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Abstract

In this thesis, we study quantum many-body systems in one (1D) and in two spatial dimen-
sions (2D). We adopt the approach established by Moore and Read, where model states are
constructed using conformal field theory (CFT), a scale-invariant quantum field theory. The
central themes of this thesis are the definition of states through CFT, their characterization,
and the understanding of their properties in terms of the underlying CFT.

The first part of this thesis considers a CFT with an additional SU(2) symmetry. We define a
map from CFT states to those of spin-1

2 systems on lattices. In 1D, the CFT vacuum is mapped
to the ground state of a Heisenberg-like spin chain with long-range inverse-square interactions.
We show that the excited states of this spin chain can be constructed from excitations of the
CFT. Thus, we establish a correspondence between the spectrum of the CFT and that of the
spin chain. In a next step, we study these states in 2D, where the CFT ground state corresponds
to a fractional quantum Hall (FQH) lattice state. Excited states of the CFT are mapped to wave
functions describing edge excitations of the FQH system. Through Monte Carlo simulations,
we provide numerical evidence for a central property of these edge modes, namely that their
local bulk correlations coincide with those of the corresponding FQH state as the system size
becomes large enough. These results confirm the bulk-edge correspondence stating that the
CFT associated with the gapless edge can be used to describe wave functions of the bulk.

We then consider a larger class of states constructed from CFT. In 1D, these are good
descriptions of the ground state of the XXZ spin-1

2 chain, and they correspond to FQH lattice
states in 2D. Through a path integral representation, we propose an approximation for their
spin-spin correlations. The effective action determining this approximation differs from that of
the underlying CFT through an additional mass-like term at the lattice positions. This explains
the behavior of the correlations: While they decay polynomially in 1D and at the edge of 2D
systems, bulk correlations in 2D decrease exponentially as a function of the distance. We test
the accuracy of the approximation by comparing it to actual spin-spin correlations obtained
through Monte Carlo simulations. Our approximation provides an analytical argument for
the screening hypothesis, which states that FQH wave functions have exponentially decaying
bulk correlations.

The last part of this thesis uses CFT to define nonchiral states with continuous spins on
lattices. Opposed to the case of discrete spins, these are Gaussian and thus their properties
can be computed efficiently. Through an analysis of entanglement entropies and spectra, we
identify signatures of the underlying CFT in 1D. In 2D, we find indications of edge states.
Although the topological entanglement entropy vanishes, the entanglement spectrum contains
modes that decay exponentially with the distance to the entanglement cut.
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Zusammenfassung

Diese Dissertation untersucht Quanten-Vielteilchensysteme in einer (1D) und in zwei räum-
lichen Dimensionen (2D). Wir arbeiten im Rahmen der von Moore und Read etablierten
Herangehensweise, wonach Modellzustände durch konforme Feldtheorie (CFT), einer skale-
ninvarianten Quantenfeldtheorie, konstruiert werden. Die Schwerpunktthemen dieser Arbeit
sind: die Definition von Quantenzuständen vieler Teilchen mittels CFT, deren Charakterisie-
rung und das Verständnis ihrer Eigenschaften in Bezug auf die zugrundeliegende CFT.

Der erste Teil dieser Dissertation betrachtet eine CFT, welche eine zusätzliche SU(2)-Sym-
metrie aufweist. Wir definieren eine Abbildung von Zuständen der CFT zu solchen eines
Spin-1

2-Systems auf einem Gitter. In 1D wird das Vakuum der CFT auf den Grundzustand
einer Spinkette abgebildet, welche ähnlich einem Heisenberg-Modell ist und langreichweitige
Wechselwirkungen hat, die mit dem Quadrat der Distanz abfallen. Wir konstruieren Anre-
gungszustände der Spinkette ausgehend von Anregungen der CFT. In einem weiteren Schritt
untersuchen wir diese Zustände in 2D, wo der Grundzustand der CFT dem Zustand eines
fraktionalen Quanten-Hall-Effekts (FQH) auf einem Gitter entspricht. Anregungen der CFT
werden auf Wellenfunktionen abgebildet, welche Randzustände des FQH-Systems beschreiben.
Mittels Monte-Carlo-Simulationen finden wir numerische Belege für eine zentrale Eigenschaft
solcher Randzustände: Deren lokale Korrelationen im Inneren des Systems stimmen mit denen
des zugrundeliegenden FQH-Zustands überein, sobald die Systemgröße groß genug wird.
Dieses Ergebnis bestätigt das Konzept der Korrespondenz zwischen dem Inneren und dem
Rand. Dieses besagt, dass die CFT des Randes Zustände des Inneren beschreiben kann.

Danach betrachten wir eine größere Klasse von Zuständen, welche durch CFT definiert sind.
Diese sind gute Näherungen für den Grundzustand der XXZ-Spin-1

2 -Kette in 1D und entspre-
chen FQH-Zuständen in 2D. Durch eine Pfandintegraldarstellung leiten wir eine Näherung
für Spin-Spin-Korrelationen her. Die effektive Wirkung dieser Näherung unterscheidet sich
von derjenigen der zugrundeliegenden CFT dadurch, dass sie einen zusätzlichen Term enthält,
der einem Masseterm ähnlich ist. Dieser ist an den Gitterplätzen des Systems lokalisiert und
erklärt somit das Verhalten der Korrelationen: Diese zerfallen polynomiell in 1D und am
Rand eines 2D Systems und exponentiell im Inneren eines 2D Systems. Wir überprüfen die
Genauigkeit der Näherung, indem wir sie mit den tatsächlichen Spin-Spin-Korrelationen
vergleichen, welche wir mittels Monte-Carlo-Simulationen berechnen. Unsere Näherung stellt
einen analytischen Beleg für die Abschirmhypothese dar. Diese besagt, dass Korrelationen von
FQH-Zuständen im Inneren des Systems exponentiell zerfallen.

Der letzte Teil dieser Dissertation definiert nicht-chirale Zustände mit kontinuierlichem
Spin auf Gittern mittels CFT. Im Unterschied zum Fall diskreter Spins sind dies Gaußsche Zu-
stände. Daher können deren Eigenschaften effizient berechnet werden. Mittels einer Analyse
von Verschränkungsentropien und -spektren identifizieren wir Charakteristika der zugrunde-
liegenden CFT in 1D. In 2D finden wir Hinweise auf Randzustände. Obwohl die topologische
Verschränkungsentropie verschwindet, enthält das Verschränkungsspektrum Moden, welche
exponentiell am Rand lokalisiert sind.
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1 Introduction

1.1 Motivation

Much of the progress in modern physics like the discovery of general relativity or the for-
mulation of the standard model of particle physics is related to a gradual, more refined
understanding of the fundamental laws of nature. On the other hand, even if fundamental
interactions between particles are known, the understanding of their implications can be
highly challenging. Moreover, it has been argued that the knowledge of fundamental laws is
not enough to arrive at an understanding of the behavior of complex systems consisting of
many participants [1–3]. In condensed matter physics, the difficulty to derive the behavior of
many-body systems from fundamental, microscopic laws lies in the complexity of the problem,
which grows rapidly with the number of participants. More precisely, the dimension of a
many-body system’s Hilbert space depends exponentially on the system size. Thus, even with
modern computational resources, only small systems can be solved through numerical meth-
ods without further approximations. Effective descriptions and phenomenological models
are therefore common in condensed matter physics. Many of them are not derived rigorously
from the underlying fundamental interactions but evolve in an interplay between experiment
and theory. Within this process, new concepts, ideas, and techniques have emerged to treat
complex systems consisting of multiple participants.

This thesis examines model states of quantum many-body systems using a framework that
has been established in the past decades: We investigate many-body wave functions that are
defined as correlators of a conformal field theory (CFT) [4–6], which is a quantum field theory
with a scale invariance. This approach was pioneered by Moore and Read [7], who constructed
wave functions of quantum Hall [8–10] systems from CFT.

The following subsections introduce the quantum Hall effect, explain its importance as an
example of a topological phase of matter, and describe how CFT can be used to build models
for these systems.

1.1.1 The quantum Hall effect

The discovery of the integer quantum Hall (IQH) [8] and of the fractional quantum Hall
(FQH) [9] effects in the early 1980s initiated one of the most important developments in
physics of the past decades. Quantum Hall phases occur in two-dimensional (2D) electronic
systems at low temperatures that are subject to a high perpendicular magnetic field. The
effective confinement of the electrons to a 2D plane can be achieved experimentally at the
interface of two semiconductors of different type [11, 12]. The key experimental signature
of the quantum Hall effect is the behavior of the transverse Hall resistivity ρxy and the
longitudinal one, ρxx, as a function of the magnetic field B, where ρxx and ρxy are determined
in a transport measurement as shown in Fig. 1.1. While classical physics predicts a linear
dependence of ρxy on B, the quantum Hall effect is characterized by the formation of plateaus
where ρxy is constant as a function of B to a very high precision. At these plateaus, the
longitudinal resistivity ρxx vanishes, while ρxy assumes values ρxy = 1

ν
h
e2 . Here, h is Planck’s

constant, e the elementary charge, and ν a rational number known as the filling fraction since
it corresponds to the number of Landau levels filled by the quantum Hall state. In the IQH

13
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jx jx

ρxx

ρxy

B

x

y
z

Figure 1.1: Transport measurement in a Hall experiment. Charge carriers are confined to a
plane at the interface of two semiconductors. A large perpendicular magnetic
field B is applied in the z direction, and a current jx driven through the system in
the x direction. The longitudinal resistivity ρxx is measured in the x and the Hall
resistivity ρxy in the y direction.

effect, Landau levels are fully filled meaning that ν is an integer. Other values of ν correspond
to FQH phases, which have partially filled Landau levels.

For fully filled Landau levels, it is possible to derive the observed values of the Hall resistivity
at the plateaus by considering the single-electron problem [13]. The fact that the resistivity
develops plateaus, where it is constant for a range of values of the magnetic field, can be
explained by taking into account the effect of impurities [13, 14]. If the Fermi energy lies in
the gap between two Landau levels leading to a fully filled level as in the IQH effect, there
are no states close to the Fermi energy and the system is gapped. This explains the vanishing
longitudinal resistivity, since ρxx = 0 is equivalent to having no conductance in the direction
of the applied electric field [σxx = ρxx/(ρ2

xx + ρ2
xy)].

This single-particle picture fails for the FQH effect, where the state is gapped even though
the Landau levels are only partially filled. Interactions between the electrons are thus key
and are responsible for the incompressibility of the state. Besides being inherently strongly
coupled, FQH phases exhibit exotic properties like excitations with fractional charge and
anyonic statistics [15–18]. These new quasiparticles are fundamentally different from those of
Landau’s Bose and Fermi liquid theories [19–22].

A perturbative treatment [23] of electron-electron interactions in the FQH effect is not
possible due to a macroscopically large degeneracy of the Landau levels [24]. Rather, a
breakthrough in the theoretical description of the FQH effect was achieved by Laughlin’s trial
states [10]. Laughlin showed that these are consistent with the experimental observations,
have excitations with fractional charge, and provide a good variational description of the
problem. His wave function represents a paradigmatic model state providing an effective
description of a complex physical phenomenon that evades a direct microscopic solution due
to the complexity of the many-body problem. Laughlin’s state describes quantum Hall phases
with filling fractions ν = 1

q , where q ∈ {1,3,5, . . . }. It was later generalized to states of other
filling fractions with odd denominators through the hierarchy construction [18, 25]. This
paved the way for the composite fermion theory of the FQH effect [26, 27], which interprets
FQH states in terms of an IQH effect of composite fermions, new quasiparticles consisting of
electrons and magnetic fluxes. Further generalizations of Laughlin’s wave function [7, 28, 29]
exhibit excitations with nonabelian anyonic statistics. This case is of particular interest due to
its potential applications for quantum computing [30, 31].

14



1.1 Motivation

1.1.2 The quantum Hall effect in lattices and chiral spin liquids

The experimentally observed quantum Hall effect leads to a theoretical description in terms of
continuous spatial degrees of freedom. Already in the 1980s, theoretical models on lattices
exhibiting quantum Hall phases were constructed. Haldane [32] showed that an IQH effect can
occur in a lattice model, where time reversal symmetry is not broken through an external mag-
netic field. This approach was recently generalized to interacting models [33–36]. Kalmeyer
and Laughlin [37, 38] studied a lattice state that is analogous to Laughlin’s continuum wave
function and thus corresponds to a FQH phase. We will refer to it as the Kalmeyer-Laughlin
state in the following. Later, a generalization with nonabelian excitations was constructed [39].
The Kalmeyer-Laughlin state and its nonabelian version can also be characterized as chiral
spin liquids, where chiral refers to the breaking of time-reversal symmetry. The concept of
a spin liquid was introduced by Anderson [40] and later proposed to play a key role [41] in
explaining high-temperature superconductivity [42]. A spin liquid is characterized by the
absence of a low-temperature phase with long-range magnetic order.

Recently, there has been a great interest in lattice models due to the possibility to implement
them in systems of ultracold atoms [43, 44], where interactions can be engineered experimen-
tally. Proposals for realizing FQH states with ultracold atoms were, for example, made in
Refs. [45–48]. The realization of the Hofstadter model [49] with ultracold atoms [50, 51] is an
example of a recent experimental achievement in this direction.

1.1.3 Landau’s theory of phases

The discovery of the quantum Hall effect led to a new paradigm in characterizing quantum
matter since it cannot be understood in terms of Landau’s theory of phases. The latter
represents a key concept in condensed matter physics and describes second-order phase
transitions in terms of symmetry-breaking [22, 52]. More precisely, it characterizes a phase
transition between a disordered phase at high and an ordered phase at low temperatures by a
local order parameter. In the high-temperature phase, the order parameter vanishes, while it
acquires a nonzero value and thus breaks the symmetry at low temperatures. This concept
is known as spontaneous symmetry breaking and also plays a central role in the standard
model of particle physics in the form of the Higgs mechanism [53–55]. The transition to a
superfluid phase in liquid Helium [56, 57], for example, but also ordered phases in magnets
can be understood in terms of Landau’s theory.

1.1.4 Topological phases of matter

Unlike in Landau’s theory, there is no local, symmetry-breaking order parameter associated
with quantum Hall phases [58]. Rather, they are characterized by global, topological properties.
The existence of current-carrying edge states [59–65], for example, shows that topology plays
an important role in these systems. Furthermore, the Hall conductance in the case of an IQH
effect with a periodic potential was shown to be determined by the topology of the band
structure [14]. For FQH phases, the number of ground states was shown to depend on the
genus of the surface they are put on [58, 66]. This led to the new concept of topological
order [58, 67].

The use of topological properties in describing phases of matter extends beyond quantum
Hall physics. Already in the 1970s, Berezinskii, Kosterlitz, and Thouless [68–73] studied a
phase transition in the classical 2D XY model, which is characterized by the formation of
topological vortices. Haldane studied analogous quantum systems in 1D [74–76], and the
corresponding topological phase is now known as the Haldane phase. It occurs in Heisenberg-
type spin chains with an odd integer spin like in the exactly solvable spin-1 model studied
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by Affleck, Kennedy, Lieb, and Tasaki (AKLT model) [77]. Further examples of systems with
topological properties include spin liquids [78], quantum spin Hall systems [79–81], and
topological insulators [82].

In the modern characterization of topological phases of matter, entanglement plays a
central role [83–86]. States exhibiting long-range entanglement are said to be topologically
ordered [66, 67, 87–89]. Paradigmatic models of such systems are given by Laughlin’s FQH
wave functions and by the Kalmeyer-Laughlin state. In contrast to topologically ordered
systems, symmetry protected topological (SPT) phases exhibit topological properties but
are not long-range entangled. They were recently classified in terms of group cohomology
theory [88, 89]. The Haldane phase mentioned above and also topological insulators are
examples of SPT systems [86, 90].

1.1.5 Conformal field theory for building model systems

A complete classification of topological phases of matter is still an open problem, but CFT
in 1(+1) dimension (one spatial dimension and time) is one key ingredient for characterizing
them [91, 92]. CFT is a quantum field theory with a conformal symmetry, where conformal
transformations are those that leave angles invariant. In particular, this implies scale invari-
ance, and therefore the central characteristic of a CFT is the absence of intrinsic length or
energy scales. For 1(+1)-dimensional CFT, it was proven that scale invariance and conformal
symmetry are equivalent [93]. Due to its inherent scale invariance, CFT is used in statistical
physics to describe systems close to a phase transition [94], where the correlation length
diverges. Similarly, it emerges as the low-energy effective description of 1D critical quantum
systems [6]. An important CFT, which is used throughout this thesis, is given by the relativis-
tic, massless, free boson in 1(+1) dimension. Its dispersion relation is given by ωk = |k| and,
therefore, it is gapless. We will also refer to this model as the free-boson CFT in the following.

In the context of topological systems, CFT is associated with gapless excitations at the edge.
In the single-particle picture appropriate for the integer quantum Hall effect, the existence of
such gapless edge modes can be understood as a consequence of the confining potential [24,
61, 95]: In the bulk, the single-particle energies are determined by the external magnetic field
and are thus given by the Landau levels. Close to the edge, however, the confining potential
causes the energy levels to rise, and thus there are unoccupied states close to the Fermi energy.
The gapless edge excitations of a FQH system form a chiral Luttinger liquid [62], where chiral
means that the edge modes move only in one direction and thus break time-reversal symmetry.
A Luttinger liquid [96] is a model of a gapless system in 1D, and it occurs, for example, as
the low-energy description of the spin-1

2 XXZ model in its critical phase [6, 97]. It can be
represented through the free-boson CFT.

In addition to being associated with the gapless edge, CFT can also be used to describe the
bulk of a quantum Hall system. This approach was developed by Moore and Read [7]. It is
an example of a bulk-edge correspondence [7, 98, 99] and of the holographic principle [100,
101], the idea that the lower-dimensional boundary of a system contains information about
the bulk. In the quantum Hall effect, this bulk-edge correspondence is also important from an
experimental point of view: By measuring transport at the edge, it is possible to characterize
the state and infer bulk properties like the type of quasiparticle excitations [65].

In Moore and Read’s construction [7], a quantum Hall wave function is obtained as the chiral
correlator of CFT primary fields. The latter are central objects in CFT and are defined as those
fields that transform covariantly under conformal coordinate changes. Moore and Read showed
that Laughlin’s wave function, originally constructed as a variational ansatz for the ground
state of a quantum Hall system in the first Landau level, is of this form. Furthermore, they
defined new FQH states as CFT correlators, which have nonabelian quasiparticle excitations.
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This is different from Laughlin’s original wave function and the hierarchy of states derived
from it. Moore and Read’s construction thus provides a systematic framework for defining
model states.

1.1.6 Lattice models from conformal field theory

In Moore and Read’s approach, the wave function describes a system with continuous po-
sitional degrees of freedom. A similar construction was later also established for lattice
systems [102], where the positions are discrete. In this approach, the wave function’s degrees
of freedom are spins or occupation numbers. In 1D, states of this form [102–108] were shown
to describe critical systems like the ground state of the spin-1

2 XXZ model [102]. For lattices
in 2D, wave functions corresponding to FQH lattice systems were obtained [109–112]. These
are closely related to the Kalmeyer-Laughlin state. Similarly, lattice states corresponding to
the nonabelian chiral spin liquid [39] were constructed from CFT [113].

For some lattice states defined through CFT correlators, parent Hamiltonians were construc-
ted [109, 111–117], i.e., Hamiltonians for which the corresponding wave functions are exact
ground states. In some cases, these were shown to have good overlaps with ground states of
local models [39, 113, 118], which are truncations of the exact parent Hamiltonians. This led
to proposals for implementations of these states in systems of ultracold atoms [118, 119].

1.2 Purpose and findings of this thesis

In this thesis, we study model states on lattices that are constructed from CFT. The purpose of
this work is to characterize these states, in particular their topological properties, and to relate
them to the CFT they are constructed from.

According to their definition as CFT correlators, these states have analytically given wave
functions of Laughlin type. Yet, many properties like correlations and entanglement entropies
are hard to evaluate for large systems due to the exponential scaling of the Hilbert space.

Therefore, it is desirable to gain conceptual insight provided by exactly solvable toy models
and approximate techniques. Here, we study an exactly solvable 1D spin chain and show that
its excited states directly correspond to those of the underlying CFT (Chapter 3). Furthermore,
we develop an approximation of correlations for a class of FQH lattice states (Chapter 4). This
results in an exactly solvable effective theory, which is a modification of the underlying CFT.
Finally, we define a class of Gaussian model states from CFT, which allows us to efficiently
compute and analyze correlations and entanglement entropies and relate them to those of the
CFT (Chapter 5).

In such cases where an efficient, exact solution is not possible, Monte Carlo simulations
can be used to compute properties of states obtained from CFT [109, 120]. Thus, much
larger system sizes can be achieved than through exact numerical methods. In this thesis,
we define candidates for edge states of a FQH system using the bulk-edge correspondence
(Chapter 3). Through Monte Carlo simulations, we provide evidence that these indeed exhibit
characteristics of edge states.

1.2.1 Excited and edge states from conformal field theory

In the first part of this thesis (Chapter 3), we study lattice states obtained from the SU(2)1
Wess-Zumino-Witten (WZW) CFT. This model has an SU(2) symmetry in addition to being
conformally invariant, and its field content can be represented in terms of the free-boson CFT.
[The subscript in SU(2)1 indicates the level of the model, which is an integer characterizing
a WZW theory. Throughout this thesis, we only consider the case of a WZW theory at level

17



1 Introduction

SU(2)1 WZW CFT Spin-1
2 system

Haldane-Shastry model Chiral spin liquid

Ground state

Excited states

Kalmeyer-Laughlin state

Edge states

Primary fields

Additional descendant fields

1D 2D

Figure 1.2: SU(2)1 WZW model and its relation to the spin-1
2 states of Chapter 3. In 1D,

the correlation function of primary fields yields the ground state of the Haldane-
Shastry model, which is a Heisenberg-type spin chain with inverse-square interac-
tions. In 2D, the wave function obtained from CFT primaries is equivalent to the
Kalmeyer-Laughlin state of a chiral spin liquid. By adding CFT descendant fields,
we construct excitations of the Haldane-Shastry model in 1D and edge states in
2D.

one.] It was shown previously [102, 103] that the wave function built from chiral primary
WZW fields corresponds to the ground state of the Haldane-Shastry spin-1

2 model [121,
122] in 1D. The latter is a Heisenberg-type spin system with an interaction strength that
decays with the square of the distance. It is the lattice version of the continuum Calogero-
Sutherland model [123–126]. For systems in 2D, the state obtained from WZW primary fields
is equivalent [109] to the Kalmeyer-Laughlin state. In this thesis, we consider states defined as
the CFT correlator of primary and descendant fields. The latter generate CFT excitations, and
thus we obtain a series of spin wave functions that correspond to excited states of the CFT. We
show that they can be used to construct excited states of the Haldane-Shastry model in 1D.
For a system in 2D, we provide evidence that they describe edge excitations with respect to
the Kalmeyer-Laughlin state. This relation between the SU(2)1 WZW model and the states
studied in this thesis is illustrated in Fig. 1.2.

The Haldane-Shastry model is exactly solvable: Using the hidden Yangian symmetry, the
complete spectrum can be obtained [127, 128]. Here, we provide an alternative way of solving
the Haldane-Shastry model by exploiting its SU(2) rather than the Yangian symmetry. Our
construction emphasizes the close relationship between the CFT and the Haldane-Shastry
lattice model. More precisely, we map excited states of the underlying CFT to states of the spin
system. We find that this map from CFT to spin states is surjective, i.e., any state of the spin-1

2
system can be obtained in this way. We show that the Haldane-Shastry model is block-diagonal
in the states obtained through this map. This permits us to do a block-wise diagonalization of
the smaller blocks and thus obtain analytical eigenstates for arbitrary systems sizes, which are
not accessible through exact diagonalization.

We then consider the states obtained from primary fields of the SU(2)1 WZW model in 2D.
According to the bulk-edge correspondence, the CFT associated with the gapless edge can be
used to obtain wave functions for the whole system, including the bulk. Using this idea, we
define wave functions by mapping excited states of the CFT to those of the spin-1

2 system.
While this map allows us to relate excitations of the CFT to those of the Haldane-Shastry
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w = −∞ w =∞

Figure 1.3: Cylinder and the points w = −∞ and w =∞ corresponding to the infinite left and
right sides, respectively. The Kalmeyer-Laughlin state is obtained as the correlator
of primary WZW fields located at the positions of a lattice on the cylinder (blue
points on the orange surface). By inserting additional descendant fields at w = −∞
or w =∞, edge states are constructed.

chain in 1D, we investigate these states in 2D as candidates for edge modes with respect to
the Kalmeyer-Laughlin wave function. The geometric interpretation of this construction on a
cylinder is illustrated in Fig. 1.3. The Kalmeyer-Laughlin state is obtained as the correlator of
primary fields with positions defining a lattice on the cylinder. We then insert descendant
fields at positions that lie outside of the cylinder to create additional states. These positions
are closest to the boundaries of the system. Therefore, the descendant fields are expected to
influence the state primarily at the edges.

For states in the continuum, this map from the CFT’s Hilbert space to edge states was
discussed in Refs. [99, 129]. Here, we study the case of states on lattices and provide explicit
evidence that these indeed describe edge modes by testing a central characteristic: that their
local bulk properties are indistinguishable from those of the Kalmeyer-Laughlin state. More
precisely, we perform Monte Carlo computations and compare nearest-neighbor spin-spin
correlations in the bulk. We find that the relative difference between correlations of the
Kalmeyer-Laughlin state and those of the tentative edge states vanishes as the system size is
increased. Thus, we provide explicit evidence that they indeed describe edge modes.

It was previously shown that the Kalmeyer-Laughlin state has a large overlap with the
ground state of a local spin Hamiltonian consisting of nearest-neighbor two- and three-body
interactions [118]. Here, we consider the low-lying excited states of this model. Through an
exact diagonalization for a small system size, we show that they have a good overlap with
some edge states constructed from CFT.

1.2.2 Effective description of correlations

In a next step (Chapter 4), we investigate a more general class of states obtained from the
CFT of a massless, free boson. These correspond to Laughlin wave functions on a half-filled
lattice in 2D [109] and have a good overlap with the ground state of the XXZ spin-1

2 chain in
1D [102]. They are parameterized by a real, positive number, which is related to the filling of
the Landau level in 2D, and corresponds to the anisotropy of the XXZ model in 1D.

Here, we link a central property of these states, namely their spin-spin correlations, to
the CFT they are constructed from. We derive an exact field theory representation of the
correlations, which is a path-integral average with respect to the free-boson CFT. Through a
truncation of this exact expression, we arrive at an approximation of spin-spin correlations,
which is efficiently computable for large lattices. The approximation corresponds to a two-
point correlator in an effective model that differs from the underlying CFT through a mass-like
term inserted at the positions of the lattice. We thus relate a central property of states obtained
from CFT to a field theory description and interpret the correlations as a property of a model
that is a modification of the underlying CFT. The structure of the effective theory for spin-spin
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Bulk: Seffective = SCFT + Smass→ Exponential decay
Outside: Seffective = SCFT

Edge
→ Polynomial decay

Figure 1.4: Effective action Seffective for spin-spin correlations in states defined through correla-
tors of the free-boson CFT. The effective action differs from the CFT action SCFT by
an additional mass-like term Smass located at the lattice positions (blue points on
the orange area). Outside of the spin-system, the effective action agrees with that
of the CFT. The mass-like term leads to exponentially decaying bulk correlations,
while edge correlators decay polynomially.

correlations is illustrated in Fig. 1.4.
Through an extensive comparison of actual spin-spin correlations and those of the approxi-

mation, we study the validity of our effective model. We find that it is quantitatively accurate
in 1D and in 2D for a certain parameter range and that it is qualitatively correct in 2D for a
larger range of parameters. In particular, we find that the approximation retains a central
qualitative property of the correlations in 2D: It decays polynomially at the edge and exponen-
tially in the bulk of a 2D system. Through our approximation, we thus provide evidence and
an analytical argument for the screening hypothesis, which states that the correlations of a
FQH state decay exponentially in the bulk. Within our approximation, this exponential decay
is caused by the mass-like term in the effective model.

1.2.3 States with continuous spins

In a next step (Chapter 5), we investigate states with a continuous spin built as correlators of
the free-boson CFT. These states have the property that their spin-spin correlations coincide
with those of the approximation in our effective model. Compared to the case of discrete spins,
their wave functions are Gaussian and their properties can thus be computed efficiently [130].

We use entanglement properties to characterize these continuous-spin states. In 1D, we
find signatures of the underlying CFT: The entanglement entropies, spectra, and the energies
of a parent Hamiltonian agree with the CFT expectation. For a system in 2D, we compute
the topological entanglement entropy [84] and find that the states do not exhibit long-range
entanglement and are thus not topologically ordered. However, we provide evidence for the
existence of edge states through a determination and analysis of the entanglement spectrum.

1.3 Structure of this thesis

This thesis is structured as follows.

• Chapter 2 provides an introduction to CFT, explains how it can be used to describe
quantum Hall states, and defines the spin-1

2 model systems studied in this thesis.
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1.3 Structure of this thesis

• Chapter 3 uses the SU(2)1 WZW model to study excitations of 1D Haldane-Shastry
chains and edge states in 2D,

• Chapter 4 studies approximation of correlations for states obtained from CFT,

• Chapter 5 investigates bosonic Gaussian states with continuous spins defined through
CFT,

• and Chapter 6 concludes this thesis.
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2 Conformal field theory and model systems

CFT describes systems that do not have an intrinsic energy or length scale. The microscopic
interactions of nature are not of this kind since the masses of particles define energy scales.
However, some physical system can be effectively described as being scale-free in certain
regimes. In the context of statistical physics, for example, scale invariance occurs at a phase
transition where the correlation length becomes infinite. Similarly, a quantum system at a
critical point has a vanishing energy gap, which signals the absence of an energy scale. In the
context of the quantum Hall effect, CFT occurs as the low-energy theory of the gapless edge [6,
62]. Moore and Read [7] showed that it can also be used to describe wave functions for the
bulk of a quantum Hall system. This chapter introduces CFT, and explains how it can be used
to define model states through conformal correlation functions.

This chapter is organized as follows.

• Some elements of CFT are reviewed in Sec. 2.1.

• The relation between CFT and the FQH effect is explained in Sec. 2.2.

• Sec. 2.3 defines the spin-1
2 states and lattice geometries studied in this thesis.

2.1 Conformal field theory

2.1.1 The free, massless boson and scale invariance

One of the most important systems with a conformal symmetry is that of a massless, free
boson. In one spatial dimension, a free bosonic field ϕ(x, t) with mass m is described by the
action

Sm[ϕ] =
1

8π

∫
dxdt

[
(∂tϕ(x, t))2 − (∂xϕ(x, t))2 −m2ϕ(x, t)2

]
, (2.1)

where x is the spatial, t the temporal coordinate, and we used units in which the speed of light
is set to one (c = 1). The prefactor 1

8π is a convention, which is used throughout this thesis. For
m = 0, the action is invariant under rescalings of the form (x, t)→ (λx,λt), where λ > 0. Thus,
the action does not have an intrinsic length scale for m = 0.

In the Hamiltonian picture, we can understand this scale invariance of the massless case
as the absence of an energy gap above the ground state. Up to an additive constant, the
Hamiltonian corresponding to the action Sm[ϕ] assumes the form [5]

Hm =
∫
dp

2π
ωpa

†
pap, (2.2)

where

ωp =
√
p2 +m2, (2.3)
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Figure 2.1: Momentum dependence of the relativistic, free boson’s single-particle energies ωp
in one spatial dimension. For m , 0 (left panel), the system has a gap of size m,
whereas it is gapless for m = 0 (right panel).

and ap and a†p are modes of the field ϕ(x, t) in momentum space satisfying the canonical
commutation relations

[
ap, a

†
k

]
= 2πδ(p − k), and

[
ap, ak

]
=

[
a†p, a†k

]
= 0. (2.4)

Thus, the excited state of one boson with momentum p above the particle vacuum |0〉 is given
by a†p|0〉 and has an energy of ωp. If m , 0, the system is thus gapped since the first excited
state has an energy of m corresponding to one boson with a vanishing momentum (p = 0). If
m = 0, on the other hand, there is a continuum of excited states with energies directly above
the ground state, and thus the system is gapless. The cases m , 0 and m = 0 are illustrated and
contrasted in Fig. 2.1. This absence of an energy scale for m = 0 corresponds to the lack of a
length scale observed at the level of the action.

2.1.2 Conformal invariance and primary fields

The scale invariance is part of a larger set of symmetries described by the conformal group.
For a system in 1(+1) dimension, it is particularly powerful since it gives rise to an infinite
number of conserved charges [131]. In this case, it was proven that scale invariance implies
conformal symmetry [93], i.e., scale and conformal invariance are equivalent.

To describe the conformal group, it is useful to adopt a formulation in terms of complex
numbers z corresponding to the real coordinates x and t [5]. More precisely, given an action of
the form of Eq. (2.1), one first imposes periodic boundary conditions in the spatial direction,
identifying x with x + L for some length L. After a Wick rotation to imaginary time τ with
t = −iτ , the complex coordinate z = e

2π
L (τ−ix) and its conjugate z̄ = e

2π
L (τ+ix) are introduced.

Conformal transformations are then holomorphic maps z→ w(z) and corresponding anti-
holomorphic ones z̄→ w̄(z̄). We illustrate the map z→ w(z) = z2/10 as an example in Fig. 2.2.
In general, such maps distort distances, but they leave angles invariant. A subgroup of
conformal maps that is nonsingular in the complete complex plane is given by the Möbius
transformations [5]

w(z) =
az+ b
cz+ d

(2.5)

with a,b,c,d ∈ C and ad − bc = 1. Such maps are also called global conformal transformations.
In terms of z and z̄, the action of the free boson for m = 0 assumes the form [5]

S0[ϕ] =
1

4π

∫
dzdz̄∂zϕ(z, z̄)∂z̄ϕ(z, z̄). (2.6)
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Figure 2.2: A square grid in the z plane (left panel) and its transformation to w = z2/10 (right
panel). The conformal map w = z2/10 does not preserve distances, but it preserves
angles.

Indeed, S0[ϕ] is invariant under z → w(z) and z̄ → w̄(z̄) since the transformation of the
differential dzdz̄ is canceled by that of the derivatives.

The notion of a primary field expresses conformal invariance at a more general level than
that of an action. Namely, a primary field with conformal scaling dimensions h ∈ R and h̄ ∈ R
is a field φh,h̄(z, z̄) that transforms according to [5]

φh,h̄(z, z̄)→ φ′
h,h̄

(w,w̄) =
(
dw
dz

)−h (
dw̄
dw̄

)−h̄
φ(z, z̄) (2.7)

for z→ w(z) and z̄→ w̄(z̄). In analogy to a primary field, one defines a chiral primary field
φh(z) with conformal scaling dimension h ∈ R. It only depends on the chiral coordinate z and
transforms according to

φh(z)→ φ′h(w) =
(
dw
dz

)−h
φ(z). (2.8)

A quasiprimary field is defined analogously to a primary field with the difference that the
transformation of Eq. (2.7) is only required to be satisfied for global conformal transformations
[Eq. (2.5)].

The Laurent modes φ(n,n̄)
h,h̄

of a (quasi)primary field are defined through the expansion [5]

φh,h̄(z, z̄) =
∑

n,n̄∈Z
φ

(n,n̄)
h,h̄

z−n−hz̄−n̄−h̄. (2.9)

2.1.3 Generators of the conformal group and the central charge

Infinitesimal generators of conformal transformations of primary fields are given by operators
Ln and L̄n for n ∈ Z. They satisfy the Virasoro algebra [5]

[Lm,Ln] = (m−n)Lm+n +
c

12
m(m2 − 1)δn+m,0, (2.10)

[
L̄m, L̄n

]
= (m−n)L̄m+n +

c
12
m(m2 − 1)δn+m,0, (2.11)
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and

[
Lm, L̄n

]
= 0, (2.12)

where δmn is the Kronecker delta. The number c occurring in these equations is known as the
central charge. It is a key characteristic of a given CFT. The CFT of a massless, free boson,
which is used throughout this thesis, has c = 1.

We note that the operators Ln and L̄n are the Laurent modes of the holomorphic and
antiholomorphic parts of the energy momentum tensor of a CFT [5]:

T (z) =
∑

n∈Z
z−n−2Tn, and T̄ (z̄) =

∑

n∈Z
z̄−n−2T̄n. (2.13)

The fields T (z) and T̄ (z̄) are quasiprimaries of dimension 2.

2.1.4 Primary fields for the CFT of a free boson

The free boson field ϕ(z, z̄) of Eq. (2.6) is not a primary field. However, an infinite number of

primary fields with scaling dimensions h = h̄ = β2

2 for β ∈ R can be constructed from it, namely
the vertex operators : eiβϕ(z,z̄) :, where the colons stand for normal ordering.

The correlation function of N vertex operators at positions z1, . . . , zN in the complex plane
and parameters β1, . . . ,βN ∈ R assumes the form [5]

〈: eiβ1ϕ(z1,z̄1) : · · · : eiβNϕ(zN ,z̄N ) :〉 = δβ
N∏

i<j

∣∣∣zi − zj
∣∣∣2βiβj , (2.14)

where δβ = 1 if β1 + · · · + βN = 0 and δβ = 0 otherwise, and 〈. . .〉 denotes the radial-ordered
expectation value in the CFT ground state. (A time-ordered operator product becomes a
radial-ordered one in terms of complex coordinates.) The right-hand side of Eq. (2.14) can
be interpreted as the exponential of the potential energy of N charged particles in 2D with
charges being proportional to βi [5]. For this reason, the requirement β1 + · · ·+ βN = 0 is also
known as the charge neutrality condition.

Likewise, one can construct a set of chiral primary fields with scaling dimensions h = β2

2 as
the exponential : eiβϕ(z) :. Here, ϕ(z) is the chiral part of the free boson field defined through
the decomposition ϕ(z, z̄) = ϕ(z) + ϕ̄(z̄) into a chiral field ϕ(z) and an antichiral field ϕ̄(z̄). The
correlation function of N chiral vertex operators in the complex plane is given by [5]

〈: eiβ1ϕ(z1) : · · · : eiβNϕ(zN ) :〉 = δβ
N∏

i<j

(
zi − zj

)βiβj
. (2.15)

This equation is central for the construction of wave functions from CFT in Secs. 2.2 and 2.3
below.

Additional primary fields of the free-boson CFT are given by −i∂ϕ(z) and −i∂̄ϕ̄(z̄), which
are the Noether currents corresponding to the symmetry of the action S0[ϕ] of Eq. (2.6) under
a shift of the bosonic field by a constant [ϕ(z, z̄)→ ϕ(z, z̄) + const.].

2.1.5 The free-boson CFT as a low-energy effective theory

In condensed matter physics, a description in terms of CFT occurs as the low-energy effective
theory of 1D gapless systems. An example is given by the XXZ spin chain, which has the
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Hamiltonian

HXXZ =
N∑

j=1

(
txj t

x
j+1 + tyj t

y
j+1 +∆tzj t

z
j+1

)
, (2.16)

where taj for a ∈ {x,y,z} are N spin-1
2 operators, and we define taN+1 = ta1 for periodic boundary

conditions. For values −1 < ∆ ≤ 1, this model is in a critical phase [6].
Through the method of bosonization [6, 97, 132, 133], the low-energy physics of the

XXZ model can be formulated in terms of the CFT of a free, massless boson. To this end,
one first transforms the spin model HXXZ into a fermionic one through a Jordan-Wigner
transformation [6]:

Hfermionic =
N∑

j=1

[1
2

(
a†j aj+1 + a†j+1aj

)
+∆

(
a†j aj −

1
2

)(
a†j+1aj+1 − 1

2

)]
, (2.17)

where aj and a†j are fermionic annihilation and creation operators satisfying the anticommuta-
tion relations

{
ai , a

†
j

}
= δij , and

{
ai , aj

}
= 0. (2.18)

(The HamiltonianHfermionic is equal toHXXZ up to a term that modifies the boundary condition
between the sites N and 1 so that Hfermionic is periodic with respect to the fermionic operators,
cf. Ref. [134].) The case ∆ = 0 thus corresponds to free fermions with a dispersion relation of
ωk = cos(2πk/N ) for k ∈ {0, . . . ,N − 1} obtained from a Fourier transform of the Hamiltonian.

