
Fakultät für Informatik
der Technischen Universität München

I S S U E - B A S E D M O D E L R E V I E W

helmut n. naughton

Vollständiger Abdruck der von der promotionsführenden Einrichtung Fakultät für Informatik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans Michael Gerndt

Prüfende/-r der Dissertation: 1. Prof. Bernd Brügge, Ph.D.
2. Prof. Dr. Anne Brüggemann-Klein

Die Dissertation wurde am 12.07.2018 bei der Technischen Universität München eingereicht und
durch die promotionsführende Einrichtung Fakultät für Informatik am 31.10.2018 angenommen.

Helmut Naughton: Issue-Based Model Review, Doktor der Naturwis-
senschaften (Dr. rer. nat.), © 2018

A B S T R A C T

Reviews – and their variants, such as inspections and walk-throughs –
have been an integral part of software engineering research and prac-
tice since their introduction by Fagan (Fagan, 1976) and they have
been shown many times to be the most efficient way of removing de-
fects in a software project (Parnas and Weiss, 1985; Porter and Votta
Jr, 1997; Laitenberger and DeBaud, 2000; Ciolkowski et al., 2003; Hed-
berg and Lappalainen, 2005; Bacchelli and Bird, 2013; Salger, 2013).

These researchers focused on code and design artifacts, but not
on models. With the rise of model-based techniques such as Model
Driven Architecture (MDA) and Model Driven Design (MDD), the
review of models is also becoming more important. A key part of
these techniques is the use of incremental and iterative approaches.

Rationale management (Kunz and Rittel, 1970) has been shown to
be an effective way of capturing decisions and proposed alternatives
during the increments and iterations. In many projects, however, the
process of capturing rationale is only done at the end of the project
or for important milestones (Dutoit et al., 2007).

In this dissertation we have developed a method that treats model
reviews as a continuous activity which integrates review feedback
into rationale management. The method reduces review related com-
munication peaks and enables structured externalization of review
knowledge for access by all the stakeholders.

The method has been implemented as a framework for software
engineering projects using a CASE tool or an issue tracker.

It has been validated in two exploratory case studies, demonstrat-
ing the feasibility of issue-based model reviews in practice, specifi-
cally for improving documentation quality, and feedback traceability
and coverage.

iii

Z U S A M M E N FA S S U N G

Reviews - und ihre Varianten, Inspektionen und Walk-Throughs -
sind ein integraler Bestandteil der Software-Engineering Forschung
und Praxis seit ihrer Einführung durch Fagan (Fagan, 1976) und es
wurde mehrfach gezeigt, dass sie der effizienteste Weg zur Entfer-
nung von Defekten in Software Projekten sind (Parnas and Weiss,
1985; Porter and Votta Jr, 1997; Laitenberger and DeBaud, 2000; Ciolkowski
et al., 2003; Hedberg and Lappalainen, 2005; Bacchelli and Bird, 2013;
Salger, 2013).

Diese Forscher waren primär auf Code und Design Artefakte fokus-
siert, nicht auf Modelle. Mit dem Aufkommen von modellbasierten
Techniken wie Model Driven Architecture (MDA) und Model Driven
Design (MDD) nimmt die Bedeutung von Modell-Reviews zu. Ein
Schlüsselaspekt dieser Techniken sind inkrementelle und iterative An-
sätze.

Rationale management (Kunz and Rittel, 1970) ist ein etablierter
Weg, Entscheidungen und vorgeschlagene Alternativen während der
Inkremente und Iterationen zu erfassen. In vielen Projekten wird Ra-
tionale sonst nur am Ende eines Projektes oder zu wichtigen Meilen-
steinen erfasst (Dutoit et al., 2007).

In dieser Dissertation haben wir eine Methode entwickelt, die Re-
views von Modellen als eine kontinuierliche Aktivität behandelt, wel-
che Feedback aus Reviews mit Rationale Management kombiniert.
Diese Methode reduziert Review-bezogene Kommunikationsspitzen
und erlaubt eine strukturierte Externalisierung von Review-Erkennt-
nissen, die allen Stakeholdern zur Verfügung stehen.

Diese Methode wurde als ein Framework für Software Engineering
Projekte, welche ein CASE Tool oder einen Issue Tracker verwenden,
implementiert.

Sie wurde in zwei explorativen Fallstudien validiert, welche die
Umsetzbarkeit von Issue-basierten Modell-Reviews in der Praxis zeig-
ten, spezifisch zur Verbesserung der Dokumentationsqualität, und
zur Traceability von Feedback.

iv

A C K N O W L E D G M E N T S

In the first place, I would like to thank my advisor Prof. Bernd Brügge,
Ph. D. for not only giving me the opportunity to do research at his
chair, but also encouraging me to follow through with my ideas. Dur-
ing the time at his chair I learned a lot about research and about
teaching, and I will always be grateful for having worked with him.
His passion for teaching inspired me, and his dedication to combine
experiences from industry with research and teaching prepared me
well for my following endeavors.

My colleagues at the chair were always there to discuss interesting
topics of research and beyond. Thank you to Harald Stangl, Michaela
Gluchow, Michael Nagel, Yang Li, and in particular to Maximilian
Kögel and Jonas Helming, who got me started at the chair. A special
thank you also to my office mate Florian Schneider, who was a great
source of inspiration and a perfect collaborator for numerous research
ideas.

The staff at the chair was also always there for me, so I want to
thank Monika Markl, Helma Schneider, Uta Weber and Ruth Demmel
for all their assistance.

Without the support of the managing directors at Linova Software
GmbH, Andreas Löhr, Horst Mauersberg, and Tobias Weishäupl I
could not have completed this dissertation. Thank you for allowing
me to finish my research after I transitioned from academia to indus-
try.

I also want to thank my parents, Gudrun Naughton and James
Henry Naughton for always supporting me and believing in me. With-
out them, I would not have been able to do this.

Finally, I also want to thank my friends, who provided moral and
practical support. Thank you to Stefan Fritsch, Andreas Hofmann,
Thomas Kirschmann, and especially to Mario Romsy, who found the
right words at the right time.

v

C O N T E N T S

i intro 1

1 introduction 3

1.1 Terminology . 3

1.2 Components of a model review framework 6

1.2.1 Model-based approach 6

1.2.2 Support for rationale and knowledge manage-
ment . 7

1.2.3 Tailorable process 8

1.2.4 Focus on review of models 9

1.3 Outline . 10

2 related work 11

2.1 Review techniques . 12

2.1.1 Fundamentals . 12

2.1.2 Textbooks . 17

2.1.3 Other publications 20

2.2 Rationale management 22

2.2.1 Issue-Based Information Systems 22

2.2.2 Questions, Options, and Criteria 23

2.3 RUSE, MUSE and Meeting Management 24

2.3.1 Rationale-based Unified Software Engineering
model . 24

2.3.2 Management-based Unified Software Engineer-
ing model . 25

2.3.3 Meeting Management in the Unified Model . . 26

2.3.4 Rationale capture in textual communication . . 27

2.4 Review deliverables . 27

2.5 Towards better support for model review 30

2.5.1 Shortcomings of current model review approaches 30

2.5.2 Requirements for a next generation model re-
view framework 32

ii main 35

3 the issue-based model review model 37

3.1 Overview . 37

3.2 IBMR Meta-Model . 40

3.2.1 Basics of the RUSE/MUSE meta-model 40

3.2.2 Rationale . 43

3.2.3 Review model elements 45

3.3 Review Traceability . 46

3.3.1 Traceability and review coverage 46

3.3.2 Traceability and change monitoring 47

3.3.3 Traceability and project management 47

vii

viii contents

3.3.4 Examples . 47

3.4 Tracking of review-related changes 48

3.4.1 Follow-up on review-related changes 49

3.4.2 Validation . 49

3.4.3 Integration with model change tracking 49

4 issue-based model review process 51

4.1 Issue-Based Model Review 52

4.1.1 Review actors . 52

4.1.2 Review use cases 53

4.1.3 Classification of defects in the IBMR framework 59

4.1.4 Review processes 64

4.2 Review Process Automation 70

4.2.1 Specifying rules 70

4.2.2 Automated reviews 70

4.2.3 Scheduling . 71

4.3 Review Process Variations and Improvements 71

4.3.1 Continuous Review 72

4.3.2 Concurrent Review 73

4.3.3 Other variations 74

4.3.4 Meta-reviews and process improvements 76

5 case studies 77

5.1 Background . 77

5.1.1 Research method 77

5.1.2 Tooling . 78

5.2 DOLLI6 . 78

5.2.1 Case Study . 81

5.2.2 Findings . 83

5.2.3 Limitations . 83

5.3 NTT Data . 84

5.3.1 Case study . 86

5.3.2 Findings . 87

5.3.3 Limitations . 88

5.4 Survey . 88

5.4.1 Survey results . 89

5.4.2 Threats to validity 93

5.5 Summary . 94

6 conclusion 95

6.1 Summary . 95

6.2 Future work . 96

bibliography 97

L I S T O F F I G U R E S

Figure 1.1 Google Books n-gram results for reviews and
inspections between 1968 and 2008 9

Figure 1.2 Google Books n-gram results for software en-
gineering models between 1968 and 2008 . . . 9

Figure 2.1 Inspection use cases from Fagan 13

Figure 2.2 Technical reviews according to IEEE 1028 . . . 15

Figure 2.3 Inspections according to IEEE 1028 16

Figure 2.4 Use case diagram of IEEE 1028 17

Figure 2.5 Meta model overview of RUSE according to
Wolf, 2007 . 25

Figure 2.6 Muse model structure from Helming, 2011 . . 26

Figure 2.7 The project management model according to
Helming, 2011 26

Figure 2.8 Meeting Management Model (Naughton 2008) 27

Figure 2.9 Comparison of review deliverables. 27

Figure 3.1 The IBMR Meta-Model (overview) 38

Figure 3.2 Basic elements of the RUSE/MUSE model . . . 41

Figure 3.3 The basis of the RUSE/MUSE meta-model: Mo-
delElement and ModelLink 42

Figure 3.4 Model elements used to capture rationale . . . 43

Figure 3.5 Model elements proposed to capture reviews . 45

Figure 4.1 Use cases in the Model Review Process 53

Figure 4.2 Use cases with actors in the Model Review Pro-
cess . 54

Figure 4.3 Activity Diagram for Model Review with IBMR 55

Figure 4.4 Use cases with actors in the model review pro-
cess with IBMR framework support 59

Figure 4.5 IBMR model element review states 60

Figure 4.6 No fix or simple fix - Step 1 61

Figure 4.7 No fix or simple fix - Step 2 61

Figure 4.8 Complex fix step 1 61

Figure 4.9 Complex fix step 2 62

Figure 4.10 Complex fix step 3 62

Figure 4.11 Discussion required step 1 63

Figure 4.12 Discussion required step 2 63

Figure 4.13 Discussion required step 3 64

Figure 4.14 Discussion required step 4 64

Figure 5.1 Time line of the DOLLI6 project 78

Figure 5.2 Time line of the iOS13 project 85

Figure 5.3 Perceived complexity of the review process . . 89

Figure 5.4 Improvement to documentation 90

ix

Figure 5.5 Incorporation of feedback 90

Figure 5.6 Quality of RAD 91

Figure 5.7 Quality of SDD 91

Figure 5.8 Personal benefit of documentation 92

Figure 5.9 Value of reviews 92

Figure 5.10 Comparison of issues per developer between
projects using rationale management 94

L I S T O F TA B L E S

Table 5.1 Proposals per issue 87

Table 5.2 Proposals per solution 88

x

Part I

I N T R O

1
I N T R O D U C T I O N

Reviews in software engineering projects (e.g. technical reviews, in-
spections, or walkthroughs) have been the subject of many handbooks
(Freedman and Weinberg, 1990; Hollocker, 1990; Gilb and Graham,
1993; Wheeler et al., 1996; Rösler et al., 2013) and have been shown
by multiple studies to be very efficient in reducing the number of
errors in artifacts which were reviewed (e.g. Fagan, 1976; Parnas and
Weiss, 1985; Porter and Votta Jr, 1997; Laitenberger and DeBaud, 2000;
Ciolkowski et al., 2003; Hedberg and Lappalainen, 2005; Bacchelli and
Bird, 2013; Salger, 2013).

For some professions, for instance medicine, reviews are even man-
datory (Jetley et al., 2006), following defined standards (CLSI GP31-A,
2009). In other areas, such as financial services, audits with outside
participation are common (Croll, 2003). Reviews, however, are expen-
sive to conduct (Johnson, 1994), context dependent (Ciolkowski et al.,
2002; Ott and Raschke, 2012; Bacchelli and Bird, 2013), and need to fol-
low specific principles and processes in order to be effective (Shirey,
1992).

Although models are an important tool of conceptualizing and
structuring large projects, and reviews in early stages of the software
development process are more cost effective since defects are cheaper
to fix when found early, the focus of most reviews at the moment
is still on the code level. Since most projects are not yet fully model
driven, and formal methods are expensive to implement, a balanced
way of reviewing models is needed which helps designers as well as
developers but does not put too much strain on the process.

In this chapter we will first introduce some terminology and then
present the components of a framework for integrating rationale man-
agement with model review. The chapter concludes with an outline
of this dissertation.

1.1 terminology

In the area of reviews and knowledge management, there are a num-
ber of similar sounding terms with distinct meaning. In the following,
we define these terms, clarify whether they are relevant to the con-
tents of this dissertation, and specify potential deviations from the
meaning of the terms in this dissertation.

The definition of issue used in this dissertation is taken from the
original definition of Rittel and Kunz (Kunz and Rittel, 1970) in their
paper on Issue-Based Information Systems (IBIS):

3

4 introduction

Issues are the organizational ‘atoms’ of IBIS-type systems.
Among their properties are:

• Issues have the form of questions.
• The origins of issues are controversial statements.
• Issues are specific to particular situations; positions

are developed by utilizing information from the prob-
lem environment and from other cases claimed to be
similar.

• Issues are raised, argued, settled, ‘dodged’, or substi-
tuted.

The following definitions are taken from the IEEE Standard for Soft-
ware Reviews and Audits (IEEE Std 1028-2008, 2008):
A walkthrough is defined as

A static analysis technique in which a designer or pro-
grammer leads members of the development team and
other interested parties through a software product, and
the participants ask questions and make comments about
possible anomalies, violation of development standards,
and other problems.

Walkthroughs are not part of this dissertation, which defines pro-
cesses for reviews in the sense below, without one person leading the
others through the relevant material. The issue-based capture process,
however, might also prove beneficial in this case and could be subject
to further investigation.
A review is defined as

A process or meeting during which a software product, set
of software products, or a software process is presented to
project personnel, managers, users, customers, user repre-
sentatives, auditors or other interested parties for exami-
nation, comment or approval.

There are two subcategories of reviews, the technical review and the
managerial review.
A technical review is defined as

A systematic evaluation of a software product by a team
of qualified personnel that examines the suitability of the
software product for its intended use and identifies dis-
crepancies from specifications and standards. [...] Techni-
cal reviews may also provide recommendations of alterna-
tives and examination of various alternatives.

This type of review is concerned with software engineering models
or other software engineering artifacts.
A managerial review is defined as

1.1 terminology 5

A systematic evaluation of a software product or process
performed by or on behalf of management that monitors
progress, determines the status of plans and schedules,
confirms requirements and their system allocation, or eval-
uates the effectiveness of management approaches used to
achieve fitness for purpose.

This type of review is concerned with project management questions.
This dissertation focuses on technical reviews, in particular on the

review of models, which are part of a software product and technical
in nature.
An inspection is defined as

A visual examination of a software product to detect and
identify software anomalies, including errors and devia-
tions from standards and specifications. [...] Inspections
are peer examinations led by impartial facilitators who are
trained in inspection techniques. Determination of reme-
dial or investigative action for an anomaly is a mandatory
element of a software inspection, although the solution
should not be determined in the inspection meeting.

Since inspections require specially trained facilitators, they are out of
scope for this dissertation.

Similar to walkthroughs, inspections could also use an issue-based
model such as the one presented in this dissertation to better note
down findings, but the corresponding processes are not tailored to-
wards inspections and their formal structure. Nonetheless, as described
in Chapter 4 ,we can integrate the more formal aspects of inspection
methods into our review process, especially the setup for the search
for a solution. This fits well together with the use of issues for cap-
turing a problem or a question independent of its proposed or actual
solutions.

An audit is defined as

An independent examination of a software product, soft-
ware process, or set of software processes performed by a
third party to assess compliance with specifications, stan-
dards, contractual agreements, or other criteria. [...] An
audit should result in a clear indication of whether the
audit criteria have been met.

As audits require third party assessors, they are out of scope for this
dissertation.
An anomaly is defined as

Any condition that deviates from expectations based on
requirements specifications, design documents, user doc-
uments, standards, etc., or from someone’s perceptions or

6 introduction

experiences. [...] Anomalies may be found during, but not
limited to, the review, test, analysis, compilation, or use of
software products or applicable documentation.

A defect is defined as

An imperfection or deficiency in a work product where
that work product does not meet its requirements or spec-
ifications and needs to be either repaired or replaced.

In this dissertation, we will later model anomalies as issues and
defects as action items.

1.2 components of a model review framework

The framework presented in this dissertation aims to alleviate these
problems for model review by targeting three aspects at once. First,
it proposes a formal model for entities related to model reviews
(Chapter 3), second it integrates this model with existing rationale
and knowledge management techniques, and third it provides corre-
sponding processes and artifacts (Chapter 4) – all as part of a unified
software engineering model (Wolf, 2007; Helming, 2011).

The following sections highlight the components behind the design
of the Issue-Based Model Review framework and serve as basis for
the needs the framework has to satisfy.

1.2.1 Model-based approach

Integrating reviews directly into a comprehensive software engineer-
ing model such the unified model proposed by Wolf (2007) allows for
usage of task, rationale, and knowledge management techniques to
support the review process, resulting in three key benefits.

First, integration of reviews into the unified model provides trace-
ability and context. This allows review results to be viewed in context
as part of the project, with traceability links to other relevant project
artifacts.

Second, representing reviews as first class citizens of a unified soft-
ware engineering model enables software engineers to formally spec-
ify the rules according to which the review should be done and rep-
resent the rules themselves as part of the overall model.

Third, integration into a unified model allows for automation of
tasks expressed in a machine-readable format (e.g. in the Object Con-
straint Language OCL (ISO, 2012)). Automation enables reviewers to
concentrate on rules which can only be evaluated by humans and
uses the computer to check what can be checked algorithmically.

Since the framework is designed to track changes to both the model
and the rules according to which a review is conducted, it is possible

1.2 components of a model review framework 7

to directly see which reviews are out of date, because the model has
changed, and therefore need to be redone. On the one hand, changes
to the model necessitate checking if the changed model elements (as
well as the model as a whole) are still valid according to the review
rules. On the other hand, changes in review rules require the entire
model to be examined again, since different review rules can cause
defects in model elements which were previously considered defect-
free according to the old rules.

Framework support for the common tasks of re-checking a changed
model and re-checking a model according to a changed rule set pre-
vents unnecessarily checking already reviewed artifacts, as well as
missing reviews of artifacts which were changed since their last re-
view. Especially in safety or security critical domains, this is impor-
tant since regulations in such domains often mandate keeping proof
of formal reviews. It can also help in projects with inexperienced de-
velopers, such as large student project courses with industrial clients.

1.2.2 Support for rationale and knowledge management

In order to integrate the findings of model reviews into the model it-
self, a way of representing these findings needs to be established. For
this purpose, we took a look at the field of knowledge management
and in particular at rationale management. As part of this disserta-
tion, we present a framework for the integration of a simple form
of rationale management as part of a unified software engineering
model with a model for representing reviews and their findings.

With the framework, reviews are an intrinsic part of the software
model and therefore part of the knowledge management base of the
project. For many projects knowledge preservation in form of ratio-
nale management is rather difficult, especially for beginners, because
according to Shum (1996), rationale management consists of three
cognitive tasks.

The first task is classification, “deciding what kind of an idea one
has”, i.e. the task of determining the right way to capture a piece of
knowledge. The second task is naming, “how to label [the idea] mean-
ingfully”, i.e. the task of labeling the piece of knowledge in a way that
others (and oneself, after sufficient time has passed) can easily find
it again. Ideally, it also gives the reader a rough understanding of
its contents without having to completely read its details. Finally, the
third task is structuring, “how [the idea] relates to other ideas”, i.e. al-
lowing for traceability between a piece of knowledge and other pieces
of information or knowledge.

While the task of naming remains complicated1, the framework
helps with classification and structuring of rationale from reviews. It

1 “There are only two hard things in Computer Science: cache invalidation and nam-
ing things” (Phil Karlton) – http://martinfowler.com/bliki/TwoHardThings.html

8 introduction

allows rationale construction to be done “at runtime”. When reviews
are conducted to ensure quality, the framework allows their results
to be directly integrated into the rationale base of the project. This
is preferable to reconstructing rationale “after the fact” (Dutoit and
Paech, 2012).

1.2.3 Tailorable process

We designed the framework to be usable even in the context of pro-
jects staffed with beginners. In order to substantiate this claim, we
conducted two case studies in university projects with industrial clients
(c.f. the chapter on case studies). The framework had to be able to
be used by inexperienced developers, both in terms of software en-
gineering knowledge in general, as well as proficiency in conducting
reviews under time pressure, and with as little overhead as possi-
ble. Since these projects are conducted with industrial clients, who
expect results they can use in practice, a trade-off had to be made
between producing high quality models and creating an executable
deliverable. The review process had to be simple enough to prevent
developers from falling into analysis paralysis (Brown et al., 2000),
but also robust enough to improve the model and to prevent develop-
ers from just “hacking” away. So the processes had to be tailorable to
support this setting.

The framework allows for tailorable processes, from a simple check
by one person, through informal, team-internal reviews, up to for-
mal technical reviews with outside participation (c.f. the section on
Review processes. These processes are broken down into individual
steps to enable the adaptation of the review process to project specific
needs. We also introduce a strategy for enabling reviews to be done
as a continuous activity throughout the entire software development
life-cycle, instead of the currently used event-based discrete strategy
(c.f. the section on Continuous Review).

Teaching or improving software engineering skills is an important
part of these projects, but this takes time away from the project. Since
the same is true for project-based organizations, especially ones will-
ing to employ large numbers of inexperienced (and therefore cheaper)
programmers, such organizations can also benefit from the use of this
framework. In large project-based organizations, projects benefit from
a model-based approach, which provides context for novices and al-
lowes for better dissemination of knowledge in order to cope with
different levels of experience of employees.

The framework even allows for the review of reviews themselves
by providing a meta-process to help with process improvement tasks,
since reviews and the according rules are part of the model (c.f. the
section on Meta-reviews and process improvements). Relevant indica-
tors such as number and type of defects, mean-time to fix, number of

1.2 components of a model review framework 9

re-opened issues can be readily obtained by querying the underlying
model.

1.2.4 Focus on review of models

Figure 1.1 shows the results of Google Books n-gram searches for the
most common types of reviews and inspections.

Figure 1.1: Google Books n-gram results for reviews and inspections be-
tween 1968 and 2008

One sees a rising of interest in reviews and inspections, starting
with Fagan’s seminal paper on reviews (Fagan, 1976). The concept
was first codified in the “IEEE standard glossary of software engineer-
ing terminology” by the IEEE, 1983. Code reviews and inspections are
the main focus of publications during that timeframe, other types of
reviews and inspections are less commonly written about. While re-
quirements reviews are at least somewhat common (Gorschek and
Svahnberg, 2005), model reviews remain a niche subject.

