
Shuping Ji

Efficient Content-based
Publish/Subscribe
Routing and Boolean
Expression Matching
Algorithms

Fakultät für Informatik

Efficient Content-based
Publish/Subscribe Routing and
Boolean Expression Matching

Algorithms

Shuping Ji

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

Vorsitzender: Prof. Dr. George Carle
Prüfer der Dissertation:

1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Dr. David E. Bakken

Die Dissertation wurde am 08.08.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 15.09.2018 angenommen.

Abstract
Event routing and Boolean expression matching are two key functions for content-
based publish/subscribe (pub/sub) systems. Moreover, Boolean expression matching
plays an important role in a growing number of other applications, such as online
advertising, online news dissemination and workflow management. However, the
existing routing and Boolean expression matching solutions present limitations
on flexibility, performance, expressiveness and applicability. To overcome these
limitations, we propose new efficient content-based pub/sub routing and Boolean
expression matching algorithms.

Despite suffering from inefficiency and flexibility limitations, the filter-based routing
(FBR) algorithm is widely used in content-based pub/sub systems. To address its
limitations, we propose a dynamic destination-based routing algorithm called D-DBR,
which decomposes pub/sub into two independent parts: Content-based matching
and destination-based multicasting. D-DBR exhibits low event matching cost and
high efficiency, flexibility, and robustness for event routing in small scale overlays.
To boost scalability, we further complement D-DBR with a new routing algorithm
called MERC. MERC divides the overlay into interconnected clusters and applies
content-based and destination-based mechanisms to route events inter- and intra-
cluster, respectively. We implemented all algorithms in the PADRES pub/sub system.
Experimental results show that our algorithms outperform FBR in terms of improving
event dissemination throughput by up to 700% and reducing the end-to-end latency
by up to 55%.

Conjunctive Boolean expression matching is an important function for many appli-
cations, including content-based pub/sub systems. However, existing solutions still
suffer from limitations when applied to high-dimensional and dense workloads. To
overcome these limitations, we design a novel data structure called PS-Tree that
can efficiently index predicates. By dividing predicates into disjoint predicate spaces,
PS-Tree achieves high matching performance and good expressiveness. Based on
PS-Tree, we first propose a conjunctive Boolean expression matching algorithm
PSTBloom. By efficiently filtering out a large proportion of unmatching expressions,
PSTBloom achieves high matching performance, especially for high-dimensional
workloads. PSTBloom also achieves fast index construction and a small memory

iii

footprint. Compared with state-of-the-art methods, comprehensive experiments show
that PSTBloom reduces the matching time, index construction time and memory
usage by up to 84%, 78% and 94%, respectively. Although PSTBloom is effective for
many workload distributions, dense workloads represent new challenges to PSTBloom
and other algorithms. To effectively handle dense workloads, we further propose
the PSTHash algorithm, which divides conjunctive Boolean expressions into disjoint
multi-dimensional predicate spaces. This organization prunes partially matching
expressions efficiently. Comprehensive experiments on both synthetic and real-world
datasets show that PSTHash improves the matching performance by up to 92% for
dense workloads.

Conjunctive Boolean expression matching presents expressiveness limitation. A
growing number of applications need the supporting of arbitrary Boolean expressions
matching, such as advertising exchanges, automatic targeting and some pub/sub
systems. However, most of the existing solutions can only support conjunctive
Boolean expression matching. The limited number of solutions that can work
directly on arbitrary Boolean expressions present applicability and performance
limitations. Moreover, it is not always effective to normalize arbitrary Boolean
expressions into conjunctive form and then use existing methods for evaluating such
expressions because of the exponential increase in the size of the expressions. For
these reasons, we propose a novel A-Tree data structure to efficiently index arbitrary
Boolean expressions. A-Tree is a dynamic multiroot tree, in which predicates and
subexpressions from different arbitrary Boolean expressions are aggregated and shared.
A-Tree employs dynamic self-adjustment policies to adapt the index as the workload
changes. Our comprehensive experiments show that the A-Tree-based matching
solution outperforms existing arbitrary Boolean expression matching algorithms in
terms of matching performance, index construction time and memory consumption
by up to 96%, 71% and 65%, respectively. Moreover, on some conjunctive expression
workloads, A-Tree achieves even better matching performance than state-of-the-art
conjunctive Boolean expression matching algorithms.

iv

Zusammenfassung
Event Routing und Boolean Expression Matching sind zwei Schlüsselfunktionen für
Content-basierte Publish/Subscribe-System. Darüber hinaus spielt das Boolesche
Expression-Matching eine wichtige Rolle in anderen stark wachsenden Anwendungs-
bereichen, wie der Online-Werbung, der Online-Nachrichtenverbreitung und dem
Workflow-Management. Die vorhandenen Routing- und Booleschen Expressions-
Matching-Lösungen weisen jedoch Einschränkungen in Bezug auf ihre Flexibilität,
Leistung, Ausdruckskraft und Anwendbarkeit auf. Um diese Einschränkungen zu
überwinden, schlagen wir neue effiziente Routing- und Matching-Algorithmen vor.

Obwohl der Filter-basierte Routing (FBR) Algorithmus ineffizient ist und unter Flexi-
bilitätseinschränkungen leidet, wird er häufig in Content-basierten Publish/Subscribe-
Systemen (Pub/Sub-Systemen) verwendet. Um diesen Einschränkungen zu begegnen,
schlagen wir einen dynamischen, zielbasierten Routing-Algorithmus namens D-DBR
vor. Dieser teilt Pub/Sub-Systeme in zwei unabhängige Vorgänge auf: Content-
basierte Matching und zielbasiertes Multicasting. Der D-DBR Algorithmus weist
niedrige Kosten für das Event-Matching und eine hohe Effizienz, Flexibilität und
Robustheit für das Event-Routing in kleinen Overlay Netzwerken auf. Um die
Skalierbarkeit zu erhöhen, ergänzen wir den D-DBR Algorithmus um einen neuen
Routing-Algorithmus namens MERC. MERC teilt das Overlay in miteinander
verbundene Cluster auf und wendet inhaltsbasierte und zielbasierte Mechanismen
an, um Ereignisse innerhalb und zwischen (intra bzw. inter) Clustern zu routen.
Experimentelle Ergebnisse zeigen, dass unsere Algorithmen den FBR Algorithmus
hinsichtlich des Ereignisdiffusionsdurchsatzes um bis zu 700% übertrifft und die
Ende-zu-Ende-Latenz um bis zu 55% reduziert.

Das konjunktiven Boolean Expression Matching ist eine wichtige Funktion für
viele Anwendungen, unter anderem für Content-basierte Publish/Subscribe-Systeme.
Die bestehenden Lösungen können jedoch nur eingeschränkt auf hochdimensionale
Arbeitslasten und Umgebungen angewendet werden. Um diese Einschränkungen zu
überwinden, entwickeln wir eine Datenstruktur namens PS-Tree, die Subskriptionen
effizient in einer Dimension indizieren kann. Indem einzelne Prädikate in disjunkte
Prädikatenräume aufgeteilt werden, erreicht PS-Tree eine hohe Matching-Leistung.
Basierend auf PS-Tree, schlagen wir zuerst den konjunktiven Booleschen Ausdruck

v

Matching-Algorithmus PSTBloom vor. Durch das effiziente Filtern eines großen Teils
von nicht übereinstimmenden Subskriptionen erzielt PSTBloom eine hohe Trefferquo-
te, insbesondere in hochdimensionalen Anwendungen. Der PSTBloom Algorithmus
und die verwendete Datenstruktur ermöglichen es außerdem den Index schnell
aufzubauen. Darüber hinaus hat die Datenstruktur einen geringen Speicherbedarf.
Im Vergleich zum aktuellen Stand der Technik zeigen umfangreiche Experimente, dass
PSTBloom die Matching-Zeit, die Index-Bauzeit und den Speicherverbrauch um bis zu
84%, 78% bzw. 94% reduziert. Obwohl PSTBloom für viele Arbeitslastverteilungen
effektiv ist, stellen sogenannte dichte Arbeitslasten neue Herausforderungen für
PSTBloom und andere Algorithmen dar. Um diese effizient zu handhaben, schlagen
wir außerdem den PSTHash-Algorithmus vor, der Subskriptionen in disjunkte mehr-
dimensionale Prädikaträume unterteilt. Umfassende Experimente an synthetischen
und realen Datensätzen zeigen, dass PSTHash die Matching-Leistung für dichte
Arbeitslasten um bis zu 92% verbessert.

Die effiziente Auswertung einer großen Anzahl von beliebigen Booleschen Ausdrücken
spielt in vielen Anwendungen eine wichtige Rolle, z. B. für den Werbeaustausch, das
automatische Targeting und die Veröffentlichung von Abonnentensystemen. Die mei-
sten vorhandenen Lösungen unterstützen jedoch nur konjunktive Boolesche Ausdrücke.
Die begrenzte Anzahl von Lösungen, die direkt mit beliebigen Booleschen Ausdrücken
arbeiten können, weisen Anwendbarkeits- und Leistungseinschränkungen auf. Darüber
hinaus ist es nicht immer effektiv, beliebige boolesche Ausdrücke in eine konjunktive
Form zu normalisieren und dann vorhandene Verfahren zum Auswerten solcher
Ausdrücke zu verwenden, da die Größe der auszuwertenden Ausdrücke exponentiell
zunimmt. Aus diesen Gründen schlagen wir eine neuartige A-Baum-Datenstruktur vor
(z. E. A-Tree), um beliebige Boolesche Ausdrücke effizient zu indizieren. Der A-Tree ist
ein dynamischer Mehrwurzelbaum (z. E. “multi-rooted tree”), in dem Prädikate und
Sub-Ausdrücke aus verschiedenen beliebigen Booleschen Ausdrücken aggregiert und
geteilt werden. A-Tree verwendet dynamische Self-Adjustment-Richtlinien, um den
Index anzupassen wenn sich die Arbeitslast ändert. Unsere umfassenden Experimente
zeigen, dass A-Tree die vorhandenen Algorithmen für das Matching von Booleschen
Ausdrücken bezüglich der Parameter: Matching-Leistung, der Indexaufbauzeit und des
Speicherverbrauchs um bis zu 96%, 71% bzw. 65% übertrifft. Darüber hinaus erreicht
A-Tree sogar bei konjunktiven Expression-Arbeitslasten eine bessere Matching-
Rate als die meisten existierenden konjunktiven Booleschen Expression-Matching-
Algorithmen, wie beispielsweise BETree und OpIndex.

vi

Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Approach . 6
1.4 Contributions . 10
1.5 Organization . 11

2 Related Work 13
2.1 Publish/Subscribe Routing . 13
2.2 Conjunctive Boolean Expression Matching 17
2.3 Arbitrary Boolean Expression Matching 20

3 Matching Model 25
3.1 Expression Language . 25
3.2 Matching Semantics . 27
3.3 Predicate Selectivity . 28

4 D-DBR Design 29
4.1 Content-based Matching Layer . 30
4.2 Destination-based Multicasting Layer 33
4.3 Dynamic Overlay Reconfiguration . 35
4.4 Algorithm Analysis . 37

5 MERC Design 39

vii

CONTENTS

5.1 Routing Tables . 40
5.2 Message Processing . 41
5.3 Algorithm Analysis . 42

6 PS-Tree Organization 45
6.1 PS-Tree Structure . 45
6.2 Index Construction . 47
6.3 Predicate Matching . 51
6.4 Dynamic Index Adjustment . 52
6.5 Expressiveness . 54
6.6 Time and Space Analysis . 54

7 PSTBloom Organization 57
7.1 PSTBloom Structure . 58
7.2 Index Construction . 59
7.3 Event Matching . 60
7.4 Subscription Deletion . 61
7.5 Time and Space Analysis . 61

8 PSTHash Organization 63
8.1 PSTHash Structure . 64
8.2 Index Construction . 66
8.3 Event Matching . 67
8.4 Subscription Deletion . 67
8.5 Time and Space Analysis . 68

9 A-Tree Organization 71
9.1 A-Tree Structure . 71
9.2 Index Construction . 73

9.2.1 Node Uniqueness . 73
9.2.2 Expression Reorganization . 74
9.2.3 Index Self-adjustment . 76
9.2.4 Expression Deletion . 78

9.3 Event Matching . 79
9.3.1 Matching Algorithm . 79

viii

CONTENTS

9.3.2 Event Matching Example . 81
9.3.3 Optimizations for Event Matching 84
9.3.4 Optimized Event Matching Example 86

9.4 Time and Space Analysis . 87

10 Experiments 89
10.1 Publish/Subscribe Routing . 89

10.1.1 Experiments on Computing Facility 89
10.1.2 Experiments Based on Simulations 96

10.2 Predicate Matching . 101
10.3 Conjunctive Boolean Expression Matching 102

10.3.1 Workloads . 102
10.3.2 Experiments on Synthetic Workloads 104
10.3.3 Experiments on Query Logs 113
10.3.4 Experiments on the Ads Dataset 113

10.4 Arbitrary Boolean Expression Matching 114
10.4.1 Workloads . 115
10.4.2 Experiments on Conjunctive Workload 116
10.4.3 Experiments on Arbitrary Workload 119
10.4.4 Experiments on the Ads Dataset 125

11 Conclusions 127

List of Figures 131

List of Tables 135

Bibliography 139

ix

CONTENTS

x

Chapter 1

Introduction

1.1 Motivation

Due to its asynchronous nature and inherent decoupling properties, the distributed
content-based publish/subscribe paradigm (pub/sub, for short) has been widely used
in the design of many distributed applications, such as online news dissemination [42],
workflow management [59], business process execution and monitoring [39], multi-
player online gaming [11], network management and monitoring [48], and distributed
system monitoring [61], to only name a few.

In the distributed pub/sub paradigm, a number of brokers are interconnected as an
overlay network to provide the event matching and event notification service. The
function of event matching is to retrieved the matching subscriptions for a incoming
event, while the function of event notification is to route events from a publisher to
interested subscribers.

The event routing and Boolean expression matching algorithms employed by a pub/
sub system is crucial to managing performance, load distribution, and scalability.
Moreover, the Boolean expression matching also plays an important role in a
growing number of other applications, such as online advertising [43] and advertising

1

1.2. PROBLEM STATEMENT

exchanges [30]. However, the existing routing and matching solutions present
limitations on flexibility, performance, expressiveness and applicability. To overcome
these limitations, we propose new efficient content-based pub/sub routing and
Boolean expression matching algorithms.

1.2 Problem Statement

It is a challenging undertaking to design efficient and scalable routing algorithms
for pub/sub for two main reasons: First, a publisher does not know its interested
subscribers in advance. Brokers need to identify interested subscribers for every
issued event by matching the event against interest specifications in the form of
subscriptions. Second, subscribers’ interests are often highly diversified. The size
of the potential destination set is usually very large and it is difficult to efficiently
route each event to its destinations.

The design of efficient event routing protocols, especially in content-based pub/sub
systems, is still an active area of research [38, 45, 65]. We observe that even the
most widely used filter-based routing algorithm (FBR)1 [14, 22, 36] suffers from the
following four limitations: (1) Difficulty in supporting general overlay topologies, (2)
subscription duplication, (3) redundant and repeated event matching, and (4) lack
of flexibility in supporting overlay reconfiguration.

Difficulty in Supporting General Overlay Topologies: The original FBR
algorithm was designed only for acyclic overlay networks [14, 45]. This design
choice makes it difficult to support fault-tolerance and load balancing. Although,
Li et al. extended FBR to support general overlays [38], their solution relies on
two sources of additional complexity. First, advertisement broadcasting, which
can generate a large number of redundant messages that need to be detected and
eliminated. Second, a single subscription needs to be delivered to the same broker
more than once, if the broker publishes more than one advertisement intersecting
that subscription.

1In this thesis, we assume the advertisement mechanism is adopted in FBR, since it often
improves the algorithm’s scalability [47].

2

CHAPTER 1. INTRODUCTION

B1

B2

B3

B4

B7

B5
B6

P1 S1 S2
P2

S1,S2

S1,S2

S1,S2

S1,S2

event

(a) Old overlay topology

B1

B2

B3

B4

B7

B5
B6

P1 P2 S1 S2

S1,S2

event

(b) New overlay topology

Figure 1.2.1: Limitations of the FBR algorithm

Subscription Duplication: In FBR, a subscription is stored at every broker along
the routing paths from the source broker of that subscription to brokers with matching
advertisements. For example, in Fig. 1.1(a), subscriptions S1 and S2 are redundantly
stored at brokers B1, B2, B3, B4, and B7. In many applications, the number
of subscriptions is very large: In financial applications, there can be thousands of
subscriptions [53] and security applications may have millions of subscriptions [19]. In
these scenarios, important resources are used for storing the duplicated subscriptions.

Redundant and Repeated Event Matching: The FBR algorithm repeats the
event matching operation at every intermediate broker along the paths from the
publisher to interested subscribers. In the example in Fig. 1.1(a), an event issued
at B1 is repeatedly matched against all subscriptions stored at B1, B2, B3, and
B4, before it is delivered to B7. Since matching an event against a large number
of subscriptions can be expensive, brokers may suffer from matching overhead and
become overloaded.

Lack of Flexibility in Supporting Overlay Reconfiguration: As shown in
Fig. 1.1(a), assuming the messaging load between brokers B1 and B7 is heavy, if the
overlay were adjusted to that in Fig. 1.1(b), the routing efficiency would be improved.
However, it is difficult to reconfigure the overlay in FBR because the routing state is
stored at all intermediate brokers. Yoon et al. proposed three primitive operations
to address this issue [65], yet, challenges such as how to generate the right sequence
of operations have only recently been sketched and need further refinement [66].

3

1.2. PROBLEM STATEMENT

Designing efficient conjunctive Boolean expression matching algorithms is also
challenging for at least five main reasons. First, the algorithm must scale to a
large number of Boolean expressions (i.e., a subscription in pub/sub) defined over
a high-dimensional space. Second, the subscriptions may be unevenly distributed
over the available dimensions and highly concentrated in some dimensions, which
results in dense workloads; the algorithm should be able to efficiently handle dense
workloads. Third, fast subscription-index construction and dynamic index updates
need to be supported to accommodate changing interests. Fourth, the algorithm
should be efficient at handling a high rate of arriving events on the premise of low
Boolean expression matching latency. Last, the algorithm should support a rich
subscription language to enable expressive modeling of user interests.

A dimension refers to the value domain underlying an attribute in a subscription.
When all or part of the dimensions is associated with a large number of subscriptions,
we consider the workload to be dense.

A large number of conjunctive Boolean expression matching algorithms exist [3,
27, 63, 56, 57, 58, 10, 68, 52, 51, 28, 44]. However, the existing solutions continue
to suffer from limitations that affect performance and applicability. For example,
Propagation [27] suffers from costs incurred while processing the predicate bit vector
that tracks the matching predicates of a given event. k-index [63] does not support
dynamic subscription updates. OpIndex [68] possesses high index construction costs
when the arrival of subscriptions and events overlaps. Moreover, the existing solutions
are not effective at handling dense workloads, which is an important property that is
rarely considered by state-of-the-art algorithms.

The current solutions for matching Boolean expressions are primarily limited to the
simple conjunctive Boolean expressions [68, 27, 63, 3]. Although this restriction is
reasonable for many applications, some emerging applications require support for
arbitrarily complex Boolean expressions, such as advertising exchange [30].

An advertising exchange is an electronic hub that connects online publishers to
advertisers through intermediaries. An ad exchange can be represented as a directed
graph, where the nodes are publishers, advertisers and intermediaries. An edge exists
between node Na and node Nb if Na agrees to sell advertisement slots associated with

4

CHAPTER 1. INTRODUCTION

user visits to Nb. Each edge is annotated with a Boolean expression that restricts the
set of user visits that can be sold through that edge. When a user visits a publisher’s
web page, the user visit can be viewed as an attribute-value assignment. The goal is
to rapidly find all the ad campaigns that can be satisfied by the user visit such that
the best advertisement can then be selected to be shown to the user. In other words,
the exchange has to rapidly evaluate arbitrary Boolean expressions to determine
which expression satisfies the given assignment of attributes to values.

Designing efficient arbitrary Boolean expression matching algorithms is more chal-
lenging than conjunctive Boolean expressions matching for two reasons. First, in
contrast to conjunctive Boolean expressions, arbitrary Boolean expressions contain
not only and but also or, not, and other logical operators. Moreover, the same
predicate can appear more than once in a single arbitrary Boolean expression. These
features bring expressiveness and flexibility benefits, but they also introduce matching
complexity. Second, different arbitrary Boolean expressions may contain a large
number of common predicates and subexpressions. Efficiently identifying and sharing
these predicates and subexpressions is necessary.

To the best of our knowledge, there are currently only four algorithms that have
been proposed that can directly work on arbitrary Boolean expressions: Dewey
ID [30], Interval ID [30], BoP [7] and BDD [10]. Moreover, these solutions exhibit
limitations that affect their applicability and performance. The Dewey ID and
Interval ID methods can only work in offline mode, which means that the Boolean
expressions need to be known in advance, and the index cannot be dynamically
changed after being built. The BoP method is an extension of the count-based
conjunctive Boolean expression matching algorithms [68, 27, 63, 3]. However, BoP
does not achieve comparable matching performance since filtering out nonmatching
expressions based on the minimum number of matching predicates is inefficient for
arbitrary Boolean expressions. Theoretically, BDD could support arbitrary Boolean
expressions. However, this support was not implemented or verified in the published
paper [10]. We first implemented BDD for arbitrary Boolean expression matching.
BDD is not efficient since the tree could be very complex when there is a large number
of distinct predicates in the system.

5

1.3. APPROACH

Many conjunctive Boolean expression matching algorithms have been proposed [3,
27, 63, 56, 57, 58, 10, 68]. A simple method is to translate each arbitrary Boolean
expression into a set of conjunctive Boolean expressions and then utilize existing
conjunctive Boolean expression matching algorithms. However, theoretically, the
number of resulting conjunctive Boolean expressions can exponentially increase
with the size of an arbitrary Boolean expression due to normalization [64, 7]. The
translation introduces memory, matching and maintenance costs. Experiments on
both synthetic and real-world workloads also show that this method is not effective.

1.3 Approach

We propose new efficient pub/sub routing, conjunctive Boolean expression matching
and arbitrary Boolean expression matching algorithms to overcome the limitations
of the existing solutions.

We observe that the aforementioned limitations of FBR result from the tight-coupling
of event matching and event routing. We therefore consider decoupling them to
address these limitations. Note that the concept of decoupling event matching
and event routing in pub/sub is also explored in some related work such as link-
matching [5], MEDYM [12] and DRP [13]. These approaches assume that a fully-
connected topology or a statically configured, fixed maximum number of brokers
are available. These assumptions may not always hold in practice, especially, when
brokers are distributed across domains with restricted access and brokers may join
or leave dynamically.

We continue to explore the idea of decoupling event matching and event routing
to enable scalable pub/sub in a general and dynamic topology. We first propose a
dynamic destination-based routing algorithm called D-DBR, which decouples the pub/
sub system into two independent layers: Content-based matching and destination-
based multicasting. The matching layer is responsible for subscription and event
matching, whereas the multicasting layer is responsible for topology maintenance
and message routing. When a message (i.e., advertisement, subscription, or event)

6

CHAPTER 1. INTRODUCTION

is issued, it is first submitted to the matching layer to identify destination brokers.
Then, the message is annotated with the addresses of those brokers and delivered
to them via the multicasting layer. In D-DBR, subscriptions are not stored at any
intermediate broker. An event only needs to be matched at its source and destination
brokers. Changes of the overlay topology have no effect on the matching layer.
Consequently, supporting a general overlay and dynamic overlay reconfiguration
for fault-tolerance and performance optimization become straight forward, as we
illustrate below.

D-DBR requires additional processing for the destination address list associated
with each message. If the address list is long, more bandwidth is used. However,
our extensive evaluations show that the resulting overhead is small, especially for
small-sized overlays (with tens of brokers). For example, in an overlay with 70
brokers, when an event is delivered to 35 destination brokers, on average, each of
the generated messages carries only 2.51 destination addresses (here, the average
connection degree of the brokers is 3).

Although D-DBR is an effective solution, a factor limiting its scalability is that
each broker needs to know all other brokers in the system, and thus, the topology
maintenance cost can be expensive for large-scale overlays (with hundreds or more
brokers). To mitigate this issue and to further boost scalability, we propose a new
routing protocol called MERC — Match at Edge and Route intra–Cluster, — which
is based on and complements D-DBR. MERC divides the overlay into interconnected
clusters, where it applies content-based and destination-based mechanisms for inter-
and intra-cluster event routing, respectively. In MERC, each broker only needs to
be aware of brokers in the clusters it belongs to. As a result, the destination list
overhead is mitigated, the topology maintenance cost is reduced, and the impact of
change in one cluster can be isolated from brokers in other clusters.

We implemented both algorithms, D-DBR and MERC, in PADRES, an open-source
content-based pub/sub system [40]. Our experimental results show that our algo-
rithms outperform FBR in terms of improving the throughput by up to 700% and
reducing the communication latency by up to 55% with an acceptable overhead.

To design efficient conjunctive Boolean expression matching algorithms, we first pro-

7

1.3. APPROACH

pose the Predicate Space Tree (PS-Tree), a data structure used to index subscriptions
in one dimension. Then, we propose the PSTBloom and PSTHash matching algorithms
for high-dimensional and dense workloads, respectively. In PS-Tree, a predicate
of a subscription is regarded as a space, and an attribute-value pair of an event is
regarded as a point. PS-Tree divides predicates into disjoint predicate spaces and
maintains a many-to-many relationship between predicate spaces and subscriptions.
Through PS-Tree, the problem of matching an attribute-value pair against a set
of subscriptions is transformed into the problem of locating the predicate space to
which the attribute-value pair belongs; PS-Tree efficiently solves this problem.

The example in Fig. 1.3.1 illustrates the relationship that PS-Tree maintains. In
this example, there are two subscriptions: S1{price, in, [0, 4]} and S2{price, in,
[2, 4]}. The two predicates involved are divided into two disjoint predicate spaces:
[0, 2) and [2, 4]. The first predicate space [0, 2) is associated with {S1}, while the
second predicate space [2, 4] is associated with {S1, S2}. For an attribute-value
pair, 〈price, 3〉, after determining the predicate space [2, 4] to which it belongs, the
matching subscriptions {S1, S2} can be directly retrieved.

20 4

Space1 Space2

Sub1
Sub2

Space1

Space2

Sub1

Sub2

Figure 1.3.1: Relationship maintained by PS-Tree

Based on PS-Tree, we first propose the PSTBloom algorithm. For each subscription
S in PSTBloom, one of its predicates is selected as the access predicate. Access
predicates are evaluated before other predicates to retrieve candidate subscriptions,
i.e., subscriptions that are likely to match the given input event. The access predicate
is divided into several disjoint predicate spaces. Each predicate space corresponds
to a leaf node in PS-Tree. S is associated with those leaf nodes that correspond to
its access predicate. For an input event, each attribute-value pair of that event is
matched against a corresponding PS-Tree to determine a set of partially matching
subscriptions. These candidate subscriptions are then pruned by the Bloom filter
signatures of the related leaf nodes. The signature of a leaf node is the Bloom
filter created from subscription IDs. PSTBloom achieves good matching performance

8

CHAPTER 1. INTRODUCTION

since a large proportion of unmatching subscriptions can be efficiently filtered out.
Our comprehensive experiments show that PSTBloom outperforms state-of-the-art
algorithms in terms of not only matching time but also index construction time and
memory consumption.

