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Abstract: In this paper we present SATE, a tool aiming at increasing test efficiency of
model-based testing of DES using two approaches: design-to-test and plant features. First, the
design-to-test approach automatically modifies the design while maintaining the original system
behavior to overcome controllability, observability and SIC-testability issues. Secondly, testing
with plant features reduces the number of test cases taking into account restrictions on the
input space of programmable logic controllers caused by the plant that is to be controlled.
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1. INTRODUCTION

It is commonplace that industrial automation systems
grow larger, and thus the programmable logic controller
code grows in terms of complexity. This results in the
demand for tools that enable testing such controllers ef-
ficiently. Many model-based techniques exist in literature
to generate test cases for black-box testing; one of those
is complete conformance testing (CCT). In order to show
complete conformance of an implementation to its speci-
fication by means of testing, all possible combinations of
inputs need to be evaluated for all states. Conformance
testing of a programmable controller consists of three
phases: test generation, test execution, and result verdict.

Here, we focus on the test generation phase in order to
reduce the overall length of a test sequence, which is an
artifact of this phase. It is a challenging endeavor to create
a complete set of test cases for large scale systems as the
number of test cases grows exponentially with the number
of states and inputs. In addition to the before-mentioned
state space explosion, in many cases CCT suffers from
single-input-change-testability (SIC-testability) issues dis-
cussed in Provost et al. (2014).

During test sequences execution, the actual test case eval-
uation is performed after reaching a certain source state.
Thus, additional computations have to be made to actually
reach this desired state to perform the considered test
step. Moreover, if the system evolution is not observable or
the system state after the test step is not distinguishable
from others, it has to be identified with state identifica-
tion techniques, which demand further effort (Lee et al.
(1996a)). These two actions, the homing and identification
sequences, constitute a testing overhead, which can be
remarkably big for larger systems. Consequently, reduc-
ing this testing overhead is an aim for our design-to-test
(DTT) approach (Ma and Provost (2016)). To achieve this,
the system design is modified automatically, introducing
some design overhead with the goal of reducing the testing
overhead discussed beforehand.

The second methodology addresses the reduction of the
number of generated test cases in terms of reducing the
controller input space in each system state, taking into
account which outputs the physical plant can actually
produce. The underlying hypothesis is that in the closed-
loop, some inputs for the controller will never occur
under nominal system behavior and thus can explicitly
be neglected during testing.

Even limited knowledge about the system, i.e. a single
plant feature, already leads to a reduction of test cases in
comparison to the CCT approach. There are some common
relations between inputs that can easily be identified
such as mutual exclusion and premise. Similarly, relations
between outputs and inputs can be found. Those features
are presented and discussed in more detail in Ma and
Provost (2017), where also templates are provided.

Other approaches to generate test cases automatically
from models can be found in the literature. For example
Enoiu et al. (2013) and Mani and Prasanna (2016) use a
model checker to generate test suites based on Function
Block Diagrams. In Bohlender et al. (2016) high coverage
is realized more efficiently by symbolic execution. In con-
trast to the before-mentioned approaches, we consider full
coverage taking into account the behavior of the system
under consideration. Kormann and Vogel-Heuser (2011)
create a reduced set of meaningful test cases to be executed
in a simulated environment for hardware based component
faults, whereas we focus on nominal system behavior.

In this paper, we present our tool, Stable Automaton-
based TEsting (SATE), that implements the two ap-
proaches that aim for more effective and shorter test
sequences. In the next section, necessary background on
communicating Moore machines and their synchronous
composition are recalled. In Sec. 3 the framework and
actual implementation are discussed accompanied by a
case study illustrating the effectiveness of the presented
tool in Sec. 4. This work is concluded with some remarks
on potential future work in the last section.



2. BACKGROUND

2.1 Communicating Moore machine with Boolean signals

In this paper, system specifications are modeled as com-
municating Moore finite state machines, adapted from Lee
et al. (1996b).

Due to simplicity and a wide range of applications,
Boolean signals are used as inputs and outputs in the
illustration of the proposed method. However, the method
can also be applicable to general digital signals with a few
adaptations. An important thing to keep in mind is that,
in contrast to event based models, where only one event
can occur at a time, signal based models allow multiple
changes of input values at once.

