Assessing the Maturity of SDN Controllers with Software Reliability Growth Models

Petra Vizarreta, Kishor Trivedi, Bjarne Helvik, Poul Heegaard, Andreas Blenk, Wolfgang Kellerer, and Carmen Mas Machuca

I. INTRODUCTION

A. Motivation and problem definition

Software Defined Networking (SDN) is an architectural concept of decoupling control and data plane, by outsourcing all control plane decisions of forwarding devices to a logically centralized software entity known as the SDN controller. Today’s SDN controllers are complex software systems, owing to heterogeneity of networks and forwarding devices they support, and are inherently prone to bugs. Our previous work showed that Software Reliability Growth Models (SRGM) can model the stochastic nature of bug manifestation process open source SDN controllers. In this article we focus on different applications of our SRGM framework crucial for an efficient management of SDN-based networks. We provide guidelines for network operators to decide when the controller software is mature enough to be deployed in operational environment, based on the reliability requirements of network applications, and quantify the marginal benefits of the prolonged testing phase on the software quality. We show how the accuracy of software reliability prediction in the early phase of the software lifecycle can be improved by extrapolating the behaviour of previous controller software releases. We also propose software maturity metrics, that can be used by operators to discriminate between the competing SDN controller designs, i.e., ONOS and OpenDaylight, when software reliability is a major concern.

Index Terms—Software Defined Networking, SDN controller, ONOS, OpenDaylight, open source software, software maturity, software reliability, Software Reliability Growth Models.

P. Vizarreta, A. Blenk, W. Kellerer, C. Mas Machuca are with the Chair of Communication Networks, Technical University of Munich, Germany, e-mail: (petra.vizarreta@ln.ei.tum.de).
B. Helvik, P. Heegaard, are with the Department of Information Security and Communication Technology, Norwegian University in Science and Technology, Norway.
K. Trivedi is with Department of Electrical and Computer Engineering, Duke University, USA.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671648 (VirtuWind), COST Action CA15127 Resilient communication services protecting end-user applications from disaster-based failures (RECODIS) and was supported in part by US NSF Grant number CNS-1523994, CELTIC EUREKA project SENDATE-PLANETS (Project ID C2015/3-1) and the German BMBF (Project ID 16KIS0473).
Moreover, SRGM enable the operators to estimate how reliability metrics change over time, as the software matures. Such software reliability metrics capture the relationship between the testing effort and the software quality, which is highly relevant for the software developers of SDN controllers. With SRGM the risk of the software outages in a given period of time can be predicted with the high accuracy, providing useful guideline for the operators of SDN-based networks to take the calculated risk and estimate the best software adoption time, based on the reliability requirements of their network applications. The practical value of SRGM was already recognized by Network Function Virtualization (NFV) community, which has already included in the guidelines for the assessment end-to-end reliability [10].

C. Our contribution

Our study aims to provide a framework to assess the maturity of SDN controllers, from the perspective of software developers and network operators. We extend our previous work [9], which focused on applicability of SRGM and software reliability of ONOS open source controller. In this article we extend our study to OpenDaylight controller platform, and explore different applications of our framework crucial for an efficient management of SDN-networks. The workflow steps: data collection, model selection, evaluation of reliability and management KPIs, are illustrated in Fig. 1, highlighting our main contributions:

1) Data collection: We gather the empirical data, i.e. cumulative number of detected and resolved bugs, from public issue trackers and provide a high level statistics that can be deduced from such data, e.g., distributions of time between failures and time to resolve a bug.

2) Model selection: We find the best SRGM to describe the stochastic behaviour of bug detection and bug resolution process in SDN controllers. We show that the bug detection process can be described with the class of S-shaped SRGMs, and further propose new class of models for fault correction process, as well as their corresponding fitting technique.

3) Evaluation of reliability and management KPIs: We show how the software reliability metrics can be used to assess the quality of the controller software over time, and provide the guidelines for the optimal software release and adoption time. We further propose two novel applications relevant for the SDN community: i) early prediction of software reliability based on the previous releases and ii) software maturity metrics as a comparison criteria between alternative software solutions.

The rest of the article is organized as follows. Section II provides an overview of the related work on software reliability growth modeling. A theoretical background of SRGM framework is presented in Section III. In Section IV the gathering, processing and analysis of the bug reports is discussed. The model selection is discussed in Section V, while Section VI presents the applications of software reliability prediction for network management community. We conclude the paper with a summary and an outlook for the future work.

II. RELATED WORK

Software reliability growth modeling has been widely used to estimate and predict the reliability of the software, and in the past, many different models have been proposed. A good overview of different classes of reliability growth models, together with their inherent assumptions and input data requirements, can be found in [11]. In this section we present the most relevant models, methods and tools for the fitting of model parameters, as well as the applications of the software reliability assessment.

Bug detection: The applicability of SRGMs for the modeling, analysis and evaluation of software reliability of open source projects was demonstrated in several case studies. Zhou et al. [12] showed that the Weibull distribution can describe well the bug manifestation rate for eight unnamed software projects. Rahmani et al. [13] confirmed this result by analyzing the bug reports for several popular big open source projects, such as Apache HTTP server, Eclipse IDE and Mozilla Firefox. Rossi et al. [14] studied failure occurrence pattern across different releases of Mozilla Firefox, OpenSuse and OpenOffice.org. All studied releases showed the learning curve pattern, where the fault detection rate is slow at the beginning until the community gets familiar with the product, then it increases rapidly until only very few faults, whose discovery is difficult, remain in the code. This effect is captured well with S-shaped models. Syed et al. [15] and Ullah et al. [16] studied the difference between the closed and open source software with the inconclusive results. In this work we compare eight most widely used SRGMs for the fault detection process [17]–[24] in terms of their ability to describe the empirical data.