PSTBloom is effective for many types of workloads, especially high-dimensional
workloads, because PSTBloom can efficiently locate the small number of subscriptions
whose access predicates are satisfied by an event. However, dense workloads present
new challenges to PSTBloom and other algorithms: the number of partially matching
candidate subscriptions could be large for an event. To overcome this limitation, we
further design the PSTHash algorithm. PSTHash is also based on PS-Tree. However,
in contrast to PSTBloom, PSTHash selects more than one predicate as access predicates
for each subscription. These access predicates are divided into a set of disjoint multi-
dimensional predicate spaces. PSTHash constructs a many-to-many relation between
the multi-dimensional predicate spaces and the subscriptions. When an event is
received in PSTHash, each attribute-value pair of that event is matched against a
corresponding PS-Tree to determine the predicate space to which the attribute-value
pair belongs. Then, a number of multi-dimensional predicate spaces is constructed.
Through these multi-dimensional predicate spaces, the candidate subscriptions can
be directly obtained for that event. PSTHash identifies fewer candidate subscriptions
since PSTHash guarantees that all the selected access predicates in each candidate
subscription have matching attribute-value pairs in the event. Under dense workloads,
our experiments show that PSTHash achieves the best matching performance among
the algorithms that we evaluated.

To design efficient arbitrary Boolean expression matching algorithms, we propose
the aggregate tree (A-Tree) data structure to directly index arbitrary Boolean
expressions. The basic idea of A-Tree is to represent an arbitrary Boolean expression
as an n-ary tree and then combine these n-ary trees together into an aggregated
tree with multiple roots. Common predicates and subexpressions are shared to
reduce memory usage and improve matching performance. A-Tree supports dynamic
self-adjustment based on the workloads. In contrast to Dewey ID [30] and Interval
ID [30], A-Tree works in online mode, which means that the A-Tree index does not
need to be built in advance and can be updated on the fly.

9

1.4. CONTRIBUTIONS

1.4 Contributions

In this section, we describe the contributions of this work with regard to each of the
described problems. To provide efficient content-based pub/sub routing solutions,
we make the following contributions:

• We propose the D-DBR algorithm, which overcomes the aforementioned limita-
tions of the FBR algorithm and supports dynamic overlay reconfiguration.

• We propose the MERC routing protocol which routes events based on their
content and destination information to enable a high degree of scalability.

To provide efficient conjunctive Boolean expression matching solutions, we make the
following contributions:

• We propose the PS-Tree index, which achieves high predicate matching
performance, exhibits high expressiveness and supports dynamic subscription
updates.

• We propose PSTBloom, which presents advantages over existing solutions for
reducing not only the Boolean expression matching latency but also the memory
consumption and index construction latency.

• We propose PSTHash, which achieves the best matching performance given
dense workloads.

To provide efficient arbitrary Boolean expression matching solutions, we make the
following contributions:

• We develop the A-Tree data structure to efficiently index arbitrary Boolean
expressions. A-Tree uniquely represents every shared predicate and subexpres-
sion by a single node to reduce memory cost and improve matching performance.
Expression reorganization and index self-adjustment are supported to further
optimize the index.

10

CHAPTER 1. INTRODUCTION

• Based on A-Tree, we propose an event matching algorithm that supports
different logical operators. Moreover, the zero suppression filter and propagation
on demand optimization methods are used to further reduce the matching cost.

Parts of the content and contributions of this work have been published or are
submitted for review:

• Shuping Ji, C. Ye, J. Wei, and Hans-Arno Jacobsen. Merc: Match at edge and
route intra–cluster for content-based publish/subscribe systems. In Proceedings
of the 16th ACM/IFIP/USENIX Middleware Conference, pages 13–24. ACM,
2015.

• Shuping Ji, and Hans-Arno Jacobsen. PS-Tree-Based Efficient Boolean Expres-
sion Matching for High-Dimensional and Dense Workloads. PVLDB, 12(3):
251-264, 2018.

• Shuping Ji, and Hans-Arno Jacobsen. A-Tree: A Dynamic Data Structure to
Efficiently Index Arbitrary Boolean Expressions. Technical Report, 07/2018
(submitted for review).

1.5 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review the
existing content-based pub/sub routing and Boolean expression matching algorithms.
In Chapter 3, we present the expression language and matching semantics. The
D-DBR algorithm is presented in Chapter 4. The MERC algorithm is presented in
Section 5. In Chapter 6, we present the design of the PS-Tree index. In Chapter 7,
we describe the design of the PSTBloom algorithm. In Chapter 8, we present the
design of the PSTHash algorithm. The A-Tree data structure, index construction,
event matching, the optimizations and property analysis are presented in Chapter 9.
Chapter 10 reports extensively on our experimental results, and Chapter 11 concludes
the thesis.

11

1.5. ORGANIZATION

12

Chapter 2

Related Work

2.1 Publish/Subscribe Routing

In this section, we categorize existing event routing protocols for content-based
pub/sub systems into three classes: Event flooding (EF) [21], multicast-based routing
(MBR) [50, 54], and filter-based routing (FBR) [14, 22, 29, 36]. These solutions
balance the tradeoff between routing accuracy, subscription duplication, redundant
matching, overlay reconfigurability, and scalability differently.

Routing accuracy is an important criteria to evaluate a pub/sub routing algorithm’s
network efficiency. It is defined as the ratio between the number of brokers interested
in an event over the number of brokers receiving that event when it is routed towards
the interested brokers. We say a broker is interested in an event, if it serves a
subscriber with subscriptions matching the event. For example, if an event has 10
interested brokers, but in total it is delivered to 20 brokers, — on its way toward the
10 interested brokers, — then, the routing accuracy for this event is 50%.

Event Flooding: In EF, each event originating at a publisher is flooded to all
brokers and then matched against local subscriptions at every broker. This routing
protocol is stateless and easily adapts to broker overlay changes. It also has low event

13

2.1. PUBLISH/SUBSCRIBE ROUTING

matching overhead and saves memory resources by only storing local subscriptions
at each broker. However, it suffers from the shortcoming that events may have to
be propagated to a large number of uninterested brokers. In a general overlay with
cycles, a large number of redundant messages may result. Therefore, this routing
protocol suffers from low routing accuracy and is not scalable.

Interested broker

J

D

C

p
A G

H
event

B F

E

group g0

group g1

s

s

s

Figure 2.1.1: MBR algorithm

J

F

D

C

p

s

A G

H
event

E

B

Interested broker

s

s

Figure 2.1.2: FBR algorithm

Gossip-style pub/sub [20] is in this category. It is an extension of the EF approach
and uses gossiping to distribute events. This approach eases the problem of event
duplication. However, events are not guaranteed to be delivered to all interested
subscribers. Moreover, events need to be cached and additional memory resources
are required.

Multicast-based Event Routing: In MBR, the event space is partitioned into
a large number of disjoint multicast groups, for each of which a multicast tree is
built. When an event is issued, it is first mapped to an appropriate group and then
multicast on the corresponding spanning tree. For example, in Fig. 2.1.1, groups
g0 and g1 are pre-computed. When an event is issued at Broker A, it may first be
mapped to group g0 and then it is multicast on g0’s spanning tree.

MBR improves the routing accuracy. In addition, existing multicast techniques,
such as IP multicast and application-level multicast [25, 50] can be used to support
event propagation. However, this solution may require a large number of groups,
exponential in the number of brokers in the worst case.

14

CHAPTER 2. RELATED WORK

To trade off the overhead, usually only a limited number of multicast groups are
constructed [2]. In this case, subscribers with different interests may be clustered
into the same group and events are forwarded to some uninterested brokers. For
example, in Fig. 2.1.1, the issued event is forwarded to all brokers in the spanning
tree of group g0, among which, D, F , and H are uninterested brokers.

To improve the routing accuracy and reduce the bandwidth overhead, MBR can apply
clustering algorithms [54, 60] to identify multicast groups. However, the effectiveness
of clustering heavily depends on event and subscription locality in applications. As a
result, this approach is not applicable to scenarios where subscriptions are highly
diversified and workloads change over time.

Filter-based Routing: In FBR, advertisements are broadcast. Then, matching
subscriptions are delivered to the advertisement source brokers in the reverse direction
along the paths on which the advertisements were broadcast. Subsequently, routing
trees rooted at source brokers are constructed. When an event is issued, routing
decisions are made via successive content-based filtering at all brokers from the
source to all destinations: Every broker along the way matches the event against its
stored subscriptions and then forwards it only toward directions that lead towards
matching subscriptions.

In FBR, every broker maintains a subscription routing table (SRT) and a publication
routing table (PRT) for subscription and event delivery, respectively. An advertise-
ment is stored in the SRT as a {adv, lasthop} tuple. The lasthop field indicates from
which broker or client the advertisement came. A subscription is stored in the PRT
as a {sub, lasthop} tuple. Again, lasthop also indicates via which broker or client the
subscription came.

This approach has several advantages: First, it achieves better routing accuracy than
MBR since events are only forwarded toward interested brokers. In the example
presented in Fig. 2.1.2, the issued event is not forwarded to Broker D or H. Second,
it scales well because each broker only needs to know its neighboring brokers. Finally,
it is applicable to scenarios with highly diversified subscriptions. These advantages
make FBR the most widely used routing protocol, despite the varied limitations
discussed in Section 1.2.

15

2.1. PUBLISH/SUBSCRIBE ROUTING

A large body of work is dedicated to studying distributed content-based pub/sub
systems. For example, designs include SIENA [14], Gryphon [5], JEDI [22], Herald [9],
and PADRES [29, 40], to just name a few. Most of these systems adopt the idea of
filter-based routing, which means the flow of events from publishers to subscribers is
driven by the content of events at every routing step. An alternative is to deliver
events between brokers directly based on their ultimate destination information. To
the best of our knowledge, only few approaches explored this direction, e.g., the “link
matching” algorithm [5], the MEDYM algorithm [12], and the DRP algorithm [13].
Since these approaches are closest in conception to our work, we focus in our below
discussion on differentiating to them.

In the link matching algorithm, each broker has a copy of all present subscriptions,
which are organized into a special data structure called parallel search tree (PST).
Each broker calculates the subset of links to which an event should be forwarded. This
algorithm achieves better matching performance than FBR but does not overcome the
other limitations of FBR. In addition, the maintenance of PST introduces additional
overhead, and it requires that subscriptions are not changed frequently, both are no
concerns in our design.

MEDYM aims to provide ideal routing accuracy: Each event is only transferred to
and through its interested brokers. To do so, every broker needs to build connections
with all other brokers. As a result, a fully-connected overlay mesh is required. This
requirement, however, is often hard to meet, especially, in large-scale networks.
Different from MEDYM, our algorithms can be deployed on any kind of overlay
network. Moreover, our approach can improve the routing efficiency by periodically
adjusting the overlay topology based on the latest application workload and system
load. Another shortcoming of MEDYM is that routing paths need to be dynamically
computed for every event by every broker along the routing paths. This is a costly
operation, especially, in sight of scenarios that process large numbers of events in
an overlay with a large number of brokers. Our algorithms do not suffer from this
limitation, since messages are always routed on the periodically updated dissemination
paths.

Finally, DRP employs the idea of destination-based event routing. However, different

16

CHAPTER 2. RELATED WORK

from our algorithms, in DRP, destination addresses are stored in a fixed-size bit
vector. This design makes the destination list overhead predictable for every message
routed. However, in this way, DRP uses and potentially wastes more bandwidth than
alternatives. Also, as a consequence, DRP limits the maximum number of brokers
in the system. As a result, DRP exhibits scalability limitation, which, so far, have
prevented it from reaching a wider adoption, as compared to FBR, for example.

2.2 Conjunctive Boolean Expression Matching

A large body of work is dedicated to studying Boolean expression matching in many
contexts: trigger processing [15, 33], XPath/XML matching [26, 55, 37, 34], indexing
in multi-dimensional space [41, 6, 31], and pub/sub matching [56, 68, 63, 27]. We
concentrate on pub/sub matching since other contexts either use different languages or
cannot scale to thousands of dimensions and millions of expressions. Existing solutions
in pub/sub matching include BE-Tree [56, 57, 58], OpIndex [68], Propagation [27],
k-index [63], SIFT [3], Gryphon [3], H-Tree [52], TAMA [69], REIN [51], GEM [28], and
SCAN [3]. These solutions can be roughly classified into two classes: count-based
methods and tree-based methods.

Count-based approaches [68, 27, 63, 3] usually design indexes to retrieve a set of
candidate subscriptions. For these candidate subscriptions, count-based methods
identify the matching subscriptions by counting the satisfied predicates of each
subscription. Representative count-based approaches include Propagation, k-index,
and OpIndex.

Propagation [27] creates indexes on predicates and maintains a predicate bit vector.
Each predicate that occurs in one or more subscriptions is associated with a single
entry in the predicate bit vector. When an event is received, Propagation first
locates the satisfied predicates and sets related entries in the predicate bit vector
to 1. Candidate subscriptions can be obtained through these predicates. Then,
Propagation identifies a candidate subscription as matching if all of its predicates
are satisfied. While Propagation is a novel algorithm, it suffers from the limitation

17

2.2. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

that, to match each event, all bits in the predicate bit vector need to be reinitiated
to 0. This operation is expensive if there are a large number of distinct predicates.

k-index [63] is an approach based on an inverted index. The basic idea behind
k-index is to partition the subscriptions into subsets of predicates and to organize
each predicate subset using the inverted list data structure. For each attribute-value
pair in an incoming event, appropriate inverted list indexes are searched to identify
predicates matching the attribute-value pair, and a counting method is used to
determine the matching subscriptions for an event. k-index is effective in retrieving
partially matching subscriptions; however, it suffers from the limitation that a range
predicate must be rewritten to a disjunction of equality predicates, which increases
the index’s size due to the need for many inverted list entries for a single predicate.

OpIndex [68] is a state-of-the-art count-based method. This method adopts a two-
level index structure and organizes subscriptions using inverted lists. In the first
level, OpIndex selects an attribute for each subscription, and subscriptions with the
same selected attribute are grouped together. In the second level, subscriptions
are further partitioned based on their predicate operators. The predicates with the
same operator are clustered together. For an incoming event, OpIndex retrieves all
the satisfied predicates and then uses the counting method to locate the matching
subscriptions. OpIndex has high matching performance. However, when the arrival
of subscriptions and events overlaps, OpIndex suffers from high index construction
costs since related indexes need to be reordered after each subscription is inserted.
During the reordering process of an index, event matching is delayed, which results
in high matching latency.

In contrast to count-based methods, tree-based methods [56, 3, 10] are designed to
filter out unmatching subscriptions step by step. These methods usually recursively
divide the search space by eliminating subscriptions upon encountering unsatisfied
predicates. Compared to count-based methods, tree-based methods usually identify
fewer candidate subscriptions, but the filtering process is more expensive.

BE-Tree [56], a representative tree-based method, uses a two-phase space cutting
technique and organizes subscriptions in a tree index. The subscriptions are repeatedly
partitioned by attribute, followed by value space partitioning. In BE-Tree, there are

18

CHAPTER 2. RELATED WORK

three classes of nodes: a partition node that maintains the space partitioning
information (an attribute), a cluster node that maintains the space clustering
information (a range of values), and a leaf node that stores the actual expressions.
By configuring the maximum leaf node size, BE-Tree achieves a good trade-off
between matching performance and memory consumption. However, BE-Tree indexes
all subscriptions through a single tree, which constitutes a potential performance
bottleneck.

H-Tree is also a tree-based method. H-Tree first selects a set of attributes to index.
Then, the value domain of each attribute is divided into a number of overlapping
cells. The cells of each attribute are connected level-by-level to form a tree. In this
way, H-Tree divides the subscription space into a set of buckets. The number of
buckets increases exponentially with the number of indexed attributes. As a result,
H-Tree is not suitable for high-dimensional workloads.

GEM [28] and REIN [51] are different from the count-based and tree-based methods
presented above. The idea behind these two algorithms is to filter out the unmatching
subscriptions one by one for each event. GEM and REIN are not suitable for scenarios in
which the proportion of unmatching subscriptions is high. TAMA [69] is an approximate
matching algorithm, which means that it can introduce false positives into the result
set.

PS-Tree can be interpreted to store intervals and allows efficient querying of which
stored intervals contain a given point. Segment-Tree [23] and Interval-Tree [18]
are two index structures that provide similar capabilities. Thus, both approaches
are related to PS-Tree. One limitation of Segment-Tree is that it is a static
structure, meaning that Segment-Tree cannot be modified after it is built. A
variant [4] of Segment-Tree supports dynamic updates at the cost of extra memory.
Interval-Tree does not have this limitation but presents more expensive querying.
Compared to Segment-Tree and Interval-Tree, PS-Tree achieves good querying
performance, as shown in Section 10.2. Classical string and bit-vector tree indexing
structures, such as a trie [24] and Radix-, Patrica- and Suffix-tree [46, 62], present a
similar structure as that of PS-Tree. However, they are different because they do
not provide the function to match attribute-value pairs against predicates.

19

2.3. ARBITRARY BOOLEAN EXPRESSION MATCHING

2.3 Arbitrary Boolean Expression Matching

We categorize existing arbitrary Boolean expression matching algorithms into four
classes: scan-based, count-based, tree-based and translation-based solutions.

Given an event, the naive matching method is to scan every arbitrary Boolean
expression and match it against the event. This method is inefficient when there are
a large number of expressions. The Dewey ID [30] and Interval ID [30] methods
are variants of the scan-based method with two optimizations. First, an arbitrary
Boolean expression is represented as a set of Dewey IDs or Interval IDs to reduce
memory usage and improve evaluation performance. Second, for each event, the
matching arbitrary Boolean expressions are retrieved through the matching Dewey
IDs or Interval IDs. If matching Dewey IDs or Interval IDs do not exist, then the
corresponding arbitrary Boolean expression will not be evaluated.

Pd

Pa

Pb

Pc

Pe

Pf

Pa

Pb

Pc

Pd

Pe

Pf

1.1

1.2

1.3

2

3*.1

3*.2

<1,4>

<1,4>

<1,4>

<5,5>

<6,10>

<6,10>

IntervalIDDeweyID

OR

AND

OR

Figure 2.3.1: Dewey ID and Interval ID Example

The Dewey ID and Interval ID methods work in two phases. The first phase is to
annotate each arbitrary Boolean expression as a set of Dewey IDs or Interval IDs
offline. Each ID corresponds to a leaf node. As shown in Fig. 2.3.1, the expression
(Pa∨Pb∨Pc)∧Pd∧ (Pe∨Pf) is annotated as the Dewey IDs 1.1, 1.2, 1.3, 2, 3∗ .1, and
3 ∗ .2 or Interval IDs <1,4>, <1,4>, <1, 4>, <5,5>, <6,10>, and <6,10>. These
IDs correspond to the leaf nodes annotated by Pa, Pb, Pc, Pd, Pe and Pf , respectively.
The second phase is the expression evaluation phase. Existing predicate matching
solutions are used to retrieve the matching predicates. In this example, suppose that

20

CHAPTER 2. RELATED WORK

predicates Pa, Pd and Pe are matching. Then, the corresponding Dewey IDs 1.1, 2,
and 3 ∗ .1 or Interval IDs <1,4>, <5,5>, and <6,10> are used to compute whether
the arbitrary Boolean expression is matching.

The Dewey ID and Interval ID methods are novel. However, these methods present
two major limitations. First, all the expressions need to be known and annotated
offline before the event matching starts, which limits its applicability. Second,
different expressions are evaluated separately. The common subexpressions shared
by different arbitrary Boolean expressions may be evaluated several times, which
limits performance.

Child

1

Conj

2

Disj

3

Child

3 4

Leaf

1

ID

4

Leaf

4

Leaf

3

ID

2

ID

4

Leaf

1

Conj

4

ID

2

Child

2

Disj

4

Leaf

5

ID

4

Leaf

1

Conj

6

ID

Figure 2.3.2: BoP Encoding Example

The BoP [7] algorithm is a count-based method. Similar to the count-based conjunctive
Boolean expression matching algorithms [27, 63, 68], the basic idea of BoP is to
compute the minimum number of predicates that need to be satisfied for each
arbitrary Boolean expression. Only when the number of satisfied predicates is
greater than the minimal number is the expression further evaluated. Another
optimization of the BoP algorithm is that an arbitrary Boolean expression is encoded
into a compressed format to reduce the memory cost. For example, the expression
(Pa ∨ Pb ∨ Pc) ∧ Pd ∧ (Pe ∨ Pf) is encoded into the format in Fig. 2.3.2.

The limitation of the BoP algorithm is that a nonmatching arbitrary Boolean
expression may be incorrectly identified as a candidate when the minimum number
of predicates is satisfied. Take the expression (Pa ∨ Pb ∨ Pc) ∧ Pd ∧ (Pe ∨ Pf) as an
example. The minimum number of satisfied predicates is 3. When Pa, Pb, and Pc are
matching is that expression identified as a candidate. However, that expression is not
actually matching. Another limitation of BoP is that different candidate expressions
are evaluated separately. The shared subexpressions may be evaluated several times,
which further limits BoP’s matching performance.

A binary decision diagram (BDD) is a data structure that is used to represent a

21

2.3. ARBITRARY BOOLEAN EXPRESSION MATCHING

Boolean function [8], and it has been successfully used in verification methods such
as model checking [17]. Paper [10] uses shared BDDs to represent arbitrary Boolean
expressions by assigning a Boolean variable to each unique predicate. Fig. 2.3.3
shows the BDD data structure of the expression (Pa ∨ Pb ∨ Pc) ∧ Pd ∧ (Pe ∨ Pf).

Pa
Pb

Pc

0 1

0

Pd

Pe

Pf

1

2

3

4

5

Figure 2.3.3: BDD Structure Example

BDD exploits the commonality (i.e., shared subexpression) between different arbitrary
Boolean expressions. Consequently, the common subexpressions, corresponding to
the BDD nodes, are evaluated only once for event matching. However, to represent
arbitrary Boolean expressions with a BDD, each distinct predicate in the system needs
a variable. When the number of variables becomes large, the BDD structure can
become very complex since the size of a BDD may be exponential in the number of
variables in the worst case. Moreover, the evaluation of events with BDDs involves
the traversal of the entire BDD. Consequently, BDD has a high index construction cost,
and the matching performance is limited.

Many conjunctive Boolean expression matching algorithms have been proposed, such
as BE-Tree [56] and OpIndex [68]. The idea of translation-based methods is to
first translate each arbitrary Boolean expression into a set of conjunctive Boolean
expressions and then utilize the conjunctive Boolean expression matching algorithms.
Take the expression (Pa∨Pb∨Pc)∧Pd∧ (Pe∨Pf) as an example; it will be translated
into six conjunctive Boolean expressions: Pa ∧ Pd ∧ Pe, Pa ∧ Pd ∧ Pf , Pb ∧ Pd

∧ Pe, Pb ∧ Pd ∧ Pf , Pc ∧ Pd ∧ Pe, and Pc ∧ Pd ∧ Pf . When any of these six

22

CHAPTER 2. RELATED WORK

expressions is matching, the arbitrary Boolean expression is matching. This is a
simple method; however, it introduces translation and maintenance costs. Given
the exponential increase in the size of expressions due to translation, the memory
consumption increases and the matching performance deteriorates. Consequently,
the translation-based method is not always effective for arbitrary Boolean expression
matching.

23

2.3. ARBITRARY BOOLEAN EXPRESSION MATCHING

24

Chapter 3

Matching Model

In this section, we first present the definitions of predicates, conjunctive Boolean
expressions, a.k.a, subscriptions, arbitrary Boolean expressions, and events. Then,
we specify the matching semantics. Finally, we review predicate selectivity, which is
used to determine access predicates.

3.1 Expression Language

Predicate: A predicate is a triple consisting of an attribute, an operator and a set
of values. A predicate is denoted as P attr,op,vals(x), or more concisely as P (x). The
attribute name P attr uniquely represents a dimension. A predicate may contain more
than one value. The number of values is determined by the operator. For example,
if the operator is “=”, the predicate contains a single value; if the operator is “∈”,
the predicate contains a set of values.

The expressiveness of the predicates is determined by the supported attribute
value types and operators. To achieve high expressiveness, the predicates in our
expression language support the standard relational operators (<,≤,=, 6=, >,≥)
and set operators (∈, /∈) as well as SQL’s BETWEEN operator (in) on numerical,

25

3.1. EXPRESSION LANGUAGE

enumeration, and string domains.

Subscription: A subscription is a conjunctive Boolean expression over predicates.
Suppose that the total number of dimensions is n. Formally, a subscription S is
defined over an n-dimensional space as follows:

S = {P attr,op,vals
1 (x1) ∧ ... ∧ P attr,op,vals

k (xk)}, k ≤ n

Different predicates in the same subscription are required to belong to different
dimensions: P attr

i 6= P attr
j , if i 6= j. We refer to the size of a subscription S, denoted

by |S|, as the number of predicates in S.

An arbitrary Boolean expression (ABE) is a Boolean function over a set of predicates.
A Boolean function takes Boolean variables as inputs and produces a Boolean as
output. Formally, an ABE is defined as follows:

ABE = f(P1, ..., Pm)

The supported logical operators in the Boolean function f are and, or, not, xor and
xnor. Note that it is allowed for the same predicate to appear in the ABE more than
once, which is generally not supported by a conjunctive Boolean expression. This
feature improves the expressiveness of arbitrary Boolean expressions. For example,
in the arbitrary Boolean expression (Pa ∧ Pb) ∨ (¬Pb ∧ Pc), the predicate Pb appears
twice. We refer to the size of an arbitrary Boolean expression ABE, denoted as
|ABE|, as the number of predicates in ABE.

Event: An event contains a set of attribute-value pairs. Formally, an event E is
defined over an n-dimensional space as follows:

E = {〈attr1, val1〉, ... , 〈attrk, valk〉}, k ≤ n

For the same event, different attribute-value pairs are required to belong to different

26

CHAPTER 3. MATCHING MODEL

dimensions: attri 6= attrj, if i 6= j. We refer to the size of an event E, denoted by
|E|, as the number of attribute-value pairs in E.

3.2 Matching Semantics

A predicate accepts an input value x and outputs an evaluation result indicating
whether that predicate constraint is satisfied. However, it is possible that an event
only refers to a subset of attribute variables, which means that the attribute of
a predicate does not appear in the event. To handle this case, we propose a new
evaluation result called undefined.

P attr,op,vals(x)→ {true, false, undefined}

A predicate P attr,op,vals(x) matches with an attribute-value pair 〈attr, val〉, denoted
as P attr,op,vals(x) ' 〈attr, val〉, if the following condition is satisfied:

{P attr = attr} ∧ {P attr,op,vals(val) = true}

If a predicate of a subscription S matches with an attribute-value pair 〈attr, val〉,
we say that the subscription matches with that attribute-value pair, denoted by
S ' 〈attr, val〉. Furthermore, a subscription S matches with an event E, denoted by
S ' E, if the following condition is met:

∀P (x) ∈ S → {∃〈attr, val〉 ∈ E} ∧ {P (x) ' 〈attr, val〉}

Given an event E and a set of subscriptions, retrieve all the subscriptions matched
by E. We refer to this problem as the conjunctive Boolean expression matching
problem.

27

3.3. PREDICATE SELECTIVITY

An ABE matches with an event E, denoted as ABE ' E, if the following condition
is satisfied:

ABE = f(P1, ..., Pm) = true | E

Given an event E and a set of arbitrary Boolean expressions, retrieve all the
expressions matched by E. We refer to this problem as the arbitrary Boolean
expression matching problem.

3.3 Predicate Selectivity

Boolean expression matching can be seen as the process of filtering out unmatching
subscriptions for a given event. We observe that different predicates have different
pruning capacities, a.k.a., predicate selectivity. For a subscription S, we define the
selectivity of its predicate P (x) as the probability that S is identified as unmatching
if P (x) is used as the pruning predicate for an arbitrary event.

