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Abstract—The automation of production lines in indus-5
trial scenarios implies solving different problems, such as6
the flexibility to deploy robotic solutions to different pro-7
duction lines, usability to allow nonrobotics expert users8
to teach robots different tasks, and safety to enable oper-9
ators to physically interact with robots without the need of10
fences. In this paper, we present a system that integrates11
three novel technologies to address the above mentioned12
problems. We use an autocalibrated multimodal robot skin,13
a general robot control framework to generate dynamic be-14
haviors fusing multiple sensor signals, and an intuitive and15
fast teaching by demonstration method based on semantic16
reasoning. We validate the proposed technologies with a17
wheeled humanoid robot in an industrial set-up. The bene-18
fits of our system are the transferability of the learned tasks19
to different robots, the reusability of the models when new20
objects are introduced in the production line, the capabil-21
ity of detecting and recovering from errors, and the reliable22
detection of collisions and precollisions to provide a fast23
reactive robot that improves the physical human-robot in-24
teraction.25

Index Terms—Multimodal control, physical human-robot26
interaction (pHRI), robot skin, semantic reasoning, teaching27
by demonstration.28

I. INTRODUCTION29

THE demand for an increasingly high productivity level in30

industrial scenarios requires both, shorter task execution31

times and faster/easier robotic programming methods, which32

reduce the production costs. An automated process using robots33

needs to be programmed to perform as efficient as a human34

worker in various domains, for example in packing and qual-35

ity checking of products. However, setting up a robotic system36

takes, in general, at least three months [1] implying the need of37

robot expert programmers with higher costs. These factors are38

more prominent for small and medium enterprises (SMEs) since39

they usually have small production batches and have to cope with40

more frequent changes in production processes. This problem41

is not only limited to SMEs but also affects major enterprises42
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(MEs), which in general undergo a shift from mass production 43

to mass customization increasing the overall need for more flex- 44

ible production lines and fast effortless reconfigurations [2]. The 45

successful automation of these production processes demands 46

flexible, usable, and safer robotic solutions [3], [4]. Flexibility 47

implicates that robotic systems have to be quickly deployable 48

with short installation times, to be easy to move to different 49

production sites and to allow quick and easy adjustments to cur- 50

rent production needs. Usability implicates simple and intuitive 51

programming methods, enabling nonexperts, and untrained per- 52

sonnel to effortlessly reconfigure the system in a natural way. 53

Safety entails that systems incorporate new principles to provide 54

the necessary safety1 for human operators during physical inter- 55

actions in shared workspaces. Combining all these requirements 56

leads to Robot Transparency. Ideally, a robot is considered fully 57

transparent when the deployment of the robot does not pro- 58

duce any changes (disruptions) in the production line. Robot 59

Transparency can be measured by the effort needed to deploy 60

the robot, such as safety mechanisms, personnel training, and 61

changes in the production process. Transparent Robots allow 62

human-robot collaborations, just as if they were human-human 63

collaborations since the robot will have ideally the same set 64

of skills and requirements as a human co-worker – in the con- 65

text of a specific production process. The high adaptability and 66

accuracy of human-robot collaborations facilitate the automa- 67

tion of industrial processes for both SMEs and MEs. Physical 68

human-robot interaction (pHRI) [5] is a fundamental aspect of 69

Robot Transparency as well as simple and intuitive teaching 70

methods, for example, programming by demonstration tech- 71

niques (PbD). This sort of teaching methods allow the operator 72

to teach the robot tasks in an easy and natural way [6], hence, 73

an expert robot programmer is not required, see Fig. 1. There- 74

fore, the development and integration of technologies, such as 75

robot skin, reactive control schemes, and robust teaching meth- 76

ods are needed to simplify the robot programming, to improve 77

the physical interaction with robots, and to decrease the deploy- 78

ment time of robotic systems in shop floors, i.e., to increase the 79

Robot Transparency. 80

A. Related Work 81

Programming robots can be done by manually guiding 82

the robot to the desired position through physical (direct) or 83

1More concretely, with safety, we mean avoiding dangerous collisions during
a physical human-robot interaction.
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Fig. 1. Demonstration scenario: The user can intuitively teach a com-
plete process to a robot. The setup consists of a perception system
(fusing robot skin and vision), multimodal robot behaviors, and a reason-
ing system.

cyber-physical (indirect) interaction. Indirect guidance has been84

realized by using a six-dimensional (6-D) marker which is85

tracked by a visual tracking system [7], or by using gestures86

and posture recognition through an accelerometer-based input87

device [8]. Similarly, the Leap Motion sensor was used to de-88

velop a contactless and markerless human-robot interface to89

control dual-arms with the hands [9]. Offline programming in90

virtual reality, online programming in augmented reality and a91

combination of both is considered in [10] and further discussed92

in [7], where guidance with collision avoidance and end-effector93

restrictions is proposed. The major drawback of indirect guid-94

ance methods is that the user is physically separated from the95

robot. In the context of safety, this is advantageous, however, it96

impacts the intuitiveness of the teaching process. Direct manual97

guidance is often provided by robot specific teach pendants or98

can be realized by using force/torque sensors [11], [12] or in-99

herently by low system inertia and high joint compliance [3].100

Tactile sensors have also been used for manual guidance ap-101

plications [13]. These approaches are based on sensors located102

either in the joints or scattered in some parts of the robot, or103

they rely on current measuring sensors, which require complete104

dynamic models to estimate the applied force. However, when105

dealing with physical interactions (with humans or the environ-106

ment), the location, the direction, and the areas of contact are107

extremely important. Unfortunately, force/torque sensors can108

not deal with multiple contact points (they can only estimate109

the resultant force/torque applied to a single point). In some110

situations, this could lead to unsafe conditions, since the real111

pressure that the robot applies to a surface can not be deter-112

mined. Manual guidance enables the untrained personnel to113

easily show the robot which paths (trajectories) it has to follow.114

The demonstrated trajectories and end-effector positions can115

then easily be assembled to the desired task. However, the user116

needs to define trajectories in the coordinate space, which leads117

to the classical frame of reference problem.2 Furthermore, th118

e lack of precision and adaptability, when representing tasks119

with trajectories and positions, limits the usability and flexibil-120

ity of the system [4].121

2Thinking in the coordinate space is less natural than in the object space and
needs expert knowledge.

PbD systems learn new skills by extracting redundancies 122

across multiple demonstrations of the same movement and 123

build time-independent models to reproduce the dynamics of the 124

demonstrated motion [14]. An extension to learn also force pro- 125

files in combination with position profiles is introduced in [15]. 126

The PbD system introduced in [6] builds generalized represen- 127

tations of dynamic motion primitives (DMP). The system sepa- 128

rates demonstrated motions into a sequence of DMPs and maps 129

them to predefined motion primitives (grasp, move, etc.) thus 130

finding a symbolic representation of the demonstrated motion. 131

The work of [16] derives tasks specified by parameters, where 132

the parameters are invariant across demonstration. A change in 133

these parameters defines a task transition, thus demonstrations 134

can be segmented to subtasks with specific constraints (force, 135

position, etc.). 136

The intuitiveness and naturalness of robot task programming 137

can be increased by shifting coordinate-based programming (po- 138

sitions and trajectories) to object-based programming [2], [17], 139

[18]. Object-based programming assumes that a general task 140

can be subdivided into skills which are object-centered. Object- 141

centered skills are configured with the parameters that make 142

reference to objects instead of coordinates, e.g., pick, rotate, 143

place, etc. The abstraction of object-centered skills hides low- 144

level implementations which are system specific. Thus, the tasks 145

composed of these skills are more precise and can be transferred 146

and reused on different robot platforms. For example, the “little 147

helper” is an autonomous industrial mobile manipulator [19], 148

which implements task-level programming and enables users to 149

compose tasks by manually selecting skills in a GUI. The skill 150

parameters are obtained through kinesthetic teaching. Cogni- 151

tive robots [17] increase the flexibility and usability of robots 152

in manufacturing, validated with the example of a knitting task 153

in the project STAMINA. Cognitive automation considers au- 154

tomatic and flexible decision making in complex environments 155

with an intelligent adaptation of skills [20]. 156

However, flexibility is not sufficient for real world applica- 157

tions since reusability of knowledge is required to handle mul- 158

tiple unmodeled conditions. Reusing the knowledge that has 159

already been acquired can help to realize fast reconfiguration in 160

manufacturing processes. The work of [21] introduces a knowl- 161

edge integration framework for combining different knowledge 162

representations in robotics. In [22], a method to generate plan 163

descriptions for the automation of manufacturing processes is 164

proposed. This paper uses a knowledge base in combination 165

with ontologies to infer knowledge through reasoning for a given 166

process specification. However, this approach was not tested in 167

a physical system and the reusability of the obtained plans is 168

limited to certain initial conditions. 169

Safety plays an important role in successfully deploying in- 170

dustrial robots. Safety requirements specified by the Organiza- 171

tion for Standardization, such as ISO 10218-1/2 [23], [24], and 172

IEC 61508 [25], have to be fulfilled. A new specification (ISO 173

15066) [26] specifically addresses safety requirements for phys- 174

ical interactions with robots in fence-less workspaces. Robot 175

system solutions can follow different principles for enabling 176

safe human-robot interactions in shared workspaces. Differ- 177

ent scenarios for collaborative operations and their implications 178

for safety are discussed in [27]. The robot introduced in [3] is 179
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Fig. 2. Overview of the robot framework integrating the technologies:
Multimodal robot skin, robot behavior generator, and semantic reasoning
engine.

inherently safe because of its low inertia and high passive com-180

pliance. On the other hand, the Kuka LWR minimizes injury181

risks by lowering the load-to-weight ratio, enabling fast reac-182

tions to collisions, and providing active compliance through183

force/torque sensing [28]. The ROSETTA project introduces a184

flexible, collaborative robot for the automatic assembly of small185

parts [29]. Safe interaction in shared workspaces is enhanced186

through low payload and inertia, a mechanical design without187

sharp or pointed edges, cushioning (passive compliance), power188

and speed limitations, and software based collision detection.189

However, these principles add constraints to the robot design,190

making them more expensive, and require a complete redesign191

of industrial robots.
Q1

192

B. Main Contributions193

In this paper, we extend our previous work [30] to improve our194

proposed method, which integrates three robotic technologies195

to allow the fast deployment of industrial robot systems, namely196

the Multimodal robot skin, the Robot behavior generator, and197

the Semantic reasoning engine, see Fig. 2. More concretely, our198

contributions are:199

1) An overview on how the proposed technologies can be200

integrated in an end-to-end framework;201

2) A multimodal control approach, providing fast reactions202

to reliably detected contacts, and precontacts to improve203

pHRI;204

3) The enhancement of our semantic reasoning method to205

kinesthetically teach new activities to robots without the206

need of an expert robot-programmer;207

4) The demonstration of the flexibility and reusability of208

the framework in different situations, such as the adap-209

tation of the learned processes to new objects, and their210

transferability to different robots (with different frame of211

reference), without human intervention.212

5) The extension of the reasoning method to detect and213

handle errors at execution time.214

II. MULTIMODAL ROBOT SKIN215

Fast, configurable multimodal robot skin can transform a stan-216

dard industrial robot arm into a reactive robot system, enabling217

Fig. 3. Block diagram of our end-to-end self-configuring and self-
calibrating robot skin approach.

