
Technische Universität München
Fakultät für Informatik

Lehrstuhl für Angewandte Softwaretechnik

Rationale in Developers’ Communication

Rana Mohammed A Alkadhi

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Nassir Navab, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Bernd Bruegge, Ph.D.

 2. Univ.-Prof. Dr. Barbara Paech

 Universität Heidelberg

Die Dissertation wurde am 18.06.2018 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 04.09.2018 angenommen.

Rana Alkadhi: Rationale in Developers’ Communication,

To my sister Nada (1984 – 2015).
“If there ever comes a day when we can’t be together, keep me in your heart. I’ll stay

there forever.” —A.A. Milne, Winnie-the-Pooh

Abstract

Developers make various decisions during software development. Rationale is
the justification behind decisions, including the raised issues, the proposed alter-
native solutions, and the arguments for or against these alternatives. Rationale
is of great importance during software maintenance and evolution. It helps de-
velopers understand the intent behind past decisions. Moreover, rationale sup-
ports software system documentation, software comprehension, and enhances
software artifacts traceability and change impact analysis.

However, developers often resist capturing rationale in practice due to the
intrusiveness of rationale capturing, as this activity is not fully integrated into
current software engineering practices. Additionally, many rationale capturing
approaches are too formal and require heavy human involvement to be accept-
able by software developers. As a consequence, rationale remains implicit in the
head of software developers or embedded in developers’ communication and
development artifacts.

This dissertation aims to: (i) understand how developers discuss rationale in
text-based communication channels during software development, and (ii) sup-
port software developers in capturing rationale by developing capturing meth-
ods integrated into these channels.

To this end, we conducted three empirical studies to better understand how
developers discuss rationale in two communication channels: chat messages and
issue tracking systems, in co-located as well as distributed development teams.
We found that developers’ communications are valuable sources of rationale
during software development. To support developers in capturing rationale, we
present REACT, a lightweight manual method to identify rationale elements
in the chat messages exchanged by developers. We evaluated REACT in two
studies and found that REACT is easy to learn and simple to apply. However,
developers still perceive identifying rationale elements as a cognitive overhead
while communicating over chat messages. To address this problem, we devel-

v

oped A-REACT, an automated method for detecting and classifying rationale in
developers’ communications. We evaluated A-REACT on three communication
artifacts and found that it has a good performance in identifying communication
artifacts containing rationale, with a recall up to 0.99 and a precision up to 0.92.

This dissertation shows that text-based developers’ communication is a valu-
able source of rationale and with the automation support it can be used success-
fully to capture rationale during software development.

vi

Acknowledgements

First and foremost, I would like to thank the almighty God for giving me the
opportunity to pursue my studies, the strength to chase my dreams, and the
patience to keep going through hard times.

I would like to express my deep gratitude to my supervisor Bernd Bruegge, for
his guidance, generosity, and continuous support throughout the entire journey
of my studies. I had the pleasure to work under his supervision for my master
and doctoral studies. His enthusiasm, immense knowledge, and confidence in
me have tremendous impact in my research skills. My sincere thanks also go to
my second supervisor Barbara Paech, for her insightful comments and wisdom,
and for the interesting discussions during CURES workshops. Her valuable feed-
back and profound knowledge of rationale management and empirical research
methods have greatly enriched my dissertation.

Special thanks to Dennis Pagano, my master thesis advisor and my mentor
during doctoral studies. From the early stages of this research, he always gives
time to discuss the next steps of my research and constantly gives feedback. I
am deeply indebted to his continuous support, encouragement, for reviewing
parts of this dissertation, and for being there when times were a bit tough. I am
also grateful to my co-author Emitzá Guzmán, from whom I learned a lot about
the research community and how to be passionate about research. Our research
collaborations, her constant help and feedback have played a fundamental part
in this work.

Thank you to the current and former members of the Chair for Applied Soft-
ware Engineering. Being part of this supportive work environment has been an
invaluable experience. Special thanks go to my co-author Jan Ole Johanssen, I
have enjoyed and learned so much from our collaborations and deep delight-
ful discussions. Thank you for reviewing parts of this dissertation and for the
Kinder Chocolate that made long working days sweeter. I will miss our coffee
break walks! Thank you Hoda Naguib for the moral support since the begin-

vii

ning of my doctoral studies, it is always a joy to have you around. Thank you
Stefan Nosović, Nitesh Narayan, Yang Li, and Stephan Krusche for being ready
to help and answer my various questions. Thank you Zardosht Hodaie, and Saj-
jad Taheri for reviewing parts of this dissertation. I would also like to extend
my thanks to Monika Markl and Helma Schneider for all the administrative and
technical support I was in need during my studies.

I also had great pleasure of co-supervising the master and bachelor theses
of motivated students. Many thanks to Teodora Lata, Manuel Nonnenmacher,
Sebastian Ober, Ankur Sinha, and Diane Xhymshiti. Working with you has been
a very enriching experience.

I would like to thank King Saud University and the Ministry of Higher Ed-
ucation of Saudi Arabia for the scholarship and financial support during my
graduate studies.

I would like to express my thanks to my dear friends, Nadine, Dalal, Ahad,
Hessa, and Madawi. Thank you for being always close by and for being my
family here in Munich. I will always cherish the time we spent together.

Most importantly, without the support and nurturing of my family, the com-
pletion of this dissertation would not have been possible. A very special grat-
itude goes out to my parents, Huda and Mohammed, my first and constant
believers. You taught me to strive to be a better person and to always look for-
ward with determination. Thank you for taking care of my daughter to help me
pursue my studies. I would not have made it this far without your unconditional
love and support, I owe it all to you!

My love and affectionate gratitude to my husband Ammar. Thank you for
staying by my side and for your patience when research required most of my
time. Great love and thanks go to my lovely daughter Alanoud for bearing to
be away from me through the past two years. Thank you for all the love, the joy,
and the warmth you two bring into my life!

I would like to thank my grandparents, especially my grandfather Saleh for his
care, support, and encouragement since the beginning of my graduate studies; I
am so grateful Papa Saleh!

I cannot fully express my thanks to my sister Bushra, you cannot imagine how
much strength your support has given me during difficult times and for review-
ing large parts of this dissertation. Special thanks to my sisters and brothers,

viii

Ruba and her husband Fahad, Abdulrahman, Mzoon, Abdulaziz, and Reema,
and my nephew Suliman. It is your love, unwavering support, and encour-
agement that have made the hardship of completing this dissertation bearable.
Grateful to you for always being there!

ix

Contents

I introduction and foundations 1

1 Introduction 3

1.1 Research Approach . 8

1.2 Scope . 10

1.3 Dissertation Structure . 11

1.4 Publications . 12

2 Foundations 13

2.1 Rationale Definition . 13

2.2 Design Rationale Approaches . 16

2.2.1 Rationale Capture . 17

2.2.2 Rationale Representation . 19

2.2.3 Rationale Usage . 26

2.3 Text Mining Fundamentals . 27

II analyzing rationale in text-based developers’ communi-
cations 33

3 Rationale in Chat Messages of Co-located Teams 35

3.1 Study Design . 35

3.1.1 Research Questions . 36

3.1.2 Research Data . 36

3.1.3 Research Method . 37

3.2 Results . 40

3.2.1 Rationale Frequency . 40

3.2.2 Rationale Completeness . 44

3.3 Discussion . 45

3.4 Threats to Validity . 45

4 Rationale in Text-based Developers’ Communications of Distributed
Teams 49

xi

xii contents

4.1 Research questions . 50

4.2 Rationale in Developers’ Chat Messages 51

4.2.1 Study Design . 51

4.2.2 Results . 58

4.2.3 Discussion . 65

4.2.4 Threats to Validity . 66

4.3 Rationale in Developers’ Comments in Issue Tracking Systems . . 68

4.3.1 Study Design . 70

4.3.2 Results . 75

4.3.3 Discussion . 79

4.3.4 Threats to Validity . 80

5 Related Work Relevant to Analyzing Text-based Developers’ Commu-
nications 83

5.1 Analyzing Developers’ Chat Messages 83

5.2 Analyzing Issue Tracking Systems 86

III rationale capturing methods in text-based developers’
communications 89

6 REACT: A Method for Capturing Rationale in Developers’ Chat Messages 91

6.1 REACT Method . 91

6.2 REACT Evaluation . 93

6.2.1 Study 1: REACT in a short-term Design Task 95

6.2.2 Study 2: REACT in a medium-term Project 98

6.2.3 Questionnaire . 102

6.3 Discussion . 103

6.4 Threats to Validity . 104

7 A-REACT: An Automated Rationale Extraction Method 107

7.1 A-REACT Method . 108

7.2 Evaluation . 110

7.2.1 Chat Messages of Co-located Teams 110

7.2.2 Chat Messages of Distributed Teams 117

7.2.3 Comment in Issue Tracking Systems of Distributed Teams . 122

7.3 Discussion . 128

7.4 Threats to Validity . 129

contents xiii

8 Related Work Relevant to Rationale Annotation and Automated Cap-
turing Approaches 131

8.1 Rationale Annotation Approaches 131

8.2 Automated Extraction of Rationale 135

IV conclusion 141

9 Conclusion and Future Work 143

9.1 Contributions . 144

9.2 Future Work . 147

V appendices 153

a Coding Guide: For Annotating Rationale Elements in Developers’ Chat
Messages of Co-located Teams 155

b Coding Guide: For Annotating Rationale Elements in Developers’ Chat
Messages of Distributed Teams 159

c Coding Guide: For Annotating Rationale Elements in Issue Tracking
Systems 163

d Questionnaire for Evaluating REACT 165

bibliography 167

List of Figures

Figure 2.1 The goals and principles of the by-product approach to
capture rationale according to Schneider [168]. 18

Figure 2.2 The IBIS model (adapted from Kunz and Rittel [102]). . . . 21

Figure 2.3 An example of a simple issue deliberation using itIBIS
(adapted from Burgess Yakemovic and Conklin [26]),
where “I” refers to issues, “P” to positions, “AS” to sup-
porting arguments, “AO” to objecting arguments, “?” to
open issues, “*” to resolved issues or selected positions,
and “-” to rejected positions. 22

Figure 3.1 A screenshot of using GATE for the manual coding of
chat messages. (1) The main window displays the list of
(anonymized) chat messages to be annotated, (2) when
a coder highlights a part of a message that contains ra-
tionale, a pop-up window appears (the Annotation Edi-
tor Dialog) where the coder can specify the rationale ele-
ment(s) present in the message, and (3) the color codes for
different rationale elements. 38

Figure 3.2 Chat messages containing rationale per team. 41

Figure 3.3 Distribution of all messages as well as messages contain-
ing rationale over the duration of the project. 43

Figure 4.1 Applied research method for studying rationale in devel-
opers’ chat messages of distributed teams. 52

Figure 4.2 IRC messages containing rationale per project. 59

Figure 4.3 Pair-wise correlation matrices of rationale elements in IRC
messages per project. The cells shading and color intensity
visualize the sign and magnitude of the correlation. 61

Figure 4.4 The percentage of messages containing rationale written
by IRC committers and IRC non-committers. 63

xiv

List of Figures xv

Figure 4.5 Rationale elements distribution per project. 64

Figure 4.6 An example of a reported issue in Ubuntu. It consists of:
(1) issue title, (2) issue metadata, e.g., status, importance,
reporter, and assignee, (3) issue description, and (4) com-
ments. 69

Figure 4.7 A screenshot of the Excel sheet as used during the manual
coding of comments in ITS. 73

Figure 4.8 Comments containing rationale per project. 75

Figure 4.9 Pair-wise correlation matrices of rationale elements in ITS
comments per project. The cells shading and color inten-
sity visualize the sign and magnitude of the correlation. . 77

Figure 6.1 Example of a conversation in Slack. Teams using Slack can
create (1) channels to organize their conversations accord-
ing to topics, team members can include emojis (2) inline
within messages, or as (3) a reaction, and (4) the added
reactions appear under the message. 93

Figure 6.2 REACT evaluation method. 94

Figure 6.3 Correctness analysis. 96

Figure 6.4 Collaborativeness analysis. 97

Figure 6.5 REACT rationale annotations pinned to team Slack chan-
nels in Study 2. 99

Figure 6.6 Rationale in team messages of Study 2. 101

Figure 6.7 Privacy analysis. 103

Figure 7.1 Overview of A-REACT. 108

Figure 9.1 Extension mockup: based on detected rationale elements
in the message (1), rationale annotations are suggested (2). 148

List of Tables

Table 2.1 Definitions of rationale elements used in this dissertation
(adapted from Bruegge and Dutoit [16]). 25

Table 3.1 Overview of analyzed chat messages. 37

Table 3.2 Frequency distribution of rationale elements across mes-
sages containing rationale per team. 42

Table 4.1 Overview of IRC messages. 53

Table 4.2 Overview of commit messages. 54

Table 4.3 Alias resolution in IRC authors and Committers. 58

Table 4.4 Frequency distribution of rationale elements across mes-
sages containing rationale per project. 60

Table 4.5 IRC authors in the analyzed sample of IRC messages. . . . 62

Table 4.6 Overview of Issue Tracking Systems Dataset. 71

Table 4.7 Issues coding sample. 72

Table 4.8 Frequency distribution of rationale elements across ITS’s
comments containing rationale per project. 76

Table 4.9 The results of mapping commenters in the study sample
to committers. 78

Table 6.1 Frequency distribution of REACT rationale annotations
and examples of annotated messages. 95

Table 6.2 Chat messages analyzed in Study 2. 100

Table 7.1 Binary classification results of chat messages of co-located
teams. P is Precision, R is Recall, and F1 is F1-measure. . . 112

Table 7.2 Examples of binary classification results of chat messages
in co-located teams. 113

Table 7.3 Project cross validation results of chat messages of co-
located teams. P is Precision, R is Recall, and F1 is F1-
measure. 114

xvi

List of Tables xvii

Table 7.4 Fine-grained classification results of chat messages of co-
located teams. P is Precision, R is Recall, and F1 is F1-
measure. 115

Table 7.5 Examples of fine-grained classification results of chat mes-
sages in co-located teams. 116

Table 7.6 Binary classification results of chat messages of dis-
tributed teams. P is Precision, R is Recall, and F1 is F1-
measure. 118

Table 7.7 Examples of binary classification results of chat messages
of distributed teams. 119

Table 7.8 Project cross validation results of chat messages of dis-
tributed teams. P is Precision, R is Recall, and F1 is F1-
measure. 120

Table 7.9 Fine-grained classification results of chat messages of dis-
tributed teams. P is Precision, R is Recall, and F1 is F1-
measure. 121

Table 7.10 Examples of fine-grained classification results of chat mes-
sages of distributed teams. 122

Table 7.11 Binary classification results of comments in issue tracking
systems of distributed teams. P is Precision, R is Recall,
and F1 is F1-measure. 123

Table 7.12 Examples of binary classification results of comments in
issue tracking systems of distributed teams. 124

Table 7.13 Project cross validation results of comments in issue track-
ing systems of distributed teams. P is Precision, R is Re-
call, and F1 is F1-measure. 125

Table 7.14 Fine-grained classification results of comments in issue
tracking systems of distributed teams. P is Precision, R
is Recall, and F1 is F1-measure. 126

Table 7.15 Examples of fine-grained classification results of com-
ments in issue tracking systems of distributed teams. . . . 127

Part I

Introduction and Foundations

1
Introduction

“An investment in knowledge always pays the
best interest.”

—Benjamin Franklin [59]

In the 1960s, Horst Rittel coined the term wicked problems to refer to ill-defined
design problems that are difficult to solve due to incomplete, contradictory, and
frequently changing requirements [153], [155]. Multiple stakeholders with dif-
ferent, possibly conflicting, values and needs are involved. Wicked problems
cannot be solved algorithmically, but rather need discussions and creative so-
lutions, in contrast to tame or benign problems [155] that can be solved using
conventional analytical methods. Wicked problems have no right or wrong so-
lution, but rather a specific solution in a particular context. This solution might
not work in the future with the emergence of new requirements and the need to
deal with technological change.

Rittel and Webber [155] argue that tackling wicked problems requires an argu-
mentative approach during which a definition of the problem and the solution
evolves gradually and collaboratively among the participants of the problem
solving group. As Rittel described in an interview about the future of design
methodologies:

“My recommendation would be to emphasize investigations into
the understanding of designing as an argumentative process [...] how
to understand designing as a counterplay of raising issues and deal-
ing with them, which in turn raises new issues, and so on.

[Argumentative] means the generation of solution specifications to-
wards end statements, and subjecting them to discussion of their pros
and cons.” [154]

3

4 introduction

To the aim of supporting argumentative approaches during design, Kunz and
Rittel [102] developed IBIS (Issue-Based Information System) to facilitate the
capturing of argumentation. IBIS organizes the discussions of design problems
around the deliberation of issues. During the deliberation, issues representing
questions to solve are raised, positions to solve the issues are proposed, and ar-
guments supporting or objecting to proposed positions are given. An issue is
resolved by selecting a position based on argumentation [126]. The argumenta-
tion leading to the decision, i.e., the resolution of an issue, forms the rationale
behind design decisions.

The use of argumentative approaches to tackle design problems spread into
other fields involved with design, including software engineering. In the 1980s,
Conklin and Begeman [35], [36] adapted IBIS to be used in software engineer-
ing. They noticed that the characteristics of wicked problems are evident in the
problems facing software developers [40], [47]. Software developers are faced
with complex, evolving, and changing requirements. Moreover, satisfying mul-
tiple stakeholders with different needs and expectations plays a critical role in
the success of the software product.

Following an argumentative approach, wicked design problems in software
engineering are resolved through discussions, iterations, and accepting change
as a normal part of the process [146]. The justification behind decisions, the other
alternatives considered, and the argumentation that led to the decision constitute
the rationale [110]. Rationale is an explanation of why the system is designed the
way it is [116], [151].

Captured rationale is a type of developer documentation, an umbrella term re-
cently coined by Robillard et al. [156] for documents intended to assist develop-
ers in the creation and maintenance of a software system. It is considered among
the most useful information for developers during software maintenance [112].
The availability of rationale improves the developers’ understanding of the sys-
tem; thus, making it easier to maintain as developers usually seek to understand
the system prior to making changes [176]. It helps developers understand the
intent behind past decisions [97]. Time and development efforts can be saved
by documenting alternatives visited and rejected earlier [47]. In addition, cap-
tured rationale enhances software artifacts traceability, change impact analysis,
facilitates design verification, and knowledge sharing [24], [98]. Capturing ra-

introduction 5

tionale helps to avoid knowledge vaporization, i.e., the problem of knowledge
getting lost when experts leave an organization [28], and supports knowledge
acquisition for the newcomers [92].

However, despite the broad consensus on the importance of rationale and the
suggestion of many capturing approaches in software engineering, developers
often resist capturing rationale in practice. This problem is commonly known in
the literature as the capture problem [47]. Roehm et al. [159] found that rationale
is important information during program comprehension tasks, but it is rarely
documented. In their observation of 28 professional software developers, the
authors did not observe a single developer documenting rationale for their own
code. In another study of developers’ information needs conducted by Ko et al.
[97], one developer shared their experience: “Given that I’ll be the one fixing the
bugs, I need to make sure I know not what we are doing, but why we are doing
it. We have these big long design meetings, and everybody states their ideas,
and we come to a consensus, but what never gets written in the spec is why we
decided on that. Keeping track of that is really hard”.

There are a number of possible causes for the capture problem. Kruchten et al.
[98] argue that the adoption barrier for capturing rationale is the intrusiveness of
the capturing approaches, as they are not fully integrated into current software
engineering practices—i.e., the developers must switch tools to document their
rationale. Another primary cause for the developers’ reluctance is the additional
overhead involved in capturing rationale. Many approaches to capture rationale
are too formal and require heavy human involvement to be adopted by soft-
ware developers in practice. As a consequence, rationale remains implicit in the
head of software developers or embedded in development and communication
artifacts, and eventually lost over time [47], [119].

Missing rationale information has negative impacts on software development,
as development tasks might have to be deferred because of missing knowledge
on system design and behavior, e.g., the reasons for the current implementa-
tion [97]. The lack of documented rationale forces developers to invest great
efforts in recovering implicit rationale knowledge by exploring code and inter-
rupting their teammates, which was found to have negative impacts on their
productivity [95], [105]. Knowledge vaporization resulting from undocumented
rationale can have effects even on the personal level. In a survey with software

6 introduction

engineering experts from six different companies conducted by Miesbauer and
Weinreich [132], about half of the participants reported that they forgot the de-
cisions they made themselves. Furthermore, in a field characterized by devel-
oping long-living software systems and a high rate of staff turnover, software
organizations face the risk of losing their institutional knowledge if rationale is
not captured. In 2017, software industry had the highest turnover rate than any
other sector according to the professional social network LinkedIn1. To retain
this important knowledge, rationale need to be captured and externalized from
the developers’ memory and development artifacts to facilitate the sharing and
transferring of this knowledge.

One way for addressing the rationale capture problem is by developing captur-
ing approaches that are integrated into the developers’ activities; thus, less intru-
sive and more likely to be adopted by software developers. To this end, sources
of rationale during software development need to be identified and capturing
techniques integrated into these sources need to be designed [160]. Considering
that rationale emerges from developers’ deliberation of issues, discussion of the
pros and cons of different alternatives, and the collaborative decision making,
developers’ communications form a rich source for valuable information about
the software system and its rationale [24], [189], [192]. As Seaman describes,
“software developers reveal their thought processes most naturally when com-
municating with other software developers, so this communication offers the
best opportunity for a researcher to observe the development process” [169].

Software developers use many different communication channels to com-
municate with other developers. In addition to traditional channels (e.g.,
face-to-face communication), text-based communication channels (e.g., chat,
issue trackers, and mailing lists) play a pivotal role in software development
activities [117], [181]. Previous research has found that written developers’
communications are important for maintaining general awareness, sharing
knowledge, and coordinating development activities, especially in geograph-
ically distributed teams [65], [180]. These communications have been used to
perform bug triaging [5], recommending mentors [27], mining source code
descriptions [8], [141], and mining developers’ purpose of the communication,

1 https://business.linkedin.com/talent-solutions/blog/trends-and-research/2018/the-3-
industries-with-the-highest-turnover-rates

introduction 7

such as opinion asking, proposing a new feature, or reporting a bug [43].
However, little is known about how developers discuss rationale in written
communications. This lack of knowledge makes it difficult to develop useful
capturing approaches of rationale from these channels.

The goal of this dissertation is to investigate how developers discuss ra-
tionale in text-based communication channels and to devise methods to sup-
port capturing rationale from these channels. To achieve this goal, we make
three contributions. First, we present three empirical studies to better under-
stand how developers discuss rationale over two text-based communication
channels: chat messages and issue tracking systems. Our focus on these two
channels is motivated by their increasing popularity and significance as com-
munication channels during software development [4], [66], [90]. This under-
standing is essential for building effective rationale capturing tools in written
communication channels. The results of these studies provide quantitative evi-
dence that text-based developers’ communications are valuable sources of ratio-
nale during software development. Furthermore, they provide deeper insights
about the nature of rationale in written communications that can aid future
research in exploiting these communications as a source of rationale. Second,
we present REACT (Rationale ExtrAction from Communication arTifacts), a
lightweight manual method to capture rationale in the chat messages exchanged
by developers. REACT can be used by developers for the explicit and collabo-
rative capturing of rationale while communicating over chat channels. Further-
more, REACT can be integrated into most modern chat systems, which alleviate
its intrusiveness and encourages its adoption by developers. Third, we present
A-REACT (Automated Rationale ExtrAction from Communication arTifacts), an
automated method to extract rationale from text-based developers’ communi-
cations. We conducted a series of experiments to compare the performance
of various supervised machine learning techniques and configurations in de-
tecting and classifying rationale in chat messages and issue tracking systems.
A-REACT can help developers extract rationale from existing communication
archives and lower the overhead involved in the explicit capturing approaches
of rationale. Furthermore, the results of our experiments can provide guidelines
for researchers about the techniques and configurations that yield the most ac-
curate results.

8 introduction

1.1 research approach

We followed an explorative empirical approach consisting of two phases: ana-
lyzing how developers discuss rationale over written communication channels,
and developing rationale capturing methods integrated into these channels.

The first phase focuses on getting a deeper understanding of how developers
discuss rationale in written communication channels. This understanding is es-
sential to lay the foundation for an effective capturing of rationale from these
channels. To this aim, we conducted three empirical studies in two different
settings: co-located and distributed development teams.

We started exploring the question, how do developers discuss rationale in chat
messages? To answer this question, we conducted the first empirical study on the
chat messages of three co-located development teams. In the study, we investi-
gated the frequency of the different rationale elements (i.e., issues, alternatives,
pro-arguments, con-arguments, and decisions2), and the completeness of the ra-
tionale discussed in the analyzed chat messages. We performed manual content
analysis as described by Neuendorf [138] on the chat messages exchanged by
developers over the duration of the three projects. Although face-to-face com-
munications are still dominant in co-located teams, we found that developers’
chat messages contain valuable rationale. This led us to pose the following ques-
tion, how do developers discuss rationale in distributed teams, where developers are
geographically distributed and rely heavily on written communications?

To answer this question, we conducted the second empirical study on the
Internet Relay Chat (IRC) channels of three open source projects developed and
maintained by globally distributed teams [65]. We investigated the frequency
of the different rationale elements and the rationale contributors (committers
vs. non-committers) to analyze the correlation between development activities
and the rationale contribution in IRC channels. Similar to the first study, we
performed manual content analysis [138] on a random sample of IRC messages
from the three projects.

During the manual analysis of the chat messages, we observed that developers
frequently reference an already opened issues (e.g., by mentioning the issue
ID), or they create new issues as a follow up to their discussion in the chat

2 Rationale elements are defined in Table 2.1 in Chapter 2.

1.1 research approach 9

messages. This observation and the fact that issue tracking systems are typically
used for managing and discussing issues in open source projects [4], [77] led us
to pose the following question, how do developers discuss rationale in a more focused
discussion channel such as an Issue Tracking System (ITS)?

In order to answer this question, we conducted the third empirical study on
the issue tracking systems used in the three open source projects from the sec-
ond study. Likewise, we investigated the frequency of the different rationale
elements and the rationale contributors (committers vs. non-committers) in the
developers’ comments to issues. We performed manual content analysis [138] on
the comments to a stratified random sample of issues from the three projects.

By the end of the first phase that is focused on the analysis of rationale in
written communication channels, we provided quantitative evidence that de-
velopers’ written communications are valuable sources of rationale during soft-
ware development. However, previous research has found that when explicit
documentation of important information such as rationale is missing, develop-
ers avoid browsing written repositories to obtain the needed information [105].
Thus, we realized that without capturing and externalizing the rationale from
these communication artifacts, rationale remains implicit. This reflection led us
to pose the following question, how can we support developers to capture rationale
from written communications?

The second phase focuses on devising methods to capture rationale in writ-
ten developers’ communications. To this end, we designed REACT, a lightweight
method to capture rationale in developers’ chat messages. REACT was evaluated
using both quantitive and qualitative measures in two studies: in short-term de-
sign task and in a medium-term project. We observed that identifying rationale
elements in the chat messages to apply REACT annotations is still perceived by
the developers as additional cognitive load and disruption to the development
activities. This led us to think about an automated approach to lessen the captur-
ing burden on developers, and hence to pose the following question, can rationale
in written communications be detected and classified automatically?

In order to answer this question, we developed A-REACT, a method for the
automated extraction of rationale on two levels of granularity: binary and fine-
grained classification. Binary classification detects communication artifacts con-
taining rationale, and fine-grained classification classifies the communication ar-

10 introduction

tifacts containing rationale into the different rationale elements. We used the
three manually annotated datasets from the first phase, i.e., chat messages of
co-located teams, IRC messages of distributed teams, and comments to issue
tracking systems in distributed teams, for the training and evaluation of differ-
ent supervised machine learning algorithms.

1.2 scope

Rationale management in software engineering is a broad area. We limited the
scope of this dissertation with respect to the following dimensions:

1. Rationale capturing. Rationale management in software engineering can be
divided into three areas3: capturing, representation, and usage of ratio-
nale [47], [73]. Rationale capturing focuses on eliciting rationale during
software development. Rationale representation focuses on structuring
the captured rationale according to a rationale representation model.
This might include the linkage of fragmented rationale elements across
multiple sources. Finally, the rationale usage focuses on exploiting the
rationale knowledge, creating usage scenarios, and making the captured
rationale available for the use of development teams at later stages.

Capturing rationale has been long recognized as a major obstacle in
investigating the applications and usage of rationale in real-world set-
tings [47]. Thus, this dissertation focuses on capturing rationale from
written developers’ communications.

2. Rationale elements. Different models have been proposed and evaluated
to represent rationale in software engineering and other disciplines4.
Given the exploratory and empirical nature of the work presented in this
dissertation, we focus our analysis on the basic elements of argumentation
leading to decisions. Therefore, we focus on rationale elements adapted
from IBIS, the issue model proposed by Kunz and Rittel [102] for its
conciseness and because it provides the basis for most of the subsequent

3 These areas are discussed in Chapter 2.
4 Different representation models, such as QOC and DRL, are discussed in more depth in

Chapter 2.

1.3 dissertation structure 11

issue models. Namely, we analyze five elements of rationale: issues,
alternatives, pro-arguments, con-arguments, and decisions5.

3. Communication channels. Developers use various channels to communicate
during software development. They use verbal communication channels
such as face-to-face meetings, conference calls, and private conversations.
In addition, they use many text-based communication channels, such as
chat, emails, and issue tracking systems. The usage of these text-based
channels are seeing a growing and rapid adoption by software developers
to communicate and coordinate their development activities [4], [90]. To
this end, we focus on investigating written developers’ communications
as sources of rationale. In particular, we study chat messages and issue
tracking systems.

1.3 dissertation structure

The rest of the dissertation is organized as follows: Chapter 2 introduces back-
ground information on rationale management in software engineering, includ-
ing rationale definitions, approaches of rationale capturing, representation, and
usage. In addition, the background information on text mining and classifica-
tion techniques is presented. In Chapter 3, we present an empirical study to an-
alyze how developers discuss rationale in the chat messages of three co-located
teams. Chapter 4 describes two empirical studies to investigate how develop-
ers discuss rationale in distributed development teams by analyzing rationale
in two communication channels, chat messages and issue tracking systems, of
three open source projects. Chapter 5 discusses work related to the analysis of
developers’ written communications. Chapter 6 presents REACT, a lightweight
method to support developers in capturing rationale when communicating over
chat messages. We conducted two studies to evaluate REACT: in a short-term
design task and in a medium-term project. Chapter 7 presents A-REACT, an
automated method for detecting and classifying rationale in developers’ com-
munication artifacts. We report on the evaluation of A-REACT on three develop-
ers’ communication artifacts: chat messages of co-located teams, chat message of

5 Rationale elements are defined in Table 2.1 in Chapter 2.

12 introduction

distributed teams, and developers’ discussions on issue tracking systems. Chap-
ter 8 discusses work related to rationale annotation and automated capturing
approaches. Chapter 9 concludes the dissertation by summarizing the contribu-
tions of this work and identifying future work directions.

1.4 publications

Parts of this dissertation have appeared previously in the following publications:

[1] R. Alkadhi, J. O. Johanssen, E. Guzman, and B. Bruegge, “REACT: An
Approach for Capturing Rationale in Chat Messages,” in Proceedings of
the ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2017, pp. 175–180, (Best Paper Award).

[2] R. Alkadhi, T. Laţa, E. Guzman, and B. Bruegge, “Rationale in Develop-
ment Chat Messages: An Exploratory Study,” in Proceedings of the 14th In-
ternational Conference on Mining Software Repositories (MSR), 2017, pp. 436–
446.

[3] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How Do
Developers Discuss Rationale?” In Proceedings of the IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2018,
pp. 357–369.

2
Foundations

“At the risk of appearing to exaggerate, I will argue
that the pursuit of rationale in engineering is nothing
less than a search for meaning.”

—Bashar Nuseibeh [25]

Rationale management in software engineering is a broad research area. Many
different approaches have been proposed to capture, represent, and make use of
rationale during software development. In this chapter, we present background
on rationale in software engineering. In addition, we present the fundamentals
of text mining techniques that we apply for the automated extraction of rationale
in Chapter 7.

We are going to discuss the work related to analyzing written developers’
communications, and annotation and automated rationale capturing approaches
in Chapter 5 and Chapter 8, respectively. This enables to discuss the work pre-
sented in this dissertation in the light of related work.

The chapter is structured as follows: Section 2.1 explores the different defini-
tions of rationale used in literature. Section 2.2 discusses different approaches
to rationale. In particular, we discuss rationale capture, rationale representation
including different representation models, and rationale usage. Section 2.3 pro-
vides the foundation of text mining and classification techniques applied in this
dissertation.

2.1 rationale definition

Historically, research investigating rationale has focused on Design Rationale
(DR), which is defined by Lee and Lai [111] as “an explanation of why an arti-
fact is designed the way it is”. However, decision-making is not restricted to a

13

14 foundations

specific phase of software development. Developers make decisions that affect
the software design throughout the software lifecycle, ranging from requirement
elicitation to design, implementation, and testing of the software system, and to
its continuous maintenance during software evolution. To emphasize the cen-
tral role of rationale during all activities of software engineering, Dutoit et al.
[47] and Burge et al. [25] use the term software engineering rationale to refer to
rationale during software development.

In this chapter, we use the terms design rationale and rationale interchangeably
to cover the fundamentals of rationale. However, as this dissertation deals with
rationale in the context of software engineering, we use the term rationale instead
of software engineering rationale to refer to rationale during software development.

The term design rationale has been defined according to many view points
over the years, as stated by Moran and Carroll [133], “It is easy to get confused,
because the term is used in many different senses [...] and no one of them is
standard in this stage of research on the topic”.

Moran and Carroll [133] introduced six flavors of design rationale definitions.
They first define rationale as “(i) an expression of the relationships between a de-
signed artifact, its purpose, the designer’s conceptualization, and the contextual
constraints on realizing the purpose”. This definition uses the term rationale
to refer to the reasons behind decisions as understood by the designers. The
second definition, “(ii) the logical reasons given to justify a designed artifact”,
implies that rationale is constructed for a specific purpose (e.g., to persuade a
client), hence it looks at rationale as a form of justification. The third definition,
“(iii) a notation for the logical reasons for a designed artifact”, defines rationale
based on the representation used for capturing it1. In the fourth definition, “(iv)
a method of designing an artifact whereby the reasons for it are made explicit”,
rationale is used as a design method to improve the reasoning process of the de-
signers. The fifth definition, “(v) documentation of the reasons for the design of
an artifact, the stages or steps of the design process, the history of the design and
its context”, looks at rationale as a design documentation, which can range from
documenting only the reasons behind decision, to document the process steps
resulting in the design, or to a complete historical documentation of the design.
Finally, the sixth definition, “(vi) an explanation of why a designed artifact (or

1 Rationale representation is discussed in Section 2.2.2.

2.1 rationale definition 15

some feature of an artifact) is the way it is”, defines rationale as an explanation
that is generated to answer a given question about the design.

Shipman and McCall [174] distinguish between three different, albeit over-
lapping, perspectives on design rationale. In the argumentation perspective, de-
sign rationale means “the argumentation—i.e., reasoning—that designers use in
framing and solving problems.”. While in the communication perspective, design
rationale means “capturing and retrieving naturally occurring communication—
e.g., design discourse—among members of a project team”. Finally, in the docu-
mentation perspective, design rationale means “the documentation of information
about design decisions: what decisions are made, when they are made, who
made them, and why”.

Explaining the reasons and argumentation behind decisions is a shared notion
in various definitions of rationale in literature. MacLean et al. [121] define design
rationale as “a representation for explicitly documenting the reasoning and ar-
gumentation that make sense of a specific artifact”. Similarly, Dutoit et al. [47]
define design rationale as “the reasoning that goes into determining the design
of the artifact”.

