
Impact of land-use intensity on the relationships
between vegetation indices, photosynthesis and
biomass of intensively and extensively managed
grassland fens

C. M. H. Metzger*,†, J. Heinichen*,†, T. Eickenscheidt*,† and M. Dr€osler*

*Vegetation Ecology, University of Applied Sciences Weihenstephan-Triesdorf (HSWT), Freising, Germany,

†Restoration Ecology, Technical University of Munich (TUM), Freising, Germany

Abstract

Vegetation indices are widely used as model inputs

and for non-destructive estimation of biomass and

photosynthesis, but there have been few validation

studies of the underlying relationships. To test their

applicability on temperate fens and the impact of

management intensity, we investigated the relation-

ships between normalized difference vegetation index

(NDVI), leaf area index (LAI), brown and green

above-ground biomass and photosynthesis potential

(PP). Only the linear relationship between NDVI and

PP was management independent (R2 = 0�53). LAI to

PP was described by a site-specific and negative loga-

rithmic function (R2 = 0�07–0�68). The hyperbolic rela-

tionship of LAI versus NDVI showed a high residual

standard error (s.e.) of 1�71–1�84 and differed between

extensive and intensive meadows. Biomass and LAI

correlated poorly (R2 = 0�30), with high species-speci-

fic variability. Intensive meadows had a higher ratio of

LAI to biomass than extensive grasslands. The fraction

of green to total biomass versus NDVI showed consid-

erable noise (s.e. = 0�13). These relationships were rel-

atively weak compared with results from other

ecosystems. A likely explanation could be the high

amount of standing litter, which was unevenly dis-

tributed within the vegetation canopy depending on

the season and on the timing of cutting events. Our

results show there is high uncertainty in the applica-

tion of the relationships on temperate fen meadows.

For reliable estimations, management intensity needs

to be taken into account and several direct measure-

ments throughout the year are required for site-speci-

fic correction of the relationships, especially under

extensive management. Using NDVI instead of LAI

could reduce uncertainty in photosynthesis models.
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Introduction

Vegetation characteristics and productivity are impor-

tant inputs for various statistical (empirical) as well as

process-oriented models, leading to an increasing

demand for non-destructive measurement methods

and estimations on a national or global scale. Several

methods have been developed and are widely used to

estimate vegetation characteristics from optical mea-

surement methods in the field and from satellite data,

but these methods have not been validated suffi-

ciently. The relationships between the indices and

vegetation characteristics are known to be ecosystem

specific (Knyazikhin et al., 1998). Investigations of

these relationships on both intensively and extensively

managed temperate fen grasslands are, to our knowl-

edge, still lacking. Grassland is the most common

land-use type on peatlands in Central Europe. Its car-

bon balance is extremely important in the context of

greenhouse gas mitigation due to its role in carbon

sequestration and its potential for high carbon dioxide

(CO2) emissions (Dr€osler et al., 2008). Non-destructive

estimations of vegetation characteristics can help to

improve understanding and modelling of the carbon

balance of these ecosystems. In this study, we there-

fore investigated the relationships between common

vegetation indices and vegetation characteristics
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including biomass on managed grasslands in a temper-

ate fen.

Vegetation indices and plant characteristics are very

important for ecosystem and carbon models. This

importance is due to the various functionalities of the

plant for many processes; for example, leaf area index

(LAI) or amount of biomass affects plant respiration

(De Vries, 1975), evapotranspiration (Leuning et al.,

2008), microclimate (Peacock, 1975), temperature iso-

lation between soil and atmosphere (K€atterer and

Andr�en, 2009) and the amount of litter and root exu-

dates, which provide fresh substrate for decomposers

(Kuzyakov et al., 2000). The potential of the plant to

absorb radiation is a key component for modelling

photosynthesis (Monteith, 1972) and this is related to

greenness indices like the normalized difference

vegetation index (NDVI; Gamon et al., 1995). Plant

biomass provides a measure of actual accumulated

photosynthetic net production (Monteith, 1972). The

importance of LAI has been emphasized in plant pro-

ductivity models (Cowling and Field, 2003). LAI might

also be an important parameter for empirical models:

for example, maximum LAI could explain, to a large

extent, the between-site variability in annual gross

primary production (GPP) and net ecosystem

exchange (NEE) of twelve northern peatlands (Lund

et al., 2009) and eight forests (Lindroth et al., 2008).

Optical vegetation indices are usually much less

expensive and are easier to measure compared with

more direct variables like carbon uptake. NDVI is

directly calculated from spectral reflectance in differ-

ent wavebands and is therefore available on a global

scale from satellite images. LAI can be estimated by

direct and indirect techniques (methods are reviewed

in Breda, 2003; Jonckheere et al., 2004). Direct mea-

surements are destructive and workload intensive, but

allow the measurement of the green (photosyntheti-

cally active) plant parts [referred to subsequently as

green area index (GAI)]. An easy-to-measure and

commonly used indirect method is the determination

of LAI using a ceptometer to measure the light trans-

mission through a canopy, which also includes dead

and senescent (brown) above-ground parts of the veg-

etation [referred to subsequently as plant area index

(PAI)]. Plant area divided by the plant weight is

referred to as specific plant area (SPA). An indirect

method for providing GAI on larger scales is to calcu-

late it from satellite-derived indices like NDVI (Rossini

et al., 2012). NDVI has been shown to be related to

photosynthesis (Gianelle et al., 2009), biomass (Ves-

covo et al., 2012) and fraction of green to total bio-

mass (green ratio; Gianelle and Vescovo, 2007). These

dependencies are, however, known to be specific to

particular biomes (Heinsch et al., 2006), plant species

and vegetation types (Anderson, 1995; Wilson et al.,

2007), and also to plant architecture and soil (Darvish-

zadeh et al., 2008) and site conditions (Kross et al.,

2013). Therefore, shape parameters of the relation-

ships need to be developed, and the dependencies

need to be validated for each ecosystem type.