Figure 1.2: Google Books n-gram results for software engineering models
between 1968 and 2008

Models, however, have risen in importance for software engineer-
ing purposes (c.f. Figure 1.2) and are now the driving force behind
an entire software engineering approach (Selic, 2003).

In order to prevent rationale from getting lost, the framework should
allow defects found during reviews to be modeled as issues, and
combining them with proposals and criteria according to which they

10 introduction

should be evaluated. These issues should then be anchored to meet-
ings or milestones in order to prevent them from getting overlooked
as the project continues.

1.3 outline

The outline of this dissertation is as follows.
We first discuss related work in Chapter 2 and analyze shortcom-

ings with regards to review of software engineering models. In Chap-
ter 3 we define one of the two principal components of Issue-Based
Model Review, the IBMR meta-model, and cover matters related to
traceability and change tracking. The other component, the IBMR Re-
view Process, is described in Chapter 4. We present the core process
and its variants, as well as options for tailoring it to a specific project.
The evaluation of IBMR is presented in Chapter 5 where we look
at two case studies and a survey. The dissertation concludes with a
summary and an outlook in Chapter 6.

2
R E L AT E D W O R K

Inspection, a formal method of reviewing software engineering arti-
facts (in particular source code), was developed at IBM by Michael
Fagan (Fagan, 1976). It describes a process by which a trained group
of people closely study selected software engineering artifacts for the
presence of defects. These defects are then recorded and subsequently
fixed. Inspection is a formal process consisting of multiple tasks from
preparation to rework and follow-up, employing people in many dif-
ferent roles, such as author, reader, or tester, and it is led by a moder-
ator.

In software engineering projects inspections are used to improve
the software quality and reduce the number of defects of the soft-
ware system. Most of these inspections, however, are done on the
level of source code, although inspections on other levels of abstrac-
tion are also possible. Many modern-day projects, such as projects
employing model driven development methodologies, would benefit
from inspections on a higher level of abstraction. This would enable
project participants to find defects much earlier in the project and on
a higher level of abstraction – for example defects in the requirements
during an analysis review. This would reduce the cost of correcting
them significantly.

Since inspections according to processes like Fagan’s are consid-
ered heavyweight and elaborate by some, those projects may choose
substitute inspections by more informal processes like reviews or
walkthroughs. Especially in agile projects, fully formal inspections
are rare – Ambler (2004) even argues that they can be considered as
a process smell. The results of more informal review processes, how-
ever, are often not acted upon as much as hoped for and so decisions
are delayed, and information is lost – there should be a person explic-
itly responsible checking if corrective actions were taken on the basis
of the review’s result (Doolan, 1992).

At the same time, models are becoming more and more complex by
incorporating an increasing amount of technical and organizational
aspects. They ideally offer rich traceability information, letting the
user determine the relevant context. Integrated models like the MUSE
software engineering model (Helming, 2011) offer even deeper inte-
gration into project management. MUSE proposes to integrate the
previously disparate models for modeling systems and for modeling
project management related information. Helming showed that inte-
grating these models helps developers and project managers better
understand the context their decisions and tasks exist in. By using

11

12 related work

the available traceability information, developers and managers can
choose to be informed by the CASE tool itself about changes rele-
vant to them. If a developer for instance worked on a task related to
a specific component in the system, they are most likely interested
in changes to that component, or components that directly interface
with it. A project manager benefits from MUSE being able to make
suggestions which developer is best suited to work on a task regard-
ing a specific component, based on the developer’s history of tasks
involving this or related components.

By extending this integrated model with review centric model ele-
ments, we propose to make reviews first class citizens of the model-
based software engineering process and to take advantage of trace-
ability information obtained from this integration, allowing for con-
nections not only with the system model and the artifacts reviewed,
but also with project management information.

2.1 review techniques

In the following section, we summarize the most common and in-
fluential review techniques and point out their shortcomings with
regards to the needs listed in the previous chapter.

2.1.1 Fundamentals

The basic terminology and concepts for reviews originate from Fa-
gan’s initial publication or from the IEEE Standard for Software Re-
views and Audits.

Fagan

Most review and inspection techniques in use today are based on the
inspection method developed by Michael Fagan at IBM in the early
1970’s and published under the title “Design and Code Inspections to
Reduce Errors in Program Development” in the IBM Systems Journal
in 1976 (Fagan, 1976). Fagan further detailed his inspection method
in the follow-up publication “Advances in Software Inspection” in
1986 (Fagan, 1986). He designed inspections to be a formal method
of reviewing software engineering artifacts (with particular focus on
source code), describing them as a “formal, efficient, and economical
method of finding errors in design and code”(Fagan, 1976).

2.1 review techniques 13

Planning

Author

Overview

Preparation

Inspection

Rework

Follow-up

Reader

Tester

Moderator

«initiate»

«initiate»
«participate»

«participate»«participate»

«initiate»
«partici

pate»
«participate»

«participate»

«init
iate»

«participate»

«participate»«participate»
«participate»

«initiate
»

Figure 2.1: Inspection use cases from Fagan

In his first publication on inspections, Fagan (1976) distinguishes
between moderator, designer, coder (or implementer), and tester. The
moderator is the “key person” for conducting reviews, and along
with the tester remains unchanged in his responsibilities in the sec-
ond publication (Fagan, 1986). The designer and coder/implementer
in this set of roles are combined into the author role for the second
publication. The reader role which is defined in Fagan (1986) is not
present in the first publication.
Fagan (1986) defines the following actors and use cases (as seen in Fig-
ure 2.1), which are the basis for the roles of subsequent inspection/re-
view process variants (note that there may be more participants than
just those roles, but these then serve no dedicated function for the
purposes of the inspection and just provide feedback):

moderator The moderator manages the inspection team, sched-
ules the meeting, reports on its outcome, and follows up on
potential re-work. They ideally are from outside the project and
have received training in team coaching and moderating inspec-
tions but are also a good programmer.

author The author is the creator of the artifact (design or code doc-
ument) and is present to answer questions related to it.

tester The tester “views the product from the testing standpoint”,
i.e. is primarily concerned with aspects like verification, valida-
tion, and testability.

reader The reader “paraphrases the design or code as if they will
implement it” and brings an outside perspective into the team.

The planning use case is mainly done by the moderator, who checks
that the entry criteria for an inspection are met (with regards to the

14 related work

maturity of the artifacts to be inspected), chooses the participants,
arranges their availability, and schedules the meeting.
The overview use case is initiated by the author, who provides more
information to the group on the artifacts to be inspected. The other
roles, e.g. reader, are also assigned here if this was not done before.
The preparation use case is done by all inspection participants indi-
vidually. This use case is meant to familiarize them with the artifacts
to be inspected and to let them prepare for their roles.
The inspection use case is the heart of the process and is when the
group gets together under the leadership of the moderator and checks
the artifacts for defects. The inspection session is meant for finding
defects and not for trying to find solutions, so the moderator is re-
sponsible for keeping the meeting on track.
In the rework use case, the author resolves the defects found during
the inspection.
Finally, in the follow-up use case, the moderator verifies that the de-
fects are correctly resolved and that no new defects were introduced.

Inspections are scheduled before implementation begins (to verify
the correctness of the requirements), during implementation to check
the code, and at the end of the implementation to ensure the correct-
ness of the entire component and to check if it satisfies the require-
ments.

IEEE 1028:2008

The Institute for Electrical and Electronical Engineering (IEEE) pub-
lished a “Standard for Software Reviews and Audits”. Of all the spec-
ifications presented in this standard, we focus on the ones for tech-
nical reviews and inspections. Management reviews, walkthroughs,
and audits are out of the scope for this dissertation.

General properties of systematic reviews
IEEE defines three characteristics which are needed for systematic

reviews. The first is team participation, the second is documentation
of results, and the third is documented procedures for conducting a
review.

Technical reviews
According to IEEE 1028, a technical review is a “systematic evalua-

tion of a software product by a team of qualified personnel that exam-
ines the suitability of the software product for its intended use and
identifies discrepancies from specifications and standards.” A techni-
cal review is different from a regular review, which is less systematic
and is used to gather feedback from relevant stakeholders ranging
from project participants to clients, or even to end users. Management
reviews focus on project status and planning and are not covered in

2.1 review techniques 15

this dissertation, although the methods presented here could be used,
if the project management itself was done in a model-based approach.

For technical reviews, IEEE 1028 defines the following roles, which
can be viewed as actors in the resulting use case model.

decision maker The person whose decision making should be im-
proved by the review.

review leader The person responsible for conducting the review.
recorder The person responsible for capturing the outcome of the

review.
technical reviewer The people conducting the actual review.

Besides the roles above, IEEE-1028 also defines the following pro-
cedures for conducting technical reviews. These procedures (as seen
in Figure 2.2) can be seen as use cases which the actors defined above
initiate and participate in.

 Planning the
review Preparation Examination Management

preparation
Rework/
follow-up

Figure 2.2: Technical reviews according to IEEE 1028

management preparation In order for a technical review to be
successful, management needs to allocate time and resources,
provide training, support conducting the review, and remedy
any discrepancies found during the review.

planning the review The review leader needs to select suitable
reviewers and assign specific responsibilities, schedule the re-
view meeting, and set a timetable for the entire review process.

preparation Every technical reviewer should prepare for the re-
view meeting by familiarizing themselves with the artifacts to
be reviewed before the actual meeting. If they discover any dis-
crepancies they should note them down to be collected later.

examination The actual examination takes place in form of a meet-
ing. In this meeting, participants closely examine the artifacts
to be reviewed and check them for completeness, consistency,
rules or conformity to regulations, and suitability to their in-
tended purpose. They then decide on the importance and ur-
gency of the findings and the recorder notes them down.

rework/follow-up The review leader follows up on the imple-
mentation of the findings of the review, ensuring all findings
are remedied.

Inspections according to IEEE-1028
An inspection is defined as a “visual examination of a software prod-

uct to detect and identify software anomalies, including errors and

16 related work

deviations from standards and specifications.” It can also target non-
functional requirements and check for quality or be used to collect
data or inform decision making.

Inspection teams consist of two to six members, the author of the
artifact to be inspected always among them. IEEE-1028 defines the
following roles and responsibilities for an inspection team:

inspection leader Responsible for planning and organizing, se-
lecting the inspection target, preparing and conducting the in-
spection meeting and issuing the inspection outcome.

recorder Responsible for recording the inspection outcome.
reader Responsible for presenting the software product to the in-

spection team in a “comprehensive and logical fashion”.
author Responsible for providing details about the software prod-

uct and for doing rework later on.
inspector Responsible for “identifying and describing” anomalies

in the software product.

The procedures defined for inspections (see Figure 2.3) are quite
similar to those for technical reviews, though they differ slightly in
their execution.

 Planning the
inspection Preparation Examination Management

preparation
Rework/
follow-up

Figure 2.3: Inspections according to IEEE 1028

management preparation As with technical reviews, manage-
ment support is needed for time and resources, training, sup-
port, and follow-up.

planning the inspection The author collects the artifacts to be
inspected for the inspection leader. The inspection leader assem-
bles an inspection team and schedules a meeting. They also set
anticipated inspection rate (pages or lines of code per hour).

preparation The inspection team individually inspects the arti-
facts before the actual examination meeting.

examination During the inspection meeting, the inspection team
collects anomalies in a list. At the end the team makes an exit
decision, either “Accept with no verification or with rework ver-
ification”, “Accept with rework verification”, or “Reinspect”.

rework/follow-up The inspection leader has to ensure that re-
work is executed as decided on.

The use case model of inspections following the IEEE-1028 stan-
dard is shown in Figure 2.4.

2.1 review techniques 17

Collect artifacts

Inspector Inspection leader

AuthorReader

Recorder

Plan inspection
Prepare

inspecting
artifacts

Examine
artifacts

Present
artifacts

Record results

Assemble team

Set inspection
rate

Schedule
inspection
meeting

Collect
anomalies

Make exit
decision

Accept with no
verification or
with rework
verification

Accept with
rework

verification

Reinspect

«extends»

«extends»

«extends»

Figure 2.4: Use case diagram of IEEE 1028

2.1.2 Textbooks

Multiple textbooks cover the topic of reviews and inspections.

Gilb and Graham

Gilb and Graham (1993) wrote one of the definite textbooks on soft-
ware inspections. In their book, they provide historical context and
describe the benefits of software inspections. In the first half of the
book, they break the inspection process up into four parts – Initiation,
Checking, Completion, and Process Improvement. They especially go
into detail on the responsibilities of the inspection leader.

In the second half of the book, they present six case studies show-
ing the results of applying software inspections in practice.

Rösler et. al.

Rösler et al. (2013) provide a German language textbook on reviews.
Since this book was published after the introduction of agile software
development methods, they also look at the relationship of reviews
and agile software development. They emphasize that reviews are es-
sential no matter what development methodology the project follows.

According to a study presented in this book, 95% of all defects are
found during individual preparation (or individual checking in the
terminology used by Gilb and Graham).

They also provide a list of reading techniques for reviews.

ad hoc There is no special technique, the reviewers just take a look
at the artifacts.

checklist-based The reviewers have a checklist and check the ar-
tifacts according to the items on the checklist.

18 related work

perspective-based The reviewers check the artifacts according to
the point of view of a specific stakeholder. This is especially
useful for requirements documents.

abstraction-driven This technique is also called “Reading by
stepwise abstraction”, and is targeted at design and code doc-
uments, in contrast to requirements documents. The reviewers
start with the basic structure and successively extract function-
ality, which is then compared to the specification.

They stress that follow-up to reviews is important to check up on
the rework and to make release decisions.

The costs of the reviews in terms of effort spent by the review par-
ticipants is outweighed by preventing costlier corrections later on
by finding major defects early, by providing process feedback and
suggestions for improvement, by reducing the error rate of authors
(through learning from review results and applying this knowledge
to future work), and by providing metrics.

Overall they sketch an estimated ROI (return on investment) as

ROI =
Rework effort saved − Review effort

Review effort

Freedman and Weinberg

Freedman and Weinberg (1990) specify the following activities for
their review process: Selecting Reviewers, Conducting the Review,
and Reporting the Results of the Review.

Freedman and Weinberg define three types of reviews: Informal
Review, Formal Technical Review, and Project Control Review.

Informal reviews are performed team-internally, are technical in na-
ture, and can be conducted with low effort. Formal technical reviews
are the standard type technical review with dedicated reviewers from
outside the team itself, and as their name implies have a technical fo-
cus. Project control reviews are managerial instead of technical and
are aimed at determining the progress of the project and the progress
towards milestones or such. Project control reviews may be partially
based on the findings of a number of formal technical reviews.

Freedman and Weinberg distinguish formal technical reviews from
informal reviews in three aspects: First, a formal review has a writ-
ten report, i.e. a formally structured summary of the findings of the
review team available to all interested stakeholders, while an infor-
mal review might only have internal notes or no real written record
at all. Second, active and open participation. It is important that all
participants know their roles and responsibilities and are doing their
share for the success of the review. Third, formal reviews emphasize
the full responsibility of all participants for the quality of the review.

2.1 review techniques 19

They also emphasize the need for consensus, since only recording
comments (without discussing the issues and coming to a consensus)
allow reviewers to shirk responsibility and not find solutions to the
issues they uncover.

Reviews need to be open, i.e. more than one person has to partic-
ipate in the review. This acts as a check against reviewers who are
uninterested, not prepared, or misunderstand the material.

Issues should not be discussed during the review. Since the pur-
pose of the review is to find as many issues present in the artifacts
under review as possible, discussing them during the review meet-
ing takes away valuable time. Also, because of the time pressure, the
solutions tend to be less well thought out then when solutions to the
issues are discussed separately. Although this might be difficult to
accomplish at first, since many technically minded people are quick
to jump to thinking about solutions, separating collecting issues from
solving them leads to more efficient reviews and to better solutions
to these issues.

The report for a formal technical review consists of three parts: The
first is what was reviewed, i.e. the names or identifiers of artifacts un-
der review and their producers. Second, the report specifies who did
the reviewing. This section of the report contains the names, the roles,
and signatures of the review participants. Third, the report states the
conclusion reached during the review.

Freedman and Weinberg differentiate between major and minor
revisions for changes made necessary by reviews. A minor revision
lets the issue be fixed without necessitating a new review. A major
revision requires another review after the fixes have been made.

Freedman and Weinberg make related issues part of the documen-
tation of a work unit. This holds only for unresolved issues, resolved
issues in their approach are only preserved in the Summary Report
as part of the historical archive.

For reports, the sheer number of issues is not a good metric. Freed-
man and Weinberg observe that making the number of issues a metric
only leads to project participants changing the way they write issues.
If it is encouraged to find as many issues as possible, they will split
up defects they find into units as small as they can make them, and
report any inconsistencies they find as issues, thus potentially bury-
ing more important ones. Conversely, if a project having many issues
is considered undesirable, project participants will reduce the num-
ber of reported issues by raising the bar of what is considered to be
an issue, and by grouping (potentially tangentially related) issues to-
gether into one. Freedman and Weinberg instead propose to look at
the outcome of the reviews, i.e. how many major or minor revisions
were needed for the artifact under review.

An inspection evaluates material “confining attention to a few se-
lected aspects, one at a time”.

20 related work

Informal reviews allow a producer of an artifact to gain feedback
from familiar people before gathering feedback from outside sources.
They are less expensive, since they are done ad hoc and in a much
smaller scale.

Freedman and Weinberg suppose that the focus on code as op-
posed to other software related artifacts for reviews is due to the
“tendency to blame errors on [the coding] step”, since it is the last.

Hollocker

Hollocker (1990) also distinguishes between project reviews (focused
on the software development process and aimed at gathering informa-
tion about the status of a project, as well as possibilities for process
improvements), product reviews (focused on the software under de-
velopment and aimed at assessing the quality of the software product
and at uncovering defects), and audits (aimed at meeting regulatory
or legal requirements). Again, audits are out of the scope of this dis-
sertation, although model reviews as described in Chapter 4 can be
used to prepare for audits.

Product reviews are the type of reviews which are of the most in-
terest to us for the purposes of this dissertation. Hollocker defines
three subclasses of product reviews. First, there are technical reviews.
This type of review focuses on deviations of the software artifact un-
der review from its specification (verification) or intended purpose
(validation) and is conducted by a small group, usually a leader, a
scribe, and a regular team member. The second type is the software
inspection. Software inspections are closely related to technical re-
views but are held with a larger group of participants (including a
dedicated moderator and reader in addition to the scribe) and follow
more of a checklist-based approach, focusing on potentially necessary
rework of the software artifact. Finally, the third type of product re-
view is the walkthrough. In contrast to the first two types of review,
the walkthrough is led by the author of the software artifact under re-
view. They present the artifact and explain its purpose and structure,
while the rest of the team ask questions and try to find defects in the
artifacts presented.

2.1.3 Other publications

The idea of using inspections for improving code quality was pro-
posed by Michael Fagan (Fagan, 1976) in 1976. In his paper he details
the necessary process steps and roles. He also reports on a study on
coding productivity.

In 1986, Fagan (1986) looks back at 14 years of code inspections and
presents improvements on the original review ideas. Among other
changes, Fagan proposes extending the inspection method to require-

2.1 review techniques 21

ments, documentation, test cases, and other software engineering ar-
tifacts instead of focusing only on source code.

Ambler (2004) in his book on agile model-driven development sees
reviews as a kind of “process smell” and claims that agile methods
do not need reviews anymore, since test- or behavior driven develop-
ment can find defects more quickly and cheaply. On his blog “Agile
Modeling” (Ambler, 2003), however, Ambler admits that even in an
agile context, reviews can sometimes be useful. Sometimes, regula-
tory requirements may necessitate conducting reviews. For products
not created collaboratively, reviews can bring a better understanding
and a feeling of shared ownership. Reviews can also serve as proof for
stakeholders that the project is progressing well. For larger projects,
they can be used as proof that the chosen architecture is suitable.
Finally, if outside guidance is desired, reviews are a way of incorpo-
rating such guidance in an agile context.

Reviews are not limited to the code alone. Fey and Stürmer (2007)
propose to use inspections for quality assurance in model-based de-
velopment. They suggest a combination of automated checking and
manual inspection to improve the quality of models. Their approach,
however, is not targeted at software engineering models (such as
UML models), but at mathematical models and models used for sim-
ulation (e.g. Matlab). The only real software engineering model they
discuss is the requirements model, which they represent in the re-
quirements tool DOORS. They also propose to review the require-
ments model entirely in DOORS, a tool not well suited to such a
purpose.

Kemerer and Paulk (2009) conducted a study showing that “both
higher design quality and higher code quality are consistently associ-
ated with higher software quality as measured by fewer test defects”.

Babar and Gorton (2009) surveyed the state of the practice for archi-
tecture review and found that while many of the surveyed companies
practiced architecture review of some sort there was much room for
improvement.

From their survey, they reported that “The majority of architecture
reviews are informal, without a systematic approach guiding the re-
view process.” Only 40% of respondents of the survey used checklists,
and less than 20% used metrics or similar approaches (respondents
were allowed to give more than answer). The majority of respondents
(80%) answered that the primary technique was personal experience.

They also found “practitioners [to be] more inclined to leverage
individual review techniques (for example, scenarios) from the re-
search community rather than use a complete method to support ar-
chitecture review processes.” This indicates that a tailorable approach
consisting of activities which can be adjusted to project specific needs
might be more easily accepted than monolithic approaches.

22 related work

Finally, “most architecture reviews occur on an ad hoc basis. Ad
hoc reviews might not provide long-term process improvement to in-
crease an organization’s return on investment.” This shows that pro-
viding a guiding structure in which reviews can be held can help im-
prove organizational learning and save money later on in the project.

Especially the tool support was found to be lacking severely, with
only limited specialized tool support available out of the box. While
some companies were reported to have developed their own tooling,
the authors state their hope that specifically designed review support
tooling will make it easier for more companies to enjoy the benefits
of architecture review.

Bernhart et al. (2010) provide an approach for reviews in agile soft-
ware development. While code reviews have many benefits, they are
usually seen as time-consuming and expensive, which makes them
at odds with typical agile development. The authors therefore pro-
pose a continuous approach to code reviews to reduce the overhead
and to make code reviews more feasible in an agile setting. Com-
mits into the source code management system (SCM) automatically
trigger the creation of reviews, which are assisted by showing file
diffs obtained from the SCM. They differentiate between post-commit
reviews, which happen after the changes are already accepted into
the SCM, and pre-commit reviews, which are conducted before the
changes are actually integrated into the source code on the SCM.

Gorschek and Svahnberg (2005) found that “After the initial speci-
fication requirement reviews were not common practice.”.

2.2 rationale management

The field of rationale management has produced many competing ap-
proaches. Since the advantages and disadvantages of different man-
ners of expressing captured rationale are outside of the scope of this
dissertation, we will only briefly highlight the history of rationale
management by describing the IBIS and QOC approaches, and then
move on to rationale management in the unified model, which forms
the basis of rationale management used in the remainder of this dis-
sertation.

2.2.1 Issue-Based Information Systems

The idea of Issue-Based Information Systems (IBIS) was introduced
by Kunz and Rittel (1970) to help with political decision making. Ini-
tially IBIS was conceptualized as a human operated system, which
was only later replaced with computers. The authors characterize IBIS
as a system to “[guide] the identification, structuring, and settling of
issues raised by problem-solving groups, and [provide] information
pertinent to the discourse”.