The selectivity of a predicate is determined by three factors: (1) the distribution of the
event workload, (2) the operator of the predicate, and (3) the values of the predicate.
Since the whole event workload is often unknown in advance, in our algorithms, we use
statistics over historical events to calculate the selectivity of a predicate: a predicate
with a higher number of matching events is considered to have lower selectivity.
The advantage of our algorithms is that PS-Tree can be used to quickly obtain the
number of matching historical events for a predicate. If no historical events exist, we
heuristically rank the selectivity of predicates by their operators and values. The
selectivity ranking of operators is {=} > {∈} > {in} > {<,≤, >,≥} > {/∈} > {6=}.
When the operators have the same selectivity, we consider predicates with wider
value sets to have lower selectivity. For example, we consider the selectivity of
{attr, in, [1, 10]} to be lower than the selectivity of {attr, in, [1, 5]}.

28

Chapter 4

D-DBR Design

This section presents our D-DBR algorithm, which, as we demonstrate later, achieves
better routing accuracy than EF and MBR, and overcomes the four limitations of
FBR, presented above.

communication interface

multicasting
engine

matching engine

in
p

ut
 q

ue
ue

o
u

tp
u

t
q

u
eu

e

match queue

TRT SPRT

L-SRT
R-SRT

L-PRT
R-PRT

Figure 4.0.1: Layers of D-DBR

In addition, in D-DBR, the matching and the routing layers are decoupled, enabling
the dynamic reconfiguration of the overlay. As a result, events can always be routed
on periodically updated paths, and derived based on, for example, shortest-path

29

4.1. CONTENT-BASED MATCHING LAYER

and workload considerations. To enable optimized subscription propagation, D-DBR
adopts the popular advertisement-based routing of FBR.

As shown in Fig. 4.0.1, in D-DBR, the pub/sub system is decoupled into two
independent layers: Content-based matching and destination-based multicasting.
The matching layer is responsible for event matching, whereas the multicasting layer
is responsible for event routing. When a publisher issues an event at a broker, the
event is matched against subscriptions managed by the broker’s matching engine to
obtain the addresses of brokers interested in the event (i.e., brokers hosting clients
who are subscribed to the event.) The addresses are attached to the event. Then,
the event is delivered to the interested brokers by the multicasting layer based on the
event’s destination addresses. Upon receiving an event, a destination broker matches
the event against its local subscriptions and directly delivers it to the interested
subscribers.

4.1 Content-based Matching Layer

Routing Tables: To reduce event matching cost, routing information (advertise-
ments and subscriptions) from local clients and other brokers are stored separately.
In total, each broker maintains four routing tables at the matching layer: Local
Subscription Routing Table (L-SRT), Remote Subscription Routing Table (R-SRT),
Local Publication Routing Table (L-PRT), and Remote Publication Routing Table
(R-PRT). The tables’ internal structure resembles the structure of the SRT and the
PRT in FBR (see [29]), except that the last hop information is replaced by source
hop information.

Let us use the example in Fig. 4.1.1 to illustrate these tables. In this example, a
publisher, pub-c1, issues an advertisement a1 at Broker A and three subscribers, sub-
c1, sub-c2, and sub-c3, each, issue a subscription at brokers B, E, and G, respectively.
Assume that all subscriptions match the advertisement. The advertisement a1 is
stored in the L-SRT of Broker A and in the R-SRT of all other brokers. The
subscriptions s1, s2, and s3 are stored in the R-PRT of Broker A, and in the L-

30

CHAPTER 4. D-DBR DESIGN

PRT of brokers B, E and G, respectively. In L-SRT and L-PRT, the sourceID
indicates from which client the advertisement or subscription originated, whereas in
R-SRT and R-PRT, the sourceID indicates from which broker the advertisement
or subscription originated.

{G}

{E}
{G}

{B,E,G}

J

F

D

C

A

H

event

E

B

s3
G

s2

s1

a1

E Interested broker

Flow of event

Figure 4.1.1: Event routing in D-DBR

Message Processing: In D-DBR, advertisements, subscriptions and events are
delivered as messages. In each message, besides the sourceID field, the message
header contains another field named destIDList, indicating to which clients and
brokers the message needs to be delivered to. Alg. 1 specifies how the matching
engine processes different messages.

The input to Alg. 1 is a message from the match message queue and the resulting
output messages are added to the output queue, as shown in Fig. 4.0.1. Messages
from local clients and other brokers are processed differently. Lines 1∼14 process
messages from local clients as follows: (1) An advertisement is first inserted into the
L-SRT and then attached to the output queue with the IDs of all other brokers as its
destinations. (2) A subscription is first inserted into the L-PRT and then matched
against advertisements in the R-SRT to obtain the IDs of interested brokers as its
destinations. (3) An event is matched against subscriptions in both the L-PRT and
the R-PRT to obtain the IDs of locally interested clients and remotely interested
brokers as its destinations. In this way, advertisements can be broadcast to all other
brokers, subscriptions can be delivered to all the brokers whose advertisements match

31

4.1. CONTENT-BASED MATCHING LAYER

the subscriptions, and events can be delivered to both locally interested clients and
remotely interested brokers.

Algorithm 1 Message Processing in Matching Engine
Input: message m from queue match
Output: messages inserted into queue output
1: if m is from a local client then
2: if m is an advertisement then
3: L-SRT.insert(m)
4: m.destIDList←all other brokers’ IDs
5: else if m is a subscription then
6: L-PRT.insert(m)
7: advs←Match(m,R-SRT)
8: m.destIDList←advs.sourceID
9: else if m is an event then

10: subs←Match(m,L-PRT) + Match(m,R-PRT)
11: m.destIDList←subs.sourceID
12: end if
13: m.sourceID←localBrokerID
14: output.enqueue(m)
15: else
16: if m is an advertisement then
17: R-SRT.insert(m)
18: subs←Match(m,L-PRT)
19: subs.destIDList←m.sourceID
20: output.enqueue(subs)
21: else if m is a subscription then
22: R-PRT.insert(m)
23: else if m is an event then
24: subs←Match(m,L-PRT)
25: m.destIDList←subs.sourceID
26: output.enqueue(m)
27: end if
28: Forward(m) . for MERC algorithm
29: end if

Lines 16∼27 process messages from other brokers as follows: (1) An advertisement
is first inserted into the R-SRT and then matched against subscriptions in the
L-PRT. The matched subscriptions are inserted into the output queue with that

32

CHAPTER 4. D-DBR DESIGN

advertisement’s sourceID as their destination. (2) A subscription is simply inserted
into the R-PRT. (3) An event is matched against subscriptions in the L-PRT only
to obtain the IDs of locally interested clients as its destinations. In this way, when an
advertisement is delivered to a broker, the broker’s locally matched subscriptions are
transferred to the source broker of that advertisement. When an event is delivered to
a broker, that event is directly transferred to the broker’s locally interested clients.

Separating the routing information of local clients from that of other brokers reduces
the message matching cost for the following three reasons: (1) Subscriptions from
local clients only need to be matched against advertisements from other brokers, (2)
advertisements from other brokers only need to be matched against subscriptions
from local clients, and (3) events from other brokers only need to be matched against
subscriptions from local clients.

4.2 Destination-based Multicasting Layer

Routing Tables: To route a message to its destinations, the multicasting layer
maintains two routing tables: The Topology Routing Table (TRT) and the Shortest
Path Routing Table (SPRT). TRT is a matrix, where TRT(i, j) represents the
communication cost between brokers i and j. If there is a direct connection between
brokers i and j, TRT(i, j) = 1, otherwise, ∞. SPRT includes a list of records
(destBrokerID, nextBrokerID). Each record indicates the next hop on the path
to a specific destination. All brokers share the same TRT, but each broker has its
own SPRT. The SPRT is computed from the TRT by using the Dijkstra algorithm
with cost O(n2), where n is the total number of brokers. Let us revisit the example
in Fig. 4.1.1, where the TRT of all brokers as well as the SPRT of Broker B are
presented. In this example, Broker B is connected to brokers H through F and G,
and the distance-wise optimal next hop from Broker B to Broker H is Broker F .

Message Processing: The multicasting layer provides a simple and efficient
destination-based one-to-many message delivery service. At this layer, advertisements,
subscriptions, and events are routed in the same way, which simplifies the pub/sub

33

4.2. DESTINATION-BASED MULTICASTING LAYER

system’s design and implementation. Moreover, each message is delivered to its
destinations along the shortest paths. And, once a message is received by a destination
broker, the message’s destIDList is reduced. This guarantees that each message is
delivered to its destinations once and only once. As a result, general overlay topologies
can be supported without redundant messages resulting from the broadcasting of
advertisements.

Algorithm 2 Message Processing in Multicasting Engine
Input: messages in queue input and output
Output: messages inserted into queue match and messages sent to remote brokers

and local clients
1: for m←input.dequeue() do
2: if m is from a local client then
3: match.enqueue(m)
4: else
5: if localBrokerID∈m.destIDList then
6: match.enqueue(m)
7: m.destIDList.remove(localBrokerID)
8: end if
9: Multicast(m)

10: end if
11: end for
12: for m←output.dequeue() do
13: for destID∈m.destIDList do
14: if destID is a client’s ID then
15: SendTo(m, destID)
16: m.destIDList.remove(localBrokerID)
17: end if
18: end for
19: Multicast(m)
20: end for

Alg. 2 processes messages from the network (stored in the input message queue) and
messages generated by the matching engine (stored in the output message queue). In
this algorithm, a message from a local client is simply inserted into the match queue
for later processing by the matching engine. For a message from other brokers, if the
broker is not one of its destinations, that message is simply forwarded. Otherwise,
one copy of that message is inserted into the match queue. A message generated by

34

CHAPTER 4. D-DBR DESIGN

the matching engine is first delivered to its destination clients and then forwarded to
its destination brokers.

SendTo is a service provided by the underlying communication interface to deliver a
message to a local client or a neighboring broker. Multicast is a function provided
by the multicasting engine to forward a message to other brokers. Upon receiving a
message with the destination list destIDList, the message is duplicated into several
messages, and each one is attached with a new destination list destIDListi:

< nextIDi, destIDListi >← ShortestPath(destIDList)

where nextIDi is the distance-wise optimal next hop from the local broker to all
destination brokers in destIDListi. To implement the function ShortestPath, every
destination in destIDList is used to retrieve the next hop from the SPRT. Then,
destinations with the same next hop are merged into a single destination list. Finally,
each duplicated message is sent to its distance-wise optimal next hop using the
SendTo service.

4.3 Dynamic Overlay Reconfiguration

Since in our design, content-based matching and destination-based multicasting are
decoupled, changes to the overlay do not impact the routing tables at the matching
layer in the D-DBR algorithm. For example, in Fig. 4.1.1, if the connection between
brokers B and F is lost, only the brokers’ TRTs and SPRTs at the multicasting
layer need to be updated. As a result, D-DBR can easily support dynamic overlay
reconfiguration, enabling fault-tolerance and further performance optimizations.
Below, we exemplify these two benefits to demonstrate the flexibility of our D-DBR
algorithm.

Fault Tolerance: In D-DBR, brokers use a heart-beat mechanism to detect the
status of their neighbors. A broker multicasts an overlay update message to other
brokers when a neighbor’s status changes. The brokers receiving the message update
their TRTs and SPRTs accordingly. In this way, D-DBR can automatically recover

35

4.3. DYNAMIC OVERLAY RECONFIGURATION

from broker failures and disconnections. In Fig. 4.1.1, when the connection between
brokers B and F is lost, the TRT and SPRT of Broker B would be updated. Then,
events from Broker A to G would be transferred through Broker E. In networks
with cycles, unless there are no connecting routing paths between the source and the
destinations, messages can always be successfully delivered using another paths.

Performance Optimization: In pub/sub, the publication and subscription work-
load may vary over time. Capabilities to dynamically adapt the overlay to enable
performance optimizations are important. Here, we sketch a simple distributed
topology self-organizing algorithm for D-DBR. The basic idea is to set up connections
between brokers which incur heavy communication load. In our algorithm, each
broker periodically undergoes the following three steps:

(1) Metric collection – During a performance optimization cycle T 1, each broker
collects its link-wise communication rates. The communication rate between brokers
Bi and Bj, rateT (Bi, Bj), is defined as the number of messages transmitted from Bi

to Bj or vice versa divided by T . In D-DBR, since messages are routed based on
their destinations, the communication rate between any two brokers can be easily
obtained.

(2) Evaluation – Based on the communication rates, broker Bi computes the gain
of a candidate link to a non-neighbor broker Br and the loss of an existing link to a
neighbor broker Bn. Gain and loss are defined as follows:

gain(i, r) = rateT (Bi, Br) ∗ (dist(Bi, Br)− 1)

loss(i, n) = rateT (Bi, Bn) ∗ (dist′(Bi, Bn)− 1)

In these formula, dist(Bi, Br) represents the current distance between brokers Bi

and Br in terms of the number of hops on the distance-wise optimal path between
Bi and Br, whereas dist′(Bi, Bn) represents the distance between Bi and Bn after
the connection between them is lost.

Candidate links to non-neighboring brokers are ranked based on their gains, and
existing links are ranked based on their losses. Based on the rank and a configuration

1T can be configured based on application requirements.

36

CHAPTER 4. D-DBR DESIGN

parameter MaxDegree2, each broker communicates with its neighbors to decide which
new links can be added and which old ones should be discarded: First, a broker, say Bi,
computes its minimal loss MinLoss(i) to free up a quota for a new link. MinLoss(i)
equals zero if its current link number is less than MaxDegree, otherwise, it equals the
minimal loss of its existing links. Second, Bi selects the candidate link l(i, j) with
the largest gain. Third, if gain(i, j) > MinLoss(i), then Bi communicates with Bj

to obtain its current MinLoss(j). Finally, if gain(i, j) > MinLoss(i)+MinLoss(j),
then the link l(i, j) is added and other related links are discarded.

(3) Execution – The involved brokers update their connections, and a topology
update message is issued by Broker Bi to notify all other brokers to update their
TRTs and SPRTs accordingly.

In the algorithm, once an event is successfully transmitted to an intermediate broker,
it becomes that broker’s duty to deliver the message. So, no events will be lost even
when topology reconfiguration happens.

4.4 Algorithm Analysis

Subscription Duplication: D-DBR does not redundantly duplicate subscriptions
across all brokers on the routing paths. Instead, a subscription is only stored at its
local broker and the brokers with matching advertisements. For example, in Fig. 4.1.1,
the subscription s3 is stored at brokers G and A, only, not at the intermediate brokers,
such as B and F .

Matching Overhead: The matching overhead in D-DBR is reduced for three main
reasons: First, the number of stored subscriptions is smaller and the matching cost
at each source broker is thus smaller. Second, an event is not matched at any
intermediate broker. Third, an event only needs to be matched against the local
subscriptions at each destination broker. Since event matching is the most expensive
operation in pub/sub, reducing matching cost significantly alleviates the overhead of

2MaxDegree indicates the total number of links each broker can maintain.

37

4.4. ALGORITHM ANALYSIS

brokers and improves the pub/sub system’s performance.

Flexibility and Robustness: D-DBR efficiently supports a general overlay with
cycles. In addition, since content-based matching and destination-based multicasting
are fully decoupled, D-DBR achieves good flexibility and robustness. It has good
fault tolerance capabilities and supports dynamic overlay self-reconfiguration, as we
exemplified, above.

Routing Accuracy: Since messages are routed on the shortest paths, D-DBR has
a routing accuracy as good as that of the FBR algorithm. In some scenarios, where
the load between brokers is not balanced, D-DBR’s flexibility makes it possible to
automatically reconfigure the overlay. As a result, in these scenarios, the lengths
between the source and destination brokers can become shorter, and D-DBR can
achieve better routing accuracy.

Destination List Overhead: An important factor that may limit the applicability
of D-DBR is the destination list overhead. If the average destination list is long, more
bandwidth is used. However, since a message’s destination list can be reduced at
every routing step by a factor of the fan-out of brokers in the message’s delivery tree,
the destination list overhead is in fact small. We demonstrate this point through
real-world experiments and detailed simulations in Section ??. On the other hand,
events in content-based pub/sub systems often carry rich content. For example, in
RSS applications, most feeds/events range from 1KB to 10KB, with a median of
5.8 KB [42]. In these scenarios, the destination list overhead consumes only a small
fraction of the bandwidth.

Topology Maintenance Overhead: In D-DBR, a broker needs to know all other
brokers in the overlay instead of only its own neighbor brokers. This introduces
additional overhead for topology maintenance, which may become expensive when
the overlay scales out. However, in small-sized networks, the overhead remains
acceptable: heart-beat messages are only exchanged between neighboring brokers, a
topology update message only needs to be delivered to a limited number of brokers,
and the size of TRT and SPRT remains small. For example, in an overlay with 100
brokers, the TRT and SPRT of each broker only occupies about 11 kB of memory.

38

Chapter 5

MERC Design

For improved scalability in large-scale broker overlays, we propose another routing
scheme called MERC—Match at Edge and Route intra–Cluster. MERC combines
destination-based and content-based routing hierarchically. It has the advantages of
D-DBR, i.e., low subscription duplication and low matching cost. It also overcomes
the scalability limitation of D-DBR: In MERC, each broker needs to know a limited
number of brokers, only, and the destination list is limited to brokers in the local
cluster. Therefore, the topology maintenance overhead and the destination list
overhead are both reduced.

In MERC, the broker overlay is divided into interconnected clusters of brokers. Some
brokers, called edge brokers, are located at the edge of clusters and belong to more
than one cluster, whereas the other brokers, called internal brokers, belong to only
one cluster. Each broker only knows the addresses of brokers in clusters it belongs
to. Content-based and destination-based mechanisms are adopted for inter- and
intra-cluster event routing, respectively.

In MERC, when an event is issued, it is first matched against subscriptions at the
local broker to identify interested brokers in the local cluster. Then, the event is
delivered to these brokers along the distance-wise optimal paths, according to D-DBR.
Once an event is received by an edge broker that also belongs to another cluster,

39

5.1. ROUTING TABLES

the event is matched against subscriptions from that cluster at the edge broker to
identify interested brokers in that cluster. It is then delivered to these brokers from
the edge broker, again, according to D-DBR. This process is repeated until the event
is delivered to all interested brokers in all clusters.

 Cluster A: Cluster B:

A6

A2
A4

B5

B4

B3

B1event

AB

A3

A1
A5

{A3,AB}

{A3}

{AB} {B2} {B2}

B2

B6

{B6}

s1
s3

s2

a2

a1

Figure 5.0.1: Event routing in MERC

Fig. 5.0.1 shows an example of event routing in MERC. In this example, the broker
overlay is divided into two clusters: Cluster A and Cluster B. Both are connected by
an Edge Broker AB. There are two advertisements and three subscriptions: a1, a2, s1,
s2, and s3. In the example, we assume each advertisement matches all subscriptions.
Now, when an event is issued at Broker A1, it is first delivered to the interested
brokers A3 and AB in Cluster A. At the Edge Broker AB, it is matched against
subscriptions from Cluster B and further transferred to the interested brokers B2

and B6 in Cluster B.

5.1 Routing Tables

In MERC, routing tables of internal brokers at both the matching layer and the
multicasting layer are the same as those in D-DBR: Each broker maintains the same

40

CHAPTER 5. MERC DESIGN

six routing tables: L-SRT, R-SRT, L-PRT, R-PRT, TRT and SPRT. However,
the edge brokers have different routing tables. Besides an L-SRT and an L-PRT,
an edge broker maintains a group of the other four routing tables for each cluster it
belongs to. Note that in MERC, the sourceID of advertisements and subscriptions
transferred by an edge broker from one cluster to another cluster is replaced by that
edge broker’s ID.

For example, Fig. 5.0.1 shows that the Edge Broker AB maintains two R-SRTs and
two R-PRTs, each of which is identified by the cluster’s name. Also, the sourceID
of advertisements and subscriptions that are transferred by Broker AB from one
cluster to another cluster is replaced by Broker AB’s ID.

5.2 Message Processing

In MERC, message processing for internal brokers is the same as that in D-DBR. For
edge brokers, they override the function Forward in Alg. 11 to process messages at
the matching layer with the new implementation shown in Alg. 3.

Algorithm 3 Implementation of function Forward(m)
1: if localBroker is an edge broker then
2: m.sourceID←localBrokerID
3: if m is an advertisement then
4: m.destIDList←IDs of all brokers in other clusters
5: else if m is a subscription then
6: advs←Match(m,R-SRTs of other clusters)
7: m.destIDList←advs.sourceID
8: else if m is an event then
9: subs←Match(m,R-SRTs of other clusters)

10: m.destIDList←subs.sourceID
11: end if
12: output.enqueue(m)
13: end if

1Function Forward does nothing in Alg. 1.

41

5.3. ALGORITHM ANALYSIS

Whenever a message from a specific cluster is delivered to an edge broker, the
sourceID of that message is first replaced by that edge broker’s ID. Then, that
message is processed based on its type: An advertisement is forwarded to all brokers in
other clusters, a subscription is forwarded to brokers in other clusters with matching
advertisements, and an event is forwarded to brokers in other clusters with matching
subscriptions.

For edge brokers, message processing at the multicasting layer is similar to that in
D-DBR, except that several groups of routing tables (TRT and SPRT) may be used
to route a message to its destinations.

5.3 Algorithm Analysis

Scalability: Compared with D-DBR, MERC achieves better scalability: First, a
broker only needs to know brokers in the cluster or clusters it belongs to. Changes in
one cluster do not affect brokers in other clusters. Topology maintenance overhead
for each broker remains small, even when the overlay’s size increases. Second, a
message is not annotated with addresses of brokers in other clusters. The size of
each message’s destination list is thus limited by the number of brokers in the local
cluster.

Performance: In MERC, subscriptions are stored at the local broker, remote
interested brokers, and certain edge brokers. Events are matched at these brokers,
only. Compared with FBR, MERC achieves higher performance, since each event does
not have to be matched at all intermediate brokers. Compared with D-DBR, MERC’s
performance is lower, because MERC requires additional matching overhead at edge
brokers. From a performance point of view, D-DBR fares best among these three
algorithms. However, since destination list and topology maintenance overhead limit
its scalability, D-DBR is not suitable for large-scale topologies (i.e., approximately 100
and more brokers). Therefore, it is better to opt for D-DBR and MERC in small-sized
and large-sized overlays, respectively.

Other Considerations: The Internet resambles a collection of interconnected

42

CHAPTER 5. MERC DESIGN

routing domains [16], which are groups of nodes under common administration
sharing routing information. MERC follows this design: A single cluster represents an
administrative domain and multiple clusters are connected in a hierarchical manner.
In MERC, if an edge broker acts as a transit node, and an internal broker acts as a
stub node, the pub/sub system follows the transit-stub model of the Internet [67].
So an appealing characteristic of MERC is that it provides a good starting point to
construct large-scale pub/sub systems that mimic the structure of the Internet.

43

5.3. ALGORITHM ANALYSIS

44

Chapter 6

PS-Tree Organization

PS-Tree is a novel tree index for subscriptions. The idea behind PS-Tree is to divide
the set of values represented by all predicates into disjoint subsets, here referred to as
predicate spaces. In other words, a predicate space is a value range in the predicate’s
dimension (i.e., value domain). Then, we construct a many-to-many relationship
between predicate spaces and subscriptions. Thus, the problem of matching an
attribute-value pair against a set of subscriptions is transformed into the problem of
locating the predicate space to which an attribute-value pair belongs, which can be
efficiently supported by PS-Tree.

6.1 PS-Tree Structure

PS-Tree contains two types of nodes: leaf nodes and inner nodes. A leaf node
represents a predicate space, while an inner node represents an “element” of the
represented attribute values. Elements are specified differently for different value
types. For example, we specify elements as digits for the integer type. The root
node of PS-Tree is a special inner node that represents the starting element of the
represented attribute values. The inner nodes on the path from the root node to a
leaf node construct the represented attribute value and act as the boundary between

45

6.1. PS-TREE STRUCTURE

two adjacent predicate spaces.

As shown in Fig. 6.1(a), an inner node contains three leaf node links (l, e, g) and an
array of links to child inner nodes. The length of the inner node link array is set as
the number of different elements. If an inner node corresponds to an attribute value,
say, v, l of this inner node links to the leaf node whose predicate space is less than v,
e links to the leaf node whose predicate space is equal to v, and g links to the leaf
node whose predicate space is greater than v. As an optimization, e can link to the
same leaf node as l and g. For the root node, a special consideration is that g links
to the first leaf node, and l links to the last leaf node.

InnerNode {
LeafNodeLink l;
LeafNodeLink e;
LeafNodeLink g;
InnerNodeLink p[LENGTH];

}

LeafNode {
LeafNodeLink next;
Integer counter;
list<Sub> subLinkedList;
BloomFilter signature;
Integer spaceId;

}

(a) Node design

- +

p[-] p[+]

[-5,-1] (-1,1)

0

p[0]

e,g l,e

[1,5][-128,-5) (5,127]

g

g l

root

5

p[5]

1

p[1]

11 15

7

p[7]

p[15]p[11]

lgl,ee,gl

(b) PS-Tree index example

Figure 6.1.1: PS-Tree index structure

In PS-Tree, a leaf node contains a next link, a predicate counter, an event counter, a
subscription linked list and a signature. The next link points to another leaf node
whose predicate space is adjacent and greater than that leaf node’s predicate space.
The predicate counter equals the number of predicates covering1 the current leaf
node’s predicate space. The event counter equals the number of historical events
that match with the current leaf node’s predicate space. The subscription linked list
contains links to subscriptions. The signature is the Bloom filter created from the

1In this thesis, we use the term cover to indicate that an interval contains another interval or a
point.

46

CHAPTER 6. PS-TREE ORGANIZATION

subscription IDs. When a predicate of a subscription covers the predicate space of a
leaf node, the ID of that subscription is inserted into the signature of that leaf node.
The sub linked list and the signature are only required by PSTBloom. For PSTHash, a
leaf node maintains a unique predicate space ID, which is not required by PSTBloom.
As a result, we have two versions of PS-Tree, PS-TreeB and PS-TreeH , which have
different space complexities.

The elements are specified differently for different value types. In this thesis, we use
the 8-bit byte type to illustrate the design of PS-Tree. Fig. 6.1(b) shows a PS-Tree
instance with two subscriptions, S1{attr, in, [−5,−1]} and S2 {attr, in, [1, 5]}, in-
dexed. Each of these subscriptions contains one predicate in the dimension attr. In
this example, the value type of this dimension is an 8-bit byte. For a byte, which is
stored as a binary complement, we specify the most significant bit, the next 3 bits,
and the last 4 bits as an element. Take the attribute value −5 as an example; its
elements are “−", “7" and “11". In this PS-Tree instance, there are five leaf nodes.
Correspondingly, the whole value domain [−128, 127] of the dimension attr is divided
into five predicate spaces: [−128,−5), [−5,−1], (−1, 1), [1, 5], and (5, 127]. These
predicate spaces are mapped to the following five subscription sets, respectively: ∅,
{S1}, ∅, {S2}, and ∅. Given an attribute value pair 〈attr, 2〉, the predicate space
[1, 5] to which it belongs can be quickly located through PS-Tree. Subsequently, the
matching subscription set {S2} can be directly obtained.

6.2 Index Construction

Alg. 4 processes the inserted predicates and constructs the PS-Tree index. InsertPredicate
takes two parameters, pred and pstree, as input. pred is the predicate to be inserted.
The output is a list of leaf nodes whose predicate spaces are covered by the inserted
predicate. InsertPredicate addresses predicates differently for different operators.
Alg. 4 shows how the operator “≥" is handled. Other operators are handled in a
similar manner.

