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Abstract

As robots become ubiquitous in our daily lives, they are expected to interact in close proximity to
humans naturally and safely. Humans interact with each other in a confined workspace effectively
by adapting to the movement of their partner. Similarly, robot motion has to be agile by predict-
ing the movement of the dyadic partner. However, due to the intra- and inter-personal motion
variations, predicting human movement behavior and reproducing a compatible dyadic interac-
tion skill for the robot are nontrivial tasks. Generating reactive motion planners for the robotic
agent alone would not be able to provide the expected interaction dynamics between partners. A
feasible methodology for constructing such versatile interaction skills is to follow a multifaceted
approach; first by focusing on human motion models, both in isolation and during dyadic cooper-
ation, and second, by developing robot interaction skills constrained on natural dyadic movement
behaviors. In this thesis, I discuss several model-based and data-driven approaches to model and
predict human movement behaviors. I also propose a learning framework, a stochastic trajectory
optimization formulation, and a policy improvement algorithm for robot motion generation during
close proximity dyadic interaction. The human-robot interaction (HRI) experiments and the sim-
ulation results show how human movement models can be used to acquire agile and naturalistic
robot interaction skills. In essence, this thesis signifies that for providing natural, safe, and effective
close proximity HRI by autonomous agents, human-in-the-loop learning and control approaches
have to be built by combining model-based and data-driven methods.
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Zusammenfassung

Je allgegenwärtiger Roboter in dem täglichen Leben werden, umso mehr steigt der Bedarf nach
sicherem und natürlichem Interaktionsverhalten in unmittelbarer Nähe des Menschen. Menschen
interagieren auf engstem Raum effektiv miteinander, indem sie sich an die Bewegungen ihres
Partners anpassen. In ähnlicher Weise müssen Roboterbewegungen agil sein, durch schnelles
vorhersagen der Bewegungen des dyadischen Partners. Aufgrund von intra- und inter-personalen
Bewegungsvariationen sind jedoch das Vorhersagen des menschlichen Bewegungsverhaltens und
das Reproduzieren einer kompatiblen dyadischen Interaktionsfertigkeit durch den Roboter nicht-
triviale Aufgaben. Das einseitige anwenden von reaktiven Bewegungsplanern durch den Roboter
ist nicht ausreichend um die erwartete Interaktionsdynamik zwischen den Partnern bereitzustellen.
Daher ist ein vielschichtiger Ansatz eine praktikable Methode zum Aufbau solch vielseitiger In-
teraktionsfertigkeiten; erstens durch die Fokussierung auf menschliche Bewegungsmodelle, jew-
eils isoliert und während der dyadischen Kooperation, und zweitens durch die Entwicklung von
Roboterinteraktionsfertigkeiten, die an ein natürliches dyadisches Bewegungsverhalten gebun-
den sind. In dieser Dissertation werden mehrere modellbasierte und datengesteuerte Ansätze
zur Modellierung und Vorhersage des menschlichen Bewegungsverhaltens diskutiert. Darüber
hinaus werden ein Lern-Framework, eine stochastische Trajektorien Optimierung Formulierung,
und ein Policy Improvement Algorithmus als Ansätze für die Erzeugung von Roboterbewegun-
gen während der dyadischen Interaktion auf engstem Raum vorgeschlagen. Die Mensch-Roboter-
Interaktion Experimente und Simulationsergebnisse zeigen wie menschliche Bewegungsmodelle
verwendet werden können, um agile und naturalistische Roboterinteraktionsfertigkeiten zu erlan-
gen. Zusammengefasst zeigt diese These, dass um autonomen Agenten natürliche, sichere und ef-
fektive Mensch-Roboter-Interaktion auf engstem Raum zu ermöglichen, human-in-the-loop Lern-
und Steuerungsansätze basierend auf einer Kombination aus modellbasierten und datengesteuerten
Methoden nötig sind.
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1
Introduction

“Will robots inherit the earth? Yes, but they will be
our children.”

— Marvin A. Minsky

Recently, interest in endowing robots and autonomous agents with complex, responsive dyadic
interaction skills has been increasing for both manufacturing and household settings. However,
despite remarkable progress in optimal control, optimization, motion planning, and reinforcement
learning, neither robots nor autonomous agents possess behavioral capabilities that can compare
to the naturalness, flexibility, and responsiveness of human interaction skills. Humans collaborate
with each other naturally, and efficiently in close proximity without causing safety risks by being
attentive to each other. In that regard, the analysis of human motion behaviors might provide the
models for enabling the robots and autonomous systems to acquire the essential skills to become
effective dyadic partners.

The high-level goal of this dissertation research is to construct human-in-the-loop motion planning
and control frameworks for robotic agents. Two mainstream approaches, model-based and data-
driven, have been followed simultaneously to complement each other for achieving intuitive close
proximity human-robot interaction (HRI). Model-based methods are descriptive, and thus enable
methodical analysis of systems and computation of optimal behaviors, e.g. for human motor con-
trol models (Ch. 2) and dyadic interaction behavior (Ch. 4), as well as planning of optimal robot
motion (Ch. 6). On the other hand, data-driven approaches are generative, and in general computa-
tionally more efficient. They facilitate online-capable algorithms and learning from demonstrations
of behavioral features which may not be captured solely by model-based methods, e.g. learning and
predicting online person dependent movement variations (Ch. 3) and interaction behaviors (Ch. 5),
as well as adapting to human preferences during interaction (Ch. 7). In this thesis, I discuss how
such multifaceted approaches have been used together for three subproblems: (H) human motion
understanding, (HH) human-human dyadic interaction modeling, and (HR) safe and effective close
proximity human-robot interaction.

Human sensorimotor control has been observed to achieve near-optimal performance for stereo-
typical movements [1] and well-practiced skills [2]. In general, these optimality conditions have
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been used to identify relevant optimal control models to describe human movement in free-space
and mostly for 2D planar motions [3]–[5]. This leads to the questions of whether there exist similar
principles that can allow us to model and explain (i) human arm motions in 3D, and (ii) human
dyadic interaction behaviors in a generalized way. If such optimal control models can be found and
transferred to autonomous systems, the robotic agent can also follow similar strategies to interact
with humans.

Unfortunately, the modeling of human movement behavior and the construction of effective and
generalizable control policies, such as the movement control observed in dyadic human interaction,
pose significant challenges. For explaining the remarkable ability of central nervous system (CNS)
to learn, adapt and control motor skills, the multiple internal models (MIMs) hypothesis has been
formed as a unified architecture.

Nevertheless, a model-based computational framework that connects optimality principles with the
MIMs hypothesis is missing. For the analysis and modeling of human motion control, a multitude
of optimal control models has been proposed, each corresponding to a specific task. However,
a single generalized optimal control model that can predict human motions for different tasks is
desired. The inverse optimal control (IOC), or inverse reinforcement learning (IRL), techniques
can discover cost functions used in such an optimal control problem (OCP) to model and predict
human movement behavior for a broader range of motions.

For dyadic interaction, there have been studies focusing solely on the safety aspect, while the natu-
ralness and readability of movement has been overlooked [6]. On the other hand, generating legible
and predictable robot motions has been investigated [7], [8], and isolated human motion behaviors
have been modeled and transferred to robots [9]. However, close proximity interaction behaviors
have been neglected. In particular, a comprehensive analysis on human motion models, both in
isolation and during dyadic interaction, and a unified framework that can integrate both physical
and psychological constraints into robot motion generation are two crucial missing components.
Similar to analyzing human movement in isolation by IOC, dyadic interaction behavior control
can also be modeled by IRL as composite cost models.

The cost functions found can be integrated into trajectory optimization methods to imitate human
movements, while the motion predictions of humans using those models become additional con-
straints for the optimization to provide safe interaction for robot motion generation during close
proximity. In essence, rather than focusing on task specific human motion models and tackling
only a single aspect of dyadic interaction, I propose a comprehensive approach in this thesis, in-
cluding optimal control, trajectory optimization, movement primitives and reinforcement learning
to realize effective HRI in close proximity.

In this thesis, I discuss methodologies for (M1) identifying optimal control models for human
motion in free space and also during dyadic interaction, and (M2) optimization of robot motion
planning in HRI, along with (M3) learning interaction behavior skills automatically from example
demonstrations as well as by trial and error. For human motion modeling (M1), single human and
human-human interaction (HHI) movement data were recorded, and optimal control models were
computed by IOC and IRL, respectively. In regard to motion planning (M2), an online stochastic
trajectory optimization was developed for close proximity HRI. For interaction skill acquisition
(M3), HHI data was used to train a neural network end-to-end to imitate humans, and a policy
improvement algorithm was implemented to update the robot policy with respect to the human
preferences during interaction.
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Considering the three subproblems mentioned earlier, the key contributions of this thesis are:

• (H) Using an inverse optimal control approach, composite models are identified for human
motor control that supports the MIMs hypothesis.

• (H) A hybrid framework, combining model-based and data-driven methods, is proposed that
predicts human motions and computes control models simultaneously to account for intra-
and inter-personal movement variations.

• (HH&HR) An ontology for HHI scenarios is constructed, and control policies for dyadic
interaction are learned from HHI demonstrations.

• (HR) An online capable trajectory optimization algorithm that provides safe and effective
close proximity HRI is constructed.

• (HR) A human guided policy improvement algorithm is developed for generating readable,
yet effective robot motion trajectories.

The central themes of this thesis are introduced in the following sections. First, I explain how
MIMs are discovered by using IOC for understanding and modeling human motor control, fol-
lowed by the effective motion prediction framework we constructed by using movement primi-
tives (MPs). Then, I present a novel ontology for the classification and analysis of human-human
dyadic interaction motions. Using IRL, unique control policies are learned for each dyadic inter-
action scenario. An end-to-end learning framework is introduced that enables acquiring effective
control policies for the robot interaction skill by imitating human dyadic movement behaviors. In
the last section, I summarize how the previously developed human related motion models are in-
corporated into a stochastic trajectory optimization algorithm and how robot interaction policies
are improved by human guidance during interaction for realizing natural and safe HRI.

1.1 Human Motion Understanding and Prediction

One prerequisite of effective robot motion planning in close proximity human-robot interaction
(HRI) is to understand human movement behavior. Thanks to the remarkable capability of the
central nervous system (CNS) on controlling biomechanical properties, humans can learn and use
a wide repertoire of motor skills. Adaptation to the environmental conditions, such as agile arm
reaching motions closer to a dyadic partner, is not only possible but also almost unconsciously
achieved with such sensorimotor skills. Despite the recent advancements on sensor technolo-
gies [10], it is not within our reach to observe and decode the internal mechanisms of how the CNS
coordinates learning, adaptation, and control of our actions. Is it then possible to identify or model
control strategies by only observing human movement?

If such control models are available, they can be used for predicting human motions so that the
robotic agent proactively take corresponding actions. Moreover, those models can also be trans-
ferred to robot motion generation and control procedures in order to imitate human movement
behavior. All of these capabilities would enable the robotic agent to effectively work in close
proximity to humans, and allow natural and safe HRI.

Two main approaches have been proposed to explain the underlying principles for human motor
control. The first one, which is closest to the current robotics engineering perspective, asserts that
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motion control is carried out on the level of muscle force generation. Control laws are sought for
human motions based on an optimal control problem (OCP) formulation using a dynamical model
of the human biomechanical system, and an optimality criterion defined by a cost function. How-
ever, different cost functions within an OCP lead to disparate movement trajectories. In essence,
even though a cost function (e.g. min-jerk [3], min-torque-change [11]) is identified to describe a
certain behavior, a generalized optimal control model is missing that can capture a wide range of
human movement behavior [12]. On the other hand, the equilibrium point hypothesis (EPH) aims
for a unifying approach by using the stability properties of the human arm, while considering the
posture and the motion together [13]. The limitations of EPH have been discussed in the literature,
including its inability to explain the adaptation of human motor control to environmental changes
and to account for motions with low arm stiffness (for a detailed discussion, see [14]).

Model-based approaches, such as optimal control formulations, are descriptive as they explain a
possible control strategy by only analyzing the observed state of a system. Such an understanding
is useful for a multitude of problems, e.g. motor performance evaluation for detecting disabilities
due to neural disorders by comparing control models of patients and healthy subjects [15]; detec-
tion of deviations of personal motion behaviors w.r.t. the previously identified motor control mod-
els, e.g. due to exhaustion [16]. Specifically, for human–robot interaction (HRI), person-specific
control models enable the robot to detect the underlying cause of behavioral anomalies for pro-
viding better assistance and safety. On the other hand, for predicting human motion effectively, it
is not necessary to identify such control mechanisms provided that humanlike motion trajectories
can be modeled accurately, and generated during interaction efficiently. In essence, a framework
that can both describe and generate human movement behavior is crucial to develop competent
human-in-the-loop robot control and motion generation systems.

Next, I discuss the inverse optimal control (IOC) approach we used to find evidence for the hy-
pothesized multiple internal models within the CNS. The hybrid model, which is constructed as
a combination of model-based and data-driven methods, is also introduced to efficiently predict
human motions while learning person specific motor control models. Our analysis provides a new
perspective to understand and model human sensorimotor control, and these formulations enable
the integration of those models into HRI.

1.1.1 Human motor control and inverse optimal control1

The main research question in this line of my work is whether motor control strategies can be
identified by only analyzing human movement. In this thesis, the focus was on stereotypical point-
to-point arm reaching movements, which can be considered approximately optimal after some
learning phase [1]. Accordingly, the optimality principle has been followed. However, rather than
finding a single cost function, a composite cost model, inspired by the multiple internal mod-
els (MIMs) hypothesis [17], was formed to define the OCP. The composite model was formed as
a convex combination of multiple cost functions, each of which was shown to represent a certain
aspect of human arm reaching motions accurately in a given scenario. Each cost function can be
regarded as forming a distinct OCP, hence, solving the composite model corresponds to minimiz-
ing all the costs simultaneously while satisfying the constraints. Since our goal is to find a control
law given a single reaching task, this entails an IOC problem, for which we developed a bi-level

1This work has previously appeared in the following publication: [235]
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optimization formulation comprising an upper (ULP) and a lower level program (LLP). Human
movement data was used to find the best combination of cost functions for describing the control
policy within the CNS when optimality is assumed.

The LLP forms an OCP with multiple cost functions, each of which can be considered to form
an optimal control model. The ULP computes the optimal combination of those models that re-
sult in a movement profile as similar as possible to humans’. However, the weighting factors of
this combination is solved for each movement task with a distinct initial and final posture, and
the solution to each particular movement results in a different composite model. This leads to
the question of whether there exists a mapping from task parameters to cost combinations, or in
other words, optimal control models. In addition, is there a high-level mechanism that regulates
the contribution of different controllers depending on the task? In motor control literature, MIMs
hypothesis has been formed to explain this remarkable generalization capability of the CNS [17].
However, only a few probabilistic computational models have been proposed [18]–[21]. The focus
has been on the learning and switching of multiple competing models for different manipulation
skills, and human reaching motions have not been evaluated extensively. In addition, the biome-
chanical properties has not been considered. In essence, they fail to provide a descriptive model to
explain stereotypical human arm reaching behaviors.

The developed IOC framework is used in order to find the combination of internal models, which
are hypothesized to exist within the CNS, and to explain how this combination changes for different
reaching tasks. We conducted an experiment where participants executed a comprehensive set of
free-space reaching motions. The results show that there is a trade-off between kinematics and
dynamics based controllers depending on the reaching task. In addition, this trade-off depends
on the initial and final arm configurations, which in turn affect the musculoskeletal load to be
controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence
on the contribution of different inverse internal models. This formulation together with our analysis
not only supports the MIM hypothesis but also suggests a hierarchical framework for the control
of human reaching motions by the CNS.

Understanding and modeling the control of human arm reaching is the first step towards establish-
ing one of the foundations for achieving human-in-the-loop control and motion planning for close
proximity HRI. In the next section, I discuss how those optimal control models are combined with
movement primitives (MPs) to predict human motions effectively.

1.1.2 Movement primitives for human motion prediction2

As discussed previously, humans exhibit remarkable versatility to adapt to each other’s motion and
work effectively in close proximity. Human upper body motions, specifically the arm motions,
are fast and require agile and responsive motion generation by the robotic agent during dyadic
interaction. Even though the optimal control formulation is informative and an important step for
understanding and modeling how humans control their movements (Sec. 1.1.1), it does not provide
efficient computational performance for predicting human motions during interaction.

For building a descriptive model, the motor control redundancy and the nonlinear characteristic
of the human arm as a dynamical system pose significant challenges. The latent biomechanical

2This line of my research has previously appeared in the following publications: [236]–[239]
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properties that the CNS uses for human motor control are still not fully understood (Sec. 1.1.1).
The IOC formulation provides a suitable approach to fit control models to the observed human
arm reaching behaviors. However, solving an optimization problem constrained on a dynamical
system is computationally slow, whereas dyadic interaction necessitates online-capable generative
models. In addition, there are intra- and inter-personal movement variations due to physiological
differences, sensorimotor noise, and learning experiences [5], which in turn complicate modeling
human movement behavior even further.

A multifaceted approach can tackle those challenges. As mentioned earlier, (inverse) optimal
control formulations are able to identify the underlying principles of human motor control for
reaching task. Data-driven methods, on the other hand, afford learning from demonstrations in a
compact and computationally efficient fashion. In addition, it is easier to capture the variations in
human movement with probabilistic methods. Then, a hybrid approach, combining model-based
and data-driven methods, enables acquiring task-dependent and person-specific control models
while predicting human motions online.

In this thesis, such a hybrid approach is proposed. Previously developed IOC approach (Sec. 1.1.1),
which determines the combination of cost functions that governs a motion execution, is augmented
with a data-driven probabilistic movement primitives (ProMPs) method. This hybrid model allows
predicting human motions online while still taking into account motor variability and the inter-
personal differences. In effect, it affords both a descriptive and a generative model of human
reaching motions that can be effectively utilized online for human-in-the-loop robot control and
task execution.

1.2 Modeling Human-Human Interaction Behavior

Even though modeling human motor control informs us about the characteristics of human move-
ment, non-verbal close proximity human-human interaction (HHI) behavior requires further inves-
tigation due to the dynamic nature of motion planning. In essence, there is a permanent action-
perception loop running for both partners during dyadic interaction. Humans rely on not only some
physical constraints, but also social signals during collaboration. A natural dyadic interaction can-
not be achieved solely by generating collision free trajectories. As the robotic agent is expected
to collaborate with humans skillfully similar to how humans interact with each other, these latent
features have to be incorporated into robot control and motion generation frameworks. Similar to
finding control models for human movement in isolation, can such effective interaction behavior
skills be learned for autonomous systems?

Without intuitive interaction skills, a robotic agent would only act as a helper for a human partner.
In effect, this leads to leader-follower (or master-slave) architectures, which has been investigated
frequently in physical human-robot interaction (HRI) [22], haptic assistance [23], and teleoperation
tasks [24]. Considering the diversity in relative positioning of partners and task setup, human
capability to adapt and efficiently collaborate with others in close proximity is extraordinary. This
is only possible by a generalized and/or highly flexible decision making and motion control models.

Human factors involved in dyadic interaction necessitate an interdisciplinary approach. Perspec-
tives from human sensorimotor control research together with physiology and cognitive science
studies can collectively help us investigate such flexibility and effectiveness of human interaction
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skills. Few studies have looked into dyadic interaction motions [25]–[27], but focusing solely on
learning movement models for a specific task from data. Human factors have mostly been inves-
tigated in social sciences, and cognitive science. Particularly for attention theory studies, the role
of visual perception and what people pay attention to have been investigated [28]. Those studies
provide key directions to systematically analyze dyadic interaction. However, identifying the in-
teraction related features and modeling the movement behavior have to be considered concurrently
with such methodical analysis.

My research contributes a novel categorization of interaction scenarios and provides two imitation
learning formulations to model close proximity interaction movements. These studies encourage
exploring non-physical joint movement and building control policies for dyadic interaction sys-
tematically and comprehensively in a unified way in future studies.

1.2.1 Human-human interaction & inverse reinforcement learning3

Here, I briefly discuss our analysis on human-human interaction in close proximity. By abstract-
ing tasks and using insights from attention theory, this analysis results in an ontology that defines
the types and properties of dyadic interactions, as well as the relationships between them. The
variations in task demands and influence of perception signals during close proximity interaction
between two humans guide our first steps to build an ontology systematically. For instance, vi-
sual field of a person alters the attention, which in turn affects the human interaction behavior.
Furthermore, dyad positioning and task regions are critical in terms of constraining human joint
movement. The experimental setup was devised to cover these variations in human perception and
task properties to take into account their influence on movement behavior.

This ontology enables us to group interaction behaviors into separate cases, each of which can be
represented by a graph representation. A single case is defined by the relative positioning of the
partners and the location of task related regions in a way that these combined properties result
in different movement strategies. The features extracted during interaction are used to classify
cases quantitatively. Using inverse reinforcement learning, we find unique interaction policies,
represented as combination of cost functions based on distance features, for each case.

The ontology has been tested on human-human interaction data that covers a wide range of dyadic
movement behaviors. The results show that it can be used to classify and model human dyadic
movements accurately, while the learned policies enable generating the appropriate robot trajecto-
ries similar to humans’ during interaction. Such a thorough coverage and systematic analysis of
HHI cases serve as a base and reference for later studies to propose and benchmark new learning
algorithms, and evaluate close proximity HRI behaviors for a wide range of scenarios.

1.2.2 Learning dyadic interaction behaviors from demonstrations4

In the previous section, I introduced a systematic analysis of HHI behaviors which leads to an
ontology. Nonetheless, it is unclear which properties of joint movement behavior defines a natural
dyadic interaction dynamics, which in turn impedes modeling such a dynamical system explicitly.

3This work has been submitted and under review for publication: [240]
4This work has previously appeared in the following publication: [241]
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The implemented inverse reinforcement learning (IRL) formulation (Sec. 1.2.1) depends on the
selection of features we assumed relevant for interaction. However, it is very likely that there
are latent features involved in this dynamic motion planning. With the recent advancements in
(deep) learning algorithms and tools, neural networks have been successfully used to discover
and represent such latent properties within complex data. Hence, given recorded HHI data, these
features can be captured while learning a mapping from interaction related quantities (e.g. distance
values, artificial forces) to control signals.

We developed an end-to-end learning framework to imitate human interaction behavior control.
Using HHI data, a recurrent neural network (RNN) is trained to learn a control policy for a robotic
agent to generate interaction behavior similar to humans’. A novel activation function has been
introduced, and evaluated exhaustively along with the state-of-the-art network architectures. The
results have been analyzed in terms of humanlikeness (i.e., w.r.t. the temporal and spatial features
of generated vs. recorded motions), convergence and reachability properties, and noise suppres-
sion.

By using this end-to-end framework, a generalized interaction control policy is learned for the
robot end effector without making any modeling assumptions on the dyadic motion behavior. This
relaxation enables capturing latent features related to interaction movement. In addition, the frame-
work allows imitation of human motions with a varying level of detail depending on the network
complexity. In that regard, it is now possible to build complex interaction behavior models de-
pending on the task by hierarchically combining different types of policies.

1.3 Close Proximity Human-Robot Interaction

While learning control policies for human movement allows us to predict and imitate human mo-
tions, they can be exploited fully only if they are incorporated into robot motion plans effectively.
For achieving natural interaction, human perception of a robotic agent’s movement has to be con-
sidered as well. In addition to the safety and efficiency aspects of robot movement, it should be
predictable by the human partner. In essence, it is necessary to integrate not only physical but also
social constraints into robot motion planning. Current motion planners are largely ignorant of this
crucial objective.

Motion planners with a human-in-the-loop focus enable vast opportunities to introduce robotic
partners in daily life, e.g. as household service robots and collaborative robots in manufacturing.
Recently, there has been an increased interest in close proximity HRI. Safety aspect of such inter-
actions has been one of the initial concerns [6], [27], [29]. However, human partner has mostly
been treated as a dynamic obstacle to be avoided, while the robotic agent has been indifferent to
how humans perceive the interaction. As mentioned earlier, few studies investigate motion models
for the robot that can be perceived as legible [7], predictable [8], and understandable [30] by the
human partner. Yet, the close proximity interaction, where all those aspects are highly interde-
pendent, has been neglected. This dependency requires the integration of human factors into the
autonomous motion planning skill of the robotic agent.

There are several challenges for constructing interaction behavior control for robotic agents. The
inter- and intra-personal movement variations cause a predicament to predict human motions and
to construct generalized motion controllers that can handle such uncertainty. For this same reason,
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reactive motion planners, which are solely designed to avoid obstacles, cannot provide intuitive
and safe interaction. Trajectory optimization methods are favorable candidates as safety criteria
can be handled as constraints or additional cost functions. However, the computational efficiency
presents a challenge for fast paced close proximity dyadic interaction. Still, the robotic agent is
expected to generate natural interaction behavior while considering the safety aspects. Finding a
priori model of intuitive interaction behavior is an open research question. Instead of following this
path, I ask in this thesis whether it is possible for the robot to improve its policy online w.r.t. the
human partner’s preferences during interaction.

My research introduces (i) a stochastic trajectory optimization framework for safe and effective
dyadic interaction, and (ii) a policy improvement formulation for the robot motion adaptation
w.r.t. the feedback of the human partner. These motion planners have become available by consol-
idating model-based optimization with data-driven methods and also by updating the policy online
using the perception data obtained during interaction. Overall, these two novel approaches verify
the significance of human-in-the-loop planning for close proximity safe and intuitive human-robot
interaction (HRI). In addition, they pave the way for a long-term learning framework for person-
alized assistance.

1.3.1 Trajectory optimization for robot motion planning5

For close proximity HRI, a novel Progressive Trajectory Optimization-based Motion Planning
(PTOMP) approach is proposed. Such a motion planner has to be responsive to the human part-
ner’s movement behavior and intent, rather than just acting reflexively. This requires an adaptive
planning by taking into account not only the current state but also the likely future motion trajectory
of human body. Adaptation, in turn, poses computational efficiency challenges for the optimiza-
tion algorithm, as its hyperparameters induce a trade-off between accuracy and computation time.
By complementing the model-based optimization algorithm with a data-driven approach, a balance
between those criterion has been achieved.

PTOMP allows safe and responsive robot motion generation thanks to the online parameter adapta-
tion of the optimization algorithm, and the effective person-specific motion prediction. A mapping
from interaction related features (e.g. distance between human and robot, time to collision, etc.) to
feasible hyperparameters for the optimization algorithm has been learned through Gaussian pro-
cess regression (GPR). The previously introduced probabilistic movement primitives (ProMPs)
formulation estimates a trajectory distribution over human motion, that was learned in an offline
phase (Sec. 1.1.2). The proposed stochastic optimization-based planning algorithm progressively
acquires feasible hyperparameters from the learned regression model and re-plans the motion on-
line, that ensures collision avoidance, while minimizing the task-related trajectory cost. Several
cost functions, which are found to describe human point-to-point reaching motions (Sec. 1.1.1), are
also combined to form a composite model that mimics humanlike arm reaching control. PTOMP
has been tested on simulation and compared to several state-of-the-art algorithms for various HRI
scenarios. It provides safer close proximity interaction, whereas the other trajectory optimizers fail
frequently.

This work contributes a new approach to optimal online motion planning for human-robot interac-

5This work has previously appeared in the following publication: [242]
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tion scenarios. The model-based formulation with a novel parameter adaptation and the human-in-
the-loop focus allow the robotic agent to respect the model constraints and to be perceptive about its
partner, which in turn produce safer interaction without sacrificing task fulfillment. Online adap-
tation is feasible even in more demanding real-world scenarios by PTOMP since its parallelization
capability offers a highly scalable framework.

1.3.2 Intuitive human-robot interaction and policy improvement

Even though trajectory optimization enables effective and safe close proximity HRI, for a natural
interaction, the robotic agent is also expected to attune its planning strategy according to the human
partner’s perception. For instance, humans should also be able to understandable the robot motion
and its intent, yet what makes the intention of motion readable by humans is not clear. By combin-
ing interaction dependent costs with task and movement related cost functions, robot motion can
be optimized for generating not only safe but also intuitive interaction behavior. However, people
might have different expectations and preferences on how such a readable movement should be
realized by their robotic partners.

My hypothesis is that such movement features can be learned by the robotic agent during in-
teraction through the feedback obtained from humans. We implemented a policy improvement
formulation, that is both generic and adaptive to new users and tasks, to find the optimal pol-
icy for safe yet understandable robot motion generation. An experiment was conducted, where
subjects cooperated with the robot to perform a pick-and-place task in close proximity. Similar
to PTOMP framework (Sec. 1.3.1), human motions are predicted for proactive avoidance behav-
ior (Sec. 1.1.2). Response and reaction times of subjects, along with their accuracy, and explicit
feedback on the readability of the robot partner’s motion are taken into account for improving the
control policy of the robot online. The results show that the robot is able to adapt its behaviors to
personal preferences allowing the humans to recognize the robot’s intentions while performing the
joint tasks confidently.

The proposed online policy adaptation with the generic composite cost model has proven to be
an effective approach to provide intuitive close proximity HRI. It can directly be used for differ-
ent tasks, e.g. even for navigation of an autonomous agent among people, where the robot shares
a workspace with humans. Furthermore, the generic formulation together with online improve-
ment of the control policy facilitates long-term continuous learning and personalization of robotic
assistance technologies.

1.4 Contributions and Thesis Overview

In the rest of this thesis, I will present in detail my interdisciplinary approach to enable safe and
intuitive close proximity human-robot interaction (HRI) by combining (i) human sensorimotor
control models, (ii) human-human interaction (HHI) dynamics, and (iii) novel learning and opti-
mization algorithms for robot interaction behavior generation. As the goal is to build human-in-
the-loop learning and control formulations for robot interaction skill acquisition, the primary focus
is always on human motion behaviors.
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Starting with this focal point, Chapter 2 explains the first contribution of the thesis, which is the
identification of control policies for human reaching motions as a composition of several opti-
mal control models. This is the first study that provides evidence for the multiple internal mod-
els (MIMs) hypothesis from an optimality of movements perspective. A trade-off between those
models, that depends on the task parameters, have been discovered, which led to our proposition
of a hierarchical control structure within the central nervous system (CNS).

Chapter 3 builds upon this inverse optimal control (IOC) approach (Ch. 2) by combining the data-
driven probabilistic movement primitives (ProMPs) method to construct human movement repre-
sentations. With this hybrid approach, not only the person specific composite control models are
learned, but also intrapersonal movement variations are captured. Furthermore, human motions
are predicted online with high accuracy, that allows building effective human-in-the-loop motion
controllers for robotic agents.

Chapter 4 focuses on classification and learning of human-human interaction behaviors. A novel
graph-based ontology is constructed that defines the types and properties of close proximity in-
teractions as well as the relationships between them. In addition, interaction behavior models are
learned by an inverse reinforcement learning (IRL) method. This unified and general framework
can be used as a reference for future dyadic interaction analysis and learning studies. Chapter 5
also presents a learning approach with recurrent neural networks for cross-domain sequence learn-
ing of control signals from positional data acquired for the previous work discussed in Chapter 4.
In essence, a generalized policy for dyadic interaction behavior is extracted and transferred from
human-human data to control an autonomous agent during close proximity HRI.

In Chapter 6 and 7, two algorithms are presented that enable constructing dyadic interaction skills
for autonomous agents to provide intuitive HRI. First, a stochastic trajectory optimization algo-
rithm is proposed that progressively adjust hyperparameters to proactively plan the robot move-
ment depending on the human partner’s predicted motion (Ch. 3). Cost functions identified for
human motor skills (Ch. 2) are used for computing these locally optimal motion plans. This in-
tegrated approach results in a natural, safe and effective close proximity interaction. Second, a
generic policy together with a composite cost model is formulated, that enables an autonomous
robotic agent to learn intuitive dyadic movement skills online during interaction by a policy im-
provement algorithm.

In sum, the trajectory of this dissertation demonstrates the necessity of an interdisciplinary ap-
proach to tackle human-in-the-loop learning and control problems for close proximity HRI. Due
to the multiplicity of requirements, which might have conflicting constraints, model-based meth-
ods have to be integrated with data-driven approaches.
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2
An Inverse Optimal Control Approach
to Explain Human Arm Reaching Control
Based on Multiple Internal Models1

Human motor control is highly efficient in generating accurate and appropriate motor behavior for
a multitude of tasks. This work examines how kinematic and dynamic properties of the muscu-
loskeletal system are controlled to achieve such efficiency. Even though recent studies have shown
that the human motor control relies on multiple models, how the CNS controls this combination
is not fully addressed. In this study, we utilize an IOC framework in order to find the combina-
tion of those internal models and how this combination changes for different reaching tasks. We
conducted an experiment where participants executed a comprehensive set of free-space reach-
ing motions. The results show that there is a trade-off between kinematics and dynamics based
controllers depending on the reaching task. In addition, this trade-off depends on the initial and
final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this
insight, we further provide a discomfort metric to demonstrate its influence on the contribution
of different inverse internal models. This formulation together with our analysis not only support
the MIMs hypothesis but also suggest a hierarchical framework for the control of human reaching
motions by the CNS.

2.1 Introduction

Human motor control shows a remarkable ability to regulate stereotypical human motions that are
observed for a broad range of tasks in daily life. On the one hand, an influential idea discussed in
literature is that, the central nervous system (CNS) utilizes internal models, which hypothetically
represent the control of dynamics and kinematics of movement, to achieve such an efficient motor
behavior [17], [31]. On the other hand, another major line of work hypothesizes that, after an
initial learning phase, the stereotypical human motions are approximately optimal with respect to
an unknown criterion. Hence, modeling of human motor behavior has been posed as an optimal

1This work has previously appeared in the following publication: [235]
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2 Inverse Optimal Control for Reaching Motions Based on Multiple Internal Models

control problem and several cost functions have been proposed [11], [32]–[35]. If one interprets an
optimal control problem with different cost functions as different control models, the combination
of them corresponds to the multiple inverse internal models formulation. Depending on the task,
the combinations of those models can be adapted accordingly. If we assume the space of 3D
free space motion control models is represented as a combination of internals models within the
cerebellum, then the follow-up question is whether there exists a hierarchical control where the
contribution of those different internal models are regulated. Analysis of such a hierarchical control
mechanism can improve our understanding and interpretation of how the CNS might be internally
representing and utilizing some critical metrics to implicitly control stereotypical movements for
a multitude of tasks. In this work, we search for such internal models and their combinations to
support the multiple internal model (MIM) hypothesis by focusing on the arm reaching motions
in a wide range of the 3D space. Subsequently, how those internal models are combined for arm
motions and why their contributions change depending on the reaching task are investigated.

Searching for the physiological foundations of motor control and internal models, various experi-
ments are discussed in the literature [36]–[38]. Resulting hypotheses are that the posterior parietal
cortex is updating the motor plan, while the cerebellum might capture the feedforward control
signals. Further structures of the human nervous system might contain the state estimator and
comparator [37]. In this regard, feedforward and feedback control mechanisms along with learn-
ing and adaptation processes for motor control has been studied extensively [16], [39]–[43]. These
results suggest that computational approaches to motor learning and control should include two
separate performance errors rather than one [44], and that the brain learns multiple internal models
that can be combined as required by the circumstance [45]. Several studies investigated whether
multiple internal models could be learned concurrently, and switched depending on the task [46],
[47]. It was shown that two learned models could be additively combined [48], and a modular
controller selection architecture was proposed which relied on a linear combination of the outputs
of the multiple inverse internal models [18]. However, verification of those composite models for
a broad range of tasks is missing and how they are combined and controlled efficiently by the CNS
are still unclear.

Before even identifying multiple models utilized by the CNS, finding a single internal model is a
challenging computational problem. A common feature of motor control is that the task require-
ments can be met by infinitely many diverse movements. Thus, providing only the boundary con-
ditions of the motion for given dynamics leads to an ill-defined problem. The ambiguity caused
by this problem can be resolved if an optimality principle is applied. Accordingly, the basis of
many scientific theories on human motor control is formed by optimality principles. A large num-
ber of models of open-loop motor control exist and each model claims to describe human motion,
but several models are incompatible with others. The starting point for the derivation of a cost
function are characteristics of the human arm movements and the human as a biological entity.
Human motor control has been speculated to minimize the sequence of control signals [49]–[51],
or limb states [2]. These minimization strategies are related to physiological and task variables
such as smoothness of the hand path [11], [32], accuracy [33], [52] or error and effort [5], [53]–
[56]. However, these single models appear to be not descriptive enough for a broader range of
tasks. Hence, recent studies focus on finding a combination of such models. These methods solve
an inverse optimal control (IOC) problem where the contribution of different optimal control mod-
els are computed [57]–[59]. The best combination of models that results in a trajectory as similar
as to the recorded human motion data is identified through iteratively comparing the calculated
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(a)

(b)

(c)

Figure 2.1: Experimental setup. (a) Experimental overview. T1 to T9 indicate nine target areas. RP
stands for the reference point, which is used to adjust subject’s position. The distance L
between the center of the shoulder joint S and the RP is selected as 80% of the total arm
length. Subjects are required to reach nine target areas from nine different starting arm
postures. (b)-(c) Three rotations defined in our arm model. S, E, W are the positions
of shoulder, elbow, and wrist joints, respectively. When the arm is in full stretched out
posture, q1, q2 and q3 all have zero rotations.

motion trajectory with the observation, while still satisfying all individual control models w.r.t. the
dynamical system and the constraints. IOC formulation describes human motion better than the
previous single models, yet it forms a more complex computational problem, which emphasizes
the importance of a better understanding of why and how those models are efficiently utilized by
the CNS.

In this study, we focus on finding evidence for MIMs hypothesis and understanding how these
models are efficiently combined by the CNS. Considering that internal models mimic the transfor-
mations between system states, motor commands, and sensory signals, an optimal control prob-
lem (OCP) can be regarded as an inverse internal model by providing the necessary control signals
to carry out the reaching task [17], [44], [60]. Our hypothesis is that, if a comprehensive analysis is
done on a rich set of human motion, the change in the contribution of the underlying motor control
structures can be observed in a way to reveal the factors that explain such an adjustment. We limit
ourselves to examining simple, 3D free-space arm reaching movements. Simple movements can
be considered to make up a basis set of which more complicated movements are composed [61]–
[63], and as such, studying them provides insight into the control of more complex movements.
We devised an experiment in which a wide range of 3D reaching motions are recorded (Fig. 2.1).
For the arm reaching task we focused, a single forward model, i.e. the arm dynamics, is paired
with multiple inverse internal models, i.e. the composite of OCPs where each OCP is associated
with a specific cost function.
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2 Inverse Optimal Control for Reaching Motions Based on Multiple Internal Models

This study presents both a comprehensive optimality analysis on human arm reaching motions in
3D space and a trade-off between dynamics and kinematics based controllers depending on the
reaching motion type. The main contributions of our work are three-fold:

• Multiple inverse internal models, represented as a combination of different controllers, are
discovered to be collectively controlling the 3D free-space arm reaching movements.

• We explain quantitatively how the contribution of these inverse internal models change w.r.t.
the task parameters.

• Finally, a hierarchical control model that regulates MIMs for controlling reaching motions
is proposed.

2.2 Methods

Here, first the musculoskeletal model used for the human arm is described. Then a brief formula-
tion of an optimal control problem (OCP) and the numerical solution method are provided. This
OCP together with a derivative-free optimizer forms the inverse optimal control (IOC) formulation
as a bi-level optimization problem to solve for the composite control models of human reaching
movement. A new metric is introduced to explain how the central nervous system (CNS) might be
controlling this compositeness. Lastly, the experimental task is detailed out.