At half filling, the ground state for ∆ = 0 is thus the Fermi sea filled with particles up
to the energy 0. A representation in terms of continuous fields for left- and right-moving
fermions corresponding to excitations near the two Fermi points leads to a model of continuous,
interacting fermions [97]. Remarkably, this fermionic model can be represented in terms of a
model of non-interacting bosons [135]. The resulting model is that of a free, massless boson [6,
97]. As a result, the spin-spin correlation functions of the XXZ model can be expressed in
terms of correlators of corresponding CFT [97, 136].

Further 1D systems that have a CFT description at low energies include the Luttinger
model [96, 137] of 1D electrons, and impurity problems [138, 139], cf. Ref. [6] for a review.

2.2 Quantum Hall model states from conformal field theory

In Sec. 2.1, we introduced CFT and explained how it arises as the low-energy effective theory
for critical systems in 1D. Moreover, CFT can also be used to obtain variational states, most
importantly for FQH systems, which will be discussed below. The use of CFT in describing a
quantum Hall state was introduced by Moore and Read [7, 140], who realized that Laughlin’s
wave function [10] and generalizations thereof can be obtained as the correlator of primary
fields in a CFT.

Laughlin’s wave function is a variational ansatz for a quantum Hall fluid with a filling
fraction ν of the lowest Landau level [10]:

ψLaughlin(Z1, . . . ,ZM ) =
M∏

i<j

(
Zi −Zj

) 1
ν e−

1
4
∑M
j=1 |Zj |2 , (2.19)

where Z1, . . . ,ZM are positions of electrons in the complex plane, and 1
ν is a positive, odd

integer. The magnetic length was set to one in Eq. (2.19), which can be achieved through an
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2 Conformal field theory and model systems

appropriate choice of coordinates Z1, . . . ,ZM . The fact that ψLaughlin(Z1, . . . ,ZM ) is a product of
an analytic function and a Gaussian factor follows from solving the single-particle problem in
the lowest Landau level. The precise form of the wave function, however, was proposed by
Laughlin on the basis of the variational principle.

Moore and Read found that Laughlin’s wave function can be constructed as the correlator of
vertex operators in the CFT of a free boson [7, 99, 141]:

ψLaughlin(Z1, . . . ,ZM ) = e−
1
4
∑M
j=1 |Zj |2〈M | : e i√

ν
ϕ(Z1) : · · · : e i√

ν
ϕ(ZM ) : |0〉, (2.20)

where ϕ(z) is the chiral part of a free, massless boson field (cf. Sec. 2.1.4), |0〉 is the CFT
ground state and 〈M | is a charged CFT state that compensates for the excess charge of the M
vertex operators so that the charge neutrality condition is satisfied [99]. The wave function
for a quasihole at position w can be described within this construction [7] by adding a vertex
operator : ei

√
νφ(w) : into the correlator of Eq. (2.20).

More generally, Moore and Read constructed FQH states as CFT correlators of fields that
belong to a charge and a statistics sector [7, 99]. In this way, Halperin’s states [142] and also
wave functions with nonabelian statistics [7] were obtained.

In the context of lattice systems, a similar construction to that of Moore and Read can be
made [102, 103]. In this case, one considers fixed complex positions z1, . . . , zN that define a
lattice. A state of discrete degrees of freedom is then obtained by defining its wave function as
a CFT correlator of primary fields. In particular, wave functions that are lattice versions of the
continuous Laughlin states introduced above were studied in Refs. [109–111]:

|ψµ,ν〉 =
∑

n1,...,nN

ψµ,ν(n1, . . . ,nN )|n1, . . . ,nN 〉, (2.21)

ψµ,ν(n1, . . . ,nN ) = χn〈: ei
1√
ν

(n1−µ)ϕ(z1) : · · · : ei 1√
ν

(nN−µ)ϕ(zN ) :〉

where |n1, . . . ,nN 〉 is the occupation number basis, nj ∈ {0,1} corresponding to hard-core
particles for which double occupancies are forbidden, δn = 1 if n1 + · · ·+nN = µN and δn = 0
otherwise, and χn =

∏N
p=1χp,np with |χp,np | = 1 is a product of single-particle phase factors.

The rational parameter µ corresponds to the number of particles per lattice site and should be
chosen so that µN is an integer. The filling fraction of the first Landau level is given by ν. This
becomes apparent by relating |ψµ,ν〉 to the Laughlin state introduced above. Using Eq. (2.15),
the wave function becomes

ψµ,ν(n1, . . . ,nN ) ∝ χ̃nδn
∏

i<j

(
zi − zj

) 1
ν ninj

∏

i,j

(
zi − zj

)− µν ni , (2.22)

where

χ̃n =
N∏

p=1

χp,npe
−i µnnp

∑p−1
q=1[arg(zp−zq)−arg(zq−zp)] (2.23)

is another product of single-particle phase factors. It was shown [109, 110] that ψµ,ν(n1, . . . ,nN )
coincides with the Laughlin wave function ψLaughlin(Z1, . . . ,ZM ) of Eq. (2.19) in the thermody-
namic limit and up to single-particle phase factors, where Z1, . . . ,ZM with Zi ∈ {z1, . . . , zN } are
the occupied positions, i.e., those having ni = 1. Thus, ψµ,ν(n1, . . . ,nN ) describes bosons if ν−1

is even, fermions if ν−1 is odd, and anyons otherwise, cf. Ref. [143], which studies the anyonic
case.
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2.3 Model systems studied in this thesis

2.3 Model systems studied in this thesis

In Chapters 3 and 4 of this thesis, we study the lattice Laughlin states |ψµ,ν〉 of Eq. (2.21) on a
half-filled lattice, which corresponds to µ = 1

2 . Furthermore, we map the hard-core particles
with occupation numbers nj ∈ {0,1} to spin-1

2 degrees of freedom sj = 2nj − 1 ∈ {−1,1}. (sj is
two times the spin-z eigenvalue at lattice position j.)

Defining the positive number α = 1
4ν and setting µ = 1

2 , this leads to the states

|ψα〉 =
∑

s1,...,sN

ψα(s1, . . . , sN )|s1, . . . , sN 〉, (2.24)

ψα(s1, . . . , sN ) = χs〈: ei
√
αs1ϕ(z1) : · · · : ei

√
αsNϕ(zN ) :〉 (2.25)

= δsχs
∏

m<n

(zm − zn)αsmsn ,

where sj ∈ {−1,1}, δs = 1 if s1 + · · · + sN = 0 and δs = 0 otherwise, and χs =
∏N
p=1χp,sp is a

product of single particle phase factors. The basis states |s1, . . . , sN 〉 in Eq. (2.24) are products
of eigenstates of the spin-z operator tzj at lattice position j:

|s1, . . . , sN 〉 = |s1〉 ⊗ · · · ⊗ |sN 〉 (2.26)

with

tzj |sj〉 =
sj
2
|sj〉. (2.27)

2.3.1 Definition of geometries and lattices

The positions zj for j ∈ {1, . . . ,N } in Eq. (2.25) define a lattice in the complex plane and are
parameters of the wave function ψα(s1, . . . , sN ). [For simplicity of notation, we suppress the
parametric dependence of ψα(s1, . . . , sN ) on z1, . . . , zN .]

In this thesis, we mostly consider the following geometries: (1) a uniform 1D lattice with
periodic boundary conditions, (2) a square lattice on the cylinder, and (3) an approximately
uniform distribution of points on the sphere. In the following, we explain how these geometries
can be described in terms of coordinates zj in the complex plane.

Uniform 1D lattice with periodic boundary conditions (circle)

The uniform 1D lattice with periodic boundary conditions is illustrated in the left panel of
Fig. 2.3. It is described by N complex numbers zj on the unit circle:

zj = e
2πi
N j (2.28)

for j ∈ {1, . . . ,N }.

Square lattice on the cylinder

Positions on a cylinder of length 2π in the periodic direction can be described through complex
numbers w, where w is identified with w+ 2πin for any integer n.

The positions w can be mapped onto the complex plane through the exponential z = ew

as illustrated in Fig. 2.4. According to the transformation rules for primary fields under a
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2 Conformal field theory and model systems

Circle Sphere

Figure 2.3: Left panel: Uniform 1D lattice with periodic boundary conditions. Right panel:
Approximately uniform distribution of points on the sphere. The positions on the
sphere were computed numerically by minimizing fmin(Ω1, . . . ,ΩN ) of Eq. (2.33).

conformal map (cf. Sec. 2.1.2), the correlation function of vertex operators on the cylinder
becomes

〈: ei
√
αs1ϕ(w1) : · · · : ei

√
αsNϕ(wN ) :〉 =



N∏

j=1

z
α
2
j


〈: e

i
√
αs1ϕ(z1) : · · · : ei

√
αsNϕ(zN ) :〉, (2.29)

where zj = ewj , and it was used that all vertex operators : ei
√
αsjϕ(zj ) : have a scaling dimension

of α
2 . The correlator of primary fields on the cylinder thus agrees with that on the plane up to

a prefactor that depends on the positions zj but not on the spins sj ∈ {−1,1}.
Therefore, the wave function ψα(s1, . . . , sN ) on the cylinder can be defined by projecting the

positions wj onto the complex plane through zj = ewj and evaluating the CFT correlator on the
plane as in Eq. (2.25).

The square lattice on the cylinder with Nx sites in the open and Ny sites in the periodic
direction is then given by

zj ≡ zjxjy = e
2π
Ny

(jx+ijy), (2.30)

where jx ∈ {1, . . . ,Nx} is the x and jy ∈ {1, . . . ,Ny} the y component of the index j ∈ {1, . . . ,NxNy}
[j = (jx − 1)Ny + jy]. Throughout this thesis, we use a double-index notation as in Eq. (2.30) for
the x and y components of the index j, whenever this is convenient.

Approximately uniform distribution of points on the sphere

Let us consider N positions on the sphere described by pairs of angular variables Ωj = (θj ,φj ),
where θj the polar and φj the azimuthal angle. A unit vector

nΩj
=




sin(θj )cos(φj )
sin(θj )sin(φj )

cos(θj )


 ∈ S

2 (2.31)

can be mapped onto the complex plane through the stereographic projection

zj = tan
(
θj
2

)
e−iφj . (2.32)
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Re

Im

id
en

ti
fi

ed

w

Re

Im

z = ew

Figure 2.4: Mapping from a square lattice on the cylinder (left panel) to the complex plane
(right panel) through the exponential. The lines with a constant position in the
open direction of the cylinder become concentric circles in the complex plane (blue
curves). The position along the open direction of the cylinder corresponds to the
radial distance in the complex plane (orange lines).

We thus define the wave function ψα(s1, . . . , sN ) on the sphere through the projected coordinates
zj on the plane.

It is not possible to put a square lattice onto the sphere due to the sphere’s curvature. Instead,
we follow Ref. [109] and determine the angular variables Ωj = (θj ,φj) of an approximately
uniform distribution of points by numerically minimizing the function

fmin(Ω1, . . . ,ΩN ) =
N∑

m<n

1
∣∣∣nΩm

−nΩn

∣∣∣2
. (2.33)

A resulting distribution of points on the sphere is plotted in the right panel of Fig. 2.3.
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3 Excited and edge states obtained from the

SU(2)1 Wess-Zumino-Witten model

This chapter considers spin states built from correlation functions of the SU(2)1 WZW CFT.
In 1D, the wave function obtained from primary fields of the CFT is the ground state of the
Haldane-Shastry model [121, 122], whereas it is equivalent to the Kalmeyer-Laughlin [37, 38]
state in 2D. We construct a tower of spin states that is derived from the excited states of the
CFT by adding WZW currents, i.e., descendant fields.

In the first part of this chapter, we use these states to construct eigenstates of the Haldane-
Shastry model. Previous solutions of the Haldane-Shastry spin chain were based on polynomial
functions in the particle basis [121, 144] or exploited the hidden Yangian symmetry [127, 128].
The main motivation for our construction is to show that there is a close relationship between
the SU(2)1 WZW model and the Haldane-Shastry chain: As anticipated in Ref. [127], we show
that the excited states of the CFT generated by the current algebra are in correspondence
with the eigenstates of the Haldane-Shastry model. For the case of an even number of spins,
we establish this relationship by demonstrating that the Haldane-Shastry Hamiltonian is
block-diagonal in terms of the states containing WZW currents. This allows us to construct
eigenstates block-wise, and we derive analytical solutions for states up to order eight in current
operators. Through numerical computations, we provide evidence that a similar construction
is possible for the case of an odd number of sites and for the Haldane-Shastry chain with open
boundary conditions [145, 146], which was recently obtained from CFT in Ref. [108].

The second part of this chapter is devoted to an analysis in 2D. We use the states obtained
by inserting additional descendant fields as candidates for edge states with respect to the
Kalmeyer-Laughlin wave function. A similar correspondence between CFT states and edge
modes of a FQH system was studied in Refs. [99, 129] for wave functions with continuous
spatial degrees of freedom. The goal of this work is to provide explicit numerical evidence for
the lattice case that these states indeed describe edge modes. We use the criterion that local
bulk properties should be indistinguishable for large enough system sizes. Through Monte
Carlo simulations, we determine nearest-neighbor bulk correlation functions and find that
those of the tentative edge states approach the correlations of the Kalmeyer-Laughlin state as
the system size increases. This confirms the bulk-edge correspondence: The CFT associated
with the gapless edge can be used to construct wave functions of the bulk.

It was found previously that the state obtained from primary fields of the WZW model has
a good overlap with the ground state of a local Hamiltonian [118]. Here, we use exact diago-
nalization to show that the low-lying excitations of that Hamiltonian are well-approximated
by some edge states constructed from CFT.

This chapter is structured as follows.

• Sec. 3.1 defines spin states as correlators of primary fields and introduces the map from
CFT excited states to spin wave functions.

• In Sec. 3.2, we discuss global transformation properties of these states on the cylinder
and on the circle.

• Sec. 3.3 constructs excited states of the Haldane-Shastry model,
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

• Sec. 3.4 studies edge states for the Kalmeyer-Laughlin wave function,

• and Sec. 3.5 concludes this chapter.

Most of the rest of this chapter and the corresponding appendices are adaptations of the
following previously published work:

• B. Herwerth, G. Sierra, H.-H. Tu, and A. E. B. Nielsen, “Excited states in spin chains from
conformal blocks”, Phys. Rev. B 91, 235121 (2015), cO2015 American Physical Society
(Ref. [147]),

• B. Herwerth, G. Sierra, H.-H. Tu, J. I. Cirac, and A. E. B. Nielsen, “Edge states for the
Kalmeyer-Laughlin wave function”, Phys. Rev. B 92, 245111 (2015), cO2015 American
Physical Society (Ref. [148]).

3.1 Spin states from the SU(2)1 Wess-Zumino-Witten model

This section defines the states studied in this chapter through correlation functions of the
SU(2)1 WZW CFT. In particular, we describe a map from states of the CFT to those of a spin-1

2
system. The basic idea of constructing spin states from CFT is illustrated in Table 3.1.

Table 3.1: Map from states of the SU(2)1 WZW model to wave functions of a spin-1
2 system.

We map the CFT ground state |0〉 to a wave function constructed from primary
fields φsj (zj). CFT excited states are generated by modes of the descendant field

Ja(z). By mapping these to states of the spin-1
2 system, we obtain excited states of

the Haldane-Shastry model in 1D (see Sec. 3.3) and edge states in 2D (see Sec. 3.4).

CFT Spin system

Ground state |0〉 ↔ 〈0|φs1(z1) . . .φsN (zN )|0〉
↓ ↓

Excited/edge states
(
Jal−nl . . . J

a1−n1

)
(0)|0〉 ↔ 〈0|φs1(z1) . . .φsN (zN )

(
Jal−nl . . . J

a1−n1

)
(0)|0〉

3.1.1 States from SU(2)1 Wess-Zumino-Witten primary fields

In this chapter, we study the case α = 1
2 of the spin-1

2 model states |ψα〉 introduced in Sec. 2.3.
The primary fields that define |ψα〉 for α = 1

2 are not only conformally invariant, but they also
have an SU(2) symmetry. More precisely, they are primary fields of the SU(2)1 WZW model.
Let us briefly review some properties of this model and then explain how |ψα〉 for α = 1

2 can
be constructed from it.

WZW models [149, 150] are conformal field theories with an additional structure of a Lie
algebra. In the case of the SU(2)1 model, the Lie algebra is spanned by the spin operators ta for
a ∈ {x,y,z}, which are related to the Pauli matrices σ a through ta = σ a

2 . Their algebra is given by

[
ta, tb

]
= iεabct

c, (3.1)

where εabc is the Levi-Civita symbol. (For indices c ∈ {x,y,z}, we adopt the Einstein summation
convention unless explicitly stated otherwise.)
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3.1 Spin states from the SU(2)1 Wess-Zumino-Witten model

At the level of the field theory, the Lie algebra is represented by modes Jan of the current
Ja(z) defined through the Laurent expansion

Ja(z) =
∞∑

n=−∞
z−n−1Jan. (3.2)

The field Ja(z) is a conformal, chiral primary of dimension h = 1. The algebra formed by its
modes Jan is known as a Kac-Moody algebra [151], and it given by:

[
Jam, J

b
n

]
= iεabcJ

c
m+n +

m
2
δabδm+n,0. (3.3)

The zero modes Ja0 have the same commutation relations as ta.
Chiral WZW primary fields are conformal primaries that additionally transform covariantly

with respect to the symmetry of the Kac-Moody algebra. In addition to the identity, the SU(2)1
WZW model has one chiral primary field φs(z) with scaling dimension h = 1

4 , where z is a
complex number, and s ∈ {−1,1} denotes the two components of the field φs(z). The SU(2)
symmetry of φs(z) is expressed by the operator product expansion (OPE) [151]

Ja(z)φs(w) = − 1
z −w

∑

s′
tass′φs′ (w) + . . . , (3.4)

where the dots stand for terms that are finite for z→ w.
The WZW primary field φs(z) and the current Ja(z) can be represented in term of the chiral

part ϕ(z) of a free, massless boson as

φs(z) = e
iπ
2 (q−1)(s+1) : e

i√
2
sϕ(z) :, (3.5)

Jz(z) = − i√
2
∂zϕ(z), (3.6)

and

J±(z) = Jx(z)± iJy(z) = eiπ(q−1) : e∓i
√

2ϕ(z) :, (3.7)

where the colons denote normal ordering, and q ∈ {0,1} corresponds to the two sectors of the
WZW CFT. (q = 0 if φs(z) acts on a state with an even number of modes of the h = 1

4 primary
field and q = 1 otherwise.)

The Hilbert space of the SU(2)1 WZW model is generated by modes of the current Ja(z) and
contains two sectors corresponding to the two primary fields. The identity sector is spanned
by vectors [152]

(
Jal−nl . . . J

a1−n1

)
(0)|0〉, (3.8)

where |0〉 is the CFT vacuum, nj are positive mode numbers, and aj ∈ {x,y,z}. A state in the
sector corresponding to the primary field φs(z) is a linear combination of vectors

(
Jal−nl . . . J

a1−n1φs
)
(0)|0〉, (3.9)

where s ∈ {−1,1}. Using the Kac-Moody algebra of Eq. (3.3), one can choose a basis for which
the mode numbers in Eqs. (3.8) and (3.9) are ordered, nl ≥ nl−1 ≥ · · · ≥ n1 > 0.
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

According to the free-boson representation [Eq. (3.5)], the correlator of N WZW primary
fields agrees with the wave function of |ψα〉 for α = 1

2 [Eq. (2.25)]. In this chapter, we use the
notation |ψ0〉,

|ψ0〉 ≡ |ψα= 1
2
〉, (3.10)

for this state. The motivation for this notation is that |ψ0〉 is the state with respect to which we
will consider excitations in 1D and edge modes in 2D. In terms of WZW primary fields, |ψ0〉 is
given by

|ψ0〉 =
∑

s1,...,sN

ψ0(s1, . . . , sN )|s1, . . . , sN 〉, (3.11)

ψ0(s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )〉 = δsχs
N∏

i<j

(zi − zj )
1
2 sisj , (3.12)

where

χs =
N∏

p=1

e
iπ
2 (p−1)(sp+1) (3.13)

is the Marshall sign factor.
While we left χs unspecified in the definition of |ψα〉 (Sec. 2.3), the representation in terms

of WZW primary fields leads to the Marshall sign of Eq. (3.13). As a consequence, |ψ0〉 is a
singlet of the total spin [103]:

T a|ψ0〉 = 0, (3.14)

where

T a = ta1 + · · ·+ taN . (3.15)

Table 3.2: Summary of the different towers of states obtained by insertion of current operator
modes. Using the OPE between φs(z) and Ja(z), the wave functions for these states
can be written as the application of l spin operators u

aj
−nj [cf. Eq. (3.25)] to the state

without current operators.

Tower of states See Eq.

N even 〈φs1(z1) . . .φsN (zN )
(
Jal−nl . . . J

a1−n1

)
(0)〉 (3.17)

N even 〈φs∞(∞)φs1(z1) . . .φsN (zN )
(
Jal−nl . . . J

a1−n1φs0
)
(0)〉 (3.40)

N odd 〈φs∞(∞)φs1(z1) . . .φsN (zN )
(
Jal−nl . . . J

a1−n1

)
(0)〉 (3.46)

N odd 〈φs1(z1) . . .φsN (zN )
(
Jal−nl . . . J

a1−n1φs0
)
(0)〉 (3.48)

In the following, we define further states by adding descendant and/or additional primary
fields into the CFT correlator. Table 3.2 summarizes these classes of states and contains
references to their definitions.
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3.1.2 Tower of states from descendant fields

The state |ψ0〉 defined in the previous subsection can be viewed as corresponding to the CFT
vacuum |0〉 (cf. Table 3.1). We now describe a map from CFT states (Jal−nl . . . J

a1−n1)(0)|0〉 to states
of the spin-1

2 system.
To each CFT state (Jal−nl . . . J

a1−n1)(0)|0〉, we associate a state

|ψal ...a1
nl ...n1〉 =

∑

s1,...,sN

ψal ...a1
nl ...n1(s1, . . . , sN )|s1, . . . , sN 〉, (3.16)

where

ψal ...a1
nl ...n1(s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )

(
Jal−nl . . . J

a1−n1

)
(0)〉. (3.17)

Compared to |ψ0〉 of Eq. (3.11), |ψal ...a1
nl ...n1〉 has additional modes of the descendant field Ja(z)

inserted at the origin z0 = 0. The point z0 = 0 on the plane corresponds to w = −∞ on the
cylinder through the map z = ew. The descendant fields are thus inserted at a position left of
the cylinder as illustrated in Fig. 1.3. Later, we will study |ψal ...a1

nl ...n1〉 as candidates for edge states
on the cylinder. Fig. 1.3 provides an intuitive picture for why the addition of modes at z0 = 0
corresponds to modifying the state |ψ0〉 at the edge.

It is possible to obtain the states |ψal ...a1
nl ...n1〉 by applying spin operators to |ψ0〉. To see this, we

first note that

〈φs1(z1) . . .φsN (zN )(Ja−nB)(0)〉 =
1

2πi

∮

0

dw
wn
〈φs1(z1) . . .φsN (zN )Ja(w)B(0)〉, (3.18)

where n is a positive integer, B an arbitrary operator, and the integral encircles the origin in
the counter-clockwise direction. Applying this relation to the definition of ψal ...a1

nl ...n1(s1, . . . , sN ),
we obtain

ψal ...a1
nl ...n1(s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )

(
Jal−nl . . . J

a1−n1

)
(0)〉

=
1

2πi

∮

0

dw
wnl
〈φs1(z1) . . .φsN (zN )Jal (w)

(
Jal−1−nl−1 . . . J

a1−n1

)
(0)〉. (3.19)

Since the integrand is meromorphic and has no pole at w =∞,

0 =
1

2πi

∑

wj∈{0}∪{z1,...,zN }

∮

wj

dw
wnl
〈φs1(z1) . . .φsN (zN )Jal (w)

(
Jal−1−nl−1 . . . J

a1−n1

)
(0)〉. (3.20)

Therefore,

ψal ...a1
nl ...n1(s1, . . . , sN ) = − 1

2πi

N∑

j=1

∮

zj

dw
wnl
〈φs1(z1) . . .φsN (zN )Jal (w)

(
Jal−1−nl−1 . . . J

a1−n1

)
(0)〉. (3.21)

Using the OPE between a current operator and a primary field [Eq. (3.4)], we get

ψal ...a1
nl ...n1(s1, . . . , sN ) =

1
2πi

N∑

j=1

∑

s∈{−1,1}

∮

zj

dw
wnl

talsjs

w − zj
〈φs1(z1) . . .φsj−1

(zj−1)φs(zj )

×φsj+1
(zj+1) . . .φsN (zN )

(
Jal−1−nl−1 . . . J

a1−n1

)
(0)〉 (3.22)

37



3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

and therefore

|ψal ...a1
nl ...n1〉 =

N∑

j=1

talj(
zj
)nj |ψ

al−1...a1
nl−1...n1〉. (3.23)

Successively applying the same argument, we thus obtain

|ψal ...a1
nl ...n1〉 = ual−nl . . .u

a1−n1 |ψ0〉, (3.24)

where we defined

uak ≡
N∑

i=1

(zi)
k tai . (3.25)

The commutation relations of the operators uak are given by

[
uam,u

b
n

]
= iεabcu

c
m+n, (3.26)

which is a direct consequence of [tam, t
b
n] = iεabcδmntcm. Eq. (3.26) is a Kac-Moody algebra with

vanishing central extension, cf. Eq. (3.3). Thus, the operators uak are spin-system analogs of
the CFT modes Jak .

Completeness of states built from current operators

The definition of |ψal ...a1
nl ...n1〉 defines a map from the identity sector of the CFT’s Hilbert space

to states of a spin-1
2 system. We now show that this map is surjective, i.e., any state in the

Hilbert space HN of N spin-1
2 degrees of freedom can be written as a linear combination of

states |ψal ...a1
nl ...n1〉.

The definition of the operators uak [Eq. (3.25)] can be expressed as




ua0
ua−1
...

ua−(N−1)




= Z




ta1
ta2
...
taN



, (3.27)

where

Z =




1 . . . 1
(z1)−1 . . . (zN )−1

(z1)−2 . . . (zN )−2

...
...

...
(z1)−(N−1) . . . (zN )−(N−1)




. (3.28)

The N ×N matrix Z is a Vandermonde matrix with the well-known determinant

det(Z) =
N∏

i<j

(
z−1
j − z−1

i

)
. (3.29)
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3.1 Spin states from the SU(2)1 Wess-Zumino-Witten model

We assume that all positions zj are distinct, since otherwise |ψ0〉 = 0. Therefore, det(Z) , 0 and
Z is invertible. According to Eq. (3.27), we then have




ta1
ta2
...
taN




= Z−1




ua0
ua−1
...

ua−(N−1)



. (3.30)

The Hilbert space HN is spanned by the states obtained from any nonzero state |ψ〉 ∈ HN by
successive application of spin operators taj . The reason for this is as follows. Since |ψ〉 , 0, there
is at least one spin configuration (s̃1, . . . , s̃N ) with s̃j ∈ {−1,1} so that ψ(s̃1, . . . , s̃N ) , 0. Therefore,

| − s̃1, . . . ,−s̃N 〉 =
1

ψ(s̃1, . . . , s̃N )

N∏

j=1

t
σ (s̃j )
j |ψ〉, (3.31)

where

σ (s) =


+ if s = −1,

− if s = +1,
(3.32)

and t±j = txj ± it
y
j . By applying ladder operators t±j to | − s̃1, . . . ,−s̃N 〉, any product state |s1, . . . , sN 〉

can be obtained. Thus, HN is spanned by the states obtained from |ψ〉 by applying spin
operators t±j with j ∈ {1, . . . ,N }. Since t±j can be written in terms of txj and tyj , HN can then also
be obtained by applying operators taj with a ∈ {x,y,z} and j ∈ {1, . . . ,N } to |ψ〉.

According to Eq. (3.30), the operators taj are linear combinations of ua−nj with nj ∈ {0, . . . ,N−1}.
Therefore, it follows that |ψal ...a1

nl ...n1〉 = ual−nl . . .u
a1−n1 |ψ0〉 with nj ∈ {0, . . . ,N − 1} span HN . Since |ψ0〉

is a singlet and ua0 =
∑N
j=1 t

a
j is the total spin, a state

ua0u
al−nl . . .u

a1−n1 |ψ0〉 (3.33)

can be written in terms of states for which all mode numbers are greater than zero by commut-
ing ua0 to the right until it annihilates |ψ0〉 [cf. the commutator of Eq. (3.26)]. Therefore, HN is
spanned by the states |ψal ...a1

nl ...n1〉 with nj > 0.
The fact that the states |ψal ...a1

nl ...n1〉 span HN raises the question about the minimal level k =
n1 + · · ·+nl needed to obtain the complete Hilbert space. We note that an upper bound is given
by k =N (N − 1), since any product of spin operators tai can be reduced to a product of at most
N spin operators. Each of these spin operators can then be expanded in terms of the operators
ua−n with n ∈ {0, . . . ,N − 1}. We carried out numerical calculations for the states |ψal ...a1

nl ...n1〉 which
indicate that the states up to level k = (N/2)2 are enough to obtain the complete Hilbert space
from |ψ0〉.

Relation to spinon basis

The map from CFT states (Jal−nl . . . J
a1−n1)(0)|0〉 to states |ψal ...a1

nl ...n1〉 assumes a basis of the Hilbert
space where excited states are obtained from the CFT vacuum |0〉 by applying modes of the
current Ja(z), which is a descendant field. It is also possible to construct the CFT Hilbert space
in terms of modes φs,−m of the primary field φs(z) [153]. These are defined through the Laurent
expansion [153]

φs(z) =
∑

m

zm+ q
2φs,−m− 1

4− q2 , (3.34)
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

where q = 0 if φs(z) acts on a state with an even number of modes of the primary field φs(z)
and q = 1 otherwise. The basis obtained from modes φs,−m is known as the spinon basis [153]
and assumes the form

(
φsr ,−mr

. . .φs1,−m1

)
(0)|0〉. (3.35)

The generalized commutation relations of Ref. [153] allow expressing modes of the pri-
mary field in terms of current operator modes. Thus, they relate basis states in the spinon
construction to CFT states obtained from modes of the current Ja(z). This relation induces
a transformation from spin states |ψal ...a1

nl ...n1〉 constructed from Ja(z) to spin states constructed
from modes of the primary field. The spin wave function

ψa1(s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )Ja−1(0)〉, (3.36)

for example, corresponds a state with wave function
∑

s,s′
tass′〈φs1(z1) . . .φsN (zN )

(
φ−s,− 3

4
φs′ ,− 1

4

)
(0)〉. (3.37)

Similarly, a general state |ψal ...a1
nl ...n1〉 with k = n1 + · · ·+ nl will be a linear combination of states

with spinon modes φsr ,−mr
. . .φs1,−m1

at the same level k =m1 + · · ·+mr .

3.1.3 States with additional spins at zero and at infinity

We define an additional class of states by inserting two extra vertex operators into the correlator
〈φs1(z1) . . .φsN (zN )〉, one at z0 = 0 and one at z∞ =∞,

|ψs0,s∞0 〉 =
∑

s1,...,sN

ψs0,s∞0 (s1, . . . , sN )|s1, . . . , sN 〉,

ψs0,s∞0 (s1, . . . , sN ) = 〈φs∞(z∞)φs1(z1) . . .φsN (zN )φs0(0)〉, (3.38)

where we take z∞→∞. The two additional spins s0 and s∞ are parameters of the state |ψs0,s∞0 〉,
i.e., we are still working in the Hilbert space of N spin-1

2 particles.
In the picture of the cylinder, the additional primary fields are inserted at w = −∞ (corre-

sponding to z0 = 0) and at w =∞ (corresponding to z∞ =∞), cf. Fig. 1.3.
The wave function is

ψs0,s∞0 (s1, . . . , sN ) ∝ δs̄(−1)
1
2 s0(1−s∞)χs

N∏

n=1

z
1
2 s0sn
n

N∏

n<m

(zn − zm)
1
2 snsm , (3.39)

where δs̄ = 1 for s0 + s∞ +
∑N
i=1 si = 0 and δs̄ = 0 otherwise.

The extra fields at z0 = 0 and z∞ =∞ are primary fields. By inserting additional current
operators, we generate descendant states. We thus define a tower of states on top of |ψs0s∞0 〉,

ψal ...a1,s0,s∞
nl ...n1 (s1, . . . , sN ) = 〈φs∞(z∞)φs1(z1) . . .φsN (zN )

(
Jal−nl . . . J

a1−n1φs0
)
(0)〉 (3.40)

where, again, we take z∞→∞. This ansatz corresponds to the tower of CFT descendant states
(Jal−nl . . . J

a1−n1φs)(0)|0〉.
To derive the form of the wave function ψal ...a1,s0,s∞

nl ...n1 (s1, . . . , sN ), we consider the system con-
sisting of the N spins and the two additional ones. A calculation analogous to the case of
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3.1 Spin states from the SU(2)1 Wess-Zumino-Witten model

|ψal ...a1
nl ...n1〉 (cf. Sec. 3.1.2) shows that

∑

s0,s∞

|s0〉 ⊗ |ψal ...a1,s0,s∞
nl ...n1 〉 ⊗ |s∞〉

=



tal∞

(z∞)nl
+

N∑

jk=1

taljk(
zjk

)nl


 . . .



ta1∞

(z∞)n1
+

N∑

j1=1

ta1
j1(

zj1
)n1



∑

s0,s∞

|s0〉 ⊗ |ψs0,s∞0 〉 ⊗ |s∞〉. (3.41)

In the limit z∞→∞, the terms t
aj∞/ (z∞)nj do not contribute. Therefore,

|ψal ...a1,s0,s∞
nl ...n1 〉 = ual−nl . . .u

a1−n1 |ψs0,s∞0 〉 (3.42)

in terms of the operators uan of Eq. (3.25).

3.1.4 Odd number of spins

According to the charge neutrality condition (cf. Sec. 2.1.4), a correlation function of WZW
primary fields 〈φs1(z1) . . .φsN (zN )〉 is only nonzero if the sum s1 + · · · + sN vanishes. As a
consequence, the number of vertex operators, and therefore the number of spins, needs to be
even. We can, however, still consider a model with N odd by adding an extra vertex operator
that compensates the excess charge of the odd number of particles.

Inserting an additional vertex operator at z∞ =∞, we obtain the state

ψs∞0 (s1, . . . , sN ) = 〈φs∞(z∞)φs1(z1) . . .φsN (zN )〉 ∝ δs̄(−1)
1
2 (s∞+1)χs

N∏

i<j

(zi − zj )
1
2 sisj , (3.43)

where δs̄ = 1 if s∞ +
∑N
i=1 si = 0 and δs̄ = 0 otherwise, and the limit z∞→∞ was taken. The

state |ψs∞0 〉 has spin 1
2 ,

T aT a|ψs∞0 〉 =
3
4
|ψs∞0 〉, (3.44)

where T a is the total spin. This follows from the singlet property of the state that includes the
spin at infinity:

(ta∞ + T a)
∑

s∞,s1,...,sN

〈φs∞(z∞)φs1(z1) . . .φsN (zN )〉|s1, . . . , sN , s∞〉 = 0. (3.45)

As in the case of an even number of spins, we define a tower of states by insertion of current
operators,

ψal ...a1,s∞
nl ...n1 (s1, . . . , sN ) = 〈φs∞(∞)φs1(z1) . . .φsN (zN )

(
Jal−nl . . . J

a1−n1

)
(0)〉. (3.46)

We obtain a second class of states by inserting the additional vertex operator at z0 = 0
instead of at infinity,

ψs00 (s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )φs0(0)〉 ∝ δs̄χs

N∏

i=1

z
1
2 s0si
i

N∏

i<j

(zi − zj )
1
2 sisj . (3.47)

The corresponding tower of states is given by

ψal ...a1,s0
nl ...n1 (s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )

(
Jal−nl . . . J

a1−n1φs0
)
(0)〉. (3.48)
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By applying the operators uan of Eq. (3.25), these can be obtained from |ψs∞0 〉 as

|ψal ...a1,s∞
nl ...n1 〉 = ual−nl . . .u

a1−n1 |ψs∞0 〉 (3.49)

and from |ψs00 〉 as

|ψal ...a1,s0
nl ...n1 〉 = ual−nl . . .u

a1−n1 |ψs00 〉, (3.50)

respectively.
Comparing the wave functions of Eq. (3.43) and Eq. (3.47) with the case of an even number

of spins [Eqs. (3.12) and (3.39)], we conclude that |ψs∞0 〉 is the analog of |ψ0〉 and |ψs00 〉 of |ψs0s∞0 〉,
respectively.

3.2 Global properties of states on the cylinder

In this section, we study global transformation properties of the states |ψ0〉, |ψal ...a1
nl ...n1〉, and

|ψs0,s∞0 〉 on the cylinder. This serves two purposes: First, it allows us to conclude that states
with a different momentum are orthogonal, i.e., they have different global properties. Later,
we will study their local behavior numerically and compare spin correlation functions in the
bulk. Furthermore, the symmetries derived in this section will be exploited in our numerical
calculations to obtain efficient Monte Carlo estimates.

We consider a square lattice on the cylinder with Nx sites in the open and Ny sites in the
periodic direction. After mapping the cylinder to the complex plane as explained in Sec. 2.3.1,
the coordinates assume the form

zj ≡ zjxjy = e
2π
Ny

(jx+ijy )
e
− 2π
Ny

Nx+1
2 . (3.51)

Here, jx ∈ {1, . . . ,Nx} is the x component of the index and jy ∈ {1, . . . ,Ny} is the y component
of the index j. One has the freedom to rescale the coordinates zj since this changes the wave
functions only by a total factor. In this chapter, we include a constant factor in Eq. (3.51) so
that the center of the cylinder with respect to the x direction coincides with the unit circle
(|z| = 1). The advantage of this choice is that the transformations derived below assume a
simpler form.

The coordinates of Eq. (3.51) include the case of a 1D uniform lattice on the circle as the
special case Nx = 1. Thus, the results of this section are also valid on the circle.

We consider the translation operator in the periodic direction Ty and the inversion operator
I . Their precise definition and the derivation of their action on the states |ψ0〉, |ψal ...a1

nl ...n1〉, and
|ψs0,s∞0 〉 are given in Appendix B.3. Geometrically, the translation operator rotates the system
in the periodic direction and the inversion operator corresponds to a reflection of the cylinder
along its two central cross sections. We call it an inversion because it acts on the coordinates
defined in Eq. (3.51) as zj → z−1

j .
Eigenstates of Ty and I are given in Table 3.3. As we show in Appendix B.3.3, applying

the inversion I to |ψal ...a1
nl ...n1〉 corresponds to inserting the current operators at z∞ =∞ instead of

z0 = 0. We use the notation |ψal ...a1−nl ···−n1〉 for these states:

ψal ...a1−nl ···−n1(s1, . . . , sN ) = 〈Ja1
n1 . . . J

al
nlφs1(z1) . . .φsN (z1)〉, (3.52)

|ψal ...a1−nl ···−n1〉 = ualnl . . .u
a1
n1 |ψ0〉.

Since the momentum in the periodic direction Py is related to Ty through the relation Ty = eiPy ,
we conclude from Table 3.3 that an additional insertion of a current operator Ja−n into the
correlation function of primary fields adds a momentum −2πn

Ny
to the state. In particular, the

states |ψ0〉 and |ψal ...a1
nl ...n1〉 have a different momentum if k = n1 + · · ·+nl is different from 0 modulo

Ny .
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3.3 Excited states for the Haldane-Shastry model

Table 3.3: Eigenstates of the translation operator Ty and the inversion I . The sum of mode
numbers n1 + · · ·+nl is denoted by k. For the states |ψal ...a1−nl ···−n1〉, the current operators
are inserted at z∞ =∞ [cf. Eq. (3.52)].