2.2 rationale management 23

The following concepts are defined by IBIS:

topic A topic is the basic area, often denoted by a “trigger phrase”.
issue An issue is a point of contention related to the topic, which is

caused by participants having different positions.
argument An argument is a statement made to support a certain

position.
question of fact A Question of Fact is a part of the discussion

where objective answers exist, and experts can be called on to
provide answers.

position A position is a point of view of a participant with regards
to a certain issue.

model problem Model problems correspond to scientific or man-
agerial models and are applicable to many situations.

The last three of these concepts are not relevant for the purposes of
this dissertation, since they focus on objective answers, comparable
problems, and positions of individuals. We mainly focus on issues
and arguments in the following.

Issues are managed by IBIS in the “Issue bank” subsystem. This
subsystem contains all recorded issues and can be queried by their
status (living, settled or abandoned, and latent). IBIS keeps track of
the discussion using an “Issue map”, which graphs the relationship
between issues, questions of fact, arguments, etc.

The other subsystems of IBIS are the “Evidence bank”, which con-
tains answers to questions of fact, the “Handbook”, a collection of
model problems, a “Documentation system” to support search and
analysis, and a “Topic list”.

IBIS is mean to help the participants to “[develop] more structured
pictures of the problem and its solutions” through a “counterplay of
questioning and arguing”.

2.2.2 Questions, Options, and Criteria

Questions, Options, and Criteria (QOC) by MacLean et al. (1991) is a
semi-formal notation used in Design Space Analysis. The authors de-
scribe the key concepts as follows: “The main constituents of QOC are
Questions identifying key design issues, Options providing possible
answers to the Questions, and Criteria for assessing and comparing
the Options.”

QOC was constructed to be useful both while designing, and while
redesigning or reusing at a later time. For this, it supports represent-
ing design rationale, with reasons for why a specific design was cho-
sen and what the consequences of changing it later might be. It can
also be used to facilitate communication about design.

A question gives rise to multiple options, representing different de-
sign possibilities. An option, when chosen, can lead to more questions

24 related work

being raised. Criteria are dimensions in the design space according
to which trade-offs of design decisions, i.e. options, can be assessed.
An option can be rated according to multiple criteria. These ratings,
called assessments, can be either positive or negative and are usually
expressed as binary choices, although multiple levels would also be
possible (though the authors recommend against this, because of the
added complexity).

The notation was designed to represent unstructured discussions
and can be employed using only a pen and paper system. Its main
goal is to “lay open for argument the elements of the rationale”. The
biggest difference to IBIS is the lack of elements denoting statements
of fact, and the focus on criteria as a means of assessing the impor-
tance of options, independently of individual persons. While IBIS has
the notion of arguments, criteria are more specific and measurable in
comparison.

2.3 ruse , muse and meeting management

The model presented in this dissertation is based on the results of
research on three previous software engineering models and extends
them by focusing on an aspect not explicitly supported by these mod-
els.

The three underlying models, the Rationale-based Unified Software
Engineering model, the Management-based Unified Software Engi-
neering model, and the Meeting Management in the Unified Model
are detailed in the following sections.

2.3.1 Rationale-based Unified Software Engineering model

Rationale-based Unified Software Engineering (RUSE) was developed
by Wolf (2007) as a way of integrating rationale directly into software
models by creating a meta model allowing for direct connections be-
tween technical model elements such as use cases or classes and ratio-
nale or task-oriented model elements such as issues (open questions)
or tasks. These connections are made possible by representing all pos-
sible model elements in a consistent manner, with a unified represen-
tation for all artifacts related to the software engineering process, and
by allowing for arbitrary dependency traces between them, as shown
in Figure 2.5.

The RUSE model “integrates system models, collaboration models
and organizational models”, improving inefficiencies in the commu-
nication of distributed project participants, and reducing inconsisten-
cies between related development artifacts, such as software models
and the corresponding documentation. System models are the mod-
els traditionally used in software engineering, with artifacts such as
stakeholders, requirements, hazards, and UML models. These models

2.3 ruse , muse and meeting management 25

User

Role

Project History

Version

HistoryLink

Project Data ModelElement

ModelLinkBranch

reader/author/creator

*

*
1 1

1
1..*

1..*1

1

*
1

0..1

0..1

*

2
1 *

*

*

subelements

parent

*

Figure 2.5: Meta model overview of RUSE according to Wolf, 2007

are used to model the system under development itself, i.e. its goals,
architecture, and structure.

The collaboration model is not directly related to the system under
development, but instead represents communication related to the
development, such as documentation, requests for clarification, com-
ments, open questions, tasks, and milestones to name a few. These
artifacts have been seen as separate by most other software engineer-
ing frameworks and were therefore insufficiently integrated with the
rest of the project artifacts.

The organizational model models the organizational units of the
project, i.e. the teams and participants. Modeling these elements ex-
plicitly allows creating dependency traces between e.g. project partici-
pants, their assigned tasks, and the subsystems of the software under
development related to these tasks.

In summary, RUSE addresses the problem of inconsistent models,
inefficient collaboration, and lost rationale in software projects by pro-
viding a singular meta-model encompassing the system model, col-
laboration model, and organizational model all in one. Rationale is
captured as part of the collaboration model in the form of Issues, Pro-
posals, and Criteria, similar to the QOC (Questions, Options, Criteria)
approach by MacLean et al. (1991).

2.3.2 Management-based Unified Software Engineering model

The Management-based Unified Software Engineering model (MUSE)
builds on RUSE. MUSE extends the RUSE meta-model by provid-
ing more explicit support for project management modeling artifacts
such as sprints, milestones, and iterations. These project management
artifacts are as much part of the model as traditional system model
elements such as requirements, scenarios, use cases and classes. Both
subtypes of model element can be grouped into projects as part of
sections, as seen in Figure 2.6. This integrates more context into the

26 related work

meta-model, allowing for automating tasks like bug assignments and
supporting change awareness.

Project ModelElement

ProjectManagement
ModelElement

System
ModelElement Section

0..1

0..1

* *

Figure 2.6: Muse model structure from Helming, 2011

The project management model as defined by MUSE is shown in
Figure 2.7. Tasks are modeled in the form of action items, input by
external stakeholders is captured in the form of requests, the rationale
model is again based on QOC (MacLean et al., 1991), and grouping
of work items can be done via work packages. These work packages
can be used to model iterations and milestones. Project participants
are modeled as users and can be grouped together in teams as part
of the organizational unit composite pattern.

ActionItem

WorkItem

WorkPackageRequest 1

*

Issue

Organizational
Unit

User

Team
*

*

* *
participant

1 assignee *
*1 reviewer

**
predecessor

successor

Figure 2.7: The project management model according to Helming, 2011

2.3.3 Meeting Management in the Unified Model

Building upon the Management-based Unified Software Engineer-
ing model, “Meeting Management in the Unified Model” (MMUM)
(Naughton, 2008) merged MUSE with the meeting concepts presented
in “Object Oriented Software Engineering” by Bruegge and Dutoit
(2009), which in turn are based on concepts developed at XEROX
(Doyle and Straus, 1982). Doyle and Straus propose three main parts
to a meeting, the first being “status and information sharing”, the
second “discussion”, and the third “wrap up”. MMUM introduced
an explicit Meeting model element and structured the meeting sec-
tions according to Bruegge and Dutoit (2009), as shown in Figure 2.8.

2.4 review deliverables 27

Meeting

Issue
MeetingSection

MeetingSection

Issue Project Data

Composite
MeetingSection

ActionItem
MeetingSection

1 *

1

*

1

*

1

*

Figure 2.8: Analysis model of the meeting integration into the unified model
from Naughton, 2008.

A MMUM meeting contains an ActionItem meeting section for
status and information sharing, in which the ActionItem that were
worked on since the last meeting are captured and reported on. It also
contains an Issue meeting section, which includes all the open/un-
solved questions to be discussed during the meeting, or which arose
during the meeting. Finally, a second ActionItem meeting section is
used to capture all ActionItems which were created during a meeting.

2.3.4 Rationale capture in textual communication

Complementary to the Unified Model, new approaches to rationale
capture have been proposed. REACT (Alkadhi, 2018) focuses on an-
alyzing textual communication between developers in chat tools or
issue trackers in order to capture rationale. REACT shows that with
automated assistance, communication artifacts can be used to facil-
itate capture and reconstruction of rationale. This approach can be
used in addition to the approaches described above, to capture ratio-
nale from textual communication and therefore can help enrich the
rationale model part of the unified model.

2.4 review deliverables

Part of every review is the documentation of the outcome. In the
following, we describe the different ways the results of a review can
be made persistent (shown in Figure 2.9):

Traceability Creation Comprehension Implementation

Document-
based

separate -- ++ -- ++

integrated + + o +

Issue-based
separate - + + +

integrated ++ o ++ --

Figure 2.9: Comparison of review deliverables.

28 related work

Document-based separate

The findings of the review can be written down in a stand-alone doc-
ument. This can either be done in an analog way by taking notes a
piece of paper, or digitally with a writing software such as TextEdit,
or Word, a spreadsheet software such as Excel, or a note-taking appli-
cation such as Evernote.

While capture on paper allows for the quickest capture and easi-
est addition of additional rich content such as sketches or diagrams,
paper is also the most problematic in terms of referring back to the
results. It is hard to distribute, since only one original copy exists,
which must either be Xeroxed or scanned in order to be provided to
the other participants. Also, managing and storing paper copies is a
cumbersome task.

There are, however, also some disadvantages to separate documents
in digital form. The review results are captured separate from the
subject matter which was reviewed, which means that it is hard to
read the document and immediately understand what is being writ-
ten about and where the concrete problems lie. On a similar note, it is
hard to trace from the defects mentioned in the report to the affected
model elements. While some tools provide mechanisms to link to spe-
cific model elements, this is not universal and also not all digital note
taking applications support the concept of linking.

Advantages Disadvantages

All in one location Disjunct from the subject matter

Easy to read/write Hard to find/trace

Discussion not well-structured

While this approach provides ease of use for both authors and read-
ers of review documentation, the lack of traceability and of structure
pose major problems.

Document-based integrated

The main alternative to noting down findings in a separate document,
is integrating the findings with the subject matter. With support for
comments or attachments, the findings can be done in-line via com-
ments or attached to the document reviewed.

The advantages of this approach are that the findings are easy to
note down, and also to understand for a reader. In the integrated
approach, the results are more closely linked to the document being
reviewed. In the case of attached results, at least the document they
refer to is traceable. In the case of in-line attachments it is even bet-
ter, here the comments can be attached to the relevant parts of the
document.

2.4 review deliverables 29

Unfortunately, this solution still does not provide optimal traceabil-
ity. Since traceability links are not explicit, they can be lost when the
document is restructured or changed. Comments to deleted model
elements are not preserved, leading to loss of information. Also, the
discussion about model elements is only captured ad hoc and not in
a unified way.

Advantages Disadvantages

Easy to write Discussion not well-structured

Attached to the document Traceability problems

This approach lacks the comfort and power of dedicated modeling
and rationale management tools (such as semantically meaningful
traceability links, customized editing features, or support for automa-
tion).

Issue-based separate

The issue-based separate approach captures defects found during a
model review in the form of action items and issues, in a tool separate
from the one used for modeling. This approach has the advantage of
capturing discussions in a unified way and according to best prac-
tices. It also gives the users more freedom in choosing the tools they
want to use for a particular purpose, which helps with acceptance.
Using separate tools brings with it the usual problems of traceability,
discussed by Gotel and Finkelstein (1994) and others. A good discus-
sion and useful hints on dealing with traceability issues this can be
found there.

Advantages Disadvantages

Discussion well-structured Traceability problems

Detached from document

Due to the lack of support for traceability, context awareness or
review automation may suffer with this approach.

Issue-based integrated

Findings in a review can also be captured in the issue-based inte-
grated approach. This presupposes a tool suitable for modeling not
only the system itself, but also aspects of the project itself (such as ra-
tionale management), as proposed by Helming (2011). One such tool
is Unicase, which supports modeling the system model as well as
the project model. Findings are expressed as action items and issues
attached to the model elements in question with explicit traceability
links.

30 related work

Advantages Disadvantages

Discussion well-structured Depends on unified model

Findings traceable to source

Attached to the document

This approach combines traceability support with support for ra-
tionale management.

2.5 towards better support for model review

The quality of models in software engineering projects suffers from
many different problems. First, developers are often not experienced
at modeling, and may not have enough understanding of current soft-
ware engineering concepts and terminology (Black, 1994). Second, de-
velopers may only work on projects part-time and as such they bal-
ance work on the project with other demands on their time. They
need to switch contexts often, which makes a cognitively hard job
like modeling even more difficult, since the modeler needs to recre-
ate the detailed understanding they had when last working on the
model. Third, they often have trouble partitioning the problems in a
suitable way and thus produce overlapping work, which needs to be
brought into sync. Finally, developers often see modeling as more of
an academic exercise for which they do not see the immediate bene-
fit, as opposed to programming, which they are more familiar with.
Because of this, it is necessary to motivate and assist them in the cre-
ation and enhancement of models and to show developers what they
can gain from a larger upfront investment of time and effort. One of
the ways of improving model quality is by giving them better tools
and processes with which to review their models. This dissertation
provides a model such tools can use and accompanying processes.
The model and processes were evaluated in a pair of case studies.

2.5.1 Shortcomings of current model review approaches

Currently, model reviews are mostly captured in form of stand-alone
documents, describing what was reviewed and what the findings
were. For example, they may be stored as comments on a wiki-page
for the model. They are usually not linked to the changed model over
time, meaning that updated versions of the model do not allow access
to previous review results, and issues and their resolutions are hard
to reconstruct. A suitable model review environment needs to allow
for traceability between old versions of the model, the issues found in
these models, their resolutions, and the models resulting from them.
These models would then also be traceable throughout the entire soft-
ware engineering process down to the source code level.

2.5 towards better support for model review 31

If there is no unified way of capturing review results, this also leads
to the danger of duplication of issues. If issues are recorded in sepa-
rate documents, it is more likely that information already captured is
duplicated, wasting valuable review time. With a unified way of cap-
ture, review results are easier to see, thus avoiding duplication. Also,
the tool itself can help spotting duplicates by doing textual analysis
on the recorded issues.

The rules and guidelines according to which a model review is
conducted, should also be persisted. Currently, there is often no easy
way of seeing the rules regarding which a model was already checked,
making reviews hard to reproduce. Also, such persisted guidelines
can serve as a basis for reviews later in the project, or in subsequent
projects.

When model reviews are done on the basis of exported diagrams or
diagrams uploaded to wikis or other collaboration sites, it is not guar-
anteed that the model that was reviewed is the latest version of the
model. A next generation model review approach should ensure that
only the latest model is available for review, with older versions only
being accessible for reference. Reviews should also be attached to
specific versions of the model, such that review comments are always
consistent with the model shown. In current approaches, a model
might have its own wiki page with associated comments, which may
be inconsistent to the latest version of the model shown on the page.

If there is no tool support for model review, it is hard to guarantee
that all model elements have indeed been checked. A tool supported
version of the process can keep track which model elements have
been checked and which have not been, reducing errors of omission
in the review process.

If model review is conducted with tool support, this allows to calcu-
late quality metrics on the models, listing what percentage of model
elements have been checked according to which guidelines. Ensur-
ing model quality otherwise becomes a difficult task, since self- or
peer-checking is hard for inexperienced developers.

Automatic tool support can also help improving the frequency of
reviews, by keeping track of the review schedule, alerting when re-
views are delayed, or if no reviews have been scheduled for a certain
amount of time. Currently, reviews are often scheduled ad hoc or
only slightly in advance, often as a result of informal or formal feed-
back on the model. The predictability of the review schedule would
be much improved if it were more integrated into the development
process.

32 related work

2.5.2 Requirements for a next generation model review framework

In this section, we present a list of functional requirements a frame-
work targeted at model review should address in order to cope with
the issues mentioned above.

Specifically targeted at model review

Current available review techniques and tools do not offer specific
support for models. Also, unified modeling environments as devel-
oped by Wolf (2007) and Helming (2011) offer capabilities for special
treatment of models in reviews which are not available in other mod-
eling tools. They can leverage traceability and context to better under-
stand a model element and can store the review history together with
the revision history.

Integration reviews with project model and system model

With the integration between project model and system model devel-
oped by Helming (2011), reviews can be related to elements of the
system model which were reviewed, as well as to the project model,
which allows to specify e.g. results tasks. Also, the full information
on creation and history of a model element to be reviewed is readily
available to reviewers. With current processes and tooling, the cre-
ation and change history of a model element is not necessarily imme-
diately obvious. Associated iterations or sprints are not accessible.

Enable delayed decisions

Decisions about defects are sometimes not immediately possible. In-
put by project participants not attending the meeting, or even by out-
side experts may be necessary. A next generation model review frame-
work needs to support capturing open questions and tracking them
in order to ensure they are resolved in a timely manner.

Capture rationale at runtime

According to Dutoit and Paech, 2012, rationale should be captured
during the project execution, not after the fact. By treating reviews
and rationale as separate concepts, the effort necessary to keep both
up to date and relevant is not shared. By integrating these concepts
and embedding them into a unified software engineering model, re-
views can form the basis of rationale capture.

Separate discussions from the review

Johnson, 1994 writes “The expense of review meetings and the com-
plexity of software dictates that review sessions not evolve into pro-

2.5 towards better support for model review 33

blem-solving sessions”. A review framework needs to address this
and offer a solution to separate review from discussion, but at the
same time capture and store any suggestions which are brought up
during review.

Support change tracking on a small scale

With current approaches, there is no explicit support for review and
change tracking on a small scale (i.e. model element) level. Often,
reviews are done at a higher level of granularity than the individual
model element, e.g. at diagram level, and small incongruences are
lost. The unit of analysis for model reviews should be the individual
model element itself.

Follow-up on the resolution of defects

Without tight integration into the rest of the development process,
review results can be forgotten, and the underlying defects are not re-
solved, or resolved too late, when subsequent steps have already been
started based on the faulty, incorrect models. A system for model re-
views needs to ensure that review results are treated as a regular part
of the development process, meaning that the follow-up is directly
integrated into regular meetings and traceable to the model itself.

Part II

M A I N

3
T H E I S S U E - B A S E D M O D E L R E V I E W M O D E L

The IBMR meta-model builds upon the MUSE meta-model which
combines system modeling and project modeling as proposed by
Helming (2011). The MUSE meta-model itself is based on the RUSE
meta-model by Wolf (2007).

As described in Chapter 2 MUSE combines two previously separate
aspects. First, the system under development, which is modeled with
the help of standard techniques, such as UML diagrams, textual use
cases, and functional and non-functional requirements. Second, the
project itself, which is modeled with the help of action items and bug
reports, work packages and milestones, users and groups, meetings,
and rationale in the form of an issue model.

The chapter is structured as follows: First, we give a high-level
overview of the meta-model in Section 3.1. In Section 3.2 we go into
specifics of both the model elements newly introduced by the IBMR
meta-model as well as their connections to the model elements al-
ready present in the MUSE meta-model1 which are relevant for con-
ducting reviews. For each class, its attributes and its associations
are described in detail, accompanied by UML diagrams for a visual
overview. Whenever a class is referenced in the text, it is formatted in
the following way: SomeModelElement.

Wolf (2007) defines ModelElement as “the most abstract and generic
modeling class that represents any concept of the software engineer-
ing domain. Classes of the IBMR meta-model are subclasses of this
generic superclass ModelElement and are therefore collectively referred
to as model elements. A model element can have many child model ele-
ments and can be linked by Model Link classes to many other model
elements.” In the remainder of the diagrams in this chapter, model
links are depicted as UML associations, and all depicted classes are
model elements unless noted otherwise.

3.1 overview

Figure 3.1 gives an overview of all relevant model elements and as-
sociations. The packages in the diagram represent the three main
components of the IBMR meta-model, the basic RUSE elements and
issue-model, the MUSE project management extensions, and finally

1 Since many of the model elements referred in this chapter have their origin in the
RUSE meta-model, we refer to them as being part of the RUSE/MUSE meta-model
(the MUSE meta-model is a true superset of the RUSE meta-model and is generally
regarded as its successor).

37

38 the issue-based model review model

the IBMR specific extensions. We start with the model element cen-
tral to the review process, the ReviewResult.

RUSE

MUSE

IBMR

ModelElement

ReviewResult

OrgUnit

Rule

Machine
InterpretableRule

NaturalLanguage
Rule

re
vi
ew

er

1
0..*

0.
.*

0.
.*

1Issue

0..*

Meeting

«interface»
Anchor

Individual
Examination

1..*

1

Proposal

Criterion 0..*

Review

0.
.*

1
0.
.*

0.
.1

Milestone

WorkItem

ActionItem

0..*

0.
.1

is
su
e

criteria

Solution
1..*
underlyingProposals

0.
.1

1

so
lu
tio
n

is
su
e

pr
op
os
al
s

1.
.*

1

Assessment 0..*
1

proposal
assessments

0.
.*

as
se
ss
m
en
ts

0.
.*

1
cr
ite
rio
n

as
se
ss
m
en
ts

reviewResult

re
vi
ew

R
es
ul
ts

re
vi
ew

er

examination

re
vi
ew

R
es
ul
tsre
vi
ew

reviews
rule

re
vi
ew

R
es
ul
ts

modelElement
UnderReview

an
ch
or

suggested
WorkItems

workItems

Figure 3.1: The IBMR Meta-Model (overview)

The model element ReviewResult expresses the result of a full ex-
amination of the model element under review at a point in time. It
uniquely refers to one ModelElement, whereas a ModelElement can
have multiple ReviewResults (according to different criteria and at
different points in time). The time of the ReviewResult is recorded,
as is the version of the ModelElement that was reviewed for mod-
els which are under version control. It has associations to the per-
son or group responsible (the reviewing OrgUnit), their Individu-

alExamination if applicable, the Rule the Review conformed to, the
Review which can group connected ReviewResults, the WorkItems de-
tailing the work to be performed or the questions to be discussed, and
the Anchor specifying the point in time the ReviewResult should be
checked upon. A ReviewResult without any attached WorkItems sig-
nifies that a ModelElement was reviewed and deemed in compliance
with the Rule of the review. A ModelElement with linked ReviewRe-

sults which themselves are linked to WorkItems is either defect, if all

3.1 overview 39

corresponding WorkItems are not yet resolved, or was defect and has
been fixed, if all corresponding WorkItems are resolved.

A number of thematically connected ReviewResults are grouped
together in a Review. A thematic grouping might be according to
project phase, or according to project specific regulations. ReviewRe-
sults can also be grouped temporally, for instance all ReviewResults
resulting from a particular team meeting. The Review model element
can be viewed as corresponding to a formal document summarizing
the findings of a round of examinations and contains links to all indi-
vidual ReviewResults.

A Rule describes a set of criteria according to which the Review-

Result is determined. A ReviewResult can only be associated with
one Rule, but each Rule can be used in multiple ReviewResults. A
Rule can either be an instruction in natural language, modeled as
a NaturalLanguageRule, or a machine interpretable rule, modeled
as a MachineInterpretableRule. Rules can refer to Properties of
a ModelElement to clearly indicate which part of the ModelElement

should be focused on during the review. NaturalLanguageRules spec-
ify the check to be performed on the model element under review
in the form of human readable text detailing the necessary criteria
for the model element to pass review. Logical expressions are used in
MachineInterpretableRules to exactly specify the checks to be done
in a computer interpretable format (e.g. an OCL constraint).

The Properties (attributes and relationships) of the ModelElement

which are to be examined are related to each Rule. This allows tools
to detect if the Properties of a ModelElement which already had been
reviewed have changed, and to flag the ModelElement flagged as un-
reviewed and as to be checked again.

