the possible value (n1, n2)>

which the frequency vector (N1s, N2s)
> can take:

LDn1,n2,x1,x2
= H0,0(∞,∞)1{n1=0,n2=0} +

∂

∂x1

Hn1,0(x1,∞)1{n1>0,n2=0}

+
∂

∂x2

H0,n2(∞, x2)1{n1=0,n2>0} +
∂2

∂x1∂x2

Hn1,n2(x1, x2)1{n1>0,n2>0},

where the function Hn1,n2(x1, x2) denotes the joint distribution of the maximum loss

amounts (M1s,M2s)
> with given frequency values:

Hn1,n2(x1, x2) = P(N1s = n1, N2s = n2,M1s ≤ x1,M2s ≤ x2).
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In accordance with Lemma 3.4, the frequency random variable Nis can be decomposed

into

Nis = N⊥is +N‖s , i ∈ {1, 2}, s ∈ {1, . . . , n},

with N⊥is = N⊥i (ts) − N⊥i (ts−1) and N
‖
s = N‖(ts) − N⊥(ts−1). Note that in contrast to

Nis, the values of N⊥is and N
‖
s cannot be observed under the current time discretisation

assumption. Nevertheless, the consideration of the latter is essential in order to compute

Hn1,n2(x1, x2). Again let λ‖ := λ
‖
θC

denote the frequency parameter of the dependent loss

process S‖ which depends on the copula parameter θC. Moreover, the frequency parameter

of the independent loss process S⊥i is computed as λ⊥i = λi − λ‖ for i ∈ {1, 2}. Then the

random variables N⊥1s, N
⊥
2s and N

‖
s are independently Poisson distributed with parameters

λ⊥1 ∆t, λ⊥2 ∆t and λ‖∆t, respectively.

On the severity side, the maximum loss amounts can be expressed through

Mis = max{M⊥
is ,M

‖
is}, i ∈ {1, 2}, s ∈ {1, . . . , n},

where M⊥
is denotes the maximum of losses occurred in the interval (ts, ts−1] and attributed

to the independent loss process S⊥i , and M
‖
is is the maximum of losses occurred in the

same time interval but attributed to the marginal dependent loss process S
‖
i . Similar to

the discretised frequency process, the maxima M⊥
is and M

‖
is cannot be observed directly,

but their consideration is necessary for deriving the likelihood. Furthermore, recall the

general fact that the maximum Mm of i.i.d. random variables X1, . . . , Xm with distribution

function F satisfies P(Mm ≤ x) = Fm(x).

In view of the independence between the three partial processes S⊥1 , S⊥2 and S‖, as well

as the independence between frequency and severity, it follows for the simplest case of

n1 = n2 = 0 that

H0,0(∞,∞) = P(N1s = 0, N2s = 0) = P(N⊥1s = 0, N⊥2s = 0, N‖s = 0) = e−(λ⊥1 +λ⊥2 +λ‖)∆t.

If n1 > 0 and n2 = 0, then the joint distribution takes the form

Hn1,0(x1,∞) = P(N1s = n1, N2s = 0,M1s ≤ x1)

= P(N⊥1s = n1, N
⊥
2s = 0, N‖s = 0,M⊥

1s ≤ x1)

= P(N⊥1s = n1, N
⊥
2s = 0, N‖s = 0)P(M⊥

1s ≤ x1|N⊥1s = n1)

=
(λ⊥1 ∆t)n1

n1!
e−(λ⊥1 +λ⊥2 +λ‖)∆t

[
F⊥1 (x1)

]n1
.

Thus its partial derivative with respect to x1 is given by

∂

∂x1

Hn1,0(x1,∞) =
(λ⊥1 ∆t)n1

n1!
e−(λ⊥1 +λ⊥2 +λ‖)∆tn1

[
F⊥1 (x1)

]n1−1
f⊥1 (x1),

whereas the density f⊥1 (x1) is already calculated in (3.28) during the derivation of the

likelihood under a continuous observation scheme. Due to symmetry, the case of n1 = 0

and n2 > 0 follows by an analogous calculation, resulting in

∂

∂x2

H0,n2(∞, x2) =
(λ⊥2 ∆t)n2

n2!
e−(λ⊥1 +λ⊥2 +λ‖)∆tn2

[
F⊥2 (x2)

]n2−1
f⊥2 (x2).



CHAPTER 3. DEPENDENCE MODELLING VIA CPPS AND LÉVY COPULAS 52

For the last case of n1 > 0 and n2 > 0, the joint distribution is split into a sum by

exploiting all the possible values n‖ the dependent loss frequency N
‖
s can take:

Hn1,n2(x1, x2) =

min{n1,n2}∑
n‖=0

P(N⊥1s = n1 − n‖, N⊥2s = n2 − n‖, N‖s = n‖,M1s ≤ x1,M2s ≤ x2),

where each summand is further computed through

P(N⊥1s = n1 − n‖, N⊥2s = n2 − n‖, N‖s = n‖,M⊥
1s ≤ x1,M

⊥
2s ≤ x2,M

‖
1s ≤ x1,M

‖
2s ≤ x2)

= P(N⊥1s = n1 − n‖, N⊥2s = n2 − n‖, N‖s = n‖)

× P(M⊥
1s ≤ x1|N⊥1s = n1 − n‖)P(M⊥

2s ≤ x2|N⊥2s = n2 − n‖)P(M
‖
1s ≤ x1,M

‖
2s ≤ x2|N‖s = n‖)

=
(λ⊥1 ∆t)n1−n‖

(n1 − n‖)!
e−λ

⊥
1 ∆t (λ⊥2 ∆t)n2−n‖

(n2 − n‖)!
e−λ

⊥
2 ∆t (λ‖∆t)n

‖

n‖!
e−λ

‖∆t

×
[
F⊥1 (x1)

]n1−n‖ [
F⊥2 (x2)

]n2−n‖ [
F ‖(x1, x2)

]n‖
.

Then the twofold partial derivative of Hn1,n2(x1, x2) can be calculated by the product rule

and in a similar manner to (3.28). The details are omitted here as they are rather lengthy

and do not provide deeper insights into the subject.

In conclusion, all components of the likelihood function LD under the discrete observa-

tion scheme are specified. According to [Vel12], the function LD converges to the like-

lihood under the continuous observation scheme given in Theorem 3.9 as the number

n of the reporting periods approaches infinity. Furthermore, just as in the already dis-

cussed continuous case, the practical estimation of the parameters (λ1, λ2, θ1, θ2, θC)> can

be achieved via either the full maximum likelihood method or the IFM approach. The

latter is particularly appealing under the discrete observation scheme, as in the first step

of the IFM approach all single loss sizes can be used to determine the parameters (λ1, θ1)>

and (λ2, θ2)> underlying the marginal processes. In comparison, the joint maximisation

of LD(λ1, λ2, θ1, θ2, θC) with respect to all entries only makes use of the number of losses

and the maximum loss sizes within each reporting period.

3.3.3 Implication of rescaled observation time unit

So far we have assumed the expected number of the marginal losses in one time unit is

given by λi, i ∈ {1, 2}, without explicitly defining the length of one time unit. As the risk

measure currently specified by authority is the VaR for a one-year holding period, it is

natural to consider one year as one time unit. However, for different reasons one may be

interested in a dependence model based on alternative time units. Suppose the new time

unit is the old one rescaled with a positive constant c−1, for instance c = 4, in case we

switch from yearly to quarterly modelling. If the Lévy copula under the old time unit is

given by C(u1, u2; θC), then [BL07] ensures that the Lévy copula C̃ under the new time

unit can be derived from the old one through

C̃(u1, u2; θC) = c−1C(cu1, cu2; θC), (u1, u2)> ∈ [0,∞]2. (3.30)
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Note the above equation not only holds for bivariate Poisson models, but also for general

Lévy processes in higher dimension. Hereinafter, we establish the relation between C and C̃

by verifying that the corresponding likelihood functions L and L̃ according to Theorem 3.9

indeed attain maximum at the same parameter values.

As the parameters θ1 and θ2 underlying the severity distributions remain unchanged under

the new time unit, they are omitted below for simpler notation. The same principle applies

to the copula parameter θC. On the other hand, the rescaled marginal intensities are given

by λ̃i = c−1λi, i ∈ {1, 2}, owing to properties of homogeneous Poisson processes. So the

new intensity of the dependent losses can be calculated through

λ̃‖ = C̃(λ̃1, λ̃2) = c−1C(λ1, λ2) = c−1λ‖

and it is a rescaling of λ‖ as expected. The intensity of the independent loss process S⊥i
follows as λ̃⊥i = c−1λ⊥i for i ∈ {1, 2}. Furthermore, the loss data used for estimation,

as they were described at the beginning of Section 3.3.1, stay the same, besides the

corresponding observation interval is adjusted to [0, T̃ ] = [0, cT ].

As usual, it is more convenient to maximise the log-likelihood function instead of the

likelihood function itself. Hence we apply the logarithm to the likelihood function under

the rescaled time unit and obtain

ln L̃(λ̃1, λ̃2)

= n⊥1 ln λ̃1 − λ̃⊥1 T̃ +

n⊥1∑
j=1

ln fX1(x
⊥
1j) +

n⊥1∑
j=1

ln

(
1− ∂

∂u1

C̃(u1, λ̃2)

∣∣∣∣u1=λ̃1FX1
(x⊥1j)

)

+ n⊥2 ln λ̃2 − λ̃⊥2 T̃ +

n⊥2∑
l=1

ln fX2(x
⊥
2l) +

n⊥2∑
l=1

ln

(
1− ∂

∂u2

C̃(λ̃1, u2)

∣∣∣∣u2=λ̃2FX2
(x⊥2l)

)

+ n‖ ln(λ̃1λ̃2)− λ̃‖T̃ +
n‖∑
k=1

[
ln fX1(x

‖
1k) + ln fX2(x

‖
2k)
]

+
n‖∑
k=1

ln
∂2

∂u1∂u2

C̃(u1, u2)

∣∣∣∣
u1=λ̃1FX1

(x
‖
1k),u2=λ̃2FX2

(x
‖
2k)

.

The partial derivatives of C̃ can be calculated as

∂

∂ui
C̃(u1, u2) =

∂

∂vi
C(v1, v2)

∣∣∣∣
v1=cu1,v2=cu2

, i ∈ {1, 2},

and similarly, the density has the representation

∂2

∂u1∂u2

C̃(u1, u2) = c
∂2

∂v1∂v2

C(v1, v2)

∣∣∣∣
v1=cu1,v2=cu2

.

Putting everything together, the log-likelihood under the new time unit satisfies

ln L̃(λ̃1, λ̃2)
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= n⊥1 ln(c−1λ1)− λ⊥1 T +

n⊥1∑
j=1

ln fX1(x
⊥
1j) +

n⊥1∑
j=1

ln

(
1− ∂

∂v1

C(v1, λ2)

∣∣∣∣v1=λ1FX1
(x⊥1j)

)

+ n⊥2 ln(c−1λ2)− λ⊥2 T +

n⊥2∑
l=1

ln fX2(x
⊥
2l) +

n⊥2∑
l=1

ln

(
1− ∂

∂v2

C(λ1, v2)

∣∣∣∣v2=λ2FX2
(x⊥2l)

)

+ n‖ ln(c−2λ1λ2)− λ‖T +
n‖∑
k=1

[
ln fX1(x

‖
1k) + ln fX2(x

‖
2k)
]

+
n‖∑
k=1

ln

(
c

∂2

∂v1∂v2

C(v1, v2)

∣∣∣∣v1=λ1FX1
(x
‖
1k),v2=λ2FX2

(x
‖
2k)

)
= −(n⊥1 + n⊥2 + n‖) ln c + lnL(λ1, λ2)

In conclusion, the log-likelihood function ln L̃ only differs from the original one lnL by

a constant and their maximisation would deliver equivalent results. Hence the parame-

ters under the rescaled time unit can be retrieved by properly rescaling the maximum

likelihood estimates under the original time unit.

Furthermore, this is an appropriate occasion to introduce the class of homogeneous Lévy

copulas. A Lévy copula is called homogeneous of order one, if it satisfies the property

C(u1, u2) = c−1C(cu1, cu2)

for all (u1, u2)> ∈ [0,∞]2 and for any constant c > 0. By comparing the above equation

to formula (3.30) for the Lévy copula after modifying the time unit by a constant, we

immediately conclude that homogeneous Lévy copulas are invariant under time rescal-

ing. Prominent examples of this special copula class are the complete dependence, the

independence and the Clayton Lévy copulas.



Chapter 4

Estimation of operational risk

measures

As already explained in Chapter 1, a key objective of modelling operational risk is to assess

the required capital reserves in a financial institution against potential future losses. Under

the current industry standards, the core principle of capital charge estimation is the VaR

for a one-year ahead time horizon and measured based upon the distribution G+ of the

overall loss process S+ =
∑d

i=1 Si. A precise mathematical characterisation of operational

VaR was introduced in Definition 1.1 under the general loss distribution approach, which

of course equally applies to our dependence model built upon a d-dimensional compound

Poisson process as detailed in Definition 3.1.

Besides VaR, the most popular alternative risk measure is given by expected shortfall

(ES). In contrast to VaR, ES constitutes a coherent risk measure and in particular sat-

isfies the subadditive property. The latter reflects the natural intuition of diversification

benefit, that is, the risk exposure calculated based on the aggregate loss distribution across

independent risk cells should not be larger than the sum of risk exposures calculated for

each cell alone. Moreover, ES does not only state the threshold but also the expected

size of potential severe losses, provided that the threshold is exceeded. Hence it is more

conservative than the VaR at the same confidence level. However, the risk measure ES is

only well-defined if the underlying distribution possesses finite expectation, which is not

always the case regarding the heavy-tailed property of operational risk losses. In an anal-

ogous manner to Definition 1.1 for operational VaR, we make the concept of ES precise

in the current context of operational risk.

Definition 4.1 (Operational ES).

Assume the aggregate loss Si(t) of risk cell i ∈ {1, . . . , d} has finite expectation for t ≥ 0.

Then the stand-lone operational ES of risk cell i until time t ≥ 0 at confidence level

α ∈ (0, 1) is defined as

ESi,t(α) =
1

1− α

∫ 1

α

VaRi,t(α̃)dα̃.

Accordingly, the total operational ES of a financial institution until time t ≥ 0 at level

55
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α ∈ (0, 1) is specified through

ES+,t(α) =
1

1− α

∫ 1

α

VaR+,t(α̃)dα̃.

Furthermore, ES belongs as a special case to the so-called spectral risk measures (SRMs),

which build a more general coherent class of risk measures in quantitative finance and is

first considered in [TW12] to quantify operational risk. Given a non-negative and non-

decreasing weight function φ : [0, 1] → R satisfying the normalisation
∫ 1

0
φ(s)ds = 1, a

SRM can be specified as

SRMφ =

∫ 1

0

φ(s)VaR(s) ds.

The function φ is referred to as an admissible risk spectrum and its non-decreasing prop-

erty ensures that the weight attached to a higher quantile being no less than it attached

to a lower one. In addition, the more risk averse the user of a SRM is, the more steeply the

weight φ rises. Hence on the contrary to VaR, SRMs allow for individual risk attitudes in

operational risk exposure estimations. In order to formulate asymptotic results with re-

spect to the confidence level α, we restrict our attention below to a subclass of admissible

risk spectra, which assign non-decreasing weights to the largest (1−α)% losses, and zero

weight to the remaining smaller quantiles. This consideration is also reasonable in the

sense that both banks and regulators are mainly concerned with the severest loss sizes.

For any admissible risk spectrum φ as introduced above, the transformation

φ∗(s) =
1

1− α
φ

(
1− 1− s

1− α

)
1[α,1](s). (4.1)

constitutes a family of rescaled admissible risk spectra. Obviously, ES can be characterised

as a SRM with φ(s) = 1
1−α1[α,1)(s). Now we can define the operational SRMs for a financial

institution comprising d risk cells.

Definition 4.2 (Operational SRM).

Let φ∗ : [α, 1] → R denote an admissible risk spectrum as detailed in (4.1) and assume

the aggregate loss Si(t) of risk cell i ∈ {1, . . . , d} has finite expectation for t ≥ 0. Then

the stand-alone operational SRM associated with φ∗ at confidence level α ∈ (0, 1) and

over period [0, t] is given by

SRMφ∗

i,t (α) =

∫ 1

α

φ∗(α̃)VaRi,t(α̃) dα̃

for risk cell i. Moreover, the total operational SRM of a financial institution until time

t ≥ 0 at level α ∈ (0, 1) has the representation

SRMφ∗

+,t(α) =

∫ 1

α

φ∗(α̃)VaR+,t(α̃) dα̃.

For most choices of severity and frequency distributions, the distribution G+ of the overall

loss process S+ does not possess an analytically evaluable formula. As a result, banks often
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resort to simulation methods in order to estimate operational risk measures. Nonetheless,

as both regulatory and economic capital calculations are based on very high quantiles,

typically at least of significance level α = 99.9%, a natural estimation approach is via

asymptotic tail approximations. More precisely, we would like to represent the risk mea-

sures at high confidence levels through a closed-form expression in terms of the single

loss distributions FXi , i ∈ {1, . . . , d}. The result for VaR in the univariate case is already

commonly applied in practice and well-known under the name single-loss approximation

(SLA). Going one step further, the employment of Lévy copulas proves itself to be par-

ticularly convenient in generalising SLA to the multidimensional case, that is, the joint

estimation of VaR+, ES+ or SRMφ∗

+ for d risk cells.

In Section 4.1.1 and 4.1.2, the most relevant approximation results for the uni- and mul-

tivariate cases are briefly reviewed, respectively. We shall spare the proofs and refer the

interested readers to [BK10] for detailed information on operational VaR, to [BU09] for

ES, and to [TW12] for SRM. Then in Section 4.2, we make use of the compound Poisson

property of the overall loss process S+ and derive an analytical expression for the as-

sociated severity distribution F+ in the two-dimensional setting. The implications out of

this for the overall risk measure estimation is explored as well. Eventually, Section 4.3 dis-

cusses potential improvements and extensions of the previous results. In order to state the

asymptotic relation lim
x→∞

f(x)
g(x)

= 1 between two functions f and g via a simpler notation,

we introduce in this chapter the expression f(x) ∼ g(x) as x→∞.

4.1 Analytical approximation of operational risk

measures

4.1.1 The one-dimensional case

First we recall risk measure approximations in the univariate case, that is, for a single

risk cell i ∈ {1, . . . , d}, whose structure is characterised by a compound Poisson process

Si(t) ∼ CPP(λi, FXi) as detailed in Part (a) of Definition 3.1. As we focus on one risk cell

in the current section, the subscript i is omitted for ease of notation.

For the sake of completeness, we point out that in the one-dimensional setting, the sub-

sequent asymptotic results do not only hold for compound Poisson processes, but also for

more general compound distributions based on alternative frequency components. More

precisely, the frequency process N(t), t ≥ 0, can be relaxed to a counting process with

values in N0, which constitutes a càdlàg process with piecewise constant trajectories and

sample paths moving by jump size of plus one.

Due to the independence between frequency and severity, the aggregate loss distribution

function can be written as

Gt(x) = P(S(t) ≤ x)
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=
∞∑
n=0

P(N(t) = n)P(S(t) ≤ x|N(t) = n)

=
∞∑
n=0

P(N(t) = n)F n∗
X (x), t ≥ 0, x ≥ 0,

where F n∗
X denotes the n-fold convolution of the severity distribution FX with the spe-

cial case F 0∗
X (x) = 1[0,∞). Under weak regularity conditions, the far out right tail of the

compound distribution Gt, which is crucial for the determination of operational risk mea-

sures at high confidence levels, is related to the severity distribution FX via the following

theorem from [EKM97].

Theorem 4.3 (Aggregate loss distribution in the subexponential case).

If the severity distribution FX is subexponential and for fixed t > 0 the frequency process

N(t) satisfies the condition

∞∑
n=0

(1 + ε)n P(N(t) = n) < ∞ (4.2)

for some ε > 0, then the aggregate loss distribution Gt is subexponential with asymptotic

tail behaviour

Gt(x) ∼ E[N(t)]FX(x), x→∞. (4.3)

It is also shown in [EKM97] that condition (4.2) is fulfilled by the Poisson and the negative

binomial frequency processes, which constitute the two most popular frequency modelling

choices among financial institutions.

In contrast to the relaxation with respect to frequency, for the subsequent asymptotic

statements to apply we strengthen the loss severity to the class of subexponential distri-

butions denoted by S. For a formal definition of S and the related classes of regularly vary-

ing distributions R as well as rapidly varying distributions R∞, we refer to Appendix B.

Nonetheless, owing to the heavy-tailed nature of operational losses, the assumption of

subexponential severities does not present a substantial restriction in practice. The at-

tribute subexponential refers to the fact that the tail of a distribution in S decays more

slowly than any exponential tail. Important examples include the Weibull distribution

with shape parameter less than one, the lognormal distribution and the Pareto distri-

bution, which are already widely applied in the operational risk context as indicated in

Section 1.2.

Given relation (4.3), it is straightforward to derive asymptotic estimations for operational

VaR, ES and SRM valid at a high confidence level α near one. Although we have ac-

knowledged ES being a special case of SRM, we separately state the approximations for

ES in the subsequent theorems due to its prominent popularity after VaR in practical

implementations.

Theorem 4.4 (Operational risk measures for a single risk cell).

Consider a one-dimensional loss process as detailed in Theorem 3.1, Part (a), and let
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the conditions of Theorem 4.3 be satisfied with FX ∈ S ∩ (R ∪R∞). Then the following

approximations hold:

(a) The stand-alone VaR admits the asymptotic approximation

VaRt(α) ∼ F←X

(
1− 1− α

E[N(t)]

)
, α→ 1. (4.4)

(b) Assume further the severity distribution has a regularly varying tail FX ∈ R−γ with

γ > 1, then an approximation for the operational ES can be specified as

ESt(α) ∼ γ

γ − 1
VaRt(α), α→ 1.

(c) Let φ∗ be an admissible risk spectrum as introduced in (4.1) and let its unscaled

equivalence satisfy for all s > 1 the condition φ(1 − s−1) ≤ ηs−γ
−1+1−ε with some

η > 0 and ε > 0. Then under the same assumption for the loss severity FX as in

Part (b), the asymptotic SRM with respect to φ∗ has the form

SRMφ∗

t (α) ∼ k(γ, φ)VaRt(α), α→ 1,

with the constant k(γ, φ) =
∫∞

1
sγ
−1−2 φ(1− s−1) ds.

Consequently, operational VaR, ES and SRM at high confidence levels are mainly deter-

mined by the tail of the severity distribution and the frequency expectation. As capital

reserve quantification based on risk measures is of primary relevance for financial institu-

tions, tail severity modelling should be paid with the highest attention.

Besides ES, a commonly encountered SRM with a risk spectrum satisfying the condition

in Part (c) of the above theorem can be derived from the constant absolute risk aversion

utility function with the Arrow-Pratt coefficient A. The corresponding weighting function

is given by φ(s) = Ae−A(1−s)

1−e−A , which is capable of reflecting the risk aversion of an individual

financial institution.

4.1.2 The multidimensional case

The current section is attributed to risk measure estimations for a bank consisting of d risk

cells, whose dependence structure is modelled by a d-variate compound Poisson process

as detailed in Definition 3.1. Clearly, the individual VaRi, ESi and SRMi of each risk

cell i ∈ {1, . . . , d} can be separately approximated by the formulas from Theorem 4.4,

if the marginal loss severities belong to the class S ∩ (R ∪ R∞). However, the Lévy

copula characterising the interdependence among the risk cells plays an essential role

in the estimation of the overall risk measures VaR+, ES+ and SRM+ with respect to

the loss process S+. As already explained after the model specification in Section 3.1, the

overall loss process S+ itself constitutes a one-dimensional compound Poisson process with
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tail integral Π+ given by equation (3.2). Accordingly, the Poisson frequency parameter

underlying S+ is computed through

λ+ = lim
x↓0

Π+(x),

and the corresponding severity distribution follows as

F+(x) = 1− F+(x) = 1− λ−1
+ Π+(x), x ≥ 0. (4.5)

Obviously, dependence modelling by means of Lévy copulas requires the underlying mar-

gins to be Lévy processes. Hence in contrast to the univariate case, hereafter we exclusively

consider compound Poisson processes, which are the only Lévy process with piecewise con-

stant sample paths as stated by Proposition 2.3. In order not to disturb the reading flow,

we postpone the reasoning why the popular alternative of negative binomial frequency

process does not suit in the multivariate setting to the last section of this chapter.

Unfortunately, a universally applicable closed-form approximation for arbitrary Lévy cop-

ulas and marginal severities is not available. Notwithstanding, asymptotic VaR+, ES+ and

SRM+ representations in terms of Poisson frequency parameters and marginal severity

distributions do exist for certain special cases, which shall be presented below and cover

a quite substantial range of operational loss situations in practice.

First, we state the results for the important cases of independence and complete positive

dependence, which may serve as benchmark values for the impact of dependence structures

on risk exposures, provided the marginal parameters have been appropriately estimated

and are regarded as fixed. If the dependence structure is described by the independence

Lévy copula C⊥ from Proposition 2.14, then the entire mass of the Lévy measure Π

associated with the d-variate compound Poisson process S = (S1, . . . , Sd)
> is concentrated

on the coordinate axes and losses from different risk cells almost surely never occur at

the same time. Hence expression (3.2) for the tail integral of the overall loss process S+

simplifies to Π+(x) =
∑d

i=1 Πi(x) for x ≥ 0.