Many studies have investigated dependencies

between satellite-derivable vegetation indices and

plant characteristics or photosynthesis for different

types of grasslands (Fan et al., 2009; Wohlfahrt et al.,

2010) and also on northern peatlands (Kross et al.,

2013), but few such studies have included nutrient-

rich wetlands (Rendong and Jiyuan, 2002). There are,

to our knowledge, no reported investigations of these

relationships for managed temperate grassland fen, a

class of vegetation communities that are characterized

by having greater productivity than boreal peatlands

but are usually less intensively managed than many

types of grasslands on mineral soils. The carbon bal-

ance and, consequently, the relationships between

vegetation indices and biophysical vegetation charac-

teristics such as input for carbon models and statistical

analysis are of extraordinary importance on managed

grassland fens, as they have potential to be hot spots

for greenhouse gas emissions, depending on their land

use and drainage intensity (Dr€osler et al., 2008).

Plant communities and different species vary in

their spectral reflectance (Anderson, 1995) and tempo-

ral patterns in reflectance (Gamon et al., 1995). Man-

agement affects plant productivity and plant

community composition through harvest, nutrient

input and drainage (Wedin, 1996) and is therefore

expected to have an impact on reflectance indices like

NDVI and its relation to different vegetation character-

istics. Extensively managed meadows, in particular,

can have large amounts of standing litter which can

alter the biophysical interpretation of vegetation

indices (van Leeuwen and Huete, 1996). Further, they

host species that have differences in leaf greenness. It

was expected that this would affect the relationships

between different vegetation characteristics and opti-

cally derived indices.

The objective of this study was to investigate the

impact of management intensity on the relationships

between vegetation indices and vegetation characteris-

tics including potential photosynthesis (PP) on temper-

ate grassland fens. Specifically, we wanted to test the

potential to use:

• NDVI as a proxy for PP, LAI, biomass and green

ratio; and

• PAI and GAI as a proxy for biomass and PP.

Accordingly, we investigated biomass, LAI, PP and

ground-measured and satellite-derived NDVI at five

selected meadows with different management regimes

in a fen in southern Germany.
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Methods

Site description

The Freisinger Moos (48°220N, 11°400E; elevation

449 m a.s.l.) is a groundwater-fed fen in southern

Germany, located between the River Isar in the south

and a hilly area on its northern boundary (Schober

and Stein, 2008). Maximum peat depths reach 7 m

(Schober and Stein, 2008). The peatland extends over

an area of 1030 ha. The main land-use type is grass-

land (66%), with 60% intensively managed with up

to four cuts per year, while 4% consists of protected

biotopes (Schober and Stein, 2008).

Five sites were selected on several land parcels of

different management intensity, ranging from three

cuts per year and a fertilization rate of up to

252 kg N ha�1 year�1, to extensively managed grass-

lands, including protected biotopes that have only one

management cut every second year in late autumn

and no fertilization (Table 1). Two of the sites that

clearly differed in their vegetation composition were

located on the same parcel (E3).

Each site consisted of gas-measurement plots and a

small area outside the plots (vegetation patch) where

all other variables were sampled. The vegetation

patches were necessary because the chamber plots

were surrounded by boardwalks and storage for cham-

bers and other instruments, and the presence of these

could have biased the satellite NDVI. Further, the veg-

etation around the chamber plots was kept short for

easy handling of the chamber, and the 3-cm-high soil

Table 1 Characteristics of sites with available gas flux measurements.

Parcel Management

Mean water

table (cm)

Dominant vegetation in June 2012

at the chamber plots Comment

E1 Natural monument,

water level restored, 1

cut every second year

during late autumn

�11 Carex panicea (43%), Allium suaveolens

(9%), Potentilla erecta (4%), Schoenus

ferrugineus (4%), Phragmites australis

(4%), Cirsium palustre (2%)

Two sites with slightly different

elevation, but no clear difference

in vegetation. The mean of both

sites was used

E2 Protected biotope,

drained, 1 cut per year

during late autumn

�32 Filipendula ulmaria (30%), Poa

pratensis (20%), Anthoxanthum

odoratum (17%), Galium mollugo

(11%), Carex nigra (7%), Luzula

campestris (5%), Cirsium oleraceum

(3%), Peucedanum palustre (3%),

Rumex acetosella (2%), Cerastium

holosteoides (2%)

Four sites with water and

temperature manipulation, but

only the control site was used

E3a Hay meadow, drained,

1 cut per year during

summer

�25 Anthoxanthum odoratum (40%), Carex

nigra (40%), Plantago lanceolata

(5%), Ajuga reptans (3%), Galium

mollugo (2%), Rumex acetosella (2%)

