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Abstract

Nearly all real-world image understanding problems in computer vision are inherently ambigu-
ous. Often, predictive systems do not model this ambiguity and do not consider the possibility
that there can be more than just a single outcome for a given problem. This leads to sub-par
performance on ambiguous tasks as the model has to account for all possibilities with one
answer. We define three typical sources of confusion that render tasks not optimally solvable
with a single unique prediction.

First, the fact that we are using 2D images means that the input to our models is a non-
reversible projection of the 3D real world. Thus, information about sizes, distances and
shapes is lost and has to be inferred by the algorithm from cues such as shading, texture or
relative size. Sometimes the ambiguities cannot be resolved by the image context alone. For
example, objects of interest can be occluded or too small and do not provide sufficient details
to accurately solve a task. The second source of ambiguity are the annotations in our datasets.
In supervised or semi-supervised learning scenarios, predictive systems are typically trained
using labeled data. However, labeling large amounts of data is tedious and expensive. Thus,
often not everything is fully annotated or the annotations can be wrong and inconsistent if
they come from unreliable sources, such as non-experts, crowd-sourcing or automatically
from the internet. Finally, and most importantly, the problem itself could be ambiguous. For
example, predicting the future is inherently uncertain and, in most cases, it cannot be precisely
foreseen.

In this dissertation we describe two principled and general approaches of dealing with
ambiguity. First, we elaborate on a method that allows the algorithm to predict multiple
instead of one single answer. This is a pragmatic way of dealing with ambiguity: instead of
deciding for an exclusive outcome for a given problem, we enable the system to list several
possibilities. This approach has already proven to be useful in several exciting downstream
applications. We show that the general framework of multiple hypothesis prediction can be
used for image classification, segmentation, future prediction, conditional image generation,
reinforcement learning, object pose estimation and robotic grasp point estimation.

The second part describes an alternative way to deal with uncertain predictions. Often human
perception can provide additional information about a task or application that an intelligent
system might have not recognized. Building on the paradigm of human-machine interaction,
we show how enabling interaction between the system and a user can improve predictions on
the example of semantic segmentation. We describe a novel guiding mechanism that can be
seamlessly integrated into the system and shows great potential beyond the demonstrated
tasks for several further applications.
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Zusammenfassung

Im Bereich des Bildverstehens sind fast alle Problemstellungen inhärent mehrdeutig. Viele
Methoden modellieren diese Uneindeutigkeit nicht explizit und können deshalb nur schwer
mit Szenarien umgehen, in denen es mehr als ein mögliches Ergebnis gibt. Das liegt daran,
dass in diesen Systemen alle Möglichkeiten in einer einzigen Antwort zusammengemischt
werden müssen. Wir definieren drei Quellen von Mehrdeutigkeit.

Da Fotos eine zweidimensionale Projektion der echten Welt sind, können wir als erste Quelle
die Uneindeutigkeit von Bildern bestimmen. Durch die Projektion gehen Informationen wie
Größe, Distanzen und Formen verloren und müssen von Algorithmen aus Textur, Schatten
und relativer Größe abgeschätzt werden. Verdeckungen oder Perspektive können es auch
unmöglich machen ein Problem direkt zu lösen. Da die meisten Methoden des maschinellen
Lernens mit annotierten Daten trainiert werden, ist die zweite Quelle definiert durch Fehler
oder unzureichend beschriebene Goldstandards definiert. Dies liegt oft darin begründet, dass
Annotationen teuer zu erstellen sind, oder automatisierte Systeme, wie zum Beispiel eine
Websuche, fehlerbehaftet sind. Letztlich kann auch die Problemstellung selbst uneindeutig
sein. Beispielweise die Vorhersage der Zukunft ist inhärent nicht eindeutig lösbar.

In dieser Dissertation beschreiben wir zwei Möglichkeiten mit dieser Uneindeutigkeit umzu-
gehen. Die erste Methode erlaubt es dem Algorithmus statt einer einzigen Antwort mehrere
Möglichkeiten vorzuschlagen. Dieser Ansatz hat sich in mehreren nachgelagerten Anwen-
dungen als sehr nützlich erwiesen. Für Bilderkennung, Segmentierung, Zukunftsvorhersage,
Bildersterstellung, verstärkendes Lernen, Objektorientierungserkennung und Greifpunktbe-
stimmung in der Robotik können die Vorteile dieser Methode zeigen.

Im zweiten Teil bringen wir den Nutzer des Systems ins Spiel. Oft verfügt ein Mensch über
zusätzliche Informationen und kann dem System helfen die richtige Antwort zu finden. In
zwei Ansätzen können wir zeigen, wie der Nutzer ins System integriert werden kann. Auch
diese Methode hat weitreichende Anwendungsmöglichkeiten und zeigt sich vielversprechend
für viele wichtige Probleme.
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1Learning in an Ambiguous World

1.1 Introduction

In this dissertation we investigate a group of problems that we call ambiguous problems, which
are prominent in many image understanding tasks. The basic concept is that in many cases it
is not fully clear what the correct answer to a given problem is. Humans experience this in
the same way. However, when we do not know the exact answer, we often have an intuition
about the range of possibilities. For example, when we see a dog playing in the field but it
is too far away to identify it exactly. We could say that “This could be a golden retriever or a
labrador, but definitely not a chihuahua.” This is a typical example where distance, perspective
or just lack of expertise in dog-breeds creates an ambiguous prediction problem. We note that
even when we are not sure, we have expressed some options that are more likely than others.
In the above sentence, it is also implicitly clear that the speaker does not think that this could
be a giraffe or an elephant.

This thesis will show three principled ways of dealing with ambiguity. The first two will
follow the intuition from the aforementioned example and allow the system to express several
guesses – or as we call them hypotheses. As many cases of ambiguity are caused by too
little information the methods in the last part of the thesis will acquire additional, external
knowledge to solve the task by interacting with a human user. As long as the systems that we
build are not perfect humans act as excellent sources of information. We will also see that
users can sometimes even be the source of ambiguity, as the algorithm needs to understand
the operator’s goals and expectations. In the case of several possible actions, it is often better
to ask before a potentially wrong decision is made.

In the following, we will introduce three typical sources of ambiguity for many problems in
computer vision and mention our contribution in these areas.

1.1.1 Ambiguous Images

A first source of ambiguity is of course the input image itself. A 2D image is the projection
of the 3D world onto the image plane. This projection is non-invertible and thus inherently
creates ambiguities when we try to reason about the 3D scene. In [99] we investigate this
problem and try to infer the 3D point cloud of a scene just from just a single input image.

Often in medical imaging it is hard to reason about object boundaries and region labels. Thus
in [154] we rely on user interaction to segment the left and right ventricle of the heart by
learning the deformation field of an active contour algorithm with a convolutional neural
network.
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We redefine the task of joint localization of surgical tools as a heatmap prediction problem, to
combat learning the average of two possible locations in [98]. Still in the medical domain,
estimating the kidney volume is also an ambiguous task, if the kidney should actually remain
within the patient – which is usually desired – during the measurement. Thus, in an extensive
study [168], we can estimate the total kidney volume by using segmentation on CT volumes.
For robotic tasks such as (human) activity recognition, often additional sensors such as
accelerometers are used. In [160] we learn to predict the sensor readings just from an image
in order to substitute the actual sensors with the learned values. This can save cost and effort
for many downstream applications.

1.1.2 Ambiguous Labels

Even if the input to the algorithm contains all necessary information, ambiguity can arise from
the annotations. Labeling datasets is a tedious and often expensive process. For this reason,
often not all possible outcomes are annotated in a dataset. In the domain of robotic grasping,
there are often many possible poses in which an object can be held. A pen for example can be
held almost anywhere along its length and is additionally rotational symmetric, so there are
infinitely many possibilities. The dataset we use in our grasping approach [45] has annotated
some proposals but not all of them. When an image contains several objects, sometimes only
some or only one of them are annotated [158]. Due to labeling cost and effort, it would be
desired to obtain labels from the internet, but often when automatically downloading images
or videos from online sources, the rate of erroneous labels is high. Thus, in [159] we proposed
methods to detect outliers and filter training data from online sources.

1.1.3 Ambiguous Problems

Estimating the pose of a symmetric object is inherently ambiguous around the axis of symmetry.
Our corresponding work [123] technically falls into all three categories. First, in almost all
datasets only one ground truth pose is annotated for an object (ambiguous labels). Second,
sometimes self occlusions can also cause unclear scenarios – for example when the handle of
a cup is not visible, an arc of possible poses emerges (ambiguous images). Finally, symmetric
objects do not have one single correct pose (ambiguous problems). Another problem, which is
inherently unpredictable is estimating the future [158]. When learning a policy for behavior,
it is often the case that not only one action is best at a given moment. To mitigate this issue,
in [96] we learn a stochastic policy that allows predicting several equally valued options in
ambiguous scenarios

We have now seen that there are countless scenarios in which ambiguity plays a major role
during learning and inference. Before we introduce the main contributions and topics of this
thesis, we build a foundation including the basics of neural networks and supervised learning
that are common within the remainder of this thesis.
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1.2 Learning

In this section we briefly introduce neural networks. As they have become an integral
part of the computer vision community, we will explain the basics but focus on current
techniques. Nonetheless, we will cover all necessary fundamentals to understand this thesis.
For an excellent detailed description of deep learning we refer to the book of Goodfellow et
al. [50].

1.2.1 Neural Networks

Neural Networks have a long history - in computer science terms. Theoretical models have
been proposed as early as the 1940s [126]. The first notable contribution goes back to
Frank Rosenblatt who invented The Perceptron in 1957 and is quoted to have envisioned it
as “the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see,
write, reproduce itself and be conscious of its existence” [137]. The preceptron was build as a
mechanical device, where motors controlled potentiometers which can be seen as the free
parameters of the network. The input consisted of an array of 20× 20 photo-diodes, rendering
it also the first neural network for image recognition. In hindsight we know that the function
it learned was a linear function f of the form

ỹ = f(x) = Wx+ b , (1.1)

where in this case W ∈ R400×1 denote the parameters and b ∈ R the bias. f predicts a single
value f(x) ∈ R, given the input x. If f(x) = 1 the image contains a target object, if f(x) = 0
it does not.

On this simple example we will introduce the concept of supervised learning. As usual in
supervised learning we are given a dataset of N samples (xi, yi) where xi ∈ Rdx , yi ∈ Rdy

and i ∈ {1, . . . , N}. We are now interested in learning a function fθ(x) = ỹ from these
examples that minimizes the error we make on the training examples (xi, yi). The function f
is parametrized by θ that contains all learnable parameters. Learning is then the process of
finding an optimal θ∗ with minimal error or loss L:

θ∗ = argmin
θ

N∑
i=1
L(f(xi), yi) . (1.2)

A typical loss for regression problems is the `2 loss, where

`2(ỹ, y) = 1
2‖ỹ − y‖

2
2 (1.3)
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is the squared Euclidean norm of the difference between prediction and ground truth. However,
a plethora of generic and task-specific loss functions has been proposed. As long as the loss is
differentiable, with respect to the network’s output, training with stochastic gradient descent
is possible.

Due to their linear nature, it became clear in 1969 [130] that perceptrons cannot learn
non-linear functions such as the XOR-function. This result was part of the cause for a sudden
disinterest in neural networks.

The first renaissance of neural networks came 1986 with the invention of back-propagation
[153] which is an efficient way of computing the derivative of the loss L with respect to the
parameters. To understand back-propagation we will first introduce the basic notation of a
multi-layer preceptron. The first key insight over the perceptron was the idea to include a
non-linearity φ : R→ R in the network, adapting the original formulation to

fθ(x) = W2φ(W1x+ b1) + b2 , (1.4)

where again W1 and W2 are matrices and b1 and b2 are vectors with θ = (W1, b1,W2, b2).
Initially, a typical choice for φ was a sigmoid function such as tanh or ex

1+ex . Later it was
found that max(0, x) (ReLu [47, 58]) is not only faster to compute, but also partially helps
to mitigate the vanishing gradient problem. While many other (minor) variants [27, 88, 120,
134] have been proposed since then, ReLU remains the most widely used activation function
to date.

Coming back to back-propagation, we are now interested in computing the gradient of the
loss with respect to the parameters θ. For this simple example we will use the network from
Equation (1.4) and the `2 loss.

∂

∂θ
L = ∂

∂θ

N∑
i=1
‖W2φ(W1x+ b1) + b2‖22 (1.5)

We can decompose this function into the layers of the network by defining f(x) = g(h(x))
with h(x) := φ(W1x+ b1) and g(x) := W2x+ b2. The composite function we want to optimize
is then `2(g(h(x)), y). The “trick” of back-propagation is the observation that some terms are
shared between parameters. For example the derivative with respect to W1,

∂

∂W1
L = ∂`2

∂g

∂g

∂h

∂h

∂W1
, (1.6)

shares the first two terms with the derivative with respect to b1,

∂

∂b1
L = ∂`2

∂g

∂g

∂h

∂h

∂b1
. (1.7)
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This means that back-propagation is simply a smart way to compute all partial derivatives
of the loss with respect to the network’s parameters. Due to the nature of the chain rule, all
derivatives will share the derivative of the loss ∂`2

∂g which leads to the reason why it is called
back-propagation. A reasonable order of computation is to compute the most used term first
and work backwards to the beginning of the network. Naturally, gradients of parameters of
the first layers depend on the derivatives of the later layers.

Due to the number of parameters in a network often being in the millions, it is infeasible to
train with second order methods such as BFGS [15, 39, 48, 167] or its variants. Storing and
computing/approximating the Hessian matrix exceeds current (GPU) memory limits by far.
Thus, currently all training methods are almost exclusively variants of gradient descent:

θ(t+1) = θ(t) + λ
∂L
∂θ

, (1.8)

where the step-size λ is usually called the learning rate and θ(0) is randomly initialized. Since
the training dataset usually consists of many samples N and every sample is needed to
compute the full gradient of L (1.5), even gradient descent is too slow. Thus, stochastic
gradient descent estimates ∂L

∂θ from a small sub-set of randomly selected samples only. The
size of this sub-set is called the batch-size.

Further, several improvements over vanilla stochastic gradient are used in practice. The most
prominent being momentum [143, 162, 175] and the more sophisticated, adaptive optimizer
Adam [86]. An overview can be found in [152].

Currently, evidence is surfacing that the stochasticity of the gradient estimate actually helps to
find better minima during optimization [25, 197] acting as a regularizer for the surface of the
loss function.

1.2.2 Neural Network Building Blocks

In this section we will briefly discuss typical building block of modern, deep neural networks.

Convolutions

Convolutional Neural Networks (CNNs) [101] have been shown to be flexible function
approximators and have been used extensively for a wide variety of tasks, such as image
classification [59, 94], object detection [149] and semantic segmentation [23, 117].

The main intuition for CNNs is that images are inherently structured. Thus, instead of
multiplying the whole image with a full, unconstrained matrix W as in the previous section, we
can save parameters by exploiting the structure of the image. This is done using convolutions.
A convolution is a filter (set of weights) that is spatially restricted (typically to 3× 3 pixels).
This filter is applied to every location in the image or output of the previous layer. This means
that all parameters are shared spatially, resulting in a massive reduction in number of weights
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and easy parallelization on GPUs. This also allows us to recognize similar patterns in different
locations, as the filter response does not depend on its location in the image.

Pooling
In a CNN pooling layers [101] are a form of subsampling; they are usually added in-between
convolutions in order to gradually reduce the spatial resolution of feature maps. Pooling layers
operate on a single feature map channel at a time and downsample it using a max or mean
operation within a specified window. In the backward pass, mean-pooling is straight forward.
Since the max operation is not differentiable, it transfers the corresponding gradient to the
input location where the maximum value was found.

Batch Normalization
Batch normalization [71] is currently the most popular normalization technique. Normaliza-
tion after convolutional layers was first used in [94] (Local Response Normalization) to combat
vanishing gradient problems. [59] shows that it becomes possible to train very deep networks
using batch normalization and residual connections. Batch normalization is used to normalize
the activations to zero mean and unit standard deviation for every neuron. Special care has
to be taken to estimate these moments during training across multiple batches. Usually a
exponential moving average is continuously updated during training.

Dropout
Dropout [65, 173] was first used in AlexNet [94]. It has been introduced in order to reduce
over-fitting a model to the training data. The idea is to randomly set neuron activations to zero,
usually with 0.5 probability. These neurons are then not included in the forward or backward
pass. It helps the network learn features without relying on fixed neuron arrangements, since
for each input only a random set of neurons contributes to the final outcome. Dropout layers
usually appear towards the end of a network, following (hidden) fully-connected layers.

Residual Blocks
Residual connections were introduced by [59] to enable better gradient flow inside the
network. The idea is to change the function each block inside a network computes from h(x)
to x+ h(x) by adding a skip connection around the block. This allows the network to learn
what has to change in x (the residual) indeed of the whole mapping. In their work they show
that they are able to learn very deep networks (> 1000 layers). h(x) typically consists of three
convolutions where the first and the last have a filter size of 1× 1 and reduce/increase the
number of channels respectively. This helps to reduce the number of parameters of the 3× 3
filter in the middle.

All of the networks that we use or build in the following sections of the paper contain most of
these blocks. Our work on depth prediction makes special use of the residual idea while the
guiding block in Section IV is inspired by batch normalization.
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2Contributions

This thesis is build from the following contributions. In chapter II we present the core concept
of multiple hypothesis prediction (MHP):

• Rupprecht, Christian, Iro Laina, Robert DiPietro, Maximilian Baust, Federico Tombari,
Nassir Navab, and Gregory D. Hager. “Learning in an uncertain world: Representing
ambiguity through multiple hypotheses.” In International Conference on Computer Vision
(ICCV). 2017.

This framework allows a system to predict multiple instead of a single prediction to model
the ambiguities inherent in a task. Based on this very general idea, in the same chapter we
show several extensions that have been published, are currently under review and/or were
developed in a master’s thesis with some excellent students:

• Kumar, Sanjeev, Christian Rupprecht, Federico Tombari, Gregory D. Hager, “Predicting
Multiple Actions for Stochastic Continuous Control.”, 2018 (under submission).

• Ignacio Sarasúa, “Adversarial Multiple Hypothesis Prediction.” Master’s thesis, advisors:
Christian Rupprecht, Federico Tombari, Nassir Navab, 2017

• Ghazaei, Ghazal, Iro Laina, Christian Rupprecht, Federico Tombari, Nassir Navab,
Kianoush Nazarpou, “Dealing with Ambiguity in Robotic Grasping via Multiple Predictions”,
Asian Conference on Computer Vision (ACCV), 2018.

• Manhardt, Fabian, Diego Martín Arroyo, Christian Rupprecht, Benjamin Busam, Tolga
Birdal, Nassir Navab, Federico Tombari, “Explaining the Ambiguity of Object Detection
and 6D Pose from Visual Data.” International Conference on Computer Vision (ICCV),
2019 (*equal contribution).

In chapter III we present a novel idea that was inspired by multiple hypothesis prediction. It
extends the multiple hypothesis idea to the continuous domain and thus can get rid of a hyper
parameter.

In chapter IV we investigate how ambiguity can be resolved by involving a human into the loop.
The chapter is encompassed by two fundamentally different concepts for human interaction:

• Rupprecht, Christian, Loic Peter, and Nassir Navab. “Image segmentation in twenty
questions.” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
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• Rupprecht, Christian*, Iro Laina*, Nassir Navab, Gregory D. Hager, and Federico
Tombari. “Guide Me: Interacting with Deep Networks.” IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR - spotlight), 2018 (*equal contribution).

In the last part of this chapter we demonstrate an elegant link between the two methods that
highlights several connections. Further ambiguous problems (and solutions) that we have
worked on and that are mentioned in this thesis are:

• Laina, Iro*, Christian Rupprecht*, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. “Deeper depth prediction with fully convolutional residual networks.”, International
Conference on 3D Vision (3DV), 2016 (*equal contribution).

• Rupprecht, Christian*, Colin Lea*, Federico Tombari, Nassir Navab, and Gregory D.
Hager. “Sensor substitution for video-based action recognition.” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016 (*equal contribution).

• Rupprecht, Christian, Ansh Kapil, Nan Liu, Lamberto Ballan, and Federico Tombari.
“Learning without prejudice: Avoiding bias in webly-supervised action recognition.” Com-
puter Vision and Image Understanding (CVIU), 2017.

• Rupprecht, Christian, Elizabeth Huaroc, Maximilian Baust, and Nassir Navab. “Deep
active contours.” arXiv preprint arXiv:1607.05074, 2016 (under submission).

• Laina, Iro*, Nicola Rieke*, Christian Rupprecht, Josué Page Vizcaíno, Abouzar Eslami,
Federico Tombari, and Nassir Navab. “Concurrent segmentation and localization for
tracking of surgical instruments.” International Conference on Medical Image Computing
and Computer-Assisted Intervention, (MICCAI) 2017 (*equal contribution).

• Sharma, Kanishka, Christian Rupprecht, Anna Caroli, Maria Carolina Aparicio, Andrea
Remuzzi, Maximilian Baust, and Nassir Navab. “Automatic segmentation of kidneys
using deep learning for total kidney volume quantification in autosomal dominant
polycystic kidney disease.” Nature Scientific reports 7. 2017.

• DiPietro, Robert, Christian Rupprecht, Nassir Navab, and Gregory D. Hager. “Analyzing
and Exploiting NARX Recurrent Neural Networks for Long-Term Dependencies.” Interna-
tional Conference on Learning Representations - Workshop Track (ICLR-W). 2018.

• Spier, Nathalia, Rischpler Christoph, Christian Rupprecht, Nassir Navab, Maximilian
Baust, and Stephan Nekolla. “Defect detection in cardiac SPECT using graph-based
convolutional neural networks.” Journal of Nuclear Medicine, 2018.

Although many of the methods and ideas presented in this dissertation have been published, all
of them are extended with ideas and results that were developed after the original publications.
Very prominently you will find hints like this throughout this document:
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HINT: HINTS

For all presented concepts we have added hints that are based on typical questions from
students or colleagues. The hints explain concepts further or make connections to other
related work within this thesis or in the literature.

Usually after working with a specific method for some time, we have developed intuitions
that did not find their way into the paper but that we deem valuable to reason about the
capabilities of the method.

INTUITION: INTUITIONS

Intuitions will give insights into the model that we deem not straightforward. We gained
these intuitions while developing the method and usually through a large bandwidth of
failed and successful experiments. Our hope is that they give the reader a head start
when building upon the presented techniques.

We deem these hints and intuitions extremely valuable as they are usually what we base our
decisions and experiments on. With this, we hope to give the reader a much richer picture
than the limited space in publications allows.
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Part II

Multiple Hypothesis Prediction





3Introduction

In this chapter we investigate an approach that we refer to as Multiple Hypothesis Prediction
(MHP). This method that we present is generic, as it does not depend on a specific task, but is
formulated as a technique to predict multiple possibilities instead of a single answer for any
given task. The core method has been published in [157] and applications and extensions will
be describes in chapter 5.

3.1 Motivation

As we have seen before, when asked to recognize objects in a given image, humans do not
only predict a single, definite answer but usually express their uncertainty. A reasonable
expression could be: “this could be an alpaca or a llama, but it is definitely not an elephant”.
When predicting the behavior of other drivers on the road a reasonable assumption is “They
are in the right lane, so they might drive straight or take a right turn soon”. This prediction is
justified as it is based on the observation of previous behavior of ourselves on the road.

Uncertainty can be used to model situations in which we only observe incomplete information.
It is impossible to distinguish a mug from a cup if the handle is hidden on the back side. In
fact, we will later demonstrate this behavior for the task of object pose estimation in Section
5.9.

In this chapter we present our Multiple Hypothesis Prediction framework that can easily extend
typical single-loss, single-output systems to predict multiple outputs. Mathematically, this
approximates the conditional output space with a piece-wise constant function instead of a
single answer. Our formulation is probabilistic and we can show that its minimizer yields a
Voronoi tessellation in the output space with the original task loss defining a metric in this
space. Over a large variety of applications we demonstrate how deep neural networks can
be modified to predict multiple hypotheses. The method introduces a meta loss and can be
trained using standard procedures – gradient descent and backpropagation.

We will demonstrate that the MHP framework is general in the sense that it can easily retrofit
any CNN architecture and loss function enabling the estimation of multiple hypotheses in a
large variety of tasks. Analyzing the variance over different hypotheses provides insights into
the model, predictions and task uncertainty. In the experiments we observe that it often also
improves performance as the model can express possible outcomes instead of averaging all
possibilities into one answer. In regression tasks, for example, a single hypothesis prediction
(SHP) model tends to average distinct modes often resulting in blurred and unrealistic
predictions. We will demonstrate that MHP models are capable of overcoming this issue.
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3.2 Related Work

In the following, we discuss in detail the work related to the principle of multiple predictions.

Closely related are Mixture Density Networks (MDNs) [10] that predict a parametrized
Gaussian mixture model to handle multimodal regression tasks. We will later show that MDNs
differ from our approach in two major ways. Due to the nature of Gaussian mixtures, MDNs
are constrained to regression tasks. MHP models, however, are agnostic to the task objective
and can be applied to a much wider variety of problems. In addition, we model the output
space by an implicit Voronoi tessellation rather than using a mixture of Gaussians, resulting in
a vastly different parametrization and flexibility. For example, we find that due to numerical
instabilities of high dimensional Gaussian distributions, MDNs can be difficult to train in large
output spaces such as images (Section 5.2.1).

The idea of learning several predictors for one task has been previously investigated under
the term Multiple Choice Learning [31, 102, 103]. [56] build upon this concept by enforcing
diversity among the predictions. Closely related is the work of Lee et al. [103] who train an
ensemble of networks with a minimum formulation that is similar to ours. The concept of
multiple hypothesis prediction extends these ideas while simultaneously providing a mathe-
matical understanding why this formulation is beneficial. Further, MHP extends to regression
tasks and introduces a relaxation that helps convergence. On the technical side, instead of
training separate networks for each of the multiple choices, we use a shared architecture for
the hypotheses which saves a considerable amount of parameters and enables information
exchange between predictions. In our experiments with MHP-augmented CycleGANs (Section
5.6) we will further study the impact on how parameter sharing can influence the diversity in
predictions.