Theorem 4.5 (Operational risk measures for independent cells).

If the dependence structure of a d-dimensional compound Poisson model is given by the

independence Lévy copula, then the frequency parameter and the severity distribution of

the overall loss process S+ can be explicitly calculated as

λ+ =
d∑
i=1

λi and F+(x) =
1

λ+

d∑
i=1

λiFXi(x), x ≥ 0,

respectively. Furthermore, suppose FX1 ∈ S ∩ (R∪R∞) holds and a constant ci ≥ 0 exists

for each risk cell i ∈ {2, . . . , d}, such that FXi(x) ∼ ciFX1(x) as x→∞. Then by setting

c = λ1 +
∑d

i=2 ciλi, the risk measures related to S+ are approximated as follows:

(a) The total VaR is asymptotically equivalent to a high quantile of the severity distri-

bution FX1 and satisfies

VaR+,t(α) ∼ F←+

(
1− 1− α

λ+t

)
∼ F←X1

(
1− 1− α

ct

)
, α→ 1.
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(b) Assume the distribution tail FX1 is regularly varying with tail index γ1 > 1, then

the total ES behaves asymptotically as in the one-dimensional case, that is,

ES+,t(α) ∼ γ1

γ1 − 1
VaR+,t(α), α→ 1.

(c) If φ∗ denotes an admissible risk spectrum fulfilling the conditions in Part (c) of

Theorem 4.4, and the marginal severity of risk cell one satisfies the same condition

FX1 ∈ R−γ1 with γ1 > 1 as in Part (b), then we obtain for the total SRM with

respect to φ∗ the approximation

SRMφ∗

+,t(α) ∼ k(γ1, φ)VaR+,t(α), α→ 1,

with k(γ1, φ) =
∫∞

1
sγ
−1
1 −2 φ(1− s−1) ds.

On the other hand, if the marginal cell processes S1, . . . , Sd are completely positively

dependent, then losses always occur simultaneously across all d risk cells. Therefore, the

expected number of losses per unit time is equal in all cells and the intensity parameter λ+

of the overall loss process S+ is readily provided by λ+ = λ1 = · · · = λd. Furthermore,

the utilisation of the complete dependence Lévy copula C‖ as specified in Proposition 2.16

implies the entire mass of the Lévy measure Π is concentrated on{
(x1, . . . , xd)

> ∈ [0,∞)d
∣∣Π1(x1) = · · · = Πd(xd)

}
=
{

(x1, . . . , xd)
> ∈ [0,∞)d

∣∣FX1(x1) = · · · = FXd(xd)
}
.

Theorem 4.6 (Operational risk measures for completely dependent cells).

Assume the dependence structure of a d-dimensional compound Poisson model is given by

the complete dependence Lévy copula. If all marginal severity distributions FX1 , . . . , FXd
are strictly increasing, the function h(x) = x +

∑d
i=2 F

−1
Xi

(FX1(x)) is well-defined and

invertible for x ≥ 0. Then the severity distribution associated with S+ has the closed-form

tail

F+(x) = FX1(h
−1(x)), x ≥ 0.

Furthermore, if F+ ∈ S ∩ (R ∪ R∞) holds, then Theorem 4.4 applies and enables the

following approximations:

(a) The VaR of the overall loss precess S+ asymptotically equals the sum of the stand-

alone VaRs, that is,

VaR+,t(α) ∼ h

[
F−1
X1

(
1− 1− α

λ+t

)]
∼

d∑
i=1

VaRi,t(α), α→ 1.

(b) Further, assume all marginal severity distributions possess a finite expectation, then

the total ES can be similarly approximated by

ES+,t(α) ∼
d∑
i=1

ESi,t(α), α→ 1.
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(c) Let φ∗ be an admissible risk spectrum satisfying the conditions in Part (c) of The-

orem 4.4. Then under the same assumption as in Part (b) for marginal severities,

the total SRM with respect to φ∗ is asymptotically given by the sum

SRMφ∗

+,t(α) ∼
d∑
i=1

SRMφ∗

i,t (α), α→ 1.

The above result is in line with our claim in Section 1.2 that the simple summation of

the stand-alone measures VaRi, i ∈ {1, . . . d}, implicitly assumes complete dependence

among all risk cells. However, [BK08] demonstrates that in case of extremely heavy-tailed

losses, for example characterised by a Pareto distribution with tail index less than one

and thus infinite expectation, the sum of individual VaRs is smaller than the overall VaR+

calculated based on the independence Lévy copula. Hence the intuition of diversification

benefit through independent risk cells must be treated with caution in the heavy-tailed

situation. This shall be further illustrated in Section 5.4 with the help of simulated loss

data.

The last special case is more pronounced by the constellation of marginal severities rather

than the Lévy copula. More precisely, the losses in one risk cell shall possess a regularly

varying distribution tail and dominate the losses in all other cells, whereas the dependence

structure among the risk cells can be arbitrary.

Theorem 4.7 (Operational risk measures in case of one dominating cell).

Without loss of generality, assume FX1 ∈ R−γ1 for some γ1 > 0. Moreover, let γ̃ > γ1

and suppose the γ̃-th moment of the severity distribution in all other cells i ∈ {2, . . . , d} is

finite. Then regardless of the dependence structure between the risk cells, the asymptotic

equivalence

G+,t(x) ∼ E[N1(t)]FX1(x), x→∞,

holds and we obtain the following risk measure estimations:

(a) The VaR of the overall loss process S+ is asymptotically dominated by the stand-

alone VaR of the first cell, that is,

VaR+,t(α) ∼ VaR1,t(α), α→ 1.

(b) Assume further the severity distribution FX1 has a tail index γ1 > 1, then the total

ES satisfies a similar approximation

ES+,t(α) ∼ γ1

γ1 − 1
F←X1

(
1− 1− α

E[N1(t)]

)
∼ ES1,t(α), α→ 1.

(c) Let φ∗ be an admissible risk spectrum complying with the conditions in Part (c) of

Theorem 4.4. Under the same requirement FX1 ∈ R−γ1 with γ1 > 1 as in Part (b),



CHAPTER 4. ESTIMATION OF OPERATIONAL RISK MEASURES 63

the overall SRM with respect to φ∗ is asymptotically equivalent to the SRM of risk

cell one, that is,

SRMφ∗

+,t(α) ∼ k(γ1, φ)F←X1

(
1− 1− α

E[N1(t)]

)
∼ SRMφ∗

1,t(α), α→ 1,

with k(γ1, φ) =
∫∞

1
sγ
−1
1 −2 φ(1− s−1) ds.

Note that the above theorem has an exceptional wide range of applicability, as it does not

only hold for dependence modelling via Lévy copulas, but also for arbitrary dependence

concepts between the marginal compound Poisson process. However, in the latter case the

overall loss process S+ is not necessarily a compound Poisson one itself.

4.2 A closed-form expression for the overall loss

severity in bivariate compound Poisson models

In this section we exploit the fact that S+(t) ∼ CPP(λ+, F+) constitutes itself a one-

dimensional compound Poisson process and derive analytical expressions for λ+ as well as

F+ in a bivariate setting. First, recall equation (3.2) which links the tail integral Π+ asso-

ciated with S+(t) to the Lévy measure Π of the bivariate process S(t) = (S1(t), S2(t))>,

that is,

Π+(x) = Π
({

(x1, x2)> ∈ [0,∞)2 \ {0}
∣∣x1 + x2 ≥ x

})
, x ≥ 0. (4.6)

Moreover, the two-dimensional model can be written according to equation (3.4) as a

random sum S(t) =
∑N(t)

h=1 (Y1h, Y2h)
> of i.i.d. loss severities with bivariate distribution

function FY , which are compounded via a homogeneous Poisson process N(t) with inten-

sity λ > 0. As already explained after Definition 2.5 of Lévy measure and via a slight

abuse of notation, the measure Π(·) is readily given by λFY (·), where FY (·) shall rep-

resent the underlying probability law of a generic random bivariate loss Y = (Y1, Y2)>.

As the probability distribution of Y has by definition of compound Poisson processes no

atom at zero, the entire mass of the Lévy measure Π is exhausted by taking the limit

λ+ = lim
x↓0

Π+(x). Hence we immediately conclude that the frequency parameter λ+ must

be equal to the frequency parameter λ of the bivariate process S(t) ∼ CPP(λ, FY ).

In fact, as a jump of the process S(t) almost surely manifests itself in a loss of at least

one of its two components, the overall loss process admits a representation

S+(t) =

N(t)∑
h=1

Y1h + Y2h, t ≥ 0.

In line with the Lévy measure interpretation (4.6), this yields the survival function of the

overall loss severity distribution as

F+(x) = P(Y1 + Y2 > x), x ≥ 0. (4.7)
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On the other hand, the associated Lévy measure Π+ as stated in (4.6) can be decomposed

into the following three parts:

Π+(x) = Π
({

(x1, 0)> ∈ [0,∞)× {0}
∣∣x1 ≥ x

})
+ Π

({
(0, x2)> ∈ {0} × [0,∞)

∣∣x2 ≥ x
})

+ Π
({

(x1, x2)> ∈ (0,∞)2
∣∣x1 + x2 ≥ x

})
= Π

⊥
1 (x) + Π

⊥
2 (x) + Π

‖
+(x), (4.8)

where for the last line we have employed the notation from the proof of Lemma 3.4. By

taking limit on both sides of the above equation, we arrive at another representation of

the overall loss frequency as

λ+ = lim
x↓0

Π+(x) = lim
x↓0

Π
⊥
1 (x) + lim

x↓0
Π
⊥
2 (x) + lim

x↓0
Π
‖
+(x)

= λ⊥1 + λ⊥2 + λ‖

= (λ1 − λ‖) + (λ2 − λ‖) + λ‖

= λ1 + λ2 − λ‖, (4.9)

where λ1 and λ2 denote the frequency parameters of the marginal processes S1(t) and

S2(t), respectively. Recall that the parameters λi, i ∈ {1, 2}, are linked to the bivariate

loss severities (Y1, Y2)> through λi = λF Yi(0). In addition, equation (3.24) connects the

Poisson frequency λ‖ to the joint survival function F Y via

λ‖ = λF Y (0, 0) = λ
(
F Y1(0) + F Y2(0) + FY (0, 0)− 1

)
= λ1 + λ2 − λ

as FY (0, 0) = 0. By substituting the above expression for λ‖ into equation (4.9), we obtain

once again the identity λ+ = λ and everything fits together.

Now we turn our attention to deriving a representation of the overall loss severity F+ in

terms of the marginal compound Poisson processes Si(t) ∼ CPP(λi, FXi), i ∈ {1, 2}, and

the Lévy copula C. It is already stated in (4.5) that the associated survival function F+

can be retrieved from the tail integral as

F+(x) =
Π+(x)

λ+

=
Π
⊥
1 (x) + Π

⊥
2 (x) + Π

‖
+(x)

λ1 + λ2 − λ‖
, (4.10)

where for the second equality we have used decomposition (4.8) for Π+ and decomposi-

tion (4.9) for λ+, respectively. From Part (b) of Lemma 3.4 we know the independent tail

integrals can be written as

Π
⊥
1 (x) = λ⊥1 F

⊥
1 (x) = λ1FX1(x)− C(λ1FX1(x), λ2),

Π
⊥
2 (x) = λ⊥2 F

⊥
2 (x) = λ2FX2(x)− C(λ1, λ2FX2(x)),

and the intensity parameter corresponding to the dependent Lévy measure Π‖ can be

calculated from the Lévy copula as λ‖ = C(λ1, λ2). As a result, the Lévy measure Π
‖
+
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remains the only unknown term in the last fraction of equation (4.10). As Π
‖
+ precisely

describes the common loss severities (X
‖
1 , X

‖
2 )> with distribution function F ‖, we compute

Π
‖
+(x) = Π‖

({
(x1, x2)> ∈ (0,∞)2

∣∣x1 + x2 ≥ x
})

= λ‖ P(X
‖
1 +X

‖
2 ≥ x)

= λ‖
∫ ∞

0

P(X
‖
2 ≥ x− z|X‖1 = z)F

‖
1 (dz)

= λ‖
∫ x

0

P(X
‖
2 ≥ x− z|X‖1 = z)F

‖
1 (dz) + λ‖

∫ ∞
x

F
‖
1 (dz)

= λ‖
∫ x

0

F
‖
2|1(x− z|z)f

‖
1 (z)dz + λ‖

∫ ∞
x

f
‖
1 (z)dz,

where F
‖
2|1(x2|x1) denotes the conditional distribution of the second component X

‖
2 given

the first one X
‖
1 . We continue with the calculation of this conditional distribution by limit

considerations, that is,

F
‖
2|1(x2|x1) = lim

h↓0
P(X

‖
2 > x2 |x1 < X

‖
1 ≤ x1 + h) = lim

h↓0

P(x1 < X
‖
1 ≤ x1 + h,X

‖
2 > x2)

P(x1 < X
‖
1 ≤ x1 + h)

= lim
h↓0

F
‖
(x1, x2)− F ‖(x1 + h, x2)

F
‖
1 (x1 + h)− F ‖1 (x1)

= − ∂

∂x1

F
‖
(x1, x2)

1

f
‖
1 (x1)

.

We have already deduced expressions for F
‖
(x1, x2) and F

‖
1(x1) in terms of the Lévy

copula in (3.16) and (3.21), which allow to proceed with the corresponding derivatives

∂

∂x1

F
‖
(x1, x2) =

∂

∂x1

[(
λ‖
)−1

C
(
λ1FX1(x1), λ2FX2(x2)

)]
= −

(
λ‖
)−1

λ1fX1(x1)
∂

∂u1

C
(
u1, λ2FX2(x2)

)∣∣∣∣
u1=λ1FX1

(x1)

and

f
‖
1 (x1) = − ∂

∂x1

F
‖
1(x1) = − ∂

∂x1

[(
λ‖
)−1

C
(
λ1FX1(x1), λ2

)]
=
(
λ‖
)−1

λ1fX1(x1)
∂

∂u1

C (u1, λ2)

∣∣∣∣
u1=λ1FX1

(x1)

,

respectively. Hence overall we obtain the identity

F
‖
2|1(x2|x1) =

∂
∂u1

C
(
u1, λ2FX2(x2)

)∣∣∣
u1=λ1FX1

(x1)

∂
∂u1

C (u1, λ2)
∣∣∣
u1=λ1FX1

(x1)

. (4.11)

All in all, we are able to express every component in expression (4.10) for the overall

loss severity F+ through the Lévy copula C as well as the marginal Poisson parameters

λi and severity distributions FXi , i ∈ {1, 2}. Given observed loss data, the associated
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parameters of the latter can be easily estimated within a maximum likelihood scheme as

introduced in Section 3.3. Hence in the current bivariate setting we have an analytical

access to the severity distribution F+. In view of risk measure calculations based on

the overall loss process S+(t) ∼ CPP(λ+, F+), simulation methods can be reduced to

directly sampling from a Poisson frequency process with intensity λ+ and the univariate

severity distribution F+. In other words, simulation of entire paths of the bivariate process

S(t) = (S1(t), S2(t))> is not required.

In particular, if the severity distribution F+ belongs to the class S ∩ (R ∪ R∞), we can

apply Theorem 4.4 to asymptotically estimate risk measures at high confidence levels, such

that no simulation is necessary at all. Clearly, in practice it is not always straightforward

to determine whether the distribution tail F+ is subexponential or even regularly varying.

Note in (4.7) we established the identity F+(x) = P(Y1 +Y2 > x). Although generally the

marginal severity distributions FX1 and FX2 are estimated and thus their heavy-tailedness

is known, the corresponding property can often be inferred for FY1 and FY2 as well. Recall

the tail equivalence F Yi = (1− pi)FXi for pi ∈ [0, 1) and i ∈ {1, 2}, as this was derived in

(3.13). As the classes S and R−γ, γ ≥ 0, are each closed with respect to tail equivalence,

subexponentiality or the regularly varying property of Xi results in the same asymptotic

tail behaviour for Yi.

Similarly to the setting in Theorem 4.7, the regularly varying characteristic of F+ can be

deduced in case of one cell dominance. Without loss of generality, assume FX1 ∈ R−γ1 for

some γ1 > 0 and it shall dominate the severity tail FX2 , that is,

lim
x→∞

FX1(xt)

FX1(x)
= t−γ1 , t > 0, and lim

x→∞

FX2(x)

FX1(x)
= 0 (4.12)

hold. As just explained, the associated distribution tails F Y1 and F Y2 are simply a rescaled

version of FX1 and FX2 , respectively. Hence the same relation (4.12) applies to the

distributions of the random variables Y1 and Y2. For arbitrary x > 0, the probability

P(Y1 + Y2 > x) is bounded from above by the sum P(Y1 > x(1− ε)) + P(Y2 > xε) for any

ε ∈ (0, 1). Together with (4.12), this yields the asymptotic estimation

lim sup
x→∞

P(Y1 + Y2 > x)

P(Y1 > x)
≤ lim

x→∞

P(Y1 > x(1− ε))
P(Y1 > x)

+ lim
x→∞

P(Y2 > xε)

P(Y1 > x)
= (1− ε)−γ1 .

On the other hand, P(Y1 + Y2 > x) is bounded from below by P(Y1 > x(1 + ε)), which

leads to

lim inf
x→∞

P(Y1 + Y2 > x)

P(Y1 > x)
≥ lim

x→∞

P(Y1 > x(1 + ε))

P(Y1 > x)
= (1 + ε)−γ1 .

By letting ε→ 0, we obtain from the above inequalities the asymptotic equality

lim
x→∞

F
+

(x)

F Y1(x)
= lim

x→∞

P(Y1 + Y2 > x)

P(Y1 > x)
= 1.

In other words, the distribution tail F+ is asymptotically equivalent to the dominating

severity tail of the first risk cell and hence lies in the class R−γ1 as well.
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However, subexponentiality of marginal severities does not in general imply subexponen-

tiality of F+. The far out right tail behaviour of F+ must be carefully examined in each

particular constellation of marginal distributions and dependence structures. For more

details on the heavy-tailedness of the sum of subexponential random variables, we refer

the interested readers to [EG80] as well as the more recent publications [GN06], [GT09],

[KT08] and [KA09].

We close the current section with some visualisations of the decomposition of a bivariate

compound Poisson model S = (S1, S2)> into its two individual loss processes S⊥1 , S⊥2 , and

one common loss process S‖ = (S
‖
1 , S

‖
2)>. The corresponding Lévy measures are denoted

by Π⊥1 , Π⊥2 , and Π‖ as before. Clearly, the relative weight of each process compared to the

entire measure Π directly depends on the underlying Lévy copula. As detailed in (4.9),

the total mass of Π is finite and given by the Poisson intensity λ+ = λ.

Figure 4.1 shows the contribution of the partial measures Π⊥1 , Π⊥2 and Π‖ for three different

one-parametric Lévy copula families. In each subfigure, the relative weights of the partial

measures are plotted as a function of the copula parameter θ, whereby the marginal Lévy

measures Π1 = Π⊥1 + Π
‖
1 and Π2 = Π⊥2 + Π

‖
2 are fixed to have a total mass of 15 and 20,

respectively. Note that the induced dependence strength between the marginal processes

increases with the value of θ for each of the three selected copula families. Hence all

subfigures have in common that the contribution of the simultaneous loss part Π‖ grows

from near zero in the almost independent case with small θ to the most possibly dependent

case with an absolute weight of 15, resulting in a relative weight of 15
20

= 0.75. However,

the growth rate is obviously different across the selected copulas. The Lévy copula from

Example 3.6 exhibits the sharpest increase, whereas the dependence strength rises quite

smoothly in case of the Gumbel Lévy copula. On the other hand, the contribution of the

individual loss part Π⊥1 is fully exhausted by the common loss part for large values of θ,

thus drops down to zero in all subfigures. In contrast, the individual loss part Π⊥2 retains

a relative weight of 20−15
20

= 0.25 even in the strongest dependent situation.
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(a) Clayton Lévy copula.
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(b) Gumbel Lévy copula.
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(c) Lévy copula in Example 3.6 (2).

Figure 4.1: Relative weights of the partial Lévy measures Π⊥1 , Π⊥2 and Π‖ with respect to the

Lévy copula parameter θ.
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(d) λ‖ = 9.9.

Figure 4.2: Simulation from the bivariate Clayton Lévy copula with different dependence

strength. Theoretical quantile contour lines are superimposed on simulated single loss severi-

ties.
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(b) λ‖ = 3.
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(d) λ‖ = 9.9.

Figure 4.3: Simulation from the bivariate Gumbel Lévy copula with different dependence

strength. Theoretical quantile contour lines are superimposed on simulated single loss severi-

ties.
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(b) λ‖ = 3.
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(d) λ‖ = 9.9.

Figure 4.4: Simulation from the bivariate Lévy copula in Example 3.6 (2) with different de-

pendence strength. Theoretical quantile contour lines are superimposed on simulated single loss

severities.
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Going one step further, Figures 4.2-4.4 illustrate the interplay between the two individual

loss processes S⊥1 , S⊥2 , and the common loss process S‖ = (S
‖
1 , S

‖
2)> in view of quan-

tile estimations. The latter of course plays an important role in operational risk measure

calculations. In order to highlight the impact of the dependence structure rather than

the marginal parameters, in all figures the two single cell processes are assumed to have

an identical Poisson intensity of 10 and a heavy-tailed Weibull severity distribution with

shape parameter 0.5 and scale parameter 1. Additionally, as to make a comparison across

different copula families reasonable to some extent, we select three different absolute

weights of the simultaneous loss part Π‖, which are readily given by the correspond-

ing Poisson intensities λ‖ = 3, 7, 9.9, representing weak, medium and high dependence

strength. Then we calculate the resulting copula parameters for the Clayton, the Gumbel

and the Lévy copula from Example 3.6 (2), and simulate loss data over a period of [0, 80]

for each combination of copula families and dependence levels.

Note that the Poisson intensity parameter precisely reflects the expected number of the

associated single losses in a time unit, hence the simulated individual loss severities X⊥1
and X⊥2 , as well as the common loss severities (X

‖
1 , X

‖
2 )>, have an approximately equal

sample size for the same value of λ‖ across all selected copula families, respectively. Fur-

thermore, we draw the theoretical contour lines corresponding to each of the three types

of loss severities, in order to illustrate how different dependence structures may have an

impact on quantile estimations. As severe loss events are of primary concern in operational

risk management, the contour line at level α associated with the bivariate loss severities

is calculated such that the survival probability P(X
‖
1 > x1, X

‖
2 > x2) is equal to 1− α.

In all three Figures 4.2-4.4, the independence case is depicted in the upper left corner as

a benchmark situation. We observe that the contour lines associated with the individual

loss severities X⊥1 and X⊥2 show a decreasing trend with growing overall weight of the

simultaneous loss part Π‖ for all three copula families, with a single exception given by

the high dependence case induced by the Gumbel Lévy copula. On the other hand, the

contour lines associated with the bivariate common loss severities (X
‖
1 , X

‖
2 )> exhibit an in-

teresting convex shape in the low and medium dependence cases for the Lévy copula from

Example 3.6 (2). In contrast, the contour lines derived from the Clayton and the Gumbel

Lévy copulas have similar concave shapes. Nevertheless, the bivariate contour lines ap-

proach in the strongest dependent case the rectangle shape induced by the comonotonic

copula across all three investigated copula families. On the whole, Figures 4.2-4.4 allow

for interesting insights into the contribution of each partial processes S⊥1 , S⊥2 , and S‖ to

the overall quantiles under different assumptions of dependence structures. Thereby, the

contribution of each set of contour lines is reflected by the relative weight of the associated

Lévy measure Π⊥1 , Π⊥2 or Π‖, which is itself determined by the underlying Lévy copula

and already illustrated in Figure 4.1.
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4.3 Discussions and extensions

In comparison to the simulation approaches for risk measure estimations, the closed-

form asymptotic results in Section 4.1 allow for more transparent sensitivity statements

with respect to different model components, are straightforward to implement, and of

course offer less time-consuming calculations. Therefore, it is not surprising that different

refinements of such analytical formulas have gained great attention in both academia

and practice. Since equation (4.4) can be interpreted as that one single severe loss event

instead of the accumulation of small events determines the overall risk exposure, such

asymptotic results are often called single-loss approximations (SLAs) in operational risk.

For instance, [BS06] derives an improved approximation for the case of large frequency

expectation combined with severity random variables having finite expectation, that is,

the loss severities are not extremely heavy-tailed. Despite the important role of the biggest

single loss at a very high quantile level, expression (4.4) could underestimate the real risk

exposure, as medium sized losses also contribute to the total VaR with a not negligible

amount in this particular constellation. As a result, the authors of [BS06] add to equa-

tion (4.4) the product of severity mean and frequency mean subtracted by one, which

is known as mean correction. Later on, the SLA is further refined in [Deg10], where the

author not only differentiates between finite and infinite severity expectations, but also

suggests distinct asymptotic expressions depending on the value of the tail index γ. The

incentive of his refinements originates from analysing the relative error of the standard

approximation (4.4) by the theory of second-oder subexponentiality.

To give a research example from the industry, [Opd14] and [Opd17] by the same author

account for the potential divergence caused by the approximation of [Deg10] for the case of

a tail index γ close to one. More precisely, the non-divergent approximation for γ exactly at

one is used as an anchor to cross over the divergence zone by means of linear interpolation.