2.2.1 Dynamical model of the arm

A common approach to model the arm dynamics in 3D reaching motions is to consider it as artic-
ulated rigid bodies. By ignoring the hand movements, the arm can be treated as a musculoskeletal
system which consists of four degree-of-freedoms (DoFs), where the shoulder joint has three ro-
tations and the elbow joint has one rotation. Due to the fact that in our preliminary tests, the
internal/external rotation of the shoulder joint is merely activated for the given reaching tasks, it is
neglected in the dynamic model. This simplification can increase the computational efficiency of
the inverse optimal control calculations while preserving enough accuracy in the results. Accord-
ing to the classical Lagrangian formalism, the dynamics of the 3-DoF arm model can be defined
as

τ = M(q)q̈ + C(q, q̇)q̇ +G(q), (2.1)

where the variable q = (q1, q2, q3)> denotes the three joint angles and τ = (τ1, τ2, τ3)> represents
the torques. Time derivatives of q, i.e. q̇ and q̈, are the joint angle velocities and joint angle
accelerations, respectively. M , C and G are the inertia matrix, the Coriolis/centripetal terms and
the gravitational vector, respectively. As the viscous frictions and elastic properties of the tissues
are difficult to estimate, they are neglected in the dynamics. The upper arm length and the forearm
length, as well as the mass, inertia and distance to the center of mass are defined as described in
previous researches [64], [65]. When the arm is in fully stretched out position, q1, q2 and q3 all
have zero configurations. The positive rotation direction of corresponding joint angles are given
in Fig. 2.1b,c. The dynamics is obtained through the AUTOLEV [66] tool, which is an interactive
symbolic dynamics program for formulating motion equations.
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2.2.2 Optimal control problem

The goal of OCP is to find the time-dependent state variable functions and control signal func-
tions while minimizing a given cost function. During the calculation, several constraints have to
be fulfilled, including the equality constraints, inequality constraints, and more important, the dy-
namic relationship between control signals and state variables, which is represented by ordinary
differential equations (ODE). Thus, a classical OCP can be defined as follows.

Definition: Let x ∈ Rn be the time-dependent state variable functions, u ∈ Rm be the time-
dependent control signal functions, and T is the terminal time. The cost function is represented by
φ, then the general OCP is defined by

min
x,u

φ(x,u) := φb(x(0),x(T )) +
∫ T

0
φI(x(t),u(t))dt, (2.2)

where φb is the terminal cost term and φI is the integral cost term. Note that, x, and u are subject
to the dynamic relationship constraint which is represented by n ordinary differential equations as

ẋ(t) = ϕ(x(t),u(t)), (2.3)

and also the inequality and boundary (equality) constraints as

g(x(t),u(t)) ≤ 0, b(x(0),x(T )) = 0. (2.4)

Note that in most cases the boundary constraints are considered as

x(0) = xs, x(T ) = xe (2.5)

for given start values xs ∈ Rn and end values xe ∈ Rn of state variables.

The OCP is named according to its cost function. If the cost function is a combination of a terminal
cost term and an integral cost term, then it is called Bolza-problem. If it only has the terminal cost
term or only the integral cost term, it is called Lagrange or Mayer-problem, respectively. There
are two main approaches to solve OCPs, indirect, and direct. Here, we focus on the direct multiple
shooting approach used within our formulation.

2.2.3 Direct multiple shooting approach

Direct approach to continuous optimal control finitely discretizes the infinite dimensional decision
variables, such as the control signals u(t) (Fig. 2.2). This allows approximating the original prob-
lem as a finite dimensional nonlinear program (NLP), which can be solved by structure exploiting
numerical NLP solution methods. There are three different direct approaches: direct single shoot-
ing, direct multiple shooting and direct collocation. The difference between each approach is how
they transcribe the OCP into a finite NLP. In this work, the direct multiple shooting is used.

The direct multiple shooting method first utilizes the piecewise control discretization. The control
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2 Inverse Optimal Control for Reaching Motions Based on Multiple Internal Models

signal is chosen to be
u(t) = qi, for t ∈ [ti, ti+1]. (2.6)

After the discretization, the ordinary differential equations are solved in each separate time interval
[ti, ti+1] with an artificial initial starting values si as:

ẋi(t; si, qi) = ϕ(xi(t; si, qi), qi), xi(t; si, qi) = si, t ∈ [ti, ti+1]. (2.7)

This generates the state trajectory xi(t; si, qi) for each time interval. Thus the integral of the cost
function for each time interval can be calculated individually as

li(si, qi) =
∫ ti+1

ti
φI(xi(ti; si, qi), qi)dt, (2.8)

then the inequality constraints can be checked in divided time grid which is normally the same as
the grid for control signals and states. The NLP generated by multiple shooting approach can be
described as follows.

min
s,q

N−1∑
i=0

li(si, qi) + φb(s0, sN) (2.9)

where the following constraints should be satisfied:

• initial value:
x0 − s0 = 0, (2.10)

• continuity:
xi(ti+1; si, qi)− si+1 = 0, i = 0, . . . , N − 1, (2.11)

• discretized inequality constraints:

g(si, qi) ≤ 0, i = 0, . . . , N − 1, (2.12)

• terminal constraints:
b(sN) ≤ 0. (2.13)

The continuity conditions can also be interpreted as a discrete time dynamic system si+1 =
ϕi(si, qi) by setting ϕi(si, qi) := xi(ti+1; si, qi). Then the NLP can be solved by a sparsity
exploiting NLP solver. Compared to single shooting, the multiple shooting approach has several
advantages. e.g. the state trajectory can be initialized and it has better local convergence properties
for unstable dynamic systems.

2.2.4 Inverse optimal control as a bi-level optimization problem

The purpose of IOC is to identify the formulation of the OCP, specifically the cost function it op-
timizes, which best reproduce the observations. A numerical method for solving an IOC problem
is to reformulate it as a bi-level optimization problem [58]. This method relies on the assumption
that, the optimal cost function is a composite of several plausible basic cost functions. The con-
tribution of each basic cost function is defined through a weight vector, and this weight vector is
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Figure 2.2: The NLP variables in the direct multiple shooting approach (taken from [67])

identified by using the bi-level optimization framework presented in (2.14).

Upper level program: min
α

Φ(x∗α,xobs), with
N∑
i=1

αi = 1,

m

Lower level program: min
x,u

J(x,u|α) :=
N∑
i=1

αiJi, s.t. g(x,u) ≤ 0, h(x,u) = 0.

(2.14)

2.2.4.1 Lower level program

The lower level program of the bi-level optimization is a direct OCP [68] given by

min
x,u

J(x,u|α) :=
N∑
i=1

αiJi, s.t. g(x,u) ≤ 0, h(x,u) = 0. (2.15)

The goal of OCP is to find the optimal trajectory which minimizes a given cost function J . Here J
is assumed to be a linear combination ofN basic cost functions Ji (i = 1 . . . N ) which are weighted
by the weight vector α = (α1, α2, . . . , αN). The variables x and u are the vector of system states
and control signals, respectively. With above explained arm model, the system states in this work
are given as x> = (q>, q̇>, q̈>). Since the joint torques τ are smoothly generated by muscle
contractions [11], the control signals are defined as the time derivative of torques u = τ̇ . Thus
the OCP of reaching motions can be stated mathematically as: find the admissible system state
trajectory x∗α(t) and control signal trajectory u∗α(t) in time T, which minimize the cost function
J with respect to a given weight vector α, while satisfying the system dynamics and the task
constraints. For reaching motions, the task constraints contain two parts: the initial condition
x(0) = xs and the final condition x(T ) = xe as the boundary constraints; limitations on joint
angles qmin ≤ q(t) ≤ qmax as the inequality constraint. The constraints of joint angle velocities
and joint angle accelerations are set to a large range since during the preliminary analysis they are
identified to be merely active.

One classical method to solve OCP is to first transform it into a nonlinear programming (NLP)
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2 Inverse Optimal Control for Reaching Motions Based on Multiple Internal Models

problem with constraints, then solve it by using structure exploiting numerical NLP solution meth-
ods. In our work, we utilize the multiple shooting method [67] with ACADO toolkit [69] to resolve
OCPs.

Criterion Equation

Hand jerk JHJ =
∫ T

0
...
x2 + ...

y 2 + ...
z 2dt

Joint angle acceleration JJA =
∫ T

0 q̈2
1 + q̈2

2 + q̈2
3dt

Joint angle jerk JJJ =
∫ T

0
...
q 2

1 + ...
q 2

2 + ...
q 2

3dt

Torque change JTC =
∫ T

0 τ̇ 2
1 + τ̈ 2

2 + τ̇ 2
3 dt

Torque JTor =
∫ T

0 τ 2
1 + τ 2

2 + τ 2
3 dt

Absolute work (energy) JEnr =
∫ T

0 (∑3
i=1 |q̇iτi|)dt

Geodesic JGeo =
∫ T

0 (q̇>M q̇)1/2dt

Table 2.1: Cost functions proposed in literature. Variables x, y, z are the hand positions in Carte-
sian space. M denotes the inertia matrix. Corresponding references for the proposed
criteria are given as: minimum hand jerk [32], minimum joint angle acceleration [70],
minimum joint angle jerk [71], minimum torque change [11], minimum torque [2], min-
imum absolute work [72], [73] and minimum geodesic [74].

2.2.4.2 Selection of basic cost functions

The core part of the IOC framework is to select a set of reasonable basic cost functions. For
arm movements, several cost functions were proposed in the past. These cost functions can be
categorized into subjective and objective cost functions. Subjective cost functions refer to the
decision from a subject, such as the minimum hand jerk [32], while objective cost functions are
task-related. Since the integration of objective cost functions into OCP is difficult, only subjective
cost functions are considered in this work. In literature, various subjective cost functions are
proven to be useful in explaining human reaching motions (see Table 2.1). Generally, these cost
functions can be grouped as two classes: (a) kinematic cost functions: the minimum hand jerk [32],
the minimum joint angle acceleration [70] and the minimum joint angle jerk [71] are typical ones;
and (b) dynamic cost functions: the minimum torque change [11], the minimum torque [2] and
the minimum absolute work [72], [73] (also referred as minimum energy throughout this work)
belong to this class; and finally the minimum geodesic criterion [74] is a junction of kinematic
and dynamic cost functions, which yields the shortest path in configuration space while taking the
kinetic energy into consideration. An example of the optimal end-effector trajectories solved from
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OCPs with respect to different basic cost functions is given in Fig. 2.3. Among these proposed cost
functions, we select five of them as the basic cost functions for IOC, which are the minimum hand
jerk JHJ , the minimum joint angle jerk JJJ , the minimum torque change JTC , the minimum energy
JEnr and the minimum geodesic JGeo. The minimum joint angle acceleration is ignored since it
gives quite similar solution to the minimum joint angle jerk, then the identification between these
two cost functions is difficult. In addition, the minimum torque criterion is also neglected because
in our preliminary tests we found it has the largest error in describing the reaching motions. Thus
the combined cost function J for the direct OCP is defined as

J = α1JHJ + α2JJJ + α3JTC + α4JGeo + α5JEnr. (2.16)

One more important issue in combining the basic cost functions, due to the different units, is that
the range of the objective values of different cost functions are usually considerably different, thus
they cannot directly be equally compared in Eq. (2.16). To overcome this problem, we introduce
another scalar factor vector S, with the purpose to balance the objective values of selected basic
cost functions to the same range. Thus Eq. (2.16) is transformed into

J =
∑
i

SiαiJi, i ∈ {HJ, JJ, TC,Geo,Enr}. (2.17)

To obtain the scalar factor vector for a given reaching task, five optimal trajectories x∗i with respect
to each basic cost function are first computed by solving the corresponding OCPs. Based on the
results, the range of the objective value of each basic cost function can be defined through the
minimal and maximal values as Rangei = [Ji,min, Ji,max]. Since all selected basic cost functions
are integral cost terms and always produce positive values during the optimization, the minimal
values are zeros for all cost functions Ji,min = 0. Then the scalar factor vector can be generated
directly by comparing the maximal values Ji,max. In our experimental data, we found that the
minimum joint angle jerk JJJ tends to have the largest maximal objective value, therefore we set
the scalar factor of the minimum joint angle jerk to 1, then the ratios between other basic cost
functions and the minimum joint angle jerk are chosen to be the corresponding scalar factors.

Si = Ji,max

JJJ,max
. (2.18)

Note that the scalar factor vector varies when at least either the initial condition xs or the final
condition xe changes. Thus before running the IOC for each given observation, the scalar factor
vector needs to be determined in order to ensure the accuracy of the result.

2.2.4.3 Upper level program

The purpose of the upper level program is to find the optimal weight vector α∗ which minimizes
the distance error between the optimal trajectory x∗α(t) obtained from the lower level program and
the observation xobs. This optimization problem can be represented as

min
α

Φ(x∗α,xobs), with
N∑
i=1

αi = 1, (2.19)
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Figure 2.3: An example of the optimal end-effector trajectories solved from OCPs with respect to
different basic cost functions. The variance in their predictions is clear. Only exception
is the similarity of the predicted trajectories by minimum joint angle acceleration and
the minimum joint angle jerk as they overlap in the figure.

where Φ is a metric which measures the distance error.

Selecting a good metric Φ is crucial in the bi-level optimization framework since it highly affects
the decision on the optimal weight vector. The recorded observations are usually the position
trajectories in Cartesian space represented by x, y, z coordinates. These observations cannot be
directly compared by Φ because, on the one hand, the system states x are defined as joint angles,
on the other hand, the position trajectories usually contain uncertainties, which come from: 1)
the error from the torso movement, 2) the difference between the subject’s actual arm length and
the defined musculoskeletal system’s arm length. No consistent results can be derived if a direct
comparison to the position trajectories is implemented in Φ.

To address this problem, we transform the recorded position trajectories to the relative position
trajectories in arm model coordinate system through the following steps:

1. Record the Cartesian position trajectories of the shoulder joint ts = (ts,x, ts,y, ts,z), the elbow
joint te = (te,x, te,y, te,z) and the wrist joint tw = (tw,x, tw,y, tw,z).

2. Derive the observed joint angle trajectory through the arm geometry as qobs = G(ts, te, tw).
Since the roll rotation of the shoulder joint is neglected in our work, the translation function
G can be easily obtained.

3. Compute the relative position trajectory (end-effector trajectory) in arm model coordinate
system by using the kinematic relationship of the proposed arm model as tobs = δ(qobs),
where δ represents the function of the forward kinematics.

The relative end-effector trajectory tobs eliminates the error caused by different arm lengths and the
torso movements, thus it can be compared to the solution calculated from the lower level program.
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Based on the feature compared in Φ, two different types of the distance metric can be formulated:
one is the joint angle metric, where the observed joint angle trajectory qobs is compared to the
optimal system states trajectory x∗α, which also contains the joint angle trajectory q∗α; another is
the end-effector trajectory metric, where at first the optimal end-effector trajectory t∗α is computed
from the optimal joint angle trajectory q∗α by using the same forward kinematics function δ, then
the distance error is calculated between the relative end-effector observation tobs and t∗α.

In our preliminary tests we found that the end-effector trajectory metric has a better performance
than the joint angle metric. Possible reason is that the three joint angles actually have different
degrees of influence on the reaching motions [75]. However, it is not straightforward to determine
the contribution of different joint angles, which could introduce further uncertainties and errors.
Similar problem also occurs when combining the joint angle metric and the end-effector metric,
since they have different units and it is difficult to balance them into the same range. Therefore in
our work the distance metric of the upper level program only considers the end-effector trajectories,
which can be treated as comparing two 3-dimensional signals. The dynamic time warping (DTW)
algorithm [76] is implemented to calculate the distance error. In time series analysis, DTW is
used for measuring the similarity between two temporal sequences which may vary in speed. The
sequences are first warped in the time dimension and then compared to each other. With this,
Eq. (2.19) can be stated as

min
α

Φ(x∗a,xobs) := min
α
D(t∗α, tobs), (2.20)

where D denotes the DTW calculation.

To solve Eq. (2.20), common gradient-based methods and stochastic optimization algorithms are
not applicable because of two reasons. First, the metric Φ is non-differentiable with respect to the
weight vector α; second, before each calculation of Φ, a direct OCP must be solved in advance,
thus it usually takes a few minutes for one evaluation. Specifically, the stochastic optimization
algorithms (e.g. particle swarm optimization [77]) are also not suitable here, since they require
more samples which will result in infeasible computation time. Hence, the upper level program
is optimized by a robust derivative-free optimization (DFO) method. Here we use the method
called CONDOR [78] for COnstrained, Non-linear, Direct, parallel optimization, which is a par-
allel extension of the Powell’s method [79] based on the trust region algorithm [80]. Through a
local approximation of Φ, it can find the optimal solution more efficiently than the common pattern
search and stochastic optimization techniques. To reduce the computation time, the initial value of
α should be set properly before the optimization. Since among the five elements ofα only four are
actually independent, and OCPs corresponding to the costs J(α) and J(λα), λ > 0 are identical,
a practical strategy is to fix one element to one and then adjust the remaining components with
respect to it [57]. As all the basic cost functions are scaled into the same range, the value of other
components can be restricted to stay in [0, 1]. During the optimization process, if any element is
found larger than one, the optimization should be restarted with setting this element to one. In our
experimental data, setting the weight of joint angle jerk to one gives the best results in most cases.
After around 100 iterations, the algorithm converges to a local minimum. Note that due to the high
non-linearity of the problem formulation, the global minimum is not available in the bi-level opti-
mization [59]. In order to get more accurate results while keeping a reasonable computation time,
we set the initial value of α to (0.5, 1, 0.5, 0.5, 0.5) and solve it three times with different initial
search radii [79] as 0.15, 0.3 and 0.45, so that most range is covered within three IOC calculations.
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The one results in the minimum distance error is considered as the final optimal weight vector α∗

and is normalized for later analysis.

2.2.5 Discomfort metric

The motion parameters of each reaching task can be represented as the initial joint angle configu-
ration qs = (q1s, q2s, q3s) and the final joint angle configuration qe = (q1e, q2e, q3e). The proposed
discomfort metric is a linear combination of six joint angles as

Discomfort = β1
90− q1s

180 +β2
q2s

180 +β3
q3s

180 +β4
q1e − q1s

180 +β5
q2e − q2s

180 +β6
q3e − q3s

180 , (2.21)

where each parameter is scaled with its approximate joint angle limits and balanced with the nor-
malized weight vector β = (βi), i = 1 . . . 6, ||β|| = 1. The reason of introducing β is that, each
joint angle possibly has different degrees of influence on the reaching motions [75]. Assuming the
discomfort metric can explain the trade-off between the contributions of controllers we observed,
the optimal weight vector β∗ for a given set of reaching motions can be determined by utilizing
the contribution of dynamics based controllers αDyn through the following processes:

1. For each given β, a set of discomfort values can be derived from each reaching motion as
Discomfort = (Discomforti), i = 1 . . . N , where N is the number of total recorded
reaching motions.

2. Along with the set of corresponding values of αDyn obtained from IOC calculations as
αDyn = (αDyn,i), i = 1 . . . N , the coefficient of determination R2 can be calculated from
the data set (Discomfort,αDyn).

3. The optimal weight vector β∗ is obtained by maximizing R2.

Note that, rather than a deterministic mathematical explanation of the relationship between task
demand and the contribution of dynamics based controllers αDyn, the proposed discomfort metric
should be treated as a linear regression estimation of this relationship but with multi-dimensional
input.

2.2.6 Model-fitting analysis

For the comparison and analysis of the composite models used to find the best fit to the observed
data, we computed Akaike and Bayesian information criterion (AIC and BIC, respectively) met-
rics. As the IOC formulation provides a deterministic model, residual sum of squares (RSS) was
used for the computations. Note that, this is only valid under the assumption that the model errors
are independent and identically distributed according to a normal distribution. The Shapiro-Wilk
test was used to test the normality assumption on the error, and the null-hypothesis was not rejected
in any of the cases. The RSS values for each model were computed by the dynamic time warping
algorithm.
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2.2 Methods

2.2.7 Experimental task

During the experiment, participants are required to sit in front of a vertically placed plastic board
and perform reaching tasks with their right arm. Nine target areas along with one reference point
are marked on the board surface as squares with the side length set to 5 cm. Distance between
each target area can be seen in Fig. 2.4b. The sitting position of the participant is determined by
setting the line between the reference point and the center of the shoulder joint vertical to the board
surface, and the distance is selected as 80% of the total arm length (see Fig. 2.1a).

Every participant is asked to reach nine target areas from nine different initial arm postures. While
reaching, the participant should hold a fist and use the frontal surface of the fist to touch the target
area, in order to reduce the noise caused by finger movements. Before the recording, the initial
arm configuration is determined by measuring the joint angles with a protractor. The nine selected
initial postures are displayed in Fig. 2.4. After the measurement, a set of reference tools is utilized
to designate the corresponding initial posture. This set of tools consists of two bars with adjustable
lengths and positions. The end points of the bars indicate the positions of the elbow and wrist joints
for the given posture. The reference tools are placed in appropriate configuration so that during the
reaching motion they do not block any potential motion trajectory. The participants are given the
following instructions. First, to avoid the decision-making process of target selection, the subjects
need to reach the nine target areas in a fixed order as from target one to target nine. Second, the
participants should put their arm in the given initial posture as accurate as possible before executing
the follow-up reaching tasks. Third, in order to minimize the influence of locating target during the
movement, the participants should look at the target area before performing the reaching motion.
Fourth, the participants are asked to avoid using the internal/external rotation of the shoulder joint,
which is ignored in our arm model. In addition, no instruction about the reaching speed is given,
in order to ensure the recorded reaching motions are natural movements.

All participants are trained before the recording to get familiar with the experimental setup and
the tasks. If any unintended motion is detected during the experiment, corresponding tasks are
executed again. The participants are given enough rest time to avoid fatigue. Each reaching task is
performed three times, thus a total of 3645 (9 initial postures × 9 targets × 3 times × 15 subjects)
trajectories are recorded. For the IOC calculations, one average trajectory is obtained through the
corresponding three trials, hence 1215 IOC calculations are performed in total.

2.2.8 Data collection

A total of fifteen subjects (11 males, age: 27±4; weight: 67±9 kg, height: 172±5 cm) conducted
the experiments and gave their written informed consent for their participation. All participants are
right-handed with normal vision ability. None of them received any information about the purpose
or hypotheses of the experiment. The study was approved by the ethics committee of the Technical
University of Munich School of Medicine. The procedures were carried out in accordance with the
relevant guidelines and regulations. The trajectories are recorded by using the multicamera motion
capture system Qualysis [81] with eight cameras at a frequency of 250 Hz. Nine tracking markers
are placed on the subject: seven of them are attached to the right arm (three on the shoulder, two
on the elbow, two on the wrist) and two to the torso. The position trajectories are smoothed with
the built-in filter function of Qualysis. The movement onset and terminal time of each reaching
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2 Inverse Optimal Control for Reaching Motions Based on Multiple Internal Models

Posture q1s(◦) q2s(◦) q3s(◦) Target q1e(◦) q2e(◦) q3e(◦)

P1 11.0 ± 5.0 6.6 ± 4.7 12.7 ± 3.5 T1 -10.3 ± 3.6 82.0 ± 6.9 23.7 ± 7.2
P2 11.2 ± 5.7 8.8 ± 9.5 33.4 ± 6.5 T2 7.2 ± 4.2 80.5 ± 7.6 29.4 ± 10.2
P3 11.9 ± 3.7 31.9 ± 5.8 13.2 ± 3.7 T3 27.5 ± 4.7 83.5 ± 7.0 24.5 ± 9.1
P4 -22.3 ± 5.2 12.5 ± 5.2 14.1 ± 3.9 T4 -10.2 ± 3.7 66.6 ± 6.1 19.0 ± 5.7
P5 -23.5 ± 5.7 15.8 ± 6.4 37.9 ± 7.5 T5 6.7 ± 3.8 64.3 ± 7.0 24.0 ± 8.7
P6 -22.9 ± 5.3 37.3 ± 7.9 16.1 ± 5.1 T6 26.6 ± 4.3 66.5 ± 7.0 20.4 ± 8.3
P7 42.2 ± 6.2 7.0 ± 7.4 12.3 ± 4.6 T7 -9.1 ± 3.4 55.0 ± 5.0 14.4 ± 4.5
P8 40.2 ± 4.4 7.1 ± 5.3 35.4 ± 5.6 T8 5.2 ± 3.4 53.9 ± 5.4 14.9 ± 5.4
P9 35.4 ± 5.1 36.1 ± 5.6 10.1 ± 5.8 T9 23.6 ± 3.6 54.5 ± 5.9 13.0 ± 5.4

Table 2.2: Actual initial and final joint angle configurations calculated among all 15 subject’s data.
Mean values and the corresponding standard derivations are presented. P1 to P9 are
nine different initial arm postures. T1 to T9 indicate nine target areas. (q1s, q2s, q3s) are
the three initial joint angles while (q1e, q2e, q3e) are the final joint angles for each target
area.

task are selected as the instant at the 5% of the peak velocity of the hand. These 3D position
trajectories are utilized in the IOC calculations. The joint angle trajectories are calculated through
inverse kinematic technique.

2.3 Results

We have three main results, which support our hypothesis on hierarchical control of multiple in-
ternal models within the CNS. First, there are discernible behavioral differences, such as velocity
profiles and reaching time, depending on the reaching motion type. Such differences in movement
features signal the existence of different motion control structures. Second, we identified that the
combination of different optimal controllers explains a broad range of human reaching motions in
3D free space better than a single one. As each optimal control problem (OCP) with a given cost
function defines a single control mechanism and thus a single inverse internal model, having sev-
eral controllers supports the multiple inverse internal models component of the multiple internal
models (MIMs) hypothesis. Finally, the combination of those internal models changes depending
on the initial and final arm postures. This dependency, we claim, is resolved by the central nervous
system (CNS) by a hierarchical control mechanism to actively coordinate the contribution of those
independent internal models. To this end, we propose a metric, that is a function of motion features,
as a higher level control parameter since it can describe the dependence of model contributions to
the motion parameters.
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2.3 Results

2.3.1 Reaching motion behavior analysis

Initial and final postures The experimental task is demonstrated in Fig. 2.1. Every subject
starts the reaching tasks from nine different initial arm postures and reaches nine target areas (9
initial postures × 9 targets = 81 reaching tasks). The initial postures are selected as different
combinations of three joint angles, where q1 has three values corresponding to the upper, middle,
down arm postures, q2 and q3 have two values which stand for the zero rotation and a rotation
approximately has 40◦, respectively. The actual initial joint angles averaged from all subjects’ data
are listed in Table 2.2. The results show that for the same reaching task, participants share similar
initial joint angle configurations which satisfies our experimental design. An illustration of the
initial arm postures and the corresponding reach endpoints on the board surface for a representative
subject (subject 3) is presented in Fig. 2.4.

Since our focus is on stereotypical arm reaching characteristics that are observed on the trajectory
level, and the corresponding feedforward controllers that might result in such trajectories, the
experiment conducted is designed to allow the subjects to reach their hands to a region rather than
a single point target. To investigate whether the initial arm posture has influence on the selection
of reach endpoints and final arm postures, one-way repeated measures ANOVAs (using SPSS
statistics) are conducted separately for each target area. Corresponding p-values are presented in
Table 2.3. The results show that, no significant difference of the initial arm posture conditions on
the Cartesian coordinates of the reach endpoints x, y, z is found (px,y,z > 0.05 for all target areas).
This suggests that, the selection of reach endpoints, which exhibit elliptical distributions inside
each target area, is unaffected by the initial arm postures.

However, due to the redundancy of arm kinematics, given only the target area might result in
numerous possible final arm joint angle configurations which can satisfy the task requirements.
The results of one-way repeated measures ANOVAs on the three final joint angles also support this
possibility. The redundancy mainly happens in the ulnar/radial rotation of the shoulder joint q2e
and the extension/flexion rotation of the elbow joint q3e, which are found to be influenced by the
initial arm postures (pq2e < 0.05 except target three, p3e < 0.05 except target two, three and six),
whereas the elevation/depression rotation of the shoulder joint q1e remains irrelevant to the initial
arm postures (p1e > 0.05 for all target areas).

These results may also be due to the fact that, in our experimental design, participants are asked to
avoid using the internal/external rotation of the shoulder joint during the reaching movements, and
thus the height of reach endpoints can only be determined by q1. By specifying the height of target
areas, the choice of q1e is quite limited, so that no significant influence of the initial arm posture on
q1e can be found. In contrast, same target area can be reached by different combinations of q2 and
q3 which exhibit similar hand positions in x, y direction. As a consequence, the initial joint angle
configurations affect the selection of final arm postures, as subjects show different tendencies in
this selection. Some of them prefer a straight arm posture with low rotation in the elbow joint,
while others would like to keep the rotation of the elbow joint the same as the initial configuration.
The averaged final arm postures among all subjects’ data are also presented in Table 2.2.

Movement duration The movement durations averaged among all subjects’ data of reaching
tasks starting from initial arm posture one are presented in Table 2.4. The full table of all 81
tasks is given in the supplementary material. We first investigate the relationship between the
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Figure 2.4: Example of the experimental design. (a) An illustration of nine initial arm postures. P1
to P3 are three postures in the middle level, while P4 to P6 and P7 to P9 are postures
in the upper and lower level, respectively. Differences between P1 and P2, P4 and P5,
P7 and P8 are that q3 increases while q2 remains constant, while between P1 and P3,
P4 and P6, P7 and P9, q3 remains constant and q2 increases. (b) Positions of the nine
target areas and the reference point (RP) on the board surface. Target areas are squares
with side length equals to 5 cm. An example of the reach endpoints for subject 3 is
also presented. P1 to P9 indicate the initial arm posture for each corresponding reach
endpoint.

movement duration and the target distance which is defined as the distance between the initial hand
position and the reach endpoint. The distribution of target distances and movement durations of all
subjects’ data is presented in Fig. 2.5a. The result of correlation analysis (using MATLAB corrcoef
function) indicates that there is a weak correlation between target distance and movement duration
(r = 0.245, p < 0.001) among all the data. However, different behaviors are observed among
subjects. Two representative subjects, one with strong correlation (subject 3, in Fig. 2.5b, r =
0.815, p < 0.001) and another without correlation (subject 8, in Fig. 2.5c, r = −0.069, p = 0.543),
are presented. This indicates that, different subjects may have different motor control strategies
in their natural reaching movements, i.e. some prefer a task-dependent movement duration while
others adapt the velocity so that the durations of different reaching tasks are on the same level.
Individual analysis shows that most of the subjects adapt their velocities with respect to the target
distance (see supplementary material), hence in general the observed correlation is weak.

In addition, two-way repeated measures ANOVAs are performed to investigate whether the initial
arm posture and target area conditions have influence on the movement duration. The results
show significant differences both in target area conditions (F (8, 112) = 18.5, p < 0.001) and
the interaction between target area and initial posture conditions (F (64, 896) = 4.4, p < 0.001).
However, the initial posture conditions exhibit no significant difference (p = 0.084). This suggests
that, the movement duration is partially affected by the target distance, but in the meantime is also
influenced by other reaching motion parameters, e.g. arm configurations.

Kinematic features All subjects exhibit similar kinematic features during the reaching mo-
tions. The hand velocity and angular velocity profiles are bell-shaped and demonstrate clas-
sical patterns in point-to-point reaching tasks. A partial table of the kinematic features aver-
aged among all subjects is presented in Table 2.4 (see supplementary material for full data).
Typical kinematic features of a representative subject (subject 3) are presented in Fig. 2.6. To

30



2.3 Results

Target
p-values

x y z q1e q2e q3e

T1 0.212 0.803 0.999 0.902 0.041 0.003
T2 0.280 0.793 0.999 0.938 0.041 0.066
T3 0.324 0.717 0.999 0.731 0.053 0.057
T4 0.422 0.761 0.999 0.654 0.004 0.001
T5 0.619 0.556 0.999 0.946 0.004 0.043
T6 0.609 0.447 0.999 0.825 0.017 0.071
T7 0.591 0.738 0.999 0.105 0.007 0.007
T8 0.624 0.496 0.999 0.474 0.004 0.003
T9 0.634 0.349 0.999 0.394 0.009 0.013

Table 2.3: One-way repeated measures ANOVAs of the initial arm posture conditions on the Carte-
sian coordinates of the reach endpoints x, y, z and final arm joint angle configurations
(q1e, q2e, q3e) separately for each target area. Due to the space limitation, only p-values
are given here.

further investigate the influence of initial arm posture and target area conditions on the kine-
matic features, two-way repeated measures ANOVAs are conducted on the average hand veloc-
ity and the peak hand velocity. Significant differences are found in the initial posture conditions
(Faverage(8, 112) = 14.3, paverage < 0.001; Fpeak(8, 112) = 9.5, ppeak < 0.001), the target area
conditions (Faverage(8, 112) = 107.3, paverage < 0.001; Fpeak(8, 112) = 87.1, ppeak < 0.001)
and the interaction between initial posture and target area conditions (Faverage(64, 896) = 31.1,
paverage < 0.001; Fpeak(64, 896) = 37.9, ppeak < 0.001).

Considering the target distance as another parameter of the reaching task, similar results are also
found in the correlation analysis between the target distance and the velocities. As explained in the
movement duration part, subjects would adapt their reaching velocity according to the target dis-
tance, hence relative stronger correlations between the velocities and the target distance are found
(raverage = 0.694, paverage < 0.001; rpeak = 0.654, ppeak < 0.001). Corresponding distributions
of the same two subjects are presented in Fig. 2.5. It can be observed that, both subjects demon-
strate good correlations between the velocities and the target distance (Fig. 2.5e, raverage = 0.914,
paverage < 0.001, Fig. 2.5h, rpeak = 0.908, ppeak < 0.001 for subject 3; Fig. 2.5f, raverage = 0.864,
paverage < 0.001, Fig. 2.5i, rpeak = 0.786, ppeak < 0.001 for subject 8). Note that, unlike most
of the subjects, the movement durations of subject 3 do not decrease even though the dependency
is reported between the velocity and the distance. This may be due to a different path planning
strategy adapted by the subject.

All these adaptations, including the final arm postures, velocity profiles and hand trajectories, sug-
gest that the reaching motion behavior changes depending on the reaching task. Thus, it is possible
that the CNS also changes its motor control strategy based on the reaching motion parameters. To
further investigate the underlying control strategy of reaching motions, an analysis based on the
inverse optimal control results is presented in the following sections.
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Target Movement
duration (s)

Target
distance (m)

Average hand
velocity (m/s)

Peak hand
velocity (m/s)

T1 1.73 ± 0.36 0.813 ± 0.044 0.53 ± 0.11 1.00 ± 0.23
T2 1.63 ± 0.35 0.775 ± 0.051 0.54 ± 0.12 1.04 ± 0.30
T3 1.70 ± 0.37 0.779 ± 0.058 0.52 ± 0.12 0.98 ± 0.26
T4 1.57 ± 0.32 0.689 ± 0.043 0.48 ± 0.10 0.91 ± 0.22
T5 1.49 ± 0.30 0.645 ± 0.050 0.48 ± 0.11 0.88 ± 0.22
T6 1.57 ± 0.37 0.650 ± 0.060 0.47 ± 0.12 0.86 ± 0.22
T7 1.52 ± 0.30 0.574 ± 0.037 0.41 ± 0.09 0.76 ± 0.18
T8 1.44 ± 0.25 0.535 ± 0.045 0.40 ± 0.08 0.72 ± 0.18
T9 1.47 ± 0.25 0.533 ± 0.052 0.39 ± 0.06 0.72 ± 0.19

Table 2.4: Movement duration and kinematic features of reaching tasks starting from initial arm
posture one towards nine target areas. Mean values and standard derivations are pre-
sented. The data is averaged among all subject’s data.

2.3.2 Identification of multiple internal models

Internal models are neural mechanisms that control a specific property of human movement by
imitating the input/output characteristics of the motor apparatus. However, even simple human
motions, such as reaching a cup, require a complex system to control the kinematics and dynamics
properties of the human arm. To identify the components of such a control mechanism, we first
examine the existence of multiple internal models for a broad range of human reaching movements.
In our experiment, stereotypical 3D free-space arm reaching task is the focus, and accordingly,
in our formulation there is a single forward internal model, i.e. the arm dynamics model, that
solves for the system states given the control input, but it is paired with different inverse models.
Inverse optimal control results show that the combinations of optimal controllers, i.e. multiple
inverse models, result in a better fit than a single optimal control based solutions. Additionally, the
contribution of internal models is found to be dependent on the movement type.

Reconstruction errors By means of forward optimal control, motion trajectories are simu-
lated to calculate the reconstruction errors of the solutions with respect to the single model and
the composite model control strategies. In the single model cases, the single basic cost functions
(hand jerk, joint angle jerk, torque change and energy, see method section) are used individually to
predict human motion trajectories for all the reaching tasks we have considered. Then, in the com-
posite model case, by using the optimal composite cost function obtained from the inverse optimal
control (IOC) calculations, we simulate the reaching trajectories. Thereafter, the reconstruction
errors of those single models and the composite model are compared by computing the distance
error between the simulated trajectories and the observations.

Two different kinds of errors are measured through the dynamic time warping, one is the end-
effector Cartesian coordinate error, another is the joint angle error. As presented in Fig. 2.7a,
the composite model can simulate the reaching motions with smaller end-effector trajectory error
(1.2 ± 0.9 cm) compared to all other single models (hand jerk: 3.5 ± 2.0 cm, joint angle jerk:
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Figure 2.5: Relationship between target distance and movement duration, average hand velocity,
peak hand velocity. (a) The distribution of target distance and movement duration
for all subjects’ data. Points are grouped by 15 subjects as from S1 to S15. (b) The
relationship between target distance and movement duration for subject 3. Points are
grouped by the target areas for the corresponding reaching tasks. (c) The relationship
between target distance and movement duration for subject 8. (d)-(f) The distribution
of target distance and average hand velocity for all subjects’ data, subject 3, and subject
8, respectively. (g)-(i) The distribution of target distance and peak hand velocity for all
subjects’ data, subject 3, and subject 8, respectively.

1.9 ± 1.4 cm, torque change: 7.3 ± 3.7 cm, energy: 7.1 ± 4.2 cm). One-way repeated measures
ANOVAs are performed separately on different single models and the composite model. The
results demonstrate significant differences between the composite model and each other single
model (hand jerk vs composite: F (1, 1200) = 2080.9, p < 0.001; joint angle jerk vs composite:
F (1, 1200) = 863.2, p < 0.001; torque change vs composite: F (1, 1200) = 3641.0, p < 0.001;
energy vs composite: F (1, 1200) = 2732.8, p < 0.001). Similar results can also be observed in the
joint angle errors, which are illustrated in Fig. 2.7b. One-way repeated measures ANOVAs also
show significant differences between the composite model and each single model (hand jerk vs
composite: F (1, 1200) = 1723.4, p < 0.001; joint angle jerk vs composite: F (1, 1200) = 111.0,
p < 0.001; torque change vs composite: F (1, 1200) = 4170.8, p < 0.001; energy vs composite:
F (1, 1200) = 3175.3, p < 0.001). Even the joint angle trajectory is not considered in the presented
IOC formulation (see method section), the composite model still exhibits better performance in
describing the angular trajectories with an average error of 3.4 ± 3.1◦ compared to other single
models (hand jerk: 12.9 ± 8.4◦, joint angle jerk: 3.9 ± 3.2◦, torque change: 14.6 ± 7.1◦, energy:
11.1± 5.8◦). The smaller reconstruction errors of the composite model suggest that, rather than a
single model, the CNS may use multiple models to control its reaching motions.
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Figure 2.6: Examples of nine reaching tasks from initial arm posture one for subject 3. The sub-
plots show (a) end-effector trajectories, (b) movement durations, (c) velocity of the
wrist joint, where the trajectories are presented with their movement phase, which
starts at 0 and ends at 1, (d)-(f) x, y, z coordinates of the wrist joint, (g)-(i) trajectories
of the three joint angles.