Lee [110] states that rationale “can include not only the reasons behind a de-
sign decision but also the justification for it, the other alternatives considered,
the tradeoffs evaluated, and the argumentation that led to the decision”. Burge
et al. [25] define the term rationale as “the reasoning underlying the creation and
use of artifacts”.

In line with the above definitions that refer to rationale as the reasoning and
argumentation behind design decisions, we define rationale within the scope of
this dissertation as follows:

Definition 1. Rationale is the justification behind decisions, including the issues
discussed, the alternative solutions considered, the arguments for or against pro-
posed alternatives, and the decision, i.e., the selected alternative, during software
development.

16 foundations

2.2 design rationale approaches

Design rationale is an established research area. A large number of design
rationale approaches have been devised in different design domains, such as
software engineering and human-computer interaction, and there are many
ways of categorizing these approaches. One way is to differentiate between
descriptive and perspective approaches [47]. Descriptive approaches, as the name
indicates, focus on describing the design thinking process of the designers.
On the other hand, perspective approaches aim at improving the reasoning
process of the designers. Conklin et al. [34] called them process-oriented and
structure-oriented approaches, respectively.

Another way for categorizing design rationale approaches is according to their
intrusiveness to the design process and the amount of participation required
from designers to more-intrusive and less-intrusive approaches [47].

Furthermore, approaches to design rationale can be categorized into argumen-
tative and non-argumentative approaches [47]. Argumentative approaches repre-
sent rationale as arguments structured in rhetorical steps [48], these approaches
are discussed further in Section 2.2.2.1. The non-argumentative approaches ar-
gue that structuring rationale as argumentation may not be sufficient for evaluat-
ing different alternatives and for capturing all the relevant rationale information
that might be needed later. A common non-argumentative approach is structur-
ing rationale using the artifact structure rather than an argumentative scheme,
e.g., by linking textual rationale to code fragments [168]. Lewis et al. [113] present
a non-argumentative approach in which concrete examples of the user goals,
problems, are used to describe the intended functionality of the system and to
evaluate design alternatives. Another example of a non-argumentative approach
is the generative design rationale approach proposed by Gruber and Russel [64].
The authors argue for a generative approach in which rationale is constructed
and inferred, in response to information request, from the data collected earlier
during the design process. This perspective of customizing the generated ra-
tionale according to individual information requests is analogous with a recent
work by Robillard et al. [156], which advocates for a paradigm shift in support-
ing the information needs of developers through the automated generation of
developer documentation.

2.2 design rationale approaches 17

In the following, we discuss three basic processes of design rationale ap-
proaches: capture, representation, and usage of rationale [47], [133].

2.2.1 Rationale Capture

Rationale capture is “the process of eliciting rationale from designers and record-
ing it” [47]. Capturing rationale has long been an issue in software engineering.
In consequence, many capturing approaches have been proposed in the litera-
ture. Regli et al. [151] observed that the proposed design rationale systems have
applied both automatic capturing approaches, i.e., without user intervention,
and approaches requiring user-intervention, i.e., the designers document ratio-
nale themselves. A more detailed categorization was identified by Lee [110] that
categorizes rationale capturing approaches into five main categories, according
to their degree of designers’ participation. In the following, we provide a brief
description of each category:

reconstruction In this approach, the rationale is created retrospectively af-
ter the system design has been completed. Developers or other individuals,
e.g., a rationale manager, capture the rationale without using a design ra-
tionale system [110]. Reconstructing rationale allows a careful reflection of
the complete design process and has the advantage of not interrupting the
flow of the design activities. However, deferring the rationale capture until
after the design has been completed and relying on the designers’ memory
increase the risk of losing important rationale knowledge. An example of a
system that implements this capturing approach is Hyper-Object Substrate
(HOS) [174], [175] which uses a combination of hypermedia representation
with knowledge-based features. HOS supports the retrospective capturing
of rationale by attaching informal design communications, such as emails,
as textual annotations to the artifact design. These captured communica-
tions can be converted over time into a more formal representation of the
rationale.

record-and-replay In this approach, the rationale is captured as it un-
folds synchronously, e.g., via video recordings of design meetings, or syn-
chronously, e.g., via developers email discussions [110]. The main objective

18 foundations

Goals:

1. Capture rationale during specific tasks.
2. Be as little intrusive as possible to the bearer of
rationale.

Principles:

1. Focus on a project task in which rationale is surfacing.
2. Capture rationale during that task.
3. Put as little extra burden as possible on the bearer of
rationale.

4. Focus on recording during the original activity, defer
other activities of managing rationale, e.g., structuring,
to follow­up activities.

5. Use a computer for recording additional task­specific
information.

6. Analyze recording, search for patterns.
7. Encourage, but do not insist on further rationale
management.

Figure 2.1: The goals and principles of the by-product approach to capture rationale
according to Schneider [168].

of this approach is to capture rationale while it is elicited as part of the
design communication in its informal form without disrupting the flow of
the design activities.

rationale as a by-product In this approach, rationale emerges from the
design process without imposing excessive overhead on developers [110].
Burge [21] argues that this can be done by either using design tools that
automatically capture rationale as a side-effect or by using a design pro-
cess that forces rationale capturing. Schneider [168] defines two goals and
seven principles of the by-product approach to capture rationale, shown
in Figure 2.1. An example of this approach is the Explainable Expert Sys-
tem (EES) approach [137] that uses the domain knowledge, the develop-
ment history, and the execution history to produce the design rationale
during the development of expert systems.

2.2 design rationale approaches 19

apprentice In this approach, the system generates the rationale by monitor-
ing the designer’s actions and asks questions when it does not understand
or disagrees with an action [110]. An example is Augmenting Design Docu-
mentation (ADD) [61] that acts as an intelligent apprentice to the designer.
ADD learns about the features that make a design action different from
the standard ones, and whenever a designer makes an action that differs
from the ADD’s expectations, it asks the designer for a justification. As a
result, rationale is constructed using a combination of the system’s domain
knowledge and the justifications supplied by the designers.

automatic generation In this approach, rationale is generated automati-
cally from the execution history [110]. For example, Rationale Construction
Framework (RCF) [134] monitors designers interactions with a computer-
aided design (CAD) tool to produce a rich design history, which is struc-
tured according to a theory of design metaphors to construct the rationale
behind certain design aspects.

2.2.2 Rationale Representation

Rationale representation, also referred to as rationale formalization or rationale
structuring, is “the process of transforming rationale into the desired representa-
tion form” [47]. Traditionally, the capturing and representation of rationale were
carried out in a single activity. However, approaches proposed in recent years
tend to split capturing and representing rationale into two consecutive activities.

The rationale capture and usage depend heavily on the selected representation
of rationale, which can be classified into three broad categories [21], [110], [133]:

formal representation In this representation, rationale is represented
as objects and relations according to a formal language [110]. The main
advantage of a formal representation is that it allows the interpretation
and manipulation of rationale by computer systems. However, this repre-
sentation may not be easily understood by a human. Another drawback
is that formal representations are costly and might hinder the designers’
creativity by imposing constraints on the design process [110].

20 foundations

informal representation In this representations, rationale is represented
in unstructured form: design notes, audio/video recordings, and raw
drawings [110]. Representing rationale informally allows the collection of
a large volume of design information, however, the lack of structure makes
this information difficult to parse and analyze.

semi-formal representation In this representation, rationale is rep-
resented as argumentation, according to a predefined set of nodes, or
rhetorical steps, and relationships between them. The rationale informa-
tion of different nodes are often stored as pieces of natural language
text [86]. The main advantage of a semi-formal representation is that it
structures rationale in a form that is both understandable by humans
and interpretable by computer systems. However, formal and semi-formal
representations share the drawback that many aspects of the design may
not be captured due to the predefined specification of the argumentation
that constraint the type of collected information.

In the following section, we present some of the most common argumentative
representation models of rationale.

2.2.2.1 Rationale Representation Models

There are two major classes of argumentative approaches of design ratio-
nale [47]. The first class of approaches are based on Tuolmin’s model of ar-
gumentation [185]. In this model, an argument consists of a claim which is the
main assertion being made (e.g., “9 out of 10 dentists surveyed use Crest.”), da-
tum which is a fact or observation that supports the claim (e.g., “Dentist’s think
Crest is the best toothpaste.”), a warrant which is the basis on which datum is
said to support the claim (e.g., “When given a choice, people use the toothpaste
they think is best.”), a backing that gives additional support to the warrant (e.g.,
“People do not want to get cavities.”), and a rebuttal which is a counter-argument
objecting to the claim (e.g., “Crest surveyed dentists they recently sent free sam-
ples to.”) [86]. The Tuolmin’s model of argumentation represents a single claim
in isolation, relationships among different claims are not captured. The other
class of approaches to structure design rationale argumentation either modified

2.2 design rationale approaches 21

Issue

resp
ond

s­to

sug
ges
ts

Position Argument

*
*

*

* **

* **

*

*

*

*
* *

que
stio

ns questions

suggests

generalizes

supports

objects­to

replaces

Figure 2.2: The IBIS model (adapted from Kunz and Rittel [102]).

the Kunz and Rittel’s IBIS approach or created their own argumentation model.
The use of the second class of approaches tends to be more dominant in the
field of design rationale [47]. In the following, we discuss some of the prominent
argumentative representation models of this class:

ibis (issue based information system) was developed by Kunz and Rit-
tel [102] as an argumentative approach to tackle wicked design problems.
IBIS structures rationale according to an issue model consisting of three
key elements: issues that describe the problem under consideration, posi-
tions proposed to solve the problem, and arguments that support or object
to the proposed positions. Figure 2.2 shows the nodes of the IBIS issue
model and the relationships between them.

IBIS was the basis for most of the subsequent argumentative approaches
to rationale. Conklin and Begeman [35], [36] adapted IBIS to be used in
software engineering by creating gIBIS (graphical IBIS), a hypertext tool
to support early design deliberations. gIBIS added two additional nodes,
in addition to the original IBIS issue model: other for expressing additional
thoughts, and external to allow the linkage of external material, such as
requirement documents or design sketches.

Other extensions to IBIS include rIBIS (real-time IBIS) [152] and itIBIS (in-
dented text) [26]. rIBIS extends gIBIS to allow distributed users to simul-
taneously browse and edit multiple views of an IBIS network; while itIBIS

22 foundations

*I: Which processor should be used?

?P: Processor A.

*P: Processor B.

­P: Processor C.

AS: Already in use, thus cheaper.

AS: Fast.

AO: Won't be available on time.

Figure 2.3: An example of a simple issue deliberation using itIBIS (adapted from Burgess
Yakemovic and Conklin [26]), where “I” refers to issues, “P” to positions,
“AS” to supporting arguments, “AO” to objecting arguments, “?” to open
issues, “*” to resolved issues or selected positions, and “-” to rejected posi-
tions.

uses indentations to represents the hierarchal relationships between issue
model elements using text editors available on personal computers. Fig-
ure 2.3 shows an example of an issue deliberation in itIBIS.

phi (procedural hierarchy of issues) is a refinement to IBIS developed
by Rittel’s student McCall [123], [125]. It uses the same nodes of IBIS but
replaces positions with answers to better reflect the terms used by the IBIS
community. Its main addition was the reduction of the number of rela-
tionships between issues by introducing a subissue relationship to indicate
that the resolution of one issue is dependent on the resolution of another
issue. Examples of rationale systems that implements PHI are: MIKRO-
PLIS [122], [124], which provides access to rationale as hypertext docu-
ments, and its successor PHIDIAS [126], which integrates CAD graphics to
offer hypermedia-based computer-aided design system. Another example
is JANUS [56] which uses a knowledge-based critic that alerts the users
about the availability of rationale in relevant situations; thus, reducing the
change of context required for using the captured rationale.

qoc (questions , options and criteria) was developed by MacLean
et al. [121] as a semi-formal notation to represent the design space, i.e., the

2.2 design rationale approaches 23

set of possible alternative designs of an artifact, using three main compo-
nents: questions identifying the key deign issues, options providing possible
answers to the questions, and criteria representing the bases for evaluating
the different options.

The main difference between IBIS and QOC is that IBIS is considered to be
more comprehensive as QOC can only represent features of the artifact be-
ing designed, which is a subset of the issues represented by IBIS. However,
QOC is more expressive than IBIS as it allows the explicit representation
of criteria [47].

drl (decision representation language) is a language for represent-
ing the qualitative aspects of the decision making process [107], [108],
[109], [111]. DRL has been implemented in SIBYL [108], a hypertext system
to support the collaborative decision making. The primary elements of
DRL are: decision problems that require a decision, alternatives proposed to
address the decision problem, goals specifying the properties that should
be satisfied by the selected alternative, and claims representing arguments
for selecting alternatives. Other auxiliary objects in DRL includes groups,
procedures, viewpoints, and questions. The main drawback of DRL is its com-
plexity which increases the efforts required for structuring the captured
rationale [16].

DRL differs from IBIS in that DRL adds an explicit representation of design
goals, while goals are implicitly represented as arguments in IBIS. Another
major difference to IBIS is that relations between rationale elements in
DRL are represented as subclasses of claim, which allows arguing and
questioning them as any other claims. Moreover, DRL has additional
nodes for representing procedures and viewpoints [107].

The main difference between DRL and QOC is in their focus. While QOC
is focused on describing the design space explored by the developers, DRL
aims at capturing the deliberation leading to a decision [16], [166].

decision documentation model has been proposed by Hesse and
Paech [75], [78] and consists of two main components: Knowledge Elements

24 foundations

for representing general development artifacts, and Decision Knowledge
Elements for modeling particular aspects of the decision knowledge.

The basic element is decision. All the elements related to decision knowl-
edge are added as decision components. A decision component can be a prob-
lem, its solution, context, or rationale. Issue or goal are used to document de-
tails of the problem under consideration. Alternatives and claims represent
the different solutions to the decision problem. Contextual information is
documented as assumptions influencing the decision, constraints restricting
the decision, or implications resulting from different alternatives. Finally,
the rationale behind the decision is expressed as arguments or assessments.

The Decision Documentation Model has two main advantages. First, it
allows the incremental documentation of decision knowledge elements
as they become available over time. Second, it supports the collaborative
capturing of decision knowledge.

The Decision Documentation Model has been implemented by
DecDoc [72], a tool for supporting the incremental and collaborative
documentation of design decisions. DecDoc has been used in docu-
menting decisions made to address security requirements [74], to derive
code annotations to document implementation decisions [76], and in
the management and visualization of decision knowledge in continuous
software engineering [87], [93], [94].

quarc (questions , activities , rationale , communication) a meta-
model proposed by Nagel [135]. The QUARC metamodel consists of only
one entity, the quarc which is defined as “a problem for which potential
solutions must be found and decided on, and/or a work item to be com-
pleted”. Dependencies between quarcs are represented by directed typed
relations. Communication media, such as videos and drawings, can be
linked directly to quarcs. The quarcs, relations between them, and linked
communications are stored in quarc repositories. To facilitate the interac-
tion with quarc repositories, Quarc Query Language (QQL) was developed
to access, modify, and validate the contents of a quarc repository.

2.2 design rationale approaches 25

Table 2.1: Definitions of rationale elements used in this dissertation (adapted from
Bruegge and Dutoit [16]).

Rationale element Definition

Issue A problem that needs discussion and negotiation to be
solved. An issue typically can not be resolved algorithmi-
cally and does not have a single correct solution.

Alternative A possible solution that could address the issue under con-
sideration.

Pro-argument A positive reason supporting an alternative.
Con-argument A negative reason against an alternative.
Decision An alternative selected to resolve an open issue.

In the QUARC approach, ideas and concepts can be captured in their
original form, such as voice recordings and informal sketches, in a QUARC
model. The QUARC model evolves over time into system model elements,
and the original ideas and concepts represent the design rationale which
can be attached as annotations to the system model elements.

The QUARC metamodel is an evolution of the IBIS issue concept. However,
the author argues that capturing rationale using QUARC is much simpler
than in IBIS, as the developers can simply create quarcs that represent the
main discussion topics and link communication segments during the meet-
ing. The quarcs and communication segments can be refined at later stages.

rationale elements in this dissertation Given the exploratory and
empirical nature of the work presented in this dissertation, we focus our
analysis on the basic elements of argumentation leading to decisions.
Thus, we base our classification of rationale elements on IBIS for its
conciseness and because it provides the basis for most of the subsequent
issue models including DRL and QOC. In particular, we focus our analysis
on five elements: issues, alternatives, pro-arguments, con-arguments, and
decisions. Table 2.1 lists the rationale elements used in this dissertation
and their definitions. The rationale elements definitions were adapted
from Bruegge and Dutoit [16].

26 foundations

2.2.3 Rationale Usage

There are many potential uses of rationale at different phases of software devel-
opment and it is nearly impossible to cover them all; thus, this section aims at
giving an overview, rather than a comprehensive list of potential uses of ratio-
nale.

Lee [110] classifies the services that can be provided by design rationale into
four main categories according to the user group who it benefits:

better design support The availability of design rationale can support
designers as it yields to a better understanding of the design reasoning and
the decision-making process. It supports the traceability of requirements
to design decisions and vice versa. In addition, the captured rationale can
be used to analyze the impact of design changes, i.e., to determine which
decisions need to be revisited if the proposed change is made; as rationale
captures the relationships between decisions. Rationale can also assist in
the changes needed if the technology changes [24]. Capturing rationale also
facilitates verification, validation, and reuse of design as it acts as an exter-
nal design memory. Furthermore, design rationale supports collaborations
and participatory design by providing a common vocabulary for discus-
sions and negotiations among different stakeholders and by facilitating
the early exposing of conflicts. For example, the SHARED-Design Recom-
mendation and Intent Management System (SHARED-DRIMS) [144] uses
design rationale to mitigate conflicts in collaborative environments.

better maintenance support Documented rationale increases the de-
velopers’ understanding of the system; thus, making it easier to adapt
and maintain [47]. Furthermore, documenting decisions made during
maintenance allows the sharing and transferring of reusable maintenance
knowledge. For example, SEURAT [21], [22], [23] uses rationale during
maintenance by presenting rationale to the maintainers and inferencing
over the rationale. The authors focus on three types of maintenance: adap-
tive, i.e., improving desirable qualities of the system without changing
its functionality, corrective, i.e., correcting failures of the system, and
enhancive maintenance, i.e., adding new functionality to the system.

2.3 text mining fundamentals 27

Inferencing over the rationale is performed to check for completeness and
consistency, to evaluate decision alternatives, and to perform impact assess-
ment when requirements, development criteria, and assumptions change.

learning support Rationale facilitates the training of new members in a
development team [62]. Moreover, systems used for managing rationale
can learn from the captured rationale. For example, JANUS [56] uses a
knowledge-based critics to monitor designers’ actions. If a guideline is
violated, it alerts the designer and provides recommendations that can be
either accepted or discarded by the designer.

documentation support Rationale can serve as documentation by captur-
ing knowledge of the original designers [24]. Beside designers, rationale
documentation can be valuable for other people involved in software devel-
opment. For example, rationale documentation can be used by managers
for design evaluation. Rationale can be also used by lawyers for checking
intellectual property. Shipman and McCall [174] argued that the documen-
tation perspective on design rationale has more widespread acceptance in
practice, compared to the argumentation and communication perspectives.

Dutoit et al. [47] group the design rationale uses into four main categories:
supporting collaboration, supporting reuse and change, improving quality, and
supporting knowledge transfer. Burge et al. [25] list some of the potential uses
of rationale at different phases of software development, i.e., supporting re-
quirements engineering, design, implementation, and maintenance. It should be
noted that these categorization are only different ways for grouping the poten-
tial uses of rationale and they share similarities and dependencies among each
other.

2.3 text mining fundamentals

Text mining, also known as knowledge Discovery in Text (KDT), is the process
of mining useful information from text documents [190]. Similar to data min-
ing [69], text mining seeks to discover interesting patterns in data. However,
instead of formalized database records, text mining is interested in identifying

28 foundations

patterns in unstructured natural language documents. Text mining uses tech-
niques adapted from date mining, machine learning, information retrieval, and
computational linguistics [54], [190].

One application of text mining is text classification, also known as text catego-
rization, where a collection of text documents are classified into a predefined set
of categories [54]. There are two types of text classification, single-label and multi-
label classifications. In single-label classification, exactly one class is assigned
to the document. A special case of the single-label classification is the binary
classification, in which each document is assigned to one of two categories. In
multi-label classification, a document can be assigned to more than one category.

Text classification is often used in supervised machine learning, where a
classifier is built by learning from a set of pre-classified documents [170]. The
resulting classifier is a prediction model that predicts the classes of unseen
text documents. Building a text classifier using supervised machine learning
algorithms consists of three main steps. First, transforming the text documents
into an intermediate representation that is suitable for the learning algorithm.
Second, providing a pre-labeled dataset of documents that is split into training
set and test set. Finally, feeding the training set to the learning algorithm and
evaluating the performance of the resulting classifier using the test set.

Transforming the data into a representation that is suitable for the machine
learning algorithm is known as text preprocessing, and it plays an important role
in text mining [190]. In the following, we describe four preprocessing steps that
are also applied in this dissertation:

lowercase conversion The process of converting the characters of words
into lowercase letters.

stemming The process of reducing inflected words into their root form, so-
called word stems [190]. For example, the words: “developers”, “develop-
ing”, and “development” are all reduced to “develop”.

term frequency-inverse document frequency (tf-idf) Term Fre-
quency (TF) is the number of times a word occurs in a document; while
Inverse Document Frequency (IDF) measures how important the word is
to the document [131]. TF-IDF is the product of the two (TF ∗ IDF) which

2.3 text mining fundamentals 29

is proportional to the discrimination power of a word, i.e., rare words have
higher TF-IDF than words commonly used in other documents.

n-gram tokenization The process of converting a text document into a
sequence of n words [190]. For example, applying 3-gram tokenization on
the sentence ‘‘This is an example of tokenization” results in the following
tokens: “This is an”, “is an example”,“an example of”, and “example of
tokenization”.

In this dissertation, we compare the performance of the following different
machine learning algorithms that have been proven to perform good text classi-
fication [15], [58], [85], [170]:

multinomial naive bayes (mnb) is a variation of Naive Bayes [114], [128]
that overcomes the weakness of Naive Bayes of only modeling the absence
or the presence of words in a text document. MNB captures the frequencies
of words in a document, making it more suitable for text classification.

support vector machine (svm) creates a representation of text documents
as points in n-dimensional space (where n is the number of classification
features) and looks to separate the classes by a hyperplane that is as wide
as possible. Support vectors are the coordinates of the individual docu-
ments [15], [37].

decision tree (dt) uses the manually labeled documents to construct well-
defined true/false queries using a tree structure. The tree nodes represent
questions, tree leaves represent document categories, and the branches rep-
resent conjunctions of features leading to these categories [15], [131].

random forest (rf) is an ensemble learning algorithm that constructs mul-
tiple decision trees in randomly selected spaces of the features space. The
prediction of the individual decision trees are combined by applying bag-
ging or bootstrap aggregating to generate the final classification [44], [81].

logistic regression (lr) is a modified regression technique that predicts
the document class by calculating the probability for each class and then
choosing the class with the maximum probability [89], [145].

30 foundations

To train and evaluate machine learning classifiers, an important statistical
technique known as k-fold cross validation is applied [194]. In k-fold cross val-
idation, the data is split into k partitions of equal sizes, called folds, k-1 folds
are used for training the classifier and the remaining fold is used for testing it.
The procedure is repeated k times, rotating the training and testing folds, so
that at the end every fold has been used exactly once as a testing set. The final
evaluation is calculated by averaging the results of the k iterations.

One approach to perform multi-label classification is by applying problem
transformation methods [147] which involves the transformation of the in-
put instances into representations suitable for single-label classification. In
this dissertation, we apply two of the most popular problem transformation
methods [147], [187], [197]:

binary relevance (br) is the base line approach for problem transforma-
tion, in which a binary classifier is independently trained for each label
and the prediction of unseen document is the aggregated predictions of
all independent classifiers. The main drawback of this approach is the as-
sumption that the classes are independent.

label powerset (lp) takes into account class correlations by generating a
class for every combination of labels. The main drawback of this approach
is that the number of generated classes can grow exponentially.

A common challenge in supervised machine learning is imbalanced datasets
where the classification categories are not equally represented [32]. Imbalanced
datasets might cause the classification algorithm to skew towards the majority
class and ignore the minority class, which is usually more important to be cor-
rectly classified. Two popular techniques for handling this problem are under-
sampling and SMOTE (Synthetic Minority Over-Sampling Technique). Under-
sampling [46] uses a subset of the majority class for training the classifier; while
SMOTE [31] applies oversampling on the minority class by generating synthetic
examples. In this dissertation, we compare between the application of under-
sampling and a combination of SMOTE and under-sampling as previous re-
search has proved that classifiers achieve better performance when combining
both sampling techniques [31].

2.3 text mining fundamentals 31

To evaluate the classification performance of the resulting classification mod-
els, we used the following standard metrics in machine learning:

precision measures the exactness of the resulting predictions, and it is defined
for a category as the percentage of correctly classified documents among
all documents that were classified as belonging to this category [54]. It is
calculated as follows:

Precisioni =
TPi

TPi + FPi
(2.1)

recall measures the completeness of the resulting predictions, and it is de-
fined for a category as the percentage of correctly classified documents
among all documents belonging to that category [54]. It is calculated as
follows:

Recalli =
TPi

TPi + FNi
(2.2)

Where TPi is the number of documents that are correctly classified as being of
type i, FPi is the number of documents incorrectly classified as being of type i,
and FNi is the number of documents incorrectly classified as not being of type i.

the f1-measure is the harmonic mean of precision and recall, and it is calcu-
lated as follows:

F1 = 2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

(2.3)

Part II

Analyzing Rationale in Text-based Developers’
Communications

3
Rationale in Chat Messages of Co-located Teams

“Media—i.e., development tools and communication
channels—play a critical role in how externalized and
tacit knowledge is formed, shared, manipulated, and
captured.”

—Storey et al. [181]

In the previous chapters, we discussed some approaches of rationale manage-
ment in software engineering and the developers reluctance to capture rationale
during software development. Considering that the goal of this dissertation is
to support developers in capturing rationale, we hypothesize that part of the
rationale can be captured by looking at text-based communication channels.

In this chapter, we report on an empirical study to explore how developers
discuss rationale in chat messages. In particular, we analyzed chat messages of
three co-located development teams for a duration of three months to better
understand the rationale hidden in chat messages with regards to its frequency
and completeness.

The chapter is structured as follows: Section 3.1 explains the study design
in terms of research questions, research data, and research method. Section 3.2
presents the study results. We discuss our findings in Section 3.3 and the limita-
tions of our study in Section 3.4.

3.1 study design

In this section, we introduce our research questions, the data we used to perform
our analysis, and describe the followed research method.

35

36 rationale in chat messages of co-located teams

3.1.1 Research Questions

The aim of this study was to evaluate chat messages of development teams
as a potential source for rationale. For this purpose, we explored the rationale
frequency and rationale completeness in chat messages.

RQ1. Rationale frequency: What is the frequency of messages containing ratio-
nale in developers’ chat messages?

This question describes how often rationale appears in chat messages. This
information gives a first insight whether it is worth to consider chat mes-
sages as a source of rationale.

RQ2. Rationale completeness: How complete are the rationale elements ex-
tracted from developers’ chat messages?

This question describes the syntactical check of the recorded rationale in
chat messages. Rationale is distributed across different development arti-
facts, e.g., bug reports [162] and design session transcripts [79], and all of
these sources could be used together to capture a more complete rationale
of the software system. We use the completeness check defined by Burge
et al. [25], in which rationale completeness occurs when for each documented
decision, all the rationale elements justifying the decision are documented.
Answering this question could help practitioners and researchers by pro-
viding insights on how to integrate the rationale extracted from chat mes-
sages with the rationale extracted from other sources.

3.1.2 Research Data

We analyzed the chat messages of three development teams that were part of
a multi-project capstone course at the Technical University of Munich in 2015

and 2016 [18], [100]. During the course, teams developed mobile applications
for industrial partners and dealt with incomplete and evolving requirements
following an agile software methodology [101]. The participants used Atlassian
HipChat for instant messaging1. HipChat supports diverse integrations to exter-

1 https://www.hipchat.com

3.1 study design 37

Table 3.1: Overview of analyzed chat messages.

Team
Chat messages
before filtering

Chat messages
after filtering Analyzed period

Team A 4,106 3,974 Apr. 15 – Aug. 13, 2016

Team B 2,214 2,164 Apr. 15 – Aug. 11, 2016

Team C 3,026 2,564 Oct. 16, 2015 – Feb. 23, 2016

Total 9,346 8,702

nal services and bots, e.g., with Bamboo2, a continuous integration and contin-
uous deployment server, to send notifications about build results and Standup
Bot3 to report and retrieve statuses for stand-up. Each team consisted of 8 to 9

developers and a project leader. When selecting the teams for the study, we con-
sidered only teams who communicated in English and wrote more than 2,000

messages. To focus our analysis on the messages written by members of develop-
ment teams, messages that were automatically generated by one of the services
or bots were filtered out. Table 3.1 shows the number of chat messages before
and after filtering automatically generated messages, and the analyzed period
for each of the three teams. In total, we analyzed 8,702 chat messages.

3.1.3 Research Method

To explore the frequency of rationale in chat messages, we analyzed how often
rationale appears in chat messages and the frequency of different rationale el-
ements. We manually analyzed the chat messages in the dataset by applying
content analysis techniques as described by Neuendorf [138]. Two researchers,
one of them is the author of this dissertation, independently inspected the chat
messages of the three teams in the dataset and identified the contained rationale.
This process consisted of three steps:

a. Developing a coding guide: The aim of this step was to systematize and
minimize disagreements between the two coders. Since many representa-
tions have been proposed in literature to model rationale, it is important

2 https://www.atlassian.com/software/bamboo
3 http://botlab.hipch.at

38 rationale in chat messages of co-located teams

1
3

2

Figure 3.1: A screenshot of using GATE for the manual coding of chat messages. (1)
The main window displays the list of (anonymized) chat messages to be
annotated, (2) when a coder highlights a part of a message that contains
rationale, a pop-up window appears (the Annotation Editor Dialog) where
the coder can specify the rationale element(s) present in the message, and (3)
the color codes for different rationale elements.

that the two coders share a unified understanding of the elements that con-
stitute rationale. To this end, we developed a coding guide that includes
clear definitions of the rationale elements and examples for each element
(see Appendix A).

The coding guide was developed in an iterative process consisting of two
trial iterations. In each iteration, the two coders independently identified
rationale elements in 1,000 chat messages. The coders disagreements were
analyzed and the coding guide was modified accordingly to minimize dis-
agreements in the next iteration.

b. Manual coding of chat messages: For the manual coding task, we used
GATE (General Architecture for Text Engineering) [38], a Java-based frame-
work for a diverse set of natural language processing applications.

3.1 study design 39

Figure 3.1 shows a screenshot of GATE as used by coders. The main win-
dow displays the list of chat messages to be coded. If a message contains
rationale, the coder highlights the message part containing the rationale
and specifies its type.

The coding unit, i.e., the highlighted part, can be one sentence, multiple
sentences of a message, or the complete message. We refer to the coded
units as text snippets. For each snippet, coders specified whether it contains
rationale and what type of rationale elements are present. A text snippet
might contain multiple rationale elements. Coding text snippets allows for
capturing the text containing rationale in the finest-grained manner since
a message might contain additional irrelevant information.

The two coders independently coded each message in the dataset. The
average time to code 8,702 messages was 13 hours per coder, highlighting
the large efforts required to manually extract rationale elements.

c. Disagreement reconciliation: Disagreements included situations when the
two coders identified different rationale elements in the same message or
when only one coder coded a message as containing rationale. The average
inter-rater agreement between the two coders was 95% for identifying
messages containing rationale, and 94% for identifying different rationale
elements. The disagreements where resolved through discussions between
the two coders.

To explore the completeness of rationale in chat messages, it is important to
identify the semantic relationships among rationale elements identified in dif-
ferent chat messages as the rationale discussion could span multiple messages.
For example, a developer might discuss a specific issue in a single message and
other developers propose different alternatives to resolve the issue and argue for
and against these alternatives in other messages.

To achieve this, the same two coders who conducted the manual content anal-
ysis of the chat messages manually inspected the messages containing rationale
and identified the semantically related rationale elements contained in these
messages. The semantically related rationale elements were assigned the same
code, i.e., a number. Disagreements were resolved through discussions between

40 rationale in chat messages of co-located teams

the two coders. After identifying the semantically related rationale elements, we
asked the following questions:

1. For each discussed issue, were alternative solutions proposed and was a
decision made?

2. For each selected alternative (i.e., decision), were pro-arguments support-
ing its selection presented?

3.2 results

This section presents the analysis results of the rationale frequency in develop-
ers’ chat messages and the completeness of the existing rationale.

3.2.1 Rationale Frequency

Although the coding unit during the manual coding was text snippet to allow for
a more fine-grained annotation of rationale elements, we noticed that messages
are of short length and when containing rationale most likely contain only one
text snippet with rationale4. Thus, we reported the results on the message level.
A message was considered to contain a particular rationale element, if it contains
at least one text snippet that was annotated as containing that element.

Figure 3.2 shows the percentage of chat messages identified as containing
rationale per team. On average, 9% of the team chat messages contain rationale
(8% in Team A, 11% in Team B, and 7% in Team C). In total, 752 of the
8,702 analyzed chat messages contain rationale. Although the number of chat
messages containing rationale may not be considered high, the manual analysis
revealed that developers discuss various elements of rationale in these messages
that comprises valuable knowledge about the software system. Table 3.2 shows
an overview of the frequency distribution of different rationale elements across
messages and examples of coded rationale elements.

Overall, we found that proposing alternatives to different issues is predomi-
nant in almost 51% of the messages containing rationale. The second most fre-

4 87% of the messages with rationale contain only one text snippet with rationale.

3.2 results 41

92%

8%

89%

11%

93%

7%

Team A Team B Team C

0%

25%

50%

75%

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Messages without rationale

Messages with rationale

Figure 3.2: Chat messages containing rationale per team.

quent rationale element is issue, present in 24% of the messages containing ra-
tionale. Pro-arguments were mentioned in 23% and con-argument in 18% of the
messages containing rationale. These numbers confirm our observation, during
the manual coding, that team members tend to argue for the alternatives they
proposed and their reasons to select these alternatives (i.e., pro-arguments) more
frequently than arguing against other alternatives (i.e., con-arguments). Lastly,
decisions were identified in 10% of the messages containing rationale.

The message length in the dataset ranges from 1 to 2,026 characters with a
median of 50 characters across the three teams (Mean=81.84, SD=117.36). How-
ever, messages containing rationale have a higher median length of 100 char-
acters (Mean=146.68, SD=150.02). Although the manual coding was performed
on the text snippet level rather than on the message level (see Section 3.1.3), the
majority of messages containing rationale (87%) consists of only one text snippet
of rationale. In addition, we found that 80% of the messages containing rationale
discuss one rationale element, 16% discuss two rationale elements, and only 4%
discuss more than two elements. From this result, it can be seen that developers
tend to discuss rationale elements in a sequence of short chat messages rather
than long messages with intertwined rationale elements.

42 rationale in chat messages of co-located teams

Table 3.2: Frequency distribution of rationale elements across messages containing ra-
tionale per team.

Frequency distribution

Rationale element Team A Team B Team C Total Example

Issue 25% 28% 17% 24% “Plus if this is implemented using
segueways, what screen do you go
back to when you click ’back’?”

Alternative 45% 54% 57% 51% “What do u think of having a "start
cooking" button? Clicking on the
recipe name might not be the most
intuitive? Thoughts?”