Inspired by this idea, the authors of the R package OpVaR (cf. [Zou+18]) apply monotonic

cubic spline interpolations to circumvent the divergence problem, whereby the author of

the current thesis contributes to its implementation. Furthermore, we refer to Chapter 8 in

the monograph [PS15] for a comprehensive overview of SLA refinements with theoretical

deviations and detailed proofs.

Besides univariate considerations, the concept of multivariate subexponentiality also con-

stitutes an active field of study and may be utilised to obtain alternative operational

risk measure estimations. To illustrate this, we briefly discuss an analogous result to

Theorem 4.3 for the two-dimensional case. As before, let X1 and X2 denote the sever-

ity random variables in the first and the second risk cell, respectively. Their partial

sums are given by Sn1 =
∑n

j X1j and Sn2 =
∑n

l X2l, whose joint distribution function

is defined as F n∗
X (x1, x2) = P(Sn1 ≤ x1, S

n
2 ≤ x2) for (x1, x2)> ∈ [0,∞)>. We write

F n∗
X (x1, x2) for the corresponding survival function. Similarly to the one-dimensional case,

the joint distribution G of the random sum (S1 =
∑N

j X1j, S2 =
∑N

l X2l)
>, obtained

by compounding the loss severities with a discrete random variable N , has the form

G(x1, x2) =
∑∞

n=0 P(N = n)F n∗
X (x1, x2). If the marginal severity distributions FX1 and

FX2 are subexponential, then the n-fold convolution satisfies according to [DOV07] the
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approximation F n∗
X (x1, x2) ∼ nFX(x1, x2) as the minimum of x1 and x2 tends to in-

finity. Furthermore, in case of N fulfilling condition (4.2), the asymptotic equivalence

G(x1, x2) ∼ E[N ]FX(x1, x2) holds under the same limit taking. Note here the asymptotic

tail probability of the random vector (S1, S2)> is derived solely based on univariate subex-

ponential assumptions about FX1 and FX2 . We mention the reference [CR92] and the more

recent publication [OMS06] for alternative statements relying on the subexponentiality of

the bivariate joint distribution FX .

As promised at the beginning of Section 4.1.2, we dedicate the last part of this chapter

to explaining the inadequacy of negative binomial processes as the frequency component

in a multivariate model based on Lévy copulas. To begin with, the motivation of utilis-

ing a negative binomial process NNB(t), t ≥ 0, comes from its ability of incorporating

over-dispersion in loss counts. That is, the loss frequency has greater variance than its

expectation. On the contrary, the loss number NP (t) up to time t described by a homo-

geneous Poisson process with intensity λ > 0 has equal mean and variance given by λt.

Nevertheless, the negative binomial process is closely related to the Poisson one. More

specifically, consider a Poisson process ÑP (t), t ≥ 0, whose intensity parameter is not

constant any more, but becomes a gamma random variable Λ, which is independent from

ÑP (t) and has the density

f(λ) =
ba

Γ(a)
λa−1e−bλ, λ > 0.

Then the probability mass function can be calculated for arbitrary n ∈ N0 as

P(ÑP (t) = n) =

∫ ∞
0

P(ÑP (t) = n | Λ = λ)f(λ) dλ =

∫ ∞
0

e−λt
(λt)n

n!
f(λ) dλ

=

(
a+ n− 1

n

)(
b

b+ t

)a(
t

b+ t

)n
,

which precisely reflects the probability P(NNB(t) = n) of a negative binomial process

with parameters a, b > 0. For t ≥ 0, it has expectation E[NNB(t)] = ab−1t and variance

Var[NNB(t)] = (1 + b−1t)E[NNB(t)] > E[NNB(t)].

However, if we compound i.i.d. random losses Xn, n ≥ 1, via NNB, the resulting compound

negative binomial process does not belong to the class of Lévy processes. The most simple

way to see this is by recalling Proposition 2.3. Namely, a compound negative binomial

process constitutes a stochastic process with piecewise constant sample paths, but the

only Lévy process with this property is provided by the compound Poisson process as

specified in Definition 2.2. To further underline this, as well as to explicitly demonstrate

the infeasibility of combining negative binomial loss frequencies with Lévy copulas, we

show the condition of independent and stationary increments for being a Lévy process is

violated by NNB.

Amongst others, the author of [Lu14] attempts to characterise NNB itself as a compound

Poisson process with logarithmic jump distributions. More precisely, let M(t) denote a

Poisson random variable with mean −a ln
(

b
b+t

)
and let L(t) be a logarithmically dis-
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tributed random variable with probability mass function

P(L(t) = n) = −
(

t
b+t

)n
n ln

(
b
b+t

) , n ∈ N. (4.13)

Then the negative binomial random variable NNB(t) indeed admits the representation

NNB(t) =
∑M(t)

k=1 Lk(t) as a Poisson random sum with each summand Lk(t) having the

logarithmic distribution specified in (4.13). However, we immediately observe that the

associated Poisson process M(t), t ≥ 0, is not homogeneous, as its intensity −a ln
(

b
b+t

)
does not provide a linear function of t. In addition, [Lu14] argues that the aggregate loss

process of a single risk cell with negative binomial frequency NNB(t) could be expressed

through

S(t) =

NNB(t)∑
n=1

Xn =

M(t)∑
k=1

Lk(t)∑
n=1

Xn

 , t ≥ 0,

which shall be interpreted as a compound Poisson process with frequency M(t) and sever-

ities
∑Lk(t)

n=1 Xn, k ≥ 1. Still, neither the distribution of the increment
∑Lk(t)

n=1 Xn is inde-

pendent of the time t.

In conclusion, although a compound negative binomial process can be written in the form

of a Poisson random sum, neither the compounding frequency process is a homogeneous

Poisson one, nor the i.i.d. property of the corresponding summands is provided. On the

other hand, the fundamental idea behind Lévy copulas is that they operate on the domain

of time-independent Lévy measures, such that a dependence structure between marginal

Lévy processes can be solely specified through a Lévy copula and stays invariant against

the course of time. As a result, the marginal homogeneous Poisson frequency processes in

our dependence model as detailed in Definition 3.1 cannot be replaced by negative bino-

mial ones offhand, and the multivariate asymptotic risk measure approximations relying

on Lévy copulas do not apply to compound negative binomial processes. Of course, one can

connect univariate compound negative binomial processes by means of ordinary copulas

instead. However, this would request more model parameters in comparison to a com-

pound Poisson model based on Lévy copulas, such that its practicability is questionable

in view of generally scarce operational risk data. Last but not least, note that the fre-

quency component enters the analytical estimation formulas both in the one-dimensional

case treated in Section 4.1.1 and in the multidimensional case treated in Section 4.1.2 only

with its expectation instead of variance. Therefore, the potential benefit of modelling over-

dispersion by utilising negative binomial frequency processes is in fact insignificant with

regard to risk measure calculations.



Chapter 5

Simulation study

After having presented the theory of dependence modelling and risk measure estimations

based on Lévy copulas, the current chapter aims at demonstrating the practical imple-

mentation by means of simulation. First, an algorithm for sampling from an arbitrary

bivariate compound Poisson model is introduced in Section 5.1. This allows generating

loss data as input for MLE procedures, whose goodness is assessed in Section 5.2 for

various parameterisations of marginal components and dependence structures. Next, Sec-

tion 5.3 explores potential concepts for evaluating the fit of an estimated model. Since

accurate and stable capital reserve estimations are of primary interest for financial insti-

tutions, Section 5.4 studies the sensitivity of risk measure values towards different model

components as well as the considered confidence level α. Last but not least, the conse-

quences of dependence structure misspecification on risk exposure outcomes are studied

within a simulation example at the end of this chapter.

5.1 A flexible algorithm for sampling from bivariate

compound Poisson models

Losses characterised through a bivariate compound Poisson model S(t) = (S1(t), S2(t))>

can be simulated by decomposing S(t) into its three independent partial processes S⊥1 (t),

S⊥2 (t) and S‖(t). Then a sample path of S(t) in a prescribed time interval [0, T ] is obtained

by recombining the losses simulated from the partial processes. The notations applied in

the algorithm description below coincide with those introduced in Section 3.2.2.

Algorithm 5.1 (Simulation of a bivariate compound Poisson model).

Input: a time horizon T , marginal Poisson intensity parameters λ1 and λ2, marginal

severity distributions FX1 and FX2, and a Lévy copula C.

Output: loss occurrence times and loss severities of a bivariate compound Poisson model.

Step 1: Calculate the Poisson parameter of the dependent process S‖ as λ‖ = C(λ1, λ2) and

the Poisson parameters of the independent processes S⊥i as λ⊥i = λi−λ‖, i ∈ {1, 2}.

75
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Step 2: Simulate three independent Poisson distributed random variables N‖ ∼ Poi(λ‖T )

and N⊥i ∼ Poi(λ⊥i T ), i ∈ {1, 2}, as the number of losses belonging to S‖ and S⊥i ,

i ∈ {1, 2}, respectively.

Step 3: Simulate independent random variables Γ⊥1j, j = 1, . . . , N⊥1 , from the Unif [0, T ]-

distribution as the loss arrival times of the process S⊥1 . Similarly, the loss arrival

times of the process S⊥2 are obtained through generation of independent random

variables Γ⊥2l, l = 1, . . . , N⊥2 , from the Unif [0, T ]-distribution as well.

Step 4: Simulate independent random variables Γ
‖
k, k = 1, . . . , N‖, from the Unif [0, T ]-

distribution as the occurrence times of the bivariate losses attributed to S‖.

Step 5: Simulate independent random variables U1j, j = 1, . . . , N⊥1 ; U2l, l = 1, . . . , N⊥2 ,

from the Unif [0, 1]-distribution. Then the loss severities attributed to the process

S⊥1 are given by F⊥←1 (U1j), j = 1, . . . , N⊥1 , and the loss severities attributed to the

process S⊥2 by F⊥←2 (U2l), l = 1, . . . , N⊥2 .

Step 6: Simulate independent random variables V1k and V2k, k = 1, . . . , N‖, from the

Unif [0, 1]-distribution. If F
‖
2|1(x2|x1) denotes the conditional distribution of the sec-

ond component given the first one of a bivariate dependent loss, then the loss sever-

ities belonging to the process S‖ are given by
(
F
‖←
1 (V1k), F

‖←
2|1 (V2k|F ‖←1 (V1k))

)>
,

k = 1, . . . , N‖.

Clearly, if the interest only lies in the accrued loss amounts up to time point T rather

than the chronological loss development, Step 3 and Step 4 of the above algorithm can be

omitted. However, the loss arrival times are necessary for obtaining the entire trajectory

of S(t) = (S1(t), S2(t))>. Based on the simulation output, the bivariate trajectory up to

time T is constructed through

S1(t) =

N⊥1∑
j=1

F⊥←1 (U1j)1{Γ⊥1j≤t} +
N‖∑
k=1

F
‖←
1 (V1k)1{Γ‖k≤t}

and S2(t) =

N⊥2∑
l=1

F⊥←2 (U2l)1{Γ⊥2l≤t} +
N‖∑
k=1

F
‖←
2|1 (V2k|F ‖←1 (V1k))1{Γ‖k≤t}

for t ∈ [0, T ]. Algorithm 5.1 mainly resembles the procedure proposed by [EK10] and its

validity directly follows from Lemma 3.4. Only the following two aspects need some expla-

nation. First, for a homogeneous Poisson process N(t) it is well-known that conditionally

on the number N(T ) = n of jumps up to time point T , the jump times in the interval [0, T ]

are distributed like the order statistics of a sample of size n from the uniform distribution

on [0, T ]. Therefore, Step 3 and Step 4 of Algorithm 5.1 simulate the loss arrival times of

S(t) up to the given time horizon T correctly.

Second, the generation of loss severities in Step 5 and Step 6 follows from the commonly

applied probability integral transform. Depending on the particular marginal distributions

and the Lévy copula, the inverses F⊥←1 , F⊥←2 , F
‖←
1 and F

‖←
2|1 are computed either via
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numerical methods or directly, provided that the corresponding distribution functions can

be analytically inverted. In particular, the conditional distribution F
‖
2|1 can be retrieved in

different ways and this constitutes the main deviation of Algorithm 5.1 from the procedure

in [EK10]. The latter suggests to make use of the survival copula C
‖
s underlying the

dependent loss severities introduced in (3.23), as the survival function of F
‖
2|1 takes the

form F
‖
2|1(x2|x1) = ∂

∂u1
C
‖
s (u1, F

‖
2(x2))

∣∣∣
u1=F

‖
1(x1)

. However, this approach is only feasible if

the ordinary copula C
‖
s is known in closed form, which is not always the case as already

explained at the end of Section 3.2.2.

On the contrary, Step 6 of Algorithm 5.1 does not specify a particular requirement on

the copula C
‖
s , indicating the calculation of F

‖←
2|1 should be carried out in the most ap-

propriate way depending on the underlying marginal distributions and the Lévy copula.

More precisely, equation (4.11) provides a general expression of the corresponding survival

distribution F
‖
2|1, which only depends on the input parameters of Algorithm 5.1, that is,

the marginal distributions and the Lévy copula C itself. We illustrate this idea by giving

the subsequent example based on the Clayton Lévy family.

Example 5.2. By plugging the generator function φ(u) = u−θ, θ > 0, of the Clayton Lévy

copula from Table 2.1 into expression (3.25) for C
‖
s in the case of underlying Archimedean

Lévy copulas, we find out that the survival copula C
‖
s is readily given by the ordinary

Clayton copula

C‖s (u1, u2) = (u−θ1 + u−θ2 − 1)−
1
θ .

Its partial derivative with respect to the first entry is given by

∂

∂u1

C‖s (u1, u2) =

[
1 +

(
u1

u2

)θ
− uθ1

]− 1
θ
−1

. (5.1)

Furthermore, the marginal survival functions of the bivariate dependent losses (X
‖
1 , X

‖
2 )>

have already been computed in equations (3.21)-(3.22) for a general Lévy copula. In the

current Clayton setting they take the form

F
‖
1(x1) =

1

λ‖
C(λ1FX1(x1), λ2) =

1

λ‖

[
λ−θ1 F

−θ
X1

(x1) + λ−θ2

]− 1
θ

(5.2)

and F
‖
2(x2) =

1

λ‖
C(λ1, λ2FX2(x2)) =

1

λ‖

[
λ−θ1 + λ−θ2 F

−θ
X2

(x2)
]− 1

θ
. (5.3)

Then the conditional distribution F
‖
2|1(x2|x1) can be obtained through expressing the

corresponding survival function in terms of C
‖
s , that is, we insert equations (5.2)-(5.3)

into (5.1) and calculate

F
‖
2|1(x2|x1) =

∂

∂u1

C‖s (u1, F
‖
2(x2))

∣∣∣
u1=F

‖
1(x1)

=

[
1 +

λ−θ1 + λ−θ2 F
−θ
X2

(x2)

λ−θ1 F
−θ
X1

(x1) + λ−θ2

− (λ‖)−θ

λ−θ1 F
−θ
X1

(x1) + λ−θ2

]− 1
θ
−1

.
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Now recall the Poisson frequency parameter of the common loss severities (X
‖
1 , X

‖
2 )> is

related to the Lévy copula as λ‖ = C(λ1, λ2) =
(
λ−θ1 + λ−θ2

)− 1
θ , which further simplifies

the above equation to

F
‖
2|1(x2|x1) =

[
λ−θ1 F

−θ
X1

(x1) + λ−θ2 F
−θ
X2

(x2)

λ−θ1 F
−θ
X1

(x1) + λ−θ2

]− 1
θ
−1

. (5.4)

On the other hand, we can represent F
‖
2|1(x2|x1) without utilising C

‖
s , but directly via the

Lévy copula C itself. For this purpose, we first need the partial derivative of the Clayton

Lévy copula

∂

∂u1

C(u1, u2) =

[
1 +

(
u1

u2

)θ]− 1
θ
−1

,

then the conditional distribution follows from equation (4.11) as

F
‖
2|1(x2|x1) =

∂
∂u1

C
(
u1, λ2FX2(x2)

)∣∣∣
u1=λ1FX1

(x1)

∂
∂u1

C (u1, λ2)
∣∣∣
u1=λ1FX1

(x1)

=

[
1 +

(
λ1FX1

(x1)

λ2FX2
(x2)

)θ]− 1
θ
−1

[
1 +

(
λ1FX1

(x1)

λ2

)θ]− 1
θ
−1

=

[
1 + λθ1F

θ

X1
(x1)λ−θ2 F

−θ
X2

(x2)

1 + λθ1F
θ

X1
(x1)λ−θ2

]− 1
θ
−1

.

Hence by expanding both the numerator and denominator of the inner fraction in

the above equation with λ−θ1 F
−θ
X1

(x1), once again we arrive at the same expression for

F
‖
2|1(x2|x1) as detailed in (5.4).

Going one step further, assume the marginal severity in risk cell i ∈ {1, 2} follows a

heavy-tailed GPD(ξi, βi) distribution with zero location parameter, shape ξi > 0 and

scale βi > 0. The corresponding survival function thus has the form

FXi(xi) =

(
1 + ξi

xi
βi

)− 1
ξi

, xi > 0. (5.5)

Then the conditional survival function F
‖
2|1(x2|x1) can be explicitly stated as

F
‖
2|1(x2|x1) =

λ−θ1

(
1 + ξ1

x1
β1

) θ
ξ1 + λ−θ2

(
1 + ξ2

x2
β2

) θ
ξ2

λ−θ1

(
1 + ξ1

x1
β1

) θ
ξ1 + λ−θ2


− 1
θ
−1

.

In conclusion, we demonstrated in Example 5.2 that different computations of the condi-

tional distribution F
‖
2|1 indeed result in the same representation. In addition, by choosing

the Clayton Lévy copula and marginal severity distributions of a comparably simple form,



CHAPTER 5. SIMULATION STUDY 79

the conditional distribution F
‖
2|1(x2|x1) can be analytically inverted as a function of x2

for given x1. This convenient property of the Clayton family admittedly explains its pop-

ularity in literature. On the other hand, As equation (4.11) is free of the ordinary survival

copula C
‖
s , it is of particular importance when simulating from a Lévy copula with un-

known C
‖
s , or when the partial derivative of C

‖
s is more elaborate to calculate than the

partial derivative of C.

5.2 Assessment of maximum likelihood estimates

In this section we investigate the quality of obtained estimates for a bivariate compound

Poisson model via maximising the likelihood function from Theorem 3.9. The analysis

relies on simulated sample paths by employing Algorithm 5.1. To begin with, the simula-

tion procedure shall be explained. In order to make our results also relevant to practition-

ers, we choose three commonly applied severity distributions in the context of operation

risk to sample from and thus to produce observations for MLE. With shape parameter

a ∈ (0, 1) and scale parameter b > 0, the Weibull distribution is heavy-tailed and denoted

by Weib(a, b). Its distribution function has the form

F (x) = 1− exp
[
−
(x
b

)a]
, x > 0. (5.6)

Another popular subexponential distribution is given by the lognormal distribution with

two parameters µ ∈ R and σ > 0. If Φ denotes the standard normal distribution function,

then the lognormal distribution function has the representation

F (x) = Φ

(
lnx− µ

σ

)
, x > 0,

and we utilise the abbreviation LN (µ, σ). The last selected severity distribution is the

GPD and its survival function is already specified in (5.5). The consideration of this

distribution is twofold. First, a GPD with shape parameter ξ > 0 covers the ordinary

Pareto distribution and possesses an even broader parameter space. Second and as already

indicated in Section 1.2, the GPD appears as the limiting distribution for loss severities

over a high threshold in the POT technique from EVT. Since operational risk measures

at high confidence levels are mainly determined by severe loss events, models based on

GPD provide a natural choice.

In addition, all parameter values are chosen in such a way that they belong to a realistic

range for characterising operational risk losses. The details are summarised in Table 5.1

and Table 5.2.

In view of observation horizons, we consider one year as one time unit, as to be consistent

with the typical capital charge calculations based on yearly aggregate loss amounts. As

Paragraph 672 of the Basel document [Ban06] prescribes a minimum five-year observation

period for internal loss data, we set the shortest interval length in our simulation study to

be T = 5 as well. Loss data from even shorter periods cannot support reliable estimates
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Cell 1 Cell 2

Weib(a1 = 0.16, b1 = 4000) Weib(a2 = 0.19, b2 = 5000)

LN (µ1 = 10.3, σ1 = 1.8) LN (µ2 = 9.8, σ2 = 1.4)

GPD(ξ1 = 1.5, β1 = 6000) GPD(ξ2 = 1.3, β2 = 5000)

GPD(ξ1 = 0.9, β1 = 6000) GPD(ξ2 = 0.9, β2 = 6000)

Table 5.1: Marginal severity distributions from the same distribution class and utilised in the

sampling and estimation procedure for the assessment of MLE.

Cell 1 Cell 2

LN (µ1 = 10.3, σ1 = 1.8) Weib(a2 = 0.19, b2 = 5000)

Weib(a1 = 0.19, b1 = 5000) GPD(ξ2 = 1.3, β2 = 5000)

LN (µ1 = 10.3, σ1 = 1.8) GPD(ξ2 = 1.3, β2 = 5000)

Table 5.2: Marginal severity distributions from different distribution classes and utilised in the

sampling and estimation procedure for the assessment of MLE.

in general. Moreover, we choose two longer periods of T = 10 and T = 20 to judge the

potential improvements in parameter estimates owing to an increased sample size.

Furthermore, the marginal Poisson parameters are set to be λ1 = 40 and λ2 = 45,

which reflect reasonable frequencies of loss events observed on a yearly basis. As to make

the comparison between different Lévy copula families possible to some extent, we fix

the expected yearly number of simultaneous losses in the two risk cells at three levels

λ‖ = 5, 24, 38. Then we select three different copula families, the Clayton and the Gumbel

ones from Table 2.1, as well as the Archimedean copula from Example 3.6 (2). One reason

for this choice of copula families is purely technical, as they are all capable to produce the

desired value of λ‖, which is not the general case for arbitrary Lévy copulas as explained

after Example 3.6. The second reason is that we have seen in Figures 4.2-4.4 how the

three chosen families reveal different severity dependence structures, even when frequency

correlation is fixed at the same value. Hence it is worthwhile to explore whether the latter

has an impact on the behaviour of MLE as well.

For each of the selected copula families, we calculate the implied copula parameter θ and

the results are displayed in Table 5.3.

λ‖ = 5 λ‖ = 24 λ‖ = 38

Clayton θClay,low = 0.3242 θClay,med = 1.2212 θClay,high = 7.0519

Gumbel θGumb,low = 0.9317 θGumb,med = 4.3951 θGumb,high = 26.8980

Example 3.6 (2) θArch,low = 0.0185 θArch,med = 0.0377 θArch,high = 0.1746

Table 5.3: Lévy copula parameters utilised in the sampling and estimation procedure for the

assessment of MLE.
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Figure 5.1: Simulation of three bivariate compound Poisson models based on the Gumbel Lévy

family with different dependence strength. The left panel shows the sample paths of the com-

pound loss processes, whereas the right panel presents the same paths as marked point processes.

The marginal frequency parameters are given by λ1 = 40, λ2 = 45, and the severity distributions

by the GPD with identical parameters ξ1 = ξ2 = 0.9, β1 = β2 = 6000 for both risk cells.
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In order to evaluate the performance of MLE, we simulate 100 sample paths of a bi-

variate compound Poisson model for each combination of Lévy copulas from Table 5.3

and marginal severities from Table 5.1 over T = 20 years. The marginal severities from

different distribution classes provided by Table 5.2 are only combined with the Clayton

Lévy family. Then the marginal frequency and severity parameters as well as the copula

parameter are estimated for each sample path by utilising the obtained loss data from the

first 5 years, the first 10 years and in the end all 20 years, respectively.

To illustrate the simulation scheme, Figure 5.1 depicts simulated trajectories of three

bivariate compound Poisson models based on the Gumbel Lévy family for different de-

pendence strength as offered in Table 5.3. The underlying severity distributions are given

by the GPD with identical parameters for both risk cells from Table 5.1. For a clear vi-

sualisation, all loss amounts are shown in 10,000 unit and only the time period [0, 0.25] is

presented. In the weak dependence case with the smallest value of the copula parameter θ,

loss occurrence times of the two risk cells tend to avoid each other and the single loss sizes

appear independent. With increasing value of θ, we clearly see more joint loss occurrences

of the two risk cells and large losses from different cells tend to accompany each other as

well.

The scatter plots in Figure 5.2 compare the single losses simultaneously occurred in the

two risk cells and those solely attributed to one risk cell in more detail. The underlying

model parameters are the same as for Figure 5.1, with the exception that the observation

period is extended to T = 10. The findings from Figure 5.1 are confirmed, as more and

more joint losses concentrate near the diagonal line with increasing dependence strength.

In contrast, the individual losses on the axes decrease in number and reveal a narrower

range from the left to the right in Figure 5.2. Moreover, the right subfigure indicates upper
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Figure 5.2: Simulation of three bivariate compound Poisson models based on the Gumbel Lévy

family with different dependence strength. The single loss sizes up to time horizon T = 10

are depicted in logarithmic scale. The marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by the GPD with identical parameters ξ1 = ξ2 = 0.9,

β1 = β2 = 6000 for both risk cells.
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tail dependence in the bivariate common losses, as well as all severe large losses are the

bivariate ones in the upper right corner rather than the univariate ones on the axes.