47

6.2. INDEX CONSTRUCTION

Algorithm 4 InsertPredicate(pred, pstree)
1: if pred.op is ≥ then
2: startNode←Partition(pred.vals[0], pred.op, pstree)
3: endNode←pstree.root.l
4: end if
5: while startNode 6= endNode.next do
6: startNode.predCounter++
7: leafNodes.add(startNode)
8: startNode←startNode.next
9: end while

10: return leafNodes

Algorithm 5 Partition(val, op, pstree)
1: currNode←pstree.root
2: for each elem ∈ val do
3: path.push(currNode, elem)
4: if currNode.p[elem] = null then
5: currNode.p[elem]←CreateInnerNode()
6: end if
7: currNode←currNode.p[elem]
8: end for
9: if currNode.e = null then

10: iRNode←GetRNode(path)
11: iLNode←GetLNode(iRNode, pstree.root)
12: PartitionLeafNode(currNode, iLNode, op)
13: else
14: PartitionLeafNode(currNode, op)
15: end if
16: return currNode.e

Partition is a function invoked by InsertPredicate to partition a predicate space in a
PS-Tree. The input parameters include a value, an operator, and a PS-Tree. The
output is a leaf node whose predicate space covers the input value. As shown in
Alg. 5, if not all inner nodes corresponding to that value exist, new inner nodes
are created. The function GetRNode is used to locate the inner node adjacent to
and to the right of the current inner node. GetLNode is used to locate the minimal
left inner node. PartitionLeafNode is used to partition the predicate space of a leaf

48

CHAPTER 6. PS-TREE ORGANIZATION

node and create new leaf nodes. Except for the space ID and the next link, a newly
created leaf node copies other content from the leaf node to be partitioned.

Algorithm 6 GetRNode(path)
1: while 〈node, elem〉←path.pop() do
2: for pos←elm+1; pos ≤ LENGTH; pos++ do
3: if node.p[pos] 6= null then
4: return node.p[pos]
5: end if
6: end for
7: end while
8: return node

Algorithm 7 GetLNode(iRNode, root)
1: if iRNode = root then
2: return root
3: end if
4: iLNode = iRNode;
5: while iLNode.l = null do
6: for pos←1; pos ≤ LENGTH; pos++ do
7: if iLNode.p[pos] 6= null then
8: iLNode = iLNode.p[pos]
9: break

10: end if
11: end for
12: end while
13: return iLNode

The function GetRNode is used to locate the inner node adjacent to and to the right
of the current inner node. The input parameter is the path from the root node to
the current node. As can be seen in Alg. 6, GetRNode reversely traverses the nodes
on the path. The right side not null node pointer is returned. The time complexity
of GetRNode is O(LENGTH ∗Ne) = O(Ne), where Ne is the number of elements
in an attribute value.

GetLNode is used to locate an inner node’s minimal left inner node. The input
parameters include an inner node link and the root node link. As can be seen in

49

6.2. INDEX CONSTRUCTION

Alg. 7, GetLNode contains a while-loop. The loop does not stop before locating an
inner node whose l link is not null. The time complexity of GetLNode is also O(Ne).

Alg. 8 and Alg. 9 both show how a leaf node is partitioned. In Alg. 8, the e link
of currNode points to the leaf node to be partitioned, while in Alg. 9, the l link of
iLNode points to the leaf node to be partitioned. How a leaf node is partitioned
depends on the status of the PS-Tree and the operator. Alg. 8 and Alg. 9 show the
detailed steps to partition a leaf node when the operator is ≥ and =.

In Alg. 8 and Alg. 9, the function CopyLeafNode creates a new leaf node by copying all
the information from an existing leaf node. Similarly, the function CreateInnerNode
creates a new inner node by setting every member variable to null. The time
complexities of these two functions are O(1).

Algorithm 8 PartitionLeafNode(currNode, op)
1: if op is ≥ then
2: if currNode.l = currNode.e then
3: leafNode = CopyLeafNode (currNode.l)
4: currNode.l.next = leafNode
5: currNode.e = leafNode
6: end if
7: end if
8: if op is = then
9: if currNode.e = currNode.g then

10: leafNode = CopyLeafNode (currNode.e)
11: currNode.e.next = leafNode
12: currNode.g = leafNode
13: else if currNode.l = currNode.e then
14: leafNode = CopyLeafNode (currNode.l)
15: currNode.l.next = leafNode
16: currNode.e = leafNode
17: end if
18: end if

50

CHAPTER 6. PS-TREE ORGANIZATION

Algorithm 9 PartitionLeafNode(currNode, iLNode, op)
1: if op is ≥ then
2: leafNode = CopyLeafNode (iLNode.l)
3: iLNode.l.next = leafNode
4: currNode.l = iLNode.l
5: currNode.e = leafNode
6: currNode.g = leafNode
7: iLNode.l = leafNode
8: end if
9: if op is = then

10: leafNodeOne = CopyLeafNode (iLNode.l)
11: leafNodeTwo = CopyLeafNode (iLNode.l)
12: iLNode.l.next = leafNodeOne
13: leafNodeOne.next = leafNodeTwo
14: currNode.l = iLNode.l
15: currNode.e = leafNodeOne
16: currNode.g = leafNodeTwo
17: iLNode.l = leafNodeTwo
18: end if

Algorithm 10 CreateInnerNode()
1: innerNode.l = null
2: innerNode.e = null
3: innerNode.g = null
4: for i = 1 to LENGTH do
5: innerNode[i] = null
6: end for
7: return innerNode

6.3 Predicate Matching

Alg. 11 matches an attribute-value pair against a PS-Tree to locate the predicate
space to which it belongs. Two situations can occur: (1) all the inner nodes
corresponding to the value in that attribute-value pair exist, in which case the last
inner node’s link e is returned, or (2) not all corresponding inner nodes exist, in

51

6.4. DYNAMIC INDEX ADJUSTMENT

which case GetRNode and GetLNode are invoked to locate the inner node whose l
links to the leaf node with the predicate space covering the value.

Algorithm 11 MatchPair(pair, pstree)
1: currNode←pstree.root
2: for each elem ∈ pair.val do
3: path.push(currNode, elem)
4: if currNode.p[elem] 6= null then
5: currNode←currNode.p[elem]
6: else
7: iRNode←GetRNode(path)
8: iLNode←GetLNode(currNode, pstree.root)
9: return iLNode.l

10: end if
11: end for
12: return currNode.e

6.4 Dynamic Index Adjustment

PS-Tree supports dynamic index adjustment by providing the function DeletePredicate,
which is used to delete the outdated predicates and nodes from a PS-Tree. As
mentioned in Sec. 6.1, every leaf node contains a predicate counter, which is equal to
the number of predicates covering the current leaf node’s predicate space. When the
predicate counter is zero, the corresponding leaf node is deleted to save memory.

In Alg. 12, DeletePredicate deletes a predicate from a PS-Tree instance. The
main function of DeletePredicate is to determine all the leaf nodes whose predicate
spaces are covered by that predicate. The predicate counters of these leaf nodes
decrease by one. Similar to InsertPredicate, DeletePredicate executes differently for
different operators. Lines 12∼20 exemplify the processing of “in" and “∈". As with
InsertPredicate of PS-Tree, the time complexity of InsertPredicate is O(Ne +Np),
where Np represents the number of predicates indexed by current PS-Tree instance.

52

CHAPTER 6. PS-TREE ORGANIZATION

Algorithm 12 DeletePredicate(pred, pstree)
1: if pred.operator is in then
2: pairOne←〈pred.attr, pred.vals[0]〉
3: pairTwo←〈pred.attr, pred.vals[1]〉
4: startNode←MatchPair(pairOne, pstree)
5: endNode←MatchPair(pairTwo, pstree)
6: while startNode 6= endNode.next do
7: startNode.predCounter -= 1
8: leafNodes.add(startNode)
9: startNode←startNode.next

10: end while
11: end if
12: if pred.operator is ∈ then
13: for i = 1 to pred.valueNum do
14: pair←〈pred.attr, pred.vals[i]〉
15: lNode←MatchPair(pair, pstree)
16: lNode.predCounter -= 1
17: leafNodes.add(lNode)
18: end for
19: end if
20: return leafNodes

Here, we give an additional example that focuses on predicate space partitioning
and dynamic PS-Tree index adjustment. Suppose, initially, that there are two
subscriptions: S1{age, in, [20, 60]} and S2{age, in, [30, 80]}. The value domain of
the “age” dimension is [1, 100]. Therefore, at the beginning, the value domain is
divided into 5 predicate spaces, [1, 20), [20, 30), [30, 60], (60, 80] and (80, 100], with
the counters 0, 1, 2, 1 and 0, respectively. When S2 is removed, the counters become
0, 1, 1, 0, 0, respectively. Then, the predicate space [20, 30) is merged with [30, 60],
and (60, 80] is merged with (80, 100]. As a result, there are three predicate spaces
remaining: [1, 20), [20, 60], and (60, 100].

53

6.5. EXPRESSIVENESS

6.5 Expressiveness

PS-Tree offers high expressiveness by supporting different value types and operators.
To support a value type (integer, float, string, etc.), the only requirement is to specify
the elements of values of that type. As shown in Fig. 6.1(b), we divide a byte type
value into three elements. For other integer types, the elements are similarly specified
as digits. For example, a 32-bit integer type value is divided into nine elements. We
use characters as elements for the string type. For the float type, the most significant
bit, the exponent bits and the mantissa bits are specified as elements.

PS-Tree supports an expressive set of operators; for numbers (e.g., integer, float
and double), enumerations, and strings, the supported operations include relational
operators (<,≤,=, 6=, >,≥), set operators (∈, /∈), and the SQL operator (in). The
only requirement to support a specific operator in PS-Tree is that the predicate
containing that operator is able to be divided into disjoint predicate spaces.

A further advantage of PS-Tree is that it isolates the specific value types and
operators from the upper matching layer of PSTBloom and PSTHash. Thus, the upper
layer works in the same way for different value types and operators.

6.6 Time and Space Analysis

Matching Time Complexity: In PS-Tree, matching an attribute-value pair
against a set of subscriptions is achieved by locating the predicate space to which the
attribute-value pair belongs. As shown in Alg. 11, the number of operations is linear
in the number of elements of the represented attribute value. Thus, the matching
complexity is O(Ne), where Ne is the number of elements in an attribute value. For
the integer type, Ne equals nine; therefore, the matching time complexity is only
O(1).

Predicate Insertion Time Complexity: In Alg. 4, two steps are needed to insert
a predicate into a PS-Tree: (1) insert predicate values into the PS-Tree and (2)

54

CHAPTER 6. PS-TREE ORGANIZATION

determine all leaf nodes covered by the predicate. The time complexity of the first
step is also O(Ne). For the second step, the number of operations needed equals
the number of predicate spaces covered by the predicate. In the worst case, the
number of predicate spaces in a PS-Tree is 2 ∗ Np + 1, where Np represents the
number of predicates that have been inserted. Therefore, the predicate insertion
time complexity is O(Ne +Np).

Space Complexity: PS-Tree requires space for inner nodes and leaf nodes. The
number of leaf nodes is equal to the number of predicate spaces. In the worst case,
the number of inner nodes is Ne times the number of leaf nodes. As analyzed above,
the number of leaf nodes is O(Np). Therefore, the space complexity of PS-TreeH ,
which is used by the PSTHash algorithm, is O(Ne ∗Np). For PS-TreeB, which is used
by the PSTBloom algorithm, additional memory is needed to store the subscription
list. The space complexity of PS-TreeB is O(Np ∗ (Ne +Np)). Note that this is the
worst-case space complexity.

55

6.6. TIME AND SPACE ANALYSIS

56

Chapter 7

PSTBloom Organization

Based on PS-Tree, we first design the PSTBloom algorithm. The idea behind
PSTBloom is to select a predicate with high selectivity as the access predicate for each
subscription. Then, the subscription is attached to those leaf nodes corresponding
to its access predicate. The ID of the subscription is inserted into the Bloom filter
signature of the leaf nodes corresponding to its other predicates. When an event is
received, it is matched against a number of PS-Trees to locate its associated leaf
nodes. Then, the set of subscriptions whose access predicates match with that event
is directly located. Next, we further filter out unmatching subscriptions through the
signatures of those leaf nodes. The correctness of PSTBloom is based on Lemma 1.

Lemma 1 Given an event E, the matching subscriptions for E are contained in the
candidate subscription set {S(〈attri, vali〉) | 〈attri, vali〉 ∈ E}, where S(〈attri, vali〉)
represents the subscriptions whose access predicates match with the i-th attribute-
value pair 〈attri, vali〉 of E.

We sketch the proof for Lemma 1 as follows. If a subscription S matches with an
event E, based on the matching semantics in Sec 3.2, we know that there exists a
matching attribute-value pair in E for every predicate of S. Therefore, the access
predicate of S has a matching attribute-value pair 〈attri, vali〉 in E. Thus, S is
contained in {S(〈attri, vali〉)}.

57

7.1. PSTBLOOM STRUCTURE

7.1 PSTBloom Structure

In PSTBloom, a PS-Tree is constructed for each dimension. As shown in Fig. 6.1(a),
each leaf node of a PS-Tree contains a subscription linked list and a signature. Each
link in the subscription linked list points to a subscription whose access predicate
covers the current leaf node’s predicate space. The signature is the Bloom filter
over a set of subscription IDs. Each such subscription has one predicate (except the
access predicate) covering the current leaf node’s predicate space.

attr2

1 0000

attr1

-

p[-]

[-5,-1] (-1,127][-128,-5)

g l

root

11 15

7

p[7]

p[15]p[11]

gl,ee,gl

+

p[+]

[1,5] (5,127][-128,1)

g l

root

1 5

0

p[0]

p[5]p[1]

gl,ee,gl

nil 0010 nil 00113 0000nil 0001 nil 00002

Figure 7.1.1: PSTBloom index structure

The example in Fig. 7.1.1 illustrates the PSTBloom index structure. In this example,
the value type is byte. There are three subscriptions:

S1 : {attr1, <,−5}, {attr2, in, [1, 5]}

S2 : {attr1, in, [−5,−1]}, {attr2, <, 1}

S3 : {attr1, in, [−5,−1]}, {attr2, >, 5}

PSTBloom constructs two PS-Trees, denoted as attr1 and attr2. For S1, {attr2, in, [1, 5]}
is selected as the access predicate, while for S2 and S3, {attr1, in, [−5,−1]} is selected
as the access predicate. As shown in Fig. 7.1.1, a link to S1 is inserted into the linked

58

CHAPTER 7. PSTBLOOM ORGANIZATION

list associated with the leaf node with the predicate space [1, 5] in the PS-Tree for
attr2. Links to S2 and S3 are inserted into the linked list associated with the leaf
node with the predicate space [−5,−1] of the PS-Tree for attr1. The ID of S1 is
inserted into the signature of the leaf node with the predicate space [−128,−5) in
the PS-Tree for attr1. The ID of S2 and S3 is inserted into the signature of the
leaf nodes with the predicate space [−128, 1) and (5, 127] of the PS-Tree for attr2,
respectively.

7.2 Index Construction

Alg. 13 processes the inserted subscriptions. When a subscription is received, the
predicate with the highest selectivity is selected as the access predicate. Then, every
predicate is inserted into its corresponding PS-Tree. For each predicate, a set of leaf
nodes is returned after invoking the operation InsertPredicate presented in Alg. 4.
Based on whether that predicate is an access predicate, different operations are
executed. If the predicate is an access predicate, a link to the subscription is inserted
into the subscription linked list of each leaf node; otherwise, the subscription ID is
inserted into the signature of each leaf node.

Algorithm 13 InsertSubscription(sub, pstb)
1: accPred←SelectAccPred(sub, pstree)
2: for each pred ∈ sub do
3: pstree←pstb.pstrees[pred.attr]
4: leafNodes←InsertPredicate(pred, pstree)
5: for each node ∈ leafNodes do
6: if pred = accPred then
7: node.subLinkedList.add(sub)
8: else
9: node.signature.add(sub.id)

10: end if
11: end for
12: end for

59

7.3. EVENT MATCHING

7.3 Event Matching

As shown in Alg. 14, PSTBloom takes three steps to match an event against sub-
scriptions: (1) Match each attribute-value pair in the event against the PS-Trees to
locate a set of leaf nodes. The subscriptions in the subscription linked lists attached
to these leaf nodes are candidate subscriptions. (2) Prune a subscription if its ID is
not contained in the signature of the related leaf nodes. (3) Match the event against
the remaining subscriptions to further filter out false positives. In this step, the
access predicate no longer needs to be checked.

Algorithm 14 MatchEvent(event, pstb)
1: for each pair ∈ event do
2: pstree←pstb.pstrees[pair.attr]
3: leafNode←MatchPair(pair, pstree)
4: leafNodes[pair.attr]←leafNode
5: end for
6: for each node ∈ leafNodes do
7: for each sub ∈ node.subLinkedList do
8: isCandidate←True
9: for each pred ∈ sub do

10: if pred = sub.accPred then
11: Continue
12: end if
13: nodeSign←leafNodes[pred.attr].signature
14: if ¬nodeSign.contain(sub.id) then
15: isCandidate←False; break
16: end if
17: end for
18: if isCandidate = True then
19: if Match(event, sub) = True then
20: matchingSubs.add(sub.id)
21: end if
22: end if
23: end for
24: end for
25: return matchingSubs

60

CHAPTER 7. PSTBLOOM ORGANIZATION

7.4 Subscription Deletion

Alg. 15 shows how a subscription is deleted in PSTBloom: First, DeletePredicate is
invoked for every predicate. Then, a set of leaf nodes is returned. For each leaf node,
if its predicate counter is zero, that leaf node is removed from the PS-Tree it belongs
to. Otherwise, based on whether the predicate is the access predicate, different steps
are executed. If the predicate is the access predicate, the subscription is deleted from
the subscription linked list; otherwise, the ID of the subscription is deleted from
the signature of the leaf node. As with InsertSubscription of PSTBloom, the time
complexity of this function is O(|S| ∗ (Ne +Np)).

Algorithm 15 DeleteSub(sub, pstb)
1: for each pred ∈ sub do
2: pstree←pstb.pstrees[pred.atrr]
3: leafNodes←DeletePredicate(pred, pstree)
4: for each node ∈ leafNodes do
5: if node.predCounter = 0 then
6: RemoveNode(node, pstree)
7: Continue
8: end if
9: if pred = sub.accPred then

10: leafNode.subLinkedList.delete(sub)
11: else
12: leafNode.signature.delete(sub.id)
13: end if
14: end for
15: MergePreds(leafNodes, pstree)
16: end for

7.5 Time and Space Analysis

Matching Time Complexity: As analyzed in Sec. 6.6, PS-Tree needs O(Ne) time
to locate the predicate space to which an attribute-value pair belongs. Therefore,
for PSTBloom, the time complexity to retrieve the candidate subscriptions is O(|E| ∗

61

7.5. TIME AND SPACE ANALYSIS

Ne), where |E| is the event size. The total time complexity for event matching is
O(|E| ∗Ne +Nc), where Nc is the number of candidate subscriptions.

Index Construction Time Complexity: To insert a subscription, each of its
predicates is inserted into a corresponding PS-Tree. As analyzed in Sec. 6.6, the
time complexity of this operation is O(Ne +Np). Thus, the index construction time
complexity for PSTBloom is O(Ns ∗ |S| ∗ (Ne + Np)), where Ns is the number of
subscriptions and |S| is the subscription size.

Space Complexity: PSTBloom maintains a PS-Tree, more specifically PS-TreeB,
for each dimension. As analyzed in Sec. 6.6, the space complexity of PS-TreeB is
O(Np ∗ (Ne +Np). To store all PS-Trees, PSTBloom requires O(Nd ∗Np ∗ (Ne +Np))
space, where Nd is the number of dimensions and Np is the number of predicates in
a dimension.

62

Chapter 8

PSTHash Organization

Although PSTBloom achieves good performance with respect to event matching,
index construction, and memory use, it suffers from a limitation in addressing dense
workloads because PSTBloom uses only one access predicate to select candidate
subscriptions. Given dense workloads, the number of candidates could potentially be
large.

To overcome this limitation, we design the PSTHash algorithm, which is also based on
PS-Tree. The idea behind PSTHash is to select more than one, say, N , predicates with
high selectivity as access predicates for each subscription. These access predicates
are divided into a number of disjoint N-dim predicate spaces. Each N-dim predicate
space contains N predicate spaces. For an event, a subscription is identified as a
candidate only when all N access predicates are matched.

PSTHash differs from PSTBloom in its method of identifying candidate subscriptions.
In PSTHash, a many-to-many hash table between N-dim predicate spaces and
subscriptions is maintained. Given an event E, each attribute-value pair of E
is matched against a corresponding PS-Tree to identify the predicate spaces to which
the attribute-value pair belongs. In total, |E| predicate spaces can be found. Then,(

|E|
N

)
N-dim predicate spaces are constructed. Through these N-dim predicate spaces,

the candidate subscriptions can be directly retrieved by querying the hash table that

63

8.1. PSTHASH STRUCTURE

relates the N-dim predicate spaces and the subscriptions. Given dense workloads,
compared with PSTBloom, PSTHash identifies fewer candidate subscriptions and
achieves better matching performance. Assuming that N is not greater than the size
of all events and subscriptions1, we formulate Lemma 2.

Lemma 2 Given an event E, the matching subscriptions for E are contained in the
candidate subscription set {S(AVi1 , ..., AViN) | {AVi1 , ..., AViN} ∈ E, ix 6= iy, x 6= y},
where S(AVi1 , ..., AViN) represents the subscriptions whose access predicates match
with the i1-th to the iN -th attribute-value pair of E.

We sketch a proof. If a subscription S matches with an event E, based on Sec. 3.2,
there exists a matching attribute-value pair in E for every predicate of S. Therefore,
any access predicate of S also has a matching attribute-value pair in E, which means
that S is contained in a specific S(AVi1 , ..., AViN).

The number of access predicates N is an important configuration parameter in
PSTHash. When N is large, the access predicates of a subscription are divided
into more N-dim predicate spaces, PSTHash consumes more memory, and index
construction becomes more expensive; however, the matching performance improves,
thus producing a trade-off. The most suitable value of N is dependent on workload
and beyond the scope of this thesis. For simplicity, in the following sections, we
always set N equal to two.

8.1 PSTHash Structure

In addition to a set of PS-Trees, PSTHash utilizes two more data structures: a
set of 2-dim predicate space IDs and a hash table. A 2-dim predicate space ID is
constructed using 2 predicate space IDs. A predicate space ID is determined by a
dimension ID and space ID pair. Thus, a 2-dim predicate space ID is represented by
2 pairs of 〈dimension ID, space ID〉. The pairs are ordered in ascending order by
their dimension ID values. The key of the hash table is a 2-dim predicate space ID,

1We use the method of PSTBloom to address subscriptions and events whose size is less than N .

64

CHAPTER 8. PSTHASH ORGANIZATION

and the associated value is a subscription linked list.

dimensions

subskeys

1p[+]

g

lroot

 [1,1], 2

(1,127],1

e
g

[-128,1),3
l

15

g

l
root

 [-1,-1],2

(-1,127],1

e
g

[-128,-1),3
l

0

g

lroot

 [0,0], 2

(0,127],1

e
g

[-128,0),3
l

[1-2][2-2]

[1-2][3-2]

[2-2][3-2]

{S1,S2}

{S3}

{S4}

attr1

attr2

attr3

+ p[0] 0 p[1]

p[-] - p[7] 7 p[15]

p[+] + p[0] 0 p[0]

Figure 8.1.1: PSTHash index structure

Fig. 8.1.1 illustrates the index structure of PSTHash. Here, there are four subscriptions,
all of which contain three predicates.

S1 : {attr1,=, 1}, {attr2,=,−1}, {attr3, <, 0}

S2 : {attr1,=, 1}, {attr2,=,−1}, {attr3, >, 0}

S3 : {attr1,=, 1}, {attr2, <,−1}, {attr3,=, 0}

S4 : {attr1, <, 1}, {attr2,=,−1}, {attr3,=, 0}

In this PSTHash index example, S1 and S2 are associated with the 2-dim predicate
space whose ID is [1-2][2-2]. This ID indicates that the 2-dim predicate space is
constructed using the second predicate space of attr1 and the second predicate space
of attr2. Similarly, S3 is associated with [1-2][3-2], and S4 is associated with [2-2][3-2].

Assume that an event E {〈attr1, 1〉, 〈attr2,−1〉, 〈attr3, 2〉} is received. The event is
matched against these three PS-Trees. Three predicate spaces to which E belongs
are identified: [1-2], [2-2] and [3-1]. These three predicate spaces are used to construct
three 2-dim predicate spaces: [1-2][2-2], [1-2][3-1], and [2-2][3-1]. PSTHash uses these
2-dim predicate space IDs as keys to retrieve the candidate subscriptions S1 and S2.

65

8.2. INDEX CONSTRUCTION

These two candidate subscriptions are evaluated, and the matching subscription S2

is found.

8.2 Index Construction

Alg. 16 processes subscriptions for insertion. When a subscription S is received, two
predicates with high selectivity are selected as access predicates. Then, each access
predicate is inserted into a corresponding PS-Tree. A set of leaf nodes is returned
after invoking InsertPredicate. Using the dimension IDs and space IDs of those leaf
nodes, a number of 2-dim predicate space IDs are constructed. The subscription is
inserted into the hash table with the 2-dim predicate space ID as the key. When
InsertPredicate is invoked, predicate spaces may need to be partitioned. In this
situation, the records associated with the old space ID in the hash table are copied
to new records using the new space ID as the key.

Algorithm 16 InsertSubscription(sub, psth)
1: accPreds←SelectAccPreds(sub, pstree, 2)
2: for each pred ∈ accPreds do
3: pstree←psth.pstrees[pred.attr]
4: leafNodes←InsertPredicate(pred, pstree)
5: for each node ∈ leafNodes do
6: spaceIdSets[pred.attr].add(node.spaceId)
7: end for
8: end for
9: for each spaceId1 ∈ spaceIdSets[attr1] do

10: for each spaceId2 ∈ spaceIdSets[attr2] do
11: key = [attr1-spaceId1][attr2-spaceId2]
12: psth.hash[key].add(sub)
13: end for
14: end for

66

CHAPTER 8. PSTHASH ORGANIZATION

8.3 Event Matching

As shown in Alg. 17, PSTHash takes three steps to match an event against the
subscriptions: (1) Match each attribute-value pair in the event against a corresponding
PS-Tree to obtain |E| predicate space IDs. (2) Construct

(
|E|
2

)
2-dim predicate space

IDs using those predicate space IDs and retrieve the candidate subscriptions. (3)
Match the event against these subscriptions to find matched subscriptions. In this
step, the two access predicates no longer need to be checked.

Algorithm 17 MatchEvent(event, psth)
1: for each pair ∈ event do
2: pstree←psth.pstrees[pair.attr]
3: leafNode←MatchPair(pair, pstree)
4: predSpaces.add(pair.attr, leafNode.spaceId)
5: end for
6: spaceIds←ConstructSpaces(predSpaces)
7: for each spaceId ∈ spaceIds do
8: subLinkedList←psth.hash[spaceId]
9: for each sub ∈ subLinkedList do
10: if Match(event, sub) = True then
11: matchingSubs.add(sub.id)
12: end if
13: end for
14: end for
15: return matchingSubs

8.4 Subscription Deletion

Alg. 18 shows how a subscription is deleted from PSTHash: DeletePredicate is invoked
for every access predicate of the subscription to obtain a set of leaf nodes. Using
the attribute names and space IDs of those leaf nodes, a number of 2-dimensional
predicate space IDs are constructed. The subscription is deleted from the hash table
with the 2-dimensional predicate space ID as the key. For each leaf node, if its

67

8.5. TIME AND SPACE ANALYSIS

predicate counter is zero, the leaf node is removed. As with InsertSubscription of
PSTHash, the time complexity of this function is O(Ne + (Np)2)

Algorithm 18 DeleteSub(sub, psth)
1: for each pred ∈ sub.accPreds do
2: pstree←psth.pstrees[pred.atrr]
3: leafNodes←DeletePredicate(pred, pstree)
4: for each node ∈ leafNodes do
5: spaceIdSets[pred.attr].add(node.spaceId)
6: if node.predCounter = 0 then
7: RemoveNode(node, pstree)
8: end if
9: end for

10: MergePreds(leafNodes, pstree)
11: end for
12: for each spaceId1 ∈ spaceIdSets[attr1] do
13: for each spaceId2 ∈ spaceIdSets[attr2] do
14: key = [attr1-spaceId1][attr2-spaceId2]
15: psth.hash[key].delete(sub)
16: end for
17: end for

8.5 Time and Space Analysis

Matching Time Complexity: Similar to PSTBloom, the time complexity of
locating the predicate spaces to which an event E belongs is O(|E| ∗ Ne). The
number of 2-dim predicate spaces is

(
|E|
2

)
. Therefore, the matching time complexity

for PSTHash is O(|E| ∗ Ne +
(

|E|
2

)
+ Nc), where Nc is the number of candidate

subscriptions.