The person or group responsible for producing a ReviewResult is
modeled as an OrgUnit from the MUSE meta-model. OrgUnits can be
individuals (Users) or Groups. The results of an individual examiner
reviewing a ModelElement is captured as an IndividualExamination.
The synthesis of all IndividualExaminations forms as a ReviewRe-

sult.
An IndividualExamination uniquely belongs to a ReviewResult

and represents the examination of a ModelElement according to the
rules of a Review by a single OrgUnit, that is a group or an individ-
ual. An IndividualExamination can also have a relationship with a
number of WorkItems constituting the work to be done in order to fix
a defect.

If a ModelElement is defect according to the Rules of the Review,
then, depending on the complexity of the fix, WorkItems are used
to capture the tasks to be done in order to fix the defect or the dis-
cussions to be held in order to fix it. A WorkItem can either be an
ActionItem, representing a task to be done, or an Issue, representing
a question to be solved.

40 the issue-based model review model

The ActionItem model element represents a task with an assignee,
a due date, and a status which can be tracked. It can also contain
additional information such as the corresponding software life-cycle
activity, preceding or succeeding ActionItems, estimations or effort,
and priorities.

The Issue model element from the MUSE meta model is used to
capture defects detected in the examination. A ModelElement is re-
garded as valid according to a Rule if the last ReviewResult regarding
this Rule had a Review without any Issues or ActionItems attached.
Issues are classified by their priority (how important they are) and
their urgency (how fast a decision has to be made).

In order to facilitate solving issues, Proposals can be made and
attached to the Issue. Proposals constitute suggestions on how to
find Solutions to solve an Issue. These Proposals are evaluated with
Assessments according to Criteria also captured during the review.

Proposals can contain the Changesets necessary to perform the op-
erations on the model to bring it into the proposed state. For details
on executable proposals see Koegel (2011).

Because some Issues cannot be decided immediately, ReviewRe-
sults are anchored to an Anchor which is either a Meeting or a Mile-

stone. This allows managers and developers to track the progress
towards solving Issues and ensures that no Issues get lost. Every
ReviewResult with open Issues attached to it needs to have an Anchor

with a date laying in the future, thus ensuring a decision on the Issue

is scheduled.

3.2 ibmr meta-model

The IBMR meta-model consists of three packages. Section 3.2.1 de-
tails model elements from RUSE/MUSE, that the IMBR meta-model
builds most closely upon. Section 3.2.2 goes into detail specifically
on the implementation of rationale management used. Finally, Sec-
tion 3.2.3 provides specifics on the extension to the RUSE/MUSE
meta-model introduced to model Review related classes.

3.2.1 Basics of the RUSE/MUSE meta-model

The model presented in this dissertation builds on the RUSE/MUSE
model described in Section 2.3.1 and Section 2.3.2. It incorporates
predominantly a variant of the Issue model of RUSE, which will be
detailed in Section 3.2.2, and the basic RUSE/MUSE model elements
described in this section, mainly model elements for modeling tasks
and organizational units.

3.2 ibmr meta-model 41

+activity:ActivityType

Issue

Proposal

Criterion
0..*

0..*

0..1

+dueDate:Date
+estimate:Integer
+effort:Integer
+priority:Integer
+resolved:Boolean

WorkItem

+done:Boolean
+activity:ActivityType

ActionItem
issue

criteria

Solution

1..*
underlyingProposals

0..1

1

solution

issue

proposals

+value:Integer

Assessment
0..* 1

proposalassessments

0..*

assessments
0..*

1criterion

assessments

+firstName:String
+lastName:String
+email:String

User
1

assignee assignments
0..*

+location:String
+starttime:Date
+endtime:Date

Meeting

Milestone

Figure 3.2: Basic elements of the RUSE/MUSE model

A UML representation of ModelElement and ModelLink is shown in
Figure 3.3. Model elements can form two kinds of graphs. First, tree-
like hierarchies with their subelements association, in which one model
element (the parent) can have multiple sub elements, but each model
element has at most one parent. Second, arbitrary graph edges via
model link classes, which act as binary associations with exactly one
source and one target. These model links allow traceability between
any classes in the MUSE meta-model. Since model links are model
elements themselves, they also can have a name and description and
carry semantic information about the kind of link they represent.

A ModelElement has a uniqueID, uniquely identifying the model
element, a name, identifying the model element to a human reader
and briefly indicating its contents (often with a short sentence or
fragment) and a description, which provides a detailed character-
ization of the model element. This characterization can be as detailed
as necessary, since it is only shown when a user wants to obtain de-
tailed information about the model element instance. It also provides
a mechanism for being versioned with a version number (the ver-
sioning of software engineering models is described in Koegel, 2011).
Model elements also keep track of their creator and creationDate.

42 the issue-based model review model

+id: UniqueID
+name: String
+description: String
+modificationDate: Date
+version: Version
+creationDate: Date
+creator: String

ModelElement

ModelLink parent

subelements

0..1

*source/ target

links*

2

Figure 3.3: The basis of the RUSE/MUSE meta-model: ModelElement and
ModelLink

WorkItem is the superclass of all model elements representing units
of work. For a unit of work to be considered a WorkItem, it has to sat-
isfy three conditions. First, it has to have a specific person responsi-
ble for its outcome. Second, the have a due date, which distinguishes
them from e.g. todos, which do not specify such a time frame. Third,
they can be resolved, meaning they have clearly defined metrics for
deciding whether they have been successfully completed or not.

Subclasses of WorkItem are model elements such as ActionItem,
Issue, BugReport, or Milestone which will be described in the fol-
lowing. Properties they have in common are having an OrgUnit as
an assignee, and a dueDate. WorkItems also capture the associated
estimated effort as estimate, expended effort as effort, and their
priority as priority, all in the form of integers. A WorkItem also has
a boolean attribute resolved, which reflects whether this work on
this item has been completed.
ActionItem represents the simplest type of WorkItem, a task to

be completed. In addition to the attributes inherited from WorkItem,
ActionItem can keep track of the project activity (e.g. analysis, de-
sign, implementation, testing). In the IBMR framework, ActionItems
are used to track the simplest types of defects, which can be repaired
by a clearly definable task.
OrgUnit is the superclass of the composite organizational structure

built out of users and groups. It provides both classes with com-
mon attributes such as an ID, a list of groupMemberships, and a list
of all assignments in form of WorkItems. The three model elements
OrgUnit, User, and Group form a composite pattern which enables
modeling of hierarchical org-charts. Cross-connections in the report-
ing structure can be modeled by adding additional ModelLinks repre-
senting them.
User represents a participant of the project, who can take on units

of work. The model element allows to specify the firstName and
lastName for each user, as well as the email address as a way of
getting in contact with the user.
Group model element allows for grouping organizational units as

part of a composite pattern. Groups can be used to map to teams,

3.2 ibmr meta-model 43

departments, business units, or companies. They can contain other
groups or individual users.
Meeting models the attributes of a gathering of project participants

to accomplish a stated goal. Meetings reflect the scheduled starttime

and endtime, the location, the facilitator, who is responsible for
guiding it to archive its stated goal, the minutetaker who notes down
the questions, decisions, tasks, and information items arising during
the meeting, and the timekeeper, who keeps an eye on the clock in or-
der to help the meeting progress smoothly and not get bogged down
in details. It also specifies all other participants of the meeting, so
that the setup of the meeting can be reconstructed. Meetings are seg-
mented into multiple sections (e.g. information exchange, discussion,
recap), which can reference relevant ActionItems and Issues.

Meetings are useful in the context of reviews as a means of schedul-
ing. In order to incorporate Review results quickly and following up
on the results regularly, the checkup can be linked to a meeting of the
project team. Since these occur in regular intervals in short sequence,
it allows to schedule them at any point in the development process.

Milestones are specific dates marking the deadline for a project de-
liverable. A milestone can be the completion of a requirements docu-
ment, or the delivery of a software feature. In case the Review results
are closely tied to a project phase, the checkup can be linked to a
specific Milestone. These checkups occur less frequently than those
connected to the meeting anchor, but this approach is often better suit-
able for projects which follow a more waterfall-like process model.

3.2.2 Rationale

Rationale capture can be done in many forms with varying degrees
of formality and complexity. In principle any system for capturing
rationale can be used for implementing IBMR. For our framework, we
chose the version of the rationale management used in RUSE/MUSE
(Wolf, 2007; Helming, 2011) shown in Figure 3.4.

+activity:ActivityType

Issue

Proposal

Criterion
0..*

0..*

0..1issue

criteria

Solution

1..*
underlyingProposals

0..1

1

solution

issue

proposals

+value:Integer

Assessment
0..* 1

proposalassessments

0..*

assessments
0..*

1criterion

assessments

Figure 3.4: Model elements used to capture rationale

Issues represent a problem to be solved and are recorded with
the name of the Issue phrased in form of a question. The Issue’s
description can expand upon the question and convey additional

44 the issue-based model review model

details, while model elements related to the Issue can be linked to
from the relatedModelElements attribute. The resolved status of the
Issue is false (i.e. the Issue is open), as long as there are no pro-
posals, or none of the existing proposals have been selected as the
resolution to the Issue. An Issue has an assignee in order to assign
the accountability for solving the Issue to a single and identifiable
person. An Issue can also have a dueDate specified in order to sig-
nify the date at which the Issue must have been solved. An Issue

can be closed (resolved is true) by selecting a solution based on one
or a combination of multiple associated proposals. A closed Issue

can be reopened if it has to be reevaluated in the light of new infor-
mation, new developments, or a change in the project itself. To solve
more complex issues, criteria for evaluating the different propos-
als can be specified and rated in form of assessments. As with the
ActionItem, an Issue may also track the corresponding activity to
which it belongs.

Proposal symbolizes a suggestion made for solving an issue. Pro-
posals represent depersonalized ideas, following the principles of
Fisher and Ury (1981). They have a short summary of the idea as
their name, with more intricate detail as their description, and rel-
evant model elements linked from their relatedModelElements at-
tribute. They are related to the issue they are meant to solve and
are linked to it. They also link to the assessments relevant to them.
Solution models the result of the decision making process and

links the solved issue to the solving proposal(s) in the form of under-
lyingProposals for the issue.
Criterion expresses a constraint restricting the solution space for

a specific issue. They convey individual preferences which may con-
flict with each other. They are meant to guide the decision-making
process by allowing participants to express preferences and empha-
sis for certain options, i.e. proposals. Decision making is done taking
into account a decision matrix, listing the proposals on one axis, the
criteria on the other, and the suitability of a given proposal for the
relevant criterion in the respective entry of the matrix. As mentioned
before, if necessary a number of proposals may be selected to solve
a particular issue. The actual ratings of proposals according to crite-
ria, which are expressed in the entries of the matrix are modeled as
assessments and linked to from each criterion.
Assessment rates a proposal according to a criterion. This is ex-

pressed in the form of an integer value. Higher valued assessments
are better than lower valued ones.

3.2 ibmr meta-model 45

3.2.3 Review model elements

This section lists the model elements introduced to incorporate re-
views into the RUSE/MUSE software engineering model as shown in
Figure 3.5.

+hasOpenDefects():Boolean
+getWorkItemsToBeDone():WorkItem[]

+date:Date
ReviewResult

Rule

+logicalExpression:String

AutomatedRule

ManualRule

10..*

IndividualEvaluation

1..*

+date:Date

Review

0..* 1

1 reviewResult

evaluations

reviewResults review reviews rule

«interface»
Anchor

0..1anchor

Figure 3.5: Model elements proposed to capture reviews

Review bundles a number of reviewResults all belonging to the
same rule. It also reflects the date of the Review and can specify an
anchor determining the occasion on which to check if the detected
defects were already corrected.
ReviewResult is the combined assessment of a set of reviewers, if

a modelElement is valid according to the review’s Rule at a date. It
lists the individual assessments of the reviewers, and the resulting
workItems. A ReviewResult can convey whether the corresponding
model element has unresolved defects (hasOpenDefects()), and the
work still to be done (getWorkItemsToBeDone()).

IndividualExamination reflects the assessment of an individual
reviewer as part of a reviewResult. It lists all suggestedWorkItems
suggested by the reviewer to fix all defects of the model element ac-
cording to the Rule of the review.

Review results are anchored to events in the time-line of a project,
such as meetings or milestones. Anchor defines the time horizon in
which decisions have to be made and work has to be done.

Rule describes a criterion according to which the Review takes
place. This can be either a NaturalLanguageRule, which has to be
checked by a human, or an AutomaticRule, which can be checked by
a computer.
NaturalLanguageRule can be of several forms. These rules can be

specific and detailed checklists to be consulted for each model ele-
ment (e.g. “which of the following security threats can arise from
each component of a given system” followed by a list of possible
threats), thus ensuring optimal agreement between reviewers. On the
other end of the spectrum, they can also be more like guidelines or
even just a common goal, for instance “Let us review this require-
ments document in order to bring it to a state in which we can show
it to the client”. These instructions are specified in the description

of the NaturalLanguageRule.

46 the issue-based model review model

All manual rules have in common that the amount of information
specified according to which the Review should be done is not suffi-
cient for the creation of machine interpretable rules. A human being
is required to check these, and they are therefore by default subjective
and might be inconsistent.
AutomaticRule models rules which were specified to a level on

which a machine can do the checking. There are two disadvantages
to this approach. First, the limitations of machine interpretable rules
restrict the set of expressible rules. Second, automatic rules presume
the existence of suitable tool support, whereas manual rules only de-
pend on the project participants themselves.

3.3 review traceability

One of the main advantages of the IBMR framework is the treat-
ment of reviews as first class citizens in a software engineering model.
By treating them in this manner, the capabilities of the unified soft-
ware engineering model and its suitability for traceability can be used
(Bruegge et al., 2006; Wolf, 2007; David et al., 2009a; Helming et al.,
2009a; Helming et al., 2009b; David et al., 2009b) .

This integration allows users of the model to get additional infor-
mation about the context of a model element under review and to
configure reviews to precisely target relevant parts of the model ac-
cording to project specific needs.

3.3.1 Traceability and review coverage

Developing software for highly regulated industries (e.g. medical, fi-
nancial, aviation, or nuclear power plants) requires developers to ex-
amine models according to criteria, such as potential hazards, or se-
curity concerns in requirements specifications (e.g. Jetley et al., 2006;
Croll, 2003). These examinations need to be documented and trace-
able, guaranteeing that all relevant model elements were inspected
according to the regulations. Software controlling a medical device
for instance needs to document in which ways a patient could come
to harm, when this device is used on them.

Implementing the IBMR framework reduces the cognitive load on
the reviewer by determining the subset of the entire model which
needs to be reviewed and only showing model elements relevant to
the current review. By attaching the result of the review directly to the
model element, the maturity (i.e. the number of times it has been suc-
cessfully reviewed) and correctness of the model can be determined
by collecting all work items (action items and issues) connected to a
subset or the entirety of the model and determining the amount of
open work items out of the set of all connected items. These model

3.3 review traceability 47

elements can then be flagged by the framework to indicate that they
need to be changed in order to be compliant.

3.3.2 Traceability and change monitoring

Review traceability also ensures that the model stays compliant even
in the face of change. Model elements which have already been re-
viewed but whose last modification date is later than the date of the
last review are no longer considered to be reviewed and are shown
with other unreviewed model elements in a summary. This way, the
percentage of model elements with up-to-date examinations for com-
pliance with regulations can be calculated. By tracking compliance
with IBMR, compliance with multiple regulations can be tracked in-
dependently for each regulation, i.e. a model element can be marked
as being compliant with one regulation, but not another.

By automatically keeping track of the part of the model not yet re-
viewed, a subset of the unreviewed model elements can be calculated
and flagged as input for review processes, reducing cognitive load
even further.

3.3.3 Traceability and project management

Furthermore, review traceability allows for better accountability. The
creator and the authors of a model element can be determined by
looking at the change history of the model element, while all review-
ers of a model element can be established by collecting all the asses-
sors of review results.

Connecting review results with open work items, which are at-
tached to upcoming meetings or milestones, helps preparing follow-
ing up on them. It also keeps the discussion limited, since only open,
i.e. still undecided, work items are discussed. At the same time, with
this connection, no open work items are forgotten. For example, open
issues are included in the discussion section of a meeting, and the
status of open action items is covered in the information sharing sec-
tion of a meeting. Alternatively, open work items are connected to
project milestones to indicate that they need to be resolved before
this milestone is met. They can be also be included into any project
management workflow which uses the unified software engineering
model.

3.3.4 Examples

In the following two subsections, we describe how IBMR helps with
seeing relevant context, and how an IBMR-enabled modeling tool al-
lows for the configuration of reviews.

48 the issue-based model review model

Context of model elements

Review traceability inherent in the IBMR model allows to discover
context information such as the author of a model element, its change
history and related collaborators, and even developers with general
knowledge about artifacts related to the model element. This makes
it easier to determine whom to consult for decisions on the model
element, or whom to ask about design tradeoffs. For instance, the
author of an interface specification for a subsystem would be the first
choice to ask, but if they are not available, an author of the subsystems
internal model could maybe provide the necessary input.

Context information can also be useful for improving technical
decisions. Since system model elements are not only connected to
project model elements such as authors or collaborators, but also to
other system model elements, these traces are used to understand
a model element and to be able to make a more informed decision
about its validity. For instance, a reviewer unsure about the specifics
of a requirement under review can look up its associated use case in
order to better understand the problem. The reviewer can then con-
clude that the requirement is correct, and the problem of understand-
ing it was on their own part – or they can decide an improvement
to the wording is necessary, if the requirement is ambiguously de-
fined. In the latter case, they can be more specific what needs to be
improved, since they are better aware of the context.

Configurability of the review process

Modeling tools based on IBMR allow users to configure which model
elements to review, the interval in which a review rule needs to be
checked, and whether model elements not compliant to a rule are
considered blockers for the project. An IBMR-based tool can also add
context information about related model elements as necessary. This
context can either be configured in advance by the modeling lead of
the project, or machine learning can be used to observe the model
elements most navigated to, and to construct the relevant context on
the fly.

3.4 tracking of review-related changes

One of the advantages IBMR offers is the integration of reviews and
review results into the project model, allowing for integrated track-
ing of these results. This provides support for follow-up by inte-
grating periodic checkup on the execution of necessary changes as
a project management function. It also helps with change tracking,
since changes due to review results can be traced to the review they
originated from and to the corresponding discussion if one exists, or

3.4 tracking of review-related changes 49

else the task which affected the change. It also enables validation of
the model according to specific guidelines or regulations.

3.4.1 Follow-up on review-related changes

Having explicit anchors for checking up on the status of defects dis-
covered during reviews makes integration of review results into the
project management workflow a lot easier. With IBMR, meetings and
milestones are fully integrated into the project model and are there-
fore the ideal candidates for attaching follow-ups. Milestones are
used for follow-ups, if the review results are tied to a specific release
or document and have to be completed in time for the milestone.
Meetings are used for follow-ups, if review results need to be inte-
grated based on sprints, or if they should be acted upon as quickly as
possible.

3.4.2 Validation

Expressing review results as explicit model elements allows IBMR-
based tools to integrate and reason about them. This can be used to
automate compliance checks, give warnings about likely candidates
for defects, or quickly check when a model element was last reviewed.

3.4.3 Integration with model change tracking

Since the IBMR meta-model supports change tracking on model el-
ements, changes are linked to tasks or discussion, providing more
context for a particular change than a plain commit message for a ver-
sioning system would. It maintains the chain of traceability by linking
to the model element describing the actual work or discussion, which
in turn refer to all other model elements relevant in this context. The
advantages of such a system where shown in Koegel, 2011.

Model change tracking can also provide a basis for model reviews
on commit to the model repository, similar to the ability of certain
version control systems to mandate pre-commit reviews for source
code.

4
I S S U E - B A S E D M O D E L R E V I E W P R O C E S S

This chapter details IBMR’s issue-based review process. It defines cat-
egories of review processes and lists their activities and describes
how they can be implemented. Furthermore, it outlines how reviews
can be implemented as a continuous activity throughout the whole
project instead of as discrete events.

issue based capture of defects

The purpose of a review is to capture defects in order to reduce the
number of defects present in a product (Fagan, 1986).

Managing these defects in the form of lists as suggested by Fa-
gan has a set of drawbacks. First, the list is not directly connected
to the artifacts in question, causing traces to break in case artifacts
get renamed or reorganized. And while traces from the defects to the
artifacts are feasible, the other direction, from artifacts to all related
defects, is hard or impossible to trace. Second, while the defect itself
is captured, the associated rationale is not, even though it is implicitly
available at the time of detection. Because of this, project participants
at a later stage in the project have trouble retracing how decisions
were made for fixes to defective model elements. Third, when defects
are detected during a review, the fix may not be immediately clear, or
require discussion and coordination with parties not present during
the review.

Issue-based capture of review defects solves these problems in the
following way. By linking an issue describing the detected defect to
the model element in review, the defect is explicitly traceable to the
model element and vice versa. This trace is stable regarding renaming
as well as reorganizing and is only broken by the deletion of either the
issue, the model element, or the link itself. Also, since the purpose of
an issue is to capture argumentation and decisions, rationale capture
can be done “at runtime” and is enforced by the structure of the sys-
tem. Finally, since issues do not always have resolutions or proposals
associated with them throughout their life cycle, they are well suited
to capturing defects whose solution still needs further investigation
and discussion.

For quick in-situ fixes for defects, instead of capturing an issue
with only one proposal as its solution, it is preferable to immediately
capture the solution to the defect in form of an action item instead.
This allows for tracking of progress made on fixing the defects, as-
signs clear responsibilities for every individual defect found, and al-

51

52 issue-based model review process

lows for integration of these fixes with the rest of the development
life-cycle, such as further modeling or implementation tasks. Action
items can be included in sprints or iterations, attached to milestones,
or just given due dates in order to specify their target.

For example, the review team may determine that a parameter
needs to be added to the signature of a key interface of the system.
Since all agree and there is no further discussion needed, the easi-
est way of capturing the defect and the agreed upon solution is to
create an action item and to assign it to a suitable candidate. This ac-
tion item is then added to the current sprint to make the time frame
during which it needs to be done explicit and traceable.

4.1 issue-based model review

The following subsections describe the IBMR actors, use cases, and
processes. First we describe the actors and use cases that make up an
IBMR-based review. Then we describe the possible classifications for
different types of defects according to the IBMR framework. The next
subsection details possible process variants made up of subsets of the
set of review use cases described in the first subsection.

4.1.1 Review actors

The IBMR framework defines the following roles for conducting re-
views (actors in the review use cases): Review manager, reviewer par-
ticipant, and knowledge manager.

Review manager

The role of review manager is assumed by anyone intending to have
a model or model-subset reviewed. While they can conduct the re-
view themselves, taking on the role as meeting facilitator, they can
also yield that duty to a dedicated meeting facilitator and work with
them in conceptualizing and planning the review, but take over when
actually conducting the review.

Review Participant

The role of review participant or reviewer is assumed by project par-
ticipants invited to a review, but not responsible for its moderation
or for recording the results. Their function is to inspect the model
elements presented by the meeting facilitator, check them for defects
according to the agreed upon criteria, and relay the observed defects
to the knowledge manager. Time permitting, they can also suggest
proposals to solve the defects categorized as issues, but that is op-
tional.

4.1 issue-based model review 53

Knowledge Manager

The knowledge manager is the review participant responsible for cap-
turing the identified defects and classifying them in form of action
items and issues or fix them in-line if a quick and trivial fix is possi-
ble. The classification is done according to the heuristics presented in
Section 4.1.3.