Bug removal: The majority of the SRGM models assume that once the bug is detected, it is corrected immediately, that the debugging as always successful and without introduction of new faults. A number of studies have modeled different aspects of imperfect debugging [25]–[30]. Wu et al. [25] described the fault resolution as a delayed fault detection process, Pham et al. modelled the introduction of the new faults [26], while Huang et al. [27] also include the changes in debugging effort. Kapur et al. [28] generalized this result and proposed unified approach to model the fault resolution process, when both fault detection and fault removal are Non-Homogeneous Poison Processes. Gokhale et al. [29] applied the Non-Homogeneous Continuous Time Markov Chains (NHCTMC) to model the impact of arbitrary debugging policy, while the study by Okamura and Dohi [30] modelled the time dependency between the fault detection and fault correction processes as a correlation. Comprehensive models have a large number of parameters that have to be estimated, while the number of data samples in the historical reports is often very limited (as in the case with ONOS SDN controller), which increases the risk of overfitting the data, as well as the sensitivity of parameter fitting to the noise in the data. In order to balance between the model accuracy and generalizability, we propose a simpler class of models, based on the framework presented in [28], together with their corresponding fitting procedure.
Fig. 1: Assessment of software maturity with Software Reliability Growth Models (SRGM) consists of four steps: (i) data collection, (ii) model selection, (iii) evaluation of reliability KPIs and (iv) evaluation of management KPIs. The process enhancements and novelty proposed in this article are marked with (*).

Model parameter fitting: The common statistical inference techniques to estimate the parameters of SRGM are Maximum Likelihood Estimation (MLE) and Least Square Estimation (LSE), while historically Method of Moments (MoM), graphical and simulation based approaches were used [11]. While MLE is convenient for estimating the confidence intervals, LSE is faster and easier to apply to the regularized models described in the following section. Fitting of the model parameters to the empirical data is done either with proprietary general purpose statistical packages, such as SPSS, or specialized tools, such as CASRE [31], SREPT [32] and CARATS [33], just to name the few. In order to account for the newly proposed models, and enhancements in the parameter fitting procedure we have developed our own tool based on the libraries provided by the Python scientific package [34].

Applications of software reliability assessment: Software reliability metrics, such as expected bug detection rate, can be used to balance the trade-off between the cost of software testing and the software maintenance phase, which is known as the optimal software release problem. Since the first study by Okumoto and Goel [35], many researchers have analyzed the optimal software release problem under different constraints [36]–[42]. Koch et al. [36] provide a cost-benefit analysis for releasing the software after the scheduled deadline, while Yamada et al. [37] propose optimal software release policies minimizing the total expected cost, under minimum reliability requirements. The authors in [39] considered the optimization of the test-effort allocation to different software modules under the constrained budget for the testing expenditures, while Huang et al. [41] analyzed the impact of different test effort allocation strategies. Kimura et al. [40] considered different software maintenance models, i.e. warranty policies. Lai et al. [42] extend the cost model to capture the additional effort of documentation and distribution of the software patches. In this article, we describe two novel use cases, namely i) early prediction of software reliability based on the previous software releases and ii) software maturity metrics as a comparison criteria between the alternative software solutions.

III. SOFTWARE RELIABILITY GROWTH MODELS

In this section we present theoretical background on SRGM. We focus on a particular class of models that describe the fault detection and fault resolution process as Non-Homogeneous Poisson Process (NHPP), that have been very successful in modeling the behavior of large open source projects. The models for the bug detection process, presented in the Section III-A, are well known models in software reliability community. The composite models for the bug removal process described in Section III-B are novel and extend the existing SRGM literature.

A. Bug detection process as NHPP

We assume that the initial bug content, i.e. number of introduced bugs present in the software before the start of the testing phase, is a random variable N_0 following the Poisson distribution with the mean a:

$$P(N_0 = n) = \frac{a^n}{n!}e^{-a} \quad (1)$$

The probability of detecting a single bug by the time t follows an arbitrary distribution $F_d(t)$. Assuming the bug detection times are independent and identically distributed random variables, the number of detected bugs N_d by the time t is:

$$P(N_d(t) = k|N_0 = n) = \binom{n}{k} F_d(t)^k (1 - F_d(t))^{n-k} \quad (2)$$

The probability of observing exactly k bugs by the time t is then described with the equation.

$$P(N_d(t) = k) = \sum_{n=k}^{\infty} P(N_d(t) = k|N_0 = n)P(N_0 = n) \quad (3)$$

$$= \frac{[aF_d(t)]^k}{k!}e^{-aF_d(t)}$$

The process is fully described with the mean value function $m(t)$, which represents the expected number of detected faults by the time t:

$$E[N_d(t)] = m(t) = aF_d(t) \quad (4)$$
From the mean value function of the fault detection process many reliability features of the software can be estimated. The instantaneous bug manifestation, i.e., bug detection rate is:

$$\lambda(t) = \frac{d}{dt}m(t) = af_d(t)$$ \hspace{1cm} (5)

Assuming that the number of initially introduced faults in the software is finite \(\lim_{t \to \infty} m(t) = a\), the expected number of the undetected faults in the software, i.e., the residual bug content, is defined as:

$$r(t) = E[a - N_d(t)] = a - m(t)$$ \hspace{1cm} (6)

The conditional software reliability is defined as the probability of detecting a new fault in the time interval \((t, t + x)\):

$$R(x|t) = e^{-\int_{t}^{t+x} \lambda(x)dx} = e^{m(t) - m(x+t)}$$ \hspace{1cm} (7)

The expected cost of the software consists of the cost of testing \(c_t(t)\) in the pre-release phase, and the cost of removing the fault \(c_w(t)\) in the operational phase during the warranty period \(T_w\) of the software lifecycle.

Assuming that the software is released after \(T\) time units of testing, the total cost of software maintenance is:

$$C(T) = \int_{0}^{T} c_t(t)dt + \int_{T}^{T+T_w} c_w(t)\lambda(t)dt$$ \hspace{1cm} (8)

We compare eight most widely used NHPP models for modeling of the fault detection process: Musa-Logarithmic, Goel-Okumoto Exponential, Generalized Goel-Okumoto, Inflection S-shaped, Delayed S-shaped, Yamada-Exponential, Gompertz and Logistic, whose mean value function and failure intensity are given in the Table I. The shortlisted NHPP models in Table I represent well the space of the possible software reliability growth patterns: containing a) three concave and five S-shaped models, as well as b) seven finite failure models and one infinite failure model.