Index Construction Time Complexity: Given a subscription, PSTHash needs
to insert its access predicates into PS-Trees and insert that subscription into a
number of slots in the hash table. For these two operations, the time complexity is
O(Ne +Np) and O((Np)2), respectively. Therefore, the index construction complexity
of PSTHash is O(Ns ∗ (Ne + (Np)2)), where Ns is the number of subscriptions.

68

CHAPTER 8. PSTHASH ORGANIZATION

Space Complexity: PSTHash needs memory to store a PS-Tree, more specifically,
PS-TreeH , for each dimension. As analyzed in Sec. 6.6, the space complexity of
PS-TreeH is O(Ne + Np). Np is the number of access predicates in a dimension.
PSTHash also needs memory for the hash table. In the worst case, the number
of records in the hash table is Nd ∗ (Np)2, where Nd is the number of dimensions.
Thus, the space complexity of PSTHash is O(Nd ∗ Ne ∗ Np) + O(Nd ∗ (Np)2) =
O(Nd ∗Np ∗ (Ne +Np)).

69

8.5. TIME AND SPACE ANALYSIS

70

Chapter 9

A-Tree Organization

In this section, we first discuss the A-Tree data structure. Then, we present how
an A-Tree index is dynamically constructed with different optimization methods,
such as expression reorganization and index self-adjustment. Finally, we analyze the
space complexity and the index construction time complexity of A-Tree.

9.1 A-Tree Structure

In contrast to the binary decision diagram, A-Tree represents each arbitrary Boolean
expression as an n-ary tree and aggregates a set of n-ary trees together. In A-Tree,
we distinguish among three classes of nodes: a leaf node (l-node), which corresponds
to a predicate; an inner node (i-node), which corresponds to a subexpression; and a
root node (r-node), which corresponds to an arbitrary Boolean expression. A-Tree
guarantees that the same predicate from different expressions corresponds to a unique
l-node and the same subexpression from different expressions corresponds to a unique
i-node. If two arbitrary Boolean expressions are the same, then they correspond
to the same r-node. In Sec. 9.2.1, we will show how this property is efficiently
guaranteed in the index construction process of A-Tree.

71

9.1. A-TREE STRUCTURE

 L2

 L3

 L1

Pd
Pa

Pb
Pc

Pe

Pf

OR

AND

OR

Pg

Ph

OR

AND

Figure 9.1.1: A-Tree Example

Suppose that we have two arbitrary Boolean expressions. The first one is (Pa ∨ Pb ∨
Pc)∧Pd ∧ (Pe ∨Pf), and the second one is (Pe ∨Pf)∧ (Pg ∨Ph). Fig. 9.1.1 shows the
A-Tree index constructed from these two expressions. As shown, the subexpression
(Pe ∨ Pf) corresponds to an i-node, which is shared by the two n-ary trees of the two
arbitrary Boolean expressions.

In A-Tree, each l-node and i-node can have any number of parent nodes, while each
i-node and r-node can have any number of child nodes. An i-node and r-node store
a logical operator, including and, or, not, xor and xnor. In the event matching
process, each such node needs its child nodes’ evaluation results to compute its own
evaluation result based on the logical operator. The evaluation results flow upward
in a bottom-up approach. To aid this matching process, each node of the A-Tree
index keeps an integer called level to track that node’s distance from the farthest
l-node among all the nodes within its subtrees. The level of an l-node is set to be 1.
An edge between two nodes increases this value by 1. For an i-node and r-node N ,
the level value is set according to the formula below:

level(N) = 1 +max{level(Ci), ∀Ci|Ci is a child of N}

Before we discuss how the A-Tree index is dynamically constructed, we first define
the cost of an A-Tree to construct a space-efficient and matching-efficient A-Tree
structure. For each node, A-Tree consumes space to store that node. During event

72

CHAPTER 9. A-TREE ORGANIZATION

matching, it takes time to access that node. Thus, the cost of an A-Tree index has a
positive correlation with the number of nodes. Meanwhile, when a node is matched,
the parent nodes connected by its edges need to be evaluated. Therefore, in this
thesis, we define the cost of an A-Tree index as the number of nodes plus the number
of edges in the A-Tree index. Based on this definition, the cost of the A-Tree index
shown in Fig. 9.1.1 is 25 since it contains 13 nodes and 12 edges. The goal of A-Tree
index construction is to obtain an A-Tree index with the lowest possible cost given
the incoming arbitrary Boolean expressions.

9.2 Index Construction

Index construction of A-Tree is important, which controls the degree of overlap
achieved among differed expressions. A good index structure results in low memory
consumption and high matching performance.

There are four challenges to overcome for building an A-Tree index with low cost.
First, how to efficiently guarantee that every shared predicate, subexpression and
expression are uniquely represented by a single node. Second, how to dynamically
change the organization of an incoming arbitrary Boolean expression based on
the current index structure to reuse a higher number of existing predicates and
subexpressions. Third, how to dynamically adjust the existing index structure based
on the newly incoming expression to ensure that the A-Tree index remains optimized
regardless of the arrival order of the expressions. Fourth, how to efficiently remove
expired expressions and dynamically adjust the index. In the following sections, we
will discuss our solutions to these challenges one by one.

9.2.1 Node Uniqueness

To ensure that every shared predicate, subexpression and expression are uniquely
presented by a single node in A-Tree, an expression-to-node hash table (Hen) is
maintained. The key in this hash map is the id generated from the predicate,

73

9.2. INDEX CONSTRUCTION

subexpression or expression; the value is the address of the node in the A-Tree
index. For an incoming arbitrary Boolean expression, the first step is to identify the
predicates and subexpressions. Take the arbitrary Boolean expression (Pa ∨ Pb ∨
Pc) ∧ Pd ∧ (Pe ∨ Pf) as an example; we identify the following six predicates and two
subexpressions: Pa, Pb, Pc, Pd, Pe, Pf , Pa ∨ Pb ∨ Pc and Pe ∨ Pf . Note that the
expressions Pa ∨ Pb, (Pa ∨ Pb ∨ Pc)∧ Pd, and Pd ∧ (Pe ∨ Pf) are not considered to be
the subexpression of that arbitrary Boolean expression.

Algorithm 19 Insert(expr,Hen, atree)
1: id ← generateID(expr)
2: if Hen[id] 6= null then
3: return Hen[id]
4: else
5: for childExpr ∈ expr.childExprs do
6: childNode ← Insert(childExpr, Hen, atree)
7: childNodes.add(childNode)
8: end for
9: Hen[id] ← createNewNode(expr, childNodes, atree)

10: return Hen[id]
11: end if

Alg. 19 shows how the expression-to-node hash table, Hen, is used during the
process of arbitrary Boolean expression insertion. If the expression already has
a corresponding node in the A-Tree index, that node will be directly returned.
Otherwise, nodes corresponding to its child expressions are first obtained, and then
a new node is created in the A-Tree index. In Alg. 19, predicates, child expressions
and the incoming arbitrary Boolean expression are all represented by the symbol
expr.

9.2.2 Expression Reorganization

For the A-Tree index shown in Fig. 9.1.1, suppose that a new expression Pa ∨ Pb ∨
Pc ∨ Pd is received. Based on Alg. 19, a new node will be created with four child
nodes corresponding to the predicates Pa, Pb, Pc and Pd, respectively. However, there

74

CHAPTER 9. A-TREE ORGANIZATION

is already an inode corresponding to Pa ∨ Pb ∨ Pc. If this node can be reused, then
the cost of the new A-Tree index will be reduced.

PdPa Pb Pc PdPa Pb Pc PdPa Pb Pc

OR

OR
OR

OR

OR

OR

Figure 9.2.1: Different Presentations

Based on the associative law of the logical operator or, this incoming expression can
be reorganized into different presentations, such as ((Pa∨Pb)∨Pc)∨Pd, Pa∨Pb∨Pc∨Pd

and (Pa ∨ Pb ∨ Pc) ∨ Pd. Fig. 9.2.1 shows the structures of these three presentations.
The costs of these representations are 13, 9, and 11, respectively. Although the
second presentation has the lowest cost, the third presentation is more suitable for
the A-Tree index shown in Fig. 9.1.1 since the subexpression Pa ∨ Pb ∨ Pc can be
reused. Using the third presentation, the cost of the new A-Tree index only increases
by 3, whereas using the second presentation, the cost of the new A-Tree index will
increase by 5.

Given the current A-Tree index, by reorganizing an arbitrary Boolean expression,
we can determine a representation that reuses more existing nodes in A-Tree. For
different logical operators, different reorganization methods can be used. In this
section, we mainly focus on the reorganization of the logical operators and and or.
The reorganization of not, xor and xnor will be presented in Section ??.

The reorganization of and and or is based on two properties. First, if several
predicates or subexpressions are connected by the logical operator and or or, their
orders do not change the evaluation result of the expression. For example, Pa∨Pb∨Pc

and Pb ∨ Pc ∨ Pa are considered to be the same expression. Second, the same
predicate or subexpression can be reused more than once. For example, if the
expression Pa ∧ Pb ∧ Pc ∧ Pd is inserted into an A-Tree index with two existing
subexpressions Pa∧Pb∧Pc and Pc∧Pd, then the inserted expression can be reorganized
as (Pa ∧ Pb ∧ Pc) ∧ (Pc ∧ Pd) such that those two existing subexpressions can be

75

9.2. INDEX CONSTRUCTION

reused.

By considering an expression as the set of its child expressions, this expression
reorganization problem can be translated into the set cover problem: given a set of
child expressions (called the universe) and a collection S of m sets of expressions
existing in A-Tree, we are attempting to identify the smallest subcollection of S
whose union equals the universe. The set cover problem is NP-hard. We use the
greedy algorithm shown in Alg. 20 to solve this problem as an approximate solution.
The strategy is to choose the existing expression in A-Tree that contains the largest
number of uncovered child expressions.

Algorithm 20 Reorganize(expr, atree)
1: U ← expr.childExprs
2: C ← ∅
3: while U 6= ∅ do
4: select an S ∈ atree that maximizes S ∩ U
5: U ← U − S
6: C ← C ∪ {S}
7: end while
8: return C

9.2.3 Index Self-adjustment

Unlike Dewey ID [30] and Interval ID [30], the A-Tree index is not built offline in
advance, which means that the newly incoming arbitrary Boolean expressions are
handled on the fly and the index structure is dynamically adapted.

In the above section, we proposed the method to dynamically change the organization
of an incoming arbitrary Boolean expression based on the current A-Tree index
structure. A different optimization direction is to dynamically adjust the A-Tree
index structure based on the newly incoming arbitrary Boolean expression. For
example, suppose that the current A-Tree index is as shown in Fig. 9.1.1. When a
new expression (Pa ∨ Pb ∨ Pc) ∧ Pd is received, the existing nodes corresponding to
Pa∨Pb∨Pc and Pd can be reused. Based on Alg. 19, a new node corresponding to the

76

CHAPTER 9. A-TREE ORGANIZATION

incoming expression (Pa ∨Pb ∨Pc)∧Pd is created. In this situation, the new A-Tree
index can be further optimized since the newly created node can be reused as the child
of the existing node corresponding to the expression (Pa ∨ Pb ∨ Pc) ∧ Pd ∧ (Pe ∨ Pf).
The motivation of A-Tree index self-adjustment is to ensure that the A-Tree index
remains optimized regardless of the arrival order of the expressions.

Algorithm 21 SelfAdjust(newNode)
1: for childNode ∈ newNode.childNodes do
2: for parentNode ∈ childNode.parentNodes do
3: if newNode.expr ⊂ parentNode.expr then
4: update(childNode, parentNode, newNode)
5: end if
6: end for
7: end for

As shown in Alg. 21, the self-adjustment of A-Tree occurs after each new node
is created. Through the new node’s child nodes, the candidate nodes whose
corresponding expression covers the new node’s corresponding expression can be
located. Then, the index is updated to reuse the new node as a child node of some
existing nodes.

Algorithm 22 Insert(expr,Hen, atree)
1: id ← generateID(expr)
2: if Hen[id] 6= null then
3: Hen[id].useCount += 1
4: return Hen[id]
5: else
6: for childExpr ∈ expr.childExprs do
7: childNode ← Insert(childExpr, Hen, atree)
8: childNodes.add(childNode)
9: end for

10: Reorganize(expr, atree)
11: node ← createNewNode(expr, childNodes, atree)
12: node.useCount = 1
13: SelfAdjust(node)
14: Hen[id] = node
15: return node
16: end if

77

9.2. INDEX CONSTRUCTION

The complete arbitrary Boolean expression insertion process is shown in Alg. 22. In
the node structure of A-Tree, an integer field called useCount is kept, which indicates
the total number of predicates, subexpressions and expressions using this node. If
an existing expression is inserted, then the useCount of the corresponding node is
increased by 1. Otherwise, that expression is reorganized, a new node is created, and
the new A-Tree index is self-adjusted. Before the expression is reorganized, its child
expressions are first addressed in the same way to ensure that any child expression
already has a corresponding node in the A-Tree index.

9.2.4 Expression Deletion

Deleting an expression is a straightforward and fast operation. When an expression
is deleted, the useCount of its corresponding node N is decremented by 1. If the
useCount becomes 0, the node N can be safely removed from the A-Tree index
because it is already not required for any expression. However, it is still possible
that N is used as the child node of another node P . In this case, the node P will be
changed to consume the child nodes of N as its own child nodes. Then, the node
N continues to be removed from the A-Tree index. Meanwhile, the corresponding
record in the expression-to-node hash map is also removed. In this way, the A-Tree
index achieves dynamic self-adjustment during expression deletion. As shown in
Fig. 23, when an expression is processed, all of its child expressions are recursively
processed in the same method.

Algorithm 23 Delete(expr,Hen, atree)
1: id ← generateID(expr)
2: node ← Hen[id]
3: node.useCount –= 1
4: if node.useCount = 0 then
5: Remove(node, atree)
6: Hen[id] ← null
7: for childExpr ∈ expr.childExprs do
8: Delete(childExpr,Hen, atree)
9: end for

10: end if

78

CHAPTER 9. A-TREE ORGANIZATION

9.3 Event Matching

An arbitrary Boolean expression is permitted to contain the following logical operators:
and, or, not, xor and xnor. Compared to conjunctive Boolean expression matching,
this flexibility increases the expressiveness for applications employing expression
matching. However, it also makes arbitrary Boolean expression matching more
complex compared to conjunctive expression matching. For example, for conjunctive
Boolean expression matching, only the satisfied predicates need to be identified
because only when all the predicates are satisfied is the conjunctive Boolean expression
matching. However, for arbitrary Boolean expression matching, both the satisfied
and unsatisfied predicates need to be identified since an arbitrary Boolean expression
may be matching based on unsatisfied predicates. For example, the arbitrary Boolean
expression ¬(Pe∨Pf) is matching when the predicates Pe and Pf are both unsatisfied.

A-Tree-based event matching proceeds in two phases: predicate matching and
expression matching. Given an event, the predicate matching phase determines all
the satisfied and unsatisfied predicates. As we discussed in Sec. ??, an unsatisfied
predicate means that the evaluation result of the predicate is false. Correspondingly, a
predicate’s evaluation result is undefined if the event does not contain the predicate’s
attribute. The expression matching phase locates all the satisfied arbitrary Boolean
expressions. Several predicate matching algorithms have been proposed, such
as Segment-Tree [23], Interval-Tree [18] and Interval-Skip [32]. A-Tree is
compatible with all of these algorithms.

To run event matching, in addition to the A-Tree index, a set of queues are needed.
In A-Tree, to verify whether an i-node’s corresponding expression is satisfied, the
evaluation results of its child nodes need to be known in advance. The evaluation
sequence in A-Tree is from a low level node to a high level node. Thus, we keep a
queue for each level to ensure that the nodes are verified in the correct order.

9.3.1 Matching Algorithm

As shown in Alg. 24, for each incoming event, after all the satisfied and unsatisfied
predicates are identified, their corresponding l-nodes in A-Tree are located through

79

9.3. EVENT MATCHING

the expression-to-node hash table (Hen). These l-nodes are queued into Q1, which
corresponds to the first level. After this initial step is finished, the matching algorithm
first processes the lowest level unfinished queue. After finishing a queue Qi, it starts
to process the next higher level queue Qi+1 until the maximum queue QM is processed.
For any queue Qi, visiting a node N in Qi involves the following two basic tasks:

Algorithm 24 Match(preds,Hen)
1: for pred ∈ preds do
2: id ← generateID(pred)
3: l-node ← Hen[id]
4: l-node.result ← pred.result
5: Q1.add(l-node)
6: end for
7: for level = 1→M do
8: while Qlevel is not empty do
9: node ← Qlevel.dequeue()

10: result ← node.evaluate()
11: node.clean()
12: if result = undefined then
13: continue
14: end if
15: for all parent ∈ node.parents do
16: if parent.operands.empty() then
17: plevel ← parent.level
18: Qplevel.add(parent)
19: end if
20: parent.operands.add(result)
21: end for
22: if result = true then
23: matchingExprs.add(node.Exprs)
24: end if
25: end while
26: end for
27: return matchingExprs

Evaluation of Result: Evaluation of a node N is performed according to the node
type, operator and operands. If N is an l-node, the evaluation result of N is copied
from the predicate matching phase. For an i-node and r-node, the evaluation result

80

CHAPTER 9. A-TREE ORGANIZATION

is determined by the operator and operands from its child nodes. When none of
the operands is undefined, the result is evaluated normally. Otherwise, the result is
determined by the following logics. (1) If an operand is undefined and the operator
is and, then the evaluation result is determined by other operands. If any operand is
false, then the evaluation result is false. Otherwise, the evaluation result is undefined.
(2) If an operand is undefined and the operator is or, then the evaluation result is
also determined by other operands. If any operand is true, then the evaluation result
is true. Otherwise, the evaluation result is undefined. (3) If an operand is undefined
and the operator is not, xor or xnor, then the evaluation result is undefined. The
operands must be available immediately at the point of visiting N . This is ensured
by the level-order bottom-up traversal of the A-Tree. The event matches with the
arbitrary Boolean expression corresponding to N if the evaluation result of N is
true. In this case, those arbitrary Boolean expressions are inserted into the matching
expression list.

Propagation of Result: If the evaluation result of N is undefined, that result
does not need to be propagated to the parent nodes of N since the default value of
any operand is undefined. Otherwise, the result is propagated to its parent nodes.
For a parent node P , we check whether its operands are empty. If yes, then P is
inserted into the queue Qi, where i is the level of P . The evaluation result of N is
added into the operands of P .

9.3.2 Event Matching Example

In this section, we describe the execution steps of event matching using an example.
In this example, we assume that there are six arbitrary Boolean expressions involving
eight predicates Pa, Pb, Pc, Pd, Pe, Pf , Pg and Ph:

S1 = (Pa ∨ Pb ∨ Pc) ∧ Pd ∧ (Pe ∨ Pf)
S2 = (Pe ∨ Pf) ∧ (Pg ∨ Ph)
S3 = Pa ∨ Pb ∨ Pc ∨ Pd

81

9.3. EVENT MATCHING

S4 = (Pa ∨ Pb ∨ Pc) ∧ Pd

S5 = (Pe ∨ Pf) ∧ (Pg ∨ Ph)
S6 = ¬(Pg ∨ Ph)

The A-Tree index built on these expressions is shown in Figure 9.3.1. In this A-Tree
index, there are eight leaf nodes, four inner nodes and four root nodes. Each node
is assigned an id. The leaf nodes 1, 2, 3, 4, 5, 6, 7, and 8 correspond to the
predicates Pa, Pb, Pc, Pd, Pe, Pf , Pg and Ph, respectively. The inner nodes 9, 10,
11, and 13 correspond to the subexpressions Pa ∨ Pb ∨ Pc, Pe ∨ Pf , Pg ∨ Ph, and
(Pa ∨ Pb ∨ Pc) ∧ Pd, respectively. The root nodes 12, 14, 15, and 16 correspond
to the expressions (Pa ∨ Pb ∨ Pc) ∨ Pd, (Pe ∨ Pf) ∧ (Pg ∨ Ph), ¬(Pg ∨ Ph), and
(Pa ∨ Pb ∨ Pc) ∧ Pd ∧ (Pe ∨ Pf), respectively. Among them, nodes 12, 13, 14, 15, and
16 have the linked list to the expression sets {S3}, {S4}, {S2, S5}, {S6}, and {S1},
respectively.

L4

L3

L2

L1 PdPa Pb Pc Pe Pf Pg Ph

ANDAND

AND

1 2 3 4 5 6 7 8

9
OR

10
OR

11
OR

12
OR

13 14 15
NOT

16

Figure 9.3.1: Matching Example

In this example, there are four queues: Q1 to Q4. Given an event E, before event
matching starts, all these queues are empty. Assume that only the predicate Pa is
satisfied, while the predicates Pe, Pg and Ph are unsatisfied. At the beginning, nodes
1, 5, 7, and 8 are queued into Q1, with the evaluation results true, false, false and
false. Then, those queues are processed from level 1 to level 4.

82

CHAPTER 9. A-TREE ORGANIZATION

Level 1: Nodes residing in Q1 are processed one-by-one. First, node 1 is dequeued
from Q1. Since it only has one parent node 9, its result true is inserted into the
operands of node 9. Node 9 is queued into Q2. Second, node 5 is dequeued from Q1.
Its value false is inserted into the operands of node 10. Node 10 is also queued into
the queue Q2. Third, node 7 is dequeued from Q1. Its value false is inserted into the
operands of node 11, and node 11 is queued into Q2. Fourth, node 8 is dequeued
from Q1. Its value false is also inserted into the operands of node 11.

Level 2: Q1 is empty, and the nodes in Q2 start to be processed. First, node 9
is dequeued from Q2. Since its operator is or and one of its operands is true, its
evaluation result is true. This evaluation result is inserted into the operands of nodes
12 and 13. Nodes 12 and 13 are queued into Q3. Second, node 10 is dequeued from
Q2. Since its operator is or, one operand is false, and the other operand is undefined,
its evaluation result is undefined. This evaluation result is not propagated. Third,
node 11 is dequeued from Q2. Since its operator is or and both operands are false,
its evaluation result is false. This evaluation result is inserted into the operands of
nodes 14 and 15. These two nodes are queued into Q3.

Level 3: First, node 12 is dequeued from Q3. Its operator is or, and one operand
is true; thus, its evaluation result is true. The expression S3 associated with this
node is identified as a matching expression. Second, node 13 is dequeued from Q3.
Since its operator is and, one operand is true, and the other operand is undefined, its
evaluation result is undefined. Third, node 14 is dequeued from Q3. Since its operator
is and, one operand is false, and the other operand is undefined, its evaluation result
is false. Fourth, node 15 is dequeued from Q3. Since its operator is not and the only
operand is false, its evaluation result is true. The expression S6 associated with this
node is identified as a matching expression.

Level 4: Q4 is empty. Consequently, there is no need to process any nodes. After
the completion of the above steps, we have retrieved all the matching expressions S3

and S6.

83

9.3. EVENT MATCHING

9.3.3 Optimizations for Event Matching

The main cost of A-Tree-based event matching is the propagation of the matching
result to a node’s parent nodes and the later evaluation of the parent nodes. Two
factors limit the event matching performance. First, when the evaluation result of a
node is false, it still needs to be propagated to its parents. This process is expensive
considering the potentially large number of unsatisfied predicates and subexpressions.
Second, for a node N with the logical operator and, every child node’s matching
results are propagated to N . This is not necessary since if any child node is not
satisfied, N will not be satisfied. In this section, we propose optimization solutions
to overcome these two limitations.

Zero Suppression Filter: Because of the existence of the logical operators not, xor
and xnor in arbitrary Boolean expressions, we need to distinguish between the false
and undefined evaluation results. The false evaluation result needs to be propagated,
which can be very expensive. To remove the cost to propagate false results, we
propose the zero suppression filter optimization. Its basic idea is to remove the
logical operators not, xor and xnor from an incoming arbitrary Boolean expression
by applying the following laws:

¬(E1 ∧ E2) = ¬E1 ∨ ¬E2

¬(E1 ∨ E2) = ¬E1 ∧ ¬E2

E1 ⊕ E2 = (E1 ∧ ¬E2) ∨ (¬E1 ∧ E2)

E1 ⊗ E2 = (E1 ∧ E2) ∨ (¬E1 ∧ ¬E2)

In the negation removal procedure, by applying De Morgan’s laws, all negations
are pushed down level-by-level until directly before predicates. Then, negations are
integrated into predicates. This procedure involves the inverse to a given relational
operator: changing from greater than to less than, from equality to inequality, and
so forth. Take the expression ¬((age > 60) ∨ (gender = female)) as an example; it

84

CHAPTER 9. A-TREE ORGANIZATION

will be changed to (age <= 60) ∧ (gender 6= female).

In this optimization, we remove the logical operators not, xor and xnor without
increasing the number of expressions. When the evaluation result of any node is
false, it is no longer propagated to any of its parents. Conversely, when computing
the result of any node, if one of its operands is undefined, it is assumed to be false,
and the result is computed accordingly. This optimization is promising because a
false result is often obtained for a substantial number of leaf and inner nodes in the
A-Tree while matching an event. Consequently, a large number of operations are
saved, such as value update to parents, pushing nodes to queues, and so forth. Our
experiments show that the event matching performance can be improved by up to
85% with this optimization.

Propagation On Demand: In A-Tree, for a node N with the logical operator
and, only when all of its child nodes are satisfied is N satisfied. Based on this feature,
we propose an optimization called propagation on demand. As the name suggests,
we only propagate the matching result of N ′s child nodes to N when it is needed.
The basic idea of propagation on demand is as follows. If N is associated with the
logical operator and, we randomly select one child node of N as the access child. In
the A-Tree index, only that access child has a parent link to N . Meanwhile, N has
links to its other child nodes. The concept of access child is similar to the concept
of access predicate for conjunctive Boolean expression matching [27]. During the
event matching process, only when the access child of N is satisfied is the matching
result propagated to N and is N evaluated. During the evaluation process of N , we
propagate the matching results of N ′s other child nodes to N . However, if the access
child of N is unsatisfied, no matching results will be propagated to N , and N will
not be evaluated at all.

To support this optimization, we need to store the matching results of N ′s child
nodes because the matching results may be needed for the evaluation of N . Then,
the question is when to clean up the stored matching results. Without cleaning, the
matching of the next event will be affected. To solve this problem, we associate
every matching result of a node to the signature of the current event. If the event
signature of a matching result is not the same as the current processing event, then

85

9.3. EVENT MATCHING

the matching result is considered to be undefined.

By this optimization, we can filter out a large number of unnecessary propagations:
only when the access child is satisfied are the matching results propagated. This
optimization is very effective for workloads with many and expressions. For example,
on some conjunctive Boolean expression workloads, our experiments show this
optimization improves the matching performance by up to 92%.

9.3.4 Optimized Event Matching Example

Here, we describe the execution steps of the optimized event matching using the
same example as presented in Sec. 9.3.2. Since the not operator is removed for the
zero suppression filter optimization, there are two more leaf nodes in the A-Tree
index, as shown in Fig. 9.3.2. These two leaf nodes correspond to the predicates Pi

and Pj . Pi is equal to ¬Pg, and Pj is equal to ¬Ph. Another difference in the A-Tree
index is that there are not only child-to-parent links but also some parent-to-child
links.