Label ambiguity in different domains is investigated by Gao et al. [42] for the tasks of age
estimation and image classification. The work studies performance improvement caused by
soft, probabilistic class assignments and Kullback-Leibler (KL) divergence, especially in the
case of smaller datasets in which this soft assignment provides additional information. For
age estimation multi-label approaches have become popular due to the inherent difficulty of
guessing someone’s age form just a single picture [44]. Also head pose estimation [43] can be
modeled as a multi-label task.

Single-label image classification is a simplified recognition task, as in most natural images
objects usually appear not alone but along with other objects of different categories. Label
dependency can be modeled using a recurrent neural network (RNN) on top of a CNN [190]
or by using deep convolutional ranking [49]. Several other work proposes pipelines of object
proposals [191] or use ground truth bounding boxes [195] and/or classifiers [201] to predict
multiple labels.

Many tasks such as future prediction exhibit in inherent ambiguity. When interacting with
robots it is crucial to anticipate what the humans will be doing or where they will move to
[90]. The transfer of motion from video to images is studied in [202]. Predicting the future of
collapsing toy towers [107] is an interesting task to learn basic physics. Since the future can
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usually not be predicted precisely, Vondrick et al. [186] use estimate several possible future
frames form the given current one. Fouhey and Zitnick predict spatio-temporal likelihood
distributions [40] for humans in pictures and cartoons, while Walker et al. [188] resolve
uncertainty using dense trajectories of motion with a variational autoencoder.

With the exception of [10] (and maybe [42] for classification), the aforementioned work is
application-driven and specific, with no straightforward translation to other tasks.

Loosely related are methods that estimate prediction confidences together with the task. Gal
et al. [41] analyze dropout layers as a means to extract uncertainty estimates using multiple
forward passes. In Kingma et al. [87] a stochastic gradient variational Bayes estimator is used
to understand the posterior probability.

The theoretical background of this work is based on the concept of (centroidal) Voronoi
tessellations. However, the tessellation emerges implicitly and does not have to be computed.
Thus, a detailed knowledge of Voronoi tessellations is not necessary for the application of this
method.

HINT: VORONOI TESSELATIONS

For a detailed explanation of Voronoi tessellations, we refer the interested reader to
the general book of Okabe et al. [136] or to Du et al. [32] for centroidal tessellations.
However, all necessary background used in this work will be explained here.

In the following section, we will explain in detail the background and derivation of our
multiple hypothesis prediction approach.

3.2 Related Work 17





4Mathematical Derivation

Here, we describe the proposed ambiguity-aware MHP framework and investigate the rela-
tionship of such model to traditional (unambiguous) prediction models. One can deem a
standard model as unambiguous as it deterministically maps one input to one output. More
formally, we term X as the vector space of input variables and Y as the corresponding space
of outputs or labels. As explained before, we are given a set of N training tuples (xi, yi),
where i = 1, . . . , N . Since we are interested in problems for which several possible outcomes
could exist, we want to model the joint probability density p(x, y) = p(y|x)p(x) of inputs and
outputs. We use p(y|x) to denote the conditional probability for y given x.

4.1 The Unambiguous Prediction Model

We will first investigate what learning a standard model on an ambiguous task means
mathematically. In a typical supervised learning scenario, we are interested in learning
a parametrized function fθ : X → Y, with θ ∈ Rn, such that we minimize the expected error

1
N

N∑
i=1
L(fθ(xi), yi). (4.1)

Further, we assume that the training samples follow the distribution p(x, y). L stands for any
typical loss function, dependent on the task itself. It could for example be the classical `2-loss
(Equation 1.3).

For a better analysis it is often interesting to investigate the limit where N → ∞. In other
terms, for sufficiently large N , Equation (4.1) holds as a good approximation of the continuous
formulation ∫

X

∫
Y

L(fθ(x), y) p(x, y) dy dx, (4.2)

In case of L = `2, Equation (4.2) is minimized by the conditional average (see e.g. [89])

fθ(x) =
∫
Y
y · p(y|x) dy. (4.3)

The conditional average can be thought of as the mean of all possible y given the current x,
weighted with the probability p(y|x) of their occurrence.

INTUITION: CONDITIONAL AVERAGE

Intuitively this is the optimal solution, for which we expect to make the smallest error.
We find the mean of all possible outcomes weighted by their probability.
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However, the conditional average can be a poor representation, depending on the complexity
of the conditional density p(y|x). Consider a mixture model with two distinct Gaussian modes.
Then the expected outcome will fall in between the two means, where the probability density is
low. This means that the expected error for the prediction is minimized but the prediction itself
is not a likely solution for the problem. This dilemma is tackled by our multiple hypothesis
formulation.

4.2 The Ambiguous Prediction Model

The unambiguous model approximates the distribution p(y|x) with a single constant fθ(x)
for every x. Naturally, replacing the single outcome with multiple ones should yield a closer
approximation of the actual distribution. To better model ambiguity in our system, we present
a formulation that produces M predictions instead:

fθ(x) = (f1
θ (x), . . . , fMθ (x)). (4.4)

However, in most tasks, only a single outcome y∗ and not the full distribution p(y|x) is usually
annotated for each x in a dataset. To learn a predictor as in Equation 4.4, the intuition is that
at least one of the predictions f iθ(x) should be close or equal to the annotated y∗. Thus, in
simple terms, we compute the loss L always for the single prediction that is closest to the
ground truth. Mathematically, we propose to minimize

∫
X

M∑
j=1

∫
Yj(x)

L(f jθ (x), y)p(x, y) dy dx, (4.5)

instead of (4.2). Let us investigate a Voronoi tessellation of the label space Y = ∪Mi=1Yi. It is
induced by M generators gj(x) and a loss L:

Yj(x) =
{
y ∈ Y : L(gj(x), y) < L(gk(x), y) ∀k 6= j

}
. (4.6)

Each Voronoi cell Yj(x) contains all points that are closest to its generator, where the loss L
defines the distance between two points as a measure of closeness. The output space is thus
divided by (4.5) into M cells generated by the hypotheses f jθ (x).

For a more in depth analysis of this formulation we will consider the typical regression
case where L = `2. This view is helpful as then the loss preserves the intuitive geometric
understanding of distance in the output space. We can show an interesting property while
solidifying intuitions about the formulation.

Theorem 1 (Minimizer of 4.5) A necessary condition for Equation (4.5) to be minimal is that
the generators gj(x) are identical to the predictors f jθ (x), and both correspond to a centroidal
Voronoi tesselation:

gj(x) = f jθ (x) =

∫
Yj `2(f jθ (x), y)p(y|x) dy∫

Yj p(y|x) dy
, (4.7)

i.e. f jθ predicts the conditional mean of the Voronoi cell it defines1.

1if the density p(x, y) satisfies mild regularity conditions (i.e. it vanishes only on a subset of measure zero)
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Proof. The first observation is that Equation (4.5) can be minimized point-wise with respect to
x since `2 ≥ 0 and p(x, y) ≥ 0. We can simply minimize

M∑
j=1

∫
Yj(x)

L(f jθ (x), y)p(x, y) dy (4.8)

for all x ∈ X to minimize the original expression. The second equality in Equation (4.7)
follows by computing the first variation w.r.t. f jθ as done in [32, Proposition 3.1]:

f jθ (x) =

∫
Yj L(f jθ (x), y)p(x, y) dy∫

Yj p(x, y) dy
. (4.9)

Using the factorization p(x, y) = p(y|x)p(x) and noting that the integration does not depend
on x, we pull p(x) out of the integrals and eventually replace p(x, y) by p(y|x) in Equation
(4.9).

Secondly, we use contradiction to show that gj(x) = f jθ (x). Following [32], if we would
assume that the generators gj(x) do not coincide with f jθ (x), it would be possible to find
one or more subsets of Y with non-vanishing measure and thus Equation (4.8) could not be
minimal.

INTUITION: WHAT ARE WE OPTIMIZING?

One can think of the method consisting of two components. It finds a set ofM generators
f jθ that divide the (conditional) output space into cells. Each cell’s generator is its
conditional average minimizing the expected error within. The overall task becomes
finding good cell centers such that the total expected loss is minimal.

4.3 Minimization Scheme

After having justified the use of generators f jθ to minimize (4.5), we will now describe how
to actually learn them from a set of examples (xi, yi), i ∈ {1, . . . , N}. As usual in current
computer vision research, we will employ CNNs as general function approximates not only
due to their flexibility but also since in all our tasks X and sometimes Y will be images.

For a condensed overview, we propose the following algorithm for training neural networks
with back-propagation to minimize Equation (4.5) in five (easy) steps.

1. Predict the set of M generators/hypotheses f jθ (xi), j ∈ {1, . . .M} for each training
sample (xi, yi) by a forward pass though the network.

2. The tessellation Yj(xi) of Y is implicitly built using the generators f jθ (xi), Equation (4.6)
and a loss function L.

3. Compute the gradients for each Voronoi cell ∂
∂θ

1
|Yj |

∑
yi∈Yj L(f jθ (xi), yi), where |Yj |

denotes the cardinality of Yi.
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4. Perform an optimizer step of f jθ (xi) using the gradients per hypothesis j from step 3.

5. If convergence is reached: terminate. Otherwise continue with step 1.

We can implement this algorithm using a meta-lossM derived from Equation (4.5).

M(fθ(xi), yi) =
M∑
j=1

δ(yi ∈ Yj(xi))L(f jθ (xi), yi). (4.10)

We deem the term meta-loss fitting, asM encapsulates any task loss L within itself. In the
formulation we use the Kronecker delta δ which returns 1 when its condition is met and 0
otherwise, to compute the loss only for the best hypothesis f jθ (xi) for the label yi.

HINT: LLOYD’S METHOD

There are different connections that can be drawn to other algorithms used in different
fields. For example it can be seen as an extension of Lloyd’s Method [116] to be trained
by gradient descent via back-propagation.

Transforming an existing network into a MHP model is as simple as to replicate the output
layer M times (with different initializations). Each prediction f jθ is compared to the ground
truth label using the original loss L but activated or deactivated by δ (Equation (4.10)).

HINT: EXPECTATION MAXIMIZATION

Another link can be made to Expectation Maximization (EM) methods. Analogous to
an E-step, we first find which of the predictions f jθ (xi) best matches the annotation yi.
Then, the parameters θ of the predictor are updated for the matching prediction only -
this can be seen as the M-step.

In practice, we observe that training with a hard δ is only stable if the initial starting hypothesis
distribution is already close to the ground truth.

To understand this instability, let us analyze what happens if all generators f jθ (x) are initialized
far away from the ground truth labels Y . We will consider an initialization that is shifted away
in one direction from the target distribution. In a one-dimensional example, one could assume
that all labels lie somewhere in [−1, 1] but if the predictor (network) is initialized in the range
[−1 + τ, 1 + τ ] and τ > 2 then all labels lie to the left of the generators. That means that no
matter which training sample was used, we would always update only the left most f jθ while
all others are starved of gradient steps.

INTUITION: HYPOTHESIS STARVATION

In higher dimensions the convergence problem can be understood as all ground truth
labels Y lying in the same, single Voronoi cell Yk. This has the effect that only this
cell’s generator would be updated during training, since δ(yi ∈ Yj(xi)) = 0, ∀j 6= k,
degenerating the model to an unambiguous model.
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However a simple solution mitigates this problem. We propose to relax the hard assignment δ
using a weight 0 < ε < 1:

δ̂(a) =

1− ε if a is true,
ε

M−1 else.
(4.11)

The annotation yi is now softly assigned to the closest generator fkθ (x) using a weight of 1− ε
and with ε

M−1 to all remaining generators.

The formulation fulfills
∑M
j=1 δ̂(yi ∈ Yj(xi)) = 1 keeping the overall weight of one sample

at 1. In our experiments we found that dropping out [173] full predictions with some low
probability (1% in our experiments) acts as an additional regularizer. Hypothesis dropout
ensures, that sometimes the best generator will not be available and the second closest will
receive the corresponding update, with a similar effect as (4.11). Now, even in the case of a
bad initialization, all hypotheses will be updated, gradually moving them towards the range
of the target distribution.

HINT: ALTERNATIVE META-LOSS FORMULATION

Although implementing (4.10) and (4.11) in current deep learning frameworks is
possible (but potentially convoluted), we found a (implementation wise) more elegant
and mathematically equivalent formulation.

M(fθ(xi), yi) = φmin
k
L(fkθ (xi), yi) + ψ

M∑
j=1
L(f jθ (xi), yi). (4.12)

Where we set the constants φ = 1 − Mε
M−1 and ψ = ε

M−1 to normalize the loss in
accordance to (4.11). We notice that ε → 0 results in φ → 1 and ψ → 0 which is
identical to the unrelaxed formulation in (4.10).

It is important to note that our meta-lossM is agnostic to the choice of internal task-loss L
and the parametrization and structure (architecture) of f . We demonstrate this on a wide
variety of tasks and CNN architectures in Section 5.

HINT: M -MEANS CLUSTERING

There is a distinct difference to k-means (or in this case M) clustering. In this method
we are approximating the conditional distribution p(y|x) which naturally depends on
the input x and changes together with it. Clustering Y would not only be independent
of x, but also much less powerful as the conditional representation.

The number of hypotheses M is a hyper-parameter, but we do not see any deterioration of
the performance when overestimating M in all regression problems. In fact, almost every
method modeling posterior probabilities depends on a manually tuned, additional parameter:
for example k in k-means (k) and the number of Gaussians m in MDNs [10].
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5Applications

In this section, we will first show extensive experiments to validate different properties of
multiple hypothesis prediction and then move to further additional applications [45, 96, 123]
that we built upon the original publication [157].

In the first part we will demonstrate the following properties.

1. With the simplicity of a 2D toy example, we show a visual representation of the implicit
Voronoi tessellation (Section 5.1).

2. On the example of human pose estimation as a proxy for real-world low-dimensional
regression problems we highlight the underlying information obtained by analyzing the
variance across hypotheses (Section 5.2).

3. We demonstrate the generalization to high-dimensional problems for the task of future
frame-prediction and observe that the predicted images become sharper with more
predictions (Section 5.4).

4. The applicability to discrete problems such as multi-label image classification and
segmentation is demonstrated (Section 5.3 and 5.5).

HINT: SHP VS. MHP

In most of our experiments we follow the same approach to build a multiple hypothesis
(MHP) model. We start from an existing method/network that uses the traditional
unambiguous (single hypothesis prediction – SHP) approach and modify it for multiple
hypothesis prediction. This means that in all cases a direct baseline is always the
original SHP model.

We mainly chose to use straightforward, single-stage models to study the behavior and evaluate
multiple hypothesis prediction. Although, complex multi-stage pipelines could benefit both
SHP and MHP models and likely improve their performance, their often long chain of modules
would obscure the analysis of the raw MHP framework. Thus, for every task we build upon
previously proposed CNN architectures [9, 59, 99, 117] by modifying them to predict multiple
hypotheses. A single NVIDIA TitanX with 12GB GPU memory has been used for all experiments.
Since in most cases the main body of the network is unmodified, the influence of the number
of predictions M on training and inference time is negligible. It affects only the last layer
of the network where we separate the individual predictions and thus impacts the overall
execution time only marginally. In all primary experiments we set the association relaxation
to ε = 0.05, in later experiments we found that decaying ε → 0 can further increase the
performance (Section 5.9). When we denote our model as M -MHP, we refer to an architecture
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Figure 5.1. Temporal 2D Distribution Illustration. Red points are drawn from the true underlying distribution,
blue points show predictions and blue lines highlight the resulting Voronoi regions.

trained to predict M hypotheses. As previously stated the corresponding, unmodified original
single prediction (unambiguous) model is termed SHP.

5.1 Toy Examples

To visually demonstrate the type of representation that is build by an MHP model, we utilize a
toy example of a two-dimensional distribution that depends on a time variable t ∈ [0, 1].

We divide the region of a square centered around 0 in a 2D-plane into four equal regions,
and smoothly transition from having high probability mass in the lower-left and top-right
quadrants to high probability mass in the upper-left and lower-right quadrants. At time step
t = 1

2 all points in the whole square have equal probability. More precisely, we divide the 2D
plane around 0 into five regions Si:

S1 = [−1, 0)× [−1, 0) ⊂ R2, (5.1)

S2 = [−1, 0)× [0, 1] ⊂ R2, (5.2)

S3 = [0, 1]× [−1, 0) ⊂ R2, (5.3)

S4 = [0, 1]× [0, 1] ⊂ R2, (5.4)

S5 = R2\{S1 ∪ S2 ∪ S3 ∪ S4}. (5.5)
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We then define a time-dependent distribution, by first conditioning the probability for a region
Si to be selected onto the time t.

p(S1) = p(S4) = 1−t
2 , (5.6)

p(S2) = p(S3) = t
2 (5.7)

The outside of the square will never be selected, thus p(S5) = 0. When a region is chosen, a
point is uniformly sampled from within its area. This distribution can be seen in the first row
of Fig. 5.1 as it smoothly transitions between all three states.

The task is now to predict the 2D coordinate of a sample dependent on the time t. Since the
distribution is always symmetric, an unambiguous model would learn to predict the center
of the probability density, which remains at (0, 0) at all times. This is an unsatisfying result
as the model does not predict useful information approximating a dynamic, time-dependent
distribution with a single constant. The MHP network is a two layer MLP with 50 neuron in
both hidden layers and is trained with `2-loss as objective. The Voronoi tessellation for 4-MHP
and 10-MHP is shown in the bottom two rows of Figure 5.1. Contrary to the SHP model,
the multiple hypotheses of the MHP model allow to divide the space into Voronoi cells that
match the regions and vary with t. When increasing the number of hypotheses the tessellation
becomes more dense.

In the following sections we demonstrate further properties of MHP on real-world tasks.

5.2 Human Pose Estimation

In this experiment we increase the complexity of the task to image input and 24-dimensional
human skeleton joint potions as output. 2D human pose estimation requires regressing the
pixel locations of the joints of a human body and usually assumes detection, i.e. the input
frame is already cropped around the person.

The goal of this experiment is to demonstrate that MHP generalizes to a robust loss function,
but also how additional insights can be obtained from an MHP model. We measure the
variation between the predictions estimate the confidence of the model. Here, we adapt
our human pose estimation model from [9], that uses Tukey’s bi-weight function as a robust
estimator for the loss. We evaluate the strict PCP score using an oracle to select the best
hypothesis which results in SHP: 59.7%, 2-MHP: 60.0%, 5-MHP: 61.2%, 10-MHP: 62.8%
to understand the gain of increasing M . When the number of predictions is increased the
method is able to model the output space more and more precisely, resulting in a better oracle
performance with an increased number of predictions. Very recently [110] show that it is
possible to design secondary approaches to select which hypothesis is best to further improve
the performance.
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Figure 5.2. Human Pose Estimation on the LSP dataset. We show the predicted human pose for an image with
SHP and with two, five, and ten MHPs. We observe the uncertainty of the hand positions in the high
variance with multiple predictions. Joints like shoulders and hips are easy to detect and also vary much
less.

body part ankle knee hip wrist elbow shoulder

dist. visible 4.8 3.0 1.9 5.0 3.1 2.3

dist. occl. 5.9 3.7 2.4 5.1 3.3 2.6

Table 5.1. Mean joint position variance: For each joint we compute the mean distance from every hypothesis to
the mean prediction. In all cases the mean distance of the predictions for occluded joints is higher than
the one for visible joints. This can be used as a confidence measure. The head and neck joint were not
regarded since less than 10 samples were occluded.

INTUITION: LEARNING AN ORACLE

In theory it should not be possible to learn an oracle to select the best hypothesis. Since
the oracle only has access to the hypotheses and the original input, it does not have
more information as the original model f – both operate on X or direct derivatives f(X )
of it. Thus, if some hypotheses were less likely than others the MHP model should learn
this directly and not depend on an oracle to decide. In practice however, it is possible
to imagine that the performance improvement comes from the increased capacity of
training an additional model and from non-perfect generalization to unseen data.

In Figure 5.2 we show qualitative results for human pose estimation for different M . It
becomes clear that the variance per joint of the predictions of the occluded joints (both wrists)
is higher than the variance of directly visible joints like the shoulder or the hips.

In the Leeds Sports Pose dataset [79] it is annotated whether a joint is visible or occluded.
This allows us to compute mean distances of joint positions to the mean predicted skeleton for
occluded and visible joints which resembles a variance estimation. In Table 5.1 we observe
that this variation is correlated with the occlusion of joints (higher for occluded joints), hinting
a connection between variance and model uncertainty. A further insight is that the variance
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Figure 5.3. MDNs for human pose estimation. Mixture Density Networks become numerically unstable in higher
dimensions, while at the same time suffer from degenerate predictions. The mixing coefficients for the
degenerate predictions in the top left are almost 0, which lets all of their gradients vanish.

for the extremities (hands, feet) is higher than for more stable points like hips and shoulders,
thus reflecting the relative difficulty of predicting these joints.

5.2.1 Comparison to Mixture Density Networks

As previously mentioned, in contrast to our point-wise constant approximation of the posterior
density, one can explicitly estimate it using a parametrized model such as mixture density
networks (MDNs) [10]. Two main points render MDNs fundamentally different than our MHP
method. From the perspective of the output of the model, MDNs estimate the full density
p(y|x), while our MHP model predicts multiple hypotheses instead. Second, MDNs —and
Gaussian mixture models— are only well-defined for regression problems. The MHP meta loss
is task agnostic and can be applied to any problem.

For comparison we modified our architecture to be a MDN for human pose estimation.
Although, 14×2D joints can be considered a low dimensional problem, we found it challenging
to train a stable MDN. One reason for this is that the Gaussians contain exponents with the
number of dimensions (c in Eq. 23 in [10]), which causes severe numerical problems. In fact,
we had to resort to RMSProp as optimizer as training the MDN with SGD with momentum
resulted in exploding gradients or stagnation. Bishop trains with BGFS in the original paper,
which is a second order optimization technique and thus infeasible for deep networks where it
is impossible to store a Hessian matrix due to the very large number of parameters.

In Figure 5.3 we show qualitative results of a MDN trained with five Gaussian mixtures for the
same image as the MHP cases in Figure 5.2.
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VOC07 VOC12 COCO COCO

Method/Dataset mAP mAP mAP mAP@10

WARP [49] - - - 49.2

HCP-1000 [195] 81.5 - - -

CNN-RNN [190] 84.0 - - 61.2

SHP (baseline) 83.8 86.9 65.2 81.0

3-MHP (ours) 84.1 87.3 66.1 82.2

5-MHP (ours) 84.7 87.5 67.8 83.3

9-MHP (ours) 85.1 87.6 67.4 82.8

13-MHP (ours) 84.7 87.0 67.7 83.1

Table 5.2. Results on Pascal VOC 2007, 2012 and MS-COCO: Classification results improve with more predictions
over the single prediction baseline. At 9- and 13-MHP the performance decreases slightly due to false
positives in some of the hypotheses as there are often much less true labels. (Results for [49] from
[190])

The MDN predicts probability density of 98% for the cyan skeleton, 1.9% for red and almost
0% for the remaining three (degenerated in top left corner). This sample is representative
in the sense that also in any other frame MDNs do not recover more than one reasonable
hypothesis.

HINT: GRADIENTS IN MIXTURE DENSITY NETWORKS

One reason for degenerate modes in mixture density networks is that all gradients for
MDNs contain a multiplicative factor (αi in [10]) for each mixture i that prevents the
model from learning a mean and variance for this component once its αi is close to 0.

Conceptionally, mixture density networks have a clear advantage as they are predicting a full
density, probabilities and variances. However, in our experiments they are significantly more
difficult to train and suffer from severe numerical instabilities caused by high dimensional
multivariate Gaussian distributions. MHPs are able to handle high dimensional problems
without any stability issues due to the simplistic formulation of the meta-loss that does not
require exponential functions.

5.3 Multi-label Image Classification

For multi-label classification it is often argued that single-label CNN models are not suitable
and multi-stage methods such as R-CNN [46] and it extensions are proposed. We can show that
extending a standard image classification CNN architecture with MHP can achieve competitive
performance, without the complexity of a multi-stage pipeline. Here we pre-train a ResNet-
101 [59] on ImageNet data, replace the final layer with one that predicts a set of C class
confidences for M hypotheses (C ·M values/neurons in total).
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The idea is to reformulate the multi-label image classification task as an ambiguous problem
where it is not clear which of the objects in the image give it its label. Every image is assigned
a probabilistic label, uniformly sampled from all annotated objects that exist in the image not
taking into account multiple instances. For example, an image that contains a plant and two
birds will be labeled plant 50% of the time and bird 50% of the time.

HINT: COUNTING INSTANCES WITH MHP

The choice of not taking the number of objects per class into account is due to the
evaluation metric which also does not consider multiple instances of the same object.
However, it would be possible to select the label based on the relative number of objects
per class in the image. However, since an MHP model always predicts M hypotheses,
one would obtain the relative amount of objects from the network, i.e. 33% of all objects
are birds and not absolute results.

Our evaluation uses the 2007 and 2012 renditions of the Pascal Visual Object Classes
(VOC) [37] dataset with twenty different classes (C = 20). Similar to other methods, we
train the network(s) on the train-set of VOC2012 and evaluate performance using VOC2012
val- and VOC2007 test-splits. A much more diverse dataset is the Microsoft Common Objects
in Context (COCO) [115] dataset, which contains C = 80 classes, 82,783 training images
and 40,504 validation images. Since MSCOCO also contains annotations for small objects
such as spoons and fruit, the variance in number of objects per image is much higher than for
PascalVOC.

Table 5.2 lists a condensed version of the multi-label recognition results and compares them
to three other methods. The typical metric here are the mean average precision (mAP) and
mAP@10.

HINT: MEAN AVERAGE PRECISION AT K

The mAP@K metric computes the mAP for the K classes that were detected with
the highest confidence and can be seen as the multi-class analogous of the Top-N
performance for image classification.

