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Abstract Cooperative dynamic manipulation enlarges the
manipulation repertoire of human–robot teams. By means
of synchronized swinging motion, a human and a robot can
continuously inject energy into a bulky and flexible object
in order to place it onto an elevated location and outside the
partners’ workspace. Here, we design leader and follower
controllers based on the fundamental dynamics of simple
pendulums and show that these controllers can regulate the
swing energy contained in unknown objects. We consider a
complex pendulum-like object controlled via acceleration,
and an “arm—flexible object—arm” system controlled via
shoulder torque. The derived fundamental dynamics of the
desired closed-loop simple pendulum behavior are similar
for both systems. We limit the information available to the
robotic agent about the state of the object and the partner’s
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intention to the forces measured at its interaction point. In
contrast to a leader, a follower does not know the desired
energy level and imitates the leader’s energy flow to actively
contribute to the task. Experiments with a robotic manipu-
lator and real objects show the efficacy of our approach for
human–robot dynamic cooperative object manipulation.

Keywords Physical human–robot interaction · Cooperative
manipulators · Adaptive control · Dynamics · Haptics ·
Intention estimation

1 Introduction

Continuous energy injection during synchronized swinging
motion enables a human and a robot to lift a bulky flexi-
ble object together onto an elevated location. This example
scenario is illustrated in Fig. 1a and combines the advan-
tages of cooperative and dynamicmanipulation.Cooperative
manipulation allows for the manipulation of heavier and
bulkier objects than one agent could manipulate on its own.
A commonly addressed physical human–robot collaboration
scenario is, e.g., cooperative transport of rigid bulky objects
[44]. Such object transport tasks are performed by kinematic
manipulation, i.e., the rigid object is rigidly grasped by the
manipulators [32]. In contrast, dynamic object manipulation
makes use of the object dynamics, with the advantage of
an increased manipulation repertoire: simpler end effectors
can handle a greater variety of objects faster and outside
the workspace of the manipulator. Dynamic manipulation
examples are juggling, throwing, catching [29] as well as the
manipulation of underactuated mechanisms [8], such as the
flexible and the pendulum-like objects in Fig. 1a, b.

In this article, we take a first step towards combining
the advantages of cooperative and dynamic object manipula-
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Fig. 1 Approach overview: (1) Interpretation of flexible object swing-
ing as a combination of pendulum swinging and rigid object swinging.
(2) Approximation of pendulum swinging by the t-pendulum with 1D
acceleration inputs and of flexible object swinging by the afa-system
with 1D torque inputs. (3) Projection of the t-pendulum and the afa-

system onto the abstract cart-pendulum and abstract torque-pendulum,
respectively. (4) Extraction of the closed-loop fundamental dynam-
ics. (5) Fundamental dynamics-based natural frequency estimation and
leader and follower controller design

tion by investigating cooperative swinging of underactuated
objects. The swinging motion naturally synchronizes the
motion of the cooperating agents. Energy can be injected in
a favorable arm configuration for a human interaction part-
ner (stretched arm) and task effort can be shared among the
agents. Moreover, the accessible workspace of the human
arm and robotic manipulator is increased by the swinging
motion of the object and by a possible subsequent throwing
phase. In order to approach the complex task of cooperative
flexible object swinging in Fig. 1a, we split it up into its
two extremes, which are swinging of pendulum-like objects
which oscillate themselves (b) and swinging of rigid objects,
where the agents’ arms together with the rigid object form
an oscillating entity (c). In our initial work, we treated
pendulum-like object swinging [13] based on the assump-
tion that all system parameters are known. This assumption
was alleviated in [14] by an adaptive approach.

The contribution of this work is three-fold: firstly, we
experimentally verify the adaptive approach presented in
[14]. Secondly, we combine our results from coopera-
tive swinging of pendulum-like objects and human–human
swinging of rigid objects in [15], towards cooperative swing-
ing of flexible objects. Our third contribution lies in the
unified presentation of modeling the desired oscillation of
pendulum-like and flexible objects through simple pendulum
abstractions of equal fundamental dynamics (see two paths in
Fig. 1). In the following, we discuss the state of the art related
to different aspects of our proposed control approach.

1.1 Dynamic Manipulation in Physical Human–Robot
Interaction

Consideration and exploitation of the mutual influence is
of great importance when designing controllers for natural
human–robot interaction [45]; even more when the agents
are in physical contact. Only little work exists on cooperative
dynamic object manipulation in general, and in the context

of human–robot interaction in particular. In [25] and [30],
a human and a robot perform rope turning. For both cases,
a stable rope turning motion had to be established by the
human before the robot was able to contribute to sustaining
it. The human–robot cooperative sawing task considered in
[38] requires adaptation on motion as well as on stiffness
level in order to cope with the challenging saw-environment
interaction dynamics.

In contrast, cooperative kinematic manipulation of a com-
mon object by a human and a robot has seen great interest.
Kosuge et al. [26] designed first rather passive gravity com-
pensators, which have been developed further to robotic
partners who actively contribute to the task, e.g., [33]. Active
contribution comes with own plans and thus own intentions,
which have to be communicated and negotiated. Whereas
verbal communication allows humans to easily exchange
information, human–human studies have shown that hap-
tic coupling through an object serves as a powerful and fast
haptic communication channel [21]. In this work, the robotic
agent is limited to measurements of its own applied force and
torque. Thus, the robot has to use the haptic communication
channel to infer both, the intention of the partner and the state
of the object.

Cooperation of several agents allows for role allocation.
Human–human studies in [40] showed that humans tend
to specialize during haptic interaction tasks and motivated
the design of follower and leader behavior [17]. Mörtl et
al. [34] assigned effort roles that specify how effort is shared
in redundant task directions. Also, the swing-up task under
consideration allows for effort sharing. In kinematic physical
interaction tasks, the interaction forces are commonly used
for intention recognition, e.g., counteracting forces are inter-
preted as disagreement [20,34]. Furthermore, the leader’s
intention is mostly reflected in a planned trajectory. For
the swing-up task, on the contrary, the leader’s intention is
reflected in a desired object energy, which is unknown to the
follower agent. Dynamic motion as well as a reduced cou-
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pling of the agents through the flexible or even pendulum-like
object prohibit a direct mapping from interaction force to
intention. We propose a follower that monitors and imitates
the energy flow to the object in order to actively contribute
to the task.

1.2 Simple Pendulum Approximation for Modeling and
Control

The pendulum-like object in Fig. 1b belongs to the group
of suspended loads. Motivated by an extended workspace,
mechanisms with single [8] and double [51] cable-suspen-
sions were designed and controlled via parametric excitation
to perform point to point motion and trajectory tracking. An
impressive example of workspace extension is presented in
[9], where a quadrotor injects energy into its suspended load
such that it can pass through a narrow opening, which would
be impossible with the load hanging down. The pendulum-
like object in Fig. 1b is similar to the suspended loads of [50]
and [51]. However, the former work focuses on oscillation
damping and the latter uses one centralized controller.

In contrast to pendulum-like objects, rigid objects tightly
couple the robot and the humanmotion. Thus, during human–
robot cooperative swinging of rigid objects as illustrated in
Fig. 1c, the robot needs to move “human-like” to allow for
comfort on the human side. On this account, we conducted a
pilot study on human–human rigid object swinging reported
in [15]. The observed motion and frequency characteristics
suggest that the human arm can be approximated as a torque-
actuated simple pendulum with pivot point in front of the
human shoulder. This result is in line with the conclusion
drawn in [22] that the preferred frequency of a swinging
lower human arm is dictated by the physical properties of
the limb rather than the central nervous system.

Manipulation of flexible and deformable objects is a chal-
lenging research topic also at slow velocities. While the
finite elements method aims at exact modeling [28], the
pseudo-rigid object method offers an efficient tool to esti-
mate deformation and natural frequency [49].

Here, instead of aiming for an accurate model, we achieve
stable oscillations of unknownflexible objects bymaking use
of the fact that the desired oscillation is simple pendulum-like.
Simple pendulum approximations have been successfully
used to model and control complex mechanisms, e.g., for
brachiating [36] or dancing [46]. The swing-up and stabi-
lization of simple pendulums in their unstable equilibrium
point is commonly used as benchmark for linear and non-
linear control techniques [1,18]. Instead of a full swing-up
to the inverted pendulum configuration, our goal is to reach
a periodic motion of desired energy content. Based on vir-
tual holonomic constraints, [19] and achieve desired periodic
motions. Above controllers rely on thorough system knowl-

edge, whereas our final goal is the manipulation of unknown
flexible objects.

1.3 Adaptive Control for Periodic Motions and
Leader–Follower Behavior

The cooperative sawing task in [38] is achieved via learning
of individual dynamic movement primitives for motion and
stiffness control with a human tutor in the loop. Frequency
and phase are extracted online by adaptive frequency oscil-
lators [39]. The applicability of learning methods as learning
from demonstration [4] or reinforcement learning [16] to
nonlinear dynamics is frequently evaluated based on inverted
pendulum tasks. Reinforcement learning often suffers from
the need of long interactions with the real system and from
a high number of tuning parameters [35,37]. Only recently,
Deisenroth et al. showed how Gaussian processes allow for
faster autonomous reinforcement learning with few parame-
ters in [10]. Neural networks constitute another effective tool
to control nonlinear systems, which have also been applied
to adaptive leader–follower consensus control in, e.g., [47].

In this work, we apply model knowledge of the swing-
ing task to design adaptive leader/follower controllers for
swinging of unknown flexible objects, without the need of a
learning phase. Identification of the underlying fundamental
dynamics allows us to design leader and follower controllers
which only require few parameters of distinct physical mean-
ing.

2 Overview of the Fundamental Dynamics-Based
Approach

This section highlights the main ideas of the proposed
approach and structures the article along Figs. 1 and 2. Indi-
vidual variables will be introduced in subsequent sections
and important variables are listed in Table 1.

In this work, we achieve cooperative energy injection
into unknown flexible objects based on an understanding
of the underlying desired fundamental dynamics (FD). Fig-
ure 1 illustrates the approximation steps taken that lead
from human–robot flexible object swinging (a) to the FD
(h). Pendulum-like objects (b) constitute the extreme end on
the scale of flexible objects (a) with respect to the coupling
strength between the agents. The especially weak coupling
allows us to isolate the object from the agents’ end effectors
and represent the agent’s influence by acceleration inputs. In
the following, we refer to the isolated pendulum-like object
(d) as t-pendulum due to its trapezoidal shape. In order to
achieve our final goal of flexible object swinging, we consol-
idate our insights on pendulum and rigid object swinging (see
step 2 in Fig. 1).We exploit the result that human arms behave
as simple pendulums during rigid object swinging [15] and

123



578 Int J of Soc Robotics (2017) 9:575–599

ϑr, ϕ

r1/ρ, ψ

ω̂

f1, t1

a1

1A1A A2 A2r1
ρ

ψ
g g

or

projection and energy-based controller

fundamental dynamics based controller

Sec.3

Sec.6

Sec.5

Fig. 2 Implementation overview block diagram. Based on measured
force f 1 and torque t1, the complex afa-system and t-pendulum are pro-
jected onto their simple pendulumvariants. From the extracted FD states
ϕ and ϑr the natural frequency is estimated ω̂ and leader or follower
behavior is realized a1. Energy-based controllers convert the amplitude
factor a1 into desired end effector motion defined by r1 or ρ and ψ

approximate the human arms by simple pendulums actuated
via torque at the shoulder joints. We abbreviate the resultant
“arm—flexible object—arm” system (e) as afa-system.

