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Zusammenfassung

Nichtparametrische Dichteschätzer mit mehreren Variablen leiden unter einem
bekannten Phänomen. Der Fluch der Dimensionen besagt, dass die Konver-
genzgeschwindigkeit notwendigerweise abnimmt, wenn die Anzahl der Variablen
steigt. Wir zeigen, dass man diesem Fluch entkommen kann, wenn man ein
vereinfachtes Vine-Copula-Modell für die Abhängigkeit zwischen den Variablen
annimmt. Wir vergleichen bestehende Methoden zur nichtparametrischen Dichte-
schätzung in solchen Modellen in einer großen Simulationsstudie und identi-
fizieren die wichtigen Einflussfaktoren für deren Genauigkeit. Im Anschluss
erweitern wir die Anwendbarkeit der vorgestellten Methoden in zweierlei Hinsicht.
Wir stellen einen Ansatz vor, um allgemeine Regressionsprobleme mithilfe von
copula-basierten Schätzungsgleichungen zu lösen. Wir leiten dessen asympto-
tische Eigenschaften unter allgemeinen Annahmen her und veranschaulichen seine
vielseitige Einsetzbarkeit mit theoretischen und simulations-basierten Beispie-
len. Weiterhin diskutieren wir eine generische Methode, um nichtparametrische
Funktionenschätzer auf Daten mit diskreten Variablen anwendbar zu machen.
Durch Hinzufügen von künstlichem Rauschen kann man das Schätzproblem
in ein rein stetiges Equivalent verwandeln. Abschlieend zeigen wir anhand
eines ausführlichen Beispiels, dass dies nicht notwendigerweise die Effizienz der
Schätzmethode beeinträchtigt.
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Abstract

Practical applications of nonparametric density estimators with multiple variables
suffer a great deal from the well-known curse of dimensionality : convergence
slows down as dimension increases. We show that one can evade the curse of
dimensionality by assuming a simplified vine copula model for the dependence
between variables. We compare existing methods for the estimation of simplified
vine copula densities in an extensive simulation study and identify the driving
factors for their performance. We further extend the applicability of this technique
in two ways. We introduce an approach to estimate regression functions using
estimating equations based on the copula density. The method’s asymptotic
properties are derived under broad conditions and its versatility is illustrated
with theoretical and simulated examples. Finally, we discuss a generic technique
to make nonparametric function estimators applicable to discrete and mixed data
types. By adding noise to the discrete variables, we can transform the problem
into a purely continuous equivalent and show that this does not necessarily lead
to a loss in efficiency.

v





Acknowledgments

I am deeply grateful to Prof. Claudia Czado for giving me the opportunity
to pursue a PhD and the time and energy she put into my development as a
researcher. She gave me the freedom to find my own path and supported me in
every way possible. I also thank my fellow PhD students who made my office days
so enjoyable (although I never got any work done with all the chatting). Another
colleague that deserves special mention is my remote office mate Dr. Thibault
Vatter. He has been an amazing collaborator and good friend — although being
first hundreds, then thousands kilometers apart.

I further thank my dearest friends Alex, Basti, and Michi for all the fun we
had and being by my side in good and bad times. And most importantly, I am
deeply indebted to my family and Jojo for their love and support. This would
not have been possible without you.

vii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Agenda of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 5
2.1 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Vine copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Stochastic convergence . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Empirical processes . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Nonparametric estimators of simplified vine copula densities 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Description of the simulation study design . . . . . . . . . . . . . 29
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Illustration with real data . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Evading the curse of dimensionality with simplified vine copulas 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Nonparametric density estimators based on simplifed vine copulas 48
4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 On an implementation as kernel estimator . . . . . . . . . . . . . 53
4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Application: filtering noise in telescope imaging . . . . . . . . . . 65
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Solving estimating equations with copulas 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Copula-based solutions to estimating equations . . . . . . . . . . 80
5.3 Asymptotic theory . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 The jittering technique for nonparametric function estimation 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Jittering mixed data . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Nonparametric function estimation via jittering . . . . . . . . . . 112
6.4 Application: diagnosis of retinopathy . . . . . . . . . . . . . . . . 122
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



Contents

7 Asymptotic analysis of the jittering kernel density estimator 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 The estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Asymptotic analysis in the general setting . . . . . . . . . . . . . 129
7.4 A closer look at the univariate discrete setting . . . . . . . . . . . 133
7.5 Minimax rate optimality . . . . . . . . . . . . . . . . . . . . . . . 136
7.6 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . 138
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Conclusion 147
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References 149

x



“Data is the sword of the 21st century.”

— Jonathan Rosenberg

1
Introduction

1.1 Motivation

With continuing technological advances, our society has become increasingly
data-centric. This is most apparent in our economy, where companies across
all industries are amassing data on their customers and products. A similar
development is taking place in scientific research. The majority of natural and
social sciences are more and more driven by data. For many areas, this constitutes
a big paradigm shift, and not few are still struggling to adapt their methods and
best practices. Even in our private lives, data plays an increasing role. Not only
do others collect and exploit data about our habits and lifestyle; smart phones
and watches make it easy to record data about ones own biorhythm, health, or
happiness.

Collecting data is rarely an end in itself. The larger purpose is to learn from the
data in the hope to improve revenue, knowledge, or well-being. Data collection
has become so cheap that a typical data set contains information on numerous
quantities, many of which are interconnected. Thus, the dependence between
variables is key for understanding the data and learning from them.

The most general statistical concept for dependence is the copula and dates
back to at least Sklar (1959), with similar ideas already put forth by Hoeffding
(1940). A copula allows to separate the joint behavior of variables into two
parts: the individual behavior of the variables (which is captured by the marginal
distributions), and their dependence (which is captured by the copula). Conversely,
if one knows the marginal distributions and copula, one has full knowledge of the
joint behavior of the variables. Due to the simplicity and power of this concept,
copulas have seen tremendous interest among researchers and practitioners alike.
Numerous different copula models have been developed and applied in widespread
domains (for reviews, see, e.g., Salvadori and De Michele, 2007, Elidan, 2013,
Aas, 2016).

Most commonly, copulas are used in a parametric fashion: the copula is
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assumed to belong to a family of functions which is characterized by a finite
number of parameters. However, a small number of parameters drastically limits
the flexibility — and, thereby, the type of dependence that can be reflected by
the model. One of the most promising classes that emerged are vine copulas (Joe,
1996, Bedford and Cooke, 2001, Aas et al., 2009). Vine copulas are hierarchical
models that build the dependence structure from bivariate building blocks, called
pair-copulas. Each pair-copula captures the dependence between a (conditional)
pair of variables. Because every pair-copula can be parametrized differently, vine
copulas allow each pair to have a different strength and type of dependence.

But also vine copula models are limited in flexibility by the number of param-
eters for each pair. In some situations, there is no parametric model that reflects
the dependence of a pair adequately. For such cases, a nonparametric philosophy
is more appropriate. In this philosophy, we start with minimal assumptions on
a distribution’s shape, and “let the data speak for themselves”. In my Master’s
thesis (Nagler, 2014), I developed tools to estimate the dependence under a
nonparametric vine copula model. The main motivation behind the research
presented in this thesis is to better understand such tools and make them more
widely applicable.

1.2 Agenda of the thesis

The content of this thesis is based on five research papers:

• Nagler, T. (2018a). Asymptotic analysis of the jittering kernel density
estimator. Mathematical Methods of Statistics, 27(1):32–46.

• Nagler, T. (2018b). A generic approach to nonparametric function estima-
tion with mixed data. Statistics & Probability Letters, 137:326–330.

• Nagler, T. and Czado, C. (2016). Evading the curse of dimensionality in
nonparametric density estimation with simplified vine copulas. Journal of
Multivariate Analysis, 151:69–89.

• Nagler, T., Schellhase, C., and Czado, C. (2017). Nonparametric estimation
of simplified vine copula models: comparison of methods. Dependence
Modeling, 5(1):99–120.

• Nagler, T. and Vatter, T. (2018b). Solving estimating equations with
copulas. arXiv:1801.10576.

The contents of these papers have been revised and many chapters contain new
materials, corrections, and additional arguments or clarifications.

We start with a brief introduction to the foundational tools and concepts of this
thesis in Chapter 2. The next two chapters try to deepen our understanding about
nonparametric estimators for vine copula models. Chapter 3 (which is based
on Nagler et al., 2017) surveys and extends existing nonparametric estimators
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of simplified vine copula densities. The methods are compared in an extensive
simulation study. We identify and discuss several factors driving the relative
performance of the estimators: dimension, sample size, strength and type of
dependence.

The empirical assessment is complemented by theoretical results in Chapter 4,
which is based on Nagler and Czado (2016). It follows up on an conjecture in
Nagler (2014) that simplified vine copula models allow to estimate a joint density
without the curse of dimensionality. This curse is a well-known phenomenon in
the world of nonparametric function estimation (see, e.g. Scott, 2008): as the
number of variables increases, the convergence rate of estimators slows down. This
issue is so severe that fully nonparametric estimators are rarely used with more
than a hand full of variables. Under a simplified vine copula model, the estimation
of any d-dimensional density boils down to the estimation of one-dimensional
marginals and two-dimensional pair-copulas. Hence, there is hope that its density
can be estimated at a faster convergence rate. This is established by the chapter’s
main result: Theorem 4.1 gives high level conditions under which the density is
estimated with a rate equivalent to a two-dimensional problem, irrespective of
d. We discuss the assumptions in the context of a specific implementation as a
kernel estimator and establish its asymptotic normality. After confirming the
theoretical findings by simulations, the estimator is applied to a classification
problem from astrophysics.

The unifying goal for the remaining chapters is to extend the applicability of
nonparametric vine copula estimators. Another commonality is that they take a
more high-level view instead of focusing on vine copula models, giving the results
and concepts a larger scope.

Since the copula contains all information about the dependence, it also char-
acterizes regression relationships between a variable of interest and explanatory
variables. This idea was seized by many researchers in the past, especially in
the context of mean and quantile regression. Chapter 4 (based on Nagler and
Vatter, 2018b) frames such approaches as solutions of estimating equations and
generalizes them in a unified framework. The main results establish consistency
(Theorem 5.1), asymptotic normality (Theorem 5.2), and validity of the bootstrap
(Theorem 5.3) for copula-based Z-estimators. The results are formulated under
high-level conditions that allow for parametric, semiparametric, and fully nonpara-
metric estimators of the copula density and marginal distributions. We further
illustrate the versatility of such estimators through theoretical and simulated
examples.

A big drawback of the methods and theory of the previous chapters is that
they are only valid for continuous random variables. This is problematic: in
most domains, data contain discrete variables, such as counts or categories (e.g.,
gender, age group, alive/dead). The reason for this drawback is twofold. Subtle
technical and conceptual issues arise when copulas are used to model discrete
data (see, e.g., Genest and Neslehova, 2007). With some additional effort, vine
copula models can be extended to work with discrete data; see Panagiotelis
et al. (2012), Stöber et al. (2015), Panagiotelis et al. (2017), and Joe (2014a,



4 1.2 Agenda of the thesis

Section 3.9.5). However, most techniques for nonparametric function estimation
are only valid if data are continuous. A simple but slightly awkward solution is
discussed in Chapter 6, which is largely based on Nagler (2018b). A common
trick among practitioners is to make the discrete variables continuous by adding
a small amount of noise (often called jittering). We formalize this trick and show
that it allows for valid estimates under suitable conditions on the noise density.
Several examples will show that this trick is easily and broadly applicable, e.g.,
to density estimation, regression, and classification. In particular, it bypasses all
obstacles related to the use of copulas for discrete data.

Since we are adding noise to the data, a natural concern is that jittering
estimators will lose in efficiency. This is investigated for a simple example in
Chapter 7, which is based on Nagler (2018a). We give an in-depth analysis of
the jittering kernel density estimator, which reveals several appealing properties.
We show that the estimator is asymptotically normal and unbiased for discrete
variables (Theorem 7.1), as well as strongly consistent (Theorem 7.2). It further
converges at minimax-optimal rates, which are established as a by-product of
our analysis (Theorem 7.3 and Theorem 7.4). To understand the effect of adding
noise, we further study asymptotic efficiency and finite sample bias and conduct
a small simulation study.

Chapter 8 offers concluding remarks and discusses future directions of research.



2
Preliminaries

This chapter introduces the central concepts in this thesis: copulas, vine copulas,
stochastic convergence, and empirical processes. It is primarily meant to refresh
the readers’ memory and provide references to more extensive treatments.

2.1 Copulas

Copulas are mathematical objects that encode the stochastic dependence between
random variables. For an extensive introduction to copulas, the reader is referred
to the monographs of Nelsen (2006) and Joe (2014b).

Sklar’s theorem (Sklar, 1959) states that any multivariate distribution function
F can be split into its marginal distributions F1, . . . , Fd and a copula C:

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
(2.1)

Conversely, one can combine arbitrary marginal distributions and copulas to
obtain a valid multivariate distribution. Further, if F admits a density with
respect to the Lebesgue measure, we can differentiate the above equation to get

f(x1, . . . , xd) = c
(
F1(x1), . . . , Fd(xd)

)
×

d∏
k=1

fk(xk), (2.2)

where c and f1, . . . , fd are the probability density functions corresponding to C
and F1, . . . , Fd respectively.

Now suppose that there is a random vector X with joint distribution F . If
the distributions Fi are continuous, C is the joint distribution of the random
vector U = (U1, . . . , Ud) =

(
F1(X1), . . . , Fd(Xd)

)
. Note that U1, . . . , Ud are

defined as the probability integral transforms of X1, . . . , XD and, hence, uniformly
distributed on the unit interval.

Given an iid sequence of random variables Xi, i = 1, . . . , n (acting as ob-
servations), this suggests a two-step procedure for the estimation of C: first,

estimate the marginal distributions by F̂1, . . . , F̂d; then estimate C based on the
pseudo-observations Ûi =

(
F̂1(Xi,1), . . . , F̂d(Xi,d)

)
.
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Figure 2.1: Example of a regular vine tree sequence.

2.2 Vine copulas

Vine copula models build a full d-variate dependence model using a collection of
bivariate building blocks. A thorough introduction to vine copulas can be found
in Aas et al. (2009) Czado (2010), and Joe (2014b).

Vine copula models follow the idea of Joe (1996) that any d-dimensional copula
can be expressed in terms of d(d− 1)/2 bivariate (conditional) copulas. Because
such a decomposition is not unique, Bedford and Cooke (2002) introduced a
graphical method to organize the possibilities in terms of linked trees Tm =
(Vm, Em), m = 1, . . . , d− 1.

2.2.1 Tree representation

A sequence V := (T1, . . . , Td−1) of trees is called a regular vine (R-vine) tree
sequence on d elements if the following conditions are satisfied:

(i) T1 is a tree with nodes V1 = {1, . . . , d} and edges E1.

(ii) For m ≥ 2, Tm is a tree with nodes Vm = Em−1 and edges Em.

(iii) (Proximity condition) Whenever two nodes in Tm+1 are joined by an edge,
the corresponding edges in Tm must share a common node.

The tree sequence is also called the structure of the vine. An example of an
R-vine tree sequence for d = 5 is given in Figure 2.1. For the annotation of the
edges in each tree we follow (Czado, 2010).
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2.2.2 Vine decomposition of copula densities

Bedford and Cooke (2001) showed that any copula density can be represented as

c(u) =
d−1∏
m=1

∏
e∈Em

cje,ke;De
{
Gje|De(uje|uDe), Gke|De(uke|uDe); uDe

}
, (2.3)

where

• uDe := (u`)`∈De is a subvector of u = (u1, . . . , ud) ∈ [0, 1]d,

• (Em)d−1
m=1 are the edges of an arbitrary R-vine tree sequence,

• Gje|De is the conditional distribution of Uje|UDe = uDe ,

• cje,ke;De is the copula density associated with the conditional random vector(
Gje|De(Uje|UDe), Gke|De(Uke|UDe)

)∣∣UDe = uDe .

The set De is called conditioning set and the indices je, ke form the conditioned
set. In the first tree the conditioning set De is empty, and we define Gj(u) := u for
notational consistency. An R-vine copula model identifies each edge of the trees
with a bivariate (conditional) copula model (a so-called pair-copula). Conversely,
arbitrary (conditional) copula densities can be plugged into (2.3) to obtain a
well-defined copula density.

Example 2.1. The density of an R-vine copula corresponding to the tree sequence
in Figure 2.1 is

c(u1, . . . , u5) = c1,2(u1, u2)× c1,3(u1, u3)× c3,4(u3, u4)× c3,5(u3, u5)

× c2,3;1(u2|1, u3|1;u1)× c1,4;3(u1|3, u4|3;u3)× c1,5;3(u1|3, u5|3;u3)

× c2,4;1,3(u2|1,3, u4|1,3;u1,3)× c4,5;1,3(u4|1,3, u5|1,3;u1,3)

× c2,5;1,3,4(u2|1,3,4, u5|1,3,4;u1,3,4),

where we used the abbreviation uje|De = Gje|De(uje|uDe).

2.2.3 Simplified vine copula models

In (2.3), the pair-copula densities cje,ke;De takes uDe as an argument and the
functional form with respect to the first two arguments may be different for each
value of uDe . This conditional structure makes the model very complex and
complicates estimation. To simplify matters, it is commonly assumed that the
conditional copula is equal across all possible values of uDe : we say that the
simplifying assumption holds. In this case, (2.3) collapses to

c(u) =
d−1∏
m=1

∏
e∈Em

cje,ke;De
{
Gje|De(uje |uDe), Gke|De(uke|uDe)

}
. (2.4)
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A copula whose density can be represented this way is called a simplified vine
copula. The pair-copulas cje,ke;De no longer take the conditioning values as an
argument. The conditioning values uDe only affect the joint density c through the
arguments of the pair-copulas. Hence, the pair-copula densities cje,ke;De encode
partial dependence rather than conditional dependence. This reduction is similar
to going from conditional correlations to partial correlations: the influence of the
conditioning variable on the dependence is “averaged out”.

For the multivariate Gaussian, the simplifying assumption holds for any vine.
The corresponding vine copula model consists of only Gaussian pair-copulas
whose parameters are the partial correlation coefficients. Hence, simplified vine
copulas are an extension of the multivariate Gaussian copula that allows for
non-Gaussian pair-copulas.

For more on partial dependence and copulas, see Bergsma (2011), Gijbels et al.
(2015b), and Spanhel and Kurz (2016). More about the simplifying assumption
can be found in Hobæk Haff et al. (2010), Stöber et al. (2013), Gijbels et al.
(2015a), Spanhel and Kurz (2017), and Section 4.7.

Example 2.2. The density of a simplified R-vine copula corresponding to the
tree sequence in Figure 2.1 is

c(u1, . . . , u5) = c1,2(u1, u2)× c1,3(u1, u3)× c3,4(u3, u4)× c3,5(u3, u5)

× c2,3;1(u2|1, u3|1)× c1,4;3(u1|3, u4|3)× c1,5;3(u1|3, u5|3)

× c2,4;1,3(u2|1,3, u4|1,3)× c4,5;1,3(u4|1,3, u5|1,3)

× c2,5;1,3,4(u2|1,3,4, u5|1,3,4),

where we used the abbreviation uje|De = Gje|De(uje|uDe).

2.2.4 Recursive computation of conditional distributions

Vine copula densities involve conditional distributions Gje|De . We can express
them in terms of conditional distributions corresponding to the pair-copulas in
the model: Let B := {cje,ke;De|e ∈ Em, 1 ≤ m ≤ d − 1} be the set of copula
densities associated with the edges in V. Further, let `e ∈ De be another index
such that cje,`e;De\`e ∈ B and define D′e := De \ `e. Then, we can write

Gje|De(uje |uDe) = hje|`e;D′e
{
Gje|D′e(uje|uD′e)

∣∣G`e|D′e(u`e|uD′e)
}
, (2.5)

where the h-function is defined as

hje|`e;D′e(u|v) =

∫ u

0

cje,`e;D′e(s, v)ds, for (u, v) ∈ [0, 1]2. (2.6)

The arguments Gje|D′e(uje|uD′e) and G`e|D′e(u`e|uD′e) of the h-function in (2.5) can
be rewritten in the same manner. In each step of this recursion the conditioning
set De is reduced by one element. By construction, the copula density on the
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right hand side of (2.6) always belongs to the set B. Eventually, this allows us to
write any of the conditional distributions Gje|De occurring in (2.4) as a recursion
over h-functions that are directly linked to the pair-copula densities.

Example 2.3. Consider a simplified vine copula corresponding to the R-vine tree
sequence given in Figure 2.1. We have

G3|1,2(u3|u1, u2) = h3|2;1

{
h3|1(u3|u1)

∣∣h2|1(u2|u1)
}
,

where

h3|1(u3|u1) =

∫ u3

0

c1,3(u1, s)ds,

h2|1(u2|u1) =

∫ u2

0

c1,2(u1, s)ds,

h3|2;1(u3|1|u2|1) =

∫ u3|1

0

c2,3;1(u2|1, s)ds.

Altogether, we can express any simplified vine copula density in terms of bivariate
copula densities and corresponding h-functions.

2.3 Stochastic convergence

Many results in the following chapters will make statements about the convergence
of random sequences. In the following we shall recall the definitions of various
modes of stochastic convergence, some basic properties, and introduce related
notation. For further details and proofs, we refer to van der Vaart (1998, Chapters
2 and 18) on which much of the material in this section is based. In general, we
shall not discuss measurability issues and simply assume that all quantities are
sufficiently measurable.

2.3.1 Modes of stochastic convergence

Definition 2.1 (Convergence in distribution). A sequence of random vectors
Xn ∈ Rd is said to converge in distribution to some random vector X (denoted
as Xn →d X), if

Pr(Xn ≤ x)→ Pr(X ≤ x), for all x ∈ Rd, as n→∞.

If the limiting random variable X has distribution D, we also write Xn →d D,
e.g., Xn →d N (0, Id) for convergence to a standard normal limit. Convergence
in distribution is sometimes called weak convergence, although we shall reserve
that name for its generalization from Euclidean to metric spaces.
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Definition 2.2 (Metric). A metric or distance defined on some set M is a
map d : M×M 7→ (0,∞) satisfying the following properties:

(i) d(x, y) = d(y, x) for all x, y ∈M (symmetry),

(ii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈M (triangle inequality),

(iii) d(x, y) = 0 if and only if x = y (identity of indiscernibles).

A function d that satisfied (i), (ii), and d(x, y) = 0 for x = y is called semi-metric
or semi-distance. A set M equipped with a (semi-)metric d is called (semi-)
metric space. Convergence in a metric space is denoted by xn → x and defined
as d(xn, x)→ 0. Generally, any norm ‖ · ‖ induces a metric via d(x, y) = ‖x− y‖.
Hence, any normed space is automatically a metric space.

An equivalent characterization of (Euclidean) convergence in distribution arises
from Portmanteau’s lemma (van der Vaart, 1998, Lemma 2.2): Xn →d X if and
only if E{f(Xn)} → E{f(X)} for all bounded, Lipschitz functions f : Rd 7→ R.
A function f defined on a metric space (M, d) is called Lipschitz if there is a
constant L <∞ such that for all x, y ∈M,

|f(x)− f(y)| ≤ Ld(x, y).

This alternative characterization extends naturally to general metric spaces.

Definition 2.3 (Weak convergence). Let (M, d) be a metric space. We say
that a sequence of random elements Xn ∈M converges weakly to some limit
X as n→∞ (denoted as Xn  X), if

E
{
f(Xn)} → E

{
f(X)},

as n→∞ for all bounded, Lipschitz functions f : M 7→ R.

Weak convergence and convergence in distribution play a central role in statis-
tics. Statistical estimators are computed from random samples and, hence, are
random quantities themselves. The exact finite sample distribution of an estima-
tor is often unknown or overly complex. But if we can show that the estimator
converges weakly, we can approximate its distribution by the distribution of the
limit. The latter is usually much easier to derive and compute. For example, this
technique is widely used to construct confidence intervals around an estimate.

Two further modes of stochastic convergence will come up in later chapters.
We define them in the general setup of metric spaces, but emphasize again that
Euclidean spaces are a special case.
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Definition 2.4 (Convergence in probability). Let (M, d) be a metric space.
We say that a sequence of random elements Xn ∈M converges in probability
to some limit X (denoted as Xn →p X) if for all ε > 0,

Pr
{
d(Xn, X) > ε

}
→ 0, as n→∞.

Definition 2.5 (Almost sure convergence). Let (M, d) be a metric space. We
say that a sequence of random elements Xn ∈ M converges almost surely to
some limit X (denoted as Xn →a.s. X) if

Pr

{
lim
n→∞

d(Xn, X)→ 0

}
= 1.

Another common name for almost sure convergence is convergence with probability
1.

2.3.2 Important properties

The modes of stochastic convergence have several interesting properties. The
most important ones are summarized below and will be used without mention.

The first result establishes relationships between the different modes of conver-
gence.

Lemma 2.1.

(i) Xn →a.s. X implies Xn →p X.

(ii) Xn →p X implies Xn  X.

(iii) Xn  x for a constant x if and only if Xn →p x.

(iv) Xn  X and Yn  y for a constant y implies (Xn, Yn) (X, y).

Hence, almost sure convergence is stronger than convergence in probability which
is stronger than convergence in distribution. The next result shows that conver-
gence is preserved under continuous maps.

Lemma 2.2 (Continuous mappings). Let M, M′ are two metric spaces and
Xn, X ∈M. Suppose that g : M 7→M′ is continuous.

(i) If Xn  X, then g(Xn) g(X).

(ii) If Xn →p X, then g(Xn)→p g(X).

(iii) If Xn →a.s. X, then g(Xn)→a.s. g(X).
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We will use three further properties that are specific to Euclidean spaces. The
first is often referred to as Slutsky’s lemma and follows directly from Lemma 2.1
(iii) and (iv) and Lemma 2.2 (i).

Lemma 2.3 (Slutsky). Let Xn,X,Yn be (sequences) of random vectors. If
Xn →d X and Yn → c for a constant c, then

(i) Xn + Yn →d X + c,

(ii) XnYn →d X · c, where · denotes the component-wise product.

In particular, Yn →p 0 implies Xn + Yn →d X. Hence, we can neglect all terms
that vanish in probability when we study the asymptotic distribution of a random
vector.

To establish convergence in probability, we need to consider limits of proba-
bilities. It is often more convenient to work with expectations or variances. The
next property connects convergence in probability to Lp-convergence, another
mode of stochastic convergence. The p-norm is defined as ‖x‖p = (

∑
k |xk|p)1/p.

The limiting case p =∞ is also known as the sup-norm, i.e., ‖x‖∞ = supk |xk|.

Lemma 2.4. If limn→∞ E{‖Xn−X‖pp} → 0 for some p ≥ 1, then Xn →p X.

The proof is a simple application of Markov’s inequality. An important special
case is p = 2 for which Lemma 2.4 implies that any sequence with vanishing
variance converges in probability.

The last property is called delta method and often helpful to derive asymptotic
distributions.

Lemma 2.5 (Delta method). Let φ : Rd 7→ Rk be a map that is differentiable at
θ ∈ Rd with derivative matrix φ′θ ∈ Rk×d. If for a sequence of random vectors
Xn ∈ Rd and some deterministic sequence rn →∞ it holds rn(Xn−θ)→d X,
then rn{φ(Xn)− φ(θ)} →d φ

′
θX.

In particular, if rn(Xn−θ) is asymptotically normal, then so is rn{φ(Xn)−φ(θ)}:
for any µ ∈ Rd, Σ ∈ Rd×d,

rn(Xn − θ)→d N (µ,Σ) implies rn{φ(Xn)− φ(θ)} →d N
(
φ′θµ, φ

′
θΣ(φ′θ)

>).
2.3.3 Asymptotic notation

Statements about stochastic convergence and corresponding rates of convergence
are essential in many proofs in this thesis. It is convenient to introduce additional
notation to shorten such arguments. In particular, it is common to adapt the
usual ‘big-O/little-o’ notation to stochastic modes of convergence. This will
involve two additional properties of random variables.
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Definition 2.6 (Tight). A random element X in a metric space (M, d) is
called tight if for every ε > 0, there is a compact set K ⊆ M such that
Pr(X ∈ K) ≥ 1− ε.

Definition 2.7 (Almost surely bounded). A random element X in a metric
space (M, d) is called almost surely bounded if there is a compact set K ⊆M
such that Pr(X ∈ K) = 1.

Remark 2.1. A Euclidean random vector X

(i) is tight if Pr(|X| =∞) = 0,

(ii) is almost surely bounded if there is a constant A <∞ such that Pr(‖X‖∞ <
A) = 1.

Definition 2.8 (Stochastic big-O/little-o notation). Let X,Xn ∈M, n ∈ N
be random elements in a metric space (M, d) and Rn be a sequence of random
variables with lim supn→∞ Pr(Rn = 0) = 0. We write

(i) Xn = Op(Rn) if there is a tight X such that Xn/Rn →p X,

(ii) Xn = op(Rn) if Xn/Rn →p 0,

(iii) Xn = Oa.s(Rn) if there is an almost surely bounded X such that
Xn/Rn →a.s X,

(iv) Xn = oa.s.(Rn) if Xn/Rn →a.s. 0.

The ‘convergence rate’ Rn can (and mostly will) be deterministic. If Xn is
deterministic as well, the stochastic big-O/little-o notation simplifies to its deter-
ministic version.

For deterministic rates, we use an additional convention: we write rn ∼ an if
|rn/an| → c ∈ (0,∞).

2.4 Empirical processes

There is a joke about statisticians taking averages all day, and there’s a grain
of truth in every joke. Most statistical estimators can be represented (at least
asymptotically) as sample averages. A general framework to analyze the behavior
of such averages is the theory of empirical processes and will be used heavily in
Chapter 5. This theory differs from classical asymptotics in that the random
elements studied are random functions (called processes) as opposed to random
vectors. The following sections introduces the core results and objects in the
study of empirical processes, but leaves much more to say. For a more thorough
treatment we refer to the excellent textbooks of van der Vaart and Wellner (1996)
and Kosorok (2007).
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2.4.1 Stochastic processes and the empirical measure

A stochastic process Z is a collection of random variables {Zt, t ∈ T} index by
some set T . The term ‘process’ comes from the special case where the index
t represents time. But the index set T does not need to be Euclidean. In the
context of empirical processes, T is often a set of functions.

Coming back to sample averages, consider a random quantity of the form

Png =
1

n

n∑
i=1

g(Xi),

where X1, . . . ,Xn ∈ Rd is a sequence of random vectors (observations), and g
is some function. The object Pn = n−1

∑n
i=1 δXi

is the empirical measure, the
discrete probability measure that assigns equal probabilities to all observations.
In analogy, if P is the true probability measure, we write

Pg = E{g(X)} =

∫
g(x)dP (x),

for the expectation with respect to P . In the following, let G be class of functions.
Then {Png, g ∈ G} is a stochastic process indexed by G.

2.4.2 Empirical distribution functions

The empirical distribution function is defined as

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x), x ∈ Rd.

Statements on the stochastic convergence of Fn are among the most classical
results in statistics. The law of large numbers guarantees that Fn(x)→a.s. F (x)
for all x ∈ Rd, where F is the cumulative distribution function of X. Glivenko
(1933) and Cantelli (1933) showed that this can be strengthened to uniform
convergence, i.e.,

sup
x
|Fn(x)− F (x)| →a.s. 0.

Here, we view Fn as a stochastic process {Pn1(· ≤ x),x ∈ Rd} indexed by the
Euclidean parameter x ∈ Rd. However, by defining G = {1(· ≤ x),x ∈ Rd},
we can also see it as an empirical process {Png, g ∈ G} indexed by a family of
indicator functions. Then the last display becomes

sup
g∈G
|Png − Pg| →a.s. 0.

The latter viewpoint is more general and therefore more common in the modern
theory of empirical processes.
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From the (multivariate) central limit theorem, we know that

√
n
{(
Fn(x(1)), . . . , Fn(x(k))

)
−
(
F (x(1)), . . . , F (x(k))

}
is asymptotically normal for any finite collection x(1), . . . ,x(k) ∈ Rd. A different
question is whether

√
n(Fn − F ) converges weakly as a process in x. Such a

‘uniform central limit theorem’ was established much later by Donsker (1952).

2.4.3 Empirical processes indexed by functions

We return to the general case, where we study {Png, g ∈ G} as a stochastic process
indexed by a class of functions G. A central question of empirical process theory
is which classes of functions allow (uniform) almost sure and weak convergence.
As a tribute to the authors of the fundamental results for empirical distributions,
such classes are called Glivenko-Cantelli and Donsker, respectively.

Definition 2.9 (Glivenko-Cantelli classes). A class of functions G is called
P -Glivenko-Cantelli if

sup
g∈G
|Png − Pg| →a.s. 0.

The reference to the probability measure P is necessary due to the fact that
different probability measures induce different Glivenko-Cantelli classes.

This is also true for Donsker classes, for which we introduce additional notation.
We call

Gn =
√
n(Pn − P )

the empirical process at g and define `∞(G) as the space of bounded maps
f : G → R.

Definition 2.10 (Donsker classes). A class of functions G is called P -Donsker
if Gn converges weakly to a tight element G in `∞(G).

If G is P -Donsker, the limiting process G is Gaussian with zero mean and
covariance Cov(Gf,Gg) = Pgf − PgPf .

2.4.4 Glivenko-Cantelli and Donsker theorems based on
bracketing

If a class of functions is Glivenko-Cantelli or Donsker depends on its size or
complexity. A convenient measure for the size of classes of real-valued functions
is the bracketing number. A bracket [f, g] is defined the set of all functions h such
that f ≤ h ≤ g (pointwise). It is called an ε-bracket if additionally ‖f − g‖ < ε
for some norm ‖ · ‖.
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Definition 2.11 (Bracketing numbers). The bracketing number N[ ](ε,G, ‖ · ‖)
with respect to some norm ‖ · ‖ is defined as the minimum number of ε-brackets
needed to cover G.

Theorem 2.1 (Glivenko-Cantelli theorem). Every class G such that

N[ ]{ε,G, L1(P )} <∞, for every ε > 0,

is P -Glivenko-Cantelli.

The bracketing numbers in Theorem 2.1 are allowed to diverge as ε→ 0. The
speed of divergence turns out to be key for determining whether a class is also
P -Donsker.

Theorem 2.2 (Donsker theorem). Every class G such that∫ 1

0

√
lnN[ ]{ε,G, L2(P )}dε <∞,

is P -Donsker.

Note that the bracketing integral in Theorem 2.2 implies the finiteness of brack-
eting numbers required by Theorem 2.1. In general, any class that is P -Donsker
is also P -Glivenko-Cantelli.

For later reference, we also introduce an alternative measure of the size of G.

Definition 2.12 (Covering numbers). The covering number N(ε,G, ‖ · ‖) is
defined as the minimum number of ε-balls needed to cover G.

We can state Glivenko-Cantelli and Donsker theorems similar to the ones above
for the covering numbers. But we will only use the convenient property that
N(ε/2,G, ‖ · ‖) ≤ N[ ](ε,G, ‖ · ‖) for any class G and norm ‖ · ‖.

2.4.5 Weak convergence in the space of bounded functions

Definition 2.10 refers specifically to weak convergence in the space `∞(G). Weak
convergence in this space has equivalent characterizations that are often easier
to deal with. One such characterization that can be used to prove Theorem 2.2
will be introduced in the following.

Definition 2.13 (Totally bounded). We say that a set T is totally bounded
by a semi-metric ρ if for every ε > 0 there exist t1, . . . , tk ∈ T , k < ∞, such
that for all t ∈ T there is i ∈ {1, . . . , k} such that ρ(t, ti) < ε.
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A common semi-metric ρ is induced by the L2(P ) norm, i.e.,

d(f, g) = ‖f − g‖P,2 = {P (f − g)2}1/2.

Then a class of functions G is totally bounded by ρ if supg∈G Pg
2 <∞.

Let Zn = {Zn,t, t ∈ T}, n ≥ 1, be a sequence of stochastic processes indexed
by T and recall that the limiting process in Definition 2.10 is required to be tight
(see Definition 2.6). In that case we have the following result (Kosorok, 2007,
Theorem 2.1):

Lemma 2.6. Zn converges weakly to a tight process Z in `∞(T ), if and only
if:

(i) For all t1, . . . , tk ∈ T , k <∞,

(Zn,t1 , . . . , Zn,tk)→d (Zt1 , . . . , Ztk),

(ii) there exists a semi-metric ρ for which T is totally bounded and

lim
δ↘0

lim sup
n→∞

Pr

{
sup

t1,t2∈T : ρ(t1,t2)<δ

|Zn,t1 − Zn,t2| > ε

}
→ 0, for all ε > 0.

The first property corresponds to convergence of all finite dimensional distribu-
tions. The second condition is called ρ-equicontinuity. As the name suggests,
it is a condition on the smoothness of the sample paths of Zn: Zn,t1 and Zn,t2
are close to each other whenever t1 and t2 are sufficiently close. In summary, Zn
converges weakly in `∞(T ) if all finite-dimensional distributions converge and Zn
is ρ-equicontinuous.

2.4.6 The functional delta method

In Euclidean spaces, the delta method (Lemma 2.5) is a powerful to derive
the limiting distribution of functions of random vectors. Its only condition is
differentiability of the function. There is a generalization of the delta method to
normed spaces, but this requires an extended definition of a derivative. Recall
that a linear map ψ defined on elements in a normed space D is a map with the
property ψ(ax+ by) = aφ(x) + bφ(y) for all a, b ∈ R, x, y ∈ D.
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Definition 2.14 (Hadamard derivative). Suppose D, E are normed spaces. A
map φ : D → E is called Hadamard differentiable at θ ∈ D, if there exists a
linear map φ′θ : D→ E such that

φ(θ + rnhn)− φ(θ)

tn
→ φ′θ(h),

for all real-valued sequences rn → 0, hn → h ∈ D with hn ∈ D, and θ+rnhn ∈ D
for n sufficiently large.