A communicating Moore machine extended with Boolean
signals is defined by an 8-tuple (L, linit, I, C,O,Gδ, δ, λ) 1 ,
where:

• L is a finite set of locations.
• linit is the initial location, linit ∈ L.
• I is a finite set of Boolean input signals.
• C is a finite set of internal Boolean communicating

variables that are related to locations, a communi-
cating variable is denoted as X(l).
• O is a finite set of Boolean output signals.
• Gδ := expr(I, C) is a finite set of transition guards,

which are Boolean expressions built up by input
signals and communicating variables.

• δ : L × Gδ → L is the transition function that maps
the current location and transition guard to the next
location; a transition is fired when its source location
is active and its guard is evaluated as ‘1’ (i.e. True).

• λ : L → 2O∪C is the output function that maps the
locations to their corresponding output signals and
communicating variables.

Moore machines are also represented in graphical form in
this paper. A simple example is given in Fig. 1.
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Fig. 1. A simple Moore machine example with Boolean
signals

A location l is drawn as a rounded rectangle. A location
can either have an externally observable action 2 , e.g. o2

in l2; or no observable action, e.g. ∅ in l1.

A transition δ is represented by a directed edge with its
guard, e.g. ¬a ∧ b for the transition from l1 to l2. The use
of an internal communicating variable in transition guards
is not complicated. For example, when the location l6 is
activated, X(l6) is then assigned the value ‘1’. If l2 is active
at that time, the transition from l2 to l3 can be fired.

1 The subscript ‘S’ will be used to stand for Specification, the
subscript ‘P ’ for Plant : e.g. LS and LP mean the set of locations for
specification and plant models
2 For readability reasons, only active outputs are presented, i.e. in
l2, o2 implicitly means o2 ∧ ¬o3 ∧ ¬o4 ∧ ¬o5.

2.2 Synchronous composition of individual models

Thanks to the use of internal communicating variables, in-
teractions among individual parts of a system can be mod-
eled conveniently. In order to validate the global behavior,
individual models are first composed synchronously.

SATE’s composition is based on the algorithms used by
the tool ‘Teloco’ (Provost et al. (2011)), and the formalism
introduced in Sec. 2.1 is extended with the following
modifications:

• S is the set of states in a composed model. A state
represents a combination of locations from the indi-
vidual models.

• Ge := expr(I) is a finite set of evolution guards 3 ,
which are Boolean expressions built up by input
signals.

• e : S×Ge → S is the evolution function with stability
search that maps the current state and evolution
guard to the next state. A transition between states
is named an evolution.

It is worth reminded that during the composition, a
situation is stable if no transition in any of the Moore
machines can be fired without changing the values of
input signals; otherwise, it is transient. The stability search
semantics implies that the firing of transitions continues
until a stable situation is reached. The composed model
contains only stable states, where only a change in the
input values can trigger an evolution to another state.
Therefore, the composed model is called Stable Composed
Automaton (SCA) in this paper.

3. TEST CASE GENERATION METHODS

In this paper, the testing objective is to check whether
an implemented programmable controller, seen as a black-
box with inputs and outputs, behaves correctly with
respect to its specifications. The execution of a testing
process consists of three steps: feeding the input sequence
to the controller, executing the program, comparing the
observed output sequence to the expected one generated
from specifications.

This paper focuses on the generation of test cases. As
presented in Fig. 2, the process of complete conformance
testing method is depicted in the center, while our design
to test approach and methodology for testing with plant
features are presented on the left and the right side,
respectively.