Pro-argument 17% 26% 30% 23% “It’s better UX :) definitely”

Con-argument 18% 17% 19% 18% “But still, I think it is too complicated
for now to build it with tabs.”

Decision 13% 7% 9% 10% ‘‘We decided that we will rank our
recipes based on frequency of use.”

To explore how the passage of time and the number of messages influence
the amount of rationale found in chat messages, we investigated the distribution
of all messages as well as messages containing rationale over the duration of
the project. Figure 3.3 visualizes the distribution of all messages and messages
containing rationale over the project duration per team.

We found that different development teams had different rationale distri-
bution in their chat messages. Teams A and B had a significant increase in
the number of messages containing rationale at certain time points, shown as
sharp rises in their line slops. One possible interpretation of this result is that
discussions between developers might be denser around particular milestones
during the project, e.g., at the beginning of development sprints or before
releasing to the customer. Team C had a steady distribution of chat messages
containing rationale that spans the entire project duration.

The Spearman’s correlation coefficients between the number of days passed
since the start of the project and the number of messages containing rationale
were -0.2 (p-value=0.03), 0.11 (p-value=0.28), and -0.26 (p-value=0.01) for teams
A, B, and C, respectively. This indicates a weak negative correlation in teams A

3.2 results 43

0

50

100

150

200

0 50 100
Days after the satrt of the project

N
um

be
r

of
 m

es
sa

ge
s

All messages Messages containing rationale

(a) Team A

0

50

100

150

200

0 50 100
Days after the satrt of the project

N
um

be
r

of
 m

es
sa

ge
s

All messages Messages containing rationale

(b) Team B

0

50

100

150

0 50 100
Days after the satrt of the project

N
um

be
r

of
 m

es
sa

ge
s

All messages Messages containing rationale

(c) Team C

Figure 3.3: Distribution of all messages as well as messages containing rationale over the
duration of the project.

44 rationale in chat messages of co-located teams

and C, which means that the more days passed, the less rationale was discussed
in the chat messages. A possible explanation is that the main functional require-
ments and important decisions about the system design were discussed at the
early phases of the system development. However, the value of the correlation
coefficient in Team B indicates a very weak correlation.

As shown in Figure 3.3, the increase in the number of chat messages is not
always an indicator of an increase in the number of messages containing ratio-
nale. However, the Spearman’s correlation coefficient between the total number
of chat messages and the number of messages containing rationale was 0.5 in all
three teams indicating a moderate positive correlation.

3.2.2 Rationale Completeness

Our results show that for 79% of the issues identified in the chat messages, al-
ternatives were proposed to resolve the issues. In 48% of these issues, we were
able to identify the decisions made, i.e., the selected alternatives, in the chat
messages. However, in only 48% of the cases in which a decision was made, the
pro-arguments in support of this decision were present in the chat messages.
Finally, we found that in 21% of the issues found in the chat messages, nei-
ther alternatives were suggested nor a decision has been made. One possible
interpretation is that the team members discussed and resolved the open issues
through face-to-face communication. For example, while discussing an issue one
developer wrote, “Probably best if we discuss this in the meeting”. These results in-
dicate that chat messages are not to be used as the only source for rationale
but rather as one of many potential sources. The rationale extracted from chat
messages should be integrated with rationale extracted from other sources for
a more complete rationale, e.g., the decisions made to resolve some of the open
issues extracted from chat messages might be available in the meeting minutes
of the development team.

3.3 discussion 45

3.3 discussion

The results of our study show that (1) chat messages are a valuable source for
rationale during software development, (2) chat messages should be used in
combination with other development artifacts for capturing a complete rationale.
In the following we revisit our research questions.

rationale frequency : Although a small percentage of chat messages con-
tain rationale (9%), the manual content analysis results show that these messages
contain valuable knowledge about the software system. In chat messages, team
members actively engage in discussing issues, proposing alternatives, arguing
for and against these alternatives and collaboratively making decisions. How-
ever, the informality and unstructured nature of chat messages poses a num-
ber of challenges for extracting rationale from chat messages. First, rationale
could span multiple messages complicating its identification. Second, multiple
elements of rationale could be discussed in a single message, and distinguishing
between the different elements is a nontrivial task even for a human.

rationale completeness : In almost half of the identified issues (48%),
chat messages contained a complete rationale with respect to the alternatives
considered, the selected alternative, i.e., decision, and the arguments supporting
the decision. However, for the remaining issues, the identified rationale was in-
complete. A possible explanation is that developers use different communication
channels in addition to chat messages. For example, developers might continue
some of the chat messages discussions in face-to-face meetings and decisions
made to resolve the issues identified in chat messages might be documented in
other development artifacts such as meeting minutes. This finding emphasizes
the importance of linking related rationale elements extracted from different de-
velopment artifacts for a more complete capturing of rationale.

3.4 threats to validity

In this section, we discuss the threats to the validity of our results according to
the four validity aspects as defined by Runeson et al. [164].

46 rationale in chat messages of co-located teams

construct validity is concerned with how accurately the study obser-
vations interpret and measure the theoretical constructs [164]. The messages
coders have not been involved in the development of the analyzed projects.
Thus, the consideration of whether a chat message contains rationale depends
on the coders’ judgment, which can be different from what the actual developers
consider as rationale. To mitigate this threat, coders were asked to read the de-
scription of the mobile applications, from which the messages are analyzed, to
make sure that they understand the analyzed applications’ main functionalities.
In addition, both coders have software engineering background.

Although the list of rationale elements used in our analysis are based on the
well-known IBIS model [102], the list of elements could be incomplete and its
descriptions simplified. This threat could lead to the capture of incomplete ratio-
nale. However, the analyzed rationale elements are shared among most rationale
representation models.

internal validity is concerned with the confounding factors that may
influence the study results [164]. During the manual coding, the determination
if a message contains rationale and which rationale elements are present is a
subjective decision. To mitigate this risk, we created a coding guide with precise
definitions and examples for different rationale elements. The guide was used
by the coders during the coding task. Furthermore, each message in the dataset
was coded by two people and the disagreements were discussed and resolved
by the two coders.

external validity is concerned with the generalizability of our re-
sults [164]. We analyzed the chat messages exchanged during a university course
which might affect the generalizability of our results. However, the students in
the three development teams worked closely with industrial customers and dealt
with incomplete and evolving requirements on innovative projects. Previous re-
search found that subject’s experience level might have more effect on the re-
sults than the experiment setting (academic or industry) [167]. In our study, the
majority of the student participants described themselves as semi-professional
developers and they reported having part-time jobs in the industry.

3.4 threats to validity 47

reliability is concerned with to what extent the study results are depen-
dent on a specific researcher, i.e., whether the study yields the same results if
replicated by other researchers [164]. Although, the analyzed messages could not
be made available due to privacy issues, the coding guide with clear definitions
and examples of the rationale elements is made available to other researchers
(see Appendix A). Furthermore, peer-coding was performed on all the analyzed
messages to minimize the bias that could result from individual coding.

4
Rationale in Text-based Developers’ Communications
of Distributed Teams

“Social tools leave a digital audit trail, docu-
menting our learning journey—often an unfolding
story—and leaving a path for others to follow.”

—Marcia Conner [12]

In the previous chapter, we presented an empirical study of rationale in
the chat messages of three co-located teams. We found that on average 9% of
their chat messages contain rationale, despite the dominance of face-to-face
communications and the absence of geographical and time zone differences.
This finding raises intriguing question regarding the presence of rationale in
written communication channels of distributed teams, where developers are
geographically distributed and rely heavily on written communications.

In this chapter, we present two empirical studies to understand how devel-
opers discuss rationale in the written communication channels of three Open
Source Software (OSS) projects, which are often developed and maintained by
globally distributed teams [65]. In particular, we analyze rationale in the follow-
ing text-based communication channels:

developers’ chat messages : We examine the frequency of messages con-
taining rationale and contributors of rationale in the Internet Relay Chat
(IRC) channels of three OSS projects.

developers’ comments in issue tracking systems : We examine the
frequency of comments containing rationale and contributors of rationale
in the comments of Issue Tracking Systems (ITS) of three OSS projects.

49

50 rationale in text-based developers’ communications of distributed teams

The chapter is structured as follows: Section 4.1 introduces our research
questions. Section 4.2 presents the study of rationale in IRC messages, including
study design, results, discussion of the results, and threats to validity. Section 4.3
presents the study of rationale in the comments of issue tracking systems, in-
cluding study design, results, discussion of the results, and threats to validity.

4.1 research questions

In our analysis, we aim to understand how developers discuss rationale in IRC
messages and issue tracking systems of distributed teams. To this end, we inves-
tigate the frequency and contributors of rationale.

RQ1. Rationale frequency: What is the frequency of messages, or comments,
containing rationale in chat messages and issue tracking systems of distributed
teams?

While it is widely accepted that IRC messages and issue tracking systems
in OSS projects contain valuable information about the software system
and its history, there is still a lack of empirical evidence about the presence
and volume of rationale in these channels. Answering this question pro-
vides insights about the nature of existing rationale and provides the basis
for training and evaluating automated classification techniques presented
later in this dissertation.

RQ2. Rationale contributors: Which developers contribute rationale in chat
messages and issue tracking systems of distributed teams?

This question is inspired by the work of Brunet et al. [20] that found a
strong correlation between development activities (committing into code
repository) and contributing to design discussions in pull requests, com-
mits, and issues. By asking this question, we aim to find if such correlation
holds between development activities and rationale contribution in IRC
discussions and issue tracking systems; Do developers who commit more
often contribute more rationale? This could provide first insights on
linking the rationale found in IRC messages and issue tracking systems to
different parts of the source code.

4.2 rationale in developers’ chat messages 51

4.2 rationale in developers’ chat messages

Internet Relay Chat (IRC) channels are increasing in popularity for synchronous
communications in OSS projects [30], [45], [88]. Developers use IRC channels for
discussing development and implementation details and exchanging knowledge
and ideas with other developers [70], [181]. Mozilla Foundation describes IRC as
“the primary form of communication for members of the Mozilla community”1.

While several prior studies have examined the general role of IRC channels
in OSS development [30], [70], [172], there is still no empirical evidence of how
OSS developers discuss rationale in IRC messages. The following excerpt from
the Apache Lucene website reinforces our motivation for studying rationale in
developers’ IRC messages.

“The IRC channel can be used for online discussion about Lucene re-
lated stuff, but developers should be careful to transfer all the official
decisions or useful discussions to the issue tracking system.”2

This excerpt sheds light on two important aspects. First, developers’ discussions
over IRC channels may contain valuable rationale about development decisions.
Second, there is no systematic methodology for transferring such knowledge
to official documentation artifacts (e.g., issue trackers for most OSS projects)
other than relying on the developers to transfer it manually. As a consequence,
potential rationale lying hidden in IRC messages is rarely made explicit or taken
advantage of.

4.2.1 Study Design

This section introduces the design of our empirical study. We describe the
different phases of the applied research method, including data collection,
manual coding process, and multiple alias resolution.

52 rationale in text-based developers’ communications of distributed teams

 IRC messages

Select OSS projects

Data Collection

Data Analysis

Apply content analysis (To answer RQ1)

 Project committers

Map rationale contributors and committers (To answer RQ2)

Resolve multiple aliases

Crawl project data

IRC chat logs Code repository

Figure 4.1: Applied research method for studying rationale in developers’ chat messages
of distributed teams.

4.2.1.1 Research Method

Our research method consisted of two phases: data collection and data analysis,
as depicted in Figure 4.1. In the data collection phase, we first selected the OSS
projects for our study. We selected three OSS projects: Apache Lucene, Mozilla
Thunderbird, and Ubuntu. In accordance with selection criteria applied by sim-
ilar studies [140], [142], [172], we chose the three OSS projects for the following
reasons. First, to mitigate threats to external validity, we selected projects from
diverse domains. Second, the archived IRC logs and source code repositories
of the selected OSS projects are publicly available. Third, the three projects are
popular and mature OSS projects with a large community of active developers
and users. After selecting the projects, we crawled the IRC chat logs and source
code repositories of the three projects to extract the IRC messages and project
committers. We detail on each step in Section 4.2.1.2.

1 https://developer.mozilla.org/docs/Mozilla/QA/Getting_Started_with_IRC
2 https://lucene.apache.org/core/discussion.html

4.2 rationale in developers’ chat messages 53

Table 4.1: Overview of IRC messages.

Project IRC messages Coding
sample

Archived years Channel #Messages
(before

filtering)

#Messages
(after

filtering)

Apache Lucene Apr. 2010 – May 2017 #lucene-dev 273,123 71,897 2,500

Mozilla Thunderbird May 2012 – May 2017 #maildev 299,771 291,416 2,500

Ubuntu Oct. 2004 – May 2017 #ubuntu-devel 2,897,987 2,438,812 2,500

Total — — 3,470,881 2,802,125 7,500

To answer RQ1, we first manually analyzed a sample of 7,500 IRC messages
by applying content analysis techniques as described by Neuendorf [138]. The
message coding process is explained in Section 4.2.1.3.

To answer RQ2, we mapped IRC authors who contributed rationale with the
project committers. This process consisted of two steps. First, we applied an alias
resolution approach on IRC and committers identifiers separately, as developers
can use multiple identifiers within a single channel. Second, we associated the
IRC identifiers with the identifiers used in the commit history whenever viable.
Both steps are elaborated further in Section 4.2.1.4.

4.2.1.2 Research Data

In this section, we describe the process of collecting and extracting our research
data from three OSS projects: Apache Lucene3, Mozilla Thunderbird4, and
Ubuntu5. For each project, we crawled the IRC logs and commit history, parsed
the data to extract the required fields, and stored them into a MySQL database
for further analysis. For each IRC message, we extracted: message author,
message, and message date. For each commit, we stored: committer, commit

message, and commit date. An overview of the collected IRC messages and
commit messages are shown in Table 4.1 and Table 4.2, respectively. In total, we

3 https://lucene.apache.org
4 https://www.thunderbird.net
5 https://www.ubuntu.com

54 rationale in text-based developers’ communications of distributed teams

Table 4.2: Overview of commit messages.

Project Commit history

Years #Commits

Apache Lucene 2001-2017 27,787

Mozilla Thunderbird 2007-2017 20,569

Ubuntu 1999-2017 349,813

Total — 398,169

collected 3,470,881 IRC messages and 398,169 commits from the three projects.
We detail on the collection process for each project in the following.

apache lucene is a Java-based full-text search engine library. In recent
years, it has become one of the most popular free information retrieval libraries
[129]. We obtained the complete archive of the development IRC channel #lucene-
dev logged by Colabti6. Next, we filtered out automatically generated messages,
for example, messages generated when users join or leave the channel (“*** hoss
joined”). This resulted in 71,897 messages written by 266 authors over the last 8

years. From Lucene’s code repository, we collected 27,787 commits done by 152

committers over the last 16 years. We also obtained the official list of committers
from Lucene’s website.

mozilla thunderbird is a cross platform email client with an estimation
of 25 million active users7. We crawled 299,771 IRC messages from the devel-
opment channel #maildev logs. Afterwards, we filtered out messages posted by
Firebot (a general-purpose Mozilla chatbot) which resulted in 291,416 messages
written by 1,180 authors over the last 6 years. From Thunderbird’s code reposi-
tory, we collected 20,569 commits performed by 895 committers over the last 11

years. Additionally, we imported the official list of core developers provided by
Thunderbird.

6 http://colabti.org/irclogger/irclogger_logs/lucene-dev
7 https://blog.mozilla.org/thunderbird/

4.2 rationale in developers’ chat messages 55

ubuntu is a Debian-based Linux operating system. Ubuntu is one of the
most popular Linux distributions and has over 40 million desktop users and
more than 500 active members from 100 countries. The development IRC channel
#ubuntu-devel is “home to many Ubuntu developers for real-time communica-
tion”8. We fetched the complete channel archive9 and filtered out automatically
generated messages such as “=== bob2 [rob@bob2.user] has joined #ubuntu-devel”.
This resulted in 2,438,812 messages written by 13,645 authors over the last 14

years. Likewise, we extracted 349,813 commits done by 6,724 committers over
the last 18 years. Finally, we queried the official list of core developers provided
by Ubuntu.

4.2.1.3 Coding of IRC Messages

To analyze the frequency of the rationale elements in IRC messages, two re-
searchers, including the author of this dissertation, applied manual content anal-
ysis [138] on a sample of IRC messages from the three studied projects. The
manual coding process consisted of the following steps:

a. Developing a coding guide: To systematize the coding process and assure
a common understanding, we designed a coding guide (see Appendix B).
The coding guide provides instructions about the coding task and defini-
tions and examples of the different rationale elements (listed in Table 2.1). It
was developed in two iterations. In each iteration, the two coders used the
guide to annotate a random sample of 300 messages. The disagreements
were analyzed and the guide was refined accordingly.

b. Sampling of IRC messages: IRC messages are short in length with a me-
dian of 42 characters (Mean=54.31, SD=48.89), written in informal lan-
guage and context-dependent. Analyzing messages in isolation of the con-
text in which they were exchanged might lead to imprecise results. To
keep the conversation context, we created our sample by randomly select-
ing complete chat days instead of single messages. For each project, we
randomly selected chat days so that the total adds up to 2,500 messages.
Overall, our sample consisted of 35 chat days from Apache Lucene, 10

8 https://wiki.ubuntu.com/UbuntuDevelopment
9 https://irclogs.ubuntu.com

56 rationale in text-based developers’ communications of distributed teams

days from Mozilla Thunderbird, and 8 days from Ubuntu. This results in a
sample of 7,500 messages from the three OSS projects.

c. Manual coding of IRC messages: To avoid bias during the coding, each
message was coded by the two coders independently. For each message,
the coders indicated if the message contains rationale and specified the
type of rationale element(s) included in the message. A message can be
annotated with more than one rationale element. For example, “Maybe for
later version support, we should do it like in StandardTokenizer” is annotated
with alternative and pro-argument. We used GATE [38] for the manual
coding of the messages (a screen shot of suing GATE for the manual coding
is shown in Figure 3.1 in Chapter 3). During the coding task, the complete
chat days were displayed for the coders. This allowed the coders to obtain
the conversation context while coding single messages. We refer to the
coding guide for the detailed annotation instructions (see Appendix B).
Coders reported an average of 20 hours to complete the coding task.

d. Disagreements reconciliation: All messages were coded twice. We con-
sider that disagreements occur when only one of the coders annotated a
message as containing rationale or when the two coders annotated a mes-
sage with different rationale elements. The average inter-rater agreement
was 83% for identifying messages containing rationale and 78% for iden-
tifying different rationale elements. Coders discussed and resolved their
disagreements.

4.2.1.4 Alias Resolution

The multiple alias problem occurs when multiple nicknames (aliases) are as-
signed to the same person [173]. It is commonly faced in studies examining OSS
repositories [13], [157], [172]. Resolving this problem is an essential step to pre-
pare our data for further analysis. The cause of this problem in our study is
twofold. First, we use multiple data sources in our study, namely, IRC chan-
nels and commit history, and developers might use different identifiers on these
sources. In IRC channels, participants assign themselves nicknames when joining
the channel. A nickname is a self-chosen name [14], which can be an abbrevi-
ation of the real name (e.g., markmiller for Mark Miller), or a pseudonym (e.g.,

4.2 rationale in developers’ chat messages 57

luceneuser). While in source code repositories, developers use names, nicknames,
emails, or a combination of them. Second, developers might use multiple aliases
within a single source; mostly very similar ones. For example, sagarwal, sshagar-
wal and sshagarwaltb are used by the same person to write to IRC. As an Apache
Lucene developer described the problem, “I wish we didn’t have these pseudo-names
here; I don’t know who’s who half the time.” Similarly, a developer can commit
code to a repository with different identifiers. For example: Michael McCandless
<mikemccand@apache.org>, Michael McCandless <mail@mikemccandless.com>, Mike
McCandless <mikemccand@apache.org>, and mikemccand <mike@elastic.co> are used
by the same person to commit code to the repository.

To resolve aliasing in our collected data, we applied an approach similar to
the ones by Bird et al. [13] and Panichella et al. [142]. We started with the ex-
tracted IRC messages’ authors and committers from the three projects (see Sec-
tion 4.2.1.2). For each project, we performed the following steps automatically10:

1. Extract email login names: We removed emails’ domains (anything after
“@”). For example, sarowe@gmail.com and sarowe@apache.org are converted
to sarowe.

2. Normalization: We converted identifiers to lowercase, removed punctua-
tion (e.g., “_”), numbers, and eliminated extra whitespace. For example,
JoeS, JoeS1 and JoeS11 are all mapped to joes. Additionally, we removed the
term “–guest” that was commonly attached to Ubuntu IRC identifiers (e.g.,
yeager-guest).

3. Ignore middle names: We removed middle names and initials if real names
were provided. For example, Jory A. Pratt is converted to Jory Pratt. We
use ‘real names’ to refer to the names that were used together with the
emails or nicknames to commit code. There is no guarantee that they are
the developers’ actual names and they can be also abbreviated versions of
their names.

10 This process was applied on the IRC authors and committers of the entire collected data, and
not only on the study sample.

58 rationale in text-based developers’ communications of distributed teams

Table 4.3: Alias resolution in IRC authors and Committers.

Project IRC authors Committers Mapped IRC
authors

to committers
Original After

alias resolution
Original After

alias resolution
(IRC committers)

Apache Lucene 266 221 152 107 26

Mozilla Thunderbird 1,180 1,029 895 633 83

Ubuntu 13,645 10,657 6,724 5,961 186

4. Name similarity: We applied a string similarity algorithm, Levenshtein
edit distance [136], [188], to resolve aliases within IRC and committers
identifiers separately. We set a conservative similarity threshold of 80%.

5. Email-like similarity: If multiple slightly different names have the same
email login names, we considered them a match. For example, nicholas
knize and nick knize both have the email login name nknize. We excluded
commonly used email login names such as mozilla@email_domain.

6. IRC authors-committers mapping: We mapped the final list of IRC iden-
tifiers to committers identifiers to detect IRC committers. For a more ac-
curate mapping, we consolidated the available information with the addi-
tional identifiers provided on the official lists of contributors on the project
website.

Manual corrections were applied for some cases. An overview of the IRC au-
thors and committers for each project after resolving aliases and mapping IRC
authors to committers is shown in Table 4.3. Although, we were able to resolve
the majority of aliases within the single source (i.e., IRC and commit history), the
mapping of IRC authors to project committers was not feasible in some cases.
The main reason is that only the nicknames of IRC authors were available, while
in most cases names or emails were used for committing code.

4.2.2 Results

This section presents the analysis results of the rationale frequency in develop-
ers’ IRC messages and the contributors of rationale.

4.2 rationale in developers’ chat messages 59

71%

29%

87%

13%

66%

34%

Apache Lucene Mozilla Thunderbird Ubuntu

0%

25%

50%

75%

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Messages without rationale

Messages with rationale

Figure 4.2: IRC messages containing rationale per project.

4.2.2.1 Rationale Frequency

To answer RQ1 on the rationale frequency in IRC messages, we report on the
results of the manual content analysis (see Section 4.2.1.3).

On average, 25% of the analyzed messages contain rationale with a total of
1,910 out of the 7,500 annotated messages. We found that rationale frequency
varies among the analyzed OSS communities, as illustrated in Figure 4.2.
Ubuntu IRC channel contains the highest number of messages containing
rationale in our sample (34%), followed by Apache Lucene (29%), and Mozilla
Thunderbird IRC channel which contain the lowest number of messages
containing rationale (13%).

Chat channels of OSS projects contain over twice (25% on average) as much
messages containing rationale as chat channels of co-located teams (see Chap-
ter 3). A possible explanation for such increase is that OSS developers are geo-
graphically distributed and working across various time zones. Thus, OSS devel-
opers communicate and discuss development issues in IRC messages more often
than co-located development teams, in which regular face-to-face meetings are
more common.

60 rationale in text-based developers’ communications of distributed teams

Table 4.4: Frequency distribution of rationale elements across messages containing ra-
tionale per project.

Rationale
element

Apache
Lucene

Mozilla
Thunderbird

Ubuntu Total IRC example

Issues 27% 24% 36% 30% “[...] I think we should find a way to con-
figure the real system packages properly;
[...]”

Alternatives 37% 50% 33% 37% “I’d rather just see php7 in experimental
ASAP, and then slowly work out all rdeps
until they all seem to more or less work,
then just transition [...]”

Pro-arguments 19% 25% 19% 20% “Maybe for later version support, we
should do it like in StandardTokenizer”

Con-arguments 11% 18% 15% 14% “But if you have lots of data this could
make your GC on Solr go wild.”

Decisions 17% 4% 15% 14% “I had considered it, but it didn’t fit with
the design I had, so I ignored it [...]”

Table 4.4 presents the frequency distribution and examples of fine-grained
rationale elements. Alternative is the most prevalent rationale element in de-
velopers discussions with a total of 37% among the three projects. A possible
explanation is that developers use IRC channels to discuss proposed alterna-
tives with other developers, in the form of “So I have some ideas and I want to get
your opinion”, more often than other rationale elements. There are other com-
plementary channels in OSS projects for reporting issues or documenting final
decisions, such as issue tracking systems, which might affect their frequency in
IRC messages. However, the argumentative discussions of possible alternatives
happen mostly through written communication channels in the absence of reg-
ular face-to-face meetings. For example, messages like “Hi guys..I want to patch
the issue [Issue#]” in which developers reference an already opened issue to dis-
cuss their solution alternatives were commonly encountered during the manual
annotation.

The second most frequent rationale element is issue with a total of 30%, fol-
lowed by pro-arguments (20%), and finally con-arguments and decisions with
an equal frequency of 14%. Developers tend to provide pro-arguments support-
ing their proposed alternatives, e.g., “to make it 100% correct it would need to be
volatile”, which might explain the higher frequency of pro-arguments. The two

4.2 rationale in developers’ chat messages 61

-0.4 -0.3 -0.2 -0.3

0 -0.1 -0.3

-0.2 -0.2

-0.1

Issue

Alternative

Pro

Con

Decision

-1.0

-0.5

0.0

0.5

1.0

(a) Apache Lucene

-0.5 -0.3 -0.3 -0.1

-0.1 -0.1 -0.2

-0.1 -0.1

-0.1

Issue

Alternative

Pro

Con

Decision

-1.0

-0.5

0.0

0.5

1.0

(b) Mozilla Thunderbird

-0.4 -0.3 -0.3 -0.3

0.1 0 -0.3

-0.1 -0.2

-0.1

Issue

Alternative

Pro

Con

Decision

-1.0

-0.5

0.0

0.5

1.0

(c) Ubuntu

Figure 4.3: Pair-wise correlation matrices of rationale elements in IRC messages per
project. The cells shading and color intensity visualize the sign and mag-
nitude of the correlation.

coders agreed that identifying decisions was the most difficult among other ra-
tionale elements. We noticed that the decisions are usually not clearly stated in
the messages even when a consensus is reached.

We found that 85% of the messages containing rationale only discuss one ra-
tionale element, 13% discuss two elements, and a few messages discuss three el-
ements (1%). To gain further understanding on how developers discuss rationale
in IRC messages, we analyzed the pair-wise co-occurrence correlation between
different rationale elements at the message level. Figure 4.3 shows correlation
matrices [60] that plot the Pearson’s correlation coefficient [106] between all pairs
of the rationale elements11. The correlation coefficient measures the strength and
direction of the relationship between two variables, i.e., two rationale elements in
our case. In all three projects, there is a moderate negative co-occurrence corre-
lation between issues and alternatives (Pearson’s correlation <= - 0.4), and with
a lesser degree between issues and other rationale elements (Pearson’s correla-
tion <= - 0.1). A possible interpretation of this result is that the message author
who raised the issue wants to draw the attention of other developers and inves-
tigate different alternatives to solve the issue, rather than presenting the issue
and the solution alternative to that issue in a single message. We also found a
mild negative co-occurrence correlation between alternatives and decisions in all
three projects (Pearson’s correlation <=- 0.2). When developers write the decision

11 Equals to Phi coefficient for binary variables.

62 rationale in text-based developers’ communications of distributed teams

Table 4.5: IRC authors in the analyzed sample of IRC messages.

Project IRC authors
IRC committers IRC non-committers

Apache Lucene 14 20

Mozilla Thunderbird 27 43

Ubuntu 41 116

they made after a discussion in IRC or to inform other developers of a decision
they took earlier, it is unlikely that they will quote other considered alternatives
which explains the weak correlation between alternative and decision.

Most developers communicate on IRC messages through informal short mes-
sages. The short length of these messages could explain the absence of any strong
correlations between the different rationale elements, as messages when contain-
ing rationale most likely contain only one element.

4.2.2.2 Rationale Contributors

In this study, we analyze messages from IRC channels dedicated to discussing
development issues and we interpret the results with the underlying assumption
that authors of these messages are developers contributing to the OSS project.
However, IRC channels are public and anyone can join the ongoing discus-
sion. Answering RQ2 provides the opportunity to investigate how participation
in rationale discussions in IRC messages is related to committing actual code
changes.

We distinguish between two types of IRC authors (process described in
Section 4.2.1.4). IRC committers are the IRC authors who were mapped into
committers identified from the project commit history, and IRC non-committers
are the IRC authors who were not mapped into committers.

Table 4.5 shows the distribution of the IRC authors of the analyzed sample of
7,500 messages (2,500 messages from each project). In all three projects, the num-
ber of IRC non-committers is greater than the number of IRC committers. This
is typically expected due to the public nature of IRC channels in OSS projects.
However, the developers make efforts to keep the discussions in the develop-
ment channels focused on development matters, e.g., a developer replied to an

4.2 rationale in developers’ chat messages 63

40%

60%

78%

22%

44%

65%

Apache Lucene Mozilla Thunderbird Ubuntu

IR
C co

mmitte
rs

IR
C non-co

mmitte
rs

IR
C co

mmitte
rs

IR
C non-co

mmitte
rs

IR
C co

mmitte
rs

IR
C non-co

mmitte
rs

0%

20%

40%

60%

80%

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Figure 4.4: The percentage of messages containing rationale written by IRC committers
and IRC non-committers.

end-user who posted a general question with “[...] please ask support questions
in #ubuntu; I realize that it’s noisier there, but consider what it would be like here if
everyone asked for user help here rather than in #ubuntu :-)”.

Figure 4.4 shows the percentages of messages containing rationale written by
each group, IRC committers and IRC non-committers. In both Apache Lucene
and Ubuntu, the percentage of messages containing rationale written by IRC
non-committers exceeds the ones written by IRC committers. While in Mozilla
Thunderbird, IRC committers wrote more messages containing rationale than
IRC non-committers, even though the number of identified IRC committers is
less than IRC non-committers. The percentage of rationale contribution is pro-
portional to the number of messages written by each group. In both Apache
Lucene and Ubuntu, IRC non-committers wrote more messages than IRC com-
mitters (58% and 60%, respectively); while IRC committers wrote more messages
in Mozilla Thunderbird (60%). On average, IRC committers contributed 54% of
the messages containing rationale in the analyzed IRC messages.

64 rationale in text-based developers’ communications of distributed teams

35%

44%

51%

33%

40%

65%

56%

49%

68%

60%

70%

80%

78%

85%

100%

30%

20%

22%

15%

43%

42%

41%

39%

52%

57%

58%

59%

61%

48%

A
pache L

ucene
M

ozilla T
hunderbird

U
buntu

50% 0% 50% 100%

Decision

Con-argument

Pro-argument

Alternative

Issue

Decision

Con-argument

Pro-argument

Alternative

Issue

Decision

Con-argument

Pro-argument

Alternative

Issue

IRC committers

IRC non-committers

Figure 4.5: Rationale elements distribution per project.

To deepen our understanding of how different groups contribute to rationale
discussions, we analyzed the distribution of the rationale elements among IRC
committers and IRC non-committers, as shown in Figure 4.5. IRC committers
contributed more decisions than IRC non-committers in both Mozilla Thunder-
bird and Ubuntu. A possible interpretation is that IRC committers have more
influence on the project development and authority to make decisions. However,
messages written by IRC non-committers contain more decisions than the IRC
committers in Apache Lucene. For other rationale elements, there is no strong
difference between the IRC committers and non-committers and the frequency
of the rationale elements.

We found a strong positive correlation12 between the number of commits and
the number of messages containing rationale contributed by the IRC commit-

12 Calculated using Spearman’s correlation coefficient.

4.2 rationale in developers’ chat messages 65

ter in Apache Lucene (rs=0.75, p-value=0.02). However, we found a very weak
(rs=0.15, p-value=0.55) and weak (rs=0.26, p-value=0.14) positive correlations be-
tween them in Mozilla Thunderbird and Ubuntu, respectively.

4.2.3 Discussion

We discuss the study findings by revisiting our research questions.

rationale frequency : On average, 25% of developers’ IRC messages con-
tain development rationale. Alternatives are the most discussed rationale ele-
ments, followed by issues, arguments and finally decisions. We also found that
techniques analyzing rationale in IRC messages should consider the context of
the exchanged conversation. During our analysis, we observed that developers
discuss rationale in a sequence of short messages with mostly one rationale ele-
ment. With this in mind, recovering rationale as chunks of conversations allows
for a better comprehension of the argumentation flow leading to the decision.

The use of IRC messages as a complementary channel with other communi-
cation mediums is apparent. Consequently, the rationale is fragmented across
these channels. References to emails, issue trackers, and commits were common
cases. Exploiting these references can be a first step towards the linkage of the
rationale across different channels. Messages discussing particular commits or
code branches could be employed to extract traceability links between code frag-
ments and the rationale related to them in IRC messages.

rationale contributors : A developer might discuss the rationale be-
hind an implementation when communicating with other developers through
IRC messages. Linking the development activities of developers to their discus-
sion is a first step towards recovering the related rationale. To achieve this, it is
necessary to identify OSS developers across multiple communication channels.

In this study, we distinguished between two groups of IRC authors:
IRC committers, who are committing code to project repository, and IRC non-
committers, whose IRC identifiers could not be mapped to committers names.
IRC committers contributed an average of 54% of the messages containing ratio-
nale in IRC channels. An interesting finding is that the volume of the rationale

66 rationale in text-based developers’ communications of distributed teams

contributed by each group is correlated to the number of messages written by
that group (i.e., IRC committers or IRC non-committers) rather than who wrote the
message. This posts an important question: Who are the IRC non-committers? If
they are contributing to the rationale discussions, could they not be developers
themselves?

We applied a set of name resolution heuristics and the Levenshtein edit dis-
tance algorithm [136], [188] with a conservative similarity threshold of 80%.
Within the single source, i.e., IRC channels and code repositories, we resolved
an average of 20% aliases. However, on average, only 9% of IRC authors were
mapped to committers. This result might be due to the fact that developers use
different identities on different channels and linking these identities is not al-
ways feasible. For example, in some cases, very short versions of the developers’
names are used in IRC channels complicating its mapping to an actual devel-
oper name, e.g., mvg. Also using pseudonyms is common, e.g., lovemeblender and
blackbug. Future improvements to the resolution method could explore different
values for the threshold and follow the automated approaches with a manual
inspection for resolving ambiguous cases.

In the ideal case, identification methods such as the one proposed by Robles
and Gonzalez-Barahona[157] should be applied to track and maintain aware-
ness of developers’ activities across different project repositories. Such methods
should take developers’ privacy into account while being designed and applied.

4.2.4 Threats to Validity

In this section, we discuss the potential threats to the validity of our results
according to the four validity aspects as defined by Runeson et al. [164].

construct validity is concerned with how accurately the study obser-
vations interpret and measure the theoretical constructs [164]. The messages
coders have not been involved in the development of the analyzed projects. Thus,
the consideration of whether a chat message contains rationale depends on the
coders’ judgment, which can be different from what the actual developers con-
sider as rationale. To mitigate this threat, the coders read the description of the
analyzed OSS and their main functionalities from their corresponding web sites.

