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Abstract

With the aim of de-carbonizing the power system and improving its economical oper-
ation, a rapid growth is seen towards the adoption of new technologies such as distributed
generators and flexible loads. Physically, these technologies are integrated in distribution
grids, which till date have been considered as the passive component of the power sys-
tem — designed and operated based on a “fit and forget” philosophy. However, most
distributed generators can be classified as highly variable renewable energy technologies
whereas flexible loads are most naturally operated through profit-seeking entities without
the aim of helping in improving the safety and security of the power system. These phys-
ical and operational requirements motivate a renewed approach towards the operation,
maintenance and planning of distribution grids. This is one of the most pressing chal-
lenges currently faced by power systems around the world. This thesis is an attempt to
addresses such a challenge in distribution grids, albeit on a formulation level. A framework
to formulate distribution locational marginal price (DLMP) in distribution grids is proposed,
a variant of the locational marginal price (LMP) at the transmission grid level.

In this thesis, a proposal is made to formulate, solve and organize distribution loca-
tional marginal price (DLMP) in a manner which is similar to the already existing trans-
mission grid level locational marginal price (LMP). In this way, the proposed DLMP of this
thesis has a higher practical realization, due to i) the readily transferable organizational
lessons learned from implementing the LMP and ii) understanding/interpreting the price
structure from the perspective of an electricity market. However, in contrast to transmis-
sion grids, distribution grids are very diverse in terms of their physical characteristics,
presenting a challenge in readily adopting and deploying LMP concepts. This motivates
the need for a new modeling and solution approach to calculate DLMPs in distribution
grids, which is the main goal of this thesis. This thesis explores the state-of-the-art power
flow modeling concepts for distribution grid, which caters for nonlinear power flows along
with their diverse physical characteristics. The presented modeling concepts are explored
in terms of their ability to provide power flow solution feasibility, robustness and approx-
imation. These concepts are then utilized in proposing an optimization problem, mim-
icking a market framework at the distribution grid level. We term this framework as a
local distribution grid market framework, which clears prices, i.e., DLMPs at each bus of
the respective distribution grid on a day-ahead basis. Under the assumption of econom-
ically rational flexibility resources, the proposed market framework maximizes the overall
social welfare of the distribution grid as well as for local flexibility resources. Moreover,
the proposed local distribution grid market can cater for diverse physical characteristics
of the distribution grids and varying flexibility resources types. By exploiting power flow
approximation techniques and their solution feasibility concepts, a solution algorithm is
proposed to solve the proposed local distribution grid market clearing problem. The pro-
posed solution algorithm has the following advantages, it: i) aids in developing the DLMP
formulation which closely resembles to the wholesale market, ii) incorporates the diverse
physical characteristics of distribution grids and iii) efficiently allocates flexibility resources
for both inter-temporal and instantaneous energy dispatch. To show the compatibility of
the proposed method and its efficiency, tests are conducted on multiple benchmarked grid
models and comparisons are made to the existing state-of-the-art relevant methodology.

Zusammenfassung

Mit dem Ziel, das Energiesystem zu entkohlen und seinen wirtschaftlichen Betrieb
zu verbessern, wird ein rasches Wachstum in Richtung der Einflihrung neuer Technolo-
gien, wie verteilte Generatoren und flexible Lasten, beobachtet. Physikalisch sind diese
Technologien in Verteilernetzen integriert, die bis heute als passive Komponente des
Energiesystems betrachtet wurden — basierend auf einer "Fit and Forget" -Philosophie.
Die meisten verteilten Generatoren kdénnen jedoch als hochvariable Technologien fiir



erneuerbare Energien klassifiziert werden, wahrend flexible Lasten am natdrlichsten durch
Profit suchende Einheiten betrieben werden, ohne das Ziel zu haben, zur Verbesserung
der Sicherheit des Energiesystems beizutragen. Diese physischen und betrieblichen An-
forderungen motivieren zu einem neuen Ansatz fiir Betrieb, Wartung und Planung von
Verteilnetzen. Dies ist eine der drdngendsten Herausforderungen, denen sich Stromsys-
teme auf der ganzen Welt stellen missen. Diese Arbeit ist ein Versuch, eine solche Her-
ausforderung in Verteilungsnetzen zu I6sen, wenn auch auf einer Formulierungsebene.
Insbesondere wird ein Rahmen flr die Formulierung des &rtlichen Grenzpreises (DLMP)
in Verteilungsnetzen vorgeschlagen, eine Variante des értlichen Grenzpreises (LMP) auf
der Ubertragungsnetzebene.

In dieser Arbeit wird ein Vorschlag gemacht, um den lokalen Grenzpreis (DLMP)
in einer Weise zu formulieren, zu I6sen und zu organisieren, die &hnlich dem bere-
its existierenden Standortgrenzpreis (LMP) der Ubertragungsnetzebene ist. Auf diese
Weise hat der vorgeschlagene DLMP dieser Arbeit eine héhere praktische Realisier-
barkeit, aufgrund i) der leicht ibertragbaren organisatorischen Erkenntnisse aus der Um-
setzung des LMP und ii) Versténdnis / Interpretation der Preisstruktur aus der Perspek-
tive eines Strommarktes. Im Gegensatz zu Ubertragungsnetzen sind Verteilungsnetze
jedoch sehr unterschiedlich in Bezug auf ihre physikalischen Eigenschaften, was eine
Herausforderung darstellt, LMP-Konzepte leicht zu Gbernehmen und zu implementieren.
Dies motiviert die Notwendigkeit eines neuen Modellierungs- und Lésungsansatzes zur
Berechnung von DLMPs in Verteilungsnetzen, was das Hauptziel dieser Arbeit ist. Diese
Dissertation untersucht die modernen Konzepte der Leistungsflussmodellierung fiir Vert-
eilungsnetze, die nichtlineare Leistungsflisse mit ihren unterschiedlichen physikalischen
Eigenschaften beriicksichtigen. Die vorgestellten Modellierungskonzepte werden im Hin-
blick auf ihre Fahigkeit untersucht, Machbarkeit, Robustheit und Approximation von Leis-
tungsflusslésungen bereitzustellen. Diese Konzepte werden dann verwendet, um ein Op-
timierungsproblem vorzuschlagen, das ein MarktgerUst auf der Verteilnetzebene nachah-
mt. Wir bezeichnen diesen Rahmen als einen lokalen Verteilungsnetz-Marktrahmen, der
die Preise, d. H. DLMPs, an jedem Bus des jeweiligen Verteilungsnetzes auf Day-Ahead-
Basis freigibt. Unter der Annahme 6konomisch rationaler Flexibilititsressourcen max-
imiert der vorgeschlagene Marktrahmen die allgemeine soziale Wohlfahrt des Verteilung-
snetzes sowie die lokalen Flexibilitdtsressourcen. Darlber hinaus ist der vorgeschla-
gene lokale Verteilnetzmarkt in der Lage, verschiedene physikalische Eigenschaften der
Verteilungsnetze und unterschiedliche Arten von Flexibilitdtsressourcen zu beriicksichti-
gen. Durch die Nutzung von Power Flow Approximationstechniken und deren Lésungs-
Machbarkeits-Konzepten wird ein Lésungsalgorithmus vorgeschlagen, um das vorgeschla-
gene Marktverrechnungsproblem des lokalen Verteilungsnetzes zu I6sen. Der vorgeschla-
gene Lésungsalgorithmus weist die folgenden Vorteile auf: i) hilft bei der Entwicklung der
DLMP-Formulierung, die dem GroBhandelsmarkt sehr hnlich ist, ii) die verschiedenen
physikalischen Eigenschaften von Verteilungsnetzen einbezieht und iii) flexibel Ressourc-
en sowohl fir den temporalen als auch flir den sofortiger Energieversand Um die Kompat-
ibilitdt der vorgeschlagenen Methode und ihre Effizienz zu demonstrieren, werden Tests
an mehreren Benchmarked-Grid-Modellen durchgefiihrt und Vergleiche mit der beste-
henden, dem aktuellen Stand der Technik entsprechenden Methodik durchgefiihrt.
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Nomenclature

Set of natural, real and complex numbers are respectively denoted through N, R, C. Scalars
are written in lower case, x, vectors are written in bold and lower case, x, and matrices are
written as bold and upper case, X. For complex scalar x € C, itis composed of: x = x,e+jXim,
where x,e := R(x) is the real part and x;,, := ¥(x) is the imaginary part of the complex
quantity. Complex conjugate of x € C is written as x. For matrix X, the operation (X),
selects n rows and columns from X. For the scalar x € R and matrix x, € R" replicates
scalar x n number of times. For vector x € R", the operation X,xn € R"™" places the
vector x n times across its diagonal entries. Special case matrix I, € R"™" is an identity
matrix of size n x n. The operator diag(x) turns vector x to a matrix with x at its diagonal. The

approximated and actual value of x is given by x and X, respectively.