B. Bug resolution process

The fault resolution process consists of two phases, fault detection and fault correction. If we assume that the fault detection and fault correction are independent, the resulting fault resolution process can be written as [25]:

$$f_r(t) = \int_{x=0}^{t} f_d(t - x)f_c(x)dx = [f_d * f_c](t)$$ \hspace{1cm} (9)

where \(f_d(t)\) and \(f_c(t)\) represent densities of the fault detection and fault correction process, respectively. The mean value function of the resulting fault resolution process is then defined as:

$$m_r(t) = aF_r(t) = a \int_{\tau=0}^{t} [f_d \ast f_c](\tau)d\tau$$ \hspace{1cm} (10)

Equation (10) can be used to generate different SRGMs from arbitrary distributions for the fault resolution process. However, the proposed models so far have been limited to the combinations for which this integral has a closed form solution, e.g., when both fault detection and correction are Goel-Okumoto processes [25], [28].

$$m_r^g o-g^o(t) = a \left[1 - \frac{b_1e^{-b_2t} - b_2e^{-b_1t}}{b_1 - b_2}\right]$$ \hspace{1cm} (11)

By replacing the integral in Eq. (10) with its Piecewise Constant Approximation (PCA), we can obtain a numerical approximation for an arbitrary combination of NHPP models, which can be used for the fitting of the fault report data.

$$F_r(t) = \lim_{\Delta x \to 0} \frac{n(mt/\Delta x)}{\sum_{i=0}^{n-1} [f_d \ast f_c](i\Delta x)\Delta x}$$ \hspace{1cm} (12)

In this article, we compare the four combinations of Generalized Goel-Okumoto and Inflection S-shaped models for fault resolution process, which were preselected due to their performance. We use combined Goel-Okumoto Eq.(11) from [28] as a reference.

C. Fitting of the model parameters

The LSE method, which minimizes the squared distance between the observed and expected data, is used for the fitting of the model parameters. Unconstrained problems in model selection phase (Section V), are solved using Levenberg-Marquardt (LM) algorithm. In Section VI-B we provide the bounds on the model parameters, based on the observed parameter trends in the previous releases. The regularized model is solved using the Trust Region Reflective (TRF) algorithm. Implementation of both methods is provided by Python scientific computing package [34].

Three Goodness of Fit (GoF) measures are used to evaluate the suitability of the models: Mean Square Error (MSE), Theil’s statistics (TS) and coefficient of determination (R²). MSE is used as to select the best model for individual releases, while TS is more suitable to compare the goodness of fit

<table>
<thead>
<tr>
<th>Model</th>
<th>Abbreviation</th>
<th>Shape</th>
<th>Mean value function</th>
<th>Failure intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musa-Okumoto logarithmic [17]</td>
<td>MUSA(Log)</td>
<td>Concave</td>
<td>(m_{mo}(t) = a\ln(1 + bt))</td>
<td>(\lambda_{log}(t) = \frac{ab}{1 + e^{bt}})</td>
</tr>
<tr>
<td>Goel-Okumoto exponential [18]</td>
<td>GO(Exp)</td>
<td>Concave</td>
<td>(m_{go}(t) = a(1 - e^{-bt}))</td>
<td>(\lambda_{go}(t) = abte^{-bt})</td>
</tr>
<tr>
<td>Generalized Goel-Okumoto [11]</td>
<td>GGO</td>
<td>S-shaped</td>
<td>(m_{ggo}(t) = a(1 - e^{-bt}))</td>
<td>(\lambda_{ggo}(t) = abe^{b(1 - e^{-bt})})</td>
</tr>
<tr>
<td>Ohba’s infection S-shaped [19]</td>
<td>ISS</td>
<td>S-shaped</td>
<td>(m_{iss}(t) = a(1 - e^{-bt}))</td>
<td>(\lambda_{iss}(t) = abte^{-bt})</td>
</tr>
<tr>
<td>Yamada delayed S-shaped [20]</td>
<td>DSS</td>
<td>S-shaped</td>
<td>(m_{dss}(t) = a(1 - (1 + bt)\ln(1 + bt)))</td>
<td>(\lambda_{dss}(t) = ab^2(1 - e^{-bt}))</td>
</tr>
<tr>
<td>Yamada exponential [21]</td>
<td>YEX</td>
<td>Concave</td>
<td>(m_{yex}(t) = a(1 - e^{-b(1 - e^{-bt})}))</td>
<td>(\lambda_{yex}(t) = abe^{b(1 - e^{-bt})})</td>
</tr>
<tr>
<td>Gompertz [24]</td>
<td>GOMP</td>
<td>S-shaped</td>
<td>(m_{gomp}(t) = ak^t)</td>
<td>(\lambda_{gomp}(t) = a\ln b\ln k^t)</td>
</tr>
<tr>
<td>Logistic [11], [20], [23]</td>
<td>LOGIST</td>
<td>S-shaped</td>
<td>(m_{logist}(t) = \frac{a}{1 + ke^{-bt}})</td>
<td>(\lambda_{logist}(t) = \frac{a\ln ke^{-bt}}{1 + ke^{-bt}})</td>
</tr>
</tbody>
</table>
across different software releases. R^2 is used to measure which portion of variance in data can be explained by the model. The three GoF metrics are defined as follows:

\[
MSE = \frac{1}{k} \sum_{i=1}^{k} (m(t_i) - m_{est}(t_i))^2
\]

\[
TS = \sqrt{\frac{\sum_{i=1}^{k} (m(t_i) - m_{est}(t_i))^2}{\sum_{i=1}^{k} (m(t_i))^2}} \times 100\%
\]

\[
R^2 = 1 - \frac{\sum_{i=1}^{k} (m(t_i) - m_{est}(t_i))^2}{\sum_{i=1}^{k} (m(t_i) - \bar{m})^2}
\]

where $m(t_i)$ represent the observed data, and $m_{est}(t_i)$ the data estimated by the model, at time instance t_i of the i-th bug report, and $\bar{m} = \frac{1}{k} \sum_{i=1}^{k} m(t_i)$.

IV. EMPirical DATA SETS

The analysis of the software reliability described in the previous section requires complete and uncensored bug reports, which are publicly available only for the open source controllers. At present, there are only two production-grade open source SDN controller platforms, ONOS [2] and OpenDaylight [3], both of them supported by the Linux foundation. In this section we present the bug management system of the two controllers, analyse the bug report statistics from their issue trackers and compare the fault density of two simultaneous releases, Kingsfishe ONOS v1.10 and Carbon OpenDaylight v0.6.