The function h in the above definition is referred to as the the direction of the
derivative. Hadamard differentiability turns out to be exactly what we need to
extend the delta method to normed spaces.

Lemma 2.7 (Functional delta method). Let φ : D → E be a map with
Hadamard derivative φ′θ : D→ E for some θ ∈ D. If for a sequence of random
elements Xn ∈ D, a deterministic sequence rn → ∞, and X ∈ D, it holds
rn(Xn − θ) X, then rn{φ(Xn)− φ(θ)} φ′θ(X).

Both Hadamard differentiability and the delta method can be refined for maps
φ′θ that do not exist on the whole D, see van der Vaart (1998, Section 20.2) for
details.



3
Nonparametric estimators of

simplified vine copula densities

3.1 Introduction

Each pair-copula in a simplified vine copula model can be specified as a unique
bivariate copula function. Thus, simplified vine copulas give rise to very flexible
models which are often found to be superior to other multivariate copula models
(Aas et al., 2009, Fischer et al., 2009). The models are also easily tractable because
pair-copulas can be estimated sequentially. Parametric models for the pair-copulas
are most common, but bear the risk of misspecification. In particular, most
parametric families only allow for highly symmetric and monotone relationships
between variables.

To remedy this issue, several nonparametric approaches have been proposed:
penalized Bernstein polynomials and B-splines (Kauermann and Schellhase, 2014),
kernel estimators (Nagler, 2014), and a non-penalized Bernstein estimator (Schef-
fer and Weiß, 2017). A related contribution of introduces the empirical pair-copula
as an extension of the empirical copula (Hobæk Haff and Segers, 2015), but does
not aim at estimation of the vine copula density which is the focus of this chapter.

From a practitioner’s point of view, the question arises: which method should
I choose for a given data set? This question is difficult to answer theoretically
because asymptotic approximations of nonparametric vine copula density estima-
tors are prohibitively unwieldy, see Propositions 4.1 and 4.5. In the following,
we conduct an extensive simulation study to provide some guidance nevertheless.
All estimation methods will be compared under several specifications of strength
and type of dependence, sample size, and dimension, thereby covering a large
range of practical scenarios.

Although our primary goal is to survey and compare existing methods, we
extend the estimators proposed by Kauermann and Schellhase (2014), Scheffer
and Weiß (2017), Nagler (2014) in several ways:

• The Bernstein and B-spline estimators of Kauermann and Schellhase (2014)
and Scheffer and Weiß (2017) are extended to allow for general R-vine
structures (opposed to just D- and/or C-vine structures).

• Besides linear B-splines as in Kauermann and Schellhase (2014), we also
consider quadratic B-splines.
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• All pair-copula estimators can be combined with structure selection algo-
rithms using both Kendall’s τ and a corrected AIC as target criterion.

The remainder of this chapter is organized as follows. Section 3.2 presents
and extends several existing nonparametric methods for pair-copula estimation,
introduces a step-wise estimation algorithm for the vine copula model, and
discusses approaches for model selection. We describe the design of our simulation
study in Section 3.3 and summarize the results in Section 3.4. In Section 3.5, a
real data set is used to illustrate the estimators’ behavior and demonstrate the
necessity for nonparametric estimators. Section 3.6 offers conclusions.

3.2 Implementation

3.2.1 Nonparametric estimators for bivariate copula densities

We now give an overview of nonparametric estimators of bivariate copula densities.
The classical approach to density estimation is to assume a parametric model
and estimate its parameters by maximum likelihood. There is a large variety
of bivariate parametric copula models. Special classes are the elliptical copulas
(including the Gaussian and Student t families), and the Archimedean class
(including the Clayton, Frank and Gumbel families); for more see (Joe, 2014b).
However, parametric models notoriously lack flexibility and bear the risk of
misspecification. Nonparametric density estimators are designed to remedy these
issues. In the context of copula densities, these estimators have to take the
bounded support into account.

In the following we summarize the state-of-the-art of the major strands of
nonparametric copula density estimation. For simplicity, we only consider the
bivariate case. We assume throughout that we are given n observations (U

(i)
1 , U

(i)
2 ),

i = 1, . . . , n, from a copula density c that we want to estimate.

Empirical Bernstein copula

A classical tool in function approximation are Bernstein polynomials (Lorentz,
1953). The normalized Bernstein polynomial of degree K is defined as

BKk(u) = (K + 1)

(
K

k

)
uk(1− u)K−k, for k = 0, . . . , K.

The collection of all Bernstein polynomials form a basis of the space of all square-
integrable functions on [0, 1]. A natural idea is to approximate an arbitrary
function by a linear combination of a finite number of basis functions. Based on
this idea, Sancetta and Satchell (2004) defined the Bernstein copula density as
an approximation of the true copula density. It can be expressed as

c̃(u1, u2) =
K∑

k1=0

K∑
k2=0

BKk1(u1)BKk2(u2)vk1,k2 ,
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where

vk1,k2 =

∫ (k1+1)/K̄

k1/K̄

∫ (k2+1)/K̄

k2/K̄

c(u1, u2)du1du2.

and K̄ = (K + 1). Note that the coefficient vk1,k2 describes the probability that

(U
(i)
1 , U

(i)
2 ) is contained in the cell [k1/K̄, (k1 + 1)/K̄]× [k2/K̄, (k2 + 1)/K̄]. The

empirical copula density estimator is defined by c̃(u1, u2), where the vk1,k2 are
replaced by empirical frequencies obtained from a contingency table:

ĉ(u1, u2) =
K∑

k1=0

K∑
k2=0

BKk1(u1)BKk2(u2)v̂k1,k2 ,

where

v̂k1,k2 =
1

n
×#

{
(U

(i)
1 , U

(i)
2 ) ∈ [k1/K̄, (k1 + 1)/K̄]× [k2/K̄, (k2 + 1)/K̄]

}
,

which is the maximum-likelihood estimator for vk1,k2 .
The Bernstein copula density estimator was used in the context of vine copulas

by Scheffer and Weiß (2017). As the marginal distributions of the Bernstein
copula density do not need to be uniform, the authors calculate an approximation
to the contingency table by solving a quadratic program, imposing constraints
for uniform marginal distributions. The smoothing parameter for the Bernstein
copula density estimator is K, the number of knots. Rose (2015) proposed
selection rules for K that adapt to the sample size and strength of dependence.
Our implementation is available in the kdecopula R package (Nagler, 2018c),
and uses the rule

Kopt = bn1/3 exp(|ρ̂|1/n)(|ρ̂|+ 0.1)c,

where ρ̂ is the empirical Spearman’s ρ.

Penalized Bernstein polynomials and B-splines

For fixed K, the Bernstein copula density estimator is a parametric model with
(K + 1)2 parameters. As any parametric model with many parameters, it is
prone to overfitting. To gain control of the smoothness of the fit, Kauermann
and Schellhase (2014) proposed a penalized likelihood approach.

Viewing the Bernstein copula density as a parametric model with parameter
vector v = (v00, . . . , v0K , . . . , vKK), i.e.,

c̃(u1, u2;v) =
K∑

k1=0

K∑
k2=0

BKk1(u1)BKk2(u2)vk1,k2 , (3.1)
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we can estimate the parameters by maximizing the log-likelihood,

`(v) = log
n∑
i=1

c̃
(
U

(i)
1 , U

(i)
2 ;v

)
. (3.2)

Since each of the normalized Bernstein polynomials is a density, the weighted
sum of normalized Bernstein polynomials is a density, if we ensure that

K∑
k1=0

K∑
k2=0

vk1,k2 = 1,

vk1,k2 ≥ 0. (3.3)

However, we will need more stringent constraints to enforce uniform marginal
distributions: for Bernstein polynomials,

∫
c̃(u1, u2) du1 ≡ 1 holds if the marginal

coefficients fulfill

vk1. =
K∑

k2=0

vk1,k2 = 1/(K + 1), for all k1 = 0, . . . , K,

and similarly for
∫
c̃(u1, u2) du2 ≡ 1. These constraints can be reformulated in

matrix notation yielding
ATKv = 1/(K + 1), (3.4)

where AK sums up the elements of vk1,k2 column-wise (i.e., over k2) and row-wise
(i.e. over k1), i.e. ATK = (IK ⊗ 1TK ,1

T
K ⊗ IK), where 1K is the column vector of

dimension K with elements 1, IK is the K dimensional identity matrix, and ⊗
denotes the tensor product.

The log-likelihood (3.2) can be maximized under the constraints (3.3) and (3.4),
using quadratic programming (e.g., with the quadprog R package Weingessel,
2013). But since this is a parametric model with many parameters, the fitted
copula density may be wiggly, see e.g., (Wahba, 1990). This issue can be resolved
by imposing an appropriate penalty on the basis coefficients. We postulate that
the integrated squared second order derivatives are small and formulate the
penalty as ∫ {(

∂2c̃(u1, u2;v)

(∂u1)2

)2

+

(
∂2c̃(u1, u2;v)

(∂u2)2

)2}
du1du2,

(see also, Wood, 2006). This can be written as a quadratic form of a penalty
matrix P (see, Kauermann and Schellhase, 2014). The corresponding penalized
log-likelihood is defined as

`p(v, λ) = `(v)− 1

2
λvTPv, (3.5)

which is again maximized with respect to the constraints (3.3) and (3.4).
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The penalty parameter λ can be selected in a data-driven manner. In Section
2.5 of Kauermann and Schellhase (2014), the authors propose a method that for-
mulates the penalized likelihood approach as linear mixed model and comprehend
the penalty as normal prior imposed on the coefficient vector.

One can further use B-spline basis functions instead of Bernstein polynomials.
Kauermann and Schellhase (2014) replace each BKk in (3.1) with a B-spline,
located at equidistant knots κk = k/K with k = 0, . . . , K, normalized so that it

satisfies
∫ 1

0
BKk(u) du = 1 for k = 0, . . . , K − 1 + q. Kauermann and Schellhase

(2014) only used normalized linear (q = 1) B-splines. To allow for more flexibility,
we will also use normalized quadratic (q = 2) B-splines in our study.

In order to guarantee that c̃(u1, u2;v) is a bivariate copula density, we impose
similar constraints as the ones for the Bernstein polynomials. The linear constraint
(3.3) will be the same for B-splines, but the uniform margins condition (3.4) has
to be adapted. The condition takes the form AKv = 1 with AK = BK(κ),
choosing

κ =

{
κ0, . . . , κK , for linear B-splines,

0, κ1−κ0
2

+ κ0,
κ2−κ1

2
+ κ1, . . . ,

κK+1−κK
2

+ κK , 1, for quadratic B-splines.

For the penalization, we work with a penalty on the m-th order differences of
the spline coefficients v, as suggested for B-spline smoothing by Eilers and Marx
(1996), defining a penalty matrix Pm, where we choose m = q+1. Further details
of this smoothing concept can be found in Ruppert et al. (2003). In the following,
we define the difference based penalty matrix Pm for the m-order differences
through

Pm := (1K+q ⊗ Lm)T (Lm ⊗ 1K+q). (3.6)

Let Lm ∈ RK+q−m×K+q be a difference matrix of order m, e.g., for q = 1 we get
m = 2 and

L2 =


1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 1 −2 1

 ∈ RK−1×K+1.

Then for B-splines, the penalized log-likelihood becomes

lp(v, λ) = l(v)− 1

2
λvTPmv. (3.7)

We recover the independence copula, if we set λ = ∞ in (3.5) or (3.7). The
penalized Bernstein and B-splines estimators are implemented in the R package
penRvine (Schellhase, 2016).
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Kernel weighted local likelihood

Kernel estimators are well-established tools for nonparametric density estimation.
Several kernel methods have been tailored to the problem of copula density
estimation. Their main challenge is to avoid bias and consistency issues at the
boundaries of the support. The earliest contribution is the mirror-reflection
method (Gijbels and Mielniczuk, 1990). Later, the beta kernel density estimator
of Chen (1999) was extended to the bivariate case by Charpentier et al. (2006).

The more recent contributions all focus on a transformation trick. Assume
we want to estimate a copula density c given a random sample

(
U

(i)
1 , U

(i)
2

)
, i =

1, . . . , n. Let Φ be the standard normal distribution function and φ its density.
Then the random vectors (Z

(i)
1 , Z

(i)
2 ) =

(
Φ−1(U

(i)
1 ),Φ−1(U

(i)
2 )
)

have normally
distributed margins and are supported on R2. In this domain, kernel density
estimators work very well and do not suffer from any boundary problems. By
Sklar’s Theorem for densities (2.2), the density g of (Z

(i)
1 , Z

(i)
2 ) decomposes to

g(z1, z2) = c
{

Φ(z1),Φ(z2)
}
φ(z1)φ(z2), for all (z1, z2) ∈ R. (3.8)

By isolating c in (3.8) and the change of variables uj = Φ(zj), j = 1, 2, we get

c(u1, u2) =
g
{

Φ−1(u1),Φ−1(u2)
}

φ
{

Φ−1(u1)
}
φ
{

Φ−1(u2)
} . (3.9)

We can use any kernel estimator ĝ of g to define a kernel estimator of the copula
density c :

ĉ(u1, u2) =
ĝ
(
Φ−1(u1),Φ−1(u2)

)
φ
{

Φ−1(u1)
}
φ
{

Φ−1(u2)
} . (3.10)

Estimators of this kind have an interesting feature. The denominator of (3.10)
vanishes when u1 or u2 tend to zero or one. If the numerator vanishes at a slower
rate, the estimated copula density explodes towards the corners of the unit square.
This behavior is common for many popular parametric families, including the
Gaussian, Student, Gumbel, and Clayton families. The transformation estimator
(3.10) is well suited to resemble such shapes. However, its variance will also
explode towards the corners and the estimator will be numerically unstable. To
accommodate for this, we restrict the estimator to [0.001, 0.999]2 and set estimates
outside of this region to the closest properly defined estimate.

To estimate the density g, we consider the class of local polynomial likelihood
estimators; see Loader (1999) for a general account and Geenens et al. (2017)
in the context of bivariate copula estimation. Assume that the log-density
log g(z1, z2) of the random vector Z(i) = (Z

(i)
1 , Z

(i)
2 ) can be approximated locally
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by a polynomial of order q. For example, using a log-quadratic expansion, we get

log g(z′1, z
′
2) ≈ Pa(z − z′) (3.11)

= a1 + a2(z1 − z′1) + a3(z2 − z′2) (3.12)

+ a4(z1 − z′1)2 + a5(z1 − z′1)(z2 − z′2) + a6(z2 − z′2)2 (3.13)

for (z′1, z
′
2) in the neighborhood of z = (z1, z2). The polynomial coefficients a can

be found by solving the weighted maximum likelihood problem

â = arg max
a∈R6

[ n∑
i=1

K
{
B−1(z −Z(i))

}
Pa(z −Z(i))

− n
∫
R2

K
{
B−1(z − s)

}
exp
{
Pa(z − s)

}
ds

]
,

(3.14)

where the kernel K is a symmetric probability density function,
K(z) = K(z1)K(z2) is the product kernel. The matrix B ∈ R2×2, det(B) > 0,
is called the bandwidth matrix and controls the degree of smoothing in each
direction. The kernel K serves as a weight function that localizes the above
optimization problem around z.

The expression for the local likelihood in (3.14) can be motivated as follows
(e.g., Loader, 1999, Chapter 5). We can formulate the non-local log-likelihood
has

n∑
i=1

log ĝ(Z(i))− n
(∫

ĝ(s)ds− 1

)
, (3.15)

where the second term is a penalty term that is zero whenever ĝ is a proper density.
From there, we obtain the formula (3.14) in three steps. First, we we localize
the sum and integral around z by inserting the kernel weights K{B−1(z−Z(i))}
(3.15). Second, the log-density estimate log ĝ is approximated by a polynomial
expansion (3.11). And finally, the term −1 is dropped, since it does not affect
the solution of the maximization problem.

We obtain â1 as an estimate for log g(z1, z2) and, consequently, exp(â1) as
an estimate for g(z1, z2). An estimate of the copula density can be obtained
by plugging this estimate in (3.9). For a detailed treatment of this estimator’s
asymptotic behavior we refer to Geenens et al. (2017). In general, the estimator
does not yield a bona fide copula density because the margins may not be uniform.
This issue can be resolved by normalizing the density estimate, for details see
Nagler (2018c).

For application of the estimator, an appropriate choice of the bandwidth matrix
is crucial. For the local constant approximation, a simple rule of thumb was
shown to perform well in Nagler (2014). We use an extended version of this rule
that also adjusts to the degree of the polynomial q:

Brot = νqn
−1/(4q∗+2)Σ̂

1/2
Z , q∗ = 1 + bq/2c,
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Algorithm 1 Sequential estimation of simplified vine copula densities

Input: (Pseudo-)Observations (Û
(i)
1 , . . . , Û

(i)
d ), i = 1, . . . , n, vine structure

(E1, . . . , Ed−1).
Output: Estimates of pair-copula densities and h-functions required to evaluate
the vine copula density (3.16).

———————————————————————————————————
for m = 1, . . . , d− 1:

for all e ∈ Em:

(i) Based on
(
Û

(i)
je|De , Û

(i)
ke|De

)
i=1,...,n

, obtain an estimate of the copula

density cje,ke;De which we denote as ĉje,ke;De .

(ii) Derive corresponding estimates of the h-functions ĥje|ke;De , ĥke|je;De
by integration (eq. (2.6)).

(iii) Set

Û
(i)
je|De∪ke := ĥje|ke;De

(
Û

(i)
je|De

∣∣Û (i)
ke|De

)
,

Û
(i)
ke|De∪je := ĥke|je;De

(
Û

(i)
ke|De

∣∣Û (i)
je|De

)
, i = 1, . . . , n.

end for
end for

where Σ̂Z is the empirical covariance matrix of Z(i), i = 1, . . . , n, and ν0 = 1.25,
ν1 = ν2 = 5. An implementation of the estimator is available in the R package
kdecopula (Nagler, 2018c).

3.2.2 Step-wise estimation of simplified vine copula densities

We now turn to the question how a simplified vine copula density can be estimated.
Most commonly, this is done in a sequential procedure introduced by Aas et al.
(2009). The procedure is generic in the sense that it can be used with any
consistent estimator for a bivariate copula density. It is summarized in Algorithm 1
and explained in more detail in the following.

From now on we use c to denote a d-dimensional vine copula density. Assume
we have a random sample U (i) =

(
U

(i)
1 , . . . , U

(i)
d

)
, i = 1, . . . , n, from the target

density c. Recall that this density can be written as

c(u) =
d−1∏
m=1

∏
e∈Em

cje,ke;De(Cje|De(uje | uDe), Cke|De(uke | uDe)). (3.16)

1. Based on two-dimensional subvectors of the observations U (i), i = 1, . . . , n, we
estimate all pair-copula densities and h-functions that correspond to edges of
the first tree (the conditioning sets De are empty).
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2. We use (2.6) to derive estimates of the h-functions, that is

ĥje|ke(u | v) :=

∫ u

0

ĉje,ke(s, v)ds, for (u, v) ∈ (0, 1)2 and e = (je, ke) ∈ E1.

3. Any pair-copula density cje,ke;De corresponding to an edge in the second tree
is the density of a random vector

(
Gje|De(Xje|XDe), Gke|De(Xke|XDe)

)
, e ∈ E2.

They are not observable, but we can use pseudo-observations such as

Û
(i)
je|De := Ĝje|De

(
U

(i)
je
| U (i)

De

)
= ĥje|De

(
U

(i)
je
| U (i)

De

)
, i = 1, . . . , n, e ∈ E2,

instead. This allows us to obtain estimates ĉje,ke;De , ĥje|ke;De , and ĥke|je;De for
a conditioning set De with one element.

4. For estimation in the third tree, we need observations from random variables
such as

U
(i)
je|De := Gje|De

(
X

(i)
je
|X(i)

De

)
, i = 1, . . . , n, e ∈ E3. (3.17)

Now the conditioning set De contains two elements. Recall from Chapter 2
that, by construction, we can find some edge e′ ∈ E2 such that je′ = je and
De′ ∪ ke′ = De. Consequently, we can apply (2.5) and approximate (3.17) by
the pseudo-observations

Û
(i)
je|De = Û

(i)
je′ |De′∪ke′

:= Ĝje′ |De′∪ke′
(
Û

(i)
je′
| Û (i)

De′∪ke′
)

= ĥje′ |ke′ ;De′
(
Û

(i)
je′ |De′

| Û (i)
ke′ |De′

)
,

where the last equality is again derived from (2.5).

5. For higher trees, proceed as in step 4.

3.2.3 Selection strategies for the vine structure

So far we assumed that the structure of the vine (i.e., the collection of edge sets
E1, . . . , Ed−1) is known. In practice, however, the structure has to be chosen
by the statistician. This choice is non-trivial, since there are d!/2× d(d−2)(d−3)/2

possible vine structures (Morales-Nápoles et al., 2011), which grows excessively
with d. When d is very small, it may still be practicable to estimate vine copula
models for all possible structures and compare them by a suitable criterion (such
as AIC). But already for a moderate number of dimensions one has to rely on
heuristics.

A selection algorithm that seeks to capture most of the dependence in the
first couple of trees was proposed by Dißmann et al. (2013). This is achieved by
finding the maximum spanning tree using a dependence measure as edge weights,
e.g., the absolute value of the empirical Kendall’s τ . The resulting estimation and
structure selection procedure is summarized in a general form in Algorithm 2.
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Algorithm 2 Sequential estimation and structure selection for simplified vine
copula models

Input: (Pseudo-)Observations (Û
(i)
1 , . . . , Û

(i)
d ), i = 1, . . . , n.

Output: Vine structure (E1, . . . , Ed−1) and estimates of pair-copula densities
and h-functions required to evaluate the vine copula density (3.16).

———————————————————————————————————
for m = 1, . . . , d− 1:

Calculate weights we for all possible edges e = {je, ke;De} that satisfy
the proximity condition (see Chapter 2) and select the edge set Em as

Em = arg max
E∗m

∑
e∈E∗m

we,

under the constraint that E∗m corresponds to a spanning tree.
for all e ∈ Em:

(i) Based on
(
Û

(i)
je|De , Û

(i)
ke|De

)
i=1,...,n

, obtain an estimate of the copula

density cje,ke;De which we denote as ĉje,ke;De .

(ii) Derive corresponding estimates of the h-functions ĥje|ke;De , ĥke|je;De
by integration (2.6).

(iii) Set

Û
(i)
je|De∪ke := ĥje|ke;De

(
Û

(i)
je|De

∣∣Û (i)
ke|De

)
,

Û
(i)
ke|De∪je := ĥke|je;De

(
Û

(i)
ke|De

∣∣Û (i)
je|De

)
, i = 1, . . . , n.

end for
end for

Czado et al. (2013) investigated several specifications of the edge weight in a
fully parametric context. The most common edge weight we is the absolute value
of the empirical Kendall’s τ . It was proposed by Dißmann et al. (2013) and used
in a nonparametric context by Nagler (2014). On the other hand, Kauermann and
Schellhase (2014) used a corrected Akaike information criterion (cAIC) (Hurvich
et al., 1998) that accounts for higher-order terms in the asymptotic derivation of
the AIC, making it more suitable for small sample sizes. When using the cAIC
criterion in Algorithm 2, the weight we for edge e is

cAICe = −2`e + 2dfe +
2dfe(dfe + 1)

n− dfe − 1
, (3.18)

where

`e =
n∑
i=1

ln ĉje,ke;De
(
Û

(i)
je|De , Û

(i)
ke|De

)
,
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Dimension d Sample Size n Type of dependence Strength of dependence
5 400 only tail dependence weak
10 2 000 no tail dependence strong

both types

Table 3.1: List of factors that determine the set of simulation scenarios.

is the log-likelihood and dfe is the effective degrees of freedom (EDF) of the
estimator ĉe. For explicit formulas for the EDF we refer to Kauermann and
Schellhase (2014) for the spline approach and to Loader (1999) for the kernel
estimators. For parametric copula models, the EDF typically equals the number
of model parameters.

From a computational point of view, the cAIC has a big disadvantage: the
cAIC for an edge can only be calculated after a model for this edge has been
fitted. Hence, before a tree can be selected, the pair-copulas of all possible
edges in this tree have to be estimated. Just for the first tree, this amounts to
estimating

(
d
2

)
bivariate copula densities, of which only d1 will be kept in the

model. The empirical Kendall’s τ on the other hand can be computed rapidly for
all pairs. It allows to select the tree structure before any pair-copula has been
estimated. Then, only d− 1 pair-copulas have to be estimated in the first tree.
The situation is similar for subsequent trees. Both approaches will be compared
in our simulation study with regard to estimation accuracy and speed.

Other selection methods specialized on high-dimensional parametric vine cop-
ulas were proposed by Müller and Czado (2017a,b, 2018), and Nagler et al.
(2018).

3.3 Description of the simulation study design

We compare the performance of the vine copula density estimators discussed in
Section 3.2 over a wide range of scenarios. We consider several specifications
of sample size, dimension, strength of dependence, and tail dependence. We
randomize the simulation models and characterize the scenarios by probability
distributions for the pair-copula families and dependence parameters. A detailed
description of the study design procedure will be given in the following sections.

3.3.1 Simulation scenarios based on model randomization

To investigate how various factors influence the estimators’ performance, we create
a number of scenarios. Each of these scenarios is characterized by a combination
of the factors shown in Table 3.1.

To make the results for a particular dependence scenario as general as possible,
we randomly generate a model in the following steps:

Step 1. Draw R-vine structure:
We do this in the following steps:
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(i) Draw n samples for d independent uniform random variables, Ũi,j,
i = 1, . . . , n, j = 1, . . . , d.

(ii) On these samples, run the structure selection algorithm of Dißmann
et al. (2013) (only allowing for the independence family).

(iii) Set the model structure to the one selected by the algorithm.

Step 2. Draw pair-copula families:

• only tail dependent copulas : draw each of the d(d− 1)/2 pair-copula
families with equal probabilities from the Student t- (df = 4),
Gumbel (with rotations) and Clayton (with rotations) copulas.

• no tail dependence: draw each of the d(d− 1)/2 pair-copula families
with equal probabilities from the Gaussian and Frank copulas.

• both: for each of d(d− 1)/2 pair-copulas:

(i) choose with equal probabilities whether the copula has tail
dependence or not,

(ii) proceed as above.

Step 3. Draw pair-copula parameters:
For each pair-copula:

(i) Randomly generate the absolute value of Kendall’s τ from the
following distributions:

• weak dependence: Beta(1, 4)-distribution (E[|τ |] = 0.2),

• strong dependence: Beta(5, 5)-distribution (E[|τ |] = 0.5).

The densities are shown in Figure 3.1.

(ii) Randomly choose the sign of Kendall’s τ as Bernoulli(0.5) variable.

(iii) Usually, conditional dependence is weaker than direct pair-wise
dependence. To mimic this behavior we decrease the simulated
absolute Kendall’s τ by a factor of 0.8m, where m is the tree level
of the pair-copula.

(iv) For all families under consideration there is a one-to-one relationship
between the copula parameter and Kendall’s τ , see e.g., Table 2
in Brechmann and Schepsmeier (2013). Hence, we set the copula
parameter by inversion of the reduced value of Kendall’s τ .

Step 4. Draw observations from the final model:
With the selected structure, copula families and their parameters, the
vine copula model is fully specified. We can draw random samples from
this vine copula model using the algorithm of Stöber and Czado (2012),
as implemented in the VineCopula R library (Schepsmeier et al., 2018).



Chapter 3 Nonparametric estimators of simplified vine copula densities 31

strong dependence weak dependence
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Figure 3.1: Densities for the simulation of absolute Kendall’s τ in the scenarios
with weak (left) and strong (right) dependence.

The stochastic model characterized by steps 1–4 can be interpreted as a whole.
It is a mixture of vine copula models, mixed over its structure, families, and pa-
rameter. The mixing distribution for the families is uniform over sets determined
by the ‘type of dependence’ hyper-parameter. The mixing distribution for the
absolute Kendall’s τ follows a Beta distribution with parameters characterized
by the ‘strength of dependence‘ hyper-parameter. Each scenario corresponds to
a particular specification of the mixture’s hyperparameters. The benefit of this
construction is that it yields models that are representative for a wide range of
scenarios encountered in practice. It also limits the degrees of freedom we would
have when specifying all pair-copula families and parameters manually.

3.3.2 Estimation methods

We compare the following pair-copula estimators:

• par: parametric estimator as implemented in the function BiCopSelect

of the R package VineCopula (Schepsmeier et al., 2018). It estimates the
parameters for several parametric families and selects the best model based
on AIC. The implemented families are: Independence, Gaussian, Student t,
Clayton, Frank, Gumbel, Joe, BB1, BB6, BB7, BB8, Tawn types I and II,

• bern: non-penalized Bernstein estimator (see Section 3.2.1),

• pbern: penalized Bernstein estimator (see Section 3.2.1) with K = 14
knots,

• pspl1: penalized linear B-spline estimator (see Section 3.2.1) with K = 14,
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• pspl2: penalized quadratic B-spline estimator (see Section 3.2.1) with
K = 10,

• tll0: transformation local likelihood kernel estimator of degree q = 0 (see
Section 3.2.1),

• tll1: transformation local likelihood kernel estimator of degree q = 1 (see
Section 3.2.1),

• tll2: transformation local likelihood kernel estimator of degree q = 2 (see
Section 3.2.1).

We further implemented two structure selection methods for each pair-copula
estimator (based on Kendall’s τ and cAIC, see Section 3.2.3); additionally we
computed each estimator under the true vine structure.

3.3.3 Performance measurement

As a performance measure, we choose the integrated absolute error (IAE)

IAE =

∫
[0,1]d
|ĉ(u)− c(u)|du,

where ĉ is the estimated and c is the true copula density. The above expression
requires us to calculate a d-dimensional integral, which can be difficult when
d becomes large. To overcome this, we estimate this integral via importance
sampling Monte Carlo, see e.g., Section 5.2 in (Ripley, 1987). That is,

ÎAE =
1

N

∑
i=1,...,N

|ĉ(Ui)− c(Ui)|
c(Ui)

,

where Ui
iid∼ c is a random vector drawn from the true copula density c. This

results in an unbiased estimator of the IAE with relatively small variance: usually
the numerator is large/small when the denominator is large/small. Hence, the
variance of all terms in the sum is small and, hence, the variance of the sum is
small. All results will be based on an importance sample of size N = 1 000.

For each estimator and each possible simulation scenario emerging from Ta-
ble 3.1, we record the ÎAE on R = 100 simulated data sets.

3.4 Results

Figure 3.2 and Figure 3.3 present the results of the simulation study described
in Section 3.3. The analysis will be divided into several sections. The first
takes a very broad view, whereas the remaining ones investigate the influence of
individual factors. We acknowledge that the information density in the figures is
extremely high. So we start with a detailed description of the figures’ layout.
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Figure 3.2: weak dependence: the box plots show the IAE achieved by each esti-
mation method. Results are split by sample size, dimension, and type
of dependence. Per estimator there are three boxes, corresponding
to estimation under known structure, selection by Kendall’s τ , and
selection by cAIC (from left to right).



34 3.4 Results

n = 400 n = 2000
d =

 5

no tail dependence

d =
 10

no tail dependence

d =
 5

both

d =
 10

both

d =
 5

only tail dependence

d =
 10

only tail dependence

par bern pbern pspl1 pspl2 tll0 tll1 tll2 par bern pbern pspl1 pspl2 tll0 tll1 tll2

0.0

0.2

0.4

0.6

0.0

0.5

1.0

0.00

0.25

0.50

0.75

0.0

0.5

1.0

1.5

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

estimator

IA
E

strong dependence

Figure 3.3: strong dependence: the box plots show the IAE achieved by each esti-
mation method. Results are split by sample size, dimension, and type
of dependence. Per estimator there are three boxes, corresponding
to estimation under known structure, selection by Kendall’s τ , and
selection by cAIC (from left to right).
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par bern pbern pspl1 pspl2 tll0 tll1 tll2

average rank 1.28 7.17 6.35 5.00 5.01 5.01 3.83 2.35

Table 3.2: The relative rank of estimators averaged over all scenarios.

Figure 3.2 contains the results for all scenarios with weak dependence; Figure 3.3
with strong dependence. The left columns correspond to the smaller sample size
(n = 400) and the right columns to the larger sample size (n = 2 000). The figures
are also partitioned row-wise with an alternating pattern of the dimensions d = 5
and d = 10. Two subsequent rows correspond to the same type of dependence (no
tail dependence, both, only tail dependence). In total there are 32 panels, each
representing one of the 32 possible combinations of the factors listed in Table 3.1.

Each panel contains 24 boxes in 8 groups. Each group corresponds to one
estimation method for the pair-copulas. The three boxes in each group represent
the three different methods for structure selection: known structure, maximum
spanning trees with Kendall’s τ , maximum spanning trees with cAIC (from left
to right). The box spans the interquartile range, the median is indicated by a
horizontal line, the whiskers represent the 10% and 90% percentiles.

3.4.1 Overall ranking of methods for pair-copula estimation

We begin our analysis with a broad view on the relative performance of the pair-
copula estimators. We want to assess the performance of the estimation methods,
averaged over all scenarios and structure selection strategies. But just taking the
average IAE could be misleading. It is evident from Figures 3.2 and 3.3 that the
scale of the IAE varies between scenarios. Averaging the bare IAE leads to an
unbalanced few, laying more weight on particular scenarios. As a more robust
alternative, we take the following approach: in each scenario, average the IAE
over replications and structure selection strategies. Then rank the estimation
methods by their relative performance. Ranks are comparable across scenarios,
so our final criterion will be the average rank across all scenarios. These numbers
are listed in Table 3.2.

The parametric estimator performs best, which is no surprise since our simu-
lation models consist of only parametric copula families. We included it in this
study mainly to get a sense of what is possible in each scenario. Remarkably, it
is outperformed in very few cases by a nonparametric estimator. This is due to
the need for structure selection which will be discussed in more detail later on.

Among the nonparametric estimators, the kernel estimators (tll2, tll1, tll0)
perform best, followed by the spline methods (pspl1, pspl2) which perform as
well as the worst kernel estimator tll0. The Bernstein estimators (pbern, bern)
perform worst. Within these three classes, the accuracy improves mostly by
how complex the estimation method is: going from regular Bernstein copulas to
penalized ones; and going from local constant, to local linear, to local quadratic
likelihood. It is the other way around for the B-spline methods, but the difference
in the average rank is minuscule.
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We will find that this relative ranking is fairly robust across scenarios. In the
following analysis, we treat it as the benchmark ranking and focus on deviations
from it.

3.4.2 Strength and type of dependence

By looking at the scale in each panel, we see that the performance of all estimators
gets worse for increasing strength of dependence and increasing proportion of
tail dependent families. This is explained by the behavior of the true densities.
Many copula densities (and their derivatives) explode at a corner of the unit
square. From the pair-copula families in our simulation model, only the Frank
copula is bounded. Within each family, the tails explode faster when the strength
of dependence increases. And tail dependence means that the tails explode
particularly fast. Exploding curves are difficult to estimate for nonparametric
estimators because their asymptotic bias and variance are usually proportional to
the true densities’ derivatives. Our results give evidence that this effect transfers
to finite samples.

The estimators’ response to these difficulties is the main driver behind their
relative performance. In most scenarios, the ranking of estimators is similar to
the benchmark rankings. But there are deviations. Let us walk through the
scenarios one by one.

• weak, no tail dependence: pbern1 and pspl1 perform better than pspl2,
the kernel estimators, and even the parametric estimator for n = 400. For
n = 2 000, the parametric estimator gets ahead and the penalized methods
are on par with tll1 and tll2.

• weak, both: pbern1 and pspl1 perform better than pspl2 and tll0 for
n = 400, and comparable for n = 2 000.

• weak, only tail dependent copulas : similar to the benchmark ranking.

• strong, no tail dependence: bspl2 beats tll0 and tll1 for n = 400 and is
on par for n = 2 000.

• strong, both: similar to benchmark ranking.

• strong, only tail dependent copulas : similar to benchmark ranking.

Overall, the penalized estimators tend to do better under weak dependence
and only little tail dependence, whereas the kernel estimators do better in the
other scenarios. The method tll2 is the top performer in all but a few cases.

3.4.3 Sample size and dimension

When the sample size increases, the estimators become more accurate. Any
reasonable estimator should satisfy this property. The kernel estimators and the
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non-penalized Bernstein estimator seem to benefit more from an increased sample
size. The effect is most obvious in the weak dependence, no tail dependence case.
This has an explanation: theoretically, the number of knots used by the penalized
estimators should increase with the sample size. But our implementation uses
a fixed number of knots, as the computational burden is already substantial
compared with the other methods (see Section 3.4.5). All other methods adapt
their smoothing parameterization to the sample size. It is very likely that the
penalized methods improve when the number of knots is further increased.

Comparing a pair of panels corresponding to d = 5 and d = 10, we see only
little differences. We conclude that the results are quite robust to changes in the
dimensionality.

3.4.4 Structure selection

The first aspect we want to discuss is the loss in accuracy caused by the need to
select the tree structure. Recall that the three subsequent boxes for each estima-
tor correspond to: estimation under the true structure (in practice unknown),
selection based on Kendall’s τ , selection based on cAIC.

The IAEs for the two selection methods are always higher than the ‘oracle’
results with known structure. This makes sense: the true model is a simplified
vine copula; if the true structure is known, the models are correctly specified and
all estimators are consistent. In practice, the true structure is unknown, and a
different structure will be selected most of the time. For the selected structure,
there is no guarantee that the model is still simplified or that the estimators are
consistent. For more details, we refer to Spanhel and Kurz (2017) and Section 4.7.