pHRI. A robot covered with robot skin can detect contacts 218

and precontacts with high confidence and without occlusion. 219

In combination with appropriate reactive low-level controllers, 220

robot skin enables robots to actively mitigate or avoid poten- 221

tially dangerous situations generated by unexpected changes in 222

the environment, see Section III. 223

Our robot skin [31] is composed of modularized, hexagonally 224

shaped skin cells [see Fig. 3(a)]. Each of these cells utilizes the 225

same set of sensors, which transduce tactile information of dif- 226

ferent modalities, such as vibrations (3-D acceleration sensor), 227

pressure (three capacitive force sensors), pretouch (optical prox- 228

imity sensor), and temperature (two temperature sensors). The 229

skin cells communicate and exchange information with their 230

neighbors, and build up a self-organized and redundant skin 231

cell network, which enables bidirectional communication with 232

a central processing system, see Fig. 3(a) and (b). The robot 233

skin uses the standard Gigabit Ethernet protocol, thus specific 234

drivers are not required, making the robot skin easy to deploy. 235

A group of connected skin cells forms a skin patch, and each 236

patch has a root cell, see Fig. 3(b). These patches are used to 237

cover the robot limbs, see Fig. 3(c) and (d). The root cell of a 238

patch is used as a common reference frame for all the skin cells 239

in a patch to define their spatial location on a robot link. This 240

spatial information (homogeneous transformations) is essential 241

to map tactile information to meaningful control commands, 242

and is obtained through a robot skin calibration process. 243

A. Robot Skin Calibration 244

Performing manual skin calibration of hundreds of skin cells 245

is prone to errors and totally infeasible. We tackle this challenge 246

by developing a complete end-to-end robot skin system, see 247

Fig. 3. The first stage of the system is to explore the cell network 248

using a self-organizing network algorithm, resulting in optimal 249

communication paths and neighbor information of the skin cells 250

[see Fig. 3(b)]. Next, we use motor babbling, a 3-D surface re- 251

construction algorithm, and an extrinsic calibration algorithm to 252

obtain both, the relative poses of the skin cells with respect to the 253

root cell, see Fig. 3(c), and the root cell with respect to the robot 254

link, Fig. 3(d). From these homogeneous transformations, we 255

obtain a set of Denavit–Hartenberg-like parameters, Fig. 3(e), 256
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Fig. 4. (a) General control pipeline to fuse robot skin signals in multiple
controllers. Fi,m and Pi are the forces and proximity signals of a Celli .
Wi ∈ R6×1 is a virtual tactile wrench, where JC ell i ∈ R6×n , with n as the
robot’s DoF, represents the Jacobian of each cell [32]. Ws and Wk are
weight matrices to control the influence of each low-level control and de-
pend on the specific Robot Behavior. (b) Torque resolver defined by two
principal modules: first, the nonlinear trajectory generator that produces
desired trajectories based on user-defined dynamic behaviors, and sec-
ond, the inner velocity control that generates a desired joint velocity to
compensate uncertainties in the robot parameters. qv , q̇v represent the
joint position/velocity of the virtual robot (desired position/velocity), q, q̇
are the joint position/velocity of the real robot, qc , q̇c are the commanded
joint position/velocities. E(q̇v , q̇) is a joint velocity estimator.

which can be used to generate kinematic models [forward kine-257

matics and robot Jacobians, Fig. 3(f)]. For further details about258

this calibration process, see [32]. These kinematic models are259

used to obtain the dynamic model of the robot. This model is260

defined in a parametric algebraic form, and its dynamic param-261

eters are defined by the designer, see Fig. 3(f). In this manner,262

the designer can define how the robot should react to the robot263

skin information, i.e., the desired dynamic behavior of the robot.264

Notice that the dynamic parameters do not need to be exact, but265

they should produce a suitable desired behavior that the real266

robot is able to generate. A close approximation of these param-267

eters can be obtained using the Robot Regressor technique [33].268

These models are exploited by our Robot control framework269

(see Fig. 4(b) in Section III).270

B. Event-Driven Robot Skin271

The deployment of large-scale robot skin3 introduces new272

challenges [34]. To tackle these challenges, we investigate and273

apply biologically inspired principles. The pivotal principle that274

we use is the novelty driven tactile information transduction,275

transmission, and processing, i.e., an event-driven system. In276

contrast to synchronous sensors, which continuously transmit277

3We estimate that a completely covered humanoid robot will need at least
3000 skin cells.

Fig. 5. Figure shows the arm behaviors composed of low-level con-
trollers running in parallel. The gripper behavior is a state machine
(open/close).

information, the sensors of an event-driven system only transmit 278

information when there is an event. Events represent novel infor- 279

mation and are usually triggered by sufficiently large changes in 280

the sensed information. The skin cells of our event-driven robot 281

skin asynchronously transmit information in form of complete 282

sensor values, this means that this information is not based on 283

differences in the form of deltas [34]. As a result, event-driven 284

robot skin improves the performance of real-time control, and 285

allows fast controller responses. For example, this event-driven 286

system reduced the network usage of a skin network with 253 287

skin cells from 1 MB/s to 81 kB/s, and the CPU usage of the 288

controller from around 104% to 42% [35]. 289

III. ROBOT BEHAVIORS 290

The Robot Behavior module provides a library of low-level 291

controllers that can be combined to produce different robot be- 292

haviors. This library contains control approaches with low-level 293

control methodologies that produce continuous signals for the 294

robot arms, the hands, and the grippers. Examples of these con- 295

trollers are depicted in Fig. 5. The Skin Joint controller is of 296

particular interest since it transforms the multimodal signals ob- 297

tained from the robot skin into a coherent control signal that can 298

be fused with the other low-level controllers, see Fig. 4(a). The 299

generation of robot behaviors has three steps. The first step is to 300

transform the tactile signals (force and proximity) of the robot 301

skin into torque signals Skin Torque (τskin ). This is achieved by 302

representing these robot skin signals as forces.4 This is possible 303

since we know the spatial information (pose) of each skin cell, 304

see Fig. 3(c) and (d) in Section II-A. The second step is to fuse 305

the Skin Torque signals with the other controllers to obtain dif- 306

ferent behaviors. In this case, we used a simple weighted sum 307

approach. The third step is to transform this fused control signal 308

into an appropriate command signal. This command depends 309

on the target robot.5 If the robot uses torque commands, the 310

commanded signal will be the fused torque signal. However, if 311

the robot is controlled using joint positions/velocities, we use a 312

Torque Resolver, see Fig. 4(b). This resolver uses the kinematic 313

and dynamic models obtained in the self-calibration process, 314

see Fig. 3(e)–(g) in Section II-A [32]. 315

4We selected force (wrench) as the representation of the signals due to its
convenient relation with joint torques τ = JT F .

5In general, we can find three types of command interfaces for robots: joint
position, joint velocity, and joint torque commands. The first two are the most
common interfaces for industrial robots.
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Fig. 6. Hierarchical structure of our reasoning system. The Problem
Space (purple box) provides semantic descriptions which represent
robot-agnostic knowledge. The Execution Space (red box) is the in-
formation needed to execute robot motions. This information is robot-
dependent.

The fusion of the different low-level controllers produces316

various behaviors. These combinations are defined in the Robot317

Behavior module, e.g., the Reach Cartesian Goal Compliant318

behavior fuses the Cartesian, the Skin Torque, and the Gravity319

compensation controllers, see Fig. 5. The previously discussed320

controller allows the robot to follow a Cartesian trajectory with321

the end-effector while at the same time can react to the tactile322

stimuli. This Robot Behavior module is the interface between323

the Semantic Reasoning Engine module, see Section IV, and the324

robot’s low-level controllers.325

IV. SEMANTIC REASONING ENGINE326

We developed a semantic reasoning engine that allows327

nonexpert users to teach robots new tasks simply by guiding328

the robot’s end-effector. To this aim, we use a hierarchical329

learning approach that is able to extract and interpret low-level330

features from the robot’s end-effector as well as from its331

sensors to automatically generate compact semantic rules. The332

reasoning engine uses the obtained semantic rules to infer333

the robot activities as well as tasks from human Kinesthetic334

demonstrations (high-level). Fig. 6 exemplifies the transition335

between the lowest level to the highest level used in our336

system. The lowest level represents robot behaviors, which337

are defined in the execution space. These behaviors represent338

the primitives that the robots can execute. The robot motions339

are automatically interpreted by our reasoning system as340

activities, e.g., “Reach” and “Take.” Our reasoning system is341

also able to combine a set of different activities into a task (see342

Fig. 6). Finally, the user defines a new process using the tasks343

provided by our system. Processes, Tasks, and Activities are344

described in the Problem Space, and they are robot agnostic345

descriptions.346

In order to automatically interpret the kinesthetic demonstra-347

tions, our learning system transforms the continuous signals348

obtained from the demonstrations to symbolic representations349

[36]. For example, the motions (m) of the robot’s end-effector350

(ef) are interpreted as either Move or Not Move symbols. Where351

Move: the end-effector is moving, i.e., ẋ > ε and Not Move:352

the end-effector stops its motion, i.e., ẋ → 0, where ẋ is the353

end-effector velocity and ε is a heuristically defined threshold.354

In addition, the information about the perceived environment355

is also transformed into symbolic representations. For the356

demonstration scenario described in Section V, the robot tactile357

omnidirectional mobile manipulator (TOMM) can perceive358

its environment through the following sensors: robot skin,359

RGB-D camera, and joint sensors. From these sensors the 360

following abstract properties can be defined: 361

1) ObjectActedOn6 (oa ): The end-effector is moving to- 362

wards an object, d(xef , xoi
) → 0; 363

2) ObjectInHand (oh ): The object is in the end-effector, i.e., 364

d(xef , xoi
) ≈ 0, where d(·, ·) is the Euclidean distance 365

between the end-effector (xef ) and the detected object 366

(xoi
); 367

3) GripperState (gs): The current state of the gripper 368

(open/closed). 369

After transforming the perceived environment and the robot 370

motions into symbolic representations, ss = {m, oa , oh , gs}, 371

we train a decision tree (T ) using only one kinesthetic demon- 372

stration. We follow a similar pipeline as the one presented in 373

[36], where the C4.5 algorithm is employed to compute T . This 374

tree contains semantic descriptions of the robot motions repre- 375

sented by if-then rules, which are human readable: 376

if ef(Move) & ObjActOn(Fruit) & Gripper(Open)