A. Open Network Operating System (ONOS)

1) The scope: The focus of ONOS, since its inception has been on providing scalability, high availability and carrier-grade performance fulfilling the requirements of large operator networks [43]. The project is supported by the key partners from the telecom and data center operators and network equipment vendors, such as AT&T, Google, Ericsson, Cisco, just to name the few. Overall, more than 300 developers from more than 60 organizations have contributed to its code base. The code is written mostly in Java and contains at the present 743,531 lines of code (see Table II).

2) Release management: New ONOS releases are distributed every quarter, which provides a steady feature development through incremental upgrades of the code base. The three-month release lifecycle starts with the release planning meeting, followed by three months of code development and integration on the master branch. Two weeks before the official release date feature integration is stopped and only bug fixes are allowed. The support, including security patches and fix for the critical defects, is provided for the six months after the official release date. Thirteen releases (named in the alphabetical order by the birds) have been distributed since December 2014, when ONOS code was opened to the public.

3) Issue tracker: The issues associated to every release are reported in the publicly available Jira tracking system. For the purpose of our analysis we are interested in the issues labelled as "Bugs" rather than new feature requests or enhancements. Such bug repositories represent a valuable source of information, as they contain the detailed fault reports from the live deployments in both lab and operational environments. The bug reports contain the information details such as affected versions, bug description and short summary, priority, date of the report creation, and date of its resolution (if applicable). The cumulative number of detected and resolved faults reported over time are shown in Fig. 2a. It can be observed from the figure that there is a steady increase in the number of bugs, with the trend changes being noticeable around the official release dates.

Analysis of the software maturity presented in the previous section assumes that the only changes in the code are due to the bug fixes, and hence, we separate the bugs reports based on the "affected release version" field. The number of the bugs reported for every release, grouped by the priority, are presented in Fig. 2b. Note that due to the time overlap between the support periods some of the fault reports affected more than one release. In the analysis of software maturity in Section V, "minor" and "trivial" bugs (e.g., loading of the GUI too slow) are ignored, as they do not have an impact on the critical controller operations and often remain unresolved.

4) Data statistics: The most recent release, Magpie (ONOS v.1.12) does not have enough samples, i.e., bug reports, for the statistical analysis. Hence, we focus on Kingsfisher (ONOS v.1.10), the most recent release whose support cycle has ended,
and Loon (ONOS v.1.11), and refer to them as the two latest stable releases. We have compared the distributions of the times between bugs (TTF) and the times to resolve the bug (TTR) for Kingsfisher and Loon with the previous ONOS releases, as presented in Fig. 2c. The median TTF around 48 h, or only two days, is consistent for all three data sets. The median TTR showed higher variation, between 168 h to 180 h, or around a week. Both TTF and TTR show the characteristics of long tail distributions, which makes it difficult for the software management team to estimate, e.g., the effect of the extended testing effort on the improvement of the software quality. The SRGM models, presented in the Section III, add the time dimension to these distributions, and can estimate the parameters, such as the expected number of bugs to be detected in a given time period, with much higher precision.

B. OpenDaylight (ODL)

1) The scope: OpenDaylight is much larger and older project, foreseen from the beginning to be the Linux of the networks, supporting a variety of southbound protocols to ensure the smooth transition from the legacy networks. Majority of the OpenDaylight key partners are vendors, and the focus at the beginning was on the the applications in data centers and coexistence with network virtualization technologies, as opposed to ONOS whose primary focus in early days was fulfilling the requirements of service providers. The comparison of the relevant characteristics, e.g., code size and fault density, of OpenDaylight and ONOS controller platforms is presented in Table II.\(^3\)

2) Release management: The release management cycles of the two controllers are different: while ONOS distributes the code in the regular three-month cycles, the lifecycle of OpenDaylight releases is irregular, between three and nine months, as illustrated in Fig. 3a. Seven releases have been distributed up to date named by the elements in the periodic table. The bug reports for the first release, Hydrogen (distributed in February, 2014) are not included in the statistics.

\(^3\)Source: https://www.openhub.net/p/onos

\(^4\)Data retrieved on February 1, 2018 from Jira issue trackers of ONOS (https://jira.onosproject.org/) and ODL (https://jira.opendaylight.org/)

3) Issue tracker: The two controller platforms had a different approach to their issue tracking systems. While ONOS has been using Jira since its inception for the documentation and management of its bug repository, OpenDaylight relied at the very beginning on the internal mailing list and excel sheets, then used Bugzilla issue tracker in the first 6 releases, and migrated to Jira in October, 2017. Although both issue tracking systems offer the same reporting capabilities, we have found that ONOS bug reports provided higher level of detail and less ambiguity in its bug reports. An example is the classification schemes for bug severity. While ONOS has five well defined categories, OpenDaylight has six, with majority of the bugs (68%) belonging to default "normal" category. Some bug entries in OpenDaylight issue tracker are even left unclassified, as it can be seen in Fig. 3b.

4) Data statistics: The statistics on times to find and resolve a bug in OpenDaylight releases is presented in Fig. 3c. We observe that the distribution of times between successive bug reports (TTF) is comparable to ONOS, while the distribution of times to resolve a bug (TTR) has much larger variance.

5) Fault density: We compare Carbon (OpenDaylight v.0.6) and Kingsfisher (ONOS v.1.10) releases, as both of them were distributed approximately at the same time (June 5, 2017 and May 25, 2017, respectively) and sufficient time has elapsed for both controllers to reach the stable phase. We highlight here the major differences between the two controller platforms, relevant for the analysis of software maturity. Thus, we include the bugs of all priorities in the fault density figure. We observe that the fault density, i.e the number of the bugs detected during the software lifecycle per lines of code, of the two controllers is close to 0.1 [bug_LOC], with ONOS having slightly lower fault density.

<table>
<thead>
<tr>
<th>Controller</th>
<th>OpenDaylight</th>
<th>ONOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Started</td>
<td>February, 2013</td>
<td>December, 2014</td>
</tr>
<tr>
<td>Releases</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Active developers</td>
<td>374</td>
<td>168</td>
</tr>
<tr>
<td>No. commits</td>
<td>88,102</td>
<td>11,749</td>
</tr>
<tr>
<td>Lines of Code (LOC)</td>
<td>3,860,347</td>
<td>743,531</td>
</tr>
<tr>
<td>Reported bugs</td>
<td>493 (Carbon)</td>
<td>76 (Kingsfisher)</td>
</tr>
<tr>
<td>Fault density</td>
<td>0.128</td>
<td>0.102</td>
</tr>
</tbody>
</table>

Fig. 3: Bug report statistics derived from OpenDaylight issue tracker.
V. MODEL SELECTION

The next step after the data collection is to find the best fitting SRGM model to describe the data. In this section we present the best fitting models for the bug detection and bug resolution processes, and discuss their Goodness of Fit (GoF) metrics to determine how well can the models explain the empirical data. We compare the best SRGM models for the bug detection process of ONOS and OpenDaylight in Section V-A, while in Section V-B the best models for bug resolution process are discussed only for ONOS.