We do not try to extract accurate dynamical models, but
make use of the fact that the desired oscillations are simple
pendulum-like. The desired oscillations of the t-pendulum
and the afa-system are then represented by cart-actuated (f)
and torque-actuated (g) simple pendulums, respectively. We
extract linear FD (h) which describes the phase and energy
dynamics of the simple pendulum approximations controlled
by a variant of the swing-up controller of Yoshida [48]. The
FD allows for online frequency estimation (i), controlled
energy injection and effort sharing among the agents (j).

The block diagram in Fig. 2 visualizes the implementation
with input and output variables. The blockswill be detailed in
the respective sections as indicated in Figs. 1 and 2.Wewould
like to emphasize here that the proposed robot controllers
generate desired end effector motion solely based on force
and torque measurements at the robot’s interaction point.1

The remainder of the article is structured as follows. In
Sect. 3 we give the problem formulation. This is followed
by the FD derivations in Sect. 4, on which basis the adaptive
leader and follower controllers are introduced and analyzed
in Sect. 5. In Sect. 6, we apply the FD-based controllers to
the two-agent t-pendulum and afa-system. We evaluate our
controllers in simulation and experiments in Sects. 7 and 8,
respectively. InSect. 9,wediscuss design choices, limitations
and possible extensions of the presented control approach.
Section 10 concludes the article.

1 We furthermore assume that a low-level robot control has access to
the end effector position.

Table 1 Important variables and abbreviations

FD Fundamental dynamics

f i / t i Force/torque applied by agent i

ri , ṙi , r̈i Position, velocity, acceleration of agent i in
x-direction with respect to its initial position

ts Torque applied at shoulder of virtual arm

θ / ψ Desired/undesired oscillation DoF

ρ Virtual arm deflection angle

ϑ Oscillation DoF of abstract simple pendulums

ϕ Phase angle

E , E j Energy, energy of oscillation j

jE Amplitude of oscillation j (energy equivalent)

ϑr Phase space radius (approx. energy equivalent)

ai Amplitude factor of agent i

ω Natural frequency

ω0 / ωg Small angle/geometric mean approximation

Γi Relative energy contribution of agent i

(·)i Agent Ai

(·)F , (·)L Follower, leader agent

(·)o / (·)a Parameters of object/virtual arm

(·)ref Reference dynamics

(·)∗ Projection of (·) onto xy-plane

ˆ(·) / (·)d Estimate/ desired value of (·)

3 Problem Formulation for Cooperative Object
Swinging

In this section, we introduce relevant variables and param-
eters of the t-pendulum and afa-system of Fig. 1d, e.
Thereafter, we formally state our problem. Note that we drop
the explicit notation of time dependency of the system vari-
ables where clear from the context.

3.1 The t-Pendulum

Figure 3 shows the t-pendulum. Without loss of generality,
we assume that agent A1=R is the robot who cooperates
with a human A2=H. The t-pendulum has 10 degrees of
freedom (DoFs), if we assume point-mass handles: the 3D
positions of the two handles r1 and r2 representing the inter-
action points of the two agents A1 and A2 and 4 oscillation
DoFs. The oscillation DoF θ describes the desired oscilla-
tion and is defined as the angle between the y-axis and the
line connecting the center between the two agents and the
center of mass of the pendulum object. The oscillation DoF
ψ describes oscillations of the object around the y-axis and
is the major undesired oscillation DoF. Experiments showed
that oscillations around the object centerline and around the
horizontal axis perpendicular to the connection line between
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Fig. 3 The t-pendulum (adapted from [13]): cylindrical object of mass
mo, length lo and moment of inertia Io under the influence of gravity
g attached via massless ropes of length l to two handles of mass mh,i
located at r i with i = 1, 2. The location r1 is defined with respect to

the world fixed coordinate system {w}. The location r2 is defined with
respect to the fixed point w p = [0, 0, C]� in {w}, where C is the ini-
tial distance between the two agents. Pairs of parallel lines at the same
angle indicate parallelity

the interaction partners2 play a minor role and are therefore
neglected in the following.

The agents influence the t-pendulum by means of handle
accelerations r̈1 and r̈2. Although we assume cooperating
agents, the only controllable quantity of agent A1 is its own
acceleration r̈1. The acceleration r̈2 of agent A2 acts as a
disturbance as it cannot be directly influenced by agent A1.
We limit the motion of agent A1 to the x-direction for sim-
plicity, which yields the one dimensional input u1 = r̈1.
Experiments showed that 1D motion is sufficient and does
not disturb a human interaction partner in comfortable 3D
motion, because the pendulum-like object only loosely cou-
ples the two agents. The forces applied at the own handle are
the only measurable quantity of agent A1, i.e. measurable
output y1 = f 1.

3.2 The afa-System

Figure 4 shows the afa-system. The cylindrical arms are actu-
ated by shoulder torque around the z-axis ts,1 and ts,2. For
simplicity, we limit the arm of agent A1 to rotations in the
xy-plane. Note that we use the same approximations for the
side of agent A2 for ease of illustration, although a human
interaction partner can move freely. The angle between the
negative y-axis and the armof agentA1 is the oscillationDoF
ρ. The angle ψ describes the wrist orientation with respect
to the arm in the xy-plane (see right angle marking in Fig. 4).
Thus, position and orientation of the interaction point of A1
are defined by the angles ρ and ψ . We regard excessive and

2 These oscillations can be damped through application of the controller
presented in Sect. 5 in z-direction, as shown in [12] for the non-adaptive
control approach of [13].

x
y

z

A1

A2
C

ρ

θ∗
θ

ma,1

Ia,1

la,1 ma,2

Ia,2

la,2

mo,Io
ψ

g

{w}

Fig. 4 The afa-system: two cylindrical arms connected at their wrist
joints through a flexible object of mass mo and deformation dependent
moment of inertia Io under the influence of gravity g. The two cylin-
drical arms are of massma,i , moment of inertia Ia,i and length la,i with
i = 1, 2 and have their pivot point at the origin of the world fixed coor-
dinate system {w} and at w p = [0, 0, C]� in {w}, respectively. Pairs
of parallel lines at the same angle indicate parallelity

unsynchronized ψ-oscillations as undesired. The wrist joint
is subject to damping dψ and stiffness kψ . The desired oscil-
lation DoF θ is defined as the angle between the y-axis and
the line connecting the center between the two agents and the
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center of mass of the undeformed flexible object (indicated
by a cross in Fig. 4). The input to the afa-system from the per-
spective of agent A1 is its shoulder torque u1 = ts,1. Agent
A1 receives force and torque signals at its wrist: measurable

output y1 = [
f�
1 t�1

]�
.

3.3 Problem Statement

Our goal is to excite the desired oscillation θ to reach a peri-
odic orbit of desired energy level Ed

θ and zero undesired
oscillation Ed

ψ = 0. The desired energy Ed
θ is then equiv-

alent to a desired maximum deflection angle θdE or a desired
height hdE , at which the object could potentially be released.
We define the energy equivalent ΘE for a general oscilla-
tion Θ:

Definition 1 The energy equivalent ΘE ∈ [0, π ] is a con-
tinuous quantity which is equal to the maximum deflection
angle the Θ-oscillation would reach at its turning points
(Θ̇ = 0) in case EΘ = const.

For the rest of the article, we interchangeably use Eθ , Eψ

and θE , ψE according to Definition 1 with Θ = θ, ψ to
refer to the energies contained in the θ - and ψ-oscillations,
respectively.

We differentiate between leader and follower agents. For
a leader A1 = L the control law uL is a function of the mea-
surable output yL and the desired energy θdE . We formulate
the control goal as follows

uL = f ( yL, θdE ) (1)

such that
∣∣θEref − θE

∣∣ ≤ εθ

with θ̇Eref = Kd(θ
d
E − θEref),

and
∣∣ψE (t > Ts)

∣∣ ≤ εψ, for 0 < Ts < ∞.

Hence, the energy of the θ -oscillation should follow first-
order reference dynamics θEref within bounds εθ . The
reference dynamics are of inverse time constant Kd and
converge to the desired energy θdE . Furthermore, the energy
contained in the ψ-oscillation should stay within ±εψ after
the settling time Ts. We only consider desired energy levels
of θdE < π/2 to avoid undesired phenomena as, e.g., slack
suspension ropes in case of the pendulum-like object.

A follower A1 = F does not know the desired energy
level θdE . We define a desired relative energy contribution for
the follower Γ d

F ∈ [0, 1) based on the integrals over the
energy flows of the leader θ̇E,L and the follower θ̇E,F

ΓF =
∫ Ts
0 θ̇E,Fdτ

∫ Ts
0 (θ̇E,F + θ̇E,L)dτ

. (2)

Our goal is to split the energy effort among the leader and the
follower such that the follower has contributed the fraction

Γ d
F within bounds εF at the settling time Ts. To this end, we

formulate the follower control goal as

uF = f ( yF ) (3)

such that
∣
∣Γ d

F − ΓF
∣
∣ ≤ εF

and
∣∣ψE (t > Ts)

∣∣ ≤ εψ, for 0 < Ts < ∞.

The energy of the undesired oscillation ψE should be kept
within ±εψ .

4 Fundamental Dynamics

In this section, we introduce the abstract cart-pendulum and
abstract torque-pendulum as approximations for the desired
system oscillations of the t-pendulum and the afa-system
(see Fig. 1d–g). This is followed by an introduction of the
energy-based controller. Finally, we present the fundamental
dynamics (FD) of the cart-pendulum and abstract torque-
pendulum,which result from a state transformation, insertion
of the energy-based controller and subsequent approxima-
tions.

4.1 The Abstract Cart-Pendulum

For the ideal case of ψE = 0 and agents that move along the
x-direction in synchrony r1 = r2, the desired deflection angle
θ is equal to the projected deflection angle θ∗ (projection
indicated by the dashed arrow in Fig. 3). This observation
motivates us to approximate the desired system behavior of
the pendulum-like object as a cart-pendulum with two-sided
actuation (see Fig. 1f)

ẋc =
[

ϑ̇

−ω2
0 sin ϑ

]
+

[
0

− 1
gω2

0 cosϑ

]
r̈1 + r̈2

2
, (4)

with reduced state xc = [ϑ, ϑ̇]� consisting of deflection
angle ϑ and angular velocity ϑ̇ and the small angle approx-
imation of the natural frequency ω0. We use the variables ϑ

for the deflection angle of the abstract simple pendulum vari-
ants in contrast to the actual deflection angle θ of the complex
objects. On the desired periodic orbit we have θ = θ∗ = ϑ .
The small angle approximation of the natural frequency
ω0 = mϑ cϑ g

Iϑ
depends on gravity g and abstract pendulum

parameters: mass mϑ , distance between pivot point and the
center of mass cϑ and the resultant moment of inertia around
the pendulum pivot point Iϑ . The parametersmϑ and Iϑ rep-
resent one side of the t-pendulum, i.e. half of the mass and
moment of inertia of the pendulum mass. By dividing the
input accelerations by 2 in (4), we consider the complete
mass and moment of inertia of the t-pendulum. We call this
pendulum abstract cart-pendulum, where cart refers to the
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actuation through horizontal acceleration. The term abstract
emphasizes the simplificationwemake by approximating the
agents’ influences as summed accelerations and neglecting
ψE �= 0.

4.2 The Abstract Torque-Pendulum

The afa-system simplifies to the two-link pendubot [43] with
oscillation DoFs ρ and ψ , when being projected into the
xy-plane of agent A1 (see gray dash-dotted link in Fig. 4).
For ψd

E = 0, the pendubot further reduces to a single link
pendulum actuated through shoulder torques of agents A1
and A2 (see Fig. 1g)

ẋc =
[

ϑ̇

−ω2
0 sin ϑ

]
+

[
0
1
Iϑ

]
ts,1 + ts,2

2
. (5)

We call this pendulum abstract torque-pendulum. As for
the abstract cart-pendulum, the parameter Iϑ represents the
moment of inertia of one side of the afa-system. Similar
to the t-pendulum, we define a projected deflection angle
θ∗ = ρ + ψ (see Fig. 4). On the desired periodic orbit we
have θ = θ∗ = ϑ .