3.1 Complete conformance testing

The basic complete conformance testing is structured and
performed as follows. First, individual Moore machine
models are modeled and composed into one global SCA.
Afterwards, an equivalent Mealy machine is derived from
the SCA, which explicitly represents all Boolean conditions
of evolutions by a set of minterms 4 over the Boolean input

3 A specific evolution guard is noted as ge(IS ,s), with regard to its
source state and involved inputs
4 A minterm is a basic element of an explicitly presented guard, e.g.
if ge(I,l) = a∧¬b and IS = {a, b, c}, the corresponding minterms are
a ∧ ¬b ∧ c and a ∧ ¬b ∧ ¬c.
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Fig. 2. Framework of complete testing, design to test, and
testing with plant features methods

set. As a last step, a test sequence is generated by solving
the Transition Tour problem of the set of minterms from
all states and all input values.

3.2 Design to test approach

Several issues have been identified in the practice of
complete testing regarding controllability, observability
and SIC-testability. The design-to-test (DTT) approach
aims to solve those issues by paying a limited effort on
the modification of design, while keeping the nominal
behavior during normal execution unchanged (Ma and
Provost (2016)). SATE incorporates the algorithms of the
‘DTT-MAT’ toolbox.

A good design, which fulfills all functional requirements,
is not always a good design with respect to testing. Two
abstract Moore machine models (before and after the
modification by DTT approach) are presented as examples
in Fig. 3.

Fig. 3. Core idea of DTT approach: adding T-guards, O-
actions and C-guards to modify the initial specifica-
tion models

In the conformance testing of programmable controllers,
controllability is a measure of whether and how fast the

implementation can be brought from an (arbitrary) active
state to another desired state. In Fig. 3, on the initial
model, the shortest path from s4 to s1 is relatively long
(with regard to the number of states in the example
system), which represents a relatively bad controllability.
The DTT approach solves this issue by adding a minimum
number of extra controllable transitions, named as C-
guard transitions, between some of the states (drawn with
green color in the example), which can be used as shortcut
transitions when set to True.

Observability concerns whether and how fast a state can be
distinguished from other states. Apparently, in Fig. 3, the
states in the two big gray circles cannot be distinguished
directly by observation of system outputs in that moment,
since they have the same outputs. The DTT approach
solves this issue by adding extra observable actions, named
as O-actions, to such states which suffer from the presented
lack of observability.

SIC-testability issues occur in testing of controllers with
cyclic execution mode, when several input signals are ex-
pected to change their values at the same time. Physically,
multiple input changes (MIC) do not necessarily occur
at the same time. Consequently, the changes might be
read by the controller in different cycles. Then, the actual
behavior may differ from the behavior under consideration
that should be tested. Obviously, this would not be an
issue in the case that the test sequence only contained
single input changes between two successive steps, which is
however hardly achievable in practical systems (Guignard
and Faure (2014)). The DTT approach solves this issue
by adding T-guards to the initial guards of transitions
suffering from SIC-testability issues. All T-guards will be
set to False, when multiple inputs should change at once,
stopping the system at its current state such that there is
enough time to stabilize the MIC. This enables to proceed
as usual and make sure that the desired transition can be
taken.

In summary, applying the design-to-test approach, the
specification models are automatically analyzed by the
tool; then, based on the need, a minimum number of C-
guards, O-actions, and T-guards are automatically calcu-
lated and added to the models, so that the specification
models fulfill the requirements of full SICtestability, full
observability and better controllability.

3.3 Testing with plant features

With the DTT approach, complete testing can be done
more effectively. However, for large scale systems, complete
testing cannot always be achieved, because the number of
test cases grows very rapidly to the complexity of a system,
i.e. exponentially to the number of inputs and linearly to
the number of states.

Therefore, a test generation method using plant features
has been proposed for more efficient testing (Ma and
Provost (2017)). The algorithms in SATE are based on the
method in Ma and Provost (2017) but with improvements,
i.e., applying plant features earlier in the generation of
SCA rather than after the generation of explicit Mealy
machine, which further reduces the state space of test
generation. The concepts of plant and specification are



high False False True True

low False True False True

Table 1. Truth table for input combinations for
the tank example. The non-nominal combina-
tions (due to plant features) are marked in red.

nontrivial in automation systems. As presented in Fig. 4,
sensors, actuators and all other physical elements (except
the controller) are considered as plant. A controller is
designed to control the plant, and implemented according
to a set of specifications.
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Fig. 4. Closed loop of plant and controller

By nature, the behavior of the plant is strongly influenced
by the controller. However, as presented in Fig. 4, in a
closed-loop system, the plant also restricts the reachable
state space of the controller in normal operation. This
leads to the idea of considering the closed-loop behavior
also during test execution.