Here we do not make use of an oracle selecting the best prediction since this would al-
most trivialize the problem. Still, in every experiment the MHP model outperforms its SHP
baseline.

In discrete problems, we observe a decreased performance at high M (in this case ≥ 9). In
that case, there are often more hypotheses than possible discrete outcomes and the additional
hypotheses contribute noise that reduces the scores slightly.

INTUITION: M AND DISCRETE PROBLEMS

If ε was 0 and the number of hypotheses M was equal or greater than the number of
classes in the dataset, there exists a trivial solution with perfect meta-lossM = 0. When
every class in the dataset is predicted by (at least) one hypothesis, and the minimum
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formulation is not relaxed (ε = 0) then no matter what label the image actually has, the
model always predicts a perfect hypothesis. This is a further motivation for the relaxed
formulation with ε > 0 and hypothesis dropout.

Figure 5.4. Multiple Predictions on VOC 2012. We show qualitative examples of multiple predictions. For each
prediction we select the class with the maximum confidence. Networks with multiple predictions are
able to identify several different classes in the images. The last image the ground truth annotation
contains the person label for the conductor in the train. Incorrect predictions are crossed out.

We can accumulate hypotheses for classification by computing the class with the highest
confidence for every prediction. In Figure 5.4 we show qualitative results for varying M .
Naturally the single hypothesis network predicts only one class per image. We observe that
when increasing M , the model successfully identifies more and more different objects. In the
case where only a single class exists in the image – for example for the plant in Figure 5.4, all
hypotheses predict the same answer. Another interesting observation is, that for high M we
sometimes obtain false positives – such as the chair and table in the fifth example – however,
even erroneous predictions seem reasonable in the sense that they usually come from object
categories that fit in the depicted scene.

Additionally we provide detailed results on the MS COCO dataset in Table 5.3 and 5.4. Since
often in classification tasks improvements can be marginal, for each row we highlight results
which are statistically equivalent to the best performing (bold) model with a green background.
In this challenging dataset, which contains on average 3.5 unique classes and 7.7 instances
per image, the models with up to three hypotheses are very rarely equivalent to any of the
other (higher-M) models. Performance usually increases with more hypotheses. This further
justifies the relationship between the number of hypotheses and the number of instances in an
image and demonstrates the effect of MHP on more cluttered images.

Furthermore, in Fig. 5.5 we provide the precision-recall plots for a representative class of each
one of the 12 super-categories in COCO. They are on par with the average precision results of
Tables 5.3 & 5.4.

5.4 Future Frame Prediction

Interestingly, predicting the future is a task that inherently possesses the properties of a typical
multiple hypothesis task. Often the captured scenario is not repeatable with exactly the same
starting conditions. This means that only one outcome label can be obtained and not the full
distribution of possibilities. This renders future prediction an ideal showcase of MHP. In future
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mAP 59.10 60.69 61.92 61.64 62.89 63.30 62.74 62.68 63.32 63.07 62.39 63.06 63.60 63.46 60.47

person 91.22 93.90 92.47 93.57 93.97 93.91 93.31 94.13 92.97 94.18 94.05 94.08 93.45 94.80 93.69

bicycle 40.62 43.34 43.53 46.14 49.56 51.32 48.50 48.67 49.92 47.82 47.80 52.32 50.61 47.20 42.59

car 61.34 61.90 62.38 65.90 64.60 64.80 65.26 65.52 68.12 65.40 66.96 64.42 67.45 65.79 66.02

motorcycle 75.90 79.98 80.12 80.15 80.48 81.34 81.47 80.93 80.12 80.92 81.79 81.99 81.99 80.31 80.28

airplane 86.41 91.60 89.93 90.78 90.53 88.31 88.02 90.58 92.64 91.31 92.14 88.99 92.33 90.59 89.78

bus 68.12 72.40 72.09 75.09 74.67 75.82 73.71 74.83 74.58 75.92 75.50 74.67 76.30 74.98 73.24

train 88.76 88.02 90.21 90.13 90.84 90.34 89.43 88.98 89.47 90.30 90.88 89.94 90.11 90.41 90.23

truck 51.78 56.43 50.63 55.79 54.87 55.09 55.43 57.31 55.80 55.42 58.57 57.87 56.45 56.07 54.69

boat 69.92 74.07 74.12 73.93 73.59 72.58 74.10 73.39 74.47 73.66 73.02 74.32 74.92 73.90 72.82

traffic light 62.72 62.91 63.87 66.43 67.75 65.45 62.80 64.21 65.48 63.93 66.60 67.60 64.83 66.16 62.11

fire hydrant 64.86 64.99 64.84 65.68 68.05 67.02 70.24 66.45 69.56 70.62 66.71 68.61 69.09 68.87 67.58

stop sign 67.30 67.18 67.74 65.39 67.07 68.15 68.89 65.98 70.02 66.78 68.10 68.22 70.06 69.45 67.03

parking meter 42.29 41.71 44.12 46.60 50.12 49.39 51.05 48.39 48.43 47.92 48.72 45.39 50.89 47.25 42.48

bench 42.07 45.69 47.11 45.35 45.67 47.56 47.24 49.09 49.03 47.96 47.99 47.99 48.85 49.72 45.34

bird 54.26 59.67 59.07 59.07 58.21 59.44 60.79 59.27 60.02 58.89 61.00 60.11 59.75 59.87 60.28

cat 77.04 81.64 80.62 84.50 81.66 83.98 81.29 79.08 81.91 80.42 82.44 81.81 81.07 82.89 83.54

dog 58.34 66.22 62.93 63.49 65.31 67.15 63.85 64.66 66.09 67.02 65.80 67.46 65.07 65.96 64.99

horse 67.67 77.70 77.55 74.38 80.50 79.41 72.16 73.60 77.42 75.94 76.21 73.45 75.60 72.35 67.25

sheep 79.03 80.35 81.71 80.82 83.19 82.83 81.83 80.54 81.60 80.53 81.59 81.41 81.93 78.14 78.72

cow 68.91 74.41 73.37 73.97 74.87 75.58 73.31 74.88 76.41 77.69 74.26 74.65 75.46 73.46 71.85

elephant 92.16 92.55 92.22 93.19 93.40 94.29 93.85 93.51 92.58 94.30 92.31 92.78 92.87 92.79 90.86

bear 88.71 89.66 90.69 90.70 90.61 87.99 89.11 89.52 90.52 89.69 89.53 91.18 88.20 90.01 90.98

zebra 96.12 96.56 96.99 97.15 97.54 97.44 97.29 96.86 96.74 97.44 97.42 96.80 97.47 97.26 97.55

giraffe 97.41 97.67 97.45 98.12 98.19 98.07 98.00 97.71 97.87 98.16 98.65 97.64 98.25 97.72 97.93

backpack 24.89 26.08 25.41 25.02 26.75 27.29 26.58 28.08 26.49 26.38 27.91 27.82 26.50 26.43 24.68

umbrella 60.05 61.03 62.21 64.02 64.47 66.07 64.48 64.14 63.59 64.47 65.55 65.50 65.90 62.68 61.80

handbag 29.38 33.24 34.75 30.21 33.13 35.98 35.73 36.77 35.82 35.38 35.65 35.42 35.97 36.34 33.42

tie 60.61 62.76 64.43 65.31 65.84 67.33 65.79 68.59 67.02 68.51 67.67 63.43 66.87 66.98 65.50

suitcase 43.51 41.95 47.78 45.00 48.48 48.05 49.85 50.97 48.22 46.58 49.42 51.48 49.54 50.31 45.82

frisbee 66.61 71.44 72.61 70.43 71.91 74.24 70.83 72.42 71.35 73.23 69.80 70.08 71.19 70.83 62.98

skis 85.06 85.35 86.04 85.90 87.16 87.02 85.78 85.08 84.10 85.29 85.24 86.93 86.40 83.76 84.63

snowboard 59.18 62.84 62.20 62.36 60.41 66.79 64.63 63.33 65.83 64.09 59.83 59.21 65.33 66.35 52.72

sports ball 61.63 65.60 62.04 63.21 65.85 65.42 65.01 63.82 63.95 66.01 60.37 62.17 65.42 63.84 60.40

kite 77.10 83.99 86.00 81.06 81.88 84.62 86.81 82.83 82.05 84.91 82.85 82.51 86.43 86.74 84.61

baseball bat 74.23 78.73 81.64 79.78 79.92 81.04 79.45 78.13 77.14 77.35 73.97 80.60 78.90 77.55 71.78

baseball glove 81.38 86.92 81.13 86.04 81.53 86.16 86.97 83.75 83.55 84.03 82.70 84.21 83.37 85.99 82.95

skateboard 76.71 83.20 84.75 83.45 80.98 83.34 85.59 84.93 84.67 82.48 82.72 81.02 85.23 84.87 78.89

surfboard 85.38 85.94 89.05 88.09 87.13 88.40 88.22 88.08 88.20 88.29 88.48 87.30 88.62 88.07 85.23

Table 5.3. Average precision on COCO (Part 1/2). We report the per class average precision (AP%) and the mean
average precision (mAP%) for all MHP models.

frame prediction we are interested in the pixel-wise estimation of a future frame in a video,
given one or more previous frames. Naturally, this task is inherently ambiguous.

With this experiment we can demonstrate that MHP models extend to high dimensional
problems, since we predict images with a resolution of 128× 128× 3 and 256× 256× 3. We
use our previous fully convolutional residual architecture [99], which we know works well
for pixel-wise regression tasks, achieving state-of-the-art results on depth estimation without
the need for additional refinement steps (at the time of publication). Adapting the model
for MHP is as simple as modifying the number of convolutions in the last layer to 3M (for
RGB predictions). All encoder weights are initialized with ResNet-50 weights (pre-trained on
ImageNet [161] data) and the decoder with random zero-mean Gaussian distributions with
0.01 standard deviation.
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tennis racket 92.39 94.72 95.28 95.01 95.22 94.91 96.02 94.76 94.75 95.00 93.93 94.48 95.06 95.62 94.25

bottle 40.48 43.37 40.86 42.03 42.41 39.70 41.91 41.36 43.61 43.10 43.70 45.83 42.79 42.69 43.61

wine glass 39.05 38.05 41.84 40.04 43.78 45.38 42.32 42.43 42.24 43.02 40.60 44.18 44.11 44.34 43.48

cup 46.30 49.66 48.57 43.28 49.32 48.83 48.17 48.42 50.66 51.65 44.85 50.24 49.12 50.08 50.87

fork 42.70 42.54 40.42 40.13 43.11 43.91 41.19 39.98 42.69 46.02 42.54 41.69 42.71 43.50 39.35

knife 40.09 34.78 40.21 33.81 38.38 39.72 38.12 38.22 34.55 41.26 34.21 39.65 38.04 40.12 37.42

spoon 30.56 29.98 34.20 32.32 30.50 36.18 31.97 32.99 34.75 34.20 34.58 33.85 35.07 34.28 35.37

bowl 48.39 42.70 47.22 48.36 50.36 50.01 48.24 44.51 50.90 49.58 47.12 52.40 52.88 47.62 46.47

banana 56.91 61.41 61.35 61.43 64.28 61.57 65.04 60.10 63.66 65.43 59.50 65.02 62.12 63.29 59.80

apple 39.41 39.95 42.44 39.62 40.68 43.00 41.94 39.38 40.51 39.34 39.33 45.06 41.46 42.61 32.89

sandwich 50.50 50.11 53.58 50.73 54.46 55.36 54.22 55.75 53.04 52.74 51.76 54.25 54.69 56.66 47.23

orange 53.10 55.34 54.47 57.81 58.50 56.09 59.40 56.82 57.94 56.45 53.72 58.59 57.34 57.74 51.52

broccoli 78.58 80.89 81.50 80.42 82.19 85.16 82.77 83.12 83.84 83.58 81.50 82.52 82.53 82.35 83.57

carrot 50.77 48.95 52.69 45.85 50.50 56.19 54.78 49.28 55.26 55.41 53.63 55.19 50.47 55.02 47.64

hot dog 47.72 48.53 51.65 51.54 51.34 51.80 53.12 51.09 55.77 56.36 52.05 54.89 50.23 53.32 43.48

pizza 83.00 78.98 81.59 79.97 83.33 84.09 82.87 83.84 85.50 83.45 82.85 84.39 85.48 84.40 81.50

donut 56.94 58.52 58.10 60.02 63.75 62.61 62.05 62.10 63.50 60.01 62.82 61.96 61.22 63.53 59.59

cake 49.71 54.29 58.94 55.50 59.70 55.21 57.15 56.13 60.48 62.70 57.20 53.60 62.48 62.32 53.58

chair 49.46 47.38 52.52 47.87 49.41 51.63 53.88 52.04 54.70 51.95 55.47 54.28 54.19 55.09 52.11

couch 53.71 56.20 60.76 59.26 63.80 55.54 59.25 58.17 57.27 59.19 57.50 56.46 58.34 58.96 55.59

potted plant 35.32 36.05 36.29 32.83 40.83 40.09 38.96 39.42 38.45 39.70 34.25 36.80 37.44 38.66 36.07

bed 67.25 69.43 72.01 74.43 74.38 73.20 74.25 71.91 73.64 71.60 71.72 68.31 71.71 70.32 69.80

dining table 58.74 57.16 54.88 53.60 56.34 58.62 55.28 56.52 60.39 59.02 58.50 59.93 61.26 62.72 58.82

toilet 87.82 90.11 90.45 90.80 91.18 91.70 90.19 90.76 90.58 90.76 89.99 89.95 90.56 91.14 89.75

tv 65.61 57.62 62.33 67.28 68.75 67.11 66.82 69.18 68.98 66.24 64.22 68.27 69.19 70.42 68.34

laptop 60.52 56.66 66.47 65.48 65.04 69.77 66.26 66.47 68.28 65.23 66.00 63.28 65.97 67.55 65.00

mouse 61.62 59.45 65.49 61.87 62.34 64.83 62.66 66.99 65.88 56.96 66.11 65.39 66.11 68.55 56.87

remote 43.51 47.95 49.96 49.23 53.80 48.30 45.56 53.20 46.20 51.50 49.31 48.79 52.14 53.18 45.91

keyboard 64.94 64.82 66.69 69.84 67.89 66.85 68.39 71.15 69.15 65.12 68.11 70.08 70.90 71.53 67.00

cell phone 37.57 38.23 40.53 39.80 43.10 43.83 43.13 43.53 43.48 45.30 42.23 43.06 43.97 43.44 41.29

microwave 41.06 38.27 44.47 40.31 43.97 41.87 42.76 44.40 38.87 42.57 37.88 43.08 44.69 43.01 40.49

oven 61.73 61.62 64.15 64.94 62.76 65.84 63.85 65.67 63.32 64.88 62.37 68.85 65.72 67.39 61.56

toaster 7.46 7.59 7.68 8.65 9.72 8.64 5.71 7.19 10.68 10.50 9.23 10.47 9.97 6.76 8.28

sink 71.37 68.06 71.40 70.94 73.00 72.26 72.06 71.79 72.48 72.17 76.61 74.91 74.01 74.63 73.24

refrigerator 51.58 50.82 54.99 54.39 54.30 55.03 55.92 52.16 56.13 55.32 53.60 55.11 55.81 57.07 50.12

book 36.60 37.31 38.48 41.54 40.73 37.43 41.67 46.28 45.41 39.87 44.60 42.00 45.50 42.77 38.77

clock 68.56 67.62 68.92 69.65 67.58 69.02 68.49 69.02 69.65 69.92 69.55 70.99 70.89 69.31 67.03

vase 57.20 58.98 57.66 58.76 61.04 59.26 60.50 61.28 60.16 60.71 60.75 61.00 61.67 58.46 56.54

scissors 30.69 32.36 34.01 32.92 34.83 35.62 34.12 33.03 33.39 32.97 32.53 32.97 35.21 33.70 29.62

teddy bear 62.48 67.51 68.68 68.80 69.96 67.69 67.16 66.53 73.12 69.34 69.04 67.29 69.29 69.37 67.89

hair drier 2.37 3.46 3.14 1.77 2.23 6.30 3.49 5.84 2.26 4.32 2.84 3.54 2.74 4.20 2.42

toothbrush 25.69 37.92 40.93 41.83 41.51 44.49 40.89 42.83 45.42 41.53 42.60 40.56 44.16 42.42 36.28

Table 5.4. Average precision on COCO (Part 2/2). We report the per class average precision (AP%) and the mean
average precision (mAP%) for all MHP models.

5.4.1 Intersection

We begin the experimental section for future frame prediction with a dataset created by a
simulation where it is easy to control the ambiguity and parameters. Here, we model a
top-down view of a four-way intersection and try to predict which way a car is going to take.
To this end, we render sequences where a simplified model car approaches the intersection
from a random two-way road and slows down at the crossing. The car then picks one of
the three possible routes to leave the crossing with equal probability. The task is to predict
– from a current frame – the last frame of the sequence, where the car is about to exit the
field of view. This dataset combines two types of uncertainty. A discrete uncertainty regarding
which exit the car will choose and a continuous uncertainty in the exact pose of the car in
the last frame which depends on the speed, acceleration and steering capabilities chosen at
random. A sample sequence is shown in Figure 5.6, where the first row shows the single input
frame and the target frame is depicted in the second row. The columns represent time stamps
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Figure 5.5. Precision-Recall (PR) curves on COCO. We show the PR plots for different numbers of hypotheses (1,
3, 5, 10 and 14) for 12 COCO classes. Each class is taken out of a different super-category in MS COCO
(e.g. vehicles, furniture, food, etc).

(t = 0, 1, 2, 3) of the simulation. As the car is approaching the intersection (t = 0, 1) and its
destination is still unclear, the hypotheses are distributed over the plausible outcomes. Each
hypothesis predicts a different one of the three possible exit locations i.e. north, east or west for
the car coming from the south. From this experiment we obtain another intuitive explanation
of the conditional average (see Equation 4.3). The SHP model averages all possibilities in its
single output, creating an unrealistic frame where each exit shows a one-third transparent car.
At t = 2 when the car starts turning to the right, the three predictions collapse into a single
decision (eastern exit) with small pose variations modeling the much smaller variance in exit
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Figure 5.6. Predicting the next frame on the synthetic Intersection dataset. A SHP model is compared to a 3-
MHP model, trained to predict the last frame of a sequence in which a car drives through an intersection.
For t = 0, 1, three outcomes are possible; SHP blurs them into one unrealistic frame with three ghost
cars, whereas MHP predicts all three possible frames distinctly.

positions. Here, even the SHP model predicts a reasonable image, since almost all uncertainty
vanished.

From the training data the network has learned to recognize whether a decision about the exit
has been already made, and is then able to predict a meaningful set of hypotheses in each of
the two cases.

INTUITION: CLUSTERING IN OUTPUT SPACE

As previously mentioned, clustering in output space is very different to MHP. Another
example is this experiment. K = 4-means clustering in the target domain would yield
the four distict exit scenarios whereas MHP can adapt the distribution based on the
input – here this means whether the car can be seen turning into its chosen exit or not.

In this experiment we set ε = 0.05 which results in faint ghost-cars for the non-selected exits.
The loss sharing pulls the predictions slightly towards the conditional average (as seen in the
single prediction). Decaying ε towards the end of the training should resolve this issue.

5.4.2 NTU Action Recognition Dataset

The NTU RGB-D Action Recognition dataset [166] provides many takes of the same (simple)
action with different actors and outfits. We discard the depth streams and use only the RGB
videos for training and testing. Since a considerable part of each frame is background, we
focus on the region of interest by automatically cropping each sequence around the moving
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Figure 5.7. Last-Frame Prediction. Qualitative results for predicting the last frame of the put on a hat/cap action.
We show one randomly selected hypothesis. Again, SHP is very blurry, whereas MHP yields a sharper,
distinct result. An additional benefit is the ability to compute per pixel variances over the predictions.

Model Sharpness Min. MSE

SHP 319.5 960.6

5-MHP 359.2 808.2

10-MHP 419.7 728.5

Table 5.5. Sharpness and Error Analysis: We measure the image sharpness (Eq. 5.8, higher is better) for different
numbers of hypotheses on the NTU dataset for the put on a hat/cap action. Additionally, we report the
average mean squared error (MSE) between the best prediction and the ground truth (lower is better).

parts by thresholding the per pixel change between frames. Training to predict one of the
last images at the end of the sequence, the network learns to model the visual outcome of an
action. We use the mean gradient magnitude of a prediction, as a measure of sharpness:

S(fθ(x)) = 1
3whM

∑
c,p,j

||Gjc(p)||22, where Gj = ∇f jθ (x), (5.8)

and thus as a proxy for image quality. In (5.8) pixel locations are represented by p, whereas w
and h stand for the image dimensions and c indexes the color channel.

This sharpness measure is compared for the put on a hat/cap action for different M in Table
5.5. The intuition that with more hypotheses the model produces sharper images and a
lower error is confirmed quantitatively in the table and qualitatively in Figure 5.7. Here the
increased sharpness between 1 and 10 predictions becomes evident. Similar to human pose
estimation, the variance over predictions becomes and additional output source. The map
clearly identifies head and shoulder regions with higher estimated per-pixel uncertainty. We
provide further qualitative results in Figure 5.8. Additionally to the put on a hat/cap action,
another model was trained to predict the last frame in sequences of the falling down action.
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Figure 5.8. Future frame prediction on the NTU dataset. We predict the last frame of each sequence for put on
hat (a) and falling down (b) and show one of the ten hypotheses. The variance map shows where the
hypotheses vary the most.

5.5 Image Segmentation

To be able to directly compare to multiple choice learning (MCL) [103] we train a 4-MHP
FCN8s [117] for semantic segmentation on VOC2012. MCL trains separate networks making
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Figure 5.9. Segmentation on PascalVOC. For the input image we predict four hypotheses and observe varying
classes for ambiguous objects.

information exchange between ensemble members harder as each model needs to learn its
specialization individually without sharing information or parameters. Additionally, a full CNN
needs to be trained for every single output of the ensemble, whereas adding more hypotheses
does not add much overhead in our approach. Our model achieves a mean IoU of 70.3%,
compared to MCL’s 69.1% and uses 1

4 of the parameters (134.9M [ours] compared to 539.6M
[103]).

5.6 Generative Adversarial Networks

Together with Ignacio Sarasúa (Master’s thesis) we applied the idea of multiple hypothesis
prediction in the domain of conditional image generation methods. We use the idea of cycle
consistent generative adversarial networks from Zhu et al. [206] and extend it for use with
MHP.
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Figure 5.10. Segmentation on PascalVOC. For the input image we predict four hypotheses and observe varying
detail in the different segmentations.

5.6.1 Image-to-Image Translation

Image-to-image translation is the task of transforming an image from one domain to another.
Typical examples include day↔night, photograph↔painting, cat↔dog, image↔sketch or
summer↔winter. The literature divides this task into two sub-categories based on the data.
Paired translation requires corresponding training pairs from both domains. Day↔night is a
typical example where it is easy to collect images from the exact same scene in both modalities.
Unpaired image-to-image translation does not need paired samples and is thus a harder
task. Photograph↔painting is a typical example, as it is usually impossible to acquire the
corresponding photograph to a painting, even when the painter originally tried to keep as
close to the real world as possible.

We apply the MHP framework to both paired [72] and un-paired [206] image-to-image
translation techniques. For implementation details we refer the reader to the orginal methods,
as they are relatively unchanged, we will not repeat their details here. However, the image
generation CNN is adapted to predict multiple hypotheses.
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Figure 5.11. The generator architecture for image to image translation splits the decoder at several depths to increase
the variety in prediction. Thus, at every stage of the decoder the number of hypotheses doubles.

(a) The MHP loss is applied as usual on all predictions. (b) A discriminator is applied on every single predic-
tion to encourage them all to look as real as possible.

Figure 5.12. The two loss terms used for the MHP-modified image generator architecture. The typical min loss is
applied and additionally, the discriminator encourages all hypotheses to look like the target distribution.

INTUITION: ARCHITECTURE

Here, instead of predicting all hypotheses from the last layer of the network, we found
that splitting the decoder in a tree structure generated more diverse predictions.

Figure 5.11 shows the generator architecture. We split the decoder in several upsampling
steps to increase the variety in predictions. The loss is composed of two terms.

In Figure 5.12a we show the typical min formulation loss of MHP with the `1 loss. Additionally,
a discriminator is applied to all hypotheses (Figure 5.12b) to make them as real as possible
even if they are not closest (in the `1 sense) to the ground truth annotated image.
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Figure 5.13. Comparing MHP results to pix2pix [72]. Due to the multiple predictions we are able to display a much
greater variety of possible images for the given segmentation

HINT: EVALUATION

Typically, with image-to-image translation techniques it is very hard to obtain quan-
titative evaluations. Without a large scale study where humans are asked which of
the two presented images looks better to them it is difficult to assess quality. We
leave this evaluation to future work. However, here we could think of a task such as
segmentation↔image where the segmentation performance can indeed be measured.

5.6.2 Experiments

In Figure 5.13 we compare our results with pix2pix [72] on paired image-to-image translation,
specifically on the task of segmentation→image for building facades. In our experiments we
find that typically the results from pix2pix are mostly gray or brown colored. The intuition
is that these colors are closest (see conditional average) to all ground truth possibilities. The
MHP-augmented version is able to predict more colorful variations of the facades as it does
not have to average all possible outcomes.

For unpaired image-to-image translation, we demonstrate our approach on the task sketch↔cat.
We are given a set of hand-drawn sketches and download many cat images from an automated
Google image search. Then we augment the CycleGAN approach [206] with the MHP-modified
decoder and compare results after training. Figure 5.14 shows qualitative results. Again we
observe a wider variety in predictions coming from our MHP formulation.
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Figure 5.14. Comparing MHP results to CycleGAN [206] on the task of translating sketches to cats and vice versa.
Due to the multiple predictions we are able to display a much greater variety of possible images for the
given sketch

INTUITION: MHP-CYCLEGANS

We think that MHP-CycleGANs are a powerful idea, which we would like to further
explore in the future. In the original CycleGAN paper it is already mentioned that the cy-
cle consistency that is enforced during training only works well if both domains contain
roughly equal information. This means that the projection between the two domains is
bijective. However, often one domain has significantly less information (sketch) than
the other (image). We strongly believe that in these cases the MHP framework can help
resolve the ambiguity when projecting from the diminished representation to the richer
one.