Eigenstate Ty I
|ψ0〉 (−1)Nx

N
2 (−1)Ny

N
2

|ψal ...a1
nl ...n1〉 (−1)Nx

N
2 e
− 2πi
Ny
k

—
|ψal ...a1
nl ...n1〉 ± |ψal ...a1−nl ···−n1〉 — (±1)(−1)Ny

N
2

|ψs0,s∞0 〉: (−1)Nx
N
2 +Nx —

|ψ↑,↓0 〉 − |ψ↓,↑0 〉 (−1)Nx
N
2 +Nx (−1)Ny

N
2 +Nx

|ψ↑,↑0 〉, |ψ↑,↓0 〉+ |ψ↓,↑0 〉, and |ψ↓,↓0 〉 (−1)Nx
N
2 +Nx (−1)Ny

N
2 +Nx+1

3.3 Excited states for the Haldane-Shastry model

We now choose a lattice of positions uniformly distributed on the circle (cf. Sec. 2.3.1):

zj = e
2πi
N j , (3.53)

where j ∈ {1, . . . ,N }. For this choice of coordinates, |ψ0〉 is the ground state of the Haldane-
Shastry spin chain [102]. In this section, we show that excited states of the Haldane-Shastry
model can be constructed from those of the CFT using the map of Table 3.1.

3.3.1 The Haldane-Shastry model

Let us for now assume that the number of spins N is even. The Haldane-Shastry model [121,
122] is given by an SU(2) symmetric, Heisenberg-like spin Hamiltonian defined as

HHS =
1
2

N∑

i,j

tai t
a
j

sin2
[ (i−j)π

N

] . (3.54)

It has long-range interactions decaying with the square of the distance |zi − zj | = 2|sin
( (i−j)π

N

)
|

between positions zi and zj on the unit circle. The Haldane-Shastry model is the lattice analog
of the continuous Calogero-Sutherland model [123–126]. As shown in Ref. [102], the wave
function ψ0(s1, . . . , sN ) for positions on the unit circle as in Eq. (3.53) coincides with the ground
state wave function [121, 122] of HHS. Given the construction of ψ0(s1, . . . , sN ) from CFT, this
confirms the close relationship [144] between the Haldane-Shastry model and the SU(2)1
WZW CFT.

In fact, the Haldane-Shastry model can be systematically obtained from CFT using the
technique of null vectors [103]. These allow constructing operators Cai that annihilate |ψ0〉,
Cai |ψ0〉 = 0, cf. also Ref. [154], where Cai were first obtained without the use of CFT. In terms of
spin operators,

Cai =
2
3

N∑

j=1,j,i

wij
(
taj + iεabct

b
i t
c
j

)
, (3.55)

where

wij ≡
zi + zj
zi − zj

. (3.56)
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

A parent Hamiltonian of |ψ0〉 is then given by [103]

H =
1
4

N∑

i=1

(
Cai

)†Cai (3.57)

since H is positive semidefinite and H |ψ0〉 = 0. For a uniform lattice on the circle as in
Eq. (3.53), H is equivalent to the Haldane-Shastry model up to a term proportional to the spin
Casimir T aT a:

HHS =H +
N + 1

6
T aT a +E0, (3.58)

where E0 = −(N3 + 5N )/24 [E0 = −(N3 −N )/24 for N odd] is the ground state energy of the
Haldane-Shastry Hamiltonian. Since |ψ0〉 is a spin singlet (T a|ψ0〉 = 0), Eq. (3.58) implies that
HHS|ψ0〉 = E0|ψ0〉, i.e., |ψ0〉 is indeed the ground state of the Haldane-Shastry model.

From now on, we will work with the positive semidefinite Hamiltonian

H =H +
N + 1

6
T aT a, (3.59)

which differs from HHS by the subtraction of the ground state energy.

3.3.2 Block-diagonal form of the Hamiltonian

We now systematically construct the excited states ofH for N even from conformal correlation
functions. Specifically, we build the excited states as linear combinations of the states |ψal ...a1

nl ...n1〉,
which are defined through the insertion of current operators Jak−nk into the correlator of primary
fields [cf. Eq. (3.12) and (3.17)].

The key to this construction is that the Hamiltonian does not couple states with a fixed
mode number sum k = n1 + · · · + nl to those with a different mode number sum, i.e., it is
block-diagonal in this basis. In the following, we will also refer to k as the level of a state.

We can thus diagonalize the Hamiltonian in the subspaces of states at a certain level k. It is
not necessary to construct the Hamiltonian in the full Hilbert space of dimension 2N in order
to find eigenstates beyond the ground state. Rather, we obtain eigenstates by successively
adding current operators and diagonalizing the blocks.

Let us now show thatH|ψal ...a1
nl ...n1〉 is a linear combination of states with the same mode number

sum k. First, we note that is suffices to prove this for states |ψak ...a1
1 ...1 〉 with all mode numbers nj

being equal to 1. The reason is that any operator Ja−n with n > 0 can be rewritten as

Ja−n =
i
2
εabc

[
Jc−1, J

b
−n+1

]
(n , 0), (3.60)

where the Kac-Moody algebra of Eq. (3.3) was used. Successively applying Eq. (3.60), any state
|ψal ...a1
nl ...n1〉 with k = n1 + · · ·+nl can be expressed as a linear combination of states |ψak ...a1

1 ...1 〉.
According to Eq. (3.24), the insertion of k current operator modes J

aj
−1 (j = 1, . . . , k) into the

correlation function of vertex operators is equivalent to the successive application of operators
u
aj
−1 to the ground state |ψ0〉. Therefore, we computed the commutator between H and ua−1 by

an explicit expansion of the Hamiltonian in terms of ual for l ∈ {0, . . . ,N − 1}. This calculation
can be found in Appendix B.2, and the result is

[H,ua−1
]

= (N − 1)ua−1 +
N∑

i=1

3
2
Cai
zi

+ iεabcu
b
−1T

c. (3.61)
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3.3 Excited states for the Haldane-Shastry model

From this commutator, we can already conclude that the energy of a state with one current
operator Ja−1 is N − 1:

Hua−1|ψ0〉 =
[H,ua−1

] |ψ0〉 = (N − 1)ua−1|ψ0〉 (3.62)

since H, Cai , and T c annihilate the ground state |ψ0〉.
We need to know how Cai acts on |ψak ...a1

1 ...1 〉 to determine the energy of states with more than
one current operator. As we show in Appendix B.1,

Cai |ψak ...a1
1 ...1 〉 (3.63)

=
k∑

q=1

(
Kaaq

)
i

zi
|ψak ...aq+1aq−1...a1

1 ...1 1 ...1 〉+
(
Kab

)
i
T b|ψak ...a1

1 ...1 〉

+ 2
(
Kab

)
i

k∑

q=2

q−1∑

n=0

∑

s1,...,sN

iεbaqc

zn+1
i

〈φs1(z1) . . .φsN (zN )
(
J
ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉|s1, . . . , sN 〉,

where

(
Kab

)
j

=
2
3

(
δab − iεabctcj

)
. (3.64)

Combining Eqs. (3.61) and (3.63), we obtain

H|ψak ...a1
1 ...1 〉 =

k∑

r=1

u
ak
−1 . . .u

ar+1
−1

[
H,uar−1

]
uar−1
−1 . . .ua1

−1|ψ0〉 (3.65)

= k(N − 1)|ψak ...a1
1 ...1 〉+

∑

2≤q<r≤k

q−1∑

n=0

∑

s1,...,sN

F
qr,n
ak ...a1(s1, . . . , sN )|s1, . . . , sN 〉

+
∑

1≤q<r≤k

(
2|ψak ...ar+1aqar−1...aq+1araq−1...a1

1 ...1 1 1 ...1 1 1 ...1 〉 − 2δaraq |ψ
ak ...ar+1car−1...aq+1caq−1...a1

1 ...1 11 ...1 11 ...1 〉

+ |ψak ...ar+1aqarar−1...aq+1aq−1...a1

1 ...1 1 1 1 ...1 1 ...1 〉 − |ψ
ak ...ar+1araqar−1...aq+1aq−1...a1

1 ...1 1 1 1 ...1 1 ...1 〉

+ 2δN,2δaraq |ψ
ak ...ar+1ar−1...aq+1aq−1...a1

1 ...1 1 ...1 1 ...1 〉
)
,

where

F
qr,n
ak ...a1(s1, . . . , sN ) (3.66)

= 2〈φs1(z1) . . .φsN (zN )
(
J
ak
−1 . . . J

ar+1
−1 J

aq
−n−2J

ar−1
−1 . . . J

aq+1

−1 Jarn J
aq−1

−1 . . . Ja1
−1

)
(0)〉

− 2δaraq〈φs1(z1) . . .φsN (zN )
(
J
ak
−1 . . . J

ar+1
−1 Jc−n−2J

ar−1
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉

+ 2Nδ̃n+2iεaraqc〈φs1(z1) . . .φsN (zN )
(
J
ak
−1 . . . J

ar+1
−1 Jar−1

−1 . . . J
aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉,

and

δ̃m =


1 if m mod N = 0,

0 otherwise.
(3.67)
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

On the right-hand side of Eq. (3.65), the term with the prefactor δN,2 and the term containing
the function Fqr,nak ...a1(s1, . . . , sN ) are not yet explicitly written in terms of states at level k. Let us
now show that they can also be brought into this form. First, we note that current operators
with non-negative mode numbers can be successively commuted to the right until they
annihilate the CFT vacuum using the commutator [cf. Eq. (3.3)]

[
Jan, J

b
−1

]
= iεabcJ

c
n−1 +

1
2
δabδn−1,0. (3.68)

In this way, a CFT state
(
JanJ

aq−1

−1 . . . Ja1
−1

)
(0)|0〉 (3.69)

with n ∈ {0, . . . , q − 1} can be written as a linear combination of terms with q − 1 − n current
operators of order −1. Thus, the first two terms in Fqr,nak ...a1(s1, . . . , sN ) are linear combinations of
terms with mode number sums

k − 2 + n+ 2︸︷︷︸
J
aq
−n−2

−n︸︷︷︸
Jarn

= k. (3.70)

Similarly, the third term in F
qr,n
ak ...a1(s1, . . . , sN ) can be written in terms of states with mode

number sums k −n− 2. It is, however, only nonzero if n+ 2 =mN for an integer m ∈ {1,2, . . . }.
Since ua−1−mN = ua−1 for the uniform and periodic 1D lattice, these states are contained in those
having a mode number sum of k. The same argument applies to the term with the prefactor
δN,2.

Thus, the Hamiltonian is block diagonal in the states |ψal ...a1
nl ...n1〉with a fixed mode number sum

k = n1 + · · ·+nl . We note that this observation does not follow from translational invariance,
which implies that the Hamiltonian does not mix states with different lattice momenta. As
shown in Sec. 3.2, the states |ψal ...a1

nl ...n1〉 are eigenstates of the translation operator with eigenvalue

(−1)
N
2 e−

2πi
N k. Therefore, it follows from translational invariance that H|ψal ...a1

nl ...n1〉 is a linear
combination of states with k mod N current operators. The above considerations moreover
show that it is possible to write H|ψal ...a1

nl ...n1〉 as a linear combination of states with the same
mode number sum. This allows us to block-diagonalize the Hamiltonian starting with the
smaller blocks, i.e., those with a small number of current operators. As shown in Sec. 3.1.2,
the complete Hilbert space is covered by linear combinations of the states |ψal ...a1

nl ...n1〉. Therefore,
it follows that one can construct all eigenstates of H in this way.

The number of CFT states at level k is determined by the characters of the SU(2)1 alge-
bra [103]. For the levels k = 0,1,2,3, and 4, there are 1, 3, 4, 7, and 13 states, respectively.
These numbers determine the sizes of the blocks in Eq. (3.65). In particular, the block-size it
not determined by N , which means that the diagonalization can be done for arbitrary system
sizes.

3.3.3 Analytical construction of eigenstates from current operators

Eigenstates and energies

We solved the eigenvalue problem of Eq. (3.65) for up to eight current operator modes analyti-
cally. Since the Hamiltonian is SU(2) invariant, we decomposed the eigenstates into different
spin sectors. We summarize our results for up to k = 4 current operators in Table 3.4. At level
k = 1 we find a triplet (spin one), at level k = 2 a singlet and a triplet, at level k = 3 we find
a singlet and two triplets with different energies. The first quintet (spin two) occurs at level
k = 4.
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3.3 Excited states for the Haldane-Shastry model

Table 3.4: Eigenstates of the Haldane-Shastry model in terms of states obtained by insertion
current operators with mode number sums k = n1 + · · ·+nl ≤ 4. The momentum of
each state is given by p0 − 2π

N k, where p0 = 0 if N
2 is even and p0 = π otherwise.

k State Null for Energy Spin

0 |ϕ(0)〉 = |ψ0〉 0 0

1 |ϕ(1)
a 〉 = |ψa1〉 N − 1 1

2 |ϕ(2)〉 = |ψc c1,1〉 − 3δN2|ψ0〉 N ≤ 2 2(N − 3) 0

2 |ϕ(3)
a 〉 = |ψa2〉 N ≤ 2 2(N − 3) 1

3 |ϕ(4)〉 = |ψc c2,1〉 N ≤ 4 3(N − 5) 0

3 |ϕ(5)
a 〉 = 2|ψa3〉 − iεacd |ψc d2,1〉 − 4δN2|ψa1〉 N ≤ 4 3(N − 5) 1

3 |ϕ(6)
a 〉 = |ψa3〉+ iεacd |ψc d2,1〉+ δN2|ψa1〉 N ≤ 2 3(N − 3) 1

4 |ϕ(7)〉 = |ψc c2,2〉+ 4|ψc c3,1〉 − 12δN2|ψ0〉 − 16δN4|ψ0〉 N ≤ 6 4(N − 7) 0

4 |ϕ(8)
a 〉 = 3|ψa4〉 − 2iεacd |ψc d3,1〉 N ≤ 6 4(N − 7) 1

4 |ϕ(9)〉 = |ψc c2,2〉 − |ψc c3,1〉+ 3δN2|ψ0〉 − 6δN4|ψ0〉 N ≤ 4 4N − 18 0

4 |ϕ(10)
a 〉 = |ψa4〉+ iεacd |ψc d3,1〉 N ≤ 4 4N − 18 1

4 |ϕ(11)
ab 〉 = 3

(
|ψa b3,1〉+ |ψb a3,1〉

)
− 2δab|ψc c3,1〉 N ≤ 2 4N − 10 2

The dependence of the energies E on the number of spins N is solely determined by the
diagonal term k(N − 1)|ψak ...a1

1 ...1 〉 in Eq. (3.65). The reason for this is as follows. All other
N -dependent terms in Eq. (3.65) are only nonzero if k ≥ N . Since these can be written in
terms of N −mk current operators with m ∈ {1,2, . . . }, they represent strictly upper triangular
terms in the space of states with current operators up to level k. This upper triangular
structure is preserved by a diagonalization of all other terms. Therefore, only the diagonal
term k(N − 1)|ψal ...a1

nl ...n1〉 contributes to the N -dependence of the energies. An N -independent
representation of the eigenvalues is, therefore, given by subtracting the diagonal contribution:

Ẽ =


E−(N−1)k

k , k > 0,

0, k = 0,
(3.71)

where we also rescaled the energies for k , 0 for convenience. This structure of the energies
will now be used to detect null states of the spin system.

Null states

The number of eigenstates in Table 3.4 is smaller than the number of possible combinations
of up to four current operators of order −1. The reason is that certain linear combinations of
states |ψal ...a1

nl ...n1〉 are null, i.e., they have a vanishing norm. For some of these, the corresponding
CFT state is also null. This is, for example, the case for the state

∑

b

(
3|ψb a b1,1,1〉+ 3|ψb b a1,1,1〉 − 2|ψa b b1,1,1〉

)
(3.72)

occurring at level 3. The spin system, however, has also null states for which the corresponding
CFT state has a nonzero norm. This reflects the fact that the spin system has a finite, while the
CFT has an infinite Hilbert space.

In principle, one can determine those null states numerically by computing inner products
between states |ψal ...a1

nl ...n1〉. This is also possible for large systems since the spin correlations in
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

|ψ0〉 are known to satisfy algebraic equations [103]. Here, we use the following criterion to
detect some of these null states analytically. According to Eq. (3.71), the energies for k , 0 are
given by E = k(Ẽ +N − 1), where Ẽ is independent of N . For states having Ẽ < 0, this leads to
E < 0 if N is small enough. Since H is positive semidefinite, these states must be null.

For k , 0, the condition E < 0 is equivalent to N < 1− Ẽ. For each value of Ẽ, we can thus
determine an integer N ′ so that the corresponding state is null for all number of spins N
with N ≤N ′, cf. the third column in Table 3.4. By applying current operators to these states,
further null states at higher levels can be obtained. These do not necessarily satisfy E < 0
for a given N . In these cases, the value of N ′ is larger than the one inferred from the energy
condition E < 0.

Spectrum for up to eight current operators

In Fig. 3.1, we plot the analytically determined energies for current operator levels up to k = 8.
The boxes associated with the energy levels in Fig. 3.1 also show the spin content and the
values of N ′ so that the corresponding state is null for all N ≤N ′.
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Figure 3.1: Analytically computed spectrum of the Haldane-Shastry model determined in
terms of linear combinations of |ψal ...a1

nl ...n1〉 with mode number sums k = n1 + · · ·+nl
(horizontal axis). The vertical axis shows the N -independent shifted and rescaled
energies Ẽ, cf. Eq. (3.71). The rows in the boxes associated with the energy
levels show (1) the value of Ẽ, (2) the spin content, (3) an integer N ′ so that the
corresponding state is null for all systems with N ≤N ′ spins.

At k = 8 and Ẽ = −6, for example, we find a multiplet consisting of a singlet, two triplets,
and a quintet (spin-2 state). These states are null for numbers of spins N ≤ 8. In Fig. 3.1, this
multiplet is shown as

−6
0 ⊕ 12 ⊕ 2
8 8 8

, (3.73)

where the first row shows the value of Ẽ, the second row the spin content with the superscript
denoting the degeneracy, and the third row the values of N ′ so that the corresponding state is
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3.3 Excited states for the Haldane-Shastry model

null for all N ≤N ′ spins.

3.3.4 Yangian highest-weight states in terms of current operators

The Haldane-Shastry model of Eq. (3.54) is manifestly SU(2) invariant, [HHS,T
a] = 0. Further-

more, it commutes with the rapidity operator [127],

Λa =
i
2

N∑

i,j

wijεabct
b
i t
c
j =

i
2

N∑

i,j

wij(~ti ×~tj )a, (3.74)

where a ∈ {x,y,z}, and wij was defined in Eq. (3.56). The total spin T a and the rapidity Λa

generate the Yangian algebra. Opposed to the SU(2) invariance, the symmetry under the
rapidity Λa is not directly visible at the level of the Hamiltonian of Eq. (3.54). For this reason,
the Yangian symmetry of the Haldane-Shastry model is also called a hidden symmetry. It
expresses the close relationship between the Haldane-Shastry model and the SU(2)1 WZW
model since the latter also exhibits a Yangian symmetry. According to the Kac-Moody algebra
of Eq. (3.3), the CFT operator corresponding to the total spin T a is given by Ja0 . The operators
Ja0 and

Qa =
i
2

∞∑

m=1

εabcJ
b−mJcm (3.75)

span the Yangian algebra at the level of the CFT [127].
Previous solutions to the Haldane-Shastry model [127, 128] made use of the Yangian

symmetry by first constructing an eigenstate |h〉 that is the same time a highest-weight state of
the Yangian algebra, i.e., it satisfies T +|h〉 = Λ+|h〉 = 0, where T ± = T x ± iT y and Λ± = Λx ± iΛy .
Additional eigenstates of the Haldane-Shastry model with the same energy are then obtained
from |h〉 by applying powers of Λ− to |h〉. Since Λa does not commute with the spin Casimir
T aT a, the application of Λ− changes the spin of a state. This explains the occurrence of
degenerate energy levels with different values of the total spin.

To relate our SU(2)-invariant approach to the construction in terms of Yangian multiplets,
we now determine the highest-weight states |h〉 in terms of the eigenstates given in Table 3.4.
This require to determine the action of T a and Λa on states |ψak ...a1

1 ...1 〉. (As explained in Sec. 3.3.2,
states |ψal ...a1

nl ...n1〉 with general mode numbers can be expressed in terms of |ψak ...a1
1 ...1 〉 with k =

n1 + · · ·+nl .)
The rapidity Λa is related to Cai of Eq. (3.55) through

Λa =
3
4

N∑

i=1

Cai , (3.76)

where we used

N∑

j=1,j,i

wij = 0 (3.77)

for positions zj on the unit circle as in Eq. (3.53). Using Eq. (3.76) and the decoupling equation
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derived in Appendix B.1, we obtain

2Λa|ψak ...a1
1 ...1 〉 =

k∑

q=1

(N − 1)iεaaqc|ψ
ak ...aq+1caq−1...a1

1 ...1 11 ...1 〉+
k∑

q=1

iεaqac|ψ
cak ...aq+1aq−1...a1

11 ...1 1 ...1 〉

+
k∑

q=2

q−1∑

n=0

∑

s1,...,sN

G
q,n
ak ...a1(s1, . . . , sN )|s1, . . . , sN 〉, (3.78)

where

G
q,n
ak ...a1(s1, . . . , sN ) = 2〈φs1(z1) . . .φsN (zN )

(
J
aq
−n−1J

ak
−1 . . . J

aq+1

−1 JanJ
aq−1

−1 . . . Ja1
−1

)
(0)〉

− 2δaqa〈φs1(z1) . . .φsN (zN )
(
Jc−n−1J

ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉

+ 2Nδ̃n+1iεaaqc〈φs1(z1) . . .φsN (zN )
(
J
ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉. (3.79)

Furthermore,

T a|ψak ...a1
1 ...1 〉 = i

N∑

q=1

εaaqc|ψ
ak ...aq+1caq−1...a1

1 ...1 11 ...1 〉 (3.80)

since T a|ψ0〉 = 0 and
[
T a,ub−1

]
= iεabcu

c
−1 according to Eq. (3.26) with ua0 = T a.

Table 3.5: Eigenstates |h〉 of the Haldane-Shastry model that are at the same time highest-
weight states of the Yangian algebra (T +|h〉 = Λ+|h〉 = 0). The highest-weight states
are expressed in terms of the eigenstates of Table 3.4. By applying Λ− to a state |h〉,
further eigenstates with the same energy can be obtained.

k State |h〉 Energy Spin

0 |ϕ0〉 0 0

1 |ϕ(1)
x 〉+ i|ϕ(1)

y 〉 N − 1 1

2 |ϕ(3)
x 〉+ i|ϕ(3)

y 〉 2(N − 3) 1

3 |ϕ(5)
x 〉+ i|ϕ(5)

y 〉 3(N − 5) 1

3 |ϕ(6)
x 〉+ i|ϕ(6)

y 〉 3(N − 3) 1

4 |ϕ(8)
x 〉+ i|ϕ(8)

y 〉 4(N − 7) 1

4 |ϕ(10)
x 〉+ i|ϕ(10)

y 〉 4N − 18 1

4 |ϕ(11)
zz 〉+ 2|ϕ(11)

xx 〉+ 2i|ϕ(11)
xy 〉 4N − 10 2

Through Eqs. (3.78) and (3.80), we can express the solutions of T +|h〉 = Λ+|h〉 = 0 in terms of
the eigenstates of Table 3.4. The result is shown in Table 3.5 and provides an explicit relation
between the construction of eigenstates using the Yangian symmetry and our SU(2)-invariant
approach.

We also considered the action of the CFT Yangian operators Ja0 and Qa of Eq. (3.75) on
the CFT states that correspond to the Yangian highest-weight states shown in Table 3.5. We
found that these are precisely the highest-weight states with respect to Ja0 and Qa. This is an
indication that there is a direct correspondence between the Yangian highest-weight states of
the spin system and those of the CFT.
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3.3.5 Numerical spectra for the second tower and an odd number of spins

In the previous subsections, we constructed analytical eigenstates of the Haldane-Shastry
model for N even in terms of states |ψal ...a1

nl ...n1〉, which correspond to CFT states (Jal−nl . . . J
a1−n1)(0)|0〉.

As shown in Sec. 3.1.2, the complete Hilbert space and therefore all eigenstates can be
constructed by increasing the mode number sum k = n1 + · · ·+nl . We now provide numerical
evidence that a similar construction can be made for states obtained from the second sector of
the CFT’s Hilbert space and also in the case of N being odd.
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Figure 3.2: Numerically constructed spectrum of the Haldane-Shastry model for N = 8 built
from states |ψal ...a1

nl ...n1〉 (upper panel) and |ψal ...a1,s0,s∞
nl ...n1 〉 (lower panel). The horizontal

axes show the mode number sum k = n1 + · · ·+nl of the corresponding eigenstates.
The labels associated with the energy levels indicate the spin content with the
superscript denoting possible degeneracies.

In addition to the span of (Jal−nl . . . J
a1−n1)(0)|0〉, the CFT Hilbert space has another sector

spanned by vectors (Jal−nl . . . J
a1−n1φs)(0)|0〉. A mapping to corresponding spin states |ψal ...a1,s0,s∞

nl ...n1 〉
was defined in Sec. 3.1.3 by inserting additional primary fields at z0 = 0 and z∞ = ∞. We
constructed the states |ψal ...a1,s0,s∞

nl ...n1 〉 for small system sizes numerically and used them to build
eigenstates of the Haldane-Shastry model. (The numerical method of exact diagonalization
is explained in Appendix A.1.) For N = 8, the numerically computed spectrum is shown in
Fig. 3.2. We find the same block-diagonal structure of the Hamiltonian as for the states |ψal ...a1

nl ...n1〉
and that all eigenstates can be built in this way (the upper and lower panels in Fig. 3.2 show
the same spectrum).

Let us now turn to the case of an odd number of spins. In this case, there are two towers of
states (|ψal ,...,a1,s∞

nl ,...,n1 〉 and |ψal ,...,a1,s0
nl ,...,n1 〉) introduced in Sec. 3.1.4. Our numerical results for N = 7

spins are shown in Fig. 3.3. As for the case of N even, we find that the Hamiltonian is block
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model
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Figure 3.3: Numerically constructed spectrum of the Haldane-Shastry model for N = 7 in
terms of states obtained by the insertion of current operators. Eigenstates were
built as linear combinations of states |ψal ...a1,s∞

nl ...n1 〉 (upper panel) and |ψal ...a1,s0
nl ...n1 〉 (lower

panel). The horizontal axes show the mode number sum k = n1 + · · ·+ nl and the
labels associated with the energies indicate the spin content with the superscripts
corresponding to possible degeneracies.

diagonal and that the complete spectrum can be built from states |ψal ,...,a1,s∞
nl ,...,n1 〉 and |ψal ,...,a1,s0

nl ,...,n1 〉,
respectively.

The upper panel of Fig. 3.2 corresponds to our analytical results shown in Fig. 3.1. Not all
energy levels of Fig. 3.1 appear in the numerically calculated spectrum because certain states
of Fig. 3.1 are null for N = 8. This is the case for the all states with E < 0, which are those
having Ẽ < −7 for N = 8. The remaining null states have the values

k Ẽ E Spin

6 −7 0 0⊕ 1
7 −48

7 1 0⊕ 1
7 −6 7 1⊕ 2
8 −6 8 0⊕ 12 ⊕ 2

and can be obtained from null states violating the energy condition by the insertion of
additional current operators.

3.3.6 First excited states

Finally, let us comment on how the first excited states of the Haldane-Shastry model for N
even are related to the states |ψal ...a1

nl ...n1〉. While the states with one current operator |ψa1〉 have an
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3.3 Excited states for the Haldane-Shastry model

energy of E =N − 1, the states |ψs0,s∞0 〉 are eigenstates with E = N
2 . This follows from

Cai
∑

s0,s∞

|s0〉 ⊗ |ψs0,s∞0 〉 ⊗ |s∞〉 =
(
Kab

)
i

(
tb∞ − tb0

) ∑

s0,s∞

|s0〉 ⊗ |ψs0,s∞0 〉 ⊗ |s∞〉 (3.81)

and

(
Cai

)†
= Cai −

4
3

N∑

j=1,j,i

wijt
a
j , (3.82)

where the latter equation is a consequence of the uniform 1D lattice of Eq. (3.53). Except for
N = 2, the states |ψa1〉 are therefore not the first excited states of the Haldane-Shastry model
since |ψs0,s∞0 〉 have a lower energy. We did numerical calculations and found the first excited
states are spanned by |ψs0,s∞0 〉 with s0, s∞ ∈ {−1,1}.

In the numerical spectrum of Fig. 3.2, we observe a singlet and a triplet at k = N
2 = 4 with an

energy of E = N
2 = 4. Similarly, the analytically computed spectrum of Fig. 3.1 shows levels

Ẽ = −2k + 2 with spin content 0⊕ 1. For k = N
2 , these have an energy of E = N

2 , cf. Eq. (3.71).
Since |ψs0,s∞0 〉 can be decomposed into a singlet and a triplet, this suggests that the first excited
states have k = N

2 current operator modes.

3.3.7 Outlook: The Haldane-Shastry model with open boundary conditions

Recently [108], the Haldane-Shastry model with open boundary conditions [145, 146] was
obtained from CFT similarly to the case of periodic boundary conditions. Given that the excited
states of the Haldane-Shastry model with periodic boundary conditions can be obtained using
CFT currents as shown above, we now investigate whether a similar construction is possible
for the models with open boundary conditions.

Ref. [108] defines three types of lattices (type I, II, and III) that can be described in terms of
uniformly distributed points on the unit circle. In these cases, the Hamiltonian of the open
Haldane-Shastry model is given by [108]

Hopen =
N∑

i,j




1
|ζi − ζj |2

+
1

|ζi − ζ̄j |2

 tai taj −E0. (3.83)

The complex numbers ζj for j ∈ {1, . . . ,N } with N even and the energy E0 are given by [108,
155]

ζj = ei
π
N (j− 1

2 ), E0 = − 1
48
N (4N2 + 3N + 5) for the type I lattice, (3.84)

ζj = ei
π
N+1 j , E0 = − 1

48
N (4N2 + 9N + 11) for the type II lattice, (3.85)

and

ζj = ei
2π

2N+1 j , E0 = − 1
24
N (2N2 + 3N + 4) for the type III lattice. (3.86)

The subtraction of E0 in Eq. (3.83) results in Hopen having a vanishing ground state energy.
The ground state of Hopen is given by |ψ0〉 defined in Eq. (3.11) with coordinates zj chosen

as projections of ζj onto the real line, zj = Re(ζj ) [108].
We did numerical calculations indicating that the open Haldane-Shastry Hamiltonian of

Eq. (3.83) is block-diagonal in the states |ψal ...a1−nl ···−n1〉 [cf. Eq. (3.52)], where the current modes
are inserted at infinity. For N = 6, the numerically computed spectra are shown in Fig. 3.4.
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Figure 3.4: Numerically computed spectrum of the open Haldane-Shastry model [Eq. (3.83)]
for N = 6 spins. The excited states were obtained in terms of |ψal ...a1−nl ···−n1〉, which are
defined by inserting current operators at infinity [Eq. (3.52)]. The horizontal axes
show the level k = n1 + · · ·+ nl . The rows in the boxes associated with the energy
levels show (1) the energy and (2) the spin content.

As a step towards an analytical solution analogous to the case of the periodic Haldane-
Shastry model, we found the following commutator between Hopen and ua1:

[
Hopen,u

a
1

]
= iεabcu

b
1T

c − i 3
4

N∑

j=1

Im(ζj )Daj +
4N +C − 2

4
ua1, (3.87)

where

Dai =
2
3

N∑

j=1,j,i



ζi + ζj
ζi − ζj

+
ζi + ζ̄j
ζi − ζ̄j



(
tai + iεabct

b
i t
c
j

)
and C =



0 for the type I chain,

4 for the type II chain,

2 for the type III chain.

(3.88)

The operatorsDai annihilate |ψ0〉 for coordinates zj = Re(ζj ) and can be used to constructHopen
as [108]

Hopen =
1
8

N∑

i=1

(
Dai

)†Dai +
(N

3
+
C
12

)
T aT a, (3.89)

which is analogous to Eqs. (3.57) and (3.58) in the case of the periodic chain. We do not
have a complete analytical derivation of the commutator of Eq. (3.87), but we confirmed it
numerically for small systems.
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3.4 Edge states for the Kalmeyer-Laughlin wave function

An analytical solution of the open boundary case would also require the derivation of
the action of Dai on states |ψak ...a1

−1···−1〉 analogous to Eq. (3.63) in the case of periodic boundary
conditions. Together with Eq. (3.87), one could then derive an analytical expression for
Hopen|ψak ...a1

−1···−1〉. As your numerical calculations suggest, we expectHopen|ψak ...a1
−1···−1〉 to be a linear

combination of states of the same level k.

3.4 Edge states for the Kalmeyer-Laughlin wave function

In this section, we study the state |ψ0〉 and modifications of |ψ0〉 obtained by inserting addi-
tional fields at z0 = 0 and/or z∞ =∞. In Sec. 3.3 above, we considered the 1D case and showed
that eigenstates of the Haldane-Shastry model can be constructed in terms of these states. We
now consider square lattices on the cylinder with coordinates zj as defined in Eq. (3.51). In
the 2D case, |ψ0〉 is equivalent to the Kalmeyer-Laughlin state [109], and we study the states
corresponding to excitations of the CFT as candidates for edge modes with respect to |ψ0〉. By
comparing spin-spin correlation functions, we provide numerical evidence that these indeed
describe edge states.

In this section, we assume that the number of sites N is even. It is also possible to study the
case of N being odd which will show the existence of two topological sectors. However, we
can already identify the two anyonic sectors for N even. As will be shown below in Sec. 3.4.1,
the state |ψ0〉 and the singlet component |ψsgl

0 〉 ≡ |ψ↑,↓0 〉 − |ψ↓,↑0 〉 of the state with two additional
spins |ψs0,s∞0 〉 (one at z0 = 0 and one at z∞ =∞) can be obtained from the wave function of N
primary fields on the torus in the limit where the torus becomes a cylinder. This argumentation
shows that the two states |ψ0〉 and |ψsgl

0 〉 represent the two anyonic sectors in the case of an
even number of spins. As in the 1D case, it is possible to consider an odd number of sites
on the cylinder by putting an additional spin either at z0 = 0 or at z∞ =∞ so that the charge
neutrality condition is satisfied (cf. Sec. 3.1.4). On the torus, however, such a construction is
not possible and the argumentation that we used to identify the two sectors for even N does
not directly apply.

3.4.1 Relation to the Kalmeyer-Laughlin states on the torus

We now show that |ψ0〉 and the singlet component |ψsgl
0 〉 of |ψs0,s∞0 〉 on the cylinder can be

obtained from the wave function constructed from N CFT primaries on the torus. To this end,
we consider a torus and take a limit in which the torus becomes a cylinder.

We define the torus for ω1 > 0 and ω2 = iL with L > 0 by identifying a complex number z
with z + nω1 +mω2 for m,n ∈ Z. The two circumferences of the torus are therefore given by
ω1 and |ω2|. Let us denote the positions on the torus by vi , i.e. we assume that vi lie in the
rectangle spanned by ω1 and ω2. Keeping the positions vi fixed and taking the circumference
L = |ω2| →∞ transforms the torus into a cylinder, as illustrated in Fig. 3.5.

On the torus, there are two states |ψtorus
k 〉 with k ∈ {0, 1

2 }. These are given by [156]

ψtorus
k (s1, . . . , sN ) = 〈φs1(v1) . . .φsN (vN )〉k

∝ δsχsθ

[
k
0

]
N∑

i=1

ζisi ,2τ



N∏

i<j

(
θ

[
1
2
1
2

](
ζi − ζj , τ

)) 1
2 sisj

. (3.90)

Here, ζi = vi/ω1 are the rescaled positions, τ = ω2/ω1 is the modular parameter of the torus,
and θ the Riemann theta function defined as

θ

[
a
b

]
(ζ,τ) =

∑

n∈Z
eiπτ(n+a)2+2πi(n+a)(ζ+b). (3.91)
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0 ω1 =Ny Re

Nx

ω2→ i∞

Im

Figure 3.5: Limit in which the torus becomes a cylinder: The circumference |ω2| is taken to
infinity while the positions lie in the finite region of size Nx ×Ny shown as the
orange patch.

The limit ω2→ i∞, which transforms the torus into a cylinder, implies τ→ i∞. In this case,
only the terms with the smallest value of (n+ a)2 contribute to the sum of Eq. (3.91). These
terms have n = 0 for a = 0 and n ∈ {−1,0} for a = 1

2 . Therefore,

θ

[
0
0

]
(ζ,2τ) →1,

θ

[
1
2
0

]
(ζ,2τ) →e πiτ2 (eiπζ + e−iπζ), and

θ

[
1
2
1
2

](
ζi − ζj , τ

)
→ie−iπ(ζi+ζj )e

iπτ
4 (e2πiζi − e2πiζj ), (3.92)

for τ→ i∞. With s1 + · · ·+ sN = 0, it follows that

N∏

m<n

e−i
π
2 (ζm+ζn)smsn = ei

π
2
∑N
n=1 ζn . (3.93)

In the limit ω2→ i∞, we therefore obtain

ψtorus
0 (s1, . . . , sN ) ∝ δsχs

N∏

m<n

(
e2πi vmω1 − e2πi vnω1

) 1
2 smsn

(3.94)

and

ψtorus
1
2

(s1, . . . , sN ) ∝ δsχs



N∏

n=1

eπi
vn
ω1
sn +

N∏

n=1

e−πi
vn
ω1
sn



N∏

m<n

(
e2πi vmω1 − e2πi vnω1

) 1
2 smsn

. (3.95)

The exponentials e2πivn/ω1 lie on a cylinder of circumference ω1. We therefore identify zn =
e2πivn/ω1 andNy =ω1. Comparing the expressions for |ψtorus

k 〉 in the limitω2→∞ to Eqs. (3.12)

and (3.39), we conclude that |ψtorus
0 〉 ∝ |ψ0〉 and |ψtorus

1
2
〉 ∝ |ψ↑,↓0 〉 − |ψ↓,↑0 〉 ≡ |ψ

sgl
0 〉.
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3.4 Edge states for the Kalmeyer-Laughlin wave function

3.4.2 Spin correlation functions and edge states

We calculated two-point spin correlation functions in the states |ψ0〉, |ψa1〉 and in the singlet
state

|ψsgl
0 〉 ≡ |ψ↑,↓0 〉 − |ψ↓,↑0 〉 (3.96)

using a Metropolis Monte Carlo algorithm as explained in Appendix A.2. This allowed us to
compare properties of the states numerically for large system sizes by sampling the relevant
probability distributions. We furthermore exploited the translation and inversion symmetries
of Table 3.3 to average over equivalent correlation functions, thus obtaining a faster converging
Monte Carlo estimate.
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Figure 3.6: Two-point spin correlation function Szzψ0
(ix, jx, l) in the bulk (left panels) and at

the edge (right panels) for Nx = 13 and Ny = 20. The upper panels show the
two-dimensional dependency in a color plot. Whenever the value of the correlation
function does not differ from zero by more than three times the estimated error, we
excluded the data point from the plot (gray fields). In the lower panels, the absolute
value |Szzψ0

(ix, ix, l)| of the correlation function along the y direction is plotted. Points
for which the sign of the correlation function is positive (negative) are shown in
blue (orange). For the data shown in gray, the mean value does not differ from zero
by more than three times the estimated error. In the bulk, the correlations decay
exponentially, while a nonzero, negative correlation remains at the edge for l ≥ 5.

In this subsection, we shall use the notation

Sabψ (ix, jx, l) = 4
〈ψ|taix ,l+1t

b
jx ,1
|ψ〉

〈ψ|ψ〉 (3.97)
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

for the two-point correlation function in a state |ψ〉. Since all wave functions that we consider
have a translational symmetry in the periodic direction, their value only depends on the
difference l of the positions in the y direction.