In order to evaluate the goodness of the obtained estimators, different performance mea-

sures are calculated. For space reasons, we relocate the detailed results in tabular format

into Appendix C and summarise at this point the main findings. The MLE procedure

achieves equally good results, independent of the particular combination of Lévy copula

families and marginal distributions. The mean relative bias based on 20-year observations

rarely exceeds 1% across all model constellations. Moreover, no systematic under- or over-

estimation of any parameter is identified, as the estimated biases appear evenly positively

and negatively spread out near zero.

Concerning the parameter θ of the Lévy copula being the main interest in dependence

modelling, the box plot in Figure 5.3 illustrates estimated relative biases of this essential

parameter for all considered copula families. The true parameter values can be read off

from Table 5.3 and the estimators are calculated based on losses observed up to the

shortest time horizon of T = 5. We see that this minimum observation period prescribed

in the Basel framework is already sufficient to obtain estimators of reasonable quality.

Moreover, all performance measures exhibit satisfactory improvements with extended ob-

servation horizons. For illustration, Figure 5.4 demonstrates the estimation results based

on the Clayton Lévy copula with lognormal severity in risk cell one and GPD severity

in risk cell two. With increasing number of observation years, the height of the boxes

for all model parameters narrows significantly. As the importance of operational risk has

been seriously recognised since its incorporation into the Basel regulations, reliable loss

data from a period of approximately 10 years are already common practice among finan-

cial institutions. Hence we expect our simulation scenarios to reflect realistic performance

of MLE when applied in practice. Although we only visualise the relative bias, other

utilised performance measures provide similar interpretations and all details are reported

in Appendix C.

5.3 Approaches for dependence model examination

In contrast to the univariate setting or dependence modelling via ordinary copulas, no

standard procedures for goodness of fit examinations exist for dependence models based on

Lévy copulas. For this reason, in the current section we investigate the ability of potential

diagnostic tools, mainly by means of graphical inspections, in order to assess the fit of

a bivariate compound Poisson model. Once again we consider all possible combinations

of marginal severity distributions and Lévy copula families as detailed in Table 5.1 and

Table 5.3, respectively. Note all parameter values are selected in such a way that they

belong to reasonable scenarios for operational risk in practice. After having convinced

ourselves of the reliable behaviour of MLE, now we sample only one path from each

feasible bivariate model and explore below several visualisation techniques applied to

these observations.
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GPD(ξ2 = 1.3, β2 = 5000), and the Lévy copula parameter by θClay,high = 7.0519.
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Inspired by the important role of empirical distribution functions in standard goodness

of fit techniques, we introduce hereafter the counterpart for tail integrals. Recall from

Definition 2.5 and Definition 2.11 that the tail integral associated with a Lévy measure

has the intuitive interpretation as the expected number of losses per unit time which

exceed a certain loss amount in each risk cell. Therefore, the tail integral Π
⊥
1 associated

with the loss process S⊥1 (t) solely attributed to the first risk cell has the characterisation

Π
⊥
1 (x1) = E [ # {(∆S1(t), 0) | t ∈ [0, 1] ∧ ∆S1(t) ≥ x1} ] , x1 ≥ 0,

and it can be naturally approximated by

Π̂
⊥
T,1(x1) =

1

T

N⊥1 (T )∑
j=1

1{X⊥1j≥x1} =
1

T

N(T )∑
h=1

1{Y1h≥x1,Y2h=0},

where we follow the notations from Chapter 3. The stationary and independent properties

of the increments of S⊥1 (t) as a Lévy process ensure that the same loss behaviour is to

be expected over each unit time interval up to the observation horizon T , hence the

standardisation by dividing through T is justified. The tail integral Π
⊥
2 describing the

individual losses of risk cell two is defined and estimated in an analogous manner. Finally,

the bivariate joint tail integral Π
‖

is estimated for arbitrary (x1, x2)> ∈ (0,∞)2 as

Π̂
‖
T (x1, x2) =

1

T

N‖(T )∑
k=1

1{X‖1k≥x1,X
‖
2k≥x2}

=
1

T

N(T )∑
h=1

1{Y1h≥x1,Y2h≥x2},

and its first marginal component Π
‖
1 can be approximated through

Π̂
‖
T,1(x1) =

1

T

N‖(T )∑
k=1

1{X‖1k≥x1}
=

1

T

N(T )∑
h=1

1{Y1h≥x1,Y2h>0}.

The second marginal component Π
‖
2 is treated similarly.

Note the tail integrals Π
⊥
i and Π

‖
i , i ∈ {1, 2}, comprise information about both the

marginal processes and the dependence structure, as this was manifested in Section 3.2.2

where they were expressed in terms of the marginal Poisson frequencies, the marginal

severity distributions and the Lévy copula. Therefore, we believe the comparison between

the theoretical and empirical versions of tail integrals could contribute to the quality

assessment of a fitted dependence model.

Figures 5.5-5.7 illustrate the comparison of empirical and theoretical tail integrals,

whereby the underlying bivariate compound Poisson model is based on the Clayton Lévy

family with different dependence strength as detailed in Table 5.3, and the marginal

Weibull severities with parameters from Table 5.1. Although the marginal Poisson inten-

sities are fixed at λ1 = 40 and λ2 = 45 across all three depicted models, the Poisson

intensity of the common loss process S‖ = (S
‖
1 , S

‖
2)> is given by λ‖ = 5 in Figure 5.5, by

λ‖ = 24 in Figure 5.6 and by λ‖ = 38 in Figure 5.7. Recall from Section 3.2.2 that λ‖
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Figure 5.5: First row: contour lines of the sample Lévy copula compared with the theoretical

Clayton one with low dependence strength characterised by θClay,low = 0.3242. Second to last

rows: empirical tail integrals Π̂
⊥
1 , Π̂

⊥
2 , Π̂

‖
1 and Π̂

‖
2 compared with their theoretical counterparts.
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Figure 5.6: First row: contour lines of the sample Lévy copula compared with the theoretical

Clayton one with medium dependence strength characterised by θClay,med = 1.2212. Second to

last rows: empirical tail integrals Π̂
⊥
1 , Π̂

⊥
2 , Π̂

‖
1 and Π̂

‖
2 compared with their theoretical counter-

parts.
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Figure 5.7: First row: contour lines of the sample Lévy copula compared with the theoretical

Clayton one with high dependence strength characterised by θClay,high = 7.0519. Second to last

rows: empirical tail integrals Π̂
⊥
1 , Π̂

⊥
2 , Π̂

‖
1 and Π̂

‖
2 compared with their theoretical counterparts.
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is equal to the entire mass of the Lévy measure Π‖ and precisely expresses the average

number of the bivariate loss severities X‖ = (X
‖
1 , X

‖
2 )> in a unit time interval. Moreover,

Figure 4.1 has already indicated that λ‖ is a monotone function of the copula parameter

θ under the current Clayton family. Hence the percentage expected number of common

losses related to the different θ used are roughly 6%, 39%, and 81%.

As expected, all three Figures 5.5-5.7 have in common that the accordance between the

empirical and theoretical integrals improves significantly with increasing observation hori-

zon T , as more data points become available. Note that the observations up to time T = 20

include those from the shorter periods, as to enable a consistent comparison. However,

the empirical version of the tail integrals Π
‖
i , i ∈ {1, 2}, attributed to the common loss

process does not provide satisfactory agreement with their theoretical counterparts for all

considered time horizons in the last two lines of Figure 5.5. This is due to the fact that the

average number of simultaneous losses in the weak dependence setting is insufficient to

draw conclusions about the model fit based on the corresponding empirical tail integrals.

Similar observations and interpretations can be made for the poor fit of the individual

tail integral Π
⊥
1 in the high dependence case as displayed in the second line of Figure 5.7.

Beyond that, in the top panel of Figures 5.5-5.7 we compare contour plots of empirical

and theoretical Lévy copulas. The empirical version of a Lévy copula up to observation

horizon T is naturally defined as the bivariate function satisfying

Π̂T (x1, x2) = ĈT (Π̂T,1(x1), Π̂T,2(x2)),

where the marginal tail integrals are estimated similarly to above via

Π̂T,i(xi) =
1

T

N⊥i (T )∑
j=1

1{X⊥ij≥xi} +
1

T

N‖(T )∑
k=1

1{X‖ik≥xi}
=

1

T

N(T )∑
h=1

1{Yih≥xi}, i ∈ {1, 2}.

Since the highest average number of bivariate loss severities is offered under the strong

dependence induced by the largest Clayton Lévy copula parameter θ, the best accordance

between the theoretical and empirical contour lines are offered by Figure 5.7. On the
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Figure 5.8: Comparison of the empirical tail integral Π̂+ associated with the overall loss process

S+ with its theoretical counterpart up to three different observation horizons. The underlying

Lévy copula is from Example 3.6 (2) with θArch,low = 0.0185.
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contrary, under the weak dependence as depicted in Figure 5.5, the empirical contour

lines exhibit significant deviations from the theoretical ones even up to the remotest time

horizon. The kinks in the empirical copulas indicate that too few observations are present

to properly assess the quality of the fitted dependence model.

At this point it should be mentioned that similar behaviours of the empirical copula

contours and tail integrals as shown in Figures 5.5-5.7 have been observed during our

simulation study across different model constellations, although we only picture the Clay-

ton Lévy copula with Weibull marginal severities for illustration purpose. To conclude,

the visualisation techniques based on empirical copulas and tail integrals cannot be fully

trusted when assessing the fit of a dependence model, as their accordance with the the-

oretical counterparts appears unsatisfactorily even though the observations are sampled

from the model with the true parameter values.

Since the consideration of the individual tail integrals Π
⊥
i and Π

‖
i , i ∈ {1, 2}, provides

inconclusive results, we introduce one more visualisation option related to the tail integral

Π+ describing the overall loss process S+ = S1 +S2. Its theoretical representation is stated

in equation (4.6) and the empirical equivalence can be naturally written as

Π̂T,+(x) =
1

T

N⊥1 (T )∑
j=1

1{X⊥1j≥x} +
1

T

N⊥2 (T )∑
l=1

1{X⊥2l≥x}
+

1

T

N‖(T )∑
k=1

1{X‖1k+X
‖
2k≥x}

=
1

T

N(T )∑
h=1

1{Y1h+Y2h≥x}, x ≥ 0.

Figure 5.8 illustrates the fit of the theoretical tail integral Π+ to the empirical estimates.

The underlying Lévy copula is chosen from Example 3.6 (2) with the parameter indicating

weak dependence from Table 5.3. In contrast to Figures 5.5-5.7, the tail integrals Π+ and

Π̂T,+ show satisfying agreement with each other for all considered time horizons. This

is mainly due to the fact that Π+ comprises information in both the individual and

simultaneous loss part, hence enables robuster estimates compared to the individual tail

integrals Π
⊥
i and Π

‖
i with i ∈ {1, 2}.

As the Lévy copula contributes as the most interesting part in a dependence model rather

than the marginal distributions, we consider one more potential approach to evaluating the

model fit featuring the empirical Levy copula ĈT based on observations up to the time

horizon T . It is established in [BV13] that with T approaching infinity, the difference

between ĈT and the true Lévy copula C is asymptotically normally distributed. More

precisely, the scaled difference
√
T (ĈT (x1, x2) − C(x1, x2)) converges for fixed (x1, x2)>

to a centred normal random variable whose variance is given by the true copula value

C(x1, x2). However, an observation period of near infinite length can never be encountered

in practice. Hence it is worthwhile to examine whether the above asymptotic result already

applies to our selected finite and realistic time horizons T = 5, 10, 20.

For this purpose, we choose four different vectors (x1, x2)> and evaluate the Clayton

Lévy family implying low, medium and high dependence strength at these points. The

obtained values shall reflect the asymptotic variance of the estimates and are summarised



CHAPTER 5. SIMULATION STUDY 91

(x1, x2)
> → (4, 4)> (7, 7)> (3, 5)> (4, 7)>

T M̂ean V̂ar M̂ean V̂ar M̂ean V̂ar M̂ean V̂ar

θClay,low = 0.3242

5 0.0123 0.5140 -0.0418 0.8980 0.0073 0.4841 -0.0308 0.6525

10 -0.0307 0.4513 -0.0787 0.8182 -0.0282 0.4406 -0.0524 0.6076

20 -0.0126 0.4967 -0.0657 0.8800 -0.0154 0.4818 -0.0275 0.6433

θClay,med = 1.2212

5 0.0503 2.4272 0.0354 4.4901 0.0181 2.1789 0.0281 3.0617

10 0.0900 2.1549 0.0039 4.4181 0.0901 2.0340 0.0562 2.8621

20 -0.0032 2.1805 -0.0710 4.1218 0.0142 2.0170 -0.0318 2.8573

θClay,high = 7.0519

5 0.0127 3.7603 0.0960 6.1495 0.0076 3.3063 0.0466 4.2187

10 0.0072 3.9051 0.1249 6.6045 -0.0246 3.2095 0.0577 4.3848

20 0.0039 3.3818 0.0882 6.2391 -0.0187 2.8765 0.0315 3.7646

Table 5.4: Sample mean and variance of the standardised estimates
√
T (ĈT (x1, x2)− C(x1, x2))

for the Clayton Lévy copula with different dependence strengths and evaluated up to different

time horizons T .

(x1, x2)
> → (4, 4)> (7, 7)> (3, 5)> (4, 7)>

θClay,low = 0.3242 0.4717 0.8255 0.4519 0.6162

θClay,med = 1.2212 2.2675 3.9682 2.1111 2.8622

θClay,high = 7.0519 3.6255 6.3447 2.9886 3.9892

Table 5.5: Clayton Lévy copula of three dependence strengths evaluated at four different points.

in Table 5.5. Then for each considered Lévy copula, we sample 500 times from the cor-

responding compound Poisson model and calculate the empirical copula values up to

different time horizons. Table 5.4 reports the mean and variance of the standardised es-

timates
√
T (ĈT (x1, x2) − C(x1, x2)). Generally, we observe that the theoretical variances

are well reproduced for all combinations of various dependence levels, selected points and

time horizons. The sample means offer small absolute values around zero, indifferent to

the length of the observation period. On the other hand, the sample variances based

on 10-year data approach the theoretical asymptotic variances visibly better than only

relying on 5-year data. However, no significant improvement is recognised when further

extending the time horizon to 20 years.

In order to judge the performance of the normal approximation apart from the bias and

variance, Figure 5.9 depicts quantile-quantile plots (Q-Q plots) for the case of strong

dependence. The fine agreement between the empirical and theoretical quantiles confirms

that the finite sample properties are indeed satisfying. From a statistical point of view, our

small simulation study reveals the potential of constructing goodness of fit tests for Lévy

copulas based on the asymptotic normal results. Note that also the covariance structure

on the range of the copula must be taken into consideration when constructing such

hypothesis tests.

Last but not least, if the ordinary copula C‖ associated with the bivariate loss severities

(X
‖
1 , X

‖
2 )> is known in closed form, as this is satisfied by the Archimedean Lévy family,

and a sufficiently large sample size of bivariate loss observations is available, then goodness

of fit tests and model selection criteria for ordinary copulas can also be used to assess the
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Figure 5.9: Q-Q plots of the standardised estimates
√
T (ĈT (x1, x2)− C(x1, x2)) with respect to

asymptotic theoretical normal distributions. The underlying Lévy copula is given by the Clayton

family with parameter θClay,high = 7.0519 and the evaluation point (x1, x2)> is shown as label

in the top left corner in each subfigure.
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Figure 5.10: Illustration of the ordinary copula C‖ associated with the bivariate common loss

severities (X
‖
1 , X

‖
2 )> induced by the Clayton (first row), the Gumbel (middle row) and the

Archimedean Lévy family from Example 3.6 (2) (last row). The underlying Lévy copula param-

eters are given by θClay,med = 1.2212, θGumb,med = 4.3951 and θArch,med = 0.0377, respectively.

The left column shows bivariate losses (X
‖
1 , X

‖
2 )> in copula scale, the middle column presents

the density of C‖ and the right column the copula function itself.



CHAPTER 5. SIMULATION STUDY 94

fit of dependence structures. By way of illustration, a scatter plot of bivariate losses, a

copula density plot and a copula distribution plot are shown in Figure 5.10 for all three

selected Lévy copula families in the medium dependence case. The copula density and

distribution functions are derived from expression (3.25) for the corresponding survival

copula C
‖
s .

As the bivariate Archimedean Lévy family is symmetric in its two arguments, all induced

ordinary copulas C‖ in Figure 5.10 are symmetric with respect to the positive diagonal

as well. Furthermore, recall Example 5.2 states that the survival copula C
‖
s implied by

the Clayton Lévy copula is precisely its ordinary Clayton counterpart. This explains the

obvious upper tail dependence indicated by both the scatter and the density plot in the

top panel. In addition, the ordinary copula C‖ induced by the Gumbel Lévy copula shows

a similar positive dependence trend as well as upper tail dependence to the Clayton one.

On the contrary, the copula C‖ underlying the Lévy family from Example 3.6 (2) shows

countermonotonic behaviour among the simultaneous losses of both risk cells.

In conclusion, our observations on the implied ordinary copulas C‖ underline the fact that

Lévy copulas simultaneously model the interdependence among frequencies and sever-

ities. Despite the identical frequency correlation behind all illustrated Lévy copulas in

Figure 5.10, the bivariate loss severities reveal fairly different dependence patterns.

5.4 Sensitivity of operational risk measures to model

components

Whereas the asymptotic sensitivity of operational VaR, ES and SRM to the different

components of a compound Poisson model can be directly deduced via the analytic ap-

proximations from Section 4.1.2 in the special cases of independence, complete dependence

and one-cell dominance, the more general situation has to be studied by means of simula-

tion. Hence in the current section we introduce several bivariate model constellations for

which no asymptotic results exist and explore the impact of varying dependence strength

as well as marginal distributions on the value of operational risk measures.

For reasons of comparability across difference models and of computational effort, we fix

the marginal frequency parameters at λ1 = λ2 = 10. This choice of identical marginal Pois-

son intensities also allows for incorporating the completely positive dependence as detailed

before Theorem 4.6. Furthermore, all estimated risk measure values and the corresponding

confidence intervals are based on two million Monte Carlo iterations, where we employ

Algorithm 5.1 for obtaining a sample path from a bivariate compound Poisson model.

Nonetheless, some closed-form asymptotic approximations provided by Section 4.1.2 are

also taken into consideration when appropriate and serve as benchmark outcomes.

The first model family we consider is built upon heavy-tailed Weibull distributions whose

distribution function is specified in equation (5.6). The corresponding parameter values

are given by X1 ∼Weib(a1 = 0.5, b1 = 2) and X2 ∼Weib(a2 = 0.5, b2 = 1). Although the
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limit lim
x→∞

FX2
(x)

FX1
(x)

= 0 holds, that is, the far out right distribution tail of the second risk

cell is dominated by the first cell, we cannot apply the analytical results in Theorem 4.7.

This is due to the fact that a Weibull distribution tail is not regularly varying.

In order to examine the sensitivity of risk measures with respect to the dependence struc-

ture, we choose the Clayton Lévy family as specified in Table 2.1 and plot estimated VaR

as well ES values as a function of the dependence parameter θClay in Figure 5.11. Recall

that the Clayton family approaches the independence Lévy copula as θClay ↓ 0 and the

complete dependence Lévy copula as θClay ↑ ∞, whereas the right limit θClay = 250 in

Figure 5.11 can be considered as fairly close to the complete dependence situation. First,

we observe that the overall risk measures VaR+ and ES+ exhibit a similar development
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Figure 5.11: Sensitivity of risk measure estimates to the Clayton Lévy copula parameter at

three different confidence levels α. The underlying marginal severity distributions are given by

Weib(a1 = 0.5, b1 = 2) and Weib(a2 = 0.5, b2 = 1).
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Figure 5.12: Risk measure estimates induced by the Gumbel Lévy family for two different de-

pendence strengths: θGumb = 0.13 (left) and θGumb = 17.09 (right). The underlying marginal

severity distributions are given by Weib(a1 = 0.5, b1 = 2) and Weib(a2 = 0.5, b2 = 1).
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with increasing θClay across all three depicted confidence levels α. Moreover, both VaR+

and ES+ have smaller values in the independence case than in the approximately complete

dependence case. However, the latter does not constitute an upper bound for the overall

risk exposure, as all yellow curves rise sharply up to a peak at roughly θClay = 15, then

fall smoothly down towards the complete dependence case.

On the other hand, the stand-alone risk measure estimates are independent of the depen-

dence structure as expected. All green and blue lines in Figure 5.11 stay constant with

respect to the copula parameter θClay and indicate the correctness of our simulation pro-

cedure. Furthermore, the annual VaR1,1(α) of the first cell is twice as high as the annual

VaR2,1(α) of the second cell for each of the three confidence levels α. This coincides with

the asymptotic result according to Theorem 4.4, as the risk measures can be approximated

by VaR1,1(α) ∼ 2[ln(0.1− 0.1α)]2 and VaR2,1(α) ∼ [ln(0.1− 0.1α)]2, respectively.

Since financial institutions often consider not only α = 99.9% for regulatory requirements,

but also a broader range of quantile levels for internal business steering, Figure 5.12

visualises the sensitivity of VaR and ES with respect to α. Whereas the risk exposure

exhibits a slow increase up to around α = 99.9% and then exponentially increases in

the left panel for weak dependence, the steep increase occurs at a higher level of roughly

α = 99.95% in the right panel for stronger dependence. Furthermore, the 95% confidence

intervals (CIs) for VaR are quite narrow in both figures, suggesting our sample size of two

million is sufficiently large.

Having examined a model example with rapidly varying marginal severities, now we move

on to the regularly varying case. More precisely, we assume for both risk cells a stan-

dardised GPD with zero location and unit scale parameters β1 = β2 = 1. However, the

shape parameters are set differently to ξ1 = 1 and ξ2 = 0.8. The core idea behind this

severity construction is that the key component of a GPD is its shape parameter, which

determines the heavy-tailedness of the distribution alone and the corresponding tail index

is readily given by γ = ξ−1. In contrast, random variables in practical applications can

be easily rescaled to have standardised location and scale parameters, which should not

distort our simulation results below. The practice relevance of GPDs has already been

discussed in Section 1.2 as well as in Section 5.2.

The severity distribution of the first risk cell has infinite expectation and dominates the

severity distribution of the second cell. In other words, the current setting satisfies the

precondition of Theorem 4.7. Hence not surprisingly, the overall VaR+ estimate is quite

robust against various choices of Lévy copulas as demonstrated in Figure 5.13. The left

subfigure compares two Clayton models with difference dependence strength, whereas

the right subfigure features the Clayton, the Gumbel and the Archimedean family from

Example 3.6 (2). The dependence parameter of the latter is abbreviated as θArch in all

subsequent illustrations. In particular, the parameters of the Lévy copulas underlying the

right subfigure are chosen in such a way that the frequency correlation is identical across

all three dependence models and given by 0.3. Furthermore, as stated in Theorem 4.7,

the overall VaR+ can be approximated by the stand-alone VaR1 of the dominating risk

cell. Both graphs in Figure 5.13 reveal that this analytical result indeed works reasonable
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for the regulatory confidence level α = 99.9%, and even better as α continues rising and

approaches one.

We would like to point out that the one-cell dominance case is ideal for a stable estima-

tion of operational risk measures, as in favour of both financial institutions and regulatory

authorities. Once the severity distribution of the severest risk cell is validated to be sta-

tistically reliable, the overall VaR+ can be well approximated by a closed-form expression

without explicit assumptions of dependence structures. Nonetheless, in a situation of near

complete dependence, there are two approximation options offered by Theorem 4.6 and

Theorem 4.7, respectively. Whereas Theorem 4.6 proposes to estimate the overall VaR+
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Figure 5.13: VaR estimates induced by different Lévy copula families and different dependence

strengths. The underlying marginal severity distributions are given by GPD(ξ1 = 1, β1 = 1) and

GPD(ξ2 = 0.8, β2 = 1). The y-axis is shown in logarithmic scale for clearer illustration.
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Figure 5.14: Comparison of VaR estimates obtained through simulation with analytical approx-

imations (SLA) according to Section 4.1. The underlying marginal severity distributions are

given by GPD(ξ1 = 1, β1 = 1) and GPD(ξ2 = 0.8, β2 = 1). The y-axis is shown in logarithmic

scale for clearer illustration.
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as the sum of the stand-alone VaR values, Theorem 4.7 suggests the approximation via

the dominating marginal severity as just explained. In order to find out the more accurate

method, the right panel of Figure 5.14 compares the two discussed estimation choices. The

underlying data are drawn from a bivariate model based on the Clayton Lévy copula with

θClay = 320. Up to a significance level around α = 99.95%, only the summation estimate

lies within the 95% CI of the simulated result, and should therefore be preferred to the

approximation through VaR1. However, the difference becomes increasingly negligible for

higher values of α. In addition, the accuracy of the stand-alone estimates VaR1 and VaR2

are confirmed by the left panel in Figure 5.14, as the analytical approximations lie within

the 95% CI regardless the target confidence level α.