→ Act(Reach) (1)

The rules obtained from T are enhanced with our knowledge and 377

reasoning engine. The knowledge base is defined by an ontology 378

representation, expressed in the Web Ontology Language. The 379

reasoning is based on description logics, such as Prolog queries. 380

Note that (1) contains the class “Fruit” rather than the trained 381

object “Orange” which means that the extracted semantic rep- 382

resentation for the activity “Reach” can be reused for all the 383

objects that belong to the general class “Fruit”. Consequently, 384

the more general we create the semantic representations, the 385

more demonstrations the robot can interpret without the need 386

to retrain, thus making the reasoning system reusable in dif- 387

ferent situations [37], [38]. When a new activity is inferred by 388

the reasoning system, a Robot Behavior is associated with this 389

activity and stored in an abstract Robot Behavior representation 390

(Skill Map), see Fig. 6. The Skill Map contains the necessary 391

parameters to execute the demonstrated activity by the robot, 392

thus allowing the transition between the execution space and 393

the problem space. For example, when the reasoning system 394

infers the activity “PutSomethingSomewhere,” the parameters 395

generated in the skill map are something, somewhere, and Robot 396

Behavior, where something is instantiated when a new object is 397

detected (orange), somewhere identifies the final position of the 398

activity (box) and the executed Robot Behavior is Reach Carte- 399

sian. Then, a directed task graph is obtained where vertices 400

represent the inferred activities and edges represent transitions 401

between activities. The pre- and post- conditions of each activ- 402

ity are also obtained [39]. Furthermore, the reasoning system 403

can provide the sequence of activities that compose a task. The 404

user can also define a new process by selecting the desired tasks 405

and a stopping criterion,7 without the specification of additional 406

parameters. 407

6The information from the object can be obtained either from the vision
system or the proximity sensor of the skin. The same is valid for the property
ObjectInHand.

7The stop criterion indicates when a process should stop, e.g., duration,
weight, or number of objects.
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Fig. 7. Different robot behaviors obtained with the Multi-modal Robot Control Framework. The Skin joint control uses the robot skin to generate the
skin torque. This torque reflects tactile interactions with the robot. (a) The robot is transformed into a compliant system. Each time there is a physical
interaction, reflected in the skin joint control torque (a1), the joint position changes (a2). (b) For the kinesthetic teaching mode, the robot changes
its position (b2) when the user physically interacts with it (b1). In this case, the robot does not return to its original position after the interaction.
(c) When a user interferes with the robot’s motion (c1), the robot reacts and smoothly changes its trajectory (c2). As soon as the obstacle is no longer
present, the robot restarts the task until it reaches the goal (c2).

Fig. 8. Semantic reasoning engine interprets user demonstrations. The input of the reasoning engine (white boxes) comes from the human, i.e.,
he/she selects the Robot Behavior and demonstrates the activities. The output (gray boxes) is defined with two abstraction levels. The first level,
(light gray) represents the inferred activities and their associated Robot Behavior. The second level (dark gray) represents the tasks generated from
the inferred activities, using the sequence followed by the user during the demonstration. The user can build different processes as needed (lower
dark gray box).

V. DEMONSTRATION SCENARIOS & VALIDATION408

A. Robot Platform & Evaluation of Control Behaviors409

To evaluate our multilevel control framework, our tactile410

omni-directional mobile manipulator with more than 600 skin411

cells was used [40]. These skin cells cover the arms and the412

grippers. The grippers have three different skin patches: hand413

patches to detect obstacles, external finger patches to detect the414

texture of the fruits (stiff or soft), and internal finger patches415

to detect when the grippers are grasping an object. TOMM has416

three-fingered grippers which are inherently compliant and suit-417

able to handle fruits without damaging them. We consider the418

following three different dynamic behaviors:419

1) Joint Compliant behavior,420

2) Kinesthetic Joint behavior, and421

3) Reach Cartesian Goal behavior.422

In the Joint Compliant behavior [see Fig. 7(a)], the robot re-423

acts to tactile events and changes its position, e.g., when the user424

applies forces to the arm. When there are no external perturba-425

tions, the robot returns to its original position smoothly. The426

Kinesthetic Joint behavior [see Fig. 7(b)] is similar to the Joint427

Compliant behavior, but instead of returning to its original posi-428

tion, the robot will stop and will remain in this position as long429

as no further tactile events are detected. In the Reach Cartesian430

Goal behavior [see Fig. 7(c)], the goal position of the robot’s431

end-effector is defined by the user. Then, a trajectory to reach432

this goal is computed using a spline function. The robot arm fol-433

lows this trajectory and when the user interferes with the robot434

(detected by the skin sensors), this event produces a compliant 435

reactive behavior which forces a change in the robot trajectory. 436

B. Sorting Fruits Scenario 437

As a demonstration scenario, we consider the task of sorting 438

fruits. With this scenario, we can highlight the benefits of using 439

the tactile and proximity sensors on the robot skin to sense the 440

quality of the fruits.8 The user teaches the robot the activities 441

and the intermediate tasks required to sort oranges: 1) Good 442

oranges (with stiff texture) will be placed in a box, and 2) Bad 443

oranges (with soft texture) will be thrown into the trash bin, 444

see Fig. 8. The texture of the oranges is evaluated using the 445

force sensors from the robot skin placed in the external finger 446

patches of the grippers. The stiffness threshold to discriminate 447

the texture of the fruits is defined during the demonstration. Our 448

approach consists of two phases: Teaching and Execution. 449

C. Kinesthetic Teaching With Semantic Inference 450

In our previous work [41], we obtained semantic models of 451

human activities for “making a pancake” using the iCub robot. 452

From these models, we obtained common descriptions such as 453

“Reach,” “Take,” etc., along with common tasks such as “Pick- 454

ing an object.” These semantic descriptions were reused and ex- 455

tended to teach a Humanoid robot H1 (REEM-C) how to “make 456

8This scenario was inspired by the standard process of orange sorting where
humans use their tactile sensation to discriminate good and bad oranges.
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Fig. 9. Learned process of “Sorting Fruits”. The semantic system verifies the pre-conditions of each task before starting its execution. The first
row depicts this process when the perception system detected oranges. The second row shows the automatic adaptation of the same process for
apples. Task 2 and Task 3 have been rejected since the class “Apple” does not have the Squeeze property. When there is an anomaly, for example,
dropping an orange, the system can detect the error and the following tasks are rejected.

a sandwich” [42]. In this case, the semantic descriptions were457

extended to include new activities, such as “Cut” and new tasks,458

such as “Cutting an object”. These semantic descriptions are the459

initial knowledge-base for our robot TOMM (robot experience)460

to learn how to “sort fruits”. This is possible since the semantic461

models are robot-agnostic and defined in the Problem Space,462

see Fig. 6. During the teaching phase, our reasoning system is463

extended to generate and populate new semantic descriptions for464

the “sorting fruit” scenario through human demonstrations. For465

these demonstrations, the user kinesthetically guides the robot466

by selecting a specific Robot Behavior, see Fig. 5.467

Fig. 8 depicts the pipeline of the reasoning engine which468

uses human demonstrations as input (low-level sensor informa-469

tion) and produces the inferred activities as output (high-level470

interpretations). These activities will be connected by the rea-471

soning engine to generate the demonstrated tasks, following the472

sequence taught by the user. Each inferred activity will be asso-473

ciated with a specific Robot Behavior through the Skill Map. For474

example, in Fig. 8(a), the user selects the right arm as the de-475

sired resource for teaching. Then, the user selects the Kinesthetic476

Cartesian behavior to move the robot’s end-effector towards the477

orange. This demonstration is inferred by the semantic engine,478

as the activity “Reach”, and the Skill Map connects this activity479

with the robot behavior Reach Cartesian. Similarly, Fig. 8(b)480

depicts the user selecting the gripper as the desired resource and481

Close Gripper as its behavior. This new demonstration is in-482

terpreted by the semantic engine, as the activity “Take”. Then,483

these two activities (“Reach” and “Take”) are automatically484

connected and defined as the task “Pick Fruit” by the reason-485

ing system. As part of the task definition, the reasoning system486

defines the pre- and post- conditions required for each task, see487

Fig. 9. All these generated tasks will be stored in the knowledge488

base and can be retrieved by the user to define new processes.489

The processes and the tasks are specified using abstract rep-490

resentations (semantic level), which make the system highly491

flexible. Note that the reasoning system abstracts the meaning492

of the demonstrated tasks, instead of storing motion patterns,493

or low-level information, such as velocities, trajectory patterns,494

end-effector positions, etc. For example, instead of saving the495

trajectory from the box to the orange while moving the arm, the496

learning system defines this activity as “Reaching”.497

Fig. 9 depicts the automatically generated tasks, for the pro-498

cess “Sorting Fruits”. In this case, five tasks were generated:499

1) Pick fruit, 2) Identify good fruit, 3) Put fruit into a box,500

4) Identify bad fruit, and 5) Put fruit to trash.9 Our reasoning 501

method also provides the option to create tasks by manually se- 502

lecting and connecting the available activities from the acquired 503

knowledge base (using a GUI). 504

The main feature of this learning system is that a nonexpert 505

user can teach the robot new tasks. Since the user does not need 506

to program the robot directly (using a teach-pendant and a spe- 507

cific robot language), but rather the user guides the robot and 508

the system generates the proper sequences in a human read- 509

able form. In this context, the robot’s program is replaced by a 510

sequence of tasks where their parameters are defined at runtime. 511

We tested the integration of the presented three technologies, 512

using the demonstrations from two different participants.10 Four 513

demonstrations were considered with random positions for the 514

oranges [43]. The robot is able to recognize the demonstrated 515

activities using our reasoning technology with an average ac- 516

curacy of around 83%11 when the participants kinesthetically 517

showed the desired activities for the sorting fruits process. The 518

sequence of recognized activities is consecutively stored to auto- 519

matically define task structures to accelerate the learning of new 520

tasks [39]. Ongoing research on a formal validation, including 521

multiple participants with different backgrounds, is currently 522

being pursued. 523

To teach a new process to a robot, a normal user takes ap- 524

proximately two minutes and 44 s. Two minutes and 6 s to 525

kinesthetically teach the activities and create the tasks, and 38 s 526

to build a new process and launch it [39]. These times depend 527

on the complexity of the new process, in this case, the process 528

consists of five tasks. After that, no more user intervention is 529

required, even when new objects appear in the scene. 530

D. Execution of the Demonstrated Tasks 531

First, the user indicates the process to be executed, see Fig. 10. 532

Then, the framework verifies if the process can be executed in 533

the current environment. For this, the semantic engine loads the 534

tasks of the selected process, see Fig. 9. Prior to executing a 535

task, the system verifies if all the task preconditions are satis- 536

fied. If a precondition is not satisfied, the task fails (we exploit 537

9The system connects the activities to compose the tasks, and the user defines
the labels for these tasks.