Overall, the average loss in accuracy when going from the true to a heuristically
selected structure increases with strength of dependence and prevalence of tail
dependence. But the extent of this effect varies between estimation methods. The
parametric estimator suffers the most substantial losses. In fact, the parametric
estimator’s performance is often very close to that of the best nonparametric
estimator when the structure is unknown. This is quite remarkable considering
that we simulate from parametric models. Interestingly, the loss for the penalized
Bernstein and B-spline methods (pbern, pspl1, pspl2) is negligible in most
scenarios when cAIC is used—but not when Kendall’s τ is used. This is a
distinct property of these penalized methods. The non-penalized Bernstein and
kernel methods perform similarly for the two structure selection criteria. In most
scenarios, the relative performance ordering of the estimators is the same for each
type of structure. But there are a few cases (strong dependence, n = 400) where
the bspl2 estimator is worse than tll0 or tll1 with Kendall’s τ , but better
with cAIC.

The results give evidence that the cAIC is the better criterion in terms of the
estimators’ accuracy. But it also makes the vine copula estimators more costly
to fit (see Section 3.2.3). So there is a trade-off between speed and accuracy. It
usually depends on the application which to prioritize. We will investigate this
issue further in the next section.
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d n criterion par bern pbern pspl1 pspl2 tll0 tll1 tll2
5 400 τ 7 3 788 758 517 3 4 6

cAIC 19 10 1 000 1 175 786 10 11 13
2 000 τ 34 19 1 578 1 455 1 394 7 12 16

cAIC 91 31 2 163 2 336 2 243 25 32 35
10 400 τ 33 17 2 983 3 183 2 205 14 19 29

cAIC 98 49 5 292 6 110 4 156 48 55 65
2 000 τ 159 65 6 553 6 694 6 515 35 56 71

cAIC 472 139 11 992 13 514 12 394 127 158 173

Table 3.3: Average computation time (in seconds) required for estimation and
selection of one vine copula model.

3.4.5 Computation time

Table 3.3 lists the average computation time1 required to fit a vine copula and
evaluate its density on 1 000 importance Monte-Carlo samples. The results are
divided into the combinations of dimension d and sample size n.

Let us first focus on the selection criterion. We clearly see that the computation
time increases substantially for all estimators when cAIC is used instead of
Kendall’s τ . This effect size differs, but is usually a factor of around two or three.

The fastest two estimators are the simplest ones: bern and tll0. The other two
kernel estimators are in the same ballpark, but the computation time increases
slightly with the order of the polynomial. Only slightly slower is the parametric
estimator. The reason is that the parametric estimator has to iterate through
several different copula families before it can select the final model. The penalized
estimators are roughly two orders of magnitude slower than their competitors.
Take for example the case d = 10 and n = 2 000, where most estimators take
around one minute (using τ), but the penalized estimators take more than one
and a half hours.

The large difference in computational demand is caused by the penalized
estimation problem. One has to optimize over more than 100 parameters with
more than 100 side constraints. Even worse, such a problem has to be solved
multiple times until an optimal choice for the penalty parameter λ has been
found. Reducing K (the number of knots) does significantly reduce this burden,
but also limits the flexibility of the estimators.

3.4.6 Limitations

Two anonymous referees pointed out some limitations of our study which are
addressed in the following.

1The time was recorded on a single thread of a 8-way Opteron (Dual-Core, 2.6 GHz) CPU
with 64GB RAM.
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Performance measure

All results focus on a single performance measure and therefore only provide a
limited view on the estimators’ performance. Although this is true, we considered
several other measures in preliminary versions of this study (integrated squared
error, Hellinger distance, and Kullback-Leibler divergence) and found the results
to be quite robust with respect to the measure.

Estimation of marginal distributions

The study neglects the fact that observations from the copula are never observed
and one has to rely on pseudo-observations that depend on estimated marginal
distributions. An extensive simulation study in Kim et al. (2007) revealed that
this can be a problem when severely misspecified parametric models are used for
the margins. But the issue is largely resolved when the margins are estimated
nonparametrically. In this case, maximum likelihood estimators are unbiased and
only slightly less efficient (Genest et al., 1995).

In a purely nonparametric context, this is even less of an issue. In fact,
many authors have found that errors stemming from estimating the marginal
distributions are asymptotically negligible when estimating the copula density,
see e.g., (Janssen et al., 2014, Geenens et al., 2017, Nagler and Czado, 2016). This
is explained by the fact that distribution functions can be estimated consistently
at the parametric

√
n-rate, whereas density estimators are necessarily slower (see,

Stone, 1980). Accordingly, we can expect similar results to the ones presented
even if margins were treated unknown.

Choice of smoothing parameters

It is a common theme in nonparametric estimation that the quality of estimators
depends heavily on the choice of smoothing parameters. This is certainly also
the case for the estimators considered in this study. However, we do not think it
is feasible to assess the sensitivity of our results to this choice:

• Smoothing parameters are hardly comparable across estimation methods
because they arrive at the density estimate in fundamentally different ways.

• There are too many smoothing parameters in a vine copula model: There
are 10 (d = 5) resp. 45 (d = 10) pair-copulas, and for each pair-copula
there are between one and three smoothing parameters (depending on the
estimation method).

• Due to the sequential nature of the joint estimator, pair-copula estimators
in later trees are affected by the estimates in earlier trees. This leads to
significant interactions between smoothing parameters at different levels.

In our study, all smoothing parameters were selected by automatic procedures,
which reflects statistical practice. But one should keep in mind that the per-
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Figure 3.4: Scatterplots of pseudo observation ranks for pairs (left) fConc1 (U5)
and fM3Long (U7), (middle) fConc1 (U5) and fM3Trans (U8) and
(right) fM3Long (U7) and fM3Trans (U8) from the MAGIC data set
(n = 2 000).

formance of most estimators can likely be improved by advances in automatic
selection methods.

3.5 Illustration with real data

In the simulation study, the parametric estimator performed best in virtually
all scenarios. But this is simply a consequence of simulating from parametric
models. Real data is not always that well-behaved and nonparametric methods are
required to appropriately capture the dependence. Such a situation is illustrated
in the following example.

We consider a data set representative of measurements taken on images from
the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Telescopes
(https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope) with 19 020
observations for eleven different attributes, but focus only on gamma observations.

To show exemplary results of the different nonparametric copula density es-
timators, we select a random subset (n = 2 000) from the MAGIC data with
respect to to the three variables fConc1, fM3Long and fM3Trans. We compute
pseudo-observations from the data by applying the marginal empirical distribu-
tion functions to each variable. Figure 3.4 shows scatter plots of the three pairs
of the pseudo-observations. The shapes we see are different from what we know
from popular parametric families. We fit several copula density estimators to
each pair and show the results in Figure 3.5. The first column of Figure 3.5 shows
the fitted pair-copula density between fConc1 (U5) and fM3Long (U7), the second
column between fConc1 (U5) and fM3Trans (U8) and the third column contains
the copula density between fM3Long (U7) and fM3Trans (U8).

The first pair of variables fConc1 (U5) and fM3Long (U7) a lot of pseudo-
observations accumulate around the point (0, 1), which is reflected as high density
peaks in all fitted copula densities. But for the accumulation around the point

https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
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Figure 3.5: Exemplary density plots for MAGIC data (n = 2 000). 1st row:
Bernstein estimator bern, 2nd row: penalized quadratic B-splines
estimator pspl2, 3rd row: kernel estimator tll2, 4th row: parametric
estimator par.
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n = 400 n = 2000
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Figure 3.6: The box plots show the mean log-likelihood values attained by the
different estimation methods. Each boxplot on the left hand side:
structure selection based on Kendell’s τ and each boxplot on the right
hand side: structure selection based on cAIC.

(1, 0.3), we observe a difference between the nonparametric estimators bern,
pspl2 and ttl2 and the parametric copula density, which does not mirror this
accumulation.

For the second pair, fConc1 (U5) and fM3Trans (U8), the estimated density
varies considerably between methods. Estimates of pspl2 and ttl2 show peaks
around the points (0, 0) and (0, 1), which reflects the large concentration of points
in the scatter plot in Figure 3.4. The estimators bern and par do not contain
these peaks. We observe similar differences for the estimated densities for the
third data pair, presented in the right column of Figure 3.4. While bern, pspl2
and ttl2 show density peaks around the accumulation points (1, 0) and (1, 1),
but the estimated parametric copula does not exhibit these structures of the
data.

The previous examples have illustrated situations, in which the parametric
estimator fails because of its lack of flexibility. In such situations, nonparametric
methods are required to adequately capture the true dependence structure. How-
ever, for illustrations, we merely looked at three unconditional pairs of variables,
not a full dependence model.

To analyze the the performance of the estimators in an application, we esti-
mate nonparametric vine copulas for the complete MAGIC data set with eleven
attributes focusing on gamma observations. Because the true density is unknown
in applications, we assess the performance of the estimators via cross-validation.
Similar to our simulation study, we randomly draw a subset Utrain of the data
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of sizes n = 400, 2 000, apply the estimators, and calculate the out-of-sample
log-likelihood on 1 000 randomly selected remaining observations U test, i.e.,

`(U test) =
1

1 000

1 000∑
i=1

ln ĉ(U
(i)
test),

where ĉ is a vine copula density estimator based on Utrain. This is repeated
N = 100 times for sample sizes n = 400 and n = 2 000. The results are
summarized as box plots in Figure 3.6 for all estimators and structure selection
based on Kendall’s τ (left box) and cAIC (right box).

The parametric estimator performs unsatisfactory for n = 400 since it varies
enormously for both structure selection methods. But also for n = 2 000, the
parametric estimator is outperformed by most nonparametric alternatives. The
performance of the nonparametric methods varies notably between methods. The
methods bern and tll1 do not perform well, but the other methods clearly
outperform par. Furthermore, the performance differs significantly with respect
to the structure selection criterion for bern1 and pspl1, pspl2. For small
sample size (n = 400) and using Kendall’s τ as selection criterion, tll0 results
with highest out-of-sample likelihood, directly followed by pspl2. But choosing
cAIC instead, the log-likelihood of pspl2 increases, but not for tll0. The
situation is similar for n = 2 000. We conclude that the more sophisticated
nonparametric methods adequately reflect the distribution of the data. In contrast,
the dependence structure observed in Figure 3.4 can not be captured well with
parametric models.

3.6 Conclusion

This chapter compared existing methods for nonparametric estimation of sim-
plified vine copula densities. The estimators considered are the non-penalized
Bernstein estimator, the penalized Bernstein estimator, penalized B-spline estima-
tors (linear and quadratic), and kernel weighted local likelihood estimators (local
constant, linear, and quadratic). We compared these methods by an extensive
simulation study and a real data set.

The simulation study comprises several scenarios for sample size, dimension,
strength of dependence, and tail dependence. The simulation models are set up as
parametric vine copulas with randomized vine structure, pair-copula families, and
parameters. Overall, the kernel methods were found to perform best (especially
the local quadratic version), followed by the penalized B-spline estimators. The
Bernstein estimators performed worst. An exception to this pattern was found
in scenarios with small sample size, weak dependence, and no tail dependence.
Here, the penalized B-spline and Bernstein estimators outperformed the kernel
methods. Additionally, we demonstrated the need for nonparametric methods
on real data whose dependence structure cannot be adequately captured by a
parametric estimator.
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Overall, we found that no estimator is uniformly better than the others; it
depends on the data which is to be preferred. Our analysis highlighted which
factors drive the performance of the various methods, and which methods should
be preferred for certain scenarios. In applications, statisticians can determine the
characteristics of their data by an exploratory analysis, and make a well-informed
choice based on these results.



4
Evading the curse of dimensionality

with simplified vine copulas

4.1 Introduction

Density estimation is one of the most classical problems in nonparametric statis-
tics. Most commonly, nonparametric density estimators are used for exploratory
data analysis, but find many further applications in fields such as astrophysics,
forensics, or biology (Bock et al., 2004, Aitken and Lucy, 2004, Kie et al., 2010).
Many of these applications involve the estimation of multivariate densities. How-
ever, most applications so far focus on two- or three-dimensional problems. Fur-
thermore, the persistent interest amongst practitioners is contrasted by a falling
tide of methodological contributions in the last two decades.

A probable reason is the prevalence of the curse of dimensionality : due to
sparseness of the data, nonparametric density estimators converge more slowly
to the true density as dimension increases. Put differently, the number of ob-
servations required for sufficiently accurate estimates grows excessively with the
dimension. As a result, there is very little benefit from the ever-growing sample
sizes in modern data. Scott (2008, Section 7.2) illustrates this phenomenon for
a kernel density estimator when the standard Gaussian is the target density: to
achieve an accuracy comparable to n = 50 observations in one dimension, more
then n = 106 observations are required in ten dimensions.

In general, this issue cannot be solved: Stone (1980) proved that any estimator f̂
that is consistent for the class of p times continuously differentiable d-dimensional
density functions converges at a rate of at most n−p/(2p+d). More precisely, he
showed that if an estimator satisfies

f̂(x) = f(x) +Op(n
−r),

for all densities f of this class and some r > 0, then it must hold r ≤ p/(2p+ d).
The curse of dimensionality manifests itself in the d in the denominator. It implies
that the optimal convergence rate necessarily decreases in higher dimensions.
Thus, to evade the curse of dimensionality, all we can hope for is to find subclasses
of densities for which the optimal convergence rate does not depend on d. One
such subclass is the density functions corresponding to independent variables,
which can be estimated as a simple product of univariate density estimates. But
the independence assumption is very restrictive. We also want the subclass to be
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rich and flexible. We will show that simplified vine densities are such a class and
provide a useful approximation even when the simplifying assumption is violated.

4.1.1 Nonparametric density estimation based on simplified
vine copulas

We introduce a nonparametric density estimator whose convergence speed is
independent of the dimension. The estimator is build on the foundation of a
simplified vine copula model, where the joint density is decomposed into a product
of marginal densities and bivariate copula densities, see Section 2.2.3.

First, we separate the marginal densities and the copula density (which captures
the dependence between variables). Let (X1, . . . , Xd) ∈ Rd be a random vector
with joint distribution F and marginal distributions F1, . . . Fd. Provided densities
exist, Sklar’s Theorem for densities (see Section 2.1) allows us to rewrite the
joint density f as the product of a copula density c and the marginal densities
f1, . . . , fd: for all x ∈ Rd,

f(x) = c
{
F1(x1), . . . , Fd(xd)

}
× f1(x1)× · · · × fd(xd),

where c is the density of the random vector
(
F1(X1), . . . , Fd(Xd)

)
∈ [0, 1]d. In

order to estimate the joint density f , we can therefore obtain estimates of the
marginal densities f1, . . . , fd and the copula density c separately, and then plug
them into the above formula. With respect to the curse of dimensionality, nothing
is gained (so far) since estimation of the copula density is still a d-dimensional
problem.

A crucial insight from Section 2.2.2 is that any d-dimensional copula density
can be decomposed into a product of d(d− 1)/2 bivariate (conditional) copula
densities. For instance, a three-dimensional joint density can be decomposed as

f(x1, x2, x3) = c1,2

{
F1(x1), F2(x2)

}
× c2,3

{
F2(x2), F3(x3)

}
× c1,3;2

{
F1|2(x1|x2), F3|2(x3|x2) ; x2

}
× f1(x1)× f2(x2)× f3(x3),

where c1,3;2{F1|2(x1|x2), F3|2(x3|x2) ; x2} is the joint density corresponding to the
conditional random vector

(
F1|2(X1|X2), F3|2(X3|X2)

)∣∣X2 = x2. Note that the
copula of the vector depends on the value x2 of the conditioning variable X2.
To reduce the complexity of the model, it is usually assumed that the influence
of the conditioning variable on the copula can be ignored. In this case, the
conditional density c1,3;2 collapses to an unconditional — and most importantly,
two-dimensional — object, and one speaks of the simplifying assumption or a
simplified vine copula model/PCC. For general dimension d, a similar decomposi-
tion into the product of d marginal densities and d(d− 1)/2 pair-copula densities
holds.

Some copula classes where the simplifying assumption is satisfied are given
in Stöber et al. (2013). An important special case is the Gaussian copula. It is



Chapter 4 Evading the curse of dimensionality with simplified vine copulas 47

the dependence structure underlying a multivariate Gaussian distribution and
can be fully characterized by d(d − 1)/2 partial correlations. Note that under
a multivariate Gaussian model, conditional correlations and partial correlations
coincide (see, e.g., Kunihiro et al., 2004). This property is in direct correspondence
to the simplifying assumption which states that all conditional copulas collapse
to partial copulas. When the Gaussian copula is represented as a vine copula, it
consists of d(d− 1)/2 Gaussian pair-copulas where the copula parameter of each
pair corresponds to the associated partial correlation. In a general simplified vine
copula model, we replace each Gaussian pair-copula by an arbitrary bivariate
copula. Such models are extremely flexible and encompass a wide range of
dependence structures. The class of simplified vine distributions is even more
flexible, because it allows to couple a simplified vine copula model with arbitrary
marginal distributions.

Under the simplifying assumption, a d-dimensional copula density can be
decomposed into d(d − 1)/2 unconditional bivariate densities. Consequently,
the estimation of a d-dimensional copula density can be subdivided into the
estimation of d(d− 1)/2 two-dimensional copula densities. Intuitively, we expect
that the convergence rate of such an estimator will be equal to the rate of a
two-dimensional estimator and, thus, there is no curse of dimensionality. This is
formally established in Theorem 4.1.

Nonparametric estimation of simplified vine copula densities has been discussed
earlier using kernels (Lopez-Paz et al., 2012) and smoothing splines (Kauermann
and Schellhase, 2014). However, both contributions lack an analysis of the
asymptotic behavior of the estimators. We treat the more general setting of
densities with arbitrary support. Theorem 4.1 shows under high-level conditions
that the convergence rate of a nonparametric estimator of a simplified vine density
is independent of the dimension — an extremely powerful property that has been
overlooked so far.

4.1.2 Organization

A generic estimator of simplified vine densities is described in detail in Section 4.2.
In Section 4.3 we show under high-level assumptions that such an estimator is
consistent and that the convergence rate is independent of the dimension. Hence,
there is no curse of dimensionality. In Section 4.4 we discuss how the method
can be implemented as a kernel estimator. For this particular implementation,
we validate the high-level assumptions of Theorem 4.1 and establish asymptotic
normality. We illustrate its advantages over the classical multivariate kernel
density estimator via simulations in both simplified and non-simplified settings
(Section 4.5). The method is applied to a classification problem from astrophysics
in Section 4.6. We conclude with a discussion of our results and provide links to
the existing literature on the simplifying assumption in Section 4.7.
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4.2 Nonparametric density estimators based on
simplifed vine copulas

Let X = (X1, . . . , Xd) be a random vector with continuous joint distribution F
and marginal distributions F1, . . . , Fd. The support of X and X`, ` = 1, . . . , d,
will be denoted as ΩX and ΩX` , respectively. Let further X(i) = (X

(i)
1 , . . . , X

(i)
d ),

i = 1, . . . , n, be iid copies of X (acting as observations). Assume that F is a
simplified vine distribution with structure V = (E1, . . . , Ed−1). Provided densities
exist, we can use Sklar’s theorem and (2.4) to write the joint density f for all
x = (x1, . . . , xd) ∈ ΩX as

f(x) = c
{
F1(x1), . . . , Fd(xd)

}
×

d∏
l=1

f`(x`)

=
d−1∏
m=1

∏
e∈Em

cje,ke;De
{
Fje|De(xje|xDe), Fke|De(xke|xDe)

}
×

d∏
l=1

f`(x`). (4.1)

The conditional distribution functions Fke|De(xke|xDe) can equivalently be ex-
pressed as Gke|De(uke |uDe), where u = (u1, . . . , ud) = (F1(x1), . . . , Fd(xd)). This
allows us to decompose Fke|De recursively into marginal distributions and h-
functions (see Section 2.2.4).

The idea is now to estimate all functions in the above expression separately.
We proceed as follows:

1. Based on the observations (X
(i)
1 , . . . , X

(i)
d ), i = 1, . . . , n, we obtain estimates

f̂1, . . . , f̂d, F̂1, . . . , F̂d of the marginal densities f1, . . . , fd and distribution func-
tions F1, . . . , Fd.

2. Recall that c is the density of the random vector U =
(
F1(X1), . . . , Fd(Xd)

)
.

We do not have access to observations from this vector. However, we can
define pseudo-observations U (i) =

(
Û

(i)
1 , . . . , Û

(i)
d

)
by replacing F1, . . . , Fd with

the estimators from the last step:(
Û

(i)
1 , . . . , Û

(i)
d

)
=
(
F̂1(X

(i)
1 ), . . . , F̂d(X

(i)
d )
)
, i = 1, . . . , n. (4.2)

3. Estimate all pair-copula densities and h-functions with Algorithm 1 from
Section 3.2.2.

At the end of the procedure we have estimates for all marginal distribu-
tions/densities, bivariate copula densities, and all h-functions that are required
to evaluate the R-vine density (4.1). For all x ∈ ΩX we define an estimate of the



Chapter 4 Evading the curse of dimensionality with simplified vine copulas 49

simplified vine density f as

f̂vine(x) =
d−1∏
m=1

∏
e∈Em

ĉje,ke;De
{
F̂je|De(xje|xDe), F̂ke|De(xke|xDe)

}
×

d∏
`=1

f̂`(x`).

(4.3)

4.3 Main results

We shall establish weak consistency of the simplified vine density estimator defined
in Section 4.2. We furthermore show that its probabilistic convergence rate does
not increase with dimension and, hence, there is no curse of dimensionality.

4.3.1 Consistency and rate of convergence

The sequential nature of the estimator complicates its analysis. Estimation errors
will propagate from one tree to the next and affect the estimation in higher trees.
We impose high-level assumptions on the uni- and bivariate estimators that allow
us to establish our main result.

The first assumption considers the consistency of univariate density and distri-
bution function estimators. Although estimators may converge at different rates,
we will formulate all assumptions with respect to the to the same rate n−r, r > 0.
This rate then has to be the slowest among all estimators involved — typically
the rate of the pair-copula density estimator.

Assumption 4.1. For all ` = 1, . . . , d, and all x` ∈ ΩX`, it holds

(a) f̂`(x`)− f`(x`) = Op(n
−r), (b) sup

x`∈ΩX`

∣∣F̂`(x`)− F`(x`)∣∣ = oa.s.(n
−r).

Next, assume we are in an ideal situation where, for each edge e ∈ Em,m =
1, . . . , d− 1, we have access to the true (but unobservable) pair-copula samples

U
(i)
je|De := Fje|De

(
X

(i)
je
|X(i)

De

)
, U

(i)
ke|De := Fke|De

(
X

(i)
ke
|X(i)

De

)
, (4.4)

i = 1, . . . , n,. Recall that estimators are functions of the data, although this
dependence is usually not made explicit in notation. Denote

cje,ke;De(u, v) := cje,ke;De
(
u, v, U

(1)
je|De , . . . , U

(n)
ke|De

)
(4.5)

as the oracle pair-copula density estimator that is based on the random samples
(4.4). The h-function estimators corresponding to (4.5) are denoted hje|ke;De and

hke|je;De . The second assumption requires the pair-copula density and h-function
estimators to be consistent in this ideal world. For the h-functions we need strong
uniform consistency on compact interior subsets of [0, 1]2. We further assume
that the errors from h-function estimation vanish faster than n−r.
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Assumption 4.2. For all e ∈ Em,m = 1, . . . , d− 1, it holds:

(a) for all (u, v) ∈ (0, 1)2,

cje,ke;De(u, v)− cje,ke;De(u, v) = Op(n
−r),

(b) for every δ ∈ (0, 0.5],

sup
(u,v)∈[δ,1−δ]2

∣∣hje|ke;De(u|v)− hje|ke;De(u|v)
∣∣ = oa.s.(n

−r),

sup
(u,v)∈[δ,1−δ]2

∣∣hke|je;De(u|v)− hke|je;De(u|v)
∣∣ = oa.s.(n

−r).

In practice, one has to replace (4.4) by pseudo-observations which have to
be estimated. Thus, we only have access to perturbed versions of the random
variables (4.4). Similar to a Lipschitz condition, the last assumption ensures
that the pair-copula and h-function estimators are not overly sensitive to such
perturbations. Denote

ĉje,ke;De(u, v) := cje,ke;De
(
u, v, Û

(1)
je|De , . . . , Û

(n)
ke|De

)
(4.6)

as the estimator based on pseudo-observations Û
(i)
je|De , Û

(i)
ke|De (as defined in Algo-

rithm 1). The h-function estimators corresponding to (4.6) are denoted ĥje|ke;De
and ĥke|je;De , respectively.

Assumption 4.3. For all e ∈ Em,m = 1, . . . , d− 1, it holds:

(a) for all (u, v) ∈ (0, 1)2,

ĉje,ke;De(u, v)− cje,ke;De(u, v) = Op(ae,n),

(b) for every δ ∈ (0, 0.5],

sup
(u,v)∈[δ,1−δ]2

∣∣ĥje|ke;De(u|v)− hje|ke;De(u|v)
∣∣ = Oa.s.(ae,n),

sup
(u,v)∈[δ,1−δ]2

∣∣ĥke|je;De(u|v)− hke|je;De(u|v)
∣∣ = Oa.s.(ae,n),

where

ae,n := sup
i=1,...,n

{
|Û (i)

je|De − U
(i)
je|De

∣∣+
∣∣Û (i)

ke|De − U
(i)
ke|De

∣∣}.
Finally, we require the true pair-copula densities to be smooth. Note that
smoothness of pair-copula densities already guarantees smoothness of related
h-functions by (2.6).
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Assumption 4.4. For all e ∈ Em, m = 1, . . . , d− 1, the pair-copula densities
cje,ke;De are continuously differentiable on (0, 1)2.

Now we can state our theorem. The proof is deferred to Section 4.8.

Theorem 4.1. Let f be a d-dimensional density corresponding to a simplified
vine distribution with structure V = (T1, . . . , Td−1) and let (X

(i)
1 , . . . , X

(i)
d ), i =

1, . . . , n, be iid observations from this density. Denote further f̂vine as the
estimator from Section 4.2. Under Assumptions 4.1–4.4, it holds for all x ∈
ΩX ,

f̂vine(x)− f(x) = Op(n
−r).

Usually, convergence of nonparametric density estimators slows down as dimen-
sion increases. This phenomenon is widely known as the curse of dimensionality
and restricts the practical application of the estimators to very low-dimensional
problems. By Theorem 4.1, the vine copula based density estimator inherits the
convergence rate of the bivariate copula density estimator. It does not depend
on the dimension d and, therefore, suffers no curse of dimensionality. This is a
direct consequence of the simplifying assumption allowing us to subdivide the
d-dimensional estimation problem into several one- and two-dimensional tasks.

Assuming that the pair-copula densities are p times continuously differentiable,
we can achieve convergence with r = p/(2p + 2). Recalling from Stone (1980)
that a general nonparametric density estimator has optimal rate p/(2p+ d), we
see that the vine copula based estimator converges at a rate that is equivalent to
the rate of a two-dimensional classical estimator. As this property is independent
of dimension, we can expect large benefits of the vine copula approach especially
in higher dimensions. We emphasize that a necessary condition for Theorem 4.1
to hold with r = p/(2p+ 2) is that the density f belongs to the class of simplified
vine densities. If this is not the case, the estimator described in Section 4.2 is
not consistent, but converges towards a simplified vine density that is merely an
approximation of the true density. More specifically, its limit is the partial vine
copula approximation, first defined in Spanhel and Kurz (2017). In Section 4.5
we will illustrate that even in this situation an estimator based on simplified vine
copulas can outperform the classical approach on finite samples.

Remark 4.1. Theorem 4.1 allows for densities f with arbitrary support. Their
support, ΩX , only relates to the marginal distributions; copulas are always sup-
ported on a subset of [0, 1]d (zero-density subsets are detected automatically by
nonparametric estimators as n→∞). If some of the X` have bounded support,

we just have to use estimators for f̂` that takes this into account. This underlines
how flexible the vine copula based approach is.

Remark 4.2. It is straightforward to extend Theorem 4.1 to non-simplified vine
densities by extending the pair-copula densities to functions of more than two
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variables. Besides that, the proof given in Section 4.8 does not make use of
the simplifying assumption at all. The simplifying assumption is necessary for
r = p/(2p+ 2) to be feasible. More generally, if we assume that the pair-copulas
depend on at most d′ conditioning variables, and walk through the steps of the
proof, we find that the optimal rate is p/(2p+ 2 + d′).

Remark 4.3. Theorem 4.1 can be extended to

sup
x∈ΩX

∣∣f̂vine(x)− f(x)
∣∣ = Op

{
(lnn/n)r

}
,

provided that the rate n−r in our assumptions is replaced by (lnn/n)r and holds
uniformly on ΩX` and [0, 1]2 respectively. But this requires that the pair-copula
densities are bounded which is unusual. For example, it does not hold when f
is a multivariate Gaussian density with non-diagonal covariance matrix. If the
assumptions are met, f̂vine is able to achieve the optimal uniform rate of a two-
dimensional nonparametric density estimator which is attained at r = p/(2p+ 2)
(see, Stone, 1983).

Assumptions 4.1–4.3 are very general and hold for a large class of estimators
under mild regularity conditions. In Section 4.4 we validate them for a particular
implementation which will be used in the simulations (Section 4.5).

4.3.2 A note on the asymptotic distribution

We also want to give a brief and general account of the asymptotic distribution
of the estimator. Let d∗ = d+ d(d− 1)/2 and f̂ ∗(x) ∈ Rd∗ be the stacked vector

of all components of the product f̂vine(x) in Eq. (4.3), i.e.,

f̂ ∗(x) :=
(
f̂1(x1), f̂2(x2), . . . , ĉje,ke|De

{
F̂je|De(xje|xDe), F̂ke|De(xke|xDe)

}
, . . .

)
,

and similarly f ∗(x). Then
∏d∗

k=1 f̂
∗
k = f̂vine(x) and

∏d∗

k=1 f
∗
k = f(x). The

following result is a simple application of the multivariate delta method.

Proposition 4.1. If for some µx ∈ Rd∗, Σx ∈ Rd∗×d∗ ,

nr
{
f̂ ∗(x)− f ∗(x)

} d→ Nd∗
(
µx,Σx

)
, (4.7)

then for all x ∈ Rd,

nr
{
f̂vine(x)− f(x)

} d→ Nd
(
θ>µx,θ

>Σxθ
)
,

where θk =
∏

j 6=k f
∗
j (x), k = 1, . . . , d∗.

The standard way to establish the joint normality assumption (4.7) is to check
the conditions of the multivariate Lindeberg-Feller central limit theorem (see, van
der Vaart, 1998, Proposition 2.27). We will do this for a particular implementation
in Section 4.4 (see Proposition 4.5).
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4.4 On an implementation as kernel estimator

So far we did not specify how the marginal densities, pair-copula densities, and
h-functions should be estimated. In general, we can do this parametrically, semi-
parametrically, or nonparametrically and tap into the full potential of existing
methods. In this section, we discuss a particular implementation as a kernel
estimator. We give low-level conditions under which the assumptions of The-
orem 4.1 can be verified. We present corresponding consistency results and
establish asymptotic normality of f̂vine. Similar results could be obtained for
other implementations. Another issue is that we assumed the structure of the
vine to be known. Some heuristics to select an appropriate vine structure are
discussed at the end of this section.

4.4.1 Estimation of marginal densities and distribution
functions

Univariate kernel density and distribution function estimators have been exten-
sively studied in the literature. To this day, they are most popular in their original
form (Rosenblatt, 1956, Parzen, 1962): for all x ∈ R,

f̂`(x) =
1

nbn

n∑
i=1

K

(
X

(i)
` − x
bn

)
, F̂`(x) =

1

n

n∑
i=1

J

(
X

(i)
` − x
bn

)
, (4.8)

where bn > 0 is the bandwidth parameter, K is a kernel function and J(x) =∫ x
−∞K(s)ds the integrated kernel. We impose the following assumptions on the

kernel function, bandwidth sequence, and marginal distributions.

Assumption 4.5.

K1 The kernel function K is a symmetric probability density function supported
on [−1, 1] and has continuous first-order derivative.

K2 The bandwidth sequence satisfies bn → 0 and nb4
n/ lnn→∞.

Assumption 4.6.

M1 For all ` = 1 . . . , d, f` is strictly positive on R and has uniformly contin-
uous second-order derivative.

K1 is a common technical condition satisfied by many popular kernels (e.g.,
Epanechnikov and cosine kernels), but it excludes the Gaussian kernel. The
restriction to kernels with bounded support can usually be relaxed, but brings
additional difficulties in the proofs.

The following result gives the rate of strong uniform consistency for f̂`.
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Proposition 4.2. Under Assumptions 4.5 and 4.6, the estimator (4.8) satis-
fies

sup
x∈R

∣∣f̂`(x)− f`(x)
∣∣ = Oa.s.

(
b2
n +

√
lnn/(nbn)

)
.

for all ` = 1 . . . , d.

Proof. A standard result for kernel density estimation (see, e.g., Scott, 2008,
Section 6.2.1) is

E
{
f̂`(x)

}
− f`(x) =

1

2
b2
nσ

2
K

∂2

∂x2
f`(x) + o(b2

n),

where σ2
K =

∫
[−1,1]

x2K(x)dx < ∞ by K1 and ∂2/∂x2f`(x) is bounded by M1.

The claim then follows from Giné and Guillou (2002, Theorem 2.3) which states

sup
x∈R

∣∣f̂`(x)− E
{
f̂`(x)

}∣∣ = Oa.s.

(√
lnn/(nbn)

)
.

Proposition 4.2 implies pointwise weak consistency of f̂` as well as strong uniform
consistency of F̂` with the same rate. In both cases the rate could be improved,
but the result will be sufficient for our purposes. The mean-square optimal
bandwidth for f̂` is bn = O(n−1/5) for which Proposition 4.2 holds with rate
Oa.s.(n

−2/5
√

lnn).
Extensions of the above estimator comprise variable bandwidth methods

(Sain and Scott, 1996), transformation techniques for heavy-tailed distributions
(Bolancé et al., 2008), and boundary kernel estimators that avoid bias and con-
sistency issues on bounded support (Bouezmarni and Rombouts, 2010).

4.4.2 Estimation of pair-copula densities

Nonparametric estimation of copula densities requires caution because they are
supported on the unit hypercube. An estimator that takes no account of this
property will suffer from bias issues at the boundaries of the support. A few kernel
estimators particularly suited for bivariate copula densities were proposed in the
literature (Gijbels and Mielniczuk, 1990, Charpentier et al., 2006, Geenens et al.,
2017). Other nonparametric estimators can be constructed based on Bernstein
polynomials (Sancetta and Satchell, 2004), B-splines (Kauermann et al., 2013),
or wavelets (Genest et al., 2009).

We shall focus on the local-constant transformation estimator of Geenens et al.
(2017), explained in more detail in Section 3.2.1. Using the same notation, the
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estimator can be written as

cje,ke;De(u, v) =
1

n

n∑
i=1

K

{
B−1
n

(
Φ−1(u)−Φ−1(U

(i)
je|De

)

Φ−1(v)−Φ−1(V
(i)
ke|De

)

)}
φ
{

Φ−1(u)
}
φ
{

Φ−1(v)
} . (4.9)

In order to verify the high-level assumptions 4.2a and 4.3a, we need the following
conditions to hold for all e ∈ E1, . . . , Ed−1:

Assumption 4.7.

C1 The true pair-copula densities cje,ke;De are twice continuously differentiable
on (0, 1)2.

C2 The transformed densities ψje,ke;De(x, y) = cje,ke;De
{

Φ(x),Φ(v)
}
φ(x)φ(y)

have continuous and bounded first- and second-order derivatives on R2.

C1 is a smoothness condition that is very common in nonparametric estimation.
C2 is less standard as it relates to the transformed density. Sufficient conditions
for C2 are given in Lemma A.1 of (Geenens et al., 2017) and can be verified for
many parametric families, including the ones used in our simulation study.

To avoid unnecessary technicality, we will assume here that the bandwidth
matrix is a multiple of the identity matrix: Bn = bn × I2.

Proposition 4.3. Under Assumptions 4.5 and 4.7, the estimator (4.9) satis-
fies for all (u, v) ∈ (0, 1)2, e ∈ E1, . . . , Em,

cje,ke;De(u, v)− cje,ke;De(u, v) = Op

(
b2
n +

√
1/(nb2

n)
)
,

ĉje,ke;De(u, v)− cje,ke;De(u, v) = Op(ae,n).

Proof. For the first equality, see Corollary 3.4 of Nagler (2014). For the second,
see Lemma 4.1 in Section 4.8.2.

When the mean-square optimal bandwidth bn = O(n−1/6) is used, the right hand
side of the first equality is Op

(
n−1/3

)
.

4.4.3 Estimation of h-functions

Recall that h-functions are actually conditional distribution functions:

hje|ke;De(u|v) = Pr(Uje|De ≤ u | Uke|De = v) = E
{
1(Uje|De ≤ u) | Uke|De = v

}
.

The second equality relates the conditional cdf to a regression problem. Hence, any
nonparametric regression estimator is suitable for estimation of the h-functions.
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In our case, it is even simpler to integrate the density estimate to obtain an
estimate of the corresponding h-function: for the oracle estimators,

hje|ke;De(u|v) :=

∫ u

0

cke,je;De(s, v)ds,

hke|je;De(v|u) :=

∫ v

0

cje,ke;De(u, s)ds,

(4.10)

and the feasible estimators ĥje|ke;De and ĥke|je;De are defined similarly. Such
estimators are closely related to the smoothed Nadaraya-Watson conditional
estimator of the conditional distribution (Hansen, 2004). In fact, they coincide
when we choose diagonal Bn in (4.9). For an explicit formula, see (4.18) in
Section 4.8.2. The following result puts this estimator in the context of 4.2b and
4.3b.