Same parcel as E3b, but clearly

different vegetation

E3b Hay meadow, drained,

1 cut per year during

summer

�20 Carex vesicaria (87%), Galium

uliginosum (3%), Alopecurus pratensis

(2%), Poa trivialis (2%), Phragmites

australis (2%)

Same parcel as E3a, but clearly

different vegetation

I1 Intensive meadow, 2–3 cuts

per year, drained,

fertilized with

50 kg N ha�1 year�1

�21 Poa trivialis (43%), Ranunculus repens

(20%), Trifolium pratense (17%),

Alopecurus pratensis (8%), Festuca

pratensis (4%)

GPP data not available in 2011

I2 Intensive meadow, 2–3 cuts

per year, drained,

fertilized with

110 kg N ha�1 year�1

�57 Dactylis glomerata (29%), Poa trivialis

(26%), Lolium perenne (14%),

Taraxacum officinalis (8%), Cerastium

holosteoides (4%), Galium mollugo

(4%), Alopecurus pratensis (4%),

Trifolium pratense (4%)

Four sites differing in fertilization,

but only the control site was used

I3 Intensive meadow, 3 cuts per

year, drained, fertilized

181 kg year�1

�41 Alopecurus pratensis (63%), Poa trivialis

(29%)

Four sites with water and

temperature manipulation, but

only the control site was used
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collars of the chamber plots can bias the ceptometer

measurements. The patches were selected to represent

similar vegetation to that in the plots. They were

located at a distance of at least 5 m from the cham-

ber-site areas and had a minimum size of 50 m2. Due

to high spatial variability in the vegetation on exten-

sive meadows, some additional patches were selected

that did not represent a chamber site, but included

other dominant vegetation types on the parcel. Mea-

surements of PAI and NDVI were recorded in the

patches and additionally in the chamber plots, but val-

ues from the plots were only used for correlations

with PP.

Measurements

Photosynthesis

Flux sampling campaigns were performed during 2010

and 2011 (for site I1, only in 2010) according to the

methods described by Eickenscheidt et al. (2015). NEE

and ecosystem respiration were measured with trans-

parent and opaque chambers (closed dynamic manual

chamber system) at three replicated plots of

75 cm 9 75 cm on each site under clear sky condi-

tions. CO2 fluxes, photosynthetically active radiation

(PAR) and soil temperatures were sampled repeatedly

from sunrise to late afternoon to cover the full range

of these parameters in the course of the day. CO2

fluxes were derived from CO2 concentrations and

were measured with infrared gas analysers (LI-820,

LI-COR, Lincoln, NE, USA). For each site and each

sampling day, a temperature-dependent ecosystem

respiration model was calculated according to Lloyd

and Taylor (1994). Modelled respiration was then sub-

tracted from measured NEE to obtain GPP. A GPP

model based on a Michaelis–Menten-type rectangular

hyperbolic function as proposed by Falge et al. (2001)

was fitted for each measurement day. From the GPP

model, the photosynthesis at a theoretical photosyn-

thetic photon flux density (PPFD) of 2000 lmol

m�2 s�1 was derived. This corresponds to the photo-

synthesis potential (PP) of the plant in its current

developmental stage at the specified light level and

was used in all comparisons with vegetation indices.

We followed the atmospheric sign convention in

which a negative sign indicates CO2 uptake.

Satellite NDVI

From April 2010 until November 2011, a total of

twenty-three RapidEye images of Level 3A were pro-

vided by the RapidEye Science Archive Project (RESA,

2016) with a spatial resolution of 5 m, with sixteen

images from 2011. Geometric and atmospheric correc-

tion was performed using ATCOR 3 implemented in

PCI Geomatica 10.3, as described by Elatawneh et al.

(2013). Only cloud-free pixels were taken into

account. Values within 3 d after harvest were not

included to avoid effects from hay drying on the fields.

The normalized difference vegetation index was calcu-

lated in ArcGis (ESRI) version 10.2.0.3348 by the

equation:

NDVI ¼ RNIR � RRED

RNIR þ RRED

ð1Þ

where RNIR and RRED indicate the reflectance in the

near-infrared (760–850 nm, channel 5) and the red

(630–685 nm, channel 3) wavebands respectively. For

comparisons with PP, NDVI values were gap-filled by

linear interpolation between two consecutive mea-

surements if no harvest or year shift occurred.

Ground NDVI and PAI

Sampling campaigns for NDVI and PAI were per-

formed every 2–4 weeks between April 2011 and July

2012. Samples were taken less frequently at those

vegetation patches that did not represent a gas flux

measurement site. At each sampling day, NDVI and

PAI were measured at five randomly selected loca-

tions per vegetation patch and on each of the three

chamber plots per flux measurement site. Measures

of NDVI and PAI and biomass samples were taken

from the same spots in the vegetation patches. Three

replicated measurements were taken for LAI and

NDVI at each spot, and resulting values were aver-

aged. Measurements were performed within 3�5 h

(2�5 in winter) on either side of solar noon under

clear sky conditions. PP and satellite-derived NDVI

were often sampled on different dates. Therefore,

NDVI and LAI values were linearly interpolated

between each pair of measurement points to match

the dates of PP sampling. In cases of harvest or year

shift between two measurement points, the data were

excluded.