A. Bug detection process

We compare the most widely used SRGM models for the bug detection process presented in the Table I. The empirical data, i.e. the cumulative number of detected bugs, and the estimations of the two best fitting models for the latest two stable releases of ONOS and OpenDaylight are presented in Fig. 4. The models are ranked based on the MSE, as it was the optimization criteria of the parameter fitting procedure (Section III-C), which is also indicated in the figure. Time-axis indicates the relative time since the beginning of the integration testing phase.

The analysis shows that all 3-parameter S-shaped models, Generalized Goel-Okumoto, Inflection S-Shaped, Gompertz and Logistic, fit the data well. Since the difference in MSE between these models is rather small, we show the estimated number of bugs for the two best fitting models. The concave models, i.e. Musa-Logarithmic, Goel-Okumoto Exponential and Yamada Exponential, could not explain the data, except for the few releases (Avocet, Falcon, Loon and Beryllium) that experience more concave pattern.

The GoF metrics for all the models and the releases are compared in Fig. 5. All GoF indicators show consistent results:

- The best model to describe the number of detected faults across all releases are 3-parameter S-shaped models, showing very good scores in each metric. The best fitting model in the most of the cases are Logistic and Gompertz, followed by Generalized Goel-Okumoto. Inflection S-shaped model also shows very good GoF results, being the second best fit for most of the releases (for 12 out of 18 releases). Delay S-shaped shows slightly worse results, compared to the other S-shaped models. This effect is due to the fact that this model has only two parameters to tune, one less than the other S-shaped models.

B. Bug resolution process

Arbitrary combination of NHPP models can be used for fitting of the cumulative number of resolved bugs applying the Eq.(10). Here we present the combinations of S-shaped models: Generalized Goel-Okumoto (GGO) and Inflection S-shaped (ISS). The models are abbreviated as a combination of the initials of detection and resolution NHPP processes. For the sake of comparison we also include the reference model from [28] where both fault detection and resolution are modeled as Goel-Okumoto processes, which is the most widely used model due to the analytical tractability of the distributions for the combined process.

The best fitting model for four representative releases, Avocet, Blackbird, Junco and Loon, are shown in Fig. 6. It can be seen that although the proposed models for the fault resolution process could describe the data for some of the releases, the actual data shows higher deviation from the fitted
model, than in the previous case. In the first two cases (Fig. 6a and Fig. 6b) the models have shown a very good fit to the data. The best fitting models are ISS-ISS and GGO-ISS.

The two other releases have experienced sudden trend changes around the official release date. In the case of Junco (Fig. 6c) two sudden increases can be detected: the first one happens around its official release and the second one shortly before the distribution of the subsequent release. Similar behaviour can be observed in several other releases (Golden-eye, Hummingbird, Ibis). Such sudden trend changes due to external signals cannot be captured by the simple combination of NHPP models. The trend shifts due to the changes in the debugging effort shortly before the new upcoming release can be modelled by introducing the (time) change points in the underlying NHPP models. The trend shifts due to the changes in the debugging effort shortly before the new upcoming release can be modelled by introducing the (time) change points in the underlying NHPP models. As described in [44]. This approach requires, the time change points to be provided either manually or defined as additional unknown parameters of the model. In the first approach the generalizability of the model is poor, while in the second approach the estimation of the parameters in the small data sets might be noisy (e.g., fitting the model with five or more parameters to dataset with less than 30 samples).

In the case of Loon (Fig. 6d), the trend after the official release is changed, indicating the change in the debugging strategy. Similar behaviour can be observed in (Cardinal, Drake, Emu, Falcon). It has to be noted that in the open source software, such as ONOS, all the users are at the same time the testers, as anybody can report the bug in the public issue tracker. However, only a limited group of people will work on actually fixing the bugs. When this discrepancy between the “test” and “debug” team is too large, or when there is a sudden change in the size of debugging effort, the time scales have to be adjusted accordingly. The models, such as [45], can capture the changes in the test effort, but have the same problem of the accuracy of the parameter fitting on comparatively small data sets.

The same pattern can be observed also in the Fig. 7, where the MSE metrics of the five proposed models for all releases are compared. We observe that GGO-ISS and ISS-ISS outperformed the reference GO-GO model, for all the releases, where fitting was possible.

VI. APPLICABILITY OF SOFTWARE MATURITY ASSESSMENT

In this section we present the software maturity assessment for the three software management problems. First we show how to estimate the optimal software release and software adoption times, based on the reliability and cost criteria, which is a typical use case of SRGM found in the literature [36]–[42]. Then we present two novel use cases, relevant for the SDN community. We show how SRGM parameters can be used for (i) an early estimation of software reliability, and (ii) as criteria to discriminate between alternative controller platforms, e.g., ONOS and OpenDaylight, when reliability has the highest priority.

A. Optimal software release and software adoption time

SDN controllers comprise all the functionalities of the network operating system, and require constant updates to keep up with the velocity of the evolution of the user requirements [4]. In this section we discuss how SRGM can be used to estimate the quality of the controller software to determine the optimal software release and software adoption time, based on the software reliability and the cost criteria.

1) Software reliability criteria: Software reliability, defined in the literature as the probability of failure-free software operation for a specified period of time in a specified environment, is an important indicator of software quality. Once the best model to describe the fault report data is selected and the parameters are estimated, it can be used to predict several software reliability parameters: residual bug content, instantaneous fault intensity, conditional software reliability and expected cost, as defined in Section III-A by Eq.(5)-(7).
The software reliability metrics for the Kingsfisher release are presented in Fig. 8. Kingsfisher is the most recent ONOS release whose support cycle has ended, and its best fitting model is Logistic. The official release date t_0 is indicated with the vertical line in the figure, and the time is expressed as the relative time since the start of the testing. Note that only severe bugs (bugs with major, critical and blocker priority) are considered.