Before comparing the wave functions with each other, we discuss the spin ordering pattern
in |ψ0〉, which is encoded in the correlation function Szzψ0

(ix, jx, l). (Since |ψ0〉 is a singlet, xx,
yy and zz correlations are the same, and only correlation functions with a = b are nonzero.)
Our numerical results are shown in Fig. 3.6. In the bulk of the system, we observe a ring-
like structure with an alternating magnetization. At the edge, the correlations are anti-
ferromagnetic at short distances. At larger distances along the y direction, however, the sign
becomes stationary and a negative correlation remains. In the two-dimensional picture, the
ordering is still characterized by an alternating magnetization with the sign of the correlation
function changing along the x direction.
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Figure 3.7: Comparison of nearest-neighbor bulk correlations in |ψz1〉 and |ψ0〉. The vertical
axes show the relative differences |Sbcψz1 −S

bc
ψ0
|/ |Sbcψ0

| with b = c = z (upper panels) and
b = c = x (lower panels). Along the horizontal axis, the number of spins in the
open direction (Nx) is varied. The different colors correspond to configurations
with different Ny . The insets show for which sites the correlation functions were
computed. The sites in the central column of the insets correspond to the middle
of the cylinder in the x direction. The relative difference decreases exponentially
in Nx.

We now discuss whether the states |ψa1〉 can be considered as edge states. If so, then the local
properties of |ψa1〉 and |ψ0〉 in the bulk should be the same. Since these are encoded in the spin
correlation functions, we compared the nearest-neighbor two-point correlators in the bulk for
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3.4 Edge states for the Kalmeyer-Laughlin wave function

different system sizes. The relative differences

∣∣∣∣∣∣∣
Sbcψa1

(ix, jx, l)− Sbcψ0
(ix, jx, l)

Sbcψ0
(ix, jx, l)

∣∣∣∣∣∣∣
(3.98)

are shown in Fig. 3.7 for a = b = c = z (upper panels) and a = z,b = c = x (lower panels).
Correlation functions for other choices of a,b, and c either vanish or can be reduced to these
due to the SU(2) invariance of |ψ0〉. In the left and middle panels, the correlations along
the x direction are shown and in the right panels those along the y direction. We find that
the relative differences approach zero exponentially as a function of Nx. Even though the
differences tend to be larger for smaller Ny , they are still exponentially suppressed as Nx is
increased. This is an indication that |ψa1〉 for a ∈ {x,y,z} indeed describe edge states compared
to |ψ0〉 as the thermodynamic limit in the open direction is taken.
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Figure 3.8: Comparison of nearest-neighbor bulk correlations in |ψsgl
0 〉 and |ψ0〉. The vertical

axes show the relative differences |Szz
ψ

sgl
0

− Szzψ0
|/ |Szzψ0

|. In the left panels, Nx is varied

along the horizontal axes and the different colors correspond to different choices
of Ny . On the right panels, Ny varies along the horizontal axes and Nx is fixed. For
Nx large enough, the differences tend to zero exponentially as a function of Ny .

Our results for the comparison between |ψsgl
0 〉 and |ψ0〉 are shown in Fig. 3.8. Since both

|ψ0〉 and |ψsgl
0 〉 are singlets, it is enough to compare the zz correlations. Furthermore, the

correlations in the positive and the negative x direction are the same in the middle of the
cylinder since |ψ0〉 and |ψsgl

0 〉 are symmetric under the inversion, cf. Sec. 3.2. In contrast to
|ψa1〉, we find that the thermodynamic limit in the x direction is not enough for the differences
to vanish. Rather, we observe that the differences become stationary if Ny is held fixed and Nx
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

increased. As shown in the right panels of Fig. 3.8, the differences do, however, tend to zero
exponentially as a function of Ny if Nx is chosen large enough.

3.4.3 States at a higher level

In the previous subsection, the states at level one in current operators were considered. We
also compared spin correlations in |ψan〉 to those in |ψ0〉 for higher values of n. For very large
mode numbers n, only the terms at the edge contribute to the sum in ua−n. To see this, let us
consider

ua−n−mNy =
N∑

j=1

1

z
n+mNy
j

taj ∝
Nx∑

jx=1

e
− 2π
Ny

(n+mNy )jx
Ny∑

jy=1

e
− 2πi
Ny
njy tajx ,jy . (3.99)

For large values of m, the terms with jx > 1 are exponentially suppressed with respect to those
that have jx = 1. We denote the corresponding states with one current operator by |χan〉:

|χan〉 = lim
m→∞ |ψ

a
n+mNy

〉 ∝
Ny∑

jy=1

e
− 2πi
Ny
njy ta1,jy |ψ0〉. (3.100)
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Figure 3.9: Relative difference |Sabψ − Sabψ0
|/ |Sabψ0

| in nearest-neighbor correlators for ψ ∈ {ψz1, ψz2,
χz1} [cf. Eq. (3.100) for the definition of |χa1〉]. The position ix in the x direction is
varied along the horizontal axis. The plots in the left panels have a = b = z and
those in the right panels a = b = x. In the upper panels, the correlations along
the x direction are shown [jx = ix + 1, l = 0] and the lower panels correspond to
correlations along the y direction [jx = ix, l = 1].
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3.4 Edge states for the Kalmeyer-Laughlin wave function

Fig. 3.9 shows the difference in nearest-neighbor correlations relative to |ψ0〉 for Nx = 13 and
Ny = 8. The three colors correspond to the states |ψz1〉, |ψz2〉 and |χz1〉. As the position in the open
direction is increased, the differences vanish exponentially for all three states. We note that the
differences are large at the left edge (ix = 1) and small at the right edge (ix = 13). This agrees
with the expectation that the operators ua−n are localized at the left edge. In contrast to the state
|ψsgl

0 〉, the states |ψan〉 perturb |ψ0〉 only at one edge and their behavior is, therefore, expected
to approach that of |ψ0〉 at the other edge. The results of Fig. 3.9 provide an indication that
|ψan〉 describe edge states also for n > 1.

We note, however, that the linear span of |ψan〉 for n ∈ {1, . . . ,N − 1} contains not only edge
states. The states |ψan〉 can even be linearly combined so that |ψ0〉 is perturbed at an arbitrary
position j:

taj |ψ0〉 =
N∑

n=2

(
Z−1

)
jn
|ψan−1〉, (3.101)

where Z is the matrix defined in Eq. (3.28). This observation can be understood from the fact
that two states |ψam〉 and |ψan〉 are not necessarily orthogonal if m− n = 0 modulo Ny . In this
case, |ψam〉 and |ψan〉 have the same momentum in the y direction, as discussed in Sec. 3.2. The
linear combination

|ψan〉 − e−2πNx−1
2 |ψan+Ny

〉 =
Nx∑

jx=1

(
1− e−2π(jx−1)

) Ny∑

jy=1

1
znjx ,jy

tajx ,jy |ψ0〉, (3.102)

for example, receives no contribution from spin operators at the left edge (jx = 1). Even though
both |ψan〉 and |ψan+Ny

〉 are perturbed from |ψ0〉 mostly at jx = 1, this is not the case for the
difference of Eq. (3.102).

3.4.4 Inner products of states from current operators

In this subsection, we discuss the relation of inner products between the states |ψal ...a1
nl ...n1〉 on the

level of the spin system and CFT inner products between states (Jal−nl . . . J
a1−n1)(0)|0〉. For edge

states in the continuum that are constructed from descendant states of a CFT, the authors of
Ref. [99] come to the remarkable conclusion that, in the thermodynamic limit and under the
assumption of exponentially decaying correlations in the bulk, the inner products between
edge states are the same as the inner products between CFT states. We now consider inner
products between states constructed from current operators to test if a similar correspondence
holds for the lattice states |ψal ...a1

nl ...n1〉 and the CFT states they are constructed from. The spin
system inner products that we consider are given by

Rk+k′ 〈ψal ...a1
nl ...n1 |ψbl′ ...b1

ml′ ...m1〉
〈ψ0|ψ0〉

≡ Rk+k′
〈ψ0|

(
ua1−n1

)†
. . .

(
ual−nl

)†
ubl

′
−ml′ . . .u

b1−m1 |ψ0〉
〈ψ0|ψ0〉

, (3.103)

where

R = min
j∈{1,...,N }

|zj | = e−
π
Ny

(Nx−1)
(3.104)

is the minimal absolute value of the positions, k = n1 + · · ·+nl , and k′ =m1 + · · ·+ml′ . The factor
Rk+k′ accounts for the scaling of the operators ua−n with respect to a rescaling of the positions.
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

The minimal value is chosen because the operators

ua−n =
N∑

j=1

taj
(zj )n

(3.105)

have the highest contribution at the edge with |zj | = R.
We compare the inner products of the lattice system (3.103) to the CFT inner products

〈0|Ja1
n1 . . . J

al
nl J

bl′−ml′ . . . J
b1−m1 |0〉. (3.106)

If a correspondence similar to that of Ref. [99] also holds for lattice states, then the expressions
of Eq. (3.103) should approach those of Eq. (3.106) in the thermodynamic limit.

Note that the inner products of the spin system are hard to evaluate for large system
sizes, whereas the CFT inner product can be easily computed using the Kac-Moody algebra
[Eq. (3.3)]. On the level of the spin system, the insertion of current operators corresponds to
an application of spin operators to |ψ0〉 [cf. Eq. (3.42)]. Therefore, the inner products can be
determined numerically using a Monte Carlo method if the number of current operators is
small.

We calculated the inner products for the states |ψa1〉, |ψa2〉 and |ψb b1,1〉, which are all nonzero
states at levels one and two. For these states, inner products between different states vanish
because they have either a different spin or a different momentum. It is thus sufficient to
compare the norm squared of a state to the norm squared of the corresponding CFT state, as
summarized in Table 3.6.

Table 3.6: State of the spin system and corresponding CFT state up to level 2 in current
operators. The third column shows the norm squared of the CFT state, which is
expected to be approached by the spin-system inner product of Eq. (3.103).

Spin state CFT state Norm squared of CFT state

|ψa1〉 Ja−1|0〉 〈Ja1Ja−1〉 = 1
2 (no sum over a)

|ψa2〉 Ja−2|0〉 〈Ja2Ja−2〉 = 1 (no sum over a)
|ψb b1,1〉 Jb−1J

b
−1|0〉 〈Jc1Jc1Jb−1J

b
−1〉 = 9

2

In Fig. 3.10, our numerical results are shown for the relative difference

∣∣∣∣∣∣∣∣∣∣∣

R2k 〈ψ|ψ〉
〈ψ0|ψ0〉

− 〈ψCFT|ψCFT〉
〈ψCFT|ψCFT〉

∣∣∣∣∣∣∣∣∣∣∣
(3.107)

as a function of the system size. Here, ψ ∈ {ψa1,ψa2,ψb b1,1} is one of the spin states, k = 1 for

|ψ〉 = |ψa1〉, k = 2 for |ψ〉 ∈ {|ψa2〉, |ψb b1,1〉}, and |ψCFT〉 is the CFT state corresponding to |ψ〉.
For a given system size, we observe a smaller difference for the states at level k = 1 than

for those at level k = 2. The computed inner products approach the CFT expectation if Ny is
increased. The dependence on the number of spins in the x direction is, however, very weak
for Nx ≥ 3. In particular, the CFT result is not approached if Nx is increased and Ny kept fixed.
For large enough Ny , our data suggest that the spin system inner products approach the CFT
result with a power law in Ny .
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Figure 3.10: Inner product of spin system states: Relative difference to the CFT expectation
[cf. Eq. (3.107)]. The colors correspond to the states |ψa1〉 (blue), |ψa2〉 (orange), and
|ψb b1,1〉 (green). The upper panels show the relative difference in a color plot as a
function of Nx and Ny . We observe a very weak dependence on Nx for Nx ≥ 3. The
lower panel shows the dependence on Ny for Nx = 11. For large enough Ny , the
data are consistent with a power-law behavior with an exponent of approximately
−1.1. Monte Carlo error bars are not plotted because they are barely visible on
the chosen scale. The maximal relative error of the shown data is 0.31 %.

3.4.5 Local model Hamiltonian

In the previous subsection, we provided numerical evidence that the states with one current
operator insertion represent edge states with respect to |ψ0〉. In this section, we study a set
of local Hamiltonians on the cylinder. For a suitable choice of parameters, the ground state
of the corresponding Hamiltonian has a good overlap with |ψ0〉 and some of its low-energy
excited states are well approximated by |ψa1〉, the states with one current operator of order one.

We study the local Hamiltonians [118]

H = J2
∑

〈i,j〉
tai t

a
j + J ′2

∑

〈〈i,j〉〉
tai t

a
j + J3

∑

〈i,j,k〉	
εabct

a
i t
b
j t
c
k . (3.108)

In these sums, the sites lie on a square lattice, 〈i, j〉 denotes all nearest neighbors, 〈〈i, j〉〉 all
next-to-nearest neighbors, and 〈i, j,k〉	 all triangles of nearest neighbors for which i, j, and
k are oriented counter-clockwise. It was shown in a previous study [118] that the ground
state of H on the plane (open boundary conditions in both directions) and on the torus has
a good overlap with the Kalmeyer-Laughlin state for a range of parameters J2, J ′2, and J3.
Here, we study H on a cylinder of size Nx ×Ny , where Nx denotes the number of sites in the
open direction and Ny the number of sites in the periodic direction. In the following, we
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

parameterize H in terms of two angles θ1 and θ2:

J2 = cos(θ1)cos(θ2) ,

J ′2 = sin(θ1)cos(θ2) ,

J3 = sin(θ2) . (3.109)

For Nx = 5 and Ny = 4, we studied the overlap between |ψ0〉 and the ground state |ψG〉 of H
as a function of θ1 and θ2 using an exact numerical diagonalization method (cf. Appendix A.1).
We also computed the overlap of the states with one current operator insertion at level one
|ψa1〉 and the first excited states |ψmE 〉 of H that have spin one and the same momentum in the y
direction as |ψa1〉. Here, m ∈ {−1,0,1} denotes the T z eigenvalue of |ψmE 〉.
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Figure 3.11: Overlaps of states constructed from CFT and eigenstates of the local Hamil-
tonian H of Eq. (3.108) for Nx = 5 and Ny = 4. The angles θ1 and θ2 pa-
rameterize the coupling constants of H according to Eq (3.109). In the left
panel, the overlap Ω (ψG,ψ0) ≡ |〈ψG|ψ0〉|/(‖ψG‖‖ψ0‖) between |ψ0〉 and the ground
state |ψG〉 of H is plotted. The right panel shows the overlap between |ψz1〉 and
the first excited state |ψ0

E〉 of H with the same spin and y momentum as |ψz1〉
[spin one, T z = 0, momentum 3/(8π)]. The point marked with an open circle
has θ1 = 0.0275 × 2π and θ2 = 0.06 × 2π and the highest combined overlap of√
Ω (ψG,ψ0)2 +Ω

(
ψ0
E ,ψ

z
1

)2 ≈ 1.2858.

We denote the overlap between two states |φ1〉 and |φ2〉 as

Ω (φ1,φ2) =
|〈φ1|φ2〉|
‖φ1‖‖φ2‖

, (3.110)

where ‖φ‖ =
√〈φ|φ〉 is the norm of the state |φ〉. In Fig. 3.11, the overlaps Ω (ψG,ψ0) and

Ω
(
ψ0
G,ψ

z
1

)
are shown as a function of the parameters of the Hamiltonian. Due to SU(2)

invariance, it is sufficient to consider the overlap between the states |ψ0
E〉 and |ψz1〉, which both

have T z = 0:

|〈ψ1
E |ψ+

1 〉| = |〈ψ−1
E |ψ−1 〉| = |〈ψ0

E |ψz1〉|, (3.111)

where ψ±1 ≡ ψx1 ± iψ
y
1 . The best value for the combined overlap

√
Ω (ψG,ψ0)2 +Ω

(
ψ0
E ,ψ

z
1

)2
(3.112)
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3.4 Edge states for the Kalmeyer-Laughlin wave function

was obtained for the angles θ1 = 0.0275× 2π and θ2 = 0.06× 2π:

Ω (ψG,ψ0) Ω
(
ψ0
E ,ψ

z
1

)
Ω (ψG,ψ0)

1
N Ω

(
ψ0
E ,ψ

z
1

) 1
N

0.9829 0.8289 0.9991 0.9907

Since the size of the Hilbert space grows exponentially with the system size N , the overlaps
are expected to scale exponentially in N . By taking the N th root, one obtains a measure for
the overlap per site, which takes into account this exponential scaling. Notice that the overlap
per site is higher than 99 % for both the ground and the excited state.
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Figure 3.12: Low-energy spectrum of the Hamiltonian H of Eq. (3.108) for Nx = 5,Ny = 4,θ1 =
0.0275×2π, and θ2 = 0.06×2π. The four panels correspond to the four sectors
of y momentum p/(2πNy) with p ∈ {0,1,2,3}. Each shown level has a degeneracy
of 2s + 1 corresponding to the values of T z. The labels show the ansatz state
constructed from CFT and the value for its overlap with the corresponding
eigenstate of H . The 8 energies shown in orange are those that are smaller than
the lowest energy in the p = 1 and p = 3 sectors. [At the level marked with an
asterisk (∗), there are two energies with a splitting of approximately 1.211× 10−3.
This is not visible on the scale of the plot.]

The low-energy spectrum of H for the parameters with the best overlaps is plotted in
Fig. 3.12. We find 8 energies below the energy of |ψmE 〉. The spectra plotted in Fig. 3.12 are
separated into sectors of different y momentum p/(2πNy) = p/(8π) with p ∈ {0,1,2,3}. Note
that the states |ψmE 〉 are the first excited states with p = 3. The spectra for the momenta for
p = 1 and p = 3 are the same because H is invariant under the inversion operator I introduced
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3 Excited and edge states obtained from the SU(2)1 Wess-Zumino-Witten model

in Sec. 3.2:

I−1HI =H. (3.113)

The relation

I−1TyI = T −1
y (3.114)

between I and translation operator in the y direction Ty follows directly from their definition
(cf. Appendix B.3.2 and B.3.3). Therefore, if |ψ〉 is an eigenstate of H with momentum
p/(2πNy), then I|ψ〉 is also an eigenstate with momentum (Ny − p)/(2πNy). This means that
for |ψmE 〉 with p = 3, there is a corresponding eigenstate I|ψmE 〉 with p = 1, which satisfies

|〈ψ0
E |ψz1〉| = |〈Iψ0

E |ψz−1〉|. (3.115)

Here, |ψz−1〉 = I|ψz1〉 is the state obtained by inserting the current operator at z∞ =∞ instead of
z0 = 0 [cf. Eq. (3.52)].

Our results show that the state |ψ0〉 and the states with one current operator of order one
are good approximations of low-energy eigenstates of H for Nx = 5, Ny = 4, θ1 = 0.0275× 2π,
and θ2 = 0.06×2π. This raises the question if further eigenstates of H are effectively described
by states constructed as CFT correlators. We also computed the overlaps of eigenstates of H
with some additional states constructed from current operators for higher orders in current
operators. At level two in current operators, the overlaps with the first excited states that have
the same spin and momentum as our ansatz states are given by 0.5486 for |ψa2〉 (0.9704 per
site) and 0.3301 for |ψb b1,1〉 (0.9461 per site). The corresponding energy levels are shown in
Fig. 3.12.

In this subsection, we considered a local model and computed overlaps between ansatz
states constructed from CFT and eigenstates of the model Hamiltonian. In Sec. 3.4.6, we also
derive exact, SU(2) invariant parent Hamiltonians for some states constructed from current
operators. These Hamiltonians are nonlocal with up to four-body interactions.

3.4.6 Exact parent Hamiltonians

As shown in Sec. 3.4.5, the edge states |ψa1〉 have a good overlap with low-lying excited states
of a local model, for which |ψ0〉 approximates the ground state. We now analytically construct
SU(2)-invariant, nonlocal parent Hamiltonians for some linear combinations of the states
|ψal ...a1
nl ...n1〉, i.e., Hamiltonians for which they are exact eigenstates with the lowest energy.

Construction of parent Hamiltonians

The starting point of our construction is the operator

C′a =
N∑

i,j

zi + zj
zi − zj

(
taj + iεabct

b
i t
c
j

)
. (3.116)

In Appendix B.1, we explicitly compute the action of C′a on states constructed from |ψ0〉 by
insertion of current operators, and show that C′a does not mix the states |ψal ...a1

nl ...n1〉 with different
levels k = n1 + · · ·+nl if k < Ny . This property is key to our construction of parent Hamiltonians:
It allows us to treat the levels separately starting with the lower levels, which have fewer states.
The action of C′a on states at level k is described by a matrix. For low k, the dimension of this
matrix is considerably smaller compared to that of an operator acting on the complete Hilbert
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3.4 Edge states for the Kalmeyer-Laughlin wave function

space. Moreover, the size of the matrix depends only on the level k rather than the number of
spins N .

We next add a multiple of the total spin T a to C′a and define the operators

Dan = C′a + (n+ 1−N )T a, (3.117)

where n is an integer. The operator Dan is also closed in the subspace of states of level k if
k < Ny since T a does not mix states of different levels. For certain values of n, we managed to
find states constructed from current operators that are annihilated by the three operators Dan
for a ∈ {x,y,z}. These states are then ground states of the Hamiltonian

Hn = (Dan)†Dan, (3.118)

where the index a is summed over. Note that the Hamiltonian Hn is positive semi-definite and
SU(2) invariant. Hn is nonlocal and contains terms with up to four-body interactions since Dan
has terms linear and quadratic in spin operators.

Before describing our results, we note that the condition Dan|ψ〉 = 0 for all a ∈ {x,y,z} implies
that the state |ψ〉 is part of the subspace on which T bT b and Dan commute. To show this, we
first note that

[
Dan,T b

]
= iεabcDcn, (3.119)

which is a direct consequence of the definitions of Eqs. (3.116) and (3.117). It then follows
that

[
T bT b,Dan

]
|ψ〉 =

(
−iεbacT bDcn − iεbacDcnT b

)
|ψ〉 = −iεbac

[
Dcn,T b

]
|ψ〉 = εbacεcbdDdn |ψ〉 = 0,

(3.120)

where we assumed that Dan|ψ〉 = 0 for all a ∈ {x,y,z}. The states satisfying Dan|ψ〉 = 0 can
therefore be decomposed into sectors of different total spin.

We note that the condition
[
T bT b,Dan

]
|ψ〉 = 0 is equivalent to

[
T bT b,C′a + (1−N )T a

]
|ψ〉 = 0, (3.121)

since T bT b and T a commute. The operator C′a+ (1−N )T a has the advantage that its matrix en-
tries in terms of the states at level k do not depend on N and n [cf. Eq. (B.17) in Appendix B.1 ].
In our calculations, we found it technically easier to first determine the subspace of states on
which T bT b and C′a + (1−N )T a commute and then look for states that are annihilated by Dan
for a suitable n within that subspace.

We summarize our analytical results in Table 3.7. The states with spin 2 and 3 appear as the
symmetric-traceless parts of states with 2 and 3 open indices, respectively. For a two-index
state |φab〉, the symmetric-traceless part is defined as

3
(
|φab〉+ |φba〉

)
− 2δab|φdd〉, (3.122)

and for a three-index state |φabc〉 as [157]

5
(
|φabc〉+ |φbca〉+ |φcab〉+ |φcba〉+ |φbac〉+ |φacb〉

)
(3.123)

−2
(
δab(|φcdd〉+ |φdcd〉+ |φddc〉) + δac(|φbdd〉+ |φdbd〉+ |φddb〉)
+ δbc(|φadd〉+ |φdad〉+ |φdda〉)

)
.
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Table 3.7: States constructed from current operators that are annihilated by Dan for a ∈ {x,y,z}
on a cylinder with Ny > k [cf. Eqs. (3.116) and (3.117) for the definition of Dan]. For
Ny sufficiently large (Ny > k), these states are ground states of the Hamiltonian

Hn = (Dan)†Dan.

k State Spin n

0 |ψ0〉 0 any
1 |ψa1〉 1 1
2 — — —
3 |ψa3〉+ iεade|ψd e2,1〉 1 5
4 Symmetric-traceless part of |ψa b3,1〉 2 3
5 |ψa d d3,1,1〉+ 3

2 iεade|ψd e3,2〉+ 3
2 iεade|ψd e4,1〉+ 9

4 |ψa5〉 1 9
6 — — —
7 |ψa d d3,3,1〉+ 4|ψd a d4,2,1〉+ 5

3 |ψa d d4,2,1〉+ 7
3 |ψa d d5,1,1〉+ iεade|ψd e4,3〉 1 13

+5
2 iεade|ψd e5,2〉+ 9

2 iεade|ψd e6,1〉+ 21
4 |ψa7〉

8 Symmetric-traceless part of 2 7
iεade|ψb d e4,3,1〉+ 1

2 iεade|ψb d e5,2,1〉 − 1
2 |ψa b5,3〉 − |ψa b6,2〉 − 2|ψa b7,1〉

9 Symmetric-traceless part of |ψa b c5,3,1〉 3 5

9 iεade|ψd e f f4,3,1,1 〉 − 1
2 |ψa d d4,3,2〉 − 3

2 |ψa d d5,2,2〉 − 1
2 |ψa d d4,4,1〉 1 17

+3|ψd d a5,3,1〉 − 9
2 |ψd a d5,3,1〉 − 9

2 |ψa d d5,3,1〉 − 9
2 |ψd a d6,2,1〉

−7
2 |ψa d d6,2,1〉 − 3|ψa d d7,1,1〉 − 27

8 iεade|ψd e5,4〉 − 21
8 iεade|ψd e6,3〉

−45
8 iεade|ψd e7,2〉 − 63

8 iεade|ψd e8,1〉 − 105
8 |ψa9〉

Except for the levels 2 and 6, we find states and corresponding parent Hamiltonians for all
levels that were considered. Note that the singlet |ψ0〉 is a ground state of Hn for any value of
n. For the additional ground states, we observe that the value of n tends to be larger at higher
levels k. This means that the ground state space of the Hamiltonians Hn with lower n contains
states of a lower level in current operators. For example, we only find the ground states |ψ0〉
and |ψa1〉 for H1. Similarly, the only appearing ground states of H3 at levels k ≤ 9 are ψ0 and
the symmetric-traceless part of |ψa b3,1〉.

Ground-state degeneracies

In the previous subsection, we explicitly constructed analytical ground states of the Hamil-
tonians Hn with n ∈ {1,3,5,7,9,13,17} in terms of linear combinations of states |ψal ...a1

nl ...n1〉 with
levels k ≤ 9. We now study the ground state spaces of the Hamiltonians Hn numerically and
provide evidence for n ∈ {1,3,5} that the complete ground state space is spanned by the states
given in Table 3.7.

By an exact diagonalization, we numerically determined the ground state multiplets of the
Hamiltonians Hn for n ≤ 13 and systems with N = NxNy ≤ 14 and N even. Our results are
summarized in Table 3.8. We observe that states with spin s occur in the ground state spaces
only in systems with Ny ≥ 2s. Furthermore, we find that the ground state degeneracy does
not grow anymore if Ny reaches a certain value Nmin

y . This statement is most conclusive for
the lower values n, where Nmin

y is smaller and we are thus able to probe more systems with
Ny ≥Nmin

y . For n ∈ {1,3,5}, this implies that all ground states are given by the corresponding
states of Table 3.7.
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Table 3.8: Numerically determined ground state multiplets of the Hamiltonians Hn for n ≤ 13
and an even number of spins N with N ≤ 14. The second column indicates the
minimal number of spins Nmin

y in the periodic direction for which the complete
shown multiplet was observed in all system with Nmin

y ≤ Ny ≤ 14. For a lower
number of spins in the y direction, the observed ground state space is smaller. For
even n, we only find a singlet ground state.

n Nmin
y Ground-state multiplet

1 2 0⊕ 1
3 4 0⊕ 2
5 6 0⊕ 1⊕ 3
7 8 0⊕ 2⊕ 4
9 10 0⊕ 1⊕ 3⊕ 5
11 12 0⊕ 2⊕ 4⊕ 6
13 14 0⊕ 1⊕ 3⊕ 5⊕ 7

Finally, let us formulate a conjecture about the structure of the states annihilated by Dan,
which are ground states ofHn. Our analytical results are consistent with the following rule: For
each spin sector s ∈ {1,2, . . . }, there is a series of states at levels k = s2 + 2sj with j ∈ {0,1,2, . . . }.
These states are annihilated by Dan with n = 2s − 1 + 4j. As one can show by induction, the
second rule implies that the ground state space of Hn with n = 2s − 1 contains the multiplet

0⊕


1⊕ 3⊕ · · · ⊕ s if s is odd,

2⊕ 4⊕ · · · ⊕ s if s is even.

The numerical results of Table 3.8 are consistent with this multiplet structure and thus support
the conjecture that the values of n are given by n = 2s − 1 + 4j.

3.5 Conclusion

In this chapter, we defined a map from excitations of the SU(2)1 WZW CFT to states of a
spin-1

2 system. In 1D, we constructed eigenstates of the Haldane-Shastry model in terms of
these states, while we investigated their properties as tentative edge modes in 2D.

The spin-1
2 wave functions studied in this chapter were defined through CFT correlators.

Earlier studies [102, 109] showed that the ground state of the Haldane-Shastry model in 1D
and the Kalmeyer-Laughlin spin liquid state in 2D correspond to a CFT correlator of primary
fields. In this chapter, we inserted additional CFT descendant fields to obtain excited states in
1D and edge modes in 2D.

For an even number of spins, we showed analytically that the Haldane-Shastry model is
block-diagonal in the states |ψal ...a1

nl ...n1〉, which have modes of the current operator inserted at
z0 = 0. We showed that these states span the complete Hilbert space. Thus, all eigenstates of the
Haldane-Shastry model can be obtained as linear combinations of |ψal ...a1

nl ...n1〉. We diagonalized
the Hamiltonian analytically for levels up to k = 8 in current operators. Depending on N , we
identified certain states that are null but correspond to non-null CFT states. These additional
null states occur due to the finite size of the spin system’s Hilbert space. Our method of
detecting them is based on a sufficient criterion for a state to be null. In order to test if
a given state is not null, one could use the known algebraic equations for spin correlation
functions [103] in |ψ0〉 to compute the needed inner products numerically, even for large
system sizes.

69
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We provided numerical evidence that a similar construction is possible for an odd number
of spins and for the tower of states corresponding to the sector of the CFT Hilbert space that is
built on top of the h = 1

4 primary field.
Our manifestly SU(2) invariant ansatz is compatible with the construction of eigenstates of

the Haldane-Shastry model as multiplets of the Yangian algebra in the sense that the Yangian
operator does not change the number of current operators. This allowed us to explicitly
relate the excited states constructed from current operators to the highest weight states of the
Yangian operator.

In the case of the SU(2)1 WZW model, which we studied here, the resulting spin system
is equivalent to the Haldane-Shastry model. Thus, our method provides an alternative way
of constructing the excited states of the Haldane-Shastry model, which emphasizes its close
relation to the underlying CFT. We expect that this method could be generalized to the SU(n)1
WZW model, which is related to the SU(n) Haldane-Shastry spin chain [158]. We provided
numerical evidence that a construction of excited states in terms of WZW currents is also
possible for the open Haldane-Shastry model. It would be interesting to also construct these
eigenstates analytically.

The second part of this chapter studied trial wave functions for lattice FQH states con-
structed as chiral correlators of the SU(2)1 WZW CFT. In 2D, we investigated states obtained
from descendant CFT fields as tentative edge modes of the Kalmeyer-Laughlin state. For
continuous systems, analogous states constructed from CFT were proposed as FQH edge states
previously [99, 129]. Here, we worked on the lattice and applied Monte Carlo techniques
to test a central expectation for edge states: That the local, bulk properties of different edge
states should be the same.

For a system on the cylinder, we compared spin correlation functions in the states with one
current operator (|ψa1〉) to the state with no current operators (|ψ0〉). Our numerical results
show that the nearest-neighbor bulk correlations approach each other exponentially as the
number of spins in the open direction (Nx) is increased. On the other hand, the states |ψa1〉 and
|ψ0〉 are different globally since their spin and momentum are different. This supports the
assumption that they describe edge states.

We compared inner products of lattice states at levels one and two in current operators to
CFT inner products of the corresponding descendant states. For large enough Ny (periodic
direction), the computed inner products approach the CFT expectation with a power law in
Ny . This suggests that there is a correspondence between inner products of states |ψal ...a1

nl ...n1〉
and CFT inner products in the thermodynamic limit. Such a correspondence was found for
continuous wave functions in Ref. [99].

Furthermore, we compared nearest-neighbor bulk correlations in |ψsgl
0 〉 to those in |ψ0〉,

where |ψsgl
0 〉 is the singlet component of the state obtained by insertion of two extra primary

fields. In contrast to |ψa1〉, we find that the correlations do not approach each other if the
thermodynamic limit is taken only in the open direction. However, if Nx is chosen large
enough, the difference in correlation functions vanishes exponentially as a function of Ny .

We showed by an exact diagonalization that |ψ0〉 has a good overlap with the ground state
of a local Hamiltonian and |ψa1〉 with the first excited states that have the same spin and
momentum as |ψa1〉. This could be an indication that further low-energy excitations of that
local Hamiltonian are edge states described by the SU(2)1 WZW CFT. It would be interesting
to investigate this relation in more detail for larger system sizes and different topologies.

We showed that the complete Hilbert space is covered by the linear span of the states
|ψal ...a1
nl ...n1〉 and, therefore, only a subset of these states are edge states. For the states with one

current operator, we argued that not all linear combinations of states |ψam〉 describe edge modes
because states with the same y momentum can be non-orthogonal. It is possible to restrict the
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space of states to an orthogonal subset given by |ψam〉 with m ∈ {1, . . . ,Ny}.
Taking the limit of large mode numbers could be another possibility of removing bulk states

for the linear span of |ψal ...a1
nl ...n1〉. More precisely, one can replace ni by ni +miNy and then take

mi →∞. In this limit, the sum in the operators ua−ni−miNy
only extends over the edge sites

because all other positions are exponentially suppressed. The fact that this class of states
(and also linear combinations of such states) is obtained from |ψ0〉 by application of edge spin
operators only, suggests that their complete span represents edge states. For one of these states,
|χa1〉, we did numerical tests that indeed indicated that |χa1〉 is an edge state.

71





4 Approximation of correlations for states

obtained from conformal field theory

This chapter considers wave functions obtained as chiral correlators of the CFT of a massless,
free boson introduced in Sec. 2.1.1. In 1D, these are good approximations of the ground state
of the spin-1

2 XXZ model [102], and they are equivalent to lattice Laughlin states in 2D [109].
The purpose of this chapter is to investigate how the properties of these states are related to

the CFT they are constructed from. We focus on correlation functions since they encode central
characteristics of a state: At the edge of a 2D system, Laughlin states exhibit polynomially
decaying correlations, which reflect the existence of gapless excitations. The bulk of a FQH
system, on the other hand, is gapped and correlations thus decay exponentially, which is
known as the screening property.

Correlations of FQH states can be computed numerically through Monte Carlo simula-
tions [109, 120] (cf. also Appendix A.2). Even though large system sizes can be achieved
through this method, it does not provide conceptual insight into how the correlations follow
from the CFT that defines the states. In Ref. [99], such a link between CFT and properties
of states was established by showing that the edge correlations follow from those of the CFT.
This derivation, however, assumes exponentially decaying correlation functions in the bulk.

In this chapter, we derive an exact path integral representation of spin-spin correlation
functions in the states obtained from the free-boson CFT. This provides a relation between a
property of the states and the CFT they are constructed from. Through an approximation of
this exact expression, we arrive at a representation of the correlations in terms of a quadratic
effective action that is a modification of the CFT. It differs from the latter by an additional mass-
like term inserted at the positions of the lattice. This mass-like term in the effective action
causes exponentially decaying bulk correlations. Thus, we provide a conceptual argument for
the screening property.

A similar construction in terms of an action that is a perturbation of the CFT was made in
Refs. [99, 141] for general FQH states with continuous spatial degrees of freedom. The distinct
contribution of our work is twofold. First, we provide an argument through our exact path
integral representation in favor of doing this approximation. Second, we explicitly compute
the correlations within the approximation and provide extensive tests of its accuracy.

Our approximation can be understood as a transition from discrete spins to continuous
ones. This breaks the invariance under a rescaling of the lattice. Thus, the approximation
depends on a new scale parameter, which we fix by minimizing the subleading term in the
approximation. Taking an additional continuum limit of the lattice, we derive analytical
expressions for the approximate correlations.

In this chapter, we study correlations of lattice Laughlin states and corresponding approxi-
mations. In the past years, entanglement properties [83, 84, 159] have been used as a tool to
characterize quantum many-body states. In particular, entanglement entropies and spectra
were shown to exhibit properties of the underlying CFT [159–163]. This direction is pursued in
Chapter 5 of this thesis, where we compute entanglement properties of states with continuous
spins that have the same correlations as that of the approximation studied in this chapter.

This chapter is structured as follows.

• Sec. 4.1 introduces the spin-1
2 states studied in this chapter.
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• We derive an exact path integral representation of correlations in Sec. 4.2, where we also
introduce the approximation through a truncation of the exact expression.

• Sec. 4.3 explains how we solve the approximation on lattices and by taking an additional
continuum limit for the positions.

• The accuracy of the approximation is tested in Sec. 4.4.

• Sec. 4.5 contains an outlook and a discussion of how the approximation could be im-
proved by keeping the periodicity of the original expressions.

• Sec. 4.6 concludes this chapter.

Most of the rest of this chapter and the corresponding appendices are adaptations of the
following previously published work:

• B. Herwerth, G. Sierra, J. I. Cirac, and A. E. B. Nielsen, “Effective description of correla-
tions for states obtained from conformal field theory”, Phys. Rev. B 96, 115139 (2017),
cO2017 American Physical Society (Ref. [164]).

4.1 Spin states from conformal fields

We consider a free, massless bosonic field ϕ(z, z̄) in one spatial dimension with the Euclidean
action S0[ϕ] given in Eq. (2.6). This theory was used in Sec. 2.3 to define spin-1

2 states |ψα〉,
where α > 0 is a real parameter. In this chapter, we study spin-spin correlations of the states
|ψα〉.

For a 2D system, |ψα〉 is similar to the Laughlin lattice state with ν = 1
4α particles per

flux [109], cf. also Sec. 2.2. In particular, α = 1
4 corresponds to an integer quantum Hall state

with one particle per flux and α = 1
2 to the Kalmeyer-Laughlin FQH state with 1

2 particle per
flux, which was studied in Chapter 3 of this thesis. When 4α is not an integer, the states |ψα〉
can be thought of as generalizations of FQH lattice states.

4.2 Effective description of correlations

In this section, we derive an effective description of the zz correlations in the states |ψα〉 in
terms of a free field theory. The zz correlations between lattice points i and j are defined as

〈σ zi σ zj 〉 ≡ 4
〈ψα |tzi tzj |ψα〉
〈ψα |ψα〉

=

∑
s1,...,sN

sisj |ψα(s1, . . . , sN )|2
∑
s1,...,sN

|ψα(s1, . . . , sN )|2 . (4.1)

In the following, it is assumed that the sites i and j are distinct since the correlator for i = j
can be evaluated trivially, 〈σ zi σ zi 〉 = 1. We first derive an exact representation of 〈σ zi σ zj 〉, which
we then truncate to an effective, quadratic theory.