4.3 Energy-Based Control for Simple Pendulums

Here, we recapitulate important simple pendulum fundamen-
tals and introduce the energy-based controller to be applied
to the abstract simple pendulums. For the following deriva-
tions, we assume zero handle velocity for the cart-pendulum
ṙ1 = ṙ2 = 0, which is the case for the torque-pendulum by
construction. The energy contained in both abstract pendu-
lums is then

Eϑ = Iϑ ϑ̇2 + 2mϑgcϑ (1 − cosϑ). (6)

According to Definition 1, the energy equivalent ϑE is equal
to the maximum deflection angle ϑ reached at the turning
points for angular velocity ϑ̇ = 0

Eϑ = 2mϑgcϑ (1 − cosϑE ) . (7)

Setting (6) equal to (7), we can express ϑE in terms of the

state xc = [
ϑ, ϑ̇

]�

ϑE = arccos

(

cosϑ − 1

2ω2
0

ϑ̇2

)

, (8)

with ϑE ∈ [0, π ]. In contrast to the energy Eϑ , which also
depends on mass and moment of inertia of the object, the
amplitudeϑE only depends on the small angle approximation
of the natural frequency ω0. Therefore, we will use ϑE as the
preferred energy measure in the following.

−π 0 π

-4

0

4
ϑE = 0.9π

ϑE = 0.5π

ϑr

ϕ

ϑ [rad]

ϑ̇ Ω

0 2 4
0

4

8

12
ϑE = 0.5π

ϑE = 0.9

t [s]

ϕ
[r

ad
]

Fig. 5 Phase portrait (left) and phase angle ϕ over time (right) at con-
stant energy levels ϑE = 0.5π (blue) and ϑE = 0.9π (red) of a lossless
simple pendulum. Normalization with Ω = ωg marked via solid lines
and Ω = ω0 via dashed lines. For energies up to ϑE = 0.5π and a
normalization with Ω = ωg, the phase space is approximately a circle
with radius ϑr ≈ ϑE and the phase angle ϕ rises approximately linear
over time. Figure adapted from [14]

Simple pendulums constitute nonlinear systems with an
energydependent natural frequencyω(ϑE ).Noanalytic solu-
tion exists for ω, but it can be obtained numerically by

ω = ω0M
{
1, cos ϑE

2

}
with the arithmetic-geometric mean

M {x, y} [6]. Already the first iteration of M
{
1, cos ϑE

2

}

yields good estimates for ω

ω ≈
⎧
⎨

⎩
ωa = ω0

1+cos ϑE
2

2

ωg = ω0

√
cos ϑE

2 ,
(9)

with relative error 0.748 % for the arithmetic mean approx-
imation ωa and 0.746 % for the geometric mean approxi-
mation ωg at ϑE = π

2 with respect to the sixth iteration of

M
{
1, cos ϑE

2

}
. In the following, wemake use of the geomet-

ric mean approximation ωg within derivations and as ground
truth for comparison to the estimate ω̂ in simulations and
experiments.

The pendulum nonlinearities are visualized in phase por-
traits on the left side of Fig. 5 for two constant energy levels
ϑE = 0.5π and ϑE = 0.9π . The inscribed phase angle ϕ is

ϕ = atan2

(
− ϑ̇

Ω
, ϑ

)
, (10)

with normalization factorΩ . The right side of Fig. 5 displays
the phase angle ϕ over time. The normalization factor Ω is
used to partly compensate for the pendulum nonlinearities,
with the result of an almost circular phase portrait and an
approximately linearly rising phase angle

ϕ(t) ≈ ωt + ϕ(t = 0). (11)
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Figure 5 shows that normalization with the more accu-
rate geometric mean approximation of the natural frequency
Ω = ωg allows for a better compensation of the pendu-
lum nonlinearities than a normalization with the small angle
approximation Ω = ω0.

The main idea of the energy control for the abstract cart-
pendulum is captured in the control law [48]

r̈i = ai ω2 sin ϕ, (12)

where the amplitude factor ai regulates the sign and amount
of energy flow contributed by agent Ai to the abstract cart-
pendulum, with i = 1, 2. A well-timed energy injection is
achieved through multiplication with sin ϕ, which according
to (11) excites the pendulum at its natural frequency. For the
abstract torque-pendulum we choose a similar control law
with

ts,i = −ai sin ϕ. (13)

4.4 Cartesian to Polar State Transformation

The abstract cart- and torque-pendulum dynamics in (4)
and (5) are nonlinear with respect to the states xc = [ϑ, ϑ̇]�.
The index c indicates that the angle ϑ and angular velocity ϑ̇

represent the cartesian coordinates in the phase space (see
left side of Fig. 5). We expect the system energy ϑE to ide-
ally be independent of the phase angle ϕ, which motivates a
state transformation to ϕ and ϑE for simple adaptive control
design. Solving (10) for ϑ̇ and insertion into (8) yields

cosϑE = cosϑ − Ω2

2ω2
0

tan2(ϕ) ϑ2. (14)

However, there is no analytic solution for ϑ(ϑE , ϕ) from
(14). Therefore, we approximate the system energy ϑE

through the phase space radius ϑr

ϑr :=
√

ϑ2 +
(

ϑ̇

Ω

)2

. (15)

From Fig. 5 we see that the phase space radius is equal to the
energy ϑr = ϑE at the turning points (ϑ̇ = 0). For energies
ϑE ≤ π

2 and a normalization with Ω ≈ ω, the phase space
is almost circular and thus ϑr ≈ ϑE also for ϑ̇ �= 0.

The phase angle ϕ and the phase space radius ϑr span the
polar state space xp = [ϕ, ϑr ]�, which we mark with the
subscript p. The cartesian states xc written as a function of
the polar states xp are

ϑ = ϑr cosϕ (16)

ϑ̇ = −ϑrΩ sin ϕ.

4.5 The Fundamental Dynamics

Theorem 1 The FD of the abstract cart- and torque-
pendulums in (4) and (5) under application of the respective
control laws (12) and (13) can be written in terms of the
polar states xp = [ϕ, ϑr ]� as

ẋp =
[

ϕ̇

ϑ̇r

]
=

[
ω

0

]
+

[
0
B

]
a1 + a2

2
, (17)

with system parameter

B =
{
Br̈ = 1

2gω3 abstract cart-pendulum,

Bt = 1
2ωIϑ

abstract torque-pendulum,
(18)

when neglecting higher harmonics, applying 3rd order Tay-
lor approximations and making use of the geometric mean
approximation of the natural frequency ωg in (9).

Proof See “Appendix A”. 	

Thus, the phase ϕ is approximately time-linear ϕ̇ ≈ ω and

the influence of the actuation a on the phase is small. The
energy flow ϑ̇E ≈ ϑ̇r is approximately equal to the mean
of the amplitude factors a1 and a2 times a system dependent
factor B, and thus zero for no actuation a1 = a2 = 0.

5 FD-Based Adaptive Leader–Follower Structures

In this section, we use the fundamental dynamics (FD) to
design adaptive controllers that render leader and follower
behavior according to (1) and (3). For the abstract cart-
pendulum FD, the natural frequency ω is the only unknown
system parameter. For the abstract torque-pendulum, also an
estimate of the moment of inertia Îϑ is required. Here, we
first present the natural frequency estimation. In Sect. 6.3, we
discuss how to obtain Îϑ . The ω-estimate is not only needed
for the computation of the system parameter B, but also for
the phase angle ϕ, required in the control laws (12) and (13).
In a second step, we design the amplitude factor a1 to render
either leader or follower behavior.

5.1 Estimation of Natural Frequency

Based on the phase FD ϕ̇ = ω, we design simple estimation
dynamics for the natural frequency estimate ω̂

ω̂ = s

1 + Tωs
ϕ, (19)

which differentiates ϕ, while also applying a first-order low-
pass filter with cut-off frequency 1

Tω
.

Figure 6 shows how the ω-estimation is embedded into
the controller. The feedback of the estimate ω̂ for the com-
putation of phase angle ϕ requires a stability analysis.
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ϑ = ϑr cos(ωt)

ϑ̇ = −ϑrω sin(ωt)
atan2(− ϑ̇

ω̂ , ϑ)
Eq.(10)

ϕ s
1+Tωs

Eq.(19)
ω̂

Fig. 6 Block diagram of the ω-estimation with normalization factor
Ω = ω̂ used for the computation of phase angle ϕ

Proposition 1 The natural frequency estimate ω̂ converges
to the true natural frequency ω when estimated according to
Fig. 6 with

Tω > max

(
1

2ω̂(t = 0)
,
1

2ω

)
and ω̂(t = 0) > 0, (20)

and if the system behaves according to the FD with con-
stant natural frequency ω (ω changes only slowly w.r.t. the
ω̂-dynamics in (19)).

Proof See “Appendix B”. 	

Condition (20) indicates that the adaptation of ω̂ cannot

be performed arbitrarily fast.

5.2 Amplitude Factor Based Leader/Follower Design

In the following, we design the amplitude factors for leader
agents aL and follower agents aF .

5.2.1 Leader L

Proposition 2 For two leader agents A1 = A2 = L apply-
ing amplitude factors

ai = ki (θ
d
E − ϑr ) with ki = 2Γ d

i Kd

B
, (21)

where i = 1, 2,Γ d
1 +Γ d

2 = 1, andϑr (t = 0) = θEref(t = 0),
the energy θr of theFD in (17) converges to the desired energy
θdE and tracks the desired reference dynamics in (1)

θ̇Eref = Kd

(
θdE − θEref

)
. (22)

Furthermore, each leader agent contributes with the desired
relative energy contribution Γi = Γ d

i defined in (2).

Proof Differentiation with respect to time of the Lyapunov
function

V = 1

2

(
θdE − ϑr

)2
(23)

and insertion of the FD (17) with (21) yields

V̇ = − B

2
(k1 + k2)(θ

d
E − ϑr )

2. (24)

Thus, as long asϑr �= θdE and for k1+k2, B > 0 theLyapunov
function has a strictly negative time derivative V̇ < 0 and,
thus, the desired energy level ϑr = θdE is an asymptotically
stable fixpoint.

Insertion of (21) into the FD in (17) yields

ϑ̇r = Kd

(
θdE − ϑr

)
. (25)

Comparison of (25) and (22) shows that the reference dynam-
ics are tracked ϑr (t) = θEref(t) for equal initial values
ϑr (t = 0) = θEref(t = 0). The energy contributed by one
agent i according to the FD in (17) is ϑ̇r,i = B

2 ai . Insertion
of (21) yields ϑ̇r,i = Γ d

i Kd
(
θdE − ϑr

)
. With (25), the rela-

tive energy contribution of agent i according to (2) results in

Γi =
∫ Ts
0 ϑ̇r,idτ∫ Ts
0 ϑ̇rdτ

= Γ d
i . 	


5.2.2 Follower F

Proposition 3 A follower agentA1 = F applying an ampli-
tude factor

aF = kF ˆ̇ϑr with kF = 2

B
Γ d
F , (26)

with Γ d
F ∈ [0, 1) and a correct estimate of the total energy

flow ˆ̇ϑr = ϑ̇r , contributes the desired fraction ΓF = Γ dF
to the overall task effort.