Proposition 4.4. Under Assumptions 4.5 and 4.7, the estimator defined by
(4.10) and (4.9) satisfies for all δ ∈ (0, 0.5], and e ∈ E1, . . . , Em,

sup
(u,v)∈[δ,1−δ]2

∣∣hje|ke;De(u|v)− hje|ke;De(u|v)
∣∣ = Oa.s.

(
b2
n +

√
lnn/(nbn)

)
,

sup
(u,v)∈[δ,1−δ]2

∣∣hke|je;De(u|v)− hke|je;De(u|v)
∣∣ = Oa.s.

(
b2
n +

√
lnn/(nbn)

)
,

sup
(u,v)∈[δ,1−δ]2

∣∣ĥje|ke;De(u|v)− hje|ke;De(u|v)
∣∣ = Oa.s.

(
ae,n
)
,

sup
(u,v)∈[δ,1−δ]2

∣∣ĥke|je;De(u|v)− hke|je;De(u|v)
∣∣ = Oa.s.

(
ae,n
)
.

Proof. See Lemmas 4.2 and 4.3 in Section 4.8.2.

The optimal rate of convergence in the first two equalities is Oa.s.

{
(lnn/n)2/5

}
and attained for bn = O

{
(lnn/n)1/5

}
.

Assumption 4.2b requires that the error of estimating the h-function vanishes
faster than the error of pair-copula density estimation. Because conditional dis-
tributions can be estimated at a faster rate than joint densities, this is readily
achieved by using mean-square optimal bandwidths in each component. How-
ever, it may be more convenient to use the same bandwidth for pair-copula
density as well as h-function estimation. It seems natural to use the mean-square
optimal rate for pair-copula density estimation, bn ∼ n−1/6. But this violates
Assumption 4.2, because both estimators converge with the same rate: n−1/3. To
overcome this, we have to increase the speed of bn by a small amount, i.e., to un-
dersmooth the pair-copula density estimate. When bn = αnn

−1/6, αn = o(1), the
pair-copula density estimators converges with rate α−1

n n−1/3 and the h-function

estimator with (almost sure) rate α2
nn
−1/3 +

√
lnnα

−1/2
n n−5/12 = o(α−1

n n−1/3).
But the sequence αn can converge arbitrarily slow. So we should not expect any
problems with using the mean-square optimal rate bn = n−1/6 in practice. This
was confirmed by preliminary numerical experiments.
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4.4.4 Asymptotic normality

We now put all pieces together and show that the estimator f̂vine composed of
(4.8), (4.9), and (4.10) is asymptotically normal. We start by establishing the joint
asymptotic normality of all components. The proof is deferred to Section 4.8.3.

Proposition 4.5. Assume that

(i) Assumptions 4.5, 4.6, and 4.7 hold,

(ii) f̂` and F̂` are defined by (4.8) with (marginal) bandwidth parameter bn,m,

(iii) ĉje,ke;De are defined by (4.9) with (copula) bandwidth parameter bn,c,

(iv) ĥje|ke;De and ĥje|ke;De are defined by (4.10) and (4.9) with (h-function)
bandwidth parameter bn,h,

(v) it holds bn,c = O(n−1/6), and for sufficiently large n,

b2
n,c < bn,m ≤ bn,h ≤ min{bn,c, n−1/6/ log n}.

Recall the definition of f̂ ∗(x), f ∗(x), and d∗ from Section 4.3.2. It holds for
all x ∈ Rd,

(nb2
n,c)

1/2
{
f̂ ∗(x)− b2

n,cµx − f ∗(x)
} d→ Nd∗

(
0,Σx

)
, (4.11)

where µx = (0>d , µ̃
>
x )>, µ̃x = (µ̃x,e)e∈E1,...,Ed−1

, and Σx is diagonal with first
d diagonal entries equal to 0 and remaining diagonal entries (σ̃x,e)e∈E1,...,Ed−1

.
Explicit expressions for µ̃x,e and σ̃x,e are given in (4.26) and (4.28) in Sec-
tion 4.8.3.

The asymptotic normality of f̂vine follows from an application of the delta
method.

Corollary 4.1. Under the assumptions of Proposition 4.5 it holds for all
x ∈ Rd,

(nb2
n,c)

1/2
{
f̂vine(x)− b2

n,cθ
>µx − f(x)

} d→ N
(
0,θ>Σxθ

)
,

where θk =
∏

j 6=k f
∗
j (x), k = 1, . . . , d∗, and µx, Σx are as in Proposition 4.5.

4.5 Simulations

In this section, we study the finite sample behavior of the vine copula based
kernel density estimator. We illustrate its advantages compared with the classical
kernel density estimator in three scenarios that comprise one simplified and two
non-simplified target densities.
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4.5.1 Implementation of estimators

The study was carried out in the statistical computing environment R (R Core

Team, 2014). We use the implementation of f̂vine introduced in the previous
section:

Marginal densities are estimated by the standard kernel density estimator
(4.8) with the Epanechnikov kernel. Bandwidths are selected by the plug-in
method of Chacón and Duong (2010), as implemented in the function hpi

of the ks package (Duong, 2014).

Marginal distributions are estimated by integrating the estimates of the
marginal densities.

Pair-copula densities are estimated by the transformation estimator (4.9)
with bandwidth matrix selected by the normal reference rule (see, Nagler,
2014, Section 3.4.4).

The vine structure is considered unknown and selected by the method of
Dißmann et al. (2013) using empirical estimates of τe as weight function
(see Section 3.2.3).

The estimator f̂vine is implemented in the R package kdevine (Nagler, 2017). The
package also includes estimators for marginals with bounded support as well as
more sophisticated pair-copula estimators which further improve the performance.
For the classical multivariate kernel density estimator (f̂mvkde from here on) we
use the function kde provided by the ks package (Duong, 2014). It selects the
bandwidths by the plug-in method of Chacón and Duong (2010).

4.5.2 Performance measurement

To assess the convergence behavior of the estimators under increasing dimension,
we consider five different sample sizes n = 200, 500, 1 000, 2 500, 5 000, and three
different dimensions d = 3, 5, 10. For any fixed target density, sample size, and
dimension, we measure the performance as follows:

1. Simulate nsim = 250 samples of size n, from a d-dimensional target density f .

2. On each sample, estimate the density with estimators f̂vine and f̂mvkde.

3. For each estimator f̂ ∈
{
f̂vine, f̂mvkde

}
and sample, calculate the integrated

absolute error (IAE) as a performance measure:

IAE
(
f̂
)

:=

∫
Rd

∣∣f̂(x)− f(x)
∣∣dx.

The integral is estimated by importance sampling Monte Carlo (see Sec-
tion 3.3.3), where we take the true density f as the sampling distribution. The
number of Monte Carlo samples was set to 1 000.
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In the following section we will present the median IAE attained over 250 simu-
lations.

4.5.3 Results

In the following, we illustrate the main insights of our numerical experiments in
three scenarios — one where the simplifying assumption holds, and two where it
does not. Since the simplifying assumption is a property of the copula, we focus on
this part and set the marginal densities to standard Gaussian in all scenarios. For
these margins, the two estimators f̂vine and f̂mvkde are asymptotically equivalent
when d = 2. But they become different as soon as the simplifying assumption
becomes relevant, i.e., when d > 2. Hence, differences in the performance of the
two estimators can be directly related to the fact that f̂vine assumes a simplified
model.

Scenario 1: simplified models

The first scenario concerns the estimation of a multivariate Gaussian density. For
simplicity, we choose the model parameters such that all pair-wise Kendall’s τ are
equal. Recall that the simplifying assumption is a property of the dependence,
i.e. the copula. The copula underlying a multivariate Gaussian density is the
Gaussian copula which belongs to the class of simplified vine distributions (Stöber
et al., 2013). Consequently, the vine copula based estimator is consistent in this
situation.

Figure 4.1 shows the median IAE of f̂vine (circles) and f̂mvkde (triangles) for
varying sample size n and dimension d. The vine copula based estimator strictly
outperforms the classical estimator by a considerable margin. As predicted by
Theorem 4.1, we observe that — in contrast to the classical kernel density estima-
tor — the vine copula based estimator converges at the same rate independent of
dimension. Thus, the gap widens as dimension or sample size increase. For d = 5,
f̂vine is almost two times as accurate; for d = 10 almost three times as accurate.
These numbers are remarkable considering how slowly f̂mvkde can improve its
accuracy when increasing sample size.

The same conclusions can be drawn when the data originate from a Clayton
copula (see Figure 4.2), which also satisfies the simplifying assumption (Stöber
et al., 2013).

Scenario 2: mild violations of the simplifying assumption

Our second scenario (Gumbel or Frank copulas), violates the simplifying assump-
tion; see Stöber et al. (2013, Theorem 3.1). Again, we choose the parameters

such that all pair-wise Kendall’s τ are equal. In this case, f̂mvkde is guaranteed
to outperform f̂vine as n → ∞, because the latter is not consistent. On finite
samples, however, the picture seems to be different.

The performance of the two estimators in this scenario is displayed in Figure 4.3
and Figure 4.4. For d = 3, f̂vine is slightly worse than its competitor, but the
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Figure 4.1: Gaussian copula: Median integrated absolute error achieved by the
two estimators for varying sample size n, dimension d, and Kendall’s
τ .
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Figure 4.2: Clayton copula: Median integrated absolute error achieved by the
two estimators for varying sample size n, dimension d, and Kendall’s
τ .
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Figure 4.3: Gumbel copula: Median integrated absolute error achieved by the
two estimators for varying sample size n, dimension d, and Kendall’s
τ .
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Figure 4.4: Frank copula: Median integrated absolute error achieved by the two
estimators for varying sample size n, dimension d, and Kendall’s τ .
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Figure 4.5: Non-simplified Gaussian copula: Median integrated absolute error
achieved by the two estimators for varying sample size n, dimension
d, and Kendall’s τ .

difference is only significant for large sample sizes. For increasing dimension, the
gap widens in favor of f̂vine which performs significantly better for d = 5 and
d = 10. For d = 10 and n = 5 000, the vine copula based estimator is almost
two times as accurate — although it is not consistent. Since f̂mvkde converges
so slowly, an extremely large number of observations would be required until it
becomes the better choice. But for commonly available sample sizes and d > 3,
the vine copula based estimator seems preferable.

Scenario 3: severe violation of the simplifying assumption

Lastly, we want to investigate how the vine copula based estimator behaves in a
sort of ‘worst case scenario’. We set up a non-simplified vine copula with Gaussian
pair-copulas and formulate their parameters as a regression on the conditioning
variables implied by the vine. For each conditional pair-copula, the correlation
parameter function ρe : [0, 1]|De| → [−1, 1] describes a linear hyperplane ranging
from −1 to 1:

ρe(uDe) = 1− 2

|De|
∑
j∈De

uj, for e ∈ Em, m ≥ 2.

Since
∫
ρe(uDe)duDe = 0 for all e ∈ E2, . . . , Ed−1, we also set ρe ≡ 0 for e ∈ E1.

This model is severely violating the simplifying assumption for each conditional
pair in the vine.

The results for this scenario are shown in Figure 4.5. The vine copula based
estimator performs significantly worse for d = 3, 5. Remarkably, f̂vine manages
to significantly outperform the classical estimator for d = 10. The severely
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non-simplified dependence structure appears to be too difficult to identify even
for a nonparametric estimator that does not rely on the simplifying assumption.
Extrapolating the curves, we can expect that to hold for sample sizes much larger
than those considered in our study. Also, we can expect the advantage of f̂vine

to become even bigger in higher dimensions. We can conclude that even in this
extremely unfavorable example, the estimator f̂vine proves useful when more than
a few variables are involved.

4.6 Application: filtering noise in telescope imaging

We revisit a classification problem from astrophysics which has previously been
investigated in Bock et al. (2004). In their study, the authors consider synthetic
data imitating measurements taken on images from the MAGIC (Major Atmo-
spheric Gamma-ray Imaging Cherenkov) Telescopes located on the Canary islands.
The goal is to identify primary gamma rays (the signal) amongst a large amount
of hadron showers (background noise). The authors of the study evaluate the
performance of several classification methods and judge the kernel density based
Bayes classifier as one of the most convincing. We aim to augment their results
and investigate how the vine copula based kernel density estimator performs on
this problem.

The data set is available from the UCI Machine Learning Repository web page
(url: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope)
and consists of n = 19 020 observations on d = 10 variables. nG = 12 332 of
the observations are classified as gamma (signal) and nH = 6 688 as hadron
(background). A subset of the data is illustrated in Figure 4.6. There is no
clear separation between the two classes, although both margins and dependence
appear to be slightly different. We also observe that some pairs (e.g., fConc –
FM3Long) have non-monotonic dependence patterns. Such patterns are hard to
capture by classical parametric models. Mixtures of parametric models could
solve this problem, but require more careful modeling. For more information on
the astrophysical background and a more thorough description of the data we
refer the reader to Bock et al. (2004) and the UCI web page.

Bayes classifiers follow the idea of maximizing the posterior probability of a
class given the data. Let G (for gamma) and H (for hadron) be the two classes

and f̂G and f̂H be two estimates fitted separately in each class. Assume further
we have knowledge of the class prior probabilities πG, πH . With a straightforward
application of Bayes’ theorem, we can estimate the posterior probability that the
class is G as

P̂(Class = G |X = x) =
πGf̂G(x)

πGf̂G(x) + πH f̂H(x)
, (4.12)

where x is a realization of the random vector X. In the most general case,
we classify an observation as G whenever the estimated posterior probability is

https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
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Figure 4.6: Illustration of five variables in the MAGIC data set. Lower triangle:
pair-wise scatter plots (gamma: dots, hadron: triangles); diagonal:
kernel density estimates per class; upper triangle: overall and class-
wise correlation.

greater than α = 0.5. However, by changing the threshold α we can furthermore
control how many observations get classified as G, and thereby influence key
quantities such as the false positive rate (FPR) or true positive rate (TPR). The
FPR is defined as the ratio of the number of false positives (here: hadron events
that were misclassified as gamma) and the number of all negative (hadron) events.
The TPR is defined as the ratio of the number of correctly classified positive
(gamma) events and the number of all positive events. In general, it is desirable
to have a low FPR and a high TPR. But usually, there is a tradeoff between the
two quantities: If we increase the threshold level α, a higher posterior probability
is required for an observation to get classified as gamma event. As a result, less
observations will be classified as gamma event, which in turn reduces both FPR
and TPR.

We repeat the experiment of Bock et al. (2004) with the vine copula based and



Chapter 4 Evading the curse of dimensionality with simplified vine copulas 67

FPR 0.01 0.02 0.05 0.1 0.2
vine 0.335 0.428 0.652 0.780 0.918

mvkde 0.335 0.408 0.567 0.730 0.868

Table 4.1: True positive rates for the two estimators (second and third row) for
given target levels of the false positive rate (first row).

classical kernel estimators. The implementations are similar to our simulation
study (see Section 4.5.1). As is common in applications, we induce sparsity
of the estimated vine copula model by adding an independence test to the
structure selection algorithm(see, Dißmann et al., 2013, Section 4). We also

found it necessary to multiply the marginal bandwidth parameters of f̂vine by 2
to stabilize the classification boundary in low-density regions. The experiment’s
setup is the following: First, the densities for each class are estimated on the
first 2/3 of the data which is used as training set. These estimates are used in
combination with (4.12) to obtain class predictions for the remaining 1/3. For
simplicity, the prior probabilities are set to πG = πH = 0.5. The predictions are
then compared to the actual class of the observations which allows to assess the
quality of the predictions.

Bock et al. (2004) stressed that in this application the focus is on low FPR
levels; in particular the 0.01, 0.02, 0.05, 0.1 and 0.2 levels. The corresponding
TPR values at these levels are displayed in Table 4.1. The were found by obtaining
predictions for a fine grid of values for the threshold α and then interpolating
the corresponding TPR values.

The TPR values of the vine copula based estimator are uniformly larger than
the ones of the classical multivariate kernel density estimator. This means that
for a target FPR level, the vine copula based classifier is able to identify more
observations correctly as signal events than the classical multivariate kernel
density estimator. The results confirm what we could expect from our simulation
study where, for d = 10 and several thousand observations, the vine copula based
approach delivered much more accurate estimates.

But also in comparison with other classification algorithms, the classifier based
on f̂vine performs extraordinary well. A total of 14 algorithms were surveyed
by Bock et al. (2004), including variants of classification trees, neural networks,
support vector machines, and nearest-neighbor methods. Two of the main per-
formance measures used in their study are the average of the TPR at the 0.01,
0.02 and 0.05 FPR levels (termed loacc), and the average of the TPR at the 0.1
and 0.2 FPR levels (termed highacc). From Table 4.1 we calculate loacc = 0.472
and highacc = 0.849. None of the 14 algorithms was able to produce a better
loacc value than our approach. And only one method, random forests, delivered a
slightly higher highacc of 0.852. This is particularly remarkable when we consider
that the parameterization of our estimator was not tuned with respect to classi-
fication accuracy (unlike other classification algorithms). It might well be that
the performance can be further improved by bandwidth and structure selection
strategies that aim for classification rather than estimation accuracy.
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4.7 Discussion

In this chapter, we discuss a vine copula approach to nonparametric density
estimation. By assuming that the target density belongs to the class of simplified
vine densities, we can divide the estimation of a d-dimensional density into several
one- and two-dimensional tasks. This allows us to achieve faster convergence rates
than classical nonparameteric estimators when d > 3. In particular, the speed
of convergence is independent of dimension. The advantages of this approach
become more and more striking as dimension increases. It shows that a simplified
vine model for the dependence between variables is an appealing structure for
nonparametric problems. For example, we can expect that similar results can be
obtained for copula-based regression models (Noh et al., 2013, Kraus and Czado,
2017).

The crunchpoint in our approach is the simplifying assumption. If the sim-
plifying assumption is not satisfied, the proposed estimator is not consistent —
but can nevertheless outperform its competitor in most practicable situations.
However, the latter finding may not be true if the simplifying assumption is
violated in an extreme fashion and dimension is small. We guess that this is a
rather unlikely situation to encounter in real data. However, appropriate tests for
a formal empirical assessment have yet to be developed. From a theoretical point
of view, this answer is highly unsatisfying and several urging questions arise:

• How dense does the set of simplified densities lie in the set of all densities?
Put differently: how far off will we be by assuming a simplified model?

• How can we interpret the components of an estimated simplified model
when the assumption does not hold?

Owing to the infancy of vine copula models, these questions remain open to this
day. But several recent works have advanced the understanding of the simplifying
assumption. A discussion of its appropriateness can be found in Hobæk Haff
et al. (2010). Copula classes where the simplifying assumption is satisfied are
given in Stöber et al. (2013). Gijbels et al. (2015a) propose a general estimator of
the copula for the case where a covariate affects only the marginal distributions
(i.e., when the simplifying assumption does hold). Semiparametric estimation
of three-dimensional non-simplified PCCs was tackled by Acar et al. (2012) and
Vatter and Nagler (2018); a test for the simplifying assumption was proposed
by Acar et al. (2013) under a semiparametric model. The empirical pair-copula,
an extension of the empirical copula to simplified vine copulas, was analyzed
in Hobæk Haff and Segers (2015). The authors conjecture that this estimator
converges at the parametric rate — even when pseudo-observations are used. The
situation is different from ours since empirical copulas do not suffer the curse of
dimensionality.

Spanhel and Kurz (2017) introduced the notion of partial vine copula approxi-
mations (PVCA), i.e., the limit of a step-wise estimator under a simplified model.
The authors show that the PVCA is not necessarily the best simplified approxi-
mation to the true density. They further illustrate in an example that spurious
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dependence patterns can appear in trees Tm,m ≥ 3, when the simplifying as-
sumptions has falsely been assumed in previous trees Tm′ , 2 ≤ m′ ≤ m. This
property may not matter much in terms of estimation accuracy, but can corrupt
the interpretability of an estimated PVCA. The estimator proposed in this paper
is in fact an estimator of the PVCA. Our results suggest that the PVCA is a
useful inferential object in any case:

• Any d-dimensional PVCA can be consistently estimated at a rate that is
equivalent to a two-dimensional problem.

• If the simplifying assumption does hold, the PVCA coincides with the true
density.

• If the simplifying assumption does not hold, inference of the PVCA is still
less difficult than inference of the actual density. This led to the following
observation: On finite samples, a consistent estimate of the PVCA can be
much closer to the true density than a consistent estimate of the actual
density (see Scenario 2 in Section 4.5).

A related perspective on the phenomenon is that the simplifying assumption
allows us to achieve more accurate estimates by model shrinkage. We incorporate
the additional ‘information’ that the simplifying assumption is at least approxi-
mately true. This allows us to reduce the set of possible solutions and thereby
make the estimation problem ‘less difficult’. The most well known example of
a shrinkage estimator is the sample variance. When dividing by n instead of
n− 1 we give up unbiasedness of the estimator in order to achieve a smaller error.
The same holds true for the vine copula based density estimator: if we make the
simplifying assumption although it is not satisfied, we introduce additional bias.
In fact, we even give up consistency of the estimator in order to achieve better
finite-sample accuracy.

The main advantage of the vine copula based approach is striking: Classical
multivariate nonparametric density estimators converge very slowly to the true
density when more than a few variables enter the model. Hence, one was unable
to benefit from the increasing number of observations in modern data. A vine
copula based estimator, on the other hand, converges at a high speed, no matter
how many variables are involved. This makes it particularly appealing in the age
of big data.

4.8 Proofs

4.8.1 Proof of Theorem 4.1

The proof consists of three steps. In the first step, we show by induction that
all pseudo-observations converge sufficiently fast to the true observations. In the
second step, we establish pointwise consistency of the feasible pair-copula density
estimators ĉje,ke;De and conditional distribution function estimators F̂je|De and
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F̂ke|De . In the last step, we combine these results to establish the consistency of

f̂vine.

Step 1: Convergence of pseudo-observations

We will show by induction that for all e ∈ E1, . . . , Ed−1, i = 1, . . . , n,

Û
(i)
je|De − U

(i)
je|De = oa.s.(n

−r), Û
(i)
ke|De − U

(i)
ke|De = oa.s.(n

−r). (4.13)

Let e ∈ E1 (the conditioning set De is empty). Because of 4.1b we have,∣∣Û (i)
je
− U (i)

je

∣∣ =
∣∣F̂(Xje

)
− F

(
Xje

)∣∣≤ sup
xje∈ΩXje

∣∣F̂ (xje)− F (xje)
∣∣= oa.s.(n

−r),

and the same argument applies to the second equality of (4.13). Now consider
e ∈ Em, 1 ≤ m ≤ d− 2, and assume that (4.13) holds for all e ∈ Em. Recall that

all pseudo-observations for e′ ∈ Em+1 can be written as Û
(i)
je|De∪ke or Û

(i)
ke|De∪je for

some e ∈ Em. Recall the definition of the oracle estimators c and h (4.5). By the
definition of the pseudo-observations and the triangle inequality,∣∣Û (i)

je|De∪ke − U
(i)
je|De∪ke

∣∣ =
∣∣ĥje|ke;De{Û (i)

je|De |Û
(i)
ke|De

}
− hje|ke;De

{
U

(i)
je|De|U

(i)
ke|De

)
}
∣∣

≤
∣∣ĥje|ke;De{Û (i)

je|De|Û
(i)
ke|De

}
− hje|ke;De

{
Û

(i)
je|De|Û

(i)
ke|De

}∣∣
+
∣∣hje|ke;De{Û (i)

je|De|Û
(i)
ke|De

}
− hje|ke;De

{
Û

(i)
je|De|Û

(i)
ke|De

}∣∣
+
∣∣hje|ke;De{Û (i)

je|De|Û
(i)
ke|De

}
− hje|ke;De

{
U

(i)
je|De|U

(i)
ke|De

}∣∣
= H1,n +H2,n +H3,n

Note that, almost surely, each realization of (U
(i)
je|De , U

(i)
ke|De) is contained in [δi, 1−

δi]
2 for δi := min

{
U

(i)
je|De , U

(i)
ke|De , 1 − U

(i)
je|De , 1 − U

(i)
ke|De

}
> 0. And by invoking

(4.13) we see that for sufficiently large n, also each realization of (Û
(i)
je|De , Û

(i)
ke|De)

is contained in [δi/2, 1− δi/2]2. Together with 4.2b and 4.3b this yields for large
n,

H1,n ≤ sup
(u,v)∈[δi/2,1−δi/2]2

∣∣ĥje|ke;De(u|v)− hje|ke;De(u|v)
∣∣ = Oa.s.(ae,n),

H2,n ≤ sup
(u,v)∈[δi/2,1−δi/2]2

∣∣hje|ke;De(u|v)− hje|ke;De(u|v)
∣∣ = oa.s.(n

−r),

and invoking (4.13),

ae,n = sup
i=1,...,n

{
|Û (i)

je|De − U
(i)
je|De

∣∣+
∣∣Û (i)

ke|De − U
(i)
ke|De

∣∣} = oa.s.(n
−r),

which gives H1,n = oa.s.(n
−r). It remains to show that H3,n = oa.s.(n

−r). Let
∇hje|ke;De denote the gradient of hje|ke;De . A first-order Taylor approximation of
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hje|ke;De
(
Û

(i)
je|De|Û

(i)
ke|De

)
around

(
U

(i)
je|De , U

(i)
ke|De

)
yields

H3,n ≤
∣∣∣∣∇>hje|ke;De(U (i)

je|De|U
(i)
ke|De

)(Û (i)
je|De − U

(i)
je|De

Û
(i)
ke|De − U

(i)
ke|De

)∣∣∣∣+ oa.s.

(
Û

(i)
je|De − U

(i)
je|De

Û
(i)
ke|De − U

(i)
ke|De

)
.

Invoking (4.13), we get H3,n = oa.s.(n
−r). This establishes the first equality of

(4.13) for all e ∈ Em+1. The second equality follows by symmetric arguments and
the induction is complete.

Step 2: Consistency of conditional cdf and pair-copula density estimators

In the first step, we have already shown that the estimators of the h-functions con-
verge at rate o(n−r). The required conditional distributions Fje|De and Fke|De can
be expressed as a chain of h-functions. This implies that for all e ∈ E1, . . . , Ed−1,
and all x ∈ ΩX ,

F̂je|De
(
xje|xDe

)
− Fje|De

(
xje|xDe

)
= op(n

−r),

F̂ke|De
(
xke |xDe

)
− Fke|De

(
xke|xDe

)
= op(n

−r).
(4.14)

Next, we establish that for all e ∈ E1, . . . , Ed−1, and all (u, v) ∈ (0, 1)2,

ĉje,ke;De
(
u, v
)
− cje,ke;De

(
u, v
)

= Op(n
−r). (4.15)

The triangle inequality gives∣∣ĉje,ke;De(u, v)− cje,ke;De(u, v)∣∣
≤

∣∣ĉje,ke;De(u, v)− cje,ke;De(u, v)∣∣+
∣∣cje,ke;De(u, v)− cje,ke;De(u, v)∣∣

= Rn,1 +Rn,2. (4.16)

We have Rn,1 = oa.s.(n
−r) by Assumption 4.3a and (4.13), whereas Rn,2 = Op(n

−r)
by Assumption 4.2a.

Step 3: Consistency of the vine copula based density estimator

The consistency of f̂vine now follows from (4.15) and 4.1a (second equality) to-
gether with (4.14) and the fact that cje,ke;De is continuously differentiable (third
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equality):

f̂vine(x) =
d−1∏
k=1

∏
e∈Ek

ĉje,ke;De
{
F̂je|De(xje|xDe), F̂ke|De(xke|xDe)

}
×

d∏
j=1

f̂j(xj)

=
d−1∏
k=1

∏
e∈Ek

[
cje,ke;De

{
F̂je|De(xje|xDe), F̂ke|De(xke|xDe)

}
+Op(n

−r)

]

×
d∏
j=1

{
fj(xj) +Op(n

−r)
}

=
d−1∏
k=1

∏
e∈Ek

[
cje,ke;De

{
Fje|De(xje|xDe), Fke|De(xke|xDe)

}
+Op(n

−r) + op(n
−r)

]

×
d∏
j=1

{
fj(xj) +Op(n

−r)
}

= f(x) +Op(n
−r).

4.8.2 Lemmas

In what follows, we present three lemmas: Lemma 4.1 is for the proof of Proposi-
tion 4.3, and Lemma 4.2 and Lemma 4.3 are for the proof of Proposition 4.4.

To ease notation, we write (u, v) =
(
Φ(z1),Φ(z2)

)
,

W
(i)
1 := U

(i)
je|De , W

(i)
2 := U

(i)
ke|De , Z

(i)
1 := Φ−1

(
U

(i)
je|De

)
, Z

(i)
2 := Φ−1

(
U

(i)
ke|De

)
,

(4.17)

and Kbn(·) = b−1
n K(b−1

n × ·). In this notation, the (oracle) transformation pair-
copula density estimator is

c(u, v) = c
{

Φ(z1),Φ(z2)
}

=
1

n

n∑
i=1

Kbn

(
z1 − Z(i)

1

)
Kbn

(
z2 − Z(i)

2

)
φ(z1)φ(z2)

.

The corresponding (oracle) h-function estimator h is obtained by integration of c:

h(u|v) = h
{

Φ(z1)|Φ(z2)
}

=
1

n

n∑
i=1

Jbn
(
z1 − Z(i)

1

)
Kbn

(
z2 − Z(i)

2

)
φ(z2)

, (4.18)

where Jbn(·) =
∫ ·
−∞Kbn(s)ds. The feasible estimators ĉ and ĥ are obtained by

replacing W
(i)
j and Z

(i)
j with pseudo-observations Ŵ

(i)
j and Ẑ

(i)
j := Φ−1(Ŵ

(i)
j ).

Finally, we define

an = sup
i∈{1,...,n}

∣∣Ŵ (i)
1 −W

(i)
1

∣∣+ sup
i∈{1,...,n}

∣∣Ŵ (i)
2 −W

(i)
2

∣∣.
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Lemma 4.1. Under Assumptions 4.5 and 4.7 it holds for all (u, v) ∈ (0, 1)2,

ĉ(u, v) = c(u, v) +Oa.s(an).

Proof. By a first-order Taylor approximation of Φ−1, j = 1, 2,

Ẑ
(i)
j − Z

(i)
j = (Ŵ

(i)
j −W

(i)
j )/φ(Z

(i)
j ) + oa.s.(Ŵ

(i)
j −W

(i)
j )

= 1/φ(Z
(i)
j )×Oa.s.(an),

(4.19)

where the Oa.s.(an) term does not depend on the index i since the supremum was
taken. Denote ∇z = (∂/∂z1, ∂/∂z2)>. A first-order Taylor approximation of K
yields
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2

)
− 1

n

n∑
i=1

Kbn

(
z1 − Z(i)

1

)
Kbn

(
z2 − Z(i)

2

)∣∣∣∣
=

∣∣∣∣ 1n
n∑
i=1

∇z
{
Kbn(z1 − Z(i)

1 )Kbn(z2 − Z(i)
2 )
}(Ẑ(i)
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where the last inequality is due to (4.19). Since Kbn is zero outside of [−bn, bn],
we can bound this further by

ηn(z)×
∣∣∣∣∇z{ 1

n

n∑
i=1

Kbn(z1 − Z(i)
1 )Kbn(z2 − Z(i)

2 )

}∣∣∣∣×Oa.s.(an), (4.20)

where ηn(z) := supy∈[min{z1,z2}−bn,max{z1,z2}+bn] 1/φ(y) = O(1) for all z ∈ R2. The
second term is the absolute value of the gradient of a classical kernel density
estimator. Since the derivatives of ψ are continuous and bounded by C2, it holds
for ψ(z1, z2) = c{Φ(z1),Φ(z2)}φ(z1)φ(z2),∣∣∣∣∇z{ 1

n

n∑
i=1

Kbn(z1 − Z(i)
1 )Kbn(z2 − Z(i)

2 )

}∣∣∣∣ =
∣∣∇zψ(z1, z2)

∣∣+ oa.s.(1),

see Theorem 9 of Hansen (2008). Plugging this into (4.20) proves our claim.

Lemma 4.2. Under Assumptions 4.5 and 4.7 it holds for all (u, v) ∈ (0, 1)2,
δ ∈ (0, 0.5],

sup
(u,v)∈[δ,1−δ]2

∣∣h(u|v)− h(u|v)
∣∣= Oa.s.

(
b2
n +

√
lnn/(nbn)

)
.
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Proof. Equations 40 and 41 of Hansen (2004) yield

E
{
h(u|v)

}
− h
(
u|v
)
= b2

nβ(u, v) + o(b2
n),

for some bias term β(u, v) involving h and φ as well as their first- and second order
derivatives. Since all parts are continuous on [δ, 1− δ]2 by C1 for all δ ∈ (0, 0.5],
it holds

sup
(u,v)∈[δ,1−δ]2

∣∣E{h(u|v)
}
− h
(
u|v)

∣∣ = Oa.s.

(
b2
n

)
.

On the other hand, Lemma 2.2 of Härdle et al. (1988) ensures that

sup
(u,v)∈[δ,1−δ]2

∣∣h(u|v)− E
{
h(u|v)

}∣∣ = Oa.s.

(√
lnn/(nbn)

)
.

Combining the previous two equations concludes the proof.

Lemma 4.3. Under Assumptions 4.5 and 4.7 it holds for all (u, v) ∈ (0, 1)2,
δ ∈ (0, 0.5],

sup
(u,v)∈[δ,1−δ]2

∣∣ĥ(u|v)− h(u|v)
∣∣= Oa.s.

(
an
)
.

Proof. With arguments similar to the proof of Lemma 4.1, we can show

sup
(u,v)∈[δ,1−δ]2

∣∣ĥ(u|v)− h(u|v)
∣∣

= sup
z∈[Φ−1(δ),Φ−1(1−δ)]2

∣∣ĥ{Φ(z1)|Φ(z2)
}
− h
{

Φ(z1)|Φ(z2)
}∣∣

≤ sup
z∈[Φ−1(δ),Φ−1(1−δ)]2

∣∣∣∣ηn(z)

φ(z2)
×∇zh

{
Φ(z1)|Φ(z2)

}∣∣∣∣×Oa.s.(an),

where ηn(z) = supy∈[min{z1,z2}−bn,max{z1,z2}+bn] 1/φ(y) and the Oa.s term is inde-
pendent of z. The supremum on the right hand side is O(1) because all functions
are continuous in z on every compact subset of R2. As a result, the right can be
bounded by a constant times the Oa.s.(an) term. This establishes our claim.

4.8.3 Proof of Proposition 4.5

Step 1: Reduce problem to oracle estimators

From Proposition 4.2 we get for all ` = 1, . . . , d, and x ∈ R, that

f̂`(x) = f`(x) +Op{b2
n,m + (nbn,m/ lnn)−1/2} = f`(x) + op{b2

n,c + (nb2
n,c)
−1/2},

where the second equality follows from condition (v) in Proposition 4.5. This

implies (nb2
n,c)

1/2
{
f̂`(x)− f`(x)

}
= op(1) and we have established that the first
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d components of (4.11) converge to zero in probability. Hence, the first d com-
ponents of µx as well as the first d rows and columns of Σx will be zero and we
only have to deal with the remaining components in (4.11).

Recall that the rate n−r in Section 4.8.1 corresponds to b2
n,c + (nb2

n,c)
−1/2 in the

implementation used for Proposition 4.5. From (4.14) and the bound for Rn,1 in
(4.16) we thus know that

F̂je|De(xje|xDe) = Fje|De(xje |xDe) + op{b2
n,c + (nb2

n,c)
−1/2},

and

ĉje,ke;De(u, v) = cje,ke;De(u, v) + op{b2
n,c + (nb2

n,c)
−1/2}.

Similar to Lemma 4.3, we can now show that

cje,ke;De
{
F̂je|De(xje|xDe), F̂ke|De(xke |xDe)

}
= cje,ke;De

{
Fje|De(xje|xDe), Fke|De(xke |xDe)

}
+ op{b2

n,c + (nb2
n,c)
−1/2}.

Hence, for (4.11) to hold it suffices to show that

(nb2
n,c)

1/2
{
c∗(x)− b2

n,cµ̃x − c∗(x)
} d→ N

(
0, Σ̃x

)
, (4.21)

where

c∗(x) =
(
cje,ke;De{Fje|De(xje|xDe), Fke|De(xke|xDe)}

)
e∈E1,...,Ed−1

,

and c∗(x) is defined similarly, but replacing cje,ke;De with cje,ke;De .

Step 2: Reformulate problem according to Lindeberg-Feller CLT

Define Z
(i)
je|De := Φ−1(U

(i)
je|De), Z

(i)
ke|De := Φ−1(U

(i)
ke|De), zje|De := Φ−1

{
Fje|De(xje|xDe)

}
,

zke|De := Φ−1
{
Fke|De(xke|xDe)

}
. Let Yn,i := (Yn,i,e)e∈E1,...,Ed−1

, be a vector with
entries

Yn,i,e := (nb2
n,c)
−1/2

K

(
Z

(i)
je|De

−zje|De
bn

)
K

(
Z

(i)
ke|De

−zke|De
bn

)
φ(zje|De)φ(zke|De)

.
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Then,
∑n

i=1 Yn,i = (nb2
n,c)

1/2c∗(x). By the multivariate Lindeberg-Feller central
limit theorem (van der Vaart, 1998, Proposition 2.27), (4.21) holds when

n∑
i=1

E
(
Yn,i

)
= (nb2

n,c)
1/2
{
c∗(x) + b2

n,cµ̃x + o(b2
n,c)
}
, (4.22)

n∑
i=1

Cov(Yn,i)→ Σ̃x, (4.23)

n∑
i=1

E
{
‖Yn,i‖21

(
‖Yn,i‖ > ε

)}
→ 0, for all ε > 0. (4.24)

Since Yn,i are independent for i = 1, . . . , n, it holds

n∑
i=1

E
(
Yn,i

)
= nE

(
Yn,i

)
,

n∑
i=1

Cov(Yn,i) = nCov(Yn,i).