4.2.1 Exact field theory representation of correlations

Let us first consider the normalization 〈ψα |ψα〉 in Eq. (4.1). Using the form of the wave
function [Eq. (2.25)], 〈σ zi σ zj 〉 can be written as a vacuum expectation value of vertex operators
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4.2 Effective description of correlations

in the complete free-boson theory (chiral and antichiral):

〈ψα |ψα〉 =
∑

s1,...,sN

|ψα(s1, . . . , sN )|2 =
∑

s1,...,sN

δs

∏

i<j

|zi − zj |2αsisj (4.2)

=
∑

s1,...,sN

〈: ei
√
αs1ϕ(z1,z̄1) : · · · : ei

√
αsNϕ(zN ,z̄N ) :〉, (4.3)

where δs
∏
i<j |zi − zj |2αsisj was written as the correlation function of N vertex operators :

ei
√
αsjϕ(zj ,z̄j ) :. Note that the condition imposed by δs is implicitly contained in Eq. (4.3) since

the correlator of vertex operators vanishes unless s1 + · · ·+ sN = 0.
Carrying out each of the sums over sj ,

∑

sj∈{−1,1}
: ei
√
αsjϕ(zj ,z̄j ) : = 2 : cos

(√
αϕ(zj , z̄j )

)
:, (4.4)

we obtain

〈ψα |ψα〉 = 2N 〈
N∏

k=1

: cos
(√
αϕ(zk , z̄k)

)
:〉. (4.5)

For the numerator in Eq. (4.1), we additionally use

∑

sj∈{−1,1}
sj : ei

√
αsjϕ(zj ,z̄j ) : = 2i : sin

(√
αϕ(zj , z̄j )

)
: (4.6)

and obtain

4〈ψα |tzi tzj |ψα〉 =
∑

s1,...,sN

sisj〈: ei
√
αs1ϕ(z1,z̄1) : · · · : ei

√
αsNϕ(zN ,z̄N ) :〉 (4.7)

= −2N 〈: sin
(√
αϕ(zi , z̄i)

)
:: sin

(√
αϕ(zj , z̄j )

)
:

N∏

k(,i,j)

: cos
(√
αϕ(zk , z̄k)

)
:〉, (4.8)

where k(, i, j) denotes all indices k that are distinct from i and j. Therefore, the expression for
the zz correlations becomes

〈σ zi σ zj 〉 = −
〈: sin

(√
αϕ(zi , z̄i)

)
:: sin

(√
αϕ(zj , z̄j )

)
:
∏N
k(,i,j) : cos

(√
αϕ(zk , z̄k)

)
:〉

〈∏N
k=1 : cos

(√
αϕ(zk , z̄k)

)
:〉〉

. (4.9)

As we show in Appendix C.1, one can drop the normal ordering in this expression since this
changes the numerator and denominator by the same constant factor. Thus, the path integral
representation of Eq. (4.9) is given by

〈σ zi σ zj 〉 = −
∫
Dϕ tan

(√
αϕ(zi , z̄i)

)
tan

(√
αϕ(zj , z̄j )

)
cos

(√
αϕ(z1, z̄1)

)
. . .cos

(√
αϕ(zN , z̄N )

)
e−S0[ϕ]

∫
Dϕ cos

(√
αϕ(z1, z̄1)

)
. . .cos

(√
αϕ(zN , z̄N )

)
e−S0[ϕ]

.

(4.10)

This expression determines the exact zz correlations in |ψα〉.
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4.2.2 Effective theory for correlations

The starting point of our approximation is to expand the path integral representation of
Eq. (4.10) to quadratic order in ϕ(z, z̄) around 0. This is motivated by the following obser-
vation: For large N , the contribution of the integrand in Eq. (4.10) is only significant for
field configurations that have cos(

√
αϕ(zj , z̄j)) ≈ ±1 at all positions zj . At the same time, the

massless, free-boson action S0[ϕ] suppresses field configurations that change rapidly through
the derivative term. Therefore, the fields dominating the path integral are those for which√
αϕ(z, z̄) is near the same extremum of cosine for all positions z. Since S0[ϕ] is invariant under

a constant shift of the field value, ϕ(z, z̄)→ ϕ(z, z̄) + const., we can focus on the case ϕ(z, z̄) ≈ 0.
The expansion around the extremum of the cosine function is analogous to Kosterlitz and
Thouless’s treatment of the XY model [71, 72]. We are, however, not taking into account terms
that would correspond to vortex configurations in the XY model.

Hence, we expand cos(
√
αϕ(z, z̄)) ∼ e− α2ϕ(z,z̄)2

and tan(
√
αϕ(z, z̄)) ∼ √αϕ(z, z̄) in Eq. (4.10)

and obtain

〈σ zi σ zj 〉 ≈ −α
∫
Dϕ ϕ(zi , z̄i)ϕ(zj , z̄j )e−Sα[ϕ]

∫
Dϕe−Sα[ϕ]

, (4.11)

where

Sα[ϕ] =
1

4π

∫
dzdz̄∂zϕ(z, z̄)∂z̄ϕ(z, z̄) +

α
2

N∑

j=1

ϕ(zj , z̄j )
2. (4.12)

The quadratic action Sα[ϕ] provides an effective theory that approximately describes the zz
correlations in the state |ψα〉. Compared to the action of the free, massless boson, it has an
additional mass-like term at the positions of the lattice as illustrated in Fig. 1.4.

4.3 Solution schemes for 1D and 2D lattices

In the following, we describe two solution schemes to the quadratic action Sα[ϕ] of Eq. (4.12),
which determines the approximate zz correlations in the state |ψα〉. The first scheme consists
of taking a continuum limit of the lattice. This further simplification allows us to derive
analytical results for the approximate zz correlations. The second scheme keeps the structure
of the lattice and is solved numerically.

4.3.1 Continuum approximation

We apply an additional approximation to the action Sα[ϕ] by writing the sum over the
positions zj as an integral. We replace the sum over positions

∑N
j=1ϕ(zj , z̄j)2 in Eq. (4.12)

by a term proportional to the integral
∫
D
dzdz̄ϕ(z, z̄)2, where D is the region in the complex

plane in which the spins are located. For this continuum approximation, we consider the
systems illustrated in Fig. 4.1: a 1D system (infinite line and circle), a 2D system without a
boundary (sphere), and a 2D system with a boundary (half plane and half-infinite cylinder).
The resulting approximation for the zz correlations are summarized in Table 4.1. Most of the
computations leading to the results of Table 4.1 for the case of the infinite line, the circle, the
half-plane, and the cylinder were done by Germán Sierra and can be found in the Appendix of
Ref. [164]. The calculation on the sphere is carried out in Appendix C.3.1.

Note that the continuum approximation predicts a power law decay of the long-range
correlations in a 1D and at the edge of a 2D system with the power being −2 independent of α.
In the bulk of a 2D system, we find an exponential decay of the correlations at large distances.
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x

y

l

Infinite line/
circle

nΩi

nΩj

Sphere

x

y

(ix, l + 1)

(ix,1)
l

edge (ix = 1)

Half plane/
half-infinite cylinder

Figure 4.1: Systems for the computation of the zz correlations in the continuum approximation.
The spins are located in the blue regions. In the case of the circle and the half-
infinite cylinder, periodic boundary conditions are imposed along the y direction.
The two points shown in each of the panels are the sites for which the zz correlations
were computed.

4.3.2 Discrete approximation

The continuum approximation of the previous subsection does not take into account the
lattice structure of the states |ψα〉. In order to test this simplification and to obtain a better
approximation of the exact zz correlations, we now discuss an approximation scheme that
keeps the lattice. Specifically, we discuss the three types of lattices introduced in Sec. 2.3.1:
a uniform lattice on a circle, an approximately uniform lattice on the sphere, and a square
lattice on the cylinder. Thus, we can study both a 1D system and 2D systems with and without
edges.

In the discrete case, we do not work with the path integral representation of the approximate
zz correlations of Eq. (4.12) since it contains short-distance divergences at the lattice positions
zj . Taking the continuum limit as done above is one way to remove these divergences. In the
discrete case, we choose to work with normal ordered fields and thus avoid divergences. This
corresponds to taking the normal ordered expression of Eq. (4.9) as the starting point of the
approximation instead of the path integral representation of Eq. (4.10). The approximation of
the zz correlation then becomes

〈σ zi σ zj 〉 ≈ −α
〈: ϕ(zi , z̄i)e

− α2ϕ(zi ,z̄i )2
:: ϕ(zj , z̄j )e

− α2ϕ(zj ,z̄j )2
:
∏N
k(,i,j) : e−

α
2ϕ(zk ,z̄k)2

:〉
〈∏N

k=1 : e−
α
2ϕ(zk ,z̄k)2

:〉
. (4.13)

In Appendix C.3.2, we compute this expression and find

〈σ zi σ zj 〉 ≈ Γij , (4.14)

where

Γij =
[
Tr

(
T trMTr + ere

t
r

)−1
T tr − I

]

ij
, (4.15)

r ∈ {1, . . . ,N } is an arbitrary index, M and Tr are the N ×N with entries

Mmn = δmn − 2α log(dmn + δmn) , (Tr )mn = δmn − δmr , (4.16)

er is the rth unit vector, and I is the identity matrix. TheN×N matrix dij contains the distances
between sites i and j. It is given by dij = |zi − zj | for positions in the complex plane. We note
that the matrix Γ is independent of the choice of r.
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Table 4.1: Approximation of the zz correlations in |ψα〉 in the continuum approximation, cf.
Fig. 4.1 for an illustration of the different systems. Φ(z, s,a) =

∑∞
m=0 z

m/(a +m)s

denotes the Lerch transcendent function, Si and Ci are the sine and cosine integral
functions, respectively. The position on the sphere nΩi

∈ S2 is defined in Eq. (2.31).

System zz correlations Large distances
(l� 1)

Infinite line 〈σ zl+1σ
z
1〉 ≈ 2α

[
cos(r)Ci(r) + sin(r)

(
Si(r)− π2

)]
, − 1

2π2α
1
l2

(l = 0,1,2, . . . ) with r = 2παl

Circle 〈σ zl+1σ
z
1〉 ≈ 1

N − 2αRe
[
Φ

(
e2πi lN ,1,Nα

)]

(l = 0,1, . . . ,N − 1)

Sphere
(
nΩi

,nΩj
∈ S2

)
〈σ zi σ zj 〉 ≈ −α

∫∞
0 dq

2cos
(√
Nα− 1

4q
)

√
2cosh(q)−2+|nΩi

−nΩj
|2

Half-plane 〈σ zix ,l+1σ
z
ix ,1
〉 ≈

∫∞
−∞

dq
2πe
−iqlg(q), edge (ix = 1): − 1

πl2

(ix = 1,2, . . . ;

l = 0,1,2, . . . )
with g(q) = − 2πα√

4πα+q2


1 + 4παe−2(ix−1)

√
4πα+q2

(
|q|+
√

4πα+q2
)2


 bulk (ix→∞):

−π 1
4α

3
4 e
−2
√
παl√
l

Half-infinite cylinder 〈σ zix ,l+1σ
z
ix ,1
〉 ≈ 1

Ny

∑∞
m=−∞ e

− 2πiml
Ny g(2πm

Ny
),

(ix = 1,2, . . . ;

l = 0,1, . . . ,Ny − 1)
with g(q) as for the half-plane

Lattices symmetries for the discrete approximation

Let us now explain how we ensure that the approximation retains the symmetries of the lattice.
The positions on the sphere are given by the unit vectors nΩj

of Eq. (2.31), where Ωj = (θj ,φj )
in terms of the polar angle θj and the azimuthal angle φj . When computing the exact zz
correlations, the positions nΩj

on the sphere can be mapped to the complex plane using the

stereographic projection zj = tan(θj /2)e−iφj , cf. Sec. 2.3.1. For the approximate zz correlations,
however, it is better not to do this projection but to work directly on the sphere. The reason is
that the differences in the complex plane, |zm − zn| = |e−iφm tan(θm/2)− e−iφn tan(θn/2)|, are not
invariant under general rotations of the sphere. Note that this is not a problem for the exact zz
correlations since

〈σ zi σ zj 〉 =

∑
s1,...,sN

sisjδs
∏
m<n |zm − zn|2αsmsn∑

s1,...,sN
δs

∏
m<n |zm − zn|2αsmsn

=

∑
s1,...,sN

sisjδs
∏
m<n |nΩm

−nΩn
|2αsmsn

∑
s1,...,sN

δs
∏
m<n |nΩm

−nΩn
|2αsmsn , (4.17)

where |nΩm
−nΩn

| is invariant under sphere rotations. [Eq. (4.17) follows from |nΩm
−nΩn

| =
2cos(θm/2)cos(θn/2)|zm − zn| and s1 + · · · + sN = 0.] As we show in Appendix (C.2.1), the
replacement of |zm − zn| by |nΩm

−nΩn
| corresponds to working directly on the sphere instead

of the complex plane. Doing our approximation for the free-boson field ϕ(θ,φ) instead of
ϕ(z, z̄) thus leads us to an approximation that keeps the rotation invariance on the sphere. It is
given by the expressions following Eq. (4.14) with dmn = |nΩm

−nΩn
|.
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4.3 Solution schemes for 1D and 2D lattices

The positions on the cylinder with Nx sites in the open direction and Ny sites in the periodic
direction are defined as

wj =
2π
Ny

(jx + ijy), (4.18)

where jx ∈ {1, . . . ,Nx} and jy ∈ {1, . . . ,Ny} are the x and y components of the index j, respectively.
The positions wjx ,jy+Ny and wjxjy are identified to impose periodicity in the y direction. In
Sec. 2.3.1, the coordinates wj on the cylinder were projected onto the complex plane through
zj = ewj . As for the stereographic projection in the case of the sphere, this mapping is a
symmetry of the exact but not of the approximate zz correlations. Even though |zi −zj | does not
change under rotations of the cylinder, it distorts distances. As we show in Appendix C.2.2,
working with coordinates wj instead of zj = ewj corresponds to the replacement |zi − zj | → dij
with

dij =
∣∣∣∣∣2sinh

(1
2

(wi −wj )
)∣∣∣∣∣ . (4.19)

Our approximation on the cylinder is thus obtained by expanding in the field ϕ(w,w̄) on the
cylinder instead of ϕ(z, z̄) on the plane. The resulting approximation of 〈σ zi σ zj 〉 is given by
using dij of Eq. (4.19) in the expressions following Eq. (4.14).

Choice of the lattice scale

The exact zz correlations are invariant under rescaling transformations of the lattice due to the
conformal symmetry of the correlator of Eq. (2.25). These change the distances according to

dmn→ λdmn, (4.20)

where λ > 0. The quadratic, discrete approximation of 〈σ zi σ zj 〉 is, however, not invariant under
such rescalings since the matrix M of Eq. (4.16) varies under a change of the lattice scale
λ. Thus, different choices of λ lead to different values of the approximation, and we need
a criterion to uniquely determine the value of λ. We note that this problem does not occur
in the continuum approximation since the replacement of the sum over lattice positions by
an integral restores scale invariance, cf. the Appendix of Ref. [164]. In order to fix λ in the
discrete case, we computed the subleading term of the expansion for the zz correlations in
Appendix C.3.2:

〈σ zi σ zj 〉 ≈ Γij − Γij(Γii + Γjj ). (4.21)

For two given indices i and j, we define the optimal scale λ by requiring that it minimizes the
subleading term of the expansion, i.e., it is a minimum of

|Γii + Γjj |. (4.22)

Instead of choosing different scales for the different values of i and j, we also considered the
following simpler approach: For a given set of positions and value of α, we determine a single
optimal scale λ by minimizing the expression

√√√√ N∑

j=1

Γ 2
jj . (4.23)
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4 Approximation of correlations for states obtained from conformal field theory

In addition to minimizing expression (4.22) or (4.23), we require that λ is chosen such
that eigenvalues of the matrix T trMTr + eretr appearing in Eq. (4.15) are all positive. This
condition ensures the convergence of anN -dimensional Gaussian integral, cf. the derivation in
Appendix C.3.2. As our numerical calculations show, these requirements uniquely determine
the value of λ. In Fig. 4.2, we show plots for the determination of the minimal scale in two
exemplary cases.

10−1 100 101 102
scale λ

10−4
10−2
100

102

104

√ √ √ √
N ∑ j=
1

Γ
2 jj

optimal scale

Circle, N = 100,α = 0.1

100 1012× 100 3× 100 4× 100 6× 100
scale λ

10−2

100

102

104

√ √ √ √
N ∑ j=
1

Γ
2 jj

optimal scale

Sphere, N = 100,α = 0.5

Figure 4.2: Determination of the optimal scale λ by minimizing the subleading term in the ap-
proximation. Values of λ below a minimal scale are excluded from the optimization
since the approximation does not converge there (orange regions).

We did computations with multiple optimizations, i.e., minimizing expression (4.22), and a
single optimization of expression (4.23). We found that doing multiple optimizations does not
result in a substantial improvement of our results. Therefore, the data shown in the following
correspond to a single optimization for a given lattice and value of α.

4.4 Quality of approximation for different systems

In this section, we test the validity of our approximation by comparing the obtained zz
correlations to their actual value. Our aim in doing this analysis is to test whether the
simple picture of the effective, quadratic theory is accurate. In two special cases, the actual
zz correlations can be computed exactly, namely for α = 1

4 , where ψα(s1, . . . , sN ) is the wave
function of N

2 free fermions [109], and for α = 1
2 on the circle, where the exact correlations

are known analytically [103, 165]. For all other cases, we used a Metropolis Monte Carlo
method explained in Appendix A.2 to obtain estimates of the exact zz correlations in |ψα〉. The
approximation data in the following plots was computed using the discrete scheme described
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4.4 Quality of approximation for different systems

in Sec. 4.3.2. We restrict ourselves to the four values of α = 0.125,0.25,0.375, and α = 0.5 here.
Plots for additional values of α as well as for the continuum approximation can be found in
the Supplementary Material of Ref. [164].

4.4.1 One-dimensional system

We first consider a 1D system. In this case, we can compare our results to bosonization studies
of the XXZ model

HXXZ =
N∑

j=1

(
txj t

x
j+1 + tyj t

y
j+1 +∆tzj t

z
j+1

)
, (4.24)

where taN+1 = ta1 for periodic boundary conditions. This model is in a critical phase for
anisotropies −1 < ∆ ≤ 1. The wave function ψα(s1, . . . , sN ) was used previously [102] as a
variational ansatz for HXXZ in the half-filled sector (tz1 + · · · + tzN = 0). More precisely, the
positions zj were taken to be uniformly distributed on a circle and α was determined for a
given value of ∆ such that the variational energy in |ψα〉 is minimal. In the critical phase, the
optimal value of α approximately satisfies ∆ = −cos(2πα) and the overlap between the exact
ground state |ψ0〉 and the optimal |ψα〉 is large [102]. Using the relation ∆ = −cos(2πα), the
results for the long-range zz correlations obtained using bosonization [97, 136] are given by

〈ψ0|σ zl+1σ
z
1 |ψ0〉

〈ψ0|ψ0〉
∼ − 1

2π2α

1
l2

+A
(−1)l

l
1

2α

, (4.25)

where A is the α-dependent amplitude that was determined in Ref. [136]. In the bosonization
formalism, the local Pauli matrix σ zi has two contributions: A smooth term proportional
to the U(1) current ∂yϕ(y) and a second, rapidly varying term proportional to cos(πy +√

2πϕ(y)) [166]. The decay of correlations with a power of −2 originates from the correlator
of two U(1) currents, while the rapidly varying term in the representation of σ zi causes the
staggered contribution to Eq. (4.25).

For small values of α, the first term in Eq. (4.25) is dominant. Our analytical results for
the long-range correlations in an infinite 1D system of Table 4.1 correctly reproduce this
term. As α approaches 1

4 , however, the second, alternating term in Eq. (4.25) becomes relevant
and eventually dominates for α > 1

4 . In this regime, the state develops quasi-long-range
antiferromagnetic order. This behavior is not captured by the results of our continuum
approximation. In contrast to bosonization, our representation of the zz correlations neglects
rapid changes with position by assuming that the boson field is close to the same extremum of
cosine at all positions, cf. Sec. 4.2.2. Furthermore, our approximation assumes that

√
αϕ(z, z̄) is

small and therefore we do not expect to obtain the second term in Eq. (4.25), which is relevant
for large α.

Let us now discuss our numerical results for the discrete approximation. These are shown
for N = 100 spins uniformly distributed on the circle in Fig. 4.3. At large distances, we observe
a polynomial decay in the correlations. (Both axes in Fig. 4.3 are scaled logarithmically.)
We find good agreement between the Monte Carlo estimate of the exact correlator and the
approximation for α = 0.125. The results differ substantially from the exact correlator for
α ≥ 0.25 and the deviation grows with α. In particular, the oscillating behavior of 〈σ zl+1σ

z
1〉 for

α > 0.25 is not reproduced by our approximation.
To further emphasize that the approximation captures the smooth part of the correlator

but not the alternating one, we consider the average al = 1
2 (〈σ zl+2σ

z
1〉+ 〈σ zl+1σ

z
1〉) between the
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4 Approximation of correlations for states obtained from conformal field theory
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Monte Carlo/exact, 〈σ zi σ zj 〉 ≥ 0

Monte Carlo/exact, 〈σ zi σ zj 〉 < 0

Discrete approximation, 〈σ zi σ zj 〉 ≥ 0

Discrete approximation, 〈σ zi σ zj 〉 < 0

Figure 4.3: zz correlations in |ψα〉 for N = 100 spins uniformly distributed on the circle. The
data shown in blue are Monte Carlo estimates (α = 0.125 and α = 0.375) or exact
(α = 0.25 and α = 0.5). The Monte Carlo errors are of the order of 10−6 and are
thus not visible. The horizontal axes show the chord distance cl = |2sin(πl/N )|. At
α = 0.25, every second value of the actual correlator (blue symbols) is zero within
numerical error and thus not visible.

correlator at distances l + 1 and l. This combination suppresses the oscillating term at large
distances:

1
2

(〈ψ0|σ zl+2σ
z
1 |ψ0〉

〈ψ0|ψ0〉
+
〈ψ0|σ zl+1σ

z
1 |ψ0〉

〈ψ0|ψ0〉
)
∼ − 1

2π2αl2
+A

(−1)l

4αl1+ 1
2α

(4.26)

for the correlator obtained through bosonization. The average al is plotted in Fig. 4.4 for the
actual zz correlations in |ψα〉 and those obtained within the discrete approximation. Indeed,
the agreement for al is better also for larger values of α. [The value of α = 1

2 is special in
the sense that al still oscillates as a function of the distance. The reason is that both terms
in Eq. (4.26) for α = 1

2 decay with the same power and the amplitude of the oscillating term
dominates. While this oscillation is absent in the approximation, the power of the decay of al
agrees with the actual one.]

In summary, both the comparison to bosonization and to the exact correlator lead to the
conclusion that our approximation is only valid for small values of α in 1D.

4.4.2 Two-dimensional system without a boundary (sphere)

We next discuss the case of a 2D system without a boundary. The results of the discrete
approximation are compared to the exact zz correlations in Fig. 4.5 for N = 100 spins on the
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4.4 Quality of approximation for different systems
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Figure 4.4: Average al = 1
2 (〈σ zl+2σ

z
1〉+〈σ zl+1σ

z
1〉) between in the zz correlations in |ψα〉 at distances

l and l + 1 for N = 100 spins on the circle. The blue symbols correspond to
numerically exact data for α = 0.25 and α = 0.5 and to Monte Carlo estimates
for α = 0.125 and α = 0.375. The horizontal axes show the chord distance cl =
|2sin(πl/N )|.

sphere. The distribution of sites on the sphere was chosen to be approximately uniform. In
Fig. 4.5, the vertical axis is scaled logarithmically, while the horizontal axis is linear.

Both the approximate correlations and the actual ones decay exponentially. Furthermore, a
similar transition in the behavior of the zz correlations appears at α = 1

4 as in 1D: For α ≤ 1
4 ,

the correlations between distinct sites are negative whereas for α > 1
4 they change sign as a

function of the distance. As in 1D, we find the best agreement for the smallest value of α
and large deviations at the transition point α = 1

4 . However, in contrast to the 1D case, the
approximation captures the qualitative behavior of the correlations for larger values of α. In
particular, we observe that the sign changes are reproduced correctly.

A reason for the better performance of the approximation in 2D could be as follows: Due to
the cosine factors in Eq. (4.10), we assumed field configurations around 0 mainly contribute
to the path integral. In the case of a 1D system, however, these cosine factors only depend
on the field configuration along a 1D path and therefore they do not restrict contributions to
the path integral as strongly as for a 2D system. Furthermore, the oscillations in the actual
correlations are much stronger in 1D, where they decay polynomially, than in 2D, where the
decay is exponential and there is no quasi-long-range antiferromagnetic order.
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4 Approximation of correlations for states obtained from conformal field theory
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Figure 4.5: zz correlations in |ψα〉 for N = 100 spins with an approximately uniform dis-
tribution on the sphere. The blue data points are Monte Carlo estimates (α =
0.125,0.375,0.5) or exact (α = 0.25). The horizontal axes show the distance
d1,j = |nΩ1

−nΩj
|, cf. Eq. (2.31) for the definition of nΩj

.

4.4.3 Two-dimensional system with a boundary (cylinder)

Let us now consider a 2D system with an edge. Our results for the edge correlations of a
cylinder of size Nx = 14 and Ny = 160 are shown in Fig. 4.6. (The large number of spins
Ny = 160 is chosen so that we can study the long-range decay of edge correlations.) For
α = 0.125, we observe a good agreement at all length scales. As α becomes larger, the
approximation deviates from the exact result at short distances but follows the decay at
larger ones to good accuracy. The plots in Fig 4.6 are logarithmically scaled on both axes and
therefore show an algebraic decay of long-range correlations with a power of −2 as predicted
by our continuum approximation (cf. Table 4.1). This behavior corresponds to the decay of a
current-current correlator of a U(1) theory at the edge.

Our results for the correlator in the bulk of the cylinder are shown in Fig. 4.7. The agreement
between the approximate and the actual correlator is similar to that on the sphere: The approx-
imation is best for α = 0.125, fails to describe the transition at α = 0.25, and is qualitatively
right for α > 0.25. The approximate correlations and the actual ones decay exponentially. (The
horizontal axes in Fig. 4.7 are scaled linearly.)

4.4.4 Comparison of continuum and discrete approximation

Finally, we note that the discrete approximation generally yields better results than the contin-
uum approximation, especially for larger values of α in 2D. (Corresponding plots are shown
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4.5 Outlook: Approximation through a periodic function
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Figure 4.6: zz correlations in |ψα〉 on the edge of a cylinder with Nx = 14 sites in the open
direction and Ny = 160 sites in the periodic direction. The shown correlations
are those along the y direction. The blue data points are Monte Carlo estimates
(α = 0.125,0.375,0.5) or exact (α = 0.25). The horizontal axes show the chord
distance cl = |2sin(πl/Ny)|.

in the Supplementary Material of Ref. [164].) In particular, the continuum approximation
does not reproduce the alternating behavior of the correlations for α > 1

4 . At the edge of the
2D system, the continuum approximation agrees with the exact correlation in the power of
the long-range decay but not in the prefactor, which is, however, reproduced correctly by the
discrete approximation. In order to get a better agreement at larger values of α, it is therefore
necessary to keep the lattice structure and to optimize the approximation by choosing the
scale as described in Sec. 4.3.2.

4.5 Outlook: Approximation through a periodic function

Our approximation of the spin-spin correlations in |ψα〉 is based on replacing cos(
√
αϕ(z, z̄))

by the Gaussian e−
α
2ϕ(z,z̄)2

. The latter is non-periodic and positive everywhere.
We thus expect that the approximation can be improved by replacing cos(

√
αϕ(z, z̄)) by a

periodic function that assumes positive and negative values. Let us thus consider the following
approximate representations of cos(x) and sin(x):

cos(x) ≈
∑

µ∈Z
e−

1
2 (x−πµ)2−iπµ, sin(x) ≈ i

∑

µ∈Z+ 1
2

e−
1
2 (x−πµ)2−iπµ. (4.27)

An approximation of this kind was done by Villain [167] in the context of the classical XY

85



4 Approximation of correlations for states obtained from conformal field theory

10−10
10−8
10−6
10−4
10−2
100

|〈σ
z 7,
l+
1
σ
z 7,
1
〉|

α = 0.125 α = 0.25

0.0 0.1 0.2 0.3
chord distance cl

10−10
10−8
10−6
10−4
10−2
100

|〈σ
z 7,
l+
1
σ
z 7,
1
〉|

α = 0.375

0.0 0.1 0.2 0.3
chord distance cl

α = 0.5

Cylinder, Nx = 14,Ny = 160, bulk (ix = jx = 7)

Monte Carlo/exact, 〈σ zi σ zj 〉 ≥ 0

Monte Carlo/exact, 〈σ zi σ zj 〉 < 0

Discrete approximation, 〈σ zi σ zj 〉 ≥ 0

Discrete approximation, 〈σ zi σ zj 〉 < 0

Figure 4.7: zz correlations in |ψα〉 in the bulk of a cylinder with Nx = 14 sites in the open
direction and Ny = 160 sites in the periodic direction. The shown correlations are
those along the y direction. The blue data points are Monte Carlo estimates (α =
0.125,0.375,0.5) or exact (α = 0.25). The horizontal axes show the chord distance
cl = |2sin(πl/Ny)|. We only plot the data at short distances since the correlations
decay exponentially and good Monte Carlo estimates cannot be obtained at larger
distances. At α = 0.25, every second data point of the actual correlator (blue
symbols) assumes a value below the lower boundary of the plot and is thus not
visible.

model in 2D. Using Eq. (4.9), this leads to the following approximation of zz correlations for
i , j:

〈σ zi σ zj 〉 ≈
Zα(i, j)
Zα()

, where Zα(i1, . . . , ik) =
∑

µ1,...,µN

〈
N∏

j=1

: e−
1
2 (
√
αϕ(zj ,z̄j )−πµj)2−iπµj :〉, (4.28)

and µj is summed over

µj ∈

Z+ 1

2 if j ∈ {i1, . . . ik},
Z otherwise.

(4.29)

Let us evaluate the function

ζ(µ) = 〈
N∏

j=1

: e−
1
2 (
√
αϕ(zj ,z̄j )−πµj)2

:〉 = e−
π2
2 µ

2〈
N∏

j=1

: e−
α
2ϕ(zj ,z̄j )2+π

√
αµjϕ(zj ,z̄j ) :〉. (4.30)
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In Appendix C.3.2, we show that

〈
N∏

j=1

: e−
α
2ϕ(zj ,z̄j )2+i

√
αJjϕ(zj ,z̄j ) :〉 ∝ e 1

2 J
tΓ J , (4.31)

where Γ was defined in Eq. (4.15), and J ∈ RN . By analytical continuation of Eq. (4.31) with
J = −iπµ, it follows that

ζ(µ) ∝ e− 1
2µ

t[π2(Γ+I)]µ. (4.32)

Therefore, the approximate zz correlations based on the replacements of Eq. (4.27) are given
by

〈σ zi σ zj 〉 ≈

∑
µi ,µj∈Z+ 1

2 ,
µk∈Z for k<{i,j}

(−1)
∑N
k=1µke−

1
2µ

t[π2(Γ+I)]µ

∑
µ1,...,µN∈Z(−1)

∑N
k=1µke−

1
2µ

t[π2(Γ+I)]µ
. (4.33)

[Note that writing (−1)µi+µj is not ambiguous for both µi and µj being a half-integer.] This
expression resembles an expectation value in a statistical model of integer spins µj ∈ Z and

an effective Hamiltonian Heff(µ) = π2

2 µ
t (Γ + I)µ. The factor exp

(
−π2

2 µ
2
)

suppresses terms with
high values of µj and could thus justify a restriction to µj ∈ {−1,0,1}.
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µ
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Sign in effective model, circle, N = 100

µj ∈ Z
µj ∈ {−1,0,1}

Figure 4.8: Sign factor in the approximate correlations of Eq. (4.33), cf. Eq. (4.34) for the

definition of 〈(−1)
∑N
j=1µj 〉. The blue circles correspond to the unrestricted case

of µj ∈ Z. The points shown as orange squares were obtained by restricting to
µj ∈ {−1,0,1}.

However, the factor (−1)
∑N
k=1µj can become negative and it is thus not possible to incorporate

it into the effective Hamiltonian. In Fig. 4.8, we plot the quantity

〈(−1)
∑N
j=1µj 〉 ≡

∑
µ1,...,µN

(−1)
∑N
j=1µj e−

1
2µ

t[π2(Γ+I)]µ

∑
µ1,...,µN

e−
1
2µ

t[π2(Γ+I)]µ
(4.34)

determined through Monte Carlo simulations for a circle of size N = 100. Both in the unre-

stricted case of µj ∈ Z and for µj ∈ {−1,0,1}, we find small values for 〈(−1)
∑N
j=1µj 〉. This indicates
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that there is a cancellation between configurations with positive and negative values of (−1)
∑
j µj .

A computation of Eq. (4.33) through Monte Carlo simulations and an interpretation in terms
of an average in a statistical model is thus complicated by a sign problem.

In principle, Eq. (4.33) can be transformed to another representation that is free of the sign
problem through Poisson’s formula

∑

n∈Z
f (n) =

∑

n∈Z

∫ ∞

−∞
dye−2πinyf (y), (4.35)

where f (y) is a function of a real argument y. However, the result is very similar to the original,
exact expression. Applying Eq. (4.35) to the approximation of Eq. (4.27), we obtain

cos(x) ≈
∑

µ∈Z
e−

1
2 (x−πµ)2−iπµ =

∑

µ∈Z

∫ ∞

−∞
dye−2πiyµ−iπye−

1
2 (x−πy)2

=

√
2
π

∑

σ∈2Z+1

e−
1
2σ

2
e−ixσ . (4.36)

The factor e−iπµ that causes the sign problem in Eq. (4.33) is not present anymore after
applying the Poisson summation. However, the right-hand side of Eq. (4.36) is similar to
the exact equation cos(x) = 1

2 (eix + e−ix). Thus, it does not yield a useful simplification:
The dominating terms are those that have σ = −1 or σ = 1 since the remaining terms are
exponentially suppressed. Restricting the sum to σ ∈ {−1,1}, one obtains the cosine up to the
factor 2

√
2/(πe) ≈ 0.968.

4.6 Conclusion

In this chapter, we studied correlations in states |ψα〉 of N spins on a lattice. The wave
functions ψα(s1, . . . , sN ) are constructed as chiral correlators of the CFT of a free, massless
boson. In 1D, they are approximate ground states of the XXZ spin chain, and they are similar
to Laughlin lattice states in 2D.

We derived an exact representation of the zz correlations in |ψα〉 in terms of a path integral
expression. By truncating it to quadratic order, we obtained an effective description in terms
of a solvable, quadratic action. Our effective theory differs from the original massless boson
by an additional mass-like term, which depends on the field configuration at the lattice sites.
Thus, we establish an analytical connection between physical properties of a state, namely its
correlations, and the underlying CFT.

By solving the free field theory, we obtained an approximation of the zz correlations in |ψα〉.
The mass-like term in our effective theory gives rise to an exponential decay of correlations in
the bulk of a 2D system, whereas our approximation predicts a power-law decay in 1D and at
the edge of a 2D system. We compared our results for the approximate correlations to Monte
Carlo estimates of the exact value. Our analysis shows that the approximation is most reliable
for small values of α, where it yields good results in the case of a 1D and a 2D system, both in
the bulk and at the edge. The long-range decay of the correlations at the edge of a 2D system
is reproduced correctly by the approximation for all considered values of α. Furthermore, we
find qualitative agreement between the exact result and our approximating in the bulk of a
2D system for values of α > 1

4 , whereas it fails to describe this regime in 1D.
The reason that the approximation is better in 2D than in 1D is presumably due to the fact

that field configurations away from 0 are more relevant in 1D than in 2D. We thus expect
to obtain the oscillating term for larger values of α in 1D by taking into account these field
configurations. Following Ref. [167], we considered such an approximation but found that the
resulting expressions suffer from a sign problem.

In this chapter, we focused on approximating the zz correlations in terms of a free field
theory. It would be interesting to extend this method to other quantities.
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conformal field theory

This chapter investigates nonchiral states with continuous spins on lattices obtained as corre-
lators of the CFT of a massless, free boson introduced in Sec. 2.1.1. This approach is distinct
from the case of continuous positional degrees of freedom [7], but also from the lattice wave
functions defined on a discrete Hilbert space consisting of spins or occupation numbers [102],
which was studied in Chapter 3 and 4 of this thesis.

Opposed to the case of discrete spins, the wave functions with continuous spins of this
chapter can be treated as bosonic Gaussian states. This implies that their properties can be
computed efficiently, whereas Monte Carlo simulations are necessary for states with discrete
spins. Besides this technical advantage, a motivation for considering Gaussian states is given
by the fact that the underlying CFT is also Gaussian. It is thus interesting to study how this
case differs from that of non-Gaussian states derived from the same CFT.

The purpose of this chapter is to characterize the continuous-spin states derived from the
free-boson CFT for systems in 1D and in 2D. To do so, we compute and analyze entangle-
ment properties. In 1D, these can be used to identify CFT behavior in quantum-many body
states [160, 168, 169]. Furthermore, topological properties in 2D can be characterized through
the entanglement entropy [83, 84] and entanglement spectra [159, 161–163].

In 1D, we find that the continuous-spin states are closely related to the free-boson CFT
they are constructed from. Both the entanglement entropies and spectra agree with the CFT
expectation. Furthermore, we find a parent Hamiltonian with low-energy eigenvalues that are
consistent with a massless, free boson.

For systems in 2D, we investigate topological properties encoded in entanglement entropies
and spectra. Our results indicate that the topological entanglement entropy vanishes. This
means that the continuous-spin states do not exhibit intrinsic topological order, which is
expected for Gaussian states and distinct from the case of discrete spins. However, an analysis
of entanglement spectra reveals nonchiral states that are exponentially localized at the edge
created by the entanglement cut. This is an indication that the states support edge modes.

The continuous-spin wave functions studied in this chapter have the same spin-spin corre-
lations as the approximation of Chapter 4. In this sense, this chapter, which studies entangle-
ment properties, is an extension of Chapter 4, which considered spin-spin correlations. Here,
however, we focus on investigating and characterizing model wave functions with continuous
spins instead of approximating properties of discrete, spin-1

2 states. In this chapter, we exam-
ine nonchiral, real wave functions, which is distinct from the case of chiral states studied in
Chapters 3 and 4 of this thesis. We provide an outlook on the case of chiral wave functions
with continuous spins at the end of this chapter.

This chapter is organized as follows.

• Sec. 5.1 defines nonchiral states with continuous spins from the free-boson CFT, relates
them to the approximation of Chapter 4, represents them as bosonic Gaussian states,
and summarizes how we compute entanglement properties for them.

• Sec. 5.2 considers these states in 1D, compares their entanglement entropies and spectra
to those of the CFT, and studies a parent Hamiltonian.
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5 States with continuous spins obtained from conformal field theory

• In Sec. 5.3, we study the states on a cylinder, show that they have a vanishing topological
entanglement entropy, and find indications of edge modes in the entanglement spectrum.

• Sec. 5.4 discusses the chiral wave function.

• Sec. 5.5 concludes this chapter.

Most of the rest of this chapter and the corresponding appendices are adaptations of the
following preprint:

• B. Herwerth, G. Sierra, J. I. Cirac, and A. E. B. Nielsen, “Bosonic Gaussian states from
conformal field theory”, arXiv:1807.01943 (2018), submitted to Phys. Rev. B (Ref. [170]).

5.1 Spin states from conformal field theory

This section defines states with a continuous spin as correlators of the free-boson CFT, repre-
sents them as bosonic Gaussian states, and explains how we compute entanglement properties.

5.1.1 Definition of states

We consider the CFT of a massless, free bosonic field ϕ(z, z̄) for z ∈ C introduced in Sec. 2.1.1.
This theory has a series of conformal primary fields : eisϕ(z,z̄) : for s ∈ R, where the colons
denote normal ordering. We define spin wave functions as the correlator of primary fields:

ψβ(s) = e−
1
4 (β+β0)s2〈: e i√

2
s1ϕ(z1,z̄1) : · · · : e i√

2
sNϕ(zN ,z̄N ) :〉 (5.1)

= e−
1
4 (β+β0)s2

δ (s1 + · · ·+ sN )
∏

m<n

|zm − zn|smsn ,

where zj for j ∈ {1, . . . ,N } defines a lattice of positions in the complex plane, s ∈ RN is a vector
of N continuous spin variables, δ is the Dirac delta function originating from the charge
neutrality condition, and β > 0 is a real parameter. We define the real number β0 through
a normalizability criterion and introduce β0 separately from β for convenience so that β
is always positive, cf. Sec. 5.1.4 below. The parametric dependence of ψβ(s) on the lattice
positions zj is suppressed for simplicity of notation.

The prefactor e−
1
4 (β+β0)s2

in Eq. (5.1) corresponds to a rescaling (zj , z̄j )→ (λzj ,λz̄j ) with λ > 0,

under which the correlation function of primary fields : e
i√
2
sjϕ(zj ,z̄j ) : changes by a factor λ−

1
2 s

2
.

Comparing to the form of the wave function of Eq. (5.1), we have β + β0 = 2logλ in terms of
the scale parameter λ of the lattice. In the definition of ψβ(s), we do not include an additional
parameter in the exponent of the vertex operators as in the case of the spin-1

2 states defined in
Sec. 2.3. The reason is that such a parameter can be removed by a rescaling of the continuous
spins sj ∈ R.