5.7 Reinforcement Learning

In this section we will have a deeper look into the domain of reinforcement learning and
how multiple hypothesis prediction can help to learn a robust stochastic policy. The method
presented in this section was developed together with Sanjeev Kumar, whom I supervised for
his master’s thesis.

5.7.1 Motivation

Reinforcement learning is a traditional branch of machine learning which focuses on learning
complex tasks by assigning rewards to agents that interact with their environment. It has
recently gained momentum thanks to the combination of novel algorithms for continuous
control with deep learning models, sometimes even matching human performance in tasks
such as playing video games and manipulating objects [133, 170]. Recent methods for contin-
uous control problems like Deep Deterministic Policy Gradient (DDPG) [111], Asynchronous
Advantage Actor Critic (A3C) [132] use actor-critic architectures, where an action function
is learned by mapping states to actions. DDPG works well on many tasks, but it does not
model the uncertainty in actions as it produces a point estimate of the action distribution
over states. The actor is forced to deterministically choose one action for every state. A3C
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and other stochastic policy gradient algorithms output distribution parameters (e.g. Gaussian
distributions) instead of point estimates, which can be sampled for action values.

As a simple example where this is sub-optimal, consider the inverted pendulum task, where a
pendulum is attached to a cart and the agent needs to control the one dimensional movement
of the cart to balance the pendulum upside down. A deterministic agent chooses a single
action for every state. This breaks the inherent symmetry of the task. When the cart is not
moving and the pendulum is hanging down, two actions are equally promising: either moving
left or right. The distribution parameter estimation (e.g. A3C) might work better in this case
as there are only two good options, but in cases when there are more than two good actions
to select, this will not be optimal. In our approach we allow the agent to suggest multiple
actions (using MHP), which enables it to resolve cases like this easily.

Further, we observe that a deterministic behavior of DDPG can lead to sub-optimal convergence
during training. The main limitation is that, especially in the beginning of the learning
procedure, the actor favors actions that lead to a good immediate reward but might end up
being far from the globally optimal choice.

INTUITION: MULIPLE ACTION PREDICTION

If the actor is allowed to suggest, at each time step, multiple actions rather than a
single one, the resulting policy is non-deterministic, leading to a better exploration of
the entire solution space as well as a final solution of potentially higher quality. This
can also eliminate the external exploration mechanisms required during training e.g.
Ornstein-Uhlenbeck process noise [182], parameter noise [141] or differential entropy
of normal distribution.

Here, we introduce an algorithm, which we refer to as Multiple Action Policy Gradients
(MAPG), that models a stochastic policy with several point estimates and allows to predict a
pre-defined number M of actions at each time step, extending any policy gradient algorithm
with little overhead. We will demonstrate it by adapting DDPG [111] to use MAPG.

Another benefit of the proposed method is that the variance of the predicted actions can give
additional insights into the decision process during runtime. A low variance usually implies
that the model only sees one way to act in a certain situation. A wider or even multi-modal
distribution suggests that there exist several possibilities given the current state.

We evaluate the proposed method on six continuous control problems of the OpenAI Gym [14]
as well as a deep driving scenario using the TORCS car simulator [196]. For a fair evaluation
we directly compare DDPG to our MAPG without changing hyper-parameters or modifying the
training scheme. In all experiments, we show an improved performance using MAPG over
DDPG. To verify if MAPG helps in better exploration during training, we also analyze MAPG
under no external exploration policy.
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5.7.2 Related Work

There is currently a wide adoption of deep neural networks for reinforcement learning. Deep
Q Networks (DQN) [133] directly learn the action-value function with a deep neural network.
Although this method can handle very high dimensional inputs, such as images, it can only
deal well with discrete and low dimensional action spaces. Guided Policy Search [108] can
exploit high and low dimensional state descriptions by concatenating the low dimensional
state to a fully connected layer inside the network.

Recent methods for continuous control problems come in two flavours, vanilla policy gradient
methods which directly optimize the policy and actor-critic methods which also approximate
state-value function in addition to policy optimization. Trust Region Policy Optimization
(TRPO) [165] and Proximal Policy Optimization Algorithms [164] can be used as vanilla policy
gradient as well as actor-critic methods. Whereas, Deep Deterministic Policy Gradient (DDPG)
[111] and Asynchronous Advantage Actor Critic (A3C) [132] use actor-critic architectures,
where state-action function is learned to calculate policy gradients.

Stochastic Value Gradients (SVG) [60], Generalized Advantage Estimation (GAE) [165], A3C,
TRPO all use stochastic policy gradients and predict action probability distribution parameters.
The action values are then sampled from the predicted distribution. A parametrized normal
distribution is most commonly used as action distribution. This means that this formulation
models “action noise” instead of the true action distribution. For example a distribution with
two modes cannot be modeled with a Gaussian.

DDPG [111] which extends DPG [169] uses deterministic policy gradients and achieves stability
when using neural networks to learn the actor-critic functions. The limitation of DDPG is that
it always gives a points which may not be desired in stochastic action problems.

[100] estimate stochastic action values using a sequential Monte Carlo method (SMC). SMC
has actor and critic models where the actor is represented by Monte Carlo sampling weights
instead of a general function approximator like a neural network. SMC learning works well in
small state space problems, but cannot be extended directly to high dimensional non-linear
action space problems.

5.7.3 The Multiple Action Policy Gradient Algorithm

In this section we will describe in detail how multiple action policy gradients can be derived
and compare it to DDPG. We will then analyze the differences to understand the performance
gain.

Background

We investigate a typical reinforcement learning setup [176] where an agent interacts with an
environment E. At discrete time steps t, the agent observes the full state st ∈ S ⊂ Rc, and
after taking action at ∈ A ⊂ Rd, it receives the reward rt ∈ R. We are interested in learning
a policy π : S → P(A), that produces a probability distribution over actions for each state.
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Similar to other algorithms, we model the environment as a Markov Decision Process (MDP)
with a probabilistic transition between states p(st+1|st, at) and the rewards r(st, at).

We associate a state with its current and (discounted with γ ∈ [0, 1]) future rewards by using

Rt =
T∑
i=1

γi−tr(si, ai). (5.9)

Since π and E are stochastic, it is more meaningful to investigate the expected reward instead.
Thus, the agent tries to find a policy that maximizes the expected discounted reward from the
starting state distribution p(s1).

J = Eri,si∼E,ai∼π(R1) (5.10)

Here, it is useful to investigate the recursive Bellman equation that associates a value to a
state-action pair:

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]]

Methods such as (D)DPG use a deterministic policy where each state is deterministically
mapped to an action using a function µ : S → A which simplifies Equation 5.11 to

Qµ(st, at) = Ert,st+1∼E [r(st, at) + γQµ(st+1, µ(st+1))]. (5.11)

The Q value of an action is approximated by a critic network which estimates Qµ(st, at) for
the action chosen by the actor network.

Algorithm

The key idea behind predicting multiple actions is that it is possible to learn a stochastic policy
as long as the inner expectation remains tractable. Multiple action prediction achieves this by
predicting a fixed number M of actions ρ : S → AM and uniformly sampling from them. The
expected value is then the mean over all M state-action pairs. The state-action value can then
be defined as

Qρ(st, at) = Ert,st+1∼E

[
r(st, at) + γ

1
M

M∑
m=1

Qρ(st+1, ρm(st+1))
]
. (5.12)

This is beneficial since we not only enable the agent to employ a stochastic policy when
necessary, but we also approximate the action distribution of the policy with multiple samples
instead of one.

There exists an intuitive proof that the outer expectation in Equation 5.12 will be maximal
if and only if the inner Qρ are all equal. The idea is based on the following argument: let
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us assume ρ as an optimal policy maximizing Equation 5.10. Further, one of the M actions
ρj(st+1)) for a state st+1 has a lower expected return than another action k.

Qρ(st+1, ρj(st+1)) < Qρ(st+1, ρk(st+1)) (5.13)

Then there exists a policy ρ∗ that would score higher than ρ that is exactly the same as ρ
except that it predicts action k instead of j: ρ∗j (st+1) := ρk(st+1). However, this contradicts
the assumption that we had learned an optimal policy beforehand. Thus in an optimal policy
all M action proposals will have the same expected return.

INTUITION: EXPECTED RETURN

More informally, this can also be seen as a derivation from the training procedure. If we
always select a random action from the M proposals, they should all be equally good
since the actor cannot decide which action should be executed.

This result has several interesting implications. From the proof, it directly follows that it is
possible – and sometimes necessary – that all proposed actions are identical. This is the case
in situations where there is just one single right action to take. When the action proposals
do not collapse into one, there are two possibilities: either it does not matter what action is
currently performed, or all proposed actions lead to a desired outcome.

Naturally, the set of stochastic policies includes all deterministic policies, since a deterministic
policy is a stochastic policy with a single action having probability density equal to one. This
means that in theory we expect the multiple action version of a deterministic algorithm to
perform better or equally well, since it could always learn a deterministic policy by predicting
M identical actions for every state.

In the experimental section we will investigate if the predicted value for each of the M actions
is indeed similar during an episode.

Algorithm 1 outlines the MAPG technique. The actor is modified to produce M instead of one
output. We achieve this in practice by modifying the number of outputs of the last layer of the
network to be M times larger before. For every timestep one action j is then selected. When
updating the actor network, a gradient is only applied to the action (head) that was selected
during sampling. Over time each head will be selected equally often, thus every head will be
updated and learned during training.

HINT: MAPG VS. MHP

Multiple Action Policy Gradients differ from the MHP idea in the optimization proce-
dure. While MHP updated only the best prediction with a min-formulation, MAPG
samples uniformly from the predicted action hypotheses. This change is necessary, as in
reinforcement learning, we do not know a-priori which action will be the best. However,
MAPG has similar properties as MHP. For example – as proven above – the expected
reward for each action is equal after training. This corresponds to all hypotheses in
MHP having equal probability.
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Modify actor network µ(s|θµ) to output M actions,
At = {ρ1(st), . . . , ρM (st)}.

Randomly initialize actor µ(s|θµ) and critic Q(s|θQ) network weights.
Initialize target actor µ′ and critic Q′ networks, θ′µ ← θµ and θ′Q ← θQ.
for episode = 1 to N do

Initialize random process N for exploration.
Receive initial observation/state s1.
for t = 1 to T do

Predict M action proposals
At = {ρ1(st), . . . , ρM (st)} = µ′(st|θµ).

Uniformly sample an action j from At:
ajt = ρj(st) +Nt.

Execute action ajt and observe reward rt and state st+1.
Store transition (st, ajt , rt, st+1) to replay buffer R.
Sample a random batch of size B from R.
Set yi = ri +Q′(si+1, µ

′(si+1|θ′µ)|θ′Q).
Update critic by minimizing the loss,

L = 1
B

∑
i(yi −Q(si, aji |θQ))2

Update all actor weights connected to ajt .

5θµJ ≈
1
B

∑
i

5aj
i
Q(s, a|θQ)|s=si,a=aj

i

5
θµ−θ{1...M}

µ +θjµ
µ(s|θµ)|si

Update the target networks:
θ′µ ← τθ′µ + (1− τ)θµ
θ′Q ← τθ′Q + (1− τ)θQ

end for
end for

Algorithm 1: MAPG algorithm

5.7.4 Experiments

In this section we will investigate and analyze the performance of MAPG in different aspects.
First, we evaluate the performance of MAPG on six different Mujoco tasks and compare the
scores with DDPG, A3C and SVG(0). Second, we analyze the influence of the number of
actions on the performance by training agents with different values of M on five tasks. Further,
to understand the benefit of multiple action prediction, we observe the variance over actions
of a trained agent: the goal is to analyze for which states the predicted actions greatly differ
from each other and for which ones they collapse into a single choice instead. Finally, we
compare the performance of DDPG and MAPG without any external noise for exploration
during training.

In all our experiments, we use five continuous control tasks from the Mujoco Simulator [178]
and a driving task for The Open Racing Car Simulator (TORCS). A detailed description about
the tasks is given in Table 5.6. We use the OpenAI Gym [14] and OpenAI baselines [62] for
evaluating our experiments.
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(a) Standard deviation in action values.

(b) Reward.

Figure 5.15. Standard deviation and reward with M = 10 for the Pendulum task during training.

Table 5.6. Tasks used for evaluation

Task Action Dimension State Dimension Description

Pendulum 1 3 Pendulum on a cart.

Hopper 3 11 One legged robot.

Walker2d 6 17 Two dimensional bipedal robot.

Humanoid 17 376 Three dimensional bipedal robot.

HalfCheetah 6 17 Two leg robot.

Swimmer 2 6 Three joint swimming robot.

Torcs 3 29 Control car in 3D simulation.

The base actor and critic network architectures are fixed in all experiments. Each network has
two fully connected hidden layers with 64 units each. Each fully-connected layer is followed
by a ReLU non-linearity. The actor network takes the current observed state st as input and
produces M normalized actions a(m)

t ∈ [−1, 1]d by applying tanh. We then scale the predicted
actions to the actual range specific to the current environment. This allows us to have the
same learning rate even when dealing with different action ranges. From the M actions a(m)

t ,
a single action at is randomly chosen with equal probability. The critic uses the current state
st and action at as input and outputs a scalar value (Q-value). In the critic network, the action
value is concatenated with the output of the first layer followed by one hidden layer and an
output layer with one unit.

The critic network is trained by minimizing the mean square loss between the calculated
discounted reward and the computed Q value. The actor network is trained by computing
the policy gradient from the Q-value of the chosen action. The network weights of the last
layer are only updated for the selected action. This is achieved by setting a zero loss/gradient
for the remaining M − 1 actions. Ornstein-Uhlenbeck process noise is added to the action
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(a) Pendulum. (b) HalfCheetah.

(c) Walker2d.

Figure 5.16. Performance curves for two environments with and without external exploration noise on DDPG and
MAPG: original DDPG with OU process noise (green), DDPG without any exploration noise (blue), MAPG
(M=10) with OU process noise (red) and MAPG (M=10) without OU process noise (orange).

values from the actor for exploration. The parameters for the OU process are fixed for all
experiments as µ = 0, σ = 0.2 and θ = 0.15. The training is carried out for a total of two
million steps in all tasks.

For A3C training, we use same actor-critic networks as for the earlier experiment. The output
of actor network is a mean vector (µa) (one for each action value) and a scalar standard
deviation (σ2, shared for all actions). The actions values are sampled from the normal
distribution (N (µa, σ2)). We used differential entropy of normal distribution to encourage
exploration with weight 10−4. In our experiments, A3C performed poorly than DDPG in all
tasks and was not able to learn a good policy for the Humanoid task.

We also run experiments with SVG(0) which is similar to DDPG, but the policy is made
stochastic by parameterizing the actor with a random variable sampled from N (0, 1). We used
off-policy variant of SVG(0) for training. It performed rather poorly on almost all tasks.

Mujoco Experiments

For more meaningful quantitative results, we report the average reward over 100 episodes
with different values of M for various tasks in 5.7. Additional the the scores of MAPG we
report the scores of DDPG, A3C and SVG(0) which are the closest related methods from the
literature. For almost all environments we score higher with M = 5. The lower performance
in the Humanoid task for M = 5 might be explained by the drastically higher dimensionality of
the world state in this task which makes it more difficult to observe.
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(a) Hopper. (b) Walker2d.

(c) Swimmer. (d) Humanoid.

(e) HalfCheetah.

Figure 5.17. Variation in score of (from top left) Hopper, Walker2d, Swimmer, Humanoid and HalfCheetah with different
values of M .

The scores of policy-based reinforcement learning algorithms can vary a lot depending on
network hyper-parameters, reward function and codebase/framework as outlined in [61].
To minimize the variation in score due to these factors, we fixed all parameters of different
algorithms and only studied changes on score by varying M . Our metric for performance in
each task is average reward over 100 episodes by an agent trained for 2 million steps. This
evaluation hinders actors with high M since in every training step only a single out of the
M actions will be updated per state. Thus, in general actors with higher number of action
proposals, will need a longer time to learn a meaningful distribution of action. This also
means that an actor with higher M will take longer to train all heads sufficiently long. This is
partially remedied by the fact that we only split the last layer of the actor into the different
actions. With this, most of the actor is updated at every training step and the additional
number of training iterations scales slower than linear with increased M .

We show the box plots for the scores of Mujoco environments in Figure 5.17, where we can
see that the overall score usually increases with M . If we set M = 1 our algorithm is equal to
DDPG, so its performance can also be seen in Figure 5.17. HalfCheetah has the most unstable
training procedure for all algorithms, often a good policy is lost and the algorithms degenerate
back to a zero reward policy where they begin to learn again during training.
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Table 5.7. Average score ±3σ over 100 episodes for Mujoco tasks with different M . For better readability we
denote the highest mean score for each task in bold. Corresponding boxplots can be found in Figure
5.17.

Environment DDPG A3C M = 10 M = 20 M = 50

Hopper-v1 603 ± 76 532 ± 105 824 ± 94 923 ± 90 732 ± 34

Walker2d-v1 960 ± 72 764 ± 112 1297 ± 70 1319 ± 50 1589 ± 45

Humanoid-v1 1091 ± 65 281 ± 40 1248 ± 115 1112 ± 75 1212 ± 110

HalfCheetah-v1 4687 ± 455 3803 ± 125 6659 ± 570 4116 ± 85 4333 ± 70

Swimmer-v1 38 ± 7 33 ± 10 51 ± 6 41 ± 4 40 ± 2

In Figure 5.15, we studied the variance in action values for M = 10 during training together
with the achieved reward. The standard deviation of actions generated by MAPG decreases
with time. As the network converges to a good policy (increase in expected reward) the
variation in action values is reduced. However there are some spikes in standard deviation
even when network has converged to a better policy. It shows that there are situations in
which the policy sees multiple good actions (with high Q-value) which can exploited using
MAPG.

This is an interesting aspect of the algorithm. In many tasks there exist a good amount of
states where only one single action is optimal. In these cases we expect all actions of MAPG
to collapse into a single (or very similar) action. However, in certain situations it might be
beneficial to act non-deterministically. We will analyze this observation further in the next
section.

Action Variance Analysis

Figure 5.18. Standard deviation and angle during one episode of the Pendulum environment. An angle of ±180 is the
target inverted pose. 0 is hanging downwards.
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We use the simple Pendulum environment to analyze the variance during one episode. The
task is the typical inverted pendulum task, where a cart has to be moved such that it balances
a pendulum in an inverted position.

Figure 5.18 plots standard deviation and the angle of the pendulum. Some interesting
relationships can be observed. The variance exhibits two strong spikes that coincide with an
angle of 0 degrees. This indicates that the agent has learned that there are two ways it can
swing up the pole: either by swinging it clockwise or counter clockwise. A deterministic agent
would need to pick one over the other instead of deciding randomly. Further, once the target
inverted pose (at 180 degrees) is reached the variance does not go down to 0. This means
that for the agent a slight jitter seems to be the best way to keep the pendulum from gaining
momentum in one or the other direction.

Further, it seems to have learned that slowing the pendulum down close to the upright position,
is possible with some noisy torque which explains the second peak in Figure 5.18 at timesteps
30-40.

With this analysis we could show that a MAPG agent can learn meaningful policies. The
variance over predicted actions can give additional insight into the learned policy and results
in a more diverse agent that can for example swing up the pole in two different directions
instead of picking one.

5.8 Robotic Manipulation

Inspired by the research directions in human pose estimation [16, 18, 135, 194] and [98] that
reformulate keypoint localization as regression of belief maps, we extend this idea within the
MHP framework for the detection of robotic grasp points. This work has been published in
[45].

5.8.1 Motivation

The ability to grasp is important for many applications in the field of personal robotics as well
as advanced industrial manufacturing. Currently, robots cannot match human performance.
Detecting and precisely localizing reliable grasping points on the surface of an object is
required to increase the chance of a successful grasp through a robotic hand or a gripper. This
task has gained great attention in recent years, with a plethora of methods being proposed [6,
55, 75, 84, 97, 105, 109, 129, 148, 163, 183, 184, 193, 203], and the creation of benchmarks,
such as the Cornell grasp detection dataset [105] for evaluating the performance of approaches
designed for this specific task.

Traditional approaches rely on estimating object geometry for localizing grasp points [129,
203]. This leads to slow runtime and failure cases when dealing with complex or unseen
object shapes. The success of deep learning in various computer vision applications has led to
recent approaches [55, 97, 105, 121, 148, 184, 193] employing CNNs to predict grasp points
as 5-DoF bounding boxes directly from images or depth maps. Some prior work specifically
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Figure 5.19. We propose a model for regressing multiple grasp hypotheses as 2D belief maps, which tackles the
ambiguity of grasp detection more effectively than a single grasp detection, in particular for completely
unseen shapes, as the one depicted here.

targets grasp estimation for unseen objects from RGB-D images [6, 55, 75, 97, 105, 148, 163,
193, 203]. However, this problem is far from being solved [203].

We start from the observation that grasp detection is an inherently ambiguous task, since
most objects can be grasped in different ways, and although some ways may be more reliable
than others, there does not necessarily exist an optimal grasp. For this reason, each object
in benchmark datasets is annotated with a variety of possible grasping positions. To better
model the problem’s inherent ambiguity, we employ the MHP framework to estimate multiple
grasping points for each object. Finally, we investigate a task-specific way to select one grasp
location out of these hypotheses. To achieve this, we rank the hypotheses by fitting Gaussian
Mixture Models (GMMs) [127] to the predicted belief maps.

5.8.2 Multiple Grasp Hypotheses

Grasp Belief Maps

Formally, a grasp can be denoted as a 5D representation (x, y, θ, h, w), where (x, y) is the
center of a bounding box of width w and height h. θ is the orientation with respect to
the horizontal axis. This representation has been often used in related work [6, 55, 97,
105, 148, 193]. We propose an alternative approach to model the detection of a robotic
grasp and, instead of using bounding boxes as ground truth, we use belief maps. A belief
map corresponding to an N -finger gripper can be thought as a mixture of N multivariate
normal distributions around the finger tips. Take for example a parallel gripper. The means
µ(n) = (µ(n)

x , µ
(n)
y )T , n ∈ {1, 2}, of the normal distributions represent the gripper plate centers

and ‖µ(1) − µ(2)‖2 = w represents the width of the grasp. Σ = diag(σ(n)
x , σ

(n)
y )2 renders the
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Figure 5.20. An illustration of the adaptation of grasp rectangles to their associated grasp belief maps.

Figure 5.21. Samples of rectangle grasps and grasp belief maps shown for the same item.

distributions elliptical with the primary axis representing h. The orientation is controlled by
rotation matrix R(θ) and results in the correct grasp pose in relation to the object.

G(p) =
∑
n

exp
(
− 1

2 (p− µ(n))TR(θ)Σ−1R(θ)T (p− µ(n))
)

√
2nπ σ(n)

x σ
(n)
y

, (5.14)

where p = (x, y). Figure 5.20 shows an illustration for the conversion of grasp rectangles to
belief maps. In Figure 5.21, we show all annotated grasp configurations for a spoon using the
traditional bounding box representation and our adapted belief maps.

Multiple grasp options

Given the above definition for the ground truth grasps, a CNN is trained to map an RGB input
to the heatmap representing a Gaussian mixture. To regress the belief map we use our fully
convolutional residual architecture [99]. We train our baseline under a single-grasp setup
(SHP) by choosing the most stable available grasp – the one covering the maximum area – as
ground truth The loss function to be minimized is the `2 norm between the predicted heatmap
G̃ and the ground truth map Lm = ||G̃ −G||22.

In the MHP setup, we can produce multiple simultaneous grasp maps, instead of requiring the
model to produce just one. Similar to before, we can minimize the meta-loss
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M(G̃,G) = (1− ε) min
m=1,...,M

Lm + ε

M − 1
∑

m′ 6=argminmLm

Lm′ . (5.15)

A ground truth grasp map is randomly chosen among all available possibilities for an image at
each training step, so that overall during training, the entire grasp distribution can be seen.

Grasp option ranking

In a practical setup, we would need a way to judge which of the M hypotheses should be
selected. Thus, we could rank all hypotheses and select the one with the highest probability
of success. As the network is trained to produce two 2D Gaussians, a natural way of ranking
could be based on Gaussian mixture models. Thus we fit two-component GMMs to each
hypothesis using finite mixture model estimation [127].

The main parameters of a GMM are the mixture component weights φk, means µk and
variances σk.

p(~x) =
K∑
i=1

φiN (~x | ~µi,Σi),
K∑
i=1

φi = 1 (5.16)

We fit the same parametric model that was used to create the ground truth belief maps
(Equation 5.14) and use the highest likelihood fit to select the best hypothesis.

5.8.3 Experiments

We validate our method on the Cornell grasp detection dataset [105] and compare to the state
of the art.

Dataset

The Cornell grasp detection dataset [105] which provides 885 RGB-D images with a size of
640× 480 pixels. The images come form 240 graspable objects including several grasp labels
per object. There are between 2 to 25 grasp options per object, representing a variety of scales,
orientations and locations and making this task an ideal application of the MHP framework.
Still, the annotated labels are not exhaustive. In Figure 5.22 we show some RGB samples from
the dataset.

Cross-validation sets

Previous work [6, 55, 97, 105, 148, 193]. has used two types of splits: image-wise and object-
wise for cross-validation. Splitting image-wise means training the network while leaving out
some views of each object. This evaluates the within-object generalization capability of the
network. Object-wise splits use all views of some objects for training, while testing happens
on unseen objects.
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Figure 5.22. A representation of a subset of the objects of the Cornell grasp detection dataset [105].

As there are several objects with different colors but the same shape, we find that the object-
wise split is not a good measure for generalization to novel shapes. To investigate our
framework’s performance on novel shapes, we create an additional shape-wise split, in which
we include more novel shapes included in the test set. Image-wise and object-wise splits are
validated in five folds and the shape-wise split is done in two folds training on the first 80% of
objects and testing on the last 20% and vice versa.