Notation

L(:)

Single-phase:

Notation

neN

NeN

m e N
Multi-phase:

Notation

{a,b,c} eN

3neN

3(n+1)eN

3meN

Optimization Related

Description

Lagrangian function with arguments (-)
Lagrange multiplier for equality constraint
Lagrange multiplier for inequality constraint
First derivative of f(x) with respect to x
Second derivative of f(x) with respect to x

Sets

Description

Number of PQ buses € {1, ..., n}

Number of all buses (PQ and root-bus) in the grid € {0, ..., n}
Number of lines in the grid € {1,..., m}

Description

Set of possible phases for a bus

Number of PQ buses in the grid € {1, ...,3n}
Number of all buses (PQ and root-bus) in the grid
Number of lines in the grid € {1, ..., 3m}

Economic Dispatch:

Notation
n; € N
neN

Description

Time steps planning horizon, T ={1,...,n¢}

Number of Distributed Generator (DG)s, Flexible Load (FL)s and fixed
loads at all Constant source/load active and reactive power model (not
dependent on voltages) (PQ) buses in the grid € {1,...,n}

11



12

Single-phase:
Notation
(i,j) €N
Af
At
b,‘j eR
rij € R
Xij € R
yij€C

ysh € C

Y ¢ cC\*N

Yf c meN

Yt c meN
Multi-phase:

Notation

(i,j) eN

Af,abc

At,abc

b;”j"b eR

bf’j eR

e’

He (C3n><3n

7 ER

r,-‘j- eR

b

X;’J- eR

X,-"J-a eR

yileC

y,-"J’-b eC

yep €C
yipeC

YS! € C3
YE’}1 eC3
Yabc c (C3(n+1)><3(n+1)

yf.abe c C3mx3(n+1)
ytabe c C3mx3(n+1)

Parameters

Description

Line element connecting bus / and bus j

Sized m x N “from” buses incidence matrix

Sized m x N “to” buses incidence matrix
Susceptance line element (i, j)

Resistance of line element (i, j)

Reactance of line element (7, /)

Phase admittance of line element (i,j), yij =
1/(rij + jxij)

Shunt admittance of line element (i, j), ysn = jbjj/2
Bus admittance matrix of the grid (root and n buses)
Bus admittance “from” matrix of the grid

Bus admittance “to” matrix of the grid

Description

Line element connecting bus / and bus j

Sized 3m x 3(n + 1) “from” buses incidence matrix
Sized 3m x 3(n + 1) “to” buses incidence matrix
Self susceptance line element (7, j) phase a
Mutual susceptance line element (/,j) between
phase a and b

Phase-ground to phase-phase conversion matrix
Matrix with I at its diagonals

Self resistance of line element (7, j) phase a
Mutual resistance of line element (i,;) between
phase a and b

Mutual reactance of line element (/,/) between
phase a and b

Self reactance of line element (i, j) phase a

Self phase admittance of line element (/, j) phase a
Mutual phase admittance of line element (7, ) be-
tween phase a and b

Self shunt admittance of line element (i, j) phase a
Mutual shunt admittance of line element (/, ) be-
tween phase a and b

Multiphase shunt admittance matrix of line ele-
ment (i, )

Multiphase phase admittance matrix of line ele-
ment (1, j)

Multiphase bus admittance matrix of the grid (root
and n buses)

Multiphase bus admittance “from” matrix of the grid
Multiphase bus admittance “To” matrix of the grid

Nomenclature

Units

Ohm™1
Ohm

Ohm

Ohm™1
Ohm™!
Ohm™1
Ohm™1

Units

Ohm—1
Ohm—1

Ohm
Ohm

Ohm

Ohm
Ohm—1
Ohm—1

Ohm—1
Ohm—1

Ohm—1
Ohm—1
Ohm—1

Ohm—1
Ohm1



Nomenclature

Economic dispatch':

Notation
fl/g c R"

B?/? € RNxn

fl/d
cy{tg e R"

c/oyl) e

Rn

D, € R™"
Z; © R"
Ul(p") e R"

(P, pg) €

R"
Wq,t(q%) €R"

Single-phase:
Notation
ijeC
iij€C
iL € cn
pj €R
p_ € R"
pl €R
pf cRM
pi €R
pt c Rm
peR

Description

Positive price per unit vector, where yt
{p?.p{%} and qf € {q?, q¢°}
Symmetric, positive definite matrix with small pf(l)/zitive price sen-

% € {p!. p?. qf} with p? €

S|t|V|ty coefficients as dlagonal entnes where y,'” € {pt, p?, qt}
with p? € {p{, ptg} and qf € {q?, af %}
Marglnal cost of the form ay/? + B2 "/g, where y9 ¢

{p!, p?, af} with pf € {p?, p°} and qf € {?. qf }
Cost function of the form ( fI/dg) 1/9 where y'/®
with pf € {p?, tg} and q¢ € {q?, CItg}
Time-coupled drain matrix of FLs

Disturbance experienced by FLs

Utility of providing flexibility from FLs, defined simply as negative
cost of consumption := —Cf(pf)

Overall social welfare for providing active power to the grid

e {p, p{, a?}

Overall social welfare for providing reactive power to the grid

Variables

Description
Complex current injection at bus j
Complex current flow on line element (/, ), from bus i to j

Complex current injection for n PQ buses := (i1, ..., in)T
Active power injection at bus j,
Active power injections for n PQ buses := (p1, ..., pn)T

Active power flow “from” bus’ line element k

Active power “from” flows for all grid lines := (pf, ..., pi)T
Active power flow “to” bus’ line element k

Active power “to” flows for all grid lines := (p!, ..., p%,)7
System active power losses

Reactive power injection at bus j

Reactive power injections for n PQ buses := (q1, . . ., an)7
Reactive power flow “from” bus’ line element := (qf, . . ., qi)T
Reactive power “from” flows for all grid lines

Reactive power flow “to” bus’ line element

Reactive power “to” flows for all grid lines := (¢}, ..., g%,)7
System reactive power losses

Complex power injection at bus j, := p; + jq;

Complex power injections for n PQ buses := p, + jq,
Complex power flow “from” bus’ line element k := p} + jq'
Complex power “from” flows for all m lines := p' + jq
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Units

$/MWh /
$/MVarh

$/MWh?2 /
$/MVarh?

$/MWh
/$/MVarh

$

Watt—!

Units
Ampere
Ampere
Ampere
Watt

Watt

Watt

Watt

Watt

Watt

Watt

Var

Var

Var

Var

Var

Var

Var
VoltAmpere
VoltAmpere
VoltAmpere
VoltAmpere

'We present nomenclature here for multi-period economic dispatch, mostly used in chapter 5. This is because
as it already contains the model for single-period economic dispatch problem of chapter 4.
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si€C
ste CM
S'CJGRZn
secC
QJER
Op € R
0. ¢ R"
UJ'E(C
ug € C
u €C"
vi €R
weR
v € R"

Multi-phase:

Notation
if eC
jab e C
A 3
id e

il eC?
i eC3n

i,fj.eC

i,‘j € C3
pieR

p{-( € R3
pl € B
pfb eR

pft € R3
pl € R

pi® €R
pfk,abc c R3

p

p’ €R
ptk,abc e R3

p'(,abc c R3m

pl,abc €ER

f,abc c R3m

Complex power flow “to” bus’ line element k := p} + jq!
Complex power “to” flows for all m lines, := p' + jq!
Real-valued power injections := ((p.)7, (q.)7)T

System complex power losses, s' = p' + jg'

Voltage angle at bus j

Voltage angle at root-bus

Voltage angle for n PQ buses := (61, . ..
Complex voltage at bus j := Vjejej
Complex voltage at root-bus

Complex voltage for n PQ buses := (1, . . ., un)T
Voltage magnitude at bus j

Voltage magnitude at root-bus

Voltage magnitude for n PQ buses := (vy, ...

’ Gn)T

] Vn)T

Description

Complex current injection from phase a to ground of bus j
Complex current injection between phase a and b of bus j
Complex delta current injection at bus j := (i#?, iP<, if?)T
Complex delta current n PQ buses grid injections :=
(GD)T - ()D)T

Complex wye current injection at bus j := (if, ijb, i)’
Complex wye current n PQ buses grid injections :=
(GO O

Complex current flow on line element (/, j), from bus i to j of
phase a

Complex current flow on line element (i, j) := (i, i,-‘J’., i)
Active power injection from phase a to ground of bus j
Active power wye injections at bus j := (pf, pf, pf)T

Active power wye injections for n PQ buses =
()T, (PY)T)

Active power injection between phase a and phase b of bus j
Active power delta injections at bus j := (p??, pP<, pf?)T
Active power delta injections for n PQ buses =
((PD)T, - (PR)T)

Active power flow “from” bus’ line element k phase a

Active power flow “from” bus’ line element k
fa fb f

= (P}, P )T

Active power “from” flows for all grid lines =

((PF™)T. . (PF)T)T

Active power flow “to” bus’ line element k phase a
Active power “to” bus’ line element k := (p}?, pk?, pk©)T
Active power “to” flows for all grid lines =

((PE™)T, ... (pK)T)T
Multiphase system active power losses

Nomenclature

VoltAmpere
VoltAmpere
[Watt;Var]
VoltAmpere
Radian
Radian
Radian

Volt

Volt

Volt

Volt

Volt

Volt

Units

Amp
Amp
Amp
Amp

Amp
Amp

Amp

Amp
Watt
Watt
Watt

Watt
Watt
Watt

Watt
Watt

Watt

Watt
Watt
Watt

Watt

ere
ere
ere
ere

ere
ere

ere

ere



Nomenclature

g’ R
§6R3

q
qﬁ( c R3n
qj‘?b SN

qf € R?
qf € R

qL’a eR
ql;;abc e ]R3

qf,abc c R3m

g’ € R
qtl;abc c R3
qt,abc c R3m
ql,abc cR
s?eR

SQ eR3

s/ €C3n

ab
s e C

sjA eC3
s e

SI,abc eC
s ¢ Rén
ghhA ¢ Ron
67 € R

GJ- eR3

6, € R3
Gﬁbc c R3n
u? €R

u; € R3

up € R3
ufbc c RSn
vV €R

vV € R3

Vo € R3
vac c R3n

Reactive power injection from phase a to ground of bus j
Reactive power wye injections at bus j := (q7, qj’, P
Reactive power wye injections for n PQ buses :=
(@), (ay)7)