This hypothesis can be used to reduce the number of
test cases by removing the cases that cannot occur in
nominal behavior of a system, resulting in a reduced set
of meaningful test cases. The undesired or unexpected
behavior will not be tested during early test phases (or not
at all if complete testing is not feasible). Given a tank with
two level sensors: when the sensor indicating Level High
Reached gives the value True, the sensor indicating Level
Low Reached should normally not give the value False. A
second example is a conveyor belt: if it does not run, the
sensors for detecting the position of a workpiece should not
change their value, since no workpiece has been moved and
the sensors should not be triggered in a nominal situation.
Such relations can be displayed in a truth table, indicating
the possibility to reduce the number of input combinations
as displayed in Tab. 1, where the combination of high and
not low. Apparently, one out of four combinations can be
neglected, leading to a reduction of 25% of test cases.

The aim of specifying relations between inputs as well as
outputs and inputs is to reduce the set of states for which
complete testing is performed. Effectively, this reduces the
number of states and the input vectors. This results in
fewer combinations of inputs that need to be imposed on
the controller in open-loop testing. During composition,
fewer states and evolutions need to be considered, which
reduces the computational complexity.

4. CASE STUDY

In this paper, a logistics system is used as an illustrative
example. The three subsystems are taken and adapted
from the didactic platform presented in Jordan et al.
(2017). The modules of interest in our case study are
displayed in Fig. 5.

Fig. 5. Part of a logistics system containing a portal and
two subsequent lines (top view)

4.1 System description

The portal transports workpieces from the input buffer to
either the compact line or an indexed line. In this paper,
the specification and plant behavior of the portal and
compact line are analyzed and presented. The compact line
contains a vertical buffer with a pusher, a conveyor belt
and one machine station. Several location sensors are used
to sense the position of the workpiece (yellow triangles),
the pusher (orange longish triangles) and the portal (red
circles).

Five FSM models have been used for the specification
models of the system under consideration. In Fig. 6, three
specification models for the portal and compact line are
given as examples. 5 It is displayed, that the portal can
move horizontally between three positions In, IL and
CL. Only in those positions it can move up and down.
Finally, only in the down end position it can activate the
electromagnetic gripper to lift a workpiece or deactivate it
(ungrip) in order to release a workpiece, respectively. On
the compact line, a workpiece is brought to a machine via
the belt; after the machining the workpiece is delivered to
the output.

In total, 15 inputs and 9 outputs are considered, as listed
in Tab. 2.

4.2 Applying DTT approach

For the sake of comparison, a monolithic composition of
the system is performed resulting in an SCA with 221
states and 8524 evolutions.

After checking with DTT approach, all the 221 states
contain non-SIC-testable parts; after adding T-guards to 8
transitions into the individual models, the system becomes
fully SIC-testable.

In the SCA, 183 states suffer from observability issue. 5 O-
actions are added to a set of locations in individual models,
so that all states are directly distinguishable from each
other.

5 Initial specification models are drawn in black; T-guards are drawn
in blue; O-actions are drawn in purple; the C-guard transitions are
drawn in green, which permits to achieve 4 steps of controllability.



Input Description

wpInBu True when a workpiece is in the input buffer

loc-IL
True when the portal is at the drop location of

indexed line

loc-In
True when the portal is at the input buffer

location

loc-CL
True when the portal is at the drop location of

compact line

pos-U True when the portal is in its up end position

pos-D True when the portal is in its down end position

p-2-IL
True when the current work piece should be

brought to indexed line

p-2-CL
True when the current work piece should be

brought to compact line

wpMC
True when the workpiece reaches the expected

position in front of the machine

MC-done True when the machine finishes its machining

wpCOut
True when the workpiece reaches the output

position of compact line

wp-Output
True when the command of outputting the work-

piece is received

wpCLBu
True when a workpiece is in the buffer of com-

pact line

pos-E-PC
True when the pusher of compact line is in its

extended position

pos-R-PC
True when the pusher of compact line is in its

retracted position

Output Description

P-G activate the gripper

P-U move the portal upwards

P-D move the portal downwards

P-R move the portal to the right (towards IL)