Proof Insertion of (26) into the energy flow of the follower
ϑ̇r,F = B

2 aF according to the FD in (17) yields ϑ̇r,F =
Γ d
F

ˆ̇ϑr and ΓF = Γ dF (see proof or Proposition 2). 	

We obtain the total energy flow estimate through filtered

differentiation ˆ̇ϑr = Ghp(TF )ϑr , where Ghp(TF ) is a first-
order high-pass filterwith time constant TF . Thus, the filtered

energy flow estimate is not equal to the true value ˆ̇ϑr �= ϑ̇r .
The influence of this filtering will be investigated in the next
section.

5.3 Analysis of Leader–Follower Structures

Here, we analyze stability, stationary transfer behavior and
resultant follower contribution ΓF for filtered energy flow

estimates ˆ̇ϑr and estimation errors on the follower B− B̂F �=
0 and leader B−B̂L �= 0 side. Figure 7 showsablockdiagram
of the fundamental energy dynamics-based control structure
for a leader and a follower controller. See “Appendix C” for
details on the derivations of the transfer functions.

The reference transfer function ϑr (s) = Gfi(s)θdE (s),
which describes the closed-loop behavior resulting from the
interconnection depicted in Fig. 7, results in
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fundam

enta ldynam
ics

2Γd
LKd

B̂L

2Γd
F

B̂F

B
2

B
2

s
TFs+1

1
s

θd
E

aL

aF

ϑ̇r

ϑr

ϑr

ˆ̇
ϑr

Fig. 7 Block diagram showing the leader and follower controllers
interacting with the linear fundamental energy dynamics. The leader
tracks first-order reference dynamics with inverse time-constant Kd to
control the energy ϑr to θdE with a desired relative energy contribution
Γ d
L. The follower achieves a desired relative energy contribution Γ d

F by

imitating an estimate of the system energy flow ˆ̇ϑr

Gfi =
Γ d
LKd

B
B̂L

s + Γ d
LKd

B
B̂L

1
TF

s2 +
(

1
TF − Γ d

F
B
B̂F

1
TF + Γ d

LKd
B
B̂L

)
s + Γ d

LKd
B
B̂L

1
TF

.

(27)

Thus, ϑr (t → ∞) = θdE and we have a stationary transfer
behavior equal to one for a step of height θdE in the refer-
ence variable θdE (t) = σ(t)θdE . This result holds irrespective
of estimation errors B̂F/L �= B. Asymptotic stability of
the closed-loop system is ensured for ( 1

TF − Γ d
F

B
B̂F

1
TF +

Γ d
LKd

B
B̂L

) > 0. The stability constraint implies that B̂F > B

is advantageous. This can be achieved by using a high ini-
tial value in the follower’s ω̂-estimation for the abstract
cart-pendulumand a low initialization for the abstract torque-
pendulum (see (18)). Factors such as estimation errors, a high
desired follower contribution Γ d

F and a small time constant
TF can potentially destabilize the closed-loop system.

The follower transfer function Gfi
F from desired energy

level θdE to follower energy θrF is

Gfi
F =

Γ d
LKd

B
B̂L

Γ d
F

B
B̂F

1
TF

s2 +
(

1
TF − Γ d

F
B
B̂F

1
TF + Γ d

LKd
B
B̂L

)
s + Γ d

LKd
B
B̂L

1
TF

.

(28)

Application of the final value theorem to (28) yields
ϑr,F (t → ∞) = Γ d

F
B
B̂F

θdE . Consequently, ΓF = Γ d
F

B
B̂F

and the follower achieves its desired relative energy contri-
bution for a correct estimate B̂F = B.

6 Application to Two-Agent Object Manipulation

Here,we extend the fundamental dynamics (FD)-based adap-
tive controllers presented in the previous section to control
the t-pendulum and the afa-system. Figures 8 and 9 show
block diagrams of the controller implementation for the t-
pendulum controlled by a leader agent and the afa-system
controlled by a follower agent, respectively. Follower and
leader controllers are invariant with respect to the object
types. In Sect. 6.1, we discuss modifications of the funda-
mental dynamics-based controllers to cope with modeling
errors. The projection and energy-based controller block dif-
fers between the t-pendulum and the afa-system and will be
explained in detail in Sects. 6.2 and 6.3, respectively.

6.1 FD-Based Controllers

The FD derivation is based on approximating the system
energyϑE by the phase space radiusϑr in Sect. 4.4.As visible
in the phase space on the left side of Fig. 5, the phase space

x

y

z

fo,L

ϑ

θ∗

Eq.(30)
ϑ̇/ω̂ ϕ

2Γd
LKd

B̂L

ϑr

Eq.(10),(15)

ω̂

r̈L ≈
aL ω2 sin(ϕ)
Eq.(32)-(34)

θ∗

ϑ, ϑ̇

ϕϑr

A1= L rL

g

θd
E

aL

rLfL

observer
Eq.(31)

ω-estimation
Eq.(19)

projection
and

energy-based
controller

leader
t-pendulum

Fig. 8 Blockdiagramof theFD-based leader applied to the t-pendulum
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fF , tF

ϑ

ϑ̇/ω̂ ϕ

2Γd
F

B̂F

ϑr

Eq.(10),(15)

ω̂

ts,F ≈
−aF sin(ϕ)
Eq.(38)

θ∗

ϑ, ϑ̇

ϕ
ϑr

A1=F
ρ

ψ
g

ˆ̇
ϑr

aF

ρ, ψ

ρ, ψ

ts,F

Eq.(35),(36)

observer
Eq.(31)

ω-estimation
Eq.(19)

θ∗ = ρ + ψ

s
T 2
Fs2+2DFTFs+1

flexible
object

projection
and

energy-based
controller

follow
er

Fig. 9 Block diagram of the FD-based follower applied to the afa-
system

radius ϑr represents the system energy ϑE less accurately
at higher energy levels. The effect is increased oscillations
of ϑr for constant ϑE . As a consequence, unsettled follower
behavior is expected even when the leading partner is trying
to keep the system energy at a constant level. Furthermore,
the discrepancy between ϑr and ϑE degrades the leader’s
reference dynamics tracking ability.

From ϑ and ϑ̇ we can estimate ϑE based on (8). To this
end, we use the geometric mean relationship in (9) with cur-
rent frequency estimateωg = ω̂ and solve it for the unknown

small angle approximation ω̂2
0 = ω̂2

(
cos

(
ϑ̂E/2

))−1
.

Insertion of ω̂0 into (8) results in a quadratic equation which
we solve for ϑ̂E

ϑ̂E = 2 arccos

⎛

⎝− ϑ̇2

8ω̂2 + 1

4

√
ϑ̇4

4ω̂4 + 8(cosϑ + 1)

⎞

⎠ . (29)

The estimate ϑ̂E can now be used instead of ϑr within the
leader and follower controllers.

Interestingly, the error caused by the phase space radius
approximation has a greater influence on the abstract torque-
pendulum than on the abstract cart-pendulum. Because ts,1
in (13) and ϑ̇ reach their maxima for ϕ = ±π

2 , the torque-

based actuation contributes maximum energy when the error
between ϑr and ϑE has its maximum (see Fig. 5). In contrast,
the acceleration-based actuation in (12) contributes most
energy when the multiplication of velocity ṙ1 and applied
force in x-direction reach a maximum, where ṙ1 has its max-
imum at ϕ = 0, π . We will show the implications of above
discussion and the usage of ϑ̂E based on simulations of the
abstract simple pendulums in Sect. 7.

The realistic pendulum-like and flexible object do not
exhibit perfect simple pendulum-like behavior. As we show
with our experimental results in Sect. 8, such unmodeled
dynamics have only little effect on the leader controller per-
formance. In order to achieve calm follower behavior during
constant energy phases, we use a second-order low-pass fil-
ter along with the differentiation of ϑr for the experiments
instead of the first-order low-pass filter (compare Figs. 7, 9).
Besides the extension by the ω-estimation, the second-order
filter for the follower is the only modification we apply to the
FD-based controllers in Fig. 7 for the experiments. Because
we are limited to relatively small energies for the afa-system
where ϑr ≈ ϑE , use of the more accurate estimate ϑ̂E is not
needed.

At small energy levels, noise and offsets in the force and
torque signals can lead to a phase angle ϕ that does notmono-
tonically increase over time.We circumvented problemswith
respect to the ω-estimation by reinitializing ω̂ whenever ϑr

decreased below a small threshold. No modifications were
needed for the amplitude factor computation.

The computation of the FD parameter B in (18) requires
a moment of inertia estimate Îϑ . For the experiments, we
computed Îϑ based on known parameters of the simple
pendulum-like arm Iϑa = Ia +ma(

la
2 )2 and based on a point

mass approximation of the flexible object Îϑo = mo
2 (la+l̂∗o )2.

The part of the object mass carried by the robot mo
2 is mea-

sured with the force sensor. We furthermore assume that an
estimate of the projected object length l̂∗o is available. Alter-
natively, the object moment of inertia could be estimated
from force measurements during manipulation (e.g., [3,27]).

6.2 Projection and Energy-Based Controller for the
t-Pendulum

6.2.1 Projection onto the Abstract Cart-Pendulum

The goal of what we call the projection onto the abstract
cart-pendulum, is to extract the desired oscillation θ from
the available force measurements f 1. The projection is per-
formed in two steps. First, the projected deflection angle θ∗
is computed from f 1

θ∗ = arctan

(− fo,1x
fo,1y

)
, (30)
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with f o,1 = [
fo,1x , fo,1y, fo,1z

]� being the force exerted
by agent A1 onto the pendulum-like object. We obtain f o,1
from themeasurable applied force f 1 through dynamic com-
pensation of the force accelerating the handle mass mh,1:
f o,1 = f 1 − mh,1 [r̈1, −g, 0]�.
The projected deflection angle θ∗ does not only contain

the desired θ -oscillation, but is superimposed by undesired
oscillations, such as the ψ-oscillation in Fig. 3. In a second
step, we apply a nonlinear observer to extract the states of
the virtual abstract cart-pendulum

ẋc =
[

ϑ̇

−ω̂0 sin(ϑ)

]
+ l(θ∗ − y), y = [

1 0
]
xc, (31)

where l(θ∗ − y) couples the observer to the t-pendulum
through the observer gain vector l = [l1, 0]�. The observer
does not only filter out the undesired oscillation ψ , but also
noise in the force measurement. An observer gain l1 in the
range of ω showed to yield a good compromise between
fast transient behavior (large l1) and noise filtering (small
l1). The smooth cartesian cart-pendulum states can then be
transformed into polar states according to (10) and (15). The
observer represents the abstract cart-pendulum dynamics (4)
without inputs. Simulations and experiments showed that it
suffices to use ω̂ as the estimate for the small angle approxi-
mation ω̂0 needed in (31). We summarize these two steps as
projection onto the abstract cart-pendulum.

6.2.2 Complete Control Law for the t-Pendulum

As suggested in [48], we do not directly command the
acceleration in (12). Instead, we filter out remaining high
frequency oscillations on the phase angle ϕ through applica-
tion of a second-order filter

G(s) = r̈1
rd1

=
s2

(
ω̂
c0

)2

s2 + 2ζ ω̂
c0
s +

(
ω̂
c0

)2 , (32)

with design parameters c0 and ζ , to the reference trajectory

rd1 = − a1
|G( jω̂)| sin(ϕ − � G( jω̂)). (33)

The acceleration results in

r̈1 � a1 ω2 |G( jω)|
|G( jω̂)| sin(ϕ − � G( jω̂) + � G( jω))

≈ a1 ω2 sin(ϕ). (34)

Hence,wemakeuse of the sinusoidal shape of r̈1 by including
knowledge on the expected phase shift � G( jω̂) and ampli-
tude shift |G( jω̂)| at ω̂. Use of position r1 as a reference
for the robot low-level controller circumvents drift. Further-
more, by imposing limits on a1, the workspace of the robot
can be limited [13,48].