Reactive power injection between phase a and phase b of
bus j

Reactive power delta injections at bus j := (q7®, ¢/, pf°)T
Reactive power delta injections for n PQ buses =
((af)", .- (a)")

Reactive power flow “from” bus’ line element k phase a

Reactive power flow “from” bus’ line element k :=
fa fb f,

(qkav qk ' qu)T

Reactive power “from” flows for all grid lines
= (@) (@ )T)T

Reactive power flow “to” bus’ line element k phase a

Reactive power to “from” bus’ line element k =
' bt

CAN A

Reactive power “to” flows for all grid lines :=

(@577, ... (ah)T)T

Multiphase system reactive power losses

Complex power injection from phase a to ground of bus j
Complex power wye injections at bus j := (sj’, sj’, st)T
Complex power delta injections for n PQ buses :=

(CHINNE
Complex power injection between phase a and phase b of
bus j

Complex power delta injections at bus j := (s7°, s7¢, s72)T
Complex power delta injections for n PQ buses :=
(BT, (s2)7T)

Multiphase system complex power losses

Real-valued wye power injections := ((p)')T, (q))T)T
Real-valued delta power injections := ((p2)T, (q2)T)7
Voltage angle at bus j phase a

Voltage angle at bus j := (67,67, 67)T

Voltage angle at the root-bus := (63, 65, 65)T

Voltage angle for n PQ buses := ((61)7, ..., (6,)T)7
Complex voltage at bus j phase a, := vj""ej@]'a

Complex voltage at bus j := (u?, up, u?)T
Complex voltage at the root-bus := (y,

a b ,b\T
6, Ug, Up)
Complex voltage for n PQ buses := ((v1)T, ..., (vn)T)T

Voltage magnitude at bus j phase a
Voltage magnitude at bus j := (v7, v/, v/)T

J '
Voltage magnitude at the root-bus := (vg, ug, uf)T
Voltage magnitude for n PQ buses := ((v1)7, ..., (va)T)T
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Var
Var

Var
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Var

Var
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Var

Var

VoltAmpere
VoltAmpere
VoltAmpere

VoltAmpere

VoltAmpere
VoltAmpere

VoltAmpere
[Watt;Var]
[Watt;Var]
Radian
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Economic Dispatch?:
Notation Description Units
ch; ¢ R" State of charge for FLs -
pl € R" Active power of FLs := (p{ ,, ..., pf )T Watt
pl e RN Active power of DGs := (pf?t, Py Watt
pd € R" Active power of constant loads := (p§',, ..., pZ )T Watt
p €R Active power from the root-bus Watt
q¥ € R Reactive power of DGs := (¢33, .. ., gleyt Var
qf € R" Reactive power of FLs := (qf ,,..., ¢ )T Var
q¢ € R" Reactive power of constant loads := (g, ... g8 )T Var
@ eR Reactive power from the root-bus Var
DLMP
Single-Phase
Notation Description Units
lTStr‘/dqt eR" Final active/reactive power price (DLMP) cleared in the dis-  $/MWh /
tribution grid market $/MVarh
lTE'te/th e R" Marginal value of supplying active/reactive power from flexi- $/MWh /
bility resources (DGs, FLs) $/MVarh
MELCN ¢ Rn Energy/Loss/Congestion/Voltage component of TIG™ $/MWh
ITEZUC/V €R" Energy/Loss/Congestion/Voltage component of TTG" $/MVarh
Multi-phase:
Notation Description Units
ITZ’/E’”d € R3n Final active/reactive power price (DLMP) cleared for wye $/MWh /
connections in the distribution grid market $/MVarh
ﬁf/frid € R3n Final active/reactive power price (DLMP) cleared for delta $/MWh /
connections in the distribution grid market $/MVarh
Ty EUCNV e RS Energy/Loss/Congestion/Voltage component of T & $/MWh
i EYCN c R3n Energy/Loss/Congestion/Voltage component of T Gd $/MVarh
ITZ’E/”CN € R Energy/Loss/Congestion/Voltage component of TT5+6" $/MWh
M EYCN e R3 Energy/Loss/Congestion/Voltage component of TT56™ $/MVarh

2We present nomenclature here for multi-period economic dispatch, mostly used in chapter 5. This is because

as it already contains the model for single-period economic dispatch problem of chapter 4



Chapter 1

Introduction

1.1 Promises of Smart Grid and Emergence of Active
Distribution System
Recently, most talks in electric power industry has been associated with the term “smart

grid” [24, 36, 37]. The “smart grid” is an abstract concept, however with the promises of
introducing:

active unseen disturbance rejections;

enable demand response technologies as well as higher consumer participation;
integrate contemporary devices such as Flexible Load (FL)s and Distributed Generator
(DG)s along with supporting storage devices; and

optimize assets, improve power quality and increase observability,

into the grid. However, to achieve these features and enable a true “smart grid”, the following
fundamental grid modernization components exist:

1. a higher requirement of sensing and metering infrastructure; and
2. arenewed design, operation and control philosophy for electricity distribution grids.

A simplified difference between conventional and emerging power systems can be seen in
Fig. 1.1, where major physical integration of new technologies can be seen at the distribution
grid level. Note that Fig. 1.1 presents an extremely simplified view point of the overall power
system. There exists many exhaustive literatures on the overall power system operation and
representation, for example [104, 29] for the transmission and [48] for distribution grids, inter-
ested readers are referred to them for more detail. Also, in Fig. 1.1, only a rough ball-park
number is given with respect to voltage rating of transmission and distribution system. The
exact voltages are system dependent and can be consulted for more interested reader, for
example see [22] for primer on United States electricity system. In Fig. 1.1, we use the gen-
eral term DG, which indicates smaller generators as compared to conventional large central
transmission grid generators. Interested readers are referred to [23, 2] for more information
on DGs. Similarly, the FL term in Fig. 1.1 can be referred as Electric Vehicle (EV) and Heating
Ventillation and Air-Conditioning (HVAC), which are one of the most common representatives
of Flexible Load (FL)s [86]. As most of these technologies are integrated in distribution grids,
this is also where the focus of this thesis lies.

As shown in Fig. 1.1, in pursuit of modernizing the electric power industry, distribution
grids have now been subjected to new assets and technologies, requiring a new operation

17
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Figure 1.1: Comparison between conventional and emerging power systems.

and maintenance strategies. In principle, this causes distribution grids, a traditional passive
component of the power system, to become more active. Traditionally the distribution grid was
operated based on “fit and forget” strategy [48]. However, with the advent of FLs and DGs dis-
tribution grid is aimed to be an Active Distribution System (ADS). Interestingly, the term ADS
has been adapted since 2012 from the original term “active distribution network”, defined by
CIGRE [83] in 2008 as:

“ADSs have systems in place to control a combination of Distributed Energy Resource
(DER), defined as generators, loads, and storage, where the Distribution System Operator
(DSO)" has the possibility of managing the electricity flows using a flexible network topology.”

The drastic need for implementing a ADS is primarily due to the integration of uncontrol-
lable DGs and rapidly varying FLs, which causes the traditional “pre-setting” of controllable
equipment in the grid to fail. Hence, a higher coordination among various grid equipment
is required and they should be updated more frequently. This poses a challenge to operate
distribution grid in a reliable and efficient manner. Moreover, the rapid adoption trends of DGs
and FLs over the year increases this challenge faced by distribution grids. At the end of the
year 2017, Germany increased its installed capacity of DGs, i.e., solar photovoltaic and wind
power amounted to 42’394 MW and 55’876 MW, respectively [43]. Similarly, EV fleet for the
entire world reached surpassed two million vehicle mark in 2016 [42].

"We are going to present more explanation regarding the expected roles of the Distribution System Operator
(DSO) in chapter 5.
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Among many solution strategies and potential approaches, some of the main features of
the ADS, as compared to traditional distribution grid are envisioned as:

e coordinated volt-var control of traditional (capacitor banks) and advanced (inverters
of DGs) [74];

e demand response strategies for flexible loads or/and storages [75]; and

e active (more frequent) network reconfigurations algorithms [51].

To enable these advanced functionalities, it is envisioned that the ADS are capable to com-
municate electronically with its underlying equipment.

However, the question of which entity organizes these advanced functionalities in the ADS
is still an ongoing discussion. Through the definition of this entity, the matters such as who
control what and who pays/get paid what are then to be addressed in the ADS. As mentioned
in the above definition of the ADS, most of the existing literature points out the emergence of
the DSO to handle these issues [52, 71, 70, 93, 103]. In principle, the concept is somewhat
similar to the Transmission System Operator, the entity responsible for scheduling power and
managing transmission system level (wholesale) market. Similarly, the DSO is made respon-
sible in the future distribution grid to oversee both advanced grid control mechanisms and
market functionalities. The reports in [52, 71, 70] provides in detail the new responsibilities
and roles for the DSO to aid in the modernization of the distribution grid. Some of the main
responsibilities discussed in these reports for the DSO includes increasing system resilience,
providing opportunities for end-user (consumer) participation in improving grid conditions and
managing transactions among monetary driven entities such as retailers/aggregators. One
way to automate these procedures is to set up a distribution grid market, which has been
the topic for discussion in many utilities. For example, to name few, in New York [93] a more
robust retail market has been in discussion whereas in Hawaii [92] it is suggested that utilities
must evolve to handle both distribution grid operation and renewable energy integration. More
information with respect to the overall distribution grid modernization and its acceptance in
the utilities of United States can be found in [103].