10One participant was a robotic expert and the other nonexpert.
11This accuracy is obtained by comparing the recognized activities between

the reasoning system and the ground truth (manual annotations).
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Fig. 10. Execution of the learned process. The semantic engine analyzes all the tasks and their activities of the process and executes the
associated robot behaviors. The input of the execution phase is the semantic process, and the output is the execution of the robot behaviors with
the required parameters.

this verification process to detect errors, see Section V-F). Then,538

for each task, the semantic engine infers the sequence of activi-539

ties at runtime. Each activity has an associated Robot Behavior,540

which requires specific parameters for its execution. These pa-541

rameters are obtained at runtime, using the perception system,542

which identifies and labels the objects in the scene. The semantic543

engine uses these labels to create instances of the proper class544

of the identified object. The instances are single data containers545

(semantic abstractions) that provide multiple information from546

the perceived object, e.g., parent class, type, color, size, posi-547

tion, orientation, squeeze ratio, etc. For the resources (arms and548

grippers) we use the following information joint/end-effector549

positions, velocities. For example, the perception system identi-550

fies an orange and obtains its 3-D-position. Then, an instance of551

the class “Orange” is created and its property named “Position”552

is populated with the orange’s position.553

The semantic engine starts to execute each activity with its554

associated Robot Behavior and its targeted object. Each executed555

behavior triggers a set of low-level controllers, which requires556

different parameters. For example, in Fig. 10(a), the Task 1 “Pick557

Fruit” executes two sequential activities: “Reach” and “Take”.558

The unbounded variable Fruit is instantiated with the perceived559

object (an instance of class “Orange”).12560

The activity “Reach” is associated with the Reach Carte-561

sian behavior, see Fig. 8(a). This behavior executes in parallel562

three low-level controllers Spline Cartesian, Skin Cartesian, and563

Gravity compensation, see Fig. 5. The Spline Cartesian control564

requires two parameters the origin and the goal. The origin is565

set, by default, as the current position of the end-effector, and566

the goal is defined, by the semantic engine, as the orange’s567

position. When the low-level controllers are finished, the next568

activity will be executed. For the activity “Squeeze,” the robot569

places the end-effector over the fruit, and moves down slowly570

until the fruit is detected by the robot skin (soft contact). Then,571

the end-effector moves down again a few milliliters and mea-572

sures the contact force. This force is correlated to the stiffness573

of the fruit. The rest of the tasks and their activities are exe-574

cuted until the process is finished. Note that during the teaching575

phase, the user demonstrated the process using only one arm,576

12The perception system can detect different objects from different classes,
e.g., oranges and apples (class “Fruit”), box and trash bin (class “Container”),
etc. The semantic reasoning discriminates and uses these objects according to
their class.

Fig. 11. Executing the inferred process for apples. The same process
“Sorting Fruits” can be used without user intervention or reprogramming,
even when the process was generated using oranges. The inferred exe-
cution is the robot grasping the apples and putting them into the boxes
without squeezing them. This is a correct execution since the apples
should not be squeezed.

i.e., the right arm. However, since the activities and their param- 577

eters are defined with abstract representations, the same process 578

can be used with multiple resources (robots). This makes the 579

descriptions general, transferable, and reusable. 580

The semantic system verifies the available resources of the 581

robot for the execution of the desired task. In this case, the robot 582

has the right and the left arms enabled, and there is more than 583

one orange on the table, see Fig. 10. Therefore, exactly, the same 584

process (“Sorting Fruits”) is executed with both arms (the only 585

difference is the resource assigned by the semantic engine). 586

E. Handling Variations in the Process: Apple 587

The obtained general descriptions of tasks and activities allow 588

our generated semantic process to work also with objects dif- 589

ferent from the ones used during the teaching phase. In Fig. 11, 590

the scenario presents a different object (apples). In this case, the 591

variable Fruit is an instance of the class “Apple” and the cor- 592

responding semantic properties of this class are loaded. How- 593

ever, the class “Apple” does not have the property “squeezable”. 594

Therefore, Task 2 and Task 4 can not be executed, see Fig. 9 595

(Squeeze = null). In this case, only the tasks that can be exe- 596

cuted for apples are Task 1, Task 3, and Task 5 (tasks that do 597

not depend on “squeeze” property). These tasks are executed se- 598

quentially. As a result, the robot takes the apple and place it into 599

the box. Our reasoning system only takes approximately 0.124 s 600

to make this new execution plan compared to 38 s required to 601

generate the orange sorting plan. 602
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Fig. 12. Error detection and user perturbations. (a) Using the internal
finger patches, the semantic reasoning detects this error and infers which
task can be executed. (b) The robot safely reacts to the human interaction
and avoids collisions. (c) Exploiting both the force and the proximity
sensors, the robot skin can detect even a feather.

F. Error Detection603

The structure of the process description allows the seman-604

tic engine to detect errors through the verification of the pre-605

conditions on each task. Fig. 12(a) shows the case when the606

user removes the orange from the robot’s gripper at the end607

of Task 1. This anomaly is detected by the reasoning engine,608

i.e., Error Detection. As can be seen in Fig. 9, Task 2 re-609

quires as precondition that the gripper has an object in the610

hand (OIH = orange) since this precondition is not satisfied,611

then all the following tasks will fail. Hence, the sequence612

Task 0–Task 1 will be repeated until the gripper has an ob-613

ject in hand. In this case, the system also provides our first614

approach to Error Handling. The time that our system takes to615

detect this error and to search for a new strategy takes around616

0.38 s.617

G. Physical Human-Robot Interaction618

One important aspect considered in our system is the pHRI,619

where safe interaction is paramount. In Fig. 5 can be seen that all620

the behaviors contain either Skin Joint Control or Skin Cartesian621

Control. These two controllers make the robot reactive to tactile622

events (precollisions and pressure) allowing physical interac-623

tions. Fig. 12(b) and (c) show two examples of these reactive624

interactions. Other safety mechanisms, we have adopted in our625

robot skin are redundancy of communication paths in the skin626

cell network, redundancy in skin sensor modality (e.g., contact627

detection through proximity and force sensors), and real-time628

user feedback through RGB LEDs of the skin cells.13 In order629

to validate our rapidly deployable robot system, we success-630

fully installed the robot skin on two different robot arms in two631

different laboratories. First, we fully covered a UR5 robot with632

410 skin cells using 13 patches. In addition, we also covered the633

forelimb of a UR10 arm with 373 skin cells. The deployment634

from installing the skin patches in the robots to a fully calibrated635

and ready to use robot skin took in both cases about 5 h.636

We provide a video14 to illustrate the robot behaviors in637

our robot TOMM using the proposed approach, and to show638

the teaching and execution phases for the process “Sorting639

Fruits.”640

13The authors consider these mechanisms only as starting points for func-
tional safety and standardization, and we only highlight the system’s potential
regarding safety. Nevertheless, the process for productization of these systems
is still in a preliminary state.

14https://youtu.be/_X255OyzGs0

VI. CONCLUSION 641

The overview of the integration of three main robotic tech- 642

nologies was presented in this paper. These technologies enable 643

fast deployment of industrial robot systems and consists of a fast 644

self-configurable artificial skin, a multimodal control framework 645

to extend the dynamic behaviors of standard robots, and a robust 646

and intuitive teaching method based on semantic reasoning. The 647

presented results demonstrate that these technologies enhance 648

the usability, flexibility, and introduce our first approach to han- 649

dle safety for industrial robots, especially when a nonexpert user 650

teaches the robot new processes using pHRI. The usability is 651

demonstrated with the following aspects: 652

1) Novel technologies to teach robots new tasks using pHRI; 653

2) The extension of a semantic reasoning engine to auto- 654

matically infer activities and tasks from human demon- 655

strations; 656

3) The generation of processes in human-readable form via 657

semantic descriptions, and; 658

4) Error detection and handling during process execution 659

without human intervention. 660

The flexibility is validated as follows: 1) end-to-end robot 661

skin framework for fast deployment on different robots, and 662

2) a knowledge-base system that allows the re-usability and 663

transferability of learned skills. The safety is realized through 664

a reactive control framework based on multimodal robot skin 665

avoiding dangerous collisions during HRI. The presented frame- 666

work can be implemented in any standard industrial robot as 667

long as it provides an external control interface. 668
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[13] T. Wösch and W. Feiten, “Reactive motion control for human-robot tactile706
interaction,” in Proc. Int. Conf. Robot. Autom., 2002, vol. 4, pp. 3807–707
3812.708

[14] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard, “A709
probabilistic approach based on dynamical systems to learn and reproduce710
gestures by imitation,” IEEE Robot. Autom. Mag., vol. 17, no. 2, pp. 44–54,711
2010.Q3 712

[15] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of713
positional and force skills demonstrated via kinesthetic teaching and haptic714
input,” Adv. Robot., vol. 25, no. 5, pp. 581–603, 2011.715

[16] A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard, “Task param-716
eterization using continuous constraints extracted from human demonstra-717
tions,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1458–1471, Dec. 2015.718

[17] V. Krueger et al., “A vertical and cyber-physical integration of cognitive719
robots in manufacturing,” Proc. IEEE, vol. 104, no. 5, pp. 1114–1127,720
May 2016.721

[18] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task722
learning: Instructive demonstrations, generalization and practice,” in Proc.723
Second Int. Joint Conf. Auton. Agents Multiagent Syst., 2003, pp. 241–248.724

[19] C. Schou, J. S. Damgaard, S. Bogh, and O. Madsen, “Human-robot inter-725
face for instructing industrial tasks using kinesthetic teaching,” in Proc.726
Int. Symp. Robot., 2013.727

[20] D. Bruckner, H. Zeilinger, and D. Dietrich, “Cognitive automation—728
Survey of novel artificial general intelligence methods for the automation729
of human technical environments,” IEEE Trans. Ind. Informat., vol. 8,730
no. 2, pp. 206–215, May 2012.731