P-L move the portal to the left (towards CL)

BC-P run the belt of compact line in positive direction

MC run the machine of compact line

PC-F move the pusher of compact line forwards

PC-B move the pusher of compact line backwards

Table 2. Table of inputs & outputs for the
portal, belt and machine on the compact line

Initially, the maximum length of the shortest path between
any couple of states is 5. Although this seems a reasonable
value for controllability, the DTT approach can help to
reach a better performance. After adding 5, 12 or 36
C-guards, the maximum length of the shortest path is
reduced respectively to 4, 3 or 2 steps.

Now, with the modified specification models, full SIC-
testability, full observability, and better controllability is
achieved.

4.3 Applying test case reduction with plant features

According to the relations between inputs discussed in
Sec. 3.3, for the case study, a set of exemplary plant models
are presented in Fig. 7.

The first model in Fig. 7 presents a mutual exclusion
relation between two input signals: in a nominal behavior,
pos-U and pos-D should not be true at the same time,
since a portal cannot be simultaneously in its up and down
position. Similarly, a model for the horizontal movement
can be found.

The second model presents a relation among input and
output signals. The input pos-U remains True unless the
output P-D is activated (and P-U is not active). At the
same time it is stated that - reading the model from right
to left - pos-U will not instantaneously but eventually be
True when P-U is activated. Note that it is explicitly
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¬wpCOut ∧Tg
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Fig. 6. Specification models for the horizontal portal
movement, the vertical portal movement and the belt
of the compact line

not stated that pos-U will be true directly after the
portal movement has been activated, i.e. from location P1-
NotUp2, pos-U will first remain False (as in location P1-
NotUp1 ), and will eventually become True (as in location
P1-Up). Analogously, a feature for the down movement
can be found.

The third model presents a premise relation between two
input signals. The input MC-done can only become True
when the input wpMC is True, which means the machine
does only operate when the workpiece is at the expected
position in front of the machine.

It is worth mentioning that modeling of plant features is
based on domain knowledge from engineers. Then, the rest
process from composition of specification models to the
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Fig. 7. Plant models for the nominal behavior of the
vertical and horizontal portal movement and the
machine on the compact line

generation of test sequences are all executed by the tool
automatically. In addition, even some simple fragments of
the nominal behavior of the system under test contribute
to the reduction of test cases; of course, the more plant
features are modeled, the higher reduction is obtained.

When the test generation is performed on the SCA from
the original specification models solely with CCT ap-
proach, a test sequence of 9,647,120 steps is obtained.
In the case study, ten plant models are used. As a final
result, a test sequence with 448,752 steps is obtained,
which leads to a reduction rate of 95% in comparison to
the one obtained without plant features.

It can be stated that integrating knowledge about signal
relations into the generation process drastically reduces
the length of generated test sequences.

5. CONCLUSION

In this work, we presented the current version of our test
case generator implementation. The objective of confor-
mance testing is to determine the capability of a software
product to adhere to standards, conventions and regu-
lations. In this context, testing of nominal behavior by
considering plant features can be a good supplement for
complete testing or a replacement when complete testing
is not feasible.

In future works, we would like to omit the monolithic com-
position, as this limits the complexity of the case studies
that can be involved drastically. Although we achieved
to improve our implementation, the computation is still
primary memory intensive. Even though the resulting size
is reduced due to the plant features, those extra models
have to be considered during calculation, which leads to
the question whether and how modular approaches can be
applied and to what extent they reduce the computational
effort.

Currently, only binary signals are taken into account for
the control logic. This crucially restricts the applicability
of the presented tool. Consequently, further investigation
on extending the capability of handling integer signals
is needed. Input equivalence class partitioning might be
fruitfully applied. Furthermore, temporal and timing rela-

tions between signals can be formulated similar to mutual
exclusion and premise.
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