Residual bug content represents the number of undetected faults remaining in the software. It can be seen in Fig. 8a that the residual bug content was relatively high, as 14 severe bugs were still remaining in the software on the day of its official release. Already three months after the official release, this number has dropped significantly.

Instantaneous fault intensity, or alternatively expected time until the next software failure, can be derived from the parameters of the mean value function. The expected fault intensity, illustrated in Fig. 8b, on the day of Kingsfisher’s release was at the level of $0.0175 \frac{bug}{h}$, or equivalent to approximately 2.38 days between detection of successive severe bugs. The fault intensity is highly relevant for the software developers, as it can indicate when is the software ready for the release. This metric could help the developers estimate the efficiency of the gains of the additional testing effort.

Conditional software reliability represents the probability of encountering a severe software failure in the time interval $[t, t + x)$. We observe the interval starting with the software adoption time t for a duration x, specified by the user. We show that in order to achieve reliability of $R(x|t) = 0.90$, during maintenance interval of $x = 3$ months, the user should defer the software adoption more than $\Delta t \geq 4$ months after its official release t_0, as illustrated in Fig. 8c. Note that the recommended adoption deferral period of 4 months is larger than the 3-month gap between two consecutive ONOS releases. Nevertheless, it is a common practice in telco and enterprise domains not to use the most recent, but the lagged version, due to the stability issue. Hence, ONOS provides the support for the latest two releases, implying the support window of 6 months after the official release date.

1) Software cost criteria: Software management team needs to balance the effort spent on the testing in the pre-release phase, and effort spent on the bug removal of the software in the operational phase. Open source SDN controllers, such as ONOS and OpenDaylight, come with no guarantees provided on the either performance or reliability. However, many commercial solutions provided by network vendors, such as Ericsson and Huawei, are built on top of these controllers.

The software cost model, defined by Eq.(8), generalizes the most of the cost models proposed in the literature. The testing cost $c_t(t)$ function accounts for the cost of the software testing team, the cost of the bug removal, the setup and the

![Fig. 8](https://via.placeholder.com/150)

(a) Residual bug content $r(t)$

(b) Failure intensity $\lambda(t)$

(c) Software reliability $R(x|t)$

Fig. 8: An example of the optimal software adoption and release time based on the reliability criteria. Vertical lines indicate the date of the official Kingsfisher release time (t_0).

![Fig. 9](https://via.placeholder.com/150)

(b) Impact of the duration of warranty period (T_w)

Fig. 9: An example of optimal software adoption and release time based on the cost criteria, illustrated in the example of Kingsfisher release.
maintenance of the testing environment, code documentation, etc. The cost during the warranty period \(C_w(t) \) includes the penalty paid for every severe outage encountered during the normal operation, the cost of network service interruption, the cost of the bug removal and the support team and sometimes also a discounted value of money for the long support periods. These cost factors must be determined per use case bases. Here, we consider the constant cost functions \(c_t(t) = C_t \) and \(c_w(t) = C_w \). The assumption of the constant cost function, i.e., independent of the bug complexity, is common in the literature [35], [37], and it represents the average cost of bug removal. The software cost function then becomes:

\[
C(T) = C_t T + C_w[m(T + T_w) - m(T)]
\]

(16)

where \(m(t) \) is a mean value function of the best fitting model, discussed in the previous section. Optimal software release time \(T \) is obtained by finding the minimum of expected cost function. For the simpler models, e.g., Goel-Okumoto, the optimal solution, i.e. the minimum of the cost function \(\frac{dC(T)}{dT} = 0 \), can be found analytically, while for other models the minimum has to be found numerically.

In the baseline scenario we assume the relative cost (in unnamed cost units \(CU \)) of \(C_t : C_w = 1[CU] : 100[CU] \) and the warranty period of \(T_w \) of 3 months. The impact of different \(C_t : C_w \) and \(T_w \) on the software cost is illustrated in Fig. 9. In some scenarios the cost function has no clear minimum. In the cases when the cost post-release bug removal is expected to be low, either due to low penalties (Fig. 9a) or the very short warranty period (Fig. 9b), the optimal software release policy is to distribute the software immediately. In the baseline scenario, a clear minimum for the software release time \(T \) can be observed, which is approximately 40 days after the official software release date \((t_0 = 2616h)\), highlighting the benefits of the extended period.

B. Early prediction of software reliability

In order to estimate the SRGM parameters, a large number of samples, i.e. bug reports, has to be provided. In case of ONOS data set, the standard parameter fitting techniques cannot accurately predict the model parameters before 90% of all bug reports are available, which happens for ONOS approximately after six months of testing when it is already too late for software developers (as the software is already released) and the SDN operators (since new release is already available). Estimating the SRGM parameters when only few data samples are available is especially difficult for S-shaped models, since they change the concavity around three months after the start of the integration testing (See Fig. 5). However, we have noted that the SRGM parameters show very small variation across the releases, thanks to the incremental development strategy of ONOS, as it can be seen in the case of the Gompertz model in Fig. 10. We leverage this fact to guide the parameter fitting procedure, and regularize the model which improves the prediction accuracy in the early phase. The regularization of the model is implemented by restricting the parameter search space, as described in the Section III-C.

The trend observed in Fig. 10 shows several interesting points and hints how the regularization of the search space could be done. The scale parameter \(a \) and the shape parameter \(b \) show small variations between the consecutive releases. The parameter \(a \) varies between 54 and 85; parameter \(b \) is in the range (0.99879, 0.99935). The parameter \(k \) for the releases with S-shape bug detection trend is in the range (0,0.02). The releases with concave trend (Avocet, Falcon and Loon) show higher values of parameter \(k \), in the range of (0.5,0.85).

We have explored several parameter regularization strategies. In our previous work we proposed the strategy based on the extreme values, where the search space of every parameter \(\xi \) is bounded to \([0.9 \xi_{min}, 1.1 \xi_{max}]\), which represents the range of previously observed parameters extended by 10%. Here we consider the strategy based on the mean \(m_\xi \) and the variance \(\sigma_\xi^2 \), where the parameter search space is bounded to \(m_\xi \pm 2\sigma_\xi \). In addition to these two strategies based on the distributions of the parameters, we have considered a strategy based on the trend. We consider an exponentially weighted moving average, defined as:

\[
m_\xi^i \leftarrow \omega \xi^i + (1 - \omega) m_\xi^{i-1}
\]

(17)

where the average value of the parameter \(\xi \) after \(i \) releases \(m_\xi^i \) is computed as a weighted sum of the estimated parameter for the \(i \)-th release \(\xi^i \) and the previous average value \(m_\xi^{i-1} \). Here we assume the \(\omega = 0.5 \), and bound the parameter search space to \(m_\xi \pm 2\sigma_\xi \). Note that in cases where the lower bound is negative, the values are capped to zero, due to the nature of the data.