1.2 Motivation

From the above mentioned promises of the smart grid along with intended features of the ADS,
the next step is building a framework which integrates these technologies in a unified manner.
Indeed, this envisioned framework benefits from the underlying communication infrastructure
and electronically controlled advanced components of the ADS. The main goals of such a
framework may aim for:

e a higher coordination and operation of both traditional (capacitor banks, transformers)
and advanced (DGs and FLs) controllable assets to improve the technical efficiency of
the ADS;

e the provision of higher utilization of underlying DGs and FLs to help de-carbonize the
overall power system; and

e the improvement in the economic operation of the involved entities, while maintaining
technical feasibility of the ADS.

With these goals defined, the envisioned framework then might also aid in recovering the cost
of integrating advanced technologies in the ADS, while making sure that no compromise is
made towards the overall grid reliability and its modernization.
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In order to imagine such a framework for distribution systems, we might need to learn from
the lessons learned while developing a sophisticated transmission system. In transmission
system, one such mechanism, in the form of Locational Marginal Price (LMP), has laid the
foundation of operating modern electric power industry in a cost/benefit manner. The LMP
is a product of an optimization problem, interpreted as the cost to deliver the next megawatt
hour to a certain transmission bus. The main concept of LMP was introduced in [88], where
authors termed it as a spatial and temporal sport price which reflected the truest cost of the
overall system. The spot price is recovered after solving for the maximum overall welfare
of the system?, while respective grid conditions. Based on this spot price at the respective
bus, generators/loads sell/purchase energy. This framework of buying and selling the energy
based on the spot price is then termed as wholesale electricity market®. Evidently, the LMP
signal then serves as a tool to allocate costs of dispatching generation portfolios, driving
future investments and also operating the overall power systems on a day-to-day basis in a
more cost-effective manner.

Given the success of LMP in the transmission grid, extending it to the distribution grid
might seem to be a viable option. However, even from a pure theoretical point of view, there
exists many challenges with regards to adopting the current LMP model in distribution grids:

1. For transmission grids, the direct current approximations of power flows have shown to
be adequate for regular transmission system operation [54, 40, 61, 60, 88]. This approx-
imation is facilitated due to nature of transmission grid, where the actual power flows
can be linearized up to certain accuracy as voltages usually do not vary much and are
kept around their rated levels [104, 40, 54]. However, due to structural characteristics
of distribution grids, the power flows are highly nonlinear and nonconvex. Moreover, the
voltage profile in distribution grid is not flat, as compared to transmission grids. This
renders the transmission grid approximations deployed for obtaining tractable and effi-
cient LMP ineffective.

2. Distribution grids have different topologies (radial) as compared to transmission grids
(meshed). In this regards, there exists a need for a new model which takes advantage
of this topological difference.

3. Due to their structure, transmission systems are balanced and hence can be modeled
as an equivalent single-phase positive sequence approach. However, distribution grids
are diverse in their structure, i.e., they might have multiphase line elements, unbalanced
loadings and various voltage levels. Hence, the envisioned DLMP model must be able
to account for these characteristics.

4. The LMP models are developed based on instantaneous energy dispatch, i.e., single
time-step. However, in the ADS flexibility resource, FLs and storage systems have been
proposed to help aid in mitigating the effect of uncontrollable DGs. These systems have
inter-temporal constraints, motivating the need for a multi-temporal modeling for this
framework, as compared to the single time-step of the transmission grid LMP model.

1.3 State-of-the-art DLMP Formulations

Considering the above mentioned requirements for the desired framework to integrate ad-
vance functionalities in distribution grids, this section describes the recent literature.

2We provide more information regarding social welfare of the system, from the context of pricing in chapter 2
3The actual working and the products of wholesale electricity market varies and are dependent on the power
system size and structures [1, 25]. However, they follow the same principle of spot pricing [88].
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1.3.1 Equivalent Single-Phase DLMP Formulations

Realizing the need for DLMP as identified above, the earlier works are given in [12, 37, 82,
35, 34, 58, 41, 109, 90]. These works focused on a portion of symmetric and balanced
distribution grids, hence modeling the distribution grid as an equivalent single-phase system®.
Consistent with the organizational reports for the future distribution grids in [52, 71, 70, 93,
103], almost all theoretical works of [12, 37, 82, 35, 34, 58, 41, 109, 90] also appoint the DSO
to be responsible for operating the envisioned local distribution grid market, while integrating
flexibility resources (FLs and DGs). The coordination between FLs/DGs and the DSO is then
established to find DLMPs, maximizing the individual as well as the overall surplus of the grid,
i.e. a unique dispatch for FLs and DGs. Based on the given formulations of DLMPs, two broad
methods can be classified as: (i) lossless-DLMPs and (ii) lossy-DLMPs.

Lossless-DLMPs

Recent lossless-DLMP formulations are reported in [35, 34, 58, 41]. These works present
solution uniqueness and market equilibrium conditions for lossless-DLMPs with inter-temporal
energy requirements from FLs and DGs. However, lossless power flow formulation used in
these works is basically assumes a transmission grid LMP model to represent distribution
grid DLMPs. However, the focus of these works has been in developing a local DSO run
distribution grid market which efficiently allocates the local flexibility resources. With the help
of simplified power flow models, the authors showed that the overall problem is in fact a strictly
convex problem. Hence, the problem formulation of the local distribution grid market achieves
a unique minimizer for the overall social welfare as well as individual entities. However, as
mentioned earlier, high resistive/impedance ratios exist in distribution grids. This requires
modeling of losses in the proven market equilibrium conditions of lossless-DLMPs [35, 34, 58,
41]is imperative. To this end, the authors have recently focused on developing lossy-DLMPs.
As lossy-DLMPs are based on non-linear power flows to compute DLMPs, they are naturally
more accurate in terms of representing grid conditions as compared to lossless-DLMPs.

Lossy-DLMPs

Recent works on lossy-DLMPs have considered i) linearized [3, 109], ii) convexified [82, 110],
and iii) global power balance [82, 12, 90] variations of actual power flows. The linearized
lossy-DLMP methods [3, 109] approximate actual power flows around an assumed fixed volt-
age magnitude across the distribution grid. Naturally, this inflicts an error in DLMPs at nodes
farther away from the root-node, where a large voltage drop might occur. The convexified
lossy-DLMP methods [82, 110] are more accurate as compared to linearized power flows,
however, it does not translate to intuitive DLMP formulations [82]. This is important as the
DSO must be able to interpret DLMPs and translate it into its financial settlements. The
lossy-DLMPs in a most generic form are obtained from the global power balance formula-
tion [12, 82, 90], allowing individual components of lossy-DLMPs to be analyzed in detalil,
which may help in interpreting DLMPs for distribution grids in a manner similar to the stan-
dardized LMP formulation of transmission grids [88]. However, for DLMPs, the challenge in
this formulation lies in expressing power flows which have higher nonlinearities in distribution
grids as compared to those of transmission grids [82]. Another important feature of trans-
mission grid energy markets are that the final LMP value is represented as the sum of its
energy, loss and (line flow) congestion components. However, from the above mentioned

*In chapter 3, we discuss grid modeling of both single-phase and multiphase systems in great detail.
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lossy-DLMP formulations, only [82, 90, 3, 109] explicitly represent DLMP as the sum of its en-
ergy, loss and congestion component. Nevertheless, works in [82, 90] do not provide tractable
formulation for nonlinear power flows and works in [3, 109] use static approximations (fixed
voltages) which may inflict error in DLMP values. Hence there exists the need to develop a
DLMP model which expresses DLMP at the node as components of its energy, system loss
and congestion contribution to the grid along with sufficient accuracy of nonlinear power flows.

Market Equilibrium DLMPs

DLMPs achieving market equilibrium have been discussed mostly in the literature on lossless-
DLMPs. However, investigations on lossy-DLMPs have mostly focused on incorporating non-
linearities in DLMPs and have not discussed market equilibrium conditions under the presence
of both instantaneous and planned time horizon flexible resource dispatch. As flexibility re-
sources (instantaneous and planned horizon dispatch) are envisioned to be an integral part of
future grids and there must exist local distribution grid markets which is economically efficient,
i.e., maximizing the overall grid surplus as well as the surplus of individual flexible resources.

1.3.2 DLMP Extensions to Multiphase Systems

Even though literature on single-phase DLMP attempts to provide insights into structure and
formulation of DLMPs. The literature on multiphase DLMP model is not abundant. This
is important as distribution grids can be quite diverse due to their multiphase and unbal-
ance characteristics. Hence, single-phase DLMP models might not be readily adaptable to
multiphase DLMPs. Recently, few works have been reported on three-phase DLMP mod-
els [106, 62, 102, 64]. Works in [106] deployed actual power flows systems and in [62] a
convexified optimal power flow is developed to calculate DLMPs for three-phase distribution
grids. The works in [102, 64] considered a linearized distribution grid model to calculate
DLMPs. Most of these works considered equivalent three-phase systems. Moreover, none of
these works discuss market equilibrium conditions along with its decomposition into its most
general terms. As mentioned this decomposition is necessary to interpret DLMPs before
charging the customers. Hence, there still has not been any work which considers combina-
tion of multiphase (single or three-phase) and/or unbalanced loadings of distribution grids in
calculating DLMPs along with their decomposability and equilibrium as compared to equiva-
lent single-phase DLMPs.

Based on the above identified relevant literature, the next section identifies the main re-
search questions of this thesis.

1.4 Research Questions

In order to develop the above intended appropriate DLMP model, the main research questions
this thesis answers are:

Question 1: How to obtain a tractable formulation for the DLMP model, considering highly
nonlinear power flows of distribution grids as well as their diverse characteristics of having
unbalanced loadings and multiphase lines?