4.2 rationale in developers’ chat messages 67

Furthermore, both coders are graduate students with a software engineering
background and they are users of some of the analyzed projects themselves.

Although the list of rationale elements used in our analysis are based on the
well-known IBIS model [102], the list of elements could be incomplete and its
descriptions simplified. This threat could lead to the capture of incomplete ratio-
nale. However, the analyzed rationale elements are shared among most rationale
representation models.

internal validity is concerned with the confounding factors that may
influence the study results [164]. We analyzed the messages through manual
analysis by human coders which is a highly subjective process. To mitigate this
threat, we applied a peer-coding process in which each message is annotated
by two coders independently. Moreover, a coding guide was used during the
coding process and the disagreements were discussed and resolved by the two
coders.

We rely on an automated alias resolution approach to map IRC authors to
committers. However, some aliases might remain unresolved. Also, the fact that
developers can use freely-chosen nicknames might result in missing mappings
between IRC authors and committers.

external validity is concerned with the generalizability of our re-
sults [164]. We selected popular OSS projects with a large community of users
and developers, and thus, we cannot claim that our results are generalizable to
other projects of smaller communities and different development settings.

Another threat to the external validity is the sampling bias. To mitigate this
threat, we randomly selected a large sample of 7,500 messages from three OSS
projects from three diverse domains.

reliability is concerned with to what extent the study results are depen-
dent on a specific researcher, i.e., whether the study yields the same results if
replicated by other researchers [164]. To encourage replication, we made the
annotated IRC messages13 and the used coding guide (see Appendix B) publicly
available to other researchers. Furthermore, peer-coding was performed on all

13 https://figshare.com/s/20f10511dc6e36c98ccd

68 rationale in text-based developers’ communications of distributed teams

the analyzed messages to minimize the bias that could result from individual
coding.

4.3 rationale in developers’ comments in issue tracking

systems

In Section 4.2, we analyzed how developers discuss rationale in the IRC
messages of three OSS projects. We found that, developers discuss rationale in
an average of 25% of the analyzed messages; despite the informal nature of IRC
channels that contain a high volume of irrelevant and off-topic discussions [33].
In this section, we present an empirical study to analyze how developers discuss
rationale in a more focused communication channel, the issue tracking systems
used in the three OSS projects.

Issue tracking systems (ITS), sometimes referred to as bug tracking systems,
are playing a significant role in software development, especially in open source
projects as they provide a communication channel for geographically distributed
developers [5], [191]. Issue tracking systems are typically used in OSS projects for
discussing and documenting decisions [77], maintaining group awareness [65],
and managing requirements [84].

Figure 4.6 shows an example of a reported issue in Ubuntu. In issue tracking
systems, an issue usually consists of a title, a description, metadata (e.g., the
issue reporter, assignee, status, and importance), and comments. A basic func-
tionality of issue tracking systems as communication channels is their support
for developers’ discussions in the comments to the reported issues. Developers
can discuss different aspects of the issue, explore possible solution approaches,
and discuss tradeoffs in the comments to issues. In this study, we analyze the
comments to issues rather than issues’ descriptions, since our goal is to under-
stand how developers discuss rationale while communicating with each other.
We use the term commenters to refer to persons who post comments to issues in
issue tracking systems.

4.3 rationale in developers’ comments in issue tracking systems 69

1

2

3

4

Figure 4.6: An example of a reported issue in Ubuntu. It consists of: (1) issue title, (2)
issue metadata, e.g., status, importance, reporter, and assignee, (3) issue de-
scription, and (4) comments.

70 rationale in text-based developers’ communications of distributed teams

4.3.1 Study Design

This section introduces the design of our empirical study. We describe the ap-
plied research method, including data collection, manual coding process, and
mapping commenters to committers.

4.3.1.1 Research Method

We followed a research method similar to the one applied in the study of
rationale in the IRC channels of OSS projects (see Section 4.2.1.1), which
consisted of two phases: data collection and data analysis. In the data collection
phase, we crawled the issue tracking systems of the same three OSS projects ex-
amined in the IRC messages study (see Section 4.2.1.1): Apache Lucene, Mozilla
Thunderbird, and Ubuntu. The research data is described in Section 4.3.1.2.

In the data analysis phase, we applied content analysis techniques as de-
scribed by Neuendorf [138] on a stratified sample of 300 issues, i.e., 100 issues
from each project, to answer RQ1. The manual coding process is described
in Section 4.3.1.3.

To answer RQ2, we obtained the lists of committers after resolving aliases
from the previous study of IRC messages (see Section 4.2.1.4), as we are
investigating the same OSS projects. We mapped the rationale contributors in
the issues’ comments to the code committers whenever feasible. The mapping
process is described in Section 4.3.1.4.

4.3.1.2 Research Data

In this section, we describe the process of collecting and extracting our re-
search data from three OSS projects: Apache Lucene, Mozilla Thunderbird, and
Ubuntu14. Apache Lucene uses JIRA as its issue tracking system15, while Mozilla
Thunderbird uses Bugzilla16, and Ubuntu uses Launchpad17. For each project,
we crawled all the reported issues that have at least one comment, as we are
interested in the analysis of rationale in these comments, extracted the required

14 An overview of these projects is given in Section 4.2.1.2.
15 https://issues.apache.org/jira/projects/LUCENE/issues
16 https://bugzilla.mozilla.org/buglist.cgi?product=Thunderbird
17 https://bugs.launchpad.net/ubuntu/+bugs

4.3 rationale in developers’ comments in issue tracking systems 71

Table 4.6: Overview of Issue Tracking Systems Dataset.

Project Years Issues Comments

Apache Lucene 2001 - Aug. 2017 7,239 74,012

Mozilla Thunderbird 2008 - Aug. 2017 4,368 26,587

Ubuntu 2004 - Aug. 2017 28,615 150,008

Total — 40,222 250,607

fields, and stored them into a MySQL database for further analysis. For each
issue, we extracted: title, description, reporter, assignee, and comments. For
each comment, we extracted: comment, and comment author. Table 4.6 shows an
overview of the collected issues and their comments. In total, we collected 40,222

issues with 250,607 comments from three OSS projects.

4.3.1.3 Coding of issue comments

To analyze rationale in the developers’ discussions in the comments of issue
tracking systems, two researchers, including the author of this dissertation,
performed manual content analysis [138] on the comments of a stratified sample
of 300 issues, i.e., 100 issues from each project. This process consisted of the
following steps:

a. Developing a coding guide: To systematize the coding process and min-
imize disagreements between the two annotators, a coding guide was de-
veloped and followed during the coding task (see Appendix C). The coding
guide was developed in two iterations. In each iteration, the two annota-
tors independently annotated comments of a randomly sampled 50 issues.
Consequently, the disagreements between the two annotators were ana-
lyzed and the coding guide was modified.

b. Sampling of issues: Generating the issues sample for the manual coding
consisted of three steps:

step 1 . Our aim was to analyze rationale in ITS in the same time period
analyzed in the study of IRC channels to be able to compare between

72 rationale in text-based developers’ communications of distributed teams

Table 4.7: Issues coding sample.

Project Issues Comments Sentences

Apache Lucene 100 1,023 2,446

Mozilla Thunderbird 100 989 3,086

Ubuntu 100 995 2,782

Total 300 3,007 8,314

the developers’ use of ITS and their use of IRC for discussing rationale.
To this end, we only considered the issues that were created within the
time periods specified in Table 4.1.

step 2 . The collected issues in our research data have a varying number
of comments, ranging from one to 434 comments. However, only a
small percentage of issues (less than 1% in all three projects) have
more than 30 comments. Based on a preliminary inspection of some
issues in our research data, we decided to consider issues that have
between 5 and 30 comments. As our goal was to investigate how de-
velopers discuss rationale in these comments, we found that less than
5 comments usually lack any meaningful discussions; while in issues
with above 30 comments, discussions often drift from the original is-
sue topic.

step 3 . We divided the issues in the dataset into five groups (strata)
according to the number of comments: 5-10, 11-15, 16-20, 21-25, and
26-30. Next, we applied stratified random sampling to obtain 100 is-
sues for each project, resulting in a sample of 300 issues from the three
OSS projects. Table 4.7 gives an overview of the issues coding sample.

c. Manual coding of issue comments: We chose comments’ sentences to be
the coding unit during the manual coding to allow for a more fine-grained
annotation of rationale elements.

We performed peer-coding on the 8,314 sentences of all comments in the
coding sample. The two coders independently inspected each sentence,

4.3 rationale in developers’ comments in issue tracking systems 73

Figure 4.7: A screenshot of the Excel sheet as used during the manual coding of com-
ments in ITS.

indicated if the sentence contains rationale, and specified the rationale
element(s) present in the sentence. A sentence can contain more than one
rationale element.

The sentences of all the comments for the sampled issues were presented
to the coders in an Excel sheet for each project in a sequential order (one
sentence in each row), as shown in Figure 4.7. Displaying all the comments
of an issue in the excel sheet allowed the coders to obtain the conversation
context while coding. In addition to the comments’ sentences, the issue
title, issue description, issue reporter, issue assignee, and comment author were
displayed to provide the coders with the context in which these comments
were exchanged. Rationale elements are represented by color-coded
columns. The coder can indicate that a sentence contains a specific
rationale element by assigning an x in the corresponding column. The two
coders reported an average of 21 hours to complete the coding task.

d. Disagreements reconciliation: Disagreements between the two coders oc-
cur when a comment is annotated as containing rationale by one coder or
when a comment is annotated as containing different rationale elements by
the two coders. The average inter-rater agreement between the two coders
was 78%. The two coders discussed and resolved their disagreements.

74 rationale in text-based developers’ communications of distributed teams

4.3.1.4 Mapping rationale contributors to committers

In all three studied OSS projects, only registered users can post comments in ITS.
This minimizes the multiple aliases problem faced earlier in IRC and committers
identifiers (Section 4.2.1.4), as developers use their login names to post into ITS,
hence, a single identifier within ITS. The login names identified in the dataset
can be self-chosen nicknames, which can be abbreviations of the developers’ real
names, e.g., dsmiley. Alternatively, the developers’ emails can be used as login
names, such as gbowyer@fastmail.co.uk; while in Ubuntu, a combination of the
developer’s name and nickname is used (e.g., Adam McMaster (adammc)).

However, to map the rationale contributors in the comments of ITS to code
committers, the multiple aliases problem is still present as developers might use
different identifiers on these two channels, which complicates the mapping of
their identifiers across these channels.

To map rationale contributors in the comments of ITS to committers, we
used the list of committers after applying the alias resolution approach in Sec-
tion 4.2.1.4. Next, we applied the following steps automatically on the list of
commenters’ identifiers to prepare them for the mapping:

1. Extract email login names: If the developer’s email is used as the login
name, we removed the email domain (i.e., anything after “@”). For exam-
ple, gbowyer@fastmail.co.uk is converted to gbowyer.

2. Ignore middle names: We removed middle names and initials, when de-
veloper’s name is used as the login name. For example, Antti S. Lankila is
converted to Antti Lankila.

3. Normalization: We removed punctuation (e.g., “-” and “.”), numbers, and
extra white spaces. In addition, we removed “bugzilla” and “mozilla” that
were attached to some login names in Mozilla Thunderbird, for example
benjamingslade+mozilla is converted to benjamingslade.

Finally, we mapped the rationale contributors in the ITS comments (i.e., the com-
menters who wrote comments identified as containing rationale in the manual
coding in Section 4.3.1.3) to committers whenever viable.

4.3 rationale in developers’ comments in issue tracking systems 75

26%

74%

36%

64%

32%

68%

Apache Lucene Mozilla Thunderbird Ubuntu

0%

20%

40%

60%

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Comments without rationale

Comments with rationale

Figure 4.8: Comments containing rationale per project.

4.3.2 Results

This section presents the results of the manual content analysis of rationale ele-
ments in the comments in ITS and the mapping of rationale contributors in these
comments to the code committers.

4.3.2.1 Rationale Frequency

To answer RQ1, we present in this section the results of the manual content
analysis (described in Section 4.3.1.3).

Although we conducted the manual coding on the sentence level to allow for
a more fine-grained annotation of rationale elements, we noticed that sentences
mostly lack the argumentation context. Thus, we reported the results on the com-
ment level. A comment was considered to contain a particular rationale element,
if at least one of its sentences was annotated as containing that element.

Figure 4.8 shows the frequency of comments containing rationale among the
analyzed comments from the three OSS projects. On average, 69% of the ana-
lyzed comments contain rationale (2,066 comments). Compared to an average of
9% of the chat messages of co-located teams and 25% of the chat messages of

76 rationale in text-based developers’ communications of distributed teams

Table 4.8: Frequency distribution of rationale elements across ITS’s comments contain-
ing rationale per project.

Rationale
element

Apache
Lucene

Mozilla
Thunderbird

Ubuntu Total Comment example

Issues 22% 62% 57% 46% “How to reliably detect SSD?”

Alternatives 57% 44% 38% 47% “Might it be advisable to have an alterna-
tive constructor that doesn’t clone [...]”

Pro-arguments 46% 24% 21% 31% “For higher values of minNumberShould-
Match it would probably be good to reuse
the implementation from boolean queries.”

Con-arguments 24% 24% 17% 22% “So adding two extra object allocations to
clone the incoming term is very unlikely to
have noticeable impact on gc activity.”

Decisions 25% 10% 16% 18% “I would close this as won’t fix and maybe
only fix the remaining places that misses
the file name.”

distributed teams that were identified as containing rationale, developers’ dis-
cussions in ITS contain more comments discussing rationale. This result might
be expected, since issue tracking systems are more focused channels for dis-
cussing development issues; while due to the informal nature of chat channels,
the exchanged chat messages contain higher volume of irrelevant and off-topic
discussions, such as social aspects.

Table 4.8 presents the distribution frequencies of different rationale elements
across the comments containing rationale per project and an example for each.
Similar to chat message (in Chapter 3 and Section 4.2), alternative is the most
discussed rationale element in the developers’ comments (47% of the comments
containing rationale discuss alternatives). A possible interpretation is that devel-
opers suggest possible solutions to address the issue that was already explained
in the issue title and description. Issue is the next frequent rationale element
which was discussed in 46% of the comments containing rationale. The devel-
opers request further clarifications or ask questions to better understand the re-
ported issue. In addition, subsequent issues (e.g., sub-issues) and issues related
to the original reported issues were discussed in the comment. For example, in

“I now remember that I had a very similar issue [...]” a commenter described an
issue in a comment. The number of comments arguing for a suggested alterna-
tive (pro-argument) exceeds the number of comments discussing con-arguments

4.3 rationale in developers’ comments in issue tracking systems 77

0.1 0 0.1 -0.1

0.3 0.3 -0.2

0.3 -0.2

-0.1

Issue

Alternative

Pro

Con

Decision

-1.0

-0.5

0.0

0.5

1.0

(a) Apache Lucene

-0.1 0 0 0

0.5 0.4 0

0.3 0.1

0.1

Issue

Alternative

Pro

Con

Decision

-1.0

-0.5

0.0

0.5

1.0

(b) Mozilla Thunderbird

0 0 0 -0.2

0.5 0.4 -0.1

0.3 -0.1

-0.1

Issue

Alternative

Pro

Con

Decision

-1.0

-0.5

0.0

0.5

1.0

(c) Ubuntu

Figure 4.9: Pair-wise correlation matrices of rationale elements in ITS comments per
project. The cells shading and color intensity visualize the sign and mag-
nitude of the correlation.

with 31% of the former and 22% of the latter. Finally, decision appears in only
18% of the comments identified as containing rationale. This result echos our
earlier findings in that decision is the most difficult rationale element to identify
in written communications.

Similar to the analysis conducted earlier on the IRC messages in Sec-
tion 4.2.2.1, we analyzed the pair-wise co-occurrence correlation of different ra-
tionale elements at the comment level. The correlation matrices that plot the
Pearson’s correlation coefficient between all pairs of the rationale elements are
shown for each project in Figure 4.9. In all three projects, there is a moderate
positive co-occurrence correlation between alternatives and pro-arguments. In
addition, we found a moderate positive co-occurrence correlation between alter-
natives and con-arguments, even though in a lesser degree than the correlation
between alternatives and pro-arguments. Commenters tend to discuss the pro-
arguments and con-arguments for an alternative in the same comment in which
they discuss that alternative, e.g., “I think it’s generally useful to keep track of the
time(s) in the OneMerge object” and “Doing an explicit levenshtein calculation here
sort of defeats the entire purpose of having levenshtein automata at all!”. However,
no significant co-occurrence correlation was found between the other rationale
elements.

78 rationale in text-based developers’ communications of distributed teams

Table 4.9: The results of mapping commenters in the study sample to committers.

Project All commenters Rationale contributors

Non-committing
commenters

Committing
commenters

Apache Lucene 70
41 22

Mozilla Thunderbird 130
161 31

Ubuntu 390
246 84

Total 648
417 137

4.3.2.2 Rationale Contributors

In issue tracking system of OSS projects, any user can register and use their login
names to post comments. Thus, comments can be post by both end-users and
developers who are committing actual code changes to code repositories.

To answer RQ2, we differentiate between two groups of rationale contrib-
utors in the ITS comments. Committing commenters are the commenters who
were mapped into committers’ names in Section 4.3.1.4; while non-committing
commenters are the commenters who were not mapped into committers’ names.
Table 4.9 provides an overview of rationale contributors in the analyzed sample.
On average, 87% of the commenters in the manually analyzed sample (of 3,007

comments) discuss rationale in their comments. This result emphasizes the use
of ITS for a more focused development discussions compared to other informal
written communication channels, e.g., IRC channels.

Committing commenters wrote 40% of the comments containing rationale in
Apache Lucene, 44% in Mozilla Thunderbird, and 28% in Ubuntu. However,
no significant correlation was found between the number of commits and the
number of comments containing rationale contributed by the committing com-
menters (rs< 0.3 in all three projects).

4.3 rationale in developers’ comments in issue tracking systems 79

4.3.3 Discussion

We discuss the study findings by revisiting our research questions.

rationale frequency : On average, 69% of the analyzed comments in ITS
contain rationale. Compared to the two earlier studies that analyzed the same
rationale elements in the chat messages of co-located teams (Chapter 3) and chat
messages of distributed teams (Section 4.2), ITS systems contain more comments
discussing rationale than the number of messages discussing rationale in the
chat channels of both co-located and distributed teams.

Even though issue tracking systems contain more focused development dis-
cussions than chat channels, the discussion of rationale over these two channels
shares three main characteristics. First, alternatives were the most discussed ra-
tionale element and developers tend to discuss the pro-arguments in support of
these alternatives more than discussing the con-arguments. This result echos the
findings of a practitioners’ survey conducted by Tang et al. [183] that revealed
that designers tend to document positive rather than negative arguments. De-
cisions were the most difficult rationale element to identify; and thus, the least
frequently found during the manual analysis. One interpretation is that some of
the decisions may be explicitly documented in other development artifacts, such
as meeting minutes and commit messages, or can be inferred from other arti-
facts, such as source code and design models. However, the argumentation lead-
ing to these decision take place mostly over communication channels. Second,
developers’ written communications are context dependent; developers discuss
related rationale elements in a sequence of messages or comments. We argue
that preserving the context of the conversation in which these communication
artifacts were exchanged is critical for capturing useful rationale information.
One possible approach is capturing rationale as chunks of conversations to al-
low for a better understanding of the argumentation flow leading to the decision.
Third, the developers’ use written communication channels for discussing ratio-
nale in a complementary manner, i.e., they do not use one channel in isolation
until the decision is made. Situations in which developers discuss an already
opened issue in ITS in the chat channel by referencing its Issue ID or continu-
ing mailing lists or chat discussions in the comments of issues were frequently

80 rationale in text-based developers’ communications of distributed teams

encountered during the manual analysis. As a consequence, rationale is frag-
mented across different channels. Rationale capturing approaches should exploit
different traceability links to identify related rationale elements discussed across
different channels.

rationale contributors : The long-term vision of capturing rationale is
to make it available to the developers who need it to better inform different
development activities [80]. One way to achieve this is by associating rationale
to the part of the code that it explains [21]. Linking rationale discussions in
written developers’ communications to their development activities is a first step
towards linking rationale to related code.

In our work, we studied the correlation between contributing to the rationale
discussions in written communication channels, i.e., chat channels and ITS, and
committing to the code repository. As we carried out our research in the context
of OSS development team, we relied on mapping the identifiers used in the
communication channels to the ones used for committing code to identify the
committers and their committing frequencies. However, we found that an average
of only 27% of the rationale contributors in ITS were identified as committers
and they only contributed 38% of the comments containing rationale. This result
might be due to the fact that developers use various identifiers across different
development and communication channels which complicates the tracking and
integrating of developers’ related activities.

4.3.4 Threats to Validity

In this section, we discuss the potential threats to the validity of our results
according to the four validity aspects as defined by Runeson et al. [164].

construct validity is concerned with how accurately the study obser-
vations interpret and measure the theoretical constructs [164]. The two coders
have not been involved in the development of the analyzed projects. Thus, the
consideration of whether a comment to an issue contains rationale depends on
the coders’ judgment, which can be different from what the actual developers
consider as rationale. To mitigate this threat, the coders read the description of

4.3 rationale in developers’ comments in issue tracking systems 81

the analyzed OSS and their main functionalities from their corresponding web
sites. Furthermore, both coders are graduate students with a software engineer-
ing background and they are users of some of the analyzed projects themselves.

Although the list of rationale elements used in our analysis are based on the
well-known IBIS model [102], the list of elements could be incomplete and its
descriptions simplified. This threat could lead to the capture of incomplete ratio-
nale. However, the analyzed rationale elements are shared among most rationale
representation models.

internal validity is concerned with the confounding factors that may in-
fluence the study results [164]. We analyzed the issues’ comments through man-
ual analysis by human coders which is a highly subjective process. To mitigate
this threat, we applied a peer-coding process in which each comment is anno-
tated by two coders independently. Moreover, a coding guide was used during
the coding process and the disagreements were discussed and resolved by the
two coders.

We rely on an automated alias resolution approach to resolve aliases in the list
of committers that were used in the mapping of comments’ authors to commit-
ters. However, some aliases might remain unresolved. In addition, developers
may use different identifiers for writing in ITS and for committing code which
might results in missing mappings.

external validity is concerned with the generalizability of our re-
sults [164]. We selected popular OSS projects with a large community of users
and developers, and thus, we cannot claim that our results are generalizable to
other projects of smaller communities and different development settings.

Another threat to the external validity is the sampling bias. To mitigate this
threat, we applied stratified random sampling of 100 issues from three OSS
projects from three diverse domains.

reliability is concerned with to what extent the study results are depen-
dent on a specific researcher, i.e., whether the study yields the same results if
replicated by other researchers [164]. To encourage replication, we made the

82 rationale in text-based developers’ communications of distributed teams

annotated ITS comments18 and the used coding guide (see Appendix C) publicly
available to other researchers. Furthermore, peer-coding was performed on all
the analyzed comments to minimize the bias that could result from individual
coding.

18 https://figshare.com/s/62da0027efc0e7ae35a0

5
Related Work Relevant to Analyzing Text-based
Developers’ Communications

“Conversation within the digital medium has a prop-
erty of great importance for our purposes: it persists.”

—Thomas and Kellogg [53]

In Chapter 3 and Chapter 4, we presented three empirical studies that analyze
how developers discuss rationale in two text-based communication channels:
chat channels and issue tracking systems, in co-located as well as distributed
development teams.

In this chapter, we give an overview of the relevant existing research studying
written developers’ communications during software development. In particular,
we focus the related work discussion in two areas: analyzing developers’ chat
messages, and analyzing issue tracking systems in software engineering.

The chapter is structured as follows: Section 5.1 presents related work ana-
lyzing developers’ chat messages. Section 5.2 discusses related work analyzing
issue tracking systems.

5.1 analyzing developers’ chat messages

A growing body of literature has investigated the role of chat systems in
software development. Storey et al. [181] carried out a survey of 1,449 devel-
opers to explore how developers use communication channels during software
development. Chat messages were reported as the closest replacement for
face-to-face interactions when team members are geographically distributed
and were deemed as the most important communication channel by nearly 15

percent of the survey respondents. Lin et al. [117] surveyed software developers

83

84 related work

to understand why developers use Slack, a team messaging platform, and
how they benefit from it. Their analysis revealed that software developers
use Slack for personal, community-wide, and team-wide purposes including
communication and collaboration with other team members, file and code shar-
ing, development operation notifications, and software deployment. Gutwin
et al. [65] found that the group awareness in distributed development teams
is maintained primarily through text-based communication, including chat
systems. Dittrich and Giuffrida [45] explored the role of instant messaging in a
global software development project and found that instant messaging not only
supports the daily work and coordination between developers, but also provides
means to build trust and social relationships with co-workers. In a systematic
mapping study by the same authors, Giuffrida and Dittrich [63], on the use of
social software in distributed development teams, instant messaging has been
found to reduce communication barriers between remote collaborators. Handel
and Herbsleb [70] analyzed the use of a group chat application by six globally
distributed work groups of a software development organization. They found
that group chat was primarily used for discussing and coordinating work activi-
ties. The findings of these studies that chat messages are playing an increasingly
significant role in software engineering motivate our investigation of how
developers discuss rationale in chat messages during software development.

Another stream of research has shown that the use of mailing list for devel-
opment discussions is diminishing in favor of chat channels and issue tracking
systems. Panichella et al. [142] investigated collaboration links by analyzing
communication data from mailing lists, issue trackers, and chat logs of seven
open source projects. The authors found that chat channels and issue trackers
are being used as the main communication channels. Similarly, Kaefer et al.
[90] and Guzzi et al. [66] provided empirical evidence that there is a shift in
discussing development aspects towards an increasing usage of chat and issue
tracking systems.

Developers’ communication in the Internet Relay Chat (IRC) channels of Open
Source Software (OSS) projects is mostly recorded and made publicly available,
which attracted researches to study their role in software development as a valu-
able source of knowledge [71]. Yu et al. [195] investigated the use of IRC (syn-
chronous) and mailing list (asynchronous) communication mechanisms in global

5.1 analyzing developers’ chat messages 85

software development projects. They observe that developers actively use both
as complementary communication mechanisms. Shihab et al. [172], [173] ana-
lyzed the usage of IRC meetings channels by developers to investigate the meet-
ing content, meeting participants, their contribution and communication styles.
They found that IRC meetings are increasing in popularity among OSS devel-
opers and maintainers. Elliott and Scacchi [50], [52] showed that open source
communities use IRC channels, together with other communication channels
such as mailing lists, to mitigate and resolve conflicts and to build a commu-
nity. Elliott [51] studied developers discussions in IRC channels and interviewed
some OSS developers to investigate the cultural beliefs and values influencing
the OSS development. The author found that developers communication in IRC
messages reinforces the cultural beliefs and motivation of OSS developers and
contributes to the forming of the community.

There are relatively few studies investigating the role of chat systems in knowl-
edge management during software development. Instant messaging is found to
be one of the four most popular communication tools (together with mailing
lists, telephone, and video conferencing) used to support knowledge sharing
among software developers [196]. Ajjan et al. [2] recognized the need to bet-
ter understand how the use of instant messaging affects knowledge manage-
ment within the organization. The authors surveyed 117 knowledge workers to
study the impact of the continuous use of instant messaging and found that
it positively affects the knowledge creation, retention, and sharing. Dennerlein
et al. [42] found that the effectiveness of messaging tools for knowledge man-
agement activities (generating, acquiring, organizing, transferring, and saving
knowledge) is mainly affected by the intended usage of these tools rather than
the context of application. Thus, a messaging tool is “what you make of it!” [42],
rather than serving solely as a communication medium.

While these studies have focused on investigating the general use of chat sys-
tems during software development and their impact on general knowledge man-
agement activities, our work differs in that we analyze a specific type of knowl-
edge, i.e., rationale, the completeness of the existing rationale, and the relation
between development activities and rationale contribution in chat messages.

86 related work

5.2 analyzing issue tracking systems

Issue tracking systems (ITS) are valuable sources for supporting and managing
software development and maintenance activities [4], [57]. A number of studies
have highlighted how issue tracking systems worked as a knowledge repository
and evolving source of information during software development [68], [191]. In
an expert survey of software developers from six different companies performed
by Miesbauer and Weinreich [132], issue tracking systems were identified as
one of the sources used in practice for documenting decisions during software
development. Bertram et al. [10] conducted a qualitative study to analyze the
use of issue tracking systems by small, co-located software development teams.
They found that issue tracking systems serve as both a communication hub and
an outboard brain of shared knowledge. Additionally, the majority of the study
participants reported that viewing issue discussions in the comment history is
important for understanding the rationale behind decisions. These studies mo-
tivate our investigation of the dialog in these comments as a valuable source of
rationale.

Several studies have examined the use of issue tracking systems for document-
ing decisions and decision knowledge during software development. Hesse et al.
[77] analyzed the decision-making strategies, the decision knowledge elements,
and the relation between them by coding the comments of 260 issues from Fire-
fox. They distinguished between rational decision-making (RDM), i.e., a system-
atic search for the optimal solution, and naturalistic decision-making (NDM),
i.e., selecting a sufficient solution based on past experience and heuristics. Sim-
ilar to our work, the authors coded the decision knowledge elements, i.e., ra-
tionale, in the comments of ITS. However, they classified rationale elements in
the comments according to their own decision documentation model [78] con-
sisting of: questions, solutions, context, assumptions, constraints, implications, and
pro-/con-arguments supporting or attacking a given question or solution; while
in our work, we based our classification of rationale elements on IBIS [102] (see
Section 2.2.2). In particular, we analyzed issues, alternatives, pro-/con-arguments,
and decisions1 in the comments of issue tracking systems.

1 Rationale elements are defined in Table 2.1 in Chapter 2.

5.2 analyzing issue tracking systems 87

Bhat et al. [11] analyzed design decisions by manually labeling 1,500 issues of
two large open source projects. The authors focused their analysis on the archi-
tectural design decisions as classified by Kruchten [99] into existence decisions,
property decisions, and executive decisions. There are three main difference be-
tween their study and the work presented in this dissertation. First, we did not
distinguish between different types of decisions, but rather focused on analyzing
the decisions made at various phases of software development. Second, beside
decisions, we analyzed additional elements of rationale1, such as issues and al-
ternatives. Third, they analyzed the summary and description of issues to iden-
tify different decisions; while in our work, we analyzed the comments within
issues as we are interested in analyzing the argumentation between developers.

In the same vein, Ko and Chilana [96] analyzed the rhetorical argumentation
structure of the design discussions in the comments of bug reports by coding
the comments of 100 bug reports from three OSS projects. They used six design
concepts for classifying the comments, among them are idea (i.e., “a description
of a change”), rationale (i.e., “grounds for a particular opinion”), and decisions
(i.e., “event marking the closing of a report”). Rationale was identified as the
most dominant type of comment in design discussions. Some of their analyzed
design concepts are partially similar to the rationale elements analyzed in this
dissertation, i.e., ideas, rationale, and decisions are equivalent to alternatives,
pro- and con-arguments, and decisions in our work. However, they focused their
analysis on contentious bug reports2; while we performed our analysis on a more
general stratified sample of issues.

Rogers et al. [161], [162] studied bug reports as a potential source of rationale.
The authors manually annotated 200 bug reports from Chrome project. They
annotated the sentences of bug report descriptions looking for eight different
rationale elements: requirements, questions, alternatives, arguments, assumptions, an-
swers, procedures, and decisions. Only 10.9% of the analyzed sentences were found
to contain rationale. The work described in this dissertation differs from their
work in analyzing rationale in the comments rather than issues descriptions, as
we are interested in the rationale deliberation among developers. In addition,

2 Contentiousness of a bug report was measured based on the frequency of personal pronouns in
the comments of the report.

88 related work

the rationale elements analyzed in our work could be viewed as a subset of the
elements analyzed in their work.

Collectively, these studies outline the important role played by issue tracking
systems in documenting the rationale and argumentation behind various deci-
sions made during software development. Our work is complementary; we fo-
cus on quantitatively analyzing rationale in the developers’ discussions in issue
tracking systems and the relation between development activities and rationale
contribution in these discussions.

Part III

Rationale Capturing Methods in Text-based
Developers’ Communications

6
REACT: A Method for Capturing Rationale in
Developers’ Chat Messages

“The general strategy for getting design rationale
into practice is to embody rationale capture in tools
that are of immediate utility to designers.”

—Moran and Carroll [133]

In Chapter 3 and Chapter 4, we have analyzed how developers discuss ratio-
nale in the chat messages of co-located and distributed development teams. Our
findings revealed that chat messages constitute a valuable source of rationale
about the software system.

In this chapter, we present REACT (Rationale ExtrAction from Communica-
tion arTifacts), a novel lightweight method to capture rationale in developers’
chat messages. REACT is designed to be integrated into developers’ messaging
platforms and enables developers to annotate the rationale present in their mes-
sages with emojis—pictographs commonly used in text-based communications.
Developers can use REACT to (i) individually annotate their own messages, or
(ii) collaboratively annotate messages posted by other team members.

The chapter is structured as follows: REACT approach is described in Sec-
tion 6.1. Section 6.2 presents the evaluation of REACT in two studies: a short-
term design task and in a medium-term software project. We discuss our results
in Section 6.3 and the threats to validity in Section 6.4.

6.1 react method

REACT is a lightweight method for capturing rationale in developers’ chat mes-
sages. The method is based on the manual annotation of chat messages that

91

92 react : a method for capturing rationale in developers’ chat messages

contain rationale by developers. We focus on capturing five rationale elements:
issues, alternatives, pro-arguments, con-arguments and decisions. The rationale ele-
ments definitions are listed in Table 2.1.

REACT rationale annotations are designed as a set of emojis, one emoji for
each rationale element. The annotations are:

for messages containing issues,

for messages containing alternatives,

for messages containing pro-arguments,

for messages containing con-arguments, and

for messages containing decisions.

Our use of emojis as rationale annotations was motivated by three factors.
First, emojis are very popular in modern text communication and social me-
dia [49]. Users of messaging platforms use emojis for liking, voting, checking off
to-do items, and sharing knowledge among team members1. Second, emojis are
well integrated with most modern messaging platforms which alleviate its intru-
siveness and encourages its adoption by developers. Third, users of messaging
platforms use emojis inline within their chat messages or to respond to messages
posted by other team members which supports the collaborative annotations of
messages among team members.

In the context of this dissertation, we implemented our method within Slack; a
widely used messaging platform for exchanging chat messages among members
of development teams. In 2017, Slack has over six million daily active users2 and
the number is growing rapidly due to the wide spectrum of services offered by
Slack, including team messaging, archiving, and integrations to a broad range of
services and bots. Figure 6.1 shows a screenshot of a conversation in Slack and
describes its main components.

1 https://18f.gsa.gov/2015/12/08/using-emoji-for-knowledge-sharing/
2 https://www.statista.com/statistics/652779/worldwide-slack-users-total-vs-paid/

6.2 react evaluation 93

3

2

1

4

Figure 6.1: Example of a conversation in Slack. Teams using Slack can create (1) channels
to organize their conversations according to topics, team members can in-
clude emojis (2) inline within messages, or as (3) a reaction, and (4) the added
reactions appear under the message.

We added REACT rationale annotations as custom Slack emojis3. When us-
ing REACT, developers annotate their own chat messages with inline or reac-
tion annotations. Developers can also annotate chat messages written by other
team members using reaction annotations. A message can be annotated with
more than one annotation, as a chat message might contain more than one ratio-
nale element. For example, when a developer proposes an alternative and writes
the pro-argument supporting this alternative in the same message, the message
should be annotated with both and .

6.2 react evaluation

We conducted two studies to evaluate REACT in different settings. In Study 1,
we evaluated REACT during a short-term design task. In Study 2, we evaluated
REACT in a medium-term project.