For the model fitting analysis, Akaike and Bayesian information criterion (AIC and BIC, respec-
tively) were computed for the models with 2, 3, and 4-cost function combinations. A representa-
tive subject’s data is used to compute the composite models for each combination. The composite
model with the 2-cost functions used joint-angle-jerk (kinematics) and torque-change (dynamics),
whereas for the 3-cost function model energy (dynamics) cost was also included together with the
previous two. The resulting AIC and BIC comparisons favored the 4-cost function model com-
pared to the other two models. The end-effector Cartesian coordinate error was also computed
to compare these models in terms of their accuracy in representing the human behavior. This
analysis demonstrated a statistically significant difference (for both 2- vs. 4-cost function model,
and 3- vs. 4-cost function model, p < 0.001), favoring the 4-cost function composite model (see
supplementary material).

Contribution of models Having identified that the composite model as the controller de-
scribes human reaching motion behaviors better than the single models, we also investigate whether
the combination of different basic models changes depending on the reaching tasks. Two-way re-
peated measures ANOVAs are performed separately on the contribution of hand jerk αHJ , joint
angle jerk αJJ , torque change αTC and energy αEnr controller models with respect to the initial
arm posture and target area conditions. The results show significant differences both in the target
area conditions for all four base models (FHJ(8, 112) = 6.8, pHJ < 0.001; FJJ(8, 112) = 3.9,
pJJ < 0.001; FTC(8, 112) = 10.6, pTC < 0.001; FEnr(8, 112) = 15.0, pEnr < 0.001), as well as
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Figure 2.7: Reconstruction errors normalized with the number of data points. (a) The Cartesian
errors of reconstructions by using the minimum hand jerk (HJ), minimum joint angle
jerk (JJ), minimum torque change (TC), minimum energy (Enr) and the composite
model (Composite), respectively. (b) The joint angle errors of reconstructions.

in the interaction between the initial arm posture and target area conditions (FHJ(64, 896) = 2.6,
pHJ < 0.001; FJJ(64, 896) = 1.5, pJJ < 0.01; FTC(64, 896) = 1.4, pTC < 0.05; FEnr(64, 896) =
4.4, pEnr < 0.001). For the initial arm posture conditions, except the contribution of joint an-
gle jerk controller (p = 0.199), significant differences are found for other three basic models
(FHJ(8, 112) = 17.4, pHJ < 0.001; FTC(8, 112) = 5.3, pTC < 0.001; FEnr(8, 112) = 12.6,
pEnr < 0.001). The reason for αJJ being not affected by the initial posture conditions may
be that αJJ is more consistent in different reaching tasks. Particularly, the joint angle jerk con-
troller plays a dominant role in the motor control of reaching motions, which has an average value
of αJJ = 0.45 ± 0.14, while other three basic controllers have smaller contributions (αHJ =
0.31 ± 0.18;αTC = 0.09 ± 0.12;αEnr = 0.15 ± 0.16). This is supported by the reconstruction
errors exhibited in Fig. 2.7, where the joint angle jerk model can simulate the trajectories with
smaller errors compared to other three models, and the results are also similar to the composite
model. This can be explained by the fact that, the recorded reaching motions mostly have bell-
shaped velocity profiles, while the optimal control solution to the joint angle jerk cost function
also produces bell-shaped velocities, hence the joint angle jerk based controller can represent the
reaching motions with better performance.

In addition, we also group the four base controllers into two types: the dynamics and the kine-
matics related control models (see method section). Two-way repeated measures ANOVAs also
indicate significant differences in the contribution of dynamics based controllers αDyn with respect
to the initial arm postures conditions (F (8, 112) = 15.1, p < 0.001), the target area conditions
(F (8, 112) = 11.7, p < 0.001) and the interaction between the initial arm posture and target area
conditions (F (64, 896) = 3.03, p < 0.001). The contribution of kinematics based controllers αKin
demonstrates the same results since the sum of αDyn and αKin equals to one. To simplify the
analysis and reduce the dimension of possible variables, we focus on analyzing the contribution of
dynamics based controllers in the following section.

2.3.3 Hierarchical control of internal models

As the contribution of dynamics based controllers is found to be influenced by the initial arm
posture and target area conditions, we further investigate whether this influence follows a certain
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Figure 2.8: Results of principal component analysis (PCA). (a) Variance explained by each prin-
cipal component. Red line indicates the total explained variances summed up from
corresponding principal components. (b) Original distribution of αDyn with respect to
the first three principal components by using all subjects’ data. PC 1 to PC 3 indicate
the first three principal components, the color of the points stands for the contribution
of dynamics based controllers. (c) The distribution of αDyn after the interpolation by
using all subjects’ data. (d) Two groups of the points divided from Fig. 2.8c by using
the threshold as αDyn = 0.2.

criterion. For each given reaching task, the motion parameters can be defined as the initial arm
posture with three initial arm joint angles qs = (q1s, q2s, q3s) and the final arm posture (represents
target area) with the corresponding final arm joint angles qe = (q1e, q2e, q3e). The purpose of
this section is to identify if there is a relationship between the contribution of dynamics based
controllers and the motion parameters.

Principal component analysis As each reaching task is defined through six joint angles,
due to this high dimensionality, it is not straightforward to determine whether the relationship
between the motion parameters and the contribution of dynamics related controllers exists. Hence,
we first use the principal component analysis (PCA) to transfer the original motion parameters to
the principal components (PCs) by using all subjects’ data. For visualization purposes, we select
the first three PCs, which only explain 64% of the variance (Fig. 2.8a), as a new motion parameter
representation for each reaching task, and then investigate the distribution of αDyn with respect to
these PCs.

The original IOC results of all subjects’ data are illustrated in Fig. 2.8b, where the x, y, z coordi-
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nates of each data point are the corresponding values of the first three PCs, and the color indicates
the value of αDyn. Due to the infeasibility of the global optimum in the IOC formulation [59],
the results of αDyn prone to noise. Besides, the insufficient data amount (9 initial postures × 9
targets × 15 subjects = 1215 motions in total) also limits the determination of the relationship
between PCs and αDyn. In order to overcome this issue and have a better visualization, the original
data is interpolated with a 3D interpolation method (using MATLAB griddata function) and the
corresponding results are presented in Fig. 2.8c. It is observed from the given perspective of the
figure that, upper-left points on the point cloud usually have smaller αDyn, while the points with
high values of αDyn mostly appear in the opposite region. A more clear illustration is presented
in Fig. 2.8d, where the data points are divided into two groups with the threshold as αDyn = 0.2.
Hence through visual inspection, even it only represents a subspace of 6 PCs, a trend that indicates
a dependence between the motion parameters of the reaching task and the distribution of αDyn is
observed. In addition, as the sum of αKin and αDyn is one, the observed distribution suggests a
trade-off between the kinematics and dynamics related controllers based on the type of the reaching
task.

Note that, the first three PCs account only for 64% of the total variance. Thus, in order to explain
the distribution more accurately, we opt for using all six motion parameters to identify a criterion,
which we refer to as discomfort metric, in order to describe the distribution of αDyn.

Discomfort metric As found in a recent study, for reaching motions the contribution of in-
teraction torque to net torque changes depending on the load on the arm [82]. This result hints
that the distribution of αDyn may be related to the musculoskeletal loading of the arm during the
movements. Considering the musculoskeletal loading as the criterion to describe the discomfort
of the reaching motions [83], [84], the fully stretched down arm posture can be treated as the most
comfortable posture. Then the more rotations the arm requires to execute the reaching task from
the fully stretched down posture, the more uncomfortable the motion is. Based on this, we propose
a discomfort metric (see method section) to explain the distribution of αDyn.

We first investigate the overall behavior by using all subjects’ data. Due to the same noise issue
explained in previous part, during the calculation of discomfort metric, the data is smoothed by
using LOESS [85] (LOcal regrESSion), with the span as 1% of the total data points (using MAT-
LAB smooth function). By assuming a linear relationship between the motion related parameters
and the controller contribution, we computed a linear regression model, which can arguably ex-
plain the variance in the contribution of dynamics based controllers (R2 = 0.52, see Fig. 2.9a).
This suggests that, for the reaching motions with high discomfort values, i.e. more rotations are
required and higher musculoskeletal loading is generated, the contribution of dynamics based con-
trollers increases while the contribution of kinematics based controllers decreases. Hence, there
is a trade-off between the dynamics and kinematics related controllers depending on the reaching
tasks. This trade-off implies that the CNS may utilize a hierarchical control structure. As such,
depending on the motion parameters, human motor control first regulates the contribution of each
internal model to form a composite model by using a higher level controller. Then, the reaching
motion is controlled with respect to this task specific composite model.

To investigate this idea further, we also calculate the discomfort values separately by using individ-
ual subject’s data (smoothed as well with span = 5% due to less amount of data). Corresponding
values of the coefficients of determination between the discomfort values and αDyn for each subject
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Figure 2.9: Results of the discomfort metric. (a) The distribution of αDyn and the discomfort values
calculated from all subjects’ data. The points are grouped by different subjects as from
S1 to S15. (b) The coefficient of determination between αDyn and the discomfort
values calculated by using each subject’s data separately. The line indicates the overall
coefficient of determination from all subjects’ data presented in Fig. 2.9a (R2 = 0.52).
(c)-(d) The distribution of αDyn and the discomfort values for subject 15 and subject 12,
respectively. The points are grouped by the target areas for the corresponding reaching
tasks.

are presented in Fig. 2.9b. Among 15 subjects, 3 different clusters are observed (Fig. 2.9b). For
the first group, the variation in their motion behavior can be explained by our discomfort metric
(R2 > 0.52) better than others. The second group consists of people whose motion behavior can
still be accounted for with the proposed model (0.3 < R2 < 0.5). However, for the third group,
the model we proposed fails to capture the variation of motion characteristics (R2 < 0.3). Two
representative subjects are given in Fig. 2.9c (subject 15) and Fig. 2.9d (subject 12), where one
subject’s data shows similar trade-off compared to the overall results and the other one demon-
strates a discrepancy. Possible reasons for the outliers might be, first, the simplicity of our model
as the discomfort values we proposed is a linear combination of joint angles. However, the ac-
tual metric utilized by the higher level controller might have a different structure, e.g. nonlinear
combination of motion parameters. In addition, the distribution αDyn possibly depends on other
motion parameters besides the joint angles. The second reason could be the fact that subjects show
interpersonal variance in their behaviors, e.g. the variance as we observed in the movement dura-
tion analysis. Hence, due to the interpersonal variance, it might be difficult to find a single control
structure which can explain every subject’s motions.
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2.4 Discussion

In this study, we look for the evidence to support multiple internal models hypothesis for a broad
range of free space reaching motions. There are two possibilities to consider for the use of dif-
ferent internal models. Either internal models act independently, or they are blended together to
achieve a single goal-oriented task. We take the latter claim as our foundation and lay out the
analysis of human reaching motion as a bi-level optimization problem. Here, the lower level is
treated as a standard optimal control problem (OCP), where each OCP with a distinct cost function
corresponds to an inverse internal model, and the upper level is utilized as a parameter identifi-
cation process to compute the contribution of each inverse internal model to the observed motion
behavior. In this way, we identify not only the change in the contribution level of different mod-
els, but also how this change indicates a trade-off on the utilization of kinematics and dynamics
related biomechanical properties, and thus controllers, depending on the initial arm posture and
target position. In essence, our analysis suggests a hierarchical control structure, where a higher
level controller is responsible for the regulation of the lower level independent internal models.

Optimal control problem as an inverse internal model Internal models in sensorimo-
tor integration are empirical constructs to describe learning and control of motor behavior. Even
if one assumes that the central nervous system (CNS) uses internal models, forward models pre-
dicting the arm motion for a specified control has to be distinguished from inverse models that
“can calculate necessary feedforward motor commands from desired trajectory information”, as
Kawato emphasizes [86]. Experimental results supporting both types of models are discussed in
literature, cf. [87], [88]. As we look into stereotypical motions, one central idea discussed in liter-
ature is that, after an initial learning phase, such motions are approximately optimal with respect
to an unknown criterion and thus several of optimal control models with different cost functions
have been proposed [11], [32], [33]. In that regard, optimal control theory provides a mathemat-
ical framework to describe learning control processes in biological systems [44], [89]. Solving
an OCP is to determine what to do, i.e. the optimal control signal, in order to achieve certain
goals optimally, defined by the cost function, with the given dynamics of the system and a set of
constraints. In essence, each OCP with a distinct cost function specifies a unique controller for
the movement. This optimal controller -among infinitely many possible controllers- can be con-
sidered as an inverse internal model representation within the CNS [18], [48], [60], [86]. Given
our formulation and results, human arm reaching motions can be explained as the outcome of a
combination of several such optimal controllers and thus multiple inverse internal models. This
supports the multiple internal models hypothesis for human arm reaching tasks. Furthermore, such
a controller not only finds the optimal control sequence, but also acts as a planner by computing
the optimal trajectory. However, note that the control law found by inverse optimal control (IOC)
provides an open-loop model, hence there is no feedback consideration. However, as we focus
only on stereotypical motions, the effects of sensory update are considered minimal [16].

Single vs. multiple internal models Both multiple internal models (MIMs) hypothesis and
the recently introduced IOC framework rely on the fact that a combination of controllers describe
human motor behavior better than single models. One fundamental reasoning for the coexistence
of multiple controllers is the CNS’s striking efficiency in learning to control human motions by
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adapting to changes in the environmental conditions. Each controller is suitable and responsible
for one or a small set of motor behavior and depending on the occasion, some of the controllers
are appropriately chosen to generate the required motor command. As a result, frameworks with
MIMs comprising both forward and inverse models have been introduced, e.g. [17], [45], [86].
Similarly for (inverse) optimal control framework, since a single model describes a controller for
a specific feature of motor behavior, e.g. smoothness or effort, a composite of control models are
necessary to capture diverse human movement characteristics simultaneously [57], [58], [65]. In
that sense, our composite OCP formulation can be regarded as a framework for describing and
supporting MIMs hypothesis from optimal control point of view. Each OCP is associated with a
single cost function, and thus provides a modular structure. Such a modular structure is also in
accordance with the motivation behind MIMs. Especially, considering the variety of interaction
cases a human may face with (e.g. depending on the object being interacted, the environmental
effects, and their possible combinations), such a modular structure allows for providing appropriate
motor commands effectively rather than a single controller that needs to take all the external signals
into account and solves for control commands on each occasion.

Forward and inverse internal models Considering that internal models mimic the transfor-
mations between system states, motor commands, and sensory signals, an OCP can be regarded as
an inverse internal model [44], [60]. In essence, for the stereotypical movements we investigate,
solution of an OCP provides the necessary control signals to carry out the reaching task, which
is consistent with the inverse internal model idea proposed by Kawato and Wolpert [17]. Even
though the bi-level optimization formulation uses the combination of costs in the upper level pro-
gram to optimize the weighting factors, the lower level program still solves an OCP, for which each
constituent OCP model -each associated with a specific cost function- needs to be satisfied simul-
taneously. Wolpert and Kawato propose a general model to account for motor control’s ability to
handle various tasks (e.g. reaching for grasp) concurrently, for which multiple forward and inverse
models are paired [17]. As we concentrate on a specific arm reaching task, in our formulation we
have a single forward model, i.e. the arm dynamics model that describes how system states evolve
given the control input, but it is paired with different inverse models. Hence, the combination of
multiple OCPs to control the execution of a single task offers a model-based formulation for the
multiple inverse internal models proposed in Wolpert and Kawato [17], which has been treated in
later studies as a black-box function approximator [18], [20].

Composition of internal models There have been other studies which focus on multiple
models for motor control, learning and adaptation [90]. The focus of these prior work was whether
multiple internal models can be learned concurrently [46]–[48] and switched depending on the
context [91]–[94], whereas in our work, free-space stereotypical arm reaching movements are
assumed to be already learned, and controlled as a combination of multiple internal models and
this combination is sought with a systematic approach by the IOC formulation. A similar study
by Davidson and Wolpert analyzed whether two internal models could be learned concurrently
for gripping task [48]. They proposed a linear combination of objects’ weights as an internal
model representation, and their results verified that dynamic internal models can be additively
combined. However, they also acknowledged the necessity for further studies to verify whether
similar compositions could be realized for more complex internal models [48]. In our study, a
combination of optimal control models (via a composite cost) is proposed which can be applied
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on tasks which require position and force control at the same time. In addition, it is verified
that the composite model explains human movement behavior better than single models, and this
compositeness changes with respect to the task parameters.

Trade-off between dynamics and kinematics In the controller contribution analysis, we
observe a trade-off between the usage of dynamics and kinematics based controllers with regard to
the task demands. In theory, an OCP with kinematics related cost functions results in trajectories
with high smoothness [32], [71], while the optimization of dynamics related costs minimizes the
motor control effort for given reaching tasks [11], [73]. It has been acknowledged and verified that
motor control involves consideration of different performance measures [44], [58], [82]. In Liu
and Todorov, the focus was on closed-loop control behaviors for reaching tasks, and the change
in the control strategy during movement was investigated [12]. However, our main focus is on
stereotypical motions for which an open-loop control is assumed, similarly to the prior work in
this field [57], [58], [65]. Composite models were discovered for planar arm reaching motions in a
similar work by Berret et al. [58], however, the combination of different models was not analyzed
in depth to explain how and why such compositeness is utilized. A similar result was also reported
in a recent work by Vu et al., where the contribution of the interaction torque to the net torque
was found to depend on the load on the forearm, and a trade-off between kinematic and kinetic
variables was suggested [82]. Besides, for different arm postures, the musculoskeletal load varies
and affects the feeling of comfort [83], [84]. This indicates the possibility of the musculoskeletal
load as a criterion to describe the trade-off between kinematics and dynamics based models for
different reaching tasks. However, an inquiry on how the control models change depending on
the task parameters has been neglected. In this work, a discomfort metric is introduced to explain
the change in the model contributions with respect to the movement type. In essence, the angular
rotations required to execute the reaching task are considered as a representation of the muscu-
loskeletal load. As a result, the trade-off between controllers is revealed by the task demands,
and the contribution of dynamics based controllers are found to increase with higher load. For
reaching tasks with higher effort requirements, the CNS might be planning the motion depending
more on the dynamical effects, while for tasks with low dynamics demands, the smoothness plays
a dominant role in the motion planning.

Hierarchical control The adaptive usage of smoothness and effort suggests a hierarchical con-
trol structure of the CNS, which can be described as a task-estimation phase and an optimal exe-
cution phase. For a given reaching task, the CNS first evaluates the motion with respect to a higher
level criterion, e.g. the proposed discomfort metric, then based on the estimation, it controls the
contributions of different internal models. This phase can be considered as a task-estimation phase
which is similar as the responsibility estimator discussed in the MIMs hypothesis [17], [86]. How-
ever, in prior studies [17], [18], the output control signals from multiple inverse models are linearly
combined with a responsibility signal, whereas in our model, even though the weights are linear
in the cost functions, which is solved in the upper level program of the bi-level optimization, the
underlying optimal control problems and thus their outputs, which are solved by the lower level
program, are nonlinear in terms of weights and states, especially in the presence of kinematics,
and dynamics constraints. In other words, finding the composite model in an inverse optimal con-
trol formulation involves solving the optimization problem that simultaneously minimize multiple
costs to satisfy each control model constrained on the dynamical system, i.e. a highly nonlin-
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ear, high-dimensional and non-convex solution space. Note that, the estimation relies on personal
experience and preference, thus different subjects have different attitudes towards the same task,
e.g. the task treated as comfortable for one subject might be uncomfortable for the other subject.
This would result in an interpersonal discrepancy during the regulation of internal models. After
the task-estimation, the CNS plans and executes the motion with respect to the optimality crite-
rion defined as the regulated contributions of different internal models. This execution phase can
be treated as the realization of an OCP. The usage of this hierarchical control structure may help
explain how humans achieve optimality in different reaching tasks. Due to the high degrees of free-
dom of human arm, it is not possible to learn the optimal movement behaviors case by case [17]. It
is more likely that, the CNS first learns a set of (optimal) controllers, i.e. inverse internal models,
for typical movements, and maintains a functional mapping from task requirements to weighting
of these models, similar to the responsibility estimator proposed in Wolpert and Kawato [17].

Model fitting We provide an analysis on the model fitting by using Akaike and Bayesian Infor-
mation Criterion (AIC/BIC) in the Results section. Here, we also touch upon a couple of points
regarding the IOC formulation and the models found. Our analysis shows statistically significant
difference, on most cases, between the results of the composite model and the rest considering not
only the hand trajectory but also the joint angle trajectory (note that, the inverse problem is solved
only on the end-effector (hand) trajectory level, i.e. there is no fitting in joint-angle and/or torque
space). In addition, a recent study by Vu et al. shows that, even though a single OCP model can
match human-like end-effector trajectories, it cannot capture the torque profiles accurately [82].
Hence, it is remarkable that such composite models can predict both kinematics and dynamics re-
lated outcomes better than single control models. Additionally, in terms of the fitting quality of the
composite model, our bi-level optimization formulation along with a comprehensive greedy search
on the parameter space allow for discarding models if necessary, i.e. the weighting factors could
be zero. The upper level program (the trust-region based optimizer) in the bi-level formulation
provides regularization effect on the weighting parameters, which is commonly applied for inverse
optimal control and reinforcement learning problems to prevent overfitting [27], [95].

Limitations There are some limitations in the presented work. First, due to the high non-
linearity of the IOC formulation, the global optimum is usually not available [59]. To address this
issue, we solve the same IOC problem several times and use the best local optimum to approximate
the global optimum. However, there is no guarantee about the error between the approximated and
the real global optimum. This partially explains the observed variance in the controller contribution
analysis. Second, we propose a discomfort metric to simulate the higher level controller utilized
in the task-estimation phase. When formulating the discomfort values, the final arm postures are
assumed to be known. However, during the task-estimation phase, it is reasonable to think that
there is a bias between the estimation and the real posture. This variability might be inherent to
movement or internal noise, as there is still on-going debate on whether there exists a Donders’
like law for arm movements [96]. Hence rather than a deterministic expression, the high level con-
troller may utilize a more flexible strategy to minimize this influence. With the proposed simplistic
discomfort metric, we intend to present a proof-of-concept formulation for the existence of the
hierarchical control structure. It requires further investigation on how the higher level controller is
actually formulated, as besides the initial and final arm postures, it might also include other motion
parameters or even subjective factors for the given task.
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The experiment conducted is designed to allow the subjects to reach their hands to a region rather
than a single point target. Hence, our focus is on stereotypical arm reaching characteristics that are
observed on the trajectory level, and the corresponding feedforward controllers that might result
in such trajectories. We believe this is still an important aspect of motor control, since in our
daily lives there are many cases where we interact with our environment in an open-loop fashion,
and also it can be seen as an approximation of non-deterministic control due to the stationary
environment as well as the fast and stereotypical nature of the motions we investigated. Even
though there is evidence for open-loop control of specific tasks in human motor system [97]–[99],
in general the necessity of feedback control for motor tasks is clear [44]. A combination of both
feedback and feedforward processes is likely to be involved for most optimal movement control
tasks [87], [100], [101]. Especially in the context of adaptation to new tasks or new dynamical
environments feedback is needed. In that regard, a feedback loop is essential for the analysis of
human learning strategies, but the derivation of optimal control strategies is proved to be more
complex for the closed-loop approach than for the open-loop one [12]. In essence, we assume
that learning processes for such reaching tasks are completed and that “the sensorimotor control is
best described as being near optimal” [1] for an unknown cost function subject to the dynamics of
the plant. Furthermore, such analysis would also help us better understand and build closed-loop
systems to model more complex movement behaviors from control theoretical point-of-view. It
is clear that the current IOC formulation can be extended with a non-deterministic formulation
and analysis. Considering the signal-dependent noise in motor control, the end-point variance can
be tackled with a stochastic optimal feedback controller [5], [33], [102]. However, integrating
stochastic components to an IOC formulation is still an open research question in control theory to
effectively solve such problems for complex systems [103], [104].
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3
A Hybrid Framework for Understanding
and Predicting Human Reaching Motions1

Robots collaborating naturally with a human partner in a confined workspace need to understand
and predict human motions. For understanding, a model-based approach is required as the human
motor control system relies on the biomechanical properties to control and execute actions. This
model-based control models explain human motions descriptively, which in turn enables predicting
and analyzing human movement behaviors. Prior to a human-robot interaction (HRI) scenario, the
tasks can be pre-analyzed and configured, and similarly, during task execution the robot motion
can be planned and adjusted accordingly to provide a less demanding working environment for
the human. In motor control, reaching motions are framed as an optimization problem. However,
different optimality criteria predict disparate motion behavior. Therefore, the inverse problem –
finding the optimality criterion from a given arm motion trajectory – is not unique. This work uses
the inverse optimal control (IOC) approach described in Chapter 2 to determine the combination of
cost functions that governs a motion execution. The results indicate that reaching motions depend
on a trade-off between kinematics and dynamics related cost functions. However, the computa-
tional efficiency is not sufficient for online prediction to be utilized for HRI. In order to predict
human reaching motions with high efficiency and accuracy, we combine the IOC approach with
a probabilistic movement primitive (ProMP) formulation. This hybrid model allows an online-
capable prediction while taking into account motor variability, and the interpersonal differences.
The proposed framework affords a descriptive and a generative model of human reaching motions
which can be effectively utilized online for human-in-the-loop robot control and task execution.

3.1 Introduction

As robots become more present in our social lives, the necessity for interaction and collaboration
between humans and robots is becoming more apparent. Although there are several major facets of

1This work has previously appeared in the following publication: [236]
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Figure 3.1: The overall framework, where the focus is two-fold: understanding (upper left), and
prediction (upper-right) of human motion behaviors. For understanding, biomechani-
cally inspired cost function distributions are learned from demonstrations by model-
based inverse optimal control; and for online prediction, data-driven probabilistic
movement primitives are used. The two approaches are interconnected to each other in
order to account for the inter-and intra-personal movement behavior variations in terms
of both motion trajectories and also the cost distributions.

providing robots with such capability, e.g. motion planning or decision making, the human aspect
has to be prioritized and integrated into robot interaction skills. Requirements for such a human-
in-the-loop formulation is two-fold: describe (understand) how human motions are controlled, and
generate (predict) human-like motions. A descriptive model help us understand how the biome-
chanical properties are used by the central nervous system (CNS) for controlling human body to
execute a vast collection of motor behaviors. Such an understanding is useful for a multitude of
problems, e.g. motor performance evaluation for detecting disabilities due to neural disorders by
comparing control models of patients and healthy subjects [15]; sports performance evaluation by
analyzing the identified control models of athletes [105]; detection of deviations of personal mo-
tion behaviors w.r.t. the previously identified motor control models e.g. due to exhaustion [16].
Specifically, for human-robot interaction (HRI), the robot can plan its motions in a way to allow the
human partner to rely more on energy-efficient control models. In addition, person specific control
models enable the robot to detect the underlying cause of behavioral anomalies for providing better
assistance and safety.

A generative model allows estimating human-like motion trajectories. In this work, the focus is
using such models to predict human motions, rather than transferring them to robots to gener-
ate human-like movement behaviors. For close dyadic collaboration, where the partners share a
workspace with the possibility of overlapping motions, they should be able to predict each other’s
intent and the required motion that can support this intention. Considering how swiftly two humans
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work together in a confined workspace, the challenges for a human-robot team become obvious;
the robot has to take into account human partner’s intention and movement in order to control its
own motion for achieving effective cooperative task executions. In essence, early prediction of the
human motion allows an immediate initiation of the replanning process and an early adaptation of
the robot motion [237], [239], [242]. Therefore, the ability of understanding and predicting human
motions effectively is the key to achieving swift close human-robot collaboration.

The focus in this work is two-fold. First, descriptive models of human reaching motions are inves-
tigated and experimentally evaluated. Second, a hybrid framework is proposed, which combines
those descriptive models with a data-driven probabilistic approach and realizes online-capable hu-
man motion prediction (Fig. 3.1). Such a framework not only enables effective robot control for
human-in-the-loop scenarios, but they can also be directly used for controlling the robot.

Currently, there is no commonly accepted model that explains how the human CNS controls hu-
man motions and the latent biomechanical properties of the human motion are not fully understood.
Knowing the underlying principles of human motion execution is essential for reproducing human-
like motion behaviors accurately in a given setting. However, not every single person exhibits the
same motion patterns. These differences might be due to their learning experiences and physiolog-
ical differences [106]. Moreover, even the motion behaviors of the same person show variations
due to motor noise [5]. Considering all those intricacies, finding motion behavior models, even for
simple reaching tasks, poses challenging research questions.

As the observations of the human motions’ behavioral aspect suggest an appealing modeling prob-
lem, the human body as a biomechanical system introduces challenges in terms of formulating
methods for finding those models. Motor control redundancy, and the non-linear characteristic
of the human arm as a dynamical system are the most important problems to tackle. A com-
mon feature of motor control is that the task requirements can be met by infinitely many diverse
movements. Thus, stating only the boundary conditions of the motion for given dynamics leads
to an ill-defined problem. The ambiguity caused by this problem can be resolved if an optimality
principle is applied. Accordingly, the basis of many scientific theories on human motor control
is formed by optimality principles [107]. A large number of models of open-loop motor control
exist and each model claims to describe human motion, but several models are incompatible with
others [44]. The characteristics of the human arm movements and the human as an organism define
the starting point for the derivation of a cost function. Many cost functions have been proposed
to model human reaching motions, however, all of those methods are only verified for specific
settings, mostly in 2D [11], [32], [33]. Hence their generalization capability to a wider range of
human reaching motion behavior in 3D space is unclear. Moreover, as some recent studies sug-
gest, humans might be optimizing two class of cost functions, one for kinematics, and the other for
dynamics [58], [59]. However, finding the contribution of such multiple cost functions is also not
trivial as it is a non-linear optimization problem.

Building on the results of prior research studies, and their insights, we hypothesize humans utilize
multiple models, rather than a single one, to control their motions. Since kinematics is essential
for producing smooth motions, and the human arm is a dynamical system, it is reasonable to
consider kinematics and dynamics related costs in combination. Hence, we identify possible costs
from literature to account for both aspects. In order to find the contribution of each model for the
realization of human motion behaviors, we frame such an inverse optimal control (IOC) problem as
a bi-level optimization formulation. However, this formulation treats the human motion generation
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(a)

(b)

(c)

Figure 3.2: Experimental setup same as previous work (Ch. 2). (a) Overview of the experimental
setup. T1 to T9 denote the nine target areas. RP means the reference point used to
adjust the sitting position of the subject. S is the center of the shoulder joint and L is
the distance between S and RP which is defined as 80% of the subject’s arm length. (b)
Top view of the subject. S, E, W are the shoulder joint, the elbow joint and the wrist
joint respectively. As in the arm model defined, q2 and q3 are the yaw rotation of the
shoulder joint and the pitch rotation of the elbow joint. (c) Back view of the subject.
q1 is the pitch rotation of the shoulder joint.
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as a deterministic problem. In essence, it is only suitable for modeling average behavior over a
group of humans. In order to afford both intra- and inter-personal motion variability, we propose
a hybrid framework by extending the IOC formulation with a data-driven probabilistic method.
Specifically, by utilizing probabilistic movement primitives (ProMPs), our framework allows for
integrating person specific variations into the IOC-based average motion behavior models during
online interaction. Therefore, we can learn a distribution of motion behavior per person, and
roll-out predictive trajectories from this distribution online, while updating at the same time the
multiple model representation to describe the person specific cost optimization behavior.

The initial data was acquired from the comprehensive experiment conducted for the previous study
(Fig. 3.2, Ch. 2) that covers significantly more cases than prior studies [9], [82]. This extended
experiment provides us with critical insights on the interplay between the parameters of the reach-
ing tasks and the contribution of kinematics and dynamics related models. We identify a trade-off
between those models with respect to the initial and final joint angle configurations. With the
proposed hybrid framework, we are able to determine personal preferences as well as the motor
variability per person. It also enables accurate and computationally efficient online prediction of
human motion behaviors, which can be integrated into any human-robot collaboration scenario.

In this work, we focus on building descriptive as well as generative models for human motion
behavior. By utilizing such models, we aim for efficient and accurate prediction of human motions
during human-robot collaboration to realize a natural interaction between partners. This work,
and similar hybrid frameworks have been integrated into our other studies for robot action selec-
tion [237], [238] and motion planning [242] algorithms. The main contributions of this specific
research study are:

– We propose a hybrid framework, consisting of a model-based approach and a data-driven
probabilistic method, for predicting human motions.

– We identify a trade-off between kinematics and dynamics related costs depending on the
reaching task.

– Our hybrid framework takes into account interpersonal differences and person specific motor
variability during online observations.

3.2 Related Work

Many experimental studies have revealed that arm motions exhibit invariant parameters which do
not significantly change with movement speed, load or direction [108]–[110]. For motor control,
these parameters are utilized to describe point-to-point reaching motions [111]. It is assumed that
the CNS follows some specific principles when planning the motions [107]. Therefore, optimal
control theory becomes the central mathematical formulation to model, describe, and understand
motor control by the CNS [44], [68], as it emphasizes the optimality of biological movements by
minimizing some performance criteria. In literature, several optimal control models have been
proposed to describe the point-to-point arm movements, e.g. the minimum hand jerk [32], the
minimum torque change [11] and the minimum variance [33]. These models are proven to be
efficient in representing the experimental data. However, they are only verified within specific
settings, and exhibit, in some cases, dissimilar patterns. Hence, the exact variables optimized in
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the brain still remain unclear. Later studies suggest that, instead of a single cost function, the CNS
might actually consider a weighted combination of costs during the optimization [112]–[116]. It
has already been verified that the trade-off between the objective (task-related) and the subjective
(subject-related) cost functions exists in the CNS [12], however, there is still no clear explanation
about how the subjective costs are combined in reaching motions. In [58], this cost combination
hypothesis was tested in point-to-bar reaching motions on a vertical 2D plane. An inverse optimal
control framework, which was initially proposed in [57] for locomotion planning, was applied to
identify the contribution of different cost functions. Though their results support the idea of the
combined cost functions, an in-depth analysis on how this combination is formed in 3D reaching
motions and whether there is a relationship between the degree of contribution and the reaching
task parameters is still missing.

Inverse reinforcement learning (IRL), also sometimes used synonymously with inverse optimal
control (IOC), is another line of formulation to find control models, or optimal policies given
some demonstrations or observations. However, most of the state-of-the-art methods operate on
features rather than raw states, and without relying on the dynamical system as a hard constraint
on the optimization problem. In essence, the best combination of features, which are extracted
during an agent interacting with the environment, is solved for minimizing a pre-defined cost
function [27], [117]–[120]. A recent approach by [121] extends such IRL formulation by tackling
the requirement on defining informative features with using neural networks to parameterize the
cost function. Essentially, this approach learns nonlinear cost functions from user demonstrations,
at the same time as learning a policy to perform the task. This formulation can be applied to
complex, nonlinear cost function representations and high dimensional problems. However, this is
still not directly comparable to solving optimal control problems where the dynamical system is a
constraint at each time step, and hence the resulting behaviors are not guaranteed to be generated
by the underlying model.

In contrast to creating an optimal control model, another approach to predict human motions is
to use data-driven methods. These methods focus more on finding a representation from a given
data-set [122], [123]. Statistical approaches require training data to discover patterns for different
arm motions. In that sense, a rigorous and time consuming data collection process is unavoidable.
Other data-driven approaches which do not rely on statistical formulations, e.g. dynamic move-
ment primitives (DMPs) [124], require only a minimal set of training data. In an earlier work,
we combined optimal control models with DMPs to predict human reaching motion behaviors
while avoiding obstacles [238]. In that regard, Interaction Primitives (IPs) were developed based
on DMPs as a compact representation of a dyadic activity to predict and plan interaction behav-
iors [125]. IPs are learned as a distribution over DMP parameters by training on two interacting
partners’ trajectories. These IPs encode reciprocal dependencies of dyad movements during the
execution of a specific task. The robot then mimics one partner by using the learned model to
interact with a human in a similar task. In essence, the learned distributions are conditioned on an
observed partial trajectory to predict a human partner’s movement for the rest of the task, which in
turn enables the robot to correlate its own motion w.r.t. the human to achieve a successful cooper-
ation. Recently, Environment-adaptive Interaction Primitives (EaIPs) were proposed by extending
the IPs with the integration of environmental parameters of the task [126]. Hence, EaIPs enable
inferring movement behavior by conditioning on not only the partner trajectory but also the task
and environment related features. However, these are pure data-driven approaches, and thus, they
can neither elicit the underlying principles of human interaction movement control, nor provide
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any means to analyze optimality of observed movements. In addition, our proposed hybrid frame-
work is flexible to integrate such interaction primitives as the data-driven part of the formulation
to predict human motions, which can further be integrated into a trajectory optimizer for the robot
motion planning in HRI scenarios [242].

Lastly, human motor control by the CNS is recognized as a stochastic system [5], thus the variance
of the motion should be considered in the trajectory prediction. In [127], a probabilistic movement
primitives (ProMPs) approach was proposed with the ability to encode the variance in a general
probabilistic framework for representing and learning movement primitives [128]. The ProMPs
has been successfully implemented in human-robot interaction [129] and human-robot collabora-
tion [130], [131] scenarios for controlling the robot motion. For a close cooperation between the
robot and human, a precise prediction of the human behavior is essential [123]. However, while
predicting human motions with the ProMPs, the integration of the kinematics and dynamics of the
human arm is not straightforward. Our work combines an optimal control model with the ProMPs,
in order to make use of the advantages from both methods.

3.3 Hybrid Online Prediction Framework

In literature, many prediction methods for human motion were proposed. Among them, two classes
of the methods are widely used: 1) model-based methods, where a motion model is created based
on minimizing a criterion, such as the minimum hand jerk model [32], the minimum joint angle jerk
model [71] and the minimum variance model [33]. Then the solution to the model is considered
as the prediction; 2) data-driven methods, where a set of data (observations) should be available
before building a generative model for predicting human motions. The characteristic of the motion
can be learned from the data and then the prediction is generated by reproducing this characteristic
and in some cases with variation. Gaussian Mixture Models [132], [133], dynamic movement
primitives [124] and probabilistic movement primitives [127] are typical data-driven methods. In
this section, we propose a hybrid online prediction framework for reaching motions by combining
a model-based method and a data-driven method. Instead of using the motion model with single
cost function, a composite model is obtained by the IOC framework described in Chapter 2.2.4.
In order to account for the motor variability of the reaching motion [5], this composite model is
combined with the ProMPs. ProMPs are selected due to both their capability on learning a model
with a very small amount of observations (in our experiments 5-10 samples seem to be enough),
and also their computational efficiency for rolling-out predictive trajectories online. Especially, it
is known that GMMs tend to perform poorly in high-dimensional spaces when few datapoints are
available [134]. In the rest of this section, first the regression model used to approximate the IOC
model parameters is explained, followed by a brief explanation of the ProMPs. Then, a comparison
between the predictions of the composite model and the ProMPs is discussed. Lastly, the hybrid
prediction framework is explained in detail.

3.3.1 Representation of the reaching motions

From the IOC formulation, we acquire a weighted combination of cost functions, which specifies
the contribution of each model for the realization of a reaching motion. For each specific motion
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behavior, one composite model needs to be found. However, we can only have a limited number of
different composite models, due to the computational time limit. To utilize the composite model
in general cases, a mapping from the motion parameters to the contribution of cost functions is
required. According to the results of the initial experiment we conducted, which is detailed out in
section 3.4.1.3, a correlation between the initial and the final joint angles (qs, qe) and the optimal
weight vector α∗ is identified. Here we use the Gaussian Process Regression (GPR) model [135]
to represent the mapping as

α∗ = GPR(qs, qe), (3.1)

where GPR denotes the GPR model. The optimal weight vector returned by the GPR model is a
distribution with mean and variance. Note that the GPR model can be replaced by other similar
stochastic models, but we find that the GPR model is more suitable in our case since it requires
less data. This GPR model provides a connection between the IOC formulation and the ProMPs in
our hybrid online prediction framework.