Grasp Detection Metric

The evaluation metric is the rectangle metric suggested by [75]. A grasp is considered to be
valid when it fulfills the following two conditions.

• The intersection over union (IoU) score between the ground truth bounding box (B)

and the predicted bounding box (B∗) is greater than 25%, where IoU = B ∩B∗

B ∪B∗
.

• The difference in orientation between the ground truth and the predicted grasp rectan-
gles is less than 30◦.

This metric requires the prediction to be in the form of a grasp rectangle, while our network
predicts heatmaps. We therefore fit a rectangle around the Gaussians. We can then compute
the percentage of valid grasps as the Grasp Estimation Accuracy.

Evaluation and Comparisons

We compare MHP grasp estimation with the SHP baseline and state-of-the-art methods. We
compare the chosen hypothesis (after GMM-ranking) to all annotated ground truth grasp
rectangles to find the best match. A full comparison is reported in Table 5.8 for various M ;
M = 1 equals to SHP.
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Figure 5.23. Five and single grasp map predictions of sample objects in the dataset. A solid frame around an image is
an indicator of grasp detection success, while a dashed line shows an incorrect detection. The images
with the X are the top-ranked predictions picked by our GMM likelihood estimation module. These
predictions are converted back to grasp rectangles (shown in Magenta) and compared with Green
rectangles indicating ground truth grasps.

Although our model relies on RGB input only, it outperforms state-of-the-art approaches
that use additional depth information, except for Guo et al. [55] that use tactile data. The
difference between MHP and SHP is also significant. We observe similar performance between
image- and object-wise splits (also for other methods), which shows that the task difficulty
has not changed for these two setups, meaning that the new objects that appear in the
object-wise split are not substantially different than the ones used for training. With the
shape-wise split, we provide a better measure in dealing with novel shapes. The performance
gap between the MHP and SHP models is in fact the largest for shape-wise split, which is the
most challenging setup. 10-MHP shows a significant boost in performance (> 10%) over SHP
and good generalization to unseen shapes/objects.

Figure 5.23 shows qualitative examples from the 5-MHP model and comparing to SHP. Object
3 is undoubtedly a challenging object with many different grasping poses, which are estimated
correctly with multiple predictions. Although the grasp rotation of the best ranked prediction
did not match with any ground truths, its other predictions are also valid options.

Evaluating Multiple Grasps

In addition to evaluating the top-ranked prediction, we also want to evaluate the quality of all
hypotheses. We report the average grasp detection accuracy over all predictions, which gives
the lower performance bound in Table 5.9.

Comparing to the results in Table 5.8, we observe that most hypotheses do correspond to valid
grasps. This lower bound decreases with increasing M , which suggests that it is more likely to
have noisy hypotheses for large M . However, GMM-based hypothesis selection counteracts
this performance drop.
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Table 5.8. Comparison of the proposed method with the state of the art.

Grasp Estimation Accuracy (%)

Method Input Image-wise Object-wise Shape-wise

Lenz [105] RGB-D 73.9 75.6 -

Wang [97] RGB-D 85.3 - -

Redmon [148] RGB-D 88.0 87.1 -

Kumra [97] RGB-D 89.2 89.0 -

Asif [97] RGB-D 89.2 89.0 -

Guo [55] RGB-D 93.2 89.1 -

Kumra [97] RGB 88.8 87.7 -

ours (M = 1) RGB 83.3 81.0 73.7

ours (M = 5) RGB 91.1 90.6 85.3

ours (M = 10) RGB 91.5 90.1 86.2

Table 5.9. Average grasp estimation accuracy of all hypotheses (lower limit) and average grasp success (upper
limit).

Method Image-wise Object-wise Shape-wise

ours - lower limit (M = 5) 80.0 77.4 75.0

ours - lower limit (M = 10) 76.5 73.3 72.1

ours - upper limit (M = 5) 98.0 98.5 96.3

ours - upper limit (M = 10) 99.2 98.4 99.1

On th other hand, the highest-ranked hypothesis might not be the one that leads to best grasp-
ing performance. We evaluate this with an oracle that gives the upper limit in Tabletab:grasp:ablation,
i.e. if at least one valid grasp rectangle is found among the hypotheses, the prediction counts
as successful. We observe that in almost all cases MHP gives at least one valid hypothesis,
however, GMM-based ranking does not always select a valid hypothesis. Still, the evaluation
based on the ranked hypotheses in Table 5.8 is closer to the upper limit.

INTUITION: DEALING WITH GRASP HYPOTHESES

In an actual robotic grasping scenario, one can also imagine the robot making multiple
attempts to pick up an object. In this case, it is not necessary to select only a single
hypothesis. The robot can instead be given a list of ranked hypotheses which likely lead
to successful grasping.
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Figure 5.24. Pose Estimation from a single RGB or RGB-D image can easily become ambiguous, due to symmetries,
occlusion, or even repetitive patterns. The pose of a cup is well defined as long as the handle is visible
(upper row). The red frustums visualize a collection of pose hypotheses, regressed by our method. The
blue frustum constitutes the median, which is employed to render the 3D bounding box. The red line
shows the axis of ambiguity for the given view. The collapse of all hypotheses towards one signalizes
that the task is unambiguous. However, partial symmetries and occlusion lead to multiple possible
outcomes for the 6D pose (lower row). Our method is capable of determining the ambiguity of the pose
by analyzing the distribution of hypotheses (red lines).

5.9 6DOF Object Pose Estimation

In [123], we extend the MHP idea to handle symmetries and other ambiguities during object
pose estimation from a single RGB image.

5.9.1 Motivation

Object detection and pose estimation in 3D from images are ambiguous problems. Objects
can have similar appearance from different viewpoints, due to shape symmetries, occlusion
and texture. We show typical cases for ambiguity in Figure 5.24. We explicitly deal with
this problem by modeling it as a multiple hypothesis prediction problem. The benefits of our
approach are better explanations for pose ambiguity and also a higher accuracy in terms of
pose estimation. We do so by predicting M pose hypotheses from the network.

5.9.2 Experiments

We analyze the distribution of rotations to estimate ambiguities and demonstrate how we
can use the variance over hypotheses to model the uncertainty in pose estimation. In this
experiment, we utilize the Hinterstoisser [63] dataset. Secondly, we show how multiple
hypotheses can be exploited to improve the accuracy for pose estimation when dealing with
ambiguous objects. Since the T-LESS dataset [66] mostly consists of symmetric and texture-less
industrial objects it poses an excellent benchmark for this problem. Finally, we find that our
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Figure 5.25. Pose and axis of ambiguity estimation on the T-LESS dataset. The green line represents the annotated
ground truth axis, the red one is the estimated value.

Mean deviation [°] ≤ 25°[%] ≤ 15°[%] ≤ 10°[%] ≤ 5°[%]

Mean 35.09 40.78 21.83 12.36 4.50

Table 5.10. Symmetry axis estimation: Mean deviations from the ground truth and fraction of deviations bigger than
several offsets over data in Table 5.13.

formulation can also be used for simultaneous object detection and pose estimation, where
we show that even different objects can look similar from certain viewpoints.

Evaluation metrics

For a proper evaluation of our method in terms of 6D pose estimation performance, we
distinguish between non-symmetric and symmetric objects. For non-symmetric objects we
report the absolute error in degrees for the 3D rotation and 3D translation error in millimeters.
The Average Distance of Distinguishable Model Points (ADD) metric [64] measures if the
mean average deviation of the transformed points is less than 10% of the object’s diameter.
For symmetric objects we mostly rely on the Average Distance of Indistinguishable Model
Points (ADI) metric. It is similar to ADD, but always considers the closest corresponding points
for the distance to be symmetry agnostic.

We also report the Visual Surface Similarity (VSS) metric [83]. VSS is similar to the Visual
Surface Discrepancy (VSD) [67], however, we set τ =∞. Hence, we measure the pixel-wise
overlap of the rendered ground truth pose and the rendered prediction. This metric can be
applied to both, symmetric and non-symmetric, objects.

Shape Ambiguity Analysis

In this section we demonstrate the robustness of detecting pose ambiguities. To this end, we
manually annotate the symmetry axes for each object for the same subset of T-LESS as before.
It is important to note that we do not perform direct object symmetry detection. Instead, we
describe the perceived pose ambiguity in terms of a symmetry axis. For instance, a cup itself is
not rotationally symmetric due to the handle, yet, we can define an axis along which there
exists an arc that describes the same visual output as seen in Figure 5.24. For each correctly
detected object we compute the angular difference in degrees, if ambiguity was detected. In
Table 5.10 we analyze the accuracy of our estimator. We show an estimated ambiguity axis in
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Figure 5.26. Behavior of our method with respect to increasing degrees of accepted variances in our hypotheses. The
red line depicts the median while the green point shows the mean of the error. For comparison, we show
the box plot also for the median of all hypotheses as well as for the medoid, the mean and for a single
hypothesis (SH) network. We conducted our experiment on the real scenes over all objects of [64].

Figure 5.25. For each detection, we draw the estimated axis in red and the green line denotes
the ground truth axis.

Employing Multiple Hypothesis as Measurement For Reliability

To the best of our knowledge, there is no prior work that models both, the confidence in class
and in continuous pose. We believe that this knowledge strongly affects the overall pipeline.
In particular, in a multitude of use-cases, a 3D detector provides a first rough estimate for
the pose, nevertheless, thereafter some robust tracker is operating. The subsequent tracking
benefits heavily from a confidence for the pose estimation. When we detect the object but
cannot reliably predict the pose, we can give feedback to the system to try again, or change
the viewpoint.

Besides the additional information on the viewpoint ambiguity, we can utilize the different
hypotheses as a measurement for the confidence for the unambiguous 6D pose. To quantify
this effect, we report our test results on the ’Hinterstoisser’ dataset, which consists of only
unambiguous objects. We compute a confidence measure via standard deviation to the Karcher
mean [80]. In Figure 5.26, we show this uncertainty measure and its relation to the pose
accuracy. We plot the error statistics for pose estimates where all hypotheses are in a certain
increasing range around the mean (object pose via Weiszfeld). We compare this with three
estimates. First is the geometric median of all hypotheses (median). Second the oracle pose
hypothesis closest to it (medoid) and third the mean. We note that an allowed variance in the
hypotheses introduces uncertainty in the pose estimation and that the Weiszfeld algorithm
gives the most reliable pose estimates. Moreover, MHP predicts more reliable results than the
single hypothesis network (SH).

2D Object Detection 6D Pose Estimation

Although detection is not the focus of this work, we report similar results to [83]. In Table 5.11
we find that larger objects are detected very robustly, smaller ones are sometimes missed such
as the ’ape’ and the ’cat’ object. As previously mentioned, we remove the very first prediction
branch in our architecture, which is mostly responsible for small objects.
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ape bvise cam can cat driller duck holep iron lamp phone mean

RG
B ours 61 100 73 94 73 97 92 77 97 – 91 86

[83] 76 97 92 93 89 98 80 72 98 93 92 89

RG
BD [82] 98 95 93 83 98 97 98 98 91 98 85 94

[64] 53 85 64 51 66 69 58 52 68 68 56 63

Table 5.11. F1-scores for each sequence of [64]. Note that the ’Hinterstoisser’ scores are supplied from [177] with
their evaluation since [64] does not provide them.

Rot. Err. [°] Trans. Err. [mm] VSS [%] ADD [%] Rejection [%]

Ours (σ < 0.05) 16.42 6.54, 6.20, 46.72 76.4 29.3 38.8

Ours (σ < 0.10) 18.82 7.22, 6.79, 52.04 74.5 24.8 16.3

Ours (σ < 0.15) 20.94 7.53, 7.27, 55.14 73.7 23.0 7.1

Ours (σ < 0.20) 22.00 7.70, 7.48, 56.39 73.3 22.4 3.5

Ours (median) 23.90 7.89, 7.69, 57.52 72.8 23.9 0.0

Ours (mean) 23.47 7.84, 7.62, 57.78 72.9 22.0 0.0

Ours (medoid) 24.08 7.91, 7.68, 57.80 72.6 21.5 0.0

Ours (SH) 30.87 9.66, 9.51, 71.44 68.8 15.5 –

SSD-6D [83] 27.96 9.75, 9.33, 71.09 67.4 9.4 –

BB-8 [145] – – – 43.6 –

Table 5.12. Pose Errors on ’Hinterstoisser’ dataset [64]. We also report our performance with respect to different typs
of averaging, i.e. the mean, the geometric median, and the medoid retrieved from the closest hypothesis
to the median. In addition, we also report the results for different bins for the standard deviation over
all hypotheses for the poses.

In Table 5.12, we show significant improvements over [83]. Our robust averaging on all
hypotheses helps in all metrics. Additionally, by only allowing poses with a standard deviation
σ < 0.1, we can further improve the scores, while only discarding 16.3% of all pose estimates.
The rotational error decreases by almost 10°(i.e. from 27.96°to 18.82°), while the translation
error improves by approximately 25% for each axis. In general, Table 5.12 shows that the
standard deviation of the pose hypotheses can be utilized as a robust measurement of reliability.
Overall, the multiple hypothesis formulation yields a robust pose estimation method in case of
an unambiguous pose detection with multiple outputs. In essence, the median filter of the
quaternion hypothesis strengthens the pose estimates significantly compared to the Single
Hypothesis (SH) predictions shown in Figure 5.26. However, similar to [83], [145] achieve
a better ADD score through training on real data. Contrary to these approaches, we train
on purely synthetic data, which allows us to train for any object, provided the CAD model,
without having to conduct time-consuming annotations.

Table 5.13 reports results for the T-LESS dataset. The dataset contains multiple very similar
objects. For our experiments we choose a subset that covers most cases: complete rotational
symmetry along an axis (object 4), similarly-looking objects (7, 9) and objects with more than
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Multiple Hypotheses Single Hypothesis

Scene VSS [%] ADI [%] Cluster VSS [%] Cluster ADI [%] VSS [%] ADI [%]

obj_04 5, 9 73.36 50.58 73.56 52.18 60.88 43.46

obj_05 2, 3, 4 79.78 58.44 81.83 62.53 72.63 49.51

obj_07 2 76.5 75.93 78.38 84.36 53.71 43.49

obj_09 5, 11 66.78 46.95 66.28 47.40 48.87 23.02

obj_10 5, 11 67.65 45.33 69.80 46.58 60.87 43.38

Table 5.13. Evaluation Scores on a subset of T-LESS. Thereby, we compare our results with and without clustering
with the same predictor trained to output a single hypothesis.

one rotational symmetry (5, 7, 9, 10). Our clustering approach performs better in most cases
than the average rotation. Again, the single hypothesis baseline is always outperformed by its
multiple hypotheses counterpart.

Beyond Single Object Ambiguities
Distinct objects perceived from different viewpoints can have a very similar visual appearance.
In Figure 5.27 (left) we show that certain poses for objects 01 and 02, and 05 and 06 result
in near-similar images. We extend our architecture to also model uncertainty in the object
detection branch of our network. In particular, we adapted the classification loss to only
distinguish between foreground and background Lfg, rather than directly classifying the
associated object inside the anchor box. The classification loss is moved inside the multiple
hypotheses formulation:

L(Pos,Neg) :=
∑
b∈Neg

Lfg +
∑
b∈Pos

(Lfg + αLfit +M(βLclass + γLrotation) (5.17)

For each positive anchor box and threshold t1, we get a set of m rotations paired with the
associated class distribution. We employ a second threshold t2 to filter out weak hypotheses
before clustering. Note, that we conduct this clustering only for hypotheses which voted for
the same class.

Figure 5.27 show a prediction of the method. After the detector correctly detects the object
of interest (mid left), it casts m = 30 votes for object and rotation (right), which are all very
plausible. We only show five hypotheses for clarity. All hypotheses visually match the object
and are only differ rotation along the object’s symmetry axis. This shows that our method is
capable of conducting proper reasoning based on visual appearance.

5.10 Summary

This extensive evaluation of the multiple hypothesis idea shows that it is a powerful concept
that can be applied to a wide variety of tasks. Often the necessary modifications are small
and the adaption in straight forward. In many of the described applications MHP does not
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Figure 5.27. Simultaneous pose and class ambiguity. The pairs 1, 2 and 5, 6 are completely different to each other,
but their members are very similar. A network trained to generate multiple hypothesis for both class and
pose learns the ambiguity and only proposes feasible hypotheses based on this similarity.

only improve the performance of the model but also provides additional information about
the prediction. For example we can use it to estimate confidences or detect symmetries in the
data.

However, the number of hypotheses M remains a hyper-parameter that needs to be chosen
manually. In the next part we propose an algorithm that does not need a fix set of predictions
by can sample continuously from the target distribution.
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Part III

Learning to Sample





6Introduction

In the previous chapter we presented the MHP framework, which enables the network to
predict M guesses in order to model the distribution of the output. Naturally, a static M might
not be optimal. This thought has motivated the following work, in which we replace the
fixed number of output hypotheses with stochastic sampling inside the network, theoretically
allowing the model to learn any distribution arbitrarily well.

6.1 Motivation

As we discussed previously, uncertainty is fundamental to many inference problems. While
most recent deep learning methods are designed to produce a single statistic (e.g the condi-
tional mean), in many practical scenarios knowing the quality of the answer is as important as
the answer itself. For example, when making a medical diagnosis, it is essential to evaluate
alternative diagnoses and the consequences of an error.

In this chapter, we investigate ambiguous prediction problems by formulating them as con-
ditional distribution problems. Instead of learning a mapping from an input to one output,
we design an algorithm to produce samples that emulate the conditional distribution p(y|x),
where y is a label or value to be predicted and x is a datum from which it is inferred. By
sampling from what is now effectively a simulated random variable – that is sampling many
values of y for a given x – it is possible to compute any number of statistics about the answer:
the mean, the variance, a confidence interval, and so forth.

As a result, we do not need to make any explicit distributional assumptions. Instead, the
goal is to simply learn to predict samples that follow a certain distribution by maximizing the
similarity between the predicted samples and the ground truth samples. The advantage then
is generalizability, i.e. a non-parametric model is not constrained by the specific choice of the
distribution or mixture model, but can theoretically learn any distribution function.

First, we derive a loss function, based on an approximation of the Kullback-Leibler (KL)
divergence, that can be optimized to learn a sampling function. Second, we show that in the
special case of a single ground truth label for each input, the proposed loss converges to a
heuristic that has been previously employed for modeling learning problems with ambiguous
labels. As a result, we now know these methods also empirically minimize KL divergence and
are a mechanism for learning to sample from the empirical distribution. Finally, we can derive
a measure of density which enables us to select samples that belong to high density regions.
As a result, in cases where a single output or few high probability modes are desired, these
can be computed from the predicted samples.
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INTUITION: FIXED AND CONTINUOUS SAMPLING

The goal is learning to sample from a distribution, whereas MHP learned to approximate
a distribution with M point estimates. The sampling idea is mathematically more
satisfying, however, we find that it requires several trade-offs. With the increased
complexity of learning a full distribution comes the disadvantage that we now (mostly)
require more than one outcome to be annotated – this is almost never the case in current
public datasets. Since we are estimating the sample density using nearest neighbors, we
are restricted to low and medium dimensional problems, as (`2) distances lose meaning
in very high dimensions. Similar to mixture density networks, the new loss comes with
numerical difficulties and makes training noticeably slower. However, we are able to
show some interesting properties and good results in our experiments.

In what follows, we briefly review related work, derive the loss function, and provide an
empirical evaluation of neural networks trained with this loss function on synthetic and real
problems. We note that although we use neural networks, in principle our approach is agnostic
to the learning method.

6.2 Related Work

Again, a good portion of the work related to multiple hypothesis prediction is applicable here.
The topic of learning multiple outputs has been investigated from several different directions.
One approach is to explicitly learn a representation of a distribution. For example, Bishop
[10] predicts the parameters of (Gaussian) mixture models using a maximum likelihood
formulation. However, Gaussian mixture models quickly become unstable or intractable in
higher dimensions.

An important, related line of work models uncertainty by approximating Bayesian inference
in Gaussian Processes [147] within neural networks. In deep learning, dropout [173] has
been used as a standard regularization technique by randomly dropping (hidden) units while
training. It prevents the co-adaptation of units and provides an average of many different
weight combinations inside the network. Gal and Ghahramani [41] develop a probabilistic
representation for dropout (applied before each weight layer) in order to estimate model
uncertainty. Gathering the outcomes of several stochastic forward passes of a sample through
the network, the mean and variance of the prediction can be obtained.

Density estimation from samples has been studied in [34, 106] which form the theoretical
basis for the KL divergence [95] estimators in [140, 192] based on the k nearest neighbor
formulation that we use in our optimization.

Multiple Choice Learning (MCL) is an approach to address problems in which, due to ambi-
guities or mislabeling, a conclusive prediction is not possible or not optimal. For example,
Guzman [57] uses MCL, based on a Structured SVM [180], to solve image segmentation and
protein prediction problems. The MCL method is later extended to deal with the problem
of enforcing the diversity of the predictions [56], with an additional loss function term that
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penalizes similar outputs. While this achieves a higher variety in the predictions, it also
introduces a bias which means the predictions might not represent the true distribution of
the data. Lee et al. [103] apply these principles to neural network ensembles (Stochastic
Multiple Choice Learning - sMCL) by minimizing an oracle loss. In MHP we express ambiguity
through a generic model-agnostic and loss-agnostic multiple hypotheses model that learns an
implicit Voronoi tessellation of the output space. Our methods can be used to address MCL
problems, but are more general as they are not limited to a fixed number of output values and
are agnostic as to the source of the uncertainty in the data.

On the application side, various specific approaches have been proposed. For example,
Bayesian SegNet [85] predicts semantic segmentation together with uncertainty by creating a
posterior distribution of the output via Monte Carlo sampling with dropout. Gao et al. [42]
improve the accuracy of multi-label image classification by training with KL-divergence and
soft assignments. In this case, directly optimizing KL-divergence is relatively straightforward
since their output is a discrete probability distribution. Variational auto encoders (VAEs) [87,
150] also minimize the KL divergence of the encoding inside the network. This is another
example, however, where the distribution is parametrized by a multivariate Gaussian which is
then used to generate samples from the decoder.

Directly relevant to our work, there exists a variety of papers [57, 103, 157, 186], that have
used a heuristic minimum loss formulation mini ||fi(x)− y||22 for learning to produce multiple
predictions fi. In what follows, we show that there is theoretical basis for learning to sample
using KL divergence and that this formulation is a special case where only a single ground
truth annotation is available for each sample (Section 7.3). Thus, we show that this prior
work can also be viewed as minimizing the KL divergence.
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7Mathematical Derivation

We start by defining our goal and introducing the notation. The notation is kept as closely
as possible to the previous sections to be able to compare to multiple hypothesis prediction.
However, since we are now modeling distributions we will have a probabilistic view on the
problem. We denote the vector space of input variables by X and the vector space of output
variables or labels by Y. It is important to note the assumption that for a given x, there
does not exist a single, unique label y but several ones following an unknown probability
distribution, i.e. we are given a set of N training tuples (xn, yn) with

Yn = {y1,n, . . . , y|Yn|,n} ⊂ Y. (7.1)

The joint probability density over input variables and labels is denoted by p(x, y) = p(y|x)p(x),
where p(y|x) describes the conditional probability for the label y given the input x.

7.1 Unconditional Distributions

To build intuition, we start with the simpler case of an unconditional distribution. Let us
assume that we are given a set of N samples yn, drawn from an unknown distribution Y. Our
task is then to learn a model fθ that creates samples ŷ that follow Y. To this end we will
introduce a random variable z ∼ Z that is easy to sample from, e.g. a uniform distribution
(Z = Ud(0, 1)), and use it as a stochastic input to drive our model fθ(z) = ŷ. How well fθ(z)
achieves this goal, can be measured by the Kullback-Leibler divergence [95]:

D(P||Q) =
∫
Rd
p(x) log p(x)

q(x) dx, (7.2)

where P and Q denote the two distributions to be compared – in this case Y and the
distribution implicit in fθ. The KL divergence vanishes for P = Q and can thus be used as a
loss function for optimization.

Equation (7.2) assumes that the densities p and q are known; in the context of this work,
however, we are only given samples {y1, . . . , y|Y|} ⊂ Y of the distribution Y and predictions ŷ.
Thus, we need to approximate (7.2) using the provided samples. It has been shown in [140,
192] that this can be done using k-nearest-neighbor density estimation:

D̂(P||Q) = 1
|P|

|P|∑
i=1

log dk(pi,P \ {pi})
dk(pi,Q) , (7.3)

where the Euclidean distance of a point pi to its k-th nearest neighbor in a set Q is denoted by
dk(pi,Q). We note that we have dropped an additive normalization constant which depends
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on |P| and |Q| in (7.3). As this constant does not depend on the parameters of f it can be
neglected for optimization purposes.

It has been shown [192] that for the special case of k = 1 (nearest neighbor) the bias as
well as the variance of this estimator still vanish as n → ∞. In this case, Equation (7.3) is
simplified to

D̂(P||Q) = 1
|P|

|P|∑
i=1

log minj 6=i ||pi − pj ||2
minl ||pi − ql||2

. (7.4)

Intuitively, the numerator estimates the density in P around pi while the denominator esti-
mates the density of Q around pi. If the two densities are equal, the ratio becomes 1 and the
loss vanishes.

When using D̂ as the objective function for training, we replace P andQ by the set of empirical
samples Y and the set of predicted samples f(Z) = Ŷ, respectively. Since the KL divergence
is not symmetric, i.e. D(P||Q) 6= D(Q||P), we symmetrize the loss (similar to the original
formulation by Kullback and Leibler) by minimizing the sum:

D̂(Y||Ŷ) + D̂(Ŷ||Y). (7.5)

HINT: OPTIMIZATION IN PRACTICE

In practice, we sample m = |Z| = |Ŷ| times from f using different random z to obtain
an estimated distribution set Ŷ = {ŷ1, . . . , ŷm} and minimize (7.5) comparing to the
desired distribution set Y.