3 https://get.slack.help/hc/en-us/articles/206870177-Create-custom-emoji

94 react : a method for capturing rationale in developers’ chat messages

Manual analysis of chat messages

Study 1
Applying REACT
in a design task
Eleven teams
20 minutes

Study 2
Applying REACT

in a project
One team

Two months

Analyze questionnaire responses

Figure 6.2: REACT evaluation method.

The study participants were part of a capstone course at the Technical Univer-
sity of Munich in 2017 [17]. During the course, students are organized in teams
and develop mobile applications for industrial clients. Each development team
consisted of eight to eleven students led by a project leader—usually a doctoral
student—for management activities.

We evaluated REACT along the following dimensions:

1. Correctness: Do developers apply the correct annotations to their messages?

2. Collaborativeness: Do annotations encourage the collaborative capturing of
rationale in chat messages?

3. Privacy: How do privacy concerns affect the annotation of rationale in chat
messages?

We measure Correctness and Collaborativeness quantitatively by performing a
manual analysis of all chat messages exchanged over the period of both studies.
Additionally, we designed a questionnaire (see Appendix D) to qualitatively in-
vestigate Privacy and further understand developers’ opinion on this issue after
using REACT. Figure 6.2 shows the evaluation method. Detailed evaluation set-
tings and results are presented in Section 6.2.1, Section 6.2.2, and Section 6.2.3,
respectively.

6.2 react evaluation 95

Table 6.1: Frequency distribution of REACT rationale annotations and examples of an-
notated messages.

Rationale
Annotation

Frequency Example of Annotated Chat Message∗

Study 1 Study 2

11% 43% “@USER hey there, should our option names also be localiz-
able?”

18% 36% “@channel Hello everyone, I summarized and extended the first
draft of the architecture that @USER and me created. Feel free to
ask questions and come up with more detailed solutions and/or
better ideas :slightly_smiling_face: _link_”

30% 3% “Using the server lets you use your own API. so you can use the
crawling function with different OS (android)”

18% 3% “Looks nice here but there will be a black bar on top on a real
watch. Not usable though since the icons are too tiny. The one I
have now looks similar to the one on the left. You can check out
the branch”

23% 15% “@channel when creating a String in code please do "let myS-
tring =NSLocalizedString("Text of my String", comment: "Some
comment for the translation")" from now on for localization"”

∗ We anonymized the messages but the essence of these messages is not affected.

6.2.1 Study 1: REACT in a short-term Design Task

The aim of this study was to evaluate whether REACT is an effective method for
capturing rationale in chat messages.

6.2.1.1 Study Settings

Eleven development teams participated in the study. As a starting point in our
study, we gave a brief tutorial to the study participants in which we introduced
REACT and gave examples of applying it in Slack messages. Afterwards, we
presented the participants the task of implementing a web crawler to system-
atically fetch information from a website. The eleven development teams were
asked to use REACT to discuss the issue, evaluate the different alternatives and
make a decision in their Slack team channel. When the development team ar-

96 react : a method for capturing rationale in developers’ chat messages

24%

76%
93%

7%

Study 1 Study 2

Correct application of rationale annotations

Incorrect application of rationale annotations

Figure 6.3: Correctness analysis.

rived at a decision, the design task was considered complete. The tutorial and
design task took approximately 20 minutes. After the completion of the design
task, two researchers, including the author of this dissertation, studied how the
eleven development teams applied REACT in chat messages by analyzing the
chat messages manually.

6.2.1.2 Study Results

Study participants applied a total of 342 REACT annotations to 421 chat mes-
sages. Table 6.1 (2nd column) lists the frequency distribution of REACT annota-
tions in chat messages of the eleven teams during the design task.

To evaluate the correctness of the applied REACT annotations, we considered
the annotation application to be incorrect when developers applied a rationale
annotation that does not represent the rationale element(s) discussed in the mes-
sage. For example, when a developer annotates a messages containing an alter-
native with an issue annotation instead of an alternative. Furthermore, when a
message containing rationale was not annotated, we considered it as an incor-
rect application of the annotations because missing annotations contradict the
primary goal of our approach of capturing rationale in chat messages. Figure 6.3
(Study 1) shows the percentages of correct and incorrect application of annota-
tions in the eleven teams’ messages. In 76% of the annotation applications, de-

6.2 react evaluation 97

42%

58%

49%

51%

Study 1 Study 2

Rationale annotations applied by message author

Rationale annotations applied by other team members

Figure 6.4: Collaborativeness analysis.

velopers applied them correctly for capturing rationale in their messages. This
result implies an easy learning curve for applying REACT to annotate chat mes-
sages containing rationale knowledge.

With respect to collaborativeness, over half of the applied rationale anno-
tations were applied by the message author (58%), as shown in Figure 6.4
(Study 1); while 42% of the annotations were applied by other team members.
This result highlights the collaborative nature of rationale capturing in devel-
opers’ chat messages as many decisions in software development are made
collaboratively [72].

When comparing inline and reaction annotations, we found that 53% of the
applied annotations were inline and 47% were applied as Slack reactions. A
further analysis showed that message authors tended to use inline annotations
when annotating their messages (91% of their annotations were inline). In the
case of the reaction annotations, 88% were applied by other team members. This
finding highlights the principal advantage of our approach in supporting the
annotation of chat messages by their authors as well as collaboratively by other
team members.

We examined how developers apply the different rationale annotations, i.e.,
inline versus reactions, and found that applying issues, alternatives and con-
arguments as inline annotations were more prevalent, whereas pro-arguments and

98 react : a method for capturing rationale in developers’ chat messages

decisions were applied more frequently as reactions. A possible explanation for
this result is that when developers write issues and alternatives, they express
their need to discuss and receive feedback from other team members. Similarly,
they write con-arguments to oppose an alternative solution that was proposed
by another team member. In these cases, developers might prefer to use inline
annotations to attract the attention of other team members. On the other hand,
pro-arguments and decisions are mainly used to show agreement with a statement
or to collaboratively decide to select a proposed alternative; thus, reaction anno-
tations were more frequent in these cases.

We examined other Slack reactions applied by developers to their chat
messages to discover any patterns when applying these reactions. We found
that “thumps up” emojis were applied almost equally to the pro-argument
annotations to show agreement when a message author proposed an alternative
or made a decision. This result shows that developers are also using already
existing and common-use emojis to express their opinions which can be utilized
for capturing rationale.

6.2.2 Study 2: REACT in a medium-term Project

The aim of this study was to evaluate the viability of REACT when used by
developers in the context of their daily development activities for a longer period
of time (two months).

6.2.2.1 Study Settings

In this study, we introduced REACT to one development team of ten members
who developed a mobile application for an industrial client. As different teams
in the capstone course share similar development settings, we selected this team
randomly. This team did not participate in Study 1 (Section 6.2.1). The study
participants were introduced to REACT and to examples of applying REACT in
Slack messages in a brief tutorial. Afterwards, the team used REACT in their
daily exchange of chat messages for a duration of two months. For the duration
of the study, participants were encouraged to ask for help or clarifications when
faced with ambiguity while using REACT.

6.2 react evaluation 99

Figure 6.5: REACT rationale annotations pinned to team Slack channels in Study 2.

To organize the topics of their conversations, the team created three Slack
channels: a Main channel, a Front-end channel, and a Back-end channel. In Slack
channels, important messages or files can be pinned to details pane to make
it always visible to team members. During the duration of the study, REACT
rationale annotations were pinned to each channel as a constant reminder for
developers to use them in their chat messages (as shown in Figure 6.5). Table 6.2
shows the number of chat messages analyzed per channel (excluding automati-
cally generated messages by Slack bots such as reminders or status updates).

In this study, chat messages were exchanged during regular development ac-
tivities throughout a medium-duration project. The rationale elements discussed
in these chat messages were more complex and intertwined compared to Study 1

in which the development teams discussed a concrete and short-term design task
(Section 6.2.1). Therefore, we needed systematic and more comprehensive analy-
sis than the one performed in Study 1. For this reason, we decided to use content
analysis techniques [138] on the team’s chat messages.

Two coders, including the author of this dissertation, manually analyzed all
the team messages exchanged during the study duration. The content analysis
of the chat messages consisted of three steps. In the first step, we developed a
coding guide4 that provides definitions and examples of rationale elements to
train the coders and minimize disagreements. The coding guide was developed
in two iterations. In each iteration, the two coders coded 500 messages indepen-

4 Similar to the one used for coding chat messages of distributed teams (see Appendix B).

100 react : a method for capturing rationale in developers’ chat messages

Table 6.2: Chat messages analyzed in Study 2.

Slack Channel Chat Messages

Main channel 969

Front-end channel 432

Back-end channel 297

Total 1,698

dently5. Then, the disagreement between the coders are resolved and the coding
guide was modified accordingly. In the second step, the 1,698 messages were
peer-coded manually by two coders. One of the coders was the project leader of
the team, which allowed a more accurate and informed assessment of messages
containing rationale. We used GATE (General Architecture for Text Engineer-
ing) [38] for the manual coding of chat messages6. During the coding task, the
messages were shown without the applied REACT annotations, to avoid any
bias. The average inter-rater agreement between the two coders was 90% for
identifying messages containing rationale, and 87% for identifying different ra-
tionale elements. The two coders reported an average of 4.3 hours for the coding
task. As a final step, the two coders discussed and resolved their disagreements.

6.2.2.2 Study Results

Figure 6.6 compares the number of team messages annotated by developers and
the number of messages identified as containing rationale during the manual
analysis per channel. During the manual analysis, 14% of the total messages
were identified as containing rationale. However, developers applied REACT
rationale annotations to 13% of these messages in the duration of the study (two
months). The frequency distribution and examples of rationale annotations are
listed in Table 6.1 (3rd column).

We found that only 7% of the messages containing rationale were annotated
correctly by developers (shown in Figure 6.3 (Study 2)). A possible explanation
for this result may be the lack of motivation for developers to annotate messages,

5 These messages are not part of the study.
6 A screen shot of suing GATE for the manual coding is shown in Figure 3.1 in Chapter 3.

6.2 react evaluation 101

24

102

5

119

3

24

Main Channel Front-end Channel Back-end Channel

0

25

50

75

100

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Messages annotated with rationale annotations by developers

Messages containing rationale identified during manual analysis

Figure 6.6: Rationale in team messages of Study 2.

even with a well-integrated capturing tool, if they cannot use captured rationale
directly. Another possible explanation is that in the short-term Study 1, the de-
sign issue was clearly introduced to developers and they focused on discussing
it and capturing the rationale in their discussions. However, in real software
projects and under the pressure of meeting deadlines, identifying rationale ele-
ments in chat messages requires additional effort from developers.

When analyzing how developers apply other Slack emojis to the messages
identified as containing rationale during the manual analysis, we found that the
majority of the emojis added as reactions to the messages containing alternatives
or decisions were expressing agreement to what is written in the message (68%
and 57%, respectively). Examples of these emojis are: “thumbs up”, “ok hand”
and “white check mark”. This result echoes the findings of Study 1 and could
indicate that already existing emojis are relevant for capturing rationale.

As shown in Figure 6.4 (Study 2), rationale annotations were almost equally
applied by message authors (51%) and by other team members (49%). Contrary
to Study 1, we found that annotations were applied as reactions in the majority
of their application (82%), while inline annotations were used in only 18%. Fur-

102 react : a method for capturing rationale in developers’ chat messages

thermore, message authors applied inline and reaction annotations equally and
78% of the reaction annotations were applied by other team members. Overall,
applying Slack reactions to annotate messages was dominant for all rationale
elements in this study, which demonstrates the importance of the collaborative
capturing of rationale.

6.2.3 Questionnaire

After the completion of the two studies, an online questionnaire was distributed
to the study participants to obtain developers’ opinion after using REACT (see
Appendix D).

Of the two studies participants, 27 subjects—21 from Study 1 and 6 from
Study 2—completed the questionnaire. From Study 1, 50% of the respondents
agreed that REACT annotations are easy to learn, while 17% disagreed and 33%
were neutral. From Study 2, 86% agreed that REACT annotations are easy to
learn, while 5% disagreed, and 9% were neutral. In both studies, the majority
of the respondents agreed that rationale annotations are simple to apply (62%
and 67%, respectively). However, when asked whether they enjoy using ratio-
nale annotations, 33% from Study 1 respondents agreed, and 67% were neutral.
In Study 2, 29% agreed, 24% were neutral, and 47% disagreed.

A possible interpretation of this result is the lack of motivation for developers
to capture rationale, as one developer explained: “I think the idea is great, but I
don’t feel like it generates an immediate value and therefore we often forget to use it.”

Over one-third of the questionnaire respondents agreed that rationale anno-
tations help in documenting the rationale in their team chat messages (37%),
whereas 33% disagreed, and 30% were neutral. One developer commented that
“Slack messages are highly context dependent”, which confirms our earlier findings
in that developers’ chat messages are not to be used as the only source for ratio-
nale, but rather augmented with other development artifacts to capture a more
complete rationale.

When the subjects were asked whether rationale annotations encourage all
team members to participate in the ongoing discussion, 15% agreed, 44% dis-
agreed, and 41% were neutral. An interesting observation is that while the ma-
jority of participants agreed that the proposed annotations are easy to learn and

6.3 discussion 103

11.1%

18.5%

18.5%

51.9%

Others

I prefer if none of my discussions
 in chat messages are documented.

I have some concerns about my privacy,
 but I fully support it if the data is anonymized.

I fully support it for documenting important
 knowledge without any reservations.

0% 10% 20% 30% 40% 50%
Percentage of participants

Figure 6.7: Privacy analysis.

simple to apply, the cognitive load of identifying rationale in messages is still
perceived by developers as a burden and disruption to development activities;
as illustrated by one respondent: “Using rationale emoji makes you have to recon-
sider how you phrase messages, in such a way that it becomes a burden to continuously
categories each message”.

Figure 6.7 presents participants responses when asked if they have any pri-
vacy concerns about annotating their chat messages. Surprisingly, over half of
the respondents (51%) fully supported the annotations without any reservations.
Over 18% of the respondent preferred anonymizing their messages before anal-
ysis, and an equal percentage of respondent (18%) preferred that none of their
messages are documented. This interesting observation might support the anal-
ysis of developers’ chat messages as a source of valuable rationale knowledge.
However, this calls for further investigation in other industrial settings in which
privacy could be considered more pivotal.

6.3 discussion

Motivated by our findings that developers’ chat messages constitute a valuable
source of rationale during software development, we designed REACT with the
aim of supporting developers in capturing rationale in these messages.

104 react : a method for capturing rationale in developers’ chat messages

The results of our evaluation show that REACT represents a step towards
an effective rationale capturing in developers’ chat messages. The usefulness of
REACT as a rationale capturing method is manifested in three main aspects.
First, it can be easily integrated into most modern messaging platforms; thus,
lowering its adoption barrier by developers. Second, it is a lightweight method
as the evaluation results show that rationale annotations are easy to learn and
simple to apply, which alleviates the developers’ resistance provoked by heavy-
weight capturing approaches. Third, it supports the collaborative capturing of
rationale, which mirrors the collaborative nature of decision-making in software
development [132].

However, the effectiveness of REACT is highly dependent on providing
immediate benefit for developers to justify the efforts of capturing rationale.
Additionally, categorizing rationale in chat messages to apply REACT anno-
tations still presents additional cognitive load for developers and perceived as
an interruption to the communication flow. The need to think about whether a
message contain rationale while writing it may represent a mental disturbance
to the developer and causing what is known in communication theory as com-
munication noise, which refers to anything interfering with the communication
process [29], [139].

Contrary to expectations, the majority of participants did not view privacy as
a major concern while using REACT. This echos the findings of Storey et al. [181]
who noted, in their survey on the use of communication channels in software
development, that “privacy is not a big concern for everyone, whereas being
interrupted and feeling overwhelmed by communication traffic are issues for
more developers”.

Our finding that an already existing emojis are already used by developers
to express their opinions raises the possibility that these emojis, while used
informally by developers, might be exploited for recovering part of the discussed
rationale within development teams.

6.4 threats to validity

In this section, we discuss the potential threats to the validity of our results
according to the four validity aspects as defined by Runeson et al. [164].

6.4 threats to validity 105

construct validity is concerned with how accurately the study observa-
tions interpret and measure the theoretical constructs [164]. The list of rationale
elements could be incomplete and its descriptions may be simplified. However,
the rationale elements used throughout this dissertation are based on the well-
known IBIS model [102], and they are shared among many rationale representa-
tion models.

internal validity is concerned with the confounding factors that may
influence the study results [164]. We relied on an error-prone human judgment
for categorizing rationale in chat messages. To mitigate this risk, all the messages
were peer-coded by two coders and a coding guide was created.

external validity is concerned with the generalizability of our re-
sults [164]. We evaluated REACT in a university course which might affects the
generalizability of our results. However, students worked closely with industrial
clients in settings similar to industrial ones. In addition, we evaluated REACT
within Slack, a common communication tool in industrial projects. We believe
that this evaluation gives insights for further replications of the study in practice.

reliability is concerned with to what extent the study results are depen-
dent on a specific researcher, i.e., whether the study yields the same results if
replicated by other researchers [164]. Although, the analyzed messages could not
be made available due to privacy issues, the coding guide with clear definitions
and examples of the rationale elements is made available to other researchers
(see Appendix B). Furthermore, peer-coding was performed on all the analyzed
messages to minimize the bias that could result from individual coding.

7
A-REACT: An Automated Rationale Extraction Method

“The Rationale Paradox: When most rationale is
created, chances to capture it are lowest.”

—K. Schneider [168]

In the previous chapter, we presented REACT, a lightweight method for cap-
turing rationale in developers’ chat messages. Our evaluation results reveal that
even though REACT is easy to learn and simple to apply, categorizing ratio-
nale in chat messages still presents a cognitive overload and disturbance to the
communication process for developers.

To reduce the cognitive overload on developers and to support recovering
rationale from archived developers’ communications, this chapter presents
A-REACT (Automated Rationale ExtrAction from Communication arTifacts),
an automated method for detecting rationale in developers’ written commu-
nications and classifying them into the different rationale elements: issues,
alternatives, pro-arguments, con-arguments, and decisions1.

We evaluated A-REACT on the written developers’ communications analyzed
in Part II of this dissertation:

chat messages of co-located teams : The analysis and manual annota-
tion of this dataset is described in Chapter 3.

chat messages of distributed teams : The analysis and manual annota-
tion of this dataset is described in Section 4.2 in Chapter 4.

comments in issue tracking systems of distributed teams : The
analysis and manual annotation of this dataset is described in Section 4.3
in Chapter 4.

1 The rationale elements are defined in Table 2.1 in Chapter 2.

107

108 a-react : an automated rationale extraction method

Binary
Classifier

Fine­grained Classifier

Preprocessor

Communication
artifacts

 Communication artifacts
with rationale

 Communication artifacts
 without rationale

 Communication
artifacts tokens

Issues Alternatives Pro­arguments Con­arguments Decisions

 Binary classification

 Fine­grained classification

Figure 7.1: Overview of A-REACT.

In this chapter, we use the general term communication artifacts to refer to dif-
ferent types of written developers’ communications. Even though we evaluate
A-REACT in this dissertation on two communication artifacts, i.e., chat mes-
sages and comments in ITS, A-REACT is designed to be applicable to different
types of written developers’ communications.

The chapter is structured as follows: Section 7.1 introduces A-REACT. Sec-
tion 7.2 describes the A-REACT evaluation settings and results. We discuss our
findings in Section 7.3 and threats to validity in Section 7.4.

7.1 a-react method

The goal of A-REACT is to automatically detect written developers’ communi-
cation artifacts that contain rationale and classify them into different rationale

7.1 a-react method 109

elements: issues, alternatives, pro-arguments, con-arguments, and decisions. An
overview of A-REACT is shown in Figure 7.1.

A-REACT applies text mining and supervised machine learning techniques2

to classify written developers’ communication artifacts on two granularity levels:

1. Binary classification: In this step, a binary classifier detects communication
artifacts containing rationale and filters out communication artifacts with-
out rationale.

2. Fine-grained classification: In this step, the communication artifacts classified
as containing rationale in the previous step are further classified into differ-
ent rationale elements: issues, alternatives, pro-arguments, con-arguments,
and decisions.

A-REACT consists of the following steps. First, the communication artifacts
are preprocessed to transform them into a representation that is suitable for the
machine learning algorithms. The communication artifact is preprocessed by ap-
plying the following steps: (1) converting it into lowercase, (2) reducing inflected
words into their stems3, (3) applying n-gram tokenization, and (4) converting it
into a vector space model by applying TF-IDF as a weighting method4. Tokeniza-
tion converts a stream of characters into a sequence of tokens. We used n-gram
tokenizer with 1 and 3 as the minimum and maximum length. By applying an
n-gram tokenizer, we expected patterns of terms appearing together to be in-
dicators of rationale presence in the chat messages, e.g., phrases like “I would
suggest”, “how about” could be indicators of proposed alternatives, and “how do
we” could be an indicator of issues. We chose not to apply stopword removal (i.e.,
removing common words in English) as we expected them to be representative
of some rationale elements. For example, which and how might be indicators of
issues, e.g., “Which design pattern should we apply?”, and but is commonly used
before stating con-arguments against alternatives, e.g., “but it sucks as UX”. Sec-
ond, communication artifacts are classified into communication artifacts with ra-
tionale and communication artifacts without rationale by applying binary classifi-
cation5 on the preprocessed communication artifacts. Third, the communication

2 An overview of these techniques is given in Section 2.3 in Chapter 2.
3 “weka.core.stemmers.LovinsStemmer” was used for the stemming.
4 The preprocessing steps are described in Section 2.3 in Chapter 2.
5 Binary and multi-label classification of text documents are described in Section 2.3 in Chapter 2.

110 a-react : an automated rationale extraction method

artifacts that were classified as containing rationale in the previous step are fur-
ther classified into different rationale elements: issues, alternatives, pro-arguments,
con-arguments, and decisions, by applying multi-label classification5; as one com-
munication artifact might contain more than one rationale element.

7.2 evaluation

In this section, we describe the evaluation of A-REACT on three different com-
munication artifacts: chat messages of co-located teams (in Section 7.2.1), chat
messages of distributed teams (in Section 7.2.2), and comments in issue tracking
systems of distributed teams (in Section 7.2.3).

We used WEKA6 (Waikato Environment for Knowledge Analysis) [67] and
MEKA7 (A Multi-label Extension to WEKA) [149] for the preprocessing of the
communication artifacts and for building the classification models used in the
approach evaluation.

7.2.1 Chat Messages of Co-located Teams

In this section, we used the 8,702 manually annotated chat messages of the three
co-located development teams from Chapter 3 as a truth set for the training and
and evaluation of A-REACT.

7.2.1.1 Evaluation Settings

classification level We performed the classification on the message
level. The consideration of the classification on the message level was motivated
by two factors. First, previous work on classifying development artifacts [6], [162]
found that considering a sentence’s neighbors (context) improved classification
performance. Second, our analysis in Chapter 3 revealed that developers tend to
discuss rationale in messages of short length, which makes classification on the
message level feasible.

6 http://www.cs.waikato.ac.nz/ml/weka
7 http://waikato.github.io/meka/

7.2 evaluation 111

classification algorithms We compared the performance of two ma-
chine learning algorithms, MNB (Multinomial Naive Bayes)8 and SVM (Support
Vector Machine)9 due to their popularity and good performance in text classifi-
cation [33], [58], [170].

data balancing Our dataset is imbalanced with an average of 9% mes-
sages containing rationale. Building a classifier from an imbalanced dataset can
cause the classifier to be biased towards the majority class, i.e., the class with
the greater number of instances, while ignoring the minority class [69]. As pre-
viously described in Chapter 2, two popular techniques for handling class im-
balance problem are under-sampling and SMOTE (Synthetic Minority Oversam-
pling Technique). Under-sampling [46] uses a subset of the majority class for
training the classifier; while SMOTE [31] applies oversampling on the minority
class by generating synthetic examples. We compared between the application of
under-sampling and a combination of SMOTE and under-sampling as previous
research has proved that classifiers achieve better performance when combining
both sampling techniques [31].

training and evaluation For training and evaluating the classifiers, we
applied 10-fold cross validation (a k-fold cross validation, as described in Sec-
tion 2.3 in Chapter 2, in which k=10). We also applied project cross validation
to test the generalizability of the results, as suggested by previous research [6],
[143], since different development teams tend to use different terminologies and
jargons in their communications. In our case, project cross validation is a 3-fold
cross validation with one fold per project, as we are analyzing chat messages
from three projects. The classifier is trained on the messages of two projects and
tested on the messages of the third project. The process is repeated three times
rotating the projects.

We evaluated the classification performance using the standard metrics in ma-
chine learning: precision, recall, and F1-Measure [54].

8 We used “weka.classifiers.bayes.NaiveBayesMultinomial” implementation of MNB.
9 We used “weka.classifiers.functions.SMO” implementation of SVM, with a polynomial kernel.

112 a-react : an automated rationale extraction method

Table 7.1: Binary classification results of chat messages of co-located teams. P is Preci-
sion, R is Recall, and F1 is F1-measure.

Configuration Classifier Chat messages Team A Team B Team C

P R F1 P R F1 P R F1

Imbalanced

MNB
With rationale 0.44 0.59 0.50 0.44 0.61 0.51 0.34 0.50 0.40

Without rationale 0.96 0.93 0.95 0.95 0.91 0.93 0.96 0.92 0.94

SVM
With rationale 0.55 0.34 0.42 0.59 0.34 0.43 0.53 0.30 0.38

Without rationale 0.94 0.98 0.96 0.92 0.97 0.95 0.95 0.98 0.96

Under-sampling

MNB
With rationale 0.60 0.99 0.75 0.59 0.99 0.74 0.58 0.98 0.73

Without rationale 0.97 0.34 0.50 0.97 0.30 0.46 0.95 0.30 0.46

SVM
With rationale 0.73 0.82 0.77 0.76 0.79 0.78 0.78 0.80 0.79

Without rationale 0.79 0.70 0.74 0.79 0.75 0.77 0.79 0.78 0.79

SMOTE
+

Under-sampling

MNB
With rationale 0.83 0.81 0.82 0.80 0.87 0.83 0.75 0.83 0.79

Without rationale 0.81 0.84 0.82 0.86 0.78 0.82 0.81 0.73 0.77

SVM
With rationale 0.87 0.75 0.81 0.92 0.76 0.83 0.90 0.72 0.80

Without rationale 0.78 0.89 0.83 0.79 0.93 0.86 0.77 0.92 0.84

transformation methods When classifying messages containing ratio-
nale into different rationale elements (i.e., the fine-grained classification), a chat
message may contain more than one element. For example, a developer might
propose an alternative and write the pro-argument supporting the alternative in
the same message. In machine learning, classifying documents into one or more
classes that are not mutually exclusive is referred to as multi-label classification.
We applied two of the most popular techniques for multi-label classification10,
the BR (Binary Relevance) and the LP (Label Powerset) [187].

10 The multi-label classification and the transformation methods are described in Section 2.3 in
Chapter 2.

7.2 evaluation 113

Table 7.2: Examples of binary classification results of chat messages in co-located teams.

Chat message Manual
classification

Automatic
classification

”Morning guys. Can someone tell me, what steptype
(cooking, measuring, mixing, chopping) preheating
the oven is?:/I would make another category - pre-
heating otherwise I would take cooking as the type.
What do you guys suggest?”

With rationale With rationale

“You can send it to me on HipChat :)” Without rationale Without rationale

“Do we need to support the iPhone4?” With rationale Without rationale

“My big problem right now is that I would need pho-
toshot and illustrator :(”

Without rationale With rationale

7.2.1.2 Evaluation Results

binary classification results Table 7.1 gives an overview of the binary
classification results per team. The numbers in bold represent the corresponding
top values. When using the imbalanced dataset for training the classifiers, both
MNB and SVM classifiers performed well in classifying chat messages with-
out rationale, achieving high values for both precision and recall (above 0.91)
for all three teams. However, they performed less well when classifying mes-
sages with rationale; where SVM had a better precision ranging from 0.53 to 0.59

(compared to a precision ranging from 0.34 to 0.44 when applying MNB); while
MNB achieved a much higher recall ranging from 0.50 to 0.61 (compared to a
recall ranging from 0.30 to 0.34 when applying SVM). A possible explanation for
achieving less accuracy in classifying messages with rationale is the sparsity of
the messages containing rationale in the results of our manual content analysis
(see Chapter 3).

Upon further inspection, we found that rationale discussions spread over mul-
tiple messages were a common source of error. In these cases, it is important to
consider the contextual information in the neighbor messages to identify the
rationale contained in the message. Table 7.2 shows examples of binary classifi-
cation results when applying MNB with imbalanced dataset. In summary, both

114 a-react : an automated rationale extraction method

Table 7.3: Project cross validation results of chat messages of co-located teams. P is Pre-
cision, R is Recall, and F1 is F1-measure.

Classifier Chat messages Train: Teams B, C
Test: Team A

Train: Teams A, C
Test: Team B

Train: Teams A, B
Test: Team C

P R F1 P R F1 P R F1

MNB
With rationale 0.23 0.70 0.35 0.30 0.68 0.42 0.22 0.67 0.33

Without rationale 0.97 0.78 0.87 0.95 0.81 0.88 0.97 0.82 0.89

SVM
With rationale 0.32 0.22 0.26 0.55 0.25 0.35 0.44 0.27 0.34

Without rationale 0.88 0.90 0.89 0.92 0.98 0.94 0.95 0.97 0.96

classifiers reported significantly better performance in classifying chat messages
without rationale, with the highest achieved precision of 0.96 and recall of 0.98.

Applying balancing techniques resulted in a significant increase in the clas-
sification performance of messages with rationale. However, as expected, the
performance of classifying the majority class, i.e., messages without rationale in
our case, decreased. Applying under-sampling alone increases the precision (up
to 0.78) and recall (up to 0.99) of classifying messages with rationale, with MNB
achieving better recall and SVM achieving better precision, in all three teams.
However, applying a combination of SMOTE and under-sampling achieved a
higher F1-measure (ranging from 0.79 to 0.83) for classifying messages with ra-
tionale in all three teams, i.e., a better balance between precision and recall.
Similar to the classification results of imbalanced dataset, MNB has a better re-
call for classifying messages with rationale (up to 0.87), while SVM has a better
precision (up to 0.92) in all three teams. These results suggest applying data bal-
ancing techniques on the training set to alleviate the classifier bias towards the
majority class as a result of imbalanced training data. Consequently, increasing
the amount of detected rationale from chat messages.

When applying project cross validation, the overall classification performance
of messages containing rationale decreased, as shown in Table 7.3. This provides
a more reliable test of the degree to which the trained classifiers are able to clas-
sify rationale in the chat messages of unseen projects, i.e., not used for training
the classifiers. This finding demonstrates that training the classifiers with a set of

7.2 evaluation 115

Table 7.4: Fine-grained classification results of chat messages of co-located teams. P is
Precision, R is Recall, and F1 is F1-measure.

Rationale
element

Binary Relevance Label Powerset

MNB SVM MNB SVM

P R F1 P R F1 P R F1 P R F1

Issue 0.38 0.46 0.42 0.53 0.46 0.49 0.37 0.47 0.41 0.52 0.47 0.50

Alternative 0.64 0.68 0.66 0.67 0.63 0.64 0.60 0.64 0.62 0.64 0.71 0.67

Pro-argument 0.42 0.52 0.46 0.47 0.41 0.44 0.37 0.55 0.44 0.51 0.42 0.46

Con-argument 0.32 0.44 0.37 0.41 0.36 0.38 0.26 0.41 0.32 0.43 0.28 0.34

Decision 0.27 0.39 0.32 0.32 0.25 0.28 0.26 0.40 0.31 0.28 0.14 0.19

annotated messages from the same project yields a more accurate classification
results.

fine-grained classification results We evaluated the performance
of the fine-grained classifier that further classifies the 752 messages containing
rationale, among the 8,702 manually analyzed messages, into the five differ-
ent rationale elements: issue, alternative, pro-argument, con-argument, and de-
cision. The frequency distribution of rationale elements among the messages
containing rationale is shown in Table 3.2. The messages containing rationale
in each project do not include enough training instances of different rationale
elements. Thus, we decided to train and evaluate the fine-grained classifiers on
mixed messages from all the three projects.

Table 7.4 summarizes the obtained classification results. The numbers in bold
represent the corresponding top values. No single classifier works best for all
rationale elements. However, for predicting the different rationale elements, we
argue that recall is more important than precision. We aim at identifying as many
rationale elements contained in the messages as possible, with the compromise
of falsely predicting messages as containing additional rationale elements. Ap-
plying label powerset method achieved better recall for classifying all rationale

116 a-react : an automated rationale extraction method

Table 7.5: Examples of fine-grained classification results of chat messages in co-located
teams.

Chat message Manual
classification

Automatic
classification

“@all please have a look at the current speed of the
graph. I can’t even scroll down fast enough to see it
finish. Can we please make it 2 Secs total?[...]”

Issue, Alternative Issue, Alternative

“And the back button can then be named Cancel” Alternative Alternative

“If there is the model number in green everyone
should understand that the oven is connectedg’

Alternative, Pro-argument Pro-argument

“There should be only one Navigation Controller and
the Rest are Views.”

Decision Issue, Decision

“I just committed a new branch that added
this.Ingredient then has a computed property "full-
Price" that sums up the price for all occurrences of
this ingredient”

Decision Alternative

elements, except con-arguments. We achieved the highest recall for predicting
alternatives (0.71). Pro-arguments followed with a recall of 0.55, issues with a re-
call of 0.47, and con-arguments with a recall of 0.44. The accuracy of predicting
decisions was the lowest with a recall of 0.40.

Table 7.5 shows examples of fine-grained classification results when applying
Binary Relevance and MNB. A possible interpretation of the obtained results
is the sparseness of some rationale elements in the messages containing ratio-
nale (Table 3.2). Chat messages are informal short messages and the rationale
elements discussed in these messages are unstructured and intertwined. Dis-
tinguishing between different elements is a nontrivial and intensive task even
for a human judgment. Upon further inspection of the results, we found that a
possible interpretation of the poor accuracy in classifying decisions compared
to other elements, is that it is not always obvious in the messages whether a
decision has been made. And in many cases, the decisions were classified as al-
ternatives by the classifier. Furthermore, decisions have the lowest frequency dis-
tribution (10%) among the messages containing rationale; thus, fewer instances
in the training set.

7.2 evaluation 117

We replicated the above described experiments on the sentence level. In both
binary and fine-grained classification, the classification on the message level per-
formed significantly better than the classification on the sentence level, and thus,
classification on the sentence level were not reported.

7.2.2 Chat Messages of Distributed Teams

In this section, we used the 7,500 manually annotated chat messages of the three
distributed development teams from Chapter 4 as a truth set for the training and
evaluation of A-REACT.

7.2.2.1 Evaluation Settings

classification level Similar to the classification of chat messages of co-
located teams, we performed the classification on the message level as it has been
found to be more accurate than sentence level classification when categorizing
rationale elements from short developers’ messages (see Section 7.2.1).

classification algorithms In addition to comparing the classification
performance of MNB (Multinomial Naive Bayes) and SVM (Support Vector Ma-
chine) as in Section 7.2.1, we compared the classification performance of three
more classification algorithms: DR (Decision Tree)11, RF (Random Forests)12,
and LR (Logistic regression)13 as they have been widely used in text classifi-
cation [44], [89], [131].

data balancing The problem of imbalanced training dataset is present in
our dataset, in which only 25% of the messages contain rationale. We address
this problem by applying a combination of SMOTE and under-sampling, as it
proved to achieve better performance than applying under-sampling alone in
Section 7.2.1.

11 We used “weka.classifiers.trees.J48” implementation of DR.
12 We used “weka.classifiers.trees.RandomForest” implementation of RF.
13 We used “weka.classifiers.functions.Logistic” implementation of LR.