L4

L3

L2

L1 Pa Pb Pc Pe Pf Pg Ph

ANDAND

AND

1 2 3 4 5 6 7 8

11
OR

12
OR

13
OR

15
OR

16 17

14

18

9 10

Pi Pj

AND

Pd

Figure 9.3.2: Optimized Matching Example

In this example, for the same incoming event E, only the satisfied predicates Pa, Pi

and Pj need to be identified in the predicate matching phase. Thus, only nodes 1, 9,
and 10 are queued into Q1. Then, those queues are processed from level 1 to level 4.

86

CHAPTER 9. A-TREE ORGANIZATION

Level 1: Nodes residing in Q1 are processed one-by-one. First, node 1 is dequeued
from Q1, and its matching result true is only propagated to node 11. Node 11 is
queued into Q2. Second, node 9 is dequeued from Q1, and its result is propagated to
node 14. Node 14 is also queued into Q2. Finally, node 10 is dequeued from Q1, and
its matching result true is stored in the node with the current event’s signature.

Level 2: Q1 is empty, and the nodes in Q2 start to be processed. First, node 11
is dequeued from Q2. Since its operator is or and one of its operands is true, its
evaluation result is true. This evaluation result is only propagated to node 15, and
node 15 is queued into Q3. Second, node 14 is dequeued from Q2. Since its operator
is and, the stored matching result at node 10 is propagated on demand to node
14. Node 14 is identified as a satisfied node. Thus, the associated expression S6 is
identified as a matching expression.

Level 3: First, node 15 is dequeued from Q3. Its operator is or, and one operand
is true; thus, its evaluation result is true. The expression S3 associated with this
node is identified as a matching expression. Q4 is empty. Thus, there is no need to
process to the next level. After completing the above steps, we have retrieved all the
matching expressions S3 and S6.

9.4 Time and Space Analysis

Space Complexity: A-Tree needs spaces to store its nodes and links between child
and parent nodes. In an A-Tree index, the number of leaf nodes is equal to the
number of unique predicates, the number of inner nodes is equal to the number
of unique subexpressions and expressions, and the number of links is equal to the
number of child-parent relationships. For a single arbitrary Boolean expression with
Np predicates, the number of subexpressions and expressions is O(Np), and the
number of child-parent relationships is also O(Np). Thus, the space needed for that
single arbitrary Boolean expression is O(Np). For an A-Tree index constructed from
Nexp arbitrary Boolean expressions, in the worst case, no predicates, subexpressions,
and expressions are shared. In this situation, the number of nodes and child-parent

87

9.4. TIME AND SPACE ANALYSIS

links are all O(Nexp ∗ Np). Thus, the space complexity of A-Tree is O(Nexp ∗ Np).
Note that many predicates and subexpressions are generally shared and the A-Tree
index has a small memory footprint.

Index Construction Time Complexity: As shown in Alg. 22, if an incoming
expression does not exist in the A-Tree index, then the cost of the insertion contains
three parts: reorganization cost, new node creation cost and index self-adjustment
cost. The time complexities of these three operations are O(N2

p), O(1) and O(Np),
respectively. Np represents the number of predicates in the expression. Thus, the
total A-Tree index construction time is O(Nexp ∗N2

p), where Nexp is the number of
expressions.

88

Chapter 10

Experiments

10.1 Publish/Subscribe Routing

This section evaluates our D-DBR and MERC algorithms using experiments run on a
computing facility and experiments based on simulations. We use the FBR algorithm1

as a baseline. In our real-world experiments, we mainly evaluate system throughput,
event delivery latency, overhead as measured due to subscription duplication, and
brokers’ CPU utilization. Through detailed simulations, we evaluate the destination
list overhead, system robustness, routing accuracy, and network topology maintenance
overhead.

10.1.1 Experiments on Computing Facility

We implemented the D-DBR and MERC algorithms in PADRES [40], a representative,
open-source, content-based pub/sub system based on the FBR algorithm. The SciNet
computing facility [49] was used as testbed, in which each node has 8 cores, a 2.66
GHz CPU, and 8 GB of memory. In our experiments, each broker is deployed on

1The original FBR algorithm was designed for acyclic overlay networks only [45]. For general
overlay networks, we employ the extension to FBR proposed in [38].

89

10.1. PUBLISH/SUBSCRIBE ROUTING

a given node. The TCP/IP communication links between brokers represent the
topology of the pub/sub system we deploy.

Since experimental results can be largely affected by the adopted overlay topology
and workload, we use different topologies and workloads to study the performance
of the algorithms. In our experiments, we consider two representative topologies,
i.e., an acyclic linear topology and more general topologies generated by the Georgia
Tech GT-ITM network topology generator [67].

One of the main challenges in evaluating a pub/sub system is the lack of a real-world
application data trace. Previous work showed that in many pub/sub applications,
subscriptions follow the Zipf or uniform distributions [42, 54, 35]. We experimented
with both distributions. Event workloads draw from real-world stock quote trace
datasets from Yahoo! Finance and subscriptions express interests in this stock data.
The number of subscriptions ranges from tens to thousands.

Acyclic Linear Topology: To evaluate metrics like event delivery latency and to
study the basic behaviour of D-DBR and MERC, we first experiment by using an
acyclic linear topology, which is simple and intuitive and it allows us to control the
number of intermediate brokers through which each event travels. In the experiments,
varying numbers of brokers are interconnected in a straight line. One publisher and
100 subscribers are connected to the broker at the head and the tail of the line,
respectively. For MERC, the linear topology is divided into two clusters with the
same number of brokers: The first half of the brokers are located in the first cluster
and the second half of the brokers are located in the second cluster. The middle
broker serves as the edge broker for both clusters.

We measure the average event delivery latency and the brokers’ CPU utilization with
varying number of brokers and subscriptions. Event delivery latency is obtained by
measuring the interval between the time when an event is issued by its publisher
and the time when the event is received by a subscriber. To make sure the latency is
accurately measured, in all experiments, publishers and subscribers are located on
the same machine.

Fig. 10.1.1 to Fig. 10.1.3 show the results of three groups of experiments, in each of

90

CHAPTER 10. EXPERIMENTS

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10ev
en

t
d

el
iv

e
ry

 la
te

n
cy

(m
s)

number of brokers

FBR D-DBR MERC

Figure 10.1.1: 100 subscriptions

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

ev
e

n
t

d
e

liv
er

y
la

te
n

cy
(m

s)

number of brokers

FBR D-DBR MERC

Figure 10.1.2: 800 subscriptions

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

ev
en

t
d

el
iv

er
y

la
te

n
cy

(m
s)

number of brokers

FBR D-DBR MERC

Figure 10.1.3: 2000 subscriptions

0

15

30

45

60

75

1 2 3 4 5 6 7 8 9 10

C
P

U
 u

ti
liz

at
io

n
(%

)

broker id
FBR D-DBR MERC

Figure 10.1.4: CPU utilization

which, the number of brokers increases from 1 to 10. We select 100, 800, and 2,000
subscriptions to represent the scenarios with a small, middle and large number of
subscriptions, respectively. The event publishing rate is set to 3,000 messages/minute.

Fig. 10.1.1 shows that given 100 subscriptions, event delivery latencies of FBR, D-DBR
and MERC all increase as the number of brokers increases. But the latencies of D-DBR
and MERC are smaller than that of FBR. When there are 800 subscriptions, as shown
in Fig. 10.1.2, the event delivery latency of FBR increases rapidly with increasing
number of brokers, whereas the latencies of D-DBR and MERC only increase slightly.
When the number of subscriptions increases to 2,000, the advantages of D-DBR

91

10.1. PUBLISH/SUBSCRIBE ROUTING

and MERC are more significant. On the other hand, we can observe that the event
delivery latency of MERC is roughly 1.5 times that of D-DBR. In these experiments,
each event is matched three times in MERC and matched twice in D-DBR, which
indicates the number of matches is an important factor contributing to the event
delivery latency.

Fig. 10.1.4 presents ten brokers’ CPU utilizations when there are 2,000 subscriptions
in the system. For FBR, every broker’s CPU utilization is about 63%; for D-DBR, the
first and the last broker’s CPU utilization is greater than 60%, and the remaining
brokers’ CPU utilizations are only about 2%; for MERC, only the first, the last
and the middle broker’s CPU utilization is greater than 60%. These experimental
results show that, in an acyclic linear topology, D-DBR and MERC achieve better
performance than FBR, especially, when there are a large number of subscriptions.

General Topology: To investigate the performance of our algorithms in general
topologies, we did two groups of experiments. The first one is executed on a general
overlay with 20 brokers, in which we mainly study the algorithms’ performance when
the subscriptions follow different distributions. The second one is executed on a
general overlay with 100 brokers. In this group of experiments, we mainly evaluate
the algorithms’ maximum throughput and the corresponding event delivery latency,
which are the two most important metrics for a pub/sub system. Some other metrics
such as the destination list overhead, subscription duplication, and brokers’ CPU
and RAM utilization are also investigated.

In the overlay with 20 brokers, each broker has an average node degree equal to
3, while 20 publishers and 30 subscribers are randomly allocated to brokers in the
system at the beginning of the experiment. Every subscriber issues a fixed number of
subscriptions, ranging from 100 to 800. The event publishing rate of each publisher
is also set to a fixed value. Subscriptions are synthesized according to the Zipf or
uniform distributions.

Fig. 10.1.5 shows the event delivery latency of FBR and D-DBR when subscriptions
follow the Zipf distribution (parameter is 0.5). In this experiment, the workload
is the same for FBR and D-DBR. It can be seen that the event delivery latency of
D-DBR is smaller than that of FBR. Moreover, D-DBR’s event delivery latency is

92

CHAPTER 10. EXPERIMENTS

0

40

80

120

160

200

0 60 120 180 240 300

ev
e

n
t

d
e

liv
er

y
la

te
n

cy
(m

s)

time(s)
FBR D-DBR

Figure 10.1.5: Latency for Zipf distribution

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19

C
P

U
 u

ti
liz

at
io

n
(%

)

broker id
FBR D-DBR

Figure 10.1.6: CPU utilization for Zipf
distribution

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19

R
A

M
 u

ti
liz

at
io

n
(%

)

broker id
FBR D-DBR

Figure 10.1.7: RAM utilization for Zipf
distribution

0

20

40

60

80

100

120

0 60 120 180 240 300

ev
en

t
d

e
liv

er
y

la
te

n
cy

(m
s)

time(s)
FBR DDBR

Figure 10.1.8: Latency for random distribution

more stable: During five minutes, D-DBR’s event delivery latency is always about
35ms, while FBR’s event delivery latency varies between 77ms and 200ms.

Fig. 10.1.6 and Fig. 10.1.7 show the 20 brokers’ average CPU and RAM utilization,
respectively. It can be seen on almost every broker that FBR consumes more
computing resources than D-DBR. The difference on a specific broker is more obvious.
For example, on Broker 4, FBR consumes about 75.4% of CPU, while D-DBR only
consumes 6% of CPU. On almost every broker, FBR also consumes more memory

93

10.1. PUBLISH/SUBSCRIBE ROUTING

resources than D-DBR, though, the difference is not as pronounced.

Fig. 10.1.8 shows the event delivery latency of FBR and D-DBR when subscriptions
follow the uniform distribution. Compared with Fig. 10.1.5, we know that the event
delivery latency of FBR is reduced, however, the event delivery latency of D-DBR
slightly increases. The uniform distribution leads to a more balanced workload on
every broker. FBR benefits from a balanced workload since brokers are less likely
to become overloaded. D-DBR suffers from a balanced workload since its dynamic
overlay reconfiguration mechanism becomes less effective. But, as evident from
Fig. 10.1.8, under this kind of balanced workload, D-DBR still performs much better
than FBR.

In the second group of experiments, we constructed an overlay of 100 brokers for
FBR and D-DBR, in which each node has an average node degree of 6. For MERC,
we constructed an overlay of 100 brokers following the transit-stub model [67]. There
are 10 transit nodes acting as edge brokers and 90 stub nodes acting as internal
brokers. In total, there are 10 clusters. Here, the average node degree is also 6.
Unlike internal brokers, each edge broker is deployed on a node with 8 cores. For
FBR, D-DBR, and MERC, every broker has an attached publisher and subscriber,
which issues 1 advertisement and 30 subscriptions, respectively. The subscriptions
follow the Zipf distribution.

0

500

1000

1500

2000

2500

3000

0 3000 6000 9000 12000 15000

ev
e

n
t

d
el

iv
e

ry
 la

te
n

cy
(m

s)

system throughput
FBR D-DBR MERC

Figure 10.1.9: Throughput and latency

0

1

2

3

4

5

0 20 40 60 80 100av
er

ag
e

d
es

ti
n

at
io

n
 li

st
 s

iz
e

broker id
D-DBR MERC

Figure 10.1.10: Destination list size distribu-
tion

94

CHAPTER 10. EXPERIMENTS

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

d
u

p
li

ca
ti

o
n

 n
u

m
b

e
r

matching ratio
FBR D-DBR MERC

Figure 10.1.11: Subscription duplication

0

3000

6000

9000

12000

15000

18000

0 10 20 30 40 50 60 70 80 90 100

su
b

sc
ri

p
ti

o
n

 n
u

m
b

er

broker id
FBR D-DBR MERC

Figure 10.1.12: Subscription number distribu-
tion

Fig. 10.1.9 compares the performance of FBR, D-DBR and MERC. The results show
that D-DBR exhibits the best performance and MERC lies between D-DBR and FBR.
When the event publishing rate (messages/minute) increases from 2,000 to 2,500,
the event delivery latency of FBR increases from 1,087 ms to 2,843 ms. However,
the event delivery latency of D-DBR is only 491 ms when the event publishing rate
is 14,000. Thus, as compared with FBR, D-DBR improves throughput by up to
700% and reduces the communication latency by up to 55% at the same time. The
experiments also show that the latency of MERC is stable and slightly higher than
D-DBR when the event publishing rate increases to 11,000. This suggests that when
powerful edge brokers are used, MERC offers better performance than FBR.

In this group of experiments, we recorded the messages received and sent by each
broker and computed the average destination list overhead on all brokers. Fig. 10.1.10
shows that the average destination list size at each broker ranges from 1 to 5 for
D-DBR and 1 to 1.6 for MERC. For the whole system, on average, MERC exhibits a
smaller destination list size than D-DBR(1.18 vs. 2.12).

In FBR, advertisements need to be broadcast. In this group of experiments, even
though only 100 advertisement messages are issued, more than 38,000 duplicated
advertisement messages are detected. In D-DBR and MERC, advertisements are
routed in the same way as events. No duplicated advertisement messages are

95

10.1. PUBLISH/SUBSCRIBE ROUTING

generated.

Fig. 10.1.11 shows duplication numbers for each issued subscription when the
ratio of brokers with matching advertisements varies. D-DBR exhibits a good
subscription duplication behaviour, which means a subscription is only duplicated
at brokers with matching advertisements. MERC also presents a good subscription
duplication behaviour. However, for FBR, subscriptions are heavily duplicated. For
example, when 80% of the brokers have matching advertisements, each subscription
is duplicated 221 times, on average2.

Fig. 10.1.12 shows the number of subscriptions maintained by each broker when 60%
of the brokers have matching advertisements. Overall, the 100 subscribers issue 3,000
different subscriptions, each broker stores 5,005, 1,800, and 1,945 subscriptions for
FBR, D-DBR, and MERC, respectively.

10.1.2 Experiments Based on Simulations

Through real-world experiments, we evaluated the impact of our algorithms on
timing-based metrics, such as event delivery latency. For a more comprehensive
study evaluating deterministic properties of our algorithms, we resort to simulations,
which simplify experimentation and suffice to study effects determined by message
counts, data structure sizes, and routing table entries. For example, the destination
list overhead can be affected by the size of the topology, the average broker degree
(i.e., the number of neighbours a broker is connected to), and the ratio of interested
brokers.

Destination List Overhead: This section investigates the destination list overhead
of the algorithms as the number of brokers, the average broker degree, and the ratio
of interested brokers for each event varies. In our experiments, different topologies
are generated with the Georgia Tech GT-ITM network topology generator. For a
topology, which represents a configuration of experimental factors, we evaluated

2To support FBR in general overlays, a broker may need to store many copies of the same
subscription [38].

96

CHAPTER 10. EXPERIMENTS

0

0.9

1.8

2.7

3.6

4.5

0 200 400 600 800 1000av
e

ra
ge

 d
e

st
in

at
io

n
 li

st
 s

iz
e

number of brokers

10% 50% 100%

Figure 10.1.13: Average destination list size
(broker degree is 6)

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000

av
er

ag
e

d
es

ti
n

at
io

n
 li

st
 s

iz
e

number of brokers
D-DBR MERC

Figure 10.1.14: Average destination list size
(broker degree is 9)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

ra
ti

o

destination list size
distribution cumulative distribution

Figure 10.1.15: Destination list size distribu-
tion

0

15

30

45

60

75

90

0 200 400 600 800 1000

d
es

ti
n

at
io

n
 li

st
 s

iz
e

number of brokers
10% 50% MERC

Figure 10.1.16: Average destination list size at
source brokers

D-DBR and MERC by routing 10,000 events. For each event, the source broker and
destination brokers are randomly selected using different random seeds.

Fig. 10.1.13 shows the average destination list size for D-DBR when the broker degree
is fixed to 6. It can be seen that the average destination list size grows when the
number of brokers increases. In addition, the more brokers are interested in an
event, the longer the average destination list becomes. However, this experiment
demonstrates that the average destination list size is quite small, even in a relatively

97

10.1. PUBLISH/SUBSCRIBE ROUTING

large overlay. For example, in an overlay with 700 brokers, even when an event is
issued to all brokers, on average, each generated message carries the IDs of only 3.8
brokers.

Fig. 10.1.14 shows the average destination list size for D-DBR and MERC when the
broker degree is fixed to 9. In this experiment, each message is delivered to 50%
of the brokers. Comparing Fig. 10.1.14 with Fig. 10.1.13, we see the destination
list size can be reduced by increasing the brokers’ degree. In the aforementioned
example, the average destination list size is reduced from 3.8 to 3.2, when the broker
degree increases from 6 to 9. As compared with D-DBR, MERC has a smaller average
destination list size. When the cluster size is set to 100, as shown in Fig. 10.1.14,
the average destination list size for MERC is only 1.92, when the number of brokers
increases to 1,000.

Fig. 10.1.15 shows the distribution of destination list size and its cumulative
distribution in a topology with 700 brokers for D-DBR. The average broker degree is
set to 6 and an event is delivered to 10% of the brokers. The results show that more
than 95% of the destination list sizes are smaller than 5 and more than 99% of them
are smaller than 12.

When an event is close to its source broker, the corresponding event messages may
carry long destination lists. We study this effect by computing the average destination
list size at source brokers for all events. As shown in Fig. 10.1.16, for D-DBR, the
destination list size increases linearly as the network scales up. Moreover, the larger
the ratio of interested brokers, the longer the destination list becomes. So, for D-DBR,
in a large-scale network, if a broker issues lots of events to a large number of brokers,
its destination list overhead can be significant. However, this problem does not exist
for MERC, since messages are only annotated with addresses of the brokers in the
local cluster. In Fig. 10.1.16, for MERC, the average destination list size at source
brokers is only 8.6, even when the overlay network has up to 1,000 brokers.

Routing Accuracy: In D-DBR, the overlay topology can be dynamically adjusted
for performance optimization purposes. This can improve its routing accuracy, as we
show in this experiment.

98

CHAPTER 10. EXPERIMENTS

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

%
 d

e
liv

e
re

d
 m

e
ss

ag
e

s

path length(hops)
old topology new topology

Figure 10.1.17: Routing accuracy for old and
new topology

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
sf

u
l e

ve
n

t
d

el
iv

er
y

ra
ti

o

broker failure ratio

Ideal FBR D-DBR

Figure 10.1.18: Robustness under broker
failures

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1su
cc

es
sf

u
l e

ve
n

t
d

e
liv

er
y

ra
ti

o

connection failure ratio

FBR D-DBR

Figure 10.1.19: Robustness under connection
failures

0

15

30

45

60

75

90

0 60 120 180 240 300

co
n

su
m

ed
 m

e
m

o
ry

 (
K

B
)

number of brokers
D-DBR MERC(70) MERC(100)

Figure 10.1.20: Consumed Memory

In an overlay with 70 brokers, the workload between every two brokers is randomly
selected within the range of 1 to 100 messages/minute. We computed the number of
hops each message travels in this overlay. Then, we dynamically reconfigured the
overlay, using the solution proposed in Section 4.3, and computed the number of
hops each message travels in the new overlay.

Fig. 10.1.17 shows that after the overlay reconfiguration, the number of hops each
message travels is reduced. Overall, the average number of hops for all messages is

99

10.1. PUBLISH/SUBSCRIBE ROUTING

reduced from 3.97 to 3.51, which means the routing accuracy is improved from 0.252
to 0.285.

System Robustness: To study the system robustness under FBR and D-DBR, we
compare the successful event delivery ratio when brokers crash or their connections
are lost. In our experiments, the overlay has 100 brokers and the average broker
degree is 6. Each broker is attached with one publisher and one subscriber. A
subscriber issues one subscription and a publisher publishes one event, and each
event is delivered to all the subscribers.

Fig. 10.1.18 shows that D-DBR is more robust than FBR under broker failures. For
example, when 50% of the brokers fail, 21.8% of events are successfully delivered
using D-DBR, whereas only 8.7% of events are successfully delivered using FBR.
Fig. 10.1.19 shows that D-DBR is also more robust than FBR for connection failures.
For example, when 50% connections are lost, 86.2% of the events are successfully
delivered using D-DBR, whereas only 17.5% of the events are successfully delivered
using FBR.

MERC applies the D-DBR algorithm for intra-cluster event routing and thus inherits
D-DBR’s flexibility and robustness. However, the failure of an edge broker may cause
a whole cluster to become disconnected from the system in the worst case. Therefore,
MERC may suffer from single points of failure caused by edge brokers. We plan to
investigate this problem in future work.

Topology Maintenance Overhead: The topology maintenance overhead for D-
DBR and MERC consists of two parts: Memory overhead to store routing tables and
network communication overhead for overlay reconfiguration. Fig. 10.1.20 shows the
consumed memory to store routing tables for D-DBR and MERC. In this figure, the
size of each cluster is set to 70 or to 100 for MERC. It can be seen that in D-DBR,
the memory overhead grows rapidly with the number of brokers, while in MERC,
the memory overhead is limited by the number of brokers in each cluster. If the
cluster size is set to 70, a broker consumes at most 5KB of memory to store the
routing tables. If set to 100, a broker consumes at most 11KB of memory. The
network communication overhead is also different for D-DBR and MERC: The number
of messages for an overlay reconfiguration is equal to the number of brokers in the

100

CHAPTER 10. EXPERIMENTS

system for D-DBR and is equal to the number of brokers in each cluster for MERC.

10.2 Predicate Matching

PS-Tree, more precisely, PS-TreeB, can be interpreted to store intervals and allows
querying which of the stored intervals contain a given point. Interval-Tree [18]
and Segment-Tree [23] are two index structures that provide similar capabilities.
Thus, both represent approaches related to PS-Tree. Here, we conduct the following
comparative evaluations.

Table 10.2.1: PSTree Querying Performance

Index Querying Construct Memory
SCAN 23.11 s - -
Interval-Tree 2.52 s 16.02 ms 1.61 MB
Segment-Tree 6.27 ms 29.71 ms 6.86 MB
PS-Tree 0.71 ms 91.88 ms 54.13 MB

In this group of experiments, we compare the query time, index construction time
and memory consumption of PS-Tree, Segment-Tree and Interval-Tree. SCAN,
which represents the naive scanning method, is used as a baseline. Table 10.2.1
shows the experimental results when there are 100K intervals and 100K query points.
As shown in this table, although PS-Tree exhibits higher index construction time
and memory use, its query performance is the best. Compared to Interval-Tree
and Segment-Tree, PS-Tree reduces the matching time by 99.97% and 89%, re-
spectively, which suggests that PS-Tree is more suitable for Boolean expression
matching, where the number of queries is much higher than the number of intervals.
Moreover, PS-Tree supports more operators, such as “∈” and “>", which are not
supported by Segment-Tree and Interval-Tree. Another advantage of PS-Tree
over Segment-Tree and Interval-Tree is that the PSTHash algorithm can only be
supported by PS-Tree.

101

10.3. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

10.3 Conjunctive Boolean Expression Matching

This section evaluates PSTBloom and PSTHash using both synthetic and real-world
datasets. BE-Tree, OpIndex, Propagation, k-index, and SCAN (a sequential scan
of the subscriptions) are selected as baselines. With the exception of SCAN, these
algorithms have been shown to exhibit good performance in the literature3. All
algorithms are implemented in C4 and compiled with gcc 4.8.4 using the optimization
level O3 on a Ubuntu 14.04 system. All experiments were run on an Intel 2.66 GHz
machine with 512 GB of memory.

In the experiments, we consider a variety of controlled experimental conditions:
workload size, workload distribution, dimension number, dimension cardinality,
subscription size, event size, matching probability, and predicate selectivity.

10.3.1 Workloads

We first used the BE-Gen workload generator [56] to generate synthetic workloads.
Table 10.3.1 summarizes the parameters and settings, with the default values
highlighted in bold. To evaluate scalability, we vary the number of subscriptions from
300K to 100M. The attributes of the predicates were drawn from the distribution
P (r) = C

rα
, r 6= 0. When α is 0, the distribution is Uniform; otherwise, the distribution

is Zipf. The number of dimensions varies from 100 to 30K. The default number of
dimensions is set to 100 and 30K to represent low and high dimensionality, respectively.
We vary the dimension cardinality from 3 to 1K. We vary the average subscription
size from 5 to 30 and the event size from 30 to 130. The matching probability
varies from 0.1% to 50%. The equality operator ratio varies from 0% to 100% to
represent different predicate selectivities. Compared with the related approaches,

3We also compared PSTBloom and PSTHash with SIFT, Gryphon, REIN, and GEM. These algorithms
do not exhibit comparable performance; thus, we omitted the experimental results to focus on
better-performing algorithms.

4The authors of some related approaches kindly provided the source code of their
implementations [56, 68, 51]. For consistency, we reimplemented OpIndex and REIN in C because
the original versions were written in C++.

102

CHAPTER 10. EXPERIMENTS

our workloads are comprehensive, thereby exploring a richer parameter space. For
example, the workloads used by OpIndex all follow the Uniform distribution, and
the number of subscriptions increases to only 1M in BE-Tree.

Table 10.3.1: Parameters of the Synthetic Datasets

Subscription Number 300K, 1M, 3M, 10M, 30M, 100M
The α in Zipf 0, 1, 2, 3, 4, 5
Dimension Number 100, 300, 1K, 3K, 10K, 30K
Dimension Cardinality 3, 10, 30, 100, 300, 1K
Avg. Subscription Size 5, 10, 15, 20, 25, 30
Avg. Event size 30, 42, 54, 66, 78, 90
Matching Probability 0.001, 0.005, 0.01, 0.05, 0.1, 0.5
Equal. Operator Ratio 0, 0.2, 0.4, 0.6, 0.8, 1.0

The second synthetic dataset uses the query logs from the SIGMOD 2013 contest
to represent keyword-based subscriptions [1]. We transform a query into a Boolean
expression whereby each keyword is treated as an equality predicate. If a keyword
has more than six characters, we transform it into a predicate using the first three
characters as the attribute name and the next three characters as the attribute value.
For example, “boolean" is transformed into {boo,=, “lea”}. Otherwise, a keyword
is transformed into a predicate using the first half of its characters as the attribute
name and the remaining characters as the attribute value. For example, “vldb" is
transformed into {vl,=, “db”}. This transformation results in Boolean expressions
in a space of 17,577 dimensions. The document dataset is transformed into events
using a similar method.