After having discussed the one-cell dominance situation in detail, now we consider a bal-

anced severity design. That is, the marginal severities are assumed to follow a standardised

GPD with identical shape parameters. Note that no closed-form risk measure approxima-

tions exist for arbitrary dependence structures in this setting, except for the independence

and the complete dependence Lévy copulas. We first investigate a finite expectation case

and Figure 5.15 presents estimated VaR values for ξ1 = ξ2 = 0.8. The parameters of the

underlying Lévy copulas in each of the two subgraphs are precisely the same as in Fig-

ure 5.13. In contrast to Figure 5.13, Figure 5.15 clearly shows that the overall VaR+ based

on the total loss aggregated across both risk cells has varying values for different copula

families and dependence strength. In other words, risk measures in a balanced severity

design are sensitive to the dependence structure. Hence the Lévy copula family as well

as the dependence parameter must be modelled carefully in order to obtain accurate risk

measure estimates. Nonetheless, the stand-alone VaR values in Figure 5.15 are unaffected

by the concrete Lévy copula, as all estimates stay within the 95% confidence interval with

respect to the Clayton family with θClay = 0.58.

In the right panel of Figure 5.15, the Gumbel Lévy copula results in higher VaR+ estimates
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Figure 5.15: VaR estimates induced by different Lévy copula families and different dependence

strengths. The marginal components have a common GPD with ξ1 = ξ2 = 0.8 and β1 = β2 = 1

as severity distribution, hence only the results for the first risk cell are depicted. The y-axis is

shown in logarithmic scale for clearer illustration.
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than the Clayton family, and the Archimedean family from Example 3.6 (2) offers the

smallest estimates for all depicted confidence levels α. However, this is not in general the

case. The common frequency correlation of the three copula families is changed from 0.3 as

in Figure 5.15 to 0.001 in the left panel of Figure 5.16, and further modified to 0.99 in the

right panel of Figure 5.16. For comparison purpose, the analytical approximations under

the independence and the complete dependence assumptions are drawn as well. Whereas

all three copula families provide nearly identical VaR+ estimates with the independence

copula in the left subfigure, the Clayton family generates the highest VaR+ estimates in the

right subfigure, followed by the Archimedean Lévy copula from 3.6 (2), which generates

almost the same estimates as the complete dependence Lévy copula. Furthermore, the

overall ES+ estimates are visualised for the same selected Lévy copulas in Figure 5.17.

Once again we notice the sensitivity of ES+ towards different dependence structures and

its steep increase with growing confidence level α.

In Figure 5.16, the overall VaR+ estimate in the independence case is smaller than that

under the complete dependence Lévy copula. However, it is already argued in [BK08]

that subadditivity of VaR can be violated under heavy-tailed severity distributions. More

precisely, the authors compare overall VaR+ approximations for GPD severities with dif-

ferent shape parameters by employing Theorem 4.5 and Theorem 4.6, respectively. They

conclude that in the finite expectation situation, that is, for ξ1 = ξ2 < 1, the complete

dependence Lévy copula indeed produces a higher VaR+ value than the independence

one. On the other hand, subadditivity is violated for infinite expectation models with

ξ1 = ξ2 > 1. Moreover, VaR+ estimates in these two special dependence situations coin-

cide for ξ1 = ξ2 = 1.

Within our simulation study, we extend the results in [BK08] by incorporating a medium
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Figure 5.16: Overall VaR+ estimates induced by different Lévy copula families and different

dependence strengths. The analytical approximations for the independence and the complete

dependence cases according to Section 4.1.2 are also depicted for comparison purpose. The

marginal components have a common GPD with ξ1 = ξ2 = 0.8 and β1 = β2 = 1 as severity

distribution and the y-axis is shown in logarithmic scale for clearer illustration.
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Figure 5.17: Overall ES+ estimates induced by different Lévy copula families and different de-

pendence strengths. The marginal components have a common GPD with ξ1 = ξ2 = 0.8 and

β1 = β2 = 1 as severity distribution and the y-axis is shown in logarithmic scale for clearer

illustration.

dependence structure and evaluate a broader range of potential interesting confidence

levels α ∈ [99.8%, 100%). In order to make the results across different copula families

comparable to a certain degree, the copula parameters in all four subgraphs of Figure 5.18

are determined via introducing an equal frequency correlation of 0.5.

For finite marginal severity expectations with ξ1 = ξ2 = 0.8 shown in the top left corner,

the complete dependence Lévy copula indeed provides a higher value than the indepen-

dence one for all depicted quantile levels. However, the overall VaR+ estimate associated

with the Gumbel family exhibits an even larger value up to roughly α = 99.95%. Hence

the complete dependence VaR+ cannot be regarded as an upper bond for risk measure

estimations even if the severities are not extremely heavy-tailed and have finite expecta-

tions. In the threshold case of ξ1 = ξ2 = 1 shown in the top right corner, the VaR+ values

not only coincide in both ends of the dependence spectrum, but also across the three

considered copula families with a medium dependence strength. Note that the VaR+ esti-

mates under different dependence assumptions all lie within the 95% CI associated with

the Clayton family for each quantile level α. Finally, the independence VaR+ estimate

exceeds the complete dependence one in both pictures of the bottom panel. Interestingly,

now the Archimedean family from Example 3.6 (2) provides the highest overall VaR+

estimates rather than the Gumbel family as in the top left subgraph. In addition, the

VaR+ values produced by the three selected copula families indicate a more significant

deviation from each other as ξ1 = ξ2 grows from 1.2 in bottom left to 1.5 in bottom right

and thus is more far off the threshold one.

Beyond that, we emphasize that the heavy-tailedness of severity distributions plays a

much more crucial role in view of risk measure calculations in comparison to frequency

correlations. Although the latter is set equally at 0.5 for all subfigures, the obtained

overall VaR+ values exhibit obvious deviations. To further illustrate this, Figure 5.19
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Figure 5.18: Overall VaR+ estimates under varying shape parameters ξ1 = ξ2 of the marginal

generalised Pareto severity distributions. The scale parameters are set identically at β1 = β2 = 1

in all subfigures. The different Lévy copula families are specified to have a common frequency

correlation of 0.5 and the corresponding parameters are given by θClay = 1.00, θGumb = 2.38 and

θArch = 0.14. The analytical approximations for the independence and the complete dependence

cases according to Section 4.1.2 are also depicted for comparison purpose. The y-axis is shown

in logarithmic scale for clearer illustration.
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plots the estimated VaR+ as a function against the shape parameter ξ1 = ξ2 of the

marginal GPD severities. Both the four different significant levels α corresponding to the

four subgraphs and the GPD shape parameters in the x-axis belong to a realistic range

for practical applications. The underlying Lévy copulas are characterised by the same

dependence parameters as in Figure 5.18. As the graphs reveal an upwards linear trend

with logarithmically scaled y-axis, we immediately conclude that the overall VaR+ grows

at an exponential rate with increasing ξ1 = ξ2. This pattern is consistent across all depicted

confidence levels and dependence structures. Contrarily, the sensitivity of VaR+ towards

the different copula families is much less pronounced. Nonetheless, the Gumbel family

provides the highest risk measure estimate for the smallest considered shape parameter

ξ1 = ξ2 = 0.6, and is overtaken by the Archimedean family from Example 3.6 (2), as

ξ1 = ξ2 rises to 1.5.
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Figure 5.19: Overall VaR+ estimates for four different confidence levels α and as a function of

the shape parameter ξ1 = ξ2 underlying the marginal generalised Pareto severity distributions.

The scale parameters are set identically at β1 = β2 = 1. The different Lévy copula families are

specified to have a common frequency correlation of 0.5 and the corresponding parameters are

given by θClay = 1.00, θGumb = 2.38 and θArch = 0.14. The y-axis is shown in logarithmic scale

for clearer illustration.
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As a last observation for our simulation analysis with GPD severities, we notice the risk

measure estimates are much more sensitive to the significance level α than in the less

heavy-tailed Weibull case. Although Figures 5.13-5.18 are drawn with α on the x-axis and

the logarithm of VaR or ES values on the y-axis, all graphs still exhibit a steeper convex

shape than in Figure 5.12, where the risk measure estimates based on Weibull severities

are displayed in original scale.

We close our simulation study by investigating the impact of wrongly estimated depen-

dence structures on risk measure outcomes. More precisely, we consider three different

marginal severity constellations with the true dependence structure given by the Clay-

ton Lévy copula with θClay = 1. These three models are subsequently referred to as the

true models (TMs) and the corresponding parameter values are summarised in Table 5.6.

Then we simulate a sample path from each specified model up to the time horizon T = 50,

which serves as the input for a MLE scheme in order to recover the underlying model pa-

rameters. However, when maximising the likelihood function as given in Theorem 3.9, the

copula family is wrongly assumed to be the Gumbel one. The obtained false parameter

estimates are also reported in Table 5.6 and accordingly denoted as the three false models

(FMs).

As the parameter values of the two copula families are not directly comparable with

each other, we do not calculate their relative deviations. On the other hand, the relative

differences between the true and the false frequency as well as severity parameters provide

TM I λ1 λ2 a1 b1 a2 b2 θClay

10 10 0.5 2 0.5 1 1

FM I λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Gumb

8.9552 9.0559 0.4519 2.1822 0.4654 1.2181 2.0997

Rel. dev. -0.1045 -0.0944 -0.0962 0.0911 -0.0693 0.2181 -

TM II λ1 λ2 ξ1 β1 ξ2 β2 θClay

10 10 1 1 0.8 1 1

FM II λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb

10.0351 9.5624 1.2012 0.9653 1.0521 0.9601 2.1547

Rel. dev. 0.0035 -0.0438 0.2012 -0.0347 0.3151 -0.0399 -

TM III λ1 λ2 ξ1 β1 ξ2 β2 θClay

10 10 0.8 1 0.8 1 1

FM III λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb

9.9537 10.0657 0.9409 1.0090 0.9480 1.0132 2.2542

Rel. dev. -0.0046 0.0066 0.1762 0.0090 0.1850 0.0132 -

Table 5.6: Comparison of true model parameters with estimated parameters when falsely cal-

ibrating the dependence structure given by a Clayton Lévy copula as a Gumbel one. Model

group I has Weibull severity distributions in both marginal components, whereas model groups

II and III have GPD marginal severities. The relative deviations between the true and false

parameters are reported in the last line for each model group.
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some interesting observations. Concerning the Poisson intensities λ1 and λ2, their relative

deviations in model groups II and III with regularly varying GPD severities are much

smaller than in model group I with rapidly varying Weibull severities. Moreover, the

imprecision of the estimated Weibull parameters is of approximately the same magnitude

as the frequency estimates in the first model group. Unfortunately, the shape parameter

estimates in model groups II and III, which constitute the most important component of

a GPD, exhibit the largest relative deviations from their true values. Hence we expect the

impact on risk measure computations is also more significant than with Weibull severities,

which shall be examined shortly below. In contrast, the less essential scale parameter β

of a GPD is estimated with a higher accuracy in false models II and III, as their relative

deviations can be as small as one tenth of the relative deviations associated with the shape

parameter ξ.

Nonetheless, the one-cell dominance design in true model II and the balanced severity de-

sign in true model III seem to be preserved despite the misspecification of the dependence

structure. The estimate ξ̂1 in false model II is significantly higher than ξ̂2, such that losses

in the first risk cell are more heavy-tailed than in the second one. On the other hand,
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Figure 5.20: Comparison of loss severities sampled from the true models with the false models

when wrongly calibrating the dependence structure given by a Clayton Lévy copula as a Gum-

bel one. Both the underlying marginal distribution parameters and the copula parameters are

reported in Table 5.6.
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the false estimates ξ̂1 and ξ̂2 for model III are nearly identical and indicate comparable

marginal loss severities. Also note that model groups II and III have in common that the

wrongly estimated shape parameters are bigger than their true values, which is expected

to result in an overestimation of risk measures.

For illustration purpose, a scatter plot of simulated loss data is displayed in Figure 5.20

for each true and false model. The message we aim for is that the misspecification of

Lévy copula families may not be easily identified by visualising the induced single loss

severities, as the point clouds of the false models do not show obviously dissimilar patterns

in comparison to their real counterparts.

Now we turn to evaluating the impact of inappropriately estimated dependence models

on risk measure values, which presents the most relevant issue in view of capital reserve

calculations. To this end, both absolute and relative deviations in VaR and ES estimates,

the latter if well-defined, are depicted for each of the three model groups in Figures 5.21-

5.23, respectively. Moreover, the obtained risk measure estimates themselves are reported

in Table 5.7 for VaR and in Table 5.8 for ES at certain selected confidence levels.

In addition, Table 5.9 exemplarily compares the 95% CIs of VaR estimates between the

true and the false models. The associated significance level is given by α = 99.9%, which

constitutes the most commonly applied one for regulatory capital requirements. In none of

the three model groups, the two CIs are overlapping, indicating massive deviations of risk

measure estimates due to model misspecification. The distance between the lower bound

99.8% 99.825% 99.85% 99.875% 99.9% 99.925% 99.95% 99.975%

TM I 293.24 299.83 307.69 317.91 329.88 346.09 371.03 413.75

FM I 458.40 470.91 485.15 504.14 527.95 557.42 604.15 689.45

TM II 6114.28 7024.06 8158.79 9753.91 12155.24 15578.86 22987.83 43047.23

FM II 30357.06 35517.04 42420.06 51586.96 66902.62 94416.58 147197.03 331672.21

TM III 2280.72 2519.75 2824.67 3210.19 3808.20 4778.93 6546.95 10946.34

FM III 6756.80 7648.88 8804.43 10459.16 12961.90 17236.27 25947.85 50918.40

Table 5.7: Comparison of total VaR+ estimates for one time unit based on the true models with

the false models when wrongly calibrating the dependence structure given by a Clayton Lévy

copula as a Gumbel one. Both the underlying marginal distribution parameters and the copula

parameters can be read off from Table 5.6.

99.8% 99.825% 99.85% 99.875% 99.9% 99.925% 99.95% 99.975%

TM I 350.33 358.03 367.12 378.03 391.56 409.57 435.57 481.69

FM I 567.16 581.78 599.10 620.02 646.18 680.97 732.23 823.03

TM III 9222.02 10197.15 11451.31 13142.19 15555.15 19326.75 26191.16 44099.64

FM III 41714.22 46647.17 53054.11 61744.94 74286.60 94088.19 130679.58 225453.85

Table 5.8: Comparison of total ES+ estimates for one time unit based on the true models with

the false models when wrongly calibrating the dependence structure given by a Clayton Lévy

copula as a Gumbel one. Both the underlying marginal distribution parameters and the copula

parameters can be read off from Table 5.6.
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TM 95% CI FM 95% CI

I [327.82, 332.58] I [523.39, 532.14]

II [11675.19, 12597.54] II [63631.70, 70579.16]

III [3680.11, 3948.98] III [12384.29, 13554.24]

Table 5.9: Comparison of 95% CIs associated with the overall VaR+(99.9%) estimates based

on the true models with the false models when wrongly calibrating the dependence structure

given by a Clayton Lévy copula as a Gumbel one. Both the underlying marginal distribution

parameters and the copula parameters can be read off from Table 5.6.

of the overestimating CI and the upper bound of the true CI is the largest in model group

II with the most heavy-tailed severity distributions, whereas the lower bound of the CI

based on the false model is five times as high as the upper bound of the true CI.

Concerning the first model group with marginal Weibull severities depicted in Figure 5.21,

the absolute deviations exhibit an increasing curve with respect to rising confidence level

α for both VaR and ES, as well as for both the stand-alone and the overall values based

on the total loss amount of the two risk cells. As shown by the right panel, the relative

deviations in ES reveal a similarly smooth, but steeper upwards trend than the absolute

deviations. However, the relative deviations in VaR have much more kinks and reveal an

even sharper increase as α approaches one.

In model group II, the true marginal severity of risk cell one and the falsely estimated

severities of both cells indicate an infinite expectation, hence only the resulting deviations

in VaR are displayed in Figure 5.22. Interestingly, both the absolute and the relative

differences in the overall VaR+ estimates are similar to that of the dominating first cell,

which has a more heavy-tailed GPD severity than the second cell in both the real and the

wrong model. Whereas the second risk cell results in the lowest absolute deviations across
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Figure 5.21: Absolute and relative deviations in risk measure estimates between the true and

the false models of model group I. Both the underlying marginal distribution parameters and

the copula parameters can be read off from Table 5.6.
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all depicted significance levels α, it surpasses the overall VaR+ and the individual VaR1

of the first cell in terms of relative deviations. Although the y-axis in the left subfigure is

shown in logarithmic scale, the graph still possesses an upwards convex trend, indicating

that risk measure deviations grow at least exponentially with respect to α. Furthermore,

the growth rate is much more dramatic than in the less heavy-tailed case with Weibull

severities in Figure 5.21, where the y-axis is shown in original scale. This feature is similar

to our previous observation by comparing Figures 5.13-5.18 with Figure 5.12.

Figure 5.23 illustrates the deviation in VaR and ES estimates for model group III. Re-

call that the underlying true model has a balanced severity design, whereby the falsely

estimated shape parameters of the two risk cells have a similar value as well. Hence the
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Figure 5.22: Absolute and relative deviations in risk measure estimates between the true and

the false models of model group II. Both the underlying marginal distribution parameters and

the copula parameters can be read off from Table 5.6. The y-axis of the left subfigure is shown

in logarithmic scale for clearer illustration.
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Figure 5.23: Absolute and relative deviations in risk measure estimates between the true and

the false models of model group III. Both the underlying marginal distribution parameters and

the copula parameters can be read off from Table 5.6.
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absolute deviations in the stand-alone risk measures have similar outcomes across the two

cells, and are about half the size compared to the deviation in the overall estimates VaR+

and ES+. However, the relative deviations in the overall risk measure outcomes are rather

close to those for the second risk cell. Beyond that, ES estimates offer a much smoother

increase with respect to the significance level α than VaR estimates in terms of relative

deviations.

Last but not least, all three considered model groups have in common that the deviations

in risk measure outcomes increase with growing confidence level α, whereas the growth

rate depends on the heavy-tailedness of the underlying severity distributions. In addition,

the ES deviations have a higher value than the corresponding VaR differences from both

the absolute and the relative viewpoint. As already indicated within the examination of

the discrepancies between the true and the false model parameters, the risk measures cal-

culated based on all three false models overestimate their real values. This is not surprising

since the scale parameters of the Weibull distributions and the shape parameters of the

GPDs in the false models are estimated larger than their real counterparts, respectively.

Thus the resulting loss severities have a heavier right distribution tail. To conclude, the

misspecification of dependence structure by a wrongly selected Lévy copula family can

cause inaccurate marginal parameter estimates as well as have an undesired impact on

risk measure calculations.



Chapter 6

Real data application

In this chapter we apply our dependence modelling approach based on compound Poisson

processes and Lévy copulas to three different real-life datasets. To clarify, the application

example presented in Section 6.1 deals with the well-known Danish insurance claim data

rather than operational loss events. The reason for this is that publicly accessible and

high-quality sources of operational risk data are not yet available. The reluctance of the

financial industry to share their sensitive loss information is naturally understandable.

Nonetheless, we would like to exemplify our estimation methodology based on a freely

available data sample, such that every modelling step and illustration can be provided

in detail, as well as be tried out by interested readers. As a result, the Danish fire loss

claims, which possess the same heavy-tailed distribution properties as commonly observed

among operational risk incidents, seem to be the ideal choice. The multivariate version

of this dataset can be found either in the package “CASdatasets” (containing various

actuarial datasets) or “fitdistrplus” (developed for parametric distribution fitting) within

the statistical software environment R.

In Section 6.2, both an internal and an external dataset kindly provided by the Bayerische

Landesbank (BayernLB) are introduced. On the basis of these real operational loss events,

we demonstrate the entire procedure from exploring potential dependence patterns, veri-

fying model assumptions, applying MLE as detailed in Section 3.3, assessing model fit by

means tested within the simulation study from Section 5.3, and finally to estimating risk

measures via both simulation and approximation methods from Chapter 4.

6.1 Danish reinsurance claim dataset

The Danish insurance data were collected at the Copenhagen Reinsurance and consist

of fire losses exceeding one million Danish Krone (mDKK) over the period from 1980 to

1990. Each claim is divided into a loss amount of the building coverage, of the contents

coverage and of the profit coverage. As the last loss category rarely exhibits a non-zero

entry, below we focus on the loss history of building and contents, which is potentially

109
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suitable for a bivariate compound Poisson model as detailed in Definition 3.1.

In order to give our modelling approach a clear structure, we briefly state the three

major steps to be followed. First we verify whether the marginal components, that is, the

building and the contents claim processes, can be reasonably described by a homogeneous

compound Poisson process, respectively. If this condition is satisfied, then we apply MLE

by employing the likelihood function from Theorem 3.9 to fit dependence models based

upon alternative Lévy copulas. Finally, we compare the fitted models by means of different

diagnostic plots.

To begin with, we consider one calendar year as one time unit such that the overall

observation horizon is given by T = 11. If the marginal claim series follow a homogeneous

compound Poisson process, then the corresponding claim inter-arrival times should be

i.i.d. exponentially distributed random variables. Figure 6.1 examines the exponential

nature of the inter-arrival times of building and contents losses, respectively. The estimated

autocorrelations shown in the top panel fairly lie within the 95% confidence interval,

except for one spike in the building series. In the bottom panel, the empirical quantiles are

plotted against the theoretical ones of an exponential distribution, whose rate parameter

is estimated by the sample mean of the gaps between two loss arrivals. Apart from the

discrete nature of empirical observations, the theoretical and empirical quantiles agree
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Figure 6.1: Top panel: autocorrelation functions (acfs) of marginal claim inter-arrival times. Bot-

tom panel: Q-Q plots of the corresponding empirical quantiles against the theoretical exponential

quantiles with an estimated rate parameter 108.53 for building and 49.92 for contents.
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well on the positive diagonal line. Overall, there is no evidence against i.i.d. exponential

claim arrival times for both the building and the contents loss processes.

Now we turn to characterising the marginal loss severities. Since the Parato-type behaviour

of the fire losses in the current dataset is already well-known and the reporting limit of

one mDKK provides a natural threshold, two GPDs with identical location parameter

µi = 1 for the two margins i ∈ {1, 2} seem to be an appropriate choice. The associated

distribution tails have the form (1 + ξi
x−µi
βi

)−ξ
−1
i with shape ξi and scale βi. The shape

and scale parameters are estimated by means of MLE. In order to assess the GPD fit, we

calculate for each loss observation x of marginal component i ∈ {1, 2} the corresponding

residual value ξ̂−1
i ln(1+ ξ̂i

x−1

β̂i
) based on estimated parameters. If the original observations

follow a GPD(ξi, βi, µi), then the residuals should be i.i.d. and follow a standard expo-

nential distribution. In addition, the residuals have a finite second moment in contrast to

the original GPD random variables with a shape parameter larger than or equal to 0.5.

Therefore, we inspect the independence among loss severities via calculating the sample

autocorrelation function based on the residuals, which is presented in the top panel of

Figure 6.2. Furthermore, the bottom panel illustrates the match between the empirical

and the theoretical exponential quantiles. Similar to the interpretation of Figure 6.1 for
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Figure 6.2: Top panel: acfs of residual values calculated from the marginal GPD fits to the loss

amounts under the building and the contents coverage, respectively. The estimated parameters

are given by ξ̂1 = 0.4525, β̂1 = 1.0655 for building and ξ̂2 = 0.6877, β̂2 = 1.3015 for con-

tents. Bottom panel: Q-Q plots of the corresponding empirical quantiles against the theoretical

standard exponential quantiles.
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the inter-arrival times, we conclude that both building and contents claim amounts can

be reasonably modelled by the GPD. Note we have also examined alternative heavy-tailed

distributions not depicted here, and none of them can compete with the GPD fit.

After approving the marginal compound Poisson assumptions, now we aim at capturing

the interdependence between the building and the contents loss processes by means of

Lévy copulas. The potential candidates include the Clayton and the Gumbel families from

Table 2.1, the Archimedean copula from Example 3.6 (2), as well as the complementary

Gumbel Lévy copula from the same example. As the occurrence dates of all claim events

are known exactly, we apply MLE under a continuous observation scheme as explained in

Section 3.3.1. In practical implementations the corresponding log-likelihood function lnL
is maximised for numerical stability, and its maximum value together with the obtained

estimates is summarised in Table 6.1 for different Lévy copulas.

λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂ max. lnL
Clayton 107.0989 49.2377 0.5373 1.0255 0.8110 1.2863 0.8503 1265.91

Gumbel 107.1765 50.7052 0.7466 0.9548 1.1371 1.2344 3.3625 1228.66

Example 3.6 (2) 112.5945 66.9301 0.9390 1.6044 1.6451 2.1026 0.0373 734.36

Comp. Gumbel 107.6742 50.0968 0.6717 0.9589 0.9055 1.2755 0.8448 1254.22

Table 6.1: Maximum likelihood estimates obtained by maximising the likelihood function in

Theorem 3.9 for selected Lévy copula families. Note the copula parameter estimate θ̂ is not

directly comparable across different copula families.

From Table 6.1, we immediately see that the dependence model characterised by the

Archimedean Lévy copula of Example 3.6 (2) offers the lowest value of maximised log-

likelihood function, which indicates its infeasibility with respect to the fire loss data. In

order to draw a more comprehensive comparison between the fitted models, we employ

the concept of empirical tail integrals introduced in Section 5.3. Figure 6.3 visualises their

conformity with the theoretical counterparts calculated based on the estimated model

parameters. The independent partial Lévy measure Π⊥1 is associated with the claims solely

attributed to the building category. Similarly, the Lévy measure Π⊥2 describes contents

claims without resulting in building losses. Claims attributed to both coverage categories

are described by the dependent partial Lévy measure Π‖ = (Π
‖
1,Π

‖
2)>.