5.1.2 Relation to approximation of spin-1
2 states

In Chapter 4, we considered continuous-spin approximations for correlations of spin-1
2 states

|ψα〉 defined in Eq. (2.24). The wave functions ψβ(s) have the same correlations as the approxi-
mation that was made in Chapter 4, as we shall now show.

In Chapter 4, we considered zz correlations Cij in |ψα〉,

Cij ≡ 4
〈ψα |tzi tzj |ψα〉
〈ψα |ψα〉

=

∑
s1,...,sN

sisjδs
∏
m<n |zm − zn|2αsmsn∑

s1,...,sN
δs

∏
m<n |zm − zn|2αsmsn

, (5.2)
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and approximated them for i , j by a continuous integral of the form

C
(approx)
ij =

∫
dN ssisjδ (s1 + · · ·+ sN )e−

1
2 s

2 ∏
m<n |λ (zm − zn)|2αsmsn

∫
dN sδ (s1 + · · ·+ sN )e−

1
2 s

2 ∏
m<n |λ(zm − zn)|2αsmsn

, (5.3)

where λ > 0 is a scale parameter that we fixed by requiring that the subleading term of the
approximation is minimal (cf. Sec. 4.3.2).

The expression C(approx)
ij of Eq. (5.3) follows from Eqs. (C.51), (C.54), and (C.61) of Appen-

dix C.3.2. It corresponds to what we called the discrete approximation in Chapter 4. We note
that the word discrete does not refer to the spins in the approximation (which are continuous)
but to the lattice of positions. The term discrete is used in Chapter 4 to emphasize the difference
to the case where an additional continuum limit of the lattice is taken (cf. Sec. 4.3.1).

Rescaling sj → sj /
√
α in C(approx)

ij and using
∏
m<nλ

smsn = e−
1
2 s

2 logλ for s1 + · · ·+ sN = 0, we
find

C
(approx)
ij =

1
α

∫
dN ssisjδ (s1 + · · ·+ sN )e−

1
2 s

2( 1
α+2logλ)∏

m<n |zm − zn|2smsn∫
dN sδ (s1 + · · ·+ sN )e−

1
2 s

2( 1
α+2logλ)∏

m<n |zm − zn|2smsn
(5.4)

=
1
α

∫
dN ssisj |ψβ(s)|2
∫
dN s|ψβ(s)|2 , (5.5)

where we identified β + β0 = 1
α + 2logλ. Thus, the approximation C(approx)

ij made in Chapter 4

corresponds to the spin-spin correlations of the wave function ψβ(s) up to a total factor of 1
α .

Having realized that the approximate correlations of |ψα〉 are precisely those of ψβ(s), we
now study and characterize the model wave functions ψβ(s) in their own right. We note,
however, that there is an important difference between ψα(s1, . . . , sN ) and ψβ(s): The former
is chiral while the latter is not. We comment on the case of a chiral wave function with
continuous spins in Sec. 5.4 below.

5.1.3 Representation as a Gaussian state

We now represent ψβ(s) as a bosonic Gaussian state, which implies that its properties can be
computed efficiently for large systems. To this end, we replace the delta function δ(s1 + · · ·+ sN )
in ψβ(s) [cf. Eq. (5.1)] by a Gaussian of width proportional to

√
ε for ε > 0. This leads to the

wave function

ψβ,ε(s) = e−
1
2 s

t( 1
2ε ee

t+Xβ)s, (5.6)

where

(
Xβ

)
mn

=
1
2

(β + β0)δmn +Xmn, (5.7)

Xmn = − log(|zm − zn|+ δmn) , (5.8)

and e = (1, . . . ,1)t is the vector with all entries being equal to one. Then,

ψβ(s) = lim
ε→0

1
2
√
πε
ψβ,ε(s). (5.9)

Defining

Xβ,ε =
1

2ε
eet +Xβ ≡ 1

2ε
eet +

1
2

(β + β0)I+X, (5.10)
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5 States with continuous spins obtained from conformal field theory

where I is the N ×N identity matrix, ψβ,ε(s) assumes the standard form of a pure, bosonic
Gaussian state:

ψβ,ε(s) = e−
1
2 s

tXβ,εs. (5.11)

We refer to Appendix D.1 for a review of properties of bosonic Gaussian states. In short, a
pure bosonic Gaussian state is quasifree since it is the ground state of a quadratic Hamiltonian.
It is completely characterized by its covariance matrix, which contains the expectation values
of all pairs of bosonic annihilation and creation operators aj and a†j . In particular, the covari-
ance matrix determines the entanglement properties under a bipartition of the system. The
covariance matrix of ψβ,ε(s) can be computed efficiently from the matrix Xβ,ε in Eq. (5.11).

The representation of ψβ(s) in terms of ψβ,ε(s) also regularizes divergences. These are due to
the delta function δ(s1 + · · ·+ sN ), which implies that the state is infinitely localized along the
“center of mass” coordinate s1 + · · ·+ sN . By introducing ε as a regularization parameter, we
can isolate and subtract divergences. These occur, for example, in the entanglement entropies
computed below.

5.1.4 Definition of β0

We define β0 by requiring that ψβ,ε(s) is normalizable for all β > 0. According to Eq. (5.7), we
have

β0 = −2min{λ(1)
ε , . . . ,λ

(N )
ε }, (5.12)

where {λ(1)
ε , . . . ,λ

(N )
ε } are the eigenvalues of 1

2εee
t +X.

In the limit ε→ 0, the matrix 1
2εee

t +X becomes divergent, and we determine {λ(1)
ε , . . . ,λ

(N )
ε }

as the inverse eigenvalues of

[ 1
2ε
eet +X

]−1
= X−1 − X

−1eetX−1

2ε+ etX−1e
, (5.13)

where we used a general formula for the inverse of a matrix that is changed by a term of rank
one [171].

5.1.5 Entanglement properties

The representation of ψβ(s) as a Gaussian state allows us to efficiently compute its entan-
glement properties under partition of the system into parts A and B, cf. Appendix D.2 for
details.

In summary, we find that the Rényi entanglement entropies Sa(A) of order a are given by

Sa(A) = −1
2

logε+ S ′a(A) +O(ε), (5.14)

where S ′a(A) is independent of ε. The divergence in Sa(A) for ε → 0 is a consequence of
the delta function δ(s1 + · · · + sN ) in ψβ(s). By subtracting it, we obtain the finite entropies

S ′a(A). The entanglement Hamiltonian can be brought into the diagonal form
∑|A|
j=1 ω̃jb

†
j bj in a

suitable basis of annihilation and creation operators bj and b†j . The single-particle energies ω̃j
determine the entanglement spectrum.
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5.2 Properties of states in 1D

5.1.6 States on the cylinder

For the rest of this chapter, we study a system on a cylinder with a square lattice of Nx sites in
the open and Ny sites in the periodic direction:

wm ≡ wmxmy
=

2π
Ny

(
mx + imy

)
, (5.15)

where mx is the x and my the y component of the index m [m = (mx − 1)Ny +my], and we
identify wmxmy

with wmx ,my+Ny . This includes a uniform lattice in 1D with periodic boundary
conditions as the special case Nx = 1.

The wave function ψβ(s) was defined for positions zj in the complex plane in Eq. (5.1). For
positions wj on the cylinder, we use the map zj = ewj from the cylinder to the plane and define
the wave function by evaluating the CFT correlator on the cylinder:

ψβ(s) = e−
1
4 (β+β0)s2〈: e i√

2
s1ϕ(w1,w̄1) : · · · : e i√

2
sNϕ(wN ,w̄N ) :〉 (5.16)

= e−
1
4 (β+β0)s2

δ (s1 + · · ·+ sN )
∏

m<n

∣∣∣∣∣2sinh
(1

2
(wm −wn)

)∣∣∣∣∣
smsn

,

where we used Eq. (5.1) and the transformation rule for primary fields [5] under zj = ewj

(cf. Sec. 2.1.2). The definition of ψβ,ε(s) introduced in Sec. 5.1.3 changes accordingly on the
cylinder.

In the spin-1
2 case of Sec. 2.3, we projected the cylinder onto the plane and then defined

the wave function as a correlator in terms of coordinates in the complex plane. In the spin-1
2

case, this is possible since the correlator on the cylinder differs from that on the plane only by
a spin-independent constant. For the continuous spins sj ∈ R studied in this chapter, this is
not the case, and it is necessary use the CFT correlator on the cylinder. This is similar to the
approximation of Chapter 4, where we used CFT correlators on the cylinder and on the sphere
since the approximation is not invariant under a projection onto the complex plane.

5.2 Properties of states in 1D

In this section, we study properties of ψβ(s) for a 1D system with periodic boundary conditions.
We show that the correlations, entanglement properties, and a parent Hamiltonian exhibit
signatures of the underlying CFT of a free, massless boson.

5.2.1 Correlations

A plot of spin-spin correlations in ψβ(s) and a fit to the CFT expectation are shown in Fig. 5.1
for β ∈ {0.5,2,4,8}. We observe a long-range power-law decay that is consistent with a power
of −2 independent of β and find that the correlator is negative at large distances. This agrees
with the term in the bosonization result for the XXZ model [97] that originates from the
current-current correlator. The correlations in ψβ(s) do, however, not have the staggered
contribution observed for the XXZ model. We interpret this as a smoothing effect due to the
transition from discrete to continuous spins. A similar behavior was found in Chapter 4 in the
context of approximating correlations for spin-1

2 lattice states (cf. Fig. 4.3).
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Figure 5.1: Spin-Spin correlations 〈QL+1Q1〉 in ψβ(s) in 1D with periodic boundary conditions
for N = 100 sites. The operator Qm is defined as (Qmψβ)(s) = smψβ(s). The long-
range decay is consistent with the CFT expectation of an algebraic decay with a
power of −2. The fit was done for the 10 data points with the largest value of L.

5.2.2 Entanglement entropies

For a partition of the system into two connected regions of length L and N −L, respectively,
the CFT entanglement entropy is given by [169, 172, 173]

SCFT
a (L) =

c
6

(
1 +

1
a

)
log

[N
π

sin
( π
N
L
)]

+ c′a, (5.17)

where c is the central charge, a the order of the Rényi entropy, and c′a a non-universal constant.
As shown in Fig. 5.2, we find good agreement between the entropy of ψβ(s) and SCFT

a (L) for
larger values of L.

For a system that has a low-energy description in terms of a Luttinger liquid, one ex-
pects [174] subleading, oscillatory corrections to the CFT behavior of Eq. (5.17). For the XXZ
model, for example, these oscillations were found [174] in Rényi entropies Sa for a , 1. From
Fig. 5.2, we conclude that such oscillations around the CFT expectation are absent for the state
ψβ(s). This is in agreement with our findings about the correlations, and we interpret it as a
result of the transition from discrete to continuous spins, which has a smoothing effect and
thus removes the oscillatory components.

To characterize the correction of the entropy to CFT in the case of ψβ(s), we define

∆L = Sa(L)− Sa
(N

2

)
−
[
SCFT
a (L)− SCFT

a

(N
2

)]
(5.18)

= Sa(L)− Sa
(N

2

)
− c

6

(
1 +

1
a

)
log

[
sin

( π
N
L
)]
.
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Figure 5.2: Entanglement entropies of ψβ(s) in 1D with periodic boundary conditions and
N = 100 sites. The long-range behavior is consistent with the CFT expectation of
Eq. (5.17). The quantities S ′a can become negative since they differ from the Rényi
entropies Sa by a divergent term, cf. Eq. (5.14). For the fit to the CFT formula, we
chose c = 1 and used the 10 data points with the largest value of L.

As shown in Fig. 5.3, we find that ∆L becomes smaller for increasing system sizes and larger
values of L, i.e., the agreement with CFT is better is these regimes. For L& 3N/8, the computed
behavior of ∆L is consistent with a linear dependence on log

[
sin

(
π
N L

)]
. From the definition of

Eq. (5.18), it thus follows that Sa(L)−Sa
(
N
2

)
is also proportional to log

[
sin

(
π
N L

)]
for L& 3N/8.

The deviation from CFT is thus a correction to the CFT proportionality constant c
6

(
1 + 1

a

)
. We

emphasize that this correction can be considered to be a finite size effect since it becomes
smaller for larger system sizes. This distinguishes it from the parity effects observed in
Ref. [174] for the XXZ model.

5.2.3 Entanglement spectrum

To further substantiate the close connection between ψβ(s) and the free-boson CFT, we com-
puted the entanglement spectrum for a partition in momentum space. This choice makes it
possible to trace out the negative momenta, thus retaining only the chiral components [175,
176]. The details of the computation can be found in Appendix D.2.3. In summary, we find

an entanglement Hamiltonian
∑bN−1

2 c
k=1 ω̃kb

†
kbk, where bk and b†k are bosonic annihilation and

creation operators, k is the momentum, and ω̃k are single-particle entanglement energies. We
plot the low-lying part of the spectrum in Fig. 5.4. For large systems, we observe a linear
behavior ω̃k = kω̃1, where ω̃1 is the energy at momentum k = 1. The entanglement spectrum
is thus consistent with a chiral, massless, free boson.
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Figure 5.3: Differences ∆L between the computed entropy and the CFT expectation for a uni-
form 1D lattice with periodic boundary conditions [cf. Eq. (5.18) for the definition
of ∆L]. Dashed black lines: Linear fits ∆L = −A log

[
sin

(
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)]
done for L ≥ 3N/8.

5.2.4 Parent Hamiltonian

We now show that ψβ(s) in 1D has a parent Hamiltonian whose low-lying energies are in
agreement with the underlying CFT. The precise form of this Hamiltonian is derived in
Appendix D.3, where we also show that it can be brought into the diagonal form

∑N
k=1ωkb

†
kbk

in a suitable basis of annihilation and creation operators bk and b†k . Due to translational
invariance, k in the single-particle energies ωk has the meaning of a momentum variable in
1D.

The low-lying part of the single-particle spectrum is shown in Fig. 5.5. The observed linear
behavior ωk = ω1|k| is consistent with CFT and our findings about the momentum-space
entanglement spectra. In the latter case, however, the spectrum has only chiral components
since the negative momenta were traced out.

5.3 Properties of states in 2D

In this section, we consider a cylinder of size Nx ×Ny as defined in Sec. 5.1.6. Through a
determination of the topological entanglement entropy and entanglement spectra, we provide
evidence that ψβ(s) exhibits edge modes.

5.3.1 Correlations

Since the spin-spin correlations do not depend on the phase of the wave function, the corre-
lators in ψβ(s) agree with those of the approximation made in Chapter 4, cf. Sec. 5.1.2. In
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Figure 5.4: Single-particle entanglement spectrum in 1D with periodic boundary conditions
for a partition in momentum space. The low-lying part of the spectrum is shown
for various system sizes and values of β.

agreement with Chapter 4, we find an exponential decay of spin-spin correlations in the bulk
of a 2D system. The long-range edge correlations decay with a power of −2 independent of β,
which agrees with the decay of a current-current correlator of the underlying CFT.

The exponential decay of bulk correlations is characterized by the correlation length ξ. For
a cylinder of sizeNx×Nx = 60×60, we fitted exponential functions Ae−l/ξ to the bulk spin-spin
correlations, where l is the distance along the y direction and A a fit parameter. The inverse
correlation length ξ−1 is plotted in Fig. 5.6.

5.3.2 Absence of intrinsic topological order

The topological order of a state can be characterized by the topological entanglement en-
tropy [83, 84] γtop, which occurs in the dependence of the entanglement entropy Sa(A) on the
region A:

Sa(A) = −γtop + b ∂A+ . . . , (5.19)

where ∂A is the perimeter of A, b is a non-universal constant, and the dots stand for terms that
vanish for ∂A→∞. A nonzero value of γtop indicates that a state exhibits intrinsic topological
order.

The topological entanglement entropy can be computed as a linear combination of entropies
for geometries that are chosen so that the terms dependent on ∂A in Eq. (5.19) drop out [83,
84]. Here, we consider the construction of Levin and Wen [84] with regions as defined in the
left panel of Fig. 5.7. For geometries that are large compared to the correlation length, γtop is
equal to

SLevin−Wen =
1
2

[
(S1(ABC)− S1(AC))− (S1(ABCD)− S1(ADC))

]
, (5.20)

where the Rényi index a = 1 was chosen.
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Figure 5.5: Low-lying energies of the single-particle spectrum for the parent Hamiltonian of
ψβ(s) in 1D with periodic boundary conditions.

We plot SLevin−Wen for ψβ(s) in Fig. 5.8. For all considered system sizes and values of
β, we observe that SLevin−Wen is below 0.002. Furthermore, SLevin−Wen tends to decrease
for larger systems. This indicates that the state has a vanishing topological entanglement
entropy, γtop = 0, and thus no intrinsic topological order. A similar observation of a vanishing
topological entanglement entropy was made for BCS states with a px + ipy symmetry in
Refs. [177, 178].

5.3.3 Entanglement spectrum and edge states

In the previous subsection, we provided evidence that ψβ(s) does not have intrinsic topological
order. We now study the entanglement spectrum and show that it contains indications of edge
states.

We consider a partition of the cylinder into two pieces of equal size, where we choose the cut
perpendicular to the open direction as illustrated in the right panel of Fig. 5.7. The low-lying
part of the single-particle entanglement spectrum is shown in Fig. 5.9. Since the cut preserves
translational symmetry, the spectrum can be ordered according to the momentum ky in the
periodic direction. The dependence of the low-lying single-particle energies ω̃ky is consistent
with

ω̃ky = A

√
2π
Ny
|ky |+B2π

Ny
|ky |, (5.21)

where A and B are fit constants. For large systems, we find that A and B are independent of

the system size within variations that are due to the chosen fit range. Thus, ωky ∝
√
|ky | for

the smallest momenta. A similar dispersion relation was recently found in the entanglement
spectra of coupled Luttinger liquids [179].

Next, we investigate whether the low-lying excited states in the entanglement spectrum are
localized at the boundary created by the cut and thus represent edge excitations. To this end,
we compute the basis change that makes the entanglement Hamiltonian diagonal. To exploit
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Figure 5.6: Inverse correlation length ξ−1 (solid line) for bulk spin-spin correlations of ψβ(s)
along the periodic direction of a cylinder of sizeNx×Ny = 60×60. The dashed lines
are error estimates, which were determined by varying the fit range. At β ≈ 2.4,
the correlations change from alternating in sign (small values of β) to having a
stationary, negative sign (large values of β).

translational symmetry, we use Fourier transformed annihilation and creation operators ãixky
and ã†ixky , where ix is the x index and ky the y momentum. As shown in Appendix D.2.4, the

entanglement Hamiltonian is diagonal in annihilation and creation operators bixlyσ and b†ixlyσ ,

where ly is an index of non-negative momenta and σ a sign index (σ ∈ {+,−} for ly < {0, Ny2 } and

σ = + for ly ∈ {0, Ny2 }). For ly < {0, Ny2 }, the transformation to the diagonal basis assumes the
form



bly ,σ=+

b†ly ,σ=+


 = Rly

1√
2



ãly + ã−ly
ã†ly + ã†−ly


 ,



bly ,σ=−
b†ly ,σ=−


 = Rly

1√
2



−iãly + iã−ly
iã†ly − iã

†
−ly


 , (5.22)

where blyσ = (bix=1,ly ,σ , . . . , bix=Nx
2 ,ly ,σ

)t and analogously for the other annihilation and creation
operators. The Nx ×Nx matrix Rly is a symplectic basis transformation in the complex repre-
sentation,

Rly =



R

(1)
ly

R
(2)
ly(

R
(2)
ly

)∗ (
R

(1)
ly

)∗


 . (5.23)

We order the spectrum so that (R(r)
ly

)ixjx with ix = 1 and r ∈ {1,2} corresponds to the lowest

energy state in the sector of momentum ly . According to Eq. (5.22), blyσ are linear combinations
of modes with momenta ly and −ly . The two choices σ ∈ {+,−} have the same energy and
correspond to the degeneracies in Fig. 5.9.

Fig. 5.10 shows (R(r)
ly

)ixjx for ix = 1 and ly ∈ {1,2,3}. We observe that (R(r)
ly

)ixjx falls off expo-

nentially in jx for large distances to the position of the cut (jx = 50). Thus, the corresponding
states are exponentially localized at the edge created by the cut. This observation provides
evidence that ψβ(s) indeed supports gapless edge states.

We also did analogous computations for the local parent Hamiltonian of Appendix D.3
to test whether its low-lying excited states are localized at the physical edges. Compared
to the entanglement spectrum, we observed the following differences. First, the low-lying
single-particle spectrum of the parent Hamiltonian does not consist of a single branch as the
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Figure 5.7: Left panel: Definition of regions for the computation of the topological entangle-
ment entropy according to Levin and Wen [84]. The regions A and C are of size
∆× 3∆ and the regions B and D of size ∆×∆. We place the region ABCD into the
center of a cylinder of size Nx×Ny . Right panel: Cut of the cylinder into two pieces
A and B for the computation of the entanglement spectrum.

entanglement spectrum of Fig. 5.9. Second, we find eigenstates of the Hamiltonian with low
energies that are not localized at the edge. This raises the question whether there is another
parent Hamiltonian with the same low-energy behavior as observed in the entanglement
spectrum.

5.4 Outlook: Chiral state

In this chapter, we focus on the case of a real wave function ψβ(s) defined through operators

: eisjϕ(zj ,z̄j )/
√

2 : with chiral and antichiral components. In this section, we comment on the
corresponding chiral wave function, demonstrate its equivalence to ψβ(s) for the case of a
uniform 1D lattice, and explain some difficulties we encountered in studying the chiral state
for 2D systems.

The chiral analog of ψβ(s) has the form

ψ̃β(s) = e−
1
4 (β+β0)s2〈: eis1ϕ(z1) : · · · : eisNϕ(zN ) :〉 (5.24)

= e−
1
4 (β+β0)s2

δ (s1 + · · ·+ sN )
∏

m<n

(zm − zn)smsn ,

where ϕ(z) is the chiral part of the free boson according to the decomposition ϕ(z, z̄) =
ϕ(z) + ϕ̄(z̄).

On the cylinder introduced in Sec. 5.1.6, the chiral wave function becomes

ψ̃β(s) = e−
1
4 (β+β0)s2〈: eis1ϕ(w1) : · · · : eisNϕ(wN ) :〉 (5.25)

= e−
1
4 (β+β0)s2

δ (s1 + · · ·+ sN )
∏

m<n

[
2sinh

(1
2

(wm −wn)
)]smsn

.

Since ψ̃β(s) differs from ψβ(s) only by a phase, it has the same spin-spin correlations. As
explained in Sec. 5.1.2, these agree with those of the approximation made in Chapter 4.
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Figure 5.8: Linear combination SLevin−Wen of Eq. (5.20) for different system sizes and values of
β. The size of ∆ was chosen as ∆ =Nx/5.

5.4.1 Equivalence to nonchiral state in 1D

We now show that ψβ(s) is equivalent to ψ̃β(s) for a uniform lattice in 1D with periodic
boundary conditions. Setting Nx = 1 in Eqs. (5.15) and (5.25), we have

ψ̃β(s) = δ (s1 + · · ·+ sN )e−
1
4 (β+β0)s2

N∏

m<n

[
2i sin

( π
N

(m−n)
)]smsn

= ei
π
4 s

2
δ (s1 + · · ·+ sN )e−

1
4 (β+β0)s2

N∏

m<n

[
2sin

( π
N

(n−m)
)]smsn

= ei
π
4 s

2
ψβ(s),

where we used that s1 + · · ·+ sN = 0. Up to the phase factor ei
π
4 s

2
, the wave function ψ̃β(s) thus

coincides with ψβ(s). Since ei
π
4 s

2
is a product of local phase factors, it does not influence the

spin-spin correlations and entanglement entropies. Furthermore, it can be transformed away
through the symplectic transformation

(
Q
P

)
→

(
I 0
−π2 I I

)(
Q
P

)
. (5.26)

5.4.2 Dependence on lattice ordering

For generic lattice configurations, however, an important difference between the real wave
function ψβ(s) and the chiral ψ̃β(s) is that the former is independent of the lattice ordering
while the latter is not. More precisely, ψβ(s) is symmetric under a simultaneous permutation
σ of both the spins sj and the positions zj :

ψ
(zσ (1),...,zσ (N ))
β (sσ (1), . . . , sσ (N )) = ψ(z1,...,zN )

β (s1, . . . , sN ), (5.27)

where we explicitly wrote the parametric dependence of ψβ(s) on the lattice positions. This
symmetry does, however, not hold in the chiral case. The permutation σ (j) = N − j + 1, for
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Figure 5.9: Low-lying part of the single-particle entanglement spectrum in 2D for a cut of the
cylinder into two pieces as shown in the right panel of Fig. 5.7.

example, changes the wave function according to

ψ̃
(zσ (1),...,zσ (N ))
β (sσ (1), . . . , sσ (N )) =

∏

m<n

eπismsnΦnmψ̃
(z1,...,zN )
β (s1, . . . , sN ), (5.28)

where Φmn = 1
π [arg(zm − zn)− arg(zn − zm)], and we explicitly wrote the parametric dependence

on zj . The phase
∏
m<n e

πismsnΦnm does not change the spin-spin correlations in ψ̃β(s), but it
influences entanglement properties since it is in general not a product of single-particle phase
factors.

To illustrate this point, let us compare the entanglement entropy of ψ̃β(s) defined on the
cylinder in Eq. (5.25) to the entropy of

φβ(s) = e−
1
4 (β+β0)s2〈: eisNφ(wN ) : · · · : eis1φ(w1) :〉 (5.29)

= e−
1
4 (β+β0)s2

δ (s1 + · · ·+ sN )
∏

m<n

[
−2sinh

(1
2

(wm −wn)
)]smsn

,

which is the permuted wave function of Eq. (5.28) for σ (j) =N − j + 1. In Fig. 5.11, we plot the
von Neumann entropy S ′1(L) for subsystems A = {1, . . . ,L} and B = {L+ 1, . . . ,N } for the cylinder
coordinates of Eq. (5.15). The entropy of φβ(s) differs considerably from that of ψ̃β(s). We
observe that S ′1(L) for ψβ(s) and for φβ(s) is consistent with an area law in the bulk of the
system. There, S ′1(L) is approximately constant except where L is an integer multiple of Ny .
(These configurations have a shorter boundary length and thus a smaller entropy.) For ψ̃β(s),
on the other hand, S ′1(L) bends in the bulk of the system, which is in contrast to the area law.

The lower entropy consistent with an area law seems to suggest that φβ(s) rather than
ψ̃β(s) provides the natural choice of the wave function. However, we encountered additional
issues when computing the entropy of φβ(s) for subsystems different from A = {1, . . . ,L} and
B = {L+ 1, . . . ,N }. More precisely, we determined the entropies for Levin-Wen regions AC and
ABCD defined in the left panel of Fig. 5.7 for different sizes ∆. As shown in Fig. 5.12, both
entropies are consistent with a linear dependence on the boundary length for large values of ∆.
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Figure 5.10: Amplitude of the basis transformation for the first excited states in the entan-
glement spectrum of Fig. 5.9 for a cylinder of size Nx ×Ny = 100 × 100. The
shown data have β = 2.0. (The corresponding amplitudes for β ∈ {0.5,4,8} have
the same qualitative behavior.) The lowest energy in the sector of momentum ly
corresponds to ix = 1, cf. the explanation below Eq. (5.22). The value jx = 50 is
the position of the cut.

However, the slopes are different for the two regions ABCD and AC. This is a contradiction to
the area law, where the coefficient of the linear term is independent of the choice of the region.

The dependence of the chiral state on the lattice ordering and the violation of the area law
for Levin-Wen regions ABCD and AC could mean that a consistent treatment as a bosonic
Gaussian state is not possible. Perhaps the chiral state has some additional structure, similar
to the anyonic states in the case discrete spins [143], which needs to be taken into account to
obtain a consistent definition that is independent of the lattice ordering.

5.5 Conclusion

This chapter considered continuous-spin wave functions ψβ(s) on lattices that are constructed
as correlators of the massless, free boson CFT. In contrast to the case of discrete spins or
continuous positional degrees of freedom, the wave functions ψβ(s) are Gaussian and their
properties can be computed efficiently using the formalism of bosonic Gaussian states.

Through an analysis of entanglement entropies and spectra, we found that ψβ(s) is closely
related to the underlying CFT in 1D. More precisely, we observed a good agreement between
the entanglement entropy of ψβ(s) and the CFT expectation. In contrast to some lattice
systems like the XXZ model [174], we do not find subleading oscillatory corrections to
the CFT behavior. At small energies, we recovered the underlying CFT of a free, massless
boson, in the momentum space entanglement spectrum and also in the spectrum of a parent
Hamiltonian.

In 2D, we probed possible topological properties of ψβ(s) through an analysis of entangle-
ment entropies and spectra. Although our results are consistent with a vanishing topological
entanglement entropy, we found evidence for edge states in the entanglement spectrum. The
absence of intrinsic topological order is distinct from the chiral case with discrete spins.

The wave function ψβ(s) is real since it is constructed from the full bosonic field ϕ(z, z̄). As a
consequence, the entanglement Hamiltonian in 2D has eigenstates that are linear combinations
of left- and right-moving modes. Together with our observation of states localized at the edge
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Figure 5.11: Von Neumann entanglement entropy for subsystems A = {1, . . . ,L} and B = {L+
1, . . . ,N } on a cylinder of size Nx ×Ny = 10 × 10 and β = 2. The three curves
correspond to the wave functions ψβ(s) [Eq. (5.16)], ψ̃β(s) [Eq. (5.25)] and φβ(s)
[Eq. (5.29)]. The vertical axis shows S ′1(L), which can become negative since it
differs from the von Neumann entropy S1(L) by the subtraction of a divergent
term [cf. Eq. (5.14)].

in the low-lying entanglement spectrum, this is an indication that ψβ(s) could describe a state
that is similar to a quantum spin Hall effect.

We found a local parent Hamiltonian whose low-lying energy levels in 1D are consistent
with the corresponding entanglement spectrum. In 2D, however, this parent Hamiltonian
has low-lying excited states that are not localized at the edge, which is in contrast to the
entanglement spectrum. It would be interesting to investigate if there is another local parent
Hamiltonian with the same low-energy properties as observed in the entanglement spectrum.

In 1D, the real wave function ψβ(s) is equivalent to the analogously defined chiral wave
function, which is constructed from the chiral part of the free-boson field. For general lattice
configurations, however, ψβ(s) differs from its chiral counterpart. In contrast to the real
case, we found that the chiral state depends on the ordering of the lattice positions. It could,
therefore, be that another framework than that of bosonic Gaussian states is necessary to
consistently treat the chiral state, and it would be interesting to investigate this question in a
future study.
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6 Conclusion and outlook

This thesis uses 1(+1)-dimensional CFT to describe states of quantum many-body systems.
We adopted the approach introduced by Moore and Read [7] to construct wave functions of
quantum states as correlators of CFT primary fields. Following a recent development [102],
the wave functions studied here describe spin systems on lattices.

From the SU(2)1 WZW CFT, we obtained a wave function ψ0(s1, . . . , sN ) of N spin-1
2 degrees

of freedom. In 1D, ψ0(s1, . . . , sN ) is the ground state of the Haldane-Shastry model, an SU(2)
invariant spin chain with inverse-square two-body interactions. For lattices in 2D, ψ0(s1, . . . , sN )
is equivalent to Kalmeyer and Laughlin’s chiral spin liquid.

By adding descendant fields to the correlator that defines ψ0(s1, . . . , sN ), we constructed
excited states of the Haldane-Shastry model. This shows that there is a correspondence
between the excited states of the underlying CFT and those of the Haldane-Shastry spin
chain. Our approach is SU(2) invariant and differs from previous studies that solved the
Haldane-Shastry model by exploiting its hidden Yangian symmetry.

For systems in 2D, we then studied states with additional CFT descendant fields as tentative
edge modes with respect to ψ0(s1, . . . , sN ). We found that their nearest-neighbor spin-spin cor-
relations become indistinguishable from those of ψ0(s1, . . . , sN ) as the system size is increased.
This provides evidence that these states indeed describe edge modes. These findings confirm
the bulk-edge correspondence: The CFT associated with the gapless edge of the system can be
used to obtain a description of the bulk. Through Monte Carlo simulations, we also provided
numerical evidence supporting another aspect of the bulk-edge correspondence, namely that
inner products of the CFT approach those of the spin system in the thermodynamic limit [99],
cf. also Ref. [180] for a recent study of the case of continuous wave functions.

Using exact diagonalization for a cylinder with 4 sites in the periodic and 5 sites in the open
direction, we studied a local model Hamiltonian with nearest-neighbor two- and three-body
interactions, the ground state of which is known to be well-approximated by ψ0(s1, . . . , sN ).
We found that the low-lying excited states of that model have a good overlap with some edge
states constructed from CFT. This local model could provide a way of experimentally realizing
these states since an implementation scheme with ultracold atoms was proposed in Refs. [118,
119].

We then studied the larger class of states ψα(s1, . . . , sN ) with α > 0 obtained from vertex
operators of the free-boson CFT. In 2D, these correspond to Laughlin states on a half-filled
lattice and a Landau level filling of ν = 1

4α , so that the Kalmeyer-Laughlin state corresponds to
α = 1

2 . For systems in 1D, ψα(s1, . . . , sN ) is a good description of the ground state of the XXZ
spin-1

2 model.
We derived a path integral representation of the spin-spin correlations in ψα(s1, . . . , sN ),

from which we proposed an approximation in terms of an effective field theory. The action
of that model is a modification of the free-boson CFT, which underlies ψα(s1, . . . , sN ). It has
an additional mass-like term at the positions of the lattice. Our approximation of spin-spin
correlations is given by the two-point function in the effective action. The mass-like term in
the effective model leads to an exponential decay of correlations in the bulk of a 2D system.
This screening property is central to a state describing a FQH system since it reflects the bulk
gap. In deriving an effective action for the correlations, we provided an analytical argument
supporting the screening property of the Laughlin states.
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Through Monte Carlo simulations, we determined the actual spin-spin correlations in
ψα(s1, . . . , sN ), and compared them to those obtained within the approximation. We found good
quantitative agreement for small values of α (α . 0.1) both in 1D and in 2D. Furthermore,
qualitative agreement was observed between the approximation and the actual spin-spin
correlations also for larger values of α. In 1D and at the edge of 2D systems, the approximate
correlations decay with a power of −2 independent of α. This corresponds to a current-current
correlator of the free-boson CFT.

The last part of this thesis investigates states ψβ(s) with continuous spins s ∈ RN constructed
from the CFT of a free boson. These states have the spin-spin correlations that we used
before to approximate those of ψα(s1, . . . , sN ). We characterized the continuous-spin states
ψβ(s) through a determination of entanglement entropies and spectra. Opposed to the case
of discrete spins, the wave functions ψβ(s) are Gaussian, and thus their properties can be
computed efficiently.

In 1D, the continuous-spin states ψβ(s) exhibit signatures of the underlying CFT, where the
entanglement entropies and spectra were found to agree with the CFT expectation. Further-
more, we derived a parent Hamiltonian that has power-law decaying interactions in 1D. For
large system sizes, the low-energy part of its spectrum was found to agree with that of the
CFT.

Through an investigation of entanglement entropies and spectra, we characterized topo-
logical properties of ψβ(s) in 2D. Opposed to the FQH Laughlin states, we found a vanishing
topological entanglement entropy, and thus no long-range entanglement characteristic of
states with intrinsic topological order. On the other hand, an analysis of the entanglement
spectrum revealed low-lying states that are exponentially localized at the edge created by the
cut.

Our construction of excited states of the Haldane-Shastry model emphasizes the close
relationship between the SU(2)1 WZW model and the spin chain. Recently, the Haldane-
Shastry model with open boundary conditions was obtained using boundary CFT [108]. We
provided numerical evidence that a similar construction of excited states is possible in this
case if the current operators are inserted at infinity. It would be interesting to extend our
analytical method to the case of open boundary conditions. Further generalizations could be
possible for the SU(n) spin chains of Refs. [106–108], or the ladder models of Ref. [181].

An advantage of the Laughlin states studied here is the simple form of their wave function.
By modifying it, localized bulk excitations, as well as edge modes, can be described. On the
other hand, the simplicity of Laughlin-type wave functions implies that they have limited
variational degrees of freedom. The Kalmeyer-Laughlin state is known to have a good overlap
with the ground state of a local Hamiltonian [118], and here we showed that edge modes
derived from it are also good descriptions of low-lying excited states of that model. Recently,
the ground state of that local Hamiltonian was approximated through projected entangled
pair states [182] and neural network states [183]. In both cases, lower variational energies
than that of the Kalmeyer-Laughlin state were achieved. Furthermore, the study of Ref. [182]
indicates that the true ground state may have long-range rather than short-range correlations
observed in Laughlin states. To clarify the nature of the local model, more refined variational
ansatz states are thus necessary than those provided by the Laughlin wave functions studied
in this thesis.

Our approximation of correlations is based on a truncation to quadratic order which is
similar to the expansion made by Kosterlitz and Thouless in their study on the classical XY
model [71, 72]. It would be interesting to investigate if one can also incorporate vortex-like
configurations into our approximation. We did some first steps in this direction by adopting
Villain’s approximation [167]. Opposed to the case of the XY model, however, we applied the
approximation to the integrand of the partition function, whereas Kosterlitz and Thouless
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approximate a Hamiltonian. This caused a non-positive factor in the partition function’s
integrand, which prevented us from incorporating it into an effective, statistical Hamiltonian.

Our investigation of continuous-spin states ψβ(s) constructed from CFT focused on nonchi-
ral wave functions. In the entanglement spectrum, we observed indications of low-lying edge
states. The local parent Hamiltonian, on the other hand, was found to have low-lying excited
states that have significant bulk components and thus cannot be considered to be edge states.
It would be interesting to find another local parent Hamiltonian whose low-energy states
represent edge modes similar to those of the entanglement spectrum.

The nonchiral nature of ψβ(s) is an important difference to the Laughlin states. We also
defined chiral wave functions with continuous spins. Unlike in the nonchiral case, we found
that these depend on the ordering of the lattice positions. This could indicate that they cannot
be consistently treated as bosonic Gaussian states but require another formalism. It would be
interesting to investigate this question in a future study.
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A Numerical methods

A.1 Exact diagonalization

A quantum many-body state |ψ〉 of N participants with local Hilbert spaces of dimension d is
defined in terms of dN coefficients ψ(s1, . . . , sN ):

|ψ〉 =
∑

s1,...,sN

ψ(s1, . . . , sN )|s1, . . . , sN 〉, (A.1)

were |s1, . . . , sN 〉 = |s1〉 ⊗ · · · ⊗ |sN 〉 is the product basis. Similarly, an operator acting on this
many-body space has dN × dN coefficients. For a state of N spin-1

2 degrees of freedom, d = 2
and the local Hilbert space is spanned by the basis states |s〉 with s ∈ {−1,1}. In the following,
we focus on this case, which relevant for Chapters 3 and 4 of this thesis.

Conceptually, the simplest way to treat states |ψ〉 numerically and compute their proper-
ties is to construct them as vectors of dimension 2N with coefficients given by ψ(s1, . . . , sN ).
Operators acting on states |ψ〉 are then represented by matrices of size 2N × 2N . In particu-
lar, eigenstates and spectra of Hamiltonians can be computed numerically using standard
numerical tools for diagonalizing matrices [184, 185]. This method is known as exact diag-
onalization [186], where the word exact refers to the fact that a Hamiltonian is represented
completely without truncating its dimensionality.

Physical Hamiltonians are often sparse, i.e., they only have few non-zero entries. If one is
only interested in the lowest part of the spectrum, methods for solving sparse eigensystems
can be used, and thus larger system sizes can be achieved. In this thesis, we use the SciPy [184]
interface to the ARPACK library [187] of sparse eigensolvers. These are based on a variant of
the Lanczos algorithm [188].

Due to the exponential dependence of the dimension 2N on N , this procedure is, however,
limited to small system sizes. With 16 GB of memory, for example, it is possible to store a
complex vector of size 2N with N = 30, where we assumed that 64-bit floating points are used.
Increasing N by just one additional site already requires twice the amount of memory.

In some cases, a given Hamiltonian or state can be decomposed into different sectors
according to symmetries. By restricting to these sectors, one can work with Hilbert spaces of
a lower dimension than that of the full problem and thus treat larger systems with limited
computational resources. A Hamiltonian that commutes with the total spin T z, for example,
can be diagonalized block-wise in the eigenspaces of T z.