Question 2: Can the DLMP model provide the same level of intuition, physical interpreta-
tion and calculation reliability as provided by the transmission grid level LMP model?

Question 3: Using the DLMP model as the fundamental component of the envisioned ADS
framework, is it possible to organize a market mechanism for distribution grids, which ad-
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dresses realistic grid constraints while achieving efficient resource allocation of the available
flexibility resources?

Hence, this thesis is devoted to investigating an “appropriate” DLMP formulation for distri-
bution grids. The term “appropriate” in the context of this thesis means that the resultant DLMP
model must aim to achieve overall grid’s social welfare maximization as well as for local flex-
ibility resources (DGs and FLs), with the consideration of nonlinear distribution grid power
flows and inter-temporal energy requirements. Moreover, the Distribution Locational Marginal
Price (DLMP) model should aid in understanding and interpreting the final prices obtained
from the local distribution grid market framework.

1.5 Thesis Contributions

In this thesis, we answer the above posed research questions. In doing so, the following
contributions to the existing literature on DLMP is made in this thesis:

1. We present a tractable calculation methodology of DLMPs which accounts for i) non-
linear distribution grid power flows, ii) multi-period dispatch of FLs and DGs operation
and iii) unbalanced and multiphase nature of distribution grids. The proposed method-
ology relies on approximation of distribution grid power flow, which fundamentally has
similar characteristics for both equivalent single-phase as well as multiphase distribu-
tion grid models. Chapter 3 details the approximation procedure, whereas chapter 4
presents derivation of DLMP along with a solution algorithm to cater for non-linear power
flows. In both chapters, the approximation procedures along with solution strategies
have been performed for both equivalent single-phase and multiphase grids.

2. We exploit properties of convex optimization and power flow approximations to propose
the DLMP formulation which is decomposabile into intuitive energy, congestion, loss and
voltage components. Hence, the proposed methodology is intuitive in its understand-
ing and provides physical interpretation of grid conditions, improving its future practical
realization. Chapter 4 details price decomposition for both equivalent single-phase and
multiphase grid models, after utilizing the approximations from 3.

3. We show that there exists a possibility of distribution grid market framework, which ef-
ficiently allocates flexibility resources using DLMP as its final cleared price. The final
cleared price is shown to exist in equilibrium with the overall grid conditions and un-
der the assumption of rational FL and DGs maximizes the overall social welfare of the
grid and for the individual entities in the grid. Chapter 2 outlines the basic role of con-
vexity and interpretation of prices from the perspective of electricity market. Chapter 5
translates these concepts into the proposed local distribution grid market framework.

1.6 List of Publications

During this thesis, following publications were made, which directly and indirectly helped in
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Chapter 2

Market Modeling: Role of Convexity
and Prices

In this chapter, we develop intuition of how prices are calculated in existing electricity mar-
kets. First, we show the role of convexity in interpreting the solution of an optimization prob-
lem. Dual functions are introduced to calculate prices and interpret its meaning for both the
overall system and individual agents. A simplified Economic Dispatch (ED) problem is pre-
sented to formalize the role of a System Operator (SO) (could be either for distribution or
transmission grid) and autonomous agents in the electricity market. In the end, we present a
fully generalized ED and hence discuss practical challenges, prohibiting the ideal operation of
electricity markets. The discussion in this section is inspired from [97, Chapter 6], lecture [45]
and classical textbooks [94, 104].

2.1 Convex Optimization

In general, optimization problems are formulated to obtain an “objective” given some set of
“constraints”. Broadly speaking, in the manner how these objective (functions) and constraints
are defined, also classify the type of optimization problem. Therefore, there exists many
classifications regarding the types of optimization problems [78]. In this thesis, we focus on
convex optimization problems [11]. The properties of convex optimization problems are well
researched and as a consequence there exists many off-the-shelf software which can solve
them readily. Hence, from the context of solution reliability and effectiveness, it is highly
favorable to cast an optimization problem as convex. To this end, in this thesis, we are only
going to present a brief overview of the convex optimization, which is also immensely relevant
for the context of electricity markets.

2.1.1 Convex Function

To motivate our analysis, first, consider a scalar continuous real-valued function, f(x) = x2,

to be minimized over x € R. To find the minimum of this function, we can take help of two
conditions, giving us ideas regarding the achieved minimum value, i.e. whether it is a locally
or globally minimum:

1. Zero gradient of the function: Vf(x) =0,2x* =0,x* =0
2. Non-negative second derivative of the function: V2f(x) > 0,2 > 0

27
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Definition 1 First Order Condition

0. f()

)

F(x) + V)T (y — x)

Figure 2.1: lllustration of Definition 1 (right) which shows line connecting two points on the
graph must lie above the convex function. The first-order condition (left) shows that the tangent
approximating a convex function is its global underestimator.

It is going to be apparent that the second condition is sufficient but not necessary. For both
conditions met, the achieved optimal is not only a local minimum, but also a global minimum.
However, the underlying principle which allows to conclude the optimality of the solution from
the above presented two conditions is the convexity of f(x), more formally defined as [11]:

Definition 1. A function f : R” — R is convex if its domain (denoted D(f)) is a convex set,
and if, forall x,y € D(f)and 0 > 6 > 1,

f(0x + (1 — 0)y) < 0f(x) + (1 — 6)f(y).

The Definition 1 is strictly convex, if the inequality condition becomes strict inequality for
x # yand 0 < 8 < 1. Also, for f being convex, —f is concave and vice versa.

Intuitively, the Definition 1 can be interpreted as if two points on the graph of a convex
function are picked and a straight line is drawn through them, then this line will always lie
above the actual function. Now, let’s see how the above two conditions of our small example
provided a global minimizer.

First-Order Condition: Let function f : R” — R be differential, i.e., it has a gradient V£ (x)’
for all x € D(f). Then f is convex iff D(f) is a convex set and for all x, y, € D(f),

fly) > f(x) + Vif(x)T(y — x).

The right hand side of the above equation (Vf(x)T(y — x)) is also called first-order approx-
imation to the function f at the point x. Similar to Definition 1, for strict convexity, the above
inequality should be a strict inequality. For concave function the inequality should be reverse
and for strict concavity it should be reversed and made strict inequality.

Intuitively, this means that for tangent drawn at any point on convex function f, it should
always lie below its corresponding point on f.

'The gradient V. f(x) means first derivative of f(x) with respect to x, i.e., for a scalar case 8f(x)/dx. For a
generalized overview of gradient, and its context with respect to convex programs can be found in [11, Appendix
A4].
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Second-Order Condition: Let function f : R” — R be twice differential, i.e., it has a defined
Hessian V2f(x) for all x € D(f). Then f is convex iff D(f) is a convex set and its Hessian?
is positive semidefinite for all x, y, € D(f),

V2f(x) > 0.

Similarly, f is strictly convex for positive definite Hessian, concave for negative semidefinite
Hessian and strictly concave for negative definite Hessian. The above notation of = in matrix
does not imply component wise inequality.

To explain the above condition intuitively, consider a scalar twice differentiable function f.
Then, the above condition states that the second derivative of f be non-negative.

Now from the above posed convexity conditions, we can informally infer that from the first
order gradient solution, we have a local optimal x* of f(x*). Hence, this condition is necessary
for x* to stand a chance of being considered as an optimal, no matter a local one. Now,
considering that x* also satisfies the second-order condition, it is sufficient to be considered
as a global optimal. For a range of convex functions and sets, the interested readers are
referred to [11].

2.1.2 Solving Convex Programs

From above discussion, we can conclude that the minimum of unconstrained function f(x) =
x2,i.e., x* = 0, qualifies as a global minimum. Now we extend the discussion to solving f(x)
given set of constraints, compactly represented as:

minimize  f(x) (2.1a)

x €R
subject to gi(x) <0, i=1,...,1 (2.1b)
hj(x) =0, j=1...,p (2.1c)

Now in order for (2.1) to be a convex program, f : R — R, and g; : R — R must be convex
functions whereas, h; : R — R must be affine functions®. And from our discussion above, we
also have that any locally optimal solution to the convex program (2.1) is also globally optimal.

One Equality Constraint: An example

We demonstrate the solution procedure for a convex program through the following simple
example of one equality constraint:

Example 2.1
minimize f(x1, x2) == x{ + x3 (2.2a)
subjectto  h(x1, x2) :=x1 +x —2=0. (2.2b)

2The Hessian V2f(x) is the second derivative f(x) with respect to x, i.e., for a scalar case 8*f(x)/dx. For a
generalized overview of Hessian, and its context with respect to convex programs can be found in [11, Appendix
A4

SAffine function h(x) = ax + b is a special set of convex function. Condition on h(x) = 0 to be affine comes
from the fact that h(x) = 0 can be equivalently represented as h(x) < 0 and —h(x) < 0. So if h(x) is convex,
then h(x) < 0is convex and —h(x) < 0 is concave. Therefore the only way to enforce h(x) = 0 is through the
condition that h(x) is affine as affine function are both convex and concave at the same time [11]
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Intuitively, for f(x1, x2) to be minimized, we would like it to be closer to the origin. How-
ever, the equality constraint (2.2b) is going to bind the solution at line h(x1, x2). Graph-
ically, the solution of (2.2) can be simply obtained as shown in Fig. 2.2. From Fig. 2.2,
we can observe that at the solution point (x{, x3) = (1,1), the contour of f(x1, x2) = 2
just touches the constraint h(xi, x2), i.e. any point below (above) this point the constraint
misses (intersects twice) the contour functions. We would like to solve for this solution
point, analytically. To this end, we present another observation of Fig. 2.2: At the solution
(x1, x3) contours of the objective function f(x1, x2) and the constraint function h(x1, x2),
have the same directed tangents, i.e., Vf(x1, x2) and Vh(xi, x2) are in the same direc-
tion. However, we don’t know whether these directions have the same magnitude. This
can be accounted using a multiplier A, such that

Vf(Xl, X2) = AVh(Xl, X2) (23)

The condition (2.3) must hold for the achieved solution of (2.2). With this, we have intro-
duced a new unknown X into our problem. Hence, in order to solve this analytically, we
would require three equations. We achieve this by first representing (2.3) as a function:

L(x1,x2,X) = f(x1,x2) — Ah(x1, x2) = X12 + x22 — A+ x2 —2) (2.4)

then from the first-order of convexity, we have the following system of the equation and
the solution for x := (xy, x2, \)

OL(x) 0 -1 -1 0 by -2 A* o*
ox ~——  N———

A X b

Note that the last row of the above equation also satisfy the required optimality condi-
tion (2.3).