4.1.2 Review use cases

The use case model (Jacobson et al., 1992) of the IBMR framework
is shown in Figure 4.1. These use cases can be combined in form of
several different processes.

Perform
Review

«extend»

Plan review
extension point
 Guideline Creation

Reviewer Notification

Define
objectives

«include»

Create
guidelines

Integrate
model change

Follow-up

«include»«include»«include»

Select
reviewers

Notify
reviewers

«extend»

«include»

«include»

Review
model

Collect
results

Consolidate
results

Distribute
results

«extend»
«extend»

«extend»
«include»

Examine model
extension point
Result Collection

Result Consolidation
Result Distribution

Figure 4.1: Use cases in the Model Review Process

This list of use cases is based on the steps of the inspection pro-
cess suggested by Wheeler et al. (1996). How the actors in the review
process interact with the use cases is shown in Figure 4.2.

54 issue-based model review process

Select
reviewers

Notify
reviewersReview Manager

Perform
Review

«extend»

Plan review

Define
objectives

«include»

Create
guidelines

Integrate
model

change
Follow-up

«include»

«include»
«include»

«extend»

«include»

«include»

Review
model

Collect
results

Consolidate
results

Distribute
results

«extend»
«extend»

«extend»
«include»

Examine
Model

Review Participant

Knowledge Manager

Figure 4.2: Use cases with actors in the Model Review Process

Example scenario

In the following, we will use a hypothetical case of a medical software
project developing software to apply specific dosages of radiation to
patients as a running example. The activities with swim lanes for the
corresponding actors can be seen in Figure 4.3.

The review manager is the person responsible for setting up the
review and deciding on the contents, structure, and guidelines of the
review. For this scenario, the review manager is the safety engineer
responsible for conducting the safety analysis of the control software.

The review manager determines the objective to be reached by the
review. Does the review serve as an opportunity to generate general
internal feedback on a newly created model or should it serve to
finalize a specific subset of an existing model with a client?

In our scenario, the review manager decides that the software model
of the project is mature enough to do a real hazard analysis. The ob-
jective is to do a risk analysis on the system model as mandated by
the FDA (Kamm, 2005).

According to the objective the review manager selects the review
participants based on their expertise.

The review manager decides to include the team leader of the soft-
ware team, the team’s software architect, the person responsible for
doing the team’s software documentation, and an outside consultant
specialized in hazard analysis. They schedule the meeting for Friday

4.1 issue-based model review 55
Re

vi
ew

 M
an

ag
er

Re
vi

ew
 P

ar
tic

ip
an

ts
K
no

w
le

dg
e

M
an

ag
er

Pr
oj

ec
t

Pa
rt

ic
ip

an
ts

Re
vi

ew
 M

an
ag

er

Fo
llo

w-
up

/C
he

ck
Re

so
lve

De
fe

ct

De
fin

e
Re

vie
w

O
bj

ec
tiv

es

Se
le

ct
 R

ev
ie

w
Ru

le
s

Se
le

ct

M
od

el
El

em
en

ts
 to

re

vie
w

Se
le

ct
 re

vie
w

pa
rti

cip
an

ts
No

tif
y

re
vie

w
pa

rti
cip

an
ts

Co
ns

ol
id

at
e

Re
vie

ws

No
tif

y
Im

pl
em

en
to

rs

Co
nd

uc
t r

ev
ie

w

Ad
d

di
sc

us
sio

n

M
od
el
El
em

en
t

re
vie

we
d

&i
nv

al
id

At
ta

ch
Is

su
e

to

M
od

el
El

em
en

t

At
ta

ch
 P

ro
po

sa
l t

o
Is

su
e

Re
so

lve
 d

ef
ec

t

M
od
el
El
em

en
t

re
vie

we
d

&i
nv

al
id

Im
pl

em
en

t fi
x

Se
le

ct
 S

ol
ut

io
n

fo
r

Is
su

e

Im
pl

em
en

t s
ol

ut
io

n
Cl

os
e

Ac
tio

nI
te

m M
od
el
El
em

en
t

re
vie

we
d

&v
al

id

Co
nd

uc
t r

ev
ie

w Re
vie

w
M

od
el

El
em

en
t

Ca
te

go
riz

e
ef

ec
t

Ca
te

go
riz

e
de

fe
ct

Ad
d

di
sc

us
sio

n
At

ta
ch

 A
ct

io
nI

te
m

M
od
el
El
em

en
t

un
re

vie
we

d

Do
 s

m
al

l fi
x

M
od
el
El
em

en
t

re
vie

we
d

&i
nv

al
id

M
od
el
El
em

en
t

re
vie

we
d

&v
al

id

Fi
gu

re
4
.3

:A
ct

iv
it

y
D

ia
gr

am
fo

r
M

od
el

R
ev

ie
w

w
it

h
IB

M
R

56 issue-based model review process

the following week, send out invitations and book a conference room,
since they decided to hold the meeting face-to-face.

At the specified date, the reviewers examine the artifacts specified
by the review manager and give their feedback. This feedback is col-
lected by the knowledge manager; it is then consolidated and sent
out as a joint review report by all reviewers.

The following Friday, all review participants gather in the confer-
ence room. The review manager takes the role of meeting facilitator,
guiding the review team through the meeting. The documentation ex-
pert acts as the team’s knowledge manager, noting down all hazards
the team finds.

Finally, the defects listed in the review report are then fixed and
integrated into the existing model.

The relevant use cases for our sample scenario are the following:

Objective definition and guideline creation

Every review is based on the need for an artifact or a set of arti-
facts to be examined for defects. The actor expressing the need for
such an examination is called the review manager. This may be the
same person later conducting the review proper (sometimes called
the meeting facilitator) but is in fact a separate role. The review man-
ager specifies the objectives of the review, which include the artifact(s)
to be reviewed as well as the type of defects to look for primarily. As
the review participants should work with a common set of rules or
guidelines according to which the review is conducted, the review
manager provides such rules, or delegates the creation.

While in practice guideline creation is often done implicitly and
ad hoc (Porter and Votta Jr, 1997; Ciolkowski et al., 2003), providing
explicit, agreed-upon rules and checklists improve reviews because
they lead to less friction and misunderstandings (Laitenberger and
DeBaud, 2000). If the rules require no human assessment but can
be deterministically checked (e.g. determining whether every hazard
does indeed have a mitigation), these natural language rules can pro-
vide input for an automated version of the review process described
in Section 4.2.2.

Finally, having explicitly stated rules helps reconstruct the details
of a review later on, since the criteria they were checked for can be
understood. The guideline creation should precede the reviewer selec-
tion use case since the composition of the review panel depends on
what exactly needs to be checked, but it does not necessarily have to
happen beforehand.

The result of this use case is a specified objective for conducting
the review and a set of corresponding rules (or at least guidelines in
case of informal reviews) for the review.

4.1 issue-based model review 57

Reviewer selection

This use case determines the composition of the review panel and is
comprised of multiple use cases. It is initiated by the actor “Review
Manager”. The first included use case is deciding which other par-
ticipants are needed for the review, or if the review manager has the
expertise and capability to do the review on their own. If so, they can
do the review according to the review process described as Individual
Review in the Review processes section.

If more input is needed, the review manager needs to determine
the extra skills needed and select reviewers accordingly. The review
manager needs to determine which technical expertise is needed, if
independent input (from outside the team) is needed, and whether
participants of the customer side should be included (and if so, which
ones - end users, technical experts, or management). If no external in-
put is needed, the review manager can choose to hold a Team Review.

If external input is needed, the review manager can schedule a
Project Review to solicit outside input. Both team and project reviews
are described in the Review processes section.

As described in Figure 4.1.2, a knowledge manager is responsible
for taking down the results of the actual review. Since the review
manager ideally should not also be the knowledge manager (Doyle
and Straus, 1982), the reviewer selection should also include the as-
signment of a review participant to the role of the actor “Knowledge
Manager” for that review.

It is also possible to allow the review team to be entirely self-
selected, if more than one reviewer is needed but no specific compo-
sition of the reviewer panel is required. In this case, only the number
of necessary reviewers is specified.

This use case results in a participant list for the review.

Reviewer notification

If the reviewer selection use case resulted in a participants list including
more participants than only the review manager themselves, and the
reviewer selection process is not entirely done as self-selection, the
next use case is reviewer notification.

For the reviewer notification use case, the review manager contacts
all reviewers and provides them with an agenda for the review, con-
taining date, time, location, review guidelines, and the list of partici-
pants and their roles. This is necessary to ensure all participants can
take part in the review and should at least a day, ideally a week in
advance (Doyle and Straus, 1982).

This use case results in a set of notifications to the review partici-
pants.

58 issue-based model review process

Examine model

The examine model use case and its variants are described in more
detail in the section on Review processes.

Results collection, consolidation, & distribution

In case multiple participants took notes during the review and there
is no tool support for automatic integration, the notes need to be
collected and consolidated.

The extending collection use case involves bringing all notes to-
gether and sorting through them. The knowledge manager checks
with each review participant for their notes of the review and gathers
them into a common repository.

For the extending consolidation use case the knowledge manager
checks which defects are duplicates and create an exhaustive list of
unique action items and tasks to be followed up on.

The results of the review need to be stored for later reference, and
review participants must be given access to them for verifying them
and following up on tasks and decisions. With IBRM tool support, the
knowledge manager can send the consolidated results to the review
manager who then distributes them to all participants.

This use case results in a consolidated list of action items and issues,
describing defects found during the review.

Model change integration

The integration of model changes and the removal of defects is the
principal reason for doing reviews in the first place. Therefore, it is
important to track the process of implementing these changes. Action
items can be closed if a task is done, and issues can be set to resolved
if there is agreement on a particular resolution. This way, project man-
agers can use the traceability links to follow up on the results of the
review.

This use case results in fixes for defects found during the review
being applied to the model.

Follow-up

To track the progress of model change integration, the review man-
ager incorporates the state of work items resulting from a review into
upcoming project or team meetings. This can be done to only share
information (e.g. reporting on closed action items), report blockers
(e.g. problems with resolving action items), or to discuss open issues.

This use case results in the discussion of work items regarding fixes
of defects in upcoming team meetings.

4.1 issue-based model review 59

IBMR framework support

Figure 4.4 shows how the IBMR framework supports both the review
manager and the knowledge manager by assisting them with some
use cases, while taking care of some use cases entirely.

Select
reviewers

Notify
reviewersReview Manager

Perform
Review

«extend»

Plan review

Define
objectives

«include»

Create
guidelines

Integrate
model

change
Follow-up

«include»

«include»
«include»

«extend»

«include»

«include»

Review
model

Collect
results

Consolidate
results

Distribute
results

«extend»
«extend»

«extend»
«include»

Examine
Model

Review Participant

Knowledge Manager

IBMR Framework

Figure 4.4: Use cases with actors in the model review process with IBMR
framework support

This figure shows how IBMR supports the actors during the review
process. The consolidate results use case is now handled by the frame-
work instead of the knowledge manager. Similarly, the notify reviewers
and distribute results use cases are handled by the framework instead
of the review manager.

Additionally, the framework now assists the review manager with
the select reviewers and follow-up use cases, and the knowledge man-
ager with the collect results and integrate model change use cases. The
assistance for the integrate model change use case also benefits the re-
view participant, who is also assisted with the review model use case.

4.1.3 Classification of defects in the IBMR framework

In this section, we will give examples on how the IBRM meta-model
can be used to note down review results. Defects identified during a
review can be classified into the following categories:

60 issue-based model review process

Simple fix The fix to correct the defect is simple enough to be applied im-
mediately. This could be correcting a spelling error or creating
a simple association between two classes.

Complex fix The model element under review needs correction, but this cor-
rection is too complex to be done on the fly. However, the fix is
clearly defined and does not require further discussion.

Discussion required The model element under review has a defect, but the correc-
tion is both complex and non-obvious. Further discussion is re-
quired and the problem (and possible proposals for solving it)
needs to be documented.

The review status of a model element is determined by the status
of the action items and reviews attached to them (c.f. Figure 4.5).

Unreviewed Defect

Valid

[reviewed, no defects found]

[change occurred to model element]

[change occurred to model element]

[a
ll

Ac
tio

nI
te

m
s

an
d

Is
su

es
 c

lo
se

d]

[Attach ActionItem
or Issue]

[A
tta

ch
 A

ct
io

nI
te

m
or

 Is
su

e]

[a
tta

ch
 a

dd
iti

on
al

 P
ro

po
sa

l
 to

 a
tta

ch
ed

 Is
su

e]

Figure 4.5: IBMR model element review states

The following subsections will describe the steps that document
the review results for each type of fix.

Simple fix (or no fix)

In order to review a model element requiring either a fix which can
be immediately applied (or no fix at all) and is therefore not deemed
necessary to being documented (e.g. fixing a typo), the review par-
ticipants examine the model element (Step 1 - Figure 4.6) and decide
there is no need to document any necessary changes to this model
element. If necessary, a change is done in-place by the knowledge
manager.

4.1 issue-based model review 61

description=“Save entities to
database”
modificationDate=“11/25/13”

:Requirement To be
reviewed

Figure 4.6: No fix or simple fix - Step 1

In order to mark the model element as reviewed, the knowledge
manager attaches a review result with the current date to the model
element (Step 2 - Figure 4.7).

description=“Save entities to
database”
modificationDate=“11/25/13”

:Requirement To be
reviewed

date=“11/26/13”

:ReviewResult

description=“Save entities to
database”
modificationDate=“11/25/13”

:Requirement

Figure 4.7: No fix or simple fix - Step 2

Since no further modification is necessary, there is no need for
follow-up work. The model element is now considered reviewed, as
long as it is not modified again after that, i.e. the date of the review re-
sult is more current than the modification date of the model element.

Complex fix

In order to review a model element requiring a complex fix, the re-
view participants examine the model element, in our example an in-
stance of Danger (Step 1 - Figure 4.8) and decide that a fix is needed
to correct the model element and that the instructions for this fix need
to be documented.

description=”Attacker could
get root system access.”

:Danger
To be

reviewed

Figure 4.8: Complex fix step 1

To document the instructions for the fix, the knowledge manager
attaches a review result with the current date to the model element,

62 issue-based model review process

and attaches an action item containing a description of the fix to be
done to that (Step 2 - Figure 4.9). At the time of creation, this action
item is unresolved, indicating that the fix is not yet applied. In our ex-
ample, the knowledge manager notes that the Danger model element
does not have any associated mitigations.

description=”Attacker could
get root system access.”

:Danger To be
reviewed

date=“11/26/13”
:ReviewResult

description=“Implement
sandboxing”
resolved=false

:ActionItem

description=”Attacker could
get root system access.”

:Danger

Figure 4.9: Complex fix step 2

To fix the defect of the model element, a review participant later
processes the action item. In our example, a Mitigation model element
is added to mitigate the Danger. The review participant then resolves
the action item, indicating the work has been performed (Step 3 -
Figure 4.10).

description=”Attacker could
get root system access.”

:Danger To be
reviewed

date=“11/26/13”
:ReviewResult

description=“Implement
sandboxing”
resolved=false

:ActionItem

description=”Attacker could
get root system access.”

:Danger

description=“Use sandboxing”
:Mitigation

description=“Implement
sandboxing”
resolved=true

:ActionItem

Figure 4.10: Complex fix step 3

The defect documented by the review result is now fixed. However,
since this entailed changes to the model element, it is necessary for
it to be reviewed again in order to ensure that no new defects were
introduced and mitigate against regressions. We call this a regression
review.

4.1 issue-based model review 63

Discussion required

In the case of a model element requiring a fix which involves a dis-
cussion, the review participants examine the model element, for this
example an instance of Requirement (Step 1 - Figure 4.11) and decide
that a discussion is needed to correct the model element, and that the
discussion needs to be documented.

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement
To be

reviewed

Figure 4.11: Discussion required step 1

As in the previous cases, the knowledge manager attaches a Re-
viewResult model element to document the outcome of the review
and attaches an Issue, describing the question that needs to be solve
to the ReviewResult (Step 2 - Figure 4.12). Initially the Issue is unre-
solved, indicating that the discussion has not been conducted success-
fully yet.

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement
To be

reviewed
date=“11/26/13”

:ReviewResult

description=“Is MySQL the
right database to use?”
resolved=false

:Issue

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement

Figure 4.12: Discussion required step 2

Next (Step 3 - Figure 4.13), review participants can add Proposals
to the unresolved Issue. In our example, two competing Proposals p1

and p2 are added. This documents the discussion to solve the Issue
and fixing a defect on the original Requirement.

64 issue-based model review process

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement To be
reviewed

date=“11/26/13”
:ReviewResult

description=“Is MySQL the
right database to use?”
resolved=false

:Issue

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement

description=“Use MySQL”
p1:Proposal

description=“Use MongoDB”
p2:Proposal

Figure 4.13: Discussion required step 3

In the final step (Figure 4.14), a Solution is added to resolve the
issue. The solution is linked to the Issue it solves, as well as to the
underlying Proposals. In our case, the Solution is based on Proposal
p1. The original Requirement is modified according to the decision
captured in the Solution.

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement To be
reviewed

date=“11/26/13”
:ReviewResult

description=“Is MySQL the
right database to use?”
resolved=false

:Issue

description=“Entity objects
must be stored in MySQL DB”
modificationDate=“11/25/13”

:Requirement

description=“Use MySQL”
p1:Proposal

description=“Use MongoDB”
p2:Proposal

description=“Use MongoDB”
:Solution

description=“Entity objects
must be stored in MongoDB”
modificationDate=“11/27/13”

:Requirement

description=“Is MySQL the
right database to use?”
resolved=true

:Issue

Figure 4.14: Discussion required step 4

The discussion initiated by the Review Result is now concluded, a
Solution has been found, and the according modifications have been
made. As before, this may require a regression review, since the mod-
ification entailed changes to the model element, and it needs to be
ensured that no new defects were introduced.

4.1.4 Review processes

Based on the underlying meta-model presented in Chapter 3, IBMR
allows for a variety of different review processes. The simplest pro-
cess are the Individual Review, and the Continuous Review processes.
These processes are especially suited for agile projects.

The following sections detail three review processes suitable for
use in iterative and incremental software development processes such
as the Rational Unified Process (Kruchten, 2004), or agile processes.
They are targeted at reviews that occur during specific milestones of
a project (e.g. at the end of an iteration), or as preparation for these.
For a way of conducting reviews as a continuous workflow during
the entire project, see Section 4.3.1

4.1 issue-based model review 65

The first of the three review processes is the Individual Review (IR),
the smallest unit of review. It allows for a single project participant to
use IBMR when reviewing model elements on their own.

The second is the Team Review (TR), which is used to guide the
review of models by teams in the setting of a team meeting. The TR
can be used to ensure the whole team reviews project artifacts and
ensures a higher degree of quality.

The third is the Project Review, which (PR) is centered on the dis-
cussion and review of project artifacts by the client or end-user. This
could be the discussion of a model in early stages of a project with
a technically skilled client or the demonstration of a prototype to the
intended end user. The PR helps to capture client feedback and make
it actionable.

Besides these manual review processes, there is also the possibility
to automatically check for the compliance to specified rules. This is
called Automated Review (AR) and is used for checking rules which
can be specified as logical expressions. These automated rules are ex-
ecuted on every model change, and the modeler is alerted whenever
such a rule is violated. This variant is discussed in Section 4.2.2.

Individual Review

The Individual Review is targeted at project participants who re-
view parts of the model or the whole model. While this examination
of model elements can help detect defects, it is not as effective as
group-based review techniques, such as inspection. Also, regulations
or quality assurance mechanisms often require review by more than
one person.

The Individual Review starts with the decision of a project partici-
pant to review a model. The first step is to determine a subset of the
model, which can be grouped by type (all model elements of type
Requirement), document (all model elements belonging to the Sys-
tem Design Document), time range (all model elements created or
modified in the last month), or another suitable configuration.

The second step is to specify or select the rules according to which
the review is performed. Phrasing them succinctly and unambigu-
ously is important, since they will be used to provide a checklist
which is visible to the reviewer throughout the review. Besides this
brief rule summary, each rule should also have a longer description,
in which the intent of the rule is stated for reference. In case of con-
fusion, this description should provide the necessary information to
proceed.

The next step is the actual review itself. Here, each model element
of the subset selected for review is presented to the reviewer. The
reviewer is also presented with a checklist of the rules according to
which the review is to be done and with an interactive summary of
the model element’s context.

66 issue-based model review process

The reviewer checks the model element for compliance to the rules
in the checklist. If the model element conforms to the rule, the re-
viewer marks the model element as compliant to this rule. In case
the model element violates the rule in some degree, the reviewer has
to decide whether an immediate fix is possible. If so, they apply the
fix and mark the model element as compliant. If the reviewer cannot
make the fix immediately, the model element needs to be marked as
defect and the further course of action needs to be specified.

In case the reviewer can come up with specific instructions on how
to solve the defect without the need for discussion, they can attach
an action item specifying the respective instructions to the model el-
ement. This action item needs to be marked as done in order for the
model element to be marked as compliant.

If the reviewer cannot come up with specific instructions for fixing
the defect, the problems needs to be discussed with other project
participants. For this purpose, the reviewer attaches an issue to the
model element under review, characterizing the issue and possible
proposals to solve it. Again, the model element cannot be marked
as compliant, unless the issue has been solved. The last step is done
for each model element to be reviewed. After all of them have been
checked, the review is completed.

The system keeps track of the model elements already reviewed as
well as changes to reviewed model elements which were changed in
a way that potentially invalidates the review.

The system also keeps a list of all reviews done for a model element.
This allows others to see when and by whom a model element was
last reviewed, and according to which criteria.

This process is meant to either accompany other types of reviews
for the continuous review process described in Section 4.3.1, or to be
used in smaller projects where all reviewers have some expertise in
every part of the project. It can be combined with agile methods such
as Scrum, where a product owner can review the models produced
by the Scrum team, such as the requirements model, or in case they
are technically competent, the analysis or design model.

Team Review

The Team Review process differs from the IR in that a group of peo-
ple is needed to conduct it. There are two different variants, one is
collocated and role-based, the other is distributed and peer-to-peer.

In the collocated, role-based version, people in the review team
take on different roles. The meeting facilitator manages the review,
specifying which part of the model is to be reviewed, determining
and inviting the persons relevant for the review, conducting the actual
review itself, and following up on the outcome of the review.

The knowledge manager of the review is responsible for capturing
the outcome of the review. This is best done by a dedicated person,

4.1 issue-based model review 67

so that the rest of the team can concentrate on the task at hand (Doyle
and Straus, 1982). The knowledge manager marks model elements as
reviewed and if necessary attaches action items or issues to them. For
issues especially, the knowledge manager takes care of noting down
all arguments made, persisting all proposals that were made during
the discussion, the relevant criteria, as well as a possible solution. The
rest of the group is made up of reviewers, participants whose task it
is to inspect the model elements under review and to contribute to
the discussion.

The author of the model element under review can give the group
insights into the model element’s rationale. When discussing model
elements with the author present, special care has to be taken to de-
couple people from positions, as described in Fisher and Ury (1981).

The process of a Team Review is as follows. The team examines
the model elements and discusses the implications, possibly leading
to multiple, conflicting proposals for solving an issue. But although a
group decision is behind it, at the end there can be only one outcome,
which is captured by the knowledge manager.