[21] A. Björkelund, H. Bruyninckx, J. Malec, K. Nilsson, and P. Nugues,732
“Knowledge for intelligent industrial robots,” in Proc. AAAI Spring Symp.,733
Des. Intell. Robots, vol. 12, no. 2, 2012.734

[22] J. Puttonen, A. Lobov, and J. L. M. Lastra, “Semantics-based composition735
of factory automation processes encapsulated by web services,” IEEE736
Trans. Ind. Informat., 2013, vol. 9, no. 4, pp. 2349–2359, Nov. 2013.737

[23] Robots and Robotic Devices – Safety Requirements for Industrial Robots—738
Part 1: Robots, ISO 10218-1, 2010.739

[24] Robots and Robotic Devices – Safety Requirements for Industrial Robots–740
Part 2: Robot Systems and Integration, ISO 10218-2, 2011.741

[25] Functional Safety of Electrical-Electronic-Programmable Electronic742
Safety-Related Systems. International electrotechnical commission, IEC743
61508, 1998.744

[26] Safety for Collaborative Industrial Robots. Technical Standard ISO 15066,745
2014.746

[27] J. Fryman and B. Matthias, “Safety of industrial robots: From conventional747
to collaborative applications,” in Proc. 7th German Conf. Robot., 2012.748
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Abstract—The automation of production lines in indus-5
trial scenarios implies solving different problems, such as6
the flexibility to deploy robotic solutions to different pro-7
duction lines, usability to allow nonrobotics expert users8
to teach robots different tasks, and safety to enable oper-9
ators to physically interact with robots without the need of10
fences. In this paper, we present a system that integrates11
three novel technologies to address the above mentioned12
problems. We use an autocalibrated multimodal robot skin,13
a general robot control framework to generate dynamic be-14
haviors fusing multiple sensor signals, and an intuitive and15
fast teaching by demonstration method based on semantic16
reasoning. We validate the proposed technologies with a17
wheeled humanoid robot in an industrial set-up. The bene-18
fits of our system are the transferability of the learned tasks19
to different robots, the reusability of the models when new20
objects are introduced in the production line, the capabil-21
ity of detecting and recovering from errors, and the reliable22
detection of collisions and precollisions to provide a fast23
reactive robot that improves the physical human-robot in-24
teraction.25

Index Terms—Multimodal control, physical human-robot26
interaction (pHRI), robot skin, semantic reasoning, teaching27
by demonstration.28

I. INTRODUCTION29

THE demand for an increasingly high productivity level in30

industrial scenarios requires both, shorter task execution31

times and faster/easier robotic programming methods, which32

reduce the production costs. An automated process using robots33

needs to be programmed to perform as efficient as a human34

worker in various domains, for example in packing and qual-35

ity checking of products. However, setting up a robotic system36

takes, in general, at least three months [1] implying the need of37

robot expert programmers with higher costs. These factors are38

more prominent for small and medium enterprises (SMEs) since39

they usually have small production batches and have to cope with40

more frequent changes in production processes. This problem41

is not only limited to SMEs but also affects major enterprises42
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(MEs), which in general undergo a shift from mass production 43

to mass customization increasing the overall need for more flex- 44

ible production lines and fast effortless reconfigurations [2]. The 45

successful automation of these production processes demands 46

flexible, usable, and safer robotic solutions [3], [4]. Flexibility 47

implicates that robotic systems have to be quickly deployable 48

with short installation times, to be easy to move to different 49

production sites and to allow quick and easy adjustments to cur- 50

rent production needs. Usability implicates simple and intuitive 51

programming methods, enabling nonexperts, and untrained per- 52

sonnel to effortlessly reconfigure the system in a natural way. 53

Safety entails that systems incorporate new principles to provide 54

the necessary safety1 for human operators during physical inter- 55

actions in shared workspaces. Combining all these requirements 56

leads to Robot Transparency. Ideally, a robot is considered fully 57

transparent when the deployment of the robot does not pro- 58

duce any changes (disruptions) in the production line. Robot 59

Transparency can be measured by the effort needed to deploy 60

the robot, such as safety mechanisms, personnel training, and 61

changes in the production process. Transparent Robots allow 62

human-robot collaborations, just as if they were human-human 63

collaborations since the robot will have ideally the same set 64

of skills and requirements as a human co-worker – in the con- 65

text of a specific production process. The high adaptability and 66

accuracy of human-robot collaborations facilitate the automa- 67

tion of industrial processes for both SMEs and MEs. Physical 68

human-robot interaction (pHRI) [5] is a fundamental aspect of 69

Robot Transparency as well as simple and intuitive teaching 70

methods, for example, programming by demonstration tech- 71

niques (PbD). This sort of teaching methods allow the operator 72

to teach the robot tasks in an easy and natural way [6], hence, 73

an expert robot programmer is not required, see Fig. 1. There- 74

fore, the development and integration of technologies, such as 75

robot skin, reactive control schemes, and robust teaching meth- 76

ods are needed to simplify the robot programming, to improve 77

the physical interaction with robots, and to decrease the deploy- 78

ment time of robotic systems in shop floors, i.e., to increase the 79

Robot Transparency. 80

A. Related Work 81

Programming robots can be done by manually guiding 82

the robot to the desired position through physical (direct) or 83

1More concretely, with safety, we mean avoiding dangerous collisions during
a physical human-robot interaction.

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Demonstration scenario: The user can intuitively teach a com-
plete process to a robot. The setup consists of a perception system
(fusing robot skin and vision), multimodal robot behaviors, and a reason-
ing system.

cyber-physical (indirect) interaction. Indirect guidance has been84

realized by using a six-dimensional (6-D) marker which is85

tracked by a visual tracking system [7], or by using gestures86

and posture recognition through an accelerometer-based input87

device [8]. Similarly, the Leap Motion sensor was used to de-88

velop a contactless and markerless human-robot interface to89

control dual-arms with the hands [9]. Offline programming in90

virtual reality, online programming in augmented reality and a91

combination of both is considered in [10] and further discussed92

in [7], where guidance with collision avoidance and end-effector93

restrictions is proposed. The major drawback of indirect guid-94

ance methods is that the user is physically separated from the95

robot. In the context of safety, this is advantageous, however, it96

impacts the intuitiveness of the teaching process. Direct manual97

guidance is often provided by robot specific teach pendants or98

can be realized by using force/torque sensors [11], [12] or in-99

herently by low system inertia and high joint compliance [3].100

Tactile sensors have also been used for manual guidance ap-101

plications [13]. These approaches are based on sensors located102

either in the joints or scattered in some parts of the robot, or103

they rely on current measuring sensors, which require complete104

dynamic models to estimate the applied force. However, when105

dealing with physical interactions (with humans or the environ-106

ment), the location, the direction, and the areas of contact are107

extremely important. Unfortunately, force/torque sensors can108

not deal with multiple contact points (they can only estimate109

the resultant force/torque applied to a single point). In some110

situations, this could lead to unsafe conditions, since the real111

pressure that the robot applies to a surface can not be deter-112

mined. Manual guidance enables the untrained personnel to113

easily show the robot which paths (trajectories) it has to follow.114

The demonstrated trajectories and end-effector positions can115

then easily be assembled to the desired task. However, the user116

needs to define trajectories in the coordinate space, which leads117

to the classical frame of reference problem.2 Furthermore, th118

e lack of precision and adaptability, when representing tasks119

with trajectories and positions, limits the usability and flexibil-120

ity of the system [4].121

2Thinking in the coordinate space is less natural than in the object space and
needs expert knowledge.

PbD systems learn new skills by extracting redundancies 122

across multiple demonstrations of the same movement and 123

build time-independent models to reproduce the dynamics of the 124

demonstrated motion [14]. An extension to learn also force pro- 125

files in combination with position profiles is introduced in [15]. 126

The PbD system introduced in [6] builds generalized represen- 127

tations of dynamic motion primitives (DMP). The system sepa- 128

rates demonstrated motions into a sequence of DMPs and maps 129

them to predefined motion primitives (grasp, move, etc.) thus 130

finding a symbolic representation of the demonstrated motion. 131

The work of [16] derives tasks specified by parameters, where 132

the parameters are invariant across demonstration. A change in 133

these parameters defines a task transition, thus demonstrations 134

can be segmented to subtasks with specific constraints (force, 135

position, etc.). 136

The intuitiveness and naturalness of robot task programming 137

can be increased by shifting coordinate-based programming (po- 138

sitions and trajectories) to object-based programming [2], [17], 139

[18]. Object-based programming assumes that a general task 140

can be subdivided into skills which are object-centered. Object- 141

centered skills are configured with the parameters that make 142

reference to objects instead of coordinates, e.g., pick, rotate, 143

place, etc. The abstraction of object-centered skills hides low- 144

level implementations which are system specific. Thus, the tasks 145

composed of these skills are more precise and can be transferred 146

and reused on different robot platforms. For example, the “little 147

helper” is an autonomous industrial mobile manipulator [19], 148

which implements task-level programming and enables users to 149

compose tasks by manually selecting skills in a GUI. The skill 150

parameters are obtained through kinesthetic teaching. Cogni- 151

tive robots [17] increase the flexibility and usability of robots 152

in manufacturing, validated with the example of a knitting task 153

in the project STAMINA. Cognitive automation considers au- 154

tomatic and flexible decision making in complex environments 155

with an intelligent adaptation of skills [20]. 156

However, flexibility is not sufficient for real world applica- 157

tions since reusability of knowledge is required to handle mul- 158

tiple unmodeled conditions. Reusing the knowledge that has 159

already been acquired can help to realize fast reconfiguration in 160

manufacturing processes. The work of [21] introduces a knowl- 161

edge integration framework for combining different knowledge 162

representations in robotics. In [22], a method to generate plan 163

descriptions for the automation of manufacturing processes is 164

proposed. This paper uses a knowledge base in combination 165

with ontologies to infer knowledge through reasoning for a given 166

process specification. However, this approach was not tested in 167

a physical system and the reusability of the obtained plans is 168

limited to certain initial conditions. 169

Safety plays an important role in successfully deploying in- 170

dustrial robots. Safety requirements specified by the Organiza- 171

tion for Standardization, such as ISO 10218-1/2 [23], [24], and 172

IEC 61508 [25], have to be fulfilled. A new specification (ISO 173

15066) [26] specifically addresses safety requirements for phys- 174

ical interactions with robots in fence-less workspaces. Robot 175

system solutions can follow different principles for enabling 176

safe human-robot interactions in shared workspaces. Differ- 177

ent scenarios for collaborative operations and their implications 178

for safety are discussed in [27]. The robot introduced in [3] is 179
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Fig. 2. Overview of the robot framework integrating the technologies:
Multimodal robot skin, robot behavior generator, and semantic reasoning
engine.