Step 3: Check conditions of the Lindeberg-Feller CLT

Step 3.1: Check Equation 4.22

Denote further uje|De := Fje|De(xje|xDe), uke|De := Fke|De(xke|xDe). Corollary 3.4
of Nagler (2014) states

nE
(
Yn,i,e

)
= (nb2

n,c)
1/2
{
cje,ke;De(uje|De , uke|De) + b2

n,cµ̃x,e + o(b2
n,c)
}
, (4.25)

where

µ̃x,e :=

{
∂2cje,ke;De

(
uje|De , uke|De

)
∂u2

je|De
φ2(zje|De) +

∂2cje,ke;De
(
uje|De , uke|De

)
∂u2

ke|De
φ2(zke|De)

−
3∂cje,ke;De

(
uje|De , uke|De

)
∂uje|De

φ(zje|De)zje|De

−
3∂cje,ke;De

(
uje|De , uke|De

)
∂uke|De

φ(zke|De)zke|De

(4.26)

+ cje,ke;De
(
uje|De , uke|De

)
×
(
z2
je|De + z2

ke|De − 2
)}σ2

K

2
,

and σ2
K :=

∫
[−1,1]

x2K(x)dx. This validates (4.22).

Step 3.2: Check Equation 4.23

We first consider the diagonal elements of Cov(Yn,i), i.e., Var(Yn,i,e), e ∈ Em,m =
1, . . . , d−1. By the change of variable s1 = (z1−zje|De)/bn,c, s2 = (z2−zke|De)/bn,c,



Chapter 4 Evading the curse of dimensionality with simplified vine copulas 77

and a Taylor approximation of ψje,ke;De (as defined in Assumption 4.7), we get

nE
(
Y 2
n,i,e

)
φ2(zje|De)φ

2(zke|De)

= nE

{
1

nb2
n,c

K2

(
Z

(i)
je|De − zje|De

bn,c

)
K2

(
Z

(i)
ke|De − zke|De

bn,c

)}
=

∫
R

∫
R

K2(s1)K2(s2)ψje,ke;De(zje|De − bn,cs1, zke|De − bn,cs2)ds1ds2

= ν2
Kψje,ke;De(zje|De , zke|De) + o(1), (4.27)

where νK :=
∫
R
K2(s)ds. Using (4.27) and (4.25), we obtain

nVar(Yn,i,e)→ ν2
K

cje,ke;De
(
uje|De , uke|De

)
φ(zje|De)φ(zke|De)

=: σ̃x,e. (4.28)

Now consider the off-diagonal elements of Cov(Yn,i), i.e., Cov(Yn,i,e, Yn,i,e′) with
e 6= e′. We get

nE(Yn,i,eYn,i,e′)φ(zje|De)φ(zke|De)φ(zje′ |De′ )φ(zke′ |De′ )

=
1

b2
n,c

E

{
K

(
Z

(i)
je|De − zje|De

bn,c

)
K

(
Z

(i)
ke|De − zke|De

bn,c

)

×K
(
Z

(i)
je′ |De′

− zje′ |De′
bn,c

)
K

(
Z

(i)
ke′ |De′

− zke′ |De′
bn,c

)}
. (4.29)

Since e 6= e′, the elements of the set {(je, De), (ke, De), (je′ , De′), (ke′ , De′)} are
either all distinct or there is a match between exactly two of them.

We first consider the case where all are distinct. Define ψe,e′ the joint density

of (Z
(i)
je|De , Z

(i)
ke|De , Z

(i)
je′ |De′

, Z
(i)
ke′ |De′

) and z = (zje|De , zke|De , zje′ |De′ , zke′ |De′ ). Using a

change of variables and Taylor expansion similar to (4.27), we get

(4.29) = b2
n,c

∫
R4

{
K(s1)K(s2)K(s3)K(s4)ψe,e′(z − bn,cs)ds

= b2
n,c

{∫
R4

{
K(s1)K(s2)K(s3)K(s4)dsψe,e′(z) + o(bn,c)

}
= O(b2

n,c) = o(1).

Now consider the case where there is a match between two pseudo observations.
Without loss of generality, we assume that (je, De) = (je′ , De′) and define ψe,e′

the joint density of (Z
(i)
je|De , Z

(i)
ke|De , Z

(i)
ke′ |De′

) and z = (zje|De , zke|De , zke′ |De′ ). This
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yields

(4.29) = bn,c

∫
R3

{
K2(s1)K(s2)ψe,e′(z − bn,cs)ds

= bn,c

{∫
R3

{
K2(s1)K(s2)K(s3))dsψe,e′(z) + o(bn,c)

}
= O(bn,c) = o(1).

We have shown that (4.23) holds with Σ̃x being a diagonal matrix with diagonal
entries σ̃x,e given in (4.28).

Step 3.3: Check Equation 4.24

Instead of checking the remaining condition (4.24) directly, we will verify the
stronger Lyapunov-type condition

∑n
i=1 E(‖Yn,i‖3)→ 0. By Jensen’s inequality

we get

nE
(
‖Yn,1‖3

)
= nE

{( d−1∑
m=1

∑
e∈Em

Y 2
n,1,e

)3/2}
≤ n

√
d(d− 1)/2

d−1∑
m=1

∑
e∈Em

E
(
Y 3
n,1,k

)
,

where d(d− 1)/2 is the number of terms in the double sum. Hence, it suffices to
show nE(Y 3

n,1,e)→ 0 for any e ∈ E1, . . . , Ed−1. Similar to (4.27), we get

nE(Y 3
n,1,e)φ

3(zje|De)φ
3(zke|De)

= nE

{
1

(nb2
n,c)

3/2
K3

(
Z

(i)
je|De − zje|De

bn,c

)
K3

(
Z

(i)
ke|De − zke|De

bn,c

)}

=
1

n1/2b3
n,c

E

{
K3

(
Z

(i)
je|De − zje|De

bn,c

)
K3

(
Z

(i)
ke|De − zke|De

bn,c

)}
=

1

n1/2bn,c

∫
R

∫
R

K3(s1)K3(s2)ψje,ke;De(zje|De − bn,cs1, zke|De − bn,cs2)ds1ds2

= O
{

(nb2
n,c)
−1/2

}
,

which is o(1) by Assumption 4.5 .



5
Solving estimating equations with

copulas

5.1 Introduction

While copulas are often used as convenience tools to glue together arbitrary
marginal distributions, they have also been applied to solve regression problems
(Song, 2000, Oakes and Ritz, 2000, Pitt et al., 2006, Kolev and Paiva, 2009, Song
et al., 2009, Yin and Yuan, 2009, Noh et al., 2013, Cooke et al., 2015). Another
recent development is in quantile regression (Koenker, 2005), with contributions
from the econometrics and statistics literatures, respectively in the context of
univariate quantile auto-regression (Bouyé and Salmon, 2009, Chen et al., 2009)
and conditional quantile estimation (Noh et al., 2015, Kraus and Czado, 2017,
Rémillard et al., 2017). A problem with those approaches is that they use
parametric copula families, which only allow for monotonic regression functions
(Dette et al., 2014). In De Backer et al. (2017), the authors alleviate this issue
by considering a semiparametric estimator. Schallhorn et al. (2017) suggests a
fully nonparametric estimator, but lacks theoretical results.

Using the fact that both the mean and quantiles can be regarded as roots of
estimating functions (Godambe, 1991), we propose a unified framework to solve a
wide range of statistical learning problems using copulas. The proposed framework
is very general and covers essentially all regression problems, e.g., mean, quantile,
expectile, exponential family, and instrumental variable regression.

Assume that one is interested in finding the zeros of estimating functions of
a set of response variables conditionally on covariates. The main idea explored
in this chapter is that conditional expectations can be replaced by weighted
unconditional ones, with the weight being a ratio of copula densities. In other
words, copula-based Z-estimators are built by estimating the weight function
first, and then solving for the zeros of an estimating function using this weight
(Z-estimators are estimators that solve for zeros of an estimating equation, see,
van der Vaart, 1998, Section 5.1, for a general introduction).

We justify this approach by a rigorous asymptotic theory based on empirical
process, along with verifiable assumptions. In particular, we prove consistency,
weak convergence, and validity of the bootstrap of the corresponding Z-estimators.
This complements and generalizes several known results for mean and quantile
regression. Note that our theory also applies to consistent M-estimators (de-
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fined as maximizers of a criterion function) when their estimating functions are
differentiable (see, Kosorok, 2007, Section 2.2.6).

The remainder of this chapter is organized as follows. In Section 5.2, we
formalize the problem and give motivating examples. The main results are
presented in Section 5.3. We also discuss our assumptions, both in general and
in the context of the motivating examples. We showcase our method in various
simulations setups in Section 5.4. Finally, we discuss the results in a larger
context and propose possible extensions in Section 5.5.

5.2 Copula-based solutions to estimating equations

5.2.1 Representing estimating equations in terms of copulas

For arbitrary random vectors Y and X, we denote by FY ,X(y,x) = P(Y ≤
y,X ≤ x) their joint distribution, FY |X(y,x) = P(Y ≤ y | X = x) the
distribution of Y conditional on X, FYj(yj) = P(Yj ≤ yj) and FXj(xj) = P(Xj ≤
xj) the marginal distributions. Assuming that all random variables are absolutely
continuous, we write the corresponding densities as fY ,X , fY |X , fYj , and fXj ,
respectively.

Let Y ∈ Y ⊆ Rq the subject of interest (called response), and X ∈ X ⊆ Rp

a vector of auxiliary variables (called predictors or covariates). The response is
often a univariate random variable in the context of regression or classification,
but can be enriched to encompass an exogenous treatment effect or instrumental
variables (see Example 5.5 below). Fix x ∈ X and let θ = θ(x) be a parameter
of interest. It can be either a scalar, vector, or more generally an object in a
normed space Θ. Suppose there is a family of functions ψθ : Y → R indexed by θ
with the property

E
{
ψθ0(Y ) |X = x

}
= 0, (5.1)

where θ0 denotes the true parameter. The function ψθ is called identifying
function and (5.1) the (population version of an) estimating equation. The name
estimating equation is motivated by the fact that an estimator for θ0 can be
constructed from a sample version of (5.1).

We shall see that the conditional expectation in (5.1) can be replaced by an
unconditional one of the form

E
{
ψθ0(Y )wx(Y )

}
= 0, (5.2)

where wx is a weight function that accounts for the conditioning on X = x. This
unconditional representation is explained by Sklar’s theorem for densities (see
Section 2.1). It states that the joint density fZ for any absolutely continuous
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random vector Z ∈ Rd can be represented as

fZ(z) = cZ{FZ1(z1), . . . , FZd(zd)}
d∏
j=1

fZj(zj), (5.3)

where cZ is called copula density. More precisely, cZ is the density of the vector
of probability integral transforms

(
FZ1(Z1), . . . , FZd(Zd)

)
, where all components

are standard uniform variables. In particular, cZ ≡ 1 for univariate Z.
Using (5.3), we can write the conditional density fY |X of Y given X as

fY ,X(y,x)

fX(x)
=
cY ,X{FY1(y1), . . . , FYq(yq), FX1(x1), . . . , FXp(xp)}

cX{FX1(x1), . . . , FXp(xp)}

{ q∏
j=1

fYj(yj)

}
.

This yields,

E
{
ψθ0(Y ) |X = x

}
=

∫
Y
ψθ0(y)fY |X(y | x)dy

=

∫
Y ψθ0(y)cY ,X{FY1(y1), . . . , FXp(xp)}

{∏q
j=1 fYj(yj)

}
dy

cX{FX1(x1), . . . , FXp(xp)}
.

Since the the denominator does not depend on θ0, it has no effect when solving
for a zero of E{ψθ0(Y ) |X = x} (which is our ultimate goal). For the numerator,
we apply (5.3) to fY , which yields∫

Y
ψθ0(y)cY ,X{FY1(y1), . . . , FXp(xp)}

{ q∏
j=1

fYj(yj)
}
dy

=

∫
Y
ψθ0(y)

cY ,X{FY1(y1), . . . , FXp(xp)}
cY {FY1(y1), . . . , FYq(yq)}

fY (y)dy

= E{ψθ0(Y )wx(Y )},

and, hence, (5.2) holds with

wx(y) =
cY ,X{FY1(y1), . . . , FYq(yq), FX1(x1), . . . , FXp(xp)}

cY {FY1(y1), . . . , FYq(yq)}
. (5.4)

Remark 5.1. Since cY is a copula density, it has uniform marginal densities.
In particular, if the response is univariate (q = 1), it holds cY ≡ 1 and

wx(y) = cY,X{FY (y), FX1(x1), . . . , FXp(xp)}.

5.2.2 Estimators for copula-based estimating equations

Suppose we observe an iid sequence of random vectors (Yi,Xi), i = 1, . . . , n.
We shall use a sample version of the unconditional estimating equation (5.2) to
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construct copula-based estimators for the parameter θ0. To do this, all unknown
quantities in (5.2) are replaced by estimates.

The class of estimators we consider arises from two approximations. The sample
average n−1

∑n
i=1 ψθ0(Yi)wx(Yi) provides a natural estimate of the expectation

in (5.2). Let further ŵx(y) = ŵx(y;Y1,X1, . . . , Yn,Xn) be an estimator of wx
(examples of such estimators will be discussed in Section 5.3.3). Then we define

an estimator θ̂ = θ̂(Y1,X1, . . . ,Yn,Xn) of θ0 as the solution to

1

n

n∑
i=1

ψθ̂(Yi)ŵx(Yi) = 0. (5.5)

Since wx is a ratio of copula densities, the estimator θ̂ is primarily driven by
estimators for the copula density. This allows us to harness the rich toolbox
of existing copula models and associated estimating techniques. In particular,
we can model cY ,X by a vine copula and apply the nonparametric estimators
investigated in previous chapters. The proposed framework is much more general,
however, and also includes other models and estimators.

5.2.3 Examples

The estimator solving (5.5) is quite versatile. With different choices of the
identifying function ψθ0 , we can solve for a variety of conditional functionals. In
the following, we introduce a few popular examples that will be discussed further
in later sections.

Example 5.1 (Mean regression). The classical example with a univariate re-
sponse is the conditional mean θ0 = E(Y | X = x) which is identified by
ψθ(y) = y − θ. The estimating equation (5.5) then has the explicit solution

θ̂ =

∑n
i=1 Yi ŵx(Yi)∑n
i=1 ŵx(Yi)

,

which is quite similar to the Nadaraya-Watson estimator for the conditional mean.
A difference is that the weights ŵx are also functions of the response Y .

Example 5.2 (Quantile regression). The conditional quantile θ0,t = F−1
Y |X(t |

X = x) for t ∈ T = (0, 1) can be found by minimizing the conditional expectation
of the “check-function” ρθt(y) = (y − θt){t− 1(y < θt)} or, equivalently, solving
(5.2) for θ0,t with

ψθt,t(y) = t1(y ≥ θt)− (1− t)1(y < θt). (5.6)

In this context, ψθ,t ∈ Ψ, where Ψ = {ψθ,t, t ∈ T} is a class of identifying functions
indexed by the quantile level t and induces a process of solutions {θ0,t ∈ T}. The
corresponding sample version (5.5) can only be solved numerically, although there
are efficient algorithms to compute “weighted quantiles”.
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Example 5.3 (Expectile regression). Expectiles generalize the mean of a distri-
bution in a way that is similar to how quantiles generalize the median (see, e.g.,
Newey and Powell, 1987, for details). The identifying function is

ψθ,t(y) = t(y − θ)1(y ≥ θ)− (1− t)(θ − y)1(y < θ),

for t ∈ T = (0, 1), and mean regression is recovered by t = 1/2.

Example 5.4 (Exponential family regression). Suppose fY |X=x is a one parame-
ter exponential family with canonical parameter θ, i.e.,

f(y; θ) = h(y) exp {a(y)θ − b(θ)} ,

where h, a, and b are known functions. Then the parameter can be identified via

ψθ(y) =
{
a(y)− b′(θ)

}
.

Example 5.5 (Instrumental variable regression). Assume that the goal is to
characterize the relationship between a response Y1 and a treatment Y2 in the
sense that

Y1 = f(Y2) + Z,

where f is unknown and Z is an error term with zero mean.
When the treatment is endogenous (i.e., not independent of Z) identifying its

effect further requires an instrument Y3 that is exogenous (i.e., independent of
Z). More specifically, let Y = (Y1, Y2, Y3) ∈ Y ⊆ R3 and Z ∈ Z ⊆ R be random
variables where E

(
Z
)

= 0, and Z is independent of Y3 but not necessarily of Y2.
In this setting, we can identify f through E

(
Y1|Y3 = y3

)
= E

{
f(Y2)|Y3 = y3

}
,

which is an ill-posed inverse problem.
This issue can be resolved by assuming that f lives in a compact space (Newey

and Powell, 2003), e.g., the space of functions with bounded L2-norm. With
f(y) ≈ θ>b(y) for y ∈ R an approximation with K coefficients θ = (θ1, . . . , θK)
and basis functions b(y) = (b1(y), · · · , bK(y)), compactness is imposed by assuming
bounded basis coefficients. The estimating equation is then

ψθ(y) = b(y3)
{
y1 − θ>b(y2)

}
∈ RK .

5.3 Asymptotic theory

We now consider the asymptotic properties of θ̂t. We use a general framework
to encompass a wide range of identifying functions and both parametric and
nonparametric estimators of wx. In Section 5.3.1, we state and discuss the main
results. In Section 5.3.2, we detail our assumptions and point to alternative
conditions that are sometimes easier to verify. In Section 5.3.3, we use specific
examples to illustrate how the assumptions can be verified in practice. All proofs
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are relegated to Section 5.6.

5.3.1 Main results

In what follows, we ignore measurability issues, because the functions that we
consider are generally well behaved. Recall the definitions of stochastic processes
and weak convergence given in Section 2.4.

Consider a collection of identifying functions Ψ = {ψθ,t : θ ∈ Θ, t ∈ T}. Then

the estimator θ̂ and true parameter θ0 are processes {θ̂t : t ∈ T} and {θ0,t : t ∈ T}.
For example, if θ0,t is the conditional t-quantile (as in Example 5.2), then θ̂ and
θ0 are processes indexed by the quantile level t ∈ T = (0, 1). In the case of mean

regression, T is a singleton and θ̂ is an ordinary random variable.
Recall that θ̂t = θ̂t(x) and θ0,t = θ0,t(x) are also functions of the value condi-

tioned upon through X = x. This is reflected in their definitions (5.5) and (5.2)

through ŵx and wx. However, θ̂t as a process in x cannot have a tight limit in
many cases of practical interest. Hence, we assume x fixed for the remainder of
this section and simply write θ̂t and θ0,t instead of θ̂t(x) and θ0,t(x), respectively.

In what follows, convergence is always understood as n→∞. Our first result
shows that θ̂t is consistent uniformly in the indexing set T .

Theorem 5.1 (Consistency). Under (A1)–(A3), supt∈T
∣∣θ̂t − θ0,t

∣∣→P 0.

The assumptions will be discussed in detail in Section 5.3.2. One assumption
worth mentioning already is that the estimator for the copula density c needs to
be consistent. In particular, any parametric model needs to be correctly specified.

While stronger than point-wise consistency, Theorem 5.1 is insufficient for
statistical inference. For instance, to test hypotheses and construct confidence
bands, an asymptotic distribution is essential. To obtain a weak convergence
result, we specify the estimator ŵx further. In what follows, we assume that ŵx
is asymptotically linear in the sense that

sup
y∈Y

∣∣∣∣ŵx(y)− 1

n

n∑
i=1

an,x(y,Yi,Xi)

∣∣∣∣ = oP
(
n−1/2rn

)
,

where an,x : R2q+p → R is a sequence of continuous functions and r−1
n = O(1).

This assumption is satisfied by many popular estimators of wx, and we refer
to Section 5.3.3 for examples. The rate rn is introduced to encompass both
parametric and nonparametric estimators of wx within the same formalism.
While rn is a diverging sequence for nonparametric estimators, rn = 1 gives the
standard

√
n rate for parametric ones.
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Theorem 5.2 (Weak convergence). Under (A1-A8),

r−1
n

√
n(θ̂t − θ0,t − βn) −V −1

θ0,t,t,wx
Gt in `∞(T ),

where Vθ0,t,t,wx is the Hadamard derivative of E
{
ψθ0,t,t(Y )wx(Y )

}
with respect

to θ0,t, βn = rnV
−1
θ0,t,t,wx

E{ωn,t,x(Y ,X)} with

ωn,t,x(y,x′) = r−1
n E

{
ψθ0,t,t(Y )an,x(Y ,y,x′)

}
,

for all (y,x′) ∈ Y × X , and G is a tight, zero-mean Gaussian element with
covariance limn→∞ cov{Kn,t1 , Kn,t2}, where

Kn,t = r−1
n ψθ0,t,t(Y )wx(Y ) + ωn,t,x(Y ,X).

Recall that θ̂t is defined as a plug-in type estimator, obtained by substituting
ŵx for wx to solve the empirical estimating equation. As such, the asymptotic
distribution of θ̂t combines the effects of two approximations:

1. replacing wx with ŵx,

2. replacing the true estimating equation by its empirical counterpart (5.5).

Since the approximation in step 2 is unbiased, the bias βn is driven by the bias of
ŵx, but “averaged out” by taking the expectation with respect to Y . Furthermore,
the sequence converging to the asymptotic variance can be decomposed into
var
{
Kn,t

}
= A1

n,t + A2
n,t + A3

n,t, where

• A1
n,t = r−2

n Var{ψθ0,t,t(Y )wx(Y )} isolates the contribution of step 2,

• A2
n,t = Var{ωn,t,x(Y ,X)} is driven by the variance of ŵx in step 1, but

with a similar “averaging out” as for βn,

• A3
n,t = 2r−1

n E{ψθ0,t,t(Y )wx(Y )ωn,t,x(Y ,X)} reflects the dependence be-
tween the two steps, which is induced by the fact that the same data is
used in both.

In the case of nonparametric estimators for wx, we have rn → ∞ and A2
n,t

dominates asymptotically.
Theorem 5.2 allows us to compute the exact limiting distribution for specific

choices of identifying functions and estimator ŵx. But the limiting distribution
also depends on θ0 and wx. In practice, we can only approximate this distribution
by substituting θ̂ and ŵx for the true values. Such computations are rather
involved, especially for complex estimators ŵx. And even for simple ones, they
may not suffice: when T is not finite, critical values for confidence bands cannot
in general be determined from the limiting distribution.

To remedy this issue, a popular alternative is the bootstrap method. The idea
is to define a new estimator θ̃t, based on a randomly reweighted version of the
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data. The distribution of
√
n(θ̂t − θ0,t) is then approximated by the distribution

of
√
n(θ̃t− θ̂t). Although the bootstrap was originally introduced as a resampling

technique (Efron, 1979), we use a slightly different formulation that simplifies
our asymptotic analysis. Let ξi, i = 1, . . . , n, be an iid sequence of positive
random variables independent of the data and satisfying E(ξ1) = µ ∈ (0,∞),
var(ξ1) = σ2 ∈ (0,∞), and E(|ξ1|2+ε) <∞ for some ε > 0. For example, choosing
ξi to have standard exponential distribution results in the Bayesian bootstrap
(Rubin, 1981).

Define the bootstrap estimator
{
θ̃t, t ∈ T

}
as solving

1

n

n∑
i=1

(ξi/ξ̄)ψθ̃t,t(Yi)w̃x(Yi) = 0,

where ξ̄ = n−1
∑n

i=1 ξi and

w̃x(y) =
1

n

n∑
i=1

(ξi/ξ̄)an,x(y,Yi,Xi).

For an arbitrary Zn, let Z̃n be its bootstrapped version with random weights ξi,
i = 1, . . . , n, and Z some tight process. We write Z̃n  ξ,P Z if

sup
h∈BL1

∣∣∣Eξ

{
h
(
Z̃n
)}
− E

{
h
(
Z
)}∣∣∣→P 0,

where BL1 is the space of functions with Lipschitz norm bounded by 1 and Eξ

denotes the expectation with respect to the ξi’s only. Hence, the first expectation
above is still a random variable since Z̃n still depends on the observations. This
explains why the convergence above is in probability, as opposed to the determin-
istic convergence in usual weak convergence (Definition 2.3). The convergence

Z̃n  ξ,P Z can be understood as convergence of the law of Z̃n conditional on the
observations (see Section 2.2.3 of Kosorok, 2007).

We can now state the next theorem, which implies that the conditional law of
a properly scaled version of r−1

n

√
n(θ̃t − θ̂t) given the observed data converges to

the law of Gt.

Theorem 5.3 (Validity of the bootstrap). Under assumptions (A1)–(A9),

(µ/σ)r−1
n

√
n(θ̃t − θ̂t) ξ,P −V −1

θ0,t,t,wx
Gt in `∞(T ),

where Gt is as in Theorem 5.2.

Remark 5.2. The boostrap of Efron (1979) is different in that resampling from
the data amounts to choosing (ξ1, . . . , ξn) ∼ Multinomial(n, 1/n, . . . , 1/n), which
violates the independence requirement for the bootstrap weights. While this issue
can be resolved by a Poissionization argument (see, van der Vaart and Wellner,
1996, Section 3.6), it requires substantial additional effort.
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5.3.2 Assumptions

For an arbitrary class of functions G, a function G is called envelope of G if
G ≥ supg∈G |g| pointwise. To further simplify notation here and in the proofs,
we define gθt,t,w = ψθt,tw so that

E{gθt,t,wx(Y )} = E
{
ψθt,t(Y )|X = x

}
.

Assumption 5.1. Suppose that x ∈ X is fixed.

(A1) The estimator ŵx satisfies |ŵx(y)− wx(y)| →P 0 for all y ∈ Y.

(A2) There is a class of weight functions W and δ > 0 such that

(i) Gδ = {gθt,t,w : |θt − θ0,t| < δ, t ∈ T,w ∈ W} is P -Donsker,

(ii) P(ŵx ∈ W)→ 1.

(A3) there exists θ0 ∈ Θ such that for all ε > 0, inf‖θ−θ0‖>ε |E{gθ,t,wx(Y )}| > 0
and E{gθ0,t,wx(Y )} = 0.

(A4) The map θ 7→ ψθ,t is continuous in L2(P ) at θ0,t.

(A5) The map θ 7→ E{gθ,t,wx(Y )} is Hadamard differentiable in a neighborhood
of θ0,t and the derivatives Vθ0,t,t,wx are invertible.

(A6) for Ψθ0,t = {ψθ0,t,t : t ∈ T}, it holds∫ δn

0

√
logN

{
ε/2,Ψθ0,t , L1(P )

}
dε→ 0, for every δn ↓ 0.

(A7) There is a sequence of continuous functions an,x : R2q+p → R and r−1
n =

O(1) such that

sup
y

∣∣∣∣ŵx(y)− 1

n

n∑
i=1

an,x(y,Yi,Xi)

∣∣∣∣ = oP
(
n−1/2rn

)
, sup

s
|an,x(s, ȳ, x̄)| <∞.

(A8) With ωn,t,x(y,x) = r−1
n E{ψθ0,t,t(Y )an,x(Y ,y,x)}, the sequence of func-

tion classes On = {ωn,t,x : t ∈ T} admits envelopes Ωn : R2q+p → R

satisfying for every ε > 0

E{Ω2
n(Y ,X)} = O(1), E{Ω2

n(Y ,X)1(Ωn > ε
√
n)} → 0.

(A9) The bootstrap estimator w̃x satisfies |w̃x(y)− wx(y)| →P 0 and P(w̃x ∈
W)→ 1 with W is as in (A2).

First, note that (A1) and (A2ii) together imply that wx ∈ W. Then for any
θt, t ∈ T , such that |θt − θ0,t| < δ, we have gθt,t,wx ∈ Gδ. (A2i) is crucial to prove
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weak-convergence of θ̂t and, along with (A2ii), arguably the hardest to verify.
There is a trade off between them: the larger the class W , the easier it is to show
(A2ii), but the harder it is to show (A2i) and vice versa. Also, since wx ∈ W , the
class W must be large enough to include the true weight function.

Assumption (A3) implies that the true estimating equation uniquely identifies
the parameter of interest. Assumption (A9) is the bootstrap equivalent of (A1)
and (A2ii) and could be replaced by a condition on an,x that is similar to (A8).
Assumptions (A3) and (A9) are easily verified for most cases of practical interest
(such as the ones in the Section 5.2.3), and will not be discussed further.

In Section 5.3.2 and Section 5.3.2, we give alternative conditions to (A2) that
are less general but easier to verify. Assumptions (A4), (A5) and (A6) are easily
verifiable for many identifying functions of practical interest (see Section 5.3.3
for quantiles, expectiles and exponential families). Assumptions (A1), (A7) and
(A8) allow to use the same framework to obtain general results for a wide class of
estimators. Section 5.3.3 discusses both parametric and nonparametric examples.

Assumption (A2i)

Recalling the definition of Gδ and defining Ψδ = ∪‖θ−θ0,t‖<δ{ψθ,t : t ∈ T}, we get
that Gδ = Ψδ · W. Consider the map φ(u, v) = uv for each (u, v) ∈ R2. (A2i)
amounts to showing that φ ◦ (Ψδ,W) is P -Donsker. Define ψ̄ and w̄ as any
envelope function of Ψδ and W, respectively. Then for every ψ1, ψ2 ∈ Ψδ and
w1, w2 ∈ W ,

|ψ1(y)w1(y)− ψ2(y)w2(y)|2

≤ 2
{
ψ̄2(y)|w1(y)− w2(y)|2 + w̄2(y)|ψ1(y)− ψ2(y)|2

}
.

We abbreviate ‖P‖G = supg∈G |E{g(Y )}| for some class G of measurables func-
tions from Y to R. With the inequality from the last display, Corollarly 2.10.13
of van der Vaart and Wellner (1996) leads to the following refinement.

Lemma 5.1. If there are envelope functions ψ̄ and w̄ such that

(B1) ψ̄W and w̄Ψδ are P -Donsker,

(B2) ‖P‖ψ̄W <∞ and ‖P‖w̄Ψδ
<∞,

(B3) E{g(Y )}2 <∞ for at least one g ∈ Gδ,

then (A2i) holds.

We now give a set of sufficient conditions for (B1)–(B3) to hold and discuss
how they can be verified. Denote by Cβ

M(Y) the class of functions whose partial
derivatives up to order bβc (the greatest integer smaller than β) are uniformly
bounded by M and whose highest partial derivatives are Lipschitz of order β−bβc.
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Lemma 5.2. Let Y ⊆ Rq. If

(C1) W = Cβ
M(Y) with β > q/2,

(C2) Ψδ is P -Donsker and ‖P‖Ψδ
<∞,

(C3) there exists a partition Y = ∪∞j=1Yj such that ψ̄
∣∣
Yj
∈ Cβ

Mj
(Yj) and∑∞

j=1 MjP (Yj)1/2 <∞,

then (B1) holds.

(C1) might seem restrictive since usual copula densities are unbounded in the
corners of the unit hypercube, thus implying cY X(FY (y), FX(x)) 6∈ Cβ

M (Y × X ).
However, the assumption only requires wx ∈ Cβ

M (Y), namely boundedness of the
copula density for fixed x. (C2) is easily verified for quantiles, expectiles, and
exponential families; see Section 5.3.3.

(C3) is used to prove that ψ̄W is P -Donsker. If Y is a bounded, convex subset
of Rq with nonempty interior and ψ̄ ∈ Cβ

M(Y) for some M <∞, then W has a
finite bracketing integral (as in Theorem 2.2) provided β > q/2, by van der Vaart
and Wellner (1996), Theorem 2.7.1. As such, it is P -Donsker and so is ψ̄W .

Furthermore, if Y = R and Mj = M for all j, then
∑∞

j=1MjP (Yj)1/2 <∞ can

be replaced by a tail condition like E(|Y |2+ε) < ∞ for some ε > 0 by van der
Vaart and Wellner (1996), Corollary 2.7.4. If Mj is not constant, but satisfies
Mj ∼ supy∈Yj |y|, then a sufficient condition for

∑∞
j=1MjP (Yj)1/2 < ∞ is that

E(|Y |4+ε) <∞.

Assumption (A2ii)

(A2ii) requires that the estimator ŵx lies in a P -Donsker class with probability
going to one. In the setting of Lemma 5.2, a sufficient condition is that ŵx’s first
bβc + 1 derivatives are uniformly consistent for the respective derivatives of wx.

Lemma 5.3. If (C1), (C2), (C3), and

(C4) supy |∂k(ŵx − wx)(y)| = oP (1) for all |k| = 0, . . . , bβc+ 1,

with k = (k1, · · · , kq), ∂k = ∂k11 · · · ∂
kq
q , and |k| =

∑q
1 kj, then (A2ii) holds.

An estimator ŵx will typically have the form

ŵx(y) =
ĉY ,X{F̂Y1(y1), . . . , F̂Yq(yq), F̂X1(x1), . . . , F̂Xp(xp)}

ĉY {F̂Y1(y1), . . . , F̂Yq(yq)}
.

where F̂Yj , F̂Xk are estimators of the marginal distributions and ĉY ,X , ĉY are

estimators of the copula density. Then (C4) is satisfied if ĉY ,X , ĉY , and F̂Yj
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(as functions of y) have uniformly converging derivatives up to order bβc +
1. This is true for sufficiently smooth parametric models and most classical
nonparametric techniques like Bernstein polynomial and kernel estimators (see
e.g., Gawronski, 1985, Silverman, 1978). Note that (C4) technically excludes the
empirical distribution function as an estimator for the marginal distributions,
because it is not differentiable. This is unlikely to be an issue in practice, however,
since the empirical distribution is at least first-order equivalent to a smoothed
version for which (C4) does hold.

5.3.3 Examples

Identifying functions

Assumption (A4) is obvious in all following examples and not discussed further.

Example 5.2 (Quantile regression, cont.). For (A5), we see that the map

θ 7→ E{gθ,t,wx(Y )} = t− FY |X(θ | x),

is differentiable at θ with invertible derivative Vθt,t,wx = −fY |X(θt | x). The class
Ψδ has a smooth envelope ψ̄θ,t(y) = 1 and contains only monotone functions from
R to [−1, 1]. Hence, logN[ ]{ε,Ψδ, Lr(P )} = O(ε−1) for all r ≥ 1 by Theorem
2.7.5 in van der Vaart and Wellner (1996). In particular, Ψδ is P -Donsker (C2),
and (A6) follows from the inequality N(ε/2,G, ‖ · ‖) ≤ N[ ](ε,G, ‖ · ‖) for any class
G and norm ‖ · ‖. (C3) is trivially satisfied since ψ̄ ≡ 1; (C1), (B1), and (B3)
become mild conditions on W and FY .

Example 5.3 (Expectile regression, cont.). We have the map (Zwingmann and
Holzmann, 2017)

θ → E{gθ,t,wx(Y )} = t

∫ ∞
θ

{
1− FY |X(y | x)

}
dy − (1− t)

∫ θ

−∞
FY |X(y | x)dy,

and its invertible derivative is Vθ,t,wx = (2t−1)FY |X(θ | x)−t, which implies (A5).
For the special case of mean regression (t = 1/2), this yields Vθ,1/2,wx = −1/2. If
t takes values in a compact subset of (0, 1), Zwingmann and Holzmann (2017)
show that Ψδ is P -Donsker (C2) by deriving bounds on its bracketing numbers.
One can similarly verify that the covering integral condition (A6) is satisfied. It
further holds that

|ψθt,t(y)| =
∣∣t(y − θt)1(y ≥ θt)− (1− t)(θt − y)1(y < θt)

∣∣
≤ |t| |y − θt|1(y ≥ θt) + |1− t| |θt − y|1(y < θt)

≤ |y − θt|+ |θt − y|
≤ 2(|θt|+ |y|),

for all t ∈ T and y ∈ R. Using the fact that |y| ≤ 1 + y2 for all y ∈ R. we obtain
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a possible smooth envelope for Ψδ as

ψ̄(y) = sup
t∈T

sup
|θt−θ0,t|<δ

2
(
|θt|+ 1 + y2

)
.

With this, (C3), (C1), (B1), and (B3) again become mild conditions on W and
FY .

Example 5.4 (Exponential family regression, cont.). We have

θ → E{gθ,wx(Y )} = E(Y |X = x)− b′(θ)E{wx(Y )},

and its derivative is Vθ,wx = −b′′(θ)E{wx(Y )}, which implies (A5) provided that
b′′(θ) exists in a neighborhood of θ0,t and b′′(θ0) 6= 0. Since there is no indexing
parameter t, conditions (A2i) and (A6) only relate to the function b′ and the true
weight wx which are usually well behaved.

Example 5.5 (Instrumental variable regression, cont.). We have

θ → E{gθ,wx(Y )} = E
[
b(Y3)

{
Y1 − θ>b(Y2)

}
|X = x

]
,

and its derivative matrix is Vθ,wx = −E
{
b(Y3)b(Y2)> | X = x

}
, which implies

(A5) for reasonable choices of basis functions. Similarly, (A2i) and (A6) only
relate to the basis, which can be chosen arbitrarily. For instance, b(y) = (1, y)>

gives a linear treatment effect, and

Vθ,wx =

(
1 E

(
Y2 | X = x

)
E
(
Y3 | X = x

)
E
(
Y2Y3 | X = x

) ).
Estimators for the weight function

In this section, we discuss parametric and nonparametric estimators of wx. For
the sake of simplicity, we focus on Y ⊆ R, while stressing that similar arguments
follow for multivariate responses.