Similar analysis can be performed for the convex programs with multiple equality con-
straints.
One Equality and One Inequality Constraint: Generic

Now consider a simplified version of generic convex program (2.1) where only one equality
and one inequality constraint exists:

minimize  f(x) (2.6a)

xeR
subjectto g(x) <0 (2.6b)
h(x) =0 (2.6¢)

An approach to solve the convex program with inequality constraints might be [45]:

—_

. Ignore the inequality constraint and solve it using the above defined method.

If inequality constraint is satisfied, then the inequality constraint was redundant.

3. If inequality constraint is not satisfied, then the inequality constraint must have been
binding, i.e., the solution enforces inequality constraint to be an equality constraint, i.e.

g(x) =0.

N
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2-D Contours 3-D Surface

f(Xl, XQ)

Figure 2.2: For varying values of the variable x; and x», 2-D contours show constant values of
objective function, whereas 3-D surface shows the objective function value as a height along
with its contours projected on the horizontal x;-x» plane. The constraint (2.2b) is represented
by the blue line and the dot on the line is the minimum of the convex program (2.2).

To analyze this, we write the £ of (2.6) considering inequality constraint to be an equality
constraint, i.e.,

L(x, A ) = f(x) = Ah(x) — pg(x) (2.7)
Now, for inequality condition not binding in (2.7), we have p = 0 and g(x) # 0. And for
binding inequality constraint, we get u # 0 and g(x) = 0. Note that for both these scenarios
to be enforced, we can simply have the relationship ng(x) = 0. Now, applying the first order
necessary conditions which solves (2.7) for (x*, A*, u*) we get:

OL(x*, \*, u*)

=0, (2.8a)
Ox
OL(X*, X\*, u*)
o =0, (2.8b)
OLLA N 1Y) _ g, (2.8¢)
Ou
utg(x?) =0, (2.8d)
u* >0, (2.8¢)

where in 2.8, apart from the first-order necessary conditions, (2.8d) and (2.8e) are also listed.
The reason being, (2.8d) is a complimentary conditions which enforces that for inactive in-
equality constraint, its Lagrange multiplier is zero. The condition (2.8e) is included to make
sure that the Lagrange multiplier is always nonnegative. The conditions in (2.8) hold true for
the solution (x*, \*, u*) to (2.6). Similarly, as the solution to the convex program (2.6) is a
global minimum, the conditions in (2.8) are necessary and sufficient. The presented analysis
on one equality and inequality constraint can simply be extended for multiple equality and
inequality constraints.

Remark 2.1. The conditions shown in (2.8) are in the subsequent subsection generalized as
Karush-Kuhn-Tucker (KKT) conditions [53].
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2.1.3 Karush-Kuhn-Tucker Conditions

We generalize the conditions in (2.8) for generic convex programs (2.1) by first writing its
corresponding L,

/
L(x, Xi, ui) = f(x Z)\ hi(x) — Zp,,-g,-(x)
i=1

and then deriving the respective Karush-Kuhn-Tucker (KKT) conditions for optimality from it
as:

i
V. L(x,\i, i) = 0 = V,f(x +Z>\Vh X)+ Y piVigi(x) =0 (2.9a)
i=1 j

V)\I.,C(X,A,',/J,,'):0:>hi(X):0,i: 1,....p (29b)
Vi L, Aiopwi) =0=gi(x) <0,i=1,..., / (2.9¢)
wigi(x)=0,i=1,...,1/ (2.9d)
wi>0,i=1,...,1 (2.9¢e)

In (2.9), (2.9a) is known as stationary condition; (2.9b) and (2.9c) are known as primal fea-
sible conditions; (2.9d) is known as complementary slackness and; (2.9e) is known as dual
feasibility condition. For convex program (2.1), the optimal solution (x*, \*, u*) is also a global
solution and satisfies its KKT conditions (2.9).

Remark 2.2. In the literature, the multiplier X is referred as Lagrange multiplier or dual vari-
able, whereas the function £ derived in (2.4) is called as Lagrangian function both these
names have a significant usage in convex programs to be demonstrated next.

2.2 Market Price Fundamentals

We now attempt to understand electricity market operation. However, we do not aim to present
exhaustive treatment of the organization and regulation of electricity markets. Instead, we
focus on the central theme of the electricity market, i.e., price at which electricity is sold and
bought.

2.2.1 Duality

Let’s consider again the generic convex program of (2.1), now denoted as a primal problem
solving for the primal variable x as:

P = minimize f(x)
xeR

subject to gi(x) <0, i=1...,1 i (2.10)
0

Above, the respective Lagrange multipliers are stated to the right (after semicolon) of their
respective constraints. Now, the Lagrangian of above problem is:

i
‘C(X >‘11FL/ = f Z)\ h Zﬂigi(x)
i=1
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and its dual function /();, u;) is then the unconstrained minimum of the Lagrangian with re-
spect to the primal variable x,

I(Niv wi) = mXin L(x, Ai, i) = Vi L(x, A\j, i) = 0.

Now for a feasible primal variable x and inequality Lagrange multiplier as u; > 0%, we can
observe the following properties:

e /(Xj, i) is always concave, as it is affine in p; and \;;
e Similarly, we can then conclude that /(A;, u;) < P holds for all feasible x

This motivates us to define the dual optimization problem D, which finds the largest possible
lower bound on the primal problem,

D= maximize 1N, i)
pi € R X eRP (2.11)
subject to wi >0, i=1,...,1

For the convex primal problem we have an important relationship of D = P, which means the
same solution (x*, u*, A¥) from both primal and dual problems are achieved [11]. Hence, if we
drop the maximization termin (2.11) and instead solve for mXin L(x, i, wi) = Vi L(x, Aj, pi) =
0, we arrive at the same solution for convex problems. In the end, we combining this interpreta-
tion with our KKT discussion, to informally conclude that for convex problems, the correspond-
ing KKT conditions, presenting necessary and sufficient conditions for optimal (x*, u*, X¥), for
convex programs yields both primal x* and dual (u*, A*) optimal values.

2.2.2 Interpreting Duals as Market Price

Now we move with development of price intuition from the above explained duality concepts.
Consider again the primal problem (2.10), with modified constraints as:

P = minimize f(x)
xeR

subject to g,(x) (2.12)

The Lagrangian function for the above problem is then given as

I
L(x, i, pi) = f(x) — Z)\ b)—ZNi(gi(X)—a),

Now at the solution (x*, X¥, u¥), we assume that infinitesimal change in constraints (a, b) has
no affect in turning active to inactive constraints and vice versa, then we obtain the following
relationships for dual variables after equating 0L(x, Aj, uj)/0a = 0 and 0L(x, Aj, uj)/0b =0

oP oP
= —— and  A\j=-——.
Hi= "8, T
“This nonnegative condition on inequality constraint’s Lagrange multiplier is directly inspirit of our previous
discussion on the treatment of inequality constraints.
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These relationships state that the dual variables (u*, A¥) represent the rate at which optimal
value of the problem (2.12) changes when an infinitesimal change in their respective con-
straints is observed. With regards to economics, we can interpret this relationship in following
manner: if P represents the economic operation cost, then the dual variables represent the
price of their respective constraints. This is the key component in electricity markets which
relates the cost of operating power systems with prices.

2.2.3 Efficient Economic Operation

In this subsection, we take a step closer towards the explanation of duals as a cornerstone
of electricity market operations. In principle, we show how electricity markets revolve around
duals incentivizing market participants to realize individual optimal solution, which in turn also
enable overall social optimality. To motivate this, we consider now an example of two vari-
ables existing in the system, a generation variable p;, flexible demand variable p, and fixed
demand ps3. Ideally, generator wishes to minimize production cost of generating p:, termed
as f(p1) and flexible demand owner® aims to maximize the benefit of consuming p», termed
as f(pz2). In terms commonly referred in the literature, we can also say that f(p;) denotes
the production cost curve for the generator whereas f(p2) denotes the demand curve for flex-
ible demand owner. Assuming that a central entity, such as a SO, is in charge of operating
the grid. Then the SO aims to maintain supply and demand balance while minimizing the
cost (negative benefit) of energy production (consumption):

minimize f(p1) — f(p2)
p1, P2 (2.13)
subjectto p1 + p2 = p3 A

We can use the developed tools in the previous section to derive the Lagrangian of (2.13),

L(p1, p2, A) = f(p1) — f(p2) — A(p1 + p2 — p3)

The objective function f(p2) — f(p1) is usually referred as social welfare. Hence, we aim to
maximize the social welfare in (2.13) given the supply equals the demand (the only constraint).
We again assume that (2.13) is convex. Now from the above discussion, we can recognize
here too that upon the given solution, the dual variable A can simply serve as a price, or
from our context, the market clearing price. This price can be considered as the sensitivity of
costs (negative benefits) functions. For generation variable p;, given the price A* and demand
variable p; simply corresponds to:

af(Pl)

= \*
om

Vo L(p1, p3, A*) =

Now assuming strong duality holds for (2.13), then for variable p; the primal problem can be
equivalently from its dual

max min L(p1,A) = min f(p1) — N p1,

where the maximization term in the above expression is dropped due to the assumption of
strong duality, turning the dual into solving for the generation variable p;, price A*. One way

SUsually, load serving entities, large consumers (mills, factories etc.) are able to participate in markets and
demonstrate their demand flexibility.
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of interpreting this is that price X is able to align the objective of individual agent f(p;) with
system condition, given the price reflects the grid conditions. Hence, it can be concluded
that even though the production/consumption schedules can not be enforced, there exists a
price which can autonomously help achieve the optimal behaviors from the agents. The next
example elaborates this interaction of system price with individual agents under the condition
of convexity.