inherently safe because of its low inertia and high passive com-180

pliance. On the other hand, the Kuka LWR minimizes injury181

risks by lowering the load-to-weight ratio, enabling fast reac-182

tions to collisions, and providing active compliance through183

force/torque sensing [28]. The ROSETTA project introduces a184

flexible, collaborative robot for the automatic assembly of small185

parts [29]. Safe interaction in shared workspaces is enhanced186

through low payload and inertia, a mechanical design without187

sharp or pointed edges, cushioning (passive compliance), power188

and speed limitations, and software based collision detection.189

However, these principles add constraints to the robot design,190

making them more expensive, and require a complete redesign191

of industrial robots.
Q1

192

B. Main Contributions193

In this paper, we extend our previous work [30] to improve our194

proposed method, which integrates three robotic technologies195

to allow the fast deployment of industrial robot systems, namely196

the Multimodal robot skin, the Robot behavior generator, and197

the Semantic reasoning engine, see Fig. 2. More concretely, our198

contributions are:199

1) An overview on how the proposed technologies can be200

integrated in an end-to-end framework;201

2) A multimodal control approach, providing fast reactions202

to reliably detected contacts, and precontacts to improve203

pHRI;204

3) The enhancement of our semantic reasoning method to205

kinesthetically teach new activities to robots without the206

need of an expert robot-programmer;207

4) The demonstration of the flexibility and reusability of208

the framework in different situations, such as the adap-209

tation of the learned processes to new objects, and their210

transferability to different robots (with different frame of211

reference), without human intervention.212

5) The extension of the reasoning method to detect and213

handle errors at execution time.214

II. MULTIMODAL ROBOT SKIN215

Fast, configurable multimodal robot skin can transform a stan-216

dard industrial robot arm into a reactive robot system, enabling217

Fig. 3. Block diagram of our end-to-end self-configuring and self-
calibrating robot skin approach.

pHRI. A robot covered with robot skin can detect contacts 218

and precontacts with high confidence and without occlusion. 219

In combination with appropriate reactive low-level controllers, 220

robot skin enables robots to actively mitigate or avoid poten- 221

tially dangerous situations generated by unexpected changes in 222

the environment, see Section III. 223

Our robot skin [31] is composed of modularized, hexagonally 224

shaped skin cells [see Fig. 3(a)]. Each of these cells utilizes the 225

same set of sensors, which transduce tactile information of dif- 226

ferent modalities, such as vibrations (3-D acceleration sensor), 227

pressure (three capacitive force sensors), pretouch (optical prox- 228

imity sensor), and temperature (two temperature sensors). The 229

skin cells communicate and exchange information with their 230

neighbors, and build up a self-organized and redundant skin 231

cell network, which enables bidirectional communication with 232

a central processing system, see Fig. 3(a) and (b). The robot 233

skin uses the standard Gigabit Ethernet protocol, thus specific 234

drivers are not required, making the robot skin easy to deploy. 235

A group of connected skin cells forms a skin patch, and each 236

patch has a root cell, see Fig. 3(b). These patches are used to 237

cover the robot limbs, see Fig. 3(c) and (d). The root cell of a 238

patch is used as a common reference frame for all the skin cells 239

in a patch to define their spatial location on a robot link. This 240

spatial information (homogeneous transformations) is essential 241

to map tactile information to meaningful control commands, 242

and is obtained through a robot skin calibration process. 243

A. Robot Skin Calibration 244

Performing manual skin calibration of hundreds of skin cells 245

is prone to errors and totally infeasible. We tackle this challenge 246

by developing a complete end-to-end robot skin system, see 247

Fig. 3. The first stage of the system is to explore the cell network 248

using a self-organizing network algorithm, resulting in optimal 249

communication paths and neighbor information of the skin cells 250

[see Fig. 3(b)]. Next, we use motor babbling, a 3-D surface re- 251

construction algorithm, and an extrinsic calibration algorithm to 252

obtain both, the relative poses of the skin cells with respect to the 253

root cell, see Fig. 3(c), and the root cell with respect to the robot 254

link, Fig. 3(d). From these homogeneous transformations, we 255

obtain a set of Denavit–Hartenberg-like parameters, Fig. 3(e), 256
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Fig. 4. (a) General control pipeline to fuse robot skin signals in multiple
controllers. Fi,m and Pi are the forces and proximity signals of a Celli .
Wi ∈ R6×1 is a virtual tactile wrench, where JC ell i ∈ R6×n , with n as the
robot’s DoF, represents the Jacobian of each cell [32]. Ws and Wk are
weight matrices to control the influence of each low-level control and de-
pend on the specific Robot Behavior. (b) Torque resolver defined by two
principal modules: first, the nonlinear trajectory generator that produces
desired trajectories based on user-defined dynamic behaviors, and sec-
ond, the inner velocity control that generates a desired joint velocity to
compensate uncertainties in the robot parameters. qv , q̇v represent the
joint position/velocity of the virtual robot (desired position/velocity), q, q̇
are the joint position/velocity of the real robot, qc , q̇c are the commanded
joint position/velocities. E(q̇v , q̇) is a joint velocity estimator.

which can be used to generate kinematic models [forward kine-257

matics and robot Jacobians, Fig. 3(f)]. For further details about258

this calibration process, see [32]. These kinematic models are259

used to obtain the dynamic model of the robot. This model is260

defined in a parametric algebraic form, and its dynamic param-261

eters are defined by the designer, see Fig. 3(f). In this manner,262

the designer can define how the robot should react to the robot263

skin information, i.e., the desired dynamic behavior of the robot.264

Notice that the dynamic parameters do not need to be exact, but265

they should produce a suitable desired behavior that the real266

robot is able to generate. A close approximation of these param-267

eters can be obtained using the Robot Regressor technique [33].268

These models are exploited by our Robot control framework269

(see Fig. 4(b) in Section III).270

B. Event-Driven Robot Skin271

The deployment of large-scale robot skin3 introduces new272

challenges [34]. To tackle these challenges, we investigate and273

apply biologically inspired principles. The pivotal principle that274

we use is the novelty driven tactile information transduction,275

transmission, and processing, i.e., an event-driven system. In276

contrast to synchronous sensors, which continuously transmit277

3We estimate that a completely covered humanoid robot will need at least
3000 skin cells.

Fig. 5. Figure shows the arm behaviors composed of low-level con-
trollers running in parallel. The gripper behavior is a state machine
(open/close).

information, the sensors of an event-driven system only transmit 278

information when there is an event. Events represent novel infor- 279

mation and are usually triggered by sufficiently large changes in 280

the sensed information. The skin cells of our event-driven robot 281

skin asynchronously transmit information in form of complete 282

sensor values, this means that this information is not based on 283

differences in the form of deltas [34]. As a result, event-driven 284

robot skin improves the performance of real-time control, and 285

allows fast controller responses. For example, this event-driven 286

system reduced the network usage of a skin network with 253 287

skin cells from 1 MB/s to 81 kB/s, and the CPU usage of the 288

controller from around 104% to 42% [35]. 289

III. ROBOT BEHAVIORS 290

The Robot Behavior module provides a library of low-level 291

controllers that can be combined to produce different robot be- 292

haviors. This library contains control approaches with low-level 293

control methodologies that produce continuous signals for the 294

robot arms, the hands, and the grippers. Examples of these con- 295

trollers are depicted in Fig. 5. The Skin Joint controller is of 296

particular interest since it transforms the multimodal signals ob- 297

tained from the robot skin into a coherent control signal that can 298

be fused with the other low-level controllers, see Fig. 4(a). The 299

generation of robot behaviors has three steps. The first step is to 300

transform the tactile signals (force and proximity) of the robot 301

skin into torque signals Skin Torque (τskin ). This is achieved by 302

representing these robot skin signals as forces.4 This is possible 303

since we know the spatial information (pose) of each skin cell, 304

see Fig. 3(c) and (d) in Section II-A. The second step is to fuse 305

the Skin Torque signals with the other controllers to obtain dif- 306

ferent behaviors. In this case, we used a simple weighted sum 307

approach. The third step is to transform this fused control signal 308

into an appropriate command signal. This command depends 309

on the target robot.5 If the robot uses torque commands, the 310

commanded signal will be the fused torque signal. However, if 311

the robot is controlled using joint positions/velocities, we use a 312

Torque Resolver, see Fig. 4(b). This resolver uses the kinematic 313

and dynamic models obtained in the self-calibration process, 314

see Fig. 3(e)–(g) in Section II-A [32]. 315

4We selected force (wrench) as the representation of the signals due to its
convenient relation with joint torques τ = JT F .

5In general, we can find three types of command interfaces for robots: joint
position, joint velocity, and joint torque commands. The first two are the most
common interfaces for industrial robots.
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Fig. 6. Hierarchical structure of our reasoning system. The Problem
Space (purple box) provides semantic descriptions which represent
robot-agnostic knowledge. The Execution Space (red box) is the in-
formation needed to execute robot motions. This information is robot-
dependent.