3.3.2 Probabilistic movement primitives

The ProMPs is a probabilistic formulation for movement primitives. It is able to capture the vari-
ance information of trajectories and represent the behavior in stochastic systems. Given a discrete
trajectory X = {xt}, t = 0 . . . T defined by states xt over time T , a weight vector ω is used to
represent the trajectory as

yt = [xt, ẋt]> = Φ>t ω + εy, (3.2)

where Φt = [φt, φ̇t] denotes the n×2 dimensional time-dependent basis matrix for states xt and the
velocities ẋt. n is the number of basis functions and εy ∼ N (0,Σy) is zero-mean independent and
identically distributed Gaussian noise. The mean of the trajectory can be obtained by weighting
Φt with ω. The probability of observing a trajectory X with a given ω is represented by a linear
basis function model as

p(X|ω) =
∏
t

N (yt|Φ>t ω,Σy). (3.3)

In order to capture the variance, a Gaussian distribution p(ω;θ) = N (ω|µω,Σω) over the weight
vector ω is introduced with parameters θ = {µω,Σω}. Then the distribution of yt at time t is
given by

p(yt;θ) =
∫
N (yt|Φ>t ω,Σy)N (ω|µω,Σω)dω = N (yt|Φ>t µω,Φ>t ΣωΦt + Σy). (3.4)

With Eq. (6.3), the mean and the variance of the states for any time point t can be derived. If a set
of observations is available, the parameters θ can be learned by using the maximum likelihood es-
timation [136]. In reaching motions, the distribution p(ω;θ) can be considered as a representation
of the motor variability. For more details of the ProMPs please refer to [127].
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Perspective Composite model ProMPs

Underlying principle Yes No

Optimality Yes No

Computation time High Low

Motor variability No Yes

Table 3.1: Different perspectives of the composite model prediction and the ProMPs prediction.

3.3.3 Comparison between the composite model and the ProMPs pre-
diction

Both the composite model formulation and the ProMPs framework have clear advantages, and
drawbacks, but they are also complementary. By combining them into a hybrid prediction frame-
work, the advantages of both methods can be exploited at the same time (Table 3.1).

The composite model represents the underlying principles of reaching motion control. Several
motion models have been proven to be accurate in describing the movements, such as the minimum
hand jerk model on some tasks, and the minimum torque change model on others, in 2D reaching
motions. The composite model we proposed inherits those capabilities and extends it to the 3D
reaching motions. It helps us explain how humans execute and control their reaching motions,
while extracting such information from the data-driven methods is not trivial. However, the biggest
obstacle in implementing the composite model prediction in online case is the computation time.
Before rolling out the optimal trajectory, an OCP needs to be solved, which usually takes several
minutes, even when the state-of-the-art solvers are used [67]. However, in real world settings,
the reaching motions take no longer than a few seconds, thus the data-driven methods are more
suitable in the online case, as they are computationally more efficient.

Another important reason of using the ProMPs as the data-driven method in the hybrid prediction
framework is that it allows describing the motor variability given sample demonstrations [127].
As explained in [5], human motor control is a stochastic system with signal-dependent noise [33],
thus reaching motions are expected to show variance. Since it is not straightforward to consider
the variance within an IOC problem, we formulate our composite model as a deterministic OCP.
On the other hand, as the ProMPs formulation employs a probabilistic function to represent the
motion, the obtained model is not a single trajectory but a distribution of trajectories. Hence, while
the composite model describes an optimal average behavior as an initial guess, the ProMPs enables
capturing the multiplicative noise due to motor control. However, to understand the control model
due to such noise, the model-based IOC computation and a follow-up GPR update is still required.

3.3.4 Prediction framework

The idea of the hybrid prediction framework is, for a given reaching task, to use the composite
model to generate the initial training data for the ProMPs. Then in the online phase, the ProMPs
can roll out predicted trajectories with high efficiency while also learning the variance by using
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Figure 3.3: Overview of the prediction framework (upper-right in Fig. 3.1). qs and qe are the
initial and final joint angle configurations. α∗ is the estimated optimal weight vector
and t∗α is the corresponding optimal solution from OCP. tm denotes the mean of the
converged trajectory distribution extracted from the ProMPs, αn is the new obtained
optimal weight vector, which is used to update the GPR model.

each motion observation as new training data. After several observations, the parameters of the
ProMPs converge (the details is explained in section 3.4.2.2), then the mean of the converged
trajectory distribution is calculated to update the composite model. An overview of the framework
is given in Fig. 3.3, and the details of this hybrid model is explained next.

3.3.4.1 Initialization with the composite model

Usually for a given reaching task, the starting position and the target position are known. Through
the inverse kinematics, the initial joint angle configuration qs and the final joint angle configuration
qe can be approximated. By using the GPR model trained on the IOC results, a distribution of the
estimated optimal weight vector is available. However, due to the limited amount of data for
training the GPR model, the variance cannot be learned accurately. Thus only the mean value of
the distribution α∗ is used here. After solving the OCP with respect to α∗, the optimal joint angle
trajectory q∗α and its corresponding end-effector trajectory t∗α are obtained. t∗α is considered as the
training data for the ProMPs. As the OCP gives a deterministic solution, no variance information
can be derived. Hence the ProMPs is initialized by learning the parameters from the optimal
trajectory t∗α, while setting the variance to a large value.
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3.3.4.2 Predicting while learning

During online prediction, a trajectory along with the variance for each time point is generated
by the ProMPs. This variance information is useful for human-robot interaction scenarios where
the robot should also consider the uncertainties of human behaviors. The observations recorded
during the prediction are utilized to update the ProMPs to get a more accurate representation of
the variance. After each movement, the observation is added to the data storage which contains all
the previous observations. Subsequently, the ProMPs update their parameters from the new data
storage. With the incorporation of each motion observation, parameters of the ProMPs as well as
the variance information converge.

3.3.4.3 GPR model updating

Once the ProMPs system becomes stable, the mean of the converged trajectory distribution tm can
be extracted. This trajectory can be considered as the average behavior of the recorded subject for
this reaching task. Then in a separate updating process, tm is used by the IOC framework to get
the corresponding optimal weight vector. The new optimal weight vector αn is used to update the
GPR model. Therefore, with more information returned from the real recordings, the GPR model
also becomes more accurate in describing the mapping from the initial and final joint angles to the
optimal weight vector.

3.3.5 Motor variability and interpersonal variance

The motor variability is essential in describing human behaviors [5], as it can be considered as the
uncertainties of human motions (e.g. the noise in motor command). It represents the fact that for
a given reaching task, even the same subject is expected to execute the motion in slightly different
trajectories. This phenomenon has been reported in sensorimotor control by demonstrating such
variability on observed experimental data for a multitude of tasks, e.g. locomotion [137], writ-
ing [138], pointing [139], reaching [140], grasping [141]. Usually for simple tasks this difference
is not large and can be modeled as a probabilistic distribution [142], [143]. However, such prob-
abilistic models cannot explain the underlying cause of observing such motor variability, which
is known to be due to additive and multiplicative noise in the motor control and is treated as the
intra-subject variance in this work. Apart from the motor variability, there are also motion be-
havior differences between subjects [144], which we call interpersonal variance in this work. The
existence of such a disparity can be verified through the contribution of basic cost functions, as
shown in the next section. The interpersonal variance suggests that humans plan their motions in a
personal way, which reflects the dissimilarity of the control structure due to learning, and adapta-
tion effects, along with biomechanical differences. Thus the updated GPR model from the hybrid
prediction framework is actually a person specific model.

3.4 Experiments and Results

In this section, two experiments and their corresponding results are presented. One is designed
for the IOC framework with the purpose of understanding the characteristics of human reaching
motions, and the other is used to test the performance of the hybrid online prediction framework.
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3.4.1 Experiment for the IOC framework

To cover the reaching motions in a relatively large range, we designed an experiment for point-to-
point reaching tasks consisting of 12 starting postures and 9 target regions. The recorded trajecto-
ries were analyzed through the IOC framework. Based on the obtained optimal weight vectors, we
find that the contribution of basic cost functions has a relationship with the initial and final joint an-
gle configurations. Besides, the composite cost function is proven to have less error in describing
the reaching motions in almost all tasks compared to the single cost models. This result encourages
us to use the composite model in the prediction rather than a model with single cost function. In
the rest of this subsection, at first the details about the experimental setup are presented, then the
results from the IOC framework are discussed.

3.4.1.1 Experimental setup and data collection

A visualization of the experimental setup is presented in Fig. 3.2a. Participants were required to
sit before a board which was placed vertical to the ground surface. Nine target areas and one
reference point were marked on the board as square regions with the side length equal to 5cm.
The distances between the target areas and the reference point are shown in Fig. 3.4b. Before the
experiment, the sitting height of the participant was adjusted by setting a straight line between the
reference point and the center of the shoulder joint vertical to the board surface. Then the distance
between the center of the shoulder joint and the board surface was selected as 80% of the arm
length. These distances were chosen to ensure that the participants can reach all nine targets easily
without moving their torso.

Since we want to cover a large range of reaching motions, every participant was asked to reach the
nine targets from 12 different starting arm postures. According to the joint angle limits we defined
in the arm model, these starting postures were chosen from the combination of three different q1,
two different q2 and two different q3 (3× 2× 2 = 12) configurations (see Table 3.2). As shown in
Fig. 3.4a, the pitch rotation of the shoulder joint q1 is selected as three configurations: up, middle
and down respectively. The yaw rotation of the shoulder joint q2 and the rotation of the elbow joint
q3 are chosen from the stretched to the side configurations and a configuration in the middle of the
joint angle limits. With nine targets for each starting posture, 108 (12 starting postures× 9 targets)
cases of the reaching motions were considered in the experiment.

Before the recording, the arm posture was determined by measuring all three joint angles to ensure
all participants shared the same starting joint angle configuration. The participants were given the
following instructions. First, in order to discard the decision-making process of target selection,
the subject needs to reach the nine targets in a fixed order as from target one to target nine. Second,
the participant should strictly put his arm in the previously set starting posture before executing
the follow-up reaching task. A set of special reference tools were prepared and put beside the
participants. These tools consist of two bars and their end points indicate the positions of the elbow
and wrist joints for the given starting posture. Reference tools were placed in appropriate positions
so that during the reaching motion they do not block any potential motion trajectory. Third, in
order to eliminate the effect of locating targets during the movement, before the execution of the
reaching tasks, the participants should look at the targets rather than the reference tool. Fourth, the
participants were told to avoid using the roll rotation of the shoulder joint, which is ignored in our
arm model. In addition, all participants were trained before the experiments to get familiar with
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(a) (b)

Figure 3.4: Experimental setup. (4a) Visualization of 12 starting joint angle configurations. P1 to
P4 are the postures with q1 in the middle (no rotation), while P5 to P8 are the postures
with q1 in the up region and P9 to P12 with q1 in the down region. (4b) Target areas on
the board surface. RP denotes the reference point. Observations are the actual positions
where the 108 averaged trajectories terminate on the board surface.

the setup and the task. If any unintended motion was detected during the recording, corresponding
tasks were executed again. Between each starting posture, enough rest time was provided for
avoiding fatigue. To reduce the noise, every target in every starting posture was reached two times,
thus a total of 216 (108 cases × 2 times) trajectories were recorded for one participant.

The data were collected from fifteen subjects (11 males, age: 27 ± 4; weight: 67 ± 9 kg, height:
172±5 cm) who all gave written informed consent for their participation. All the participants were
right-handed with normal vision ability. None of them received any information about the purpose
of the experiment. The study was approved by the ethics committee of the Technical University
of Munich School of Medicine. The reaching motions were recorded by the multicamera motion
capture system Qualisys at a frequency of 250Hz. With the built-in filter function, the smooth po-
sition trajectories of the shoulder, elbow and wrist joints can be directly obtained from the tracking
system, and used for the IOC calculations.

3.4.1.2 Average motion behavior

In our IOC framework, we are interested in the control structures for the human reaching motion
behavior in a general sense, rather than the individual differences. We also intend to provide a
base model to be extended for person specific motion behaviors during prediction. Hence, we
compute the average trajectories from all 15 subjects, and the IOC problems are solved for these
trajectories. Besides, the averaging process also saves a lot of computation time. Since the IOC
calculation for one trajectory roughly takes four hours, the analysis on all 1620 (15 subjects × 108
cases) trajectories would require an immense amount of time. Table 3.2 gives the mean values
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q1,S(◦) q2,S(◦) q3,S(◦)

Posture Mean Std Mean Std Mean Std

P1 10.95 5.01 6.58 4.66 12.72 3.49

P2 11.21 5.73 8.78 9.47 33.39 6.51

P3 11.93 3.70 31.90 5.82 13.15 3.74

P4 13.00 6.37 34.45 6.80 37.92 8.53

P5 -22.29 5.21 12.46 5.18 14.11 3.86

P6 -23.47 5.71 15.82 6.41 37.88 7.51

P7 -22.89 5.33 37.31 7.91 16.10 5.09

P8 -23.64 5.66 41.07 8.42 35.75 7.88

P9 42.15 6.16 6.98 7.43 12.28 4.58

P10 40.22 4.40 7.08 5.28 35.40 5.59

P11 35.36 5.09 36.14 5.61 10.06 5.76

P12 35.14 5.45 36.88 6.85 43.44 6.69

Table 3.2: Actual starting joint angle configurations. P1 to P12 are the 12 predefined starting pos-
tures. q1,S , q2,S and q3,S are the three starting joint angles with respect to the stretched
out posture. The values are computed by using all 15 subjects’ data.

and the standard deviations of 12 starting joint angles calculated from all subjects’ data. The
standard deviations indicate that for the same starting posture, all subjects started their reaching
motions with a relatively small joint angle difference, which enables the feasibility of averaging
the trajectories. If not mentioned explicitly, all the IOC results presented in the following part are
based on the averaged trajectories.

3.4.1.3 Results for the IOC framework

After the IOC calculations, we obtained one optimal weight vector for each reaching task. The
contribution of basic cost functions in 108 different cases are analyzed next.

Performance in describing the reaching motions To verify the performance of the com-
posite model, the optimal trajectory solved with it is compared to the optimal trajectories computed
for each single basic cost function. The distance error between each optimal trajectory and the av-
erage motion behavior is measured through the DTW based comparison separately. The results
show that, almost for all cases, the composite model has a better performance in describing the
reaching motions. Even though the distance metric we used in the upper level program of the IOC
framework only considers the end-effector trajectory, the composite model still has less errors in
the joint angle trajectories. Fig. 3.5 presents the distance error averaged from all 108 cases. The
p-test results indicate that, there are significant decreases on the distance error when comparing
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Figure 3.5: Average distance error over all reaching tasks. HJ, JJ, TC, Geo, Enr and Composite are
the hand jerk, the joint angle jerk, the torque change, the geodesic, the energy and the
composite cost function, respectively. Mean values and the standard deviations of the
errors for each cost function are presented. (5a) Distance error measured by comparing
the end-effector trajectories. (5b) - (5c) Distance error measured by comparing the
joint angle trajectories with and without considering target one.

the composite model to all other five basic cost functions (pi < 0.0001, i = 1 . . . 5). In joint an-
gle trajectories, except the minimum joint angle jerk cost function (p = 0.1813), we still observe
significant decreases (p < 0.0001). The reason is, in 3D reaching motions, the observed joint
angle trajectories are bell-shaped, which are quite close to the results derived from the minimum
joint angle jerk cost function, especially when the reaching motion enforces approaching the joint
angle limits (e.g. reaching target one). After we removed the cases of reaching target one in the
comparison, there is still a significant decrease (p < 0.05), now for all the cases, on the distance
error in describing the joint angle trajectories with the composite model. Furthermore, it should be
noted that, optimizing only dynamics related cost functions leads to inconsistent arm trajectories
in terms of joint and Cartesian displacements (a single case is shown in Fig. 2.3). In contrast, even
though maximizing smoothness in joint space (angel jerk, i.e. kinematic cost) was efficient to fit
the angular and Cartesian displacements, it is reported by [82] that it fails to describe the movement
in torque space accurately. It appears that the composite optimality criterion comprising different
biomechanical properties is the only model that can explain both kinematic and dynamic aspects
of the reaching behaviors.

Influence of the initial and final conditions In order to get a deeper understanding of
the human reaching motions, an analysis on identifying the possible factors which influence the
contribution of basic cost functions is performed. We conduct the N -way independent analysis
of variance (ANOVA) on our results with four factors, the three starting joint angles q1,S, q2,S, q3,S
and the target index T . As ANOVA checks the importance of one or more factors by comparing the
response variable means at different factor levels, the results obtained can be utilized to identify
the factors which have statistical significant influence on the examined variable. In Table 3.3, we
list the corresponding results from our ANOVA analysis when selecting the response variable as
the contribution of five different basic cost functions as well as the sum of dynamics related cost
functions (the minimum torque change + the minimum energy), respectively.

From ANOVA analysis it can be concluded that the starting joint angles of the two shoulder rota-
tions have influences on the contributions of the cost functions: q1,S has influence on the contri-
bution of the hand jerk (F(2,58) = 19.5487, p < 0.0001), the joint angle jerk (F(2,58) = 10.7701,
p < 0.001), the torque change (F(2,58) = 12.7500, p < 0.0001), the energy (F(2,58) = 7.7557,
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RV : Factor Sum.Sq. Mean.Sq. F p

HJ : q1,S 0.9624 0.4812 19.5487 0.0000

HJ : q2,S 0.1872 0.1872 7.6063 0.0078

HJ : q3,S 0.0068 0.0068 0.2750 0.6020

HJ : T 0.1635 0.0204 0.8303 0.5796

JJ : q1,S 0.4115 0.2058 10.7701 0.0001

JJ : q2,S 0.0150 0.0150 0.7830 0.3799

JJ : q3,S 0.0176 0.0176 0.9223 0.3409

JJ : T 0.2026 0.0253 1.3255 0.2494

TC : q1,S 0.1005 0.0503 12.7500 0.0000

TC : q2,S 0.0081 0.0081 2.0525 0.1573

TC : q3,S 0.0004 0.0004 0.1092 0.7423

TC : T 0.0603 0.0075 1.9122 0.0753

Geo : q1,S 0.1202 0.0601 3.0653 0.0543

Geo : q2,S 0.0056 0.0056 0.2844 0.5959

Geo : q3,S 0.0232 0.0232 1.1812 0.2816

Geo : T 0.0894 0.0112 0.5702 0.7980

Enr : q1,S 0.2760 0.1380 7.7557 0.0010

Enr : q2,S 0.1525 0.1525 8.5667 0.0049

Enr : q3,S 0.0331 0.0331 1.8596 0.1779

Enr : T 0.2721 0.0340 1.9113 0.0755

Dyn : q1,S 0.6702 0.3351 19.3833 0.0000

Dyn : q2,S 0.2308 0.2308 13.3516 0.0006

Dyn : q3,S 0.0411 0.0411 2.3760 0.1287

Dyn : T 0.3356 0.0420 2.4267 0.0246

Table 3.3: Results of ANOVA tests. RV denotes the response variable, selected as the contribution
of each basic cost function (HJ: hand jerk, JJ: joint angle jerk, TC: torque change, Geo:
geodesic, Enr: energy) and the dynamic related cost functions (Dyn: dynamics, which
is the sum of the minimum torque change and the minimum energy). Four variables are
considered as the factors, which are the three starting joint angles q1,S, q2,S, q3,S and the
target index T . RV:Factor indicates the ANOVA result of the influence of the factor on
the corresponding response variable (e.g. HJ: q1,S means the influence of q1,S on the
contribution of the minimum hand jerk cost function). Sum.Sq. and Mean.Sq. are the
sum of squares due to each source and the mean squares for each source, respectively. F
is the F -statistic, p are the p-values, which represents the probability that the F-statistic
can take a value larger than a computed test-statistic value.
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Figure 3.6: Results of the individual analysis. S1 to S15 represent 15 subjects. The change of
the dynamics related cost is derived by subtracting Ctop from Cbot, where Ctop, Cbot
are the contribution of dynamics related cost for targets in the top and bottom row,
respectively. (e.g. T1 - T3 means subtracting the contribution of the dynamics to the
target three from to the target one).

p < 0.001) and the dynamics (F(2,58) = 19.3833, p < 0.0001); while q2,S has influence on the
hand jerk (F(1,58) = 7.6063, p < 0.01), the energy (F(1,58) = 8.5667, p < 0.01) and the dynamics
(F(1,58) = 13.3516, p < 0.001). For the target position, only the dynamics is affected (F(8,58) =
2.4267, p < 0.05). Lastly, the starting joint angle of the elbow rotation q3,S has no influence on the
contribution of basic cost functions (all p > 0.05).

In order to identify how the target position, which can be expressed by the three final joint angles
q1,E , q2,E , q3,E , affects the contribution of the dynamics, an individual analysis is conducted on the
trajectories of each subject with one starting posture (fully stretched out posture P1) and six targets
(top row: T1, T4 and T6, bottom row: T3, T6 and T9). Thus 90 (15 subjects × 6 trajectories) IOC
calculations are performed. Then p-test is utilized to find if there is a significant difference between
different final joint angles. The results suggest that only q1,E has influence on the contribution of
the dynamics related cost, which indicates that only the height of the targets matters. This can
be verified in Fig. 3.6, where we compare the contributions of the dynamics related cost between
two sets of targets (top vs bottom row). From these results, the interpersonal variance can also be
observed, where the changes are different for each subject, and sometimes this difference can be
considerably large.

Transition between different reaching tasks According to the previous results, three fac-
tors are identified to be related to the contribution of basic cost functions, which are the two starting
joint angles of the shoulder joint q1,S, q2,S and the change of the pitch rotation of the shoulder joint
q1,Change = q1,E − q1,S . In order to identify how exactly these factors affect the contribution, two
3D scatter plots are given in Fig. 3.7a - 3.7b. Considering the musculoskeletal loading as the cri-
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Figure 3.7: Transition between different cases. (7a) - (7b) Contribution of the dynamics (left)
and the kinematics (right) related costs with respect to three factors. q1,S , q2,S are the
two starting joint angles of the shoulder rotations, q1,Change is the change between the
final and the initial angle of the pitch rotation of the shoulder joint. The colors indi-
cate the contribution ratio of corresponding cost. (7c) - (7d) Relationship between the
proposed discomfort metric and the contribution of the dynamics and the kinematics
related costs. Red lines are the linear regression models created based on the discom-
fort value with respect to the optimal weights (β∗1 , β∗2). Another Least-Squares ellipse
fitting is also presented to demonstrate the trend with variance.
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terion to describe the comfortableness of the reaching motions [83], [84], the fully stretched down
posture can be treated as the most comfortable posture. Then the more rotations required to exe-
cute the reaching tasks from the fully stretched down posture, the more uncomfortable the motion
is. It can be observed that, for comfortable reaching motions (left-down region of the figures), the
dynamics related cost function has less contribution while the kinematics has higher, compared to
the uncomfortable reaching tasks (right-up region of the figures) where the opposite trend is ob-
served. Based on this, we propose a discomfort metric by combining the three factors along with
their corresponding joint angle limits as

Dis =
(90− q1,S

180

)
+ β1

q2,S

180 + β2

(
q1,Change

180

)
, (3.5)

where Dis denotes the discomfort value calculated by a linear combination of the three factors
by using the weights β1 and β2. Then for a given pair of weights (β1, β2), a set of discomfort
values can be derived for all 108 reaching tasks Disi (i = 1 . . . 108). Each discomfort value
has its corresponding contribution value of the dynamics related cost function Ci (i = 1 . . . 108),
hence a simple linear least square regression model can be created from the data set (Disi, Ci)
(i = 1 . . . 108) as

y = θ1 + θ2x. (3.6)

By changing the weights, different linear regression models yβ1,β2 are obtained. The coefficient of
determination [145] R2 for each model is given by

R2
β1,β2 = 1−

∑108
i=1(Ci − yi,β1,β2)2∑108

i=1(Ci − C̄)2
, (3.7)

where Ci is the actual contribution value, yi,β1,β2 represents the calculated contribution value from
the linear regression model yβ1,β2, C̄ is the mean value of C. R2 measures of how well a model
can represent the data, and falls between 0 and 1. The higher the value of R2, the better the model
is at predicting the data. Therefore, the optimal pair of the weights is derived by maximizing R2

(β∗1 , β∗2) = max
β1,β2

R2
β1,β2 . (3.8)

Solving Eq. (3.8) with respect to the contribution of the dynamics yields the optimal weights as
β∗1 = 0.8150 and β∗2 = −0.4477. By using the discomfort values derived with this optimal weights,
the contribution of the kinematics related cost function can also be explained. Corresponding
results are presented in Fig. 3.7c - 3.7d.

Since human motor control is considered as a stochastic system and we do not know exactly how
these factors are combined (e.g. linear or non-linear), the discomfort metric presented here is a
proof-of-concept of the transition between different reaching tasks. Due to the absence of the
description of the variance, the results contain noise, but the trade-off between the dynamics and
the kinematics is still observable. This finding supports the idea to use a GPR model to describe
the mapping from the initial and final joint angle configurations to the optimal weight vector.
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Figure 3.8: Experiment for the hybrid online prediction framework. S is the starting position and
T1 to T4 are the four target regions. Each region consists of four possible placing
positions as four corners of a square for the LEGO-bricks.

3.4.2 Experiment for hybrid prediction framework

In this subsection, an experiment designed to test the performance of the proposed hybrid online
prediction framework is presented. The experiment is based on a simple pick-and-place task with
one picking position and four targets. The accuracy of the ProMPs predictions as well as the
updating process are analyzed here.

3.4.2.1 Experimental setup and data collection

As shown in Fig. 3.8, the experiment is designed as a pick-and-place task with LEGO bricks. The
picking position is fixed during the experiment, and four placing regions with different heights
are selected as targets. Each region consists of four possible positions as four corners of a square
for placing the bricks. Experiment includes 16 pick-and-place movements (4 targets × 4 times)
per subject. Every subject is required to repeat the whole experiment ten times, thus in total 160
trajectories, 40 for each target, are recorded for one subject. We collected the data from five
subjects and performed the analysis on those 800 trajectories. We neglect the hand and finger
movements and only predict the position of the wrist joint.

3.4.2.2 Results of the hybrid prediction framework

Here we present the corresponding results from the prediction experiment. First the prediction
accuracy of ProMPs is tested by looking into the distance error between the prediction and the
observation. Then the updating process for the GPR model is analyzed both to provide the evi-
dence on the interpersonal variance, and also to demonstrate the ability of our hybrid prediction
framework in describing this variance.

Performance of the predictions by ProMPs We conduct an offline analysis to investigate
the performance of the ProMPs based predictions more in depth. After initialization, the ProMPs
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Figure 3.9: Results of predicting with the ProMPs. (9a) - (9d) Distance error between the obser-
vations and the ProMPs predictions of five subjects for target one to target four. The
errors converge after several updates. (9e) KL-divergence of comparing the updated
distribution with the previous one for target one. It can be observed that after ten it-
erations the value is quite small, which indicates that the distribution converges. (9f)
The ProMPs predictions and the observations in the last iteration of subject one for all
four targets. (9g) - (9i) The ProMPs predictions in the last observation of subject one
for target one. Each plot presented the mean and the variance of x, y, z positions in
Cartesian space respectively.
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are utilized to generate predictions for the observations. For each observation, we use the first 30%
of the observed points to roll out the prediction, and the distance error between the prediction and
the observation is measured through DTW. After each prediction, the observation is used to update
the ProMPs in order to learn the variance as well. For the next observation, the updated ProMPs is
then used, and this updating process keeps running until the last observation.

The distance errors for each subject and each target are presented in Fig. 3.9a - 3.9d. The distance
error is calculated between the prediction and the observation. Note that, this comparison is per-
formed in Cartesian space, while during the initialization of the ProMPs, the trajectory generated
from the composite model is a relative end-effector trajectory in arm model coordinate system (see
section 2.2.4.3). Since the relative end-effector trajectory ignores the shoulder translations and the
torso movements, which are not avoidable in real reaching motions, and the model’s arm length
is usually different than the actual arm length of the subject, the first prediction has large error.
However, this initial error diminishes by later updates, and after several updates (around 5) the
distance error becomes stable with a small value (around 2cm to 4cm for trajectory distance error
averaged over the data points). In the end, as shown in Fig. 3.9f, the predictions get closer to the
observations for each subject.

During the prediction process, the variance is also learned by updating the ProMPs. We initialized
the variance to a large value, and observe that after several updates the ProMPs converges to a stable
distribution. Fig. 3.9e shows the Kullback–Leibler (KL) divergence of comparing the updated
ProMPs distribution with the previous one for target one. The results indicate that after around 10
iterations the distribution converges for each subject. An example of the learned distribution, which
is defined by the mean values and the corresponding variances for each point in all dimensions, is
presented in Fig. 3.9g - 3.9i. Hence, the motor variability is captured by person specific distribution
in the ProMPs. Subsequently, the mean trajectory from the distribution is treated as the average
behavior of that specific subject for the corresponding reaching task.

Updating the GPR model Due to the limited amount of available training data, the mapping
represented by the GPR model is not accurate enough. Besides, because of the interpersonal vari-
ance, the error between the estimated weight vector and the actual one can be large in some cases.
Thus we need to update the GPR model through a separate updating process. To do this, we first
extract the mean trajectory from the converged ProMPs learned from 40 observations, and then ap-
ply the same IOC calculation on this trajectory to get a new weight vector. This new weight vector
is used to update the GPR model. Note that, since we also want to model the interpersonal vari-
ance, the GPR model is updated separately with respect to each subjects’ behavior. A comparison
of the distance error between the observation and the optimal trajectories solved with the previous
weight vector and the new weight vector is presented in Fig. 3.10a - 3.10d. As we only want to
look into the distance error caused by the weight vector, the trajectories compared here are the rel-
ative end-effector trajectories, which have less error due to ignoring the shoulder translations and
the torso movements. The results indicate that the error diminishes after the update. After several
updates on the GPR model, the interpersonal variance can be represented in each person specific
GPR model. We also observe that even for the same tasks the new weight vectors vary between
different subjects (Fig. 3.10e - 3.10h). This supports the existence of the interpersonal variance
while emphasizing the importance of this updating process in our framework.
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Figure 3.10: Results of the GPR model updating process. (10a) - (10d) The distance error between
the optimal trajectories solved with respect to the initial weight vector and the updated
weight vector for target one to target four, respectively. (10e) - (10h) The contribution
of basic cost functions calculated from the mean trajectories of five subjects for target
one to target four, respectively.

3.5 Discussion

Facilitating efficient and safe co-existence of humans and robots is a multifaceted challenge. In
this work, we focus on developing a human motion modeling and prediction framework that can
be effectively used for robot control during dyadic interaction. One of the key insights of this work
is that the interpersonal difference is not negligible regarding the contribution of cost functions.
Even though motor variability was acknowledged in previous studies and some stochastic optimal
control formulations were suggested as models for the motor control functionality of the CNS, the
interpersonal variance has not been studied in such detail. The research presented in this work is
a first step for combining model-based and probabilistic data-driven approaches in order to look
into this topic, especially from the perspective of how this can be used for human-in-the-loop robot
control. In essence, the hybrid framework enables personalized modeling and prediction of human
motion behaviors, which can be integrated into robot control to provide personalized, safe, and
efficient assistance to the human partner. However, there are still many aspects that need further
investigation both for human motion modeling and its effective integration on robot control.

On the human-in-the-loop robot control and HRI As robots have become ubiquitous in
our daily lives, the goal is to provide safe yet natural interaction between human-robot dyads.
To this end, novel robot control architectures which take into account human motion behavior
are required. As robots are expected to adapt their motion behaviors with respect to their human
counterparts, understanding how humans control and execute their motions is critical. The outcome
of human motion modeling is two-fold: On the one hand, the models learned can be used to
predict human motions during interaction so that the robot can take proactive actions. On the other
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hand, such models enable building robot control architectures for realizing human-like motions to
provide natural interaction. The proposed hybrid framework focuses on the former, and it also lays
out the underlying control mechanism for human motor control while demonstrating the trade-
off between kinematic and dynamic properties used for arm reaching control. Even though there
were recent studies on transferring such optimal control formulations learned from human motion
data to robot control (e.g. locomotion [57], reaching motion [9]), our findings would enhance
such methods by building adaptive control methods to achieve a similar trade-off as human motor
control seems to utilize.

The model-based optimal control formulation can further be utilized for other HRI settings, e.g.
in physical HRI to provide the required assistance by the robot to the human partner in order to
reduce the effort spent by the human which can be detected from the increase in dynamics related
costs contribution. In addition, the trade-off analysis can be extended to understand how reciprocal
influence of partners’ movement affect the cost distribution, which in turn help us construct suitable
control and motion planning strategies for the robot to provide optimal assistance constrained on
similar cost distributions.

As humans collaborate with each other naturally and safely in close proximity, we hypothesized
that one crucial requirement for dyads is to be able to estimate the collaborating partner’s mo-
tions. In that regard, it is also essential for a robot to predict the motion of human partners. This
prediction needs to be efficient (online-capable) in order to choose actions proactively, and to (re-
)plan the motion in a way to realize a collision-free trajectory while still achieving the task. The
proposed hybrid framework enables such an efficient prediction as well as an update on the cost
combination per person. The ProMP-based human motion prediction component of this work has
already been integrated into a stochastic trajectory optimization framework [242]. The efficiency
of our motion prediction enables the robot to re-optimize its motion frequently at short intervals
while considering the predicted human motion distribution as a dynamic obstacle to avoid. Hence,
any changes in the expected movement can still be taken into account to achieve a responsive and
safe interaction. Furthermore, since our hybrid architecture also updates personal motion models
during interaction, the effect of robot movement on human partner’s motion can still be captured,
which is expected to increase the accuracy of predictions during the course of the interaction.

In that regard, Interaction Primitives (IPs) [125] and its extension Environment-adaptive IPs (EaIPs)
[126] also provide a data-driven approach to predict a human partner’s movement and then to plan
the robot motion accordingly. As ProMP formulation already builds on the idea of learning a
distribution over some demonstrated trajectories, it can also be extended to account for the cou-
pling between two agents by learning a distribution over two persons’ trajectories executed during
a joint interaction task. Similarly, learning a joint distribution including the environment related
features would be a feasible improvement. The learned human motion models can still be fed to
the IOC formulation to extract the optimal cost distributions that best describes those interactive
movement behaviors. The reciprocal influence of partners on their individual cost utilization poses
an interesting research question that can be analyzed from the IOC perspective. Our modular hy-
brid framework also allows integration of any movement representation that can effectively predict
human movement behaviors. In that regard, the IOC formulation can easily be integrated with
(Ea)IPs to model, understand and predict human interaction behaviors.

Lastly, one critical issue has to be noted. Since those formulations only rely on data-driven for-
mulations, there is no guarantee on a safe and effective motion generation for the robot, especially
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in close-proximity interaction scenarios. However, our approach has the potential to utilize un-
derlying cost function distributions learned from human movement behaviors for robot motion
generation, which can then be combined with a learning approach to achieve a generalized safe
policy. In that regard, we can combine the reachability analysis [146] with our model-based opti-
mal control formulation to ensure the safety when the robot is planning its interaction movement.
In essence, by the reachability analysis, the states that lead to an unsafe situation will be elimi-
nated, and the learning process is performed within the safe region [147]. This analysis and the
required computations are based on the dynamical model of the system and may not be feasible
with the purely data-driven approaches, such as IPs.

Limitations The IOC framework enables the identification of combination of basic cost func-
tions in 3D reaching tasks. The results suggest a trade-off between the dynamics and kinematics
related cost functions. With a proper definition of the system model and a set of reasonable cost
functions, the IOC framework can be generalized to other problems, e.g. locomotion planning [57],
car-driving [148]. However, there are several limitations of the IOC framework, one of which is the
the complexity of finding the global minimum. Even though we tried to cover an extensive search
range of the weight vector, the result is arguably still an approximation of the global minimum.
Due to the complex non-linear formulation of the IOC framework, no efficient method has been
proposed on addressing this problem yet. Second, the lack of the description of variance weakens
the accuracy in terms of modeling the motion behavior. Since the IOC framework results in a de-
terministic solution, it cannot consider the interpersonal variance and the motor variability during
the optimization. When we represent the trade-off between kinematics and dynamics related costs
regarding the reaching tasks, the variance makes it hard to identify a clear relationship. Therefore,
the discomfort metric we proposed is a proof-of-concept, and a deeper investigation is required to
uncover how exactly the motion parameters affect the contribution of basic cost functions.

In the proposed hybrid prediction framework, we combine a model-based prediction method with a
data-driven method. A GPR model is used to represent the mapping from the initial and final con-
ditions to the optimal weight vector. However, due to the limited amount of data, the GPR model is
not sufficient for representing the variance in motion behavior. It is also found to be effective only
when the reaching motions are in the descriptive range of the training data. For prediction purpose,
we use the trajectory obtained from the composite model to initialize the ProMPs. The reason we
want to include this initialization phase other than directly using the ProMPs is that the subsequent
updates on the composite models are much faster than solving the IOC problem from scratch for
each person (e.g. 100 upper level optimization iterations take around 4 hours vs. 15 iterations
take around half an hour). It also allows to make the prediction immediately without extra data
collection. Note that, because of the fact that the arm model ignores the shoulder translation and
the torso movements, which are not avoidable in real reaching motions, the current initialization
process still has some errors. If a full upper-body model is considered in the IOC framework, this
error could be minimized. However, this will immensely increase the computational load, hence
this extension may not be feasible.
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3.6 Conclusion

In this work we investigate the underlying principles of human reaching motions and propose a hy-
brid framework to utilize our findings in motion prediction. To uncover the criteria of the reaching
motion control, we implement an inverse optimal control framework to identify the contribution
of basic cost functions which can best represent the human behaviors. The IOC results indicate a
trade-off between the dynamics and kinematics related cost functions depending on the reaching
tasks. Then to apply the composite cost function for predicting human motions, we combine the
model-based optimal control formulation with the data-driven probabilistic movement primitives
method. With this hybrid prediction framework, we learn the motor variability as well as the inter-
personal variance at the same time. The demonstrated high accuracy and efficiency of this hybrid
framework encourages its usage in HRI settings. For human-in-the-loop robot control, a high-level
planner for the robot can exploit such a hybrid model to choose its next task, plan a collision-free
motion trajectory, and as a result achieve safe, efficient, and natural dyadic interaction with the
human partner.
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Behavior

71





4
An Ontology for Human-Human
Interaction and Learning Interaction
Behavior Models1

Robots are expected to possess similar capabilities that humans exhibit during close proximity
dyadic interaction. Humans can easily adapt to each other in a multitude of scenarios, ensuring safe
and natural interaction. Even though there have been attempts to mimic human motions for robot
control, understanding the motion patterns emerging during dyadic interaction has been neglected.
In this work, we analyze close proximity human-human interaction and derive an ontology that
describes a broad range of possible interaction scenarios by abstracting tasks, and using insights
from attention theory. This ontology enables us to group interaction behaviors into separate cases,
each of which can be represented by a graph. Using inverse reinforcement learning, we find unique
interaction models, represented as combination of cost functions, for each case. The ontology
offers a unified, and generic approach to categorically analyze and learn close proximity interaction
behaviors that can enhance natural human-robot collaboration.