Example 2.2

We demonstrate a simple example now with cost (negative benefit) functions in $ as:
f(p1) = ap? + bpy + c and f(p2) = d?p> + ep> + f and the fixed demand p; = 50 in
MW. As demonstrated in Sec. 2.1, the convex programs after being exposed to first-order
condition can be solved as system of equations x = A~1h. For (2.13), this gives us the

coefficient of matrices:
2. 0 -1 —b
A=|0 —-2d —1|,b=|e|.
1 1 0 50

Now for cost variables are assumed to be a/d = 0.05/0.1 in $/MWh?, b/e = 0.1/0.2 in
$/MWh and ¢/f = 50/100 in $, we obtain the solution (p7, p3, A*) = (103 MW, —53 MW,
10.4 $/MWh ). The price X is simply equal to sensitivity of each agent’s objective function
and its relationship with the overall obtained solution is given in Fig. 2.3. One can verify
that at the optimal solution, we have A = 0f(p1)/0p1 = —0f(p2)/0p2.

Moreover, we also have the property of individual agent production/consumption prob-
lems, after including the cleared price X to be exactly equal as the SO problem. For ex-
ample, for generating unit p1, the optimal individual problem can be written simply as:
n;iln f(p1) — Ap1, which from the first-order condition gives: p; = (A\* — b)/2a and after

substituting the values yield exactly the same solution as obtained from the overall social
welfare problem, i.e. 103 MW.

From the above example,if f(p) is taken as the production cost (negative benefit),
then 0f (p)/0p is usually referred as the supply function offers (demand curve bids) [94,
97].

Remark 2.3. For the small example 2.2, we were able to manually obtain solution of du-
als (prices) by deploying first-order conditions and solving the system of linear equations.
However, in practice these problems are solved through the deployment of a solver. These
solvers also readily provide duals, which can then be interpreted as prices.

2.3 Economic Dispatch

The above presented example, simplified for brevity, can be interpreted as Economic Dispatch
(ED), which is carried out by the SO as follows:

1. The producers/consumers submit offers/bids to the SO.

2. The SO collects these offers/bids and accordingly turns them into the sum of individual
objectives such that the overall social welfare of the system is reflected.

3. The SO then solves for the social welfare, considering the system constraints.
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Figure 2.3: The relationship of price and demand for the given example. The figure is orga-
nized in a way to show that there exists no price elasticity from 0-50 MW, and then flexible con-
sumers’ demand curve exactly meets generation supply function where the price is cleared.
In economics, the area between the optimal price and demand curve is known as consumer
surplus and between supply function and optimal price as producer surplus. The sum of both
areas are known as social welfare [94, 50].

4. The price is obtained from this solution, based on which producers are paid and con-
sumers pay.

As an overview, we now present the ED problem in its full generality. For brevity, we take

the transmission grid with n buses. Then, generic vectors for active p := (p1,...,pn) and
reactive power q := (g1, - .-, gn) in the grid, which is known. Similarly, let complex voltages
be v := (v1, ..., vpy), Which indicates actual power grid physical power flows, for given load-

ing (p, q). The SO solve the following optimization problem, which aims to represent technical
and economical transmission system operation:

maximize f(p,q,v) (2.14a)
subjectto g(p,q,v)=0:A (2.14b)
h(p,q.v)<0:p (2.14c)

where,

f(p,q,v) =3 7fi(p,q,v) is the cost of the system, represented as the sum of individual
costs for n buses®

g(p.q,v) = (gl(p,q,v), o &n(p, q,v)) are nl equality constraints representing physical
power flows

h(p,q,v) .= (hl(p, q.v), ..., h2(p, q, v)) are n2 inequality constraints, such as thermal lim-
its, voltage constraints etc,

6Usually, this cost can be interpreted as the short-run cost, represented as the cost of individual generating
units.



2.3. Economic Dispatch 37

and variables to the right of colon in (2.14b) and (2.14c) are their respective Lagrange multi-
plier and can be interpreted as their shadow prices.

To be discussed later, solving (2.14) is not a trivial task. However, we move towards ob-
taining the Locational Marginal Price (LMP), which establishes equilibrium between all market
participants and grid conditions. Consider the Lagrangian L(p, q, v, A, p) of (2.14):

L(p,q,v, A, p) =f(p.q,v) +ATg(p,q,v) + pTh(p,q, v) (2.15)

Consider a solution exists for (2.14), then from (2.15) we have active TIP and reactive power TT9
LMP at each bus defined as:

0L(p,q,v, A, p) ma . 9L(P.a.v. A, p)
op ' ' aq

P .= (2.16)
From our previous discussions, given a convex program, the above mentioned ED gen-
erates a price (LMP) which not only incentivize individual agents to take optimal actions but
also maximize the overall social welfare of the system. For example. 2.2, we have shown
this property for an extremely simplified system. However, in a realistic electricity markets for
implementing a globally optimal (in economic sense) ED, following challenges exist:

1. For any nonconvex objective or constraints in (2.13), the optimal individual agents deci-
sions may not be in favor of the overall social welfare. For the case of power systems,
this poses the biggest challenges with respect to physical power flows. This is because
power flows are highly nonlinear and nonconvex in nature must be presented as convex
functions. Otherwise, actual grid conditions might not be reflected in the price, causing
suboptimal grid operation and hence overall ED schedules.

2. Theindividual agents are assumed to be price-takers. This means, they do not consider
effect of their actions on the price clearing A. However, there exists many power systems
where agents purchasing/selling large quantities of energy might be able to exert market
power.

3. The information might not be available for the SO or the individual agents to solve the
central ED or the local agents problems. This can be caused due to many reasons, such
as lack of communication infrastructure, privacy concerns and computation complexity.

From the above mentioned challenges, for transmission grids, the DC power flow linear
approximations have shown to be adequate for regular transmission system operation [54,
40, 61, 60, 88]. This approximation is facilitated due to nature of transmission grid, where
the actual power flows can be linearized up to certain accuracy as losses are not much and
voltages are kept within rated levels [104, 40, 54]. However, for distribution grids, the power
flows are highly nonlinear and nonconvex, due to higher losses and voltage drops. This
renders the transmission grid approximations ineffective. Hence, in this thesis, we devote
efforts to find approximation of distribution grid power flows in a manner, not only just convex,
but also closer for easy interpretation of prices and establishing a distribution grid market.






Chapter 3

Distribution Grid Modeling:
Load-Flow, Approximations and
Extensions

As identified in the previous chapters, power flows are the main source of non-convexity in
the ED. To this end, in this chapter we explore the power flow modeling for distribution grids.
First, we present physical differences between the distribution and transmission grids. Then,
the load flow problem for the single-phase equivalent distribution grid is described, along
with methods to approximate it. The methodology for single-phase grids is then shown to
be extensible to multi-phase distribution grids. A small discussion at the end of the chapter
lays out the importance of the developed approximation method, with respect to setting up a
market framework.

The main contributions of this chapter is bringing the state-of-the-art research on distri-
bution grid solution feasibility [10, 8, 101, 5, 6] and approximations [9, 7], into i) a common
framework for both single-phase and multi-phase grids, and ii) extending it to include approx-
imation quantities relevant for calculating prices in a local distribution grid (to be introduced in
the subsequent chapters).

3.1 Distribution versus Transmission Grid

As the focus of this thesis is on distribution grids, first let us revisit the main differences be-
tween distribution and transmission grids. In doing so, we motivate the need for developing a
new power flow model representation in market clearing for distribution grids.

1. Transmission grids are organized in loops, whereas distribution grids are usually oper-
ated radially. Radial grids can be characterized as tree networks [48], having a unique
ancestor to each bus. This means that only one branch exists between a particular bus
and its ancestor Fig. 3.1. In principle, this means that the relationship between a bus
and its ancestor is much simpler, as compared to loop flows of meshed networks in
transmission grids.

2. Due to its respective components, distribution grids have a higher resistance to reac-
tance ratio, i.e., R/X, as compared to transmission grids [48]. This property causes
higher losses in distribution grids, as well as higher nonlinearity in power flows across
the grid. Hence, lossless power flow approximations in transmission grids for calculating
prices may not be suitable for distribution grids.

39
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Meshed

o ——

Figure 3.1: Comparison of radial grid (distribution grids) with meshed grid (transmission grid).
As compared to meshed networks, in radial grids, power does not flow in loops. Moreover,
in radial grids, each bus (e.g. bus 2) has a unique ancestor (bus 1) and multiple children
nodes (bus 3 and 4).

3. Transmission grids are balanced, i.e. an equivalent single-phase model can be uti-
lized to model it. However, distribution grids contain various single-phase, grounded
and ungrounded supplies and unbalanced loads. This prohibits equivalent single-phase
modeling of the transmission grids, to be readily deployed in distribution grids.