![GOMP](image)

Fig. 10: Estimated parameters of Gompertz model for bug detection process for all ONOS releases.

<table>
<thead>
<tr>
<th>(\xi)</th>
<th>([0.9 \xi_{min}, 1.1 \xi_{max}])</th>
<th>([m_\xi \pm 2\sigma_\xi])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>([50.74, 85.15])</td>
<td>([41.62, 80.65])</td>
</tr>
<tr>
<td>(b)</td>
<td>([0.9888, 1.0092])</td>
<td>([0.9987, 0.9992])</td>
</tr>
<tr>
<td>(k)</td>
<td>([8.2 e-7, 0.0033])</td>
<td>([0.0, 0.00936])</td>
</tr>
</tbody>
</table>
the model. The parameter search space bounds with different preparation strategies are compared in Table III.

All prediction strategies narrow down the parameter search space: while the first strategy covers extreme values, the range for the other two is more narrow. Overall, all prediction strategies showed improvement over the standard fitting techniques, demonstrating the positive impact of the prior knowledge on the parameter fitting accuracy. The prediction strategy based on the trend shows the unstable performance when parameter experienced the sudden trend changes, as in case of parameter k for Loon release, illustrated in Fig. 10. It might be possible to use a different regularization strategy for each parameter. We leave it for the future work to study the performance of such hybrid strategies, when more software releases are available and behavioural patterns of each parameter can be estimated more precisely.

The benefits of regularization on the early prediction of software reliability, can be quantified by observing the estimated mean value function $m_{gomp}(t)$ and the evolution of root mean square error (RMSE), when the limited number of the samples, i.e. bug reports are fed to the parameter fitting function. The results for the prediction strategy based on the observed mean and variance are shown in Fig. 11. The impact of the error in parameter estimation is illustrated in Fig. 11a. The error of the estimation with 50% of the available samples with standard fitting techniques is much larger due to the local variations of early samples. It can be observed in Fig. 11b that the regularized model is able to estimate the parameters with higher accuracy much earlier, with 30% fewer samples. While the standard fitting technique requires 32 samples for RMSE to drop below 3, the regularized technique only needs 21 samples.

In this section we present the Gompertz model, which has the best performance across all releases, being the best fit for five releases, and showing very good results for the other seven. Moreover, the parameters of Gompertz model have shown the smallest coefficient of variation (variance/mean). However, the general conclusions hold for the other three 3-parameter S-shaped models, as well. While studying the impact of the model selection, we observe that, in general, the regularization improves the predictive capabilities of SRGM in the early phase of the software lifecycle for all 3-parameter S-shaped models, but the magnitude of the improvement depends on the data set. For Junco release, none of the combinations of the models and prediction strategies show significant improvements with 50% of the samples. This is probably due to the timing of the burstiness of bug reports at the beginning of testing (see Fig. 4). Further improvements could be achieved with smoothing techniques and grouping of the data, e.g., by reducing the time resolution of the bug reports from hours to days or weeks. The limitations of SRGM are further discussed in Section VI-D.

C. Comparison of two SDN controller software solutions: ONOS vs. OpenDaylight

As SDN is gaining the popularity a multitude of commercial and open source SDN controllers have been developed. While the most of the early open source solutions have remained in the research community at the level of the prototype, two projects have reached production grade readiness, ONOS and OpenDaylight. In this section we address the problem that a network operator might face when it has to choose the optimal SDN controller platform for its network, or alternatively an open source platform as a code base to build his customized controller upon, when code maturity is the major concern. Although the difference in the support of some of the advanced features is still present (e.g., the OpenDaylight support for the wireless networking), the two controller platforms are converging and it is not clear for the network operators which solution to choose. For instance, the commercial SDN controller platform by Ericsson is based on OpenDaylight,
while Huawei Agile controller solution is based on ONOS, and AT&T deploys both platforms in its production networks.

Fault density discussed in Section IV is a static measure of the code quality, which can be reliably computed only after the software lifecycle is over and the support has ended. Several methods have been proposed for an early estimation of fault density, based on the complexity, programming languages and other software features, which might not always be available to the public. On the other hand, SRGM framework treats the software component as a black box, and provides the estimation of the software reliability, without requiring the information about the code internals. The challenge of direct comparison based on the empirical data between the two releases is illustrated in Fig. 12a. It can be observed that the direct comparison of the empirical data is not straightforward (we assume the bug detection is a realization of the stochastic process), and that on June 1, 2017, both controllers had detected around half of the number of bugs. Instead, it is much more precise to compare the fitted curves of the two controllers.

In order to compare the reliability and code stability of the two SDN controllers, we propose software maturity metric. The software maturity metric is derived from the respective SRGM as $\lambda(t)/m_{max}$, which provides a measure on how far from the stable region (i.e. how close to horizontal line) is the controller software at any given moment. The practical value of our proposed software maturity metric is illustrated in Fig. 12b and Fig. 12c, where the software maturity after one (θ_1) and three months (θ_2) after the official software release is indicated. The units are expressed as the percentage of detected bugs per day, where zero indicates the stable software. We observe that the maturity of the Kingsfisher improves much faster $\theta_1 = 0.3693 \text{ per day} \rightarrow \theta_2 = 0.0398 \text{ per day}$, compared to the Carbon $\theta_1 = 0.3029 \text{ per day} \rightarrow \theta_2 = 0.1983 \text{ per day}$, thanks to the shorter release lifecycles of ONOS.

The software maturity metric can be further used to profile the behaviour of the controller, and quantify the improvement of the software quality over different software lifecycle phases, as illustrated in Fig. 13. Comparison of the maturity evolution over time across different releases can be used to track the progress of the software development process and the efficiency of the testing effort on the improvement of software quality. We recognize the challenges of an early estimation of m_{max}, which have to be estimated before the software lifecycle is over. We can exploit the approach presented in Section VI-B for an early prediction of model parameters. Note that in this particular case, at least 50% of the bug reports were available before the official software release dates for both controllers, in which case our approach for an early prediction can estimate the SRGM parameters with the reasonable accuracy.