7.2 Conditional Distributions

In the conditional case, the distribution of Y depends on x. Here, we return to the original
formulation where f(x, z) = ŷ is conditioned on x. We recall that the training pairs take on the
form of (xn,Yn), where for every xn we are given a set Yn of corresponding samples. During
training, we then sample a set Ŷn = f(xn,Z) of m predictions for every xn and minimize

N∑
n=1

D̂(Yn||f(xn,Z)) + D̂(f(xn,Z)||Yn), (7.6)

where f(xn,Z) yields the set Ŷn of predictions obtained by feeding a constant input xn into f
but varying the random variable z.

7.3 Dealing with a Limited Number of Labels

For some applications it might be the case that |Yn| is very small or even equal to one. For
example, in future frame prediction only a single future is usually observed and that limits
the ground truth labels for this problem, although in reality exponentially many futures could
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Figure 7.1. Density estimation with nearest neighbors. We show two distributions with different densities and
samples (blue) drawn from them. The wider distribution (left image) creates on average larger distances
between samples compared to the sharper one on the right.

have been possible. Furthermore, as labeling is a tedious, time consuming and sometimes
expensive, many datasets provide only one annotation per xn. This reduces the available
training samples from (xn,Yn) to (xn, yn).

In case of only one label being available, D̂(f(xn,Z)||Yn) reduces to:

D̂(f(xn,Z)||yn) = D̂(Ŷn||yn) = 1
|Ŷn|

|Ŷn|∑
i=1

log minj 6=i ||ŷn,i − ŷn,j ||2
||ŷn,i − yn||2

. (7.7)

Minimizing this condition alone does not, however, yield meaningful solutions. It would, for
instance, allow that all ŷn,i and yn form the vertices of a regular, multi-dimensional simplex:

||ŷn,i − ŷn,j ||2 = ||ŷn,i − yn||2 ≥ 0 ∀i, j 6= i. (7.8)

Let us investigate the other term, D̂(Yn||f(xn,Z)): In case of only (xn, yn) being available,
computing minj 6=i ||yn,i − yn,j ||2 is not possible as only one label yn is available. If we assume,
however, that this one label is very likely, then if any other labels yn,1, . . . , yn,|Yn| exist(ed),
they would be very close to it and each other. (see Figure 7.1). As a consequence, all distances
d∗(yn,j) = minj 6=i ||yn,i − yn,j ||2 would be very small relative to the denominator, and they
would be nearly constant with respect to the optimization parameters. In other words, the
more concentrated the distribution around yn, the more reasonable it is to minimize just the
denominator of D̂(Yn||f(xn,Z)), i.e.

min
l
||yn − ŷn,l||22, (7.9)

The oracle loss in Equation 7.9 has been used in many other works, such as [56, 57, 103, 110,
157]. The intuitive explanation has been that it is desired to have at least one correct output
from the network, so the output “closest to correct” is backpropagated.
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HINT: LINK TO MULTIPLE HYPOTHESIS PREDICTION

This result shows that there is a clear connection to the previous chapter, where we
assume that only one output sample is annotated in the data. We have gained the
insight that the oracle loss is an approximation of the KL divergence using samples
instead of distributions when only a single ground truth label is available. The discovery
of this link shows that an MHP model does indeed also minimize the KL-divergence
between its piecewise constant approximation and the target distribution even with its
simplistic meta-loss formulation.

7.4 Random Variables in Neural Networks

After having discussed the details of minimizing KL divergence to learn a function f(x, z) = ŷ,
we will now present different possibilities to represent f as a neural network which can be
trained using first order gradient descent methods. The key insight is that we need to introduce
a random variable z into the network to be able to sample from f instead of computing a fixed
response. This can be done in different ways.

The most straightforward approach is to concatenate a random noise image to the input of
the network. This has two benefits. First, the architecture remains mostly identical except
for the first layer of the network which needs to be adapted to the differently sized input.
The disadvantage of this approach is that the whole network needs to be evaluated fully for
every different z, which is inefficient and even computationally infeasible for large networks.
To mitigate this problem, one can concatenate a random noise vector or feature map to an
intermediate layer of the network. This has the benefit that the computation graph of the
network can be executed once until the point where the randomness is introduced. Only the
remaining part needs to be recomputed for changes in z. However, in order to be able to
transform the simple (uniform or normal) distribution of z into the desired output distribution,
a sufficiently deep or wide network is needed after introducing z.

Another way to introduce randomness into the network is via dropout [173]. This has been
analyzed in the context of obtaining uncertainty measures from the network in [41]. Here we
can use it to create different outputs by sampling the dropout configuration. This shares the
benefit that every layer up to the dropout layer can be precomputed for a specific sample, and
only the layers after dropout need to be evaluated for every sample individually. Furthermore,
compared to the concatenation of a randomly sampled feature map, no additional parameter
is introduced into the network.

INTUITION: NOISE INPUTS AND MULTIPLE OUTPUTS

In [157] multiple outputs are generated by adding a fixed number of additional output
layers. This has the benefit that a single pass through the network already yields multiple
samples. While this does indeed create several samples for each input, their number
is fixed. Thus, by combining the multiple output idea with one of the aforementioned
techniques for introducing randomness, we can get different samples on each forward
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pass while retaining the computation efficiency of predicting multiple samples at the
same time.

7.5 Density Estimation for Selecting Samples

In methods that predict multiple samples for a single input, we have observed the problem of
choosing the “best” or most likely prediction. Here, we have seen that we can instead estimate
the density of the distribution set Ŷ by using the distance to the k-th nearest neighbor (see
Equation 7.3). This enables us to choose the sample with the highest estimated density in
tasks for which a single answer is required.

In low dimensional output spaces (for example, in age estimation) we can also use binning
to find the highest density region instead of k-NN. Binning becomes more difficult as the
number of dimensions increases since the samples can be sparse and the number of bins grows
exponentially with the number of dimensions.
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8Applications

In this section we will first validate the proposed KL divergence estimation loss on a synthetic
two-dimensional distribution and then evaluate the performance on the real-world task of age
estimation.

8.1 Toy Examples

In a first experiment, we study the influence of our proposed KL divergence formulation on
a simple two-dimensional example to analyze the influence of the two terms D(P ||Q) and
D(Q||P ).

The example is adopted from the MHP experiments in Section 5.1, which enables us to directly
compare the representation of the distributions. The said distribution changes over time
t ∈ [0, 1]. This dependence on t directly represents the conditional distribution p(t, y) where
the sampling in y depends on t.

Figure 8.1. 2D Example. Red points are drawn from the true underlying distribution, blue points show predictions.
Additionally, we show the results of the MHP model predicting a Voronoi tessellation instead of sampled
points.
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Figure 8.2. Loss Analysis. We visualize the quality of the sampling obtained from toggling both loss terms. D(Ŷ ||Y )
optimizes samples to lie inside of the ground truth distribution and D(Y ||Ŷ ) optimizes overlap.

A zero-centered square is split into 4 equal regions. With t the probability mass changes over
the regions. At t = 0 high probability mass lies in the lower-left and top-right quadrants which
transitions to the upper-left and lower-right quadrants at t = 1. At t = 1

2 the whole square has
uniform probability. The 2D space R2 is subdivided into five sections Si

S1 = [−1, 0)× [−1, 0) ⊂ R2

S2 = [−1, 0)× [0, 1] ⊂ R2

S3 = [0, 1]× [−1, 0) ⊂ R2

S4 = [0, 1]× [0, 1] ⊂ R2

S5 = R2\{S1 ∪ S2 ∪ S3 ∪ S4}

We select the sections with probability p(S1) = p(S4) = 1−t
2 , p(S2) = p(S3) = t

2 and p(S5) = 0.
Then a point is uniformly chosen from the selected section. The distribution is shown in Figure
8.1 for the time steps t = 0, t = 1

2 and t = 1.

We train a simple neural network with two hidden layers and 50 neurons each, using ReLU as
activation function. As input to the network we feed the time t, concatenated with a uniformly
sampled random vector z ∼ U2(0, 1) which introduces the necessary randomness into the
network. The output ŷ ∈ R2 is a 2D location of the sample. The network is trained using
Adam optimizer [86] and initial learning rate of 0.001.

In Figure 8.2, we analyze the influence of the two components D(Ŷ ||Y ) and D(Y ||Ŷ ) on the
sampling. Observing the ratio inside the first term D(Ŷ ||Y )

log minj ||ŷi − ŷj ||2
minl ||ŷi − yl||2

, (8.1)

the numerator only operates on predictions, while the denominator selects the closest ground
truth sample yl for each predictions. Thus, D(Ŷ ||Y ) has the property of pulling the predictions
to the closest ground truth samples. This can be seen in the middle plot of Figure 8.2 where
there is almost no sample far away from the ground truth, but this term alone does not enforce
the full ground truth distribution to be covered. The size of the covered region mostly depends
on the distribution coverage right after initialization. If the output of the randomly initialized
(and untrained) network covers the whole space of the target distribution, then D(Ŷ ||Y )
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Table 8.1. Estimated KL divergence at after training with different loss terms.

Loss

time estimator D(Ŷ ||Y ) +D(Y ||Ŷ ) D(Ŷ ||Y ) D(Y ||Ŷ )

t = 0 D(Ŷ ||Y ) 0.34± 0.02 0.79± 0.03 0.91± 0.02

D(Y ||Ŷ ) 0.29± 0.02 0.34± 0.03 0.37± 0.02

t = 1
2 D(Ŷ ||Y ) 0.09± 0.03 0.13± 0.01 0.06± 0.02

D(Y ||Ŷ ) 0.09± 0.03 0.10± 0.01 0.07± 0.02

t = 1 D(Ŷ ||Y ) 0.43± 0.03 0.46± 0.02 0.93± 0.02

D(Y ||Ŷ ) 0.47± 0.02 0.39± 0.02 0.31± 0.03

arrives at a good solution, otherwise the predicted distribution will converge with parts of the
real distribution left uncovered.

Conversely, the other term, D(Y ||Ŷ ) accounts for selecting the closest prediction to each
ground truth sample during optimization. This ensures that the whole ground truth distribu-
tion is covered but predictions that lie far away from the ground truth will never be selected
and thus will not be optimized and starve.

The impact of both terms is crucial as they synergistically help to get a better coverage
(D(Y ||Ŷ )) and fewer outliers (D(Ŷ ||Y )) in the final learned sampler. This can also be
observed in Table 8.1, where we use the described estimator D̂ to measure KL divergence on
differently trained networks at different time steps t. For the results reported in this table, we
have sample significantly more for both the network and ground truth (105 samples each) and
average over 10 experiments to arrive at a better estimate. Comparing the table to Figure
8.2, we can see that D(Y ||Ŷ ) stays relatively unchanged while D(Ŷ ||Y ) is able to detect the
failure in t = 1 (right most image D(Ŷ ||Y ) = 0.93).

8.2 Age Estimation

For evaluating the sampling method on a real problem, we choose the task of age estimation
from single facial images. For this purpose, we use the publicly available Cross-Age Celebrity
Dataset (CACD) [20], which contains 163,446 images from 2,000 celebrities, gathered via
web search engines. The data is also pre-processed and released as the cropped face images.
The age distribution ranges between 16 and 62 years. Each estimated age label is given by
the difference between the year of birth and the year that the photo was taken. Naturally,
the collection process causes inaccuracies because it assumes that the photo’s time stamp is
correct. The dataset is split into training (1,800 celebrities), validation (80) and testing (120)
subsets. For the validation and test set, the labels are manually cleaned; while some outliers
still remain, as it is sometimes also hard for humans to guess the age of a person (apparent
versus real age).
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Table 8.2. Quantitative results on the CACD dataset

DEX [151] baseline mean max density max density+augm

MAE (years) 4.785 10.221 5.268 5.216 5.084

Figure 8.3. Qualitative Age Estimation Results. We show qualitative example of the age estimation task. In
addition to the prediction we are able to obtain a histogram of samples. The last three examples depict
failure cases. The last two images contain the same person.

Rothe et al. [151] observed that when using the "clean" validation set for training (7,600
samples) the mean absolute error (MAE) on the test set becomes significantly worse, as
opposed to using the "noisy" 145,275 training samples. This suggests that the increased
amount of training data helps, despite the inaccurate labels. Hence to facilitate comparisons
we train a VGG-16 architecture [171], as in [151], on the full training set. This choice is
also encouraged by the fact that the proposed method is capable of developing an inherent
robustness to noisy training labels and therefore allows us to better showcase its applicability
on this specific problem.

In our experiments, we replace the classification layer of VGG with a fully-connected layer
with 100 outputs (similarly, DEX [151] performs classification by discretizing the age space
into 100 bins). Unlike DEX [151], however, we do not perform classification but regress 100
samples simultaneously. Stochasticity is introduced by appending a small noise vector of 10
elements to the 4096-dimensional fully connected layer fc7, i.e. before the prediction layer
as well as the usual dropout layers from VGG with dropout rate 0.5. We train the network
with a batch size of 32 images for approximately 35 epochs with stochastic gradient descent,
learning rate 10−5 and momentum 0.9.

During inference, the multiple outputs of the network will form distributions such as those
depicted in the age histograms of Figure 8.3 (bottom row). The predicted age is derived as the
mean over all samples that fall into the maximum density bin of the histogram. In the figure,
we show both success and failure cases. The two right-most images of Figure 8.3 represent
a special case in which one can observe the impact that facial characteristics have on the
outcome. The same person, at the same age can receive a very different estimation based on
changes in their expression, hair, etc. Interestingly, we also found several inaccurately labeled
images in the test set, fact which sometimes leads to predictions that are more reasonable –
according to our own guesses – than the corresponding ground truth.
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In Table 8.2 we report our experiments. We first construct a single-output regression baseline,
which scores 10.2 years in MAE. The proposed sampler with 100 outputs remarkably outper-
forms this baseline and results in an error of 5.2 years. Notably, when we use the proposed
density estimation to select the sample with the highest density (max density) we gain an
improvement in comparison to merely computing the mean of the predicted distribution
(5.3 years). When additionally performing a series of small random augmentations on the
input and aggregating all network outputs to the age histogram, the performance is further
improved to 5.08, due to the increased number of samples drawn from the model. We finally
report the state of the art method DEX [151], to which we show comparable performance
despite the fact that they use a large amount of additional data for pre-training (over 200k
image from the IMDB-WIKI dataset).
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9Conclusions

We have presented a method that pushed the multiple hypothesis idea from a fixed number
of discrete samples (hypotheses) to learning to sample from a target distribution. Naturally,
this richer output requires a more complex training procedure, extensive annotations – having
labeled distributions instead of single outcomes is preferable here – and is more difficult to
train than MHP. Nonetheless, we are able to show good performance for a 2D toy task and
age estimation, where the data is given in the right format for this method to learn.

We would like to further investigate the link to (conditional) variational autoencoders (VAEs).
A clear difference, for example, is the way a conditional VAE learns a manifold representing
the data and samples from it. However, an understanding on what effects these differences
have in practice could be useful.
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10Introduction

In this chapter we will have a look at another powerful way to deal with ambiguity. The
insight is, that often a human user can resolve an ambiguity because either she has additional
outside knowledge, or he is the source of the confusion, as the method tries to understand
her goals. This chapter is composed of two publications, one from the beginning of my Ph.D.
[156] before I came in contact with deep learning, the other at the very end fully powered
with CNNs, RNN and lots of data [155], both published at CVPR.

10.1 Related Work

Since this chapter covers two methods, we structure the related work into different categories,
related to individual and common parts between the two approaches. The related work spans
a large variety of work before and after the deep learning paradigm shift.

10.1.1 Twenty Questions

The Twenty Questions setting has been explored for computer vision applications by Branson
et al. [13] and its extensions [187] and [12] for interactive fine-grained image classification.
Their work sets up collaborative task between human and algorithm, where the system knows
important questions but needs human supervision to find the correct answer – especially since
during that time image understanding technology was not good enough to detect and describe
the color and shape of a bird’s beak for example. The method combines the expertise of the
computer with the visual abilities of the human to collaboratively discover the object’s class. A
Bayesian view of the twenty questions problem can be found in [73]. We have extended the
method presented here in a follow-up work on medical segmentation, where we integrate a
learned shape prior [33].

10.1.2 Interaction with neural networks

The problem of dynamic user interaction with deep learning agents such as neural networks,
is not yet extensively studied in literature. One problem is that integrating a human into a
training loop that incorporates thousands of images is difficult. Nonetheless, some methods
regarding interactive (deep) learning exist. For example weakly-supervised semantic segmen-
tation via human scribbles [112], user-provided clicks and Euclidean distance transforms [200]
or initialization with bounding boxes [29, 146]. For the task of image or sketch colorization,
more and more methods allow for human interaction [204]. [2] propose to interactively
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improve medical image segmentation with user-specified seeds and also in the medical domain
[189] uses a second network to process the original prediction and the user’s feedback.

The system presented in the second part, can substitute the human input with an algorithm
that dynamically generates textual hints based on previous predictions, to be able to integrate
large scale feedback into the training. The original CNN is already trained and its weights
remain unchanged. We only learn a hint comprehension network that modifies the activations
of the original CNN on the fly. This is a major difference between our approach and most of
the previous systems, as they depend on the user’s input to produce a prediction, therefore
they do not function actively.

10.1.3 The intersection of vision and language

To enable user interaction in a natural and intuitive way, we propose a novel idea that lies
in the joint domain of natural language and vision. Visual Question Answering (VQA) is a
task involving problems at the crossroad of natural language and vision. VQA systems receive
and input image together with a question and are tasked to provide a usually unrestricted
and open-ended answer [1, 205]. A common approach is to ground the question in the input
image to be able to focus on the relevant regions which are necessary to reason about the
answer [4, 5, 68, 78, 118, 122]. The CLEVR dataset [76] further facilitates unveiling the
decision making process through a set of visual reasoning tasks related to the relationship and
attributes of simple objects in an image. Other examples in the joint text-vision domain include
image captioning [28, 77, 185], visual dialog [30] and segmentation or object retrieval from
referring expressions [69, 70]. Most other work combines CNNs and RNNs using visual and
textual attention mechanisms [3, 119, 198, 199]. Closely related to our second work [155] is
the conditioning layer of Perez et al. [139] for visual reasoning.

10.1.4 Semantic Segmentation (pre deep learning)

Before CNNs drastically changed the field, interactive segmentation techniques usually relied
on seeds [11, 52, 144] or bounding boxes [53, 104] placed by a human in or around the
object of interest. Closer to our first work, are a few approaches [8, 38, 91, 92, 174] that
keep the human user in the loop and suggest the most informative areas to label next. This is
similar to active learning where the system learns online, during runtime, from a user. An
important aspect of the twenty questions game is the intrinsic ambiguity of the task. One
cannot anticipate which region and at what semantic level was picked by the oracle. Tu and
Zhu [181] augment the active contours idea with a data-driven MCMC framework to generate
several parsings of the same image. Object proposal methods identify a set of candidate
regions in a scene [19, 35, 54, 93] by learning typical visual properties of objects.

10.1.5 Semantic Segmentation (post deep learning)

Both methods are demonstrated on the application of semantic image segmentation which
was significantly boosted by the success of deep learning methods [7, 21, 74, 113, 117, 142].
Since our contributions do not encompass an improved image segmentation method but rather
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build on top of existing architectures, we deploy out-of-the-box, state-of-the-art models [21,
117].
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11Twenty Questions

Our first method [156] can be summarized as follows. The goal for the system is, after twenty
(or a fixed number of) questions, to propose a segmentation that is as close as possible to what
the human/oracle had in mind. The user is only allowed to answer yes or no, which translates
to one bit of information per question. This renders the task extremely under-constraint and
ambiguous as 220 � 2640×480 of possible segmentations for a typical image. Here, we choose
to have a fixed type of question: “Is this pixel inside the region you want to segment?”.

INTUITION: QUESTION TYPES

It is possible to extend the range of questions. In fact, while developing this system
we experimented with all sorts of questions such as “Is your object to the left of this
line?” or “Is your object mostly blue?”. However, for this work we settled for asking for
pixels, as it has several advantages. It has the property of converging to the ground
truth segmentation after asking as many questions as there are pixels. Questions about
color and shape can be imprecise and depend on the interpretation of the user. Asking
for lines or regions always leaves the question of what to do if the object intersects the
boundary.

With the type of question being fixed, the system needs to find the optimal pixel location to
maximize the information brought by the answer. Formally, we define a probability distribution
over all possible segmentations S, measuring how likely it was picked by the oracle. The
probability consists of two components: first the intrinsic segmentation quality in terms of
image partitioning (i.e. the homogeneity of the segmented object), and second a dynamic
term based on the feedback of the user. An ideal question choice would try to divide S into
two parts of equal probability sum. However, since S contains an excessively large amount of
items, the probability distribution is intractable for explicit computation. Instead, we compute
a Monte Carlo approximate by sampling segmentations proportionally to their (estimated)
probability. The Markov Chain Monte Carlo (MCMC) framework is ideal for sampling from a
complex probability density function. It builds upon the Metropolis-Hastings algorithm [128]
and explores S, spending more time in areas of high probability. This makes computing the
most informative question more tractable and allows for the knowledge obtained from the
answer to be directly integrated into the next round. To assess the performance of the method,
we evaluate it on three public datasets and compare it to several baselines.

11.1 Mathematical Derivation

The algorithm is divided into two alternating parts. Using the Metropolis hastings algorithm,
we first sample a set of likely segmentations. Then, the most informative question is computed
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and asked to the user. Based on their answer, we update the fore- and background model of
the Markov chain. Both steps are repeated until the maximum number of questions is reached
or the user is satisfied with the current segmentation outcome.

11.1.1 Problem Statement and Notations

We define an image I over the lattice Ω = {1, . . . , h} × {1, . . . , w} where h and w denote
height and width of I. A binary segmentation of the image I is then a function s : Ω→ {0, 1}
indicating whether the pixel (x, y) of the image is inside (s(x, y) = 1) or outside (s(x, y) = 0)
the segmented area. Intuitively, as wh is finite, s can also be modeled as a vector s ∈ S =
{0, 1}|Ω|, explicitly listing the inside-status for each pixel.

We formalize the twenty questions problem as follows. For a given image I, the oracle (i.e. the
human user) decides on a segmentation ŝ ∈ S. This segmentation is hidden from the algorithm
as it only exists in the user’s head. To discover the segmentation, the computer is allowed to
ask a series of binary questions of the form Q(p): “Is the displayed location p inside the object
you want to segment?" to the oracle. With the question text fixed the task boils down to finding
the most informative location p. The oracle’s answer provides the true label l(p) ∈ {0, 1} at
this location p.

Depending if the answer was yes or no, we collect them in two sets Σk− and Σk+ of background
and foreground seeds respectively, with

∣∣Σk−∣∣+ ∣∣Σk+∣∣ = k. These we call these sets reliable sets
of seeds as the state for these pixels has been directly specified by the oracle.

INTUITION: RELIABLE SEEDS

During the rest of the mathematical derivation, we assume that the answer given by the
oracle is always correct. However, in the experiments, we will validate what happens if
the oracle was not fully reliable and would sometimes respond with the wrong answer.

With Σk = Σk−∪Σk+ we denote the set containing all reliable seeds. We encode this knowledge
through the Bayesian posterior probability p(s = ŝ|Σk) over the set of segmentations S. It
states how likely it is that s is the hidden segmentation. It is informed by the known seeds
revealed by the oracle. For brevity, we will write p(s|Σk) for this probability in order to clarify
that it is seen as a function of s and as a probability distribution over S. As stated before, if we
could compute this posterior for every possible segmentation in S (which is finite for finitely
large images), an optimal divide and conquer strategy would at each turn find a question
location p that halves the set of possible segmentations into two subsets of equal probability
0.5. However, with 2|Ω| possibilities, the set S is far beyond a size for exhaustive computation
of p(s|Σk) over the whole set S. For comparison a 10× 10 image already has far more possible
segmentations (2100) than the estimated number of atoms in the universe 283. However, we
can assume that the segmentation picked by the user is corresponding to some semantic object
in the image and has some visual support, so that p(s|Σ∗−,Σ∗+) is very unbalanced (i.e. higher
from several orders of magnitude for a few good candidates that are likely to be picked). This
means that the distribution p(s) does not have equal probability even without any knowledge
of the user. To overcome the astronomically large size of S, we propose to approximate the
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posterior p(s|Σk) at each iteration k by a series of samples sk1 , . . . , s
k
N ∈ S. These samples are

drawn from a Markov Chain Monte Carlo (MCMC) scheme, which we describe in detail in
Sec. 11.1.2. We use N samples to compute an approximation of the most informative question
by following the question selection method exposed in Sec. 11.1.3. Sampling and question
selection are then alternated until a predefined amount of allowed questions is reached or the
oracle deems the current estimate correct.

Input : Image I, number of allowed questions K
Σ0
− ← ∅; Σ0

+ ← ∅;
for k ← 0 to K − 1 do

Sample sk1 , . . . , s
k
N from p(.|Σk);

Find most informative location pk w.r.t sk1 , . . . , s
k
N ;

Ask question Q(pk) and receive true label l(pk);
if l(pk) = 0 then

Σk+1
− ← Σk− ∪ {pk};

Σk+1
+ ← Σk+;

else
Σk+1
− ← Σk−;

Σk+1
+ ← Σk+ ∪ {pk};

end
end
G ← GDT-segmentation with seeds ΣK ;
Output :Guess G of the oracle segmentation

Algorithm 2: Overview of our method. At each step, the question selection strategy consists
in sampling segmentations according to their probability of having been picked by the oracle,
and asking the question related to the most informative location with respect to these samples.
This location, together with the provided label form a seed is added to either Σ0

− or Σ0
+

depending on its label.