In addition to these synthetic datasets, we also derived a real-world workload based
on a display ads dataset of an online shopping site for subscriptions and events.
When a user visits the site, product advertisements are shown to the user. In the
backend advertisement inventory, an advertisement specifies conditions to promote
products to users. The conditions include channel (e.g., mobile, PC, or tablet), region
(e.g., CA, DE, or CN), ad position, etc. By translating conditions into predicates,
we model advertisements as subscriptions. When a user interacts with the website
(e.g., surfs or logs in), the user’s session is bound to a set of attributes such as the
login channel, the login region and the user’s profile. By translating the profile and
attributes into attribute-value pairs, we model each session as an event. For example,

103

10.3. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

if a user is male, the resulting event contains an attribute-value pair 〈gender,male〉.

10.3.2 Experiments on Synthetic Workloads

The first set of experiments was conducted on the synthetic datasets. We first
report on the index construction time. Then, we evaluate the matching performance
with respect to workload size, distribution, number of dimensions, etc. Finally, the
memory use of each index is reported.

Index Construction Time

Our experiments show that not only workload size but also the number of dimensions,
subscription size, and equality operator ratio affect the index construction time. As
shown in Fig. 10.1(a), all the algorithms’ index construction times increase with the
number of subscriptions. Among the algorithms shown, PSTBloom exhibits the lowest
index construction time: when there are up to 100M subscriptions, compared with
the next-best algorithm BE-Tree, PSTBloom reduces the index construction time by
78%.

Fig. 10.1(b) shows how the number of dimensions affects the index construction
time. As shown, BE-Tree and Propagation increase quickly with the number of
dimensions, whereas PSTBloom, PSTHash and k-index are not sensitive to the number
of dimensions. For OpIndex, after each subscription is inserted, its index needs to be
reordered before event matching can resume. An optimization adopted by OpIndex
is to sort its index after all subscriptions are inserted. The light brown line shows
the index construction time of OpIndex when this optimization is utilized. However,
when the arrivals of subscriptions and events overlaps, OpIndex cannot operate in
this manner. The brown line shows the index construction time of OpIndex when
the index is kept up to date after each subscription is inserted. As shown, for dense
workloads (when the number of dimensions is small), the index construction time of
OpIndex is three orders of magnitude larger than that of PSTBloom, BE-Tree, and
PSTHash.

104

CHAPTER 10. EXPERIMENTS

1

4

16

64

256

1024

4096

16384

300K
1M 3M 10M

30M
100M

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

PB
PH

O
BE

P
kI

(a) Workload Size

1

4

16

64

256

1024

4096

100
300

1K 3K 10K
30K

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

PB
PH

O
O2
BE

P
kI

(b) Dimension number

0.5

1

2

4

8

16

32

64

128

256

5 10 15 20 25 30

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

PB
PH

O
BE

P
kI

(c) Subscription Size

0.5

1

2

4

8

16

32

0 0.2
0.4

0.6
0.8

1.0

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

PB
PH

O
BE

P
kI

(d) Equal Operator Ratio

Figure 10.3.1: Index Construction Time

105

10.3. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

Fig. 10.1(c) shows how the average subscription size affects the index construction
time. The index construction time of PSTBloom, OpIndex and k-index increases with
the subscription size. BE-Tree and Propagation are not sensitive to subscription
size, whereas the index construction time of PSTHash decreases. PSTHash possesses
this advantage because it builds indexes only on access predicates. When there are
more predicates in each subscription, access predicates with high selectivity are more
likely to be selected.

The effect of the equality operator ratio on the index construction time is shown in
Fig. 10.1(d). All algorithms show a decrease in the index construction time when the
equality operator ratio increases. PSTHash decreases most quickly because a higher
equality operator ratio results in fewer predicate spaces being covered by the inserted
predicate. PSTBloom achieves the lowest index construction time. For a similar
reason, the advantage of PSTBloom is more obvious when the equality operator ratio
is high.

Matching Time

The matching time is among the most important metrics for Boolean expression
matching algorithms. In this section, we present extensive experiments under a variety
of controlled conditions. In particular, the number of dimensions is a distinguishing
factor among matching algorithms. For each controlled condition, we ran two
experiments: (1) with 100 dimensions and (2) with 30K dimensions. Since the
default number of subscriptions is 1M, these settings represent dense and sparse
workloads, respectively.

Workload Size: We consider the matching time as we increase the number of
subscriptions processed. As illustrated by Fig. 10.3.2, all algorithms scale linearly
with respect to the number of subscriptions. Among them, PSTHash increases slowest,
especially for dense workloads. In Fig. 10.2(a), when there are 300K subscriptions,
PSTBloom performs best. Compared with OpIndex, PSTBloom reduces the matching
time by 84%. When the number of subscriptions is greater than 1M, PSTHash
performs best. When there are up to 100M subscriptions, PSTHash reduces the

106

CHAPTER 10. EXPERIMENTS

matching time by 92% compared to OpIndex. In Fig. 10.2(b), PSTHash performs as
well as OpIndex when the number of subscriptions increases to 30M, and PSTBloom
always performs best.

Workload Distribution: Workload distribution is another distinguishing factor
among matching algorithms. In Fig. 10.3.3, the workload distribution is P (r) = C

rα
.

When α is 0, the distribution is Uniform; when α is greater than 0, the distribution is
Zipf. Given a Zipf distribution, a few popular dimensions are associated with a large
number of subscriptions, resulting in dense workloads. As shown, under the Zipf
distribution, PSTHash performs best regardless of the number of dimensions evaluated
(here, 100 or 30K). An interesting finding is that OpIndex outperforms BE-Tree
under the Uniform distribution; however, BE-Tree outperforms OpIndex under the
Zipf distribution because the index retrieval time of OpIndex increases when there
are a large number of subscriptions associated with a few popular dimensions. For a
similar reason, under the Zipf distribution, k-index performs even worse than SCAN.

1

32

1024

32768

300K
1M 3M 10M

30M
100M

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(a) 100 Dims

0.03125

1

32

1024

32768

300K
1M 3M 10M

30M
100M

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(b) 30K Dims

Figure 10.3.2: Varying Workload Size

Number of Dimensions: As shown in Fig. 10.4(a), when the number of sub-
scriptions is fixed and the number of dimensions increases, the matching times
of all algorithms decrease, except for those of Propagation and SCAN. Compared
to PSTHash and BE-Tree, the matching times of PSTBloom, OpIndex and k-index
decrease quickly. Intuitively, these three algorithms are more suitable for high-
dimensional workloads. However, the prerequisite is that the number of subscriptions
does not increase simultaneously. In Fig. 10.4(b), we increase the number of

107

10.3. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

0.25

1

4

16

64

256

0 1 2 3 4 5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) PB

PH
O

BE
P
kI

SC

(a) 1M Subs and 100 Dims

0.0156

0.0625

0.25

1

4

16

64

256

0 1 2 3 4 5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) PB

PH
O

BE
P
kI

SC

(b) 1M Subs and 30K Dims

Figure 10.3.3: Varying Workload Distribution

dimensions while keeping the number of subscriptions per dimension fixed. As
shown, PSTBloom, OpIndex and k-index are no longer sensitive to the number of
dimensions. By combining the findings of these two experiments, we observe that
PSTBloom, OpIndex and k-index are more suitable for sparse workloads. In this
experiment, when the number of dimensions is greater than 300, PSTBloom always
achieves the best performance.

0.0156

0.0625

0.25

1

4

16

64

256

100
300

1K 3K 10K
30K

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(a) 1M Subs

0.01563

0.0625

0.25

1

4

16

64

256

1024

4096

100
300

1K 3K 10K
30K

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(b) 1K Subs/Dim

Figure 10.3.4: Varying Number of Dimensions

Dimension Cardinality: Fig. 10.3.5 shows how the dimension cardinality affects
the matching time. As shown in Fig. 10.5(a), PSTHash performs best when the
dimension cardinality is less than 300, while PSTBloom performs best for higher-
dimension cardinalities. For example, when the dimension cardinality is 1K, compared
to that of OpIndex, the matching time of PSTBloom is reduced by up to 91%.

108

CHAPTER 10. EXPERIMENTS

0.25

1

4

16

64

256

3 10 30 100
300

1K

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(a) 1M Subs and 100 Dims

0.0156

0.0625

0.25

1

4

16

64

256

3 10 30 100
300

1K

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(b) 1M Subs and 30K Dims

Figure 10.3.5: Varying Dimension Cardinality

Subscription Size: Another important workload characteristic is the subscription
size. As shown in Fig. 10.6(a), given dense workloads, PSTBloom, PSTHash, BE-Tree,
and Propagation all present lower event matching times as the average subscription
size increases because these algorithms select predicates with high selectivity to
prune subscriptions. When there are more predicates in a subscription, predicates
with high selectivity are more likely to be found. Under sparse workloads, the effect
of subscription size is not obvious, except for Propagation. In these experiments,
only OpIndex performs worse as the average subscription size increases. When the
average subscription size increases from 5 to 30, the matching time of OpIndex
increases by 350% and 200% for dense and sparse workloads, respectively, because
the index size of OpIndex increases linearly with the total number of predicates.
Larger subscription sizes result in larger index scanning costs.

Event Size: When the average number of attribute-value pairs of an event increases,
there are more candidate subscriptions. As shown in Fig. 10.3.7, under both dense
and sparse workloads, all algorithms, except for Propagation and SCAN show higher
matching times as the event size increases. Given dense workloads, when the average
event size increases to 90, PSTHash performs best. Compared to BE-Tree, PSTHash
reduces the matching time by 85%. Given sparse workloads, when the average event
size increases to 90, PSTBloom performs best. Compared to OpIndex, PSTBloom
reduces the matching time by 80%.

Matching Probability: We refer to the matching probability as the expected ratio

109

10.3. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

0.25

1

4

16

64

256

5 10 15 20 25 30

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) PB

PH
O

BE
P
kI

SC

(a) 1M Subs and 100 Dims

0.0156

0.0625

0.25

1

4

16

64

256

5 10 15 20 25 30

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) PB

PH
O

BE
P
kI

SC

(b) 1M Subs and 30K Dims

Figure 10.3.6: Varying Subscription Size

0.25

1

4

16

64

256

1024

30 42 54 66 78 90

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) PB

PH
O

BE
P
kI

SC

(a) 1M Subs and 100 Dims

0.0156

0.0625

0.25

1

4

16

64

256

30 42 54 66 78 90

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) PB

PH
O

BE
P
kI

SC

(b) 1M Subs and 30K Dims

Figure 10.3.7: Varying Event Size

1

4

16

64

256

1024

0.001

0.005

0.01
0.05

0.1
0.5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(a) 1M Subs and 100 Dims

0.25

1

4

16

64

256

1024

0.001

0.005

0.01
0.05

0.1
0.5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(b) 1M Subs and 30K Dims

Figure 10.3.8: Varying Matching Probability

110

CHAPTER 10. EXPERIMENTS

0.0625

0.25

1

4

16

64

256

0.0
0.2

0.4
0.6

0.8
1.0

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(a) 1M Subs and 100 Dims

0.0156

0.0625

0.25

1

4

16

64

256

0.0
0.2

0.4
0.6

0.8
1.0

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(b) 1M Subs and 30K Dims

Figure 10.3.9: Varying Equal Operator Ratio

of subscriptions that match for a given event. A higher matching probability means
that more subscriptions match. In Fig. 10.3.8, with the exception of Propagation
and SCAN, the algorithms’ matching times increase with the matching probability
under both dense and sparse workloads. When the matching probability increases to
50%, BE-Tree, OpIndex and Propagation show similar matching times as that of
SCAN. In contrast, both PSTBloom and PSTHash need only approximately 25% of this
matching time for both dense and sparse workloads.

Equality Operator Ratio: In this experiment, we study the effect of the ratio
of equality vs. nonequality predicates per subscription. Fig. 10.3.9 shows that the
general trend is that the matching time of all algorithms decreases as the percentage
of equality predicates increases. Most notably, when subscriptions consist of only
equality predicates, Propagation achieves a substantial performance gain and is as
good as PSTBloom under sparse workloads. Given dense workloads, the matching
performance of PSTHash always ranks first. Moreover, when the equality operator
ratio is higher, the advantage of PSTHash becomes more obvious.

Memory Consumption

All indexes considered in this thesis are memory resident. Here, we evaluate memory
use. To accurately report the memory consumption of each index, we calculate

111

10.3. CONJUNCTIVE BOOLEAN EXPRESSION MATCHING

1

4

16

64

256

1024

4096

16384

30K
100K

300K
1M 3M 10M

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
)

PB
PH

O
BE

P
kI

(a) Varying Workload Size

4

16

64

256

1024

4096

16384

5 10 15 20 25 30

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
) PB

PH
O

BE
P
kI

(b) Varying Sub Size

Figure 10.3.10: Memory Consumption

the memory use of the runtime processes before and after all subscriptions are
inserted into each index. Fig. 10.10(a) shows the memory use as the number of
subscriptions increases. Unsurprisingly, all algorithms require more memory when
there are more subscriptions. However, the memory use of PSTBloom and PSTHash
increases slower than that of OpIndex and BE-Tree because the number of predicate
spaces maintained in PS-Trees increases slower than the number of subscriptions.
Fig. 10.10(b) shows the memory use as the average subscription size increases:
OpIndex and k-index require more memory, BE-Tree and Propagation remain
stable, and PSTBloom and PSTHash need less memory. In these two experiments,
Propagation needs the least amount of memory. Compared with BE-Tree and
OpIndex, PSTBloom reduces memory use by up to 94% and 99%, respectively.

0.0156

0.0625

0.25

1

4

16

64

256

100K
500K

900K
1.3M

1.7M
2.1M

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

PB
PH

O
BE

P
kI

SC

(a) Matching Time

0.25

1

4

16

64

256

1024

4096

100K
500K

900K
1.3M

1.7M
2.1M

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

PB
PH

O
BE

P
kI

(b) Construction Time

Figure 10.3.11: Varying Workload Size

112

CHAPTER 10. EXPERIMENTS

10.3.3 Experiments on Query Logs

In this synthetic dataset, which stems from query logs, there are 2.1M subscriptions in
a space of 17,577 dimensions. On average, each subscription contains 2.78 predicates,
and each event contains 93.07 attribute-value pairs. As shown in Fig. 10.11(a), under
this high-dimensional workload, the matching performance ranking is in the following
order: PSTBloom, OpIndex, PSTHash, BE-Tree, k-index, Propagation, and SCAN.
OpIndex, PSTHash, and BE-Tree have similar matching latencies, and PSTBloom
performs considerably better than these three algorithms. Fig. 10.11(b) shows the
index construction time. The ranking of the index construction time is the same
as that of the matching time. The difference is that PSTBloom and BE-Tree have
similar index construction times as OpIndex and k-index, respectively.

10.3.4 Experiments on the Ads Dataset

By transforming advertisements into subscriptions, in this workload, we obtain 3M
subscriptions. The number of predicates in a subscription ranges from 1 to 56.
On average, each subscription contains 8 predicates, and each event contains 20
attribute-value pairs. The number of dimensions is 122, which means that this
workload is a dense workload.

As shown in Table 10.4.2, under this workload, PSTHash achieves the best matching
performance, followed by PSTBloom. The matching performance of BE-Tree is a
little better than that of OpIndex. Compared with BE-Tree, PSTHash reduces the
matching time by 89%. PSTBloom achieves the shortest index construction time.
Moreover, compared with BE-Tree and OpIndex, PSTBloom needs less memory. This
experimental result is roughly consistent with the experimental results on synthetic
workloads.

113

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

Table 10.3.2: Experiments on the Ads Dataset

Index Matching Construct Memory
SCAN 435.27 ms - -
k-index 616.42 ms 140.76 s 7.32 GB
Propagation 168.73 ms 62.43 s 14.41 MB
OpIndex 3.21 ms 24.92 s 574.38 MB
BE-Tree 2.26 ms 13.70 s 393.21 MB
PSTBloom 0.82 ms 7.81 s 55.93 MB
PSTHash 0.24 ms 8.22 s 759.72 MB

10.4 Arbitrary Boolean Expression Matching

This section evaluates A-Tree-based arbitrary Boolean expression matching using
both synthetic and real-world datasets. We compare against the following alternative
arbitrary Boolean expression matching algorithms: BoP [7], Dewey ID [30], Interval
ID [30], BDD [10], Translation, and Scan (a sequential scan of the expressions).
Since a conjunctive Boolean expression is a special case of an arbitrary Boolean
expression, we also compare these algorithms to the BE-Tree and OpIndex conjunctive
Boolean expression matching algorithms. BE-Tree and OpIndex are selected because
they perform better than other existing conjunctive Boolean expression matching
algorithms, such as Propagation [27], k-index [63], Gryphon [3], SIFT [3], TAMA [69],
REIN [51] and GEM [28]. We implemented all the arbitrary Boolean expression matching
algorithms in C by ourselves 5 and compiled with gcc 4.4.8 using optimization level
O3 on an Ubuntu 16.04 system. All experiments were run on an Intel 2.66 GHz
machine with 128 GB of memory.

In the experiments, we consider a variety of controlled experimental conditions:
workload size, arbitrary expression tree depth, the number of child nodes, expression
duplicated number, dimension number, dimension cardinality, dimension distribution,
and event size.

5The authors of BE-Tree and OpIndex kindly provided the source code of their implementations.
The authors of the remaining approaches did not provide the source codes.

114

CHAPTER 10. EXPERIMENTS

10.4.1 Workloads

To compare with the existing conjunctive Boolean expression matching algorithms,
we first use the BE-Gen workload generator [56] to generate a set of conjunctive
workloads. Since we mainly focus on arbitrary expression workloads, we select some
fixed typical parameters: the number of dimensions is 1000, the average expression
size is 6, the average event size is 20, the predicate distribution is uniform, and the
number of expressions varies from 30K to 10M.

To synthesize arbitrary Boolean expression workloads, we created a new workload
generator called ABE-Gen. In ABE-Gen, the generation of an arbitrary Boolean
expression, i.e., an n-ary tree, starts from the root node and recursively moves to the
child nodes. For each node, we first decide the logical operator, which is selected
from and, or, not, xor and xnor. If the logical operator is selected as and or or, we
then decide the number of child nodes. In addition to the logical operator and child
number, we also use another parameter called tree depth to control the expression
generation. When a node’s depth is equal to the maximum tree depth, that node
will be directly identified as a leaf node. For each leaf node, we generate a predicate.
The generation of predicates is controlled by a set of parameters, such as dimension
number, dimension cardinality and dimension distribution.

To generate a wide distribution on the n-ary trees, i.e., arbitrary Boolean expressions,
we use a wide range of parameters and settings, as shown in Table 10.4.1, with the
default values highlighted in bold. To evaluate scalability, we vary the number of
expressions from 30K to 10M. The default logical operator distribution is 40% and,
40% or, 10% not, 5% xor and 5% xnor. The tree depth varies from 1 to 6. The child
number varies from 2 to 12. In real world workloads, the same arbitrary Boolean
expression often appears for more than once, so, we also conduct experiments to
vary the expression duplicated number from 0 to 5. The predicates’ attributes are
drawn following the distribution P (r) = C

rα
, r 6= 0. When α is 0, the distribution is

uniform; otherwise, the distribution is Zipf. The number of dimensions varies from
100 to 30K. The default number of dimensions is set to 1000. We vary the dimension
cardinality from 3 to 1K. We vary the average event size from 5 to 30.

115

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

Table 10.4.1: ABE-Gen Parameters on Synthetic Datasets

Expression Number 30K, 100K, 300K, 1M, 3M, 10M
Operator Distribution 40%, 40%, 10%, 5% 5%
Tree Depth 1, 2, 3, 4, 5, 6
Child Number 2, 4, 6, 8, 10, 12
Expression Repeat Times 0, 1, 2, 3, 4, 5
The α in Zipf 0, 1, 2, 3, 4, 5
Dimension Number 100, 300, 1K, 3K, 10K, 30K
Dimension Cardinality 3, 10, 30, 100, 300, 1K
Event Size 5, 10, 15, 20, 25, 30

In addition to these synthetic datasets, we also designed a real-world workload based
on an internet company’s Ads dataset to generate arbitrary Boolean expressions
and events. When a user surfs on the company’s webiste, product advertisements
are shown to the user. In the backend advertisement inventory, an advertisement
specifies conditions to promote products to users. The conditions include channel
(e.g., mobile, PC, or tablet), region (e.g., US, DE, or CN), ad position, and so forth.
By translating conditions into predicates, we model advertisements as arbitrary
Boolean expressions. When a user interacts with the website (e.g., surfs or logs
in), the user’s session is bound to a set of attributes, such as the login channel, the
login region and the user’s profile. By translating the profile and attributes into
attribute-value pairs, we model each session as an event. For example, if a user is
male, then the resulting event contains an attribute-value pair 〈gender,male〉.

10.4.2 Experiments on Conjunctive Workload

The first set of experiments was conducted on the synthetic conjunctive expression
datasets. We mainly investigate the scalability of different algorithms with respect to
the workload size. The index construction time, matching performance and memory
consumption are reported. We also evaluate the matching performance of different
algorithms with respect to the expression duplicated number.

Index Construction Time: As shown in Fig. 10.1(a), all the algorithms’ index
construction times increase with the number of expressions. Among the algorithms

116

CHAPTER 10. EXPERIMENTS

shown, BoP exhibits the lowest index construction time when there are 30K expres-
sions. However, when there are up to 10M expressions, A-Tree achieves the fastest
index construction; compared with the next-best algorithm OpIndex, A-Tree reduces
the index construction time by 71.1%. A-Tree presents fast index construction
because common shared predicates and subexpressions can always be reused.

Matching Time: The matching time is the most important metric for Boolean
expression matching algorithms. As illustrated in Fig. 10.1(b), all algorithms scale
linearly with respect to the number of expressions. Under different workloads, A-Tree
achieves matching performance comparable with BE-Tree. OpIndex achieves the
best matching performance under this group of workloads. BoP and Interval ID
present matching performances similar to those of BDD and Dewey ID, respectively.
The matching performances of A-Tree are much better than those of BoP and BDD
which are further better than those of Interval ID and Dewey ID.

For many applications, the same expression may appear more than once. Thus, we
also investigate the matching performances of these algorithms under duplicated
expression workloads. Fig. 10.1(c) shows the matching time when each unique
expression is duplicated 0, 1, 2, 3, 4, and 5 times. Zero means that the 1M expressions
are not duplicated at all. As shown, only the matching times of A-Tree and BE-Tree
do not increase with the expression duplicated number. This result is because the
expressions will be indexed together by A-Tree and BE-Tree if the expressions are
the same. However, duplicated expressions are not identified by the other algorithms
and thus are proccesed independently.

Memory Consumption: All indices considered in this thesis reside in memory.
Here, we evaluate memory usage. To accurately report the memory consumption
of each index, we calculate the memory use of the runtime processes before and
after all expressions are inserted into each index. Fig. 10.1(d) shows the memory
use as the number of expressions increases. Unsurprisingly, all algorithms require
more memory when there are more expressions. However, the memory use of A-Tree
increases slower: when there are 30K expressions, the memory use of A-Tree is
greater than that of BE-Tree. However, when there are 10M expressions, the memory
use of A-Tree becomes smaller than that of BE-Tree. BE-Tree always consumes

117

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

0.0156

0.0625

0.25

1

4

16

64

256

30K
100K

300K
1M 3M 10M

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

OpI
BE
AT

BoP
Dew

Int
Bdd

(a) Varying Number of Expressions

0.0156

0.0625

0.25

1

4

16

64

256

30K
100K

300K
1M 3M 10M

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

OpI
BE
AT

BoP
Dew

Int
Bdd

(b) Varying Number of Expressions

0.25

1

4

16

64

256

0 1 2 3 4 5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) OpI

BE
AT

BoP
Dew

Int
Bdd

(c) Varying Repeated Times

4

16

64

256

1024

4096

30K
100K

300K
1M 3M 10M

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
)

OpI
BE
AT

BoP
Dew

Int
Bdd

(d) Varying Number of Expressions

Figure 10.4.1: Conjunctive Workloads

118

CHAPTER 10. EXPERIMENTS

less memory than OpIndex.

10.4.3 Experiments on Arbitrary Workload

Under the workloads presented in the above section, OpIndex achives better matching
performance than BE-Tree. Though our experiments show BE-Tree presents better
performance than OpIndex under some other workloads, we only adopt OpIndex as
the underling algorithm for the Translation-based arbitrary Boolean expression
matching solution. Dewey ID and Interval ID are proposed in the same paper [30].
The basic idea of these two algorithm are similar and Interval ID always performs
a little better than Dewey ID. So, in this group of experiments, we only use Interval
ID for comparison. This group of experiments were conducted on the synthetic
arbitrary expression datasets. Under some workloads, the memory needed by
Translation and BDD exceeds the available memory of 128GB. So, we first report on
the memory consumption of each index. Then, we evaluate the matching performance
with respect to workload size, expression tree depth, dimension number, etc. Finally,
index construction is reported.

Memory Consumption

For arbitrary Boolean expression workloads, our experiments show the memory
consumption of different algorithms are affected by the workload size, expression
tree depth, the number of child nodes and expression duplicated number.

Fig. 10.2(a) shows the memory use as the number of expressions increases. Unsurpris-
ingly, all algorithms require more memory when there are more expressions. However,
the memory use of A-Tree and BDD increases slower than that of BoP, Interval
ID and Translation. This is because the common predicates and subexpressions
can be shared in the A-Tree and BDD index. BoP requires the least memory because
it compresses the expressions and only requires a count for each expression in the
index. Translation needs the most memory since a single arbitrary expression
can be translated into up to 44 = 256 conjunctive expressions. When there are

119

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

10M arbitrary expressions, The available 128GB memory is not enough for the
Translation solution.

16

64

256

1024

4096

16384

65536

30K
100K

300K
1M 3M 10M

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
)

AT
BoP

Int
Bdd
TR

(a) Varying Number of Expressions

16

64

256

1024

4096

16384

1 2 3 4 5
M

e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

M
) AT

BoP
Int

Bdd
TR

(b) Varying Tree Depth

256

512

1024

2048

4096

8192

16384

32768

2 4 6 8 10 12

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
) AT

BoP
Int

Bdd
TR

(c) Varying Number of Children

256

512

1024

2048

4096

8192

16384

32768

65536

131072

0 1 2 3 4 5

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
) AT

BoP
Int

Bdd
TR

(d) Varying Repeated Times

Figure 10.4.2: Memory Consumption

Fig. 10.2(b) shows the memory use as the average arbitrary expression tree depth
increases. It can been seen both Translation and BDD runs out of memory when
the tree depth increases to 4. For Translation, the reason is that a single arbitrary
expression can be translated into a large number of conjunctive expressions. For BDD,
the reason is that the complexity of the BDD index increases expotentially with the
number of predicates in an expression. A-Tree needs the least memory when the tree
depth is 1. While BoP needs the least memory when the tree depth increases to 3.

Fig. 10.2(c) shows the memory use as the average number of child nodes increases.
Similar to the tree depth experiments, Translation runs out of memory when the
child number increases to 6, while BDD runs out of memory when the child number

120

CHAPTER 10. EXPERIMENTS

increases to 8. The ranking of the left algorithms is BoP, A-Tree and Interval ID.
Fig. 10.2(d) shows the memory use as the expression duplicated number increases. It
can been seen, only the memory use of A-Tree and BDD do not obviously increase with
the expression repeated times. When the expression duplicated number increases
to 2, A-Tree consumes the least memory. When the expression repeated times is 5,
A-Tree reduces the memory use by 76%.

Matching Time

The matching time is among the most important metrics for Boolean expression
matching algorithms. In this section, we present extensive experiments under a
variety of controlled conditions.