4.1 Introduction

As robots become ubiquitous in many aspects of daily life, e.g. in service robotics or manufactur-
ing, close interaction with humans becomes a necessary functionality. Humans easily interact in
shared and confined workspaces. They adapt to different interaction behaviors without compromis-
ing safety and efficiency (Fig. 4.1). Especially in manufacturing, effective interaction in a shared
workspace can increase productivity, and hence, is a desirable capability for robots. However, in
contrast to humans, robots still need to have a safety distance from human collaborators due to their
incapability to understand human interactions. How can we achieve a non-verbal communication
directly through movement that results in a natural and seamless interaction between humans and
robots? For such an intuitive human-robot interaction (HRI), the robot has to (i) accurately predict

1This work has been submitted to and under review in the following publication: [240]
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Figure 4.1: Example of a human-human interaction scenario, in which two collaborators need to
adapt to each other’s arm motion. The possible options for the collaborators are show-
cased with sample trajectories.

the human motion, and (ii) execute a natural responsive behavior, such that the human collabo-
rator can easily predict the motion of the robot and adapt to it. Human movement features and
the corresponding control policies during dyadic interaction can provide useful insights, since hu-
mans easily fulfill these two requirements [149]. In that regard, human-human interaction (HHI)
studies are crucial to get a thorough understanding of interaction behaviors. In this work, our aim
is to understand HHI by developing an ontology framework that defines the types and properties
of interactions, as well as the relationships between them. Such a descriptive model can also be
transferred to HRI scenarios to provide a seamless dyadic interaction.

There have been studies in neuroscience and psychology that investigated important factors for
HHI. However, these studies, mainly on visual attention [28], synchronicity [149], and motion
prediction [150] have specific task setups, and have rarely investigated interaction in a shared
workspace with complex tasks. A recent study extensively described and analyzed the factors
influencing HHI [149]. However, a systematical analysis of HHI in close proximity from the per-
spective of human motion behavior is still missing. In addition to descriptive analysis, there have
been studies that predict and imitate human motions for predefined specific setups [236], [151].
A recent work by Mainprice et al. [27] accurately generates motions for an HHI scenario, which
were comparable to real human motions. However, it remains unclear, whether their approach
generalizes towards other setups and dyad positioning. Evidently, the challenges for describing
and modeling HHI have been tackled in several fields in isolation. A comprehensive analysis and
methods to define and learn models that generalize interaction behaviors have been neglected.

For an exhaustive analysis of close proximity HHI, the key factors from the aforementioned fields
of research have to be considered together. Therefore, a generic interaction model needs to be
generated that integrates insights from psychology and neuroscience, while generalizing towards
a broad range of tasks. Such a formulation facilitates a systematic analysis of human interac-
tion behaviors and enables the construction of a high-level representation of HHI scenarios. This
descriptive representation can be used to classify interaction behaviors by analyzing movement
related features (e.g. distance metrics). It is then possible to not only learn dyadic interaction mod-
els from HHI demonstrations, but also predict human motions during interaction. By using these
interaction behavior models together with the motion prediction capability, the robotic agent can
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interact with human partners effectively.

In this work, human-human interactions, with a focus on shared workspace settings and repetitive
tasks, is modeled as a graph based representation. By incorporating insights from attention the-
ory, psychology, and task generalization studies, this graph structure defines the possible dyadic
interaction points for a task. In a next step, the edge combinations of the graph were generated
and evaluated to identify possible representations. The high number of combinations in this initial
graph model was analyzed in terms of their feasibility to form the full ontology representation (20
distinct cases). Then, a reduced ontology was obtained by the quantitative analysis of the HHI
experiments conducted for the full model. Realistic test settings had to be designed that represent
each ontology case. These test scenarios included a variability in task setup and dyad positioning
in order to verify the robustness of the ontology. The design process as well as the data analy-
sis enabled a methodical reduction procedure to decompose initial HHI representation into seven
distinct ontology cases.

The results have shown that the reduced ontology cases can be classified with high accuracy. Ad-
ditional classification analysis was conducted with data unknown to the classifier, which demon-
strated the generalization capability of the proposed model in terms human movement behavior.
For a subset of the ontology cases, it has also been shown that the ontology representation is invari-
ant to the dyad positioning. Lastly, a unique dyadic interaction behavior policy per ontology case
has been learned by inverse reinforcement learning (IRL), enabling the transfer of those controllers
to collaborative robotic agents.

This study investigates factors involved in close proximity human-human movement behaviors,
and proposes an ontology for dyadic interaction. The main contributions of our work can be
summed up as follows:

• We propose an ontology that comprehensively covers human-human interaction cases and is
supported by a thorough experimental analysis.

• The proposed ontology provides a general, unified and reusable framework for interaction
classification.

• The ontology is augmented with an inverse reinforcement learning (IRL) formulation to
model human motion behaviors that enables predicting and imitating them during close
proximity HRI.

The rest of the chapter is structured as follows: In section 4.2, we review related work, followed
by a model for HHI in section 4.3. From the proposed model, we derive an ontology of HHI in
section 4.4. In section 4.5, we introduce the inverse reinforcement learning approach for human
motion prediction. The proposed ontology is validated with two experiments, as described in sec-
tion 4.6. The results of the experiments are presented in section 4.7, and discussed in section 4.8.
Lastly, we draw a conclusion and give an outlook on future work in section 4.9.

4.2 Related Work

In this section, we briefly explain the related work both in the field of human-robot interaction
(HRI) and several relevant fields for human-human interaction (HHI) in a shared workspace,
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i.e. human motion prediction, as well as social psychology and neuroscience studies for inter-
actions.

4.2.1 Human-robot interaction

Here, we review recent studies on shared workspace interaction that are closer to the settings ana-
lyzed within our work. Learning human motion behavior from recordings is a common approach
to model and then predict human motions in an HRI scenario. Hayne et al. [151] presented a
cost map approach, in which a voxel grid of costs is constructed. Costs are applied to each voxel,
which has already been occupied by a human during a task. The robot can plan a collision free path
with the help of the cost map. The advantage of this approach is its simplicity, however, it cannot
consider unobserved human behavior. This drawback severely restricts the effectiveness of robot
motion planning. In contrast, Mainprice et al. [26], [27] frame the interaction behavior as an op-
timal control problem, by assuming that the motions are optimally generated with respect to a set
of cost functions. They used inverse reinforcement learning to learn such a cost function, followed
by a stochastic motion planner for human motion prediction. They have shown the reliability of
their approach for a few cases of HHI, and since only one interaction scenario was tested, it is still
unclear if this approach can be used for other scenarios. Furthermore, how those cost functions
differ from case to case, and whether they can provide deeper insights on interaction features are
still interesting open questions. In this work, we analyze multiple interaction scenarios in order to
extract some base interaction cases, for which the aforementioned work could be utilized.

The same problem can be solved by considering the human as a dynamic obstacle, and use motion
planning algorithms [242], [152], [153]. In those studies, the focus is on planning motion behavior
of the robot with respect to the changes in the environment for safety, and hence the resulting
behavior is reactive. However, natural interaction does not only require safety and reactiveness but
also a reciprocal responsive behavior. In our work, we focus on the analysis of the HHI scenarios
to extract the features of such natural, safe yet effective interaction behaviors. In that regard, the
proposed ontology will also be useful for those motion planning frameworks.

Another type of dyadic interaction is physical human-robot joint actions, where a human-robot
team works on the same object, e.g. carrying a table. The perception and control problem shifts
from motion prediction and adaptation to force interactions, which are transmitted through the
object. These force interactions have to be interpreted carefully to realize whether they indicate that
more resistive force has to be applied [154], or whether it is a signal from the collaborator to switch
directions or roles [243], [155]–[157]. In our work, non-physical dyadic motion behaviors in a
shared workspace are investigated instead of joint physical actions. This necessitates identification
of relevant features for interaction behavior control.

A particular form of joint actions are object handover tasks between a robot and a human collab-
orator. The difficulty in this task is to predict the hand over pose of the human, since the robot
end effector has to adapt to it as well as the intentions during the handover task. At the start, the
human, as the receiver of the object, has to adapt to the pose of the robot [158]. This is followed by
the robot identifying and reacting to distinct handover poses [159]. Finally, the social interaction
between human and robot is optimized such that the intention of the robot to hand over an object
becomes clear [160], [161]. We view handover tasks as a distinctive but still important case of HHI,
which can be incorporated into our proposed ontology, as will be explained later in Section 4.3.1.
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4.2.2 Human motion modeling and prediction

Human motion behavior in an interaction scenario comprises two critical components. On the one
hand, the mutual adaptation has to be considered, and on the other hand, the motion related to the
specific task of the individual has to be considered. The latter will be reviewed here as the learning
and adaptation phases of dyadic interaction are not considered in this study.

Affordance concept is an influential formulation to investigate motion behaviors, and it is mostly
used to predict possible actions on an object, while abstracting its utility. Ugur et al. [162], [163]
use a continuous object representation in order to compute the effects of an action on an object by
computing the difference between the representations before and after the action. The proposed
framework was able to reliably predict the effects of certain actions, and also to generate plans if
the desired effect is given. In a similar work, Koppula et al. [25], [164], [165] used the affordance
concept to predict human motion trajectories of possible actions, which are associated with an
object. Affordances were encoded in an energy function that is to be maximized. The reliability of
the approach was also demonstrated in predicting human motions within a short time horizon. Even
though the feasibility of this approach has been claimed for interaction scenarios if an interaction
cost is added to the energy function, it has yet to be shown. Our approach is quite similar to the
concept of affordances. Based on the setup of the interaction, we estimate an interaction case that
enables generating a feasible interaction trajectory as the prediction. However, the difference is
that we are only interested in the interaction process rather than the objects related to it.

Similar to affordances, Semantic Event Chains (SECs) approach has been proposed by Aksoy et
al. [166], [167]. They encode tasks as a sequence of graphs, which represent the topology of
the task at a given moment. This high-level abstraction enables grouping of similar objects and
tasks, such that task learning can be simplified. In this regard, a framework has been proposed
in which SECs can be used as a form of manipulation library in order for a robot to execute
different tasks [168]. Similarly, Wörgötter et al. [169] abstracted actions, and generalized manip-
ulations according to their topological effects, instead of the objects. They examined the contact
between objects during manipulations and derived a small subset of contact situations, which re-
liably describe almost all possible single hand manipulations. In this work, we make use of their
manipulation abstraction, in order to make our interaction model task invariant.

4.2.3 Psychology and neuroscience

Once the task related motion prediction is taken into account, the perception aspect of interaction
has to be considered as well. Therefore, it is reasonable to leverage insights from psychology and
neuroscience as they investigate the factors involved in interaction. Among a multitude of topics,
entrainment or synchronization [149], [170] is arguably one of the broadly studied interaction
component. Various studies show that entrainment emerges, even if humans are not instructed to
synchronize their motions for dyadic tasks [149], [171].

Another important set of properties for HHI is related to the theories on attention. During HHI,
humans have to split their attention between their task and the interacting partner, resulting in an at-
tention distribution. Corbetta et al. [28] explain those mechanisms and show that attention is drawn
to the biggest stimuli. However, this trend changes during task executions. Prior information about
the task helps the attention system to filter out unimportant stimuli, while paying special attention
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to task relevant stimuli [172]–[174]. For HHI in a shared workspace, the dominant percept is vi-
sion and the dominant stimulus are fast motions that may lead to collisions [175], [176]. For our
study, these behavioral properties on synchronicity and attention distribution are also considered
for constructing our ontology and interaction models.

This review has shown relevant work in the field of HRI, followed by the two components of
HHI in a shared workspace, task related motions and effects, as well as relevant work on human
interaction behavior. In the next section, these components are merged into a model for dyadic
interactions.

4.3 Modeling Interactions for HHI

For a systematic analysis of HHI in a shared workspace scenario, it is first necessary to determine
the components that influence those interactions. Sebanz et al. [149] identifies three key questions
that describe these influences: “What happens? Where does it happen? And, when?" These ques-
tions are linked to the inference of actions and their goals (what), the locations at which the motion
or action takes place (where), and the timing, in other words, synchronization of actions (when). In
this section, we use these three questions as a guideline to create an interaction model for HHI. We
first explain our insights into the posed questions, followed by a derivation of an interaction model.
In order to help with following our explanation, we use the interaction case shown in Fig. 4.1 as
a recurring example. This example consists of a pick and place task, combined with a setup that
forces the dyad to cross arms during the execution.

What. The question of “what happens" can be answered from two different levels of abstraction.
The higher level of abstraction is the intention of the interacting agents, i.e. what they want to do
with the task related object(s). There have been several approaches on how to predict human
intention, such as affordances [25], [162], or library based methods [168]. In our formulation,
we assume that the intention is either already known, or can be correctly inferred at the start of
interaction. This is a reasonable assumption, especially for repetitive close proximity interaction
tasks such as collaborative manufacturing scenarios. Once the intention is presumed, the next level
of abstraction, i.e. how the actors are going to realize their intention by their motion, becomes
relevant. Thus, in a next step, the task is split into relevant subtasks, resulting in a sequence of
actions. For the given pick and place example, this is the sequence of picking up an object, bringing
it to the target position, and then placing it. The partners then uses this information to estimate
the influence of each other’s task sequence on their task. This sequential aspect can be further
abstracted if the subtasks are generalized as it has been done in [169]. Using the pick and place
example, whether the object is picked up or placed down at one of the predetermined locations is
insignificant. It just has to be known that a task related event takes place at that location. Since
less information about the actual manipulation action needs to be processed, the attention on the
interaction, i.e. the relevant task sequences that influence each other’s tasks, becomes critical. This
allocation of attention directly leads to the question of where the important interaction sequences
happen.
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Where. The question of “where does it happen" is again analyzed by two levels of abstraction.
The first is the allocation of the shared workspace. Given our pick-and-place example, this is de-
scribed by which person grasps over the other’s arm, i.e. the rough location each interacting agent
can occupy during their next transport motion. In addition to the allocation of space, joint attention
is also relevant to the allocation of tasks [149]. For close proximity and repetitive interactions such
as collaborative manufacturing scenarios, we assume that the tasks are pre-allocated. The joint
attention is mostly on the distribution of space. During preliminary experiments, we observed that
this allocation is relatively stable after a short period of adjustment in the early phases of inter-
action. Hence, we assume that space allocation is negotiated initially and stays mostly the same
thereafter. Consequently, attention needs to be paid only to interaction related stimuli [28], [172],
i.e. task relevant motions. Discordant movement behaviors, e.g. that are faster than expected or that
might lead to collision, increases the partners’ attention to the motion. In essence, timing is tightly
coupled to these conditions, and thus, plays a crucial role. Taking our example case (Fig. 4.1),
if both actors move into the workspace at the same time, a collision may occur, and more atten-
tion has to be paid on partner’s movement. However, if they move into the shared workspace
alternately, then clearly the dyad does not obstruct their motion reciprocally.

When. Considering the arguments on what happens and where, we can argue that, in general,
attention is increased towards motions only if they are timed such that they can result in a col-
lision. If the confined workspace is restrictive for joint occupation, it is a reasonable strategy to
time the motions such that the space is shared in turns. This approach aligns with the concept
of entrainment or synchronization, which expresses the tendency of humans to fully synchronize
their motions [170]. Although asynchronous motions within the shared space reduce the mental
effort through attention, this strategy may no longer be valid if time efficiency is critical, as in most
manufacturing scenarios. Especially, if one partner’s task takes longer, then it becomes infeasible
for the other to wait. Taking our pick-and-place example, this would be the case if assembling the
brick requires a more complex action such as screwing rather than just plugging in. In essence, for
an interaction involving individual tasks, timing is not one of the main determinants but more of a
feature of interaction.

4.3.1 Interaction model

In this section, based on the insights given for the posed questions, we propose an interaction
model with three assumptions. The model is constrained to a shared and spatially constricted
workspace (A1). Furthermore, we assume that the interaction is situated in a manufacturing envi-
ronment (A2). This second assumption includes that tasks are known and distributed beforehand,
and that tasks are executed time efficiently and repeatedly. The repetition of the tasks ensures
that the workspace is usually allocated, and that we can observe an interaction pattern over time,
while still capturing the variance of similar motions. Movement patterns are determined w.r.t.
the synchronization of the motions, and ensure comparable interaction behaviors. Based on these
assumptions, we formulate the task sequence for follow up task executions as a sequence of ap-
proaching and withdrawing motions, and an action phase in between, similar to [169]. With the
insights from attention theory, we can merge the withdraw and approach phases into a motion
phase, since it does not matter what motion type is performed as long as it interferes with another
motion. This reduces the task procedure to a sequence of actions and motions.
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Figure 4.2: Graphical representation of the proposed interaction model. Action Ai (round) and
motion Mi (squared) spaces are colored separately. Each partite vertex set is framed.

Lastly, we assume that a task is defined by two distinct locations, in which actions take place (A3).
For a structured analysis, this restriction is imposed on both agents, i.e. the pick-up and placement
locations are spatially different in our example pick-and-place task. Furthermore, alongside the
reasoning of Wörgötter [169], we model interactions such that the model is task independent,
e.g. for a crossing arms movement behavior, the crucial part is the transport motion, and whether it
is a pick-and-place task or fixing a stripped screw is irrelevant for the model structure. Therefore,
we assume that the micro motions of each action, i.e. placing the brick or screwing, take place in
a black-box, which we call action spaces. Note that these micro motions are restricted spatially
around the manipulated object, and thus most likely to be ignored by the partner’s attention system.
These action spaces are connected to each other by a motion space, for which the trajectory in
between both action spaces is abstracted, i.e. the shape of the trajectory is not taken into account.
This allows including the variance of individual behaviors, as well as the motion adjustments due
to environmental influences, e.g. obstacle avoidance, into our model.

Using the above reasoning, we create a graph based model of interactions. Two fully connected
bipartite graphs K(2, 1) are combined into a 4-partite graph with the following vertices and edges:

G = {Ai,Mi,E} ,
Ai =

{
A1
i , A

2
i

}
, Mi = {Mi} ,

E =
{{
A1
iMi

}
,
{
A2
iMi

}}
, i ∈ {1, 2}

Here, G represents the interaction model for two actors, Ai,Mi the disjoint sets of vertices that
represent the model, and E the edges connecting them. The vertices of the set Ai are called action
(manipulation) spaces and represent the blackbox in which actions take place. The vertex of the
set Mi represents the motion trajectory connecting the two action spaces. Hence, a sequence of
tasks can be represented by a sequence of vertices of a graph. Furthermore, this graph contains
all locations at which an interaction can take place, be it motion or action spaces. A graphical
representation of this model can be found in Fig. 4.2. Corresponding to our example of a pick-
and-place task, the picking up of the object would be represented by A1

i , while the placement of
the object by A2

i , and the transport motion by Mi. Based on this model, we will derive an ontology
for HHI in the next section, by exploring all possible edge combinations of the interaction model.
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4.4 Human-Human Interaction Ontology

The proposed 4-partite interaction model provides us with a tool to systematically analyze HHI. In
a first step, all possible edge combinations for the interaction model are generated and analyzed.
For this analysis, an interpretation of the individual edges with respect to human interactions is
essential to reduce the number of feasible cases. Each edge has to represent a specific interaction
between the dyad members during the execution of an arbitrary task. Three types of interaction
are specified as follows:

• E1(k, l) =
{
Ak1A

l
2

}
∀k, l ∈ {1, 2}: An interaction between the action spaces of the dyad.

We interpret this as a shared action space. Examples for such an interaction would be a hand
over task or taking objects from the same stash.

• E2(k, j) =
{
AkiMj

}
∨ E2(l, i) =

{
AljMi

}
∀k, l ∈ {1, 2}: An interaction between an action

space of one agent and the trajectory of the other. We interpret this as one actor grasping
over the action space of the other. As a result, the respective agent has to avoid the other’s
action space for improved cooperation.

• E3 = {MiMj}: An interaction between the trajectories of agent i and agent j. This can be
interpreted as cross over motion, where agents’ trajectories intersect. Therefore, the agents
have to avoid collision with their partners (Fig. 4.1).

The combination of these edges results, i.e. three possible edges per node, makes a total of 9
possible edges, resulting in a total number of N = 2 +∑8

p=1
9!

p!(9−p)! = 513 interaction scenarios.
The total number N is computed by either successively adding edges to the unconnected graph,
or by fully connecting all vertices, and then eliminating individual edges. In order to reveal the
reasonable cases, the following simplifications and reductions are applied in the form of edge
equivalences:

• First, all edges violating model assumption A3 (see Sec. 4.3.1) are eliminated. All graphs
containing the edge set E = {E1(1, l), E1(2, l)} ∨ {E1(k, 1), E1(k, 2)} violate this assump-
tion and are therefore omitted. According to the edge interpretation, two action spaces from
the same partition are merged, and thus eliminate the necessity of a motion.

• A similar problem arises, when two action spaces are merged, i.e. when an edge E1 ex-
ists. If there is an additional incident edge E2, an agent would grasp over their own action
space. This can as well be seen as part of the grasping process, and thus merged into the
action space. Therefore, all graphs containing the edge set E = {E1(k, l), E2(k, j)} ∨
{E1(k, l), E2(l, i)} are omitted.

• Besides edge reductions due to the model definition, symmetry can also be used to reduce
the number of cases. Since initial and final points are insignificant for the model, and the
positions of the action spaces can be set arbitrarily as long as they fulfill the edge inter-
pretations, symmetry of an agent’s action spaces can be assumed. Therefore, based on the
assumption that A1

i ' A2
i , and A1

j ' A2
j , a graph G = {A,M,Ex, E2(1, j)} is isomorph to

a graph H = {A,M,Ex, E2(2, j)}, if they share the other set of arbitrary edges Ex. As a
result G ' H holds.

• Since the relationship between dyad motions is investigated, models with symmetry in mo-
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tion spaces can be discarded, i.e. whether agent i or agent j grasps over the other’s action
space is not critical. In combination with the previous assumption, E2(k, j) ' E(l, i) holds
true for any indices k, l.

Based on these simplifications, and symmetry assumptions, the number of feasible cases could be
reduced to 20 interaction cases (Fig. 4.3a), which represent the full ontology. Exemplary setups for
each of these 20 interaction cases are illustrated in Fig. 4.3b. Obstacles are introduced for some
cases that enforce interaction variations in order to extend the analyzed dyadic movement behavior
set. If those obstacles are removed, the interaction would change (as can be seen for case 18, which
becomes very similar to case 16, if the object is removed), since the blue agent is no longer forced
to grasp over one of the yellow action spaces.

4.4.1 Ontology reduction

As it can be seen in the examples, some interaction cases of the full ontology still look similar.
Based on the theoretical and heuristic deductions as well as an experimental verification, the full
ontology of 20 cases could be reduced to 7 cases, which are called the reduced ontology for the
rest of the chapter. For the theoretical deduction, the degree-of-freedom of action and manipulation
spaces are observed. An action or manipulation space is assumed to have a degree-of-freedom, if
the corresponding vertex has no edges from the set E = {E1, E2, E3}. For the reduction, the
following cases were merged, and a proto-case is highlighted in bold for each reduced case:

• Zero degree-of-freedom cases: 10, 12, 17, and 18. These are the ontology cases which
are constrained the most. Due to the high number of E2 interactions, the motions of each
agent are thoroughly restricted. Both agents have to grasp over two action spaces, or have
a shared action space, which limits the possible trajectories to the one seen in the examples
in Fig. 4.3b. Such setups are necessary to enforce E2 interactions. Due to the constraints of
those setups and the elbow kinematics of a human, there is barely any motion redundancy
left, making these cases some of the easiest to predict. Furthermore, the kinematic restriction
of the elbow on one side of the workspace enforces a strict timing between agents to work
efficiently. Consequently, this case restricts the motion of the agents the most, due to its high
number of action space interactions. This stands in contrast to cases 19 and 20, which are are
also restricted in their action spaces, but have less restricted trajectories due to the absence
of E2 interactions.

• One degree-of-freedom cases: 7, 11. These cases are similar to case 10. The only difference
is that one agent has more options for one of their action spaces. This results in a relaxed
trajectory planning for one agent, and thus a broader range of interactions. This can also be
seen in the possible variability of the experimental setup of these cases.

• Two degree-of-freedom cases: 5, 6, 9, 13, and 19. These cases have a similar spatial config-
uration to the extent that either one of the action spaces of an agent is in close proximity to
one of the other agent’s, or that they share an action space. For cases 5 and 9, the close prox-
imity of two action spaces is necessary in order to ensure the two action and motion space
interactions. Additionally, the merged cases require asynchronous motions. For cases 13 and
19, this is necessary due to the shared action space, which limits the space for executing the
action, and as such should be used in sequence. For cases 5 and 9, an in-line placement of the
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Figure 4.3: (a) Graph representation, and (b) exemplary setups for each case in the full ontology.
(a) Action (round) and motion (squared) spaces are colored separately. (b) Gray area
depicts the shared workspace, while the black circle represents an obstacle blocking
the path, and dashed lines show the motion of the elbow, where necessary.
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action spaces is required to realize these scenarios, if no obstacles are introduced (Fig. 4.3b).
Otherwise, they will be similar to cases 7 and 11. This in-line placement leads to one person
partially obstructing the other’s action space. In essence, asynchronous motions are favor-
able, which is similar to shared workspace cases such as case 2. Lastly, there is a second
shared workspace in case 19, however, it does not impose any additional restrictions, since
asynchronous behavior is already a favorable option.

• Two degree-of-freedom cases: 4, 8, 14, 15, 16, and 20. These cases are similar due to their
spatial configuration. All of them have one person grasping over the other’s both action
spaces, while having no interaction on their own action spaces. Their dissimilarity lies in
the crossing of motion spaces in case 8. However, since the motion space has to lie in
between the action spaces, there will be no influence of this interaction possibility on the
overall interaction. The first person always grasps over both action spaces, and therefore,
the inclusion of an additional motion space does not change the overall behavior, while the
second person is mostly working in the other’s motion space, which stays the same in case 4
and 8. Considering case 15, one of the action spaces is merged, making it a shared workspace
equivalent of case 4.

4.5 Human Interaction Behavior Modeling

In this work, the idea is to reconstruct a cost function, by learning from human-human interaction
movement data. This motion data is available in the form of a time parametrized trajectory ξ in a
configuration space, which can be defined as follows:

ξ = [q1 . . . qN ]

where qi are the vectors of configuration, and N denotes the number of waypoints. In this work,
we consider a 14 dimensional kinematic model of the human arm. It is assumed that human
motions are optimal with respect to an unknown cost function [235], [59], [82]. This hidden cost
is approximated as a linear combination of user defined features C (ξ) = wTΦ (ξ). In order to
solve the inverse problem of finding the optimal weighting for this cost function, normal inverse
optimal control methods are intractable due to the high dimensionality. We use the sampling based
approach of path integral inverse reinforcement learning (PIIRL) [95]. PIIRL assumes that the
cumulative cost C (ξ) function is composed of a general cost term G, and a control cost term A,
which enforces smoothness, i.e. Φ (ξ) = [G (ξ) , A (ξ)]T . The general cost term has the following
form:

G (ξ) =
∫ T

t=0
φ (qt) dt '

N∑
i=1

φ (qi) δt

PIIRL samples trajectories with low smoothness cost around each demonstration in order to re-
construct the weights of the cost function. The sampling distribution is defined using Multivariate
Gaussians,N (ξd, σR−1), centered at each demonstration ξd, where R−1 = KTK, and K is a ma-
trix of finite differences that computes time derivatives. In this work, we used the finite difference
matrix of the original PIIRL algorithm [95]. The weights of the cost function can be found by
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solving the following minimization problem:

w∗ = argmin
w

= −
D∑
i=1

log e−w
T Φi∑S

s=1 e
−wT Φi,s

where D is the number of demonstrations, S the number of samples around each demonstration,
and Φi, Φi,s the respective feature counts. These weights can be used within a stochastic trajectory
optimizer to generate feasible and predictive human motion trajectories [27].

With this formulation, control policies are found by learning human movement behaviors from
HHI demonstrations. The proposed ontology categorizes expected interaction behaviors, which in
turn allows learning a distinct policy per case. Analysis of the acquired policies informs us about
the possible physiological and behavioral strategies used in dyadic interaction. Next, the details of
the experiments, during which the interaction behavior data was collected, is explained.

4.6 Human-Human Collaboration Experiments

In this section, the experimental setup used to verify our ontology representation is explained.
We conducted two separate experiments for verification. The first experiment used the ontology
cases with the most degrees of freedom of motion, in order to verify whether the ontology is
feasible, and also invariant to the relative positioning of the dyad. The second experiment was
designed to test the rest of the ontology cases, while relaxing some of the controlled parameters
of the first experiment. In this section, we first introduce the task selection for both experiments,
followed by an explanation of the positioning selection of the participants. Lastly, we describe
both experiments.

4.6.1 Task and collaboration case selection

The goal of both experiments was to analyze interaction processes between humans sharing a
confined workspace, and therefore, an adequate task has to be chosen. The task should be simple,
while at the same time generalizable. The simplicity of the task ensures that the main focus of
participants lies on the interaction instead of the task itself. The generalization capacity of the
task extends the application of the results to a broad range of use cases. As a result of those
considerations, we chose a pick-and-place task due to the fact that it is a routine activity and also
part of almost all manufacturing tasks [169]. With this task selection, the collaboration focus is
only restricted to the interaction trajectories.

4.6.2 Relative positioning

Once the task is set, the next step is to define the relative positioning of the participants. In most
interaction experiments, the participants are placed opposite to each other such that each participant
can fully view the other participant’s motion. However, in real-life scenarios, this may not always
be the most feasible setup. An exploration of viable relative positions is necessary in order to
verify its presumed influence on the interaction.
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III

II

I

Figure 4.4: The figure shows the analyzed relative dyad positioning, frontal (I), orthogonal (II),
same side (III). The circular sectors represent the respective sections of the field of
view.

Positioning the interacting partners opposite to each other ensures that each of them are in the
central field of view of the other. Hence, visual distinction of motions, and objects is maximized,
which in turn, improves the reaction times. However, this capability of the human declines with
each degree of eccentricity in the human field of view [177], [178]. For studying the effects of
this change on human interaction behavior, we decided to evaluate three different sections of the
field of view for the experiments: (i) central, (ii) peripheral, and (iii) extreme peripheral field of
view. In the central field of view, the recognition of objects and motions is at its best, whereas the
effectiveness of recognition declines in the peripheral field and vanishes in the extreme peripheral
region [178]. Unlike object recognition, motion directions can still be recognized even in the
extreme peripheral vision, which is argued to be due to the threat detection instincts [179]. In
order to test this hypothesis within our experiment, we decided to position participants in three
different configurations (Fig. 4.4).

4.6.3 First experiment

The first experiment was designed to test two hypotheses:

• H1: Ontology cases are distinguishable with respect to the features extracted.

• H2: Ontology cases are invariant, in terms of the features, to the relative positioning of the
dyad.

We used the ontology cases with the most degrees of freedom in setups, which are cases 1, 2, and
3. These cases can be setup for any relative positioning, since they impose no constraints on the
relative positions of the action spaces with respect to each other. The positioning invariance was
tested for the relative positions I, II, and III (Fig. 4.4), resulting in a total of nine different setups
for the experiment. The initial and final positions of each task were fixed in order to ensure that
a different placement does not skew the results. One experimenter was also designated as one of
the dyad for all the trials for providing steady and fluid behavior. This ensured comparable and
consistent interaction behaviors by the subjects as well as the possibility to interrupt synchronous
behavior -intentionally by the experimenter, if required- that broadens the spectrum of the timing
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behavior.

The experiment was conducted as follows: Experimental procedure as well as the task of the
participant were explained to the subject, and the participant signed a form of consent. Next, the
tracking markers were fit onto their body. At the start, a habituation phase of one minute was
provided, where the experimenter and the participant executed their tasks for random setups, and
the experimenter forced some interactions, in order to familiarize the participant with the task as
well as the experimenter. Afterwards, the experiment was conducted in three sections, with three
interaction cases each. Each section contained the three selected ontology cases from a different
relative position. These sections were randomly selected. The cases in the section were arranged
such that the free motion case 1 was always selected first, followed by a random order of cases
2 and 3. Free motion case (case 1) was set first as it does not enforce any interaction explicitly,
and thus helps participants to get familiar with each relative position. Each of the interactions
took place for exactly one minute, in which the participant and the experimenter should move lego
bricks that formed a tower-like structure from one position to another and vice versa as often as
possible. An effective movement speed was encouraged, in order to guarantee interactions, and to
avoid waiting of participants for each other. Between each interaction case, there was a short break
of half a minute. The experiment has been conducted with ten healthy participants, of which nine
were male and one female of ages 25.3± 2.5.

4.6.4 Second experiment

In the second experiment, we tested the rest of the missing ontology cases, while relaxing the fixed
setup constraint. Position invariance was not investigated as it is verified with the first experi-
ment (Sec. 4.7) and also some of the more complex cases are only viable for a single setup. We
used the relative positions I and II, and only tested the first hypothesis (H1) on classifying ontology
cases between 4 and 20 in this secondary experiment. Those interaction cases were split into two
groups, which were tested with a break in between. The first group consisted of cases without
shared action spaces, i.e. cases 4-12, while the second consisted of the remaining cases, i.e. cases
13-20. The order of the cases within the group was randomized for each participant, while the
order of the groups was kept fixed. This was preferred since the shared manipulation cases require
some degree of synchronization, which gets easier once the participant is more familiar with the
task and the partner. The second participant was again an experimenter in order to ensure a con-
sistent natural interaction. The setups for each recording can be seen in Fig. 4.3b. The procedure
of the experiment was similar to the first experiment. This second set of experiments has been
conducted with 8 healthy participants, of which seven were male and one female of ages 25± 2.4.

4.6.5 Recording and preprocessing

The recording was done by using the optical Qualisys tracking system with eight cameras. The
participant and the experimenter were equipped with optical trackers positioned at the thorax, back,
shoulder, elbow, wrist and hand. It was attempted to place the markers at the following anatomical
landmarks: one at the xiphoid process, one at the Sternum, two randomly along the vertebra, two
at the front and back of the glenohumeral rotation centre, one at the elbow, one at the radial and
ulnar styloid each, and one at the back of the hand. In the second experiment, two trackers were
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attached to the elbow for improving the tracking accuracy. Data was first labeled and corrected
of erroneous trackings, before being exported to a Matlab file. Further processing of the data has
been conducted in Matlab.

The data was recorded with a frequency of 250HZ (∼15000 frames/recording). In a first step, the
recording was segmented automatically, by detecting points at which the absolute velocity of the
wrist was close to zero. Resulting segmentation errors were corrected manually. Subsequently,
a 14 DOF arm model was used to reconstruct the joint angles of the model. Missing data points
were interpolated linearly, and the resulting angles were filtered with a first order Savitzky-Golay
filter. This filtering also helped to compensate for noise and tracking errors. In a next step, the
data was downsampled to 50Hz. A total of 8589 valid movement segments is extracted for both
experiments.

4.7 Results

In this section, we present the results for the previously explained HHI experiments. The details of
the preprocessing steps, the features used for analysis, and the used machine learning method are
provided. Next, we show that the proposed ontology is invariant to the positioning of the dyad for
a subset of the ontology cases (H2 in Sec. 4.6.3). This is followed by case classification results for
the full (20-case), and the reduced ontology (7-case). Subsequently, we briefly introduce results
on the intrapersonal level. Lastly, by modeling ontology cases distinctly as a combination of cost
functions as a proof-of-concept representation, an analysis on how such cost distributions change
w.r.t. the ontology case is presented.

4.7.1 Features

It is first necessary to find a measure of the interactivity in order to classify interactions. Refer-
ring back to section 4.3, the most important factors for the interaction are location and timing
awareness, if the task is known. The location property during the interaction can be captured by
the pairwise distances between kinematic features of agents. For a similar problem, Mainprice et
al. [27] used the pairwise distances between the recorded joint positions. However, this measure is
not representative enough, since it does not measure the shortest distance between the limbs, which
could also have contact even the distance between the relevant joints is not close to a critical value,
e.g. if forearms of agents crosses each other orthogonally. Hence, we also compute the pairwise
shortest distances between the limbs as additional features.

The total feature vector has a dimension of 25. For the classification of each case, we used the
mean feature values for each segment. The classification was conducted using a support vector
machine (SVM) with a quadratic kernel. For training purposes, holdout validation was used.

4.7.2 Location invariance

We used the data from the first experiment to validate the hypothesis (H2) on positioning invari-
ance. A SVM classifier is trained for the three ontology cases with a 50% holdout validation,
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1 2 3 4 8 14 15 16 20 5 6 9 13 19 7 11 10 12 17 18

1 89.6 7.2 1.9 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.5 0.1 0.1 0.0 0.0 0.0 0.0

2 8.7 80.9 6.4 0.6 0.2 0.0 0.9 0.0 0.1 1.0 0.1 0.3 0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0

3 2.6 12.7 77.1 0.0 1.2 1.2 0.7 0.6 0.4 0.5 0.4 0.2 0.1 1.0 0.2 0.1 0.2 0.2 0.3 0.1

4 1.0 12.6 0.2 70.0 6.4 0.3 8.4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

8 0.2 5.5 1.4 8.6 69.9 4.6 6.1 2.2 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 0.1 0.5 7.7 0.0 3.8 63.9 3.2 11.5 8.7 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

15 2.0 11.9 1.0 5.5 5.7 2.2 67.1 0.4 3.0 0.0 0.0 0.0 0.0 0.0 0.9 0.2 0.0 0.0 0.0 0.0

16 0.0 1.8 6.6 0.0 2.5 14.4 2.6 61.1 10.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

20 0.7 2.1 4.1 3.5 3.1 5.8 6.1 9.0 64.4 0.0 0.0 0.0 0.0 0.0 0.9 0.3 0.0 0.0 0.0 0.0

5 0.4 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.2 3.6 15.9 18.2 2.1 0.0 0.0 0.4 0.1 0.6 0.5

6 0.1 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.9 84.9 5.2 2.4 1.6 0.0 0.0 0.6 0.2 0.7 0.4

9 0.7 1.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0 19.4 4.5 51.9 14.5 2.5 0.0 0.0 1.0 0.9 1.4 0.4

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.4 0.4 5.5 79.5 0.0 0.0 0.0 0.0 0.0 0.1 0.1

19 4.3 13.0 1.0 0.0 0.0 0.0 0.0 0.0 0.1 2.5 1.7 2.3 1.2 73.4 0.0 0.0 0.1 0.0 0.3 0.0

7 6.1 3.3 3.8 1.5 0.4 0.4 1.5 0.1 0.6 0.0 0.0 0.0 0.0 0.0 66.5 15.8 0.0 0.0 0.0 0.0

11 1.5 3.6 4.5 1.3 0.5 0.5 0.8 0.7 0.9 0.0 0.0 0.0 0.0 0.0 18.0 67.7 0.0 0.0 0.0 0.0

10 2.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.9 2.7 1.1 0.3 0.6 0.0 0.0 61.3 9.7 18.7 1.9

12 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.2 1.0 0.0 0.0 0.0 0.0 22.5 51.6 11.1 8.3

17 1.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 2.3 0.9 0.2 0.3 0.0 0.0 12.4 3.4 68.7 9.1

18 0.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.4 5.2 1.2 1.6 0.0 0.0 0.0 6.3 7.9 32.5 43.4

Table 4.1: Normalized confusion matrix for the interpersonal analysis with the full ontology. Order
of the ontology cases according to reduced ontology.

each of which consisted of recordings from three different dyad positioning. We then computed
the confusion matrix with respect to the prediction of each case, and the relative position used in
the recording (Table 4.2). The recognition rates for each case are above 83%. Furthermore, the
misclassified segments are evenly distributed among the relative positions, which indicates that
no relative position has a strong influence on the misclassification rate. Consequently, those on-
tology cases are location invariant w.r.t. the features used, supporting the first hypothesis (H1 in
Sec. 4.6.3) we investigate.