118 a-react : an automated rationale extraction method

Table 7.6: Binary classification results of chat messages of distributed teams. P is Preci-
sion, R is Recall, and F1 is F1-measure.

Configuration Classifier IRC message Apache
Lucene

Mozilla
Thunderbird

Ubuntu

P R F1 P R F1 P R F1

Imbalanced

MNB
With rationale 0.60 0.62 0.61 0.43 0.48 0.45 0.61 0.73 0.66

Without rationale 0.84 0.83 0.84 0.92 0.90 0.91 0.85 0.76 0.80

SVM
With rationale 0.63 0.45 0.53 0.54 0.31 0.39 0.64 0.54 0.59

Without rationale 0.80 0.89 0.84 0.90 0.96 0.93 0.78 0.85 0.81

DR
With rationale 0.52 0.39 0.44 0.33 0.09 0.15 0.60 0.50 0.55

Without rationale 0.77 0.86 0.81 0.87 0.97 0.92 0.76 0.83 0.79

RF
With rationale 0.67 0.21 0.32 0.62 0.02 0.05 0.72 0.46 0.56

Without rationale 0.75 0.96 0.84 0.87 1.00 0.93 0.77 0.91 0.83

LR
With rationale 0.46 0.44 0.45 0.27 0.38 0.31 0.46 0.47 0.47

Without rationale 0.77 0.78 0.78 0.90 0.84 0.87 0.73 0.72 0.72

SMOTE
+

Under-sampling

MNB
With rationale 0.82 0.76 0.79 0.90 0.60 0.72 0.83 0.59 0.69

Without rationale 0.78 0.84 0.81 0.70 0.94 0.80 0.67 0.88 0.76

SVM
With rationale 0.83 0.76 0.79 0.85 0.76 0.80 0.85 0.78 0.81

Without rationale 0.78 0.85 0.81 0.78 0.86 0.82 0.79 0.86 0.82

training and evaluation Similar to the classification of chat messages of
co-located teams (Section 7.2.1), we applied 10-fold cross validation for training
and evaluating the classifiers. Additionally, we applied project cross validation
to test the generalizability of the results. This corresponds to a 3-fold cross vali-
dation, as we are analyzing chat messages of three OSS projects.

We evaluated the classification performance using the standard metrics in ma-
chine learning: precision, recall, and F1-Measure [54].

transformation methods Similar to the classification of chat messages
of co-located teams (Section 7.2.1), we compare the fine-grained classification

7.2 evaluation 119

Table 7.7: Examples of binary classification results of chat messages of distributed teams.

IRC message Manual
classification

Automatic
classification

”This bug was found because I reduced the maximum
hit number randomly when collecting results”

With rationale With rationale

“Never check email on waking up :)” Without rationale Without rationale

“I haven’t looked at the patch, but it seems like
we should also have a more general format or
facet.format param”

With rationale Without rationale

“I feel like windows live mail is dying” Without rationale With rationale

performance of two multi-label transformation methods: the BR (Binary Rele-
vance) and the LP (Label Powerset) [187].

7.2.2.2 Evaluation Results

Table 7.6 shows the classification results of the different classifiers. Overall, all
the classifiers have a better performance when classifying messages without ra-
tionale. This result is expected due to the sparseness of the messages containing
rationale in the annotated sample (25%). For the messages with rationale, MNB
is the classifier with the best balance between precision (ranging from 0.43 to
0.61) and recall (ranging from 0.48 to 0.73) and the highest F-measure of a range
between 0.45 and 0.66 for all three projects.

It can be seen from the results that the classification performance of messages
with rationale is correlated with the number of messages containing rationale in
the analyzed messages (i.e., the training dataset). Hence, Mozilla Thunderbird
has the lowest classification accuracy for messages with rationale as it contains
the smallest percentage of messages with rationale (only 13%) among the three
projects. Examples of the classification results of the MNB binary classifier are
shown in Table 7.7. The second best classifier is SVM with better precision than
MNB (ranging from 0.54 to 0.64) but lower recall (ranging from 0.31 to 0.54). Ran-
dom forests has the highest precision ranging between 0.62 and 0.72, however,

120 a-react : an automated rationale extraction method

Table 7.8: Project cross validation results of chat messages of distributed teams. P is
Precision, R is Recall, and F1 is F1-measure.

Classifier IRC message

Train: Mozilla
Thunderbird,

Ubuntu
Test: Apache Lucene

Train: Apache
Lucene, Ubuntu

Test: Mozilla
Thunderbird

Train: Apache
Lucene, Mozilla

Thunderbird
Test: Ubuntu

P R F1 P R F1 P R F1

MNB
With rationale 0.49 0.56 0.52 0.24 0.64 0.35 0.51 0.51 0.51

Without rationale 0.81 0.76 0.78 0.93 0.69 0.79 0.75 0.75 0.75

SVM
With rationale 0.61 0.28 0.39 0.26 0.50 0.34 0.65 0.30 0.41

Without rationale 0.76 0.93 0.83 0.91 0.78 0.84 0.72 0.92 0.81

with a low recall ranging between 0.02 to 0.46. Considering the small percentage
of messages containing rationale, a classifier with a low recall is not desirable.

The last part of Table 7.6 shows the increase in the classification performance
of messages with rationale when training the two best performing classifiers
(i.e., MNB and SVM) on the balanced dataset. SVM has a better performance
than MNB for classifying messages with rationale in all three projects. However,
the classification performance for messages without rationale decreased slightly
as an expected result of under-sampling.

The results of applying project cross validation are shown in Table 7.8 (with-
out balancing techniques applied). The overall performance of the classifiers de-
creased comparing to the results when the messages from the same project are
used for training the classifier. Nevertheless, these results show that the gener-
ated classifiers can be applied with a reasonable accuracy across projects.

fine-grained classification results We evaluated the performance
of the fine-grained classifier on the 1,910 messages containing rationale among
the 7,500 manually analyzed messages. The frequency distribution of rationale
elements among the messages containing rationale is shown in Table 4.4.
Similar to Section 7.2.1, we trained and evaluated the fine-grained classifiers on
mixed messages from the three projects to include enough training instances of
different rationale elements.

7.2 evaluation 121

Table 7.9: Fine-grained classification results of chat messages of distributed teams. P is
Precision, R is Recall, and F1 is F1-measure.

Rationale
element

Binary Relevance Label Powerset

MNB SVM MNB SVM

P R F1 P R F1 P R F1 P R F1

Issue 0.53 0.61 0.56 0.54 0.49 0.51 0.51 0.51 0.51 0.51 0.44 0.47

Alternative 0.53 0.56 0.55 0.54 0.46 0.50 0.52 0.57 0.55 0.50 0.58 0.54

Pro-argument 0.40 0.49 0.44 0.45 0.37 0.41 0.38 0.45 0.41 0.42 0.38 0.40

Con-argument 0.30 0.44 0.36 0.32 0.25 0.28 0.28 0.36 0.32 0.33 0.27 0.30

Decision 0.28 0.41 0.33 0.31 0.23 0.26 0.32 0.34 0.33 0.27 0.22 0.24

We applied the two learning algorithms that have the better performance in
the binary classification: MNB and SVM. Table 7.9 provides an overview of the
classification results of the different rationale elements. MNB has a better re-
call than SVM for all rationale elements except in classifying alternatives. On
the other hand, SVM has a better precision in detecting all rationale elements
except in classifying decisions. When comparing the F1-measure, applying Bi-
nary Relevance and MNB performs better for all rationale elements. Classifying
decisions and con-arguments has the lowest accuracy among different rationale
elements. This is understandable considering the sparseness of these elements
in the messages with rationale (only 14% as reported in Table 4.4).

Table 7.10 provides examples of correctly and incorrectly classified messages.
The examples were produced by applying Binary Relevance and MNB fine-
grained classifier. We observed that the classifier tends to assign more rationale
elements than what is present in the message, provided that MNB has better
recall than precision for all elements.

122 a-react : an automated rationale extraction method

Table 7.10: Examples of fine-grained classification results of chat messages of distributed
teams.

IRC message Manual
classification

Automatic
classification

“So I’ve seen 2 modes of failure. The first is
getting more than 1 doc back for query-by-
id (and we always use update, so it should
be impossible)”

Issue Issue

“I think it’s reasonable for ebox to say “I
cannot configure this” if there is a non-
default configuration file”

Alternative, Pro-argument Alternative, Pro-argument

“I think it is possible with JFlex to make
generated methods private”

Alternative Alternative, Decision

“This would be solved in part by doing the
separate scanner class like current Stan-
dardTokenizer”

Alternative Decision, Con-argument

7.2.3 Comment in Issue Tracking Systems of Distributed Teams

In this section, we used the 3,007 manually annotated issue comments of the
three distributed development teams from Chapter 4 as a truth set for the train-
ing and evaluation of A-REACT.

7.2.3.1 Evaluation Settings

classification level We decided to perform the classification on the
comment level. This decision is based on our finding during the manual analysis
that sentences lack the argumentation context necessary for an accurate classifi-
cation (see Chapter 4).

classification algorithms In a similar fashion to Section 7.2.2, we
compared the classification performance of five classification algorithms: MNB
(Multinomial Naive Bayes), SVM (Support Vector Machine), DR (Decision Tree),
RF (Random Forests), and LR (Logistic regression) as they have been widely
used in text classification [33], [58], [170].

7.2 evaluation 123

Table 7.11: Binary classification results of comments in issue tracking systems of dis-
tributed teams. P is Precision, R is Recall, and F1 is F1-measure.

Classifier Comment Apache
Lucene

Mozilla
Thunderbird

Ubuntu

P R F1 P R F1 P R F1

MNB
With rationale 0.90 0.99 0.94 0.75 0.94 0.83 0.82 0.94 0.88

Without rationale 0.95 0.68 0.79 0.79 0.44 0.56 0.82 0.57 0.67

SVM
With rationale 0.91 0.96 0.94 0.84 0.84 0.84 0.88 0.90 0.89

Without rationale 0.88 0.73 0.80 0.71 0.71 0.71 0.78 0.74 0.76

DR
With rationale 0.91 0.95 0.93 0.79 0.79 0.79 0.85 0.88 0.86

Without rationale 0.84 0.72 0.78 0.62 0.62 0.62 0.73 0.67 0.70

RF
With rationale 0.91 0.99 0.95 0.80 0.92 0.85 0.83 0.97 0.89

Without rationale 0.97 0.71 0.82 0.79 0.59 0.67 0.90 0.59 0.71

LR
With rationale 0.92 0.87 0.89 0.79 0.65 0.71 0.86 0.65 0.74

Without rationale 0.67 0.78 0.72 0.52 0.69 0.59 0.51 0.77 0.62

training and evaluation Similar to Section 7.2.1 and Section 7.2.2, we
applied 10-fold cross validation for training and evaluating the classifiers. Ad-
ditionally, we applied project cross validation to test if the classifiers generated
in one project can be used for classifying rationale in another project. This cor-
responds to a 3-fold cross validation in which each fold corresponds to the com-
ments of one of the three analyzed projects.

transformation methods we compare the fine-grained classification
performance of two multi-label transformation methods: the BR (Binary Rele-
vance) and the LP (Label Powerset) [187].

7.2.3.2 Evaluation Results

binary classification results Table 7.11 gives an overview of the
binary classification results per project. The numbers in bold represent the cor-

124 a-react : an automated rationale extraction method

Table 7.12: Examples of binary classification results of comments in issue tracking sys-
tems of distributed teams.

Comment sentence Manual
classification

Automatic
classification

“But this allow to create Span Disjunction Query,
which is considered as a black sheep in Lucene herd.
[...]”

With rationale With rationale

“One possible downside to this change is that it
changes a predictable branch (that is handled at the
CPU level) into a method call... which if it’s not
monomorphic can be un-inlined at the point of the
call and thus end up slower (method call vs pre-
dictable branch). Will be interesting to see the bench-
mark results.”

With rationale With rationale

“Please don’t assign bugs to yourself unless you are a
developer who is going to fix it.”

Without rationale Without rationale

“As an uncomfortable workaround, you can double-
click on the area to the left of the twisty to expand/-
collapse subfolders.”

With rationale Without rationale

“David Smiley Pinging you in case you want to have
a chance to look into it before we release 6.1. FYI the
seed still reproduces for me on master.”

Without rationale With rationale

responding top values. Overall, RF outperformed other classifiers for classifying
comments with rationale in both recall and F1-measure, except for Mozilla
Thunderbird in which MNB achieved a better recall. It is important to realize
that the classification performance of messages with rationale in each project is
correlated with the number of these messages in the training set. Thus, Apache
Lucene had a better classification accuracy (recall of 0.99 and F1-measure of
0,95) among the three projects, as it contains the highest percentage of messages
with rationale (74%). Examples of the binary classification of comments when
applying RF are shown in Table 7.12.

SVM outperformed other classifiers with the precision for classifying mes-
sages with rationale for Mozilla Thunderbird (0,84) and Ubuntu (0.88). However,
LR achieved better precision for classifying messages with rationale in Apache
Lucene (0.92).

7.2 evaluation 125

Table 7.13: Project cross validation results of comments in issue tracking systems of dis-
tributed teams. P is Precision, R is Recall, and F1 is F1-measure.

Classifier Comment

Train: Mozilla
Thunderbird,

Ubuntu
Test: Apache Lucene

Train: Apache
Lucene, Ubuntu

Test: Mozilla
Thunderbird

Train: Apache
Lucene, Mozilla

Thunderbird
Test: Ubuntu

P R F1 P R F1 P R F1

MNB
With rationale 0.92 0.79 0.85 0.71 0.87 0.78 0.73 0.82 0.77

Without rationale 0.57 0.80 0.67 0.61 0.36 0.46 0.48 0.36 0.41

SVM
With rationale 0.82 0.61 0.70 0.77 0.76 0.77 0.80 0.82 0.81

Without rationale 0.36 0.63 0.46 0.58 0.59 0.58 0.60 0.57 0.58

RF
With rationale 0.87 0.72 0.79 0.73 0.95 0.83 0.78 0.87 0.82

Without rationale 0.47 0.70 0.57 0.82 0.37 0.51 0.63 0.48 0.54

The truth set used for training the comment classifiers is characterized by a
high incidence of comments with rationale, in contrast to the truth sets used in
Section 7.2.1 and Section 7.2.2. Thus, balancing techniques were not needed.

The results of applying project cross validation are shown in Table 7.13. The
overall performance of the classifiers decreased comparing to the results when
the messages from the same project are used for training the classifier. However,
no single classifier works best for all the three projects.

fine-grained classification results We evaluated the performance
of the fine-grained classifier on the 2,066 comments with rationale among the
3,007 manually analyzed issue comments. The frequency distribution of ratio-
nale elements among the comments containing rationale is shown in Table 4.8.
We trained and evaluated the fine-grained classifiers on mixed comments from
the three projects to include enough training instances of different rationale
elements.

We compared the fine-grained classification performance of the three best per-
forming classification algorithms in the binary classification: MNB, SVM, and RF.
Table 7.14 gives an overview of the fine-grained classification results. The num-

126 a-react : an automated rationale extraction method

Table 7.14: Fine-grained classification results of comments in issue tracking systems of
distributed teams. P is Precision, R is Recall, and F1 is F1-measure.

Rationale element Binary Relevance

MNB SVM RF

P R F1 P R F1 P R F1

Issue 0.68 0.84 0.75 0.74 0.72 0.73 0.74 0.79 0.76

Alternative 0.62 0.91 0.74 0.76 0.71 0.73 0.74 0.80 0.77

Pro-argument 0.44 0.88 0.59 0.64 0.57 0.61 0.85 0.47 0.60

Con-argument 0.33 0.87 0.48 0.49 0.46 0.47 0.79 0.20 0.32

Decision 0.85 0.53 0.65 0.67 0.63 0.65 0.99 0.53 0.69

Label Powerset

MNB SVM RF

P R F1 P R F1 P R F1

Issue 0.72 0.72 0.72 0.70 0.79 0.74 0.61 0.95 0.74

Alternative 0.67 0.84 0.75 0.77 0.75 0.76 0.88 0.28 0.43

Pro-argument 0.50 0.76 0.60 0.69 0.56 0.62 0.87 0.26 0.40

Con-argument 0.38 0.63 0.47 0.58 0.44 0.50 0.78 0.13 0.22

Decision 0.72 0.56 0.63 0.80 0.62 0.70 0.89 0.56 0.69

7.2 evaluation 127

Table 7.15: Examples of fine-grained classification results of comments in issue tracking
systems of distributed teams.

Comment Manual
classification

Automatic
classification

“I think its confusing we have MatchAll
but not MatchNone. I wonder if it should
just be sugar and rewrite() to a boolean-
query with no clauses? Then it wouldn’t
need a weight and scorer.”

Alternative,
Pro-argument,
Con-argument

Alternative,
Pro-argument,
Con-argument

“There are other bugs that complain about
the fact that a text string in a message
body is not detected or not detected reli-
ably when this string is inside a link.”

Issue Issue

“Patch removing context classloader us-
age. Tests seem to pass, unfortunately Solr
trunk is very unstable. Some unrelated
tests also fail on Jenkins, so I cannot be
sure all is fine. This patch also adds context
class loaders on the forbidden api list. Be-
cause of that I used the withContextClass-
Loader(ClassLoader, () -> ...) lambda
method.”

Issue, Alternative Issue, Alternative,
Con-argument

“But this allow to create Span Disjunc-
tion Query, which is considered as a black
sheep in Lucene herd. I don’t know why
exactly, but have an idea.”

Con-argument Issue, Pro-argument,
Con-argument

bers in bold represent the corresponding top values. Applying Binary Relevance
achieved better recall for all rationale elements (ranging from 0.63 to 0.91), ex-
cept for issues. Binary Relevance and MNB achieved better recall for alternatives
(0.91), pro-arguments (0.88), and con-arguments (0.87); while Binary Relevance
and SVM had a better recall for decisions (0.63). Label Powerset resulted in a
better recall of 0.95 for classifying issues. When comparing F1-measure, Label
Powerset and SVM tended to outperform other classifiers.

Table 7.15 gives examples of fine-grained classifications when applying BR
and MNB. We noticed that the classifier tends to assign more rationale than the
ones assigned to the comments during the manual analysis. This is expected as
MNB achieved higher recall than precision when classifying rationale elements.

128 a-react : an automated rationale extraction method

7.3 discussion

In Chapter 3 and Chapter 4, we present empirical evidence that developers’ writ-
ten communications are valuable sources of rationale during software develop-
ment. However, previous studies have found that developers avoid exploring
and searching communication repositories to understand the rationale behind
design decisions [1], [105]. Hence, the rationale present in these communication
artifacts remains implicit and not taken advantage of.

The manual analysis of communication artifacts to capture rationale is a te-
dious and labor-intensive process. Even with the introduction of a lightweight
approaches integrated into these communication channels (see Chapter 6), de-
velopers still perceive the capturing activities as additional overhead and distur-
bance to the communication process. Our longterm research goal is to minimize
this overhead by developing automated techniques to support developers in cap-
turing and linking rationale across different development artifacts. And eventu-
ally making the captured rationale available to use during different maintenance
and evolution tasks.

A-REACT, the automated rationale extraction method presented in this chap-
ter can help in reducing the overhead involved in the manual capturing of ratio-
nale. With the aim of recovering as much rationale from written communications
as possible, the binary classification results for detecting rationale are encourag-
ing, with a recall up to 0.99 and a precision up to 0.92. For the fine-grained clas-
sification into different rationale elements, the classification performance varies
according to the rationale element frequency in the communication artifacts used
for training the classifier, i.e., the more instances of the rationale element in the
training data, the better the performance.

From the evaluation results, it can be seen that the more rationale instances
included in training the machine learning classifiers, the better the classification
accuracy. Thus, since the issue comments truth set contains the highest percent-
age of comments with rationale (69%) among the three analyzed communication
artifacts, the binary and fine-grained classifiers achieved better accuracy in clas-
sifying comments than classifying chat messages of co-located and distributed
development teams.

7.4 threats to validity 129

The results of the project cross validation of the generated classifiers sug-
gest that it is advisable to use communication artifacts from the same project
to train the classifiers, rather than using generic rationale classifiers. This is due
to the fact that development teams use different terminologies and jargons in
their communications; thus, the generated classification features might be dif-
ferent across projects. Our findings confirm the doubts of earlier studies that
there might be tradeoffs between a broader applicability of the classifiers and
the classification accuracy [160].

Even though a complete automated approach for accurately extracting well-
structured rationale is still unrealized, our results of the automatic detection and
extraction of rationale from developers’ text-based communications form a step-
ping stone in this direction. It is important to realize that we view A-REACT
as a complementary technique to the explicit documentation of rationale, rather
than a replacement. For example, the automated rationale extraction from com-
munication artifacts could be followed by an activity to validate and refine the
structure of the extracted rationale into a more manageable format. Automated
techniques and manual capturing could be integrated to support a systematic
capturing of rationale throughout the software lifecycle. As argued by Hassan
that automated techniques “should not aim for full automation instead they
should aim to create a synergy between practitioners and MSR techniques. Sur-
prisingly full automation is not always the most desired option for practition-
ers.” [71].

7.4 threats to validity

In this section, we discuss the potential threats to the validity of our results
according to the four validity aspects as defined by Runeson et al. [164].

construct validity is concerned with how accurately the study observa-
tions interpret and measure the theoretical constructs [164]. In A-REACT, the
accuracy of the fine-grained classifier is affected by the accuracy of the binary
classifier. However, to evaluate the feasibility of A-REACT, we evaluated the clas-
sification performance of the binary and fine-grained classifiers independently

130 a-react : an automated rationale extraction method

of each other. Thus, we refrain from claiming the completeness of our classifica-
tion results.

internal validity is concerned with the confounding factors that may
influence the study results [164]. The creation process of the truth sets used
in the method evaluation is a subjective process. To mitigate this risk, coding
guides with descriptions of the coding tasks and clear definitions and examples
of the rationale elements were created before the annotation process of each of
the three truth sets. The coding guides were developed in two annotation trials
for each truth set (see Chapter 3 and Chapter 4). Moreover, each communication
artifact, i.e., a chat message or a comment, was annotated independently by two
coders and the disagreements between the two coders were resolved through
discussions.

external validity is concerned with the generalizability of our re-
sults [164]. A-REACT was evaluated on three written communication artifacts:
chat messages of co-located teams, chat messages of distributed teams, and com-
ments in the issue tracking systems of distributed teams. These communication
artifacts were generated during different projects and in different development
settings. However, we cannot claim that our results are representative of all
software projects.

reliability is concerned with to what extent the study results are depen-
dent on a specific researcher, i.e., whether the study yields the same results if
replicated by other researchers [164]. Although the truth set of the chat mes-
sages of co-located teams could not be made available due to privacy issues, the
truth set of the chat messages of distributed teams14 and the truth set of the
comments in issue tracking systems of distributed teams15 are publicly available
to other researchers. Furthermore, the coding guides used during the annotation
process are made available to other researchers (see Appendix A, Appendix B,
and Appendix C).

14 https://figshare.com/s/20f10511dc6e36c98ccd
15 https://figshare.com/s/62da0027efc0e7ae35a0

8
Related Work Relevant to Rationale Annotation and
Automated Capturing Approaches

“We should not be dissuaded from our duty by the
existence of textual narrative in these early artifacts.”

—Dekhtyar et al. [41]

In Chapter 6 and Chapter 7, we presented two methods for capturing ratio-
nale in text-based developers’ communications, REACT and A-REACT. In this
chapter, we discuss related work in two areas: rationale annotation approaches
and automated extraction of rationale.

The chapter is structured as follows: Section 8.1 presents existing rationale an-
notation approaches in development artifacts. Section 8.2 discusses work related
to the automated extraction of rationale.

8.1 rationale annotation approaches

To the best of our knowledge, no previous work has investigated the annotation
of developers’ chat messages to capture rationale during software development.
However, there is a relatively small body of literature that has proposed
approaches for annotating rationale in textual documents generated during
software development.

Kato et al. [91] proposed IDIMS (Integrated Design Information Management
System), an approach to capture rationale from developers’ email communica-
tions. In the approach, developers annotate their emails to indicate design issues
and design decisions. The annotated issues and decisions can be linked to form a
directed graph. Then, the annotated emails are processed to collect annotations
and stores them in Issue/Decision Repository. However, their approach requires

131

132 related work

the emails to be first converted into XML format to add the annotations, which
may limit the usefulness of the approach in practice. Liu et al. [118] introduced
an approach for the manual annotation of design rationale in archived design
documents, such as patent documents. During the manual annotation, design-
ers highlight the segments of documents relevant to rationale according to an
issue, solution, and artifact layer (ISAL) representation model of rationale. Af-
terwards, the tagged segments are automatically extracted and stored in a design
rationale repository. Furthermore, designers can link relevant rationale elements
to form a design rationale network. Aman-ul-haq and Babar [3] developed a tool
that allows an architect to annotate information related to architectural knowl-
edge in emails and other textual documents using a set of pre-defined tags such
as rationale, architecture decisions, and design options. The annotation tool is in-
tegrated to the email clients and document editors used during development
to minimize the capturing efforts on the architects. The annotated information
is then extracted from these documents and stored in a knowledge repository.
Similar to our work, these studies aim at capturing rationale from the available
communication and documentation records rather than requiring developers to
construct a structured rationale. Thus, lowering the capturing costs on develop-
ers. However, they differ from the work presented in this dissertation by the type
of documents they annotate, and the rationale representation models on which
they based their annotations.

Other researchers have proposed approaches in which descriptions of ratio-
nale are attached as annotations to development artifacts. Shipman and Mc-
Call [174], [175] proposed Hyper-Object Substrate (HOS), an approach for cap-
turing rationale by attaching informal design communications, such as emails, as
textual annotations to the artifact design. These captured communications can
be converted over time into a more formal representation of rationale. Reeves
and Shipman [150] introduced a prototype system, XNETWORK, that imple-
ments two main ideas for reducing the efforts required of designers to provide
rationale. First, rationale capturing should be part of the design process. Second,
capturing rationale in the form of free text. The system allows the integration
of design artifacts with designers’ communications in the form of textual anno-
tations. The authors argue that adding designers’ communications in the form
of text annotations reduces the cognitive overhead in providing rationale on de-

8.1 rationale annotation approaches 133

signers, and that these recorded communications will serve as the best source for
design rationale. Bruehlmann et al. [19] proposed a generic approach to capture
human knowledge in the form of annotations during the reverse engineering
process. They implemented the approach in a tool, called Metanool, in which
annotations can be iteratively defined, refined, and transformed, without requir-
ing a fixed meta-model to be defined in advance. The work presented in this dis-
sertation is complementary, the rationale extracted from developers’ text-based
communications either by applying REACT annotations or A-REACT for the au-
tomated extraction can be linked as textual descriptions to other development
artifacts as proposed in these studies.

A few other annotation approaches have been developed to capture rationale
within source code and to link existing rationale knowledge with code. Hesse
et al. [76] developed an annotation approach for capturing rationale of imple-
mentation decisions using inline code comments in the source code. In their ap-
proach, text-based annotations are written directly into the code files, which en-
ables developers to document their implementation decisions without the need
to switch tools. The rationale annotations are derived from the decision doc-
umentation model [78], one annotation for each decision knowledge element1.
The annotations can be used to create a new decision knowledge element or to
link to an existing one. The annotations are integrated into a knowledge manage-
ment tool which allows the linkage of annotations to external knowledge within
the tool, e.g., requirements specifications or design diagrams. Lougher and Rod-
den [120] proposed a system for the documentation of maintenance rationale
through annotation. Rationale is captured in the form of comment documents
that can be linked to different parts of the source code using hypertext links.
The comments can be of three types: free text, graphics, and structured textual
forms. However, their work is focused on capturing maintenance rather than de-
sign rationale. The authors argued that maintenance rationale is less contentious
and more focused on describing the nature of the artifact; while design ratio-
nale is more focused on capturing the argumentative process of constructing the
artifact.

The lightweight annotation approach presented in this dissertation, REACT,
differs from these approaches in that it focuses on capturing the dialectical

1 The decision documentation model is described in Section 2.2.2.1 in Chapter 2.

134 related work

reasoning and discussions between developers in the informal communication
channels. In addition, developers are not required to write further descriptions
of rationale when applying REACT rationale annotations to their chat messages.
However, these approaches can be brought together to document the distributed
rationale knowledge during software development. An example of such effort
is presented in the work of Kleebaum et al. [93]. The authors suggested tech-
niques that trigger developers to capture and use decision knowledge in con-
tinuous software engineering. For example, when developers commit code, they
are triggered to make the tacit decision knowledge explicit by annotating ra-
tionale. This can be done in source code by applying the annotations proposed
by Hesse et al. [76] or in chat messages by applying REACT annotations pre-
sented in this dissertation. Furthermore, annotations could be applied to other
development artifacts such as pull requests and wiki pages. The authors also
proposed that explicit annotation of rationale can be combined with machine
learning techniques to mine unstructured distributed decision knowledge.

Although only few studies have investigated the annotation of textual docu-
ments to capture rationale during software development, the concept of anno-
tating resources using tags is not new to software development. A number of
studies have explored the role of tagging as a tool for organizing and sharing
knowledge during software development. Treude and Storey [186] conducted
two empirical studies to investigate the role of work item, i.e., development
task, tagging in software development. Their results showed that different kinds
of tags have emerged over the duration of a software project, including architec-
ture, planning, and documentation related tags. Furthermore, they found that
the lightweight nature of tagging was one of the main advantages that encour-
ages its adoption by developers. Storey et al. [178], [179] developed TagSEA (Tags
for Software Engineering Activities), a source code annotation tool to enhance
navigation, coordination, and capture of knowledge relevant to a software de-
velopment team. Their tool combines waypoints from geographical navigation
with social tagging. In TagSEA, a developer can create a waypoint by associating
tags with parts of the source code. This is done by typing “@tag” in a com-
ment block, followed by the tag keyword and some descriptive text. The created
waypoints can be used to document and share important knowledge about the
source code. However, a major difference of our approach to tagging is that

8.2 automated extraction of rationale 135

REACT annotations are derived from an argumentative representation model of
rationale; while tags usually refer to a freely chosen keywords without requiring
a fixed meta-model to be defined in advance [186].

8.2 automated extraction of rationale

The automated extraction of rationale has received an increasing attention from
researchers in recent years. According to Liang et al. [116], the automated extrac-
tion of rationale is promising in addressing a number of challenging issues in
current design rationale research. First, many design rationale systems require
heavy human involvement and designers cannot often afford time and efforts
in documenting the rationale behind their decisions. Second, with the increas-
ing number of evolving design documents, the manual handling of rationale in-
cluded in these documents in a timely manner becomes infeasible. Consequently,
large amount of design documentation is often neglected and left intact. There-
fore, there is a pressing demand for automated solutions to support the captur-
ing and extraction of rationale from different artifacts generated during software
development.

In a recent work, Robillard et al. [156] advocated for a new vision of an
on-demand developer documentation (OD3), which promotes using develop-
ment artifacts for the automated generation of developer documentation. The
authors discussed its opportunities and challenges and viewed it as a promis-
ing research direction for software documentation. Sharing the same vision,
several researchers have investigated the exploitation of available development
artifacts for the automated extraction of rationale. Liang et al. [116] proposed an
approach to automatically extract design rationale information from archived
design documents. They captured rationale according to ISAL model [118], a
three layers rationale representation model consisting of issues, design solutions,
and artifacts layers. The approach applies text mining and machine learning
techniques for the identification of artifact information, issue summarization,
and discovery of solution and reasons pairs from patent documents.

Similar to A-REACT, Rogers et al. [160], [162] applied supervised machine
learning techniques to extract rationale from bug reports. In their work, they
investigated the use of ontology and linguistic features for training machine

136 related work

learning classifiers that classify sentences containing rationale into decisions,
alternatives, and argumentation. In their recent work, Rogers et al. [161] pro-
posed a system that uses genetic algorithms to evaluate candidate feature sets
for identifying rationale in two types of documents: bug reports and design ses-
sions transcripts. Our work differs in that we focus on extracting rationale from
text-based developers’ communications. This poses different challenges—as de-
velopers’ communication artifacts are short, informal, and less structured than
the previously analyzed documents.

Closely related to our work is the Rationale Extractor (REx) approach pro-
posed by Lucia et al. [39]. REx applies information retrieval, natural language
processing, and supervised machine learning techniques to automatically extract
design rationale from unstructured communications, particularly email reposi-
tories. Given a new email, the email is split into sentences and the designer is
presented with a likelihood value for each rationale element, i.e., the probability
that the sentence contains that element. The designer can then select the correct
rationale elements contained in the email or classify it as non-rationale. Finally,
the extracted rationale elements are stored in an issue-base and cross-referenced
to the originating documents, i.e., emails. When a new email is processed, rele-
vant emails and their contained rationale elements are presented to provide the
designer with the discussion context. Similar to our work, they use the rationale
schema proposed by Bruegge and Dutoit [16], which is based on IBIS [102], to
classify rationale elements. However, their approach differs from ours in that it
still requires the designers intervention to select the correct rational elements
from the proposed ones.

Another stream of research has focused mainly on the automatic recovery
of architectural design decisions and their rationale. Bhat et al. [11] proposed a
two-phase machine learning based approach for detecting architectural design
decisions in issue tracking systems and classifying them into structural, behav-
ioral, and ban decisions. Shahbazian et al. [171] presented a technique, named
RecovAr, for automatically recovering architectural design decisions from issue
tracking systems and code repositories. RecovAr first identifies how the architec-
ture of the system has changed, then maps the code commits to issues to detect
decisions affecting the system architecture and their rationale. The technique
is based on the assumption that the issues related to the changed architectural

8.2 automated extraction of rationale 137

entities contain the rationale behind the change decisions. Lopéz et al. [119] pro-
posed an ontology-driven approach to extract knowledge units relevant to archi-
tecture rationale from plain-text documents. The recovered rationale need to be
validated by a software architect before it is stored in a software architecture and
rationale knowledge base to enable further manipulation. They argued that ra-
tionale recovery from existing documents can be decomposed into three smaller
problems: automatic extraction of rationale from these documents, formalization
of the extracted rationale, and manipulation of the formalized information for
further reuse.

Baysal and Malton [9] described an approach to find correlation between dis-
cussions in email archives and source code changes. The approach uses natural
language processing techniques to compare the vocabulary of the changed code
in a release history—i.e., identifiers of classes, methods, and comments—with
the vocabulary of the email discussions preceding that release to find discussions
relevant to the code changes. Brunet et al. [20] applied supervised machine learn-
ing techniques for the automatic identification of structural design discussions
in issues, commits, and pull requests. Li and Ramani [115] proposed ontology-
based design document analysis and retrieval tool (ODART), an approach that
combines natural language processing techniques and domain-specific ontology
for the extraction and retrieval of design information from unstructured, textual
design documents, such as technical reports, proposals, and drawing notes.

Williams and Rainer [193] investigated the automatic identification of argu-
ments in software practitioners blog posts by identifying specific words in the
blog post text. They reported a preliminary evaluation of the approach on posts
from one software practitioner’s blog. Sorbo et al. [177] proposed DECA (Devel-
opment Emails Content Analyzer), an approach that applies natural language
parsing to classify the content of development emails according to their pur-
pose. The approach classifies email sentences into six different categories: fea-
ture request, opinion asking, problem discovery, solution proposal, information
seeking, and information giving. Pascarella and Bacchelli [143] proposed a tax-
onomy for classifying code comments among which is implementation rationale.
The authors applied machine learning algorithms for the automatic classification
of code comments into the proposed taxonomy.

138 related work

Taken together, these approaches are related to our work in that they use
automated techniques to extract design related knowledge from developments
artifacts, but differ widely in the applied techniques, the type of artifacts they
analyze, and the type of knowledge they recover.