The fusion of the different low-level controllers produces316

various behaviors. These combinations are defined in the Robot317

Behavior module, e.g., the Reach Cartesian Goal Compliant318

behavior fuses the Cartesian, the Skin Torque, and the Gravity319

compensation controllers, see Fig. 5. The previously discussed320

controller allows the robot to follow a Cartesian trajectory with321

the end-effector while at the same time can react to the tactile322

stimuli. This Robot Behavior module is the interface between323

the Semantic Reasoning Engine module, see Section IV, and the324

robot’s low-level controllers.325

IV. SEMANTIC REASONING ENGINE326

We developed a semantic reasoning engine that allows327

nonexpert users to teach robots new tasks simply by guiding328

the robot’s end-effector. To this aim, we use a hierarchical329

learning approach that is able to extract and interpret low-level330

features from the robot’s end-effector as well as from its331

sensors to automatically generate compact semantic rules. The332

reasoning engine uses the obtained semantic rules to infer333

the robot activities as well as tasks from human Kinesthetic334

demonstrations (high-level). Fig. 6 exemplifies the transition335

between the lowest level to the highest level used in our336

system. The lowest level represents robot behaviors, which337

are defined in the execution space. These behaviors represent338

the primitives that the robots can execute. The robot motions339

are automatically interpreted by our reasoning system as340

activities, e.g., “Reach” and “Take.” Our reasoning system is341

also able to combine a set of different activities into a task (see342

Fig. 6). Finally, the user defines a new process using the tasks343

provided by our system. Processes, Tasks, and Activities are344

described in the Problem Space, and they are robot agnostic345

descriptions.346

In order to automatically interpret the kinesthetic demonstra-347

tions, our learning system transforms the continuous signals348

obtained from the demonstrations to symbolic representations349

[36]. For example, the motions (m) of the robot’s end-effector350

(ef) are interpreted as either Move or Not Move symbols. Where351

Move: the end-effector is moving, i.e., ẋ > ε and Not Move:352

the end-effector stops its motion, i.e., ẋ → 0, where ẋ is the353

end-effector velocity and ε is a heuristically defined threshold.354

In addition, the information about the perceived environment355

is also transformed into symbolic representations. For the356

demonstration scenario described in Section V, the robot tactile357

omnidirectional mobile manipulator (TOMM) can perceive358

its environment through the following sensors: robot skin,359

RGB-D camera, and joint sensors. From these sensors the 360

following abstract properties can be defined: 361

1) ObjectActedOn6 (oa ): The end-effector is moving to- 362

wards an object, d(xef , xoi
) → 0; 363

2) ObjectInHand (oh ): The object is in the end-effector, i.e., 364

d(xef , xoi
) ≈ 0, where d(·, ·) is the Euclidean distance 365

between the end-effector (xef ) and the detected object 366

(xoi
); 367

3) GripperState (gs): The current state of the gripper 368

(open/closed). 369

After transforming the perceived environment and the robot 370

motions into symbolic representations, ss = {m, oa , oh , gs}, 371

we train a decision tree (T ) using only one kinesthetic demon- 372

stration. We follow a similar pipeline as the one presented in 373

[36], where the C4.5 algorithm is employed to compute T . This 374

tree contains semantic descriptions of the robot motions repre- 375

sented by if-then rules, which are human readable: 376

if ef(Move) & ObjActOn(Fruit) & Gripper(Open)

→ Act(Reach) (1)

The rules obtained from T are enhanced with our knowledge and 377

reasoning engine. The knowledge base is defined by an ontology 378

representation, expressed in the Web Ontology Language. The 379

reasoning is based on description logics, such as Prolog queries. 380

Note that (1) contains the class “Fruit” rather than the trained 381

object “Orange” which means that the extracted semantic rep- 382

resentation for the activity “Reach” can be reused for all the 383

objects that belong to the general class “Fruit”. Consequently, 384

the more general we create the semantic representations, the 385

more demonstrations the robot can interpret without the need 386

to retrain, thus making the reasoning system reusable in dif- 387

ferent situations [37], [38]. When a new activity is inferred by 388

the reasoning system, a Robot Behavior is associated with this 389

activity and stored in an abstract Robot Behavior representation 390

(Skill Map), see Fig. 6. The Skill Map contains the necessary 391

parameters to execute the demonstrated activity by the robot, 392

thus allowing the transition between the execution space and 393

the problem space. For example, when the reasoning system 394

infers the activity “PutSomethingSomewhere,” the parameters 395

generated in the skill map are something, somewhere, and Robot 396

Behavior, where something is instantiated when a new object is 397

detected (orange), somewhere identifies the final position of the 398

activity (box) and the executed Robot Behavior is Reach Carte- 399

sian. Then, a directed task graph is obtained where vertices 400

represent the inferred activities and edges represent transitions 401

between activities. The pre- and post- conditions of each activ- 402

ity are also obtained [39]. Furthermore, the reasoning system 403

can provide the sequence of activities that compose a task. The 404

user can also define a new process by selecting the desired tasks 405

and a stopping criterion,7 without the specification of additional 406

parameters. 407

6The information from the object can be obtained either from the vision
system or the proximity sensor of the skin. The same is valid for the property
ObjectInHand.

7The stop criterion indicates when a process should stop, e.g., duration,
weight, or number of objects.
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Fig. 7. Different robot behaviors obtained with the Multi-modal Robot Control Framework. The Skin joint control uses the robot skin to generate the
skin torque. This torque reflects tactile interactions with the robot. (a) The robot is transformed into a compliant system. Each time there is a physical
interaction, reflected in the skin joint control torque (a1), the joint position changes (a2). (b) For the kinesthetic teaching mode, the robot changes
its position (b2) when the user physically interacts with it (b1). In this case, the robot does not return to its original position after the interaction.
(c) When a user interferes with the robot’s motion (c1), the robot reacts and smoothly changes its trajectory (c2). As soon as the obstacle is no longer
present, the robot restarts the task until it reaches the goal (c2).

Fig. 8. Semantic reasoning engine interprets user demonstrations. The input of the reasoning engine (white boxes) comes from the human, i.e.,
he/she selects the Robot Behavior and demonstrates the activities. The output (gray boxes) is defined with two abstraction levels. The first level,
(light gray) represents the inferred activities and their associated Robot Behavior. The second level (dark gray) represents the tasks generated from
the inferred activities, using the sequence followed by the user during the demonstration. The user can build different processes as needed (lower
dark gray box).

V. DEMONSTRATION SCENARIOS & VALIDATION408

A. Robot Platform & Evaluation of Control Behaviors409

To evaluate our multilevel control framework, our tactile410

omni-directional mobile manipulator with more than 600 skin411

cells was used [40]. These skin cells cover the arms and the412

grippers. The grippers have three different skin patches: hand413

patches to detect obstacles, external finger patches to detect the414

texture of the fruits (stiff or soft), and internal finger patches415

to detect when the grippers are grasping an object. TOMM has416

three-fingered grippers which are inherently compliant and suit-417

able to handle fruits without damaging them. We consider the418

following three different dynamic behaviors:419

1) Joint Compliant behavior,420

2) Kinesthetic Joint behavior, and421

3) Reach Cartesian Goal behavior.422

In the Joint Compliant behavior [see Fig. 7(a)], the robot re-423

acts to tactile events and changes its position, e.g., when the user424

applies forces to the arm. When there are no external perturba-425

tions, the robot returns to its original position smoothly. The426

Kinesthetic Joint behavior [see Fig. 7(b)] is similar to the Joint427

Compliant behavior, but instead of returning to its original posi-428

tion, the robot will stop and will remain in this position as long429

as no further tactile events are detected. In the Reach Cartesian430

Goal behavior [see Fig. 7(c)], the goal position of the robot’s431

end-effector is defined by the user. Then, a trajectory to reach432

this goal is computed using a spline function. The robot arm fol-433

lows this trajectory and when the user interferes with the robot434

(detected by the skin sensors), this event produces a compliant 435

reactive behavior which forces a change in the robot trajectory. 436

B. Sorting Fruits Scenario 437

As a demonstration scenario, we consider the task of sorting 438

fruits. With this scenario, we can highlight the benefits of using 439

the tactile and proximity sensors on the robot skin to sense the 440

quality of the fruits.8 The user teaches the robot the activities 441

and the intermediate tasks required to sort oranges: 1) Good 442

oranges (with stiff texture) will be placed in a box, and 2) Bad 443

oranges (with soft texture) will be thrown into the trash bin, 444

see Fig. 8. The texture of the oranges is evaluated using the 445

force sensors from the robot skin placed in the external finger 446

patches of the grippers. The stiffness threshold to discriminate 447

the texture of the fruits is defined during the demonstration. Our 448

approach consists of two phases: Teaching and Execution. 449

C. Kinesthetic Teaching With Semantic Inference 450

In our previous work [41], we obtained semantic models of 451

human activities for “making a pancake” using the iCub robot. 452

From these models, we obtained common descriptions such as 453

“Reach,” “Take,” etc., along with common tasks such as “Pick- 454

ing an object.” These semantic descriptions were reused and ex- 455

tended to teach a Humanoid robot H1 (REEM-C) how to “make 456

8This scenario was inspired by the standard process of orange sorting where
humans use their tactile sensation to discriminate good and bad oranges.



IEE
E P

ro
of

DEAN-LEON et al.: INTEGRATION OF ROBOTIC TECHNOLOGIES FOR RAPIDLY DEPLOYABLE ROBOTS 7

Fig. 9. Learned process of “Sorting Fruits”. The semantic system verifies the pre-conditions of each task before starting its execution. The first
row depicts this process when the perception system detected oranges. The second row shows the automatic adaptation of the same process for
apples. Task 2 and Task 3 have been rejected since the class “Apple” does not have the Squeeze property. When there is an anomaly, for example,
dropping an orange, the system can detect the error and the following tasks are rejected.