Ground-based NDVI was sampled using a handheld

spectroradiometer with two four-channel sensors

(SKR 1850; Skye Instruments Ltd, Powys, UK) simul-

taneously measuring incident and reflected light in

the same wavebands as RapidEye for the red and the

near-infrared channel. The sensor was held 160 cm

above the soil to capture a surface with a diameter of

70 cm to fit the dimensions of the chamber plots. In

these plots, the pole on which the sensors were

mounted was placed on a marked position, to ensure

that the white soil frames for the chambers were not

inside the captured surface. NDVI was calculated

according to the Equation 1.
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A ceptometer-based canopy analysis system (SunS-

can system SS1, Delta-T Devices Ltd, Cambridge, UK)

was used for PAI measurements. The SunScan system

measures both diffuse and direct radiations. It includes

a beam fraction sensor placed above the vegetation for

sampling incident PAR. Simultaneously, PAR under

the canopy is collected by a 1-m-long probe including

sixty-four photodiodes. The average of all sixty-four

diodes was used for PAI calculation. A leaf absorption

value of 0�85, a random spherical distribution of leaves

and a correction term of 0�3 to account for the height

of the probe were assumed for PAI calculations, as

suggested in the user manual (Webb et al., 2008). A

detailed description of how the system calculates PAI

is given by Webb et al. (2008).

At the chamber plots, three replicated measure-

ments at each diagonal at each site plot were aver-

aged. To account for the bias due to the soil frames

and shorter vegetation around the plots, the values

were corrected by the slope of a linear regression

between PAI from chamber plots and PAI from the

corresponding patch, whereas the regression line was

forced through zero. Only PAI values from spots in a

patch were used for the correction that did not differ

in NDVI by more than 0�05 compared with the aver-

age NDVI measured at the corresponding site. The cor-

rected PAI values were only used for comparison with

PP. For all other correlations, PAI and NDVI values

from the vegetation patches were employed.

Biomass, green ratio, GAI

A total of 186 biomass samples were collected between

April 2011 and July 2012 on the same dates and loca-

tions as the PAI and NDVI measurements. Three sam-

ples were taken at each vegetation patch on each

measurement date. Green mosses and all above-

ground plant parts attached to a plant were cut with a

knife within a frame spanning 20 cm on both sides of

the SunScan probe, leading to a sample size of

100 cm 9 40 cm. In cases of very homogenous vege-

tation and PAI values lower than 1�5 m2 m�2, a smal-

ler sample size of 40 cm 9 40 cm was used. The

samples were stored in plastic bags and frozen until

further processing. Each sample was mixed to achieve

a homogeneous distribution of brown and green

leaves. Then, around 0�25 of each sample was sorted

into green and brown plant parts, weighed separately

and later multiplied by the total weight to estimate

the dry weight of brown and green biomasses. The

samples were oven-dried at 60°C for at least 48 h

before weighing. GAI was calculated from PAI by mul-

tiplying it by the percentage of green leaves. To deter-

mine GAI at the chamber plots, where destructive

sampling was not possible, PAI was multiplied by the

green ratio, which was derived from the relationship

between green ratio and NDVI over all samples.

Analyses and statistics

All statistical analyses were carried out using R soft-

ware, version 3.03 (R Core Team, 2014). The relation-

ships between each variable pair were analysed with

respect to regression coefficients, residual standard

errors (s.e.) and a partial t-test providing the coeffi-

cients of determination (R2) by simple linear regres-

sion (lm function in the stats package; R Core Team,

2014). Therefore, nonlinear relationships were lin-

earized by simple exponential or logarithmic transfor-

mations. The coefficients for these transformations

were derived by fitting a nonlinear least-squares

model (fitModel function in the mosaic package;

Pruim et al., 2014). Each relationship was tested with-

out transformation, and with logarithmic and simple

power transformations: those equations were applied

that resulted in the highest R2 value. If R2 values were

similar, no transformation was applied. The assump-

tion for a t-test of normality of model residuals was

tested using the Kolmogorov–Smirnov test (ks.test

function in the stats package; Lilliefors, 1967; R Core

Team, 2014). If the data did not satisfy the necessary

requirements, the nonparametric pairwise Wilcoxon

rank-sum test (wilcox.test function in stats package;

Bauer, 1972; R Core Team, 2014) was used instead of

the partial t-test. For all statistical tests, a significance

level of 0�05 was chosen. Box plots were used to com-

pare the values from intensive and extensive mead-

ows. For time series, the data were classified into

groups of 1 month. For the relationships between PAI

and NDVI, as well as GAI and NDVI, the NDVI data

were classified into intervals of width 0�1. The absence

of overlapping notches of two boxes was used as an

indication of a significant difference in mean values

(McGill et al., 1978).

Results

The usability of vegetation indices as a proxy for bio-

physical vegetation characteristics varied greatly for the

different relationships: Pearson’s correlation coefficients

ranged from 0�06 for NDVI as a proxy for biomass, up to

0�60 for NDVI as a proxy for green ratio (Table 2). All

the relationships were stronger when intensive and

extensive meadows were considered separately, except

the relationship between NDVI and PP.