In line with the maximised log-likelihood function values in Table 6.1, the fitted tail

integrals based on the Archimedean Lévy copula from Example 3.6 (2) exhibit a poor fit to

the sample version in all four subfigures. On the other hand, the Clayton, the Gumbel and

its complementary family reveal equally good agreements for the individual tail integrals

Π
⊥
1 and Π

⊥
2 . However, the behaviour of the common tail integral Π

‖
= (Π

‖
1,Π

‖
2)> cannot

be properly reproduced by any of the fitted models. Only the Clayton one, which also

achieves the highest maximised log-likelihood value in Table 6.1, seems to perform slightly

better than the other copulas. Our observation of Figure 6.3 constitutes no surprise, as

the estimated copula parameters in Table 6.1 fall into the range from low to medium

dependence strength as studied in Section 5.3. Recall Figures 5.5-5.6 where the empirical

tail integrals deviate from their theoretical equivalences due to the lack of strictly positive



CHAPTER 6. REAL DATA APPLICATION 113

bivariate observations, even though the underlying data are sampled from the model with

the true parameter values.

As the model suitability of the Clayton, the Gumbel and the complementary Lévy copulas

cannot be fully distinguished by exploring the tail integrals in Figure 6.3, we further

compare in Figure 6.4 Q-Q plots for the individual loss severities solely attributed to the

building or to the contents category, respectively. The theoretical quantiles are calculated

based on the corresponding survival functions F
⊥
1 and F

⊥
2 as specified in Lemma 3.4,

Part (b). We observe deviations from the straight diagonal line in the upper quantile area

of different magnitudes.

Moreover, the observed bivariate loss severities related to both the building and the con-

tents coverage are transformed to copula scale and displayed in the upper left corner of

Figure 6.5. The point cloud suggests near independence between the marginal components

with a slight scarcity of points in the top left and bottom right corner, respectively. As

the Archimedean Lévy copula from Example 3.6 (2) rather implies a countermonotonic

relationship as revealed in the lower panel of Figure 5.10, it does not provide an appro-

priate fit to the fire losses. Besides the scatter plot, Figure 6.5 also presents a contour

plot featuring the empirical Lévy copula as well as the three more promising fitted copula

families. Once again, the sample version does not exhibit a satisfactory overlap with any
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Figure 6.3: Comparison of sample tail integrals with their theoretical counterparts calcu-

lated based on different fitted Lévy copula families. The abbreviation “Arch” refers to the

Archimedean Lévy copula from Example 3.6 (2).
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Figure 6.4: Q-Q plots of loss severities solely attributed to the building coverage (top section)

and solely attributed to the contents coverage (bottom section). The left column is obtained

from the estimated Clayton Lévy copula, the middle column from the Gumbel Lévy copula, and

the right column from the complementary Gumbel Lévy copula.

of the theoretical counterparts owing to the current low dependence setting, similar to the

reason explained before with respect to the tail integrals attributed to the common loss

process. Nonetheless, the Gumbel Lévy copula with the lowest maximised log-likelihood

value after the Archimedean Lévy copula from Example 3.6 (2) shows the largest devi-

ation from the empirical contour lines. Finally, a perspective plot in the lower panel of

Figure 6.5 illustrates from two different angles the shape of the theoretical Lévy copula,

displayed as a 3D surface, in comparison to the sample version displayed as a 3D his-

togram. Although we only depict the Clayton case, similar visualisations can be obtained

from other copula families.

At the end we notice that the Danish insurance loss data are also analysed by means

of bivariate compound Poisson models under a continuous observation scheme in [EK10]

as well as under a discrete observation scheme in [Vel12]. However, in both references

only the Clayton Lévy family is taken into consideration and the single losses are fitted

in logarithmic scale by Weibull distributions. Hence, the current thesis contributes to

the formalisation of the entire procedure of estimating a multivariate compound Poisson

model, that is, from verifying the marginal compound Poisson assumptions to evaluating

the fitted models based on different Lévy copulas via various diagnostic tools. Moreover,

we model the loss severities in their original instead of logarithmic scale such that the

obtained model can be directly utilised for operational risk measure calculations and thus

is comparable with the real operational risk data introduced below.
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Figure 6.5: Examination of fitted dependence models for the Danish fire losses.

6.2 Operational risk datasets

6.2.1 Internal data

It is not allowed to publish the data, but the full analysis has been made available to the

supervisor and advisor.

6.2.2 External data

It is not allowed to publish the data, but the full analysis has been made available to the

supervisors and advisor.



Chapter 7

Conclusion and outlook

Justified by Sklar’s theorem for Lévy processes, a multivariate dependence model for op-

erational risk loss events can be readily constructed by combining marginal compound

Poisson processes through a suitable Lévy copula. The current thesis contributes to this

not yet commonly known dependence concept by a detailed analysis of its model compo-

nents in Chapter 3, highlighting its potential for asymptotic risk measure approximations

in Chapter 4, investigating the quality of maximum likelihood estimators, the goodness of

fitted dependence structures and the sensitivity of risk measure estimates in Chapter 5.

Furthermore, Chapter 6 puts all previously introduced methodologies at work, whereby

dependence models built upon various Lévy copulas are estimated and subsequently ex-

amined based on real loss data. In this way we hope to gain confidence in the applicability

of our modelling approach also from operational risk practitioners.

In comparison to the most alternative dependence modelling techniques summarised in

Section 1.2, the multivariate model based on Lévy copulas exhibits several advantages.

First, the dependence structure specification can be separated from the marginal process

characterisation in an analogous manner to utilising ordinary copulas. The severity model

of each risk cell may be chosen from any appropriate distributions, or parameterised as a

spliced one with different body and tail distribution families, such that the heterogeneity

of losses attributed to different causes or business units is respected. On the other hand,

various parametric Lévy copula families as well as the extreme cases of independence and

complete dependence Lévy copulas are available to be selected.

Second, both frequency and severity dependence are controlled by the same Lévy copula

in a calibrated model, such that relatively few parameters are required. In addition, as

Lévy copulas operate on the domain of time-independent Lévy measures, the dependence

characterisation stays valid as the loss occurrence progresses in the course of time. In

general, the latter does not hold when imposing interdependence among compound Pois-

son processes via ordinary copulas, which may result in the necessity of complexer model

structures with more variables. The parameter parsimony of Lévy copula models despite

their flexibility is especially valuable with regard to the scarcity of reliable operational risk

data compared to market or credit risk information. Moreover, the employment of Lévy
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copulas enables to generalise the already well-known univariate SLA for subexponential

loss severities to higher dimensions. The appeal of closed-form risk exposure estimations

by contrast with simulation methods does not have to be reiterated.

Notwithstanding, the convenient property of integrating frequency and severity depen-

dence into one single concept may also pose a limitation of Lévy copulas. Furthermore,

dependence in the sense of Lévy measures is only defined for simultaneously occurring

loss events, which might oversimplify real loss situations. Hence possible extensions of

the current model or its combination with alternative dependence concepts constitute an

interesting subject for future research. Beyond that, the issue of incorporating external

data into dependence modelling and risk exposure assessment is briefly addressed at the

end of Chapter 6. Since operational loss incidents of a financial institution are not least

shaped by its individual procedure and control system, the challenge of rescaling external

loss events with respect to representativity is evident. However, the sample size of inter-

nal observations is usually insufficient to support robust risk measure calculations at the

generally high target quantile levels. As a result, it is indispensable to include external

information into internal model calibration and validation schemes.

The growing participation in data consortia certainly confirms the awareness of financial

institutions for sound operational risk quantifications. At the same time, a downturn

in loss frequency or loss magnitude cannot be expected owing to the increasing global

network of business activities and the advances made in information technology, such

that operational risk exposures may become more diverse and complicated. Therefore, the

incentive of implementing adequate dependence models goes far beyond the fulfilment of

regulatory capital requirements, and should constitute an essential element of any risk

management strategy at financial institutions. Finally, we emphasise that the assessment

of the plausibility and the interpretation of a model are at least as important as fitting

the model itself. Of course, all model assumptions and specifications must be periodically

verified by analysts in practice and adjusted to actual loss experience where appropriate.



Appendix A

Categorisation of operational losses

Table A.1: Definition of business lines according to Annex 8 of [Ban06].

Business line Explanation

Corporate Finance Mergers and acquisitions, underwriting, privatisations, securitisation, re-

search, debt (government, high yield), equity, syndications, IPO, secondary

private placements

Trading & Sales Fixed income, equity, foreign exchanges, commodities, credit, funding, own

position securities, lending and repos, brokerage, debt, prime brokerage

Retail Banking Retail lending and deposits, banking services, trust and estates; Private

lending and deposits, banking services, trust and Retail Banking estates,

investment advice; Merchant/commercial/corporate cards, private labels

and retail

Commercial Banking Project finance, real estate, export finance, trade finance, factoring, leasing,

lending, guarantees, bills of exchange

Payment and Settlement Payments and collections, funds transfer, clearing and settlement

Agency Services Escrow, depository receipts, securities lending (customers) corporate ac-

tions; Issuer and paying agents

Asset Management Pooled, segregated, retail, institutional, closed, open, private equity

Retail Brokerage Execution and full service
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Table A.2: Definition of event types according to Annex 9 of [Ban06].

Event type Explanation

Internal fraud Losses due to acts of a type intended to de-

fraud, misappropriate property or circumvent regu-

lations, the law or company policy, excluding diver-

sity/discrimination events, which involves at least one

internal party

External fraud Losses due to acts of a type intended to defraud, mis-

appropriate property or circumvent the law, by a third

party

Employment Practices and Workplace Safety Losses arising from acts inconsistent with employ-

ment, health or safety laws or agreements, from pay-

ment of personal injury claims, or from diversity /

discrimination events

Clients, Products & Business Practices Losses arising from an unintentional or negligent fail-

ure to meet a professional obligation to specific clients

(including fiduciary and suitability requirements), or

from the nature or design of a product.

Damage to Physical Assets Losses arising from loss or damage to physical assets

from natural disaster or other events.

Business disruption and system failures Losses arising from disruption of business or system

failures

Execution, Delivery & Process Management Losses from failed transaction processing or process

management, from relations with trade counterparties

and vendors



Appendix B

Characterisation of distribution tails

In order to make the heavy-tailed property of operational risk losses precise, we sum-

marise the main notions utilised in this thesis for characterising heavy-tailed probability

distributions. For further discussions of the subsequent definitions we refer to Appendix 3

of [EKM97], which is a classic textbook for extreme events modelling.

Definition B.1 (Subexponential distribution function).

Let F be a distribution function with support (0,∞) and let F n∗ denote its n-fold con-

volution. If the asymptotic relation

lim
x→∞

F n∗(x)

F (x)
= n, n ≥ 2, (B.1)

holds, then F is called subexponential and written as F ∈ S.

From relation (B.1) the following more intuitive characterisation of subexponentiality can

be derived:

lim
x→∞

P(X1 + · · ·+Xn > x)

P(max{X1, . . . , Xn} > x)
= 1, n ≥ 2.

Hence the distribution tail of the partial sum of n i.i.d. subexponential random variables

has the same order of magnitude as the tail of the maximum among them. In other words,

a severe overall loss amount is more probably owing to a single extreme loss rather than

to accumulated small losses.

An important subclass of subexponential distributions comprises distributions whose far

out right tail behaves like a power function:

Definition B.2 (Regularly varying distribution tail).

Let F be a distribution function with support (0,∞). If for some γ ≥ 0 the distribution

tail F satisfies the condition

lim
x→∞

F (xt)

F (x)
= t−γ, t > 0,
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then F is said to be regularly varying with index −γ and denoted by F ∈ R−γ. The

quantity γ is often referred to as the tail index of F and we write R = ∪γ≥0R−γ.

Note that the k-th power moment of a random variable with F ∈ R−γ only exists for

k < γ. A prominent example of a regularly varying distribution is given by the Pareto

distribution. On the other hand, the heavy-tailed Weibull distribution and the lognormal

distribution are subexponential but not regularly varying. Their tails decay faster than

the tails in R, but more slowly than any exponential tail. Hence a third distribution tail

characterisation is needed:

Definition B.3 (Rapidly varying distribution tail).

Let F be a distribution function with support (0,∞). If the asymptotic relation

lim
x→∞

F (xt)

F (x)
=

{
0, t > 1,

∞, 0 < t < 1,

holds, then F is called rapidly varying and denoted by F ∈ R∞.

In contrast to random variables with distribution tail in R, all power moments of a

distribution with rapidly varying tail exist and are finite.



Appendix C

Results of simulation study

In the current section we present the simulation results for Section 5.2, where the quality of

obtained maximum likelihood estimates (MLEs) for a bivariate compound Poisson model

based on Lévy copulas is investigated. First, the utilised performance measures shall be

explained.

Let δ be either a parameter of the marginal Poisson frequency distributions, a parameter

of the marginal severity distributions, or a Lévy copula parameter. A simple criterion

for the goodness of its estimator δ̂ is given by the bias, which is defined as the expected

difference between δ̂ and δ. In our study, the bias is estimated by the difference between

the empirical mean and the true parameter value. In order to make the obtained results for

parameter values of different scales comparable, the mean relative bias (MRB) is reported

in the subsequent tables. The latter expresses the bias as a percentage of the true value

and is estimated by

M̂RB =
1

δM

M∑
m=1

δ̂m − δ,

where M = 100 denotes the number of replications for each considered compound Poisson

model in our simulation scheme.

A common accuracy measure is called the mean squared error (MSE), which is defined as

MSE[δ̂] = E[(δ̂ − δ)2] and reflects the dispersion of the estimates around the true value.

In particular, the MSE incorporates the concept of both bias and precision as it satisfies

the decomposition MSE[δ̂] = Var[δ̂] + Bias[δ̂]2. Small variance and little bias thus lead to

a highly accurate estimator. Since the MSE squares all differences, it does not have the

same scale as the parameter δ. Hence we take the square root of the MSE, yielding the

root mean squared error (RMSE) which is on the same scale as δ. In order to compare

estimates across different model components, we again divide this measure by the true

parameter value and obtain the relative RMSE (RRMSE). The corresponding empirical

version is calculated as

R̂RMSE =
1

δ

√√√√ 1

M

M∑
m=1

(δ̂m − δ)2.
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Since both the MSE and RMSE are calculated using squared differences, they could be

dominated by outlying estimates far away from the true value δ. To avoid this potential

problem of outliers, we also consider the absolute value of the difference between δ̂ and

δ as a more robust measure for accuracy. The latter is commonly known as the mean

absolute error (MAE) and its relative version is estimated as

R̂MAE =
1

δM

M∑
m=1

| δ̂m − δ | .

After having presented the relevant performance measures, the subsequent tables sum-

marise the results from our simulation procedure as detailed in Section 5.2.
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Table C.1: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by LN (µ1 = 10.3, σ1 = 1.8), Weib(a2 = 0.19, b2 = 5000).

T λ̂1 λ̂2 µ̂1 σ̂1 â2 b̂2 θ̂Clay,low

M̂ean

5 40.2124 45.6848 10.3202 1.7744 0.1914 5407.0411 0.3284

10 40.0461 45.3387 10.3149 1.7813 0.1904 5127.2845 0.3262

20 39.9180 45.1435 10.3191 1.7921 0.1905 5048.6349 0.3254

M̂RB

5 0.0053 0.0152 0.0020 -0.0142 0.0075 0.0814 0.0128

10 0.0012 0.0075 0.0014 -0.0104 0.0022 0.0255 0.0059

20 -0.0021 0.0032 0.0019 -0.0044 0.0026 0.0097 0.0034

R̂MAE

5 0.0534 0.0539 0.0116 0.0399 0.0438 0.3323 0.0696

10 0.0426 0.0362 0.0069 0.0306 0.0274 0.2198 0.0432

20 0.0297 0.0258 0.0047 0.0213 0.0187 0.1529 0.0290

̂RRMSE

5 0.0638 0.0649 0.0139 0.0494 0.0538 0.4257 0.0853

10 0.0504 0.0451 0.0085 0.0370 0.0344 0.2767 0.0548

20 0.0366 0.0318 0.0059 0.0261 0.0239 0.1944 0.0390

T λ̂1 λ̂2 µ̂1 σ̂1 â2 b̂2 θ̂Clay,med

M̂ean

5 39.9567 44.1770 10.2798 1.7835 0.1919 5180.8075 1.2131

10 40.1726 44.5516 10.2856 1.7943 0.1905 5132.0707 1.2242

20 40.0598 44.8498 10.2975 1.7956 0.1898 5013.3640 1.2242

M̂RB

5 -0.0011 -0.0183 -0.0020 -0.0092 0.0103 0.0362 -0.0066

10 0.0043 -0.0100 -0.0014 -0.0032 0.0028 0.0264 0.0024

20 0.0015 -0.0033 -0.0002 -0.0025 -0.0009 0.0027 0.0025

R̂MAE

5 0.0593 0.0537 0.0102 0.0329 0.0347 0.2811 0.0654

10 0.0397 0.0391 0.0067 0.0223 0.0237 0.2066 0.0501

20 0.0317 0.0280 0.0044 0.0167 0.0170 0.1536 0.0340

̂RRMSE

5 0.0765 0.0700 0.0126 0.0425 0.0446 0.3732 0.0835

10 0.0508 0.0500 0.0079 0.0289 0.0302 0.2630 0.0627

20 0.0384 0.0351 0.0056 0.0210 0.0222 0.1888 0.0426

T λ̂1 λ̂2 µ̂1 σ̂1 â2 b̂2 θ̂Clay,high

M̂ean

5 39.9308 44.8135 10.2898 1.7864 0.1918 5187.7130 7.0323

10 39.8997 44.7082 10.2979 1.7909 0.1915 5215.4336 7.0942

20 39.9578 44.8283 10.2977 1.7937 0.1910 5153.2642 7.0786

M̂RB

5 -0.0017 -0.0041 -0.0010 -0.0076 0.0093 0.0375 -0.0028

10 -0.0025 -0.0065 -0.0002 -0.0051 0.0077 0.0431 0.0060

20 -0.0011 -0.0038 -0.0002 -0.0035 0.0052 0.0307 0.0038

R̂MAE

5 0.0551 0.0500 0.0090 0.0307 0.0270 0.2979 0.0628

10 0.0374 0.0373 0.0068 0.0230 0.0183 0.2071 0.0495

20 0.0265 0.0261 0.0054 0.0158 0.0149 0.1653 0.0361

̂RRMSE

5 0.0696 0.0644 0.0113 0.0378 0.0337 0.3969 0.0799

10 0.0475 0.0468 0.0084 0.0285 0.0233 0.2778 0.0627

20 0.0329 0.0328 0.0068 0.0197 0.0187 0.2097 0.0443
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Table C.2: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by Weib(a1 = 0.19, b1 = 5000), GPD(ξ2 = 1.3, β2 = 5000).

T λ̂1 λ̂2 â1 b̂1 ξ̂2 β̂2 θ̂Clay,low

M̂ean

5 39.7284 44.4946 0.1919 5632.4421 1.2921 5093.9403 0.3210

10 39.9099 44.7353 0.1907 5401.0427 1.2920 5051.7121 0.3248

20 40.2513 44.7989 0.1909 5188.9437 1.2863 5058.2948 0.3251

M̂RB

5 -0.0068 -0.0112 0.0099 0.1265 -0.0061 0.0188 -0.0100

10 -0.0023 -0.0059 0.0035 0.0802 -0.0062 0.0103 0.0018

20 0.0063 -0.0045 0.0046 0.0378 -0.0105 0.0117 0.0028

R̂MAE

5 0.0614 0.0526 0.0459 0.3410 0.0805 0.1323 0.0665

10 0.0440 0.0347 0.0303 0.2100 0.0600 0.0887 0.0425

20 0.0298 0.0206 0.0236 0.1352 0.0446 0.0606 0.0310

̂RRMSE

5 0.0802 0.0632 0.0570 0.4727 0.1046 0.1671 0.0829

10 0.0572 0.0417 0.0364 0.2749 0.0773 0.1104 0.0547

20 0.0366 0.0248 0.0285 0.1797 0.0558 0.0795 0.0391

T λ̂1 λ̂2 â1 b̂1 ξ̂2 β̂2 θ̂Clay,med

M̂ean

5 39.9592 44.6513 0.1902 5408.7682 1.3018 4940.3094 1.2130

10 39.7005 44.5764 0.1897 5014.7597 1.3022 4899.4134 1.2104

20 39.9328 44.7790 0.1900 5088.0564 1.3072 4945.4481 1.2213

M̂RB

5 -0.0010 -0.0077 0.0009 0.0818 0.0014 -0.0119 -0.0067

10 -0.0075 -0.0094 -0.0013 0.0030 0.0017 -0.0201 -0.0088

20 -0.0017 -0.0049 -0.0000 0.0176 0.0055 -0.0109 0.0001

R̂MAE

5 0.0568 0.0477 0.0386 0.3704 0.0786 0.1043 0.0640

10 0.0403 0.0347 0.0243 0.2125 0.0631 0.0720 0.0487

20 0.0246 0.0261 0.0163 0.1487 0.0418 0.0478 0.0323

̂RRMSE

5 0.0701 0.0605 0.0480 0.5060 0.0998 0.1272 0.0780

10 0.0525 0.0445 0.0304 0.2901 0.0777 0.0853 0.0589

20 0.0327 0.0323 0.0200 0.1907 0.0534 0.0623 0.0401

T λ̂1 λ̂2 â1 b̂1 ξ̂2 β̂2 θ̂Clay,high

M̂ean

5 39.0748 44.0593 0.1920 5663.4055 1.3002 5145.6403 7.1948

10 39.3702 44.4336 0.1907 5315.3628 1.3030 5057.1749 7.1242

20 39.6745 44.6520 0.1903 5328.1002 1.3111 5053.1263 7.1247

M̂RB

5 -0.0231 -0.0209 0.0105 0.1327 0.0002 0.0291 0.0203

10 -0.0157 -0.0126 0.0036 0.0631 0.0023 0.0114 0.0103

20 -0.0081 -0.0077 0.0014 0.0656 0.0086 0.0106 0.0103

R̂MAE

5 0.0576 0.0526 0.0311 0.3176 0.0671 0.0938 0.0780

10 0.0389 0.0345 0.0209 0.1944 0.0437 0.0707 0.0530

20 0.0285 0.0256 0.0147 0.1544 0.0380 0.0471 0.0345

̂RRMSE

5 0.0720 0.0651 0.0391 0.3971 0.0848 0.1173 0.0999

10 0.0485 0.0433 0.0258 0.2476 0.0567 0.0898 0.0669

20 0.0353 0.0326 0.0188 0.1922 0.0479 0.0599 0.0446
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Table C.3: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by LN (µ1 = 10.3, σ1 = 1.8), GPD(ξ2 = 1.3, β2 = 5000).

T λ̂1 λ̂2 µ̂1 σ̂1 ξ̂2 β̂2 θ̂Clay,low

M̂ean

5 39.8686 45.1355 10.3061 1.7881 1.2873 5133.8954 0.3248

10 40.0596 44.8414 10.2987 1.7896 1.2770 5099.1410 0.3218

20 39.7667 44.9224 10.2985 1.7963 1.2773 5092.6631 0.3234

M̂RB

5 -0.0033 0.0030 0.0006 -0.0066 -0.0098 0.0268 0.0016

10 0.0015 -0.0035 -0.0001 -0.0058 -0.0177 0.0198 -0.0076

20 -0.0058 -0.0017 -0.0001 -0.0021 -0.0175 0.0185 -0.0025

R̂MAE

5 0.0524 0.0529 0.0108 0.0342 0.0912 0.1280 0.0791

10 0.0393 0.0363 0.0073 0.0272 0.0679 0.0824 0.0499

20 0.0279 0.0248 0.0041 0.0177 0.0459 0.0615 0.0357

̂RRMSE

5 0.0657 0.0682 0.0132 0.0433 0.1121 0.1563 0.0999

10 0.0485 0.0480 0.0086 0.0340 0.0835 0.1065 0.0635

20 0.0349 0.0312 0.0050 0.0213 0.0584 0.0785 0.0454

T λ̂1 λ̂2 µ̂1 σ̂1 ξ̂2 β̂2 θ̂Clay,med

M̂ean

5 39.8461 44.4483 10.3084 1.7873 1.3070 5063.4838 1.2288

10 40.0318 44.7946 10.3034 1.7951 1.3126 5013.9403 1.2287

20 39.9473 44.8117 10.3018 1.8014 1.3058 5004.9352 1.2234

M̂RB

5 -0.0038 -0.0123 0.0008 -0.0071 0.0054 0.0127 0.0062

10 0.0008 -0.0046 0.0003 -0.0027 0.0097 0.0028 0.0062

20 -0.0013 -0.0042 0.0002 0.0008 0.0045 0.0010 0.0018

R̂MAE

5 0.0547 0.0535 0.0092 0.0370 0.0788 0.1149 0.0601

10 0.0359 0.0350 0.0067 0.0269 0.0517 0.0734 0.0445

20 0.0275 0.0289 0.0044 0.0179 0.0421 0.0532 0.0342

̂RRMSE

5 0.0700 0.0663 0.0119 0.0464 0.1003 0.1565 0.0777

10 0.0463 0.0457 0.0087 0.0337 0.0681 0.0951 0.0553

20 0.0335 0.0364 0.0058 0.0219 0.0501 0.0682 0.0429

T λ̂1 λ̂2 µ̂1 σ̂1 ξ̂2 β̂2 θ̂Clay,high

M̂ean

5 39.1453 44.2740 10.2870 1.7974 1.2900 4947.2790 7.0393

10 39.3099 44.3939 10.2915 1.7974 1.2937 4949.5253 7.0344

20 39.6911 44.7503 10.2958 1.8015 1.3013 4961.7985 7.0235

M̂RB

5 -0.0214 -0.0161 -0.0013 -0.0015 -0.0077 -0.0105 -0.0018

10 -0.0173 -0.0135 -0.0008 -0.0015 -0.0049 -0.0101 -0.0025

20 -0.0077 -0.0055 -0.0004 0.0008 0.0010 -0.0076 -0.0040

R̂MAE

5 0.0527 0.0522 0.0096 0.0350 0.0764 0.0970 0.0696

10 0.0387 0.0375 0.0067 0.0246 0.0508 0.0632 0.0497

20 0.0282 0.0252 0.0053 0.0179 0.0337 0.0533 0.0353

̂RRMSE

5 0.0672 0.0637 0.0117 0.0455 0.0949 0.1171 0.0892

10 0.0501 0.0475 0.0082 0.0320 0.0644 0.0774 0.0619

20 0.0346 0.0309 0.0064 0.0226 0.0433 0.0629 0.0427
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Table C.4: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by Weib(a1 = 0.16, b1 = 4000), Weib(a2 = 0.19, b2 = 5000).