D. Threats to validity

The framework presented in this paper comes with certain limitations. The first limitation comes from the fault reports, as the results are only as good as the accuracy of the data sets. While doing the data mining we noticed few inconsistencies. SRGM models require the complete uncensored fault reports, in order to accurately estimate the parameters in the model. Since we can neither fully guarantee the accuracy nor the completeness of the reported data in the issue trackers, we do not emphasize the numerical results, but rather focus on the general approach to quantify the software reliability.

The second limitation comes from SRGM models. The models assume independent events between the consecutive fault reports, which is not entirely true since occasionally several related bugs were reported at the same time. The models also assume that every undetected fault contributes the same to the fault manifestation rate. The time in our study represents the calendar time. It would be more accurate to consider the actual test effort in men-hours and CPU time, but this information is not available for large open source projects. Although we cannot guarantee that any SDN controller software can be modelled as mixture of simple SRGM models, previous studies have shown that described models can be successfully applied to many large open source software products, such as Apache Web Server, Mozilla Firefox, and Eclipse IDE (see Section II).
In order to benefit from the early prediction method there are important dependencies: first, a relatively large number of regular releases has to be available; second, the behavior of the releases has to be similar enough, which has been the case only for ONOS so far. Nevertheless, it can be observed that the number of releases increases for other SDN controllers, i.e., the regularity of the release distributions is expected to stabilize (as it has been also the case for other open source projects, e.g., Linux OS). As a consequence, the early prediction approach might find more valuable applications for further SDN controllers in near future. Moreover, the proposed early prediction of software reliability could potentially find an application for any software with the regular release intervals.

VII. CONCLUSION

We present a framework to assess and to predict the maturity of SDN controllers, based on the Software Reliability Growth Models (SRGM). Using real data describing software failures of the SDN controllers OpenDaylight and ONOS, SRGM describes the stochastic behavior of bug manifestation and correction processes, which makes it possible to analyze the controllers reliability. The investigated software reliability metrics derived with SRGM can be used to guide software developers and network operators to help making important operational decisions: e.g., deciding on when a software controller is mature enough to be released and deployed. Moreover, we propose model regularization techniques for the early prediction of software reliability based on the observed trend of the model parameters of previous software releases. Besides, we define new software maturity metrics, which can be used as a selection criteria for controller candidates. The main value of our practical approach lies in the applicability of the framework for the assessment of the software maturity of SDN controllers. As demonstrated for two open source controllers, ONOS and OpenDaylight, the analysis can be applied to other open source products or even the commercial products of major vendors (e.g., Huawei or Cisco); particularly commercial controllers can be easily verified, as they mainly build up on ONOS and OpenDaylight. Moreover, bug reporting systems of the controllers collaborative software projects provide a valuable source of data that can be used by our framework. For instance, developers can report bugs either directly via code version control systems like Git or in separate issue trackers, e.g., the open source tool Bugzilla or the commercial one Jira. Furthermore, we envision that the described workflow can be integrated into existing AGILE software development techniques, such as SCRUM; hence, developers even receive quantitative evaluations of their code and their productivity process during development.

REFERENCES

Bjarne Helvik received his Siv.ing. degree (MSc in technology) from the Norwegian Institute of Technology (NTH), Trondheim, Norway in 1975. He was awarded the degree Dr. Techn. from NTH in 1982. He has since 1997 been Professor at the Norwegian University of Science and Technology (NTNU) and is currently with the Department of Information Security and Communication Technology. In the period 2009 – 2017, he was Vice Dean with responsibility for research at the Faculty of Information Technology and Electrical Engineering at NTNU, and in 2003 – 2012 Principal Investigator at the Norwegian Centre of Excellence Q2S - the Centre for Quantifiable Quality of Service in Communication Systems. He has previously held various positions at ELAB and SINTEF Telecom and Informatics. In the period 1988-1997 he was appointed as Adjunct Professor at the Department of Computer Engineering and Telematics at NTH. His field of interests includes QoS, dependability modeling, measurements, analysis and simulation, fault-tolerant computing systems and survivable networks, as well as related system architectural issues. His current research focus is on ensuring dependability in services provided by multi-domain, virtualised ICT systems.

Poul Heegaard (IEEE SM14) received his Siv.ing. degree (MSc in technology) from the Norwegian Institute of Technology (NTH), Trondheim, Norway in 1989, and the degree Dr. Ing. (PhD) from NTH in 1998. He was associate professor at Norwegian University of Science and Technology (NTNU) from 2006-2010, and has since 2010 been Professor at the Department of Information Security and Communication Technology, NTNU, where he was Head of Department in the period 2009-2013. From 1989-1999 he was Research Scientist and Senior Scientist at SINTEF, and from 1999 to 2009 a Senior Research Scientist at Telenor R&I. He is now Principal Investigator in the CINELDI (Centre for Intelligent Electricity Distribution), a Centre for Environment-friendly Energy Research (FME) where he is responsible for smart grid operation. His research interests include performance, dependability and survivability assessment, with focus on communication networks (such as 5G, NFV, SDN) and services, and communication system as part of a digital ecosystem, including interaction with other critical infrastructures (such as Smart Grid).

Andreas Blenk received his diploma degree in computer science from the University of Wuerzburg, Germany, in 2012 and the Dr.-Ing. degree (Ph.D.) from the Technical University of Munich in 2018. He joined the Chair of Communication Networks at the Technical University of Munich in June 2012, where he is currently working as a senior researcher. His research is focused on self-driving, flexible and predictable virtual and software-defined networks, as well as data-driven networking algorithms.

Wolfgang Kellerer (M96SM11) is a Full Professor with the Technical University of Munich (TUM), heading the Chair of Communication Networks at the Department of Electrical and Computer Engineering. Before, he was for over ten years with NTT DOCOMO’s European Research Laboratories. He received his Dr.-Ing. degree (Ph.D.) and his Dipl.-Ing. degree (Master) from TUM, in 1995 and 2002, respectively. His research resulted in over 200 publications and 35 granted patents. He currently serves as an associate editor for IEEE Transactions on Network and Service Management and on the Editorial Board of the IEEE Communications Surveys and Tutorials. He is a member of ACM and the VDE ITG.