Seasonal patterns of NDVI and PAI

Normalized difference vegetation index values at

intensive meadows saturated earlier than those at
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extensive meadows, but both reached similar maxima,

close to 1 (Figure 1a). Faster spring growth at inten-

sive meadows was also reflected in PAI values (Fig-

ure 1b). The first cuttings on intensive meadows took

place before PAI saturation. During winter, intensively

managed parcels exhibited a high NDVI (around

0�75), while it was considerably lower on extensive

meadows (around 0�6). PAI values decreased towards

the end of the year and were lower at intensive

meadows compared with extensive meadows during

winter.

NDVI as proxy for green ratio

The relationship between NDVI and green ratio was

similar between management intensities, but the dis-

tribution within the relationship was not (Figure 2):

only two samples from intensive meadows had NDVI

values lower than 0�7, while more than half had val-

ues higher than 0�9. The lowest value for green ratio

at intensive meadows was 0�16, with an NDVI value

of 0�77, while 53% of the observations showed a

green ratio higher than 0�7. In contrast, 28% of the

Table 2 Correlation matrix for all rela-

tionships investigated, showing R2 values

for all meadows and for intensive and

extensive meadows.

PAI NDVI

All Intensive Extensive All Intensive Extensive

NDVI 0�24 0�33 0�27 – – –

PP 0�36 0�48 0�30 0�53 0�34 0�56
Biomass 0�30 0�25 0�42 0�06 0�08 0�13
Green ratio – – – 0�60 0�59 0�63
PAI, plant area index; NDVI, normalized difference vegetation index.

N
D

V
I

PA
I

Jan    Feb     Mar    Apr    May    Jun     Jul     Aug    Sep    Oct    Nov    Dec   

1·0

0·8

0·6

0·4

0·2

0·0

 12

 10

  8

  6

  4

  2

  0

(a)

(b)

Intensive
Extensive

Figure 1 Boxplots of ground

normalized difference vegetation

index (NDVI) (a) and plant area

index (PAI) (b) in the course of the

year. The data are grouped in one

class for each month of the year,

independently of whether sampled

in 2011 or 2012. The width of the

boxes indicates the number of

observations in each category. The

maximum width corresponds to

2670 data points, the minimum to

128. Boxplots for intensive meadows

are shifted to the left for better

visibility.
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samples from extensive meadows had NDVI values

lower than 0�7, and 21% a green ratio higher than

0�7. Large scatter occurred for low values, especially at

extensive meadows where samples with 20–40%
brown biomass span a NDVI range from 0�44 to 0�92.

NDVI as proxy for LAI

At both intensive and extensive meadows, NDVI was

saturated with high PAI values (Figure 3a). The rela-

tionships showed considerable noise, especially at

extensive meadows for low and high NDVI values.

Intensive meadows showed a similarly large scatter

only for NDVI values higher than 0�7.
Extensive meadows had considerably higher mean

PAI values compared with intensive meadows for

NDVI values lower than 0�9 (Figure 3b). This was also

true when GAI values were compared with NDVI val-

ues (Figure 3c); however, GAI values on intensive

meadows were higher in the NDVI interval between

0�9 and 1.

PAI and NDVI as proxies for biomass

Plants from intensive meadows tended to have a

higher SPA compared with those from extensive ones,

but the scatter was enormous (Figure 4), and there-

fore PAI was a poor predictor. NDVI was an even

worse predictor for biomass than PAI: a linear correla-

tion for all observations resulted in an R2 value of

0�06.

NDVI and PAI as proxies for PP

The relationship between PP and NDVI was linear for

both satellite- and ground-measured NDVI values,

with only small differences between management

intensities (Figure 5a). The relationship between PP

versus GAI showed strong saturation effects for GAI

values higher than 1 (Figure 5b). Differences were

0·0
NDVI

gr
ee

n 
ra

tio

1·0

0·8

0·6

0·4

0·2

0·0

      Intensive   y = −29·20·(1−x)0·01+29·28
      Extensive  y = −87·20·(1−x)0·71+0·88
      All              y = −2·18·(1−x)0·14+2·31
R2 = 0·59, SE=0·13
R2 = 0·63, SE=0·14
R2 = 0·60, SE=0·14

 0·2 0·4 0·6 0·8 1·0

Figure 2 Green ratio for intensively, extensively, and inten-

sively and extensively managed meadows together, measured

on several dates throughout the year, plotted against ground

normalized difference vegetation index (NDVI), determined

at the same spots. The dark grey and the light grey curve cor-

respond to the data points of the intensive and extensive

meadows, respectively, whereas the black curve is fitted to

the whole data set.

Figure 3 Leaf area index (LAI) plotted against ground normalized difference vegetation index (NDVI) determined for the inten-

sively and extensively managed meadows on several days throughout the year. LAI corresponds to plant area index (PAI) in (a)

and (b) but to GAI in (c). The width of the boxes indicates the number of observations in each category. The maximum width

corresponds to 374 (b) and 27 (c) data points. Boxplots for intensive meadows are shifted to the left for better visibility.
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observed not only between intensive and extensive

meadows, but also between different parcels. Intensive

meadows had higher PP values at the same GAI values

than extensive meadows. Among the extensive mead-

ows, the protected biotope E2 had higher values than

the hay meadow E3, while the natural monument E1

had the lowest values.