11.1.2 Sampling Likely Segmentations with MCMC

In this section, we show how to sample representative segmentations from the posterior
probability distribution p(.|Σk) conditioned on the current knowledge. We follow a MCMC-
based approach and explore the set of segmentations, spending more time on segmentations
that are likely to have been picked by the oracle. We first review the Metropolis-Hastings
algorithm and discuss the adaptation to our method. We build upon the classical Metropolis-
Hastings algorithm [128] and an original idea from Tu and Zhu [181] introduced in the
context of image parsing into multiple regions. Our sampling procedure is defined as a Markov
chain over the space of segmentations with the following transition probabilities. Given a
current state (which is a segmentation s), a new segmentation candidate s′ will be suggested
according to a proposal distribution q(s′|Σk, s) to be the next state of the Markov chain. This
move is accepted or rejected with probability min(1, α) and

α = p(s′|Σk)q(s|Σk, s′)
p(s|Σk)q(s′|Σk, s) , (11.1)

where p(.|Σk) denotes the posterior probability distribution according to which we want to
draw samples. This is the probability for a segmentation to have been picked by the oracle
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given the already known seeds Σk. The algorithm starts from an initial segmentation sk0 and
generates a succession of segmentations. To achieve a greater diversity of segmentations,
the ski , 1 ≤ i ≤ N are selected as samples at a fixed rate during this exploration process.
Additionally, as typical in MCMC methods, a burn-in step is performed before collecting
samples so that they lose their dependency on the initial state sk0 . We will now define the
posterior distribution and the proposal distribution which are critical for the MCMC process.
They respectively define how to rate the likelihood of a segmentation to have been picked by
the user and how to move from a segmentation to another in the Markov chain process.

State-Space Parametrization

To keep the system responsive to the user, the processing time between two questions needs
to be kept low. For this reason, we introduce an alternative parametrization of the segmen-
tation space based on geodesic distance transforms (GDT). GDTs have been shown to be
computationally efficient for example in the context of object proposals [93].

INTUITION: STATE-SPACE PARAMETRIZATION

The reason that makes a parametrization of the state space attractive is that we need
to suggest moves of the Markov chain. If we keep the original, pixel-wise formulation,
moves are either very complex, or they can only change the segmentation very locally,
i.e. flipping a pixel. With the following parametrization, we can not only allow larger
changes in the segmentation but also are able to integrate the previous answers Σk in a
very natural and intuitive way to adjust the distribution based on the oracle’s hints.

We define X = {1, . . . , C} × [0, B] × P(Ω)2 as our state space and consider the function
φGDT : X → S that associates to a vector x = (c, β,Σ+,Σ−) ∈ X to the segmentation
φGDT (x) ∈ S. The segmentation is obtained by computing two geodesic distance transform
on the cth image channel that was blurred with a Gaussian of standard deviation β, one with
the sets of positive Σ+ and one using the negative seeds Σ−. We denote the number of color
channels in the image with C, and the maximally allowed standard deviation for Gaussian
blurring with B. We obtain the GDT by computing the shortest distance between every pixel
and the set of seed pixels. Typical GDTs define the distance between two neighboring pixels as
a convex combination of the Euclidean distance and the intensity gradient. However, since
the location of our seeds is chosen by an algorithm and since the segmentation is unknown
during seed placement, they do not always fall perfectly inside the center of regions. In typical
applications, the user places the seeds, knowing the segmentation, thus, they will not be
placed unnecessarily close to boundaries. Here however, the segmentation is unknown to
the algorithm that places seeds. We thus only use the squared intensity difference to remove
the dependency to the distance between seed and object boundary. Each pixel is labeled as
inside or outside depending whether it is geodesically closer to an inside or outside seed.
We introduce the coefficient β ∈ [0, B] to control the sensitivity to the scale of edges in the
image. Implicitly, it generates an image pyramid during the MCMC process (see Sec. 11.1.2)
allowing for coarse and fine segmentations. This GDT-based segmentation algorithm is further
illustrated in Fig. 11.1.
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Figure 11.1. Segmentation example using geodesic distance transforms. a) Image from the Berkeley 300
dataset [125]. b) + d) Approximated geodesic distance to outside (orange) and inside (green) seeds
respectively. c) Final segmentation.

HINT: SEGMENTATION ALGORITHM

Note that any other seed-based interactive segmentation algorithm could be included
at this stage of the framework. Our main motivation behind the choice of geodesic
distance transform was the fact that it can be approximated in linear time [179] and
were thus crucial to keep the segmentation time low between individual questions. In
fact, in [155] we show that we can modify a pre-trained segmentation CNN to be able
to work with seeds. Using deep networks for segmentation became popular with [117]
which was – just as our original twenty questions segmentation idea – published at
CVPR 2015.

With the above definitions, we build the Markov chain for segmentation sampling to act at the
state space level X . Thus, it modifies the GDT-based segmentation parameters and seeds and
Eq. 11.1 becomes

α = p(φGDT (x′)|Σk)q(x|Σk, x′)
p(φGDT (x)|Σk)q(x′|Σk, x) . (11.2)

In the following, we will expose our design for p(φGDT (x)|Σk) and q(x′|Σk, x) respectively.

Posterior Probability

As described above, p(s|Σk) is the probability of the segmentation to have been picked by the
user, given the set of k seeds Σk already revealed by the first k questions. Interestingly, in the
Metropolis-Hastings acceptance probability (Eq. 11.2) uses only the ratio of the probabilities
p(φGDT (x′)|Σk) and p(φGDT (x)|Σk). Hence, constant factors such as normalization are
canceled out and do not play any role. We can thus design this distribution without taking
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normalization into consideration. We propose to distinguish two cases depending on whether
there is at least one background seed and one foreground seed in Σk. The intuition is that
before we know at least one seed in fore- and background, we will use a simple prior to guess
what a good segmentation is. After we found one seed each, we can use them to build better
fore- and background models.

Case 1: Σk
+ = ∅ or Σk

− = ∅ This case occurs during the first questions, corresponds to the
absence of seeds for at least one of the two labels. We define the segmentation probability in
that case as

p(s|Σk) ∝ 1
1 + V ar({I(p),p ∈ s−1(1)}) , (11.3)

where V ar({I(p),p ∈ s−1(1)}) denotes the intensity variance inside the segmentation s. This
variance is averaged over all color channels and intuitively encourages segmentations which
delineate homogeneous regions as foreground. This is a naive model that will be replaced by
a better approximation once at lease one seed for each, fore- and background is known.

Case 2: Σk
+ 6= ∅ and Σk

− 6= ∅ We can now use the GDT segmentation algorithm to build a more
accurate model of the visual properties of the background and foreground regions. Intensity
histograms are a good proxy to model image region properties and have been used extensively
in active contour methods for segmentation. We compute the two GDT segmentations using
the known seeds on each color channel and compute background and foreground intensity
histogramsHk

− andHk
+ aggregated over the color channels. Each intensity value is weighted by

its inverse geodesic distance to model that the confidence decreases with increasing geodesic
distance to the seeds. A new segmentation can then be scored by computing the similarity
between the background and foreground histograms of s denoted H−(s) and H+(s) and the
current estimates Hk

− and Hk
+ via a chi-squared distance:

p(s|Σk) ∝ 1
1 + 1

2
∑
δ∈{−,+} χ(Hk

δ , Hδ(s))
. (11.4)

Proposal Distribution

A set of parameters x = (c, β,Σ+,Σ−) ∈ X is the input to the GDT segmentation algorithm.
This parametrization of the state space X gives a more natural way to move from one state to
another and facilitates the design of the proposal distribution q(.|Σk, x). We maintain two sets
of seeds Σ+ and Σ− which contain both the already known, reliable seeds Σk+ and Σk− (fixed
seeds) and a new set of seeds created by the MCMC process which we call mobile seeds. We
use five types of moves to traverse the Markov chain from a given state x to a new state x′:

1. Changing image channel: The image channel c is redrawn uniformly.

2. Changing β: The smoothing parameter β is redrawn uniformly.

3. Adding a seed: A mobile seed is added at a random (non seed) location and randomly
added to Σ+ or Σ−.
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Figure 11.2. Over-segmentation of the image for the question selection step. The over-segmentation is obtained
by intersecting all sk

i , 1 ≤ i ≤ N . The most uncertain region R∗
j is shown in green and the question pixel

pk (shown in orange) is chosen as the most interior point of R∗
j .

4. Removing a seed: A mobile seed is removed from either Σ+ or Σ− (if this does not leave
this set empty).

5. Moving a seed: A mobile seed is moved spatially to a (non seed) pixel according to a
normal distribution.

We draw moves again with uniform probability. This completes the definition of the proposal
distribution q(.|Σk, x).

INTUITION: NUMBER OF SEEDS

To avoid that the number of mobile seeds explodes, we balance the probabilities of
picking the moves 3. and 4. such that forward and backward moves are equally likely.
This means that once a seed was added, removing seeds becomes more likely and vice
versa.

11.1.3 Question Selection

We draw N segmentations ski , 1 ≤ i ≤ N to approximate the probability distribution p(s|Σk)
after k questions have been asked and answered (k ≥ 0) using the method previously described
in Section 11.1.2. Given these N samples, we have to select on the optimal question (location
p) for the oracle.

As shown in Figure 11.2, we first perform an over-segmentation of the image by intersecting
all sampled segmentations ski . This partitions the image into regions (Rj)1≤j≤ρ based on the
samples ski .
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INTUITION: OVER-SEGMENTATION

The intuition behind the over-segmentation is as follows. Since the segmentation
samples ski are the only available information, the information carried by each pixel is
constant over an individual segment. Thus we can simplify the problem by reasoning
about region Rj instead of pixels.

A region Rj belongs to the object of interest with probability p(Rj ⊂ ŝ), which can be
approximated from the samples as

p(Rj ⊂ ŝ) = 1∑N
i=1 p(ski |Σk)

∑
i|Rj∈Si

p(ski |Σk). (11.5)

The most valuable region is the one for which this probability is the closest to 0.5, as it is the
most uncertain between fore- and background. However, we weigh each segment by its size
to account for the fact that – as previously mentioned – each pixel will equally benefit from
the information carried by the segment it belongs to. To find the most informative region,
we select the segment R∗j that maximizes |Rj |(1− |1− 2p(Rj ⊂ ŝ)|). Now, we could choose
any location pk ∈ R∗j to define the selected question Q(pk) as in theory they carry equal
information. In practice, we choose for pk the most interior point of R∗j (Fig. 11.2), which is
usually the centroid of the region. Special care has to be taken when the centroid does not
fall within the segment. The closest point to the centroid is chosen in these cases instead.
Interestingly, in our experiments we found that this results in questions that are in general
easier to answer visually as the most interior point typically lies far from the edges of objects
and the image boundaries.

11.2 Experiments

Since we can replace the actual human with an oracle that has access to the ground truth
segmentation, we can perform extensive experiments quickly and fully automatic. In the
following section we will demonstrate the effectiveness and robustness of the approach.

11.2.1 Experimental Setup

All hyper parameters are constant for all experiments. We represent images in the CIELab
color space and the standard deviation of the Gaussian smoothing applied during the MCMC
process (Section 11.1.2) is set to β = 6 pixels. We burn in the Markov chain for 1000 steps to
gain independence from the starting state sk0 . Between each sample, we move 250 steps along
the Markov chain to ensure a strong decorrelation between two consecutive samples. For each
question we sample N = 32 Segmentations which was empirically found to be sufficient to
produce enough variety between the segmentations such that the over-segmentation does
not become too fine grained without exceeding a limit of one second between two questions.
Despite the linear-time approximation, the main bottleneck remain the computation of the
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Figure 11.3. Representative images from the datasets. From left to right: (1) Berkeley Segmentation Dataset, (2)
Stanford Background Dataset, (3) IBSR Brain Dataset. Note the diversity in terms of visual content
(natural scenes (1,2) vs medical data (3)) and labels (unsupervised parsing (1) vs semantic labeling
(2,3)).

GDT, since it is required at every MCMC step. The total complexity of our algorithm is
O(NKwh). For further performance, we run four Markov chain in separate threads in parallel
and each chain using down-sampled images between the segmentations samples. The drawn
segmentations steps are however computed on the full image to ensure fine details in the
segmentation. In our experiments, we evaluated for up to K = 30 questions. A great
advantage of choosing our particular question type is that the human user can be simulated
by the ground truth segmentation, which allows an extensive evaluation over a large set of
images.

11.2.2 Results

Since foreground background segmentation is a two class problem, we can use the Sørenson
index or Dice score [172], which measures the overlap between the segmentation and
the ground truth, to measure the quality of a segmentation. Since the twenty questions
segmentation task is novel in its self, we compare our method against two intuitive and strong
baselines. The first evaluates the impact of the proposed question selection approach, by
choosing each question location randomly. Our second baseline is an extension of the first.
During questioning, when seeds have been found inside and outside the hidden segmentation,
we use our GDT-based segmentation to compute a pixelwise confidence to select the question
within the area where the label uncertainty is maximal. In other words, we ask questions
on the border between inside and outside which can be seen as an iterative refinement of
the segmentation border. To demonstrate generalization, we evaluate using three different
datasets. In the following, we will introduce all three datasets in detail.

Berkeley Segmentation Dataset 300 The Berkeley Segmentation Dataset 300 [125] consists
of 300 natural images. Several ground truth human annotations are available for each image
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Figure 11.4. Evolution of the median Dice scores with the number of questions. The performance is shown on
the three datasets: Berkeley Segmentation Dataset 300 [125], Stanford Background Dataset [51] and
IBSR Brain Dataset. We also show, on the Stanford background dataset, the individual performance
for each class label. The small amount of mountain labels in the dataset explains the noise on the
corresponding curve.

Figure 11.5. Relationship between size of the hidden segmentation and performance. Shown is a scatter plot of
relative object size (x-axis) vs dice score (y-axis) after 20 questions. Large areas are easier to guess than
small ones.
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defining a parsing of the image into several regions. This nicely illustrates the complexity of
the task, since the segmentations differ from one annotator to another. T This shows that the
definition of what is an object is highly user dependent and thus must heavily rely on user
feedback. On average, there are 20.3 regions per image each of which will be selected as
ground truth during the automatic evaluation. The graph in Figure 11.4 displays the median
Dice score over all runs with all possible segments when the number of allowed questions
increases, for both our method and the aforementioned baselines. The curves show low
performance for the first 6-7 questions. This corresponds to the initial stage where no reliable
foreground seed has been found yet. During that stage the sampled segmentations are very
noisy since they are only based on the mobile seeds from the Markov chain. The median
number of questions required to find a reliable seed is approximately 7. The dataset contains
20 non-overlapping regions per image in average. Hence, even if this pool of 20 possible
ground truth segmentations was known in advance (which it is not), a naive algorithm would
still take 10 questions to find a foreground seed. This demonstrates that our question selection
procedure identifies regions more efficiently and is able to utilize the information given by
previous answers well.

Stanford Background Dataset Our second dataset is the Stanford Background Dataset [51]
– a diverse collection of 715 natural images sampled from different other datasets. The
images have been labeled into regions of eight different semantic categories: sky, road, grass,
mountain, water, tree, building and foreground object. We chose this dataset as this is very
different to the Berkeley Segmentation Dataset where images were parsed into arbitrary
user-defined regions. Figure 11.4 shows quantitative results over the whole dataset but also
separately per class. Here we notice that homogeneous and larger regions such as road
are easier to find than complicated foreground objects. Figure 11.5 shows the relationship
between Dice score after 20 questions and size of the target segmentation and further links
size to ease of discovery. This point is discussed in more detail in the discussion in Section
11.3.

IBSR MR Brain Data Finally, to assess the generality of our method, we evaluate it on the
medical IBSR MR brain dataset. It is composed of 18 magnetic resonance brain scans labeled
pixel-wise with 4 different brain structures. We decomposed the scans into 2D slices to have a
larger number of runs for our evaluation. (Our later extension to 3D volumes can be found in
[33]) At http://www.cma.mgh.harvard.edu/ibsr/ the data and their manual segmentations
are provided by the Center for Morphometric Analysis at Massachusetts General Hospital.
Typically, labeling brain structures is a very complex task and requires a high expertise. Again,
Figure 11.4 contains the results of our method. Due to the difficulty of the task, the absolute
performance is lower than on the two other datasets which also have had a richer visual
content and might be more suited for our prior and color histogram model. However, still a
significant improvement after 20 questions can be achieved.

Comparison with geodesic object proposals Finally, we compare our MCMC-based sampling
of segmentations described in Sec. 11.1.2 with – at the time – recent geodesic object proposals
(GOP) introduced by Krähenbühl and Koltun [93], whose goal is to suggest possible object
regions in an image. We use the available (pre-trained) code for GOP, and for each image
sample both, N object proposals with GOP and N segmentations with our sampling method.
N is automatically inferred by the GOP algorithm which we use then as the target during
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Figure 11.6. Comparison between our MCMC-based proposals and geodesic object proposals. The heat maps
correspond to the frequency of occurrence of each pixel in the set of sampled segmentations, for the
geodesic object proposal method [93] (middle) and our MCMC sampling scheme (right). While the
former focuses more specifically on some areas, ours explores more the segmentation space.

ABO score Stanford Brain

ours 0.596 0.449

GOP [93] 0.660 0.431

Table 11.1. Comparing ABO scores (as in [93] sec. 6). We used the available MATLAB code for the Geodesic Object
Proposals (GOP) and generated an equal amount of segmentations by sampling from our Markov chain.

sampling in our method. We report the Jaccard index of the sample matching the ground truth
best (ABO score [93]) in Table 11.1. GOP have an advantage on the Stanford Background
Dataset, as their seed placement technique is learned precisely on outdoor scenes. Since
our method does not rely on any offline training step, it does not make assumption on the
image content. This becomes apparent on brain images which illustrates the flexibility of
our framework. In Figure 11.6 we demonstrate another interesting difference between the
proposed framework and GOP. The figure shows a heatmap of regions that a generated by
each approach. As GOP is learned to predict objects its segmentations are more redundant
than ours, which is a good property to propose the likeliest object but suits less the context of
an interactive guessing scenario where the user might not want to segment a specific object.
Additionally, segmentations from GOP are constrained to a grid of super-pixels and thus cannot
produce any possible segmentation from S. Our method however runs directly at pixel level
and therefore can generate any possible segmentation.

Inaccurate Answers In the theoretical derivation, we assumed the answers of the oracle to
be always correct. However, sometimes a user can be confused, especially when a question is
posed directly at an object boundary. To explore the robustness to inaccurate answers, we let
the oracle answer randomly (50% yes – 50% no) when a question is posed within 3 pixels
of the border of the desired object. Over the whole dataset this happens about 20% of the
time, mainly on the later questions when the rough outline is known and the questions tend to
refine object boundaries. On average, 1.2 additional questions are needed to achieve the same
Dice score as with perfect answers. Hence, the proposed method is reasonably robust to wrong
answers but needs more questions. This is intuitively clear, as with uncertainty more questions
are needed to transfer the same amount of information from the oracle to the algorithm.
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Figure 11.7. Qualitative results. Examples of oracle segmentation and the corresponding segmentation guess after
20 questions. From left to right: Berkeley Segmentation Dataset, Stanford Background Dataset, IBSR
Brain Dataset.

Figure 11.8. Evolution of the segmentation belief with the number of answers collected. a) shows the original
image and the segmentation chosen by the oracle. Below, f) shows the final segmentation proposed
by the computer after 30 questions. The images on the right show the evolution of the segmentation
belief with the number of seeds collected (b: 0, c: 10, d: 20, e: 30). Both the intersection of all sampled
segmentations (i.e. the over-segmentation described in 11.1.3 and shown in Fig. 11.2) and a heat map
of the pixel likelihood are shown, respectively on the top and bottom row. The heat maps are generated
by computing, for each pixel, the proportion of sampled segmentations that contained it (similarly to
Eq. 11.5). The positive (resp. negative) seeds collected from the answers are shown in green (resp.
orange). Note how the questions are progressively asked towards the left where the uncertainty is the
highest, so that the whole series of buildings can be eventually segmented.
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Dataset Method 10Q 20Q 30Q

Berkeley Random 30.9 / 19.0 41.7 / 43.7 48.9 / 56.2

Uncertainty 32.5 / 17.5 46.9 / 55.0 55.9 / 70.3

Ours 34.7 / 23.8 48.8 / 62.0 56.1 / 73.2

Stanford Random 49.8 / 56.5 60.2 / 69.8 65.6 / 74.7

Uncertainty 50.6 / 57.6 61.9 / 71.4 67.9 / 77.7

Ours 52.6 / 63.9 63.9 / 75.8 67.9 / 79.8

IBSR Random 43.1 / 47.8 52.0 / 57.6 58.1 / 63.6

Uncertainty 41.7 / 45.8 46.2 / 50.7 49.2 / 53.3

Ours 51.5 / 53.7 58.4 / 60.1 62.9 / 64.7

Table 11.2. Quantitative Results. Mean and median Dice score after 10, 20 and 30 questions on the three datasets
for our method and the two baselines described in Sec. 11.2.2

11.3 Discussion

Figure 11.8 shows a typical run of the proposed game. The oracle thinks of a desired, hidden
segmentation – in this case the row of buildings in the background. It is a challenging target
for a (non CNN) segmentation algorithm due to the visual complexity of its structure coming
fact that it corresponds to a high-level semantic. Our method generates a first set of possible
segmentations as seen in b) and g). Since no seeds are available yet, uniform regions like
sky or pavement are favored at this stage and are sampled more often than others as seen in
g). As questions are posed and answers from the oracle are progressively collected, we see
that the space of sampled segmentations adapts to the target. Towards the end, the algorithm
questions the oracle at boundary locations expanding step by step the initial guess towards
the left. A good estimate of the oracle segmentation after 30 questions is seen in f).

Overall, our results suggest that our method has more difficulties to segment small objects.
In particular, finding a first foreground seed inside a small object is very challenging. It is
intuitive that it takes longer to find small areas than big ones – even with today’s CNNs small
objects are much more difficult than large ones. Additionally, the nature of the questions we
ask is not optimal for finding small regions.

With this we conclude the chapter on the twenty question game but will later come back to it,
equipped with the power of deep learning, to understand the improvements we can make by
training a CNN for segmentation on a large dataset to learn a prior.
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12Guiding a Network

In the previous section we have seen how human interaction can be used to segment an image.
Since the original conception of that twenty questions idea in 2014, a lot has changed in the
computer vision community. We will now explore how we can integrate human interaction to
neural networks that dominate almost all vision benchmarks. Due to the amount of data that
is used to train a deep network, we adapt the idea of simulating a human by using the ground
truth. That allows us to train fast and without additional annotation effort. The work from
this section has been published in [155].

12.1 Interacting With A Deep Network

Convolutional neural networks (CNNs) play a prominent role in a large amount of computer
vision tasks, such as image classification, semantic segmentation, object detection, depth
prediction and human pose estimation. The vast majority of the techniques proposed for these
applications train specific network architectures once, then deploy them as static components
inside an algorithm. However, it is unlikely that any static network will be perfect at the task
it was designed for. Nevertheless, real world applications could often benefit if the predictions
of the CNN were to adapt to feedback or specifications provided by a human user, this holding
the potential to improve the network’s performance.

We can train a CNN to segment an image and deploy it in a photo editing software. However,
it is clear that sometimes the network will fail to produce a perfect segmentation, as it is
almost impossible to anticipate every possible scenario that the application will be used in.

CNNCNN

CNN
tail

CNN
head

guide

RNN
prediction

improved prediction ground truth

input

input

user

car

road

clouds

tree

sky
Hint: 

  The sky is not  
visible in this 

image  

Hint: 
  The sky is not  
visible in this 

image  

Figure 12.1. Overview. We introduce a system that is able to refine predictions of a CNN by injecting a guiding block
into the network. The guiding can be performed using natural language through an RNN to process
the text. In this example, the original network had difficulties to differentiate between the sky and the
cloud classes. The user hints that there is no sky and the prediction is updated. The CNN remains fixed
and does not need additional training.
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The user would need to manually repair the segmentation output or the developer could
add a post-processing algorithm based on some heuristics. A simpler and more effective way
would be to allow the user to interact directly with the network, by for example, pointing
out that “the child on the right of the image is in the background, not in the foreground”. The
user who was previously presented with a fixed, black-box prediction would now be able
to influence and alter the outcome according to their needs. This allows a network and the
user to collaborate by using language to tackle a problem. In high-risk domains such as
computer-assisted diagnosis and medical image analysis, where fully automated segmentation
is not always robust, the possibility of interaction is particularly useful. It is also useful to
ease and speed up labor-intensive and repetitive labeling tasks, such as those needed to create
datasets for semantic segmentation.

We propose a novel approach for network interaction focused on improving the performance
of a pre-trained CNN at test time. A guiding mechanism translates the user’s feedback into
changes in the internal activations of the network, thus modulating the inference process.
Interaction can take different forms, and common in literature have been scribbles, click-based
or contour-based inputs, or conditioning on prior information. Here, we focus on a language-
based approach, as it is the most natural way of interacting. However, our guiding system is
not specific to language input and can be used with any kind of hint or modality. Language
based guiding enables interaction with a trained model in the form of a dialog. The user
receives the initial (black-box) prediction and then has the option to input a text query that
updates the network’s prediction.

We showcase this interactive module on the task of semantic image segmentation. Our
approach does not depend on any explicit annotation for text-region correspondences, but
results indicate that the module can successfully transfer semantic information from the
natural language domain to the visual domain, so that the network eventually produces more
accurate segmentations. Even without explicit annotation for text-region correspondences, our
experiments show that the guiding module can successfully transfer semantic information from
the natural language domain to the visual domain, resulting in a more accurate segmentation.
This can also be seen as a translation task, where the guide learns to translate human hints to
network activations of the fixed network.

The intersection of vision ad language is currently heavily explored. However, most of the
related literature outputs text, i.e. either an answer or an image caption. Our system produces
updated segmentation masks in our experiments, in general the output of the interactive CNN
lies in the same domain as the initial one.

INTUITION: THE GUIDE

We are now thinking of the guide a universal module to expose trainable control-knobs
in an network. This makes the idea of guiding very powerful, as many architectures
could benefit from additional data to improve predictions. One can also think of
two different modalities or tasks guiding each other. This could potentially mitigate
the typical problem of a multi-task setting where one task loses performance due to
balancing of the loss terms.
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12.2 Guiding a CNN

He, we detail how our interaction module – the guide – is injected into a fixed CNN. Figure
12.1 shows a high level overview of the system.