Current state-of-the-art techniques exploit symmetries and make use of parallelization. In
this way, system sizes with up to N = 50 sites for a spin-1

2 system [189] were recently achieved.
Despite the exponential dependence on N , exact diagonalization techniques are an in-

dispensable tool for studying many-body physics. This is particularly true in 1D, where
systems with moderate values of N can already be close to the thermodynamic limit. Further-
more, exact diagonalization is used to test and benchmark other methods and approximation
techniques.

In Chapter 3 of this thesis, we make use of exact diagonalization to test an analytical
construction of eigenstates of the Haldane-Shastry model and also to extend the construction
to cases not covered by the analytical computations. Furthermore, exact diagonalization is
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A Numerical methods

used to compute eigenstates of a local 2D model in Chapter 3 and to determine ground state
spaces of analytically determined parent Hamiltonians.

A.2 The Metropolis-Hastings Monte Carlo algorithm

As discussed in the previous subsection, the method of exact diagonalization is limited to
small systems due to an exponential dependence on N . Similarly, an exact determination
of properties like correlations in states of Eq. (A.1) is only possible for small systems. As
explained in the following, this thesis uses the Metropolis-Hastings Monte Carlo method [190–
193] to obtain estimates of a state’s properties for large system sizes.

For computing the expectation value of some operator Ô in the state |ψ〉, we write it in the
form

〈Ô〉 ≡ 〈ψ|Ô|ψ〉〈ψ|ψ〉 =

∑
s1,...,sN

O(s1, . . . , sN )ρ(s1, . . . , sN )
∑
s1,...,sN

ρ(s1, . . . , sN )
, (A.2)

where ρ(s1, . . . , sN ) ≥ 0 is a (not necessarily normalized) probability density in the space of
configurations (s1, . . . , sN ) with si ∈ {−1,1}. For the case of zz correlations, for example, Ô =
σ zi σ

z
j , where σ zi and σ zj are local Pauli-z matrices. Then, O(s1, . . . , sN ) = sisj and ρ(s1, . . . , sN ) =

|ψ(s1, . . . , sN )|2.
The key idea of the algorithm is to evaluate Eq. (A.2) for a set of relevant configurations

with a high value of ρ(s1, . . . , sN ) instead of computing the complete sums of 2N terms. Let

Ci =
(
s

(i)
1 , . . . , s

(i)
N

)
(A.3)

with i ∈ {1, . . . ,ns} denote these configurations. Then, an estimate for 〈Ô〉 is given by

Oest =
1
ns

ns∑

i=1

O(Ci). (A.4)

Algorithm 1 Metropolis-Hastings algorithm for computing expectation values of the form of
Eq. (A.2).

Input: Probability density ρ, proposal distribution q, configuration Ci
Output: Next configuration Ci+1

• Generate a proposal configuration C′ according to q(C′ |Ci).
• Draw a random number r with 0 ≤ r < 1 from a uniform distribution.

• If ρ(C′)
ρ(Ci )

q(Ci |C′)
q(C′ |Ci ) > r, set Ci+1 = C′ (acceptance), otherwise set Ci+1 = Ci (rejection).

The configurations Ci are generated through a pseudorandom process according to the
following algorithm. First, a candidate C′ for the next configuration Ci+1 is generated from
Ci according to a given proposal distribution q(C′ |Ci). This candidate is then either accepted
(Ci+1 = C′) or rejected (Ci+1 = Ci) with a certain probability that takes into account the values
ρ(Ci), ρ(C′), and the transition probabilities under q. The details are given in Algorithm 1,
see also Refs. [194, 195]. An initial configuration C1 can be found by starting from a random
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A.2 The Metropolis-Hastings Monte Carlo algorithm

configuration and then running the algorithm for a certain number of iterations without
measuring the observable value (warm up).

A useful feature of the algorithm is that it only depends on the ratio of probability densities,
and thus unnormalized distributions ρ(s1, . . . , sN ) can be used. The states considered in this
thesis have a fixed number of the total spin, i.e., ρ(s1, . . . , sN ) vanishes unless s1 + · · · + sN is
equal to a constant. In this case, it is useful to generate proposal configurations by exchanging
the positions of a down spin with an up spin in Ci . When choosing these up and down spins
from Ci randomly with a uniform distribution, q is symmetric, i.e., q(C′ |Ci) = q(Ci |C′). The
acceptance probability in Algorithm 1 is thus independent of q and determined by the ratio of
probabilities ρ(C′)

ρ(Ci )
. As a further advantage, this ratio can be computed more efficiently than

the probability of generic configurations since C′ and Ci only differ by the value of two spins.
Given an estimate of the operator expectation value as in Eq. (A.4), it is important to

determine the accuracy of this value. To this end, we determine nt statistically independent

estimates O(j)
est, j ∈ {1, . . . ,nt}, by running the algorithm nt times. The true value 〈Ô〉 is then

expected to lie in Oest ±∆Oest with approximately 68% confidence, where

Oest =
1
nt

nt∑

j=1

O(j)
est and ∆Oest =

√√√
1

nt(nt − 1)

nt∑

j=1

(
Oest −O(j)

est

)2
(A.5)

are the mean of the nt estimates and the standard error of the mean, respectively.
The Monte Carlo methods described in this section are used in Chapter 3 to study and

compare correlation functions of a FQH lattice state and candidate states for its edge excita-
tions. Chapter 4 computes approximations for correlations of states constructed from CFT
and compares these approximations to Monte Carlo estimates of the actual correlations.
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B Details on excited and edge states

B.1 Decoupling equation for states obtained from current

operators

In this section, we derive the decoupling equation for the states |ψak ...a1
1 ...1 〉 defined through the

wave function

ψ
ak ...a1
1 ...1 (s1, . . . , sN ) = 〈φs1(z1) . . .φsN (zN )

(
J
ak
−1 . . . J

a1
−1

)
(0)〉, (B.1)

where φs(z) is the h = 1
4 WZW primary field and Jan are modes of the current Ja(z) introduced

in Sec. 3.1 of the main text.
The decoupling equation describes the action of the operator Cai of Eq. (3.55) on a state
|ψak ...a1

1 ...1 〉 and was used to construct excited states of the Haldane-Shastry model in Sec. 3.3.
Note that it is enough to consider states |ψak ...a1

1 ...1 〉, where all mode numbers are equal to one, to
describe the action of Cai on general states |ψal ...a1

nl ...n1〉 with k = n1 + · · ·+nl since the latter can be
rewritten in terms |ψak ...a1

1 ...1 〉 by repeated application of the Kac-Moody algebra [cf. Eq. (3.60)].
The starting point of our derivation is the CFT operator

∑

s′∈{−1,1}

(
Kab

)
ss′

(Jb−1ϕs′ )(zi), (B.2)

where Kab = 2
3 (δab − iεabctc). The operator of Eq. (B.2) is a null field, i.e., when inserting it into

the correlation function of conformal primary fields, the resulting expression vanishes [103].
Therefore,

0 =
∑

s

(
Kab

)
sis
〈φs1(z1) . . .φsi−1

(zi−1)
(
Jb−1φs

)
(zi)φsi+1

(zi+1) . . .φsN (zN )
(
J
ak
−1J

ak−1
−1 . . . Ja1

−1

)
(0)〉. (B.3)

To simplify the notation, we write
(
Kab

)
i
φsi (zi) instead of

∑
s

(
Kab

)
sis
φs(zi) and similarly tai φsi (zi)

instead of
∑
s t
a
sisφs(zi) in the following. This notation is motivated by the fact that we treat

the spin variables s1, . . . , sN as arguments of a wave function ψ(s1, . . . , sN ) and that the wave
function of the state tai |ψ〉 is given by

∑

s

tasisψ(s1, . . . , si−1, s, si+1, . . . , sN ). (B.4)

Then,

0 =
(
Kab

)
i

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1
〈φs1(z1) . . .

(
Jb−1φsi

)
(zi) . . .φsN (zN )Jak (wk) . . . J

a1(w1)〉 (B.5)

=
(
Kab

)
i

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

∮

zi

dz
2πi(z − zi)

× 〈φs1(z1) . . . Jb(z)φsi (zi) . . .φsN (zN )Jak (wk) . . . J
a1(w1)〉.
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B Details on excited and edge states

Through a deformation of the integration contour, the integral around zi can be transformed
into a sum over integrals encircling the positions zj for j , i and the positions wq in the
clockwise direction. Therefore,

0 = −
(
Kab

)
i

N∑

j=1,j,i

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

∮

zj

dz
2πi(z − zi)

(B.6)

× 〈φs1(z1) . . . Jb(z)φsi (zi) . . .φsN (zN )Jak (wk) . . . J
a1(w1)〉

−
(
Kab

)
i

k∑

q=1

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

∮

wq

dz
2πi(z − zi)

× 〈φs1(z1) . . . Jb(z)φsi (zi) . . .φsN (zN )Jak (wk) . . . J
a1(w1)〉.

Next, we apply the OPE between a primary fields and a WZW current of Eq. (3.4) and the
OPE between two currents [151],

Ja(z)Jb(w) ∼ δab
2(z −w)2 + iεabc

Jc(w)
z −w . (B.7)

Introducing the notation Φs(z) = φs1(z1) . . .φsN (zN ), we have

0 =
(
Kab

)
i

N∑

j=1,j,i

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

∮

zj

dz
2πi(z − zi)

tbj
z − zj

〈Φs(z)Jak (wk) . . . J
a1(w1)〉 (B.8)

−
(
Kab

)
i

k∑

q=1

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

∮

wq

dz
2πi(z − zi)

δbaq
2(z −wq)2

× 〈Φs(z)Jak (wk) . . . J
aq+1(wq+1)Jaq−1(wq−1) . . . Ja1(w1)〉

−
(
Kab

)
i

k∑

q=1

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

∮

wq

dz
2πi(z − zi)

iεbaqc

z −wq
× 〈Φs(z)Jak (wk) . . . J

c(wq) . . . J
a1(w1)〉

= −
(
Kab

)
i

N∑

j=1,j,i

tbj
zi − zj

∮

0

dwk
2πiwk

. . .

∮

0

w1

2πiw1
〈Φs(z)Jak (wk) . . . J

a1(w1)〉

+
k∑

q=1

(
Kaaq

)
i

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

1
2(wq − zi)2

× 〈Φs(z)Jak (wk) . . . J
aq+1(wq+1)Jaq−1(wq−1) . . . Ja1(w1)〉

−
(
Kab

)
i

k∑

q=1

∮

0

dwk
2πiwk

. . .

∮

0

dw1

2πiw1

iεbaqc

wq − zi
〈Φs(z)Jak (wk) . . . J

c(wq) . . . J
a1(w1)〉.

With Ja−1 =
∮

dw
2πiw J

a(w) and Eq. (B.1), we thus get

0 = −
(
Kab

)
i

N∑

j=1,j,i

taj
zi − zj

|ψak ...a1
1 ...1 〉+

k∑

q=1

(
Kaaq

)
i

2z2
i

|ψak ...aq+1aq−1...a1

1 ...1 1 ...1 〉 (B.9)

−
(
Kab

)
i

k∑

q=1

∑

s1,...,sN

iεbaqc

∮

0

dwk
2πiwk

. . .

∮

0

dwq
2πiwq

1
wq − zi

× 〈Φs(z)Jak (wk) . . . J
c(wq)

(
J
aq−1

−1 . . . Ja1
−1

)
(0)〉|s1, . . . , sN 〉
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= −
(
Kab

)
i

N∑

j=1,j,i

taj
zi − zj

|ψak ...a1
1 ...1 〉+

k∑

q=1

(
Kaaq

)
i

2z2
i

|ψak ...aq+1aq−1...a1

1 ...1 1 ...1 〉

−
(
Kab

)
i

k∑

q=1

q−1∑

n=−1

∑

s1,...,sN

iεbaqc

∮

0

dwk
2πiwk

. . .

∮

0

dwq
2πiwq

w−n−1
q

wq − zi
× 〈Φs(z)Jak (wk) . . . J

aq+1(wq+1)
(
JcnJ

aq−1

−1 . . . Ja1
−1

)
(0)〉|s1, . . . , sN 〉

= −
(
Kab

)
i

N∑

j=1,j,i

tbj
zi − zj

|ψak ...a1
1 ...1 〉+

k∑

q=1

(
Kaaq

)
i

2z2
i

|ψak ...aq+1aq−1...a1

1 ...1 1 ...1 〉

+
(
Kab

)
i

k∑

q=1

q−1∑

n=−1

∑

s1,...,sN

iεbaqc

zn+2
i

〈Φs(z)
(
J
ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉|s1, . . . , sN 〉.

Next, we multiply this equation by 2zi and use wij ≡ (zi + zj )/(zi − zj ) to obtain

(
Kab

)
i

N∑

j=1,j,i

(wij + 1)tbj |ψak ...a1
1 ...1 〉 =

k∑

q=1

(
Kaaq

)
i

zi
|ψak ...aq+1aq−1...a1

1 ...1 1 ...1 〉+ 2
(
Kab

)
i

k∑

q=1

q−1∑

n=−1

∑

s1,...,sN

iεbaqc

zn+1
i

(B.10)

× 〈Φs(z)
(
J
ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉|s1, . . . sN 〉

Using

T b|ψak ...a1
1 ...1 〉 = i

k∑

q=1

εbaqc|ψ
ak ...aq+1caq−1...a1

1 ...1 11 ...1 〉, (B.11)

(
Kab

)
i
tbi = 0, (B.12)

and

Cai =
(
Kab

)
i

N∑

j=1,j,i

wijt
b
j , (B.13)

we get the final decoupling equation

Cai |ψak ...a1
1 ...1 〉 =

k∑

q=1

(
Kaaq

)
i

zi
|ψak ...aq+1aq−1...a1

1 ...1 1 ...1 〉+
(
Kab

)
i
T b|ψak ...a1

1 ...1 〉 (B.14)

+ 2
(
Kab

)
i

k∑

q=2

q−1∑

n=0

∑

s1,...,sN

iεbaqc

zn+1
i

〈Φs(z)
(
J
ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉|s1, . . . , sN 〉.

Let us now specialize the positions zj to those of a square lattice on the cylinder,

zj ∝ e
2π
Ny

(jx+ijy )
, (B.15)

and consider the action of
∑N
i=1Cai on a state |ψak ...a1

1 ...1 〉. For n mod Ny , 0, we have

N∑

j=1

(
zj
)−n

= 0 (B.16)
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on the cylinder. Summing over i in Eq. (B.14) and introducing C′a = 3
2
∑N
i=1Cai , we therefore

obtain for k < Ny

C′a|ψak ...a1
1 ...1 〉 = (N − 1)T a|ψak ...a1

1 ...1 〉+
k∑

q=1

iεaqac|ψ
cak ...aq+1aq−1...a1

11 ...1 1 ...1 〉 (B.17)

+
∑

s1,...,sN

k∑

q=2

q−1∑

n=0

G
q,n
ak ...a1(s1, . . . , sN )|s1, . . . , sN 〉,

where

G
q,n
ak ...a1(s1, . . . , sN ) = 2〈Φs(z)

(
J
aq
−n−1J

ak
−1 . . . J

aq+1

−1 JanJ
aq−1

−1 . . . Ja1
−1

)
(0)〉 (B.18)

− 2δaqa〈Φs(z)
(
Jc−n−1J

ak
−1 . . . J

aq+1

−1 JcnJ
aq−1

−1 . . . Ja1
−1

)
(0)〉.

We now argue that all terms in Eq. (B.17) can be written in terms of states |ψak ...a1
1 ...1 〉, which have

k current operators modes Ja−1. Using Eq. (B.11), the first term can be brought into the desired
form. In the term containing Gq,nak ...,aq(s1, . . . , sN ), the modes Jan and Jcn can be commuted to the
right since Jan |0〉 = 0 for n ≥ 0:

(
JanJ

aq−1

−1 . . . Ja1
−1

)
(0)|0〉 =

q−1∑

r=1

iεaard
(
J
aq−1

−1 . . . Jar+1
−1 Jdn−1J

ar−1
−1 . . . Ja1

−1

)
(0)|0〉, (B.19)

and similarly for
(
JcnJ

aq−1

−1 . . . Ja1
−1

)
(0)|0〉. Iterating this step, the current operator modes with

a positive mode number can be eliminated. The resulting terms only have negative mode
numbers and are all of order k in current operators.

B.2 Commutator of Haldane-Shastry Hamiltonian and ua−1

In this section we derive an expression for the commutator
[
H,ua−1

]
, where H is the Haldane-

Shastry Hamiltonian defined in Sec. 3.3.1. This commutator was used in Sec. 3.3.3 to determine
the action of H on a state |ψal ...a1

nl ...n1〉.
As a first step, we compute the Fourier transforms of wij = (zi + zj)/(zi − zj) and w2

ij , see
also Ref. [196], where these Fourier sums were evaluated using contour integrals. Due to
translational invariance, the Fourier transforms can be reduced to one sum,

∑

i,j

wij

zki z
l
j

=Nδ̃k+l

∑

i(,N )

wiN
zki

,
∑

i,j

w2
ij

zki z
l
j

=Nδ̃k+l

∑

i(,N )

w2
iN

zki
, (B.20)

where
∑
i(,j) denotes the sum over all i ∈ {1, . . . ,N } \ {j}, and zj is given in Eq. (3.53) of the main

text.
In order to evaluate the remaining sums, it is useful to compute the Fourier sums

N−1∑

k=0

knz
j
k (B.21)

for n = 1 and n = 2. For j = 0, we have

N−1∑

k=0

k =
N (N − 1)

2
,

N−1∑

k=0

k2 =
N (N − 1)(2N − 1)

6
. (B.22)
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For j = 1,2, . . . ,N − 1, we use the generating function

f (ω) =
N−1∑

k=0

eiωk =
1− eiωN
1− eiω ,

N−1∑

k=0

knz
j
k =

(
d
idω

)n
f (ω)

∣∣∣∣
ω= 2πj

N

. (B.23)

Taking the first and the second derivative, we find

N−1∑

k=0

kz
j
k =

N
2

(wjN − 1),
N−1∑

k=0

k2z
j
k =

N
2

(
1−N +NwjN −w2

jN

)
. (B.24)

Taking the inverse Fourier transforms of these equations and solving for
∑
j(,N )wjN /z

k
j and

∑
j(,N )w

2
jN /z

k
j , we arrive at

∑

i,j

wij

zki z
l
j

=


0, if k = 0

(2k −N )δ̃k+lN, if k = 1,2, . . . ,N − 1

∑

i,j

w2
ij

zki z
l
j

=



(
N − N 2

3 − 2
3

)
δ̃lN if k = 0(

N 2

6 − 2(k − N2 )2 − 2
3

)
δ̃k+lN if k = 1,2, . . . ,N − 1,

(B.25)

where δ̃m = 1 if m mod N = 0 and δ̃m = 0 otherwise.
The explicit form of the Haldane-Shastry Hamiltonian in terms of spin operators is [103]

H = −1
6

∑

k,j

∑

i,(k,j)

wijwikt
b
j t
b
k −

1
6

∑

i,j

w2
ijt
b
i t
b
j +

1
6

(N + 1)T bT b. (B.26)

We use the Fourier transforms of Eq. (B.25) to rewrite H in terms of uak . According to the
definition of Eq. (3.25), the operators uak are Fourier transforms of taj on the circle with periodic
boundary conditions. Therefore, the expansions of H in terms of uak corresponds to a Fourier
transform. We find

H =
N−1∑

k=0

1 + 2N2 − 9Nk + 9k2

9N
ub−ku

b
k . (B.27)

Starting from this expansion, we next compute the commutator between H and ua−1. Using
[
uam,u

b
n

]
= iεabcu

c
n+m, (B.28)

which directly follows from the commutator algebra of the spin operators tai , we obtain

[H,ua−1
]

= 2iεabcu
b
−1T

c − 2i
N
εabc

N−1∑

m=1

mub−mucm−1 + (3−N )ua−1. (B.29)

It is possible to rewrite the sum over Fourier transformed spin operators in terms of the
operator Cai , which was defined in Eq. (3.55). To this end, we computed the Fourier expansion
of Cai . The result is

3
2

N∑

j=1

Caj
z
p
j

= iεabcu
b−pT c + (2p+ 2− 2N )ua−p −

2i
N
εabc

N−1∑

m=1

mub−mucm−p (B.30)

for p ∈ {1, . . . ,N − 1}. For p = 1, we find the same sum over Fourier transformed spin operators
that occurs in the above expansion of the Hamiltonian [Eq. (B.29)]. Inserting the p = 1 Fourier
mode of Cai , we arrive at Eq. (3.61) of the main text.
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B Details on excited and edge states

B.3 Translation and inversion of states on the cylinder

B.3.1 Transformation under a permutation of the spins

Both the translation operator Ty and the inversion operator I act on a product state as a
permutation of the spins. Such a permutation operator Oτ is defined for the permutation τ of
N elements as

Oτ |s1, . . . , sN 〉 = |sτ(1), . . . , sτ(N )〉. (B.31)

The action of Oτ on |ψ0〉 and |ψs0,s∞0 〉 can be rewritten in terms of a permutation of the
positions zi , which will facilitate our calculations for Ty and I . Our derivation of this transfor-
mation rule follows Ref. [156].

We consider the wave function

ψ̃z1,...,zN
0 (s1, . . . , sN ) = δsχs

N∏

i<j

(zi − zj )
1
2 (sisj+1), (B.32)

which is equivalent to ψ0(s1, . . . , sN ) because it only differs by a spin-independent constant [cf.
Eq. (3.12)]. We have also explicitly written out the parametric dependence on the positions zi .
Similarly, the wave function

ψ̃s0,s∞,z1,...,zN
0 (s1, . . . , sN ) = δs̄(−1)

1
2 (1−s∞)χs

N∏

n=1

z
1
2 (s0sn+1)
n

N∏

n<m

(zn − zm)
1
2 (snsm+1) (B.33)

is equivalent to ψs0,s∞0 (s1, . . . , sN ). Let us first calculate the transformation of ψ̃z1,...,zN
0 (s1, . . . , sN )

under a simultaneous permutation of both the spins and the coordinates. Since every per-
mutation can be decomposed into a series of transpositions, we consider the case that τ is a
transposition:

τ(i) =



i if i < {m,n},
n if i =m,

m if i = n

(B.34)

for m,n ∈ {1, . . . ,N } and m < n. It follows that

ψ̃
zτ(1),...,zτ(N )

0 (sτ(1), . . . , sτ(N ))

ψ̃z1,...,zN
0 (s1, . . . , sN )

= (−1)
1
2 (n−m)(sm−sn)

︸              ︷︷              ︸
transformation of χs

N∏

i<j,
τ(i)>τ(j)

(−1)
1
2 (sτ(i)sτ(j)+1)

= (−1)
1
2 (n−m)(sm−sn)(−1)

1
2 (smsn+1)

n−1∏

j=m+1

(−1)
1
2 (sj (sm+sn)+2)

= −1. (B.35)

Therefore, if τ is a general permutation corresponding toNτ subsequent transpositions,

ψ̃
zτ(1),...,zτ(N )

0 (sτ(1), . . . , sτ(N )) = sign(τ)ψ̃z1,...,zN
0 (s1, . . . , sN ), (B.36)

where sign(τ) = (−1)Nτ is the signature of the permutation. Substituting si by sτ−1(i) in
Eq. (B.36), we arrive at the final transformation rule:

ψ̃z1,...,zN
0 (sτ−1(1), . . . , sτ−1(N )) = sign(τ)ψ̃

zτ(1),...,zτ(N )

0 (s1, . . . , sN ). (B.37)
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B.3 Translation and inversion of states on the cylinder

The transformation under a permutation of the spins can therefore be calculated by considering
the corresponding transformation of the coordinates and taking into account the signature of
the permutation.

We note that Eq. (B.37) is not valid for the original wave function ψ0(s1, . . . , sN ) but only for
ψ̃z1,...,zN

0 (s1, . . . , sN ), which differs from ψ0(s1, . . . , sN ) by a factor depending on zi . However, this
factor does not depend on the spins. Therefore, if |ψ̃z1,...,zN

0 〉 is an eigenstate of Oτ , then this is
also the case for |ψ0〉.

Compared to ψ̃0(s1, . . . , sN ), there are some an additional factors present the wave function
ψ̃s0,s∞,z1,...,zN

0 (s1, . . . , sN ). Since these are invariant under a permutation of both the spins and
the coordinates, a formula analogous to Eq. (B.37) holds for ψ̃s0,s∞,z1,...,zN

0 (s1, . . . , sN ).

B.3.2 Translation in the periodic direction

The translation operator Ty is defined through the permutation T̃y :

T̃y
(
ix, iy

)
=


(ix, iy + 1) if iy ,Ny ,
(ix,1) if iy =Ny ,

(B.38)

where ix is the x component and iy the y component of an index i.
The signature of this permutation is given by

sign(T̃y) = (−1)Nx(Ny−1) = (−1)Nx , (B.39)

where we used that N = NyNx is even. In terms of the positions, the transformation corre-
sponds to a multiplication by a phase, zT̃y (j) = e2πi/Nyzj . Therefore,

ψ̃z1,...,zN
0 (sT̃ −1

y (1), . . . , sT̃ −1
y (N )) = sign(T̃y)ψ̃

zT̃y (1),...,zT̃y (N )

0 (s1, . . . , sN )

= (−1)Nxδsχs

N∏

i<j

(
e

2πi
Ny (zi − zj )

) 1
2 (sisj+1)

= (−1)
1
2NxN ψ̃z1,...,zN

0 (s1, . . . , sN ). (B.40)

Here, we have used that

N∏

i<j

e
πi
Ny

(sisj+1)
= (−1)Nx

N
2 +Nx , (B.41)

which follows from s1 + · · · + sN = 0. The eigenvalue of |ψ0〉 with respect to Ty is therefore
(−1)NxN/2. With

Tyua−nT −1
y = e

− 2πi
Ny
n
ua−n (B.42)

it follows that the eigenvalue of |ψal ...a1
nl ...n1〉 is e−2πik/Ny (−1)NxN/2, where k = n1 + · · ·+nl .

For |ψ̃s0,s∞,z1,...,zN
0 〉, we obtain

ψ̃s0,s∞,z1,...,zN
0 (sT̃ −1

y (1), . . . , sT̃ −1
y (N )) (B.43)

= (−1)Nx
N∏

n=1

e
πi
Ny

(sns0+1)
N∏

n<m

e
πi
Ny

(snsm+1)
ψ̃s0,s∞,z1,...,zN

0 (s1, . . . , sN )

= (−1)Nx+Nx
N
2 ψ̃s0,s∞,z1,...,zN

0 (s1, . . . , sN ).

In the last equation, we have used that s1 + · · ·+ sN + s0 + s∞ = 0.
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B Details on excited and edge states

B.3.3 Inversion

We require that the inversion I acts on the positions defined in Eq. (3.51) as

zĨ (ix),Ĩ (iy ) =
1
zix ,iy

. (B.44)

This leads to the definition

Ĩ
(
ix, iy

)
=


(Nx + 1− ix,Ny − iy) if iy ,Ny ,
(Nx + 1− ix,Ny) if iy =Ny .

(B.45)

We note that in our choice of zi , the center of the cylinder is at the unit circle. If this is not the
case, then the definition of Eq. (B.45) leads to an additional factor when Ĩ is applied to zi .

In order to determine the sign of the permutation, we arrange the state |s1, . . . , sN 〉 in a
matrix:

|s1,1, . . . , sNx ,Ny 〉 �




s1,1 . . . s1,Ny
s2,1 . . . s2,Ny
...

...
...

sNx ,1 . . . sNx ,Ny



. (B.46)

The transformed state is then given by

I|s1,1, . . . , sNx ,Ny 〉 �




sNx ,Ny−1 sNx ,Ny−2 . . . sNx ,1 sNx ,Ny
sNx−1,Ny−1 sNx−1,Ny−2 . . . sNx−1,1 sNx−1,Ny

...
...

...
...

...
s1,Ny−1 s1,Ny−2 . . . s1,1 s1,Ny



. (B.47)

To bring the transformed matrix back to the original form, we first reverse all Ny columns
and then reverse all Nx rows excluding the last element of each row. A single sequence of L
elements can be reversed in 1

2L(L− 1) steps. Therefore, the sign of the permutation is given by

sign(Ĩ ) = (−1)Ny
1
2Nx(Nx−1)+Nx

1
2 (Ny−1)(Ny−2). (B.48)

We next determine the contribution from the coordinate part of ψ0(s1, . . . , sN ). Using
Eq. (B.44), we have

ψ̃
zĨ (1),...,zĨ (N )

0 (s1, . . . , sN ) = ψ̃z1,...,zN
0 (s1, . . . , sN )

N∏

m<n

(−zmzn)−
1
2 (smsn+1)

= ψ̃z1,...,zN
0 (s1, . . . , sN )e−

1
4
∑
m,n(smsn+1)(log(zmzn)+πi)

= ψ̃z1,...,zN
0 (s1, . . . , sN )e−

1
4
∑
m,n(smsn+1)(log(zmzn)+πi)e

1
2
∑
i (2log(zi )+πi)

= ψ̃z1,...,zN
0 (s1, . . . , sN )(−1)

N
2 Nx+Nx . (B.49)

In the last step, we have used that s1 + · · ·+ sN = 0 and

N∑

n=1

log(zn) = πi (N +Nx) . (B.50)
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B.3 Translation and inversion of states on the cylinder

Therefore, the eigenvalue of |ψ0〉 with respect to I is

sign(Ĩ )(−1)
N
2 Nx+Nx = (−1)

N
2 Ny . (B.51)

The states |ψal ...a1
nl ...n1〉 are not eigenstates of I , but transform as

I|ψal ...a1
nl ...n1〉 = Iual−nlI−1 . . .Iua1−n1I−1I|ψ0〉 = (−1)

N
2 Nyualnl . . .u

a1
n1 |ψ0〉. (B.52)

Here, we have used that

Iuaj−njI−1 =
N∑

i=1

1
(zi)

nj
I taji I−1 =

N∑

i=1

1
(zi)

nj
t
aj
Ĩ−1(i)

=
N∑

i=1

(zi)
nj t

aj
i = u

aj
nj , (B.53)

if the center of the cylinder is at the unit circle. In terms of the states |ψal ...a1−nl ···−n1〉 defined in
Eq. (3.52), we therefore have

I|ψal ...a1
nl ...n1〉 = (−1)

N
2 Ny |ψal ...a1−nl ···−n1〉. (B.54)

For the transformed states I|ψal ...a1
nl ...n1〉, the current operators are therefore inserted at z∞ =∞

instead of at z0 = 0. Eigenstates of I with eigenvalues (±1)(−1)
N
2 Ny are then given by

|ψal ...a1
nl ...n1〉 ± |ψ al ... a1−nl ···−n1〉. (B.55)

Finally, we determine the transformation of |ψ̃s0,s∞,z1,...,zN
0 〉 with respect to I . As for |ψ0〉,

there is a contribution from the sign of the permutation and from the transformation of the
coordinates. The calculation is similar to that for |ψ0〉, only that now s1 + · · ·+ sN + s0 + s∞ = 0.
We find

I|ψ̃s0,s∞,z1,...,zN
0 〉 = sign(Ĩ )|ψ̃s0,s∞,zĨ (1),...,zĨ (N )

0 = (−1)Ny
N
2 +Nx+1|ψ̃s∞,s0,z1,...,zN

0 〉. (B.56)

Since ψs0,s∞0 (s1, . . . , sN ) and ψ̃s0,s∞,z1,...,zN
0 (s1, . . . , sN ) only differ by a spin-independent factor, we

also have

I|ψs0,s∞0 〉 = (−1)Ny
N
2 +Nx+1|ψs∞,s00 〉. (B.57)

Note that I exchanges the spins s0 and s∞ in |ψs0,s∞0 〉.
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C Details on approximations of correlations

C.1 Vertex operators and normal ordering

In this section, we derive the following relation between the exponential of the boson field
ϕ(z, z̄) and the normal ordered exponential of ϕ(z, z̄):

ei
√
αsϕ(z,z̄) = e−

1
2αs

2〈ϕ(z,z̄)ϕ(z,z̄)〉 : ei
√
αsϕ(z,z̄) :, (C.1)

where α > 0 and s ∈ R.
The field ϕ(z, z̄) satisfies Wick’s theorem [5], i.e., ϕ(z, z̄)n for n ∈ {0,1, . . . } is equal to the sum

of all possible contractions of : ϕ(z, z̄)n :. Any contraction of k pairs of fields from : ϕ(z, z̄)n :
results in the expression

〈ϕ(z, z̄)ϕ(z, z̄)〉k : ϕ(z, z̄)n−2k :, (C.2)

and there are
n(n− 1) . . . (n− 2k + 1)

k!2k
=

n!
k!(n− 2k)!2k

(C.3)

of such contractions.
The reason for this combinatorial factor is as follows: The numerator n(n − 1) . . . (n − 2k +

1) counts the number of possibilities of taking 2k fields from n fields. The factor k! in
the denominator corresponds to the number of permutations of the factors 〈ϕ(z, z̄)ϕ(z, z̄)〉k
and the factor 2k corresponds to the freedom to interchange two fields within a correlator
〈ϕ(z, z̄)ϕ(z, z̄)〉. Since these operators do not change the contraction, we divide by k!2k .

Therefore,

ϕ(z, z̄)n =
[n/2]∑

k=0

n!
k!(n− 2k)!2k

〈ϕ(z, z̄)ϕ(z, z̄)〉k : ϕ(z, z̄)n−2k :, (C.4)

where [n/2] = n/2 for n even and [n/2] = (n − 1)/2 for n odd. ([n/2] is the maximal number
of pairs that can be contracted from : ϕ(z, z̄)n :.) Multiplying Eq. (C.4) by (i

√
αs)n/n! and

summing over n, we obtain

eis
√
αϕ(z,z̄) =

∞∑

n=0

[n/2]∑

k=0

1
k!(n− 2k)!2k

(i
√
αs)n〈ϕ(z, z̄)ϕ(z, z̄)〉k : ϕ(z, z̄)n−2k : (C.5)

=
∞∑

n=0

[n/2]∑

k=0

(
−αs2〈ϕ(z, z̄)ϕ(z, z̄)〉

)k

k!2k

(
is
√
α : ϕ(z, z̄) :

)n−2k

(n− 2k)!
. (C.6)

This double sum can be rearranged into a double sum with both summation indices ranging
from 0 to∞ (cf. Ref. [197]),

eis
√
αϕ(z,z̄) =

∞∑

n=0

∞∑

k=0

(
−s2α〈ϕ(z, z̄)ϕ(z, z̄)〉

)k

k!2k

(
is
√
α : ϕ(z, z̄) :

)n

n!
(C.7)

= e−
1
2αs

2〈ϕ(z,z̄)ϕ(z,z̄)〉 : ei
√
αsϕ(z,z̄) : . (C.8)
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It follows that

cos
(√
αϕ(z, z̄)

)
= e−

1
2α〈ϕ(z,z̄)ϕ(z,z̄)〉 : cos

(√
αϕ(z, z̄)

)
: (C.9)

and

sin
(√
αϕ(z, z̄)

)
= e−

1
2α〈ϕ(z,z̄)ϕ(z,z̄)〉 : sin

(√
αϕ(z, z̄)

)
: . (C.10)

Therefore, the normal ordering can be left out in the exact expression for the zz correlations of
Eq. (4.9).

C.2 Free boson on the sphere and on the cylinder

In this section, we consider a free boson on the sphere and on the cylinder. We explicitly
work with coordinates Ω = (θ,φ) on the sphere and (w,w̄) on the cylinder and do not project
onto the plane. This is not necessary when computing the exact correlations in |ψα〉, which
are invariant under a projection of the positions onto the complex plane. However, different
approximations of the correlations are obtained depending on whether one expands in the
field ϕ(z, z̄) or ϕ(Ω) and ϕ(w,w̄), respectively.

C.2.1 Sphere

The free boson on the sphere has the action

Ssphere[ϕ] =
1

8π

∫

S2
dΩ

[
(∂θϕ(Ω))2 +

1

sin2(θ)
(∂φϕ(Ω))2 + m̃2ϕ(Ω)2

]
, (C.11)

where Ω = (θ,φ) in terms of the polar angle θ and the azimuthal angle φ, dΩ = dθdφsin(θ),
and m̃ is a mass regulator. We will take m̃ to be 0 eventually.

After two integrations by part with vanishing boundary terms,

Ssphere =
1

8π

∫

S2
dΩϕ(Ω)

[
L2 + m̃2

]
ϕ(Ω), (C.12)

where

L2 = − 1
sin(θ)

∂θ [sin(θ)∂θ]− 1

sin2(θ)
∂2
φ (C.13)

is the square of the orbital angular momentum operator (L2 = L2
x +L2

y +L2
z ).

The two-point correlator 〈ϕ(Ω)ϕ(Ω′)〉 is determined by

1
4π

(
L2 + m̃2

)
〈ϕ(Ω)ϕ(Ω′)〉 = δ(Ω−Ω′), (C.14)

where the δ function is defined with respect to the measure dΩ [
∫
S2 dΩδ(Ω) = 1].

Since the spherical harmonics Yml are eigenfunctions of L2 with eigenvalues l(l + 1), we
expand

〈ϕ(Ω)ϕ(Ω′)〉 =
∞∑

l,l′=0

l∑

m=−l

l′∑

m′=−l′
cmm

′
ll′ Y

m
l (Ω)Ym

′∗
l′ (Ω′). (C.15)
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C.2 Free boson on the sphere and on the cylinder

Using δ(Ω−Ω′) =
∑∞
l=0

∑l
m=−l Y

m
l (Ω)Ym∗l (Ω′) and Eq. (C.14), we obtain

cmm
′

ll′ =
4π

l(l + 1) + m̃2 δll′δmm′ , (C.16)

〈ϕ(Ω)ϕ(Ω′)〉 =
∞∑

l=0

4π
l(l + 1) + m̃2

l∑

m=−l
Yml (Ω)Ym∗l (Ω′). (C.17)

The sum over m is given by [197]

l∑

m=−l
Yml (Ω)Ym∗l (Ω′) =

2l + 1
4π

Pl(x), (C.18)

where Pl is the lth Legendre polynomial, x = 1− 1
2 |nΩ −nΩ′ |2, and nΩ and nΩ′ are unit vectors

on S2 embedded in R3 [cf. Eq. (2.31)].
Let us first consider the case of a finite mass m̃ > 0, which is needed in Appendix C.3.1 for

the computation of the continuum approximation on the sphere:

〈ϕ(Ω)ϕ(Ω′)〉 =
∞∑

l=0

2l + 1
l(l + 1) + m̃2 Pl(x) =

∞∑

l=0




1

l + 1
2 +

√
1
4 − m̃2

+
1

1 + 1
2 −

√
1
4 − m̃2



Pl(x). (C.19)

Using the generating function of Pl(x),

1√
1− 2xz+ z2

=
∞∑

l=0

Pl(x)zl , (C.20)

Eq. (C.19) can be transformed into an integral. To this end, we multiply the generating
function (C.20) by zγ−1 with Re(γ) > 0 and then integrate z from 0 to 1:

∫ 1

0
dz

zγ−1
√

1− 2xz+ z2
=
∞∑

l=0

1
l +γ

Pl(x). (C.21)

Applying this identity to Eq. (C.19), we find

〈ϕ(Ω)ϕ(Ω′)〉 =
∫ 1

0
dz

2cosh
[√

1
4 − m̃2 log(z)

]

√
z
[
(z − 1)2 + |nΩ −nΩ′ |2z

] =
∫ ∞

0
dq

2cosh
(√

1
4 − m̃2q

)

√
2cosh(q)− 2 + |nΩ −nΩ′ |2

,

(C.22)

where q = − logz was substituted in the integral.
Let us now consider the case of m̃→ 0. Since the l = 0 term is divergent for m̃→ 0, we

separate it from the sum of Eq. (C.19) and expand the remaining terms to leading order in m̃:

〈ϕ(Ω)ϕ(Ω′)〉 =
1
m̃2 +

∞∑

l=1

(1
l

+
1
l + 1

)
Pl(x) +O(m̃2), (C.23)

where (2l + 1)/(l(l + 1)) = 1/l + 1/(l + 1) and P0(x) = 1 was used.
As a last step, we apply the identities

∞∑

l=0

Pl(x)
l + 1

= log
1 +
√

2− 2x − x
1− x , (C.24)

∞∑

l=1

Pl(x)
l

= log
2

1 +
√

2− 2x − x , (C.25)
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which can be derived from the generating function of Pl(x): Eq. (C.24) follows from Eq. (C.20)
by integrating z from 0 to 1. To obtain Eq. (C.25), one can first bring the l = 0 term in Eq. (C.20)
to the left-hand side, then divide by z, and finally integrate z from 0 to 1.