Workload Size: We consider the matching time as we increase the number of
subscriptions processed. As illustrated by Fig. 10.3(a), all algorithms scale linearly
with respect to the number of expressions. Among them, A-Tree always performs
the best when the number of expressions increases from 30K to 10M. When there are
10M expressions, A-Tree reduces the matching time by up to 92.3% compared to the
next-based algorithm BDD. The matching performances of BoP, Interval ID and BoP
are very similar. BDD is slightly better than BoP and Interval ID. A-Tree achieves
the best matching performance because the common predicates and expressions are
evaluated at most once. Moreover, the unnecessary propagation of evaluation results
are cut off by the event matching optimizations.

Expression Tree Depth: As shown in Fig. 10.3(b), when the expression tree depth
increases, the matching time of all algorithms increases. However, the matching
performance of Translation increases faster. Compared with Translation, A-Tree
reduces the matching time by 53% and 81% when the tree depth is 1 and 3,
respectively. Moreover, when the tree depth increases to 4, the Translation and
BDD runs out memory. It means the Translation and BDD method is not suitable
for complex arbitrary Boolean expression workloads.

Child Number: The effect of child number is similar to the effect of expression

121

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

0.01563

0.0625

0.25

1

4

16

64

256

1024

4096

30K
100K

300K
1M 3M 10M

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

AT
BoP

Int
SC

Bdd
TR

(a) Varying Number of Expressions

0.01563

0.0625

0.25

1

4

16

64

256

1024

1 2 3 4 5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) AT

BoP
Int
SC

Bdd
TR

(b) Varying Tree Depth

0.0625

0.25

1

4

16

64

256

1024

2 4 6 8 10 12

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) AT

BoP
Int
SC

Bdd
TR

(c) Varying Number of Children

0.25

1

4

16

64

256

1024

0 1 2 3 4 5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) AT

BoP
Int
SC

Bdd
TR

(d) Varying Repeated Times

0.0625

0.25

1

4

16

64

256

100
300

1K 3K 10K
30K

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

AT
BoP

Int
SC

Bdd
TR

(e) Varying Number of Dimensions

0.0625

0.25

1

4

16

64

256

3 10 30 100
300

1K

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
)

AT
BoP

Int
SC

Bdd
TR

(f) Varying Dimension Cardinality

0.0625

0.25

1

4

16

64

256

5 10 15 20 25 30

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) AT

BoP
Int
SC

Bdd
TR

(g) Varying Event Size

0.25

1

4

16

64

256

0 1 2 3 4 5

M
a

tc
h

in
g

 T
im

e
/E

v
e

n
t

(m
s
) AT

BoP
Int
SC

Bdd
TR

(h) Varying Zipf Distribution

Figure 10.4.3: Event Matching Time

122

CHAPTER 10. EXPERIMENTS

tree depth. As can be seen in Fig. 10.3(c), Translation and BDD can not scale to
expressions with large number of child nodes. The ranking of the left algorithms is
A-Tree, Interval ID, BoP and Scan.

Expression Repeated Times: In this experiment, we study the effect of the
expression repeated times. Fig. 10.3(d) shows that the general trend is that the
matching time for all algorithms except A-Tree increases as the expression duplicated
number increases. The matching time of BDD also increases. The reason is that the
evaluation of events with BDD involves the traversal of the entire BDD index. We
adopted an optimization to the BDD-based matching, which was not proposed in the
original paper: traverse an expression only one there exists a matching predicate.
However, the same expression still need to be evaluated for more than once if it is
duplicated. The reason is that BDD-based matching is from top-to-bottom, which is
different from A-Tree-based matching.

Number of Dimensions: As shown in Fig. 10.3(e), when the number of expressions
is fixed and the number of dimensions increases, the matching times of all algorithms
decrease, except for Scan. Compared to BoP, Interval ID, BDD, and Translation,
the matching time of A-Tree decrease quickly. The ranking of all algorithms do not
change as the the number of dimensions increases.

Dimension Cardinality: Fig. 10.3(f) shows how the dimension cardinality affects
the matching time. It can been seen the matching times of A-Tree, BoP, Interval
ID and BDD decrease as the number of dimension cardinality increases. The reason is
that when the dimension cardinality increases, the number of maching predicates
and expressions decreases. When the dimension cardinality increases to 1K, BoP,
Interval ID and BDD present very similar matching performance.

Dimension Distribution: In Fig. 10.3(h), the X-axis represents the value of α in
P (r) = C

rα
. It can be seen the matching performance of A-Tree, BoP, Interval ID

and BDD are not obviously affected by the distribution. The reason is that even though
the predicates follow a Zipf distribution, the whole arbitrary Boolean expression will
not follow the Zipf distribution. The predicate matching phase can be affected, but
the major expression matching phase are not affacted.

123

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

Event Size: When the average number of attribute-value pairs of an event increases,
there are more matching predicates and expressions. As shown in Fig. 10.3(g), all
algorithms except Scan present higher matching times as the event size increases.
The ranking of these algorithms is A-Tree, Translation, BDD, Interval ID and
Scan. The ranking does not change as the event size increases.

0.25

1

4

16

64

256

1024

30K
100K

300K
1M 3M 10M

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

AT
BoP

Int
Bdd
TR

(a) Varying Number of Expressions

1

4

16

64

256

1024

1 2 3 4 5

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
) AT

BoP
Int

Bdd
TR

(b) Varying Tree Depth

2

4

8

16

32

64

128

256

512

2 4 6 8 10 12

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

AT
BoP

Int
Bdd
TR

(c) Varying Number of Children

8

16

32

64

128

256

512

1024

2048

0 1 2 3 4 5

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
) AT

BoP
Int

Bdd
TR

(d) Varying Repeated Times

Figure 10.4.4: Index Construction Time

Index Construction Time

The index construction times of different algorithms are affected by workload size,
tree depth, child number and expression duplicated number. As can been seen in
Fig. 10.4(a), the index construction times of all the algorithms increase with the
expression number. Among them, the index construction times of A-Tree, BoP and
Interval ID are very similar. The index construction times of Translation and BDD

124

CHAPTER 10. EXPERIMENTS

are higher. The same phenonmenon is observed in Fig. 10.4(b) and Fig. 10.4(c). In
these three groups of experiments, the expressions are all distinct. When we increase
the expression duplicated number, as we can see in Fig. 10.4(d), the index construction
of A-Tree becomes faster than the other algorithms. When the expression repeated
times increases to 5, compared to BoP, A-Tree reduces the index construction time
by 77%.

10.4.4 Experiments on the Ads Dataset

By transforming advertisements into arbitrary Boolean expressions, in this workload,
we obtain 1,392,196 expressions. The number of predicates in an expression ranges
from 1 to 56. Each event contains 20 attribute-value pairs. The number of dimensions
is 122.

Table 10.4.2: Experiments on the Ads Dataset

Index Matching Construct Memory
SCAN 994.1 ms - -
Translation 7.1 ms 588.2 s 25,822 MB
BDD 7.8 ms 238.3 s 4,310 MB
Interval ID 17.9 ms 61.2 s 4,432 MB
Dewey ID 19.5 ms 68.8 s 4,640 MB
BoP 18.9 ms 41.9 s 1,456 MB
ATree 0.27 ms 12.3 s 509 MB

As shown in Table 10.4.2, under this workload, A-Tree achieves the best matching
performance, followed by Translation and BDD. A-Tree also achives the best index
construction performance and memory foot print. The reason is that in this workload,
lots of predicates, subexpressions and expressions are duplicated for many times.
The matching performance of BoP is similar with Dewey ID and Interval ID. But
the index construction performance and memory use of BoP is better than Dewey ID
and Interval ID. Interval ID performes slightly better than Dewey ID. Compare
with the next-best algorithms, A-Tree reduces the matching time, index constrution
time and memory use by 96%, 71%, and 65%, respectively. This experimental result
is roughly consistent with the experimental results on synthetic workloads.

125

10.4. ARBITRARY BOOLEAN EXPRESSION MATCHING

126

Chapter 11

Conclusions

The existing content-based publish/subscribe routing and Boolean expression match-
ing solutions present limitations on flexibility, performance, expressiveness and
applicability. To overcome these limitations, we propose new efficient routing and
Boolean expression matching algorithms. Our proposed new routing algorithms
include D-DBR and MERC. For conjunctive Boolean expression matching, we proposed
PSTBloom and PSTHash algorithm. While for arbitrary Boolean expression matching,
we propose the A-Tree-based matching.

D-DBR exhibits low processing overhead by reducing the number of event matching
computations and exhibits higher flexibility by decoupling event matching from
event routing at the cost of requiring global topology knowledge and destination list
information in each message. D-DBR is well-suited for small-scale networks, such as
one may find at the enterprise- and data center-level. For larger scale networks, such
as in inter-data center and wide area application scenarios, MERC is more suitable,
because each broker only needs the knowledge of a small part of the overall topology,
and, consequently, the destination list overhead is kept in check. Moreover, brokers
in MERC are organized as a structured and hierarchical network of clusters offering
better system management and maintenance opportunities. Our experimental results
show that D-DBR and MERC perform well across a range of evaluation scenarios with
significant performance improvements, especially, when there are a large number

127

of subscriptions. A limitation of MERC is that edge brokers may constitute single
points of failure, thus, may require a fail-over mechanism, and may benefit from
running on more powerful machines.

PS-Tree is a novel data structure we proposed to index predicates. PS-Tree
can efficiently constructs a many-to-many relation between predicate spaces and
subscriptions. Through PS-Tree, the problem of predicate matching is transformed
into the problem of locating the predicate space to which an attribute-value pair
belongs. PS-Tree offers excellent query performance and good expressiveness.

Based on PS-Tree, we first propose the PSTBloom algorithm. PSTBloom selects a
predicate with the high selectivity as the access predicate for each subscription. Then,
the subscription is associated with its corresponding leaf nodes. Through PS-Tree,
PSTBloom can efficiently filter out all the subscriptions whose access predicates do
not match with a received event. Then, Bloom filter signatures are used to further
filter out most unmatching subscriptions. PSTBloom is efficient at handling many
workload distributions, especially high-dimensional workloads. PSTBloom achieves
fast index construction and requires a small amount of memory. However, PSTBloom
and other algorithms do not meet the challenge presented by dense workloads. To
overcome this limitation, we further propose the PSTHash algorithm. PSTHash selects
more than one access predicate for each subscription and constructs a many-to-many
relation between multi-dimensional predicate spaces and subscriptions. Only when
an event matches with all access predicates of a subscription is the subscription
identified as a candidate subscription. Compared with PSTBloom and other existing
algorithms, PSTHash achieves the best matching performance for dense workloads.

To efficiently index arbitrary Boolean expressions, we proposed a novel multiroot tree
data structure called A-Tree. In A-Tree, the same predicate is uniquely represented
by a leaf node, and the same subexpression is uniquely represented by an inner node.
The same predicates and subexpressions of different arbitrary Boolean expressions
are shared. In this way, A-Tree achieves a good memory footprint. Moreover, during
event matching, it is guaranteed that the same predicate and subexpression are
evaluated once for each event.

A-Tree not only supports dynamic expression reorganization based on the current

128

CHAPTER 11. CONCLUSIONS

index structure but also supports dynamic index self-adjustment based on the
incoming expressions. In this way, the A-Tree index remains optimized regardless of
the incoming order of different expressions. Moreover, the A-Tree index supports
the removal of expired expressions and can be self-adjusted after the removal. In
contrast to the existing Dewey ID [30] and Interval ID [30] methods, A-Tree works
in a online mode, which means that the A-Tree index does not need to be built in
advance.

Based on the A-Tree index, we propose algorithms to match events against arbitrary
Boolean expressions from bottom to top. Different logical operators are supported.
The matching process consists of evaluation of result and propagation of result. To
remove the cost of propagating the false evaluation result, we proposed the zero
suppression filter optimization. To avoid the unnecessary propagation of evaluation
results to a node with the and logical operator, we propose the propagation on
demand optimization.

We conducted extensive experiments using both synthetic and real-world datasets.
The results show that our algorithms outperform state-of-the-art approaches for
routing and matching performance under different types of worloads.

129

130

List of Figures

1.2.1 Limitations of the FBR algorithm 3
1.3.1 Relationship maintained by PS-Tree 8

2.1.1 MBR algorithm . 14
2.1.2 FBR algorithm . 14
2.3.1 Dewey ID and Interval ID Example 20
2.3.2 BoP Encoding Example . 21
2.3.3 BDD Structure Example . 22

4.0.1 Layers of D-DBR . 29
4.1.1 Event routing in D-DBR . 31

5.0.1 Event routing in MERC . 40

6.1.1 PS-Tree index structure . 46

7.1.1 PSTBloom index structure . 58

8.1.1 PSTHash index structure . 65

9.1.1 A-Tree Example . 72
9.2.1 Different Presentations . 75
9.3.1 Matching Example . 82

131

LIST OF FIGURES

9.3.2 Optimized Matching Example . 86

10.1.1 100 subscriptions . 91
10.1.2 800 subscriptions . 91
10.1.3 2000 subscriptions . 91
10.1.4 CPU utilization . 91
10.1.5 Latency for Zipf distribution . 93
10.1.6 CPU utilization for Zipf distribution 93
10.1.7 RAM utilization for Zipf distribution 93
10.1.8 Latency for random distribution 93
10.1.9 Throughput and latency . 94
10.1.10 Destination list size distribution 94
10.1.11 Subscription duplication . 95
10.1.12 Subscription number distribution 95
10.1.13 Average destination list size (broker degree is 6) 97
10.1.14 Average destination list size (broker degree is 9) 97
10.1.15 Destination list size distribution 97
10.1.16 Average destination list size at source brokers 97
10.1.17 Routing accuracy for old and new topology 99
10.1.18 Robustness under broker failures 99
10.1.19 Robustness under connection failures 99
10.1.20 Consumed Memory . 99
10.3.1 Index Construction Time . 105
10.3.2 Varying Workload Size . 107
10.3.3 Varying Workload Distribution 108
10.3.4 Varying Number of Dimensions 108
10.3.5 Varying Dimension Cardinality 109
10.3.6 Varying Subscription Size . 110
10.3.7 Varying Event Size . 110
10.3.8 Varying Matching Probability . 110
10.3.9 Varying Equal Operator Ratio . 111
10.3.10 Memory Consumption . 112
10.3.11 Varying Workload Size . 112
10.4.1 Conjunctive Workloads . 118

132

LIST OF FIGURES

10.4.2 Memory Consumption . 120
10.4.3 Event Matching Time . 122
10.4.4 Index Construction Time . 124

133

LIST OF FIGURES

134

List of Tables

10.2.1 PSTree Querying Performance . 101
10.3.1 Parameters of the Synthetic Datasets 103
10.3.2 Experiments on the Ads Dataset 114
10.4.1 ABE-Gen Parameters on Synthetic Datasets 116
10.4.2 Experiments on the Ads Dataset 125

135

LIST OF TABLES

136

List of Algorithms

1 Message Processing in Matching Engine 32
2 Message Processing in Multicasting Engine 34
3 Implementation of function Forward(m) 41
4 InsertPredicate(pred, pstree) . 48
5 Partition(val, op, pstree) . 48
6 GetRNode(path) . 49
7 GetLNode(iRNode, root) . 49
8 PartitionLeafNode(currNode, op) . 50
9 PartitionLeafNode(currNode, iLNode, op) 51
10 CreateInnerNode() . 51
11 MatchPair(pair, pstree) . 52
12 DeletePredicate(pred, pstree) . 53
13 InsertSubscription(sub, pstb) . 59
14 MatchEvent(event, pstb) . 60
15 DeleteSub(sub, pstb) . 61
16 InsertSubscription(sub, psth) . 66
17 MatchEvent(event, psth) . 67
18 DeleteSub(sub, psth) . 68
19 Insert(expr,Hen, atree) . 74
20 Reorganize(expr, atree) . 76
21 SelfAdjust(newNode) . 77
22 Insert(expr,Hen, atree) . 77
23 Delete(expr,Hen, atree) . 78
24 Match(preds,Hen) . 80

137

LIST OF ALGORITHMS

138

Bibliography

[1] http://sigmod.kaust.edu.sa, Jan. 2013.

[2] M. Adler, Z. Ge, J. F. Kurose, D. Towsley, and S. Zabele. Channelization
problem in large scale data dissemination. In ICNP’01, pages 100–109. IEEE,
2001.

[3] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In ACM PODC, pages
53–61, 1999.

[4] L. Arge and J. S. Vitter. Optimal dynamic interval management in external
memory. In IEEE FOCS, pages 560–569, 1996.

[5] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. An efficient multicast protocol for content-based publish-subscribe
systems. In ICDCS’99, pages 262–272. IEEE, 1999.

[6] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? In Springer ICDT, pages 217–235, 1999.

[7] S. Bittner and A. Hinze. The arbitrary boolean publish/subscribe model:
making the case. In Proceedings of the 2007 inaugural international conference
on Distributed event-based systems, pages 226–237. ACM, 2007.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, 100(8):677–691, 1986.

139

BIBLIOGRAPHY

[9] L.-F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achieving a global event
notification service. In Hot Topics in Operating Systems Workshop, pages 87–92.
IEEE, 2001.

[10] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient filtering in
publish-subscribe systems using binary decision diagrams. In IEEE ICSE, pages
443–452, 2001.

[11] C. Canas, K. Zhang, B. Kemme, J. Kienzle, and H.-A. Jacobsen. Publish/Sub-
scribe network designs for multiplayer games. In ACM Middleware, 2014.

[12] F. Cao and J. P. Singh. Medym: Match-early with dynamic multicast for content-
based publish-subscribe networks. InMiddleware, pages 292–313. Springer-Verlag
New York, Inc., 2005.

[13] A. Carzaniga, C. Hall, and A. L. Wolf. Practical high-throughput content-based
routing using unicast state and probabilistic encodings. Faculty of Informatics,
University of Lugano, Tech. Rep, 6, 2009.

[14] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM TOCS, 19(3):332–383, 2001.

[15] S. Ceri, R. Cochrane, and J. Widom. Practical applications of triggers and
constraints: Success and lingering issues. In PVLDB, pages 254–262, 2000.

[16] D. D. Clark. Policy routing in internet protocols. Policy, 1989.

[17] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, 2009.

[19] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham. Vigilante: End-to-end containment of Internet worm epidemics.
ACM TOCS, 26(4):9, 2008.

[20] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Introducing reliability
in content-based publish-subscribe through epidemic algorithms. In DEBS
workshop, pages 1–8. ACM, 2003.

140

BIBLIOGRAPHY

[21] P. Costa and G. P. Picco. Semi-probabilistic content-based publish-subscribe.
In ICDCS’05, pages 575–585. IEEE, 2005.

[22] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastructure and
its application to the development of the opss wfms. IEEE TSE, 27(9):827–850,
2001.

[23] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf.
Computational geometry. In Computational geometry, pages 1–17. Springer,
2000.

[24] R. De La Briandais. File searching using variable length keys. In Western joint
computer conference, pages 295–298. ACM, 1959.

[25] S. E. Deering and D. R. Cheriton. Multicast routing in datagram internetworks
and extended lans. ACM TOCS, 8(2):85–110, 1990.

[26] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing
and predicate evaluation for high-performance xml filtering. ACM TODS, pages
467–516, 2003.

[27] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
In ACM SIGMOD, pages 115–126, 2001.

[28] W. Fan, Y. Liu, and B. Tang. Gem: An analytic geometrical approach to fast
event matching for multi-dimensional content-based publish/subscribe services.
In IEEE INFOCOM, pages 1–9, 2016.

[29] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovskii. The PADRES distributed
publish/subscribe system. pages 12–30, July 2005.

[30] M. Fontoura, S. Sadanandan, J. Shanmugasundaram, S. Vassilvitski, E. Vee,
S. Venkatesan, and J. Zien. Efficiently evaluating complex boolean expressions.
In ACM SIGMOD, pages 3–14, 2010.

[31] A. Guttman. R-trees: A dynamic index structure for spatial searching. In ACM
SIGMOD, 1984.

141

BIBLIOGRAPHY

[32] E. N. Hanson. The interval skip list: A data structure for finding all intervals
that overlap a point. In Workshop on Algorithms and Data Structures, pages
153–164. Springer, 1991.

[33] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy,
J. Park, and A. Vernon. Scalable trigger processing. In IEEE ICDE, pages
266–275, 1999.

[34] S. Hou and H.-A. Jacobsen. Predicate-based filtering of xpath expressions. In
IEEE ICDE, page 53, 2006.

[35] H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. Dynamic load balancing
for cluster-based publish/subscribe system. In SAINT’09, pages 57–63. IEEE,
2009.

[36] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to routing, covering
and merging in publish/subscribe systems based on modified binary decision
diagrams. In ICDCS’05, pages 447–457. IEEE, 2005.

[37] G. Li, S. Hou, and H.-A. Jacobsen. Routing of xml and xpath queries in data
dissemination networks. In IEEE ICDCS, pages 627–638, 2008.

[38] G. Li, V. Muthusamy, and H.-A. Jacobsen. Adaptive content-based routing in
general overlay topologies. In Middleware, pages 1–21. Springer-Verlag New
York, Inc., 2008.

[39] G. Li, V. Muthusamy, and H.-A. Jacobsen. A distributed service-oriented
architecture for business process execution. ACM TWEB, 4(1):2, 2010.

[40] G. Li, V. Muthusamy, and H.-A. Jacobsen. A distributed service-oriented
architecture for business process execution. ACM TWEB, page 2, 2010.

[41] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An index structure
for high-dimensional data. The VLDB Journal, 3(4):517–542, 1994.

[42] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client behavior and feed
characteristics of rss, a publish-subscribe system for web micronews. In IMC’05,
pages 3–3. USENIX Association, 2005.

142

BIBLIOGRAPHY

[43] A. Machanavajjhala, E. Vee, M. Garofalakis, and J. Shanmugasundaram.
Scalable ranked publish/subscribe. PVLDB, 1(1):451–462, 2008.

[44] A. Margara and G. Cugola. High-performance publish-subscribe matching using
parallel hardware. IEEE TPDS, pages 126–135, 2014.

[45] J. Martins and S. Duarte. Routing algorithms for content-based publish/sub-
scribe systems. IEEE CST, 12(1):39–58, 2010.

[46] D. R. Morrison. Patricia—practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, pages 514–534, 1968.

[47] G. Muhl, L. Fiege, F. C. Gartner, and A. Buchmann. Evaluating
advanced routing algorithms for content-based publish/subscribe systems. In
MASCOTS’02, pages 167–176. IEEE, 2002.

[48] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection.
Network, IEEE, 8(3):26–41, 1994.

[49] U. of Toronto SciNet Consortium. http://www.scinet.utoronto.ca.

[50] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman.
Exploiting ip multicast in content-based publish-subscribe systems. In
Middleware, pages 185–207. Springer-Verlag New York, Inc., 2000.

[51] S. Qian, J. Cao, Y. Zhu, and M. Li. Rein: A fast event matching approach for
content-based publish/subscribe systems. In IEEE INFOCOM, pages 2058–2066,
2014.

[52] S. Qian, J. Cao, Y. Zhu, M. Li, and J. Wang. H-tree: An efficient index
structurefor event matching in content-basedpublish/subscribe systems. IEEE
TPDS, pages 1622–1632, 2015.

[53] C. Raiciu, D. S. Rosenblum, and M. Handley. Revisiting content-based
publish/subscribe. In ICDCS Workshops 2006, pages 19–19. IEEE, 2006.

[54] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering algorithms for
content-based publication-subscription systems. In ICDCS’02, pages 133–142.
IEEE, 2002.

143

BIBLIOGRAPHY

[55] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. Gpx-matcher: a generic boolean
predicate-based xpath expression matcher. In ACM EDBT, pages 45–56, 2011.

[56] M. Sadoghi and H.-A. Jacobsen. Be-tree: an index structure to efficiently match
boolean expressions over high-dimensional discrete space. In ACM SIGMOD,
pages 637–648, 2011.

[57] M. Sadoghi and H.-A. Jacobsen. Analysis and optimization for boolean
expression indexing. ACM TODS, page 8, 2013.

[58] M. Sadoghi and H.-A. Jacobsen. Adaptive parallel compressed event matching.
In IEEE ICDE, pages 364–375, 2014.

[59] M. Sadoghi, M. Jergler, H.-A. Jacobsen, R. Vaculin, and R. Hull. Safe
distribution and parallel execution of data-centric workflows over the
publish/subscribe paradigm. IEEE TKDE, 2015.

[60] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky. Hierarchical clustering of
message flows in a multicast data dissemination system. In IASTED PDCS’05,
pages 320–326, 2005.

[61] R. Van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining.
ACM TOCS, 21(2):164–206, 2003.

[62] P. Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, IEEE Annual Symposium on, pages 1–11, 1973.

[63] S. E. Whang, H. Garcia-Molina, C. Brower, J. Shanmugasundaram, S. Vassilvit-
skii, E. Vee, and R. Yerneni. Indexing boolean expressions. PVLDB, 2(1):37–48,
2009.

[64] T. W. Yan and H. García-Molina. Index structures for selective dissemination of
information under the boolean model. ACM Transactions on Database Systems
(TODS), 19(2):332–364, 1994.

[65] Y. Yoon, V. Muthusamy, and H.-A. Jacobsen. Foundations for highly available
content-based publish/subscribe overlays. In ICDCS’11, pages 800–811. IEEE,
2011.

144

BIBLIOGRAPHY

[66] Y. Yoon, N. Robinson, V. Muthusamy, S. McIlraith, and H.-A. Jacobsen.
Towards planning the transformation of distributed messaging middleware. In
IEEE ICDCS, June 2015.

[67] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model an internetwork.
In INFOCOM’96, volume 2, pages 594–602. IEEE, 1996.

[68] D. Zhang, C.-Y. Chan, and K.-L. Tan. An efficient publish/subscribe index for
e-commerce databases. PVLDB, 7(8):613–624, 2014.

[69] Y. Zhao and J. Wu. Towards approximate event processing in a large-scale
content-based network. In IEEE ICDCS, pages 790–799, 2011.

145

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problem Statement
	Approach
	Contributions
	Organization

	Related Work
	Publish/Subscribe Routing
	Conjunctive Boolean Expression Matching
	Arbitrary Boolean Expression Matching

	Matching Model
	Expression Language
	Matching Semantics
	Predicate Selectivity

	D-DBR Design
	Content-based Matching Layer
	Destination-based Multicasting Layer
	Dynamic Overlay Reconfiguration
	Algorithm Analysis

	MERC Design
	Routing Tables
	Message Processing
	Algorithm Analysis

	PS-Tree Organization
	PS-Tree Structure
	Index Construction
	Predicate Matching
	Dynamic Index Adjustment
	Expressiveness
	Time and Space Analysis

	PSTBloom Organization
	PSTBloom Structure
	Index Construction
	Event Matching
	Subscription Deletion
	Time and Space Analysis

	PSTHash Organization
	PSTHash Structure
	Index Construction
	Event Matching
	Subscription Deletion
	Time and Space Analysis

	A-Tree Organization
	A-Tree Structure
	Index Construction
	Node Uniqueness
	Expression Reorganization
	Index Self-adjustment
	Expression Deletion

	Event Matching
	Matching Algorithm
	Event Matching Example
	Optimizations for Event Matching
	Optimized Event Matching Example

	Time and Space Analysis

	Experiments
	Publish/Subscribe Routing
	Experiments on Computing Facility
	Experiments Based on Simulations

	Predicate Matching
	Conjunctive Boolean Expression Matching
	Workloads
	Experiments on Synthetic Workloads
	Experiments on Query Logs
	Experiments on the Ads Dataset

	Arbitrary Boolean Expression Matching
	Workloads
	Experiments on Conjunctive Workload
	Experiments on Arbitrary Workload
	Experiments on the Ads Dataset

	Conclusions
	List of Figures
	List of Tables
	Bibliography