We will first specify a nomenclature to be able to precisely refer to the different components
of the system. We insert a module into the CNN, which we call the guide. This guide uses a
guiding block to interact with the guided CNN. The guiding block adjusts the activation map of
the CNN to improve the prediction for the current input. The injection of the guide splits the
guided CNN into two parts: the head, that processes the input upto the guiding block, and the
tail, from guiding block to the final prediction. The guide uses a hint – typically from a human
user – to modify the guided network.

The decomposition into a head function h and a tail function t can be used to specify the
output prediction ỹ from input x as

t(h(x)) = ỹ . (12.1)

Where the original network is split is chosen manually. A reasonable choice is featuremap with
the lowest dimensional encoding, as this layer contains high-level information in a compact
representation, ideal for manipulation by the guide.

HINT: GUIDING LOCATION

The intuition is that guiding late towards the output of the network produces more
local changes, while early guiding is able to make bigger changes. It easily possible to
guide the network in multiple layers, in the following however, we will assume one
guiding location not to clutter the notation.

We validate different choices of splits in Section 12.5.

12.3 Guiding Block

The integral piece of this approach is the guiding block which enables the guide to modify
activations inside the guided network. Element-wise control is volatile to over-fitting, since
activation maps usually consist of a large number of elements (e.g. 32×32×1024 ≈ 1 million).
Our guiding block avoids learning a full control tensor by making use of the following intuition.
A CNN typically encodes specific features in each channel/neuron of a given layer. Thus,
strengthening or dampening the activations per channel, can be enough to emphasize or
suppress aspects of the image representation and thus adapt the prediction in a semantically
meaningful way.
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A feature representation h(x) = A ∈ RH×W×C with width W , height H and number of
channels C is predicted by the head of the network. To adjust that representation per channel,
we can multiply it with a guiding vector γ(s) ∈ RC and a bias γ(b) ∈ RC ,

A′c = (1 + γ(s)
c )Ac + γ(b)

c , (12.2)

where c ∈ [1, . . . , C] selects channels of the feature tensor A and the corresponding elements
of the guiding vector γ = (γ(s), γ(b)).

HINT: CONNECTION TO RESNETS

When (12.2) is expanded

A′c = Ac + (γ(s)
c Ac + γ(b)

c ), (12.3)

one can interpret it as the guide predicting a residual update (similar to ResNets [59]).

The formulation is structured such that for γ = 0, our guiding block reproduces the input
feature map or in other words, does not guide the network. The influence factor γ plays the
role of a filter on the feature maps. For example, if for a specific channel c the influence would
be γsc = −1, all information in that channel would be suppressed and set to 0. Conversely, for
γsc > 0, the activation strength of that feature channel is increased.

INTUITION: LINEAR GUIDE

The fact that a linear change in activations works well can be linked to sever other
observations of neural networks. Batch normalization [71] is linear in the activations
and helps to train very deep architectures. Another interesting link are cross stich
networks [131]. This idea of adapting the activations has also been used in the
conditioning layer in [139].

Per-channel updates and feature re-weighting via γ modifies the whole feature map with the
same weight. To be able to handle hints with location information, a spatial component needs
to be introduced, as it is impossible for this module to encourage spatially localized changes
in each feature map. To overcome this limitation, we extend the same idea to the spatial
dimensions of the feature map and thus guide each direction (width, height, and channels)
with a linear component. Two additional guiding vectors α ∈ RH and β ∈ RW will be used to
modify the feature map A with spatial attention.

A′h,w,c = (1 + αh + βw + γ(s)
c )Ah,w,c + γbc , (12.4)

where we will index A with h, w and c to uniquely identify a single element Ah,w,c ∈ R of
A.
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Putting it all together, the guided network now computes the following function.

y∗ = t
[
(1⊕ α⊕ β ⊕ γ(s))� h(x)⊕ γ(b)

]
, (12.5)

where the vectors α, β, γ are tiled along their appropriate dimensions with ⊕ and the
Hadamard product is denoted with �. Spatial influence is controlled by α and β, while and γ
controls semantic meaning. Although we multiplying the components α, β and γ is possible
we found its gradients numerically unstable.

Using α, β and γ instead of element-wise control, reduces the number of parameters from
H ×W × C to H +W + C. Which is 32 + 32 + 1024 = 1088 – much less parameters than the
previous example and thus less prone to over-fitting

HINT: FULLY CONVOLUTIONAL ARCHITECTURES

Since fully convolutional architectures are a common choice for image prediction tasks
such as semantic segmentation, we linearly interpolation of α and β when the feature
map spatial resolution varies. This makes α and β independent of H and W and allows
us to select the granularity of the spatial resolution by changing the dimensionality of α
and β to match the spatial complexity of the hints the guide follows.

We now show the guide in practice for online interaction with neural networks via user
feedback.

12.4 Learning to Guide with Text

In the example of user interaction for semantic segmentation hints can be provided in the
form of clicks that carry information about the class of the chosen pixels. However, here we
explore a more natural way of human-machine interaction. The user is allowed to type hints
in natural language to the network. The guiding mechanism will be trained to update its
parameters based on the user’s hint. To the best of our knowledge, this idea of interacting
with a pre-trained network is novel and has not been studied before.

12.4.1 Processing Queries

As usual for processing text with a neural network, we use a recurrent neural network (RNN).
The raw text is encoded using a pre-trained word embedding matrix [138], to acquire a
fixed-length embedding vector per word. Gated Recurrent Unit (GRU) [24, 26] is then fed
with the embedded word sequence.

HINT: WORD EMBEDDING

The word embedding is frozen and not further trained together with our guiding
module. This gives us the hope that the model can later deal with words outside
the training set, if they have similar embeddings as a known word. In some further
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Figure 12.2. Query Generator. We illustrate the process to automatically generate queries to substitute the user
during training.

experiments, where we used a similar architecture to generate text, it was crucial to
actually train the embedding together with the GRU. Otherwise the network was not
learning much.

The GRU predicts the guiding parameters α, β and γ from its final state using a simple linear
transform. During training the following steps are repeated for every sample.

1. Generate an initial prediction with the fixed, unguided CNN.

2. Prediction and ground truth are fed into our hint generator (next paragraph) that creates
a query (e.g. “the sky is not visible in this image”).

3. The hint is tokenized and embedded into the GLoVe vector space.

4. The GRU reads the hint and predicts α, β and γ.

5. Using (12.5) we update the activations of the guided feature map which changes the
original prediction.

6. The standard loss for the given task (pixel-wise cross entropy loss for semantic segmen-
tation) is re-weighted giving positive weight (1) to the class(es) mentioned in the query
and negative weight (-1) to all other pixels. This encourages changes that coincide with
the query.
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The above steps are repeated batch-wise as usual during training. However, we only update
the parameters of the GRU (and the linear mapping to the guiding parameters), the CNN
remains unchanged.

12.4.2 Generating Queries

We again simulate the human using the ground truth segmentation annotation. This concept
has two benefits. Naturally, expensive annotation of human interaction can be avoided.
Additionally, dynamic interactions can also be modeled whereas this would require two
additional labeling sessions with humans. We automatically generate textual expressions from
visual categories. We use standard segmentation datasets and do not require visual/textual
annotations, such as captions [114], referring expressions [70, 81] and region-description
correspondences [124]. As our method is built to correct prediction errors on the fly, we
synthesize dynamic natural language queries by comparing the initial prediction and the
ground truth segmentation.

To automatically generate queries we use a combination of functionality, semantic categories
and spatial layouts (see Figure 12.2). The semantic categories are defined by the set of classes
in the prediction and ground truth. They encompass operations such as discovering missing
classes, suppressing noisy outliers or replacing wrongly predicted pixels with another class. In
our experiments we use two complementary operations: find to hint classes missing in the
prediction and remove to specify wrongly predicted labels.

Queries are built by their function and two placeholders. Usually for each prediction several
combinations of functions and placeholders are possible. Whenever there are multiple options,
we select the entries randomly at each training step from the set of plausible combinations.
For the spatial component, we divide prediction and groundtruth into a N × N grid. We
search for all the erroneous classes, either missing or mistaken in each grid cell. Tiny regions
comprised of only several pixels are thereby ignored.

Gathering all possible classes, we randomly pick one and use its semantic name for the textual
expression (e.g. “find the person”). Using the cells we then track its position and define different
spatial attention areas which are then converted into text phrases such as “on the top left”, “on
the bottom”, “in the middle”. With this method we can generate textual phrases automatically
and dynamically.

INTUITION: QUERY GENERATOR

The query generator is the most fragile part of the proposed method. During the
conception of this method, most time was spent fine-tuning its parts so that it generates
reasonable and useful hints. There are many small corner cases where a naive generator
would produce a hint that a human would never utter. Because of this we are currently
working on a learned hint generator, which however comes with its own downsides
such as drift in semantic meaning of the language when all parts are learned.

12.4 Learning to Guide with Text 113



Figure 12.3. Qualitative Results. We show qualitative results using find hints for missing classes. In the first
example, we resolve a confusion between ground and playing field. In the second example, we show
that the often occurring spurious predictions can also be handled. The third column shows that the
network get the hint to find the banner, although it bleeds slightly into the building below. In the fourth
and the last column, classes that are heavily occluded can be discovered too after guiding. The black
ground truth label stands for unlabeled thus any prediction is allowed there.

12.5 Experiments

The performance of state-of-the-art CNNs on the typical (dated) benchmarks such as PascalVOC
is close to perfect, only suffering from small errors such as boundary imperfections or tiny
objects. Bringing a human into the loop to request improvements is not meaningful for almost
perfect initial performance. We thus evaluate our guiding idea under a much more challenging
setting, where the performance of a state-of-the-art model is far from perfect and interaction
with a user is actually desired.

COCO-Stuff [17] is a subset of 10k images of the 2014 MS Common Objects in Context
(COCO) dataset [114], further split into 9k training and 1k testing images. The images are
annotated per pixel-level with 91 “things” and 91 “stuff” classes. The dataset is limited in
number of images but rich in categorical context, rendering it very challenging for current
data hungry methods.

12.5.1 Implementation Details

To keep a fixed pre-trained segmentation CNN we split the training set into two halves and
train a DeepLab model [21] with a ResNet-101 [59] as back-end on the first half which scores
only 30.5% mIoU (which is comparable to the state of the are even when training on only half
of the data). The weights of this CNN are now fixed for all further experiments. Now only the
guiding mechanism is trained on the remaining and unseen 4,500 images. As explained above,
the guide is trained to understand text queries via a pre-trained, 50-dimensional GloVe word
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Figure 12.4. Qualitative Results. We show qualitative results using remove hints for correcting noisy or wrongly
predicted classes. The last row shows a failure case, where the surrounding pixels of the queried class
are also wrong, therefore in the updated prediction the noise cannot be replaced by the correct class.

12.5 Experiments 115



Figure 12.5. Visualizing the guiding vectors. We show qualitative results and visualize the heatmaps that the
corresponding guiding vectors produce. We observe that the guide has learned to attend to relevant
regions, despite not seeing the image context. The last two rows show failure cases, in which the guide’s
influence is still not enough to alter the output.
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embedding matrix and an RNN to produce relevant guiding parameters. The GRU contains
1024 hidden units. α, β and γ are predicted with a linear layer from the last hidden state of
the GRU.

There are two ways of injecting the guide. The first one alters the CNN’s activations directly,
therefore the guiding vector size depends on the CNN layer that is being guided. The second
wraps the predicted weights inside a trained, additional residual block with 256 channels. The
input dimensions are 320× 320× 3. To further vary the queries, we randomly select from a set
of variations with similar meaning such as “the . . . is missing”, or “there is a . . . in the image”.
The grid size N for automatic query generation is set to 3, resulting in 9 cells belonging to the
locations (and their combinations) top, bottom, left, right, middle. To mitigate this randomness
during evaluation, we report averages over five runs per image.

To summarize the upcoming results, our best guided model improves the overall score from
30.5% to 34.4% with a single hint and to 35.6% with two consecutive hints. As detailed
above, training the original CNN on the full train set is only marginally better than on the
half, reaching 30.8% mIoU instead of 30.5%. We show qualitative CNN predictions before
and after guiding in Figure 12.3. In our experiments we observe that our method resolves
typical problems with the initial predictions, such as confusions between classes (columns 1,
2), partially missing objects (column 3, 4) and only partially visible objects in the background
(column 6). In Figure 12.4 we show how guiding helps to remove noisy classes from the
model’s prediction. In Figure 12.5 we also visualize the attention maps that the guiding
vectors produce conditioned on the user’s hint. We observe that the guide focuses on relevant
regions of the input image, despite not seeing the image context as input.

Since the conditioning layer of [139] is closely related (although for a different task) we
first compare our guiding block in the following section. Then, we evaluate the influence of
the guiding location, by inserting the guide at different layers of the CNN. Hint complexity
is evaluated by successively increasing the diversity of the queries. Finally, we show that
repeated guiding further improves the result without the need for additional training. To
understand failure cases and the inner mechanism of the guiding block we visualize heat maps
and embeddings of the guiding vectors in the last part of this evaluation.

12.5.2 Guiding Block Evaluation

In this section, we investigate four variants of the guiding block. The raw segmentation
performance is shown in Table 12.1. [139] wraps a res-block around their FiLM layer, thus we
compare to the FiLM layer with and without res-block. The main difference (apart from [139]
training the whole network) is that our guiding block also contains the guiding components
α and β, that translate spatial information from the text to localized attention in the feature
space.

We find that our spatial attention helps performance, while an additional res-block does not
change the score. This indicates that the guiding layer alone has enough capacity to change
the activations and does not need a residual block to perform well.
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guiding module mIoU mIoU

w/ res-blk w/o res-blk

FiLM [139] 31.3 31.3

ours 32.2 32.3

Table 12.1. Guiding Block Variants. We evaluate mIoU performance when guiding res4a using find queries, in
comparison to the conditioning layer of [139].

res3a res4a res5a res5c

mIoU 31.2 32.3 34.3 34.2

Table 12.2. Location of the guiding block. We evaluate mIoU performance when guiding different layers inside
the CNN using find queries. Please note that there are 22 res-blocks between res4a and res5a which
explains the large performance difference.

12.5.3 Guiding Location

As stated before, the guiding block is very flexible and can be injected into the network at any
location. Our intuition is that a location that is very late in the decoder - close to the prediction
- often results in small, local changes of the output. Earlier guiding results in more global
updates that affect a bigger region of the prediction and occasionally multiple classes. This
corresponds to the understanding that higher level concepts are learned deeper in the encoder.
When the guide is placed too early in the encoder the feature maps are too simple (edges
and object parts) to guide appropriately. Quantitative results supporting this observation are
shown in Table 12.2.

12.5.4 Complexity of Hints

We analyze how the complexity of hints affects the performance improvements achieved by
the guide. Here, we differentiate between two hints with different functionality: find and
remove. A find hint indicates that the network had missed a class: "There is a person in the top
right". We use remove when the network had predicted a class that is not in the ground truth
or in an incorrect location.

Table 12.3 summarizes the performance for the different hint types. The first observation
is that remove generally yields a lower performance gain than find. Inherently, remove is
more ambiguous than find. When we tell the network to remove a class, it still does not
know what should be in its place instead. However, find directly delivers the right class to
the network. Naturally, training with both queries (find or remove) simultaneously, achieves
average performance between the two types as the query is selected randomly each time.
This also indicates that the guide has enough capacity to handle both, find and remove,
simultaneously.
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guiding loc.

hint complexity res4a (res) res4a res5a

remove 30.6 30.9 30.9

find or rmv 30.8 31.0 33.2

find 32.2 32.3 34.3

Table 12.3. Complexity of Hints. We show performance of the method using two different types of hints.

# hints 0 1 2 3 4

mIoU 30.5 34.4 35.6 33.9 32.0

Table 12.4. Guiding multiple times. We guide iteratively with multiple hints. After three hints performance
decreases due to the guide over-amplifying certain features, causing noise in the predictions.

12.5.5 Guiding Multiple Times

Since the guide is trained to modify an activation map in such a way that the tail of the CNN
can still use it, it is possible to guide this activation map serially, with a second or third hint
without additional training. The key insight is that the guiding block will still result in a valid
feature map that can then be guided again. The results for this experiment can be seen in
Table 12.4 and Figure 12.6. We observe a performance increase until two hints. With three or
more the guide seems to over-amplify some channels, which causes noise in the predictions
which reduces the score. Nonetheless, even with four hints we observe a good gain over the
original network. We expect that training with multiple hints would make this procedure
mode table although increase training time as several guidings would need to be done per
sample.

12.6 Insights into the Model

In this section we will look into the guide and perform two experiments to shed light onto its
inner workings.

12.6.1 Failure Cases

First we will analyze typical failure cases. If the initial prediction was particularly bad, the
guide has difficulties to repair the mistakes because of two reasons. On one hand, fully wrong
predictions indicate that also the guided feature map will be very noise and thus unable to
be guided properly. On the other hand, our automatic query generation module will have
problems selecting a useful hit as there are many possibilities, but each one only improving
a small part of the prediction. In Figure 12.7 we showcase one of these scenarios. The hint
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Figure 12.6. Guiding Multiple Times. In this experiment we guide an input image multiple times. We can show that
this is possible even when training with only one hint.
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Figure 12.7. Failure case.. Hint: "there is a building in the top" When the initial prediction fails, our method has
difficulties recovering the mistakes. The refinement includes the building only partially and it bleeds
into stone-wall below.

indicates to the network that a building is missing on the top. The guide can recover some
parts of it but not fully and most of the remaining prediction stays faulty. In these and some
more sever cases we can assume that the relevant features necessary for a successful guiding,
cannot be recovered in the guided activation map or are not present at all.

In a second experiment, aimed at understanding how the activation map is influenced by
the guide, in Figure 12.8 we visualize a heatmap for different queries in the same image.
From this visualization we can conclude that the guide understands the hint about the sky (a).
However, when asking for the surfboard in (b), no change reaches the prediction. Without
visualization, we would assume that the query was not understood correctly. However, our
heatmap visualization indicates that the guide does indeed change the right regions of the
image, but apparently not strong enough to overpower the sea label in the center.

We postulate that more precise queries could potentially mitigate this problem. "There is a
surfboard where you predicted sea" would not only let the guide emphasize surfboard but
simultaneously let it know to dampen the sea class.

12.6.2 Semantic Analysis of the Learned γ-vectors

Finally, we perform a last experiment to understand the mapping between text and guiding
vectors. Using simple find queries, we predict a γ vector for each semantic class. We then
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Figure 12.8. Failure Case Visualization. In the first example a) the refined prediction is correct. In b) the heatmap
indicates that the guide activates the right feature maps but it is not enough to change the output.
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Figure 12.9. Visualizing γ. We visualize the learned γ vector for every class using t-SNE. The colors correspond to
the higher level categories which are present in the dataset but not used in training. Best viewed in
digital version.
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use a t-SNE projection of these 256 dimensional vectors together with higher-level semantic
group labels. The color categories in Figure 12.9, that the 182 classes are grouped into,
correspond to these higher level categories. This grouping was never used during training
or testing of the method. The purpose of this experiment is to visualize the intersection of
features learned from the CNN for segmentation and text representation learned by the GRU.
We see semantically similar words cluster, indicating that the joint embedding successfully
correlated text and image features. Visually similar classes such as sports ball, basket ball

and frisbee are grouped.
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13Twenty Deep Questions

With this chapter we close the loop between our recent guiding idea for neural networks and
the twenty questions game proposed earlier. The idea is to use the guiding block in a CNN
and guide it with the answer to the questions. This can be accomplished without the need of
learning a guide, by simply formulating it as an optimization problem.

13.1 Guiding by Backpropagation

We will again visit the task of semantic segmentation, now with a CNN. A guiding block can
be equipped to any network, as it does not modify the feature maps when α = β = γ = 0. In
the following, we consider the case of a user giving feedback to the network and propose an
effective method on how to enable fixed, pre-trained CNNs for interaction at test time.

We place the guiding block between head and tail, and initialize guiding parameters to 0. For
a given input x, we define an energy function to optimize α, β and γ. The questions we ask to
the user are not binary in this case but will be of the from “What class does this pixel have?”.
The accumulated of hints will from a sparse input ŷ associated to a mask m̂, where ŷ and m̂
have the same dimensions as the prediction ỹ and the ground truth y. m̂ is a binary mask that
indicates the locations where a hint (i.e. prior knowledge) was given with one and is zero
everywhere else.

Initially the segmentation CNN was trained with a loss L(t(h(x)), y) – typically softmax cross
entropy. For guiding with the previous answers we now use the same objective, but focus
on the given answers using the mask m̂. Instead of updating the network’s parameters, we
minimize the objective for the guiding parameters

α∗, β∗, γ∗ = argmin
α,β,γ

[m̂� L(y∗, ŷ)] . (13.1)

Everything in this formulation is differentiable, thus we can minimize (13.1) using back-
propagation. The minimization optimizes for the best parameters α∗, β∗, γ∗ according to the
hints and mask. In our experiments we use gradient descent with momentum to minimize
(13.1). Momentum helps to find a suitable minimum after fewer iterations, but in this case
does not affect performance.

As before, modulating the feature map with the guide, results in an overall adjusted predic-
tion.
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#questions 0 1 5 10 15 20

FCN-8s

mIoU 62.6 65.3 73.1 76.9 77.3 81.0

p.accuracy 91.1 91.8 94.1 95.3 96.0 96.3

Table 13.1. Performance after number of questions We guide a pre-trained FCN-8s [117] on PascalVOC 2012 val
set [36] directly, using back-propagation. We report the mean intersection over union (mIoU) score and
pixel accuracy. Every interaction with the user improves the result.

INTUITION: LOCAL MINIMA

The tendency of gradient descent to fall into local optima close to their initialization
is desirable here. We are looking for the smallest possible change in α, β and γ that
brings the guided prediction closer to the hint while avoiding degenerate solutions. For
example such as letting the given hint propagate to predict the whole image as the
single, hinted class.

For further performance, the optimization process can be continued for the next hint by
initializing with the previous state of the guiding parameters. Guiding by back-propagation
is a flexible and interactive technique that does not require further training and can easily
be added to any network. However, there are two caveats: First, the optimization procedure
requires several gradient steps (in our experiments around 200), which make this approach
about 200 times slower than a learned guide. Second, the hints need to be in the same format
and modality as the original loss in order to be able to back-propagate to the guide.

13.2 Evaluation

Since the task is semantic segmentation on the PascalVOC 2012 dataset [36], we use a pre-
trained FCN-8s network [117] and insert a guiding block in the smallest encoding layer. The
choice of the slightly “outdated” FCN-8s architecture was deliberate since we believe that user
interaction is mostly necessary and useful when the performance is not close to optimal.

We set up a user interaction scheme similar to the 20-question game. As stated before, after an
initial prediction, the network is allowed to ask the user for the class of a single pixel and the
guiding layer updates the feature representation using (13.1). We choose the pixel with the
smallest posterior probability difference between the two most confident classes. The intuition
behind this choice is that this pixel has the highest interclass uncertainty and is most likely to
be flipped in a prediction. Again we compute the mean intersection over union (mIoU) after
every question.

In Table 13.1, we list the performance after 0, 1, 5, 10, 15 and 20 questions. Naturally, 0
questions stands for the initial raw performance of FCN-8s without guiding. Over the course
of 20 interactions with the user, a significant improvement of the performance from 62.6%
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to 81.0% is recorded. This is not directly comparable to our original twenty questions result,
since we receive about 4.3 bit (log2(20classes) ≈ 4.3) of information for this task, while
in the 20 questions game 1 bit is communicated. The current top entry on the PascalVOC
leaderboard (DeepLab-v3 [22]) scores 86.9% mIoU, and is trained on much more additional
data. Guiding by back-propagation can be directly incorporated into a pre-trained CNN and
using human interaction boosts a comparably low performance to reach the state of the art
without additional training.
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Part V

Conclusions
In this dissertation, we have presented two general concepts for dealing with ambiguity.
First, multiple hypothesis prediction is a generic framework to learn ambiguous tasks with
very little overhead and without additional annotations. The original MHP idea has already
grown into several applications such as conditional image generation with adversarial neural
networks, multiple action prediction for reinforcement learning, grasp point estimation for
robotic applications and 6 DoF pose estimation of objects. Further, in several current projects
we are exploring the applicability of MHP for trajectory estimation, depth prediction, feature
visualization and visual question answering. We have extended the MHP idea to allow
continuous sampling in the second chapter; we find that additional benefits of modeling
ambiguity based on the output distributions come at the cost of more complex annotations
and numerical stability.

In the final chapter, we show an alternative possibility for resolving ambiguities. We present
a method that enables user–network interaction. By allowing a user into the evaluation
procedure, we can leverage additional information to deal with unclear inputs or erroneous
outputs. We show how user hints can be used to sort out confused predictions retrospectively.

Multiple hypothesis prediction and user interaction can also be well combined as they seem to
have a synergistic effect. We can use the help of the user to resolve one of the main difficulties
of MHP. Per definition, it is not possible to choose which hypothesis is best without auxiliary
information. This is how suggestions from the user can be useful in deciding which hypothesis
fits best.

Comparing MHP with Bayesian methods, such as variational auto-encoders or deep belief net-
works, would be interesting to outline the fundamental differences between these probabilistic
frameworks and the pragmatic MHP approach.

The direction of network guiding can also be useful for learning from the hints provided by
the user. We describe this idea through an example related to home robots. One can think
of a scenario in which a robot, trained on generic indoor data is brought home. In this new
environment, it would need to adapt to the specific objects in the household. “This is my
broom.”, “My brother likes to sit on this side of the table, so please put his cup there.” and other



such expressions could be provided to calibrate the pre-trained models of the robot to the
specific circumstances of the new environment.

Finally, over the last years we have also become interested in feature visualization and the
explainability of predictions. This topic is also coupled to the direction of interacting with
neural networks. Naturally, for a meaningful interaction each partner must be able to explain
their reasoning to the other to create mutual benefit and to arrive at a common decision.
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