A number of researchers have attempted to lessen the documentation burden
of rationale by automatically generating rationale through monitoring the design
process. Myers et al. [134] designed Rationale Construction Framework (RCF) to
automatically construct rationale information for the detailed design process.
RCF records designers interactions in a CAD (computer-aided design) tool dur-
ing detailed design and produces a rich design history. This design history is
used to provide a series of hierarchical abstractions about what the designer did
and when. In addition, the rationale that explains why the designer performed
a particular action is extracted according to a set of design metaphors. Garcia
and Howard [61] implemented Augmenting Design Documentation (ADD), an
intelligent apprentice to the designer. ADD learns about the features that make a
design action different from the standard ones, and whenever a designer makes
an action that differs from the ADD’s expectations, it asks the designer for a
justification. Later, queries about rationale is constructed using a combination of
the system’s domain knowledge and the justifications supplied by the design-
ers. ADD is an example of the generative design rationale approach proposed by
Gruber and Russel [64]. The authors argued for a paradigm in which rationale is
generated, in response to information request, from background knowledge and
information captured earlier during the design process. They affirmed that it is
more important to capture the data that can be used to infer answers to question
at later stages, rather than trying to anticipate possible questions and formulate
answers in advance. Although the generative approach allows for more com-
putational power, it requires the capturing of more operational information. A
system proposed by Sung et al. [182] and Rea et al. [148] automatically logs the
designer’s actions while using a CAD system, extracts the design rationale by
automatically parsing these logs, and presents the extracted rationale in an un-
derstandable format. Our work differs in that we extract rationale automatically
from free-form text communications to capture the deliberation and discussions
related to rationale.

8.2 automated extraction of rationale 139

Few studies have investigated the automatic detection of decisions and their
rationale from the transcripts of audio or video recordings of meetings. McCall
and Mistrik [127] proposed an approach that applies natural language process-
ing techniques for identifying requirements and their rationale from transcripts
of participatory design sessions. Their overall goal was to reduce the number
of utterances a human analyst needs to look at for identifying requirements-
related rationale. The authors argued that requirements are typically found in
the users’ responses to proposed features of a system, i.e., in the arguments
to the proposed features. Therefore, the technique uses semantic grammars to
detect proposals and arguments in reaction to these proposals based on a set of
introductory wording, e.g., proposals may be preceded by “What if we...”, while
arguments may be preceded by “I like the idea. It will...”. Similar to this disserta-
tion, their proposed techniques structure the captured rationale in a form closely
related to IBIS.

Hsueh and Moore [82] developed supervised machine learning classification
models for the automatic detection of decisions in meeting recordings. The
classification models detect decisions on two levels of granularity: detecting
decision-making dialogue acts (DM DAs) and detecting decision-making topic
segments (DM Segments), i.e., topic segments that contain one or more decision-
making dialogue acts. They evaluated their classification models on the extrac-
tive summaries of a subset of the AMI meeting corpus [130]. In their follow-up
work [83], Hsueh and Moore applied the developed models in developing AMI
DecisionDetector, a system that performs automatic decision detection in meet-
ing speech. In the same manner, AMI DecisionDetector detects decisions on two
levels of granularity: dialogue acts and topic segments. First, the system detects
topic segments in meeting speech in which decisions have been made. Second,
the decision-related dialogue acts that are reflective of the decision discussion are
detected. Furthermore, the system provides visual aids for reviewing decisions
made during the meeting. They evaluated the classification performance of the
system when detecting decisions directly from the complete meeting transcripts
rather than their extractive summaries. Fernández et al. [55] proposed a hierar-
chical approach for automatically detecting decisions sub-dialogues, i.e., regions
of dialogue where decisions were made, in transcripts of multi-party meetings.
The hierarchical approach involves two steps: sub-classifiers that first classify ut-

140 related work

terances into three decision dialogue act (DDA) classes: issue, resolution, and
agreement; then super-classifiers that detect decision sub-dialogues. Detecting the
decision-making topic segments or sub-dialogues provide important contextual
information about the discussion topics were decisions have been made.

Rodeghero et al. [158] presented an approach for automatically extracting in-
formation relevant to user stories from recorded conversations between devel-
opers and customers. The approach consists of machine learning classifiers that
were trained to recognize turns in speech containing function and rationale in-
formation behind user stories. The approaches proposed in these studies are not
practical for real-world development as they require accurate transcripts of the
analyzed meetings. However, an automatic generation of these transcripts us-
ing speech recognition is still not completely feasible [127]. Nevertheless, these
approaches could be complemented with the automated approach presented in
this dissertation. This provides automated rationale extraction from both face-to-
face and text-based communication channels, which are used as a complemen-
tary communication and knowledge sharing channels during software develop-
ment [181], [196].

A different perspective on studying rationale is presented in the work of Kur-
tanović and Maalej [103], [104] in which the authors studied how users denote
rationale in online reviews. They applied grounded theory approach to identify
rationale concepts in user reviews. The identified concepts consist of issue, alter-
native, criteria, decision, and justification. Furthermore, the authors investigated
various supervised machine learning algorithms and feature combinations to
automatically detect these rationale concepts in user reviews. However, in this
dissertation, we focus on studying rationale from the developers’ perspective.

Overall, our work adds to the growing body of research on the automated
extraction of rationale from development artifacts in general, and provides a
deeper insight for future research into the automated extraction of rationale from
text-based developers’ communications.

Part IV

Conclusion

9
Conclusion and Future Work

“A software organization’s main asset is its intellec-
tual capital [...] The major problem with intellectual
capital is that it has legs and walks home every day.”

—Rus and Lindvall [165]

Capturing rationale has long been recognized as a central problem during
software development. However, developers often resist capturing rationale
due to the intrusiveness and labor-intensive activities of capturing approaches.
Many rationale capturing approaches require developers to manually write
up their rationale according to a pre-defined template. Furthermore, many of
these approaches are not fully integrated into software development activities,
i.e., they require developers to change tools to document their rationale. As a
consequence, these approaches represent additional overhead on developers
and interruption to the development activities; thus, increasing their adoption
barriers by developers.

The overarching goal of this dissertation was to advance the rationale cap-
turing during software development by studying how developers discuss ra-
tionale over text-based communication channels and by developing methods
integrated into these channels to help developers in capturing the discussed ra-
tionale. Studying written communications of developers as a source of rationale
was motivated by the fact that decisions made during software development re-
sult from the deliberation of issues and discussion of the pros and cons of differ-
ent alternatives among developers. As Shipman and McCall stated: “designers
seem to spontaneously produce relatively well-structured arguments in natu-
ral discussion” [174], which makes developers’ communications a rich source of
information about the software system and the development process.

143

144 conclusion and future work

We followed a representation of rationale adapted from Kunz and Rittel’s
IBIS issue model [102], that captures issues, alternatives, pro-arguments, con-
arguments, and decisions as natural language text written by developers while
communicating with each other. This representation provided the basis for ana-
lyzing how developers discuss rationale in text-based communication channels.

Our long-term vision is to minimize the additional overhead of the manual
capturing of rationale during software development by developing automated
techniques to support developers in the capturing and linking of rationale across
different development artifacts. And eventually making the captured rationale
available to use during different maintenance and evolution tasks.

In the following, we summarize the contributions of this dissertation in
Section 9.1, and outline future work direction in Section 9.2.

9.1 contributions

In this dissertation, we made the following contributions:

1. Analyzing Rationale in Written Developers’ Communications

We presented three empirical studies to understand how developers dis-
cuss rationale over two text-based communication channels: chat messages
and issue tracking systems, in co-located as well as distributed develop-
ment teams. Our focus on these two channels was motivated by their in-
creasing popularity and significance during software development [4], [90].

The first empirical study aimed at understanding how software developers
discuss rationale in chat messages of co-located development teams. In
particular, we investigated the frequency and completeness of rationale
present in chat messages of three co-located teams by applying content
analysis techniques [138]. Despite the dominance of face-to-face com-
munications and the absence of geographical and time zone differences
in co-located teams, we found that 9% of their chat messages contained
rationale. Due to the high volume of chat messages and the sparsity of
the messages containing rationale, the manual extraction and classification
of rationale is a tedious and time-consuming process. Our findings
emphasize the importance of linking rationale elements found in chat

9.1 contributions 145

messages with the rationale elements extracted from other development
and communication artifacts for a more complete capture of rationale.

In the second empirical study, we investigated how developers discuss
rationale in chat messages across distributed development teams. We
collected IRC logs from three OSS projects developed and maintained
by globally distributed teams. We manually analyzed a sample of 7,500

IRC messages by applying content analysis techniques [138], and found
that an average of 25% of the analyzed messages contained rationale.
Moreover, we found that IRC authors who were committing to the project
code repository contributed an average of 54% of the messages containing
rationale. However, we did not find a strong correlation between the
development activities and the rationale contribution.

We performed the third empirical study to analyze how distributed
developers discuss rationale in the comments of issue tracking systems.
We collected issues and their comments of the three OSS projects and
applied content analysis techniques [138] on a stratified sample of 3,007

comments from 300 issues. We found that an average of 69% of the
analyzed comments contain rationale. However, only 27% of the rationale
contributors were identified as committing to the software code repository
and they contributed an average of 38% of the comments identified as
containing rationale among the three projects.

The investigation of how developers discuss rationale in these two text-
based communication channels has shown that: (i) developers discuss
related rationale elements in a sequence of short messages and comments,
(ii) rationale is fragmented across different communication and develop-
ment artifacts, and (iii) the manual extraction and classification of rationale
from written communications is a tedious and time-consuming process
due to the high volume of communication artifacts.

Overall, the findings of these studies provide empirical evidence that
text-based developers’ communications are valuable sources of rationale
during software development. Furthermore, they give deeper insights
about the nature of rationale found in written communications that can
aid future research in exploiting these communications as a source of

146 conclusion and future work

rationale and for building effective rationale capturing tools from these
communication channels.

2. REACT: A Method for Capturing Rationale in Developers’ Chat Messages

We presented REACT (Rationale ExtrAction from Communication arTi-
facts), a novel lightweight method to capture rationale in developers’ chat
messages. REACT is designed to be easily integrated into developers’
messaging platforms, and it can be used by developers to (i) individually
annotate their own messages containing rationale, and (ii) collaboratively
annotate messages posted by other team members. We evaluated REACT
in two studies: a short-term design task and a medium-term project.
Our evaluation shows that REACT is easy to learn, simple to apply, and
applicable to capture rationale in chat messages.

However, it is worth noting that the effectiveness of REACT is highly
dependent on providing immediate benefit for developers to justify the
efforts of capturing rationale. While REACT annotations are simple to
apply, the need to think about the message contents with respect to
rationale presents additional cognitive overload and disruption to the
communication flow for developers.

Contrary to expectations, our results showed that privacy is not the main
concern for developers when capturing rationale in their chat messages.
Communication distraction resulting from applying these annotations and
the lack of immediate benefits motivating the rationale capturing are more
pressing concerns experienced by most developers in our evaluation.

3. A-REACT: An Automated Rationale Extraction Method

To reduce the cognitive overload of categorizing rationale elements and to
deal with communication noise, we developed A-REACT (Automated Ra-
tionale ExtrAction from Communication arTifacts), an automated method
that applies supervised machine learning techniques for classifying ratio-
nale in developers’ written communications on two granularity levels: bi-
nary and fine-grained classification. The binary classifier detects communi-
cation artifacts containing rationale and filters out communication artifacts
without rationale, and the fine-grained classifier subsequently classifies

9.2 future work 147

the communication artifacts containing rationale into different rationale el-
ements: issues, alternatives, pro-arguments, con-arguments, and decisions.

We evaluated the feasibility of A-REACT on three communication artifacts:
chat messages of co-located teams, chat messages of distributed teams, and
comments in issue tracking systems of distributed teams. Our evaluation
revealed that A-REACT can detect rationale with a recall up to 0.99 and
a precision up to 0.92, and classifies the detected rationale into different
rationale elements with a recall up to 0.99 and a precision up to 0.95. The
fine-grained classification performance varies according to the rationale
element frequency in the communication artifacts used for training the
classifier.

The results of the project cross validation of the generated classifiers
suggest that it is advisable to use communication artifacts from the same
project to train the classifiers, rather than using generic rationale classifiers.
This is due to the fact that development teams use different terminologies
and jargons in their communications; thus, the generated classification
features might be different across projects. However, the truth sets used
for building and evaluating the classification models of A-REACT can be
used by other researchers to replicate our results1.

The results of our experiments can provide guidelines for researchers about
the techniques and configurations that yield the most accurate results.

Even though a complete automated approach for accurately extracting
well-structured rationale is still unrealized, our results of the auto-
matic detection and extraction of rationale from developers’ written
communications will pave the way to bring this vision closer to reality.

9.2 future work

Studying rationale in text-based communications of developers opens up new
opportunities for incorporating and taking advantage of informal communi-
cation channels as valuable sources of rationale during software development.

1 Except for the truth set of the chat messages of co-located teams which could not be made
available due to privacy issues.

148 conclusion and future work

John Smith
Hey there, should our option names also be localizable?
+

2

1

Figure 9.1: Extension mockup: based on detected rationale elements in the message (1),
rationale annotations are suggested (2).

However, this comes with a number of challenges due to the informal nature of
these communications. These communications are written in natural language,
lack a clear structure, and contain a large volume of noise and irrelevant infor-
mation. Furthermore, these communications contain mixed content, e.g., they
may contain code snippets or stack traces. The research presented in this disser-
tation opens up several directions for future work, which are outlined below.

improvements on react Our evaluation has shown that the effectiveness of
REACT is highly dependent on providing immediate benefit for developers
to justify the efforts of capturing rationale. Future research therefore should
explore which immediate benefits can be offered to motivate developers to
annotate rationale in their communication artifacts. For example, different
techniques can be explored to export conversations annotated as containing
rationale in the chat messages to issue trackers and to other development
artifacts that were attached to the chat messages, such as design models or
code snippets.

To reduce the cognitive load of categorizing messages on developers, a hy-
brid approach could be implemented that employs machine learning for
the automatic detection of messages containing rationale. The involvement
of developers and their domain knowledge guarantees accurate categoriza-
tion of rationale even in situations in which machine learning might fail.
A machine learning component could prompt developers—the “domain
experts”—to approve the suggested categorization of the chat message if
rationale is detected. Utilizing a chat bot might be a fist step towards such
an implementation. Figure 9.1 illustrates the idea.

9.2 future work 149

REACT could be further improved by making use of message threads in
chat channels, a feature that has been recently introduced by Slack2. This
feature helps in keeping the discussion focused by grouping messages and
relating replies that discuss the same topic into sub-conversations. Further
research could make use of this feature by creating a new thread when
a message is annotated using REACT as containing an issue. In this way,
the replying messages discussing different alternatives to address the issue
are grouped into a single conversation. Finally, message threads could be
extracted to capture the discussed rationale rather than single messages to
preserve the context of the conversations.

Another direction for future work is studying how REACT annotations
support effective team communication, e.g., promptness of response to an
annotated message from other developers.

improvement on a-react Future work could investigate different features
and feature combinations for improving the classification performance. For
example, adding classification features on whether the neighbor messages
or comments contain rationale. We hypothesize that this will improve the
classification accuracy as developers tend to discuss rationale in a sequence
of consecutive messages. Furthermore, considering additional features of
the communication artifacts such as linguistic features and metadata, e.g.,
the message or comment authors and the creation time, could improve the
classification performance.

Further research could also be conducted to experiment with additional
machine learning algorithms and different optimization parameters of
these learning algorithms.

A more balanced training set with a larger number of manually identified
rationale elements would help in addressing the sparsity of rationale in
text-based communications of developers. Another technique to address
the rationale sparsity is by applying data augmentation approaches for
text classification [163].

2 https://slackhq.com/threaded-messaging-comes-to-slack-417ffba054bd

150 conclusion and future work

One drawback for applying supervised machine learning algorithms is the
need for annotated training dataset—which is usually created manually,
requiring a great effort. The creation of such a truth set could dissuade
practitioners from using this type of techniques. One interesting avenue
for future work is running REACT for some time in a project, and then
use the chat messages annotated by the developers as a truth set for train-
ing supervised machine learning classifiers, as in A-REACT, that can be
applied for the automated extraction of rationale.

A-REACT could be extended to allow the manual validation and refine-
ment of the automatically extracted rationale. However, further research
should be carried out to compare the effectiveness of the semi-automatic
capturing approaches, i.e., an automatic extraction of rationale followed by
a manual validation, against the complete manual capturing of rationale.

linkage of rationale Developers use various communication channels to
share knowledge and coordinate their development activities. In addition,
various artifacts and documents are generated during software develop-
ment. As a result, the rationale is fragmented across multiple sources and
no single source can provide a complete picture of the rationale. Future
research is required to explore additional sources of rationale, and to de-
velop methods and tools to systematically extract and aggregate rationale
from its identified sources.

Classifying single communication artifacts, e.g., chat messages, containing
rationale is not enough for extracting useful rationale information, as these
artifacts are highly context dependent. The linkage of the extracted ratio-
nale need to be performed at two levels. First, the communication artifacts
identified as containing rationale should be linked with other artifacts dis-
cussing related rationale elements within the single channel. However, it
is important to note that communication artifacts discussing related ratio-
nale elements may not be exchanged in a sequential order, as discussion
topics in these informal communication channels are often intertwined
and may also be discussed at different times. Second, communication arti-
facts discussing related rationale elements across multiple communication

9.2 future work 151

channels should be linked. For example, the same issue might be discussed
in the chat messages as well as in the comments of issue tracking systems.

Another compelling direction for future work is the linkage of the ex-
tracted rationale with the parts of the source code that it describes. Es-
tablishing traceability links between the source code and these discussions
allows to join decisions and their rationale with their implementation [7].
A low-hanging fruit for such linkage is capturing rationale from commit
messages. Commit messages may include important information about the
committed changes and their rationale. However, as discussed by Klee-
baum [93], to capture useful rationale from the commit messages, it is
important that developers commit atomic changes that address one sin-
gle issue instead of composite changes that address multiple development
issues in a single commit [184].

Another future work direction for such linkage between communication
artifacts containing rationale and the source code is through exploiting the
code fragments included in these communications.

Part V

Appendices

A
Coding Guide: For Annotating Rationale Elements in
Developers’ Chat Messages of Co-located Teams

Our study aims at studying what type of rationale elements are present in de-
velopers’ chat messages.

As part of the coding task, you will read chat messages of three development
teams that were part of a multi-project course with industrial partners at the
Technical University of Munich in 2015 and 2016. During the course, students
were asked to develop a mobile application. Your task is to classify the parts of
the chat messages that contain rationale elements.

This guide describes the instructions, which you should follow carefully in
order to successfully conduct the task. You will use GATE1 for completing your
task. We recommend using this guide as a reference during the coding task.

Your task is to read the chat messages assigned to you. For each message:

• If the message contains rationale, identify sentences of the message that
contain rationale elements by highlighting them and classifying them ac-
cordingly. We explain each rationale element later in this guide.

Please make sure that you read about the mobile application (from which
you are coding the messages) in order to make sure that you understand its
main functionality. You can read a description of each mobile application on the
iPraktikum2 results website.

In case any questions arise during the coding, please contact the other project
members.

classifying rationale in the chat message : Each chat message con-
sists of one or more sentences. If the message contains a rationale element, high-

1 https://gate.ac.uk
2 https://www1.in.tum.de/lehrstuhl_1/component/content/article/733

155

156 coding guide

light only the sentence(s) of the message containing the rationale element and
indicate the type of the rationale element. The highlighted part can be one sen-
tence, multiple sentences in the message or the complete message.

The smaller unit you can classify, i.e. highlight and assign a rationale element
to, is a sentence. The maximum is the complete message. This means if only
part of a sentence contains rationale, you should classify the complete sentence.
A sentence ends with one of four punctuation marks: a period (i.e. “.”), an ex-
clamation mark (i.e. “!”), a question mark (i.e. “?”) or a new line (i.e. “/n”).
Given the informal nature of chat messages, some messages consist of sentences
without a proper ending punctuation. In that case, the ending of the message is
considered as the end mark of the sentence.

If a rationale element spans multiple messages, you should classify each mes-
sage separately. Moreover, if two or more sentences of a message are related to
one type of rationale and some of these sentences are related to another type of
rationale, then label the complete set of sentences as both types of rationale to
avoid substring labeling.

You can assign more than one rationale element to a chat message. The ratio-
nale elements are:

issue A problem to be solved. Issues are typically resolved through discussions
and negotiation. Issues are usually phrased as questions. Examples:

• “I think you had a good question about difficulty level—whether it’s for all
recipes or for particular ones.”

• “How soon should a dispatcher be notified of a train delay?”

• “How should persistent data be stored?”

• “Which technology presents the most risk?”

alternative A possible solution that could address the issue under consider-
ation. Examples:

• “Just my thoughts, but what do you think of making the "cost" be for the
whole dish, instead of next to each individual ingredient?”

• “The interface for the dispatcher could be realized with a point-and-click in-
terface.”

coding guide 157

• “The display used by the dispatcher can be a text-only display with graphic
characters to represent track segments.”

pro-argument Reasons supporting an alternative. Pro-argument is usually
phrased as a positive statement. Example:

• “Text-based interfaces are easier to implement and test than Point-and-click
interfaces.”

When a developer supports to an alternative with a subjective opinion it
should be marked as a pro-argument. Example:

• “I like it.”

• “I totally agree with you!”

con-argument Reasons against an alternative. Con-argument is usually
phrased as a negative statement. Examples:

• “This screen has no real useful functionality.”

• “Point-and-click interfaces are much more complex to implement than text-
based interfaces.”

• “The point-and-click interface risks introducing fatal errors in the system
that would offset any usability benefit the interface would provide.”

decision A decision that were made to resolve an open issue. Examples:

• “We decided that we will rank our recipes based on frequency of use.”

• “We select a text-based display and a keyboard input for the traffic control
user interface.”

what not to classify?

management issues Issues that are not discussing the mobile application be-
ing developed. Example:

• “Should I put the user stories in Confluence and JIRA?”

general questions Questions that are not related to the mobile application
being developed. Examples:

158 coding guide

• “How can I log in to confluence?”

• “How can I see the project events on the calendar?”

• “How do I create a new storyboard in Xcode?”

• “How to sort any object array by dates on Swift?”

course requirements During the course project, students were required to
deliver some materials for evaluating and presenting their work, such as
a trailer and a presentation to be represented in the middle of the course
duration (known as Design Review) and at the end of the course (known as
Client Acceptance Test). Messages about the trailers preparations should not
be marked as rationale related.

social events Messages that discuss social aspects of the development teams.
Examples:

• Arrangement for an icebreaker event.

• Discussing the time and place for a team gathering.

distribution of workload Example:

• “I would do it myself but I’m too afraid to break something. I would be very
happy if someone with more knowledge maybe can reset things and create the
structure we need.”

non-english messages .

B
Coding Guide: For Annotating Rationale Elements in
Developers’ Chat Messages of Distributed Teams

Our study aims at studying what type of rationale elements are present in de-
velopers’ IRC messages of open source projects.

As part of the coding task, you will read IRC messages exchanged between
the developers of three open source projects: Apache Lucene1, Mozilla Thunder-
bird2, and Ubuntu3. Your task is to classify IRC messages that contain rationale
elements.

This guide describes the instructions, which you should follow carefully in
order to successfully conduct the task. You will use GATE4 for completing your
task. We recommend to use this guide as a reference during the coding task.

Your task is to read the IRC messages assigned to you. For each message, you
will:

• Identify rationale elements contained in the messages by highlighting the
message and classifying it accordingly. We explain each rationale element
later in this guide.

In case any questions arise during the coding, please contact the other project
members.

classifying the irc message : If the message contains a rationale ele-
ment, highlight the complete message and indicate the type of the rationale
element.

You can assign more than one rationale element to each message. The rationale
elements are:

1 https://lucene.apache.org/
2 https://www.mozilla.org/thunderbird/
3 https://www.ubuntu.com/
4 https://gate.ac.uk

159

160 coding guide

issue A problem to be solved. Issues are typically resolved through discussions
and negotiation. Issues are usually phrased as questions. Examples:

• “I think you had a good question about difficulty level—whether it’s for all
recipes or for particular ones.”

• “How soon should a dispatcher be notified of a train delay?”

• “How should persistent data be stored?”

• “Which technology presents the most risk?”

alternative A possible solution that could address the issue under consider-
ation.Examples:

• “Just my thoughts, but what do you think of making the "cost" be for the
whole dish, instead of next to each individual ingredient?”

• “The interface for the dispatcher could be realized with a point-and-click in-
terface.”

• “The display used by the dispatcher can be a text-only display with graphic
characters to represent track segments.”

pro-argument Reasons supporting an alternative. Pro-argument is usually
phrased as a positive statement. Example:

• “Text-based interfaces are easier to implement and test than Point-and-click
interfaces.”

When a developer supports to an alternative with a subjective opinion it
should be marked as a pro-argument. Example:

• “I like it.”

• “I totally agree with you!”

con-argument Reasons against an alternative. Con-argument is usually
phrased as a negative statement. Examples:

• “This screen has no real useful functionality.”

• “Point-and-click interfaces are much more complex to implement than text-
based interfaces.”

coding guide 161

• “The point-and-click interface risks introducing fatal errors in the system
that would offset any usability benefit the interface would provide.”

decision A decision that were made to resolve an open issue. Examples:

• “We decided that we will rank our recipes based on frequency of use.”

• “We select a text-based display and a keyboard input for the traffic control
user interface.”

what not to classify?

management issues Issues that are not discussing the software system being
developed. Example:

• “Should I put the user stories in Confluence and JIRA?”

general questions and issues that are not related to the software system
being developed. For example, questions about the development environ-
ment, development processes, programming languages, APIs or software
libraries. Examples:

• “How can I log in to confluence?”

• “How can I see the project events on the calendar?”

• “How do I create a new storyboard in Xcode?”

• “How to sort any object array by dates on Swift?”

social events Messages that discuss social aspects of the development teams.
Example:

• Arrangement for an icebreaker event.

• Discussing the time and place for a team gathering.

distribution of workload Example:

• “I would do it myself but I’m too afraid to break something. I would be very
happy if someone with more knowledge maybe can reset things and create the
structure we need.”

non-english messages .

C
Coding Guide: For Annotating Rationale Elements in
Issue Tracking Systems

Our study aims at studying what type of rationale elements are present in Issue
Tracking Systems of open source projects.

As part of the annotation task, you will read issues and their comments of
three open source projects: Apache Lucene1, Mozilla Thunderbird2 and Ubuntu3.
Your task is to classify issue comments that contain rationale elements.

This guide describes the instructions, which you should follow carefully in
order to successfully conduct the task. Together with this coding guide, you will
receive a spreadsheet with the issues’ comments to be coded. The spreadsheet
contains for each issue to be coded: the Issue Title, Issue Description, Issue Reporter,
Issue Assignee, and Issue Comments. A comment to an issue might consist of more
than a sentence. For each comment, the Comment author and Comment Sentences
are displayed. Each sentence is displayed in a single spreadsheet row.

Your task is to read the issue comments assigned to you. For each sentence in
the comment, you will:

• Identify rationale elements contained in the sentence by assigning an X in
the cell forming the intersection of the row containing the sentence and
the column representing the rationale element. We explain each rationale
element later in this guide.

We recommend to use this guide as a reference during the whole coding task.
In case any questions arise during the coding, please contact the other project
members.

1 https://lucene.apache.org/
2 https://www.mozilla.org/thunderbird/
3 https://www.ubuntu.com/

163

164 coding guide

classifying the sentences of issue comments : You can assign more
than one rationale element (code) to each sentence. The rationale elements are:

issue A problem to be solved. Issues are typically resolved through discussions
and negotiation. Issues are usually phrased as questions.

alternative A possible solution that could address the issue under consider-
ation.

pro-argument Reasons supporting an alternative. Pro argument is usually
phrased as a positive statement. When a developer supports to an alterna-
tive with a subjective opinion it should be marked as a pro-argument.

con-argument Reasons against an alternative. Con argument is usually
phrased as a negative statement.

decision A decision that were made to resolve an open issue.

what not to classify?

management issues that are not discussing the app being developed.

general questions and issues that are not related to the software system
being developed. For example, questions about the development environ-
ment, development processes, programming languages, APIs or software
libraries.

social events : Messages that discuss social aspects of the development
teams.

distribution of workload.

automatically-generated comments : including comments generated
by bots. For example, jira-bot, githubbot and commit-tag-bot in Apache
Lucene.

non-english messages .

D
Questionnaire for Evaluating REACT

This is a questionnaire about the use of rationale annotations (emojis) in Slack chat
messages.

* Required

Q1. How do you rate your agreement with the following statements? *

Strongly
disagree

Disagree Neither
agree
nor

disagree

Agree Strongly
agree

Slack rationale emojis are easy to learn.

Slack rationale emojis are simple to apply.

I enjoy using Slack rationale emojis to capture important
knowledge.

Applying Slack rationale emojis helps in documenting
the rationale behind the decisions we make in our team
chat messages.

Applying Slack rationale emojis encourages all team
members to participate in the ongoing discussion.

Q2. When applying annotations in Slack chat messages: *

Q3. Would you like to add any other comment?

I have some concerns about my privacy, but I fully support it if the data is anonymized.	
I prefer if none of my discussions in chat messages are documented.	

Other:	

Submit

I fully support it for documenting important knowledge without any reservations.	
	

165

Bibliography

[1] J. Agg, “Harvesting Versus Creating: Effective Web Design Rationale,”
in Proceedings of the 17th Australia Conference on Computer-Human Interac-
tion: Citizens Online: Considerations for Today and the Future (OZCHI), 2005,
pp. 1–4.

[2] H. Ajjan, R. Hartshorne, Y. Cao, and M. Rodriguez, “Continuance Use In-
tention of Enterprise Instant Messaging: a Knowledge Management Per-
spective,” Behaviour & information technology, vol. 33, no. 7, pp. 678–692,
2014.

[3] Aman-ul-haq and M. A. Babar, “Tool Support for Automating Architec-
tural Knowledge Extraction,” in Proceedings of the ICSE Workshop on Shar-
ing and Reusing Architectural Knowledge (SHARK), 2009, pp. 49–56.

[4] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is
It a Bug or an Enhancement?: A Text-based Approach to Classify Change
Requests,” in Proceedings of the Conference of the Center for Advanced Studies
on Collaborative Research: Meeting of Minds (CASCON), 2008, pp. 304–318.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?” In Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE),
2006, pp. 361–370.

[6] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content Clas-
sification of Development Emails,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE), 2012, pp. 375–385.

[7] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
Lightweight Techniques to Link E-mails and Source Code,” in Proceed-
ings of the 16th Working Conference on Reverse Engineering (WCRE), 2009,
pp. 205–214.

167

168 Bibliography

[8] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-Mails and Source Code
Artifacts,” in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering (ICSE), 2010, pp. 375–384.

[9] O. Baysal and A. J. Malton, “Correlating Social Interactions to Release
History During Software Evolution,” in Proceedings of the 4th International
Workshop on Mining Software Repositories (MSR), 2007, pp. 7–14.

[10] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
Collaboration, and Bugs: The Social Nature of Issue Tracking in Small,
Collocated Teams,” in Proceedings of the ACM Conference on Computer Sup-
ported Cooperative Work (CSCW), 2010, pp. 291–300.

[11] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes, “Au-
tomatic Extraction of Design Decisions from Issue Management Systems:
a Machine Learning Based Approach,” in Proceedings of the European Con-
ference on Software Architecture (ECSA), 2017, pp. 138–154.

[12] T. Bingham and M. Conner, The New Social Learning: A Guide to Transform-
ing Organizations Through Social Media. Berrett-Koehler Publishers, 2010.

[13] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining
Email Social Networks,” in Proceedings of the 2006 International Workshop
on Mining Software Repositories (MSR), 2006, pp. 137–143.

[14] G. Breach, I’m Not Chatting, I’m Innovating! Locating Lead Users in Open
Source Software Communities, University of Technology, Sydney School of
Management, Working Paper Series, 2008.

[15] H. Brücher, G. Knolmayer, and M.-A. Mittermayer, Document Classification
Methods for Organizing Explicit Knowledge, Institute of Information Sys-
tems, 2002.

[16] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using
UML, Patterns, and Java, 3rd Edition. Prentice Hall Press, 2009.

[17] B. Bruegge, S. Krusche, and L. Alperowitz, “Software Engineering Project
Courses with Industrial Clients,” ACM Transactions on Computing Educa-
tion, vol. 15, no. 4, pp. 1–31, 2015.

Bibliography 169

[18] B. Bruegge, S. Krusche, and M. Wagner, “Teaching Tornado: From Com-
munication Models to Releases,” in Proceedings of the 8th Edition of the
Educators’ Symposium (EduSymp), 2012, pp. 5–12.

[19] A. Brühlmann, T. Gîrba, O. Greevy, and O. Nierstrasz, “Enriching re-
verse engineering with annotations,” in Proceedings of the 11th International
Conference on Model Driven Engineering Languages and Systems (MODELS),
2008, pp. 660–674.

[20] J. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey, “Do De-
velopers Discuss Design?” In Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR), 2014, pp. 340–343.

[21] J. E. Burge, “Software Engineering Using RATionale,” PhD thesis, Worces-
ter Polytechnic Institute, 2005.

[22] J. E. Burge and D. C. Brown, “An Integrated Approach for Software De-
sign Checking Using Design Rationale,” in Proceedings of the Conference on
Design Computing and Cognition, 2004, pp. 557–575.

[23] J. E. Burge and D. C. Brown, “Rationale-Based Support for Software
Maintenance,” in Rationale Management in Software Engineering, A. H. Du-
toit, R. McCall, I. Mistrík, and B. Paech, Eds. Springer Berlin Heidelberg,
2006, pp. 273–296.

[24] J. E. Burge and D. C. Brown, “Software Engineering Using RATionale,”
Journal of Systems and Software, vol. 81, no. 3, pp. 395–413, 2008.

[25] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrík, Rationale-Based Software
Engineering. Springer-Verlag, 2008.

[26] K. C. Burgess Yakemovic and E. J. Conklin, “Report on a Development
Project Use of an Issue-based Information System,” in Proceedings of the
ACM Conference on Computer-supported Cooperative Work (CSCW), 1990,
pp. 105–118.

[27] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is Going
to Mentor Newcomers in Open Source Projects?” In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE), 2012, pp. 1–11.

170 Bibliography

[28] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 Years of
Software Architecture Knowledge Management,” Journal of Systems and
Software, vol. 116, pp. 191–205, 2016.

[29] C. E. Carroll, The Handbook of Communication and Corporate Reputation.
John Wiley & Sons, 2015.

[30] M. Cataldo and J. D. Herbsleb, “Communication Networks in Geograph-
ically Distributed Software Development,” in Proceedings of the ACM Con-
ference on Computer Supported Cooperative Work (CSCW), 2008, pp. 579–588.

[31] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelli-
gence Research, vol. 16, no. 1, pp. 321–357, 2002.

[32] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special Issue
on Learning from Imbalanced Data Sets,” ACM SIGKDD Explorations
Newsletter, vol. 6, no. 1, pp. 1–6, 2004.

[33] S. A. Chowdhury and A. Hindle, “Mining StackOverflow to Filter out
Off-topic IRC Discussion,” in Proceedings of the 12th International Working
Conference on Mining Software Repositories (MSR), 2015, pp. 422–425.

[34] E. J. Conklin and K. C. B. Yakemovic, “A Process-oriented Approach to
Design Rationale,” Human-Computer Interaction, vol. 6, no. 3, pp. 357–391,
1991.

[35] J. Conklin and M. L. Begeman, “gIBIS: A Hypertext Tool for Team Design
Deliberation,” in Proceedings of the ACM Conference on Hypertext (HYPER-
TEXT), 1987, pp. 247–251.