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Clay,low

M̂ean

5 39.4263 45.1948 0.1615 4809.1522 0.1911 5687.2657 0.3289

10 39.8423 45.2273 0.1615 4361.6227 0.1902 5339.0626 0.3272

20 39.8868 45.2191 0.1605 4171.9963 0.1906 5180.3028 0.3264

M̂RB

5 -0.0143 0.0043 0.0091 0.2023 0.0058 0.1375 0.0145

10 -0.0039 0.0051 0.0095 0.0904 0.0009 0.0678 0.0089

20 -0.0028 0.0049 0.0031 0.0430 0.0030 0.0361 0.0065

R̂MAE

5 0.0516 0.0487 0.0451 0.4410 0.0403 0.3671 0.0675

10 0.0382 0.0358 0.0318 0.2875 0.0309 0.2185 0.0488

20 0.0281 0.0237 0.0222 0.2020 0.0182 0.1332 0.0334

̂RRMSE

5 0.0635 0.0606 0.0558 0.6125 0.0496 0.4794 0.0840

10 0.0483 0.0441 0.0413 0.3767 0.0366 0.2786 0.0600

20 0.0350 0.0305 0.0293 0.2486 0.0227 0.1716 0.0423

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Clay,med

M̂ean

5 39.8399 45.2654 0.1613 4197.9251 0.1908 5156.4578 1.2241

10 40.0144 45.1698 0.1606 4101.4673 0.1909 5178.6554 1.2179

20 40.2196 45.3155 0.1599 4050.1897 0.1909 5122.6918 1.2188

M̂RB

5 -0.0040 0.0059 0.0084 0.0495 0.0043 0.0313 0.0024

10 0.0004 0.0038 0.0037 0.0254 0.0046 0.0357 -0.0027

20 0.0055 0.0070 -0.0004 0.0125 0.0050 0.0245 -0.0020

R̂MAE

5 0.0540 0.0489 0.0383 0.3289 0.0389 0.2904 0.0626

10 0.0381 0.0401 0.0245 0.2413 0.0294 0.1959 0.0429

20 0.0274 0.0298 0.0168 0.1807 0.0209 0.1318 0.0315

̂RRMSE

5 0.0666 0.0603 0.0476 0.4301 0.0491 0.3561 0.0762

10 0.0483 0.0516 0.0319 0.3181 0.0346 0.2482 0.0530

20 0.0355 0.0367 0.0218 0.2287 0.0257 0.1720 0.0377

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Clay,high

M̂ean

5 40.3741 45.3980 0.1611 4281.1287 0.1912 5174.3061 7.0648

10 40.1756 45.1960 0.1605 4150.7013 0.1902 5050.7024 7.1111

20 40.2173 45.2234 0.1601 4050.7317 0.1899 4996.3067 7.0878

M̂RB

5 0.0094 0.0088 0.0070 0.0703 0.0061 0.0349 0.0018

10 0.0044 0.0044 0.0032 0.0377 0.0009 0.0101 0.0084

20 0.0054 0.0050 0.0008 0.0127 -0.0007 -0.0007 0.0051

R̂MAE

5 0.0553 0.0517 0.0256 0.3774 0.0315 0.2912 0.0674

10 0.0351 0.0337 0.0193 0.2508 0.0198 0.1883 0.0576

20 0.0274 0.0251 0.0144 0.1788 0.0156 0.1380 0.0380

̂RRMSE

5 0.0685 0.0630 0.0329 0.5088 0.0394 0.3787 0.0888

10 0.0438 0.0411 0.0232 0.3416 0.0254 0.2553 0.0714

20 0.0338 0.0316 0.0176 0.2242 0.0197 0.1784 0.0479
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Table C.5: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by LN (µ1 = 10.3, σ1 = 1.8), LN (µ2 = 9.8, σ2 = 1.4).

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Clay,low

M̂ean

5 39.9164 44.9538 10.3100 1.7975 9.7996 1.4027 0.3243

10 39.9262 44.9793 10.3103 1.7943 9.7980 1.4035 0.3251

20 39.9969 45.1528 10.3010 1.7920 9.8027 1.4040 0.3238

M̂RB

5 -0.0021 -0.0010 0.0010 -0.0014 -0.0000 0.0019 0.0002

10 -0.0018 -0.0005 0.0010 -0.0032 -0.0002 0.0025 0.0027

20 -0.0001 0.0034 0.0001 -0.0044 0.0003 0.0029 -0.0013

R̂MAE

5 0.0519 0.0505 0.0096 0.0390 0.0079 0.0426 0.0634

10 0.0358 0.0356 0.0063 0.0253 0.0057 0.0259 0.0461

20 0.0260 0.0271 0.0049 0.0182 0.0039 0.0171 0.0323

̂RRMSE

5 0.0671 0.0669 0.0121 0.0496 0.0099 0.0519 0.0797

10 0.0452 0.0457 0.0081 0.0309 0.0071 0.0345 0.0581

20 0.0322 0.0329 0.0063 0.0235 0.0046 0.0216 0.0414

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Clay,med

M̂ean

5 39.7469 44.6879 10.3087 1.7844 9.8170 1.3908 1.2182

10 39.9191 44.8704 10.3056 1.7867 9.8082 1.3959 1.2170

20 39.9989 44.7628 10.3034 1.7937 9.8003 1.3988 1.2188

M̂RB

5 -0.0063 -0.0069 0.0008 -0.0087 0.0017 -0.0066 -0.0024

10 -0.0020 -0.0029 0.0005 -0.0074 0.0008 -0.0029 -0.0034

20 -0.0000 -0.0053 0.0003 -0.0035 0.0000 -0.0009 -0.0020

R̂MAE

5 0.0500 0.0527 0.0091 0.0381 0.0076 0.0326 0.0598

10 0.0345 0.0372 0.0069 0.0256 0.0056 0.0228 0.0401

20 0.0263 0.0254 0.0053 0.0180 0.0041 0.0175 0.0311

̂RRMSE

5 0.0645 0.0662 0.0120 0.0455 0.0095 0.0397 0.0790

10 0.0450 0.0465 0.0086 0.0317 0.0071 0.0281 0.0497

20 0.0320 0.0310 0.0067 0.0223 0.0052 0.0207 0.0366

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Clay,high

M̂ean

5 40.4191 45.6044 10.2911 1.7912 9.7902 1.3961 7.0370

10 40.4015 45.4730 10.2984 1.7971 9.7976 1.3999 7.0508

20 40.1179 45.2114 10.3061 1.7966 9.8011 1.3991 7.0650

M̂RB

5 0.0105 0.0134 -0.0009 -0.0049 -0.0010 -0.0028 -0.0021

10 0.0100 0.0105 -0.0002 -0.0016 -0.0002 -0.0001 -0.0002

20 0.0029 0.0047 0.0006 -0.0019 0.0001 -0.0006 0.0019

R̂MAE

5 0.0555 0.0488 0.0095 0.0295 0.0078 0.0307 0.0729

10 0.0386 0.0352 0.0071 0.0194 0.0053 0.0215 0.0516

20 0.0292 0.0272 0.0050 0.0148 0.0038 0.0154 0.0361

̂RRMSE

5 0.0714 0.0630 0.0116 0.0362 0.0099 0.0366 0.0933

10 0.0484 0.0443 0.0086 0.0241 0.0068 0.0259 0.0646

20 0.0363 0.0345 0.0062 0.0181 0.0047 0.0201 0.0462
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Table C.6: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by GPD(ξ1 = 1.5, β1 = 6000), GPD(ξ2 = 1.3, β2 = 5000).

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Clay,low

M̂ean

5 39.4806 44.9344 1.4527 6075.8581 1.2809 5016.4564 0.3139

10 39.9064 44.9220 1.4882 6053.7551 1.2952 4977.6855 0.3190

20 40.1449 45.0540 1.4895 6019.4580 1.2896 5030.6567 0.3212

M̂RB

5 -0.0130 -0.0015 -0.0316 0.0126 -0.0147 0.0033 -0.0318

10 -0.0023 -0.0017 -0.0078 0.0090 -0.0037 -0.0045 -0.0162

20 0.0036 0.0012 -0.0070 0.0032 -0.0080 0.0061 -0.0095

R̂MAE

5 0.0659 0.0531 0.0844 0.1065 0.0910 0.1302 0.0733

10 0.0363 0.0387 0.0686 0.0852 0.0646 0.0871 0.0510

20 0.0301 0.0256 0.0513 0.0601 0.0453 0.0522 0.0407

̂RRMSE

5 0.0790 0.0676 0.1040 0.1307 0.1124 0.1660 0.0955

10 0.0442 0.0485 0.0822 0.1035 0.0791 0.1107 0.0617

20 0.0362 0.0325 0.0620 0.0762 0.0543 0.0681 0.0503

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Clay,med

M̂ean

5 40.2708 44.8805 1.4971 6074.1477 1.2964 5030.7057 1.2304

10 39.9647 44.6188 1.4883 6101.4901 1.3029 4979.2258 1.2275

20 40.0979 44.7993 1.4925 6008.4340 1.2929 5024.6935 1.2259

M̂RB

5 0.0068 -0.0027 -0.0020 0.0124 -0.0027 0.0061 0.0075

10 -0.0009 -0.0085 -0.0078 0.0169 0.0022 -0.0042 0.0051

20 0.0024 -0.0045 -0.0050 0.0014 -0.0055 0.0049 0.0039

R̂MAE

5 0.0540 0.0501 0.0789 0.1122 0.0821 0.1142 0.0716

10 0.0426 0.0348 0.0545 0.0892 0.0564 0.0806 0.0424

20 0.0302 0.0249 0.0389 0.0647 0.0401 0.0517 0.0323

̂RRMSE

5 0.0725 0.0636 0.1018 0.1353 0.1042 0.1444 0.0880

10 0.0543 0.0437 0.0682 0.1147 0.0702 0.1000 0.0562

20 0.0388 0.0323 0.0484 0.0805 0.0500 0.0656 0.0403

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Clay,high

M̂ean

5 40.1587 45.2055 1.4715 6102.6530 1.2719 5081.5584 7.1509

10 40.1376 45.0229 1.4793 6040.4492 1.2789 5078.1190 7.0773

20 39.9179 44.8596 1.4822 6025.7559 1.2831 5050.1588 7.0820

M̂RB

5 0.0040 0.0046 -0.0190 0.0171 -0.0216 0.0163 0.0140

10 0.0034 0.0005 -0.0138 0.0067 -0.0162 0.0156 0.0036

20 -0.0021 -0.0031 -0.0119 0.0043 -0.0130 0.0100 0.0043

R̂MAE

5 0.0492 0.0431 0.0645 0.1000 0.0666 0.0897 0.0647

10 0.0354 0.0326 0.0414 0.0650 0.0452 0.0611 0.0394

20 0.0277 0.0277 0.0307 0.0449 0.0334 0.0429 0.0316

̂RRMSE

5 0.0620 0.0556 0.0814 0.1247 0.0833 0.1139 0.0796

10 0.0451 0.0415 0.0515 0.0796 0.0552 0.0774 0.0536

20 0.0346 0.0346 0.0383 0.0582 0.0406 0.0519 0.0384
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Table C.7: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Clayton Lévy copula with different dependence strength (Top section:

low dependence with true value θClay,low = 0.3242; Middle section: medium dependence with true value

θClay,med = 1.2212; Bottom section: high dependence with true value θClay,high = 7.0519), and each for

the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by GPD(ξ1 = 0.9, β1 = 6000), GPD(ξ2 = 0.9, β2 = 6000).

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Clay,low

M̂ean

5 39.6000 44.9858 0.9056 6169.0486 0.8814 6198.6746 0.3270

10 39.7663 45.1606 0.9013 6110.6873 0.8979 6112.7971 0.3259

20 39.8128 45.0460 0.8956 6079.5861 0.8983 6058.4359 0.3258

M̂RB

5 -0.0100 -0.0003 0.0062 0.0282 -0.0206 0.0331 0.0085

10 -0.0058 0.0036 0.0015 0.0184 -0.0024 0.0188 0.0049

20 -0.0047 0.0010 -0.0049 0.0133 -0.0019 0.0097 0.0047

R̂MAE

5 0.0553 0.0463 0.1092 0.1234 0.1200 0.1053 0.0616

10 0.0362 0.0324 0.0730 0.0907 0.0791 0.0707 0.0434

20 0.0293 0.0214 0.0535 0.0602 0.0574 0.0509 0.0318

̂RRMSE

5 0.0681 0.0579 0.1436 0.1530 0.1554 0.1302 0.0791

10 0.0465 0.0403 0.0905 0.1101 0.1019 0.0885 0.0547

20 0.0367 0.0273 0.0660 0.0732 0.0737 0.0619 0.0412

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Clay,med

M̂ean

5 40.4259 45.1548 0.9022 6081.2606 0.8983 6110.7307 1.2363

10 40.2095 44.9877 0.9072 5979.5402 0.9091 6017.7748 1.2307

20 40.1766 45.0691 0.9065 5940.8229 0.9116 5974.4792 1.2262

M̂RB

5 0.0106 0.0034 0.0025 0.0135 -0.0018 0.0185 0.0124

10 0.0052 -0.0003 0.0080 -0.0034 0.0101 0.0030 0.0078

20 0.0044 0.0015 0.0072 -0.0099 0.0129 -0.0043 0.0041

R̂MAE

5 0.0656 0.0553 0.0893 0.0903 0.0900 0.0915 0.0594

10 0.0430 0.0352 0.0677 0.0701 0.0697 0.0665 0.0435

20 0.0309 0.0303 0.0520 0.0505 0.0490 0.0453 0.0302

̂RRMSE

5 0.0789 0.0722 0.1146 0.1104 0.1062 0.1151 0.0752

10 0.0521 0.0476 0.0854 0.0871 0.0876 0.0819 0.0554

20 0.0384 0.0370 0.0652 0.0611 0.0638 0.0560 0.0375

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Clay,high

M̂ean

5 40.7235 45.6070 0.8854 6110.4527 0.8860 6166.9081 7.1168

10 40.1786 45.2457 0.8919 6097.7207 0.8943 6080.3753 7.1054

20 40.1925 45.3117 0.8936 6034.8480 0.8948 6006.7217 7.0586

M̂RB

5 0.0181 0.0135 -0.0162 0.0184 -0.0156 0.0278 0.0092

10 0.0045 0.0055 -0.0090 0.0163 -0.0063 0.0134 0.0076

20 0.0048 0.0069 -0.0071 0.0058 -0.0057 0.0011 0.0010

R̂MAE

5 0.0531 0.0493 0.0937 0.0975 0.0903 0.1001 0.0750

10 0.0363 0.0334 0.0651 0.0593 0.0633 0.0600 0.0487

20 0.0279 0.0282 0.0435 0.0409 0.0417 0.0399 0.0341

̂RRMSE

5 0.0682 0.0630 0.1119 0.1207 0.1061 0.1233 0.0918

10 0.0469 0.0454 0.0804 0.0741 0.0773 0.0747 0.0597

20 0.0350 0.0344 0.0543 0.0510 0.0519 0.0512 0.0417
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Table C.8: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Gumbel Lévy copula with different dependence strength (Top section: low

dependence with true value θGumb,low = 0.9317; Middle section: medium dependence with true value

θGumb,med = 4.3951; Bottom section: high dependence with true value θGumb,high = 26.8980), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by Weib(a1 = 0.16, b1 = 4000), Weib(a2 = 0.19, b2 = 5000).

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Gumb,low

M̂ean

5 40.2164 44.6700 0.1610 4320.0109 0.1933 5772.8305 0.9195

10 40.2581 44.9302 0.1617 4169.4294 0.1921 5436.4003 0.9265

20 40.0259 44.7941 0.1608 4152.3709 0.1905 5144.2345 0.9321

M̂RB

5 0.0054 -0.0073 0.0060 0.0800 0.0174 0.1546 -0.0131

10 0.0065 -0.0016 0.0104 0.0424 0.0111 0.0873 -0.0056

20 0.0006 -0.0046 0.0053 0.0381 0.0027 0.0288 0.0004

R̂MAE

5 0.0527 0.0612 0.0439 0.3591 0.0451 0.3214 0.0921

10 0.0343 0.0410 0.0328 0.2775 0.0299 0.2059 0.0623

20 0.0287 0.0305 0.0197 0.1904 0.0194 0.1403 0.0486

̂RRMSE

5 0.0656 0.0760 0.0538 0.5006 0.0554 0.4388 0.1182

10 0.0430 0.0502 0.0407 0.3569 0.0373 0.2673 0.0780

20 0.0355 0.0373 0.0251 0.2463 0.0236 0.1790 0.0617

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Gumb,med

M̂ean

5 40.2316 45.0689 0.1609 4292.3140 0.1917 5374.2003 4.4070

10 39.9582 44.9934 0.1601 4117.0492 0.1911 5149.1394 4.4032

20 39.8848 44.8213 0.1602 4054.5263 0.1909 5160.2550 4.3889

M̂RB

5 0.0058 0.0015 0.0054 0.0731 0.0090 0.0748 0.0027

10 -0.0010 -0.0001 0.0004 0.0293 0.0056 0.0298 0.0019

20 -0.0029 -0.0040 0.0009 0.0136 0.0047 0.0321 -0.0014

R̂MAE

5 0.0553 0.0537 0.0373 0.3516 0.0311 0.3023 0.0757

10 0.0395 0.0355 0.0257 0.2448 0.0223 0.1837 0.0505

20 0.0266 0.0261 0.0173 0.1738 0.0150 0.1439 0.0373

̂RRMSE

5 0.0698 0.0643 0.0455 0.4757 0.0403 0.3742 0.0937

10 0.0480 0.0479 0.0320 0.3201 0.0265 0.2322 0.0666

20 0.0351 0.0342 0.0211 0.2145 0.0189 0.1749 0.0455

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Gumb,high

M̂ean

5 39.5735 44.4862 0.1611 4361.8710 0.1913 5295.9069 27.3544

10 39.6912 44.7412 0.1605 4181.0857 0.1904 5111.8820 27.0513

20 39.9180 44.9589 0.1604 4163.8795 0.1904 5136.0205 27.0818

M̂RB

5 -0.0107 -0.0114 0.0071 0.0905 0.0067 0.0592 0.0170

10 -0.0077 -0.0058 0.0033 0.0453 0.0023 0.0224 0.0057

20 -0.0021 -0.0009 0.0024 0.0410 0.0019 0.0272 0.0068

R̂MAE

5 0.0573 0.0585 0.0285 0.3683 0.0295 0.2688 0.0814

10 0.0452 0.0452 0.0204 0.2591 0.0194 0.1981 0.0529

20 0.0323 0.0310 0.0146 0.1750 0.0143 0.1456 0.0392

̂RRMSE

5 0.0698 0.0711 0.0354 0.4827 0.0367 0.3717 0.1009

10 0.0571 0.0555 0.0245 0.3297 0.0253 0.2567 0.0647

20 0.0407 0.0389 0.0179 0.2212 0.0181 0.1740 0.0481
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Table C.9: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Gumbel Lévy copula with different dependence strength (Top section: low

dependence with true value θGumb,low = 0.9317; Middle section: medium dependence with true value

θGumb,med = 4.3951; Bottom section: high dependence with true value θGumb,high = 26.8980), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by LN (µ1 = 10.3, σ1 = 1.8), LN (µ2 = 9.8, σ2 = 1.4).

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Gumb,low

M̂ean

5 39.9114 45.0306 10.2825 1.7873 9.7971 1.3967 0.9244

10 39.9733 44.9614 10.2893 1.7907 9.8030 1.4011 0.9267

20 39.9813 45.0108 10.2933 1.7965 9.8022 1.4024 0.9270

M̂RB

5 -0.0022 0.0007 -0.0017 -0.0071 -0.0003 -0.0024 -0.0079

10 -0.0007 -0.0009 -0.0010 -0.0052 0.0003 0.0008 -0.0054

20 -0.0005 0.0002 -0.0007 -0.0019 0.0002 0.0017 -0.0051

R̂MAE

5 0.0553 0.0509 0.0089 0.0363 0.0079 0.0313 0.0871

10 0.0369 0.0376 0.0069 0.0283 0.0060 0.0256 0.0612

20 0.0263 0.0265 0.0048 0.0206 0.0042 0.0184 0.0467

̂RRMSE

5 0.0691 0.0632 0.0109 0.0466 0.0101 0.0399 0.1073

10 0.0457 0.0470 0.0085 0.0358 0.0072 0.0322 0.0779

20 0.0329 0.0333 0.0059 0.0257 0.0051 0.0223 0.0581

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Gumb,med

M̂ean

5 39.6337 44.5268 10.2866 1.7912 9.7896 1.3914 4.3207

10 39.8199 44.9170 10.3117 1.7960 9.8003 1.4016 4.4197

20 40.0314 45.0300 10.3086 1.8034 9.8095 1.4002 4.4266

M̂RB

5 -0.0092 -0.0105 -0.0013 -0.0049 -0.0011 -0.0062 -0.0169

10 -0.0045 -0.0018 0.0011 -0.0022 0.0000 0.0011 0.0056

20 0.0008 0.0007 0.0008 0.0019 0.0010 0.0001 0.0072

R̂MAE

5 0.0656 0.0548 0.0109 0.0246 0.0074 0.0277 0.0896

10 0.0455 0.0394 0.0083 0.0195 0.0054 0.0198 0.0621

20 0.0273 0.0250 0.0052 0.0130 0.0040 0.0130 0.0422

̂RRMSE

5 0.0829 0.0686 0.0142 0.0307 0.0096 0.0367 0.1140

10 0.0571 0.0485 0.0101 0.0250 0.0069 0.0250 0.0785

20 0.0342 0.0327 0.0065 0.0160 0.0052 0.0170 0.0541

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Gumb,high

M̂ean

5 40.2213 45.1986 10.3040 1.8021 9.8055 1.4013 27.4689

10 40.3078 45.2557 10.3072 1.8000 9.8079 1.3997 27.3196

20 40.1482 45.0565 10.3095 1.8027 9.8087 1.4021 27.2211

M̂RB

5 0.0055 0.0044 0.0004 0.0012 0.0006 0.0010 0.0212

10 0.0077 0.0057 0.0007 0.0000 0.0008 -0.0002 0.0157

20 0.0037 0.0013 0.0009 0.0015 0.0009 0.0015 0.0120

R̂MAE

5 0.0584 0.0534 0.0094 0.0255 0.0082 0.0253 0.0837

10 0.0391 0.0364 0.0056 0.0197 0.0048 0.0200 0.0516

20 0.0257 0.0247 0.0042 0.0132 0.0036 0.0135 0.0363

̂RRMSE

5 0.0710 0.0666 0.0115 0.0310 0.0100 0.0308 0.1037

10 0.0493 0.0473 0.0072 0.0254 0.0064 0.0262 0.0683

20 0.0327 0.0309 0.0053 0.0168 0.0044 0.0174 0.0472
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Table C.10: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Gumbel Lévy copula with different dependence strength (Top section: low

dependence with true value θGumb,low = 0.9317; Middle section: medium dependence with true value

θGumb,med = 4.3951; Bottom section: high dependence with true value θGumb,high = 26.8980), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by GPD(ξ1 = 1.5, β1 = 6000), GPD(ξ2 = 1.3, β2 = 5000).