Discussion

Managed grassland fens are the land cover type with

the second-highest net climate effect in Europe, just

after arable fens; their CO2 emissions are especially

high in Germany, where they are often intensively

managed (Dr€osler et al., 2008). Due to the relevance

of vegetation parameters for carbon-related processes,

the results of this study have strong implications for

CO2 models that use vegetation indices as input, but

also for biomass estimations from remote sensing data

and non-destructive methods. The productivity of fens

is of interest for management decision-making, as they

are of high conservation value due to their signifi-

cance for biodiversity and endangered species preser-

vation, as well as for flood mitigation and water

quality improvement (Mitsch and Gosselink, 2000),

especially if management intensity is low. In general,

the observed relationships between NDVI or LAI with

vegetation characteristics on the temperate fen mead-

ows in the Freisinger Moos were poorer and showed

higher scatter compared with relationships that have

been reported for other ecosystems. In particular, the

widely used LAI was shown to be a poor predictor for

biomass and PP and could only poorly be estimated

from NDVI. Further, the shapes of the underlying rela-

tionships depended on management intensity. There-

fore, the application of LAI as model input or biomass

proxy on these meadows will result in high uncer-

tainty. NDVI was found to be a better predictor for PP

and should thus replace LAI in photosynthesis models.

This study further revealed the need for ecosystem-

specific validation studies for commonly used relation-

ships between vegetation indices and vegetation

Figure 5 Potential photosynthesis (PP) derived from chamber flux measurements, plotted against normalized difference vegeta-

tion index (NDVI) (a) and GAI (b). Open circles represent NDVI from satellite data, whereas closed circles refer to ground

NDVI. As the relationships between PP and GAI (b) showed distinct site-specific patterns, they were plotted for each meadow.

I2 and I3 are intensively managed; E1, E2 and E3 are extensively managed meadows (cf. Table 1).

Figure 4 Total biomass plotted against plant area index

(PAI) from intensively (dark grey), extensively (light grey), and

intensively and extensively managed meadows together

(black), measured on several dates throughout the year.
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characteristics. The results for each relationship are

discussed in more detail in the following sections.

Uncertainty in the data, resulting from the optical

measurement methods, is treated in the last part of

the discussion.

Seasonal patterns of NDVI and PAI

Extensive and intensive meadows differed largely in

their seasonal patterns of both NDVI and LAI. A

higher proportion and different distribution of stand-

ing brown biomass might be the main reason for the

higher winter PAI and lower winter, spring and

autumn NDVI values on extensive meadows compared

with intensive meadows, where standing litter was

removed by the more frequent cuttings. Also, species-

specific reflection might be important. The extensive

meadows investigated in this study hosted a larger

number of species including some sedge species and

reed (Phragmites australis; Table 3), which differed visi-

bly from the grass species on intensive meadows by a

more grey-blue leaf colour, especially in the spring.

Grey-green and yellow-green leaf colours can lead to

lower NDVI values compared with green vegetation

(Satterwhite and Ponder Henley, 1987), and different

reflectance properties were reported for different wet-

land species (Anderson, 1995). High correlations

between NDVI, visible colour, chlorophyll content and

leaf nitrogen content have been reported for several

grass species (Bell et al., 2004). The close connections

between chlorophyll content and red spectrum

(Tucker, 1979) used in NDVI calculations, and

between leaf chlorophyll and nitrogen content

(G�abor�c�ık, 2003) are well-established concepts and

might serve as explanations for differences between

the fertilized intensive and non-fertilized extensive

meadows.

Mapping studies have shown that peatlands can be

distinguished from similar ecosystems on mineral soils

by a significantly lower maximum NDVI that is

reached at a later date (Gardi et al., 2009). In the pre-

sent study, the extensive meadows were wetter and

consisted of a more peatland-typical vegetation than

intensive meadows. Therefore, at extensive meadows

we expected lower maximum NDVI values, which

would be reached at a later date. However, our results

confirmed these differences only with respect to the

timing, but not with respect to the magnitude of max-

imum NDVI values.

NDVI as proxy for green ratio

A potentially useful aspect of the relationship

between NDVI and green ratio would be the correc-

tion of ceptometer-derived PAI to derive GAI for situ-

ations where destructive sampling is either not

possible or too time-consuming. NDVI was reported

to be a reliable predictor of green ratio, showing a

linear relationship without any saturation for several

grasslands in the Italian Alps and in New Zealand

(Gianelle and Vescovo, 2007). In contrast, the data

from the Freisinger Moos showed large scatter, a

curved relationship and a rather different distribution

within the relationship depending on management

intensity. This might be explained by a very hetero-

geneous litter distribution; during the seasonal growth

of graminoids in particular, leaves develop on the

surface of the canopy, while lower leaves are shaded

and die (Robson, 1973). Hence, brown biomass is

located under green leaves and cannot be detected by

reflectance measured from above, resulting in a lower

green ratio at high NDVI values. This was especially

pronounced at the relatively productive site I3, before

the first cut took place, and might explain that the

curvature of the relationship was bent towards higher

NDVI values. In contrast, sedges started yellowing at

the leaf tips, leading to brown biomass covering the

green parts. Basal plant parts remained green during

winter, which was also observed by Saarinen (1998)

in a Carex rostrata fen. Furthermore, at extensive

meadows without a cut in late autumn, a consider-

able amount of brown standing biomass was still pre-

sent in spring, when new green leaves emerged

under their shade.