The distributed, peer-to-peer process has a different focus. Here,
the goal is to get multiple opinions on the model element under re-
view without the need for a special meeting which is attended by
all participants. The review is initiated by a project participant who
wants to gather feedback on a subset of the model. They specify the
subset of the model which should be reviewed and the project par-
ticipants they are interested in gathering feedback from. Instead of
performing a complete review, the team members each give individ-
ual assessments, which need to be consolidated. The knowledge man-
ager collects all assessments and integrates them. This results in one
review for each model element, from the consolidation of the team
members’ individual assessments.

Project Review

The Project Review (PR) differs from the other reviews in that the au-
dience of the review is comprised of developers as well as clients and
customers. It also has a different focus, concentrating on client visi-
ble artifacts, such as high-level models (e.g. deployment diagrams or
software architecture models), prototypes, demonstrations, and pre-
sentations. As in the TR, one participant plays the role of facilitator,
while another plays the role of knowledge manager. Because of the
size of the review meeting, comments and issues are often uttered in
quick succession, making them difficult to capture. Here, tool support
is important to make capturing comments as quick as possible.

During the review, artifacts for which feedback is desired are pre-
sented to the clients and customers and their feedback is captured
by the knowledge manager. Sometimes discussions about solutions
arise, however the purpose of the review is not to already identify

68 issue-based model review process

solutions, but rather for gathering feedback and aligning points of
view.

The facilitator defines the subset of the model to be reviewed. Ide-
ally a review would encompass the entire model, but in practice some
restrictions may be necessary. Parts of the model may not be finished
enough for review, or key stakeholders may not have much time to
spare and therefore the part of the model presented to them has to be
carefully chosen. The selection of the subset should be done in close
collaboration with the rest of the team, in order to ensure they receive
the feedback they need most.

After establishing the model subset to be reviewed the facilitator
should inform the team about the choice of date and review content.
This enables the team to do a preliminary team-internal or personal
reviews (see previous sections) in order to improve the quality of the
review’s content, which improves the results of the project review.
The team also needs to make sure that the models reflect the latest
state of design the team agreed upon and are consistent. Especially
in large scale projects with lots of inexperienced developers, the mod-
els diverge from the actual state of planned design, since beginners
sometimes have trouble understanding the value of models.

In the case of student projects, which are limited to one semester,
students never need to revisit the models anymore since the course
is then over. The usefulness of good documentation therefore is not
readily apparent to students. Internal pre-review checks allow stu-
dents to compensate for this and fix defects that they themselves no-
tice.

With the model subset having been chosen, it is now necessary to
fix the rules for the review and to decide upon the focus of the review.
Is syntactical correctness the most important aspect, or completeness
of the model, or compliance with regulations of the application do-
main? These expectations need to be communicated and should be
part of the review agenda in order to ensure that all participants are
working towards the same goal. The facilitator then sends an invi-
tation to all review participants, containing time and date, location,
purpose of the review, and chosen model subset, to allow participants
to prepare accordingly. This concludes the first phase of the project
review process.

To prepare for the review, the facilitator has to ensure that the re-
view location is suitable and everybody has access to the review con-
tent. Review content can be distributed in multiple ways, e.g. as paper
printouts, or via digital projection. A shared screen ideally should be
used for IBMR because in this case tool support can be used to guar-
antee that the model reviewed reflects the latest state available. Also,
presenting the review content directly in the tool allows for quick
in-situ fixes of small mistakes. Jointly viewing the review content di-
rectly on a computer screen, while possible for small groups, should

4.1 issue-based model review 69

be avoided, since it is not ideal for discussion purposes. The facili-
tator also needs to determine a knowledge manager, who is tasked
with classifying and capturing the review results as described in Sec-
tion 4.1.3. The rest of the team is encouraged to take their notes, since,
especially in discussions, it is helpful to capture as many view points
as possible in order to have a complete picture of the discussion.
These notes need to be integrated with the main review protocol by
the knowledge manager.

The review itself is conducted in the following way: the facilitator
presents the review content to be examined and moderates the dis-
cussion. They ensure that all people present can participate and are
allowed to comment. They also make sure the review stays focused
and discussions are kept short and to the point. It is enough that a
point for discussion is identified and captured, so that it can be dis-
cussed at a later point in time. The knowledge manager captures the
discussion results in the following format:

If a model element is determined to be correct and complete by all
participants, it should be marked as reviewed in order to ensure noth-
ing gets reviewed twice. Simple changes that everybody agrees on
should ideally be done immediately. The knowledge manager quickly
makes the change and the facilitator refreshes the content to reflect
the change. If direct change is not possible, the facilitator keeps a list
of small changes to be included in a single tracking ActionItem. This
way, a large number of small changes do not pollute the list of result-
ing ActionItems, while still being traceable. All these changes should
be treated atomic and be done all at once or not at all in order to
ensure consistency.

Changes that all participants agree upon, but which cannot be im-
plemented within a minute need to be captured as ActionItems. The
knowledge manager notes down the change to be make in appropri-
ate detail and links it to the model element(s) to be changed. They
also link the ActionItem to the Review itself in order to keep track of
all decisions undertaken in the review.

If a discussion takes place, the knowledge manager captures this ac-
cording to the rationale model described in Section 3.2.2. The knowl-
edge manager notes down the point of discussion in form of a ques-
tion as an Issue (e.g. “Which encryption algorithm are we going to
use to encrypt this data?”). The solutions which were discussed are
denoted as proposals, sketching the idea behind them. Finally, if there
is a discussion, criteria for decision making which were proposed
can also be captured as part of the issue-based discussion capture.
This way, all alternatives presented in a concluded discussion are pre-
served and can be revisited at a later point. For discussions which
could not be completed, this way of capturing allows taking up the
discussion at the point it was suspended and preserve all proposed
ideas.

70 issue-based model review process

The knowledge manager captures everything visibly to all review
participants in order to allow them to see whether misunderstand-
ings occurred or something was overlooked. If this is not possible,
the knowledge manager is encouraged to restate the decisions cap-
tured to facilitate consensus about the results. Time permitting the
knowledge manager restates the major findings at the end of the re-
view. This concludes the second phase of the project review process.

Finally, the knowledge manager consolidates the captured feedback
if necessary and incorporates notes gathered by other participants
where appropriate. They in turn distribute the review results to all
project participants. The facilitator ensures that the ActionItems and
Issues are followed up upon. They place them on the agenda for the
following team meetings and make sure that the respective assignees
do their tasks in the specified time frame.

4.2 review process automation

By having reviews and related concepts as first-class citizens of the
project model, several checks, such as the presence of mitigations for
each hazard modeled in the system, can be automated. By automation
we mean that formal rules can be specified which a tool can use to
monitor the model and to alert the users if these rules are violated.
Setting up such an automated checking system consists of three parts:
first, a way of specifying the rules to be checked, second, a method
for automatically applying checks to the model under development,
and third, a means of scheduling these automated reviews to happen
either at predefined times or intervals or depending on changes to
the model.

4.2.1 Specifying rules

Providing review rules as explicit elements of the model offers var-
ious benefits. First, the usage of explicit rules for reviews is encour-
aged, instead of just doing ad hoc reviewing of the model. Second,
not only are rules used, they are also consistently stored, can be inte-
grated into a review rules database spanning multiple projects, and
can be reused. Finally, if rules can be specified in a machine inter-
pretable format (e.g. OCL), tool support can automate these checks
and take some of the effort required away from human reviewers.
Also, automatic checks can be done continuously, ensuring all model
elements are in compliance with automatic rules at all times.

4.2.2 Automated reviews

For rules specified in a machine interpretable format, Automated Re-
views (AR) can be conducted with appropriate tool support. The first

4.3 review process variations and improvements 71

area where tool support can help is with keeping track of the review
status of model elements. The tool can keep track of the review status
via the trace from the model element to the review model element.
By comparing the modification date of the model element with the
time of the latest review, the tool can flag unreviewed model elements
and filter out reviewed model elements from other views. This is im-
portant in projects with safety or security compliance requirements,
that mandate reviews of the system model (CLSI GP31-A, 2009). The
tooling ensures that unreviewed model elements (i.e. model elements
which were changed after their last review, or model elements which
have never been reviewed at all) can be found and re-checked.

Tool support can also assist developers by taking care of some sim-
ple but repetitive checks. For instance, reviewing the project model
for ActionItems without assignees can be automated by specifying
an AutomatedRule. This rule is a boolean condition on the attributes
and relations of a model element which can be checked by the tool.
The tool flags model elements not in compliance with specific rules
and presents them in a defects view. This frees the developers’ time
for other tasks such checking for semantic correctness, completeness,
which are less suitable for a machine.

4.2.3 Scheduling

With information about project planning available in the model, it is
possible to support automatic creation of reviews before important
milestones. This way the project manager is supported in their task
of review preparation, since the model contains all other meetings
as well and can provide input on when best to schedule a milestone
review.

Partitioning of the model into chunks of manageable size accord-
ing to review rules in order to not overexert reviewers can also be
automated. This can be done by the class of model element, by the
package they are contained in, by creation/modification date, or by
author.

Since the model is fully traceable, issues related to defects are au-
tomatically correlated with the appropriate teams, and decision mak-
ing are anchored to suitable meetings and milestones as described by
Helming, 2011.

4.3 review process variations and improvements

The following subsections present variations and improvements on
the basic review process described in Section 4.1.4.

First, we introduce the notion of Continuous Review, a review pro-
cess implementing reviews as a continuous activity similar to a work-
flow in the Unified Process (Kruchten, 2004). Second, we describe a

72 issue-based model review process

Concurrent Review process, allowing for automated integration of
review results by many different reviewers reviewing in parallel. Fi-
nally, we list a number of smaller process variations.

4.3.1 Continuous Review

Large formal meetings are not necessarily the most efficient way of
conducting reviews, as shown by Votta Jr (1993). Often the list of par-
ticipants of a particular review is not well thought out, and valuable
time is wasted, since larger meetings are often less efficient (Slater,
1958). Votta for example suggests replacing meetings with Deposi-
tions, three-person meetings with only the author, the reviewer and
the moderator present.

Also, meetings with a large number of participants lead to delays,
since a suitable time for a common appointment has to be found.
Sometimes even the completion of milestones or project phases has to
be accomplished before the meeting can take place. This means that
work either builds upon unreviewed models or has to be delayed
until a review could be performed. Either case is far from ideal, so
reviews should be driven by the content to be reviewed, and not just
by time and milestones.

With the IBMR framework and its support for change tracking on
the model, continuous review is possible. Continuous review can be
used to make reviewing a continuous activity throughout the soft-
ware development life-cycle, a workflow in the terminology of the
Unified Process. A tool implementing the meta-model presented in
Chapter 3 keeps track of the review status of all model-elements, al-
lowing reviews to be done at any time and at any level of granularity.
A reviewer can review an entire document, or only a particular di-
agram, one particular class of model elements, or even a singular
model element on its own. The framework then tracks the reviewer,
the defects found, and the criteria according to which the review was
done.

While reviews in Continuous Review can take place at any point in
time during software development and are done without convening
special meetings, this does not mean that there is no place for review
meetings anymore. Similar to Votta’s depositions, we still suggest re-
views featuring either the client or outside consulting experts as re-
viewers, the project team as authors, and the team leader (or project
manager) as moderator. Ideally such a large review would be broken
up into many reviews with a single reviewer and a single author at a
time.

The person in charge of model quality can define a set of review
rules at the beginning of a project. Whenever new model elements are
created, the framework immediately flags them as pending review.
After a developer reviews them and fixes them as necessary, they are

4.3 review process variations and improvements 73

flagged as reviewed and do not show up with the unreviewed model
elements. Any changes to the model element (or the underlying re-
view rule according to which the review was conducted) lead to the
model element being flagged as pending review again.

With Continuous Review, reviews can be conducted when it best
fits the reviewer, but the overall state of the quality of the model and
the degree to which it has been reviewed can be quickly obtained
by filtering for all model elements which the IBMR framework has
flagged as pending review.

4.3.2 Concurrent Review

The concurrent review consists of four main activities.
In the preparation activity, the reviewer determines the basic param-

eters of the review. Parameters include the model elements to be re-
viewed, what defects to focus on and criteria for correctness and com-
pleteness, the participants of the review (and whether it is co-located
or distributed), and the date and time it is done. In this activity the
people responsible for the quality of the model elements should also
take the time to check for syntactical correctness and for consistency
in order to ensure that the review does not get bogged down in find-
ing trivialities. The model to be reviewed needs to be of the highest
quality possible beforehand for difficult to detect defects to be found.
The preparation activity is mainly the responsibility of the facilitator
of the review, as well as of the persons responsible for the documents
to be reviewed.

In the review activity, the participants of the review check the doc-
uments selected in the preparation activity according to the criteria
determined in that activity. The facilitator guides the review, checks
whether the participants digress, and moderates between different
opinions. The knowledge manager serves as the group memory, cap-
turing the outcome of the review according to the model described
in Chapter 3. The rest of the review participants (though usually not
clients if they are participating) are actively encouraged to take their
own notes as sources of additional information. The model elements
to review are broken down into manageable chunks which are read
in the group and then discussed.
In order to streamline the process, a variant of planning poker can be
used. Participants are handed a notepad and an index card showing
a 0 on one side and a ? on the other. Participants then examine the
model elements, making notes of issues they want to discuss, and
finally hold up their card after they are finished reviewing. If they
have no remarks on the current chunk of the model, they hold up 0,
if they want to mention or discuss something, they hold up ?. The
group then only discusses model elements for which at least one par-
ticipant has signaled questions (?). In our evaluation (cf. Chapter 5),

74 issue-based model review process

this worked to efficiently review a large number of model elements
in one session.

In the post review activity, the knowledge manager consolidates
their own results with those of the other participants and compiles a
unified review. The review consists of a list of all action items and all
issues found during the review. A review protocol then is distributed
to all stakeholders, who are asked for their feedback regarding cor-
rectness and completeness. Once the review protocol is agreed upon,
the work on the action items and issues can start.

In the follow-up activity, the facilitator checks whether the captured
defects are actually acted on and closed. For clearly defined tasks,
this means following up on the status of the according action items.
For more complex problems, it entails scheduling time for discussing
the relevant issues, e.g. in a team or work group meeting. In general,
most action items should be closed until the next meeting, in order to
not impede progress. Issues should be discussed as early as possible
and only if they cannot be solved at that point in time, be postponed
to a later date.

4.3.3 Other variations

This section sketches small variants which can be combined with the
major processes described above.

For larger projects with bigger models, it is beneficial to assign
people to be responsible for parts of the model. With each person
only dealing with a small subset of the model, the complexity of the
overall model can be reduced.

For projects with traceability requirements or compliance criteria,
the four-eyes principle can be employed. By ensuring every model
element was reviewed by two independent reviewers, the number of
overlooked defects can be reduced.

For projects in the medical, financial, or government sector, a for-
mal change management process may be required. IBMR can support
this by not allowing changes to model elements which were already
reviewed and baselined but requiring approval by a change advisory
board.

Finally, we sketch how the IBMR framework can be used to conduct
reviews asynchronously and in a distributed manner.

Model coordinators

In some projects, there are specific persons responsible for particular
documents. This allows for assigning clear responsibilities and makes
it explicit whom to contact in case of questions. This person is also re-
sponsible for scheduling reviews and tracking the state of completion
of the document(s) assigned to them.

4.3 review process variations and improvements 75

This variation can be used in big projects, where technical exper-
tise about the models is not evenly distributed, instead there are spe-
cialists for different parts of the application. In this scenario, model
coordinators can be appointed to act as custodians for their part of
the model, distributing the responsibility across multiple shoulders.
This variation can be combined with any of the other variations, as it
is orthogonal to them.

Four eyes

For security or safety critical projects, a four eyes principle for reviews
can be established. In this case, two reviews of two independent re-
viewers are needed in order for a model element to be considered
reviewed and correct.

This variation can be used to increase the effectiveness of reviews
in for projects where later change or defects in the final products
would be even more problematic than usual. Examples for these sorts
of projects are medical software, where undetected defects may cause
harm to patients, or financial software, where undetected defects may
cause significant financial losses.

Formal change management

For projects requiring a stricter process, the system can support for-
mal change management (ITIL, 2016). With formal change manage-
ment, fixes to model elements cannot be immediately applied, but
the change itself is subject to a review by the change management
board. Only after they have signed off on it, it can be applied to the
model.

This variation can be used if the project setting requires formal
change management. This is usually stipulated in the contract and is
standard for many government contracts.

Asynchronous reviews

Reviews can also be done asynchronously. Review participants can
prepare their comments individually, and later integrate their find-
ings and discuss issues - either face to face or distributed as well.
This distributes responsibilities more evenly, since every review par-
ticipant needs to review the model independently of the others and
come up with their own findings. By doing reviews in this manner,
the individual contributions can be seen, motivating everyone to con-
tribute more. The disadvantage of this is that it is missing group dy-
namics (Shaw, 1971). Reviewing and discussing together leads to a
shared understanding of the models and can identify additional de-
fects.

76 issue-based model review process

Distributed reviews

Distributed, but synchronous meetings are also possible. Video con-
ferencing tools such as Skype or Google Hangouts allow for simu-
lating face to face meeting. Face to face meetings generally provide
for a better experience (Bos et al., 2002), although measures may be
introduced to mitigate this to an extent (Nguyen and Canny, 2009).

4.3.4 Meta-reviews and process improvements

Outside of the scope of this thesis, but definitely a suitable applica-
tion of IBMR, is review of reviews. Since reviews are model elements
themselves, IBMR can be used to review them and find defects or
opportunities for improvement. This can be used for continuous im-
provement of the tailored review process itself, much in the way of
Kaizen (改善), the Japanese term for continuously improving existing
processes over time, as described by Imai, 1986.

5
C A S E S T U D I E S

To determine the feasibility of the IBMR framework, we conducted
two case studies, the second of which was followed by a survey.

The goal was to study the effects of the IBMR framework on re-
views. By employing the framework in two case studies in two large
scale university student projects, each with an industrial client, we
concentrated on the feasibility of the approach. The first case study
was conducted in the DOLLI 6 project held in winter semester of
2012/13 (DOLLI 6 Project Page 2012), the second in the iOS project in
the summer semester of 2013 (iOS Praktikum 2013 Project Page 2013).

The first case study covered a project using the SLPC++ software
development model (Bruegge et al., 2011), with reviews scheduled
after each major phase (analysis, system design, object design, and
after each sprint in the development phase at the end).

The second case study covered a project using the Tornado soft-
ware development model (Bruegge et al., 2012) with more document-
centered reviews, focusing on the review of the requirements analysis
document and the system design document.

5.1 background

As both evaluations used the “case study” research method, we first
define the concept. We then provide an overview of the tooling used
in both case study projects.

5.1.1 Research method

The research method of case studies belongs to the field of qualitative
research and is a descriptive method. We employed this method in an
exploratory way.

Yin (2014) defines a case study as an “empirical inquiry that inves-
tigates a contemporary phenomenon (the ‘case’) in depth and within
its real-world context, especially when the boundaries between phe-
nomenon and context may not be clearly evident.”

Case studies describe cases aimed at exploring the results of the hy-
pothesis and falsifying it in case the hypothesis is incorrect (Popper,
1934). In the following two case studies, we describe the observations
made by using IBMR in two projects, and report on the students’ re-
action to and impressions of usage of the IBMR framework.

77

78 case studies

5.1.2 Tooling

Because of external constraints, we did not use a unified modeling
tool in case study projects but had to work with a simplified version
of the IBMR model. We used the commercial bug-tracking and Wiki
solutions Jira1 and Confluence2 for project communication and docu-
mentation. The quality of the multiuser support, the ease of use, and
the smooth transition between project phases, all principal factors
in selecting a suitable CASE tool according to Finnigan et al. (2000),
were taken into account. Although the underlying model of Jira is
not expressive enough for the IBMR model to be mapped onto in a
one-to-one manner, we were able create a basic representation of the
main IBMR components in Jira.

5.2 dolli6

The goal of the first case study was to test out the feasibility of the
IBMR framework, the acceptance by the students, the customer satis-
faction level, and possible improvement of the quality of the models
produced in the project. In order to gain an initial understanding of
the general impact and potential benefits of the IBMR process, we
decided to use the large-scale student project DOLLI6 as a field ex-
periment for this case study.

Kickoff

Oct. 18 Nov. 22

Analysis
Review

Dec. 13

System
Design
Review

Object
Design
Review

Jan. 17

Client
Acceptance

Test

Mar. 19

Sprint 1
Review

Feb. 07 Mar. 03

Sprint 2
Review

Figure 5.1: Time line of the DOLLI6 project

The DOLLI 6 project lasted from October of 2012 until March of
2013 and was organized as one of a series of client oriented large-
scale project courses offered by the Chair for applied Software En-
gineering at the Technische Universität München for bachelor and
master students. The goal of these project courses was to provide stu-
dents with realistic project environments in which they learn software
engineering, starting from requirements analysis with the customer,
to conceptualizing and modeling the solution, implementing it, and
finally delivering it to the client. The chair cooperated with a large

1 https://www.atlassian.com/software/jira

2 https://www.atlassian.com/software/confluence

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence

5.2 dolli6 79

industrial partner, the Flughafen München GmbH (FMG), the operat-
ing company of the Munich airport. The Flughafen München GmbH
is an enterprise with about 7000 employees and an IT department of
about 180, with an IT specific revenue of about 15 million EUR.

We ran a case study to evaluate the feasibility of the IBMR frame-
work as part of the DOLLI 6 project.

The airport operates a suite of systems called the Airport Process
Management (APM) suite. The APM deals with airplane data, such
as schedules, parking positions, and location data, passenger data re-
ceived from the airlines, ground handling operation data, and much
more. All systems follow a common architecture and communicate
via a CORBA3-based bus. The DOLLI projects had to be integrated
into this software landscape. While the first DOLLI was more of a
greenfield engineering project, just receiving data from the APM sys-
tems, but not integrating tightly with them or conforming to their
architecture, the later DOLLI projects in general, and DOLLI 6 in par-
ticular, were meant to produce results which could be productized
and then integrated into the APM, requiring the developed systems
to conform to the general architecture and to meet the security regu-
lations and development guidelines set forth by the airport IT.

For each project in the DOLLI series, the FMG provided a number
of specific problems the students needed to solve in the course of one
semester. For the DOLLI 6 project, they stated two distinct problems:
the first was to develop a system for fetching, analyzing, consolidat-
ing, and forwarding IATA messages, a standard originally developed
to exchange data by teletypewriters in the 1920’s and later standard-
ized by the International Air Transport Association to allow airports
and airlines to exchange data about weather, flights, passengers, bag-
gage, and delays. The task was to build components for fetching the
messages from a server, parsing and persisting them, building a rules
engine capable of deciding which message to forward to which tar-
get, and a user interface allowing for manual checking and correction
of incorrectly transmitted messages. The name for this system was
IATAM, short for IATA Messages.

The second problem was to develop a mobile application and corre-
sponding back-end server for the ground handling services division
AeroGround to enable pilots and crew members to request buses and
other services to their aircraft before landing. This system was desig-
nated MUCS, short for MUC Services.4 The idea was to make an iOS
app which could be used by the airline personnel to send requests to
the ground service team, enabling faster turnaround times and more
efficient use of resources. For the purposes of the project, the scope of
services was limited to crew buses only, but the system was to be de-
signed to be extensible to other services as well. The iOS app should

3 Common Object Request Broker Architecture
4 MUC is the IATA code for the Munich airport

80 case studies

support creation of requests and modifications of existing requests as
well as status updates via push for every modification relevant for the
end user. The server component should handle communication with
the mobile devices as well as the Apple iOS push services on the one
side, and the AeroGround dispatching systems on the other.