4.7.3 Ontology classification

Classification accuracy for all ontology cases were assessed by using the data of all participants,
and randomly splitting them into two holds of 50% data size. In a next step, we trained a quadraric
SVM for 100 times and computed the normalized confusion matrix both for the full ontology (20-
case, Table 4.1), as well as the reduced ontology (7-case, Table 4.3). The confusion matrix of the
full ontology is sorted by the respective merged cases, for which the overall recognition rate of
74% is achieved. Considering the block diagonal structure of the correct and incorrect recognition
rates, the merged cases cover most of the misclassifications. This is further confirmed in the
confusion matrix of the reduced ontology, for which the overall recognition rate increases to 88%.
Furthermore, the remaining highest misclassifications mostly result from cases 2 and 3, with the
rest having a recognition rate above 85%.
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Actual Case

1 2 3

Pr
ed

ic
te

d F O S F O S F O S
1 - 91 - 3 3 2 1 1 1

2 3 3 4 - 83 - 2 2 3

3 1 1 2 4 5 5 - 83 -

Table 4.2: Normalized confusion matrix for the location invariance. Predictions are further split
into the tested dyad positions, frontal (F), orthogonal (O), same side (S).

Predicted class
% 1 2 3 4 5 7 10

C
or

re
ct

cl
as

s

1 89.6 6.9 1.8 0.2 1.2 0.2 0.1

2 8.2 78.2 6.3 3.5 3.8 0.0 0.0

3 2.6 13.0 76.7 4.3 2.3 0.3 0.8

4 0.7 3.1 2.1 93.6 0.0 0.5 0.0

5 0.8 1.5 0.5 0.0 95.9 0.0 1.2

7 2.8 2.6 2.5 6.9 0.0 85.2 0.0

10 0.9 0.0 0.0 0.0 6.7 0.0 92.4

Table 4.3: Normalized confusion matrix for the interpersonal test with the reduced ontology.

4.7.4 Intrapersonal classification

For the intrapersonal classification, we could use the data of six participants who performed both
experiments. All of them were male of age 25 ± 2 years. The classification was conducted us-
ing the reduced ontology with seven cases. The results of each person vary from 89.2 to 93.5%
(Table 4.4 first row), which is comparable to the results from the complete dataset. By testing the
classifiers from each individual person against the rest of the data, we evaluated the generalization
of individual behaviors to the overall behavioral patterns. These recognition rates range from 38.3
to 67.4% (Table 4.4 second row), which are significantly less than the overall and intrapersonal
classification results. On the one hand, individual behavior generalizes up to some degree, espe-
cially in cases around 65% recognition rates, which are above chance. However, on the other hand,
each individual person still has distinct behavioral patterns during interaction. This argument is
further supported by tests, in which the individual data is classified with the model trained on the
rest of the data (Table 4.4 third row), for which the recognition rates range from 66.0 to 85.7%.
This improvement compared to the individual rates indicates that a broader range of behaviors is
able to generalize quite well, and that most behaviors fall into this generalization.
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4.8 Discussion

Subject# 1 2 3 4 5 6

Intra-Subject 91.0 89.2 91.7 92.4 92.9 93.5

Subj vs Group 67.4 38.3 46.8 65.3 63.8 61.6

Group vs Subj 66.0 67.7 69.6 83.5 85.7 76.4

Table 4.4: Results of intrapersonal movement behavior classification tests. First row: testing intra-
subject, second row: subject versus rest, third row, rest versus subject.

4.7.5 Cost comparison

In order to check whether the ontology could represent different interaction behaviors, control
models for each case were learned from data. Those models are found as a combination of cost
functions by the previously introduced path integral inverse reinforcement learning (PIIRL) ap-
proach. By sampling trajectories according to the covariance matrix used as in the work of Main-
price et al. [27], it could be guaranteed that the produced samples have minimal jerk. Furthermore,
the samples were restricted to the range of motion shown during the experiments. For the compos-
ite cost function, the shortest distance features as well as the distances between joints were used.
The resulting weighting vectors for ontology cases one to three reveal differences on the control
policies (Fig. 4.5). The feature weights correspond to the pairwise distances between the humerus,
forearm, and hand (features 1-9), as well as the distances between the shoulder, elbow, wrist joint
and the furthest measured point of the hand (features 10-25). Although most feature weights are
zero, i.e. they are negligible in the control policy, the rest distinguishes the influence of features
between all three cases.

4.8 Discussion

In this section, a further analysis and discussion of our results is presented. For the ontology cases
1, 2, and 3, we have shown that those cases are invariant to the dyad positioning. Despite only a
subset of the ontology cases were tested, we assume that this either holds true for the rest as well,
or for some cases is infeasible to evaluate. This assumption is based on the fact that the tested
cases are the least restricted of the whole ontology. There is no shared workspace (case 13), or
necessary specific setup (case 10), or restrictions of the motion of one participant (case 8). Hence,
we assume that a dependence on the positioning of the dyad, if it exists, would be visible in those
cases with high degrees of freedom. Since such a difference was found to be small, the variance
due to the positioning of the dyad w.r.t. the features used for representing them is assumed to be
negligible for other cases as well.

The results from the classification analysis have provided multiple insights into the dyadic inter-
action behavior control. First, the used features can adequately describe and distinguish different
interaction scenarios. Second, we could show that the construction of the full ontology is reason-
able, since it recognizes each case with a rate of at least 45%, which is 40% points above chance,
and in general above 60%. Furthermore, the analysis on the full ontology indicates that it is fea-
sible to merge some cases due to their similarity. The resulting reduced ontology has also proven
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Figure 4.5: The feature weights for three different ontology cases. Feature sets are the minimal
distances between segments (humerus, forearm, hand) in capital letters, and between
joints (shoulder, elbow, wrist, hand) in lower case letters. Distances are in the form
Person1-Person2.

to be effective, increasing the overall recognition rate up to 88%. It has to be noted that there
also exist different feasible mergers, as it can be seen in the confusion matrix of the full ontology.
Nevertheless, most of the merged cases would still be similar to the merger we proposed in this
work, for which we picked the most effective combinations based on a systematic deduction and
data analysis.

The results from the intrapersonal analysis also support the feasibility of the reduced ontology. The
high average intrapersonal recognition rates of 91.8% confirm that there exist distinct interaction
scenarios which demand different dyadic movement behaviors. Still, these interaction scenarios
also depend strongly on individual behavior, as it can be seen in the group comparison results.
However, this individual behavior is generalizable for each ontology case, based on the general-
ization results, as well as the interpersonal results.

In addition to the location invariance for the first three cases, with the second experiment, we have
shown that the ontology is also invariant to small setup changes, as slight variations on the action
spaces were intentionally enforced. This is further supported by the better classification results of
the merged ontology. Additionally, the proposed ontology is claimed to be task invariant, and as
such usable in a multitude of scenarios. This is presumed valid due to the fact that most manip-
ulation tasks can be split into pick and place tasks [169]. The only restriction on this assumption
should be the actions on objects that dynamically influence the motion of the actor. The ontology
framework can also generalize to joint tasks, such as hand over tasks, or joint assembly tasks. This
would be realized by using cases with a shared workspace, while enforcing the synchronicity of
the dyad behavior.

Besides classifying human motion behavior, we also tried to verify if humans tend to synchronize
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in different setups. We could observe the tendency to synchronization during the experiments.
However, we were unable to show this effect in our synchronization estimate. We attribute this to
the difficulty to measure synchronization for tasks, in which the motion trajectories are intersecting,
as well as for tasks, which allow a variance of end effector poses at each action space.

Lastly, the cost functions of the three presented cases distinctly encode the control policies accord-
ing to the human behavior. For the first ontology case, which has the highest degree-of-freedom,
only the distances between the hand points (feature 25) as well as between the forearm of agent 1
and the humerus of agent 2 (feature 4) are constrained to ensure that no collisions take place in this
case. In comparison to case one, case two and three have distinctively stronger restrictions on the
motion. Case two has larger and more active weights, due to the closer interaction between both
hands during the grasping action, whereas case three is less restrictive due to the broader options
for crossing arms. Overall, it can be seen that different ontology cases can result in different cost
functions, and thus unique interaction behavior control policies. Especially, if dyadic movements
are close to the action spaces of the users, the control strategy gets more restricted.

4.9 Conclusion

In this work, we presented an ontology for HHI for a shared workspace scenario. We derived
an interaction model based on insights from psychology and neuroscience, and used that model
to derive the ontology. This ontology was analyzed in depth, and a reduction of the ontology
cases was proposed. It has been shown that the reduced ontology can be recognized with high
accuracy. Moreover, we have shown that the ontology generalizes well to different behaviors, and
that it can partially handle unknown behaviors. Invariance to dyad positioning for a subset of
ontology cases has also been demonstrated. Lastly, unique interaction policies, that a robotic agent
can use to generate interaction motions, have been learned for each case. In essence, the proposed
ontology is a first step towards understanding close proximity collaboration behaviors in detail, and
transferring humanlike dyadic movement control policies to robotic agents for achieving natural,
safe and effective human-robot collaboration.

This study not only encourages but also provides a generic procedure for systematically exploring
non-physical, close proximity interaction movement behaviors and building control policies for
dyadic interaction in subsequent studies. Such a thorough coverage and analysis of HHI cases will
serve as a base and reference for later studies to propose and benchmark new learning algorithms,
and evaluate close proximity HRI behaviors for a wide range of scenarios.

In future work, the control policies learned can be used both to predict human motions, and also
to control the robot movement during close interaction. Such an experiment would show if the
ontology can directly be transferred to HRI, or whether human partners exhibit a different behavior
during HRI. Furthermore, it would be useful to test the ontology with different tasks, in order to
verify the proposed task invariance further.
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5
Learning of Interaction Behavior Control
Using RNNs: From HHI to HRI1

A key problem in robotics is enabling an autonomous agent to perform human-like arm movements
in close proximity to another human. However, modeling the human decision and control process
of movement during dyadic interaction presents a challenge. Although most prior approaches rely
on multi-component robot motion planning architectures, we use data of two humans performing
interfering arm reaching movements (Ch. 4) to extract and transfer interaction behavior control
skill to a robotic agent. In addition to learning control policies by inverse reinforcement learning
as described in the previous chapter, I proposed a novel framework to learn interaction behav-
ior control for a robotic agent directly from data by using recurrent neural networks (RNNs) and a
novel activation function. However, instead of learning a policy as a combination of predefined fea-
tures, here the focus is on learning robot end effector control from human-human interaction (HHI)
demonstrations without making any modeling assumptions on the dyadic movement behavior. A
recurrent neural network based framework is constructed to learn a policy that computes control
signals for a robot end effector in order to replace one human. The learned policy is benchmarked
against unseen interaction data and a state-of-the-art learning from demonstration framework in
simulated scenarios. We compare several architectures and investigate a new activation function
of three stacked tanh(). The results show that the proposed framework successfully learns a policy
to imitate human movement behavior control during dyadic interaction. The policy is transferred
to a real robot and its feasibility for close-proximity human-robot interaction is shown.

5.1 Introduction

Working in close proximity with interfering arm reaching movements is one of the challenges that
humans master very well. They manage to account for a large variety of different behavioral rules,
e.g. collision free reaching actions, achieving complex task goals and making it easy for other
humans to predict their actions. As robots become ubiquitous in our daily lives, they are expected
to interact with humans in close proximity in such a natural, effective, and yet safe way.

1This work has been submitted to and under review in the following publication: [241]
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Figure 5.1: The interaction skill is transferred from HHI data to the HRI scenario. P1, P2: person
1 and 2 in the dyad, R: robotic agent, continuous line: hand movement, dashed line:
inputs (Perception) and outputs (Action) to RNN controller.

One major challenge is the wide variety of relevant spatial and temporal behavioral features that
the human movement exhibits during an interaction scenario. A second challenge is that there is no
ground truth of how to behave in a Human-Human Interaction (HHI) or Human-Robot Interaction
(HRI) scenario, as humans display inter- and intrapersonal movement variance. These require
either a comprehensive framework with many components each dedicated to such subtle features,
or a very capable learning structure. Consequently, this problem has been typically solved by
equipping the robot with several task-specific behavioral models to achieve human-like interaction
skills, including mechanisms for collision-avoidance, path re-planning, movement prediction [27],
[242]. These aggregated approaches fall short of effectively generalizing to new task conditions,
and taking into account movement variations of both partners.

Instead of building designated components and combining them, the interaction skill learning can
be taught with learning from demonstration (LfD), as we follow in this work. However, it is still
a challenge to learn a policy that both enables the robot to perform a human-like interaction be-
havior in close proximity to a partner, and also generalizes to unseen situations. Unlike an isolated
skill training, interaction behavior learning has to incorporate dyadic interaction and task related
features by using appropriate demonstrations. In essence, interaction skill enforces adaptation of
agents to each other’s motion behavior, while executing goal-directed movements.

This work proposes a framework to learn interaction behavior control for a robotic agent. Dyadic
interaction trajectories of two humans working in a confined work space are used as demonstrations
to learn a policy (Fig. 5.1). The focus is on learning robot end effector control for goal-reaching
arm movements. We simultaneously use perception and actions of a reference HHI scenario in
order to learn this mapping. Perception, in our case, refers to the relative positioning information
of two partners’ hands. Acceleration values of human hand are used as the action signals. For the
training, we particularly investigate recurrent neural networks (RNNs) as they have demonstrated
their capabilities on sequence learning tasks.

The aforementioned challenges are addressed by using recurrent neural networks as they are capa-
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ble of learning a variety of subtle features together with remarkable generalization capabilities. As
a starting point, we use a couple of RNN-cell types, Long Short-Term Memory (LSTM) [180] and
Gated Recurrent Unit (GRU) [181], and then explore potential improvements specifically for HRI.
The contributions of this work are:

• Development of a framework for cross-domain sequence learning of control signals from
positional data.

• Imitation of human interaction behaviors with a varying level of detail depending on the
network complexity.

• Thorough comparison of different RNN architectures, including a newly introduced activa-
tion function, that demonstrates the effectiveness of learning from HHI to control an au-
tonomous agent during HRI.

While this approach is mostly validated in a simulated scenario, the learned policies were success-
fully applied to control a redundant robotic arm (KUKA LWR4+), and tested for close proximity
human-robot interaction online.

5.2 Related Work

Here, we categorize and review different lines of research due to the multidisciplinary nature of
our work.

Interaction Modeling Approaches Here, we focus on studies where human factors are con-
sidered for robot action and motion planning. One group of studies focus on specific collaboration
scenarios. One approach uses interaction meshes in order to facilitate a human-robot LEGO rocket
assembly task [182]. Additionally, Lee and Ryoo make use of image-based interaction informa-
tion to implement an HRI placing scenario [183]. For both of these approaches the demonstrated
capabilities are very scenario-oriented and it is unclear how well they can generalize in a broader
sense.

A second important line of research are planning based approaches. The key idea is to re-plan
robot actions and motions by adapting to the human movement behaviors [237], [238], [27], [184],
however, the multiplicity of components in those architectures enforces tight coupling between
functionalities and makes them harder to maintain. In addition, the generalization capability of
these approaches were seldom tested extensively.

Several studies investigate motion synchronization between partners, where the robotic agent
adapts to the motion of the human partner [125], [185]. Lee et al. formulates an interaction model
learning for a high five-like interaction task [185] . Agent learns how to synchronize with the
human by recognizing its partner’s reaction and then by encoding the bidirectional movement pat-
terns with an HMM. The HMM is also used to generate similar interactions. Instead of learning
motion and interaction separately, Amor et al. formulates an interaction primitive to directly gener-
ate synchronous movement by responding to an observed human motion [125]. While the focus is
on motion synchronization for both studies, pick-and-place tasks may also involve asynchronous
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dyadic movement patterns, which increases the complexity of modeling such interaction move-
ments.

A recent study follows a similar path as we do by learning interaction behaviors with RNNs,
and extracting HRI information from image data [186]. Although the authors manage to learn
joint position controllers, unlike ours, their approach is not based on HHI but only on HRI data.
Moreover, their focus is on discrete action selection and adaptation w.r.t. the action taken by the
human, and thus interfering motion trajectories were not considered. Nguyen et al. also follow a
similar approach using advanced LSTM architectures [187], however, again with a focus on high-
level action sequences rather than control of the movement. Pellegrinelli et al. extend prior work
on POMDPs, and considers not only high-level action selection but also motion control of the
robotic partner [188]. The focus is on autonomous action-selection given predicted human goal
to provide assistance. The interaction is assessed quantitatively and also by subjective evaluation.
However, the control output and the movement patterns of the robot has not been investigated in
terms of similarity to human close proximity interaction behavior.

NN-Based Skill Learning Besides approaches that explicitly model the interaction aspect,
there is also a related area of robot skill learning that in general gives a good foundation on how
a robot can learn to act and interact with its environment. The latter is the key differentiating fac-
tor from our work. Tanneberg et al. use spiking RNNs to teach a robot obstacle avoidance with
dedicated neurons to capture the scene [189]. Unlike our approach they do not use generic HHI
data but solely kinesthetic teaching that does not capture the interaction explicitly. Another recent
approach tackles obstacle avoidance by using neural networks to learn coupling terms for dynamic
movement primitives [190]. However, the focus is on rolling out trajectories that avoid static ob-
stacles. In contrast, during dyadic interaction both parties affect each other’s movement constantly,
hence the control policy has to be able to tackle such dynamic changes in the environment.

RNN in Control of Dynamical Systems RNNs have also been subject to pure control the-
oretic investigation. Particularly studies from the late 1990s had a large impact and in general
supported the feasibility of RNN-based controllers. One fundamental study investigated stability
parameters for control systems with RNNs [191], however without direct application in complex
skill control. For robotic arm controllers an early approach demonstrated that RNNs can be used
to follow reference trajectories [192]. In addition, there exists general work on control and iden-
tification [193] using diagonal RNNs and using recurrent fuzzy neural networks [194]. However
none of those explicitly focuses on interaction scenarios.

Learning-Agnostic HRI Methods There is also a variety of HRI methods without neural
networks, which is one of the key differentiators regarding our work. We highlight some important
work to show what is adjacent to our problem. Gabler et al. [237] model the interaction scenario
with a game theoretical approach to choose robotic actions. However, unlike our approach the
actual trajectories are based on a set of predefined Dynamic Movement Primitives and based on
a predefined trajectory model. Hence, it is not clear how such an approach could be used to
learn generic non-model-based interaction. Mainprice et al. developed an advanced re-planning
algorithm together with inverse optimal control for close-collaboration scenarios [27]. They pursue
a similar path as we do, re-planning trajectories on the fly, but it is unclear how this approach
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could generalize to a larger variety of new scenarios. Lasota and Shah focus on human-aware
motion planning which also combines perception of the human with adaptive planning [184]. Their
approach explicitly predicts the interacting human’s trajectory and thus represents an approach that
composes the HRI functionality from different modules, which is not necessary in our model as
we immanently capture all relevant relationships with the neural network. Besides these behavior-
oriented work, there exists classical control theory in HRI. De Luca and Flacco [195] developed
a dedicated control framework including collision avoidance suitable to a collaboration scenario.
Haddadin et al. investigated how dangerous injuries can be prohibited when a robotic arm handles
tools in the proximity of a human [196]. Both approaches focus on the challenge of minimizing
collisions and their harm respectively, not basing control on HHI trajectory data in an end-to-end
framework. This mainly distinguishes their work from ours, as we implicitly assume that all safety
relevant features can be captured by the neural network.

5.3 Methods

In this section, we outline our methodology to construct a framework for learning robot end effec-
tor control from human-human interaction demonstrations. Two Recurrent Neural Network (RNN)
architectures along with a newly proposed activation function are described, followed by the for-
mulation of sequence learning by RNNs. Next, we introduce the dataset used and the features
extracted. Lastly, we explain the training and testing procedures we followed.

5.3.1 Recurrent neural networks

RNNs are function approximators and suitable to sequence learning. Like feedforward networks,
RNNs are typically organized in layers. Input signals are propagated through the network start-
ing with the network inputs to the first layer. In this study, we focus on two well-established
RNN structures, the Long Short-Term Memory (LSTM) [180] as well as the Gated Recurrent Unit
(GRU) [181]. Let xt be inputs and yt be outputs of a layer j at time step t. Furthermore, let � de-
note the element-wise multiplication for two vectors, and σ as well as φ denote different nonlinear
activation functions. Then, we obtain the following equations for the LSTM network

ijt = σ
(
Wj

i,xx
j
t + Wj

i,yy
j
t−1 + bji

)
(5.1)

f jt = σ
(
Wj

f,xx
j
t + Wj

f,yy
j
t−1 + bjf

)
(5.2)

ojt = σ
(
Wj

o,xx
j
t + Wj

o,yy
j
t−1 + bjo

)
(5.3)

gjt = φ
(
Wj

g,xx
j
t + Wj

g,yy
j
t−1 + bjg

)
(5.4)

cjt = f jt � cjt−1 + ijt � gjt (5.5)

yjt = ojt � φ
(
cjt
)

(5.6)

For the GRU network, we obtain similar equations. However, here the concept of memorizing and
forgetting information is captured with less computational steps and parameters.
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(
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)
+ bjỹ

)
(5.9)

yjt = zjt � yjt−1 +
(
1− zjt

)
� ỹjt (5.10)

Each multilayer network of LSTM or GRU units is followed by a linear output layer yout =
Woutxout + bout. Those widely-used cell types use the concept of memorizing information in
several stages: first, by reusing outputs from previous time steps yt−1, second, by computing ct
from ct−1 in LSTM and yt from yt−1 in GRU architectures. From now on, the variable θ of an
LSTM-based or GRU-based network summarizes the matrices Wj,Wout and vectors bj,bout for
all layers and activation functions including the linear output layer. Next, we introduce a novel
activation function to improve the network performance.

5.3.2 Activation functions

For LSTM and GRU networks, in general, σ = sigmoid and φ = tanh have been used as the
activation functions. While we use and analyze them in this work, we introduce another function
that is dedicated to the properties of HHI. In particular, we replace φ for the GRU cell with a
composition of several scaled tanh() functions:

φ (x) = 1
3

3∑
p=1

tanh (s (x− xp)) (5.11)

where x1, x2, x3 are constant offsets and s is a scaling factor. We refer to it as triple-tanh. While
the composition of several activation functions is a well known idea, e.g. with a piecewise linear
function [197], we choose the combination parameters to suit the interaction learning process. The
parameters are chosen as x1 = −2, x2 = 0, x3 = 2, s = 4, with inflection points: (−1.00,−0.33)
and (1.00, 0.33) (Fig. 5.2). This results in similar saturation behavior as for the tanh()-function at
the borders. Moreover, the inflection points support convergence of the GRU’s ỹ, i.e. how much of
the previous state needs to be carried over, as a distinct range of input values is mapped to an almost
fixed output value through the activation function. Because yt is a convex combination of yt−1 and
ỹt (eq. 5.10), a convergence of yt and thus yt−1 will typically coincide with a convergence of ỹt.
This activation design choice can be used by the network to learn a more complex state conver-
gence. Moreover, as the activation function is applied element wise on multiple coordinates, a state
saturation of one coordinate may trigger a different dynamic behavior of another state that can be
beneficial to generate outputs for a natural interaction behavior. In essence, for close proximity
interaction trajectories, we assume three phases, where the dyadic movements approach, are in
close proximity to, and move away from each other. This motivates defining a multistage activa-
tion function to be able to differentiate a range of input values and to map them to corresponding
output control signals distinctively. The inputs capture relative positioning information and thus
the triple-tanh function indirectly captures a temporal together with a spatial behavior. Note that,
for the LSTM it is not intuitive to draw similar connections as the architecture is different than
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Figure 5.2: The classical tanh() and the introduced triple-tanh() activation function for x1 =
−2, x2 = 0, x3 = 2, s = 4

GRUs. Thus, we do not use the triple-tanh activation function for the LSTM cells in our analysis.

5.3.3 Learning sequences with RNNs

In general, the motivation for sequence learning is to predict future outputs within the same do-
main as the input space. However, in this work, supervised learning with RNNs is used to learn
sequence of control signals from spatial interaction data. Therefore, spatial input sequences,
Xk = [x0,k,x1,k, ...xnk−1,k], and acceleration output sequences, Yk = [y0,k,y1,k, ...ynk−1,k], of
length nk are presented to the neural network, where k is the batch index. Then, a mapping is
learned to estimate the necessary acceleration signal, Ŷk, given a spatial input feature sequence.
The resulting prediction error can be measured with a cost or distance metric. This error typically
accounts for multiple sequences either as part of a batch or regarding the full data set. In our case,
we use a mean squared error that is normalized w.r.t. each single sequence pair’s length. In order
to optimize the prediction, we have the following minimization problem

min
θ

D =
∑
k∈K ‖Yk − Ŷk‖2

2∑
k∈K nk

(5.12)

where K is the index set of sequences under investigation in one batch, and with all variable
network parameters summarized as θ. The optimization is approximately solved with numerical
methods, for which we use the BFGS algorithm [198], and the backpropagation algorithm is used
for updating the weights [199]. It is important to highlight that training is performed on full
sequences that were already recorded. Recall, in this work we refer to this learning type as off-line
learning. Having introduced the computational components of our implementation, we can now
focus on the interaction scenario itself.

5.3.4 Data

We use human-human interaction motion-capture data of close-proximity reaching movements
that was recorded for the ontology construction presented in Chapter 4. The same dataset from the
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Name Num. train. Max. len. Num. test

D1 31 212 169 23
D2 12 664 124 38
D3-1/2/3 15 312 109 200

Table 5.1: Data sets. Num. train.: number of training samples, Max. len.: Number of time steps for
the longest sequence in the data set, Num. test.: number of test samples. The sets D3-1,
D3-2, D3-3 have the same size but are created through random shuffling of superset they
are taken from.

human-human interaction (HHI) experiment conducted (Chapter 4.6) is used for this work. The
hand positions sH,P1 and sH,P2 of the persons P1 and P2, respectively, are extracted. From now on,
we assume that the robotic agent is supposed to learn the movement of P1 as part of the interaction
scenarios. In order to eliminate a directional bias, we augment the original data by rotating it with
90, 180 and 270 degrees [200].

After these pre-processing steps, the input and output sequences are computed. Two features are
used to capture the interaction movement behavior of the hand movements. First, fH2G,t stores the
distance between P1’s current and goal hand position, sH,P1,t and sg,P1,t, respectively (Eq. 5.13).
Second, fH2H,t describes the relation between two persons’ hands, sH,P1 and sH,P2, and is computed
by a slightly modified formula of the potential fields approach (Eq. 5.14).

fH2G,t = sg,P1,t − sH,P1,t (5.13)

fH2H,t =


S(d∗, d) (sH,P2,t − sH,P1,t) , if dt > d∗

0 , otherwise
(5.14)

where S(d∗, d) =
(

1
d∗ − 1

dt

)
1
dt

, dt = ‖sH,P2,t − sH,P1,t‖ and d∗ = 400mm is a heuristically chosen
constant. These metrics are then used to define the network input sequences. The output sequences,
i.e. the control signals to be learned, are the P1’s hand acceleration values and hence, we compute

aH,P1 = ∇2sH,P1 (5.15)

with (∇ζ)t = ζt+1−ζt−1
2 for intermediate, (∇ζ)0 = ζ1 − ζ0 and (∇ζ)nk−1 = ζnk−1 − ζnk−2 for

initial and terminal time steps. Then, the input and output sequences are formed as

Xk =
fkH2G,0 fkH2G,1 ... fkH2G,nk−1

fkH2H,0 fkH2H,1 ... fkH2H,nk−1

 ∈ R6×nk (5.16)

Yk =
[
aH,P1,0 aH,P1,1 ... aH,P1,nk−1

]
∈ R3×nk (5.17)

For further computations, the raw data, Xk and Yk, that is presented to the neural networks is
normalized to [−1, 1].
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Figure 5.3: On-line simulation signal workflow: 1) sg,P1, sH,P2, sH,P1 are captured in fH2H , fH2G, 2)
The results are mapped from mm and 1/mm to [−1, 1], 3) Trained network computes
outputs, 4) Features are mapped from [−1, 1] to accelerations in mm/s2, 5/6) double
numerical integration to compute simulated hand position sH,P1.

Based on this formulation, we extract several sub data sets from the recordings. The different data
sets are chosen in order to validate the influence of different design metrics (Table 5.1). As the
recordings comprise different scenarios due to variations in positioning, trajectories belonging to
similar setups are labeled accordingly. Hence, we are able to test performance on similar as well
as different interaction scenarios. For the training sets D1 and D2, a small set of recordings are left
out to test the learning performance on setups that are different from the ones used during training.
For the training sets D3-n, we use a subset of scenarios consisting of three different interaction
setups, and for each, 5% of the data is left out for testing.

5.3.5 Training

We train several architectures (Table 5.2) in order to identify relevant parameters that impact the
learning performance for interaction data. The open source framework TensorFlow™ is used. For
LSTM, we use a conventional implementation with a forget bias of 1 that is added to bj

f (Eq. 5.2)
as in [201]. The GRU networks are directly based on the original study [181]. The network states
are reset to 0 before processing each sequence. The variables are initialized using an initializer,
that draws uniformly distributed samples from

[
−

√
6√

nin+nout
,

√
6√

nin+nout

]
with the respective matrix

dimensions nin and nout [202]. The exceptions are the RNN cell biases which are initialized to 0,
and the biases in GRU that contribute to r and z (Eq. 5.7, 5.8), which are initialized to 1.

5.3.6 Simulation

While we trained on full input and output sequences, our aim is to learn a policy from this off-
line process to control on-line behavior. During testing, the network is only presented with the
initial inputs and then at each time instance computes a new output control signal which again
influences the simulated robot end effector position. As we predict acceleration signals, we need
to integrate the re-scaled output twice, which is done with the trapezoid rule (Fig. 5.3). The
simulation runs for 200 time steps, each 32ms. We also investigate how robust the learned behavior
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is in the presence of uncertainty. Hence, we also test on a case where a normally distributed
noise N (µ = 0mm, σ2 = 9mm2) is added as independent noise sources to P2’s hand position
sH,P2, as well as to P1’s target hand location sg,P1. Note that, this corresponds to equally adding
noise to sH,P1 as we constructed our features, fH2G, fH2H, to contain these variables as differences
(Eq. 5.13, 5.14).

5.4 Results

In order to investigate how well the simulated robotic hand compares to the observed pattern, we
conduct a variety of tests. One major challenge is to measure the performance because there is not
any standard similarity metric for gauging dyadic interaction behavior quality. Thus, we introduce
several metrics to evaluate the imitated interaction behavior quantitatively. Recall that we always
simulate the interaction scenario with the learned policy, and compare the resulting behavior with
the trajectories of the person’s hand that the robot is supposed to mimic in the interaction. In
that regard, we maintain two different view points to analyze the results: first, demonstrating the
success of our approach by showing that for a wider variety of architectures we successfully learn
the interaction pattern; second, comparing different architecture clusters, i.e. combinations of
comparable units per layer and data sets in order to examine the effectiveness of different cell
types. Each cluster comprises 3 configurations, i.e. C1-3, 4-6, . . ., 22-24. Here, we investigate the
cell-type performance in a winner-take-all manner, highlighting the order of performance under the
corresponding test metric (Table 5.2). For C16-24, we use averaged values of each performance
criterion, using the mean over the models that were trained based on three differently shuffled data
sets. In terms of reaching criterion, we focus on a region of 30mm around the goal hand position
and consider the target reached, if the simulated, or the recorded, hand permanently stays within
this region for the remaining of the simulation after a time step t0.

5.4.1 Human-likeness

While there is a variety of possible metrics to measure human-likeness, we define it as spatial and
temporal hand trajectory similarity between the recorded and the simulated data, in the segment
until t0. The spatial similarity is measured using Probabilistic Movement Primitives (ProMP) [127]
which is a model to capture the statistical properties of sequential movement data. Note that, we
use both the forward and the backward movements as separate interaction cases. In that regard, we
fit a ProMP model to each of the forward and backward trajectory test subsets with an interpolated
fixed number of time steps. These distributions are then compared by KL divergence against the
simulated end effector trajectories as part of the interaction scenario. The results are benchmarked
based on architecture details (Table 5.2).

Overall, we see that different architectures can create similar results. First, the comparison in ar-
chitecture clusters slightly favors LSTM-based networks for test cases which are spatially different
than the data used to train the networks, i.e. C1-15. Second, for the similar train/test case archi-
tecture clusters LSTM based networks perform slightly better as well, i.e. C16-24. In general, KL
divergence metric is not intuitive to interpret and we observe similar values related to a dataset.
Additionally, we empirically show that, if we vary the network sizes in a broader range, the simi-
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C. Net Units Data KL div. bw KL div. fw Reach Time MSE Terminal Dist. Num. reached

(no n. / noise) (no n. / noise) (no n. / noise) (no n. / noise) (no n. / noise)

ProMP-based ProMP-based [s2] [mm] [%]

1 GRU3t 2 x 5 D1 6e+03 / 9.8e+03 4.5e+03 / 7.4e+03 29 / 29 9 / 17 4 / 4

2 GRU 2 x 5 D1 3.8e+02 / 3.6e+02 4.8e+02 / 6.6e+02 0.26 / 1.5 13 / 13 100 / 100

3 LSTM 2 x 5 D1 3.6e+02 / 4e+02 4.5e+02 / 5.5e+02 0.091 / 0.089 6.6 / 7.3 100 / 100

4 GRU3t 2 x 8 D1 4.1e+02 / 4.3e+02 5.4e+02 / 5.7e+02 0.1 / 0.099 5 / 6.5 100 / 100

5 GRU 2 x 8 D1 3.5e+02 / 3.8e+02 1e+03 / 1.7e+03 2.7 / 2.8 8.7 / 11 91 / 91

6 LSTM 2 x 8 D1 4.1e+02 / 4.1e+02 3.9e+02 / 5.1e+02 1.6 / 1.6 9.7 / 10 96 / 96

7 GRU3t 2 x 9 D1 3.8e+02 / 3.8e+02 6.5e+02 / 6.7e+02 0.075 / 0.075 6.9 / 7.3 100 / 100

8 GRU 2 x 9 D1 3.1e+02 / 3.3e+02 6.8e+02 / 1.5e+03 3.2 / 6.9 15 / 16 91 / 87

9 LSTM 2 x 9 D1 3.7e+02 / 4.2e+02 6.2e+02 / 5.8e+02 0.08 / 0.079 7.4 / 8.1 100 / 100

10 GRU3t 2 x 7 D2 1.6e+03 / 1.3e+04 1.2e+03 / 2.6e+04 0.29 / 27 7.9 / 18 100 / 32

11 GRU 2 x 7 D2 1.7e+03 / 8.7e+02 1.2e+03 / 1.5e+03 0.15 / 14 5.4 / 16 100 / 95

12 LSTM 2 x 7 D2 1.4e+03 / 1.3e+03 1.2e+03 / 1.1e+03 0.28 / 0.22 7.3 / 6.5 100 / 100

13 GRU3t 2 x 9 D2 1.7e+03 / 1.3e+04 1.2e+03 / 1.3e+04 0.14 / 27 4.1 / 21 100 / 50

14 GRU 2 x 9 D2 1.7e+03 / 3.7e+03 1.2e+03 / 3.9e+03 0.17 / 18 3 / 13 100 / 89

15 LSTM 2 x 9 D2 1.7e+03 / 1.1e+03 1.1e+03 / 9.2e+02 0.15 / 0.83 3.5 / 6.6 100 / 97

16 GRU3t 2 x 9 D3(1) 1.9e+02 / 1.7e+02 1.3e+02 / 1.3e+02 0.055 / 0.056 2.3 / 4.4 100 / 100

17 GRU 2 x 9 D3(1) 2.3e+02 / 2e+02 1.4e+02 / 1.3e+02 0.058 / 0.06 1.6 / 4.7 100 / 100

18 LSTM 2 x 9 D3(1) 2.2e+02 / 1.9e+02 1.3e+02 / 1.2e+02 0.057 / 0.058 1.6 / 4.5 100 / 100

19 GRU3t 2 x 9 D3(2) 1.3e+02 / 1.2e+02 3.6e+02 / 3.1e+02 0.049 / 0.049 2.5 / 4.3 100 / 100

20 GRU 2 x 9 D3(2) 1.5e+02 / 1.2e+02 3.2e+02 / 2.8e+02 0.053 / 0.053 1.9 / 4.9 100 / 100

21 LSTM 2 x 9 D3(2) 1.2e+02 / 1.2e+02 3.4e+02 / 2.9e+02 0.049 / 0.05 1.8 / 4.7 100 / 100

22 GRU3t 2 x 9 D3(3) 7.8e+02 / 7.3e+02 1e+03 / 8.8e+02 0.13 / 0.13 3 / 4.7 100 / 100

23 GRU 2 x 9 D3(3) 7.7e+02 / 6.6e+02 1e+03 / 8.7e+02 0.13 / 0.14 2 / 4.8 100 / 100

24 LSTM 2 x 9 D3(3) 7.7e+02 / 7e+02 1e+03 / 8.1e+02 0.3 / 0.19 1.6 / 4.4 99 / 100

Table 5.2: Compared network architectures, C.: configuration number, Net: cell types (GRU3t is
GRU with triple-tanh activation function), Units: number of units in the layers, Data:
data sets (Table 5.1) where a number in parentheses indicates a cluster of spatially sim-
ilar test cases.

larity to human-like trajectories become more significant, i.e. larger networks tend to have smaller
KL divergence to human trajectories (Fig. 5.4c).

The temporal similarity is measured based on the Mean Squared Error (MSE) of reaching time t0,
again comparing simulated and observed trajectories (Table 5.2). We can observe two phenomena:
first, reasonable reaching time deviations below 0.1s2, and second, some scenarios that do not
perform well with large deviations up to 29s2. This is, in general, related to trajectories that
do not reach the target with these architectures. There is no clear distinction between the MSE
performance values within architecture clusters. However, for different test cases, i.e. C1-15,
the triple-tanh activation function slightly improves the performance of GRU based architectures,
whereas LSTM networks perform the best in the respective architecture clusters. For the similar
test cases, i.e. C16-24, the GRU with triple-tanh activation outperforms the other architectures,
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Figure 5.4: (a) Comparison of generated trajectory from ProMP and our approach, and their closest
human trajectory in terms of DTW metric.(b) Comparison of hand positions. Recorded
interaction scenario: P1’s (blue), and P2’s (red) hand positions, and RNN-controlled
end effector position (green). (c) Benchmark of the end effector trajectories generated
by larger LSTM architectures on a recorded representative 2D hand trajectory.

achieving an averaged MSE below 0.05s2.

5.4.2 Convergence of hand position

Next, we compare the convergence of the simulated end effector position to a given target location.
This analysis is concerned only with gaining a comprehensive insight on the imitation capability
of our proposed framework from HHI to HRI, but not with traditional controller stability. We
intend to establish a metric, that addresses similar concerns as the latter one. Hence, we measure
the number of cases in which the target location is permanently reached as part of the simulated
interaction scenario based on the 30mm reaching criterion as in the previous subsection (Table 5.2).
For the different test cases, i.e. C1-15, LSTM based architectures are the most capable regarding
this performance criterion, each benchmarked to similar architectures. However, for similar test
cases. i.e. C16-24, almost all architectures achieve a 100% rate of reaching the target. Regarding
the overall feasibility we need to note, that the majority of tests has a goal reaching ratio above
90%.

The second criterion in the convergence analysis is the average terminal hand-to-goal distance for
the successfully reached cases. Here, we observe good performance ranging from a few mm to a
few cm of terminal distance.