NDVI as proxy for LAI

The relationship between NDVI and PAI is especially

relevant for the estimation of LAI from remotely

sensed data. In our results, the relationship showed

larger scatter compared with previous studies (Gamon

et al., 1995; Darvishzadeh et al., 2008), and this was

especially pronounced at extensive meadows. This

might be explained by the different seasonal patterns

Table 3 Standard deviations from site and vegetation patch

mean values.

Average Max

Ground LAI at vegetation patches and

sites

0�51 2�98

Ground NDVI at vegetation patches and

sites

0�03 0�18

Satellite NDVI at vegetation patches 0�02 0�12
PP at sites 1�47 8�09
Biomass at vegetation patches 83�30 239�03
Green:brown ratio at vegetation patches 0�08 0�34
LAI, leaf area index; NDVI, normalized difference vegetation

index.
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of NDVI and PAI, mainly due to large amounts of

brown standing biomass.

Higher mean PAI values at extensive compared with

intensive meadows for NDVI values lower than 0�9 can-

not be fully explained by their higher amount of brown

biomass, as the pattern was similar when GAI was com-

pared with NDVI (Figure 3c). Instead, leaf colour might

be an important factor. The opposite case in which

NDVI values are higher than 0�9 might result from

higher maximum GAI reached at intensive meadows.

Usually, the relationship between NDVI and LAI is

described as a hyperbolic or exponential function,

where NDVI saturates at LAI values around 2 or

3 m2 m�2 (Sellers, 1985; Gamon et al., 1995; Gianelle

et al., 2009). For crops, this saturation might be reached

at LAI values above 5 m2 m�2 (Vi~na et al., 2011). A lin-

ear relationship is reported for low canopies, for exam-

ple, Fan et al. (2009) and Rocha and Shaver (2009)

with LAI <0�8 and <2 respectively. In contrast, some

samples in our study had reached maximum NDVI val-

ues already at PAI values lower than 1 m2 m�2. This

occurred at intensive meadows, particularly after har-

vest, if they had been cut before the lower parts of the

vegetation had started senescence. The use of spectral

indices, which include other wavebands like those in

the red-edge (Huete, 1988; Vi~na et al., 2011), or green

spectrum (Gianelle et al., 2009), or a the use of a

weighting factor (Gitelson, 2004), might help to over-

come the saturation problem, but not the problem of

high amounts of brown biomass, which was especially

pronounced in extensively managed fen meadows. The

resulting high uncertainty has to be considered when

using LAI estimated from satellite data, especially for

ecosystems that have large amounts of standing litter.

PAI and NDVI as proxies for biomass

Optical measurement methods are important alterna-

tives to destructive biomass sampling and provide a

possibility to achieve yield estimates from remote

sensing. Large scatter in the relationship between PAI

and biomass results from different SPA due to different

leaf thicknesses and densities, and different amounts

and densities of stems. Unpublished data from leaf

area meter (Li-3100; LI-COR) measurements at the

studied sites showed considerably higher mean SPA

values for plants from intensive (170 cm2 g�1) mead-

ows compared with plants from extensive meadows

(101 cm2 g�1), where 50% (1st and 3rd quantiles) of

the data points ranged between 148 and 202 cm�2 g�1

(intensive) and 81 and 116 cm2 g�1 (extensive). Spe-

cies-specific differences ranged from 33 (Schoenus fer-

rugineus) to 204 cm2 g�1 (Plantago lanceolata). The

higher SPA values for intensive meadows are in accor-

dance with the larger slope of the regression between

PAI and dry weight as shown in Figure 4. Based on

dependencies between nutrient conditions in plant

habitats, relative growth rate and leaf nitrogen, it was

postulated that nutrient-rich environments host spe-

cies with high specific leaf area, whereas species with

low specific leaf area are found in nutrient-poor envi-

ronments (Poorter and De Jong, 1999). Similarly,

increasing specific leaf area rates were found with

increasing nutrient availability (Meziane and Shipley,

1999). Specific leaf area has further been shown to

vary depending on seasonality (Pierce et al., 1994).

Additional destructive biomass sampling throughout

all seasons for at least 1 year is therefore strongly rec-

ommended to identify site-specific correction factors.

In contrast to our results, a strong linear relation-

ship between NDVI and biomass was found in a wet-

land around a lake in China (Rendong and Jiyuan,

2002). Good correlations have also been reported for

wet tundra vegetation (Boelman et al., 2003; Doiron

et al., 2013), but their maximum biomass values were

much lower than our study. Many studies investigat-

ing grasslands on mineral soils have reported a poor

relationship between NDVI and biomass (Gamon et al.,

1995). To overcome saturation effects at high biomass

values, modified indices were introduced which

include the blue waveband (Huete et al., 2002) or the

near-infrared shoulder (Vescovo et al., 2012), or which

are based on narrow bandwidths (Thenkabail et al.,

2002) or band depth analysis (Mutanga and Skidmore,

2004). In future research, it would be appropriate to

test whether such modified indices can reduce the

uncertainty in biomass estimation from satellite data.