In order to accomplish this, 7 teams were formed out of the 59

students who signed up for the project. The IATAM sub-project con-
sisted of 4 teams, corresponding to the 4 main components of the
system, analyzing, data management, flight consolidation, and user
interface. The MUCS sub-project consisted of 3 team, app, account
manager, and server.

For collaboration and communication purposes, the students used
an infrastructure built around Confluence and Jira. Jira was extended
to support a simplified version of the IBMR model. Each of the teams
was guided by a coach, an experienced student well versed in such
kinds of projects at the chair. Supervising these coaches were two
instructors, both doctoral candidates at the chair and both with pre-
vious knowledge and experience in managing such projects – each
responsible for one sub-project.

The students followed the process described in Bruegge et al. (2011)
and covered all relevant software engineering activities, starting with
analysis, followed by system design, object design, and implementa-
tion in the form of three sprints (c.f. Figure 5.1). The software lifecy-
cle model used was based on a combination of the Rational Unified
Process and Scrum, with the first part of the project (November un-
til February) following a RUP like process with multiple concurrent
work flows, based on the phases described in Bruegge and Dutoit
(2009)

The students worked part time (about 10h/week) at the university
during the first phase of the project. For the second phase (March),
the project switched to Scrum. Then the students worked co-located
with the client at the client’s site full-time for 2.5 weeks. During the
22 weeks, the students worked on their problems and presented their
results in the form of multiple reviews.

For preparing, conducting, and following up on the reviews, the
IBMR process was used. The first review was performed on Novem-
ber 22nd 2012, the students conducted an Analysis Review on Novem-
ber 29th 2012, a System Design Review on December 13th 2012, and
an Object Design Review on January 17th 2013, all with client partic-
ipation. The final results were presented to the technical contacts at
FMG on March 11th 2013. The students gathered open issues stored
in the JIRA database to be addressed in the reviews. During and after
the reviews, they recorded the action items and issues in Jira. Finally,
they used the recorded action items and issues to follow up on the
results of the reviews.

5.2 dolli6 81

5.2.1 Case Study

The results on how the students applied the IBMR model and process
in their project work is described in the following subsections.

Analysis Status Review (internal)

For checking the results of the requirements elicitation and early anal-
ysis, the teams conducted an internal review on November 22nd 2012.
The participants of this internal review consisted of the instructors,
the teams, and their coaches. The goal of this review was to syn-
chronize the project participants with the results of the other teams,
familiarize them with the review process, and provide a first check
for the consistency and completeness of the requirements, in order to
improve their quality for the external review with the customer the
following week. From the feedback obtained this review, the devel-
opers in the 4 IATAM teams captured 34 ActionItems and 6 Issues,
reflecting many clearly defined improvements to be done and a few
questions to be resolved. All ActionItems and Issues were later fol-
lowed up on and resolved.

The developers in the 3 MUCS teams captured 24 ActionItems and
6 Issues. Of those 24 ActionItems, however, 6 were duplicates in the
sense that 6 developers had to do the same task, which was recorded
individually for each participant. Otherwise, there were no anoma-
lies in the captured items. All work items of the MUCS teams were
followed up on as well.

One observation was that the most feedback was given on the most
detailed parts of the presentation, which means that a presentation
format as opposed to the format described in Section 4.1 is more
dependent on the presenter and does not cover all parts of the model
equally.

Using issues to capture the discussion worked well, participants
were able to attach discussions and proposals to the respective parts
of the model.

Analysis Status Review (external)

On November 29th 2012, the status of the requirements elicitation
and analysis was reviewed in a larger project setting with the client
present. Each team showed their results in a ten-minute presentation,
which was followed with 5 min Q&A, with optional follow-up after-
wards, so the feedback was more compressed and had to be captured
more quickly. The feedback for the IATAM teams resulted in 22 Ac-
tionItems and 16 Issues. One team still had trouble following the pro-
cess and again only attached a PDF and had to be reminded to enter
ActionItems and Issues directly. The high number of Issues reflects
the results of feedback from the client, which is typical for the anal-

82 case studies

ysis phase of this type of software project. They lead to the need for
further clarification of aspects of the system, e.g. requirements or end
user involvement. The MUCS teams captured no ActionItems during
this review but captured 6 new requirements instead. Additionally,
they also captured 7 Issues. 2 of these Issues remained open, the rest
was later resolved.

System Design Review

The purpose of the System Design Review was to evaluate the pro-
posed system design, and how they the design fit into the overall
architecture of the APM. Since the results of the two sub-projects
were intended to be used in practice after completion of the project
course, the quality and suitability of the architecture were the focus
here. The setting for this review was similar to the External Analysis
Status Review, with additional technical experts from the client side
present in addition to domain experts. The results of this review were
as follows: the IATAM teams recorded a total of 4 ActionItems and
13 Issues, with no notable complications. 1 ActionItem and 2 Issues
remained unclosed - although the state of the final software shows
that they were implicitly solved, a more explicit solution is missing.
For the System Design Review, the MUCS teams captured 2 Action-
Items and 4 Issues, and additionally 4 new requirements. Of these
ActionItems and Issues, all but one, which was a repeat of the un-
solved Issues of the previous review, were solved. Overall, the client
was satisfied with the state of the model and the proposed design.

Object Design Review

The Object Design Review was again an internal review, consisting
of the same participants as in the first Analysis Status Review. In
addition to a revised architecture, the focus of this review was on the
quality of object-orientation in the models and the use of patterns.
For the IATAM teams, 11 ActionItems and 4 Issues were recorded,
reflecting more need for directed changes and less for new discussion.
1 new requirement for error handling was also identified during this
session. All ActionItems and Issues were resolved in time. The MUCS
teams recorded 11 ActionItems and 8 Issues, although it has to be
noted that 7 of the ActionItems reflected the same task for multiple
participants, resulting in a total of 5 unique ActionItems. It is also
worth to note, that one of the MUCS teams, which recorded 5 of the
Issues, did not resolve them explicitly. The rest of these work items
were all resolved correctly.

Sprint Review

The Sprint Review (for legacy reasons sometimes also called the Sys-
tem Integration Review) was the last technical review, followed by

5.2 dolli6 83

the Client Acceptance Test. The CAT in the case of our project courses
consists mainly of management being shown the results of the project
and a large, hands-on demo portion of developed systems. The Sprint
Review was done at the clients site and consisted mainly of technical
personnel from the client, the instructors, and the project teams. In
the Sprint Review, the IATAM team recorded 15 ActionItems and 2 Is-
sues, and 2 new Requirements. All but 1 ActionItem and 1 Issue were
resolved. The MUCS team recorded 13 ActionItems and 1 Issue, and
additionally 16 new requirements. The newly captured requirements
were mostly refinements of existing ones, providing clearer descrip-
tions of all required functionality. Two of the three teams managed
to resolve all their ActionItems and Issues, whereas one team did not
resolve any and left 7 ActionItems unresolved because of time con-
straints.

Client Acceptance Test

Due to the limitations of the student project, the client acceptance
test was not designed to elicit specific feedback, but more as a pre-
sentation of the work that was accomplished. Nonetheless, the client
expressed full satisfaction at the results which were archived, both in
terms of the running system, as well as the underlying design and
integration into the APM.

5.2.2 Findings

This case study showed the general feasibility of the approach. The
teams quickly learned to capture action items and issues and to follow
up on them.

All teams used the issue-based model review approach to track
tasks and open questions. This allowed the doctoral student manag-
ing the project more insight into the teams’ progress than was possi-
ble in previous years without the approach.

Overall, there were 1897 action items and 479 issued captured over-
all during the duration of the project. Out of these only 101 action
items and 50 issues remained unresolved at the end of the project.

This resulted in about 8 issues per developer, which is an improve-
ment to previous student projects of a similar scope, also deploying
rationale management. For example, Wolf (2007) reports only 2 issues
per developer in a project employing RUSE, but not IBMR.

5.2.3 Limitations

Because of the nature of our large-scale student projects, tool choices
were constrained by ease of use and real-world applicability. This nat-
urally precluded research tools, which cannot be as optimized for

84 case studies

usability as commercial tools can be, and whose knowledge does not
provide a competitive advantage later on in the workplace. Therefore,
the IBMR framework has to be implemented in existing commercially
applicable tools, in our case Confluence and Jira. While this has limi-
tations regarding the expressiveness of the underlying model (cf. Sec-
tion 3.2, it does provide the benefit of showing how the framework
can be used in a commercial setting, without the need for the intro-
duction of new and unpolished tooling.

Extensive reviews of entire documents consume a lot of time. If
this is not possible for some reason, time can be saved by letting the
participants examine the document on their own, make their own
notes, and in the meeting just consolidate and discuss the items. This,
however, results in an entirely different group dynamic.

The reviews conducted as part of this case study were done in
the setting of team meetings and of review meetings with customer
participation.

5.3 ntt data

The goal of the second case study was to focus more on one indi-
vidual team instead of a large project and to observe and compare
it to other teams doing similar work. For this case study, we chose
the iOS13 practical course, which was conducted at the Chair for
applied Software Engineering at TUM. This course offers students
the opportunity to do application development for Apple’s iOS plat-
form. It features industrial clients posing real problems to the stu-
dents. The course ran from April 2013 to July 2013 with 89 students
and 10 participating companies. The industrial clients ranged from
large, international companies such as Audi, B/S/H, and Siemens,
to small startups like kisi5 and Jamie Jacobs6. Each industrial client
provided the students with a problem description, containing the ba-
sic requirements, necessary interfaces to other systems if applicable,
and in some cases a draft of a system architecture. The students were
tasked to elicit a complete set of requirements, analyze them, and
model the system accordingly. After this, they implemented a mo-
bile application, and for some projects a corresponding server compo-
nent as well. Each of the teams were supported by a doctoral student
working as an advisor to the team, and a more experienced student
(selected from courses of previous years) to act as a coach.

5 http://www.getkisi.com

6 https://jaimiejacobs.com

http://www.getkisi.com
https://jaimiejacobs.com

5.3 ntt data 85

Apr. 18 Jun. 20 Jul. 18

Design
Review

Client
Acceptance

Test

Kickoff

Figure 5.2: Time line of the iOS13 project

In order to closely observe the impact of the IBMR framework,
we decided to select one team and observe it throughout the entire
course. We chose the NTT Data team, because the doctoral student
serving as its advisor was already familiar with the IBMR framework.
NTT Data is an IT services and consulting company with more than
60.000 employees worldwide, and a revenue of 15 billion USD. It is
a subsidiary of NTT (Nippon Telegraph and Telephone), a Japanese
telecommunications company. The German branch of NTT Data oper-
ates an office in Munich, which has a strong focus on the automotive
industry and works closely with BMW.

For the iOS13 course, NTT Data posed the following problem. Con-
sultants from NTT Data frequently have to travel from their offices
to their clients’ offices, which are about a 20 minute walk away. In
order to provide a quicker mode of transportation, NTT Data opted
for purchasing a fleet of pedelecs (electronic bikes), since public trans-
port between these places is bad, the parking situation is not much
better, and normal bikes would be problematic, especially in summer,
because of sweating. NTT Data therefore wanted a mobile applica-
tion for finding the closest pedelecs, showing their range (the state of
charge of the bike), make reservations for pedelecs, and also transfer-
ring these reservations to other users. Additionally, the usability of
the app was a strong focus of NTT Data’s, requiring the app to be
simple and quick to use, and light and modern looking.

A team of eight, one coach and seven developers, was chosen to
solve this problem. Out of the eight students, three were undergrad-
uate students, while five were graduate students pursuing their mas-
ter’s degree. All except one of the bachelor students had a computer
science major, only one had games engineering as major. Since the stu-
dents came from different countries, the team’s language was English.
The gender distribution was uneven, with six male and two female
students. The students were new to the iOS platform and most were
also not experienced in real world projects.

86 case studies

5.3.1 Case study

The NTT Data team followed an agile approach (cf. Tornado model
in Bruegge et al., 2012), with the project duration partitioned into
5 sprints, an initial sprint capturing user stories and experimenting
with mockups, 3 sprints focused on the development of the app and
the creation of the corresponding documentation, and a project final-
ization sprint with the goal of polishing the app and finalizing the
documentation as well.

Sprint 0 ran from April 25th until May 16th. During this time, the
team first had to perform team building exercises to get to know each
other and to learn how to work as a team. This was followed by an
initial customer meeting, during which the client presented the prob-
lem in more detail and the developers were able to ask questions
and work out first drafts of the corresponding user stories. They also
developed sets of UI mockups, which they created in teams of two.
These four sets of mockups the team then presented to the client, elic-
iting feedback and incorporating that feedback into the final mockup
which served as the first potentially shippable product increment. The
team was also introduced to the tools and processes used in this
project during this period. They were presented with a process for
rationale management, the IBMR framework for model review, and
Confluence and Jira, the tools used for executing these processes.

Sprint 1 ran from May 17th until June 6th. In this time period, the
team began development, starting with the most important user sto-
ries, and working their way down to the less important ones. They
also started to work on the Requirements Analysis Document (RAD),
defining the purpose and scope of the system, the objectives and suc-
cess criteria, the functional and non-functional requirements, the user
stories, and the final UI mockups developed in Sprint 0.

In Sprint 2 (June 7th - June 27th), the team continued to work on
the app, implementing additional user stories. In addition, the team
reviewed the RAD according to the team review process described in
Section 4.1.4. After finishing the team-internal review, they presented
the RAD to the client for feedback. At the same time, the team started
working on the System Design Document (SDD), detailing design
goals, subsystem decomposition, hardware/software mapping, per-
sistent data management, access control and security, global software
control, and boundary conditions. The most recent status of both doc-
uments was also presented in the Design Review on June 20th. For
the presentations as for all previous feedback sessions and reviews,
the IBMR framework was used to capture and follow up on all de-
fects. After a short period of acclimatization, the developers were able
to employ IBMR without introducing any delay to the actual review
process, and were able to capture all detected defects in the observed

5.3 ntt data 87

reviews. These defects were captured as work items and were dealt
with as part of the sprint.

Sprint 3 lasted from June 28th until July 11th. The objective of this
sprint was to implement as many of the remaining user stories as
possible, and to improve on the SDD. Again, the team first did a
team-internal review of the SDD, before presenting it to the customer
for additional feedback.

In the project finalization sprint (July 12th - July 18th), the team
spent a week polishing the app and testing it thoroughly. They also
compiled final versions of the RAD and SDD and prepared them for
delivery. Finally, they prepared a final presentation to the client for
the Client Acceptance test on July 18th.

The client expressed their complete satisfaction with the results,
the app and server component, as well as the underlying models and
designs.

5.3.2 Findings

During the course of the project, the team captured a total of 385

action items and 86 issues.
Out of the 86 issues, 84 were closed - only 2 remained open. Of

the 85 closed issues, 80 were resolved with a solution, and only 5

rejected. On average, 1.62 proposals were added to each issue7 (for
the distribution, see Table 5.1). This indicated that the issue-based
approach was able to be successfully employed to facilitate tracking
and discussions of questions arising during the project.

Proposals per issue Number of issues

1 43

2 14

3 12

4 2

5 1

Table 5.1: Proposals per issue

On average, 9.9 days were needed to resolve an issue, with a me-
dian of 7.4 days. The issue resolution time ranged widely, from hours
up to 42 days, with a standard deviation of 9.4 days.

The vast majority of all solutions to the issues used only one pro-
posal. In 13% of cases however, more than one proposal was used,
but never more than 3 (c.f. Table 5.2). Out of these 9 solutions, 5 used
all proposals as solution, while 4 only selected a subset.

7 Due to a technical problem, for 8 of the resolved issues no solution was recorded.
Since the system should have not allowed for this state to occur, they are omitted
from the calculations.

88 case studies

Proposals per solution Number of issues

1 63

2 6

3 3

4 0

5 0

Table 5.2: Proposals per solution

Only 12 issues had due dates set, indicating that the team perceived
progress on these issues as sufficient without.

The number of issues per developer was 10.8, a further improve-
ment on the results of the previous case study.

This deeper involvement with discussing and resolving open ques-
tions on the model may have been the cause of the significantly higher
satisfaction of the team with the results of the team’s documentation
in comparison to the other teams (see the survey in the following
section).

Tracking and resolving action items was not as successful as track-
ing and resolving issues. Out of 385 action items 154 remained un-
closed. This indicates that our representation of the model in Jira -
while manageable enough for complex tasks like discussing issues -
was too elaborate for tracking action items. Especially two team mem-
bers did not use the tool at all to track their action items (only 2 out of
80 items were touched). These two team members accounts for over
50% of unclosed action items (78 out of 154).

5.3.3 Limitations

The iOS 13 case study was limited to one team of 7 developers and
was conducted in a university setting. While in this second case study
more data on the usage of issues and the time taken to solve them was
gathered, this still only offers anecdotal evidence on the suitability of
IBMR for these kind of projects.

To further support this evidence, we followed this up by a survey
of all project participants, to determine if there were any differences
in the perception of the review process between the team which fol-
lowed IMBR and those which did not.

5.4 survey

At the end of the iOS13 course, we surveyed all developers. We asked
for their experiences and evaluations of their respective review pro-
cesses. From 89 developers, 34 filled in the entire survey (a response

5.4 survey 89

rate of 38%). From the 8 members of the NTT Data team, 5 answered
all questions (a response rate of 62%).

5.4.1 Survey results

In the following, we present the results of the survey. The survey indi-
cates that the complexity of the review process did not seem increased
for the team using IBMR. However, the team using IBMR was more
certain of having incorporated all feedback into the model, and of
having substantially improved documentation. This observation was
corroborated by the instructors of the teams.

Complexity

In order to assess how the complexity of the IBMR process employed
by the NTT Data team was perceived in comparison to the ad hoc
review process used by the other teams, we asked the participants
to rate on a 5-point Likert scale, how complex they perceived their
review process to be. Figure 5.3 shows the distribution of the levels
for the NTT Data team and the remaining teams.

0%

25%

50%

75%

100%

Very complex Somewhat complex Neutral Not very complex Not complex at all

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

How complex was the capture process/method for documentation review results?

Figure 5.3: Perceived complexity of the review process

This shows that while the perceived complexity of the IBMR pro-
cess was slightly higher than the ad hoc process, none of the par-
ticipants rated the IBMR process as very complex, and the majority
found the complexity to be neutral. This indicates that while the pro-
cess seems more complex on paper, the actual effort to implement
IBMR is not that much higher than implementing ad hoc reviews .

Improvement

The developers were also asked to evaluate the improvement of the
reviewed documentation and models on a 5-point Likert scale (cf.
Figure 5.4).

90 case studies

0%

20%

40%

60%

80%

Improved a lot Improved somewhat Stayed the same Got somewhat worse Got much worse

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

How much did the documentation reviews improve the documentation?

Figure 5.4: Improvement to documentation

The resulting distribution indicates the NTT Data team rated their
documentation “improved a lot”, compared to the remaining teams,
who only perceived some improvement. Since all teams were told
to thoroughly review their documentation and that this was part of
their grade, they had a similar motivation to do well in this regard.
We conclude that IBMR lead to better developer satisfaction with doc-
umentation quality.

Incorporation

Another question asked in the survey was about the developers’ con-
fidence of having addressed all relevant feedback and incorporated
it into the documentation. Figure 5.5 shows the relative frequency of
answers on a 5-point Likert scale for both IBMR and ad hoc reviews.

0%

25%

50%

75%

100%

Very confident Somewhat confident Neutral Somewhat unsure Very unsure

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

How confident are you that you incorporated all feedback
 received during reviews into the documentation?

Figure 5.5: Incorporation of feedback

While developers following the ad hoc review process were at least
somewhat confident that they incorporated all feedback, developers
following the IBMR framework were all very confident that they did
in fact incorporate all given feedback. This seems to indicate that the
improved capture and follow-up process of IBMR indeed improves
execution of changes due to feedback.

5.4 survey 91

Document quality

The developers were also asked to assess the quality of the documen-
tation, in particular the Requirements Analysis Document (RAD) and
the System Design Document (SDD) on a 5-point Likert scale. The re-
sults for the RAD is shown in Figure 5.6, the results for the SDD in
Figure 5.7.

0%

20%

40%

60%

80%

Very well Well Acceptably Poorly Very poorly

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

How well reviewed would you consider your RAD?

Figure 5.6: Quality of RAD

0%

20%

40%

60%

Very well Well Acceptably Poorly Very poorly

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

How well reviewed would you consider your SDD?

Figure 5.7: Quality of SDD

These figures reflect the improved sense of documentation quality
for the developers following the IBMR framework in comparison to
the ad hoc approach.

Personal benefit

Since student projects often suffer from the problem that students do
not directly benefit from the documentation and thus do not mind
having low documentation quality (Ahtee and Poranen, 2009), we
wanted to see if the IBMR framework raises the perceived personal
benefit from documentation. The results are shown in Figure 5.8.

92 case studies

0%

20%

40%

60%

A great deal Much Somewhat Little Not at all

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

How much did you personally benefit from your team's documentation?

Figure 5.8: Personal benefit of documentation

The result is inconclusive. On the one hand, while the number of
participants claiming they benefited “A great deal” from the docu-
mentation is higher for the IBMR framework, the majority for IBMR
felt they only benefited “somewhat” from the documentation, in con-
trast to “much”, for the comparison group. On the other hand, no
participants using IBMR claimed little or no benefit at all.

Value of reviews

Finally, we wanted the students to rate the value of reviews to them
on a 5-point Likert scale. The results are shown in Figure 5.9.

0%

20%

40%

60%

A great deal Much Some Little None

F
re

qu
en

cy
 o

f a
ns

w
er

Team

NTT Data

Rest

What value do you personally see in reviews in general?

Figure 5.9: Value of reviews

Whereas the ad hoc group’s results are distributed around the
value of “much”, the answers of the IBMR group show an interesting
bimodal distribution. Further investigation is needed, but it seems
that a percentage of participants only sees moderate usefulness in
reviews and this does not change with introduction of an improved
process, but that the appraisal of the rest of the participants, who
would otherwise see at least “much” value in such reviews, can be
raised to value them “a great deal”.

5.4 survey 93

5.4.2 Threats to validity

In the following, we list the threats to validity. We will start with
internal validity, the question whether the study was done correctly.
The next subsection deals with external validity, the question whether
the results can be generalized. Finally, we discuss construct validity,
the question whether the method used is a suitable measure for what
is to be tested.

Internal validity

Since filling out the survey was optional, there is a chance for self-
selection bias. Developers more interested in the processes used dur-
ing the course could have been more likely to fill out the entire survey,
compared to others less interested. However, the relative response ra-
tio was relatively close for both the experimental team and the control
group.

Also, the projects for the experimental team and the teams for
the control group were not exactly comparable, since they were real
projects posed by external clients. But since all projects were part of
the same framework of projects, they were all scoped to be similar
in size and complexity (they had to be in order to be able to be com-
parably graded as part of the university course). They had the same
time frame, developers were distributed across teams to provide a
balanced distribution of skills among all teams, and they were all
working with the same tools and frameworks. Between teams with
a client-server infrastructure, there were some small differences due
to different choices of server platforms, but on the client side only
Objective-C and the Cocoa frameworks were used.

External validity

Since only the experimental team got special instructions on how to
do their reviews, there is a risk of the Hawthorne effect (Landsberger,
1958). The Hawthorne effect is a psychological effect, in which par-
ticipants change their behavior in result to being aware that they are
being observed. But while the rest of the teams were not taught the
IBMR framework in detail, they also received a detailed lesson in
how to review models and documentation, and their instructors en-
couraged them to review their documentation properly, hinting that
documentation quality would be reflected in the final grades.