6.3 Projection and Energy-Based Controller for the
afa-System

6.3.1 Simple Pendulum-like Arm

Based on the results of [15], we model the robot end effector
to behave as a cylindrical simple pendulum with human-like
parameters of shoulder damping dρ , mass ma, length la and
density �a for the experiments with a robotic manipulator in
Sect. 8. The robot arm dynamics are

Iρρ̈ = −dρρ̇ + tg − t f1 + dψψ̇ + kψψ + ts,1, (35)

where Iρ is the arm moment of inertia with respect to the
shoulder and tg and t f1 are torques around the z-axis of
coordinate system {w} caused by gravity and the applied
interaction forces at the wrist f 1, respectively. The wrist
joint dynamics are

Iψ(ψ̈ + ρ̈) = −dψψ̇ − kψψ − t1z, (36)

with moment of inertia Iψ , damping dψ and stiffness kψ .
The z-component t1z of applied torque t1 is measured at the
interaction point with the flexible object.

6.3.2 Projection onto the Abstract Torque-Pendulum

We base the projection of the afa-system onto the abstract
torque-pendulum on a simple summation θ∗ = ρ + ψ and
the observer with simple pendulum dynamics in (31).

6.3.3 Complete Control Law for the afa-System

No additional filtering is applied for the computed shoul-
der torque. However, the wrist damping dissipates energy
injected at the shoulder. The energy flow loss due to wrist
damping is Ėdψ = −dψψ̇2. We approximate the injected
energy flow at the shoulder as

Ėts,dψ
= ts,dψ ρ̇ ≈ adψ ϑr ω̂ sin2 ϕ ≈ 1

2
adψ ϑr ω̂, (37)

where we inserted ts,dψ = −adψ sin ϕ according to (13),

used ρ̇
ρ̇≈ϑ̇= −ϑr ω̂ sin ϕ of (16) and approximated sin2 ϕ by

its mean. Setting Ėdψ + Ėts,dψ

!= 0 yields amplitude factor

adψ = 2dψψ̇2

ϑr ω̂
for wrist damping compensation.

For the experiments, we add human-like shoulder damp-
ing dρ to the passive arm behavior. During active follower or
leader control the shoulder damping is compensated for by
an additional shoulder torque of ts,dρ = dρ ρ̇. The complete
control law results in

ts,1 = −a1 sin(ϕ) + ts,dψ + ts,dρ . (38)
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7 Evaluation in Simulation

The linear fundamental dynamics (FD) derived in Sect. 4
enabled the design of adaptive leader and follower controllers
in Sect. 5. However, the FD approximates the behavior of
the abstract cart- and torque-pendulums, which represent the
desired oscillations of the t-pendulum and the afa-system. In
this section, we analyze the FD-based controllers in inter-
action with the abstract cart- and torque-pendulums with
respect to stability of the ω-estimation (Sect. 7.3), refer-
ence trajectory tracking (Sect. 7.4) and follower contribution
(Sect. 7.5). For simplicity, we assume full state feedback xc
and use the variables θE and θdE also for the abstract cart- and
torque-pendulums.

7.1 Simulation Setup

The simulations were performed using MATLAB/Simulink.
We modeled the cart-pendulum as a point mass mo = 10 kg
attached to a massless pole of length lo = 0.6m. The torque-
pendulum consisted of two rigidly attached cylinders with
uniform mass distribution. The upper cylinder was of mass,
density and length comparable to a humanarm:ma = 3.35 kg
[7], �a = 1100 kg/m3 [11], la = 0.56m [15]. The lower
cylinder had the same radius, but mass mo = 10 kg and
length lo = 0.4m.

The following control gains stayed constant for all sim-
ulations Kd = 0.4 1/s, TF = 1/s, c0 = 0.9, ζ = 1.2.
We started all abstract cart- and torque-pendulum simula-
tions with a small angle ϑ(t = 0) = 2◦ and zero velocity
ϑ̇(t = 0) = 0 rad/s in order to avoid initialization problems,
e.g., of the phase angle ϕ.

7.2 Measures

7.2.1 Analysis of Controller Performance

We analyzed the controller performance based on settling
time Ts, steady state error e and overshoot o. The settling
time Ts was computed as the time after which the energy θE
stayed within bounds ±εθ = ±8% around the energetic
steady state value θ̄E . We defined the steady state error as
e = θdE − θ̄E and the overshoot as o = maxt (θE − θ̄E ).

7.2.2 Analysis of Effort Sharing

The energy flows to the abstract cart-pendulum were calcu-
lated based on velocities and applied force along the motion
Ė1 = 1

2 ṙ1 fx , where fx = f1x = f2x . The energy flows
to the abstract torque-pendulum were calculated based on
angular velocity and applied torque Ė1 = 1

2 ϑ̇ ts,1, where
ϑ̇ = ϑ̇1 = ϑ̇2. The multiplication with 1

2 reflects that the

agents equally share the control over the abstract pendulums
in (4) and (5).

We based the analysis of the effort sharing between the
agents on the relative energy contribution of the follower
ΓF . The definition in (2) is based on the time derivative
of the oscillation amplitude θ̇E,F and θ̇E,L, which requires
use of the simple pendulum approximations. In order not
to rely on approximations, we define the relative follower
contribution

Γin,F =
∫ Ts
0 ĖFdτ

∫ Ts
0 (ĖF + ĖL)dτ

. (39)

The above computation has the drawback that for mecha-
nisms with high damping Γin,F < Γ d

F , because the follower
reacts to changes in object energy and, thus, the leader
accounts for damping compensation. Therefore, we define
a second relative follower contribution based on the object
energy E for comparison

Γobj,F =
∫ Ts
0 ĖFdτ

E(Ts)
. (40)

For the abstract simple pendulums we use E = Eθ .
Note that Γobj,F + Γobj,L �= 1 for a damped mecha-
nism.

7.3 Stability Limits of the ω-Estimation

The FD analysis in Sect. 5.1 revealed the theoretical sta-
bility bound (20). Here, we test its applicability to the
cart- and torque-pendulums with energy dependent natural
frequency ω. Both lossless pendulums were controlled by
one leader with constant amplitude factor aL = 0.04m
for the cart-pendulum and aL = 5.5Nm for the torque-
pendulum. The amplitude factors were chosen, such that
for both pendulums approximately an energy level of θE ≈
60◦ was reached after 8 s. Figure 10 shows the geomet-
ric mean approximation of the natural frequency ωg(θE )

and the estimate ω̂ for two different time constants Tω and
ω̂(t = 0) = 2 rad/s > 0. The results support the conserva-
tive constraint found from the Lyapunov stability analysis in
Sect. 5.1.

7.4 Reference Dynamics Tracking

Here, we evaluate how well reference dynamics tracking is
achieved for a single leader interacting with the cart- and
torque-pendulums, thus ΓL = 1. In order to focus on the
reference dynamics tracking, we used the geometric mean
ωg(θE ) with exact ω0 in (9) as an accurate natural frequency
estimate for the leader controller. We set Kd = 0.4 1/s and
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et = 8.3◦, respectively. Usage of an estimate ϑ̂E instead of ϑr reduces
the steady state error for the torque-pendulum to et = 0.5◦ (2b).Vertical
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θdE = 120◦3. The results for the lossless pendulums are
displayed in Fig. 11. The simulation results support the con-
siderations made in Sect. 6.1.

3 In contrast to the t-pendulum and the afa-system, the simple pendu-
lum approximations are modeled as rigid and can thus reach oscillation
amplitudes beyond 90◦. In order to challenge our approach, we com-
mand θdE > 90◦ here.
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follower contribution Γ d

F = 0.7: (a) angles and (b) energies. Vertical
dashed linesmark settling times Ts. The FD-based controllers allow for
successful effort sharing

7.5 Follower Contribution

For the follower contribution analysis, we ran simulations
with a leader and a follower interacting with the abstract
cart- and torque-pendulums for different desired relative fol-
lower contributionsΓ d

F = 0.3, 0.5, 0.7.Thependulumswere

slightly damped with ts,dρ = −dsϑ̇ and ds
Iϑ

= 0.01 1/s. The

leader’s desired energy level was θdE = 60◦. In accordance
with the stability analysis in Sect. 5.3, we initialized the ω-
estimation with ω̂(t = 0) = 6 rad/s > ω for the abstract
cart-pendulum and ω̂(t = 0) = 2 rad/s < ω for the abstract
torque-pendulum. The follower and leader controllers for the
torque-pendulum made use of the approximation ϑ̂E in (29)
instead of ϑr in (21) and (26).

Thefirst three lines ofTable 2 list the results forΓ d
F+Γ d

L =
1, including the relative follower contributions according
to (39) and (40) and the overshoot o. Figure 12 shows
angles and energies over time for the most challenging case
of Γ d

F = 0.7. The damping resulted in increased steady
state errors of er̈ = 4.7◦ for the abstract cart-pendulum
and eτ = 2.5◦ for the abstract torque-pendulum. The ω-

estimation and filtering for the energy flow estimate ˆ̇ϑr on
the follower side caused a delay with respect to the reference
dynamics θEref . With respect to effort sharing, higher Γ d

F
resulted in increased overshoot o (see Table 2). Successful
effort sharing was achieved, with ΓF ≈ Γ d

F .
The last two lines of Table 2 list the results forΓ d

F +Γ d
L �=

1.The results conform to theFDanalysis inSect. 5.3:Γin,F ≈
Γ d
F ≈ Γobj,F with Γin,L = 1−Γin,F . The transient behavior

is predominantly influenced by Γ d
L. Low (high) values Γ d

F +
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Table 2 Effort sharing results

Γ d
F/Γ d

L Abstr. cart-pend. Abstr. torque-pend.

o[◦] Γin,F Γobj,F o[◦] Γin,F Γobj,F

0.3/0.7 0.9 0.27 0.27 0.1 0.33 0.33

0.5/0.5 3.2 0.45 0.47 1.1 0.52 0.54

0.7/0.3 8.7 0.75 0.84 4.9 0.78 0.82

0.3/0.3 0.1 0.30 0.32 0.1 0.31 0.33

0.7/0.7 9.6 0.81 0.87 6.5 0.86 0.90

Γ d
L < (>) 1 yield slower (faster) convergence to the desired

energy levelwith small (increased) overshoot o. An increased
o comes along with increased transient behavior that settles
only after Ts. As a consequence, Γin,F and Γobj,F exceed
Γ d
F .

8 Experimental Evaluation

The simulations in Sect. 7 analyze the presented control
approach for the abstract cart- and torque-pendu- lum. In
this section, we report on the results of real world experi-
ments with a t-pendulum and a flexible object which test the
controllers in realistic conditions: noisy forcemeasurements,
non-ideal object and robot behavior and a human interac-
tion partner. Online Resources 1 and 2 contain videos of the
experiments.

8.1 Experimental Setup

8.1.1 Hardware Setup

Figure 13 shows the experimental setups with pendulum-
like and flexible objects. Due to the small load capacity of
the robotic manipulator4, we used objects of relatively small
mass mo = 1.25 kg for the t-pendulum and mo = 1.61 kg
for the flexible object. The flexible object was composed of
an aluminum plate connected to two aluminum bars through
rubber bands. Such flexible object can be seen as an espe-
cially challenging object as it only loosely couples the agents
and its high elasticity can cause unwanted oscillations.

8.1.2 Software Implementation

The motion capture data was recorded at 200 Hz and
streamed to a MATLAB/Simulink Real-Time Target model.