5.4.3 Qualitative analysis

Hand-related trajectories Finally, we investigate how well the shapes of the simulated hand
trajectories are suited compared to the observed scenario. For illustrative purposes we choose a
particular case together with a successful architecture. We compare hand acceleration and position
with the ground truth. There is a notable difference in each of the simulated accelerations by
coordinate. However, the overall tendency on when to accelerate is captured by the network (Fig.
5.5c). It is important to note, that this interaction behavior emerges although the input data is
different between ground truth and test data as the network outputs influence the network inputs
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(a) (b) (c)

Figure 5.5: States of the second GRU layer with noise perturbation for a) C7 (GRU+triple-tanh)
and b) C8 (GRU+tanh). c) Comparison of original and simulated accelerations.

during testing. Next, we focus on the hand movement. The simulated hand position follows
a similar shape as in the observed data as part of the interaction scenario. Although it slightly
overshoots, it still reaches the target sufficiently under the defined conditions (Fig. 5.4b). Lastly,
for both acceleration and position, we note that the generated trajectories are smooth in general.

Influence of noise on layer states In our comparison it becomes clear that noise has a neg-
ative impact on the measured performance criteria. But we still observe that several architectures
successfully perform the task even under noise. One factor that is of interest to our comparison is
the impact of noise on the layer states for the activation function we introduced compared to vanilla
GRU architectures. Recall, that the triple-tanh activation function leads to saturations for values
around its inflection points. For the layer states we observe, that for an exemplar architecture of
seventh and eigth configuration, the GRU cell states with triple-tanh activation function are less
sensitive to the noise perturbation which is beneficial (Fig. 5.5a,b and Table 5.2).

Trade-off between expressiveness and complexity So far, we investigated the feasibil-
ity of our approach on a variety of small-sized architectures with BFGS as a capable optimization
algorithm, corresponding to applications with limited computing and data resources. Now we look
into how much the performance can be increased by using a larger LSTM network structure on a
training set of 32 632 samples with rotation. The BFGS algorithm is computationally too expensive
for such larger networks, thus we use the ADAM optimizer. This learning framework is capable
to imitate more fine-grained details with increasing architecture and data complexity (Fig. 5.4c).
Hence, the more complex the architecture is, the closer the generated end effector movement be-
havior resembles the original observation. This illustrates the capability of the proposed learning
framework to imitate human interaction behaviors on multiple levels of detail depending on the
network architecture and data complexity. For the analysis presented in Sec. 5.4.4 & 5.4.6, we use
these LSTM policies.

5.4.4 ProMP comparison

We already used ProMPs in order to establish a KL-divergence similarity metric. Now, we compare
our approach with ProMPs with respect to the trajectories generated for interaction cases. In this
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ProMP from test set ProMP trained separately

mean sample mean sample

ProMP forward 118 5238± 2203 2195 4198± 1939
Ours forward 1101 1833± 782 1302 2028± 832

ProMP backward 152 5269± 2958 2010 5998± 2728
Ours backward 878 2244± 770 858 2266± 800

Table 5.3: The dynamic time warping (DTW) values between trajectories generated by different
approaches and the human trajectory, for forward and backward reaching separately.
For sample DTW, we record the mean value and standard deviation.

experiment, both ProMP and our method are tested on the same dataset, and compared using the
dynamic time warping (DTW) metric for quantifying the similarity between two trajectories.

We consider two evaluation measurements, namely mean DTW and sample DTW. For mean DTW,
we calculate the mean trajectories of generated samples from the RNN-based policy and the ProMP
model, and compare them with the mean human trajectory. However, human trajectories often
exhibit more complex patterns that are not well described by a single mean, e.g., some trajectories
may also lie afar from the mean. These trajectories can also be equally interesting to generate.
Therefore, we did a thorough evaluation, by looking for the closest sample in the human trajectory
set, and computed the metric as the sample DTW.

In the first experiment, we compare our approach with a ProMP model that is directly learned from
the test set. Unlike ProMP, our RNN is trained on a different training set, and never exposed to
these test samples before. In our second experiment, we divide the test set into two parts. The
first part is only for training the ProMP model, which contains 15 samples (model parameters
converged). While the second part has 21 samples for testing both ProMP and our approach.

ProMP performs well in mimicking the mean human trajectory, when it is trained on the test set
directly (Table 5.3). Nevertheless, it fails to capture the complex patterns of human trajectory,
as suggested by an inferior sample DTW performance, for which our approach performs better.
Example outputs of both approaches and the closest human trajectory can be seen in Figure 5.4a.

5.4.5 Correlation Analysis

Till now, the original trajectories have been compared to the simulated ones. Now, we would like to
also compare the network state trajectories to some of the quantities that are computed directly or
as a side product, namely: wrist position, wrist velocity, wrist acceleration and input features. We
analyze the relationship and dependency between the network states and the quantities extracted
from the recorded data. A normalized cross correlation between single states and the quantities
under investigation is computed. At this point, we narrow down our results to a representative case
with good KL-divergence for new cases without noise, i.e. a configuration with 2 GRU layers, 9
units each and our triple-tanh activation function.
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In order to measure similarities we use the following common normalized cross correlation be-
tween one of the metrics and one of the states

〈state,metric〉
‖state‖2‖metric‖2

(5.18)

with 〈·, ·〉 the inner product, ‖ · ‖2 the 2-norm where state corresponds to a one-dimensional state
time series of a single unit’s network state. The metric corresponds to a time series representing
a single coordinate from either input features, wrist position, wrist velocity or wrist acceleration,
e.g. time-series for x-coordinate of wrist acceleration. The normalization accounts for different
amplitudes and maps the results into the interval of [−1, 1]. In order to capture the results for
multiple training trajectories, we stack the values for each sample horizontally per unit of a state,
sequences are truncated to the time of goal-reaching convergence (Fig. 5.6).
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Figure 5.6: Normalized cross correlation of states and metrics (acc: acceleration, vel: velocity,
loc: location all in x,y,z direction, in: input features in its six dimension, i.e. in-1,2,3:
wrist-to-goal metric, in-4,5,6: wrist-to-wrist metric, c.f. previous chapter). For each
state we stack the values of all the samples in the test set horizontally, which gives
either a uniform color for similar behavior or stripes for varying behavior for different
samples.
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Figure 5.7: The scenes from a close proximity HRI with a Kuka robot, and the top-down view of
the trajectories of the human hand and the robot end effector (lower-right).

Darker areas correspond to a strong negative correlation, where lighter colors correspond to a
strong positive correlation in a large number of individual samples. Horizontal stripes with alter-
nating color represent different correlations for different samples from the test set. Strong corre-
lations between both of the two layers’ states and the actual wrist position in x,y and z direction
as well as for the z-direction of our feature fH2G, which captures the wrist-to-goal distance, are
observed. Besides, we also observe some non-uniform but strong correlation over several cases for
the second features set fH2H particularly in x and y direction. Finally, there is some relevant but
less strong correlation for velocities and accelerations in x and y directions for the units 4, 6, 8 in
the layer 0.

5.4.6 Capabilities of the policy and robot implementation

While the presented extensive analysis was conducted in a simulated environment, we also con-
structed a proof of concept real world HRI setup using the LSTM architectures introduced in
Sec. 5.4.3.c. A KUKA LWR4+ together with a damped least-squares IK solver was used in a close
proximity HRI setup (Fig. 5.7). In this setup, the task requirements, i.e., the position of the initial
and final position of the dyad, was different than the dataset used for training the policy. Still, the
robot was successful at executing point-to-point reaching movements closer to a human partner.

The policy has also been tested for various other tasks in order to understand its capabilities fur-
ther (Fig. 5.8). It has been found out that the policy enables the robot to execute a sequence of
tasks smoothly - note that the training did not involve any explicit guidance on stopping and then
restarting movement for another task. More notably, the policy was tested for goal switching in
mid-flight, in an attempt to simulate a task selection due to some interruption, e.g. human partner
blocking the path. The robot manages to change the task and successfully reaches the new target
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Figure 5.8: The scenes from a close proximity HRI with a Kuka robot (the real robot was controlled
simultaneously, but for better explaining the interactions with visuals, simulated ver-
sions are used). The sequential task execution (top row, different perspectives), task
change due to possible collision with human (bottom-left), and handover/high-5-like
scenario where the robot follows a dynamic target (bottom-right) with human hand tra-
jectories (dark green), robot end effector trajectories (blue) and robot target positions
(green).

location without interruption in motion. Lastly, we tested whether the robot could follow a moving
target to simulate a hand-over or high-5 scenario, and again, the robot was able to reach a moving
target swiftly.

5.5 Discussion

Here, we provide our insights on the results and some limitations of this work. Regarding the
design questions, GRUs together with triple-tanh activation perform slightly better than standard
GRUs in terms of reaching time, whereas for goal position convergence and trajectory similarity
LSTM based architectures outperform the others. Although the differences are not always notable,
GRU architectures benefit from the triple-tanh activation function by being able to capture richer
motion characteristics in a timing-sense, potentially due to the availability of multiple saturation
regions around the inflection points. One critical reason for the good performance of LSTM archi-
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tectures might be their increased number of tunable parameters for a fixed number of units in the
comparison group (Eq. 5.1-5.6 vs. Eq. 5.7-5.10)

The proof-of-concept testing of the learned policies on a redundant KUKA robotic arm verified
two things: first, learning from HHI data is suitable for HRI scenarios, and second, the proposed
approach is feasible to learn and control close proximity interaction behavior online. Having said
that, we also observed some critical points. As the policies are trained only from HHI data, some
discrepancies on human movement occurs during interacting with a robotic partner. We argue
that, human-like movement generation is a good starting point for the robot to imitate, and in
a future work, this imitated control can be used as an initial policy to be improved with a policy
improvement algorithm during interaction to adapt to the human preferences and task effectiveness.

The results, however, have some limitations. While the large number of successful test cases il-
lustrate the effectiveness of the proposed learning framework, there is no formal guarantee for a
collision-free and converging performance. Besides performance issues, we also need to consider
the expressiveness of hand trajectories. Current robot implementation relies on a damped least-
square inverse kinematics solver without any link collision considerations. Even though modeling
the hand position characteristics are essential for natural dyadic interaction, the outcome of con-
trolling multiple joints with such an approach is yet to be shown. Particularly distance-keeping
between more joints becomes a bigger concern, but the acquired policy would enable tackling
more complex cases.

5.6 Conclusion

In this work, we proposed a supervised learning framework to imitate close proximity dyadic
interaction movement behavior. Control of a robot end effector is learned from human-human
interaction (HHI) demonstrations to provide an effective and intuitive human-robot interaction
(HRI). Generalized policies were acquired effectively by the proposed learning approach using
recurrent neural networks (RNNs). The learned policies were successfully applied on a robot that
interacts with a human partner in close proximity.

The capabilities to learn on-line control through off-line training are significant considering that
there is no explicit modeling of the interaction scenario. Additionally, the achieved cross-domain
mapping, from spatial data to acceleration control, encourages to use RNNs as continuous control
policies for robotic interaction and manipulation skills.

For future work, there are several directions to consider. Besides an extension to joint position con-
trol, hierarchical control is another promising path to follow. Especially, considering the capability
of our proposed approach to represent a variety of movement behaviors, from generalized and
overt to subtle features, a high-level controller may be developed to provide an intuitive interaction
by switching between multiple behavioral models depending on the task.
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6
Progressive Stochastic Motion Planning
for Human-Robot Interaction1

This work introduces a new approach to optimal online motion planning for human-robot interac-
tion scenarios. For a safe, comfortable, and efficient interaction between human and robot working
in close proximity, robot motion has to be agile and perceived as natural by the human partner.
The robot has to be aware of its environment, including human motions, in order to proactively
take actions while ensuring safety, and task fulfillment. Human motion prediction constitutes the
fundamental perception input for the motion planner. The prediction system, which is based on
probabilistic movement primitives, generates a prediction of human motion as a trajectory distri-
bution learned in an offline phase. The proposed stochastic optimization-based planning algorithm
then progressively finds feasible optimization parameters to re-plan the motion online that ensures
collision avoidance while minimizing the task-related trajectory cost. Our simulation results show
that the proposed approach produces collision-free trajectories while still reaching the goal suc-
cessfully. We also highlight the performance of our planner in comparison to previous methods in
stochastic motion planning.

6.1 Introduction

Robots are envisioned to be present in everyday human life as well as in manufacturing. Indepen-
dent from application scenarios, robots are expected to interact with human partners in a natural
way, i.e. as similar as possible to the humans interacting with each other. There are three main
requirements to achieve such a seamless interaction: (R1) Both, human and robot, have to achieve
the goal defined by the task to be solved, (R2) robot has to be aware of the changes in the envi-
ronment, including human motions, to adapt accordingly, and (R3) the robot behavior has to be
reactive, yet still understandable by humans.

In human-robot close interaction scenarios, the robot trajectory generation is a challenging prob-
lem as it has to not only fulfill the aforementioned requirements but also consider the robot’s

1This work has previously appeared in the following publication: [242]
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Figure 6.1: Overview of the framework: The Probabilistic Movement Primitive (ProMP) model
that enables the motion prediction and the GP model that selects the optimization pa-
rameters are trained in the offline phase. The online motion planning is an adaptive
process as the stochastic optimization is supported by updated prameterization and fi-
nal posture as well as a human motion prediction.

capabilities (e.g. joint limitations) and the variations in human motions. The three requirements
(R1-3) are highly interlinked. In order for the robot to react to ongoing human actions (R3), the
robot has to be capable of predicting these human actions (R2). For achieving the required goals
by both partners (R1), the robot has to plan a goal-directed motion trajectory while allowing the
human partner to easily reach their target location (R2-3).

Recently, there has been an increased interest in close HRI. On the one hand, there are studies
focusing on the safety aspect of such interactions [29], [123], where the human is treated as a
dynamic obstacle which needs to be avoided while being indifferent to how humans perceive the
interaction. On the other hand, few studies investigate motion models for the robot that can be per-
ceived as legible [7], predictable [8], and understandable [30] by the human partner. However, all
those aspects are interdependent on each other, which demands an integrated approach to motion
planning for the robot.

In this work, we propose a motion planning framework that addresses the challenges in human-
robot collaboration in a unified structure. Given that each partner has a task to fulfill, we seek to
formulate a stochastic optimization model to generate robot motions that 1) take into account hu-
man motion prediction while 2) minimizing the trajectory cost of the robot, and yet 3) avoid colli-
sions without obstructing the human partner’s task execution. This establishes a shared workspace
in which a human-robot team can work safely and naturally in close proximity.

An overview of the framework is presented in Figure 6.1. Our approach comprises a human mo-
tion prediction module along with a stochastic trajectory optimization method. Human motions
are recorded for the set of tasks we are interested in, and then utilized for training probabilistic
Movement Primitives (ProMPs) in an offline phase. During interaction, learned ProMPs generate
predictive trajectory distributions for the human’s motion given observed data. Based on this pre-
diction, a final posture is optimized for the robot to avoid collision with the human as well as the
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feasible parameters for the motion optimization method is acquired w.r.t. the task conditions. As a
last step, the motion trajectory of the robot is optimized efficiently with the identified parameters
by taking into account the prediction and the optimal final posture to re-plan the motion online ac-
cordingly. The whole process is repeated at each time interval during task execution. This adaptive
optimization process enables agile and flexible robot motion generation.

This work concentrates on the formulation of the stochastic motion planner which progressively
optimizes the trajectory of the robot during interaction. We implement, test, and then analyze
our approach both in simulation and in a preliminary human trial. Our analysis demonstrate the
trade-off between safety and interaction related costs. Results show that the proposed method,
by acknowledging this trade-off, enables a cautious interaction while providing locally optimal
solutions for task achievement. Comparison to some state-of-the-art motion planners reveals the
benefits of our approach both in terms of optimality and safety.

The novel approach we propose is a fundamental step toward safe and natural HRI in close prox-
imity. The main contributions of this work are:

• We propose an integrated approach where human motion prediction is incorporated into a
trajectory optimization method efficiently.

• The trajectory optimization is achieved online by a novel parameter adaptation method and
progressively recomputed depending on the interaction dynamics.

• The proposed method solves for locally optimal trajectories given time constraints while still
providing seamless interaction.

6.2 Related Work

Existing methods in motion planning for robotics arms are generally classified in two main branches
that have received most significant attention over the last two decades, which are sampling-based
and optimization-based approaches. Sampling-based approaches randomly generate sampled points
in the configuration space at each iteration and check the collision of these points with obstacles by
using a collision-checking component. A graph (roadmap) is then constructed by a set of collision-
free points and is extended at every iteration until a solution from the start to the final position is
found. As a result, these approaches become very effective in high-dimensional spaces since they
do not require a full representation of the environment explicitly.

The most influential sampling-based motion planning algorithms to date include probabilistic
roadmaps (PRMs) [203] and rapidly-exploring random trees (RRTs) [204]. Both algorithms rely
on the idea of connecting points sampled randomly from the state space, although they differ in
the way of constructing a graph connecting these points. One major advantage of sampling-based
approaches is fast computation and therefore they can be easily applied online. However most of
these methods treat human co-workers as constraints or as obstacles that the robot needs fulfill or
avoid [205]. To the best of our knowledge, there is no existing sampling-based motion planning
framework that considers joint collaboration between human and robot while planning.

Unlike sampling-based approaches, optimization-based methods exploit the whole configuration
space and seek for the best possible solution which minimizes (maximizes) a performance metric.
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In robot motion planning, optimization-based approaches help to save energy and imitate human
motion by defining proper cost functions and consider different type of constraints in robot mo-
tions. With the broad validity of the cost functions, these planners can be easily adapted in different
human-robot collaboration scenarios.

Optimization-based approaches for motion planning problem can be classified into two different
branches: gradient-based optimization and stochastic optimization. A well-known gradient-based
method is the CHOMP algorithm [206] which utilizes covariant gradient techniques for optimiza-
tion calculations. The sampled trajectory is optimized within consecutive iterations where the
covariant gradient update rule ensures convergence of CHOMP to a locally optimal trajectory.
However, the main drawback of this method is that, the cost and constraint representations need
to be differentiable, which is impractical for many real-life cases, especially in HRI, where uncer-
tainties and disturbances exist in most of the cases.

An approach to bypass this problem is stochastic optimization, where STOMP [207] is a typical
candidate. In STOMP, the numerical optimization is considered as a stochastic direct optimiza-
tion. Here, instead of determining the gradient to update the trajectory numerically, STOMP uses
a stochastic gradient estimation. This is basically done by generating noisy trajectories around a
feasible initial trajectory and evaluating their performance in terms of the cost function to deter-
mine the gradient update. However, this prohibits the flexibility and adaptability. As the whole
trajectory is computed prior to execution, it may become invalid when the environment changes.

To enable flexibility and adaptability in robot motion, planning while executing is considered.
The ITOMP algorithm takes STOMP as starting point and introduces the interleaving of motion
generation and execution [208]. By doing this, ITOMP gains the ability to be used for real-time
motion generation.

Even though optimization-based methods are widely used in robotics, the application in human-
robot interaction, or especially joint collaboration is still very limited. One of the reasons is that
there is no proper way to define human-related cost functions which are varied depending on
different kinds of tasks and human partners. A very recent research [27] uses inverse optimal
control to learn the cost functions from sampled trajectories and then applies these cost functions
to a STOMP-based optimization process to predict human motions and therefore provides better
reactive motions for the robot. However, the method is only applied for a very specific, simple
pick-and-place task.

A major drawback of optimization-based approaches is the heavy computation time, which makes
it inapplicable in online scenarios if the environment or tasks are complex. There are some ap-
proaches that try to overcome this drawback i.e. combing optimization with machine learning
techniques [209] or dynamic movement primitives [210]. However, they are still limited in the
static cases or they neglect the optimality aspect in the online phase as a trade-off.

6.3 Stochastic Motion Planning

Here, we explain briefly the general structure of a stochastic trajectory optimization formula-
tion [207] as the foundation of our motion planning framework for human-robot interaction in
close proximity.
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Stochastic optimization for motion planning relies on generating noisy trajectories around an ini-
tial (possibly infeasible) trajectory. Then, those trajectories are evaluated based on their costs.
Calculating the cost of a trajectory requires a discretized representation of consecutive states. For
a D-DOF robotic arm, a feasible state representation is defined in the joint space for the robot’s
configuration qn ∈ RD at each time-step n. Concatenating the sequential postures ofN time-steps,
the trajectory representation Q ∈ RN×D is obtained as:

Q = [qT1 ,qT2 , ...,qTN ]T . (6.1)

The dth column of Q is indexed with qd ∈ RN to represent the trajectory of the dth joint as well.
The generalized formulation of the cost function is given as follows:

min
Q

[
J(Q) =

N∑
n=1

C(qn, q̇n, ...) +
D∑
d=1

1
2‖Aqd‖2

]
s.t. q0 = qinit, qN = qfinal qinit,qfinal are const.

whereC(qn, q̇n, ...) is the sum of arbitrary state-dependent cost functions, A is a finite differencing
matrix and 1

2‖AqT‖2 represents the control cost as the norm of the accelerations in quadratic form.

NT number of sample trajectories, each having N number of time-steps, are generated by adding
a noise covariance that ensures smoothness. As explained in [207], at every iteration the initial tra-
jectory is updated with weights that are inversely proportional to the costs computed for the noisy
trajectories. Running consecutive iterations by following the same procedure over the updated tra-
jectory allows the result to approach to an optimal solution. Note that, the trajectory is planned as
a whole, and not modified during the motion [207], thus, preventing any kind of reaction from the
robot to the environmental dynamics.

We extend this standard formulation by introducing interleaving of motion planning and execution
as in [208]. Interleaving in this context means the same optimization procedures are computed
after the robot executes the control signal at each time-step. The motion is divided into N − 1
intervals and the robot moves from the posture qn to qn+1 during which the optimization continues
for the trajectory [qTn+1,qTn+2, ...,qTN ]T similar to receding horizon control. The optimal trajectory
varies at each interval depending on the updated cost function, and we employ this functionality to
provide responsive behavior for the robot.

6.4 PTOMP

6.4.1 Overview

In this section, we introduce the Progressive Trajectory Optimization-based Motion Planning al-
gorithm for Human-Robot Interaction Scenarios (PTOMP). This algorithm forms the basis of a
novel approach to adapt the previous work on stochastic motion planning to human-robot inter-
action by integrating human motion prediction, and caring for human partner’s perception in the
planned motion. The main contribution of our framework is concentrated on (i) choosing feasi-
ble parameters, i.e. number of noisy trajectories (NT ) and number of time-steps (TS ), for the
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optimization method to achieve online capability, (ii) incorporating the interaction related cost
functions to provide a natural interaction, and (iii) enabling safe interaction by taking proactive
actions based on an efficient human motion prediction.

Our framework (Figure 6.1) comprises offline and online stages. In the offline phase, a human
motion library is constructed for each task as Probabilistic Movement Primitives (ProMPs). This
library enables predicting the human motion online (Section 6.4.2). The prediction is fed into
to trajectory optimization to solve for a collision-free optimal motion. In another offline phase,
a comprehensive set of different conditions are simulated with varying optimization parameters,
NT ,TS . This allows learning the space of trajectory cost values for a multitude of tasks with
different set of optimization parameters (Section 6.4.5).

In the online phase, trajectory optimization is run with a combination of cost functions (Sec-
tion 6.4.4) by choosing the feasible parameters from the learned model and integrating human
motion prediction, and final posture optimization (Section 6.4.3) to ensure natural and safe inter-
action.

6.4.2 Prediction

The occupancy estimation of a dynamic obstacle in the workspace is utilized for the collision cost
calculation of future time-steps. Even if it is possible to make this estimation from the velocity
and acceleration of the obstacle as in [208], its accuracy is likely to remain reliable only for a short
period of time. In other words, the trajectory optimization will define a collision cost based on an
unreliable estimation, thus hindering the safety of the avoidance behavior.

To avoid collision in the workspace, the human arm can also be considered as a dynamic object
to be avoided. In general, human motion estimation requires a specialized prediction method as
it depends on arm dynamics and its control results in variation in motion [211]. To imitate such
behavior online, we use Probabilistic Movement Primitives (ProMPs) and learn a distribution of a
motion behavior by training with multiple trajectories performed for a specific task [127]. ProMPs
represent a discrete trajectory X = {xn}, n = 0 . . . N defined by states xn over time N with the
formulation

yn = [xn, ẋn]> = Φ>nω + εy, (6.2)

where ω is the weighting vector over the k × 2 dimensional time-dependent basis matrix Φn =
[φn, φ̇n] with k being the number of basis functions and εy ∼ N (0,Σy) is zero-mean independent
Gaussian noise, while Φ>nω gives the mean of the trajectory. Introducing a Gaussian distribution
to also represent variance p(ω;θ) = N (ω|µω,Σω) over the weighting vector ω results in the
following distribution for the trajectory:

p(yn;θ) =
∫
N (yn|Φ>nω,Σy)N (ω|µω,Σω)dω

= N (yn|Φ>nµω,Φ>nΣωΦn + Σy).
(6.3)

Using a set of motion observations, the parameters µω, Σω can be estimated with maximum like-
lihood estimation [136].

By this formulation, the ProMPs enable an online human motion prediction, where a trajectory
along with the variance for each time point is generated. This variance information is useful for
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human-robot interaction scenarios where the robot should also consider the uncertainties of human
behaviors.

6.4.3 Final posture optimization

While interacting with a human, the robot should also be expected to reach a final posture that
conforms to a legible behavior. As the standard formulation of stochastic trajectory optimization
uses a fixed final state, we also incorporate a final posture optimization step which precedes the
motion planning phase. Moreover, in close interaction scenarios where both the robot and the
human reach nearby targets, the final posture of the robot should be optimized so that it avoids
collision. The algorithm searches for a final posture of q∗N that satisfies the condition

q∗N = arg min
qN

[
J(Q∗1...N) ∀ qN ∈ RD

]
(6.4)

and thereby enables the most optimal trajectory while still assuring the task of reaching the target
position for the end-effector. As the optimization result could not be known beforehand we target
an estimation that satisfies the equation 6.4. Here we assume that the optimal final posture that
minimizes the cost of the current trajectory would also minimize the cost of the optimized trajec-
tory. Therefore, during the run of motion planning we make the final posture optimization over the
cost of the instant trajectory.

6.4.4 Cost functions

Interaction cost An efficient human-robot collaboration highly depends on the fluency of in-
teraction between both sides. Just as the necessity of human motion prediction by the robot, the
legibility of robot motion for the human subject is also crucial. Following the results of recent
studies claiming that the legibility of a robot’s motion comes from its closeness to human motion
behavior [212], [213], we look into models to generate human-like motion. In motor control field,
human motion generation has been studied as an optimization problem. Considering the total en-
ergy [53], torque change [4], standard deviation [33] of the motion has been suggested to be used
as cost functions that describe human motion. Recent studies extended this claim by showing that
human motion planning tends to reduce the effort while still ensuring a smooth motion that reaches
the target [9]. To represent the effort we introduce the state dependent energy to the cost function.

Jeffort =
∑
i∈C

(mihi + 1
2miV

2
i ),

C = {Upper arm,Lower arm,Hand}
(6.5)

which is the sum of kinetic and potential energy during the motion. Alongside the total energy, the
minimization of the hand jerk in cartesian space is also used [32]:

Jjerk =
∫ T

0

...
x2 + ...

y 2 + ...
z 2dt (6.6)
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Parameters Number of Iterations
Efficiency of a

single Iteration

Duration of the Motion
Linearly

Proportional
No Relation

Number of Time-steps
Quadratically Inverse

Proportional
Proportional

Number of Noisy

Trajectories

Linearly Inverse

Proportional
Proportional

Table 6.1: Summary of how the increase on the parameters influences the optimization.

with [x, y, z] giving the cartesian space coordinates derived from joint configurations of the robot.
The combination of those costs is referred as the interaction cost

Jinteraction = Jeffort + Jjerk (6.7)

Control cost As humans can perform smooth and consistent motions in interaction scenarios,
they also favor robot partners that can smoothly move in a shared workspace [212]. As the opti-
mization is run on the kinematic level of the robot, we take the acceleration of the motion as the
input signal to be minimized. The control cost, i.e. the smoothness cost, is defined as the sum of
norms of acceleration in quadratic form at each time-step, and is represented by the term:

Jcontrol =
D∑
d=1

1
2‖Aqd‖2 (6.8)

Collision cost One of the main task in human-robot interaction is to ensure collision avoidance
in order to satisfy the safety restrictions and provide efficient collaboration. As collision avoidance
is a part of the natural interaction, it also helps the legibility of the robot’s motion.

For the collision cost calculation, the algorithm needs to determine the collision point at first. To
reduce the calculation time, we define the lower and upper arms of both the robot and the human
subject as cylindrical shapes. Through a trigonometric calculation, we determine the distance and
the location of collision as:

[distn, locn] = collision(qn,yn) (6.9)

where the location is the distance of collision to the robot’s end-effector. As the collision cost
minimization should be driving the robot away from the human arm, we define a continuous cost
function that decreases towards the end-effector of the robot:

Jcollision =


K ∗ locn, if distn ≤ dist_limit

0, otherwise
(6.10)
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Figure 6.2: Parameter selection from simulations under a constant condition.

with dist_limit indicating the collision limit.

Joint limitations As the servo motors of the robot can perform limited rotations, the motion
planning requires a limitation for the joint rotation to comply with the physical limitations of the
robot. Moreover, to satisfy a legible motion, the robot needs to be restricted to a similar rotation
limitation as human joints. Such limitations can be provided by setting a threshold limit. Instead
of using such threshold limits as constraints in the optimization, we incorporate the joint limitation
as a another cost function which remains continuous and dramatically increases at the limitations.
For example, to keep the dth joint rotation between−L and +L degrees, we set the joint limitations
function as:

Jlimit = K1 ∗ eK2(|qd|−L) (6.11)

where the higher values of the coefficient K2 provides a sharper increase of cost at the limitation.

6.4.5 Parameter adaptation

As real-time motion planning requires the optimization to run simultaneously with the execution,
there is a certain time allowed for the calculations at each interval. In stochastic optimization, the
calculation consists of consecutive iterations, where the trajectory converges to optimality. If the
time limitation does not allow to run enough number of iterations to converge to the optimality,
then the resulting trajectory is considered as sub-optimal. This sub-optimal result might still satisfy
the requirements defined by the cost functions. However, the collision must not be tolerated as it
concerns the safety criteria and hinders the task execution.

In our analysis we have observed that even under the same scenario, different trajectories are gen-
erated when the optimization is run with different parameterizations. These results are obtained as
the optimization parameters influence the performance of optimization. Reducing the calculation
time for each optimization iteration proportionally increases the number of performed iterations
which is expected to support optimality, however, the quality (efficiency) of iterations also play a
role. The three main parameters that influence both the calculation time and the quality of each
iteration are (1) the number of time-steps discretizing the trajectory in time, (2) the number of
noisy trajectories generated at each iteration and (3) the duration of the robot motion.

The discretization (resolution) of the trajectory changes the calculation time of a single optimiza-
tion interval as more time-steps for the trajectory means higher load of cost calculation. However,
choosing a very low discretization reduces the smoothness of the trajectory. It also hinders the
robot’s reaction to the environmental dynamics due to the reduced cost function update frequency.
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(a) Plot of collision cost (b) Plot of control cost

Figure 6.3: Example figures for a collision avoidance scenario simulated under the same environ-
mental conditions, but with different parameterizations.

Similarly, having higher number of generated noisy trajectories increases the calculation time at
each iteration, but at the same time provides smoother trajectories. Lastly, an increase on the mo-
tion duration clearly allows more time for the optimization, but results in a slower motion for the
robot which can prevent efficient interaction. A summary of how these three parameters influence
the number of iteration run in a single interval and the efficiency of a single iteration is given in
Table 6.1. This analysis indicates that, the most feasible optimization parameters can not be easily
selected as there is a trade-off in terms of their effect on optimization performance.

6.4.6 Criteria of parameter selection

To determine the feasible parameters we evaluate their performance in terms of the costs over
the optimized trajectories. We run simulations with varying parameterization over a grid under a
constant condition as shown in Figure 6.2. For this evaluation, we consider the collision and the
control cost of the optimized trajectories. The visualizations of how these costs are effected by
the parameterization under an example condition is given in Fig 6.3. An acceptable performance
requires to be capable of ensuring obstacle avoidance. Therefore, any parameter set that has a non-
zero collision cost is considered as poorly performing and filtered out for the parameter selection.
A higher discretization of trajectory increases the response frequency to environmental dynamics
since the optimization is recomputed for each time-step. Hence, the parameter selection algorithm
opts for choosing as many time-steps as possible after the initial filtering. However, this causes an
increase in the control cost (Figure 6.3b). Therefore, a strategy for choosing a feasible parameter
considering the smoothness cost is necessary as well. From our preliminary analysis, we found
setting a limitation of 10% of maximum smoothness cost as a criteria for the secondary filtering
provides good results consistently. Thus, the maximum values are chosen from the filtered subset
of parameters. The procedure of this parameter selection is also detailed out in Algorithm 1 as a
pseudocode.

6.4.7 Formulation of parameter selection

For the online selection of the optimization parameters, we need to provide a formulation that re-
turns the parameter set when the conditions defining the dynamics of the scene are given. As this
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Algorithm 1 Parameter Selection Algorithm
For a given condition cond, max number of time-steps TS, and noisy trajectories
NT:

for i = 0, i ≤ TS, i++ do
for j = 0, j ≤ NT, j++ do

if Jcollision(traj([i, j] | cond)) = 0 and
Jcontrol(traj([i, j] | cond)) ≤ 0.1 ∗max(Jcontrol) then

Store A← [i, j]
end if

end for
end for
ts = max(k | [k, l] ∈ A)
nt = max(l | [ts, l] ∈ A)

formulation cannot be achieved simply by a heuristic method online, we rely on building a gener-
alized model that can map interaction conditions as the input to the optimization parameters as the
output. This necessitates defining the conditions of the environment that influence the optimiza-
tion the most. The prediction uncertainty and the prediction error are two metrics that require the
optimization to be more reactive against a possible collision. The distance between the robot and
human arm and the remaining time until the collision for the sub-optimized trajectory also deter-
mine how quickly the optimization requires to reach a solution such that it ensures a collision-free
motion. Finally, the immediate collision cost indicates how close the current trajectory is to opti-
mality. Combination of these five metrics define the state of the condition and serve as the inputs
of the parameter selection function.

The parameter selection function is trained with Gaussian Process Regression Models [135]. Here,
the training requires a set of real input and output data to fit a function estimation. To train for this
formulation we run a set of simulations, by varying environmental conditions and recording a
list of the feasible parameters selected. The metrics that define the condition of the scenario are
taken as the input data while the selected optimization parameters are the outputs. As the function
estimation of the Gaussian Process returns a single output, we need to train different models for
different output parameters separately.

6.5 Results

Here, we present the results of our approach, PTOMP, on collision avoidance performance in
online HRI scenarios and compare to a state-of-the-art motion planner, ITOMP. The efficiency of
the GP-model based parameter selection, and its effect on the performance of PTOMP are also
analyzed. Lastly, the results for the final posture optimization is provided. In these analysis we use
the KUKA LWR4™ robot with 6 degrees of freedom.

In order to emphasize the influence of optimization parameters (NT ,TS ) on the resulting robot
motion trajectory, an example HRI scenario is simulated where both agents execute their reaching
motions, and the robot utilizes two different strategies (Figure 6.4). One subject’s recorded data is
used for simulation synchronously with robot’s motion execution. The human motion is predicted
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Figure 6.4: Interaction scene in an example HRI scenario. The green trajectory represents the
robot’s motion optimized by PTOMP. A second motion optimized with infeasible pa-
rameters is also shown with the red trajectory.

based on the ProMP model learned offline for similar reaching tasks. PTOMP uses this prediction
to generate a collision free trajectory early on by using GP-model based parameter selection (green
in Figure 6.4). In our example, we choose the duration of robot’s reaching motion as 1.5 seconds.
The results of the parameter selection function under the given conditions were 42.87 time-step
discretization and 30.23 noisy trajectories per iteration, which are rounded down to (42, 30) (note
that the most feasible parameters are (45, 32) if the simulation analysis is directly used rather
than GP-model output). To visualize a comparison we run a second simulation with 55 time-steps
and 50 noisy trajectories, which are close to the first case but arbitrarily chosen. However, these
parameters turn out to be infeasible for this scenario (Figure 6.4 red trajectory). This shows that,
without a proper parameter identification, such a motion planner is prone to fail in avoiding the
collision.

For evaluating the effectiveness and reliability of parameter selection method, we run similar tests
under 450 different conditions. Here, we train the GP model with 400 conditions and spare the
other 50 for the evaluation which is based on comparing the results of the parameter selection
model to the results of the simulation analysis. The error between both outputs shows a standard
deviation of 4.17 for the number of time-steps, and a standard deviation of 5.48 for the number of
noisy trajectories. Hence, the GP-model based parameter selection remains in a close range to the
actual values used for training. In addition, with parameter adaptation, the collision avoidance is
achieved with a success rate of 89 percent while it reaches 98 percent when we apply a heuristic
by reducing both the number of time-steps and noisy trajectories by the standard deviation found
in the analysis phase.

We evaluate the contribution of human motion prediction to the optimization problem. Here, we
make the comparison with ITOMP’s velocity-based occupancy estimation approach. We run these
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(a) Plot of collision cost (b) Plot of control cost

Figure 6.5: The plots show that the obstacle avoidance is provided under lower number of time-
steps and noisy trajectories. Here the obstacle cost appears to be higher with less
time-steps when collision is not avoided. This is due to the uncertainty of the human
motion which was not included in Figure 6.3.

tests under the same scenario used for Figure 6.4. The trajectories followed by both algorithms
are given in Figure 6.6. We also run these comparison tests for other 450 scenarios that we used
for parameter selection evaluation. Running these tests with the same parameter selection output
both for ITOMP and PTOMP, ITOMP succeeded to provide a collision-free trajectory only at 67
cases which correspond to a success rate of 14.88 percent in comparison to PTOMP’s success rate
of 89.34 percent. With reducing the number of time-steps and noisy trajectories again with their
corresponding standard deviations in parameter selection function, ITOMP’s success rate increases
to 27.11 percent.

Finally, we evaluate the performance of the final posture optimization in two scenarios. In the
first case (Figure 6.7a) the robot executes a pick and place task as the human motion does not
interrupt its trajectory. Here, the final posture satisfies the legible motion as the robot leans to the
side that it is approaching from. This behavior is due to the total energy minimization cost over
the trajectory. In the second scenario we introduce a human motion that occupies a space where it
causes a collision at the initial final posture as shown in Figure 6.7b. To avoid the collision, final
posture optimization drives the robot to approach its target from the other side while trajectory
optimization plans a collision-free trajectory that complies with the new final posture.

6.6 Conclusion

We have presented PTOMP, an optimization-based online motion planning algorithm for human-
robot interaction scenarios. Our approach concentrates on providing the interaction efficiency to
robot motion planning in close human-collaboration by introducing legibility criteria while in-
creasing the optimization performance of the online computation. Our algorithm is powered by
a high-precision human motion prediction method, ProMP, that both allows the algorithm to run
the optimization for future states early on as well as enabling the parameter adaptation of the opti-
mization algorithm for a performance boost. We have highlighted the optimization performance of
the motion planning under the human motion prediction and also shown the task execution success
increased by the online parameter adaptation. The test results support that our algorithm exceeds
the performance of the previous work in terms of robot motion legibility and trajectory optimality.
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Figure 6.6: Comparison of PTOMP (green) and ITOMP (red) generated trajectories. PTOMP re-
lies on ProMP-based human motion prediction whereas ITOMP uses its default short-
sighted prediction. The motion planning of ITOMP fails to react until the human hand
almost interrupts its trajectory, while PTOMP enables taking a proactive action and
thereby plan a legible optimal motion.