NDVI and PAI as proxies for PP

The estimation of PP from NDVI or PAI is of great

interest, as more direct photosynthesis measurement

methods are cost and effort intensive and they are not

feasible on a global scale. Our results showed a man-

agement-independent, nearly linear relationship

between NDVI and PP. Some studies have reported a

strong saturation effect at high rates of photosynthesis

when using NDVI based on red and NIR bands (e.g. in

a mountain grassland, Gianelle et al., 2009; in a pine

forest, Wang et al., 2004) and, therefore, suggest the

use of green instead of red wavebands (Gianelle et al.,

2009), or additional ones, including blue wavebands

(Schubert et al., 2010). Such saturation effects were

not distinct in our data and might depend on the

ecosystem. A linear relationship between PP and NDVI

was supported by findings in tundra (McMichael,

1999), grasslands (Gamon et al., 1995; Wu, 2012) and

four northern peatlands (Kross et al., 2013).

GAI was a comparably inferior predictor for PP,

due to it being site- and management-dependent and
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due to saturation at higher GAI values. Saturation

between photosynthesis and LAI has been reported by

many other studies (Sellers, 1985) and indicates a

strong self-shading effect of upper leaves shading

lower leaves. In a wet Senecioni-Brometum grassland,

50% of the light was found to be intercepted by fewer

than 10% of the leaves (Fliervoet and Werger, 1984).

Site-specific differences might be explained by differ-

ent vegetation on the different sites. Species and plant

functional type-specific differences in the relationship

between LAI and photosynthesis were previously

reported for boreal mires (Wilson et al., 2007; Lepp€al€a

et al., 2008), ranging from a linear to an exponential

relationship. Further uncertainty in the relationship

between GAI and PP results from the derivation of

GAI from PAI values by applying the poor relationship

between green ratio to NDVI. A destructive sampling

for a more direct determination of green ratio or GAI

was, however, not possible at the chamber plots.

Many ecosystem models use LAI to calculate pho-

tosynthesis. Our results showed that NDVI is a better

proxy for PP and should therefore be incorporated in

carbon models.

Uncertainty in NDVI

Some scatter in the studied relationships could also be

caused by uncertainty in the optical measurements.

The comparison between NDVI from satellite data and

ground measurements was, however, generally in

good agreement without bias (data not shown), indi-

cating that the uncertainty in NDVI values is relatively

low. With an R2 of 0�58, the relationship was slightly

stronger and showed similar noise compared with the

findings of Hmimina et al. (2013) for savanna

(R2 = 0�45) and crops (R2 = 0�56) when comparing

ground with MODIS NDVI, while they found a R2 of

0�91 for deciduous forest. Despite using high-resolu-

tion (5 m 9 5 m) satellite images in our study, the

s.e. of 0�08 indicates considerable noise for both inten-

sive and extensive meadows. This can partly be

explained by the heterogeneity in the vegetation

patches: ground-measured NDVI varied within a vege-

tation patch each day, on average, by a standard devi-

ation of 0�03 (Table 3). Further uncertainty results

from time gaps between ground and satellite measure-

ments. Noise resulting from sensors, sensor angle and

elevation, sun angle, background reflection and atmo-

sphere are discussed elsewhere (e.g. Adam et al., 2009

and references therein).

Uncertainty in PAI

When vegetation height and density was low, the PAI

probe was not fully covered with vegetation. Therefore,

measurement results strongly differ according to the

quantity of leaves shading the ceptometer, which

depends on solar zenith angle and plant architecture.

During spring emergence and especially after harvest,

the assumption of a random spherical distribution of

leaves might have led to underestimated PAI values.

Further, leaf angle and plant architecture can vary

considerably between different wet grassland commu-

nities (Fliervoet and Werger, 1984). Heterogeneity

within the vegetation patches deviated in PAI, on

average, by 0�51 m2 m�2 (Table 3). If tussock sedges

were present, the soil surface was especially uneven,

which could lead to considerable underestimation of

PAI if the probe rested on a high point. The uncertainty

resulting from the optical measurement method due to

clumping, leaf orientation, plant architecture, leaf size

and sun angle (Breda, 2003) is reflected in the noise

when ceptometer-based PAI is compared with the more

direct method of scanning leaf area (data not shown),

which resulted in a rather high s.e. of 1�65 m2 m�2 and

an R2 value of 0�46.

Conclusions

Almost all investigated relationships differed depend-

ing on land-use intensity and they showed large scat-

ter. Thus, for temperate grassland fens, the application

of NDVI as a proxy for LAI, biomass or green ratio, as

well as PAI and GAI as proxies for biomass or PP, is

characterized by high uncertainty and it should be

performed under the consideration of the manage-

ment intensity. This is especially true for less fre-

quently harvested meadows containing high amounts

of brown plant material. Optical indices are, however,

non-destructive measurement methods that can be

automated and are available from satellite images on a

global scale. Due to the high uncertainty, it is strongly

recommended to perform additional direct measure-

ments of the variable of interest to correct and vali-

date the estimations, especially on extensively

managed grasslands and throughout the year. The

relationship between NDVI and PP was management

independent and showed hardly any saturation

effects. Therefore, assimilation models using LAI as an

input parameter might consider incorporating NDVI

instead.
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