Using Eqs. (C.24, C.25) in Eq. (C.23), we obtain

〈ϕ(Ω)ϕ(Ω′)〉 =
1
m̃2 − 1 + log

4
|nΩ −nΩ′ |2

+O(m̃2). (C.26)

Taking m̃→ 0,

〈ϕ(Ω)ϕ(Ω′)〉 = − log |nΩ −nΩ′ |2 + constant. (C.27)

Next, we define vertex operators on the sphere as : ei
√
αsϕ(Ω) :, where α > 0, s ∈ R, and normal

ordering is defined by subtracting vacuum expectation values on the sphere:

: ϕ(Ω1)ϕ(Ω2) : = ϕ(Ω1)ϕ(Ω2)− 〈ϕ(Ω1)ϕ(Ω2)〉, (C.28)

and similarly for more fields.
Let us now relate the vertex operator on the sphere to the vertex operator on the plane. The

bosonic field on the plane is related to that on the sphere through the stereographic projection:

ϕ(z, z̄) = ϕ(Ω), (C.29)

with z = tan(θ/2)e−iφ and z̄ = tan(θ/2)eiφ. Correspondingly, we have

ei
√
αsϕ(z,z̄) = ei

√
αsϕ(Ω). (C.30)

Note that this equation only holds without normal ordering since the normal ordering prescrip-
tion depends on subtracting vacuum expectation values on the plane and sphere, respectively.
However, we can use Eq. (C.1) relating the exponential of ϕ to the normal ordered exponential
of ϕ. [The computation leading to Eq. (C.1) was formulated on the plane but it also applies to
the sphere since we only made use of the relation between normal ordering and subtractions
of vacuum expectation values.] Therefore,

e−
1
2αs

2〈ϕ(Ω)ϕ(Ω)〉 : ei
√
αsϕ(Ω) : = e−

1
2αs

2〈ϕ(z,z̄)ϕ(z,z̄)〉 : ei
√
αsϕ(z,z̄) : (C.31)

or

: ei
√
αsϕ(Ω) : =: ei

√
αsϕ(z,z̄) : lim

Ω′→Ω
z′→z

e−
1
2αs

2(〈ϕ(z,z̄)ϕ(z′ ,z̄′)〉−〈ϕ(Ω)ϕ(Ω′)〉) (C.32)

=: ei
√
αsϕ(z,z̄) : lim

Ω′→Ω
z′→z

( |z − z′ |
|nΩ −nΩ′ |

)αs2

(C.33)

=: ei
√
αsϕ(z,z̄) :

[
2cos

(θ
2

)2]−αs2

. (C.34)

In the last step, it was used that

|nΩ −nΩ′ | = 2cos
(θ

2

)
cos

(
θ′

2

) ∣∣∣z − z′
∣∣∣ . (C.35)
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We can now determine the correlator of N vertex operators on the sphere from the correspond-
ing correlator on the plane:

〈: ei
√
αs1ϕ(Ω1) · · · : ei

√
αsNϕ(ΩN ) :〉 = δs



N∏

m=1

[
2cos

(θm
2

)2]−αs2
m


N∏

m<n

|zm − zn|2αsmsn (C.36)

= δs

N∏

m<n

[
2cos

(θm
2

)
cos

(θn
2

)
|zm − zn|

]2αsmsn
(C.37)

= δs

N∏

m<n

|nΩm
−nΩn

|2αsmsn , (C.38)

where we used that

δs

N∏

m<n

[
2cos

(θm
2

)
cos

(θn
2

)]2αsmsn
= δse

α
∑
m,n smsn log[2cos(θm/2)cos(θn/2)] (C.39)

= δse
−α∑N

m=1 s
2
m log[2cos(θm/2)2] (C.40)

= δs

N∏

m=1

[
2cos(θm/2)2

]−αs2
m . (C.41)

C.2.2 Cylinder

In the case of the cylinder, we can use the conformal transformation z = ew to transform the
known correlator of vertex operators on the plane to that on the cylinder:

〈: eis1
√
αϕ(w1,w̄1) : · · · : ei

√
αsNϕ(wN ,w̄N ) :〉 =

∣∣∣∣∣∣∣∣

N∏

j=1

e
α
2wjs

2
j

∣∣∣∣∣∣∣∣

2

〈: eis1
√
αϕ(z1,z̄1) : · · · : eisN

√
αϕ(zN ,z̄N ) :〉 (C.42)

= δs

∣∣∣∣∣∣∣∣

N∏

j=1

e
α
2wjs

2
j

∣∣∣∣∣∣∣∣

2
N∏

i<j

∣∣∣ewi − ewj
∣∣∣2αsisj (C.43)

= δs

N∏

i<j

∣∣∣∣∣2sinh
(1

2
(wi −wj )

)∣∣∣∣∣
2αsisj

. (C.44)

In the last step, it was used that

δs

∣∣∣∣∣∣∣∣

N∏

j=1

e
α
2wjs

2
j

∣∣∣∣∣∣∣∣

2

= δs

∣∣∣∣∣∣∣∣

N∏

i<j

e−
α
2 sisj (wi+wj )

∣∣∣∣∣∣∣∣

2

. (C.45)

C.3 Solution of the quadratic theory

C.3.1 Continuum approximation on the sphere

On the sphere, the quadratic action that provides an approximation of the zz correlations is
given by

Sα[ϕ] =
1

8π

∫

S2
dΩϕ(Ω)L2ϕ(Ω) +

α
2

N∑

j=1

ϕ(Ωj )
2, (C.46)
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where L2 is the square of the orbital angular momentum operator (cf. Appendix C.2.1).
We consider an approximately uniform distribution of positions Ωj = (θj ,φj ) on the sphere.

As a consequence, each solid angle element ∆Ω contains approximately the same number of
points Ωj and we approximate

4π
N

N∑

j=1

ϕ(Ωj )
2 ≈

∫

S2
dΩϕ(Ω)2, (C.47)

Sα[ϕ] ≈ 1
8π

∫

S2
dΩϕ(Ω)(L2 +αN )ϕ(Ω). (C.48)

Using the result for the propagator of the massive boson on the sphere of Eq. (C.22), the
following approximation for the zz correlations is obtained:

〈σ zi σ zj 〉 ≈ −α
∫ ∞

0
dq

2cos
(√
Nα − 1

4q
)

√
2cosh(q)− 2 + |nΩi

−nΩj
|2
. (C.49)

C.3.2 Discrete approximation

Discrete approximation from CFT operators

Let us define the two-point Green’s function of the discrete approximation as

Gαi,j =
〈: ϕ(yi)e

− α2ϕ(yi )2
:: ϕ(yj )e

− α2ϕ(yj )2
:
∏N
k(,i,j) : e−

α
2ϕ(yk)2

:〉
〈∏N

k=1 : e−
α
2ϕ(yk)2

:〉
, (C.50)

where the expectation value is taken with respect to action of the massless boson. The
generalized coordinate yj is assumed to be one of the following: yj = (zj , z̄j) for positions in
the complex plane, yj = Ωj = (θj ,φj) on the sphere, and yj = (wj , w̄j) on the cylinder. The zz
correlation in the discrete approximation is then given by

〈σ zi σ zj 〉 ≈ −αGαi,j . (C.51)

The following computation makes use of the correlator of N vertex operators given by

〈
N∏

j=1

: ei
√
αsjϕ(yj ) :〉 = δs

N∏

m<n

d2αsmsn
mn , (C.52)

where

dmn =



|zm − zn| (complex plane),

|nΩm
−nΩn

| (sphere),

|2sinh(1
2 (wm −wn))| (cylinder),

(C.53)

cf. Appendix C.2 for the computation on the sphere and on the cylinder. For the calculation
below, it is important to note that Eq. (C.52) holds not only for sj ∈ {−1,1} but for general
sj ∈ R.
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C.3 Solution of the quadratic theory

We define higher order Green’s functions Gαi1,...,i2n analogously to Eq. (C.50). Let us denote
the generating function of Gαi1,...,i2n by Zα(J), where J is an N -dimensional, real vector:

Gαi1,...,i2n =
(
− 1
α

)n 1
Zα(J)

∂
∂J1

∂
∂J2

. . .
∂
∂J2n
Zα(J)

∣∣∣∣
J=0
, (C.54)

Zα(J) = 〈
N∏

j=1

: e−
α
2ϕ(yj )2+i

√
αJjϕ(yj ) :〉. (C.55)

The generating function Zα(J) will now be evaluated using the N -dimensional Gaussian
integral [5]

∫
dNxe−

1
2 xtAx+btx =

(
(2π)N

detA

) 1
2

e
1
2 btA−1b, (C.56)

where A is a symmetric, real N ×N matrix with positive eigenvalues and b a real vector of
length N . By Fourier transforming

: e−
1
2αϕ(yj )2

: =
1√
2π

∫ ∞

−∞
dsje

− 1
2 s

2
j : ei

√
αsjϕ(yj ) :, (C.57)

we obtain

Zα(J) ∝
∫
dN se−

1
2 s2〈

N∏

j=1

: ei
√
α(sj+Jj )ϕ(yj ) :〉. (C.58)

Using Eq. (C.52) results in

Zα(J) ∝
∫
dN se−

1
2 s2
δ



N∑

j=1

sj +
N∑

j=1

Jj



N∏

m<n

d
2α(sm+Jm)(sn+Jn)
m,n (C.59)

=
∫
dN se−

1
2 (s−J)2

δ



N∑

j=1

sj



∏

m<n

d2αsmsn
m,n (C.60)

= e−
1
2 J2

∫
dN sδ



N∑

j=1

sj


e
− 1

2 stMs+Jts, (C.61)

where

Mmn = δmn − 2α log(dmn + δmn) . (C.62)

One of the N integrals can be evaluated due to the δ function. To this end, we choose some
index r ∈ {1, . . . ,N } and introduce the N ×N matrix Tr by the linear transformation

Trs =


s1, . . . , sr−1,−

∑

j(,r)

sj , sr+1, . . . , sN




t

, (C.63)

i.e., the matrix entries of Tr are given by

(Tr )mn = δmn − δmr . (C.64)
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Carrying out the integral over sr results in

Zα(J) ∝ e− 1
2 J2

∫ 

∏

j(,r)

dsj


e
− 1

2 stT trMTrs+JtTrs. (C.65)

Using

√
2π =

∫ ∞

−∞
dsre

− 1
2 s

2
r =

∫ ∞

−∞
dsre

− 1
2 steretrs, (C.66)

where er denotes the rth unit vector, we reintroduce an integral over sr and obtain

Zα(J) ∝ e− 1
2 J2

∫
dN se−

1
2 st(T trMTr+eretr )s+JtTrs. (C.67)

With the N -dimensional Gaussian integral of Eq. (C.56), we arrive at

Zα(J) ∝ e 1
2 JtΓ J, (C.68)

where

Γ = Tr
(
T trMTr + ere

t
r

)−1
T tr − I. (C.69)

Note that Γ is independent of the choice of the index r since it does not matter which of the
integrals is evaluated using the δ function.

It follows that

Gαi,j = − 1
α
∂
∂Ji

∂
∂Jj

e
1
2 JtΓ J

∣∣∣
J=0

= − 1
α
Γij and 〈σ zi σ zj 〉 ≈ Γij . (C.70)

Let us now compute the subleading term in the expansion of 〈σ zi σ zj 〉. To this end, we write
the exact zz correlations as

〈σ zi σ zj 〉 = −
〈∏k∈{i,j} : tan(

√
αϕ(yk))C(

√
αϕ(yk))e

− α2ϕ(yk)2
:
∏N
k(,i,j) : C(

√
αϕ(yk))e

− α2ϕ(yk)2
:〉

〈∏N
k=1 : C(

√
αϕ(yk))e

− α2ϕ(yk)2
:〉

,

(C.71)

where C(x) = cos(x)e
1
2x

2
. In terms of the generating function Zα of Eq. (C.55),

〈σ zi σ zj 〉 = −
tan(−i∂i) tan(−i∂j )

∏N
k=1C(−i∂k)Zα(J)

∣∣∣
J=0∏N

k=1C(−i∂k)Zα(J)
∣∣∣
J=0

, (C.72)

where ∂k = ∂
∂Jk

. Expanding to fourth order in derivatives,

tan(−i∂i) tan(−i∂j )
N∏

k=1

C(−i∂k) = −∂i∂j +
1
3

(∂3
i ∂j +∂i∂

3
j ) + . . . , (C.73)

N∏

k=1

C(−i∂k) = 1− 1
12

N∑

k=1

∂4
k + . . . , (C.74)

we obtain

〈σ zi σ zj 〉 = Γi,j − Γi,j(Γi,i + Γj,j ) + . . . . (C.75)
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Alternative derivation of discrete approximation

We now demonstrate that the discrete approximation can be obtained directly from the
expression of the exact zz correlations in |ψα〉 without using CFT operators.

Let us first consider the norm squared of |ψα〉:
〈ψα |ψα〉 =

∑

s1,...,sN

δs

∏

m<n

d2αsm,sn
mn =

∑

s1,...,sN

δse
− 1

2 st(M−I)s, (C.76)

where dmn is defined in Eq. (C.53) and M in Eq. (C.62).
Writing the sums over each sj as an integral,

∑

sj∈{−1,1}
→

∫ ∞

−∞
dsj

(
δ(sj + 1) + δ(sj − 1)

)
, (C.77)

we obtain

〈ψα |ψα〉 ∝
∫
dN s



N∏

m=1

(δ(sm + 1) + δ(sm − 1))


δ



N∑

m=1

sm


e
− 1

2 st(M−I)s (C.78)

∝
∫
dNx



N∏

m=1

cos(xm)



∫
dN se−ix

tsδ



N∑

m=1

sm


e
− 1

2 st(M−I)s, (C.79)

where it was used that

δ(sm + 1) + δ(sm − 1) =
∫ ∞

−∞
dxm
π

cos(xm)e−ixmsm . (C.80)

For the expectation value 4〈ψα |tzi tzj |ψα〉, we additionally replace

∑

sj∈{−1,1}
sj →

∫ ∞

−∞
dsj

(
δ(sj − 1)− δ(sj + 1)

)
(C.81)

and use

δ(sj − 1)− δ(sj + 1) = i
∫ ∞

−∞

dxj
π

sin(xj )e
−ixjsj (C.82)

so that

4〈ψα |tzi tzj |ψα〉 ∝ −
∫
dNx tan(xi) tan(xj )



N∏

m=1

cos(xm)



∫
dN se−ix

tsδ



N∑

m=1

sm


e
− 1

2 st(M−I)s. (C.83)

Let us introduce the generating function

Z′α(J) =
∫
dNxe−

1
2 x2+iJtx

∫
dN se−ix

tsδ



N∑

j=1

sj


e
− 1

2 st(M−I)s, (C.84)

which is defined in such a way that the exact zz correlations 〈σ zi σ zj 〉 = 4
〈ψα |tzi tzj |ψα〉
〈ψα |ψα〉 are given

by Eq. (C.72) with Zα(J) replaced by Z′α(J). In particular, the zz correlations in the quadratic
approximation are given by

〈σ zi σ zj 〉 ≈
1
Z′α(J)

∂
∂Ji

∂
∂Jj
Z′α(J)

∣∣∣
J=0
. (C.85)
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We now show that Z′α(J) is equivalent to the generating function Zα(J) of the previous
derivation. Carrying out the integral over x in Eq. (C.84),

Z′α(J) ∝
∫
dN se−

1
2 (J−s)2

δ



N∑

j=1

sj


e
− 1

2 st(M−I)s = e−
1
2 J2

∫
dN sδ



N∑

j=1

sj


e
− 1

2 stMs+Jts. (C.86)

Comparing to Zα(J) in Eq. (C.61), we conclude that Z′α(J) ∝ Zα(J) ∝ e 1
2 JtΓ J.
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D Details on continuous-spin wave functions

D.1 Bosonic Gaussian states

This section provides a short introduction to the formalism of bosonic Gaussian states and
discusses how their entanglement properties can be computed.

In the following, we consider N bosonic modes with annihilation and creation operators am
and a†m for m ∈ {1, . . . ,N }. These satisfy the commutation relations

[
am, a

†
n

]
= δmn. (D.1)

The corresponding position and momentum operators are defined as

Qm =
1√
2

(
am + a†m

)
, Pm =

1√
2

(
−iam + ia†m

)
, (D.2)

and satisfy the canonical commutation relations

[Qm, Pn] = iδmn. (D.3)

They can be represented on wave functions ψ(s) with s ∈ RN as

(Qmψ) (s) = smψ(s) and (Pmψ) (s) = −i ∂ψ
∂sm

(s). (D.4)

Arranging the operators Qm and Pm in a vector R = (Q1, . . . ,QN , P1, . . . , PN )t of length 2N , the
commutation relations of Eq. (D.3) can be formulated as

[Rm,Rn] = iΩmn, (D.5)

where Ω is the 2N × 2N matrix

Ω =
(

0 I
−I 0

)
(D.6)

and I the N ×N identity matrix. Symplectic matrices are defined as 2N × 2N real matrices S
that satisfy SΩSt = Ω [198]. A symplectic matrix S defines a transformation of operators that
preserves the commutation relations:

[
R′m,R′n

]
= [Rm,Rn] = iΩmn for R′ = SR. (D.7)

A general quadratic Hamiltonian assumes the form [199]

H =
1
2
RtHR =

1
2

2N∑

m,n=1

RmHmnRn, (D.8)

where H is a real and positive semidefinite 2N × 2N matrix. These conditions on H ensure
that H is Hermitian and bounded from below. Gaussian states are ground and thermal states
of such Hamiltonians [130, 199, 200].
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For a given normalized density matrix ρ, the covariance matrix γ is defined through the
expectation values

γmn = 〈{∆Rm,∆Rn}〉, ∆Rm = Rm − 〈Rm〉, (D.9)

where {•,•} is the anticommutator, 〈•〉 = tr(•ρ), and 〈Rm〉 are the first moments. Gaussian
states are completely characterized by their covariance matrix γ and their first moments 〈Rm〉,
i.e., all other properties can be derived from γ and 〈Rm〉.

In this thesis, we focus on the special case of a pure Gaussian state. Its covariance matrix
assumes the form [201]

γ =
(
X−1 −X−1Y
−YX−1 X +YX−1Y

)
(D.10)

in terms of real, symmetric N ×N matrices X and Y with X being positive definite. The
(unnormalized) wave function corresponding to this covariance matrix is given by [202]

ψ(s) = e−
1
2 s

t(X+iY )s. (D.11)

Let us now discuss how to compute entanglement properties of the state ψ(s). To this end,
we consider a bipartition of the system into disjoint parts A = {i1, . . . , iL} and B = {j1, . . . , jN−L}
with A∪B = {1, . . . ,N }. The reduced density matrix ρA is defined by tracing out the modes B
from the pure-state density matrix corresponding to ψ(s):

ρA = trB
|ψ〉〈ψ|
〈ψ|ψ〉 . (D.12)

The Rényi entropies of order a are then defined as [203]

Sa(A) =
1

1− a logtr
[
(ρA)a

]
, (D.13)

and the von Neumann entropy

Svon Neumann(A) = −tr (ρA logρA) . (D.14)

It can be obtained as the limit a→ 1 of Rényi entropies, Svon Neumann(A) = lima→1Sa(A). The
entanglement Hamiltonian HA is defined through ρA = e−HA and its eigenvalues form the
entanglement spectrum [159, 204].

For Gaussian states, the partial trace of Eq. (D.12) assumes a particularly simple form in
terms of the covariance matrix. Namely, the covariance matrix γA of the reduced density
matrix ρA can be obtained from γ by removing the rows and columns corresponding to the
subsystem B from γ [205]. The entanglement entropies and spectra can then be computed from
the symplectic eigenvalues of ρA. These are defined through Williamson’s decomposition [202,
206], which states that any real, positive definite 2N×2N matrixM can be factorized according
to

StMS = diag(ν1, . . . ,νN ,ν1, . . . ,νN ), (D.15)

where S is symplectic and ν1, . . . ,νN are positive real numbers that define the sympletic
spectrum of M. We note that ν1, . . . ,νN are equal to the positive eigenvalues of iΩM [130].

Applying Williamson’s theorem to the covariance matrix γA corresponds to a decomposition
in to thermal modes [130]. To see this, we note that a single harmonic oscillator with modes b
and b† and thermal density matrix

ρthermal =
1
Z
e−ωb

†b, Z = tr
(
e−ωb

†b
)
, (D.16)
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has a covariance matrix

γthermal = diag(ν,ν), (D.17)

where the oscillator energy ω and ν are related through

ω = log
ν + 1
ν − 1

. (D.18)

The decomposition StγAS = diag(ν1, . . . ,νL,ν1, . . . ,νL) thus corresponds to a basis change of
the reduced density matrix ρA to a product state ρ′A of thermal oscillators [130, 204]:

ρ′A =
1
Z
e−

∑L
j=1ωjb

†
j bj , (D.19)

where bj are bosonic modes in the new basis and ωj is related to the symplectic eigenvalue
νj through Eq. (D.18). The single-particle entanglement spectrum is thus given by ω1, . . . ,ωL,
and the entanglement Hamiltonian in its diagonalized form follows from Eq. (D.19).

The Rényi entanglement entropies can be computed from the symplectic eigenvalues
ν1, . . . ,νL of ρA according to [207, 208]

Sa(A) =
L∑

j=1

ga(νj ), (D.20)

where

ga(y) =
1

a− 1
log

[(y + 1
2

)a
−
(y − 1

2

)a]
(D.21)

In particular, the limit a→ 1 yields the von Neumann entropy with

lim
a→1

ga(y) =
y + 1

2
log

(y + 1
2

)
− y − 1

2
log

(y − 1
2

)
. (D.22)

D.2 Entanglement properties of ψβ(s)

This section explains how we compute entanglement properties for the Gaussian wave function
ψβ(s) defined in Sec. 5.1. With respect to the case of generic bosonic Gaussian states discussed
in Appendix D.1, we now have to take into account the delta function in ψβ(s), which leads to
divergences. The regularization explained in Sec. 5.1.3 leads to the wave function ψβ,ε(s) with
covariance matrix [cf. Eq. (D.10)]

γβ,ε =
1

2ε

(
0 0
0 eet

)
+γ ′β,ε, (D.23)

where

γ ′β,ε =
(
X−1
β,ε 0
0 Xβ

)
. (D.24)

For the chiral wave function ψ̃β(s) discussed in Sec. 5.4, we introduce a regularized wave
function ψ̃β,ε(s) analogously to ψβ,ε(s) and write it in the form

ψ̃β,ε(s) = e−
1
2 s

t(Xβ,ε+iY )s, (D.25)
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where Y is real and symmetric. [The matrix Xβ,ε is the same as in the real case since ψ̃β(s)
differs from ψβ(s) only by a phase.] This leads to a covariance matrix as in Eq. (D.23) but with

γ ′β,ε =



X−1
β,ε −X−1

β,εY

−YX−1
β,ε Xβ +YX−1

β,εY


 . (D.26)

The calculations of Secs. D.2.1 and D.2.2 below are then also valid for ψ̃β(s) with γ ′β,ε of
Eq. (D.26).

Using [171]

X−1
β,ε = X−1

β −
1

2ε+ etX−1
β e

X−1
β eetX−1

β , (D.27)

we find that γ ′β,ε is finite in the limit ε→ 0. In particular, the QQ, QP , and PQ blocks of the
covariance matrix γβ,ε are finite, while the P P block has a divergent term.

D.2.1 Symplectic eigenvalues of the reduced state’s covariance matrix

Let us write the covariance matrix of Eq. (D.23) as

γβ,ε =
1

2ε
vvt +γ ′β,ε, where v =

(
0
e

)
. (D.28)

In the following, we consider a bipartition into disjoint subsystems A = {i1, . . . , iL} and
B = {j1, . . . , jN−L}, where A∪ B = {1, . . . ,N } and L ∈ {1, . . . ,N − 1}. The covariance matrix after
tracing out the subsystem B is given by DAγβ,εDtA, where

DA =
(
DA 0
0 DA

)
(D.29)

with the L×N matrix

DA =




—eti1—
...

—etiL—




(D.30)

and ei being the ith unit vector. The matrix DA removes the rows and columns corresponding
to B from γβ,ε.

The entanglement entropies and spectra follow directly from the symplectic eigenvalues of
DAγβ,εDtA, which are the positive eigenvalues of iΩDAγβ,εDtA. However, the covariance matrix
γβ,ε is divergent in the limit ε→ 0, which leads to an infinity in the symplectic eigenvalues

and thus in the entropies. To handle this divergence, we compute the inverse
[
DAγβ,εDtA

]−1

since it is finite for ε→ 0:

[
DAγβ,εDtA

]−1
=

[
DAγ ′β,εDtA

]−1 −
[
DAγ ′β,εDtA

]−1DAvvtDtA
[
DAγ ′β,εDtA

]−1

2ε+ vtDtA
[
DAγ ′β,εDt

]−1DAv
, (D.31)

where we used the formula of Ref. [171] to compute the inverse of a matrix that is changed
by a term of rank one. With µ(1)

β,ε ≤ µ
(2)
β,ε · · · ≤ µ

(L)
β,ε being the ordered positive eigenvalues of
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D.2 Entanglement properties of ψβ(s)

−i
[
DAγβ,εDtA

]−1
Ω, the symplectic spectrum of DAγβ,εDtA is then given by {ν(j)

β,ε = 1/µ(j)
β,ε}1≤j≤L.

For ε→ 0, we have µ(1)
β,ε→ 0 so that ν(1)

β,ε→∞.

Let us now compute how ν
(1)
β,ε scales with ε for ε→ 0. This will be needed to subtract the

divergence from the resulting entanglement entropy. With detΩ = 1, we have

logdetDAγβ,εDtA = logdetΩDAγβ,εDtA =
L∑

j=1

log
[(
ν

(j)
β,ε

)2
]

(D.32)

and therefore

logν(1)
β,ε =

1
2

logdetDAγβ,εDtA −
L∑

j=2

log
[
ν

(j)
β,ε

]
. (D.33)

The matrix determinant lemma allows to express the determinant of DAγβ,εDtA in terms of
DAγ ′β,εDtA, which differs from DAγβ,εDtA only by a term of rank one. Thus, we obtain

logν(1)
β,ε =

1
2

log
[(

1 +
1

2ε
vtDtA

(
DAγ ′β,εDtA

)−1DAv
)

det
(
DAγ ′β,εDtA

)]
−

L∑

j=2

logν(j)
β,ε (D.34)

= −1
2

logε+ log ν̃β +O(ε), (D.35)

where

log ν̃β =
1
2

log




det
(
DAγ ′β,ε=0DtA

)

2
vtDtA

(
DAγ ′β,ε=0DtA

)−1DAv

−

L∑

j=2

logν(j)
β,ε=0. (D.36)

D.2.2 Entanglement entropies and spectra

Having computed the symplectic spectrum {ν(1)
β,ε, . . . ,ν

(L)
β,ε} of the reduced state’s covariance

matrix, we can now determine the entanglement properties in ψβ(s).

The divergent symplectic eigenvalue assumes the form logν(1)
β,ε = −1

2 logε+ log ν̃β +O(ε) [cf.
Eq. (D.35)], and thus we find

ga(ν
(1)
β,ε) = −1

2
log(ε) +

1
a− 1

log(a)− log(2) + log ν̃β +O(ε), (D.37)

where ga(y) was defined in Eq. (D.21). From Eq. (D.20), the entanglement entropies then
follow as

Sa(A) = −1
2

logε+ S ′a(A) +O(ε), (D.38)

where

S ′a(A) =
1

a− 1
log(a)− log(2) + log ν̃β +

L∑

j=2

ga

(
ν

(j)
β,ε=0

)
. (D.39)

The entropy S ′a(A) differs from Sa(A) by the subtraction of the divergent term −1
2 logε.
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Given the symplectic eigenvalues ν(j)
β,ε, one can also compute the entanglement spectrum.

According to Eq. (D.18), we find the single-particle entanglement energies

ω̃j =



0 if j = 1,

log
ν

(j)
β,ε=0+1

ν
(j)
β,ε=0−1

if j , 1
(D.40)

in the limit ε → 0. Since ν(1)
β,ε → ∞ for ε → 0, the energy ω̃1 vanishes. The entanglement

Hamiltonian thus assumes the form
∑L
j=1 ω̃jb

†
j bj , where bj and b†j are annihilation and creation

operators in a suitable basis. The precise relation between the original operators (aj , a
†
j ) and

(bj ,b
†
j ) can be determined by computing Williamson’s normal form [202, 206] of the covariance

matrix corresponding to the state’s reduced density matrix.

D.2.3 Momentum-space entanglement spectrum in 1D with periodic boundary

conditions

We now consider the state ψβ(s) in 1D with periodic boundary conditions. For this choice, the

matrix
(
Xβ,ε

)
i,j

only depends on the difference i − j modulo N , and thus we write
(
Xβ,ε

)
i,j

=
(
Xβ,ε

)
i−j .

We consider the discrete Fourier transform

Fkj =
1√
N
e−2πi kjN , (D.41)

where the normalization was chosen so that F is unitary.
Writing F = Fx + iFy with Fx and Fy real, we define the symplectic transformation

F =
(
Fx −Fy
Fy Fx

)
, (D.42)

which corresponds to a unitary rotation of creation and annihilation operators of the form
(
a
a†

)
→

(
F 0
0 F∗

)(
a
a†

)
. (D.43)

Therefore, F is the symplectic matrix that transforms to momentum space.
The covariance matrix of Eq. (D.23) transformed to momentum space then becomes

F γβ,εF t =



γ

(1)
β,ε 0

0 γ
(2)
β,ε


 , (D.44)

where

(
γ

(1)
β,ε

)

k,l
=

1
2


δ̃k−l



(
X̂β,ε

)
k

+
1(

X̂β,ε
)
k


− δ̃k+l



(
X̂β,ε

)
k
− 1(
X̂β,ε

)
k





 , (D.45)

(
γ

(2)
β,ε

)

k,l
=

1
2


δ̃k−l



(
X̂β,ε

)
k

+
1(

X̂β,ε
)
k


+ δ̃k+l



(
X̂β,ε

)
k
− 1(
X̂β,ε

)
k





 , (D.46)

(
X̂β,ε

)
k

=
N−1∑

j=0

e−2πi kjN
(
Xβ,ε

)
j
, (D.47)
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and

δ̃k =


1 if k mod N = 0,

0 otherwise.
(D.48)

Next, we trace out the momenta k < A where A = {1, . . . ,bN−1
2 c}, i.e., we remove the negative

momenta and the momenta k ∈ {0, N2 }. The resulting covariance matrix is diagonal:

DAF γβ,εF tDtA =
bN−1

2 c⊕

k=1

1
2



(
X̂β

)
k

+
1(
X̂β

)
k


⊕
bN−1

2 c⊕

k=1

1
2



(
X̂β

)
k

+
1(
X̂β

)
k


 , (D.49)

where we replaced
(
X̂β,ε

)
k

by

(
X̂β

)
k

=
N−1∑

j=0

e−2πi kjN
(
Xβ

)
j

(D.50)

since
(
X̂β

)
k

=
(
X̂β,ε

)
k

for k , 0. In Eq. (D.49), we can directly read off the symplectic eigenvalues
of the reduced state’s covariance matrix as

νk =
1
2



(
X̂β

)
k

+
1(
X̂β

)
k


 . (D.51)

In a suitable basis, the entanglement Hamiltonian is thus given by
∑bN−1

2 c
k=1 ω̃kb

†
kbk, where bk

and b†k are bosonic annihilation and creation operators, and the entanglement energies are
given by

ω̃k = log
(
νk + 1
νk − 1

)
= 2log

∣∣∣∣∣∣∣∣

(
X̂β

)
k

+ 1
(
X̂β

)
k
− 1

∣∣∣∣∣∣∣∣
. (D.52)

Since we traced out the mode k = 0, all entanglement energies are independent of ε.

D.2.4 Entanglement spectrum on the cylinder

The entanglement cut of the cylinder made in Sec. 5.3.3 preserves translational symmetry.
Therefore, it is convenient to express the eigenbasis of the entanglement Hamiltonian in terms
of Fourier modes as explained in the following. The entanglement Hamiltonian is diagonal in
the basis that transforms the reduced state’s covariance matrix into Williamson’s normal form.

For a cylinder of sizeNx×Ny withNx even and coordinates defined in Eq. (5.15), we consider
the bipartition A = {1, . . . , N2 }, B = {N2 + 1, . . . ,N } corresponding to the right panel of Fig. 5.7.
The Fourier transform of the reduced state’s covariance matrix is given by

Fyγ (A)
β,εF †y =

Ny−1⊕

ky=0

γ
(A)
ky ,β,ε

, (D.53)

where γ (A)
β,ε =DAγβ,εDtA, and

Fy =
(
Fy 0
0 F∗y

)
(D.54)
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with

(
Fy

)
ixky ,jxjy

=
δixjx√
Ny
e
− 2πi
Ny
ky jy . (D.55)

The Nx ×Nx matrices γ (A)
ky ,β,ε

are the blocks of the reduced state’s covariance matrix in momen-

tum space. We note that γ (A)
ky ,β,ε

is real and γ (A)
ky ,β,ε

= γ (A)
−ky ,β,ε. This is a consequence of Xβ,ε being

symmetric under iy − jy →Ny − (iy − jy) for y indices iy , jy ∈ {1, . . . ,Ny}.
The matrix Fy is complex and does therefore not define a real symplectic transformation.

However, we can construct a real matrix from it by combining the Fourier modes of momentum
ky and −ky . After this transformation, we have a description in terms of positive momenta

ly ∈ {0, . . . ,bNy2 c} and an additional index σ ∈ {+,−} for ly < {0, Ny2 } and σ = + for ly ∈ {0, Ny2 }.
More precisely, we define the unitary matrix Ty through its action on a vector cixky in Fourier
space as

(
Tyc

)
ixlyσ

=



cixly if ly ∈ {0, Ny2 },
1√
2

(
cixly + cix ,−ly

)
if ly < {0, Ny2 } and σ = +,

1√
2

(
−icixly + icix ,−ly

)
if ly < {0, Ny2 } and σ = −.

(D.56)

Introducing

Ty =
(
Ty 0
0 T ∗y

)
, (D.57)

it follows that TyFy is real and symplectic. Furthermore,

TyFyγ (A)
β,ε

(
TyFy

)t
=
bNy2 c⊕

ly=0

⊕

σ

γ
(A)
ly ,β,ε

, (D.58)

which follows from γ
(A)
ly ,β,ε

= γ (A)
−ly ,β,ε. Using Williamson’s decomposition [202, 206, 209], we

next construct symplectic matrices R′ly ,β,ε to that

R′ly ,β,εγ
(A)
ly ,β,ε

R′tly ,β,ε = diag
(
ν

(1)
ly ,β,ε

, . . . ,ν
(Nx2 )
ly ,β,ε

,ν
(1)
ly ,β,ε

, . . . ,ν
(Nx2 )
ly ,β,ε

)
. (D.59)

The reduced state’s covariance matrix γ (A)
ly ,β,ε

is thus brought into Williamson’s normal form
through the transformation

(
Q′
P ′

)
= R′β,εTyFy

(
Q
P

)
, (D.60)

where

R′β,ε =
bNy2 c⊕

ly=0

⊕

σ

R′ly ,β,ε. (D.61)
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In terms of creation and annihilation operators, this transformation is given by
(
b
b†

)
= Rβ,εTyFy

(
a
a†

)
, (D.62)

where Rβ,ε = UR′β,εU †,

U =
1√
2

(
I iI
I −iI

)
, (D.63)

and we used UTyFyU † = TyFy .

For the blocks with momenta ly < {0, Ny2 }, the transformation of Eq. (D.62) is given by



bly ,σ=+

b†ly ,σ=+


 = Rly ,β,ε

1√
2



ãly + ã−ly
ã†ly + ã†−ly


 ,



bly ,σ=−
b†ly ,σ=−


 = Rly ,β,ε

1√
2



−iãly + iã−ly
iã†ly − iã

†
−ly


 , (D.64)

where bly ,σ and ãly are vectors of length Nx
2 corresponding to ix ∈ {1, . . . , Nx2 }, Rly ,β,ε are the

blocks of Rβ,ε defined analogously to Eq. (D.61), and

ãixky =
1√
Ny

Ny∑

jy=1

e
− 2πi
Ny
jykyaixjy (D.65)

are the Fourier transformed annihilation operators.

For ky , 0, the blocks γ (A)
β,ε and thus Rly ,β,ε do not depend on ε, which follows from the

definition of Xβ,ε in Eq. (5.10). Thus, Eq. (D.64) leads to to Eq. (5.22) of Chapter 5, where we
suppressed the dependence of Rly ,β,ε on β for better readability.

D.3 Parent Hamiltonian

The covariance matrix of ψβ,ε(s) is given by

(
X−1
β,ε 0
0 Xβ,ε

)
, (D.66)

cf. Eq. (D.10). The following Hamiltonians have a ground state with the same covariance
matrix and are thus parent Hamiltonians of ψβ,ε(s):

Hη =
1
2

2N∑

i,j=1

(
Q
P

)

i

(
Hη

)
ij

(
Q
P

)

j

, (D.67)

where

Hη =



X

1+η
β,ε 0

0 X
−1+η
β,ε


 , (D.68)

η is a real parameter, and we used a general result [199] about the relationship between a
block-diagonal Hamiltonian and the corresponding ground-state covariance matrix.
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To diagonalize Hη , we choose an orthonormal eigenbasis Vε of Xβ,ε:

V tεXβ,εVε = χβ,ε, (D.69)

where

χβ,ε = diag
(
c

(1)
β,ε, . . . , c

(N )
β,ε

)
. (D.70)

[The eigenbasis Vε is independent of β since Xβ,ε depends on β through a term proportional
to the identity, cf. Eq. (5.10).] The symplectic matrix

Sβ,ε =



X
− 1

2
β,εVε 0

0 X
1
2
β,εVε


 (D.71)

transforms Hη into

Stβ,εHηSβ,ε = diag
[(
c

(1)
β,ε

)η
, . . . ,

(
c

(N )
β,ε

)η
,
(
c

(1)
β,ε

)η
, . . . ,

(
c

(N )
β,ε

)η]
.

Thus, the symplectic eigenvalues of Hη are given by
(
c

(k)
β,ε

)η
. Defining single-particle energies

as

ωk =
(
c

(k)
β,ε

)η
, (D.72)

we thus find a parent Hamiltonian
∑N
k=1ωkb

†
kbk of ψβ,ε(s), where the new creation and annihi-

lation operators b and b† are related to the original ones (a and a†) through
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With −i ∂ψ∂sk (s) = i(XQ)kψ(s), it follows that the excited states with a single mode assume the
form

b†k |ψβ〉 =
√

2
(
χ

1
2
β,εV

t
εQ

)

k
|ψβ〉. (D.74)

Chapter 5 discusses the case η = −1, where the parent Hamiltonian becomes

Hη=−1 =
1
2
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with
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β,ε
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β e
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2
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We did numerical computations for a uniform lattice on the circle and a square lattice on the
cylinder and found that the matrix Cmn decays with the distance between the sites m and n.
At large distances, the decay is consistent with a power law on the circle and on the edge of
the cylinder and with an exponential in the bulk of the cylinder.
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2.4 Mapping from a square lattice on the cylinder (left panel) to the complex plane
(right panel) through the exponential. The lines with a constant position in the
open direction of the cylinder become concentric circles in the complex plane
(blue curves). The position along the open direction of the cylinder corresponds
to the radial distance in the complex plane (orange lines). . . . . . . . . . . . . 31
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3.1 Analytically computed spectrum of the Haldane-Shastry model determined in
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nl ...n1〉 with mode number sums k = n1 + · · ·+
nl (horizontal axis). The vertical axis shows the N -independent shifted and
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