(a) Final posture without the human interruption (b) Final posture in close human collaboration

Figure 6.7: (a) shows that the final posture optimization drives the robot to lean right in order to
comply with the interaction costs. However, when the human hand occupies the right
side of the target as seen on (b) the optimization orients the posture to avoid collision.

In our algorithm the legibility of the robot motion depends on the human motion planning criteria
in obstacle-free space. The interaction is then provided by considering the human arm as a dynamic
obstacle to be avoided. This combination does not take into account the human response to robot’s
motion. The observations on real human-human interaction scenarios can be utilized in order to
replicate a similar interaction. In that regard, a possibility for future work is to adapt the PTOMP
algorithm to a humanoid robot.
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7
Human Guided Policy Improvement for Pre-
dictable and Safe Robot Motion
Generation

In this work, we explore a method to learn safe robot motions that adapt to the human prefer-
ences to facilitate close human robot interaction. Safety, legibility and predictability of robot mo-
tion have always been investigated independently. Several methods were proposed that produce
real-time obstacle avoiding trajectories, while others developed optimization based algorithms for
legible robot motions. Optimization of a fixed policy enables effective and safe close proximity
HRI (Sec. 6.4), yet humans might have different expectations and interpretations of their robotic
partner’s movements. The research question in this line of work is whether control policies can
be learned through close interaction with humans that provide safe and readable movement for
human partners. By readable, we mean not only a predictable goal (task) position for the robot,
but also human understandable motion patterns so that a natural interaction can be achieved.

7.1 Introduction

Nowadays, robots are no longer only industrial machines behind fences. Instead, they are being
integrated more in our daily lives as well as in collaborative manufacturing scenarios. The moti-
vation is to combine the experience and flexibility of humans with the power and preciseness of
robots. In such scenarios, robots are expected to move in a natural way, similar to human-human
interaction. When two humans perform a task together, they can anticipate each other’s movements
and perform a complementary action without the need of verbal communication. This facilitates
teamwork and increases the efficiency of joint tasks [214]. To achieve such an interaction between
humans and robots, the robot’s motion has to be readable to the human [215], and be aware of its
surroundings to provide a safe environment, while still being efficient in performing its task.

In order for humans to feel comfortable working with robots in close proximity, they have to under-
stand the robots’ behavior and be able to infer their actions. Identifying the factors that contribute
to these natural robot movements is not trivial. In a study conducted in [216], participants wanted
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Figure 7.1: Pipeline of the algorithm: The DMP is the policy for the learning algorithm. We sample
in parameter (DMP weight) space, convert the trajectories into joint positions using
inverse kinematics and perform the roll-out online while adding the force resulting
from the potential field. After the roll-out and an interaction iteration are complete,
we compute the cost resulting from the interaction and update the policy for the next
sampling phase.

robots assisting at home to be predictable, controllable and have human-like communication. An-
other study that investigated the subjective effects of direction of approach and distance of robots
when handing an object over to humans, came to the conclusion that the frontal approach which is
the most predictable is subjectively preferred most by the participants [217]. In addition, Bortot et
al. [218] discovered that understanding and predicting the behavior of the robot increases the well-
being of humans. However, predictability alone is not sufficient if we want robots and humans to
work in close proximity. In order to ensure the safety of humans in such scenarios, the robot has
to modify its trajectories in real-time to reliably avoid collision with the human. Combining this
safe behavior with predictability maximizes human comfort.

In this thesis, the interdependency between readability, safety and efficiency is tackled for achiev-
ing natural human-robot interaction. A reinforcement learning method and inverse kinematics
are combined to produce robot joint trajectories that are both safe and readable. The dynamic
movement primitives (DMPs) formulation is used with policy improvement through black-box op-
timization (PIBBO) algorithm to learn readable motion generation during online close proximity
interaction with human partners (Fig. 7.1). Both end effector position and joint position controllers
are developed and tested for their effectiveness. In addition, we extend DMPs with a dynamic po-
tential field approach, and define null-space constraints to ensure avoidance for the robot links.
Finally, we test the transferability of the learned policy to another task in a human study.

7.2 Related Work

Legible and predictable robot motion was first defined by Dragan et al. [7]. In their work, the
authors differentiate legibility and predictability and provides a mathematical model to produce and
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evaluate such motions. They assume that humans expect robots to be efficient in their movements
and compare all possible goals in the scene to determine the most probable one. This probability
is formulated in an equation and is being maximized for the targeted goal. This approach has some
limitations. The algorithm was tested only with two goals for the robot, which the human had
to predict by pausing a video which showed the robot moving to one of the two. This setup was
very simple as the probability between two goals is already 50%. Another limitation is that the
subjective evaluation of robot efficiency differs from one individual to another and the robot did
not adapt its movements to the preferences of each participant.

In the work of Stulp et al. [8] the team generates robot motions that learn from interaction which
motions are most predictable to the current participant. Here, dynamic movement primitives
(DMPs) are used for motion planning and policy improvement through black box optimization,
which was also formulated by Stulp et al. [219], is applied to improve the robot’s legibility to the
human iteratively. This is done by only optimizing human guessing time about the action of the
robot and the correctness of the prediction without having formal criteria about legibility. In a re-
cent study [220], the authors showed that transferring the learned policy to other individuals leads
to better prediction in the beginning and can thus lead to shorter adaptation times for new subjects.
However, in this approach no close interaction scenarios were considered as no necessary collision
avoidance methods were integrated.

In [242], a stochastic motion planning algorithm is introduced that predicts human motions and
adjusts the robot’s trajectories on-line to avoid the predicted region. This allows close interac-
tion between humans and robots, but does not examine predictable or legible motion. Another
method for obstacle avoidance was presented by Park et al. [221]. The goal is to adapt trajectories
while avoiding obstacles in mid-flight. The DMPs for movement reproduction are combined with
dynamic potential fields for obstacle avoidance. Computing inverse kinematics with null-space
constraints further ensured link collision avoidance. This method is successful in avoiding dy-
namic obstacles in the way of the robot. However, the aim of the work was not about enabling
the robot to interact with humans, but rather to perform desired movements in the presence of
obstacles.

7.3 Methods

7.3.1 Dynamic movement primitives

In order to generate robot trajectory for the policy we use dynamic movement primitives (DMPs) [222].
The DMPs combine two systems. First one is a closed loop critically damped spring-damper sys-
tem that reaches the defined attractor state, which in our case is the goal position, yg, for each
target.

τ ÿ = α(β(yg − y)− ẏ) (7.1)

τ is the time constant, while α and β are positive constants. By setting β to α/4 we get a critically
damped system. The variables y, ẏ and ÿ are the position, velocity and acceleration, respectively.

The second system in the DMP is the forcing term. In order to deform the trajectories and achieve
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any desired shape, the spring-damper system is modulated with this non-linear forcing term f(x).

τ ÿ = α(β(yg − y)− ẏ) + f(x) (7.2)

The forcing term f(x) is the weighted summation of Gaussian basis functions multiplied by a
canonical dynamical system, x, and is obtained by the following equation

f(x) =
∑N
i=1 ψi(x)ωi∑N
i=1 ψi(x)

x, (7.3)

with
ψi(x) = exp(− 1

2σ2
i

(x− ci)2) (7.4)

defines the Gaussian basis functions with centers ci and variances σi, N is the number of ba-
sis functions and ωi are adjustable weights, which will be optimized by the policy improvement
method explained in 2.3. The canonical system x replaces the time dependency of the forcing
term. It goes from 1 to 0 during a movement (xinit = 1, xfinal = 0) and is obtained by the equation

ẋ = −αx, (7.5)

where α is a predefined constant. This ensures convergence to the goal while keeping the forcing
term not directly dependent on time.

Since the spring-damper system leads to high initial accelerations, which is not desirable for robots,
we use a goal system, which moves the attractor state of the system from the initial state y0 to the
goal state yg during the movement. This delayed goal attractor ygd itself is represented as an
exponential dynamical system that starts at y0 and converges to yg.

˙ygd = −αg(yg − ygd) (7.6)

Thus the DMP equation becomes:

τ ÿ = α(β(ygd − y)− ẏ) + f(x) (7.7)

The DMP has several advantages, which make it very suitable for our application:

• It is guaranteed to converge to the goal, since the canonical system is 0 at the end of every
movement.

• the weights ωi can be adapted to generate any desired trajectory. In our case this is especially
relevant, since we want to learn the optimal trajectory and adjust the weights online with each
interaction.

• As there is no time-dependency, the duration of the movement can be altered just by changing
τ .

For our purposes we use a modified DMP to ensure obstacle avoidance.

τ ÿ = α(β(ygd − y)− ẏ) + f(x) + ϕ(x, v) (7.8)

132



7.3 Methods

This added factor ϕ(x, v) results from the potential field, which will be introduced in the following
chapter.

Implementation We use one DMP with three goal systems for the three cartesian positions of
the end-effector. Previous work with similar setups has used the DMP directly in joint space [8].
This works well for predictability adaptation. However, as we want to incorporate obstacle avoid-
ance, we chose to run the DMP in end-effector space as opposed to joint space. This has two main
advantages:

• It allows us to add the repellent forces resulting from the obstacles directly to the differential
equation of the DMP without transforming.

• It enables setting the start and attractor state of the roll-out directly in the task space of the
robot, and thus giving the robot freedom to position the rest of the joints in the null-space to
avoid obstacles.

We use 20 equally spaced Gaussian radial basis functions for the DMP and have 4 samples per
update for each goal for the exploration with 10 parameter updates.

In the sampling phase, we add small perturbations to the DMP parameters and run the policy for
each sample. With each iteration we let the variance factor for the perturbations decay, so that the
trajectory eventually converges.

7.3.2 Artificial dynamic potential field

With artificial potential fields, operational space of the robot is regarded as a field of forces [223],
[224]. The goal that has to be reached has an attractive force, while the obstacles that have to be
avoided exert a repulsive force on the manipulator. In our case we will only use repulsive forces,
as the attraction to the goal is guaranteed by the DMP. The additional term ϕ(x) in eq. 7.8 is then
the force resulting from the potential field

ϕ(x) = −∇U(x), (7.9)

where the dynamic potential field is defined as in [221] (eq. 7.10), with the following properties:

• The magnitude of the potential field decreases with the distance of the end-effector x to the
obstacle (similar to a static potential field).

• The magnitude of the potential field increases with the speed of x and is zero when the speed
of x is zero.

• The magnitude of the potential field decreases with the angle between the current velocity
direction of x relative to the obstacle and the direction towards the obstacle (Fig. 7.2). In
addition, the magnitude is zero, if θ is over 90◦ (i.e., the end effector moves away from the
obstacle).
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V

Velocity

End-effector position
X

Obstacle

O

φ

Figure 7.2: The steering angle ϕ between the velocity vector, v, and the vector from the end-
effector position to the obstacle position, p(x).

The dynamic potential field is defined as

Udyn(x, v) =


λ(−cosθ)β ‖v‖

p(x) , 0 ≤ θ ≤ π
2

0, π
2 < θ ≤ π

(7.10)

where v is the velocity, λ is a constant for the strength of the entire field and β is a constant. θ can
be obtained by

cos(θ) = vTx

‖v‖p(x) (7.11)

and is limited to a range between 0 and π. For moving obstacles, x and v can be defined as the
relative position and velocity to the obstacle respectively. The force ϕ(x) is then computed as

ϕ(x, v) = −∇xUdyn(x, v) = λ(−cosθ)β−1 ‖v‖
p(x)(β∇xcosθ −

cosθ

p(x)∇xp(x)) (7.12)

for 0 ≤ θ ≤ π
2 and can be used to modify the DMP as in eq. 7.8.

It is worth noting that the DMP loses its goal convergence property due to this additive force, if
the obstacles are positioned very closely to the goal. In our experiments we avoid such scenarios.

Implementation We use a motion capture system to detect the position of the human (and the
velocity), which are then used to compute the repulsive force. This is done at every time step of
the rolled out trajectory, before computing the next joint positions.

7.3.3 Policy improvement through black-box optimization

We are using a policy improvement method to iteratively update the weights of the DMP to achieve
the desired trajectory. All policy improvement methods have two basic steps:

1. Exploration by perturbation: The exploration noise εt can either be added to the actions,
i.e. the output of the policy (πθ(x) + εt), or directly to the input parameters of the policy
(πθ+εt(x)).
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2. Policy update: Here, the parameters of the policy get updated in order to minimize the total
cost. Gradient descend follows the negative gradient of the cost function to find the local
minimum. Another - in our application more favorable - method is the reward-weighted
averaging. There are other policy update methods, which will not be covered in this thesis.

Reward-weighted averaging does not require differentiability of the cost function, which makes it
more stable than gradient descend, if the cost function is not continuous.

Specifically for this project we chose Policy Improvement through Black-box Optimization (de-
noted PIBB) as our policy improvement method. This learning method has been proposed by
Stulp et al. in [219]. As PIBB is a black-box optimization method, it treats the whole roll-out
as a black-box and does not have knowledge about the individual actions. Thus, it is a parameter
perturbing approach. The output ut of the policy is computed as:

uk = πθ+εk(x), with εt ∼ N (0,Σ) (7.13)

In our case the policy πθ, is the DMP and θ are the corresponding weights for the Gaussians.

The parameter update is done using reward-weighted averaging. First, the cost Ck for each roll-out
is computed. Then we assign higher probabilities Pk to trajectories with a lower cost and vice
versa.

Pk = e−1/λCk∑K
k=1 e

−1/λCk
(7.14)

K is the number of roll-outs and λ is a constant between 0 and 1.

The parameter update is then as follows:

δθ =
K∑
k=1

Pkεk (7.15)

θ ← θ + δθ (7.16)

After taking the weighted average of all roll-outs, the new trajectory is closer to the trajectories
with less cost. This process of perturbing and updating is repeated until the desired cost value is
achieved or the maximum number of updates is reached.

Implementation In our application, the DMP is the policy πθ, and the weights of the Gaussian
functions are the parameters θ. The exploration is done by rolling out different trajectories and
evaluating them using the cost values resulting from the interaction with the human. The cost
function is detailed in section 7.3.5.

7.3.4 Inverse kinematics with null-space constraints

As the output of the DMP is in cartesian space, forward and inverse kinematics model of the KUKA
LWR IV are used for joint-space control.
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Link ai αi di θi

1 0 π/2 0 θ1

2 0 −π/2 0 θ2

3 0 −π/2 0.4 θ3

4 0 π/2 0 θ4

5 0 π/2 0.39 θ5

6 0 −π/2 0 θ6

7 0 0 0 θ7

Table 7.1: Denavit-Hartenberg parameters. θi are the joint variables that have to be determined.

Forward model The forward kinematics are based on the Denavit-Hartenberg transformation
matrices (Table 7.1). Using this model, the end-effector position relative to the joint positions θi is
calculated. This is then used to compute the Jacobian needed for the inverse kinematics.

Inverse model For controlling the robot, the cartesian trajectory produced by the DMP is trans-
formed into joint positions by the inverse kinematics

θ̇ = J+ẋ (7.17)

with J+ being the pseudo inverse of the Jacobian J , i.e., the least-squares approximation to the real
inverse, of the end-effector. In our case, only the pseudoinverse is applicable due to the redundant
configuration of the KUKA robot. We make use of this redundancy and extend the equation 7.17
to add null-space constraints to prevent link collisions with obstacles without affecting the final
trajectory [225].

θ̇ = J+ẋ+ [J0(I − J+J)]+(ẋ0 − J0J
+ẋ) (7.18)

where x0 is the point on the robot closest to the obstacle and J0 is the corresponding Jacobian.
This added term induces a movement ẋ0 away from the obstacle.

7.3.5 Cost computation

Instead of trying to find the latent cost functions that might affect constructing a natural close
proximity human-robot interaction, as explicitly provided in some recent studies for legible and
predictable motion [7], we formulate a composite cost function (slightly different variations for
each experiment (Sec. 7.4)) that contains the main components that is informative for such inter-
action.

Several cost functions are identified and mixed depending on the experimental setup. Here, we list
all the costs used. and specify later which one of those are used when explaining the individual
experiments in Sec. 7.4:
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Experiment λej λθ λpred λtask λobs λdur λδ

End effector control 1 2 4 20 2 - 3

Joint control + Transfer 1 1 10 2 10 1 -

Table 7.2: Weights for the cost components for each experiment.

• End-effector jerk Jej: the sum of the third derivative of the end-effector position of the robot
at each time step in the trajectory.

• Angular jerk Jθ: the sum of the third derivative of the angular positions of the controlled
joints in the robot at each time step in the trajectory.

• Human time Jpred: the time taken by the human to make a prediction about the robot’s target.
It starts when the robot starts moving and ends when the human reaches one of the targets or
presses a button.

• Accuracy Jtask: whether the human prediction was correct, translating to 0 cost (Jtask = 0),
or if the prediction was wrong which results to a cost of 1 (Jtask = 1).

• DMP accuracy Jobs: the difference between the direct output of the DMP and the actual
trajectory after modification for obstacle avoidance. This is motivated for teaching the DMP
the avoidance behavior.

• Human duration Jdur: the duration of the human movement between when the human starts
moving and reaches the goal. It is a measurement of human’s confidence in the robot’s
presence.

• The weighted distance between the trajectories, Jδ, which measures how distinct the trajec-
tory to the targeted goal is in comparison to the trajectories to the other goals. This cost is
calculated using the following equation:

Jδ =
(

G∑
g=1

T∑
t=0

1
t

d(pt, qt)
)−1

(7.19)

where G is the number of the goals excluding the targeted goal, g is the other goal whose
trajectory is compared to the targeted goal trajectory, t is the time step at which we calculate
the distance, T is the total time of the trajectory, pt is the position at t in the trajectory to the
targeted goal, qt is the position at t in the trajectory to the goal g and d(pt, qt) is a function
that calculates the Euclidean distance between pt and qt.
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(a) Full view with Kuka

Obstacle

Goal 1

Goal 2

Goal 4

Goal 3

(b) Goals and obstacle position

Figure 7.3: The setup of the experiment.

7.4 Experiments

7.4.1 Preliminary experiments

Initial experiments have been conducted to investigate the effects of directly controlling the robot
joint positions versus only the end effector position by the optimized control policy during human-
robot interaction (HRI). First, the dynamic movement primitive (DMP) policy is used for end
effector control of the robot where the avoidance term (potential field generated force) is directly
applied on the DMP formulation. Note that, here there is only one static obstacle (Fig. 7.3). The
joint position control is achieved by the IK-solver without constraints.

The experiment was conducted among six subjects 2 females, and 4 males, with an average age
of 24 ± 6,. The experiment starts with a habituation phase in which the robot performs the initial
trajectory to each one of the four goals without a specific order. This habituation phase allows the
human subject to get prepared for the actual experiment. The initial trajectories are straight line
movements in x, y, and z dimensions from the starting position to the goal, with the exception of
G2 and G3 for which z dimension is pre-trained to avoid the static obstacle barely.

After the habituation phase the actual experiment starts. The experiment consists of 10 updates,
and each update has 6 different trajectories for each goal. The robot chooses the goals randomly
and performs a trajectory for each goal with the new mean updated parameters, as well as sampled
basis function weights, ωk.

A composite cost function is constructed as

Jc = λejJej + λθJθ + λpredJpred + λtaskJtask + λobsJobs + λδJδ. (7.20)

Each term in the cost function is normalized from zero to one then multiplied by its scaling factor
(Table 7.2), which are tuned by trial and error.

7.4.2 Transferability experiment

In this last experiment, the focus is on the transferability of a pre-learned policy to another task
and subjects. The experimental setup consists of three goals, identified with different colors. Each
goal consists of one thick block (robot’s target) and one thin block (human’s target) built with
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(a) Full view with Kuka

Goal 1 

Goal 2 

Goal 3 

starting

position 

(b) Goals and start position

Figure 7.4: The setup of the second experiment.

LEGO bricks (Fig. 7.4a and 7.4b). The starting position of the robot was chosen to give the robot
maximum manipulability with respect to the setup, while the final robot position is given by the
target locations, and only constrains the end-effector position. The trajectory from initial to final
position is generated by the DMP for the end effector (eq. 7.8), and the inverse kinematics for the
joint positions (eq. 7.18).

During the experiment, the robot chooses one of the three goals randomly and reaches it. During
the movement of the robot the human has to predict the goal the robot is aiming for and move as
fast as possible to the corresponding thinner goal. If the paths of the robot and the human intersect,
the robot modifies its trajectory to avoid collision. The impedance controller of the robot further
ensures the safety of the human at all times. There are 15 updates and each update consists of 3
samples for each goal.

To investigate the transferability of the learned robot policy to other tasks, we have two different
experiments with the same setup. They just differ in the policy parameters.

• Experiment A is the control group. Here, the robot learns the policy "from scratch" during
the experiment.

• In Experiment B, the policy is trained with a similar setup (the difference being the initial
position of the robot), and the policy parameters are saved to be used for the same setup as
Experiment A.

The cost function is similar to the preliminary experiment with joint control. The experiment
was conducted on 13 human subjects with an average age of 23±7, 7 females and 6 males. 6
participants were involved in Experiment A, and another 6 in B and one participant interacted with
the robot to train the policy for Experiment B. The cost values and the robot and human trajectories
were saved and processed for each human subject for both experiments.

7.5 Results and Discussion

Here, the results from both experiments are provided.
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Figure 7.5: The trajectories to G1 for one of the representative human subjects (left), along with
the total cost (center), and the human reaction time (right) for predicting G1 for all the
human subjects.
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Figure 7.6: The trajectories to G2 for one of the representative human subjects (left), along with
the total cost (center), and the human reaction time (right) for predicting G2 for all the
human subjects.

7.5.1 Results for the preliminary experiment

The curvature of the trajectory away from the other goals and obstacle is distinctive for this goal
(Fig. 7.5). G1 was the easiest goal for prediction given the fact it does not have any other goals or
obstacles placed in front of it and it was the closest goal to the starting position of the robot. The
human prediction time decreases during the trial over all six human subjects without any wrong
predictions at the end. There are only 3 wrong guesses at the early updates from the 360 total
G1 trajectory predictions by the six human subjects. The total costs also decreases and converges
towards the last updates with a noticeable decrease in standard deviation between the six subjects.

Figure 7.6 shows the initial, updated and final trajectories towards G2 for one of the human sub-
jects. The initial trajectory is a straight line in xy plane but with an elevation in z dimension to
avoid colliding with the orange obstacle. The final trajectory gets only a slight curvature in the xy
plane towards G1 and a high curvature in z dimension.This trajectory prevents the end effector to
collide with the obstacle and also makes the trajectory to G2 distinguishable than the trajectory to
G1 that has a much larger curvature in xy plane, and than the trajectory to G3 that has a curvature
in xy plane in the opposite direction towards G4 as shown in Figure 7.7.

The human prediction time for the human subjects decrease towards the last updates. The amount
of wrong guesses for G2 is bigger that G1 because the subjects would sometimes confuse the tra-
jectory to G2 as a trajectory to G3 and occasionally to G1. Almost half of these wrong predictions
is caused by an early prediction of the goal. The total costs of the trajectories to G2 show a con-
vergence towards the last updates. Note that the costs with values more than 20 is due to a wrong
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Figure 7.7: The trajectories to G3 for one of the representative human subjects (left), along with
the total cost (center), and the human reaction time (right) for predicting G3 for all the
human subjects.
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Figure 7.8: The trajectories to G4 for one of the representative human subjects (left), along with
the total cost (center), and the human reaction time (right) for predicting G4 for all the
human subjects.

prediction of the goal because the accuracy cost is multiplied by a scaling factor 20.

Overall, for the other two goals, G3 andG4, similar trends are observed (Fig. 7.7 and 7.8). We can
notice that the final trajectory to a certain goal is not necessarily the one with the most exaggerated
motion away from the other goals. This is due to the combination of the cost terms and their scaling
factors. An exaggerated motion in the wrong direction might also lead to a longer human reaction
time especially in the early updates, as the human subject might not be expecting such exaggerated
motion so they wait until the end of the trajectory to make a prediction.

One interesting outcome is the final trajectories for each subject (Fig. 7.9). The policy improve-
ment process leads to different final trajectories for each subject. Such difference is consistent for
all the goals. This is an indication that our approach generates predictable trajectories that adapt to
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Figure 7.9: The final trajectories to G1 for all the subjects (left), along with the final trajectory per
goal for a representative subject from two perspectives (center and right).
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Figure 7.10: The total cost (left), human response time (center), and accuracy (right) over trials of
a representative subject in Experiment A.
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Figure 7.11: The joint jerk (left), and end effector jerk (right) of the robot during a trial in Experi-
ment A.

the human preferences. Figure 7.9 also shows the final trajectory to each goal for the same subject.
The trajectories are distinctive to allow lower prediction time for each goal.

7.5.2 Results for the transferability experiment

Experiment A First, we will present the results for the Experiment A. The robot learned its
policy during the interaction starting with a simple initial controller following a straight line. The
cost components of one of the representative subjects in this experiment show that both the human
time and the accuracy cost are decreasing with each update, i.e. the subject is getting faster and
more accurate over time (Fig. 7.10).

We noticed two trends in participants. Some of them wait a long time to be sure about their
prediction and then move their hand, while some have very fast response times, but bad accuracy
in the beginning. This is due to the personal preferences of the humans and might be related to
their experience and confidence around robots. Even though the degree of improvement changes,
in general the human response time and the accuracy cost decrease during this close proximity
interaction.

The jerk costs (both for the end effector and the joints) are scattered throughout the trials (Fig. 7.11).
Such high jerk profiles arise when the robot has to avoid collision with the human and does an ex-
aggerated maneuver. However, on average the jerk costs still decrease over time.
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Figure 7.12: The total cost for the case where the robot is trained with only 1 subject for Experi-
ment B (left), and the mean and standard deviation of the total cost for both Experi-
ment A and B for all subjects per goal (right).

Experiment B In Experiment B, the subjects interacted with the robot that was trained with the
policy of another subject for a different task. This participant did the experiment with the robot
with a different initial position, and thus configuration. After the experiment was complete, the
policy parameters were saved and then used for the same setup as Experiment A. In essence, the
transferability of the policy to another task and for other subjects is investigated. First, we show
the cost values for the one participant during the training of the policy which was used for other 6
subjects (Fig. 7.12 (left)). The cost values decreased for all the goals. When we used the policy for
the different task, however, the cost stayed relatively the same (Fig. 7.12 (right, blue)). This might
be that the pre-learned policy generates discernible trajectories at the start of the trials. Another
reason might be due to the fact that the covariance of the exploration was already small, so the
pre-learned policy was stuck in a local minimum and did not improve further.

Comparison between experiments A and B The analysis on mean and standard deviation
of the cost values shows that Experiment A has higher cost values than Experiment B (Fig. 7.12
(right)). In general, the overall cost for Experiment A decreases over time. However, it does
not reach the values observed in Experiment B. Because of the trained policy in Experiment B,
participants had shorter response times from the very first iteration (Fig. 7.13).

In all the experiments the position of the blocks forced the participants to come in close proxim-
ity of the robot. The obstacle avoidance algorithm was successful in avoiding collision in these
scenarios.
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Figure 7.13: The mean and standard deviation of the human response time for all subjects, (red -
Experiment A, and blue - Experiment B).

7.5.3 Conclusion

In this work, a framework is developed to generate predictable robot motion that can adapt to
human preferences and can avoid dynamic obstacles, which in our case is the human hand during
interaction). The experiments that were conducted show that robots are able to adapt their behavior
to human preferences. They can learn to become more predictable while still giving humans the
freedom to move safely in the same work space. The humans became faster and more confident
in their predictions. Task transferability between subjects is tested. In our experiment, the learned
policy produced better results in the new task than the control group without a pre-learned policy.
This confirms our hypothesis that the policy learned by this framework is indeed transferable to
other tasks and also to other humans.

Having said that, there are some limitations for our work. Due to the relatively small size of our
study, a definitive claim on the applicability of this framework with other subjects from different
backgrounds or with different tasks cannot be made. Another missing investigation is how much
of these observed improvements are due to human learning and adaptation to the robot movement,
or robot changing its policy, and thus the movement behavior. Experiments with a few days break
in between trials per subject would help reducing the learning effects, and may provide a better
perspective to understand the impact of robot policy change.
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Conclusions

In this thesis, I presented my interdisciplinary approach to achieve safe, natural, and effective close
proximity human-robot interaction (HRI). All of the algorithms and frameworks in this thesis focus
on human-in-the-loop robot control and learning. My dissertation addresses two main research
questions: First, how can we model human movement behavior, both in isolation and also during
interaction? Second, how can human level interaction capability be achieved for robotic agents to
provide natural, safe, and effective HRI? The dissertation proposes an interdisciplinary approach
to enable such close proximity HRI by combining (i) human sensorimotor control models, (ii)
human-human interaction (HHI) dynamics, and (iii) novel learning and optimization algorithms
for robot interaction behavior generation.

In my thesis, I focused on comprehensively covering different aspects of close-proximity HRI.
One such aspect is inevitably the human factors. As different scientific communities tackle those
problems in isolation (i.e., focus on cognitive and motor skills in neuroscience vs. fast predic-
tion of human motions in visual computing), there is a gap between accurate sensorimotor control
models and matching human level effectiveness for motion generation and control. In Chapter 2,
a hierarchical control architecture is proposed for explaining human arm reaching control by the
central nervous system (CNS). The inverse optimal control (IOC) results indicate that humans
rely on a composite of controllers, each of which can be described by an optimal controller. More
notably, there is a trade-off between kinematics and dynamics related controllers, and humans
combine them effortlessly according to the task. These findings suggest a process of sensorimo-
tor learning of multiple forward and inverse internal models within the CNS simultaneously and
then controlling them in a hierarchical manner effectively. Next, in Chapter 3, I showed how
this composite controller can be approximately represented by Gaussian process regression (GPR)
models, and combined with data-driven approaches for modeling and predicting human reaching
motions online. Here, the focus was both to represent person specific control models, and also to
effectively use them for online computations. The combination of model-based and data-driven
approaches are presented that complement each other to fulfill this representational accuracy and
computational efficiency requirements.

The symbiosis of model-based and data-driven approaches was a running theme of this thesis. The
connection between Chapters 4 and 5 is another example of this necessary co-existence. In Chap-
ter 4, I presented a systematic approach to investigate close proximity human-human interaction
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scenarios by using both human kinematic models, and also an extensive set of recorded dyadic in-
teraction cases. This analysis resulted in an ontology that provides a unified and generalized graph-
based representation that is used to model, classify, and predict close proximity human interaction
behaviors. Thanks to our understanding of composite controllers for human reaching motions,
similar combined models were assumed and learned by inverse reinforcement learning (IRL) to
understand the strategies used by humans in such situations. These learned policies enable gen-
erating the appropriate robot trajectories similar to humans’ during interaction. Such a thorough
coverage and systematic analysis of HHI cases serve as a base and reference for future studies to
propose and benchmark new learning algorithms, and to evaluate close proximity HRI behaviors
for different tasks. The learning framework developed (Chapter 5) uses the same dataset of HHI
scenarios, and learns policies that imitates human interaction behavior control. This formulation is
similar to end-to-end learning approaches by only relying the distance features that can be obtained
by visual and proximity sensors. I demonstrated that the recurrent neural network (RNN) based
policy can efficiently be used by a robot to interact with human partners in close proximity. The
policy is also generalized in the sense that it allows reaching any target in 3D space, and even when
the target is dynamic, for which it was not explicitly trained. Different levels of behavioral cloning
is achieved depending on the network complexity. Similar to my proposed hierarchical control
structure for human motor control, an ensemble of policies can be combined to model complex be-
haviors for autonomous agents, and to the best of my knowledge, the demonstrated policies are the
first neural network controllers that can operate on real robotic arms in close proximity to human
partners without additional avoidance planning and control components.

The simulation and real world evaluations in Chapters 5, 6, and 7 show that the proposed models
and algorithms enable robots to work with humans. Both the imitation learning and stochastic
optimization methods are able to provide safe close proximity HRI that has been missing in prior
studies, and the policy improvement method allows adapting to human movements and prefer-
ences, which can be utilized for longterm learning architectures. These two approaches verify the
significance of human-in-the-center planning, and the online policy improvement approach offers
a long-term learning framework for personalized assistance. Both methods also rely on model-
based and data-driven formulations, similar to the prior studies presented in the thesis. In essence,
human involvement necessitates constructing solutions that exploit best of both worlds in terms of
technical approaches.

In the next section, I will discuss some high level limitations of the proposed methods and future
work that could address them, as well as broader challenges in the areas of safe learning and con-
strained policy optimization. I will also discuss the possible future directions that can be followed
in interaction and motor skill learning.

8.1 Challenges and Limitations

Model-based formulations is a common theme in all subcomponents of my thesis research, and
the human kinematics and especially the dynamics models are also the cause of an underlying
limitation of such approaches. Due to the computational complexity of solving optimal control
problems (OCPs), and much harder inverse optimal control (IOC) formulations, only a simplified
system model has been feasible in my work. Even though general behavioral trends of human
movement can still be analyzed with such simplified models, they might also obscure subtle but
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important motor control properties. In addition, sensory feedback for movement control is missing
in the current form of the proposed (I) OCP formulation, which is known to be critical for any
human motor control task.

Another crucial challenge in all my work is the availability of human movement data, whether it
is free-space arm motions or close proximity dyadic interaction. The data provided with this work
will help further research in these areas. However, for a more sustainable solution, simulation
based learning approaches is a promising direction for future work. Using the developed meth-
ods to simulate both human movements and robot interaction control, a reinforcement learning
framework can be applied for acquiring a broader and richer range of interaction skills.

If we look at the research trends in related fields, the focus of robotics and control problems has
been on robust and precise robotic movement. The human-robot interaction (HRI) can surely ben-
efit from those formalisms, as some novel approaches presented in this thesis has accomplished.
On the other hand, social robotics research, in general, focuses on subjective human evaluations
of robotic performances. These studies also guide the critical directions that theoretical and al-
gorithmic investigation in robotics should explore further. Nevertheless, one key prerequisite of
natural and safe close proximity collaboration, which has been neglected at large in both fields, is
understanding the control and decision making processes of humans. I believe, only after position-
ing the human factors at the center, autonomous agents can reliably learn and interact with human
partners.

Having said that, I think the current robotic hardware is still not suitable for fast and safe close
proximity HRI due to their operational space, manipulability constraints, lack of sensors, and
bulky structure. In addition to constructing policies controlling the end effector or joint position,
additional layers of controllers have to be implemented due to safety and real-time control fre-
quency requirements. Naturally, both passive and active compliant behavior are expected for safe
and natural HRI, which series-parallel elastic actuators might provide in the future. On the other
hand, virtual and augmented reality setups have a great potential to simplify and expedite the pro-
cess of conducting experiments and testing new methods efficiently to drive the research in this
field faster.

Another key challenge is efficiency of numerical computations involved in controlling robotic
agents in real world scenarios when working near humans. Safe interactions can be provided
by model- and optimization-based approaches, however, performance and efficiency of numerical
methods used to solve such problems have mostly been an afterthought. Fast trajectory compu-
tation methods [226], [227] as well as fast avoidance approaches exist [29], however, solely con-
structing reactive controllers and motion generators limits the collaborative opportunities between
human and robot teams. In effect, such efficiency is a necessary but not sufficient condition for
any purposeful close proximity HRI. Collaborative agents need richer interaction skills, and adap-
tation capabilities, i.e., they should not just react but also deliberately respond to their partners’
behaviors and the dynamic environment.

Last but not least, from artificial intelligence (AI) research perspective, there is a lack of focus on
joint manipulation and close interaction skills for autonomous systems that can work with humans.
Although significant improvements achieved for continuous control tasks with deep reinforcement
learning (DRL) techniques, thanks to the newly developed algorithms and efficient use of neural
network based architectures, the focus has been purely on single agent skills [228]. Some re-
cent studies have started to look into safe learning methods, but they are still towards learning
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low dimensional dynamic system models or agent skills [147], [229], [230]. The learning from
demonstration (LfD) and programming by demonstration (PbD) approaches are effective for skill
learning, and recently used for close interaction cases [231]. They tend to work within the demon-
strated task space well, as in our own work [241], however, their generalization capability and
safety issues still remain as challenges and their limitations.

8.2 Future Directions and Applications

Sensorimotor control The first contribution of my dissertation research is the identification
of multiple internal models (MIMs) by an inverse optimal control (IOC) formulation to explain
human arm reaching control. In addition, a trade-off between kinematics and dynamics related
control models is identified w.r.t. the task parameters, and a metric is proposed to define a hier-
archical control structure within the central nervous system (CNS) [235]. This formulation, to-
gether with similar metrics, enables investigation of a wide range of motor tasks to understand and
model human sensorimotor control better in future studies. I think human motor control flexibility
emerges from a hierarchical, yet easily deformable, functional mappings from sensory information
to motor commands. In that regard, on a bigger scale, building new bridges to fill the the gap be-
tween neuroscientific findings, e.g. plasticity of neurons in brains [232], and learning algorithms
for skill acquisition, e.g. hierarchical reinforcement learning (RL) [233], or decision making [234]
is a challenging but very crucial research direction.

Going beyond imitating human-human interaction for HRI The ontology proposed in
this thesis is a first step towards a systematic analysis of close proximity human-human interac-
tion (HHI). The results show that the ontology can be used to classify, and predict human motions
accurately, and the policies learned from our extensive user studies demonstrate the feasibility of
generating human-like interaction behavior control by imitating humans. Nevertheless, imitation
alone limits the generalization capabilities and cannot provide safety guarantees. In order to im-
prove the learning process of autonomous systems, control theoretic reachability or invariance set
analysis can be integrated into the policy optimization procedure. This integration will enable a
safe learning procedure by relying on the system dynamics and checking the feasibility of each
action before considering it in policy evaluation phase. However, a simulation environment, where
the agent can learn through exploration, is still necessary. In such an environment, human-like
movements can be simulated for one agent by the imitated human control policies learned from
demonstrations, while a second agent learns safe and natural dyadic behavior by a constrained pol-
icy optimizer. This is also critical for any autonomous system that is expected to act near humans
in our daily lives. The agent will be able to take safe actions and still learn through interaction and
observation for long-term learning, adaptation, and personalization.

A comprehensive human-robot interaction architecture Currently, the research studies
involving human-robot interaction (HRI) covers a small subset of tasks and interaction scenarios.
Following a top-down approach by constructing a comprehensive architecture, comprising three
main building blocks, inspired by the cognitive perception-action-learning (PAL) loop hypothesis
for human sensorimotor control, would enable a generalized formulation for interaction situations.
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In order to improve the awareness capabilities of the agent, the perception module considers three
main properties, which are multimodal sensory information from the environment, e.g. including
objects being jointly manipulated, the motion behavior characteristics, and spatio-temporal fea-
tures related to person- and situation-dependent social signals. For proactive action execution,
novel social movement primitives (SMPs), consisting of a control law, e.g. an optimal control
problem with social constraints, can be formulated to generate socially acceptable motions. As
each motion primitive executed by the robot results in a different reaction of the human, the cor-
responding action-perception dependency needs to be accounted for to build a behavioral memory
for the autonomous agent. In a next step, SMPs are augmented by the perception signals to form
the associative social skill memories (AS2Ms) of the robot.

An AS2M still is an individual behavior model with limited generalization. As a last step, a suitable
generalized behavior model has to be constructed from the repertoire of behaviors that exist as
SMPs along with AS2Ms. This requires a supervised deep sensorimotor learning framework due
to the high-dimensionality of the sensory data, in which AS2Ms along with the observations from
perception module guide the learning of high-level controllers.

In sum, these multidisciplinary approaches would endow robotic agents with generalized interac-
tion skills. In essence, they will be able to learn and control complex motor skills to effectively
interact with humans and in dynamic environments autonomously.
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