4 The KUKA LWR 4+ can handle higher loads, if operated close to
its singularities. However, joint velocity limits restrict the end effector
velocity. As we are interested in a proof of concept of the proposed
approach independent of the robotic platform used, we refrained from
optimizing the robotic setup for higher loads and velocities.

Qualisys motion
capture markers

for analysis

C ≈ 1.8 m

l =
0.91m

lo = 0.85 m

JR3 force/
torque sensors

control
input

for
analysis

C ≈ 1.5 m
l =

0.9m

lpl =
0.115 m

w pl
=

0.4
m

(a)

(b)

Fig. 13 Experimental setups for (a) pendulum-like and (b) flexible
object swinging: One side of the objects was attached to the end effector
of a KUKA LWR 4+ robotic manipulator under impedance control on
joint level (joint stiffness 1500 Nm/rad and damping 0.7 Nm s/rad). The
other side was attached to a handle that was either fixed to a table or
held by the human interaction partner

The Real-Time Target model was run at 1 kHz, received the
force/torque data and contained the presented energy-based
controller and the joint angle position controller of the robotic
manipulator. For the analysis, we filtered the motion capture
data and the force/torque data by a third-order butterworth
low-pass filter with cutoff frequency 4 Hz.

The following control parameters were the same for all
experiments Kd = 0.4 1/s, TF = 1 s, DF = 1, c0 = 0.9,
ζ = 1.2 and l1 = 3.6 1/s. The ω-estimation used a time con-
stant Tω = 2 s and was initialized to ω̂(t = 0) = 6 rad/s
for the t-pendulum. For the flexible object swinging, we
controlled the robot to behave as a simple pendulum (see
Sect. 6.3) with human arm parameters given in Sect. 7.1.
The wrist parameters were Iψ = 0.01 kg m2, dψ =
4Nm s/rad, kψ = 3Nm/rad. The projected object length
estimate needed for the approximation of the abstract torque-
pendulum moment of inertia Îϑ was set to l̂∗o = 0.64m. The
ω-estimation used a time constant Tω = 4 s and was initial-
ized to ω̂(t = 0) = 2 rad/s.

8.2 Measures

We used the same measures to analyze the experiments as
for the simulations in Sect. 7.2. Extensions and differences
are highlighted in the following.
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8.2.1 Analysis of the Projections onto the Abstract Cart-
and Torque-Pendulums

Ideally, during steady state, the disturbance oscillations is
close to zero ψ ≈ 0, the abstract pendulum angle should be
close to the actual object deflection ϑ ≈ θ and the energies
should match ϑr ≈ ϑ̂E ≈ θE . From motion capture data we
obtained θ and for the t-pendulum ψ . The undesired oscilla-
tion of the afa-system is the known wrist angle ψ . From θ ,
its numerical time derivative θ̇ and ω̂0, the energy equivalent
θE was computed.

8.2.2 Analysis of Effort Sharing

The energy flows of the agents were calculated based on
Ėi = f�

i ṙ i+t�i Ω i with i = 1, 2, interaction point rotational
velocities Ω i and t i ≈ 0 for the t-pendulum. The energy
contained in the object was calculated based on object height
yo and object twist ξ̇o = [ṙo, Ωo]�

E = mogyo + 1

2
ξ̇

�
o Moξ̇o. (41)

The mass matrix Mo ∈ R
6×6 is composed of a 3 × 3 diag-

onal matrix with the object mass mo as diagonal entries and
a 3 × 3 moment of inertia tensor Io. The t-pendulum object
moment of inertia Io was approximated as a cylinder with
uniform mass distribution of diameter do = 0.05m. For
the afa-system, we neglected energy contained in the rubber
bands and the aluminum bars attached to the force/torque
sensors and computed the energy contained in the aluminum
plate of mass mpl = 1.15 kg and thickness hpl = 0.012m
under the simplifying assumption of uniform mass distribu-
tion (see Fig. 13 for further dimensions). Above variables
are expressed in a fixed world coordinate system translated
such that yo = 0m for θ = ψ = 0◦. The energy contained
in undesired system oscillations ψ can be approximated
as Eψ ≈ E − Eθ .

8.3 Experimental Controller Evaluation for the
t-Pendulum

We present results for three t-pendulum experiments: maxi-
mum achievable energy (Sect. 8.3.1), active follower contri-
bution (Sect. 8.3.2) and excitation of undesiredψ-oscillation
(Sect. 8.3.3).

8.3.1 Maximum Achievable Energy (Robot Leader and
Passive Human)

The limitations of the controllerwith respect to the achievable
energy levels were tested with a robot leader A1 = R = L.
A human passively held the handle of agent A2 = H = P
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Fig. 14 Maximum achievable energies θdE for the t-pendulum: (a)
deflection angles and energy equivalents, (b) energies contained in the
t-pendulum and (c) contributed by the human and the robot (d) natural
frequency estimates. Vertical dashed lines mark settling times Ts. A
robot leader can reach deflection angles θ > 80◦ in interaction with a
passive human

in order to avoid extreme ψ-oscilla- tion excitation at high
energy levels due to a rigid fixed end. The t-pendulum started
from rest (θE (t = 0) ≈ ψE (t = 0) ≈ 0). The desired energy
level θdE was incrementally increased from 15 deg to 90 deg.
The desired relative energy contribution of the robot was
Γ d
R = 1.
The robot successfully controlled the t-pendulum energy

to closely follow thedesired referencedynamics (seeFig. 14).
The steady state error increasedwith higher desired energy

due to increased damping, e.g., e = 0.4◦ at θdE = 15◦ and
e = 8.2◦ at θdE = 90◦. The energy contained in the unde-
sired oscillation increased from ψE = 1.4◦ at θdE = 15◦ to
ψE = 15.6◦ at θdE = 90◦ and was, thus, kept in comparably
small ranges. With increased ψ-oscillation, the t-pendulum
behaves less simple pendulum-like, which also becomes
apparent in an increased difference between ϑr and θE . The
successful reference dynamics tracking and close estimate
ϑr ≈ θE for smaller and intermediate energy levels and the
closeω-estimation support the applicability of the fundamen-
tal dynamics (FD)-based leader controller.

8.3.2 Active Follower Contribution (Robot Follower and
Human Leader)

A robot follower A1 = R = F with Γ d
R = 0.5 interacted

with a human leader A2 = H = L. The t-pendulum started
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equivalents, (b) energies contained in the t-pendulum and contributed
by the human and the robot, (c) actual and estimated energy flows, (d)
natural frequency estimates. The vertical dashed line marks settling
time Ts

from rest (θE (t = 0) ≈ ψE (t = 0) ≈ 0). The human leader
was asked to first inject energy to reach θdE = 60◦, to hold
the energy constant and finally to release the energy from
the pendulum again. The desired energy limit was displayed
to the human via stripes of tape on the floor to which the
pendulum mass had to be aligned to at maximum deflection
angles.

The human–robot team successfully injected energy until
θdE = 60◦ was reached with e = 3◦ (see Fig. 15).
Similar to the simulations, the reference dynamics were
tracked with a delay. The undesired oscillation increased,
but did not exceed ψE = 10.4◦. The object energy flow
θ̇E highly oscillated, which is in accordance with the results
from human–human rigid object swinging [15]. The robot
successfully detected and imitated the object energy flow.
During the 20 s constant energy phase, the human com-
pensated for energy loss due to damping. The relative
energy contributions ΓRin = 0.35 and ΓRobj = 0.57
were close to the desired Γ d

R = 0.5. The follower con-
troller highly depends on the FD approximation. Thus,
the successful energy sharing between a human leader
and a robot follower further supports the efficacy of the
FD-based controllers to human–robot dynamic objectmanip-
ulation.

8.3.3 Excitation of Undesired ψ-Oscillation (Robot Leader
and Fixed End)

The pendulum mass was manually released in a pose with
high initial ψ-oscillation ψE (t = 0) = 29◦, but θE (t =
0) ≈ 0. A goal energy of θdE = 40◦ was given to the robot
leader A1 = R = L with Γ d

R = 1, while the handle of agent
A2 = 0 was fixed.

The robot identified the natural frequency of the ψ-
oscillation and tried to inject energy to reach the desired
amplitude of θdE = 40◦ (see Fig. 16). Thus, the robot failed
to excite the desired θ -oscillation and keep unwanted oscil-
lations in small bounds as defined in Sect. 3. However,
considering the controller implementation given in Fig. 8,
this experimental result supports the correct controller opera-
tion: the ω-estimation identified the frequency of the current
oscillation, here the undesired ψ-oscillation. Based on ω̂,
the leader controller was able to inject energy into the ψ-
oscillation; not enough to reach the desired amplitude of
θdE = 40◦, but enough to sustain the oscillation. Note that the
ψ-oscillation is highly damped, less simple pendulum-like
and in general more difficult to excite than the θ -oscillation.
Experiments with a controller that numerically differenti-
ates the projected deflection angle θ∗, instead of using the
observer, less accurately timed the energy injection. The
result was a suppression of the ψ-oscillation through nat-
ural damping until the θ -oscillation dominated ω̂ and θdE was
reached.

On the one hand side, this experiment supports the control
approach by showing that the controller is able to excite also

0

2(b)

E
[J

]

Eθ E ER

025150
4

8(c)

t [s]

ω
[r

ad
/s

]

ω̂ ω0

−40

0

40

(a)

θ,
ψ

[d
eg

]

θd
E

θ ψ ϑ θEref ϑr

Fig. 16 Strong initialψE for robot leader and fixed end: (a) deflection
angles and energy equivalents, (b) energies contained in the t-pendulum
and contributed by the robot, (c) natural frequency estimates. The robot
detected the natural frequency of the less simple pendulum-like ψ-
oscillation and sustained it
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less simple pendulum-like oscillations. On the other hand
side, this experiment reveals the need for a higher level entity
to detect failures aswhen thewrong oscillation is excited (see
the discussion in Sect. 9.1).

8.4 Experimental Controller Evaluation for the
afa-System

Joint velocity limitations of the KUKA LWR restricted us
to energies θdE ≤ 30◦ for the afa-system experiments. We
present experiments that investigate the maximum achiev-
able energy (Sect. 8.4.1) and active follower contribution
(Sect. 8.4.2).

8.4.1 Maximum Achievable Energy (Robot Leader and
Passive Human)

A robot leader A1 = R = L interacted with a passive human
leader A2 = H = P under the same conditions as for the t-
pendulum in Sect. 8.3.1.We incrementally increased θdE from
10 deg to 30 deg.

The robot leader closely followed the desired reference
dynamics and achieved small steady state errors, e.g., e =
−0.9◦ at θdE = 10◦ and e = −0.6◦ at θdE = 30◦ (see Fig. 17).
Undesired oscillations at the wrist stayed below ψE < 4.3◦.
The projection of the flexible object onto the abstract torque-
pendulum was performed based on the sum θ∗ = ψ + ρ
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Fig. 18 Robot follower cooperatively injecting energy into the flexible
object with a human leader: (a) deflection angles and energy equiva-
lents, (b) energies contained in the flexible object and contributed by
the human and the robot, (c) actual and estimated energy flows, (d)
natural frequency estimates. The energy contributions of the robot and
the human show similar characteristics. The vertical dashed linemarks
settling time Ts

and the simple pendulum observer. From Fig. 4 it seems
like the sum ψ + ρ overestimates the deflection angle at the
shoulder. However, the known wrist angle ψ only reflects
the orientation of the flexible object at the robot interaction
point. The flexibility of the object caused greater deflection
angles θ . Consequently, the abstract torque-pendulumenergy
equivalent ϑr closely followed the energy equivalent θE at
small energies, but underestimated θ for increased energies.
Nevertheless, the results are promising as they show that a
controlled swing-upwas achieved based on the virtual energy
ϑr of the abstract torque-pendulum.