Construct validity

The survey used personal judgment to determine quality of docu-
ments and percentage of feedback incorporated. This does not neces-
sarily have to reflect the real quality of documents, however it was
corroborated by the observations of the instructors.

94 case studies

5.5 summary

The results of the case study showed that IBMR resulted in an im-
proved usage of rationale. The results in comparison to a similar type
of student project (VSO) (Wolf, 2007) as depicted in Figure 5.10 show
an improved usage of issues in the case study projects.

0

3

6

9

VSO DOLLI6 NA

Issues/student

P
ro

je
ct

Figure 5.10: Comparison of issues per developer between projects using ra-
tionale management

Since the VSO project also explicitly introduced rationale manage-
ment to participants and also was a similar type of project (a one
semester student development project with a real client), the increase
in usage of rationale management looks promising.

The results of the survey which followed the second case study
indicate that developers did not find the review process any more
complicated than ad-hoc reviews, whereas they found the improve-
ment in document quality to be greater for IBMR. They also were
more confident of having addressed all feedback from reviews.

6
C O N C L U S I O N

This chapter states the main contributions of this dissertation. We
close by presenting ideas for future work.

6.1 summary

In this dissertation, we have presented a framework called Issue-
Based Model Review (IBMR). The main contributions of IBMR are

a model for integrating reviews into the unified model

The IBMR model allows for integration with the unified soft-
ware engineering model, enabling automated checking of sim-
ple defect conditions, and simplifying the follow-up on defects.

improved integration of reviews and rationale

Integration of model review documentation and rationale man-
agement improves concurrent capture of rationale during the
project (instead of documenting rationale after the project is
finished), and makes defect status and model maturity trace-
able and manageable. With IBMR, reviews provide an ongoing
source of rationale identification, which can be used to support
other rationale capture efforts.

a tailorable process for model-based model reviews

The process for conducting model reviews treats reviews not as
special events, but as a workflow supporting continuous check-
ing of models, shortening the time between reviews, and mak-
ing them more dependent on actual content changes and less
dependent on time.

Another contribution of this dissertation are two exploratory case
studies in student projects with industry collaboration. The first case
study was conducted as part of a large 60 person project. The second
case study involved an 8 person project. Both case studies demon-
strated the feasibility of the IBMR approach.

In particular, we conducted a survey after the second case study,
which indicated that IBMR is not more complex to follow than stan-
dard review techniques. Instead it leads to higher confidence among
project participants, that all issues from a review have been addressed.

95

96 conclusion

6.2 future work

We successfully conducted two case studies providing anecdotal ev-
idence. Further studies should focus on statistically relevant experi-
ments. Although our case studies had industry partners, they were
limited to short term projects. The IBMR approach should also be
studied in large, multi-year industrial projects, since these are the
type of project which should most strongly benefit from IBMR.

Future work could also address improving the tooling and its inte-
gration into the unified model and software lifecycle model. By imple-
menting IBMR in a CASE tool built on a unified software engineering
model, review efficiency and effectiveness can be increased by provid-
ing better support for conducting and following up on reviews.

Improved tooling would allow for proper implementation of au-
tomation support, such as scheduling model elements to be reviewed.
This could lead to a reduction in review time, because unchanged
model elements would not come up for review.

B I B L I O G R A P H Y

Ahtee, Tero and Timo Poranen (Feb. 2009). “Risks in Students’ Soft-
ware Projects.” In: Software Engineering Education and Training,
2009. CSEET ’09. 22nd Conference on. IEEE, pp. 154–157. isbn:
978-1-4244-3431-2. doi: 10.1109/CSEET.2009.31.

Alkadhi, Rana Mohammed A (2018). “Rationale in Written Develop-
ers’ Communications.” PhD thesis. Technische Universität München.

Ambler, Scott W (Mar. 2004). The Object Primer. English. Agile Model-
Driven Development with UML 2.0. Cambridge University Press.
isbn: 0521540186.

Ambler, Scott (2003). Model Reviews: Best Practice or Process Smell?
Babar, Muhammad Ali and Ian Gorton (2009). “Software Architecture

Review: The State of Practice.” In: Computer 42.7, pp. 26–32. doi:
10.1109/MC.2009.233.

Bacchelli, Alberto and Christian Bird (2013). “Expectations, Outcomes,
and Challenges of Modern Code Review.” In: Proceedings of the
2013 International Conference on Software Engineering. Piscataway,
NJ, USA: IEEE Press, pp. 712–721. isbn: 978-1-4673-3076-3.

Bernhart, Mario, Andreas Mauczka, and Thomas Grechenig (2010).
“Adopting Code Reviews for Agile Software Development.” In:
2010 AGILE Conference. IEEE, pp. 44–47. isbn: 978-1-4244-7731-9.
doi: 10.1109/AGILE.2010.18.

Black, Kent M (Jan. 1994). “An Industry View of Engineering Educa-
tion.” English. In: Journal of Engineering Education 83.1, pp. 26–28.
doi: 10.1002/j.2168-9830.1994.tb00112.x.

Bos, Nathan, Judy Olson, Darren Gergle, Gary Olson, and Zach Wright
(2002). “Effects of four computer-mediated communications chan-
nels on trust development.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. Minneapolis, Min-
nesota, USA: ACM, pp. 135–140. isbn: 1-58113-453-3. doi: 10.
1145/503376.503401.

Brown, William J, Hays W Skip McCormick, and Scott W Thomas
(Aug. 2000). AntiPatterns in Project Management. English. John
Wiley & Sons Incorporated.

Bruegge, B, Allen H. Dutoit, and Timo Wolf (Oct. 2006). “Sysiphus:
Enabling informal collaboration in global software development.”
In: Global Software Engineering, 2006. ICGSE ’06. International Con-
ference on. IEEE, pp. 139–148. isbn: 0-7695-2663-2. doi: 10.1109/
ICGSE.2006.261227.

Bruegge, Bernd and Allen H. Dutoit (Aug. 2009). “Object-Oriented
Software Engineering Using UML, Patterns, and Java, 3rd edi-

97

https://doi.org/10.1109/CSEET.2009.31
https://doi.org/10.1109/MC.2009.233
https://doi.org/10.1109/AGILE.2010.18
https://doi.org/10.1002/j.2168-9830.1994.tb00112.x
https://doi.org/10.1145/503376.503401
https://doi.org/10.1145/503376.503401
https://doi.org/10.1109/ICGSE.2006.261227
https://doi.org/10.1109/ICGSE.2006.261227

98 bibliography

tion.” In: Object-Oriented Software Engineering Using UML, Pat-
terns, and Java, 3rd edition.

Bruegge, Bernd, Helmut Naughton, and Michaela Gluchow (May 2011).
“SLPC++: Teaching software engineering project courses in indus-
trial application landscapes – A tutorial.” In: CSEET ’11: Proceed-
ings of the 2011 24th IEEE-CS Conference on Software Engineering
Education and Training. IEEE Computer Society.

Bruegge, Bernd, Stephan Krusche, and Martin Wagner (2012). “Teach-
ing Tornado: From Communication Models to Releases.” In: Pro-
ceedings of the 8th Edition of the Educators’ Symposium. New York,
NY, USA: ACM, pp. 5–12. isbn: 978-1-4503-1812-9. doi: 10.1145/
2425936.2425938.

Ciolkowski, Marcus, Oliver Laitenberger, Dieter Rombach, Forrest
Shull, and Dewayne Perry (2002). “Software Inspections, Reviews
& Walkthroughs.” In: Proceedings of the 24th International Confer-
ence on Software Engineering. New York, NY, USA: ACM, pp. 641–
642. isbn: 1-58113-472-X. doi: 10.1145/581339.581422.

Ciolkowski, Marcus, Oliver Laitenberger, and Stefan Biffl (2003). “Soft-
ware reviews, the state of the practice.” English. In: IEEE Software
20.6, pp. 46–51. doi: 10.1109/MS.2003.1241366.

Clinical and Laboratory Standards Institute (2009). “Laboratory In-
strument Implementation, Verification, and Maintenance, Approved
Guideline.” In: CLSI GP31-A.

Croll, Grenville J. (Jan. 2003). “A typical model audit approach.” In:
Integrity and internal control in information systems V.

DOLLI 6 Project Page (2012).
David, Jörn, Helmut Naughton, Jonas Helming, and Maximilian Koegel

(2009a). “Integrating System Modeling with Project Management
- A Case Study.” In: 33rd Annual IEEE International Computer Soft-
ware and Applications Conference, 2009. COMPSAC ’09. IEEE Com-
puter Society, pp. 571–578.

David, Jörn, Maximilian Koegel, Helmut Naughton, and Jonas Helm-
ing (July 2009b). “Traceability ReARMed.” In: COMPSAC ’09:
Proceedings of the 2009 33rd Annual IEEE International Computer
Software and Applications Conference. IEEE Computer Society.

Doolan, E P (Feb. 1992). “Experience with Fagan’s inspection method.”
English. In: Software: Practice and Experience 22.2, pp. 173–182. doi:
10.1002/spe.4380220205.

Doyle, M and D Straus (1982). How to Make Meetings Work: The New
Interaction Method. Jove Books. isbn: 9780515090482.

Dutoit, A H, R McCall, I Mistrik, and B Paech (2007). Rationale Man-
agement in Software Engineering. Springer Berlin Heidelberg. isbn:
9783540309987.

Dutoit, Allen H. and Barbara Paech (Apr. 2012). “Rationale Man-
agement In Software Engineering.” In: Handbook of Software En-
gineering and Knowledge Engineering. World Scientific Publishing

https://doi.org/10.1145/2425936.2425938
https://doi.org/10.1145/2425936.2425938
https://doi.org/10.1145/581339.581422
https://doi.org/10.1109/MS.2003.1241366
https://doi.org/10.1002/spe.4380220205

bibliography 99

Company, pp. 787–815. isbn: 978-981-02-4514-6. doi: 10.1142/
9789812389718_0033.

Fagan, Michael E. (1986). “Advances in Software Inspections.” In:
IEEE Transactions on Software Engineering SE-12, pp. 744–751.

— (1976). “Design and Code Inspections to Reduce Errors in Pro-
gram Development.” In: IBM Systems Journal 15.3, pp. 182–211.

Fey, Ines and Ingo Stürmer (Apr. 2007). Quality Assurance Methods
for Model-Based Development: A Survey and Assessment. Tech. rep.
Warrendale, PA: SAE International. doi: 10.4271/2007-01-0506.

Finnigan, David, Elizabeth A. Kemp, and Daniela Mehandjiska (2000).
“Towards an ideal CASE tool.” In: Proceedings. International Confer-
ence on Software Methods and Tools, 2000. SMT 2000. IEEE Comput.
Soc, pp. 189–197. isbn: 0-7695-0903-7. doi: 10.1109/SWMT.2000.
890434.

Fisher, Roger and William L Ury (1981). Getting to YES: Negotiat-
ing Agreement Without Giving In. Penguin Group. isbn: 978-0-
14-015735-2.

Freedman, Daniel P. and Gerald M. Weinberg (1990). Handbook of
walkthroughs, inspections, and technical reviews : evaluating programs,
projects, and products. Little, Brown computer systems series. New
York, NY: Dorset House Pub. isbn: 9780932633194.

Gilb, Tom and Dorothy Graham (1993). Software Inspection. Ed. by
Susannah Finzi. Addison-Wesley Longman, Amsterdam. isbn:
0201631814.

Gorschek, Tony and Mikael Svahnberg (2005). “Requirements Expe-
rience in Practice: Studies of Six Companies.” English. In: Engi-
neering and Managing Software Requirements. Berlin/Heidelberg:
Springer Berlin Heidelberg, pp. 405–426. isbn: 978-3-540-25043-2.
doi: 10.1007/3-540-28244-0_18.

Gotel, Orlena C. Z. and Anthony C. W. Finkelstein (1994). “An anal-
ysis of the requirements traceability problem.” In: IEEE Interna-
tional Conference on Requirements Engineering. IEEE Comput. Soc.
Press, pp. 94–101. isbn: 0-8186-5480-5. doi: 10.1109/ICRE.1994.
292398.

Hedberg, Henrik and Jouni Lappalainen (2005). “A preliminary eval-
uation of software inspection tools, with the DESMET method.”
In: Sixth International Conference on Quality Software, 2006. QSIC
2006. IEEE, pp. 45–52. isbn: 0-7695-2472-9. doi: 10.1109/QSIC.
2005.7.

Helming, Jonas (2011). “Merging Project Management with System
Modeling.” PhD thesis. Technische Universität München.

Helming, Jonas, Maximilian Koegel, and Helmut Naughton (May
2009a). “Towards traceability from project management to sys-
tem models.” In: Traceability in Emerging Forms of Software Engi-
neering, 2009. TEFSE ’09. ICSE Workshop on. IEEE, pp. 11–15. isbn:
978-1-4244-3741-2. doi: 10.1109/TEFSE.2009.5069576.

https://doi.org/10.1142/9789812389718_0033
https://doi.org/10.1142/9789812389718_0033
https://doi.org/10.4271/2007-01-0506
https://doi.org/10.1109/SWMT.2000.890434
https://doi.org/10.1109/SWMT.2000.890434
https://doi.org/10.1007/3-540-28244-0_18
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/QSIC.2005.7
https://doi.org/10.1109/QSIC.2005.7
https://doi.org/10.1109/TEFSE.2009.5069576

100 bibliography

Helming, Jonas, Maximilian Koegel, Helmut Naughton, Jörn David,
and Aleksandar Shterev (2009b). “Traceability-Based Change Aware-
ness.” English. In: Model Driven Engineering Languages and Sys-
tems. Ed. by Andy Schürr and Bran Selic. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 372–376–376. isbn: 978-3-642-
04424-3. doi: 10.1007/978-3-642-04425-0_28.

Hollocker, Charles P (1990). “Software Reviews and Audits Hand-
book.” In:

IEEE (2008). “IEEE Standard for Software Reviews and Audits.” In:
IEEE Std 1028-2008, pp. 1–52. issn: 978-0-7381-5769-6. doi: 10.
1109/IEEESTD.2008.4601584.

— (1983). “IEEE standard glossary of software engineering termi-
nology.” In: IEEE Std 729-1983.

ISO (May 2012). Information technology - Object Management Group
Object Constraint Language (OCL). ISO.

ITIL (2016). The Official IT Infrastructure Library Website.
Imai, Masaaki (Nov. 1986). Kaizen: The Key To Japan’s Competitive Suc-

cess. McGraw-Hill/Irwin. isbn: 9780075543329.
Jacobson, Ivar, Patrik Jonsson, Magnus Christerson, and Gunnar Over-

gaard (July 1992). Object-Oriented Software Engineering. A Use
Case Driven Approach. Addison-Wesley. isbn: 978-0201544350.

Jetley, R, S Purushothaman Iyer, and P L Jones (Apr. 2006). “A for-
mal methods approach to medical device review.” English. In:
Computer 39.4, pp. 61–67. doi: 10.1109/MC.2006.113.

Johnson, Philip M (1994). “An instrumented approach to improving
software quality through formal technical review.” In: 16th In-
ternational Conference on Software Engineering. IEEE Comput. Soc.
Press, pp. 113–122. isbn: 0-8186-5855-X. doi: 10.1109/ICSE.1994.
296771.

Kamm, Daniel (May 2005). An Introduction to Risk/Hazard Analysis for
Medical Devices. Tech. rep.

Kemerer, Chris F. and Mark C. Paulk (2009). “The Impact of De-
sign and Code Reviews on Software Quality: An Empirical Study
Based on PSP Data.” In: IEEE Transactions on Software Engineering
35.4, pp. 534–550. doi: 10.1109/TSE.2009.27.

Koegel, Maximilian (2011). “Operation-based Model Evolution.” PhD
thesis. Technische Universität München.

Kruchten, Philippe (2004). The Rational Unified Process. English. 3rd.
An Introduction. Addison-Wesley Professional. isbn: 9780321197702.

Kunz, Werner and Horst WJ Rittel (1970). Issues as elements of informa-
tion systems. Vol. 131. Institute of Urban and Regional Develop-
ment, University of California Berkeley, California.

Laitenberger, Oliver and Jean-Marc DeBaud (2000). “An Encompass-
ing Life Cycle Centric Survey of Software Inspection.” English. In:
J. Syst. Softw. 50.1, pp. 5–31. doi: 10.1016/S0164-1212(99)00073-
4.

https://doi.org/10.1007/978-3-642-04425-0_28
https://doi.org/10.1109/IEEESTD.2008.4601584
https://doi.org/10.1109/IEEESTD.2008.4601584
https://doi.org/10.1109/MC.2006.113
https://doi.org/10.1109/ICSE.1994.296771
https://doi.org/10.1109/ICSE.1994.296771
https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1016/S0164-1212(99)00073-4
https://doi.org/10.1016/S0164-1212(99)00073-4

bibliography 101

Landsberger, Henry A (1958). Hawthorne revisited : management and the
worker : its critics, and developments in human relations in industry.
Ithaca, N.Y.: Cornell University.

MacLean, Allan, Richard M Young, Victoria M E Bellotti, and Thomas
P Moran (1991). “Questions, Options, and Criteria: Elements of
Design Space Analysis.” In: Hum.-Comput. Interact. 6.3, pp. 201–
250. doi: 10.1207/s15327051hci0603{\&}4_2.

Naughton, Helmut (2008). “Meeting management in the Unified
Model.” MA thesis. Technische Universität München.

Nguyen, David T and John Canny (2009). “More than face-to-face:
empathy effects of video framing.” In: the SIGCHI Conference,
pp. 423–432. doi: 10.1145/1518701.1518770.

Ott, Daniel and Alexander Raschke (2012). “Review improvement by
requirements classification at Mercedes-Benz: Limits of empirical
studies in educational environments.” In: 2012 IEEE Second Inter-
national Workshop on Empirical Requirements Engineering (EmpiRE).
IEEE, pp. 1–8. isbn: 978-1-4673-4364-0. doi: 10.1109/EmpiRE.
2012.6347677.

Parnas, David L and David M Weiss (1985). “Active design reviews:
principles and practices.” In: Proceedings of the 8th International
Conference on Software Engineering. Los Alamitos, CA, USA: IEEE
Computer Society Press, pp. 132–136. isbn: 0-8186-0620-7.

Popper, Karl R (1934). Logik der Forschung. Wien: Springer.
Porter, Adam A and Lawrence G Votta Jr (1997). “What makes inspec-

tions work?” In: Software, IEEE 14.6, pp. 99–102. doi: 10.1109/52.
636690.

Rösler, Peter, Maud Schlich, and Ralf Kneuper (2013). Reviews in der
System- und Softwareentwicklung: Grundlagen, Praxis, kontinuierliche
Verbesserung. Dpunkt.Verlag GmbH. isbn: 9783864900945.

Salger, Frank (2013). “Requirements Reviews Revisited: Residual Chal-
lenges and Open Research Questions.” In: Proceedings RE 2013.
IEEE, pp. 250–255.

Selic, Bran (Sept. 2003). “The pragmatics of model-driven develop-
ment.” English. In: IEEE Software 20.5, pp. 19–25. doi: 10.1109/
MS.2003.1231146.

Shaw, M E (1971). Group dynamics, the psychology of small group behavior.
McGraw-Hill series in psychology. McGraw-Hill.

Shirey, Glen C (1992). “How inspections fail.” In: Proceedings of the 9th
International Conference on Testing Computer Software, pp. 151–159.

Shum, Simon Buckingham (1996). “Analyzing the usability of a de-
sign rationale notation.” In: Design rationale: Concepts, techniques,
and use, pp. 185–215.

Slater, Philip E (June 1958). “Contrasting Correlates of Group Size.”
In: Sociometry 21.2, p. 129. doi: 10.2307/2785897.

Votta Jr, Lawrence G (1993). “Does Every Inspection Need a Meet-
ing?” In: Proceedings of the 1St ACM SIGSOFT Symposium on

https://doi.org/10.1207/s15327051hci0603{\&}4_2
https://doi.org/10.1145/1518701.1518770
https://doi.org/10.1109/EmpiRE.2012.6347677
https://doi.org/10.1109/EmpiRE.2012.6347677
https://doi.org/10.1109/52.636690
https://doi.org/10.1109/52.636690
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.2307/2785897

102 bibliography

Foundations of Software Engineering. New York, NY, USA: ACM,
pp. 107–114. isbn: 0-89791-625-5. doi: 10.1145/256428.167070.

Wheeler, David A, Bill Brykczynski, and Reginald N Meeson Jr (1996).
Software Inspection: An Industry Best Practice for Defect Detection and
Removal. IEEE Computer Society Press.

Wolf, Timo (2007). “Rationale-based Unified Software Engineering
Model.” PhD thesis. Technische Universität München.

Yin, Robert K (2014). Case study research : design and methods. 5. ed.
London: SAGE. isbn: 978-1-4522-4256-9.

iOS Praktikum 2013 Project Page (2013).

https://doi.org/10.1145/256428.167070

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 1, 2018 (draft).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Intro
	1 Introduction
	1.1 Terminology
	1.2 Components of a model review framework
	1.2.1 Model-based approach
	1.2.2 Support for rationale and knowledge management
	1.2.3 Tailorable process
	1.2.4 Focus on review of models

	1.3 Outline

	2 Related Work
	2.1 Review techniques
	2.1.1 Fundamentals
	2.1.2 Textbooks
	2.1.3 Other publications

	2.2 Rationale management
	2.2.1 Issue-Based Information Systems
	2.2.2 Questions, Options, and Criteria

	2.3 RUSE, MUSE and Meeting Management
	2.3.1 Rationale-based Unified Software Engineering model
	2.3.2 Management-based Unified Software Engineering model
	2.3.3 Meeting Management in the Unified Model
	2.3.4 Rationale capture in textual communication

	2.4 Review deliverables
	2.5 Towards better support for model review
	2.5.1 Shortcomings of current model review approaches
	2.5.2 Requirements for a next generation model review framework

	Main
	3 The Issue-Based Model Review Model
	3.1 Overview
	3.2 IBMR Meta-Model
	3.2.1 Basics of the RUSE/MUSE meta-model
	3.2.2 Rationale
	3.2.3 Review model elements

	3.3 Review Traceability
	3.3.1 Traceability and review coverage
	3.3.2 Traceability and change monitoring
	3.3.3 Traceability and project management
	3.3.4 Examples

	3.4 Tracking of review-related changes
	3.4.1 Follow-up on review-related changes
	3.4.2 Validation
	3.4.3 Integration with model change tracking

	4 Issue-Based Model Review Process
	4.1 Issue-Based Model Review
	4.1.1 Review actors
	4.1.2 Review use cases
	4.1.3 Classification of defects in the IBMR framework
	4.1.4 Review processes

	4.2 Review Process Automation
	4.2.1 Specifying rules
	4.2.2 Automated reviews
	4.2.3 Scheduling

	4.3 Review Process Variations and Improvements
	4.3.1 Continuous Review
	4.3.2 Concurrent Review
	4.3.3 Other variations
	4.3.4 Meta-reviews and process improvements

	5 Case studies
	5.1 Background
	5.1.1 Research method
	5.1.2 Tooling

	5.2 DOLLI6
	5.2.1 Case Study
	5.2.2 Findings
	5.2.3 Limitations

	5.3 NTT Data
	5.3.1 Case study
	5.3.2 Findings
	5.3.3 Limitations

	5.4 Survey
	5.4.1 Survey results
	5.4.2 Threats to validity

	5.5 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future work

	Bibliography
	Colophon