[36] J. Conklin and M. L. Begeman, “gIBIS: A Hypertext Tool for Exploratory
Policy Discussion,” in Proceedings of the ACM Conference on Computer-
supported Cooperative Work (CSCW), 1988, pp. 140–152.

[37] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[38] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva, “Getting More
Out of Biomedical Documents with GATE’s Full Lifecycle Open Source
Text Analytics,” PLoS Computational Biology, vol. 9, no. 2, 2013.

Bibliography 171

[39] A. De Lucia, F. Fasano, C. Grieco, and G. Tortora, “Recovering Design
Rationale from Email Repositories,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM), 2009, pp. 543–546.

[40] P. DeGrace and L. H. Stahl, Wicked Problems, Righteous Solutions: a Cat-
alogue of Modern Software Engineering Paradigms. Englewood Cliffs, N.J:
Yourdon Press, 1990.

[41] A. Dekhtyar, J. H. Hayes, and T. Menzies, “Text is Software Too,” in Pro-
ceedings of the 1st International Workshop on Mining Software Repositories
(MSR), 2004, pp. 22–26.

[42] S. Dennerlein, R. Gutounig, E. Goldgruber, and S. Schweiger, “Web 2.0
Messaging Tools for Knowledge Management? Exploring the Potentials
of Slack,” in Proceedings of the European Conference on Knowledge Manage-
ment, 2016, pp. 225–232.

[43] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora, and H.
Gall, “DECA: Development Emails Content Analyzer,” in Proceedings of
the 38th International Conference on Software Engineering Companion (ICSE),
2016, pp. 641–644.

[44] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in Proceedings
of the International Workshop on Multiple Classifier Systems, 2000, pp. 1–15.

[45] Y. Dittrich and R. Giuffrida, “Exploring the Role of Instant Messaging in a
Global Software Development Project,” in Proceedings of the 6th IEEE Inter-
national Conference on Global Software Engineering (ICGSE), 2011, pp. 103–
112.

[46] C. Drummond and R. C. Holte, “C4. 5, Class Imbalance, and Cost Sen-
sitivity: Why Under-sampling Beats Over-sampling,” in Proceedings of the
Workshop on Learning from Imbalanced Datasets II, 2003, pp. 1–8.

[47] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech, Rationale Management in
Software Engineering. Springer-Verlag, 2006.

[48] A. H. Dutoit and B. Paech, “Rationale Management in Software Engineer-
ing,” in Handbook of Software Engineering and Knowledge Engineering. World
Scientific Publishing Company, 2000, pp. 787–815.

172 Bibliography

[49] B. Eisner, T. Rocktäschel, I. Augenstein, M. Bošnjak, and S. Riedel,
“emoji2vec: Learning Emoji Representations from their Description,” in
Proceedings of the 4th International Workshop on Natural Language Processing
for Social Media (SocialNLP), 2016, pp. 48–54.

[50] M. Elliott and W. Scacchi, “Communicating and Mitigating Conflict in
Open Source Software Development Projects,” Projects & Profits, pp. 25–
41, 2002.

[51] M. S. Elliott, “The Virtual Organizational Culture of a Free Software De-
velopment Community,” in Proceedings of the 3rd Workshop on Open Source
Software Engineering, 2003, pp. 45–49.

[52] M. S. Elliott and W. Scacchi, “Free Software Developers As an Occupa-
tional Community: Resolving Conflicts and Fostering Collaboration,” in
Proceedings of the International ACM SIGGROUP Conference on Supporting
Group Work (GROUP), 2003, pp. 21–30.

[53] T. Erickson and W. A. Kellogg, “Social Translucence: An Approach to
Designing Systems That Support Social Processes,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 7, no. 1, pp. 59–83, 2000.

[54] R. Feldman and J. Sanger, Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. New York, NY, USA: Cambridge University
Press, 2006.

[55] R. Fernández, M. Frampton, P. Ehlen, M. Purver, and S. Peters, “Mod-
elling and Detecting Decisions in Multi-party Dialogue,” in Proceedings of
the 9th SIGdial Workshop on Discourse and Dialogue (SIGdial), 2008, pp. 156–
163.

[56] G. Fischer, R. McCall, and A. Morch, “JANUS: Integrating Hypertext with
a Knowledge-based Design Environment,” in Proceedings of the Second An-
nual ACM Conference on Hypertext (HYPERTEXT), 1989, pp. 105–117.

[57] C. Francalanci and F. Merlo, “Empirical Analysis of the Bug Fixing Pro-
cess in Open Source Projects,” in Proceedings of the IFIP International Con-
ference on Open Source Systems, Open Source Development, Communities and
Quality, 2008, pp. 187–196.

Bibliography 173

[58] E. Frank and R. R. Bouckaert, “Naive Bayes for Text Classification with
Unbalanced Classes,” in Proceedings of the 10th European Conference on
Principle and Practice of Knowledge Discovery in Databases (PKDD), 2006,
pp. 503–510.

[59] B. Franklin, The Way to Wealth. 1758.

[60] M. Friendly, “Corrgrams: Exploratory Displays for Correlation Matrices,”
The American Statistician, vol. 56, no. 4, pp. 316–324, 2002.

[61] A. C. B. Garcia and H. C. Howard, “Acquiring Design Knowledge
Through Design Decision Justification,” Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing, vol. 6, no. 1, pp. 59–71, 1992.

[62] S. Gill and E. V. Munson, “A Version-Aware Tool for Design Rationale,”
in Proceedings of the 12th Brazilian Symposium on Multimedia and the Web,
ACM, 2006, pp. 20–26.

[63] R. Giuffrida and Y. Dittrich, “Empirical Studies on the Use of Social Soft-
ware in Global Software Development - A Systematic Mapping Study,”
Information and Software Technology, vol. 55, no. 7, pp. 1143–1164, 2013.

[64] T. R. Gruber and D. M. Russell, “Generative Design Rationale: Beyond
the Record and Replay Paradigm,” in Design Rationale, T. P. Moran and
J. M. Carroll, Eds., L. Erlbaum Associates Inc., 1996, pp. 323–349.

[65] C. Gutwin, R. Penner, and K. Schneider, “Group Awareness in Dis-
tributed Software Development,” in Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW), 2004, pp. 72–81.

[66] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen, “Com-
munication in Open Source Software Development Mailing Lists,” in
Proceedings of the 10th Working Conference on Mining Software Repositories
(MSR), 2013, pp. 277–286.

[67] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

174 Bibliography

[68] C. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg, “Designing Task
Visualizations to Support the Coordination of Work in Software Devel-
opment,” in Proceedings of Computer-Supported Cooperative Work and Social
Computing (CSCW), 2006, pp. 39–48.

[69] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd.
Morgan Kaufmann Publishers Inc., 2011.

[70] M. Handel and J. D. Herbsleb, “What is Chat Doing in the Workplace?” In
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW), 2002, pp. 1–10.

[71] A. E. Hassan, “The Road Ahead for Mining Software Repositories,” in
Proceedings of Frontiers of Software Maintenance (FoSM), 2008, pp. 48–57.

[72] T. M. Hesse, A. Kuehlwein, and T. Roehm, “DecDoc: A Tool for Doc-
umenting Design Decisions Collaboratively and Incrementally,” in Pro-
ceedings of the 1st International Workshop on Decision Making in Software
ARCHitecture (MARCH), 2016, pp. 30–37.

[73] T. M. Hesse, B. Paech, T. Roehm, and B. Bruegge, “How to improve de-
cision documentation in software evolution?” In Proceedings of the First
Collaborative Workshop on Evolution and Maintenance of Long-Living Systems
(EMLS), 2014, pp. 14–15.

[74] T.-M. Hesse, S. Gartner, T. Roehm, B. Paech, K. Schneider, and B. Bruegge,
“Semiautomatic Security Requirements Engineering and Evolution Using
Decision Documentation, Heuristics, and User Monitoring,” in Proceed-
ings of the IEEE 1st Workshop on Evolving Security and Privacy Requirements
Engineering (ESPRE), 2014, pp. 1–6.

[75] T.-M. Hesse, C. Kücherer, and B. Paech, “Experiences with Supporting
the Distributed Responsibility for Requirements through Decision Docu-
mentation,” in Proceedings of the GI-Fachgruppen-Treffen Requirements Engi-
neering (FGRE), 2014.

[76] T.-M. Hesse, A. Kuehlwein, B. Paech, T. Roehm, and B. Bruegge, “Docu-
menting Implementation Decisions with Code Annotations,” in Proceed-
ings of the 27th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE), 2015, pp. 152–157.

Bibliography 175

[77] T.-M. Hesse, V. Lerche, M. Seiler, K. Knoess, and B. Paech, “Documented
Decision-making Strategies and Decision Knowledge in Open Source
Projects,” Information and Software Technology, vol. 79, pp. 36–51, 2016.

[78] T.-M. Hesse and B. Paech, “Supporting the Collaborative Development of
Requirements and Architecture Documentation,” in Proceedings of the 3rd
International Workshop on the Twin Peaks of Requirements and Architecture
(TwinPeaks), 2013, pp. 22–26.

[79] T.-M. Hesse and B. Paech, “Documenting Relations Between Require-
ments and Design Decisions: A Case Study on Design Session Tran-
scripts,” in Proceedings of the 22nd International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ), 2016,
pp. 188–204.

[80] B. Hicks, S. Culley, R. Allen, and G. Mullineux, “A Framework for The Re-
quirements of Capturing, Storing and Reusing Information and Knowl-
edge in Engineering Design,” International Journal of Information Manage-
ment, vol. 22, no. 4, pp. 263–280, 2002.

[81] T. K. Ho, “Random Decision Forests,” in Proceedings of the 3rd International
Conference on Document Analysis and Recognition (ICDAR), 1995, pp. 278–
282.

[82] P.-Y. Hsueh and J. D. Moore, “What Decisions Have You Made?: Auto-
matic Decision Detection in Meeting Conversations,” in Proceedings of the
Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT), 2007,
pp. 25–32.

[83] P.-Y. Hsueh and J. D. Moore, “Automatic Decision Detection in Meeting
Speech,” in Proceedings of the International Workshop on Machine Learning
for Multimodal Interaction, 2008, pp. 168–179.

[84] P. Hübner and B. Paech, “Using Interaction Data for Continuous Creation
of Trace Links Between Source Code and Requirements in Issue Tracking
Systems,” in Proceedings of the International Working Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ), P. Grünbacher
and A. Perini, Eds., 2017, pp. 291–307.

176 Bibliography

[85] M. Ikonomakis, S. Kotsiantis, and V. Tampakas, “Text Classification Using
Machine Learning Techniques,” WSEAS Transactions on Computers, vol. 4,
no. 8, pp. 966–974, 2005.

[86] A. Jarczyk, P. Loffler, and F. Shipmann, “Design Rationale for Software
Engineering: A Survey,” in Proceedings of the 25th Hawaii International Con-
ference on System Sciences, 1992, pp. 577–586.

[87] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards the
Visualization of Usage and Decision Knowledge in Continuous Software
Engineering,” in Proceedings of the IEEE Working Conference on Software
Visualization (VISSOFT), 2017, pp. 104–108.

[88] A. Johri, “Look Ma, No Email!: Blogs and IRC As Primary and Preferred
Communication Tools in a Distributed Firm,” in Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW), 2011, pp. 305–
308.

[89] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computational Linguistics, and Speech
Recognition, 3rd ed. draft. 2017.

[90] V. Käfer, D. Graziotin, I. Bogicevic, S. Wagner, and J. Ramadani, “Commu-
nication in Open-Source Projects–End of the E-mail Era?” In Proceedings
of the 40th International Conference on Software Engineering (ICSE), 2018.

[91] Y. Kato, K. Hori, and K. Taketa, “Capturing Design Rationale by Annotat-
ing E-mails,” in Proceedings of the 6th World Multiconference on Systemics,
Cybernetics and Informatics, 2002, pp. 278–282.

[92] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto, “Eval-
uating the Effects of Architectural Documentation: A Case Study of a
Large Scale Open Source Project,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 3, pp. 220–260, 2016.

[93] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and B. Bruegge, “De-
cision Knowledge Triggers in Continuous Software Engineering,” in Pro-
ceedings of the 4th International Workshop on Rapid Continuous Software En-
gineering (RCoSE), 2018, pp. 23–26.

Bibliography 177

[94] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Tool Support for
Decision and Usage Knowledge in Continuous Software Engineering,” in
Proceedings of the 3rd Workshop on Continuous Software Engineering (CSE),
2018, pp. 74–77.

[95] A. J. Ko, “A Three-year Participant Observation of Software Startup Soft-
ware Evolution,” in Proceedings of the 39th International Conference on Soft-
ware Engineering: Software Engineering in Practice Track (ICSE-SEIP), 2017,
pp. 3–12.

[96] A. J. Ko and P. K. Chilana, “Design, Discussion, and Dissent in Open Bug
Reports,” in Proceedings of the iConference, 2011, pp. 106–113.

[97] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in Collocated
Software Development Teams,” in Proceedings of the 29th International Con-
ference on Software Engineering (ICSE), 2007, pp. 344–353.

[98] P. Kruchten, R. Capilla, and J. C. Dueñas, “The Decision View’s Role in
Software Architecture Practice,” IEEE Software, vol. 26, no. 2, pp. 36–42,
2009.

[99] P. Kruchten, “An Ontology of Architectural Design Decisions in Software
Intensive Systems,” in Proceedings of the 2nd Groningen Workshop on Soft-
ware Variability, 2004, pp. 54–61.

[100] S. Krusche and L. Alperowitz, “Introduction of Continuous Delivery in
Multi-customer Project Courses,” in Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion), 2014,
pp. 335–343.

[101] S. Krusche, L. Alperowitz, B. Bruegge, and M. O. Wagner, “Rugby: An
Agile Process Model Based on Continuous Delivery,” in Proceedings of
the 1st International Workshop on Rapid Continuous Software Engineering
(RCoSE), 2014, pp. 42–50.

[102] W. Kunz and H. Rittel, “Issues as Elements of Information Systems,”
Institute of Urban and Regional Development, University of California,
Berkeley, California, Working Paper 131, 1970.

178 Bibliography

[103] Z. Kurtanović and W. Maalej, “Mining User Rationale from Software Re-
views,” in Proceedings of the 25th IEEE International Requirements Engineer-
ing Conference (RE), 2017, pp. 61–70.

[104] Z. Kurtanović and W. Maalej, “On User Rationale in Software Engineer-
ing,” Requirements Engineering, pp. 1–23, 2018.

[105] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models: A
Study of Developer Work Habits,” in Proceedings of the 28th International
Conference on Software Engineering (ICSE), 2006, pp. 492–501.

[106] J. Lee Rodgers and W. A. Nicewander, “Thirteen Ways to Look at the
Correlation Coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–
66, 1988.

[107] J. Lee, “Decision Representation Language (DRL) and Its Support Envi-
ronment,” MIT Artificial Intelligence Laboratory, Working Paper, 1989.

[108] J. Lee, “Artificial Intelligence at MIT Expanding Frontiers,” in, P. H. Win-
ston and S. A. Shellard, Eds., MIT Press, 1990, ch. SIBYL: A Qualitative
Decision Management System, pp. 104–133.

[109] J. Lee, “Extending the Potts and Bruns Model for Recording Design Ra-
tionale,” in Proceedings of the 13th International Conference on Software En-
gineering (ICSE), 1991, pp. 114–125.

[110] J. Lee, “Design Rationale Systems: Understanding the Issues,” IEEE Ex-
pert, vol. 12, no. 3, pp. 78–85, 1997.

[111] J. Lee and K.-Y. Lai, “What’s in Design Rationale?” Human-Computer In-
teraction, vol. 6, no. 3, pp. 251–280, 1991.

[112] T. C. Lethbridge, J. Singer, and A. Forward, “How Software Engineers
Use Documentation: The State of the Practice,” IEEE Software, vol. 20, no.
6, pp. 35–39, 2003.

[113] C. Lewis, J. Rieman, and B. Bell, “Problem-centered Design for Expres-
siveness,” in Design Rationale: Concepts, Techniques, and Use, T. P. Moran
and J. M. Carroll, Eds., L. Erlbaum Associates Inc., 1996, pp. 147–184.

Bibliography 179

[114] D. D. Lewis, “Naive (Bayes) at Forty: The Independence Assumption in
Information Retrieval,” in Proceedings of the 10th European Conference on
Machine Learning (ECML), 1998, pp. 4–15.

[115] Z. Li and K. Ramani, “Ontology-Based Design Information Extraction
and Retrieval,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, vol. 21, pp. 137–154, 2007.

[116] Y. Liang, Y. Liu, C. K. Kwong, and W. B. Lee, “Learning the "Whys": Dis-
covering Design Rationale Using Text Mining - An Algorithm Perspec-
tive,” Computer-Aided Design, vol. 44, no. 10, pp. 916–930, 2012.

[117] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why Developers
Are Slacking Off : Understanding How Software Teams Use Slack,” in
Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion (CSCW Companion), 2016, pp. 333–
336.

[118] Y. Liu, Y. Liang, C. K. Kwong, and W. B. Lee, “A New Design Rationale
Representation Model for Rationale Mining,” Journal of Computing and
Information Science in Engineering, vol. 10, no. 3, pp. 1–10, 2010.

[119] C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging
the Gap Between Software Architecture Rationale Formalisms and Ac-
tual Architecture Documents: An Ontology-driven Approach,” Science of
Computer Programming, vol. 77, no. 1, pp. 66–80, 2012.

[120] R. Lougher and T. Rodden, “Supporting Long-term Collaboration in Soft-
ware Maintenance,” in Proceedings of the Conference on Organizational Com-
puting Systems (COCS), 1993, pp. 228–238.

[121] A. MacLean, R. M. Young, V. M. E. Bellotti, and T. P. Moran, “Ques-
tions, Options, and Criteria: Elements of Design Space Analysis,” Human-
Computer Interaction, vol. 6, no. 3, pp. 201–250, 1991.

[122] R. McCall, I. Mistrik, and W. Schuler, “An Integrated Information and
Communication System for Problem Solving,” in Proceedings of the 7th
International CODATA Conference, 1981, pp. 107–115.

180 Bibliography

[123] R. McCall, “PHIBIS: Procedurally Hierarchical Issue-based Information
Systems,” in Proceedings of the International Congress on Planning and Design
Theory, 1987, pp. 17–22.

[124] R. J. McCall, “MIKROPLIS: A Hypertext System for Design,” Design stud-
ies, vol. 10, no. 4, pp. 228–238, 1989.

[125] R. J. McCall, “PHI: A Conceptual Foundation for Design Hypermedia,”
Design studies, vol. 12, no. 1, pp. 30–41, 1991.

[126] R. McCall, P. R. Bennett, P. S. d’Oronzio, J. L. Ostwald, F. M. Shipman III,
and N. F. Wallace, “PHIDIAS: Integrating CAD Graphics into Dynamic
Hypertext,” in Proceedings of the European Conference on Hypertext (ECHT),
1990, pp. 152–165.

[127] R. McCall and I. Mistrik, “Capture of Software Requirements and Ratio-
nale through Collaborative Software Sevelopment,” in Requirements En-
gineering for Sociotechnical Systems, A. S. José Luis Maté, Ed. Information
Science Publishing, 2005, pp. 303–317.

[128] A. McCallum and K. Nigam, “A Comparison of Event Models for Naive
Bayes Text Classification,” in Proceedings of the AAAI/ICML Workshop on
Learning for Text Categorization, 1998, pp. 41–48.

[129] M. McCandless and O. Gospodnetic, Lucene in Action. Manning Publica-
tions Co., 2005.

[130] I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bourban, M. Flynn, M.
Guillemot, T. Hain, J. Kadlec, V. Karaiskos, M. Kronenthal, G. Lathoud,
M. Lincoln, A. Lisowska, W. Post, D. Reidsma, and P. Wellner, “The AMI
Meeting Corpus,” in Proceedings of the 5th International Conference on Meth-
ods and Techniques in Behavioral Research, 2005, pp. 28–39.

[131] S. Menaka and N. Radha, “Text Classification Using Keyword Extraction
Technique,” International Journal of Advanced Research in Computer Science
and Software Engineering, vol. 3, no. 12, 2013.

[132] C. Miesbauer and R. Weinreich, “Classification of Design Decisions: An
Expert Survey in Practice,” in Proceedings of the 7th European Conference on
Software Architecture (ECSA), 2013, pp. 130–145.

Bibliography 181

[133] T. P. Moran and J. M. Carroll, Eds., Design Rationale: Concepts, Techniques,
and Use. L. Erlbaum Associates Inc., 1996.

[134] K. L. Myers, N. B. Zumel, and P. Garcia, “Automated Capture of Rationale
for the Detailed Design Process,” in Proceedings of the Eleventh Conference
on Innovative Applications of Artificial Intelligence (AAAI), 1999, pp. 876–883.

[135] M. Nagel, “The QUARC Metamodel: A Communication-Based Generic
Project Model,” PhD thesis, Technische Universität München, 2012.

[136] G. Navarro, “A Guided Tour to Approximate String Matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[137] R. Neches, W. R. Swartout, and J. D. Moore, “Enhanced Maintenance
and Explanation of Expert Systems Through Explicit Models of Their
Development,” IEEE Transactions on Software Engineering - Special Issue on
Artificial Intelligence and Software Engineering, vol. 11, no. 11, pp. 1337–
1351, 1985.

[138] K. A. Neuendorf, The Content Analysis Guidebook. SAGE Publications,
2002.

[139] R. Nordquist. (2018). Noise and Interference in Various Types of Com-
munication, [Online]. Available: thoughtco.com/noise-communication-
term-1691349 (visited on 05/03/2018).

[140] D. Pagano and W. Maalej, “How Do Developers Blog?: An Exploratory
Study,” in Proceedings of the 8th Working Conference on Mining Software
Repositories (MSR), 2011, pp. 123–132.

[141] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora, “Min-
ing Source Code Descriptions from Developer Communications,” in Pro-
ceedings of the IEEE 20th International Conference on Program Comprehension
(ICPC), 2012, pp. 63–72.

[142] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, and G. Antoniol,
“How Developers’ Collaborations Identified from Different Sources Tell
Us About Code Changes,” in Proceedings of the 30th International Conference
on Software Maintenance and Evolution (ICSME), 2014, pp. 251–260.

thoughtco.com/noise-communication-term-1691349
thoughtco.com/noise-communication-term-1691349

182 Bibliography

[143] L. Pascarella and A. Bacchelli, “Classifying Code Comments in Java
Open-source Software Systems,” in Proceedings of the 14th International
Conference on Mining Software Repositories (MSR), 2017, pp. 227–237.

[144] F. Peña-Mora, D. Sriram, and R. Logcher, “Design Rationale for
Computer-Supported Conflict Mitigation,” Journal of Computing in Civil
Engineering, vol. 9, no. 1, pp. 57–72, 1995.

[145] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An Introduction to Logistic
Regression Analysis and Reporting,” The Journal of Educational Research,
vol. 96, no. 1, pp. 3–14, 2002.

[146] M. Poppendieck, “Wicked Problems,” Software Development Magazine,
2002.

[147] M. Pushpa and S. Karpagavalli, “Multi-label Classification: Problem
Transformation methods in Tamil Phoneme classification,” Procedia Com-
puter Science, vol. 115, pp. 572–579, 2017.

[148] H. J. Rea, J. R. Corney, J. M. Ritchie, R. Sung, and C. Salamon, “Automat-
ing Digital Capture of Engineering Knowledge,” in Proceedings of the 4th
International CIRP-sponsored conference (DET), 2007, pp. 19–21.

[149] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “MEKA: A Multi-
label/Multi-target Extension to Weka,” Journal of Machine Learning Re-
search, vol. 17, no. 21, pp. 1–5, 2016.

[150] B. Reeves and F. Shipman, “Making It Easy for Designers to Provide De-
sign Rationale,” in Proceedings of the AAAI Workshop on Design Rationale
Capture and Use, 1992, pp. 1–7.

[151] W. C. Regli, X. Hu, M. Atwood, and W. Sun, “A Survey of Design Ratio-
nale Systems: Approaches, Representation, Capture and Retrieval,” Engi-
neering with Computers, vol. 16, no. 3, pp. 209–235, 2000.

[152] G. L. Rein and C. A. Ellis, “rIBIS: a Real-time Group Hypertext System,”
International Journal of Man-Machine Studies, vol. 34, no. 3, pp. 349–367,
1991.

[153] H. W. J. Rittel, “On the Planning Crisis: Systems Analysis of the ‘First and
Second Generations’,” Bedriftsøkonomen, vol. 8, pp. 390–398, 1972.

Bibliography 183

[154] H. W. J. Rittel, “Second Generation Design Methods,” Interview in: De-
sign Methods Group 5th Anniversary Report: DMG Occasional Paper, vol. 1,
pp. 5–10, 1972, Interviewed by Donald P. Grant and Jean-Pierre Protzen,
Developments in Design Methodology (reprinted).

[155] H. W. J. Rittel and M. M. Webber, “Dilemmas in a General Theory of
Planning,” Policy Sciences, vol. 4, no. 2, pp. 155–169, 1973.

[156] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C. Murphy,
L. Morenox, D. Shepherdxi, and E. Wong, “On-Demand Developer Doc-
umentation,” in Proceedings of the IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 479–483.

[157] G. Robles and J. M. Gonzalez-Barahona, “Developer Identification Meth-
ods for Integrated Data from Various Sources,” in Proceedings of the Inter-
national Workshop on Mining Software Repositories (MSR), 2005, pp. 1–5.

[158] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting User
Story Information in Developer-client Conversations to Generate Extrac-
tive Summaries,” in Proceedings of the 39th International Conference on Soft-
ware Engineering (ICSE), 2017, pp. 49–59.

[159] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How Do Professional
Developers Comprehend Software?” In Proceedings of the 34th International
Conference on Software Engineering (ICSE), 2012, pp. 255–265.

[160] B. Rogers, J. Gung, Y. Qiao, and J. E. Burge, “Exploring Techniques for Ra-
tionale Extraction from Existing Documents,” in Proceedings of the 34th In-
ternational Conference on Software Engineering (ICSE), 2012, pp. 1313–1316.

[161] B. Rogers, C. Justice, T. Mathur, and J. E. Burge, “Generalizability of Doc-
ument Features for Identifying Rationale,” in Proceedings of the 7th Interna-
tional Conference on Design Computing and Cognition (DCC), 2016, pp. 633–
651.

[162] B. Rogers, Y. Qiao, J. Gung, T. Mathur, and J. E. Burge, “Using Text Min-
ing Techniques to Extract Rationale from Existing Documentation,” in
Proceedings of the 6th International Conference on Design Computing and Cog-
nition (DCC), 2014, pp. 457–474.

184 Bibliography

[163] R. R. Rosario, “A Data Augmentation Approach to Short Text Classifica-
tion,” PhD thesis, University of California, Los Angeles, 2017.

[164] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples. Wiley Publishing, 2012.

[165] I. Rus and M. Lindvall, “Guest Editors’ Introduction: Knowledge Man-
agement in Software Engineering,” IEEE Software, vol. 19, no. 3, pp. 26–
38, 2002.

[166] J. Sagoo, A. Tiwari, and J. Alcock, “Reviewing the State-of-the-Art De-
sign Rationale Definitions, Representations and Capabilities,” Interna-
tional Journal of Design Engineering, vol. 5, no. 3, pp. 211–231, 2014.

[167] I. Salman, A. T. Misirli, and N. Juristo, “Are Students Representatives of
Professionals in Software Engineering Experiments?” In Proceedings of the
37th International Conference on Software Engineering (ICSE), 2015, pp. 666–
676.

[168] K. Schneider, “Rationale as a By-Product,” in Rationale Management in
Software Engineering, A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech,
Eds., Springer Berlin Heidelberg, 2006, pp. 91–109.

[169] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software
Engineering,” IEEE Transactions on Software Engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[170] F. Sebastiani, “Machine Learning in Automated Text Categorization,”
ACM Computing Surveys, vol. 34, no. 1, pp. 1–47, 2002.

[171] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, and N. Medvidovic, “Recovering
Architectural Design Decisions,” in Proceedings of the IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 95–104.

[172] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying The Use of Developer
IRC Meetings in Open Source Projects,” in Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM), 2009, pp. 147–156.

[173] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the Use of Internet Re-
lay Chat (IRC) Meetings by Developers of the GNOME GTK+ Project,”
in Proceedings of the 6th IEEE International Working Conference on Mining
Software Repositories (MSR), 2009, pp. 107–110.

Bibliography 185

[174] F. M. Shipman and R. J. McCall, “Integrating Different Perspectives
on Design Rationale: Supporting the Emergence of Design Rationale
from Design Communication,” Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, vol. 11, no. 2, pp. 141–154, 1997.

[175] F. M. Shipman III, “Supporting Knowledge-base Evolution with Incre-
mental Formalization,” PhD thesis, Boulder, CO, USA, 1993.

[176] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An Examination of
Software Engineering Work Practices,” in Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative Research (CASCON), 1997,
pp. 1–15.

[177] A. D. Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora, and
H. C. Gall, “Development Emails Content Analyzer: Intention Mining in
Developer Discussions,” in Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015, pp. 12–23.

[178] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared Waypoints and
Social Tagging to Support Collaboration in Software Development,” in
Proceedings of the 20th Anniversary Conference on Computer Supported Coop-
erative Work (CSCW), 2006, pp. 195–198.

[179] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and M. Muller,
“How Software Developers Use Tagging to Support Reminding and Re-
finding,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 470–
483, 2009.

[180] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky, “The
(R) Evolution of Social Media in Software Engineering,” in Proceedings of
the on Future of Software Engineering (FOSE), 2014, pp. 100–116.

[181] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M. Ger-
man, “How Social and Communication Channels Shape and Challenge
a Participatory Culture in Software Development,” IEEE Transactions on
Software Engineering, vol. 43, no. 2, pp. 185–204, 2017.

[182] R. Sung, J. M. Ritchie, H. J. Rea, and J. Corney, “Automated Design
Knowledge Capture and Representation in Single-User CAD Environ-
ments,” Journal of Engineering Design, vol. 22, no. 7, pp. 487–503, 2011.

186 Bibliography

[183] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A Survey of Architecture De-
sign Rationale,” Journal of Systems and Software, vol. 79, no. 12, pp. 1792–
1804, 2006.

[184] Y. Tao and S. Kim, “Partitioning Composite Code Changes to Facilitate
Code Review,” in Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR), 2015, pp. 180–190.

[185] S. E. Toulmin, The Uses of Argument. UK: Cambridge University Press,
1958.

[186] C. Treude and M.-A. Storey, “Work Item Tagging: Communicating Con-
cerns in Collaborative Software Development,” IEEE Transactions on Soft-
ware Engineering, vol. 38, no. 1, pp. 19–34, 2012.

[187] G. Tsoumakas and I. Katakis, “Multi-label Classification: An Overview,”
International Journal of Data Warehousing and Mining, vol. 3, pp. 1–13, 2007.

[188] E. Ukkonen, “Algorithms for Approximate String Matching,” Information
and Control, vol. 64, no. 1-3, pp. 100–118, 1985.

[189] G. Venolia, “Textual Allusions to Artifacts in Software-Related Reposito-
ries,” in Proceedings of the International Workshop on Mining Software Repos-
itories (MSR), 2006, pp. 151–154.

[190] S. Vijayarani, M. J. Ilamathi, and M. Nithya, “Preprocessing Techniques
for Text Mining- an overview,” International Journal of Computer Science &
Communication Networks, vol. 5, no. 1, pp. 7–16, 2015.

[191] D. Vyas, T. Capel, D. Tank, and D. Shepherd, “Understanding the Use
of a Bug Tracking System in a Global Software Development Setup,” in
Proceedings of the Annual Meeting of the Australian Special Interest Group for
Computer Human Interaction (OzCHI), 2015, pp. 222–226.

[192] H. Wang, A. L. Johnson, and R. H. Bracewell, “The Retrieval of Structured
Design Rationale for the Re-use of Design Knowledge with an Integrated
Representation,” Advanced Engineering Informatics, vol. 26, no. 2, pp. 251–
266, 2012.

[193] A. Williams and A. Rainer, “Identifying Practitioners’ Arguments and
Evidence in Blogs: Insights from a Pilot Study,” in Proceedings of the 23rd
Asia-Pacific Software Engineering Conference (APSEC), 2016, pp. 345–348.

Bibliography 187

[194] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.

[195] L. Yu, S. Ramaswamy, A. Mishra, and D. Mishra, “Communications in
Global Software Development: An Empirical Study Using GTK+ OSS
Repository,” in Proceedings of the Confederated International Conference on
On the Move to Meaningful Internet Systems (OTM), 2011, pp. 218–227.

[196] Y. C. Yuan, X. Zhao, Q. Liao, and C. Chi, “The Use of Different Informa-
tion and Communication Technologies to Support Knowledge Sharing in
Organizations: from E-mail to Micro-blogging,” Journal of the American
Society for Information Science and Technology, vol. 64, no. 8, pp. 1659–1670,
2013.

[197] M.-L. Zhang and Z.-H. Zhou, “A Review on Multi-Label Learning Algo-
rithms,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no.
8, pp. 1819–1837, 2014.

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction and Foundations
	1 Introduction
	1.1 Research Approach
	1.2 Scope
	1.3 Dissertation Structure
	1.4 Publications

	2 Foundations
	2.1 Rationale Definition
	2.2 Design Rationale Approaches
	2.2.1 Rationale Capture
	2.2.2 Rationale Representation
	2.2.3 Rationale Usage

	2.3 Text Mining Fundamentals

	Analyzing Rationale in Text-based Developers' Communications
	3 Rationale in Chat Messages of Co-located Teams
	3.1 Study Design
	3.1.1 Research Questions
	3.1.2 Research Data
	3.1.3 Research Method

	3.2 Results
	3.2.1 Rationale Frequency
	3.2.2 Rationale Completeness

	3.3 Discussion
	3.4 Threats to Validity

	4 Rationale in Text-based Developers' Communications of Distributed Teams
	4.1 Research questions
	4.2 Rationale in Developers' Chat Messages
	4.2.1 Study Design
	4.2.2 Results
	4.2.3 Discussion
	4.2.4 Threats to Validity

	4.3 Rationale in Developers' Comments in Issue Tracking Systems
	4.3.1 Study Design
	4.3.2 Results
	4.3.3 Discussion
	4.3.4 Threats to Validity

	5 Related Work Relevant to Analyzing Text-based Developers' Communications
	5.1 Analyzing Developers' Chat Messages
	5.2 Analyzing Issue Tracking Systems

	Rationale Capturing Methods in Text-based Developers' Communications
	6 REACT: A Method for Capturing Rationale in Developers' Chat Messages
	6.1 REACT Method
	6.2 REACT Evaluation
	6.2.1 Study 1: REACT in a short-term Design Task
	6.2.2 Study 2: REACT in a medium-term Project
	6.2.3 Questionnaire

	6.3 Discussion
	6.4 Threats to Validity

	7 A-REACT: An Automated Rationale Extraction Method
	7.1 A-REACT Method
	7.2 Evaluation
	7.2.1 Chat Messages of Co-located Teams
	7.2.2 Chat Messages of Distributed Teams
	7.2.3 Comment in Issue Tracking Systems of Distributed Teams

	7.3 Discussion
	7.4 Threats to Validity

	8 Related Work Relevant to Rationale Annotation and Automated Capturing Approaches
	8.1 Rationale Annotation Approaches
	8.2 Automated Extraction of Rationale

	Conclusion
	9 Conclusion and Future Work
	9.1 Contributions
	9.2 Future Work

	Appendices
	A Coding Guide: For Annotating Rationale Elements in Developers' Chat Messages of Co-located Teams
	B Coding Guide: For Annotating Rationale Elements in Developers' Chat Messages of Distributed Teams
	C Coding Guide: For Annotating Rationale Elements in Issue Tracking Systems
	D Questionnaire for Evaluating REACT
	Bibliography