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb,low

M̂ean

5 39.5429 44.5132 1.4697 6283.6742 1.2766 5199.1889 0.9345

10 39.6504 44.8438 1.4888 6154.7059 1.2906 5025.6624 0.9325

20 39.9579 44.9658 1.4890 6084.3774 1.2990 5041.8845 0.9352

M̂RB

5 -0.0114 -0.0108 -0.0202 0.0473 -0.0180 0.0398 0.0029

10 -0.0087 -0.0035 -0.0074 0.0258 -0.0072 0.0051 0.0008

20 -0.0011 -0.0008 -0.0073 0.0141 -0.0007 0.0084 0.0037

R̂MAE

5 0.0594 0.0495 0.0785 0.1307 0.0878 0.1436 0.0934

10 0.0397 0.0360 0.0545 0.0804 0.0590 0.0860 0.0628

20 0.0290 0.0254 0.0441 0.0614 0.0356 0.0518 0.0367

̂RRMSE

5 0.0742 0.0634 0.1038 0.1691 0.1177 0.1849 0.1134

10 0.0490 0.0477 0.0713 0.1106 0.0763 0.1044 0.0757

20 0.0368 0.0324 0.0535 0.0795 0.0469 0.0652 0.0452

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb,med

M̂ean

5 40.0266 45.2881 1.4884 6080.6771 1.2812 4999.4044 4.3864

10 39.8682 44.9094 1.4887 6081.3711 1.2816 5033.7814 4.3765

20 39.9360 44.9620 1.4951 6068.2213 1.2934 5015.7577 4.3901

M̂RB

5 0.0007 0.0064 -0.0077 0.0134 -0.0144 -0.0001 -0.0020

10 -0.0033 -0.0020 -0.0075 0.0136 -0.0141 0.0068 -0.0042

20 -0.0016 -0.0008 -0.0032 0.0114 -0.0050 0.0032 -0.0011

R̂MAE

5 0.0518 0.0529 0.0644 0.1009 0.0650 0.0935 0.0649

10 0.0369 0.0364 0.0443 0.0839 0.0448 0.0754 0.0482

20 0.0268 0.0248 0.0307 0.0569 0.0305 0.0480 0.0354

̂RRMSE

5 0.0628 0.0652 0.0788 0.1262 0.0789 0.1132 0.0811

10 0.0443 0.0444 0.0575 0.1040 0.0558 0.0945 0.0625

20 0.0324 0.0311 0.0375 0.0699 0.0389 0.0612 0.0440

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb,high

M̂ean

5 40.0846 45.1240 1.4894 6022.6879 1.2887 5027.8557 27.3753

10 40.0602 44.9990 1.4913 5989.0825 1.2897 5023.4766 26.9650

20 39.9138 44.9331 1.4947 6002.2036 1.2947 4996.1381 26.9584

M̂RB

5 0.0021 0.0028 -0.0071 0.0038 -0.0087 0.0056 0.0177

10 0.0015 -0.0000 -0.0058 -0.0018 -0.0079 0.0047 0.0025

20 -0.0022 -0.0015 -0.0035 0.0004 -0.0041 -0.0008 0.0022

R̂MAE

5 0.0526 0.0520 0.0692 0.1001 0.0682 0.0766 0.0857

10 0.0359 0.0359 0.0454 0.0747 0.0452 0.0647 0.0559

20 0.0272 0.0276 0.0291 0.0456 0.0290 0.0416 0.0374

̂RRMSE

5 0.0637 0.0623 0.0856 0.1159 0.0839 0.0946 0.1034

10 0.0462 0.0457 0.0583 0.0926 0.0577 0.0806 0.0701

20 0.0344 0.0348 0.0375 0.0573 0.0377 0.0535 0.0461
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Table C.11: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Gumbel Lévy copula with different dependence strength (Top section: low

dependence with true value θGumb,low = 0.9317; Middle section: medium dependence with true value

θGumb,med = 4.3951; Bottom section: high dependence with true value θGumb,high = 26.8980), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by GPD(ξ1 = 0.9, β1 = 6000), GPD(ξ2 = 0.9, β2 = 6000).

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb,low

M̂ean

5 39.8841 45.0753 0.9180 5981.8488 0.9020 6082.4192 0.9447

10 39.8080 45.0409 0.8995 6026.0918 0.8876 6097.8865 0.9333

20 39.8961 45.1428 0.9043 6033.0511 0.8984 6005.1707 0.9358

M̂RB

5 -0.0029 0.0017 0.0200 -0.0030 0.0022 0.0137 0.0139

10 -0.0048 0.0009 -0.0006 0.0043 -0.0137 0.0163 0.0017

20 -0.0026 0.0032 0.0048 0.0055 -0.0018 0.0009 0.0044

R̂MAE

5 0.0545 0.0540 0.1129 0.1002 0.0892 0.1014 0.0990

10 0.0363 0.0402 0.0734 0.0732 0.0722 0.0752 0.0669

20 0.0267 0.0277 0.0505 0.0563 0.0466 0.0479 0.0455

̂RRMSE

5 0.0681 0.0676 0.1405 0.1270 0.1167 0.1245 0.1223

10 0.0456 0.0477 0.0931 0.0983 0.0875 0.0922 0.0816

20 0.0324 0.0338 0.0632 0.0695 0.0560 0.0586 0.0563

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb,med

M̂ean

5 40.1506 45.4965 0.8863 6193.1889 0.8920 6018.4122 4.4285

10 40.0179 45.3504 0.8950 6097.5172 0.9039 5915.6334 4.4074

20 40.1153 45.0880 0.8974 6018.5176 0.9025 5960.7398 4.4089

M̂RB

5 0.0038 0.0110 -0.0152 0.0322 -0.0089 0.0031 0.0076

10 0.0004 0.0078 -0.0056 0.0163 0.0043 -0.0141 0.0028

20 0.0029 0.0020 -0.0029 0.0031 0.0027 -0.0065 0.0031

R̂MAE

5 0.0539 0.0502 0.0774 0.0971 0.0788 0.0972 0.0627

10 0.0430 0.0353 0.0574 0.0697 0.0555 0.0696 0.0510

20 0.0288 0.0250 0.0421 0.0466 0.0386 0.0494 0.0369

̂RRMSE

5 0.0692 0.0658 0.0957 0.1174 0.0995 0.1179 0.0803

10 0.0538 0.0467 0.0734 0.0871 0.0689 0.0834 0.0619

20 0.0365 0.0333 0.0528 0.0614 0.0496 0.0611 0.0465

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Gumb,high

M̂ean

5 39.7476 44.5191 0.8940 5991.1450 0.8921 6062.3819 27.0920

10 39.9985 44.8812 0.8948 6002.7881 0.8936 6050.9067 26.9045

20 39.8976 44.8008 0.8947 5996.2052 0.8940 6022.5115 26.7872

M̂RB

5 -0.0063 -0.0107 -0.0066 -0.0015 -0.0088 0.0104 0.0072

10 -0.0000 -0.0026 -0.0058 0.0005 -0.0071 0.0085 0.0002

20 -0.0026 -0.0044 -0.0058 -0.0006 -0.0067 0.0038 -0.0041

R̂MAE

5 0.0534 0.0514 0.0700 0.0745 0.0690 0.0845 0.0765

10 0.0326 0.0326 0.0529 0.0514 0.0544 0.0584 0.0560

20 0.0228 0.0234 0.0398 0.0372 0.0400 0.0414 0.0403

̂RRMSE

5 0.0664 0.0626 0.0853 0.0969 0.0839 0.1051 0.1053

10 0.0402 0.0408 0.0669 0.0647 0.0682 0.0740 0.0715

20 0.0272 0.0288 0.0489 0.0481 0.0488 0.0537 0.0501
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Table C.12: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Lévy copula in Example 3.6 (2) with different dependence strength (Top

section: low dependence with true value θArch,low = 0.0185; Middle section: medium dependence with true

value θArch,med = 0.0377; Bottom section: high dependence with true value θArch,high = 0.1746), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by Weib(a1 = 0.16, b1 = 4000), Weib(a2 = 0.19, b2 = 5000).

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Arch,low

M̂ean

5 39.6449 45.0026 0.1601 4157.9074 0.1908 5080.3731 0.0186

10 39.7272 45.2021 0.1603 4002.9639 0.1904 5110.5558 0.0186

20 40.1143 45.1632 0.1597 3991.4773 0.1898 4985.5159 0.0185

M̂RB

5 -0.0089 0.0001 0.0004 0.0395 0.0040 0.0161 0.0073

10 -0.0068 0.0045 0.0021 0.0007 0.0020 0.0221 0.0030

20 0.0029 0.0036 -0.0021 -0.0021 -0.0013 -0.0029 -0.0017

R̂MAE

5 0.0524 0.0532 0.0460 0.3468 0.0391 0.2580 0.0387

10 0.0415 0.0373 0.0320 0.2533 0.0269 0.1962 0.0283

20 0.0278 0.0270 0.0220 0.1707 0.0178 0.1374 0.0200

̂RRMSE

5 0.0663 0.0661 0.0593 0.4414 0.0496 0.3225 0.0493

10 0.0504 0.0476 0.0389 0.3182 0.0353 0.2780 0.0348

20 0.0353 0.0341 0.0289 0.2153 0.0222 0.1825 0.0250

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Arch,med

M̂ean

5 39.9833 44.5070 0.1607 4231.5093 0.1922 5278.5295 0.0382

10 39.9394 44.7173 0.1603 4100.0270 0.1912 5213.6351 0.0380

20 40.0007 44.7869 0.1600 4010.7836 0.1906 4992.8627 0.0379

M̂RB

5 -0.0004 -0.0110 0.0043 0.0579 0.0114 0.0557 0.0126

10 -0.0015 -0.0063 0.0019 0.0250 0.0062 0.0427 0.0065

20 0.0000 -0.0047 0.0002 0.0027 0.0029 -0.0014 0.0059

R̂MAE

5 0.0460 0.0478 0.0398 0.3000 0.0367 0.2645 0.0480

10 0.0310 0.0319 0.0299 0.2229 0.0244 0.1793 0.0293

20 0.0240 0.0244 0.0208 0.1391 0.0181 0.1221 0.0224

̂RRMSE

5 0.0578 0.0589 0.0518 0.3885 0.0470 0.3513 0.0579

10 0.0390 0.0392 0.0375 0.2752 0.0298 0.2289 0.0382

20 0.0305 0.0309 0.0258 0.1737 0.0227 0.1597 0.0286

T λ̂1 λ̂2 â1 b̂1 â2 b̂2 θ̂Arch,high

M̂ean

5 40.0766 45.0151 0.1605 4225.7601 0.1911 5132.7539 0.1749

10 40.2806 45.3051 0.1604 4108.0894 0.1904 4959.7071 0.1741

20 40.1242 45.1105 0.1601 4002.7443 0.1902 4953.2431 0.1739

M̂RB

5 0.0019 0.0003 0.0033 0.0564 0.0056 0.0266 0.0019

10 0.0070 0.0068 0.0023 0.0270 0.0023 -0.0081 -0.0026

20 0.0031 0.0025 0.0004 0.0007 0.0010 -0.0094 -0.0038

R̂MAE

5 0.0596 0.0573 0.0390 0.2936 0.0353 0.2384 0.0640

10 0.0366 0.0336 0.0306 0.2193 0.0257 0.1627 0.0445

20 0.0277 0.0255 0.0214 0.1487 0.0202 0.1069 0.0329

̂RRMSE

5 0.0720 0.0712 0.0485 0.3755 0.0457 0.3148 0.0793

10 0.0466 0.0448 0.0378 0.2731 0.0323 0.2035 0.0553

20 0.0336 0.0327 0.0265 0.1862 0.0243 0.1357 0.0408
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Table C.13: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Lévy copula in Example 3.6 (2) with different dependence strength (Top

section: low dependence with true value θArch,low = 0.0185; Middle section: medium dependence with

true value θArch,med = 0.0377; Bottom section: high dependence with true value θArch,high = 0.1746), and

each for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by

λ1 = 40, λ2 = 45, and the severity distributions by LN (µ1 = 10.3, σ1 = 1.8), LN (µ2 = 9.8, σ2 = 1.4).

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Arch,low

M̂ean

5 40.4752 44.5744 10.2871 1.8019 9.8001 1.3982 0.0185

10 40.1440 44.6219 10.2922 1.7962 9.8064 1.3903 0.0186

20 40.1887 44.9048 10.2933 1.7965 9.8058 1.3971 0.0185

M̂RB

5 0.0119 -0.0095 -0.0013 0.0011 0.0000 -0.0013 0.0021

10 0.0036 -0.0084 -0.0008 -0.0021 0.0007 -0.0069 0.0023

20 0.0047 -0.0021 -0.0007 -0.0019 0.0006 -0.0021 -0.0010

R̂MAE

5 0.0712 0.0469 0.0095 0.0362 0.0073 0.0397 0.0412

10 0.0436 0.0353 0.0058 0.0278 0.0058 0.0255 0.0282

20 0.0312 0.0254 0.0044 0.0202 0.0038 0.0180 0.0207

̂RRMSE

5 0.0880 0.0595 0.0122 0.0436 0.0090 0.0496 0.0498

10 0.0540 0.0445 0.0075 0.0345 0.0071 0.0314 0.0348

20 0.0377 0.0322 0.0055 0.0256 0.0046 0.0219 0.0260

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Arch,med

M̂ean

5 40.2352 45.5970 10.2898 1.7950 9.8029 1.3991 0.0375

10 40.2857 45.2729 10.2990 1.7975 9.8029 1.4002 0.0375

20 40.0939 45.0183 10.2991 1.7997 9.8024 1.4008 0.0377

M̂RB

5 0.0059 0.0133 -0.0010 -0.0028 0.0003 -0.0007 -0.0050

10 0.0071 0.0061 -0.0001 -0.0014 0.0003 0.0001 -0.0057

20 0.0023 0.0004 -0.0001 -0.0002 0.0002 0.0005 -0.0012

R̂MAE

5 0.0531 0.0436 0.0076 0.0383 0.0062 0.0292 0.0461

10 0.0376 0.0329 0.0051 0.0258 0.0042 0.0230 0.0334

20 0.0266 0.0217 0.0037 0.0182 0.0032 0.0182 0.0234

̂RRMSE

5 0.0675 0.0557 0.0094 0.0453 0.0081 0.0371 0.0585

10 0.0483 0.0426 0.0064 0.0327 0.0055 0.0283 0.0419

20 0.0331 0.0278 0.0048 0.0225 0.0042 0.0222 0.0298

T λ̂1 λ̂2 µ̂1 σ̂1 µ̂2 σ̂2 θ̂Arch,high

M̂ean

5 39.8654 44.9796 10.3113 1.7785 9.7985 1.3988 0.1757

10 39.8484 44.9057 10.3054 1.7954 9.7995 1.3993 0.1757

20 39.8770 44.8999 10.3038 1.7967 9.7966 1.3984 0.1757

M̂RB

5 -0.0034 -0.0005 0.0011 -0.0119 -0.0002 -0.0009 0.0062

10 -0.0038 -0.0021 0.0005 -0.0025 -0.0001 -0.0005 0.0066

20 -0.0031 -0.0022 0.0004 -0.0018 -0.0003 -0.0011 0.0063

R̂MAE

5 0.0578 0.0569 0.0074 0.0331 0.0059 0.0340 0.0670

10 0.0423 0.0390 0.0054 0.0224 0.0040 0.0233 0.0484

20 0.0270 0.0256 0.0038 0.0155 0.0029 0.0162 0.0328

̂RRMSE

5 0.0709 0.0686 0.0094 0.0423 0.0072 0.0431 0.0817

10 0.0526 0.0490 0.0069 0.0277 0.0050 0.0295 0.0609

20 0.0354 0.0327 0.0047 0.0192 0.0036 0.0204 0.0420
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Table C.14: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Lévy copula in Example 3.6 (2) with different dependence strength (Top

section: low dependence with true value θArch,low = 0.0185; Middle section: medium dependence with true

value θArch,med = 0.0377; Bottom section: high dependence with true value θArch,high = 0.1746), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by GPD(ξ1 = 1.5, β1 = 6000), GPD(ξ2 = 1.3, β2 = 5000).

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Arch,low

M̂ean

5 40.0761 45.3860 1.4976 6090.5952 1.2755 5144.7178 0.0185

10 39.9029 45.0736 1.5060 6036.8552 1.2914 5036.5174 0.0185

20 39.9969 45.0559 1.5040 6025.7539 1.2990 5002.2732 0.0185

M̂RB

5 0.0019 0.0086 -0.0016 0.0151 -0.0189 0.0289 -0.0026

10 -0.0024 0.0016 0.0040 0.0061 -0.0066 0.0073 0.0011

20 -0.0001 0.0012 0.0026 0.0043 -0.0008 0.0005 0.0005

R̂MAE

5 0.0540 0.0561 0.0983 0.1289 0.1030 0.1211 0.0480

10 0.0395 0.0405 0.0673 0.0886 0.0688 0.0822 0.0306

20 0.0297 0.0264 0.0446 0.0587 0.0502 0.0580 0.0194

̂RRMSE

5 0.0726 0.0713 0.1211 0.1531 0.1307 0.1481 0.0595

10 0.0525 0.0508 0.0810 0.1121 0.0903 0.1018 0.0372

20 0.0375 0.0336 0.0573 0.0731 0.0627 0.0732 0.0259

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Arch,med

M̂ean

5 40.0785 45.0461 1.4893 6114.3703 1.2846 5012.7072 0.0379

10 40.1351 45.0233 1.4911 6033.6682 1.2966 4991.4238 0.0378

20 40.0593 44.9183 1.5029 6001.6752 1.2962 5025.8983 0.0378

M̂RB

5 0.0020 0.0010 -0.0071 0.0191 -0.0119 0.0025 0.0049

10 0.0034 0.0005 -0.0059 0.0056 -0.0026 -0.0017 0.0020

20 0.0015 -0.0018 0.0019 0.0003 -0.0029 0.0052 0.0012

R̂MAE

5 0.0536 0.0462 0.0820 0.1154 0.0829 0.1106 0.0488

10 0.0346 0.0331 0.0553 0.0846 0.0649 0.0709 0.0346

20 0.0253 0.0252 0.0365 0.0496 0.0448 0.0573 0.0258

̂RRMSE

5 0.0652 0.0567 0.1032 0.1428 0.1056 0.1437 0.0628

10 0.0444 0.0413 0.0688 0.1038 0.0809 0.0915 0.0422

20 0.0313 0.0304 0.0453 0.0630 0.0565 0.0696 0.0311

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Arch,high

M̂ean

5 40.1190 45.2840 1.5026 6245.7079 1.2914 5085.2836 0.1750

10 40.0096 45.0911 1.5071 6117.4158 1.2905 5048.0774 0.1750

20 39.9587 45.0179 1.5091 6047.9958 1.2980 5021.2755 0.1748

M̂RB

5 0.0030 0.0063 0.0018 0.0410 -0.0066 0.0171 0.0027

10 0.0002 0.0020 0.0047 0.0196 -0.0073 0.0096 0.0026

20 -0.0010 0.0004 0.0061 0.0080 -0.0016 0.0043 0.0016

R̂MAE

5 0.0487 0.0470 0.0855 0.1131 0.0788 0.0909 0.0694

10 0.0350 0.0330 0.0599 0.0745 0.0535 0.0567 0.0505

20 0.0271 0.0259 0.0407 0.0471 0.0387 0.0450 0.0380

̂RRMSE

5 0.0614 0.0581 0.1027 0.1409 0.0970 0.1174 0.0848

10 0.0416 0.0405 0.0748 0.0935 0.0674 0.0721 0.0608

20 0.0341 0.0318 0.0521 0.0614 0.0489 0.0574 0.0471
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Table C.15: Performance measures based on 100 MLEs for the parameters of a bivariate compound

Poisson model built upon the Lévy copula in Example 3.6 (2) with different dependence strength (Top

section: low dependence with true value θArch,low = 0.0185; Middle section: medium dependence with true

value θArch,med = 0.0377; Bottom section: high dependence with true value θArch,high = 0.1746), and each

for the time horizon of T = 5, 10, 20 years. The true marginal frequency parameters are given by λ1 = 40,

λ2 = 45, and the severity distributions by GPD(ξ1 = 0.9, β1 = 6000), GPD(ξ2 = 0.9, β2 = 6000).

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Arch,low

M̂ean

5 39.9680 45.2377 0.8780 6121.3737 0.8920 6058.0105 0.0185

10 39.9527 45.5691 0.8904 6074.9159 0.8877 6066.2244 0.0184

20 39.9034 45.3661 0.8993 5992.0966 0.8915 6030.5225 0.0185

M̂RB

5 -0.0008 0.0053 -0.0244 0.0202 -0.0089 0.0097 -0.0013

10 -0.0012 0.0126 -0.0106 0.0125 -0.0137 0.0110 -0.0052

20 -0.0024 0.0081 -0.0008 -0.0013 -0.0095 0.0051 -0.0023

R̂MAE

5 0.0487 0.0506 0.1222 0.1035 0.1055 0.0907 0.0375

10 0.0408 0.0395 0.0824 0.0745 0.0797 0.0697 0.0296

20 0.0283 0.0265 0.0655 0.0469 0.0529 0.0395 0.0219

̂RRMSE

5 0.0609 0.0624 0.1549 0.1266 0.1295 0.1115 0.0464

10 0.0501 0.0485 0.1010 0.0940 0.1002 0.0824 0.0356

20 0.0350 0.0333 0.0788 0.0588 0.0657 0.0496 0.0266

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Arch,med

M̂ean

5 39.9966 45.0280 0.8903 5969.0081 0.8713 6203.1752 0.0379

10 39.8900 44.9662 0.8937 5990.2169 0.8815 6103.9991 0.0379

20 39.8081 44.8546 0.8977 5994.6307 0.8906 6044.2956 0.0379

M̂RB

5 -0.0001 0.0006 -0.0108 -0.0052 -0.0319 0.0339 0.0058

10 -0.0027 -0.0008 -0.0069 -0.0016 -0.0206 0.0173 0.0048

20 -0.0048 -0.0032 -0.0026 -0.0009 -0.0105 0.0074 0.0054

R̂MAE

5 0.0479 0.0449 0.1058 0.0911 0.0990 0.1013 0.0467

10 0.0354 0.0360 0.0797 0.0608 0.0653 0.0703 0.0332

20 0.0227 0.0250 0.0521 0.0434 0.0549 0.0523 0.0221

̂RRMSE

5 0.0593 0.0578 0.1339 0.1135 0.1249 0.1281 0.0588

10 0.0443 0.0455 0.0947 0.0737 0.0837 0.0883 0.0400

20 0.0286 0.0310 0.0655 0.0545 0.0658 0.0635 0.0288

T λ̂1 λ̂2 ξ̂1 β̂1 ξ̂2 β̂2 θ̂Arch,high

M̂ean

5 40.3363 45.5008 0.9001 6001.3233 0.8904 5994.5807 0.1759

10 40.3000 45.2965 0.9063 5948.6131 0.9026 5968.4655 0.1752

20 40.1984 45.1913 0.9096 5955.9315 0.9029 5965.2039 0.1745

M̂RB

5 0.0084 0.0111 0.0001 0.0002 -0.0106 -0.0009 0.0074

10 0.0075 0.0066 0.0070 -0.0086 0.0028 -0.0053 0.0036

20 0.0050 0.0043 0.0107 -0.0073 0.0032 -0.0058 -0.0007

R̂MAE

5 0.0576 0.0571 0.1059 0.0858 0.1206 0.0961 0.0708

10 0.0381 0.0369 0.0769 0.0633 0.0777 0.0642 0.0478

20 0.0263 0.0255 0.0553 0.0472 0.0598 0.0413 0.0323

̂RRMSE

5 0.0720 0.0719 0.1333 0.1098 0.1492 0.1193 0.0913

10 0.0472 0.0445 0.0978 0.0783 0.0996 0.0806 0.0592

20 0.0337 0.0331 0.0676 0.0581 0.0759 0.0514 0.0396



Bibliography

[AT06] Hansjörg Albrecher and Jef L. Teugels. “Exponential behavior in the presence

of dependence in risk theory”. In: Journal of Applied Probability 43.1 (2006),

pp. 257–273.

[AB07] Linda Allen and Turan G. Bali. “Cyclicality in catastrophic and operational

risk measurements”. In: Journal of Banking & Finance 31.4 (2007), pp. 1191–

1235.

[Ang+09] Carla Angela, Rossella Bisignani, Giovanni Masala, and Marco Micocci. “Ad-

vanced operational risk modelling in banks and insurance companies”. In:

Investment Management and Financial Innovations 6.3 (2009), pp. 73–83.

[AK07] Falko Aue and Michael Kalkbrener. LDA at work. Working paper. Risk Ana-

lytics & Instruments, Risk and Capital Management, Deutsche Bank AG,

2007. url: http : / / kalkbrener . at / Selected _ publications _ files /

AueKalkbrener06.pdf.

[ABF12] Stefan Aulbach, Verena Bayer, and Michael Falk. “A multivariate piecing-

together approach with an application to operational loss data”. In: Bernoulli

18.2 (2012), pp. 455–475.

[ACW11] Benjamin Avanzi, Luke C. Cassar, and Bernard Wong. “Modelling depen-

dence in insurance claims processes with Lévy copulas”. In: ASTIN Bulletin
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[BB11] Nicole Bäuerle and Anja Blatter. “Optimal control and dependence modeling
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[BK05] Klaus Böcker and Claudia Klüppelberg. “Operational VaR: a closed-form

approximation”. In: RISK Magazine (2005), pp. 90–93.
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[Krä+13] Nicole Krämer, Eike C. Brechmann, Daniel Silvestrini, and Claudia Czado.

“Total loss estimation using copula-based regression models”. In: Insurance:

Mathematics and Economics 53 (2013), pp. 829–839.
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url: http://www.proba.jussieu.fr/pageperso/tankov/.
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