Example 5.6 (Fully parametric estimator). Let ηY ∈ HY ⊆ RdY , ηX ∈ HX ⊆
RdX and ηC ∈ HC ⊆ RdC be parameters, indexing a family of marginal and copula
densities. We further write η = (ηY ,ηX ,ηC) and η̂ for the maximum-likelihood
estimator of the true η0, i.e.,

η̂ = arg max
η

n∑
i=1

∇η log fYX(Yi,Xi;η).

We denote wx(y) = wx(y;η0) and ŵx(y) = wx(y; η̂) the true and estimated weight
functions. Assumption (A1) is satisfied except for pathological cases. Provided
that wx(·;η) is sufficiently smooth in η, (C4) is also an immediate consequence
of the consistency of η̂. Furthermore, (A7) holds with rn = 1.
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Recall that the maximum likelihood estimator satisfies

η̂ − η0

=
1

n

n∑
i=1

E
{
−∇ηη log fYX(Y,X;η0)

}−1∇η log fYX(Yi,Xi;η0) + op(n
−1/2).

Using a Taylor expansion for ŵx(y) = wx(y; η̂) around η0, we obtain

wx(y; η̂)− wx(y;η0)

=
1

n

n∑
i=1

∇ηwx(y)E
{
−∇ηη log fYX(Y,X;η0)

}−1∇η log fYX(Yi,Xi;η0)

+ op(n
−1/2),

uniformly in y and, hence,

an,x(y, ȳ, x̄)

= wx(y) +∇ηwx(y)E
{
−∇ηη log fYX(Y,X;η0)

}−1∇η log fYX(ȳ, x̄;η0).

Then condition (A8) is satisfied under a simple regularity condition like

E

{∫
ψ̄(y)an,x(y, Y,X)fY (y)dy

}2

<∞.

Example 5.7 (Simple kernel estimator). For any univariate margin Z, the
classical kernel estimator of the cumulative distribution function is

F̂Z(y) =
1

nbn

n∑
i=1

∫ y

−∞
K

(
s− Zi
bn

)
ds,

where K is a Lipschitz continuous probability density function and bn > 0 a
bandwidth parameter. And using a multivariate analog for the density, we obtain
the estimator

ŵx(y) =
1

nh1+p
n

n∑
i=1

K

(
F̂Y (y)− F̂Y (Yi)

hn

) p∏
k=1

K

(
F̂Xk(yk)− F̂Xk(Xi,k)

hn

)
.,

where hn > 0 is the bandwidth for ŵx. When bn vanishes at an appropriate rate,
the marginal estimators can be shown to be uniformly

√
n-consistent and, thus,

asymptotically negligible for estimating wx (Silverman, 1978) . Hence, we get
(A7) with

an,x(y, ȳ, x̄) =
1

h1+p
n

K

(
FY (y)− FY (ȳ)

hn

) p∏
k=1

K

(
FXk(xk)− FXk(x̄k)

hn

)
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for any r−1
n = o(1). Assumption (A1) follows from the consistency of the classical

kernel density estimator. If hn → 0 and nh
p+2(bβc+1)
n / lnn → ∞, (C4) can be

verified (e.g., Hansen, 2008), but only for suprema over compact interior subsets
of Y. The reason is that the simple form of this estimator induces boundary bias
for FY (y) close to 0 or 1. Nevertheless, it is possible to show that derivatives
of ŵx converge to smooth functions provided wx satisfies standard regularity
conditions, i.e., (A2ii) holds when W is a smoothness class. Assumption (A8)

can be verified for rn = h
p/2
n with tedious calculations using standard arguments

for kernel smoothers. Taking hn ∼ n−1/(4+p), the estimator θ̂t converges at rate
OP{n−2/(4+p)} which is optimal for nonparametric regression problems with p
covariates (Stone, 1980).

More sophisticated versions of ŵx include semiparametric estimators (Genest
et al., 1995) and nonparametric techniques that specialize on copula densities
(for a review, see, Nagler et al., 2017). They can be treated in a similar manner,
but require more effort.

5.4 Simulations

In this section, we illustrate the versatility of our approach and compare them to
state-of-the-art methods in various contexts. Based on the theory developed in
Section 5.3, we build one parametric and two nonparametric estimators of ŵx.
The first EE Gaussian copula (EE for estimating equation) is fully parametric
and constructed by fitting fitting Gaussian marginal distributions and a Gaussian
copula using the maximum-likelihood estimator at each step. The other two are
fully nonparametric and use kernel estimators for the marginal distributions with
the direct plug-in methodology to select the bandwidth (Sheather and Jones,
1991), but they differ in the copula estimator. The method EE kernel density,
uses a multivariate Gaussian kernel estimator (see Example 5.6) for the copula,
with a bandwidth equal to n−2/(p+4)Σ, where n is the sample size and Σ the
covariance matrix of the data on the copula scale (i.e., transformed through the
margins). The method EE kernel vine, uses a nonparametric vine estimator for
the copula (method tll2 in Nagler et al., 2017).

5.4.1 Linear Gaussian model and mean regression

In this section, we build intuition about the inner workings of our method by
using the simplest example: a linear Gaussian model, that is Y = βX + Z, with
X ∈ Rp a vector of iid N(0, 1) random variables, β = (1, . . . , 1), and Z ∼ N(0, 1)
independent of X. If the goal is to estimate E(Y | X = x) for x ∈ Rp, the
main advantage of this example is that the copula is Gaussian. As such, the
first estimator described above is correctly specified, and can be compared to the
ordinary least-square estimator (OLS).

In Figure 5.1, we show the results of a simulation study using various estimators,
sample sizes, and covariates dimension. All results are based on 250 Monte-Carlo
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Figure 5.1: Linear Gaussian model and mean regression: root mean squared error
for increasing sample sizes (based on 250 replications).

replications. The competitor methods are the OLS estimator and a d-variate
kernel regression estimator using least-squares cross validation for the bandwidth
(Li and Racine, 2004).

There are two main observations resulting from this simulation study. First,
the
√
n rate in the root-mean-square error (RMSE) clearly appears for both

parametric methods. As expected however, the OLS is more efficient, with the
relative efficiency of the copula-based estimator being between 60% and 70%.
Second, the curse of dimensionality affects the convergence rates of the EE kernel
density and kernel regression estimators. For the kernel estimator based on
vine copulas however, the convergence rate of a nonparametric regression with a
single covariate is retained. This is no surprise, since it is based on a structural
assumption that lifts the curse of dimensionality (Nagler and Czado, 2016).

5.4.2 Quantile regression

In this section, we illustrate how our method performs in the context of quantile
regression. We assume that Y = f(X, Z), with X ∈ Rp a vector of iid U(−1, 1)
random variables, Z ∼ N(0, 1) independent of X, and that the goal is to estimate
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Figure 5.2: Quantile regression with 1’000 observations and 10 covariates for the
quantile levels α = 0.1, 0.5. The true conditional quantile functions
and estimates from various methods.

F−1
Y |X(α |X = x) for x ∈ Rp and α ∈ (0, 1).
In Figure 5.2, we show the results of a small simulation experiment with

n= 1’000 observations and p = 10 covariates. The true conditional α-quantile
(α = 0.1, 0.5) is shown as a solid line together with estimates derived by various
methods. In the left and right panels, we use Y = exp (X1) + Z and Y ={

1 + exp (X1)
}
Z, corresponding respectively to mean and variance shifts. In

both cases, Y depends on X only through its first component, and the other
covariates are irrelevant. In the legend, mboost corresponds to an estimator
based on gradient boosting (Hothorn et al., 2010), implemented in the R package
Hothorn et al. (2016). Furthermore, grf corresponds to an estimator based on
generalized random forests (Athey et al., 2017), implemented in the R package
Tibshirani et al. (2018).

For the mean shift, it seems that all methods perform appropriately: the
estimated quantile curves have the right magnitude and are increasing in X1.
Even predictions from EE Gaussian copula, which is misspecified, are reasonably
close to the truth. For the variance shift, the picture is different. While it is clear
that EE Gaussian copula, by assumption, is not suited to capture variance shifts,
it appears that EE kernel density also struggles, most likely due to both the curse
of dimensionality and the choice of bandwidth. However, EE kernel vine is on
par with state-of-the-art methods. Note that, for mboost, the step size (i.e., the ν
argument of boost control) was fine-tuned to match the true quantiles, as the
variance shift is not captured using the default setup. It is also noteworthy that
neither EE kernel vine nor grf needed parameter tuning to capture the shift in
variance, and that predictions from grf are considerably more wiggly using the
default setup.
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5.4.3 Instrumental variable regression

In this section, we illustrate how our method performs in the context of instru-
mental variable regression. We assume that

Y1 = f(Y2,X) + Z,

Y2 = Y3 + V

Z = −V +W

with X ∈ Rp a vector of iid N(0, 1) random variables, and Y3, V and W are three
other standard Gaussian random variables independent of X and each other, and
that the goal is to estimate f(y,x) for y ∈ R and x ∈ Rp. In other words, Y1 is
the response, Y2 is the endogenous treatment, and Y3 is an exogenous instrument.
For instance, when f(Y2,X) = g(X)Y2, the effect of Y2 on Y1 is

g(x) =
Cov (Y1, Y3 |X = x)

Cov (Y2, Y3 |X = x)
. (5.7)

In Figure 5.3, we show the results resulting from an experiment with n =10’000
observations and p = 10 covariates. The panels shows the true regression function
f as a function of Y2 and estimates based on the various methods. The upper
panels corresponds to the model f(Y2,X) = (1 + X1)Y2 (linear effect) and the
lower to f(Y2,X) = (1 + X1)Y 2

2 (quadratic effect). In both cases, Y1 depends
on X only through its first component, and the other covariates are irrelevant.
Columns correspond to two different values of the conditioning variable X1. In
the legend, grf corresponds to an estimator based on generalized random forests
(Athey et al., 2017), implemented in the R package Tibshirani et al. (2018).
Furthermore, EE estimators are built by feeding the estimated weights, along
with Y1, Y2 and Y3, to the crsiv function from the R package Racine and Nie
(2018). This function then solves for the basis coefficients (see Example 5.5)
using the method of Darolles et al. (2011). Note that crsiv could be fed the
covariates vector X directly to solve this problem, instead of using weights
from the approach of this paper. However, such an approach is computationally
burdensome and actually infeasible in practice except for very low dimensional
X.

For the linear effect, it seems that all methods provide reasonable estimates.
Even predictions from EE Gaussian, which is misspecified, are close to the truth.
For the quadratic effect, the picture is different. It is clear that grf, which aims
at estimating (5.7), cannot capture such a functional relationship. Furthermore,
while EE Gaussian and EE kernel vine perform appropriately, EE kernel density
struggles, most likely due to the reasons already described in Section 5.4.2.
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Figure 5.3: Instrumental variable regression with 10’000 observations and 10 co-
variates: true regression function (solid line) and estimates from vari-
ous methods. Columns correspond to different values of the covariate
X1 and rows to different simulation models.

5.5 Discussion

5.5.1 Connection to previous results

The results in Section 5.3 provide an umbrella theory for solutions to copula-
based estimating equations. They have close connections to several recent results.
Noh et al. (2013) shows consistency and asymptotic normality for mean regres-
sion. Noh et al. (2015) and De Backer et al. (2017) provide similar results for
quantile regression, the latter using a semiparametric method for estimating
the copula density. Rémillard et al. (2017) establish weak convergence of the
conditional quantile estimate as a process of the quantile level and prove validity
of a parametric bootstrap procedure.

Our results generalize and extend the above in several ways:

• While the focus of previous research was on mean and quantile regression
with univariate response, we allow for large classes of (potentially multivari-
ate) identifying functions ψθ,t. This opens new possibilities for copula-based
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solutions to other regression problems (see Section 5.2.3).

• Most previous results study only parametric or semiparametric estimators
of cY ,X (and thereby wx). Our conditions allow for parametric, semipara-
metric, and fully nonparametric methods to be dealt with in the same
framework.

• We establish weak convergence of θ̂t as a process of the parameter t ∈ T
indexing the identifying functions. This can be used to derive the asymptotic
distribution of continuous functionals of θ0,t or a vector of solutions that
correspond to different identifying functions.

• We suggest and validate a multiplier bootstrap scheme for cases where exact
calculation of the asymptotic distribution is inconvenient or insufficient.

Being more general, our results are also less explicit. However, it is usually
straightforward to bring them in a more explicit form given a specific choice for
the class of identifying functions Ψ and the estimator ŵx.

The above references also contain results that go beyond the context of Sec-
tion 5.3. Noh et al. (2015) relax the iid -assumption and De Backer et al. (2017)
allow for potentially right-censored Y . We discuss these and other possible
extensions in the following.

5.5.2 Extensions

Stationary data

Our results in Section 5.3 rely heavily on empirical process theory for iid data.
But the literature on empirical processes under serial dependence is much less
developed. Nonetheless, a few classical results (e.g. Andrews, 1991) and more
recent developments (Dehling et al., 2002) give hope that our results can be
extended to stationary sequences under more stringent conditions.

Censored and missing response

Our approach can be extended to allow for censoring or missingness in the
response. Such effects can be accounted for by adding a second weight function in
the estimating equation. For example, suppose we only observe a right-censored
version Y c = min(Y, Z) ∈ R of Y along with a censoring indicator ∆ = 1(Y ≤ Z).
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Denoting F̄Z|X(y | x) = Pr(Z ≥ y |X = x), we obtain

E
{
ψθ(Y )∆/F̄Z|X(Y | x) |X = x

}
= E

[
E
{
ψθ(Y )∆/F̄Z|X(Y | x) | Y,X = x

}]
= E

[
E{∆ | Y,X = x

}
ψθ(Y )/F̄Z|X(Y | x) |X = x

]
= E

{
F̄Z|X(Y | x)ψθ(Y )/F̄Z|X(Y | x) |X = x

}
= E

{
ψθ(Y ) |X = x

}
.

From there we can follow the steps in Section 5.2.1, to show that

E
{
ψθ(Y ) |X = x

}
= 0 ⇔ E

{
ψθ(Y

c)wcx(Y c) ζx
}

= 0,

where ζx = ∆/F̄Z|X(Y | x)} and wcx is defined similar to wx in (5.4), but with Y
replaced by Y c.

This technique was used in De Backer et al. (2017) to allow for right censoring
in copula-based quantile regression. It is only one instance of a larger class of
methods based on inverse probability weighting. Other weight functionals ζx can
be used similarly to account for other forms of censoring and missingness (see,
e.g. Robins et al., 1994, Wooldridge, 2007, Han et al., 2016).

Discrete and mixed data

In applications, one often encounters discrete variables. Classical examples are
classification problems (where Y is a class indicator) or count data. However, the
ideas in this article are developed under the assumption that (Y ,X) is absolutely
continuous. Several subtle issues arise when discrete data are modeled with
copulas (see, Genest and Neslehova, 2007), but our assumption is mainly for
convenience.

Indeed, the ideas from Section 5.2 can be extended to discrete and mixed
data. To give a simple example, suppose that Y is a Bernoulli variable and
X is continuous and univariate. Sklar’s theorem guarantees that there is a
function CY,X satisfying FY,X(y, x) = CY,X{FY (y), FX(x)}. Denoting C

(2)
Y,X =

∂CY,X(u, v)/∂v, one can verify that (5.2) is satisfied with

wx(y) = C
(2)
Y,X

{
FY (y), FX(x)

}
− C(2)

Y,X

{
FY (y − 1), FX(x)

}
.

Similar expressions exist in more than two dimensions with the simple difference
above generalizing to a volume in a multi-dimensional space (see, Panagiotelis
et al., 2012).

A simpler but slightly awkward solution for nonparametric estimation methods
is jittering. By adding noise to discrete variables, one can transform the general
regression problem into a purely continuous one. Nagler (2018b) shows that,
under a suitable choice of noise density, the two problems become equivalent:
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asymptotic properties carry over from the purely continuous to the mixed data
setting. In particular, consistent estimators for the latter are automatically
consistent for the former.

5.6 Proofs

Most arguments below are framed in the language of empirical processes, see
Section 2.4 for an introduction.

5.6.1 Proof of Theorem 5.1

Denote Θδ = {θ : supt∈T |θt − θ0,t| < δ} for some 0 < δ < ∞. For any (θ,y) ∈
Θδ × Y , let

f̂θ(y) = sup
t∈T
|gθ,t,ŵx(y)− gθ,t,wx(y)| ≤ ψ̄δ(y)|ŵx(y)− wx(y)|,

where ψ̄δ(y) is an envelope of the set {ψθ,t : θ ∈ Θδ, t ∈ T}. By (A1), we have that

for every y ∈ Y , supθ∈Θδ
f̂θ(y)→P 0, which implies f̂θn(y)→P 0, for any random

sequence θn ∈ Θδ. Furthermore, if G is an integrable envelope for Gδ, it holds
f̂θ(y) ≤ 2G(y) <∞. As G(y) does not depend on θ, f̂θn(y)→P 0 and f̂θn(y) ≤
2G(y) together imply that f̂θn(y) is uniformly integrable. Therefore, it converges

to zero in mean, namely
(
P{Yi,Xi}ni=1

f̂θn
)
(y) → 0, where P{Yi,Xi}ni=1

denote the
expectation with respect to {Yi,Xi}ni=1. By Fubini’s theorem and with P the

expectation with respect to y, we have that P{Yi,Xi}ni=1
(P f̂θn) = P (P{Yi,Xi}ni=1

f̂θn),

which implies that P{Yi,Xi}ni=1
(P f̂θn)→ 0 by the dominated convergence theorem.

And since P f̂θn is non-negative by definition, this also implies P f̂θn →P 0. Using

θ̂ instead of the arbitrary θn, we have P f̂θ̂ →P 0 and hence

sup
t∈T
|Pn gθ̂t,t,ŵx

− Pgθ̂t,t,wx
| ≤ sup

t∈T
|(Pn − P )gθ̂t,t,ŵx

|+ P f̂θ̂ →P 0, (5.8)

where the first term goes to zero in probability since, with probability going to
one, gθ̂t,t,ŵx

is contained in a Glivenko-Cantelli class by (A2). Since Pn gθ̂t,t,ŵx
= 0

by definition of θ̂t, (5.8) implies supt∈T |Pgθ̂t,t,wx
| →P 0, which, along with (A3),

finally yields supt∈T |θ̂t − θ0,t| →P 0.

5.6.2 Proof of Theorem 5.2

To improve readability, we make use of the following two lemmas. Their proofs
are deferred to later sections.

Lemma 5.4. Under (A1)–(A5), it holds uniformly in t ∈ T ,

√
n(θ̂t − θ0,t) = −V −1

θ0,t,t,wx

(
Gn gθ0,t,t,wx +

√
nPgθ0,t,t,ŵx

)
+ oP

(
1 +
√
n|θ̂t − θ0,t|

)
.
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Lemma 5.5. Suppose that (A2) and (A6)–(A8) hold. Define hn =
r−1
n gθ0,t,t,wx + ωn,t,x, Gn = r−1

n Gδ, On = {ωn,t,x : t ∈ T}, Hn = Gn + On,
and the semi-metric ρ(h1, h2) = ‖h1− h2‖P,2 = {P (h1−Ph1− h2 +Ph2)2}1/2.
Then Hn is totally bounded by ρ and for all ε > 0,

lim
δ↓0

lim sup
n→∞

P

{
sup

h1,h2∈Hn,ρ(h1,h2)<δ

∣∣Gn (h1 − h2)
∣∣ > ε

}
= 0.

First note that

Pgθ0,t,t,ŵx = EY
{
ψθ0,t,t(Y )ŵx(Y )}

=
1

n
EY

{
ψθ0,t,t(Y )

n∑
i=1

an,x(Y ,Yi,Xi)

}
+ oP (n−1/2rn)

=
rn
n

n∑
i=1

ωn,t,x(Yi,Xi) + oP (n−1/2rn)

= rnPn ωn,t,x + oP (n−1/2rn). (5.9)

Using this together with Lemma 5.4 yields

√
n(θ̂t − θ0,t − βn)

=
√
n(θ̂t − θ0,t − rnV −1

θ0,t,t,wx
Pωn,t,x)

= −V −1
θ0,t,t,wx

(
Gn gθ0,t,t,wx +

√
nPgθ0,t,t,ŵx − rn

√
nPωn,t,x

)
+ oP

(
1 +
√
n|θ̂t − θ0,t|

)
= −V −1

θ0,t,t,wx

(
Gn gθ0,t,t,wx + rn

√
nPn ωn,t,x − rn

√
nPωn,t,x

)
+ oP

(
rn +

√
n|θ̂t − θ0,t|

)
= −V −1

θ0,t,t,wx
Gn

(
gθ0,t,t,wx + rnωn,t,x

)
+ oP

(
rn +

√
n|θ̂t − θ0,t|

)
.

We now need to show that Gn (r−1
n gθ0,t,t,wx +ωn,t,x) Gt. If this is the case, then

√
n(θ̂t − θ0,t) = oP (rn) and the oP term for the remainder becomes asymptoti-

cally negligible. Convergence of finite-dimensional distributions is an immediate
consequence of conditions (A2i) and (A8) and the Lindeberg-Feller central limit
theorem (van der Vaart, 1998, Theorem 2.27). Asymptotic equicontinuity is
established in Lemma 5.5, which concludes the proof.

5.6.3 Proof of Theorem 5.3

We start with the following lemma, whose proof can be found at the end of this
section.
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Lemma 5.6. Suppose (A1)–(A5), (A7) and (A9) hold and define P̃n =
n−1

∑n
i=1(ξi/ξ̄)δYi,Xi

and G̃n =
√
n(P̃n − Pn ). Then,

√
n(θ̃t − θ̂t)

= −V −1
θ0,t,t,wx

G̃n

(
gθ0,t,t,wx + rnωn,t,x

)
+ oP

{
1 +
√
n|θ̃t − θ̂t|+

√
n|θ̂t − θ0,t|

}
.

Now we need to show that (µ/σ)G̃n (r−1
n gθ0,t,t,wx + ωn,t,x)  ξ,P Gt. We shall

first show that it converges weakly. Using µ/ξ̄ →P 1 and the notation

h̃n(ξ, y, x) = (ξ − µ){r−1
n gθ0,t,t,wx + ωn,t,x}/σ

we obtain

(µ/σ)G̃n (r−1
n gθ0,t,t,wx + ωn,t,x)

=
µ

σ

1√
n

n∑
i=1

(ξi/ξ̄)
{
r−1
n gθ0,t,t,wx(Yi) + ωn,t,x(Yi)

}
− µ

σ

1√
n

n∑
i=1

{
r−1
n gθ0,t,t,wx(Yi) + ωn,t,x(Yi)

}
=

1

σ

1√
n

n∑
i=1

(ξi − µ)
{
r−1
n gθ0,t,t,wx(Yi) + ωn,t,x(Yi)

}
{1 + oP (1)}

=
√
nPn h̃n{1 + oP (1)}

= Gn h̃n{1 + oP (1)},

where the last equality holds because ξi has mean µ and is independent of (Yi,Xi)

(i.e., Ph̃n = 0). Weak convergence of Gn h̃n can be established similarly to the
convergence of Gn (r−1

n gθ0,t,t,wx + ωn,t,x) in the proof of Theorem 5.2, provided
that additionally (A2), (A6) and (A8) hold with gθ0,t,t,wx and ωn,t,x replaced by
g̃θ0,t,t,wx and ω̃n,t,x. These conditions follow immediately from the fact that the
sequence ξi is independent from the data and has finite variance. In particular,
Gn h̃n converges weakly to Gt and, thus, is asymptotically tight. The remaining
steps to show  ξ,P -convergence are identical to the last paragraph of the proof
of Theorem 2 in Kosorok (2003).

5.6.4 Proof of Lemma 5.2

First, w̄ being bounded along with (C2) imply that w̄Ψδ is P -Donsker by van der
Vaart and Wellner (1996), Example 2.10.10. Second, (C3) implies that ψ̄W|Yj ∈
Cβ
AM Mj

for some constant A = A(β) and
∑∞

j=1AMMjP (Yj)1/2 < ∞. Thus,

ψ̄W is P -Donsker by van der Vaart and Wellner (1996), Example 2.10.25.



Chapter 5 Solving estimating equations with copulas 103

5.6.5 Proof of Lemma 5.3

This follows from the triangular inequality (first inequality), the mean value
theorem (second inequality), and C4 (third inequality):

sup
y,y′

|∂bβcŵx(y)− ∂bβcŵx(y′)|
‖y − y′‖β−bβc

≤ sup
y,y′

{
|∂bβcwx(y)− ∂bβcwx(y′)|

‖y − y′‖β−bβc
+
|∂bβc(ŵx − wx)(y)− ∂bβc(ŵx − wx)(y′)|

‖y − y′‖β−bβc

}
≤M + sup

y
|∂bβc+1(ŵx − wx)(y)|

≤M + oP (1),

and similarly for lower order derivatives.

5.6.6 Proof of Lemma 5.4

Because (θ̂t, ŵx) and (θ, wx) are such that Pn gθ̂t,t,ŵx
= 0, it holds

−Gn gθ̂t,t,ŵx
=
√
n(Pgθ̂t,t,ŵx

− Pn gθ̂t,t,ŵx
)

=
√
nPgθ̂t,t,ŵx

=
√
nP (gθ̂t,t,ŵx

− gθ0,t,t,ŵx) +
√
nPgθ0,t,t,ŵx .

Linearizing the first term on the right-hand side yields

√
n(θ̂t − θ0,t) = −V −1

θ0,t,t,wx

(
Gn gθ0,t,t,ŵx +

√
nPgθ0,t,t,ŵx

)
+ oP

(√
n|θ̂t − θ0,t|

)
.

Then the consistency of ŵx, (A2), and (A4) imply

Gn (gθ0,t,t,ŵx − gθ0,t,t,wx)→P 0,

and we obtain the desired result.

5.6.7 Proof of Lemma 5.5

First note that Gn, On, and Hn are all totally bounded by ρ. By Lemma 7.20
in Kosorok (2007), it is enough to show that for every ε, η > 0, there is a finite
partition ∪mj=1Hn,j such that

lim sup
n→∞

P

{
sup

1≤j≤m
sup

h1,h2∈Hn,j

∣∣Gn (h1 − h2)
∣∣ > ε

}
< η. (5.10)

For any fixed δ1, δ2 > 0, we can construct finite partitions Gn = ∪mj=1Gn,j andOn =
∪mk=1On,k such that ρ(g1, g2) < δ1 and ρ(ω1, ω2) < δ2 for any two g1, g2 ∈ Gn,j,
1 ≤ j ≤ m, and similarly forOn. Then we define ∪mj,k=1Hn,j,k = ∪mj,k=1(Gn,j+On,k),
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which is a finite partition of Hn such that

P

{
sup

1≤j,k≤m
sup

h1,h2∈Hn,j,k

∣∣Gn (h1 − h2)
∣∣ > ε

}
≤ P

{
sup

1≤j≤m
sup

g1,g2∈Gn,j

∣∣Gn (g1 − g2)
∣∣ > ε/2

}
+ P

{
sup

1≤k≤m
sup

ω1,ω2∈On,k

∣∣Gn (ω1 − ω2)
∣∣ > ε/2

}
.

Since Gδ is P -Donsker, (5.10) holds for Hn,j replaced with Gn,j. Therefore, we
can assume that δ1 was such that for n sufficiently large,

P

{
sup

1≤j≤m
sup

g1,g2∈Gn,j

∣∣Gn (g1 − g2)
∣∣ > ε/2

}
< η/2.

Further, Markov’s inequality yields

P

{
sup

1≤k≤m
sup

ω1,ω2∈On,k

∣∣Gn (ω1 − ω2)
∣∣ > ε/2

}
≤ 2

ε
E

{
sup

1≤k≤m
sup

ω1,ω2∈On,k

∣∣Gn (ω1 − ω2)
∣∣}, (5.11)

and using Lemma 19.34 of van der Vaart (1998), there is 0 < a(δ2) < ∞ such
that (5.11) is bounded from above by a universal constant times∫ δ2

0

√
logN[ ]

{
ε‖Ωn‖P,2,On, L2(P )

}
dε+

√
nE
[
Ωn1{Ωn > a(δ2)

√
n}
]
. (5.12)

For the second term in (5.12), we obtain the bound

√
nE
[
Ωn1{Ωn > a(δ2)

√
n}
]
≤ E

[
Ω2
n1{Ωn > a(δ2)

√
n}
]
/a(δ2),

which, by (A8), becomes arbitrarily small for any δ2 and sufficiently large n. For
the first term in (5.12), observe that∣∣ωn,t1,x(y,x)− ωn,t2,x(y,x)

∣∣
≤ r−1

n

∫
|ψθ0,t,t1(s)− ψθ0,t,t2(s)| |an,x(s,y,x)|fY (s)ds

≤ r−1
n sup

s
|an,x(s,y,x)|

∫
|ψθ0,t,t1(s)− ψθ0,t,t2(s)|fY (s)ds

= r−1
n sup

s
|an,x(s,y,x)| × ‖ψθ0,t,t1 − ψθ0,t,t2‖P,1.

Hence, ωn,t,x(y,x) is Lipschitz in ψθ0,t,t with respect to the L1(P ) metric. Then
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Theorem 2.7.11 of van der Vaart and Wellner (1996) yields∫ δ2

0

√
logN[ ]

{
ε‖Ωn‖P,2,On, L2(P )

}
dε ≤

∫ δ2

0

√
logN

{
ε/2,Ψθ0,t , L1(P )

}
dε.

Now (A6) implies that we can choose δ2 such that the left hand side is asymptot-
ically less than η/2 and, thus, (5.10) holds.

5.6.8 Proof of Lemma 5.6

First note that assumptions (A2)–(A5) continue to hold when ŵx and ψθ,t(y)

are replaced with w̃x and ψ̃θ,t(ξ,y) = ξψθ,t(y), respectively. Then supt∈T |θ̃t −
θ0,t| →P can be established using (A9) and the same arguments as in the proof of
Theorem 5.1. Using a similar expansion as in the proof of Theorem 5.2, we get

− G̃n gθ̃t,w̃x

= Gn gθ̃t,w̃x
+
√
n(Pgθ̃t,w̃x

− Pgθ̂t,w̃x
) +
√
n(Pgθ̂t,w̃x

− Pgθ0,t,w̃x) +
√
nPgθ0,t,w̃x .

After linearizing the second and third term, we get

− G̃n gθ̃t,w̃x

= Gn gθ̃t,t,w̃x
+ Vθ̂t,t,w̃x

√
n(θ̃t − θ̂t) + Vθ0,t,t,w̃x

√
n(θ̂t − θ0,t) +

√
nPgθ0,t,t,w̃x

+ oP
(
1 +
√
n|θ̃t − θ̂t|+

√
n|θ̂t − θ0,t|

)
.

Since by (A5) Vθ,t,w is continuous in θ and w, the consistency of θ̂t and w̃x
(Theorem 5.1 and A9) imply Vθ̂t,t,w̃x

= Vθ0,t,wx + op(1). Then using Lemma 5.4

for
√
n(θ̂t − θ0,t) yields

− G̃n gθ̃t,w̃x

= Gn gθ̃t,t,w̃x
+ Vθ0,t,t,wx

√
n(θ̃t − θ̂t)−Gn gθ0,t,t,wx −

√
nPgθ0,t,t,ŵx +

√
nPgθ0,t,t,w̃x

+ oP
(
1 +
√
n|θ̃t − θ̂t|+

√
n|θ̂t − θ0,t|

)
.

Consistency of (θ̃t, w̃x), (A2), and (A4) imply G̃n (gθ̃t,t,w̃x
− gθ0,t,t,wx) = oP (1).

Using (5.9) in the second equality below yields

− G̃n gθ0,t,wx

= Vθ0,t,t,wx
√
n(θ̃t − θ̂t) +

√
n(Pgθ0,t,t,w̃x − Pgθ0,t,t,ŵx)

+ oP
(
1 +
√
n|θ̃t − θ̂t|+

√
n|θ̂t − θ0,t|

)
= Vθ0,t,t,wx

√
n(θ̃t − θ̂t) + rn

√
n(P̃n ωn,t,x − Pn ωn,t,x)

+ oP
(
1 +
√
n|θ̃t − θ̂t|+

√
n|θ̂t − θ0,t|

)
= Vθ0,t,t,wx

√
n(θ̃t − θ̂t) + rnG̃n ωn,t,x + oP

(
1 +
√
n|θ̃t − θ̂t|+

√
n|θ̂t − θ0,t|

)
.
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Rearranging terms proves our claim.



6
The jittering technique for

nonparametric function estimation
with mixed data

6.1 Introduction

In applications of statistics, data containing discrete variables are omnipresent.
An online retailer records information on how many purchases a customer made in
the past. Social scientists typically use discrete scales on which study participants
rate their satisfaction, attitude, or feelings. Another common example is where
data describe unordered categories, like gender or business sectors.

Suppose that (Z,X) is a random vector with discrete component Z ∈ Zp
and continuous component X ∈ Rq. This includes the cases p ≥ 1, q = 0 (all
variables are discrete) and p = 0, q ≥ 1 (all variables are continuous). We consider
problems where one aims at estimating a functional T of the density/probability
mass function fZ,X based on observations (Zi,Xi), i = 1, . . . , n. This formulation
is general enough to include many common problems in nonparametric function
estimation, in particular: density estimation, regression, and classification.

Some nonparametric estimation techniques have been specifically designed
to allow for mixed continuous and discrete data (Ahmad and Cerrito, 1994, Li
and Racine, 2003, Hall et al., 1983, Efromovich, 2011), but the number is small
and the more sophisticated methods are often developed in a purely continuous
framework. Examples are local polynomial methods (Fan and Gijbels, 1996,
Loader, 1999) or copula-based estimators (e.g., Otneim and Tjøstheim, 2017,
Nagler and Czado, 2016, Kauermann and Schellhase, 2014). These methods are
no longer consistent when applied to mixed data types.

There is a popular trick among practitioners to get an approximate answer
nevertheless: just make the data continuous by adding noise to each discrete
variable. This trick is sometimes called jittering or adding jitter. Examples where
it has been successfully applied are: avoiding overplotting in data visualization
(Few, 2008), adding intentional bias to complex machine learning models (Zur
et al., 2004), deriving theoretical properties of concordance measures (Denuit
and Lambert, 2005), or nonparametric copula estimation for mixed data (Genest
et al., 2017). An example of its misuse was pointed out by Nikoloulopoulos (2013)
in the context of parametric copula models. Generally, the trick lacks theoretical
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justification because it can introduce bias. But we shall see that this issue is
resolved under a suitable choice of noise distribution.

This chapter aims to formalize this trick and to provide a starting point for a
more nuanced investigation of its properties. Some open questions and partial
answers will be given at the end.

6.2 Jittering mixed data

6.2.1 Preliminaries and notation

We assume throughout that all random variables live in a space with a natural
concept of ordering. Unordered categorical variables can always be coded into a
set of binary dummy variables (for which 0 < 1 gives a natural ordering). We
further assume throughout that any discrete random variable, say Z, is supported
on a set ΩZ ⊆ Z. This is without loss of generality: if ΩZ is an arbitrary (ordered)
countable set, we can identify its elements with corresponding elements in Z in
a way that the ordering is preserved. For any continuous random vector X, we
write fX for its joint density. In case Z is a discrete random vector, fZ denotes
its density with respect to the counting measure, i.e., fZ(z) = Pr(Z = z). A
random vector with mixed types will be partitioned into (Z,X) ∈ Zp×Rq. Then
fZ,X is the density with respect to the product of the counting and Lebesgue
measures,

fZ,X(z,x) =
∂q

∂x1 · · · ∂xq
Pr
(
Z = z,X ≤ x

)
.

6.2.2 Jittering random vectors

The jittered version of a random vector is defined by adding noise to all discrete
variables.

Definition 6.1. Let fε be a bounded density function that is continuous on
Zp and almost everywhere on Rp. The jittered version of the random vector
(Z,X) ∈ Zp ×Rq is defined as (Z + ε,X), where ε ∈ Rp has density fε and
is independent of (Z,X).

The concept is illustrated in Figure 6.1 for a bivariate vector (Z,X) with
mixed types. Figure 6.1a shows random samples from this vector. We see that
X is continuously distributed on R+, and Z is discretely distributed on the set
{0, 1, 2, 3, 4}. Figure 6.1b shows the jittered version of the same observations
using Uniform(−0.5, 0.5) noise. While all X values remain unchanged, the Z
values are randomly shifted to left and right.

Remark 6.1. Jittering is only meaningful when p ≥ 1, i.e., at least one of the
variables is discrete. The jittered version of a continuous vector X is the vector
X itself.
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(a) original observations
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(b) jittered observations

Figure 6.1: Jittering observations with mixed types. The discrete component Z
is jittered with Uniform(−0.5, 0.5) noise.

Remark 6.2. The noise density fε may exhibit jumps at a countable number of
points. An example of such a density is the uniform density on (−0.5, 0.5), which
jumps at −0.5 and 0.5.

6.2.3 The density of a jittered random vector

Provided that fZ,X exists, the density of the jittered vector (Z + ε,X) is simply
the discrete-continuous convolution of fZ,X and the noise density fε:

fZ+ε,X(z,x) =
∑
z′∈Zp

fZ,X(z′,x)fε(z − z′), (6.1)

for almost all (z,x) ∈ Rp+q. To see this, write

Pr(Z + ε ≤ z,X ≤ x) =
∑
z′∈Zp

Pr(Z = z′,X ≤ x, ε ≤ z − z′)

=
∑
z′∈Zp

Pr(Z = z′,X ≤ x)Pr(ε ≤ z − z′),

and take the derivative with respect to (z,x).
We observe a close relationship between the densities fZ+ε,X and fZ,X . If we

know fZ,X at all values (z′,x) ∈ Zp×Rq, we can immediately compute fZ+ε,X at
all values (z,x) ∈ Rp×q. The other direction is more interesting for our purposes:
can we recover fZ,X from known values of fZ+ε,X? In general, this poses a rather
challenging deconvolution problem. But we can make things easier by a suitable
choice of noise density η. In fact, there is a large class of noise densities densities
for which no deconvolution is necessary and fZ,X and fZ+ε,X coincide on Zp×Rq.
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Proposition 6.1. It holds

fZ+ε,X(z,x) = fZ,X(z,x) (6.2)

for any joint density fZ,X and all (z,x) ∈ Zp×Rq, if and only if the following
two conditions are satisfied:

(i) fε(0) = 1,

(ii) fε(z) = 0 for all z ∈ (Z \ {0})q.