a sandwich” [42]. In this case, the semantic descriptions were457

extended to include new activities, such as “Cut” and new tasks,458

such as “Cutting an object”. These semantic descriptions are the459

initial knowledge-base for our robot TOMM (robot experience)460

to learn how to “sort fruits”. This is possible since the semantic461

models are robot-agnostic and defined in the Problem Space,462

see Fig. 6. During the teaching phase, our reasoning system is463

extended to generate and populate new semantic descriptions for464

the “sorting fruit” scenario through human demonstrations. For465

these demonstrations, the user kinesthetically guides the robot466

by selecting a specific Robot Behavior, see Fig. 5.467

Fig. 8 depicts the pipeline of the reasoning engine which468

uses human demonstrations as input (low-level sensor informa-469

tion) and produces the inferred activities as output (high-level470

interpretations). These activities will be connected by the rea-471

soning engine to generate the demonstrated tasks, following the472

sequence taught by the user. Each inferred activity will be asso-473

ciated with a specific Robot Behavior through the Skill Map. For474

example, in Fig. 8(a), the user selects the right arm as the de-475

sired resource for teaching. Then, the user selects the Kinesthetic476

Cartesian behavior to move the robot’s end-effector towards the477

orange. This demonstration is inferred by the semantic engine,478

as the activity “Reach”, and the Skill Map connects this activity479

with the robot behavior Reach Cartesian. Similarly, Fig. 8(b)480

depicts the user selecting the gripper as the desired resource and481

Close Gripper as its behavior. This new demonstration is in-482

terpreted by the semantic engine, as the activity “Take”. Then,483

these two activities (“Reach” and “Take”) are automatically484

connected and defined as the task “Pick Fruit” by the reason-485

ing system. As part of the task definition, the reasoning system486

defines the pre- and post- conditions required for each task, see487

Fig. 9. All these generated tasks will be stored in the knowledge488

base and can be retrieved by the user to define new processes.489

The processes and the tasks are specified using abstract rep-490

resentations (semantic level), which make the system highly491

flexible. Note that the reasoning system abstracts the meaning492

of the demonstrated tasks, instead of storing motion patterns,493

or low-level information, such as velocities, trajectory patterns,494

end-effector positions, etc. For example, instead of saving the495

trajectory from the box to the orange while moving the arm, the496

learning system defines this activity as “Reaching”.497

Fig. 9 depicts the automatically generated tasks, for the pro-498

cess “Sorting Fruits”. In this case, five tasks were generated:499

1) Pick fruit, 2) Identify good fruit, 3) Put fruit into a box,500

4) Identify bad fruit, and 5) Put fruit to trash.9 Our reasoning 501

method also provides the option to create tasks by manually se- 502

lecting and connecting the available activities from the acquired 503

knowledge base (using a GUI). 504

The main feature of this learning system is that a nonexpert 505

user can teach the robot new tasks. Since the user does not need 506

to program the robot directly (using a teach-pendant and a spe- 507

cific robot language), but rather the user guides the robot and 508

the system generates the proper sequences in a human read- 509

able form. In this context, the robot’s program is replaced by a 510

sequence of tasks where their parameters are defined at runtime. 511

We tested the integration of the presented three technologies, 512

using the demonstrations from two different participants.10 Four 513

demonstrations were considered with random positions for the 514

oranges [43]. The robot is able to recognize the demonstrated 515

activities using our reasoning technology with an average ac- 516

curacy of around 83%11 when the participants kinesthetically 517

showed the desired activities for the sorting fruits process. The 518

sequence of recognized activities is consecutively stored to auto- 519

matically define task structures to accelerate the learning of new 520

tasks [39]. Ongoing research on a formal validation, including 521

multiple participants with different backgrounds, is currently 522

being pursued. 523

To teach a new process to a robot, a normal user takes ap- 524

proximately two minutes and 44 s. Two minutes and 6 s to 525

kinesthetically teach the activities and create the tasks, and 38 s 526

to build a new process and launch it [39]. These times depend 527

on the complexity of the new process, in this case, the process 528

consists of five tasks. After that, no more user intervention is 529

required, even when new objects appear in the scene. 530

D. Execution of the Demonstrated Tasks 531

First, the user indicates the process to be executed, see Fig. 10. 532

Then, the framework verifies if the process can be executed in 533

the current environment. For this, the semantic engine loads the 534

tasks of the selected process, see Fig. 9. Prior to executing a 535

task, the system verifies if all the task preconditions are satis- 536

fied. If a precondition is not satisfied, the task fails (we exploit 537

9The system connects the activities to compose the tasks, and the user defines
the labels for these tasks.

10One participant was a robotic expert and the other nonexpert.
11This accuracy is obtained by comparing the recognized activities between

the reasoning system and the ground truth (manual annotations).
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Fig. 10. Execution of the learned process. The semantic engine analyzes all the tasks and their activities of the process and executes the
associated robot behaviors. The input of the execution phase is the semantic process, and the output is the execution of the robot behaviors with
the required parameters.

this verification process to detect errors, see Section V-F). Then,538

for each task, the semantic engine infers the sequence of activi-539

ties at runtime. Each activity has an associated Robot Behavior,540

which requires specific parameters for its execution. These pa-541

rameters are obtained at runtime, using the perception system,542

which identifies and labels the objects in the scene. The semantic543

engine uses these labels to create instances of the proper class544

of the identified object. The instances are single data containers545

(semantic abstractions) that provide multiple information from546

the perceived object, e.g., parent class, type, color, size, posi-547

tion, orientation, squeeze ratio, etc. For the resources (arms and548

grippers) we use the following information joint/end-effector549

positions, velocities. For example, the perception system identi-550

fies an orange and obtains its 3-D-position. Then, an instance of551

the class “Orange” is created and its property named “Position”552

is populated with the orange’s position.553

The semantic engine starts to execute each activity with its554

associated Robot Behavior and its targeted object. Each executed555

behavior triggers a set of low-level controllers, which requires556

different parameters. For example, in Fig. 10(a), the Task 1 “Pick557

Fruit” executes two sequential activities: “Reach” and “Take”.558

The unbounded variable Fruit is instantiated with the perceived559

object (an instance of class “Orange”).12560

The activity “Reach” is associated with the Reach Carte-561

sian behavior, see Fig. 8(a). This behavior executes in parallel562

three low-level controllers Spline Cartesian, Skin Cartesian, and563

Gravity compensation, see Fig. 5. The Spline Cartesian control564

requires two parameters the origin and the goal. The origin is565

set, by default, as the current position of the end-effector, and566

the goal is defined, by the semantic engine, as the orange’s567

position. When the low-level controllers are finished, the next568

activity will be executed. For the activity “Squeeze,” the robot569

places the end-effector over the fruit, and moves down slowly570

until the fruit is detected by the robot skin (soft contact). Then,571

the end-effector moves down again a few milliliters and mea-572

sures the contact force. This force is correlated to the stiffness573

of the fruit. The rest of the tasks and their activities are exe-574

cuted until the process is finished. Note that during the teaching575

phase, the user demonstrated the process using only one arm,576

12The perception system can detect different objects from different classes,
e.g., oranges and apples (class “Fruit”), box and trash bin (class “Container”),
etc. The semantic reasoning discriminates and uses these objects according to
their class.

Fig. 11. Executing the inferred process for apples. The same process
“Sorting Fruits” can be used without user intervention or reprogramming,
even when the process was generated using oranges. The inferred exe-
cution is the robot grasping the apples and putting them into the boxes
without squeezing them. This is a correct execution since the apples
should not be squeezed.

i.e., the right arm. However, since the activities and their param- 577

eters are defined with abstract representations, the same process 578

can be used with multiple resources (robots). This makes the 579

descriptions general, transferable, and reusable. 580

The semantic system verifies the available resources of the 581

robot for the execution of the desired task. In this case, the robot 582

has the right and the left arms enabled, and there is more than 583

one orange on the table, see Fig. 10. Therefore, exactly, the same 584

process (“Sorting Fruits”) is executed with both arms (the only 585

difference is the resource assigned by the semantic engine). 586

E. Handling Variations in the Process: Apple 587

The obtained general descriptions of tasks and activities allow 588

our generated semantic process to work also with objects dif- 589

ferent from the ones used during the teaching phase. In Fig. 11, 590

the scenario presents a different object (apples). In this case, the 591

variable Fruit is an instance of the class “Apple” and the cor- 592

responding semantic properties of this class are loaded. How- 593

ever, the class “Apple” does not have the property “squeezable”. 594

Therefore, Task 2 and Task 4 can not be executed, see Fig. 9 595

(Squeeze = null). In this case, only the tasks that can be exe- 596

cuted for apples are Task 1, Task 3, and Task 5 (tasks that do 597

not depend on “squeeze” property). These tasks are executed se- 598

quentially. As a result, the robot takes the apple and place it into 599

the box. Our reasoning system only takes approximately 0.124 s 600

to make this new execution plan compared to 38 s required to 601

generate the orange sorting plan. 602



IEE
E P

ro
of

DEAN-LEON et al.: INTEGRATION OF ROBOTIC TECHNOLOGIES FOR RAPIDLY DEPLOYABLE ROBOTS 9

Fig. 12. Error detection and user perturbations. (a) Using the internal
finger patches, the semantic reasoning detects this error and infers which
task can be executed. (b) The robot safely reacts to the human interaction
and avoids collisions. (c) Exploiting both the force and the proximity
sensors, the robot skin can detect even a feather.

F. Error Detection603

The structure of the process description allows the seman-604

tic engine to detect errors through the verification of the pre-605

conditions on each task. Fig. 12(a) shows the case when the606

user removes the orange from the robot’s gripper at the end607

of Task 1. This anomaly is detected by the reasoning engine,608

i.e., Error Detection. As can be seen in Fig. 9, Task 2 re-609

quires as precondition that the gripper has an object in the610

hand (OIH = orange) since this precondition is not satisfied,611

then all the following tasks will fail. Hence, the sequence612

Task 0–Task 1 will be repeated until the gripper has an ob-613

ject in hand. In this case, the system also provides our first614

approach to Error Handling. The time that our system takes to615

detect this error and to search for a new strategy takes around616

0.38 s.617

G. Physical Human-Robot Interaction618

One important aspect considered in our system is the pHRI,619

where safe interaction is paramount. In Fig. 5 can be seen that all620

the behaviors contain either Skin Joint Control or Skin Cartesian621

Control. These two controllers make the robot reactive to tactile622

events (precollisions and pressure) allowing physical interac-623

tions. Fig. 12(b) and (c) show two examples of these reactive624

interactions. Other safety mechanisms, we have adopted in our625

robot skin are redundancy of communication paths in the skin626

cell network, redundancy in skin sensor modality (e.g., contact627

detection through proximity and force sensors), and real-time628

user feedback through RGB LEDs of the skin cells.13 In order629

to validate our rapidly deployable robot system, we success-630

fully installed the robot skin on two different robot arms in two631

different laboratories. First, we fully covered a UR5 robot with632

410 skin cells using 13 patches. In addition, we also covered the633

forelimb of a UR10 arm with 373 skin cells. The deployment634

from installing the skin patches in the robots to a fully calibrated635

and ready to use robot skin took in both cases about 5 h.636

We provide a video14 to illustrate the robot behaviors in637

our robot TOMM using the proposed approach, and to show638

the teaching and execution phases for the process “Sorting639

Fruits.”640

13The authors consider these mechanisms only as starting points for func-
tional safety and standardization, and we only highlight the system’s potential
regarding safety. Nevertheless, the process for productization of these systems
is still in a preliminary state.

14https://youtu.be/_X255OyzGs0

VI. CONCLUSION 641

The overview of the integration of three main robotic tech- 642

nologies was presented in this paper. These technologies enable 643

fast deployment of industrial robot systems and consists of a fast 644

self-configurable artificial skin, a multimodal control framework 645

to extend the dynamic behaviors of standard robots, and a robust 646

and intuitive teaching method based on semantic reasoning. The 647

presented results demonstrate that these technologies enhance 648

the usability, flexibility, and introduce our first approach to han- 649

dle safety for industrial robots, especially when a nonexpert user 650

teaches the robot new processes using pHRI. The usability is 651

demonstrated with the following aspects: 652

1) Novel technologies to teach robots new tasks using pHRI; 653

2) The extension of a semantic reasoning engine to auto- 654

matically infer activities and tasks from human demon- 655

strations; 656

3) The generation of processes in human-readable form via 657

semantic descriptions, and; 658

4) Error detection and handling during process execution 659

without human intervention. 660

The flexibility is validated as follows: 1) end-to-end robot 661

skin framework for fast deployment on different robots, and 662

2) a knowledge-base system that allows the re-usability and 663

transferability of learned skills. The safety is realized through 664

a reactive control framework based on multimodal robot skin 665

avoiding dangerous collisions during HRI. The presented frame- 666

work can be implemented in any standard industrial robot as 667

long as it provides an external control interface. 668
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