8.4.2 Active Follower Contribution (Robot Follower and
Human Leader)

A robot follower A1 = R = F interacted with a human
leader A2 = H = L under the same conditions as for the t-
pendulum in Sect. 8.3.2. Due to the hardware limitations we
used θdE = 25◦, but chose a higher and thusmore challenging
desired relative energy contribution of the robot follower of
Γ d
R = 0.65.
The robot successfully imitated the object energy flow,

which led to human–robot cooperative energy injection to
θdE = 25◦ with small e = −0.9◦ (see Fig. 18). The human
first injected energy into the passive robot arm which is
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equivalent to the robot initially withdrawing some energy
from the object, before the robot can detect the object energy

increase. Therefore and due to the filtering for ˆ̇ϑr , the fol-
lower achieved only ΓRin = 0.22 and ΓRobj = 0.34, when
evaluated at Ts. However, the relative follower contribution
increased and reached, e.g.,ΓRin = 0.35 andΓRobj = 0.62 at
t = 11 s. Interestingly, the energy contribution of the human
and the robot were of similar shape, both for a robot follower
and a robot leader. Thus, the simple pendulum-like behavior
of the robot end effector allows to replicate humanwhole-arm
swinging characteristics.

9 Discussion

9.1 Embedding of Proposed Controllers in a Robotic
Architecture

One of themajor goals of robotics research is to design robots
that are able tomanipulate unknownobjects in a goal-directed
manner without prior model knowledge or tuning. Robot
architectures are employed to manage such complex robot
functionality [42]. These architectures are often organized in
three layers: the lowest layer realizes behaviors which are
coordinated by an intermediate executive layer based on a
plan provided by the highest layer. In this work, our focus
is on the lowest layer: the behavior of cooperative energy
injection into swinging motion, which is challenging in itself
due to the underactuation caused by the multitude of DoFs
of the pendulum-like and flexible objects. On the behavioral
layer, we use high-frequency force and torque measurements
to achieve continuous energy injection and robustness with
respect to disturbances. The controllers presented implement
the distinct roles of a leader and a follower. As known from
human studies, humans tend to specialize, but do not rigidly
stick to one role and continuously blend between leader and
follower behaviors [40]. Role mixing or blending would be
triggered by the executive layer. The executive layer would
operate at a lower frequency and would have access to addi-
tional sensors as, e.g., a camera that allows to monitor task
execution. Based on the additional sensor measurements,
exceptions could be handled (e.g., when a wrong oscillation
degree of freedom is excited as in Sect. 8.3.3), the required
swinging amplitude θdE could be set and behavior switching
could be triggered (e.g., from the object swing-up behavior
to an object placement behavior).

Furthermore, additional object specific parameters could
be estimated on the executive layer, as, e.g., damping
or elastic object deformation. The fundamental dynamics
(FD) approach does not model damping, and consequently
ΓRobj ≈ Γ d

R indicates that the controller exhibits the desired
behavior. However, that also means that ΓRin < Γ d

R , because

the leader compensates for damping. As all realistic objects
exhibit non negligible damping, an increased robot contribu-
tion during swing-up can be achieved by increasing Γ d

R . The
desired relative energy contribution Γ d

R could thus serve as a
single parameter that could, for instance, be adjusted online
by the executive layer to achieve a desired robot contribution
to the swing-up. Alternatively to an executive layer, a human
partner could adjust a parameter as Γ d

R online to achieve
desired robot follower behavior and could also assure exci-
tation of the desired oscillation.

9.2 Generalizeability

The main assumption made in this work is that the desired
oscillation is simple pendulum-like. Based on this assump-
tion, the proposed approach is generalizable in the sense that
it can be directly applied to the joint swing-up of unknown
objects without parameter tuning5 (see video with online
changing flexible object parameters in Online Resource 2).
We regard the case of a robotic follower interacting with a
human leader as an interesting and challenging scenario and
therefore presented our method from the human–robot coop-
eration perspective. Nevertheless, the proposed method can
also directly be employed for robot-robot teams or single
robot systems as, e.g., quadrotors and can also be used to
damp oscillations instead of exciting them. The task of joint
energy injection into a flexible bulky object might appear to
be a rare special case. However, it is a basic dynamic manip-
ulation skill that humans possess and should be investigated
in order to equip robots with universal manipulation skills.

We see the main take away message for future research
from this work in the advantage of an understan- ding of
the underlying FD. Based on the FD that encodes desired
behavior, simple adaptive controllers can be designed and
readily applied to complex tasks even when task parameters
change drastically, as, e.g., when objects of different dimen-
sions have to be manipulated.

9.3 Dependence of Robot Follower Performance on the
Human Interaction Partner

Performance measures as settling time Ts and steady state
error e strongly depend on the behavior of the human partner.
The robot follower is responsible for the resultant effort shar-
ing. Ideally, the robot follower contributes with the desired
fraction to the current change in object energy at all times
ϑ̇r,R = Γ d

R ϑ̇r . Necessary filtering and the approximations

5 Parameters were set once based on theoretic results (Tω , ω̂(t = 0)) or
according to their physical meaning, i.e. they resemble filter coefficients
(TF , DF , c0, ζ , l1), the human-like arm dynamics of the afa-system
(Iρ/ψ , dρ/ψ , kψ ,ma, la) or define desired leader/follower behavior (Kd,
ΓL/F ).
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made by the FD do result in a delayed follower response
and deviation from Γ d

R . However, for the follower, we do not
make any assumptions on the way how humans inject energy
into the system, e.g., we do not assume that human leaders
follow the desired reference dynamics that we defined for
robot leaders. This is in contrast to our previous work [13],
where thresholdswere tunedwith respect to human swing-up
behavior and the follower required extensive model knowl-
edge to compute the energy contained in the oscillation. For
demonstration purposes,we aimed for a smooth energy injec-
tion of the human leader for the experiments presented in the
previous section. Energy was not injected smoothly to match
modeled behavior, but only to enable the use of measures as
the relative energy contribution at the settling time for effort
sharing analysis.

9.4 Alternatives to Energy-Based Swing-Up Controllers

Energy-based controllers as [48] are known to be less
efficient than, e.g., model predictive control (MPC)-based
controllers [31].MPC can improve performance with respect
to energy and time needed to reach a desired energy content.
However, in this work, we do not aim for an especially effi-
cient robot controller, but for cooperative energy injection
into unknown objects. Use of MPC requires a model, includ-
ing accurate mass and moment of inertia properties. Use of
the energy-based controller of [48] allows to derive the FD
as an approximate model. The FD reduces the unknowns to
the natural frequency ω and moment of inertia estimate Iϑ
for the afa-system, which can be estimated online. Design of
a follower controller is only possible, because the FD allows
for a comparison of expectation to observation. How to for-
mulate the expectation for anMPC-based approach is unclear
and would certainly be more involved. The great advantage
of the FD -based approach lies in its simplicity.

9.5 Alternative Parameter Estimation Approaches

In this work, the goal of a leader controller is to track desired
reference dynamics. Such behavior could also be achieved
by employing model reference adaptive control (MRAC) [2]
or by employing filters to compare applied amplitude factors
a to the achieved energy increase to estimate the unknown
FD parameter B. The disadvantage of MRAC and other
approaches is that they need to observe the system energy
ϑr online to estimate the system constant B. Having more
than one agent interacting with the system does not only
challenge the stability properties of MRAC, but also makes
it impossible to design a follower that requires B̂ to differ-
entiate between its own and external influence on ϑr .

The FD approximates the system parameter B by its
mean, while the true value oscillates. The mean parameter
B depends on the natural frequency ω, which can be approx-

imated by observing the phase angleϕ. Because the FD states
ϑr and ϕ are approximately decoupled, reference dynam-
ics tracking and energy flow imitation can be achieved for
unknown objects.

The natural frequency ω could also be estimated by
observing the time required by a full swing. Decrease of the
observation period yields the continuous simple low-pass fil-
ter used in this article. Alternatively, the desired circularity
of the phase space could be used to employ methods such as
gradient descent [37] or Newton Raphson to estimate ω. We
chose the presented approach for its continuity and simplic-
ity, as well as its stability properties with respect to the FD
assumption.

9.6 Stability of Human–Robot Object Manipulation

We proved global stability of the presented control approach
for the linear FD. Stability investigations of the human–robot
flexible object manipulation face several challenges. Firstly,
dynamic models of the complex t-pendulum and afa-system
would be required. Furthermore, the human interaction part-
ner acts as a non-autonomous and non-reproducible system
that is difficult to model and whose stability cannot be
analyzed based on common methods [5]. In [23], Hogan
presents results that indicate that the human arm exhibits the
impedance of a passive object; however, this result cannot be
directly applied to show stabilization of limit cycles, as the
simple pendulum oscillation in this work, for a passivity-
based stability analysis [24]. A stability analysis of the
simpler, but nonlinear abstract simple pendulums requires a
reformulation of the system dynamics in terms of the errors
Δω̂ = ω − ω̂ and ΔϑE = ϑd

E − ϑE . The lack of analytic
solutions for ω(ϑE ) [6] and ϑ(ϑE , ϕ) (see Sect. 4.4) impede
the derivation of above error dynamics.

As our final goal is cooperative dynamic human–robot
interaction, we refrained from further stability investigations
in this paper and focused on simulation- and experiment-
based analyses. The simulations and human–robot experi-
ments suggest that the domain of attraction of the presented
FD-based controllers is sufficiently large to allow for coop-
erative energy injection into nonlinear high energy regimes.

10 Conclusions

This article presents a control approach for cooperative
energy injection into unknown flexible objects as a first step
towards human–robot cooperative dynamic object manip-
ulation. The simple pendulum-like nature of the desired
swinging motion allows to design adaptive follower and
leader controllers based on simple pendulum closed-loop
fundamental dynamics (FD). We consider two different
systems and show that their desired oscillations can be
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approximated by similar FD. Firstly, a pendulum-like object
that is controlled via acceleration by the human and the robot.
Secondly, an oscillating entity composed of the agents’ arms
and a flexible object that is controlled via torque at the agents’
shoulders. The robot estimates the natural frequency of the
system and controls the swing energy as a leader or follower
from haptic information only. In contrast to a leader, a fol-
lower does not know the desired energy level, but actively
contributes to the swing-up through imitation of the sys-
tem energy flow. Experimental results showed that a robotic
leader can track desired reference dynamics. Furthermore,
a robot follower actively contributed to the swing-up effort
in interaction with a human leader. High energy levels of
swinging amplitudes greater than 80◦ were achieved for the
pendulum-like object. Although joint velocity limits of the
roboticmanipulator restricted swinging amplitudes to 30◦ for
the “arm—flexible object—arm” system, the experimental
results support the efficacy of our approach to human–robot
cooperative swinging of unknown flexible objects.