Proof. It is obvious that conditions (i) and (ii) imply (6.2). For the reverse
implication, fix x ∈ Rq. Then (6.1) and (6.2) imply that

fZ,X(z,x) =
∑
z′∈Zp

fZ,X(z′,x)fε(z − z′), for all z ∈ Zp. (6.3)

Assuming that Z is almost surely equal to a constant z ∈ Zp, all summands in
(6.3) except the one with z′ = z are zero. Then (6.3) yields

fZ,X(z,x) = fZ,X(z,x)fε(0),

and, hence, condition (i) must hold. Under this condition, (6.2) becomes

0 =
∑

z′∈Zp\{z}

fZ,X(z′,x)fε(z − z′), for all z ∈ Zp. (6.4)

Now suppose that fZ,X(z,x) is a probability density that is strictly positive for
all z ∈ Z. Since fε is also a probability density, (6.4) can only hold if condition
(ii) is satisfied.

A simple, but powerful implication is: under the conditions of Proposition 6.1,
we can estimate the discrete-continuous density fZ,X by estimating the purely
continuous density fZ+ε,X . This finding will be generalized further in Section 6.3.

6.2.4 A convenient class of noise distributions

In the following we give a particularly convenient class of noise densities.

Definition 6.2. We say that fε ∈ Eγ1,γ2 for some 0 < γ1 ≤ 0.5 ≤ γ2 < 1, if

(i) fε(x) =
∏p

j=1 η(xp) for all x ∈ Rp,

(ii) η is a continuous probability density function,

(iii) η(x) = 1 for all x ∈ [−γ1, γ1],

(iv) η(x) = 0 for all x ∈ R \ (−γ2, γ2).
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Figure 6.2: Jittering of a density function: (a) Binomial(4, 0.3) density; (b) noise
densities fU (solid) and fUθ,ν noise density (dashed), see Examples 6.1
and 6.2; (c) the convolution of the densities in (a) and (b).

Two elements of this class are illustrated in Figure 6.2b.
The class Eγ1,γ2 satisfies (6.2), but adds two notable restrictions to the conditions

given in Proposition 6.1: the random noise is componentwise independent, and
it is constant in a neighborhood of zero. The first restriction is made purely for
convenience and will be discussed further in Section 6.5.2. The second ensures that
the derivatives of fZ+ε,X(z,x) with respect to z vanish for all (z,x) ∈ Zp ×Rq.
This property is particularly useful in nonparametric density estimation, since
an estimators’ bias is usually proportional to derivatives of the target density.

Proposition 6.2. If fε ∈ Eγ1,γ2, (z,x) ∈ Zp × Rq, and m ∈ Np such that∑p
k=1mk = m+, then

∂m+fZ+ε,X(z,x)

∂zm1
1 · · · ∂z

mp
p

= 0.

Let us consider two examples for distribution classes contained in Eγ1,γ2 .

Example 6.1. Let fU(x) = 1(|x| < 0.5) denote the uniform density on the set
(−0.5, 0.5). Then fU ∈ E0.5,0.5. Furthermore, fU is a piecewise constant function
that jumps at x = −0.5 and x = 0.5. Figure 6.2 (solid lines) illustrates its use
for jittering a discrete random variable Z ∼ Binomial(4, 0.3). The density fZ+ε

of the jittered random variable Z + ε is shown in Figure 6.2c. It is a piecewise
constant function and (because fU(0) = 1) coincides with fZ for all z ∈ Z.

Example 6.2. Let ν ∈ N and 0 ≤ θ < 1. Set Uθ,ν = U + θ(Bν − 0.5) where
U ∼ Uniform(−0.5, 0.5) and Bν ∼ Beta(ν, ν) with corresponding distribution
function FBν . The density of Uθ,ν can be calculated as

fUθ,ν (x) =

{
1(|x| < 0.5), θ = 0,

FBν
{

(x+ 0.5)/θ + 0.5
}
− FBν

{
(x− 0.5)/θ + 0.5

}
, θ > 0.
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The case where θ = 0 is trivial. For θ > 0, we first derive the density of the
random variable θ(Bν − 0.5) as fθ(Bν−0.5)(x) = fBν (x/θ + 0.5)/θ. The density of
Uθ,ν is then the convolution of the densities fU and fθ(Bν−0.5), i.e.,

fUθ,ν (x) =

∫
1(−0.5 < s < 0.5)fBν ((x− s)/θ + 0.5)/θds.

The change of variables t = (x− s)/θ + 0.5 then yields

fUθ,ν (x) =

∫
1(−0.5 < x− θ(t− 0.5) < 0.5)fBν (t)dt

=

∫ (x+0.5)/θ+0.5

(x−0.5)/θ+0.5

fBν (t)dt

= FBν
{

(x+ 0.5)/θ + 0.5
}
− FBν

{
(x− 0.5)/θ + 0.5

}
.

Observe that if |x| ≤ (1− θ)/2, we get

x+ 0.5

θ
+ 0.5 ≥ −(1− θ)/2 + 0.5

θ
+ 0.5 = − 1

2θ
+ 0.5 +

1

2θ
+ 0.5 = 1,

and, hence, FBν
{

(x+ 0.5)/θ + 0.5
}

= 1. Similarly,

x− 0.5

θ
+ 0.5 ≤ (1− θ)/2− 0.5

θ
+ 0.5 =

1

2θ
− 0.5− 1

2θ
+ 0.5 = 0,

and, hence, FBν
{

(x− 0.5)/θ + 0.5
}

= 0. Altogether this yields fUθ,ν (x) = 1 for
|x| ≤ (1 − θ)/2. Similar calculations show that fUθ,ν (x) = 0 if |x| ≥ (1 + θ)/2
and, thus, fUθ,ν ∈ E(1−θ)/2,(1+θ)/2. Furthermore, fUθ,ν is ν − 1 times continuously
differentiable everywhere on R. Hence, if fZ,X(z,x) is m times continuously
differentiable in x for all (z,x) ∈ Zp × Rq, fZ+ε,X is min{ν − 1,m} times
continuously differentiable everywhere on Rp+q. Also, fZ+ε,X coincides with fZ,X
everywhere on Zp × Rq. This is illustrated with dashed lines in Figure 6.2 for
Z ∼ Binomial(4, 0.3), ν = 5, and θ = 0.3.

6.3 Nonparametric function estimation via jittering

6.3.1 Jittering estimators

Suppose we want to estimate a functional T of fZ,X , where (Z,X) ∈ Zp ×Rq.
Let (Z1,X1), . . . , (Zn,Xn) be a sequence of random vectors having the same
distribution as (Z,X). This sequence represents the observations that are used
to estimate T (fZ,X) and is often assumed to be iid. However, independence is
not required in what follows; we only assume that the sequence has a stationary
distribution. Let further εi, i = 1, . . . , n, be independent and identically dis-
tributed vectors that have the same distribution as ε (as in Definition 6.1) and
are independent of (Z1,X1), . . . , (Zn,Xn).



Chapter 6 The jittering technique for nonparametric function estimation 113

Definition 6.3. An estimator τ̃n of T (fZ,X) is called jittering estimator if it
is a measurable function of the jittered data, i.e., τ̃n = τ̃n(Z1 +ε1,X1, . . . ,Zn+
εn,Xn).

Under the conditions of see Proposition 6.1, we have fZ,X ≡ fZ+ε,X on Zp×Rq

and, thus, T (fZ,X) = T (fZ+ε,X). Now if τ̃ is an estimator of T (fZ+ε,X), then it
is also an estimator of T (fZ,X). This means that we can use any estimator that
works in a purely continuous setting to estimate the target functional T (fZ,X),
even though fZ,X is the density of a mixed data model.

More generally, suppose that there is another functional T ∗ such that T (fZ,X) =
T ∗(fZ+ε,X). We shall call T ∗ a jittering equivalent of T . T is always a jittering
equivalent of itself, but sometimes other functionals are more convenient to
work with (as we will see shortly in examples). Again, if τ̃n is an estimator of
T ∗(fZ+ε,X), then it is also an estimator of T (fZ,X).

We already discussed the example of density estimation, where T (fZ,X) =
fZ,X(z,x) for some (z,x) ∈ Zp ×Rq. But the setup is much more general and
also covers regression problems, as we shall see in the following.

6.3.2 Examples: Estimating regression functions via jittering

Generally speaking, regression models describe a conditional relationship between
a response variable and a vector of covariates (also called predictors). Let the
response Y ∈ ΩY be either discrete or continuous and denote the vector of predic-
tors as (Z,X) ∈ Zp ×Rq. Since the joint density fY,Z,X fully characterizes the
conditional relationship of Y and (Z,X), regression functions can be equivalently
stated as a functional T of fY,Z,X . Hence, regression functions involving discrete
variables are amenable to estimation using the jittering technique.

The following examples illustrate the concept of jittering in the most common
types of regression problems. In all examples, η is the noise term used to jitter
Y in case Y is discrete and defined as in Definition 6.1. We assume that both fη
and fε satisfy the conditions of Proposition 6.1.

Example 6.3 (Mean regression). Suppose we want to estimate the conditional
mean E(Y | Z = z,X = x). We get:

(i) continuous response:

Tm,c(fY,Z,X) =

∫
R
sfY,Z,X(s, z,x)ds∫
R
fY,Z,X(s, z,x)ds

.

A jittering equivalent is T ∗m,c(fY,Z+ε,X) = Tm,c(fY,Z+ε,X).

(ii) discrete response:

Tm,d(fY,Z,X) =

∑
s∈Z sfY,Z,X(s, z,x)∑
s∈Z fY,Z,X(s, z,x)

.
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Figure 6.3: Mean regression: continuous response, discrete covariate. Black points
and solid lines indicate the true regression function.
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Figure 6.4: Mean regression: discrete response, continuous covariate. Solid lines
indicate the true regression function.
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An example for a jittering equivalent is

T ∗m,d(fY+η,Z+ε,X) = Tm,d(fY+η,Z+ε,X),

which is motivated by the equality

fY,Z,X(y,z,x) = fY+η,Z+ε,X(y, z,x), for all (y,z,x) ∈ Zp+1 ×Rq.

Hence, this jittering equivalent simply acts as if fY+η,Z+ε,X were a discrete-
continuous density. Sometimes this is computationally or conceptually
inconvenient. In such cases we can use

T ∗m,d(fY+η,Z+ε,X) =

∫
R
sfY+η,Z,X(s, z,x)ds∫
R
fY+η,Z,X(s, z,x)ds

= Tm,c(fY+η,Z,X),

which is another jittering equivalent that treats fY+η,Z+ε,X as a continuous
density.

The use of jittering in mean regression is illustrated in Figure 6.3 for the case of
a continuous response Y and a discrete covariate X. Figure 6.3a shows simulated
data from such a regression model in gray along with the true regression function
in black. Note that the regression function is integer-valued because the covariate
is. Figure 6.3b shows the jittered version (using Uniform(−0.5, 0.5) noise) of the
simulated data and the regression function in the jittered model as solid line. The
regression function in the jittered model is a step function whose values equal to
the original regression function for all z ∈ Z. The situation is similar for the case
of a discrete response and continuous covariate (Figure 6.4) with the difference
that the true regression curve is smooth in both the original and jittered domain.

Example 6.4 (Distribution regression). Suppose we want to estimate the condi-
tional distribution function Pr(Y ≤ y | Z = z,X = x).

(i) continuous response:

Tp,c(fY,Z,X) =

∫ y
−∞ fY,Z,X(s, z,x)ds∫
R
fY,Z,X(s, z,x)ds

.

A jittering equivalent is T ∗p,c(fY,Z+ε,X) = Tp,c(fY,Z+ε,X).

(ii) discrete response:

Tp,d(fY,Z,X) =

∑y
s=−∞ fY,Z,X(s, z,x)∑
s∈Z fY,Z,X(s, z,x)

.

Two examples for jittering equivalents are

T ∗p,d(fY+η,Z+ε,X) = Tp,d(fY+η,Z+ε,X)
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Figure 6.5: Quantile regression (α = 0.25, 0.75): continuous response, discrete
covariate. Black points and solid lines indicate the true quartile
functions.

and

T ∗p,d(fY+η,Z+ε,X)

=

∫ y
−∞ fY+η,Z+ε,X(s, z,x)ds+ fY+η,Z+ε,X(y, z,x)

∫ 1

0
fη(s)ds∫

R
fY+η,Z+ε,X(s, z,x)ds

= Tp,c(fY+η,Z+ε,X) +
fY+η,Z+ε,X(y,z,x)

∫ 1

0
fη(s)ds∫

R
fY+η,Z+ε,X(s, z,x)ds

.

The second example again treats fY+η,Z+ε,X as a continuous density. Recall
that jittering spreads the probability mass originally located on y onto the
interval (y − 1, y + 1). The mass in (y − 1, y] is collected by integrating
fY+η,Z+ε,X up to the value y (first term above). The correction term

fY+η,Z+ε,X(y,z,x)

∫ 1

0

fη(s)ds,

then collects the remaining mass in the interval (y, y + 1).

Example 6.5 (Quantile regression). For α ∈ [0, 1], the conditional quantile
function corresponding to Pr(Y ≤ y | Z = z,X = x) is defined as

Q(α | z,x) = inf
{
y ∈ R : Pr(Y ≤ y | Z = z,X = x) ≥ α

}
.

Recall the definitions of Tp,c, Tp,d, T
∗
p,c, and T ∗p,d from Example 6.4.

(i) continuous response: We are interested in the functional

Tq,c(fY,Z,X) = inf
{
y ∈ R : Tp,c(fY,Z,X) ≥ α

}
.
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An example for the jittering equivalent is

T ∗q,c(fY,Z+ε,X) = inf
{
y ∈ R : T ∗p,c(fY,Z+ε,X) ≥ α

}
.

(ii) discrete response: We are interested in the functional

Tq,d(fY,Z,X) = inf
{
y ∈ R : Tp,d(fY,Z,X) ≥ α

}
.

An example for the jittering equivalent is

T ∗q,d(fY+η,Z+ε,X) = inf
{
y ∈ R : T ∗p,d(fY+η,Z+ε,X) ≥ α

}
.

The use of jittering in quantile regression is illustrated in Figure 6.5 for the
case of a continuous response Y and a discrete covariate X. Figure 6.5a shows
simulated data from such a regression model in gray along with the true quartile
functions (i.e., α = 0.25, 0.75) in black. Figure 6.3b shows the jittered version
(using Uniform(−0.5, 0.5) noise) of the simulated data and the quartile functions
in the jittered model as solid lines. We again observe that the conditional quartiles
in the original and jittered models coincide for all z ∈ Z.

Example 6.6 (Estimating equations). Suppose we are in the setting of Chapter 5
and want to solve

E
{
ψθ(Y ) | Z = z,X = x)

}
= 0,

where ψθ is an identifying function for the parameter of interest θ. Recall that
this is equivalent to solving

E
{
ψθ(Y ) | Z = z,X = x)

}
= 0,

(i) continuous response: The target functional is

Tee,c(fY,Z,X) =

∫
R
ψθ(s)fY,Z,X(s, z,x)ds∫
R
fY,Z,X(s, z,x)ds

.

From Example 6.3, we know that

E{ψθ(Y ) | Z = z,X = x) = E{ψθ(Y ) | Z + ε = z,X = x).

Hence, a jittering equivalent is given by

T ∗ee,c(fY,Z+ε,X) =

∫
R
ψθ(s)fY,Z+ε,X(s, z,x)ds∫
R
fY,Z+ε,X(s, z,x)ds

.
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(ii) discrete response: The target functional is

Tee,d(fY,Z,X) =

∑
s∈Z ψθ(s)fY,Z,X(s, z,x)∑

s∈Z fY,Z,X(s, z,x)
.

The natural jittering equivalent is

T ∗ee,d(fY+η,Z+ε,X) =

∑
s∈Z ψθ(s)fY+η,Z+ε,X(s, z,x)∑

s∈Z fY+η,Z+ε,X(s, z,x)
,

but treats fY+η,Z+ε,X as a discrete density. This can be inconvenient, es-
pecially when taking a copula approach to solve the estimating equation
(Chapter 5). As in the case of distribution regression (Example 6.4), there
are small complications. One issue is that ψθ is only defined on Z. This can
be addressed by defining ψ◦θ(y) = ψθ([y]) for all y ∈ R, where [s] denotes
rounding to the closest integer. But even then, it is not generally true that

E{ψθ(Y ) | Z = z,X = x) = E{ψ◦θ(Y + η) | Z + ε = z,X = x).

One solution is to set

ψ∗θ(y) =
ψθ([y])1

(∣∣y − [y]
∣∣ < 1− γ2

)∫ 1−γ2
−(1−γ2)

fη(s)ds
,

with γ2 as in Proposition 6.1. Then, one can show that

E{ψθ(Y ) | Z = z,X = x) = E{ψ∗θ(Y + η) | Z + ε = z,X = x), (6.5)

for all (z,x) ∈ Zp ×Rq and we obtain the alternative jittering equivalent

T ∗ee,d(fY+η,Z+ε,X) =

∫
R
ψ∗θ(s)fY+η,Z+ε,X(s, z,x)ds∫
R
fY+η,Z+ε,X(s, z,x)ds

.

To see that (6.5) holds, we start with

E{ψ∗θ(Y + η) | Z + ε = z,X = x)

=

∫
R
ψ∗θ(s)fY+η,Z+ε,X(s, z,x)ds

fZ+ε,X(z,x)

=

∫
R
ψ∗θ(s)fY+η,Z,X(s, z,x)ds

fZ,X(z,x)

=
∑
y′∈Z

fY |Z,X(y′, z,x)

∫
R

ψ∗θ(s)fη(y
′ − s)ds, (6.6)

where the last equality is due to (6.1). Recalling that fη(y) = 0 for |y| ≥ γ2,
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we get ∫
R

ψ∗θ(s)fη(y
′ − s)ds =

∫ y′+γ2

y′−γ2
ψ∗θ(s)fη(y

′ − s)ds.

Since γ2 ∈ [0.5, 1), it holds for all s ∈ (y′ − γ2, y
′ + γ2) that∣∣s− [s]

∣∣ < 1− γ2 ⇔ [s] = y′ and |s− y′| < 1− γ2,

Therefore,∫
R

ψ∗θ(s)fη(y
′ − s)ds =

∫ y′+γ2
y′−γ2 ψθ([s])1

(
|s− [s]| < 1− γ2

)
fη(y

′ − s)ds∫ 1−γ2
−(1−γ2)

fη(s)ds

=
ψθ(y

′)
∫ y′+(1−γ2)

y′−(1−γ2)
fη(y

′ − s)ds∫ 1−γ2
−(1−γ2)

fη(s)ds

= ψθ(y
′),

and, hence,

(6.6) =
∑
y′∈Z

fY |Z+ε,X(y′, z,x)ψθ(y
′) = E{ψθ(Y ) | Z = z,X = x),

as claimed.

6.3.3 A note on asymptotic properties

A convenient fact about jittering estimators is that asymptotic properties for
estimating T ∗(fZ+ε,X) directly translate into properties for estimating T (fZ,X).
Recall the definition of a jittering estimator τ (Definition 6.3). The following
result is trivial, but important enough to be stated formally.

Proposition 6.3. Let T and T ∗ be two functionals such that T (fZ,X) =
T ∗(fZ+ε,X). If for some sequence rn → 0 and random variable W , r−1

n {τ̃ −
T ∗(fZ+ε,X)} → W almost surely, in probability, or in distribution, then also
r−1
n {τ̃ − T (fZ,X)} → W almost surely, in probability, or in distribution.

In particular, any (strongly) consistent estimator of T ∗(fZ+ε,X) is at the same
time a (strongly) consistent estimator of T (fZ,X). Even better: since we can
choose the noise distribution η we gain some control over the local behavior of
the jittered density fZ+ε,X . If T ∗ is sufficiently well-behaved, this allows us to
control the local behavior of the estimation target T ∗(fZ+ε,X), too. For example,
the form of the regression functionals in Section 6.3.2 and Proposition 6.2 imply
that all derivatives of T ∗(fZ+ε,X) with respect to z vanish in a γ1-neighborhood
of z ∈ Zp. This allows to estimate regression functionals without bias for the
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discrete part and, thus, to improve the convergence rates of the estimator τ̃ ; see
Chapter 7 for an in-depth analysis of the jittering kernel density estimator.

6.3.4 Examples of jittering estimators

Jittering estimators are extremely easy to implement: all one needs is a way to
generate random noise and an estimator that works for continuous data. The
following examples introduce jittering analogues of popular estimators that, in
their original version, are only applicable to continuous data.

Example 6.7 (Kernel density estimator). Let K be a symmetric probability
density function, and abbreviate the product kernel K(w) =

∏k
j=1K(wj) for any

w ∈ Rk, k ∈ N. The jittering kernel density estimator of fZ,X is

f̃(z,x) =
1

nbn

n∑
i=1

K

(
Zi + εi − z

hn

)
K

(
Xi − x
bn

)
.

where hn, bn > 0 are the bandwidths. The classical kernel density estimator of
Parzen (1962) and Rosenblatt (1956) is recovered when εi = 0 for all i = 1, . . . , n.

Example 6.8 (Local likelihood density estimator). Local polynomial likelihood
density estimators (Loader, 1996) are a generalization of the kernel density esti-
mator in the following sense. The idea is to locally fit a polynomial, say g(·;a), to
the log-likelihood, where a is the vector of polynomial coefficients (see Section 3.2.1
for more details in the bivariate case). The local fit is obtained by minimizing the
locally weighted likelihood function

n∑
i=1

K

(
Zi + εi − z

hn

)
K

(
Xi − x
bn

)
g(Zi + εi,Xi;a)

−
∫
K

(
s− z
hn

)
K

(
t− x
bn

)
exp{g(s, t;a)}dsdt.

Denoting ã = (ã1, ã2, . . . ) as the minimizer, the density fZ+ε,X(z,x) is esti-
mated by exp(ã1). For a local constant fit, we recover the classical kernel density
estimator.

Example 6.9 (Orthogonal series density estimator). Another popular method
for nonparametric density estimation is based on expansions in an orthonormal
function basis. See Schwartz (1967), Watson (1969) for some early contributions
and Efromovich (2010) for a recent overview. Assume that fZ+ε,X(z,x) is a
square-integrable density with bounded, convex support S ⊂ Zp ×Rq. Let (ϕj)j∈N
be any orthonormal basis system for the space of square-integrable functions on
S. Then one can approximate the density fZ+ε,X with an arbitrary degree of
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accuracy by a partial sum of the form

J∑
j=1

θjϕj(z,x), where θj =

∫
S
ϕj(z,x)fZ+ε,X(z,x)dzdx.

The cutoff parameter J controls the complexity of the expansions, and thereby the
accuracy of the approximation. Possible choices (ϕj)j∈N include spline, polyno-
mial, and wavelet systems (see, e.g., Walter and Shen, 2000, for an overview).

In order to use such an expansion for density estimation, the coefficients θj
have to be estimated from data. Noting that θj = E{ϕj(Z + ε,X)} suggest a
straightforward estimator,

θ̃j =
1

n

n∑
i=1

ϕj(Zi + εi,Xi).

Example 6.10 (Local linear regression). The jittering local linear regression
estimator m̃(z,x) of m(z,x) = E(Y | Z = z,X = x) is solving

n∑
i=1

{
Yi − m̃(z,x)− β>(Zi + εi,Xi) + β>(z,x)

}
wi(z,x) = 0,

with random weights

wi(z,x) = K

(
Zi + εi − z

hn

)
K

(
Xi − x
bn

)
,

and hn, bn and K are as in Example 6.7. With εi = 0 for all i = 1, . . . , n, we
recover the classical local linear regression estimator (e.g., Fan and Gijbels, 1996).
Higher-order local polynomial estimators can be constructed similarly.

Example 6.11 (Orthogonal series regression). Similar to Example 6.9, let
(ϕj)j∈N be a basis of the space of square-integrable functions. If we approxi-
mate the regression function m(z,x) = E(Y | Z + ε = z,X = x) by

m(z,x) =
J∑
j=1

θjϕj(z,x),

we can estimate the coefficients by solving

n∑
i=1

{
Yi −

J∑
j=1

θ̃jϕj(Zi + ε,Xi)

}
= 0.

This formulation can be easily extended to include penalties on the coefficient
vector θ̃.



122 6.4 Application: diagnosis of retinopathy

6.4 Application: diagnosis of retinopathy

6.4.1 The problem

We consider a classification problem from the medical sciences. The goal is to
diagnose diabetic retinopathy (a disease resulting from diabetes mellitus) from
images of the retina. The retinal images have been preprocessed and a total of
19 features have been extracted. Three features are binary categories, six are
integer valued count variables, and the remaining 10 features are continuous mea-
surements. For more information about the pre-processing and features, we refer
to Antal and Hajdu (2014). The data set contains diagnosis and characteristics
of 1151 patients and can be downloaded from the UC Irvine Machine Learning
Repository (Lichman, 2013).

6.4.2 A classification model based on the joint density

We will derive a prediction for the diagnosis from the joint density of the features
and the diagnosis. Define Y = 1(patient suffers from retinopathy), and (Z,X)
as the discrete-continuous vector of predictors. The conditional probability of Y
can be expressed in terms of the joint density of (Y,Z,X):

Pr(Yi = 1|Zi,Xi) =
fY,Z,X(1,Zi,Xi)

fY,Z,X(0,Zi,Xi) + fY,Z,X(1,Zi,Xi)
.

A sensible rule is to diagnose retinopathy when Pr(Y = 1|Zi,Xi) > α, where
α ∈ [0, 1] is a tuning parameter: increasing α reduces both the false positive rate
and true positive rate.

The joint density fZ,X is unknown and needs to be estimated. We will compare
two different methods: the mixed data kernel estimator of Li and Racine (2003)
and a version of the vine copula based density estimator from Chapter 4. Imple-
mentations of both methods are publicly available as R packages, see Hayfield
and Racine (2008) and Nagler (2017).

The theory justifying the vine copula based estimator requires that all variables
are continuous. To make it applicable to mixed data, we consider a jittering
version of this estimator. That also allows us to bypass several complications
arising in copula models for discrete data, cf., Genest and Neslehova (2007) and
Panagiotelis et al. (2012). Similar to Section 4.5, we estimate the marginal
densities by the classical kernel density estimator and the pair-copulas by a
transformation kernel approach (see, Geenens et al., 2017). To allow for consistent
estimation of the vine copula density, the marginal kernel estimator must be
uniformly consistent (see Assumption 4.1). We facilitate this by choosing η =
fU0.1,5 which ensures that the marginal densities are sufficiently smooth (see
Example 6.2).
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Figure 6.6: The true positive rate as a function of the false positive rate for the
joint density classifiers based on Li and Racine (2003, dashed) and
vine copulas (solid).

6.4.3 Results

Figure 6.6 shows the true positive rate (proportion of correctly classified retinas
with retinopathy) as a function of the false positive rate (proportion of misclassi-
fied retinas without retinopathy) achieved by the two methods. All results are
based on ten-fold cross-validation. The vine copula based estimator performs
uniformly better than the one of Li and Racine (2003), yielding a better true
positive rate for each level of the false positive rate. This illustrates that the
jittering trick combined with sophisticated estimators can yield much better
results than methods specialized to the mixed data setting. The effort to achieve
this is minimal: we just add artificial noise to the original data and apply an
existing estimator.

6.5 Discussion

6.5.1 Benefits

The most obvious benefit of jittering estimators is convenience. For their imple-
mentation, all one needs is an estimator that works in the continuous setting
and a way to simulate random noise. This is easily achieved in modern statisti-
cal software. At second glance, the method opens many possibilities to extend
existing estimators to the mixed data setting. This is increasingly useful with
increasing complexity of the estimators. In many cases, there is otherwise no
straightforward way to adapt an estimator to mixed data.

A less obvious benefit arises for studying general properties of a nonparametric
function estimation problem. In the continuous setting, asymptotic arguments
are often easier and well-established. For example, jittering arguments make it
straightforward to derive minimax-optimal rates of convergence in nonparametric
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mixed data models; see Section 7.5.

6.5.2 Issues and open questions

Curse of dimensionality

A key issue for nonparametric estimators is the curse of dimensionality. In a
continuous setting, the speed of convergence decreases exponentially in the dimen-
sion. For example, the classical convergence rate for estimating a d-dimensional
continuous density is n−2/(4+d). A discrete density on the other hand can always
be estimated with n−1/2 rate. It is not obvious, which regime jittering estimators
fall into, since a discrete density is estimated by exchanging it with a continuous
surrogate.

Unfortunately, this question has no general answer and depends on the estima-
tors’ characteristics. The main criterion is how “local” the estimator operates; or
more specifically, if the estimator is only affected by data in a shrinking neigh-
borhood. For example, B-spline methods and kernel estimators with a compact
kernel function will usually fall into the discrete regime, whereas Bernstein poly-
nomials and kernel estimators with unbounded kernels fall into the continuous
one. But we should stress that such considerations are only asymptotic and the
behavior on finite samples will likely fall somewhere in between.

Efficiency

Typically, adding noise brings about some unnecessary variance. The magnitude
of this effect depends on the characteristics of the estimator. Generally, this addi-
tional variance can be reduced by averaging estimates over multiple independent
jitters (cf., Genest et al., 2017). In specific cases, a jittering estimator can be
inherently efficient, with no need for averaging (see Section 7.4.1).

Choice of noise distribution

When using the jittering technique, an immediate question is which noise dis-
tribution to choose. The necessary conditions given in Proposition 1 are fairly
broad and allow for a variety of noise distributions.

A referee asked whether it would be possible to preserve some dependence
characteristics of the data. Unfortunately, dependence between discrete variables
and its connection to the continuous counterpart is a highly subtle issue. One
such subtlety is that there is no density when continuous variables are perfectly
dependent, but the probability mass function for perfectly dependent variables
exists. Genest and Neslehova (2007) address many other interesting issues. The
article also provides some arguments for using independent noise, because it is the
only way to preserve the equality between probabilistic and analytical definitions
of some margin-free dependence measures like Kendall’s τ and Spearman’s ρ
(their equation 7) or tie-corrected versions (p. 495).
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In any case, one should understand jittering as an estimation technique rather
than a modeling technique. Interpreting the jittered model independently of
the “true” one is unlikely to be beneficial. In this chapter, the only criterion for
validity of jittering was consistency of estimators. But we should expect that a
data-driven choice of noise distribution would improve estimators’ accuracy. A
closer examination of the noise distribution’s effect will be a promising path for
future research.

Restriction to nonparametric techniques

Finally, we should warn that this methodology is only valid for nonparametric
estimators. Usually, the shape of functionals of the jittered density can not be
captured by parametric models, leading to estimators that are inconsistent.

Supplementary material

• https://github.com/tnagler/cctools: an R package providing tools for jit-
tering.

• https://github.com/tnagler/jdify: an R package providing functionality for
joint density classification.

• https://gist.github.com/tnagler/843f5c658e1139ff669d33614cc727e6: R code
replicating the results from Section 6.4.

https://github.com/tnagler/cctools
https://github.com/tnagler/cctools
https://gist.github.com/tnagler/843f5c658e1139ff669d33614cc727e6




7
Asymptotic analysis of the jittering

kernel density estimator

7.1 Introduction

Multivariate density estimation is a central field in nonparametric statistics. Yet
many popular methods have a significant drawback in applications: they can only
be applied to continuous data. Some estimators have been specifically designed
to allow for mixed continuous and discrete data (Ahmad and Cerrito, 1994, Li
and Racine, 2003, Hall et al., 1983, Efromovich, 2011), but the number is small
compared to the methods available in a purely continuous framework.

A common trick among practitioners is to make the discrete variables continuous
by adding a small amount of noise. The noisy data is continuous and the usual
nonparametric estimators apply. But the addition of random noise can introduce
bias, so this procedure generally lacks justification. In Chapter 6, we showed that
adding noise still allows for valid estimates when the noise comes from a certain
class of distributions. Then any nonparametric density estimator can be used in
the mixed data setting. The resulting estimators are called jittering estimators.

Jittering estimators have so far been neglected in academic research, likely due
to the widespread concern that jittering causes a loss in efficiency. The main
objective of this chapter is to demonstrate that this concern is usually unjustified.
We give an in-depth analysis of a simple instance from the class of jittering
estimators: the jittering kernel density estimator, which is the jittering analog
of the classical kernel density estimator (Parzen, 1962, Rosenblatt, 1956, Wand,
1992). We shall show that it maintains all the properties expected from a good
nonparametric density estimator:

1. It is asymptotically normal and asymptotically unbiased for discrete variables
(Theorem 7.1).

2. It is strongly and uniformly consistent (Theorem 7.2).

3. It can be fully efficient (Section 7.4.1).

4. It converges at minimax-optimal rates for a large class of target densities
(Theorem 7.3 and Theorem 7.4). To the best of the author’s knowledge, these
are the first results on minimax-optimality of nonparametric density estimators
for mixed data.
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Although focus is on only one instance of the class of jittering estimators, we can
expect that others have similar properties.

The remainder of this chapter is organized as follows. Section 7.2 introduces the
the jittering estimator and some assumptions. Section 7.3 gives a comprehensive
asymptotic analysis which is complemented by a study of the asymptotic efficiency
and finite sample bias in the univariate discrete setting (Section 7.4). Section 7.5
establishes with minimax-optimal rates for density estimation in a nonparametric
mixed data model. Section 7.6 supports demonstrates that the estimator is
also competitive on finite samples; Section 7.7 offers conclusions. Proofs of all
theorems are deferred to Section 7.8.

7.2 The estimator

Suppose that (Z,X) is a random vector with discrete component Z ∈ Zp and
continuous component X ∈ Rq. We explicitly allow for the cases where p ≥ 1,
q = 0 (all variables are discrete) and p = 0, q ≥ 1 (all variables are continuous).
Our goal is to estimate the density f of (Z,X) based on ‘observations’ (Zi,Xi),
i = 1, . . . , n, which are iid random vectors having the same distribution as (Z,X).
In this context, f is the density with respect to the product of the counting and
Lebesgue measures, i.e.,

fZ,X(z,x) =
∂q

∂x1 · · · ∂xq
Pr(Z = z,X ≤ x).

Let K be a real-valued function, called kernel, and abbreviate K(w) =∏k
j=1 K(wj) for any w ∈ Rk, k ∈ N. The classical kernel density estimator

is defined as

f̂(z,x) =
1

nhpnb
q
n

n∑
i=1

K

(
Zi − z
hn

)
K

(
Xi − x
bn

)
, (7.1)

where hn, bn > 0 are called bandwidth parameters and control the amount of
smoothing. The above definition of the estimator is simplified to ease our expo-
sition: we use only one parameter (hn) for smoothing all components of Z and
one parameter (bn) for smoothing the components of X. In practice, one would
use a single parameter for each variable or even a bandwidth matrix (see, e.g.,
Scott, 2008).

The estimator f̂ only works for continuous random vectors. To make it appli-
cable to mixed data, we make all discrete variables continuous by adding noise.
Let εi ∈ Rp, i = 1, . . . , n, be iid random vectors independent from (Zi,Xi),
i = 1, . . . , n. Suppose further that the p components of εi are iid with den-
sity η and denote the joint density of (Zi + εi,Xi) by fη. The jittering kernel
density estimator is defined as the classical kernel density estimator applied to
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(Zi + εi,Xi), i = 1, . . . , n:

f̃(z,x) =
1

nhpnb
q
n

n∑
i=1

K

(
Zi + εi − z

hn

)
K

(
Xi − x
bn

)
. (7.2)

To facilitate our analysis, the following conditions are imposed on the kernel
function:

Assumption 7.1.

K1: K : [−1, 1]→ R≥0 is a continuous function satisfying
∫
K(t)dt = 1.

K2: There is ` ∈ N, ` ≥ 2, such that for k = 1, . . . , `− 1,∫
[0,1]

tkK(t)dt = 0,

∫
[0,1]

t`K(t)dt > 0.

Remark 7.1. A kernel function satisfying K2 is called `-th order kernel (see,
e.g., Marron, 1994).

We further assume that the noise density η belongs to the class Eγ1,γ2 , as defined
in Definition 6.2. The first equality implies that we can equivalently estimate fη
instead of f , which is convenient because fη is the density of a purely continuous
random vector. Additionally, all derivatives with respect to z vanish, which
makes estimation even easier (see Proposition 6.2).

Remark 7.2. The estimator f̃ is similar to the estimators of Ahmad and Cerrito
1994 and Li and Racine (2003). The difference lies in the kernel function for
discrete data. The estimators of Ahmad and Cerrito 1994 and Li and Racine
(2003) use a deterministic kernel function which is defined on the integers. In
contrast, the jittering kernel density estimator (7.2) uses a random kernel K{(·+
εi)/bn} defined on a compact subset of Rp, where randomness is induced by εi.

7.3 Asymptotic analysis in the general setting

7.3.1 Asymptotic distribution

We first study the asymptotic distribution of the jittering kernel density estimator.
To motivate our first theorem, we recall a a classical result from kernel density
estimation in the purely continuous setting (e.g., Wand, 1992). If f is the density
of a continuous random vector (Z,X) ∈ Zp ×Rq, sufficiently smooth, ` = 2 in
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Assumption 7.1, and hn, bn → 0, nhpnb
q
n →∞, then

E
{
f̂(z,x)

}
= f(z,x) +

h2
nσ2

2

p∑
k=1

∂2f(z,x)

∂z2
k

+
b2
nσ2

2

q∑
j=1

∂2f(z,x)

∂x2
j

+ o
(
h2
n + b2

n

)
,

Var
{
f̂(z,x)

}
=
κp+qf(z,x)

nhpnb
q
n

+ o

(
1

nhpnb
q
n

)
,

(7.3)

where κ and σ2 are constants defined in Theorem 7.1 below.
Recall that f̃ is nothing else than f̂ applied to (Zi + εi,Xi), i = 1, . . . , n.

Proposition 6.2 showed that fη(z,x), the density of (Zi + εi,Xi), has vanishing
derivatives with respect to z. We can thus expect the first sum in the bias
term in (7.3) to vanish asymptotically. In fact, it becomes exactly zero when
hn ≤ min{γ1, 1− γ2}. The following result improves upon the properties implied
by (7.3) by taking these considerations into account.

Assumption 7.2.

A1: f(z,x) is `+ 1 times continuously differentiable with respect to x.

A2: K1 and K2 hold with ` ≥ 2.

A3: η ∈ Eγ1,γ2.

A4: bn → 0 and nhpnb
q
n →∞ as n→∞.

A5: There exists an n0 ∈ N, such that hn ≤ min{γ1, 1− γ2} for all n ≥ n0.

Theorem 7.1. Under assumptions A1-A5, it holds for any (z,x) ∈ Zp ×Rq,

E
{
f̃(z,x)

}
= f(z,x) +

b`nσ`
`!

q∑
j=1

∂`f(z,x)

∂x`j
+ o(b`n),

Var
{
f̃(z,x)

}
=
f(z,x)

nbqn

{
h−pn κp+q − bqnf(z,x)

}
+ o

(
1

nhpnb
q
n

)
,

where σ` =
∫ 1

−1
s`K(s)ds and κ =

∫ 1

−1
K2(s)ds. If further nhpnb

q+2`
n = O(1),

f̃(z,x)− E
{
f̃(z,x)

}
Var
{
f̃(z,x)

} d→ N (0, 1).

Remark 7.3. The assumptions in Theorem 7.1 differ from those usually made
in the continuous framework. There are no assumptions on the smoothness of
f̂Z+ε,X(z,x) with respect to z, because its local behavior is controlled by η ∈ Eγ1,γ2.
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Further, hn is not required to vanish asymptotically, but should be less than
min{γ1, 1− γ2} for large n. This is sufficient to ensure that there is no bias with
respect to z. Further decreasing hn does not change the bias, but inflates the
variance.

Remark 7.4. The asymptotic variance does not involve on η or its class param-
eters γ1 and γ2 (and neither does the asymptotic bias). Intuitively, we would
expect an increase in the estimator’s variance because we are adding random noise.
Apparently this effect is dominated by the sampling variability in the original data
and asymptotically negligible. So there should be no benefit from averaging over
multiple jitters (at least asymptotically). This is in contrast to empirical processes
of jittered data (Genest et al., 2017).

7.3.2 Asymptotically optimal bandwidths

A standard tool for studying optimal bandwidths is the asymptotic mean squared
error,

AMSE
{
f̃(z,x)

}
=
[
E
{
f̃(z,x)

}
− f(z,x)

]2
+ Var

{
f̃(z,x)

}
.

Under the assumptions of Theorem 7.1, we get

AMSE
{
f̃(z,x)

}
≈ b2`

n σ
2
`

(`!)2

( q∑
j=1

∂`f(z,x)

∂x`j

)2

+
f(z,x)

nbqn

{
h−pn κp+q − bqnf(z,x)

}
.

For hn = O(1), it is easy to check that the bandwidth bn minimizing the AMSE
satisfies bn ∼ n−1/(2`+q). This is well-known as the optimal rate for the classical
kernel density estimator when p = 0. The AMSE further suggests that it is
optimal to choose hn as large as possible. The largest hn allowed by A5 is
hn = min{γ1, 1− γ2}. Asymptotically, this is the optimal bandwidth. We shall
see shortly that this choice means that we are not smoothing the discrete variables
at all. This is not unreasonable: in contrast to the continuous case, smoothing
discrete variables is not necessary for consistent nonparametric estimation (for a
discussion, see, Simar et al., 2011).

On finite samples hn = min{γ1, 1− γ2} can be too small. Recall that K is zero
unless |x| < 1 and suppose that hn ≤ 1 − γ2. Then K{(Zi + εi − z)/hn} > 0
implies |Zi,k + εi,k− zk| < 1− γ2 for all k = 1, . . . , p. Since |εi,k| < γ2, that is only
possible when |Zi,k − zk| < 1− γ2 + |εi,k| < 1 for all k, which implies Zi = z. In
this case the estimator can be written as

f̃(z,x) =
1

nhpnb
q
n

∑
i : Zi=z

K

(
εi
hn

)
K

(
Xi − x
bn

)
.

It neglects all observations where Zi 6= z and, thus, does not smooth with respect
to the discrete variables. This also means that f̃(z,x) = 0 if Zi 6= z for all
i = 1, . . . , n. Theorem 7.1 implicitly assumes that n is large enough to provide
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sufficiently many observations with Zi = z. This is guaranteed asymptotically
whenever P (Z = z) > 0, but often demands sample sizes much larger than what
is common.

We conclude that Theorem 7.1 is not useful for bandwidth selection on samples
of small or moderate size. Cross-validation techniques are more appropriate tools
in the mixed data setting (see, e.g., Aitchison and Aitken, 1976, Racine and Li,
2004, Hall et al., 2004).

7.3.3 Consistency

Theorem 7.1 implies pointwise consistency of the jittering kernel density estimator,
but assumption A1 is more strict than necessary. The following result weakens
this assumption and additionally establishes strong uniform consistency.

Assumption 7.3.

A1′: The (`− 1)th derivative of f(z,x) exists and is uniformly Lipschitz on
S ⊆ Zp ×Rq.

Theorem 7.2. Suppose that assumptions A1′, A2–A5 hold. Then, for all
(z,x) ∈ S,

f̃(z,x)− f(z,x) = Op

{
b`n + (nhpnb

q
n)−1/2

}
, (7.4)

sup
S

∣∣f̃(z,x)− f(z,x)
∣∣ = Oa.s.

{
b`n +

(
max{ln lnn, lnh−1

n , ln b−1
n }

nhpnb
q
n

)1/2}
.

(7.5)

Remark 7.5. If there are h0 > 0, n0 ∈ N such that hn ∈ (h0,min{γ1, 1 − γ2}]
for all n ≥ n0, the rates of convergence in Theorem 7.2 become

f̃(z,x)− f(z,x) = Op

{
b`n + (nbqn)−1/2

}
,

sup
S

∣∣f̃(z,x)− f(z,x)
∣∣ = Oa.s.

{
b`n +

(
max{ln lnn, ln b−1

n }
nbqn

)1/2}
,

which do not involve p, the dimension of the discrete variables. So adding more
discrete variables does not change the convergence rate of the estimator. In
particular, there is no cost for recoding unordered categorical variables into several
binary variables.

Remark 7.6. To find the best possible rates in Theorem 7.2, we minimize the
expressions with respect to hn and bn under the constraint that hn = O(1).

(i) The best rate in (7.4) is n−`/(2`+q) and achieved when hn ∼ 1 and bn ∼
n−1/(2`+q).
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(ii) For q > 0, the best rate in (7.5) is (n/ lnn)−`/(2`+q) and achieved when
hn ∼ 1, bn ∼ (n/ lnn)−1/(2`+q).

(iii) For q = 0, the best rate in (7.5) is (n/ ln lnn)−1/2 and achieved when
hn ∼ 1.

7.4 A closer look at the univariate discrete setting

The jittering kernel density estimator f̃ handles continuous variables just like
the classical kernel density estimator. How it smooths discrete variables is less
obvious. To gain a better understanding, we study its asymptotic efficiency and
finite sample bias when there is only one discrete variable (p = 1, q = 0).

7.4.1 Asymptotic efficiency

For convenience, set hn ≡ min{γ1, 1 − γ2}. The expectation and variance in
Theorem 7.1 become

E
{
f̃(z)

}
= f(z), Var

{
f̃(z)

}
=
f(z)

n

[
min(γ1, 1− γ2)−1κ− f(z)

]
+ o(n−1),

The most efficient point estimator for a discrete probability f(z) = Pr(Z = z) is
the sample frequency fn(z) = n−1

∑n
i=1 1(Zi = z). It satisfies

E
{
fn(z)

}
= f(z), Var

{
fn(z)

}
=
f(z)

n

{
1− f(z)

}
.

The asymptotic relative efficiency (ARE) of f̃ relative to fn is defined as

ARE
{
f̃(z) : fn(z)

}
=

AVar{fn(z)}
AVar{f̃(z)}

,

where AVar denotes the leading term of an asymptotic expansion of the variance.
The ARE is interpreted as follows: If the estimator f̃ is used with n observations,
then one needs ARE× n observations to obtain the same accuracy with fn. If
the ARE is less than one, then fn needs less observations, i.e., fn is more efficient
than f̃ . If the ARE is greater then one, it is the other way around. If it is exactly
one, the two estimators are equally efficient.

Straightforward calculations yield

ARE
{
f̃(z) : fn(z)

}
=

1− f(z)

min{γ1, 1− γ2}−1κ− f(z)

=

(
1 +

min{γ1, 1− γ2}−1κ− 1

1− f(z)

)−1

≤ 1.

The relative efficiency depends on three quantities:
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• It is increasing in min{γ1, 1− γ2} and the most efficient choice is γ1 = γ2 =
1/2, which corresponds to the uniform error density on (−1/2, 1/2). On
the other hand, the relative efficiency approaches 0 for γ1 → 0 or γ2 → 1.

• It is decreasing in κ, which is the roughness of the kernel K. The ‘least
rough‘ kernel is the is the uniform kernel, i.e., K(x) = 2−11(|x| ≤ 1), for
which κ = 1/2. But this kernel is rather unpopular in practice. A more
widely used kernel is the Epanechnikov kernel, K(x) = 3/4(1−x2)1(|x| ≤ 1),
for which κ = 0.6.

• It is decreasing in f(z). The worst case is that f(z) = 1, for which the
ARE is zero unless γ1 = γ2 = κ = 1/2. For a Bernoulli(1/2) variable,
Uniform(−1/2, 1/2) noise, and the Epanechnikov kernel, we get ARE ≈
0.71.

Remark 7.7. Suppose η is the uniform density on (−1/2, 1/2) (for which γ1 =
γ2 = 1/2), hn = 1/2, and K is the uniform kernel (for which κ = 1/2). Then,
the two estimators are equally efficient. In fact, since |Zi − z| ≥ 1 if Zi 6= z, the

estimator f̃ becomes

f̃(z) =
1

nhn

n∑
i=1

2−11(|Zi + εi − z| ≤ hn)

=
2

n

n∑
i=1

2−11(|Zi + εi − z| ≤ 1/2)

=
1

n

n∑
i=1

1(Zi = z),

which is exactly the sample frequency estimator fn.

7.4.2 Finite sample bias

Assuming hn ≤ min{γ1, 1 − γ2}, Theorem 7.1 shows that f̃ is unbiased in a
purely discrete setting. On small samples, it is often necessary to choose a larger
bandwidth (see Section 7.3.2). When hn > min{γ1, 1 − γ2}, the estimator f̃ is
usually biased.
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Lemma 7.1. Suppose that η ∈ Eγ1,γ2 and K satisfies K1–K2. Then,

E
{
f̃(z)

}
− f(z)

=

dhn−1/2e∑
k=1

ρηk(hn)f(z + k)−
{
ρηk(hn) + ρη−k(hn)

}
f(z) + ρη−k(hn)f(z − k)

k2
,

where ρηk(hn) = k2
∫
Aηk(hn)

K(t)η(k − hnt)dx and

Aηk(hn) =
[
(1− γ2 − k)h−1

n , (−1 + γ2 − k)h−1
n

]
∩ [−1, 1].

To interpret the bias, it is helpful to focus on a simple case first. For η(x) =
1(|x| ≤ 1/2) and symmetric K, we have ρη−k = ρηk and therefore the following
corollary.

Corollary 7.1. Suppose that η(x) = 1(|x| ≤ 1/2) (i.e., η ∈ E0.5,0.5) and K is
a symmetric function satisfying K1–K2. Then for all z ∈ Z,

E
{
f̃(z)

}
= f(z) +

dhn−1/2e∑
k=1

ρk(hn)∆2
kf(z),

where

∆2
kf(z) =

f(z + k)− 2f(z) + f(z − k)

k2
,

and ρk(hn) = k2
∫
Ak(hn)

K(t)dt with

Ak(hn) =
[
(1/2− k)h−1

n , (−1/2− k)h−1
n

]
∩ [−1, 1].

The operator ∆2
k is known as the second order central difference operator (e.g.,

Monahan, 2011). It is commonly used as numerical approximation of second
order derivative of real-valued functions, which is

d2f(x)

dx2
= lim

s→0

f(x+ s)− 2f(x) + f(x− s)
s2

.

We can interpret ∆2
kf as a discrete analogue to the second order derivative

of a real-valued function. In this aspect, the discrete setting is similar to the
continuous one (where the bias of f̃ is proportional to the second order derivative).

The parameter k is called the step size and determines how local the derivative
approximation is. The bias of f̃ is a weighted sum of such ‘derivatives’ for
several values of k. The bandwidth hn limits the maximal step size and thereby
controls the locality of the bias. Although not universally true, smaller values
of hn typically correspond to a smaller bias. A simple counter example is when
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f(z + k) = f(z − k) = f(z) for all k ≤ dhn − 1/2e, where the bias is zero for
all h′n ≤ hn. There are also situations where decreasing hn leads to a larger
bias. This phenomenon also exists in the continuous setting, but is disguised by
asymptotic approximations. When hn ≤ 1/2 as in Theorem 7.1, the estimator is
unbiased.

The bias in Lemma 7.1 can be interpreted similarly. But ∆2
k is replaced by a

weighted approximation of the derivative. If η or K are asymmetric, different
weights will be assigned to the ‘forward derivative’ k−1{f(z + k)− f(z)} and the
‘backward derivative’ k−1{f(z − k)− f(z)}.

7.5 Minimax rate optimality

The maximum risk associated with a class of densities F and a (semi-) distance
d is defined as

Rn(f̂ ,F , d) = sup
f∈F

Ef

{
d2(f̂ , f)

}
, (7.6)

We consider two semi-distances that relate to pointwise and uniform consistency
of f̂ , respectively:

d(z,x)(f̂ , f) =
∣∣f̂(z,x)− f(z,x)

∣∣, for some (z,x) ∈ Zp ×Rq,

d∞,S(f̂ , f) = sup
S

∣∣f̂(z,x)− f(z,x)
∣∣, for some S ⊂ Zp ×Rq.

For F , we shall consider all bounded density functions whose continuous part
belongs to a Hölder class. For a ∈ Nq

0, we use the multi-index notations |a| =∑q
j=1 aj, x

a = xa11 · · ·x
aq
q , and denote the partial derivatives of f with respect to

x as

Da
xf(z,x) =

∂|a|f(z,x)

∂a1x1 · · · ∂aqxq
. (7.7)

Definition 7.1. For λ < ∞ and β = r + α, r ∈ N0, 0 < α ≤ 1, the class
H(β, λ) is defined as all functions f : Zp ×Rq → R such that for all a ∈ N0

with |a| ≤ r,

(i) f is a probability density on Zp ×Rq,

(ii) Da
xf(z,x) exists for all (z,x) ∈ Zp ×Rq and

sup
z∈Zp,x,x′∈Rq

{∣∣Da
xf(z,x)−Da

xf(z,x′)
∣∣

‖x− x′‖α2
+ f(z,x)

}
≤ λ

Remark 7.8. If p ≥ 1 and q = 0, H(β, λ) contains all densities on Zp. If p = 0
and q ≥ 1, it is a Hölder class on Rq.
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The following result establishes convergence rates of the jittering kernel density
estimator with respect to the maximum risk.

Theorem 7.3. Denote f̃ as the estimator defined in Equation 7.2. Suppose
f ∈ H(β, λ) and assumptions A2–A4 of Theorem 7.1 hold with ` ≥ r + 1,
β = r + α, 0 < α ≤ 1, λ <∞. Assume further that there are h0 > 0, n0 ∈ N
such that hn ∈ (h0,min{γ1, 1−γ2}] for all n ≥ n0. Then there exists c ∈ (0,∞)
such that

lim sup
n→∞

r−2
n Rn(f̂ ,F , d) ≤ c,

in each of the following cases:

(i) rn = n−β/(2β+q), d = d(z,x)

(ii) rn = (n/ lnn)−β/(2β+q), d = d∞,S , q ≥ 1,

(iii) rn = n−1/2, d = d∞,S , q = 0, |S| <∞,

(iv) rn = (n/ ln lnn)−1/2, d = d∞,S , q = 0, |S| =∞,

for arbitrary (x, z) ∈ Zp ×Rq and S ⊂ Zp ×Rq.

We shall see that the rates in Theorem 7.3 (i)–(iii) are optimal in a minimax
sense. The minimax risk is defined as

R∗n(F , d) = inf
f̂
Rn(f̂ ,F , d) = inf

f̂
sup
f∈F

Ef

{
d2(f̂ , f)

}
,

where the infimum is taken over all possible estimators f̂ of f . In our context,
an ‘estimator’ is any measurable function of (Zi,Xi), i = 1, . . . , n.

Definition 7.2. A sequence of positive real numbers rn is called

(i) an upper bound on the minimax rate if there is c such that

lim sup
n→∞

r−2
n R∗n(F , d) ≤ c.

(ii) a lower bound on the minimax rate if there is c > 0 such that

lim inf
n→∞

r−2
n R∗n(F , d) ≥ c,

(iii) a minimax-optimal rate of convergence if both (i) and (ii) hold.

In a purely continuous setting, optimal rates have long been established (Stone,
1980, 1983, Ibragimov and Khas’ minskii, 1983). To the best of the author’s
knowledge, there are no results on optimal rates in the mixed data setting.
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To show that a rate is minimax-optimal, we have to check that it is both an
upper and lower bound on the minimax rate. Theorem 7.3 already gives us an
upper bound, since, for any estimator f̂ ,

R∗n(F , d) = inf
f̂
Rn(f̂ ,F , d) ≤ Rn(f̂ ,F , d).

Lower bounds on the minimax rate can be deduced easily by considering subsets
of H(β, λ) for which lower bounds are known (see Section 7.8.4).

Theorem 7.4. Let S ⊂ Zp ×Rq and (z,x) ∈ S. The minimax-optimal rate
of convergence r∗n associated with the class H(β, λ) and distance d satisfies

(i) r∗n = n−β/(2β+q), for d = d(z,x)

(ii) r∗n = (n/ lnn)−β/(2β+q), for d = d∞,S , q ≥ 1,

(iii) r∗n = n−1/2, for d = d∞,S , q = 0, |S| <∞,

(iv) r∗n ∈ [n−1/2, (n/ ln lnn)−1/2], for d = d∞,S , q = 0, |S| =∞,

Remark 7.9. Theorem 7.3 and Theorem 7.4 imply that the jittering kernel
density estimator converges at minimax-optimal rates for cases (i)–(iii).

Remark 7.10. Theorem 7.4 only provides an interval for the optimal rate in
case (iv). Minimax analysis for this setting is surprisingly har; see (Han et al.,
2015) for minimax rates with respect to the `1 distance. The interval is quite
narrow, differing only by a factor of size ln lnn. The exact rate, however, remains
an open problem.

7.6 Simulation experiments

The jittering kernel density estimator has appealing asymptotic properties. This
may come as a surprise: since we are adding noise to the data, we could expect
that the data become less informative and uncertainty increases. We complement
our asymptotic arguments with a small numerical experiment that illustrates the
small sample performance of the estimator. Because of its wide use and close
resemblance to our approach, we will use the estimator of Li and Racine (2003)
as a benchmark.

We use the following setup:

• We compare three estimators

(i) jkde: the jittering kernel density estimator with noise density η(x) =
1(|x| < 1/2), for which γ1 = γ2 = 1/2.

(ii) jkde2: the jittering kernel density estimator with noise density η(x) =
fU1/4,5

(x) (as in Example 6.2), for which γ1 = 3/8, γ2 = 5/8.
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Figure 7.1: RASE achieved by the two estimators for various choices of p, q,
and m. Each estimator is represented by two boxes; the left box
corresponds to n = 50, the right to n = 200.

(iii) liracine: the estimator of Li and Racine (2003) as implemented in
the np package (Hayfield and Racine, 2008).

Contrary to (7.2), we use one bandwidth parameter for each variable. All
estimators use likelihood cross-validation for bandwidth selection.

• We estimate the density f of a vector (Z,X) ∈ Zp × Rq, where Zj ∼
Binomial(m, 0.3) for all j = 1, . . . , p, Xj ∼ N (0, 1) for all j = 1, . . . , q. For
sake of simplicity, all variables are simulated independently.

• Results are based on Nsim = 1000 simulated data sets with sample sizes
n = 50, 200.

• As a performance measure we use the root average square error (RASE)
computed over a grid in Zp×Rq. More specifically, we use Z = {0, . . . ,m},
X = {−2,−1.6, . . . , 2}, and

RASE
(
f̂ , f

)
=

√∑
z1∈Z

· · ·
∑
zp∈Z

∑
x1∈X

· · ·
∑
xq∈X

{
f̂(z,x)− f(z,x)

}2
.

Figure 7.1 shows the estimators’ performance for various values of p, q and m.
Each estimator is represented by two boxes, where the left box corresponds to
n = 50 and the right box to n = 200. The choice of noise density seems to be
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of minor importance: jkde and jkde2 give almost identical results. Compared
to liracine, the two estimator show only small differences. The two jittering
estimators are slightly more accurate in all scenarios with m = 15, and slightly
less accurate when m = 1. This is related to our observation from Section 7.4.1
that the efficiency is worse when f(z) is large. The relative performance of the
three estimators is consistent across the two sample sizes under consideration.
Overall, the jittering estimators are competitive with the benchmark estimator
liracine. We found no evidence that adding artificial noise negatively affects the
accuracy of the estimates. This confirms what was suggested by the estimator’s
asymptotic properties.

7.7 Conclusion

This article gave an in-depth analysis of the behavior of the jittering estimator. It
was shown to have appealing large-sample properties and perform well on small
samples.

Although our focus was on a particular instance of the class of jittering esti-
mators, we also learned something about the class as a whole. Adding noise to
discrete variables does not have a negative impact on estimation accuracy. This is
true for both large samples (as confirmed by our asymptotic analysis) and small
samples (as illustrated by simulations). More specifically, it allows for estimators
that are optimal in terms of convergence rates and efficiency. It is likely that
these findings generalize to more sophisticated density estimators or estimators
of functionals of the density, such as regression functions.

Supplementary material

• https://github.com/tnagler/cctools: an R package implementing the jitter-
ing kernel density estimator and likelihood cross-validation for the band-
widths.

• https://gist.github.com/tnagler/786465cee2c774a844ff1846e7cdacd8: code
for the simulation study in Section 7.6.

https://github.com/tnagler/cctools
https://gist.github.com/tnagler/786465cee2c774a844ff1846e7cdacd8
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7.8 Proofs

7.8.1 Proof of Theorem 7.1

We first calculate the bias term. Using a change of variables, we get

E
{
f̃(z,x)

}
=

1

hpnb
q
n

E

{
K

(
Z + ε− z

hn

)
K

(
X − x
bn

)}
=

1

hpnb
q
n

∫
Rp+q

K

(
s− z
hn

)
K

(
t− x
bn

)
fη(s, t)dsdt

=

∫
Rp+q

K(u)K(v)fη(z + hnu,x+ bnv)dudv

Since η ∈ Eγ1,γ2 , fη(z,x) is constant in a small neighborhood of z. More specifi-
cally, it holds for all (z,x) ∈ Zq ×Rq, 0 ≤ δ ≤ min{γ1, 1− γ2} and u ∈ [−1, 1]
that fη(z+ δs,x) = f(z,x). Furthermore, K is zero outside of [−1, 1]. Applying
this for hn ≤ min{γ1, 1− γ2},

E
{
f̃(z,x)

}
=

∫
[−1,1]p+q

K(u)K(v)f(z + hnu,x+ bnv)dudv

=

∫
[−1,1]q

K(v)f(z,x+ bnv)dv. (7.8)

Recall the derivative notation from (7.7). An `-th order Taylor expansion of f
with mean-value remainder yields that

E
{
f̃(z,x)

}
− f(z,x) =

∑
1≤|a|≤`

b
|a|
n

|a|!

∫
[−1,1]q

K(v)vaD|a|x f(z,x)dv

+
∑
|a|=`+1

b`+1
n

(`+ 1)!

∫
[−1,1]q

K(v)vaD|a|x f(z,x+ τav)dv

=
b`n
`!

q∑
j=1

∫
[−1,1]

K(vj)v
`
j

∂`f(z,x)

∂x`j
dvj,

+
∑
|a|=`+1

b`+1
n

(`+ 1)!

∫
[−1,1]q

K(v)vaD|a|x f(z,x+ τav)dv

for some τa ∈ [0, 1], where the second equality is due to K2. The second sum is
o(b`n) because all terms are bounded by A1 and K1, and bn → 0 as n→∞. In
summary,

E
{
f̃(z,x)

}
− f(z,x) =

b`nσ`
`!

q∑
j=1

∂`f(z,x)

∂x`j
+ o(b`n),

as claimed.
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For the variance, we get
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.

The second term in square brackets has already been calculated for the bias.
Using similar arguments, we can show with a first-order tailor expansion

1

nhpnb
q
n

∫
Rp+q
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(
s− z
hn

)
K2

(
t− x
bn

)
fη(s, t)dsdt

= κp
∫

[−1,1]q
K2(v)f(z,x+ bnv)dv

= κp+qf(z,x) + o(1),

where κ =
∫ 1

−1
K2(s)ds. Together,
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}
=
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h−pn κp+q − bqnf(z,x)
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To show that the estimator is asymptotically normal, define

Yi,n =
1

nbqn
K

(
Zi + εi − z

hn

)
K

(
Xi − x
bn

)
.

Then f̃(z,x) =
∑n

i=1 Yi,n. which is asymptotically normal if the Lyapunov
condition, { n∑

i=1

E
(
|Yi,n|3

)}1/3{ n∑
i=1

Var(Yi,n)

}−1/2

→ 0,

is fulfilled. With arguments similar to the derivation of Var{f̃(z,x)}, we get
E(|Yi,n|3) = O(n−1h−2p

n b−2q
n ) and Var(Yi,n) = O(h−pn b−qn ). Thus,{ n∑

i=1

E
(
|Yi,n|3

)}1/3{ n∑
i=1

Var(Yi,n)

}−1/2

= O
{

(nhpnb
q
n)−1/6

}
,

which is o(1) due to assumption A4.
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7.8.2 Proof of Theorem 7.2

From the triangle inequality, we get the bound∣∣f̃(z,x)− f(z,x)
∣∣ ≤ ∣∣E{f̃(z,x)} − f(z,x)

∣∣+
∣∣f̃(z,x)− E{f̃(z,x)}

∣∣. (7.9)

We start as in the proof of Theorem 7.1, but expand (7.8) as a Taylor polynomial
of order `− 2. We can then show that for some τ ∈ [0, 1],

E
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}
− f(z,x)

=
b`−1
n

(`− 1)!

q∑
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∫
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j

dvj
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{
∂`−1f(z,x+ τbnv)

∂x`−1
j

− ∂`−1f(z,x)

∂x`−1
j

}
dvj,

where the second equality holds because of K2. Using A1′, we get

sup
(z,x)∈S

∣∣E{f̃(z,x)
}
− f(z,x)

∣∣ ≤ b`nLτ

(`− 1)!

q∑
j=1

∫
[−1,1]

|K(vj)||vj|`dvj = O(b`n),

(7.10)

for a positive constant L <∞. Furthermore,

E
{∣∣f̃(z,x)− E{f̃(z,x)}

∣∣2} = Var
{
f̃(z,x)

}
= O

{
(nhpnb

q
n)−1

}
,

as in Theorem 7.1. And since convergence in L2 implies convergence in probability,∣∣f̃(z,x)− E{f̃(z,x)}
∣∣ = Op

{
(nhpnb

q
n)−1/2

}
,

which, together with (7.10), proves (7.4).
Moreover, there is a positive constant c1 <∞ such that almost surely

lim
n→∞

√
nhpnb

q
n

max{ln lnn, lnh−1
n , ln b−1

n }
sup
S

∣∣f̃(z,x)− E{f̃(z,x)}
∣∣ ≤ c1, (7.11)

see Theorem 1 of Einmahl and Mason (2005). Combining (7.10) and (7.11) proves
(7.5).

7.8.3 Proof of Theorem 7.3

Note that we can write

E
{
d2(f̃ , f)

}
= E

{
sup
S′

∣∣f̃(z,x)− f(z,x)
∣∣2},
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where S ′ = {(z,x)} for d(z,x) and S ′ = S for d∞,S . It holds

1

2
E
{
d2(f̃ , f)

}
≤ sup

S′

∣∣E{f̃(z,x)} − f(z,x)
∣∣2 + E

[
sup
S′

∣∣f̃(z,x)− E{f̃(z,x)}
∣∣2]

= a1 + a2 (7.12)

Using arguments almost identical to (7.10), we obtain for some τ ∈ [0, 1],

sup
(z,x)∈S

∣∣E{f̃(z,x)
}
− f(z,x)

∣∣ ≤ bβnλτ
β−r

r!

q∑
j=1

∫
[−1,1]

|K(vj)||vj|βdvj = bβnc2,

For bounding a2, we need to consider the characteristics of scenarios (i)–(iv).

(i) We proceed as in the proof of Theorem 7.1 to get

a2 = Var
{
f̃(z,x)

}
=

κp+q

nhpnb
q
n
f(z,x) +

f 2(z,x)

n
+ o

(
1

nbqn

)
.

For q ≥ 1, choosing bn ∼ n−1/(2β+q) yields

lim sup
n→∞

n2β/(2β+q)a2 ≤
κp+q

hp0
f(z,x) = c3 <∞.

If q = 0, it holds f ≤ 1, and we get

lim sup
n→∞

na2 ≤
κp+q

hp0
f(z) + f 2(z) ≤ κp+q

hp0
+ 1 = c4 <∞. (7.13)

(ii) With hn ∼ 1 and bn ∼ (n/ lnn)−1/(2β+q) in (7.11), we get

lim sup
n→∞

(n/ lnn)2β/(2β+q)a2 ≤ c1,

(iii) Using (7.13) yields

lim sup
n→∞

na2 ≤
∑
z∈S′

lim sup
n→∞

E
[∣∣f̃Z(z)− E{f̃Z(z)}

∣∣2] ≤ |S ′|c4 = c5 <∞.

(iv) With hn ∼ 1 and bn = 1 in (7.11), we get

lim sup
n→∞

(n/ ln lnn)a2 ≤ c1.

Setting c = 2(c1 + c2 + c3 + c4 + c5) concludes the proof.
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7.8.4 Proof of Theorem 7.4

We start with lower bounds for (i) and (iii). Fix z0 ∈ Zp and define

G1(β, λ) =
{
f ∈ H(β, λ) : f(z′,x) = 0 for z′ 6= z0

}
.

This set contains all probability densities in H(β, λ) that correspond to a ran-
dom vector (Z,X) with Z = z0 almost surely. This is equivalent to the case
where all variables are continuous. By definition, G1(β, λ) ⊂ H(β, λ) and, thus,
R∗n{G1(β, λ), d} ≤ R∗n{H(β, λ), d}. The two rates in Theorem 7.4 (i) and (iii)
then follow from Theorem 9 in (Ibragimov and Khas’ minskii, 1983).

For (ii) and (iv), we can simply consider a parametric family of densities G2.
This yields the classical lower bound n−1/2 for estimating a finite dimensional
parameter (see, e.g., Tsybakov, 2008, Chapter 2).





“Every answer raises new questions.”

— Gildamere

8
Conclusion

8.1 Summary

The main theme of this thesis was to deepen our understanding and to extend
the applicability of nonparametric vine copula estimators.

We compared and tested existing methods in simulations and established
theoretical results regarding their asymptotic behavior. In particular, it was shown
that simplified vine copula models allow for nonparametric density estimation at
a rate equivalent to a two-dimensional problem, irrespective of the actual number
of variables. This property is uncommon in nonparametric function estimation,
where the curse of dimensionality is prevalent. But it is powerful, especially in
light of the masses of data being collected: we can benefit from the increasing
number of samples, but do not suffer from the increasing number of variables.

We showed how copulas can be used to learn various types of regression func-
tions based on estimating equations. The asymptotic behavior of this technique
is intimately linked to the behavior of the copula density estimator. This suggests
that the simplifying assumption is equally suited to lift the curse of dimension-
ality in a regression context. We further discussed the jittering trick to make
these methods applicable to discrete and mixed data types. By adding noise to
the discrete variables, the learning problem can be transformed into a purely
continuous one. And if we choose the noise distribution wisely, solutions of the
two problems become equivalent. The jittering kernel density estimator was
analyzed in-depth with the somewhat surprising result that adding noise does
not impair the estimator’s efficiency.

8.2 Outlook

The convenience of the simplifying assumption for nonparametric estimation was
a key motivation for this thesis. In regression problems, additivity is another
popular structural assumption that has a similar effect on the convergence rate,
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but is more thoroughly understood. It is important to know when assumptions
are appropriate or detrimental. Hence, a deeper understanding of the simplifying
assumption will be vital. Figuring out the similarities and differences between
the simplifying assumption and additivity could be a first step.

An inevitable problem with structural assumptions is that they are usually
not true. In statistics, there is always a trade off between the difficulty of
the question we ask and the accuracy of the answer we get. The simplifying
assumptions reduces the difficulty of the question. However, we may want to
balance this trade off more flexibly. One possibility was briefly mentioned in
Remark 4.2: we can weaken the simplifying assumption by allowing the pair-
copulas to depend on a small number of conditioning variables. A more clever
variant requires that the pair copulas depend only on (unknown) projections
of the conditioning variables in low-dimensional subspaces. Finding inference
methods for such models and understanding their properties opens a whole new
playground with much to discover.

Another recurring topic was the potential of nonparametric vine copula estima-
tors for machine learning problems (e.g., in the applications given in Section 4.6
and Section 6.4). Vine copula models have recently left their footprints in the
machine learning community (Chen, 2016, Carrera et al., 2016, Sun et al., 2017,
Tekumalla et al., 2017), but only in their parametric version. The nonparametric
version would fit more naturally in the state-of-the-art methods in this field (e.g.,
random forests, neural networks, and support vector machines are essentially
nonparametric). Two issues were obstructive to the wider use of nonparametric
vine copulas. The first is the requirement for continuous data, which can be
resolved by jittering. The second is the estimators’ computational feasibility on
large data sets. A naive implementation does not scale well, typically having
quadratic complexity in the sample size n and dimension d.

The vinecopulib project aims to address these issues. It centers around a C++
library that provides interfaces to both R and Python (Nagler and Vatter, 2018a,c,
Arabas et al., 2017). More carefully crafted algorithms and data structures plus a
few computational tricks allow to bring the complexity down to O(nd2) and O(d2)
in time and memory, respectively. Even better: if the model is truncated after
some tree level, the models scale almost linearly in the dimension. With these
obstacles out of the way, the road towards big data applications is well-paved.
And yet there are many open methodological problems, like tuning parameter
and model selection. I look forward to see what nonparametric vine copulas can
achieve and which problems they may solve.
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Acar, E. F., Genest, C., and Nešlehová, J. (2012). Beyond simplified pair-copula
constructions. Journal of Multivariate Analysis, 110(0):74–90. Special Issue
on Copula Modeling and Dependence.

Ahmad, I. A. and Cerrito, P. B. (1994). Nonparametric estimation of joint
discrete-continuous probability densities with applications. Journal of Statisti-
cal Planning and Inference, 41(3):349–364.

Aitchison, J. and Aitken, C. G. (1976). Multivariate binary discrimination by
the kernel method. Biometrika, 63(3):413–420.

Aitken, C. G. G. and Lucy, D. (2004). Evaluation of trace evidence in the form of
multivariate data. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 53(1):109–122.

Andrews, D. W. (1991). An empirical process central limit theorem for dependent
non-identically distributed random variables. Journal of Multivariate Analysis,
38(2):187–203.

Antal, B. and Hajdu, A. (2014). An ensemble-based system for automatic
screening of diabetic retinopathy. Knowledge-Based Systems, 60:20–27.

Arabas, S., Nagler, T., and Vatter, T. (2017). pyvinecopulib: High Performance
Algorithms for Vine Copula Modeling in Python. Python library, URL: https:
//github.com/vinecopulib/pyvinecopulib.

Athey, S., Tibshirani, J., and Wager, S. (2017). Generalized Random Forests.
arXiv:1610.01271.

Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for condi-
tionally dependent random variables modeled by vines. Annals of Mathematics
and Artificial Intelligence, 32(1-4):245–268.

Bedford, T. and Cooke, R. M. (2002). Vines — a new graphical model for
dependent random variables. The Annals of Statistics, 30(4):1031–1068.

https://github.com/vinecopulib/pyvinecopulib
https://github.com/vinecopulib/pyvinecopulib


150 Bibliography

Bergsma, W. (2011). Nonparametric testing of conditional independence by
means of the partial copula. arXiv:1101.4607.

Bock, R., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jiina, M.,
Klaschka, J., Kotr, E., Savick, P., Towers, S., Vaiciulis, A., and Wittek, W.
(2004). Methods for multidimensional event classification: a case study using
images from a cherenkov gamma-ray telescope. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 516:511–528.
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