In future work, we want to take a second step towards
human–robot cooperative dynamic object manipulation by
investigating controlled object placement as the phase fol-
lowing the joint energy injection. Furthermore, we are inter-
ested in applying the presented technique of approximating
the desired behavior by its FD to differentmanipulation tasks.
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Appendix A Derivation of the Fundamental
Dynamics

Application of the following three steps yields the dynamics
of the abstract cart- and torque-pendulums (4), (5) in terms
of the polar states xp:

S1 Differentiation of (10) and (15) with respect to time
S2 Insertion of the cartesian state dynamics (4) and (5)

S3 Substitution of remaining cartesian states through polar
states (16)

Step S1 applied to the phase angle ϕ requires the time
derivative of the atan2-function, which is

d

dt
atan2(y, x) = −y dx

dt + x dy
dt

x2 + y2
. (42)

We get

ϕ̇
S1=Ωϑ̇2 − Ωϑϑ̈

Ω2ϑ2 + ϑ̇2

S2=Ωϑ̇2 + Ωω2
0ϑ sin ϑ − Ωϑ A

Ω2ϑ2 + ϑ̇2

S3=Ω sin2 ϕ + ω2
0

Ωϑr
cosϕ sin(ϑr cosϕ)

− 1

Ωϑr
cosϕA, (43)

ϑ̇r
S1= Ω2ϑϑ̇ + ϑ̇ ϑ̈

Ω
√

Ω2ϑ2 + ϑ̇2

S2=Ω2ϑϑ̇ − ω2
0ϑ̇ sin ϑ + ϑ̇ A

Ω
√

Ω2ϑ2 + ϑ̇2

S3= − Ωϑr sin ϕ cosϕ + ω2
0

Ω
sin ϕ sin(ϑr cosϕ)

− 1

Ω
sin ϕA, (44)

with actuation terms A = Ar̈ for the abstract cart-pendulum

Ar̈
S3= −ω2

0

g
cos(ϑr cosϕ)

r̈1 + r̈2
2

(45)

and A = At for the abstract torque-pendulum

At = 1

Iϑ

ts,1 + ts,2
2

. (46)

The resultant state space representations are control affine
and coupled

ẋp = f p(xp) + gp(xp)u, (47)

with control input u := A.
Insertion of the control laws (12) and (13) into A = Ar̈

and A = At in (47) yield the state space representations with
new inputs a1 and a2 of the form

ẋp = f p(xp) + a gp(xp)
a1 + a2

2
. (48)

Application of the following three steps to the state space
representation (48) yields the fundamental dynamics (17):
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S4 Approximations through 3rd order Taylor polynomials:

sin x ≈ x − x3

3! , cos x ≈ 1 − x2

2!
S5 Use of trigonometric identities:

sin2 x + cos2 x = 1, sin(2x) = 2 sin x cos x,

cos(2x) = cos2 x − sin2 x

And deduced from above:

sin2 x = 1

2
− 1

2
cos(2x), cos2 x = 1

2
+ 1

2
cos(2x)

S6 Neglect of higher harmonics, e.g. sin(2x) ≈ 0, cos(4x)
≈ 0

Use of the actual natural frequency for normalization of the
phase space Ω = ω reduces the error caused by the approx-
imations ϑE ≈ ϑr .

Phase dynamics ϕ̇:

fp,1
Ω=ω= ω sin2 ϕ + ω2

0

ωϑr
cosϕ sin(ϑr cosϕ)

S4≈ω sin2 ϕ + ω2
0

ωϑr
cosϕ

(
ϑr cosϕ − ϑ3

r cos
3 ϕ

6

)

S5=ω

(
1

2
− 1

2
cos(2ϕ)

)
+ ω2

0

ω

[ (
1

2
+ 1

2
cos(2ϕ)

)

−ϑ2
r

6

(
1

2
+ 1

2
cos(2ϕ)

)2
]

S5,6≈ ω

(
1

2

)
+ ω2

0

ω

[(
1

2

)
− ϑ2

r

6

(
1

4
+ 1

2
cos(2ϕ)

+1

4

(
1

2
+ 1

2
cos(4ϕ)

))]

S6≈1

2
ω + ω2

0

ω

[
1

2
− ϑ2

r

6

(
1

4
+ 1

8

)]

=1

2
ω + 1

2ω
ω2
0

(

1 − 1

2

(
ϑr

2

)2
)

S4−1

≈ 1

2
ω + 1

2ω
ω2
0

(
cos

(
ϑr

2

))

ωg≈ 1

2
ω + 1

2ω
ω2
g

ωg≈ω≈ ω, (49)

with “S4−1” indicating application of the 3rd order Taylor
approximation in reverse direction and insertion of the geo-
metric mean approximation (9) withϑE ≈ ϑr in the last step.
For agp,1, the approximation steps S4 to S6 as detailed in (49)
yield agp,1 ≈ 0, independent of the actuation terms Ar̈ and

At . Consequently, the phase dynamics for the abstract cart-
and torque-pendulums result in ϕ̇ ≈ ω.

Energy dynamics ϑ̇r : Similar to agp,1, the approximation
steps S4 to S6 result in fp,2 ≈ 0. The remaining term agp,2
simplifies for the abstract cart-pendulum to

agp,2,r̈
Ω=ω= ω2

0ω

g
sin2 ϕ cos(ϑr cosϕ)

S4≈ω2
0ω

g
sin2 ϕ

(
1 − 1

2
ϑ2
r cos

2 ϕ

)

S5=ω2
0ω

g

(
1

2
− 1

2
cos(2ϕ)

)

[
1 − ϑ2

r

2

(
1

2
+ 1

2
cos(2ϕ)

)]

=ω2
0ω

g

[(
1

2
− 1

2
cos(2ϕ)

)

−ϑ2
r

2

(
1

4
− 1

4
cos2(2ϕ)

)]

S5,6≈ ω2
0ω

g

[(
1

2

)
− ϑ2

r

2

(
1

4
− 1

8

)]

=ω2
0ω

2g

(

1 − 1

2

(
ϑr

2

)2
)

S4−1

≈ ω

2g
ω2
0

(
cos

(
ϑr

2

))

ωg≈ ω

2g
ω2
g

ωg≈ω≈ 1

2g
ω3 = Br̈ . (50)

As for (49), we applied a reverse 3rd order Taylor approxima-
tion (S4−1) and inserted the geometric mean approximation
of the natural frequency ωg in (9).

For the abstract torque-pendulum we get

agp,2,t = 1

ωIϑ
sin2 ϕ

S5,6≈ 1

2ωIϑ
=: Bt . (51)

Thus, the fundamental energy dynamics linearly depends
on the amplitude factors ϑ̇r ≈ B a1+a2

2 . The result are the
fundamental dynamics in (17).

Appendix B Stability of the ω-Estimation

For an approximately constant natural frequency ω we have
ϕ(t) = ωt , where we set ϕ(t = 0) = 0 without loss of
generality (see (11)). This yields the modified state transfor-
mations ϑ = ϑr cos(ωt) and ϑ̇ = −ϑrω sin(ωt) compared
to (16), and the phase computation results in
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ϕ = atan2

(
− ϑ̇

ω̂
, ϑ

)
= atan2

(ω

ω̂
sin(ωt), cos(ωt)

)
, (52)

which is independent of ϑr . Consequently, the natural fre-
quency estimation in Fig. 6 has one input, the natural
frequency ω, and one output, the estimate ω̂. Note that we
assume ω to be known only for the stability analysis, but not
for the implementation displayed in Fig. 6.

In a next step, we derive the estimation dynamics in terms
of its input ω and output ω̂. Differentiation of (52) with
respect to time yields

ϕ̇
(42)=

ω2

ω̂
sin2(ωt) + cos(ωt)

(
ω2

ω̂
cos(ωt) − ω

ω̂2
˙̂ω sin(ωt)

)

ω2

ω̂2 sin
2(ωt) + cos2(ωt)

cos−2(ωt)=
ω2

ω̂
tan2(ωt) + ω2

ω̂
− ω

ω̂2 tan(ωt) ˙̂ω
1 + ω2

ω̂2 tan2(ωt)
. (53)

Transformation of (19) into time domain yields

˙̂ω = − 1

Tω

(ω̂ − ϕ̇). (54)

Insertion of (54) solved for ϕ̇ into (53), followed by some
rearrangements yields the ω-estimation dynamics

˙̂ω = ω̂ω2 − ω̂3

Tωω̂2+ω tan(ωt) + Tωω2 tan2(ωt)
. (55)

Because ω is bounded and constant, it suffices to show
stability of the estimation error dynamics ˙̃ω = ˙̂ω − ω̇ = ˙̂ω.
As Lyapunov function we choose

V = 1

2

(
ω̂ − ω

)2 (56)

with time derivative

V̇ = −ω̂(ω̂ − ω)2(ω̂ + ω)

Tωω2 tan2(ωt)+ω tan(ωt) + Tωω̂2
. (57)

For the numerator of (57) holds that−ω̂(ω̂−ω)2(ω̂+ω) ≤ 0
if sgn(ω) = sgn(ω̂). The denominator is a quadratic function
of tan(ωt), with −∞ < tan(ωt) < ∞. From Tωω2 > 0 we
deduce that the denominator with tan(ωt) = x is a convex
parabola. Therefore, we have a positive denominator, if the
discriminant D is negative, i.e.

D = ω2 − 4Tωω2Tωω̂2 < 0 ⇒ Tω >
1

2ω̂
. (58)

Condition (58) depends on the natural frequency estimate
ω̂, which varies over time. Because we are estimating the
natural frequency of a pendulum under the influence of grav-
ity, only positive values are physically plausible ω > 0.

For Tω > 1
2ω̂(t=0) and ω �= ω̂(t = 0) > 0, we have

sgn(ω) = sgn(ω̂(t = 0)) and V̇ (t = 0) < 0 and ω̂ ini-
tially approaches ω. If further Tω > 1

2ω , V̇ (t ≥ 0) < 0 as
long as ω �= ω̂ and (58) can be rewritten as

Tω > max

(
1

2ω̂(t = 0)
,
1

2ω

)
. (59)

Thus, if (59) holds, the ω-estimation is asymptotically stable
under the fundamental dynamics assumption. This proves
convergence of the estimate ω̂ to the true valueω for a linearly
oscillating pendulum.

Appendix C Transfer Functions of
Leader–Follower Structures

Rearrangement of the block diagram in Fig. 7 leads to the
block diagram displayed in Fig. 19. The highlighted inter-
mediate transfer function Gfi

1 is

Gfi
1 =

1
s

1 − 1
s ΓF B

B̂F
s

TF s+1

. (60)

Based on (60) the reference input transfer function ϑr (s) =
Gfi(s)θdE (s) results in (27).

For the computation of the relative follower contribu-
tion ΓF , consider the block diagram rearrangement in
Fig. 20. From Fig. 20 with

Gfi
2 = 1

1 − Γ d
F

B
B̂F

1
TF s+1

, (61)

we can compute the transfer function which yields the
amount of energy the leader contributes ϑrL(s) based on
the reference input θdE (s)

Gfi
L =

Γ d
LKd

B
B̂L

(
s + 1

TF − Γ d
F

B
B̂F

1
TF

)

s2 +
(

1
TF − Γ d

F
B
B̂F

1
TF + Γ d

LKd
B
B̂L

)
s + Γ d

LKd
B
B̂L

1
TF

.

(62)

Gfi
1

Γd
LKd

B
B̂L

Γd
F

B
B̂F

s
TFs+1

1
s

θd
E ϑ̇r ϑr

Fig. 19 Rearranged block diagram for the computation of the transfer
function Gfi(s): ϑr (s) = Gfi(s)θdE (s)
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Gfi
2

Gfi
2

ΓLKd
B

B̂L

ΓLKd
B

B̂L

ΓF B
B̂F

s
TFs+1

1
s

1
s

1
s

θd
E

θd
E

ϑr,L

ϑr,L

ϑr

ϑr

Fig. 20 Rearranged block diagram for the computation of the energy
contributed by the leader ϑr,L = Gfi

L(s)θdE (s)

FromϑrF (s) = ϑr (s)−ϑrL(s) = Gfi(s)θdE (s)−Gfi
L(s)θdE (s)

with (27) and (62) we get Gfi
F (s) = Gfi(s) − Gfi

L(s) in (28).
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