In light of the above mentioned differences of distribution grids with transmission grids, we
present now distribution grid modeling and approximation procedure, relevant for setting up a
distribution grid market and calculating prices.

3.2 Single-Phase Equivalent Distribution Grid Model

Similar to the works on approximate distribution grid solution [10, 4] and price calculations [82,
90, 3, 109, 110], we first consider the model of single-phase equivalent distribution grid.

3.2.1 Modeling Fundamentals

Before presenting the (distribution grid) load-flow problem, we first proceed by presenting the
most commonly adopted assumptions in steady-state power system analysis:

Assumption 3.1. We limit our modeling for the steady state behavior, i.e., each complex
signal is y = xe/“* with x as its root-mean-square value (magnitude) and /x as its phase
from a defined global reference (angle).

Assumption 3.2. The grid is considered a symmetric and balanced portion of the overall
distribution grid.

Assumption 3.3. The grid is operated radially with one connection (root-bus) to the transmis-
sion grid.

Assumption 3.4. The grid consists of constant PQ models for all n bus. This means that all
connected devices have independent dispatch of their active and reactive power, i.e. act as
constant power sources/loads.

From A. 3.1 and 3.2, we have steady state at bus k described by complex voltage u; =
viel?i € C, with magnitude v; € R and angle 6; € R. This complex voltage state of the grid
is accompanied with the complex injection, more conveniently represented as s; = p; + jq;,
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where p; € R and g; € R are the active and reactive powers. From A. 3.3, we define set of
buses as: {0,1,...,n} € N, where 0 is the root-bus index whereas the rest are n PQ buses.
For the whole grid, we get voltages as u := (up, (u.)T)T € CN, where u_ := (v, ..., un)T €
C" and up € C are the voltages for n buses and the root-bus, respectively. Similarly, we
can define for the whole grid: complex power injections s := (so, (s.)T)T € CN, where
s:=(s1,...,5)T € C"and sy € C are defined for n buses and the root-bus, respectively and;
complex current injections i := (ig, (iL)T)T € CN, where i := (i1,...,in)T € C"and iy € C are
defined for n buses and the root-bus, respectively. From A. 3.4, we have that injections at PQ
model buses are imposed and not dependent on bus voltages [10], i.e. we have the following
relationship:

s = diag(u)i, (8.1a)
i = Yu. (3.1b)

which relates currents i to voltage u through the nodal admittance matrix Y € CN*N. The
following example demonstrates the above derivation.

+ +

" i Yo1 i u u
0 1., 1 . . 2
1 101! 1 1o g l2 l21
| - H Y12
'_l, s{i | |ror+Jxos | i '1 s§ | [ s3 I |
1
1
so i|.bij b |t s s
O oL Ysno Ysnolj = | ! Ysh,1 Ysh,1 z
i 2 2
: 1
H H
: 1
i H

Figure 3.2: Exemplary three-bus single-phase equivalent distribution grid radial model, with
adopted grid nomenclature. The adopted w-model [113] of the line (7, j) connecting nodes i
and j is composed of series admittance y;; = 1/(rij + jx;;) and two equal halved shunt admit-
tances ysn; = jbij/2, where r;jj, x;; and bj; are the resistance, reactance and susceptance of
line (i, ). See Example 3.1 for derivation of (3.1), example 3.2 for the solution technique and
example 3.3 for line flows. All quantities in this figure are in complex domain.

Example 3.1

We derive nodal injections (current and power) in a form given by (3.1) for the exemplary
system of Fig. 3.2. For line element (i, j), consider the current j;; is in the direction from
bus i to j and ij; is from bus j to i. From ohms’ law, this gives us following relationship of
current flowing in lines of the grid:

io1 = Yshoto + Yo1(uo — u1), 10 = Yshou1 + yo1(u1 — wo),
12 = yshau1 + y12(u1 — u2), 1 = Yshitz + y12(u2 — u1).

Now, we are interested in nodal quantities, which can be obtained using the Kirchoff law,
which states that injected current at bus /, i;, is equal to sum of all line currents considering
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they are directly connected to bus i, i.e. ij = > ik, Yk € (i, k)

io = o1, io = yshouo + yo1(uo — u1),
i1 = I + 12, it = yshou1 + yoi1(u1 — uo) + Yshiu1 + y12(u1 — w2),
I = b, b = Ysh1tz + y12(up — uy).

In order to be consistent with (3.1b), we collect the above in appropriate vector forms to
give:

i=Yu, where,
o U Ysh,0 + Yo1 —Yo1 0

i= ||, u=|u|, Y= —Yo1 Ysh,0 + Ysh1 + Yo1 + Y12 —Y12 ,
I 7)) 0 —Y12 Ysh1 + Y12

As complex power injection at node i is simply s; = u;i;, collecting it in vector form give
us similar expression to (3.1a):

—_ SO
s = diag(u)i, where s= [s1].

Remark 3.1. The constant Constant source/load active and reactive power model (not depen-
dent on voltages) (PQ) models are adopted due to their popularity in power system analysis
for both classic [4] and recent distribution grid studies [10, 82, 109]. The constant PQ mod-
els can also be defined as voltage control bus through distributed generator placement. This
is because the droop controller embedded in a distributed generator are usually capable of
varying their corresponding PQ (active and reactive power) in correlation to their local voltage
measurements. Nevertheless, the developed model can be extended to more advanced load
models using the concepts provided in [5, 6].

Remark 3.2. The effect of different tap-settings of transformers can also be simply included
in the nodal admittance Y matrix, as done usually in power flow softwares (for example,
see [113, Fig. 3.1]).

3.2.2 The Load-Flow Problem

For distribution grids, we define the load-flow problem from (3.1) as: Given the specified
loading s and the imposed voltage at the root-bus ug', solve (3.1) to obtain complex voltages u
for n buses.

Note that the Joad-flow problem which satisfy (3.1) implicitly solves for i. Then, we can
deploy quantities (vp, u, i) to obtain root-bus injections, i.e. (io, sp). To this end, we split the
relationship in (3.1) between root-bus and the rest of buses. First, for the nodal admittance
matrix Y € CN*N_ we have

Yoo YOL]
Y = 3.2
[YLO Yoo (3-2)

Usually, voltage magnitude v, is aimed to be kept at 1-1.05 per unit and angle 6, as a reference at 0 degrees.
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where Y: Yoo € C1, Yo € CI*X", Y g € C™! and Y L € C™". Then, for the grid equa-
tions (3.1), there exists the following structure,

tﬁ] - [uo diag(uL)] m : (3.3a)
[f‘i] N N‘EZ zﬁﬂ Lﬂ (3.30)

which can be utilized to extract an equivalent problem from (3.1), in terms of only n PQ buses:

S = diag(uL)iL, (3.48.)
it = Yyouo + Y uL. (3.4b)

After eliminating the complex current injections, we get the load-flow problem in only n PQ
buses:

s. = diag(u)(YLolo + YLLUL). (3.5)

Even though the single-phase equivalent load-flow problem in (3.5) is nonlinear and non-
convex, there exist numerous methodologies (Newton-Raphson, Guass-Siedel, forward-backward
sweep) as well as readily available softwares to solve this problem for a large scale [113, 104].

In this thesis, we explore the recently proposed fixed-point iteration based methodology for
solving the load-flow problem for distribution grids [10, 101, 8, 5, 6, 108], due to two main
reasons:

1. The fixed-point based load-flow equation easily transforms into global approximation of
load-flow equations. This is going to be discussed in Sec. 3.3.2.

2. The existence and uniqueness of the solution of the load-flow problem using fixed-point
iteration has been recently shown in for both multi-phase [101, 8] and single-phase
distribution grids [10, 6]. This is discussed next for single-phase equivalent grid.

From (3.5), separating solution variable u, with injections s directly gives the following fixed-
point equation:

u =w-+ YLL_ldiag(ﬁL)_1§|_, (3.6)

where w := —Y | “1Y | oup is the no-load voltage. Equation (3.6) is then the fixed-point equa-
tion, to be solved iteratively, for each iteration k as:

uf ' = G(uf), (3.7)
where uf is voltage at iteration k, s is the loading (known injections), u° is the imposed

root-bus voltage and G(-) defined in (3.6). The following are the convergence properties
of (3.7) [10]:

Solution Existence and Uniqueness We briefly explain now conditions for solution ex-
istence and uniqueness for (3.7), recently proposed in [101], which are more generalized
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version of earlier works in [108, 10]. Consider a pair (@, § ) satisfying (3.6), then there exists
two conditions for the new set-point s :

€(8) < tpin, (3.8)
A= (”min_gu(SI__) )? —4€(sL —8L) > 0, (3.9)
and given up € D, such that
D :={u: |uL —bL| < p|wl}, (3.10)
Umin — @ - \/Z
pi= ““2"'" : (3.11)

then there exists a unique u. € D. In the above expressions
i _ 1ol .
Umin = m|n|u|_/w| and E(SL) = HW 1Y|_|_ 1W dlag(sL)Hoo

where, |-| is the element-wise absolute operator for vector (), matrix A, [|A|[e := max3_; |aj;|
1

and W := diag(w). In [101], the above shown conditions for unique solutions are proved by
showing that the operator G in (3.7) is a contraction mapping: (i) G is a self-mapping of u. on D
and (i) G has contraction property, i.e. for solution u}, u? € D, we have ||G(u?) — G(u})||o0 <
[u? = 0} |oo-

The authors in [101] used the above derived uniqueness conditions to also obtain conve-
nient initializing value (u?, s?) for the successful convergence of the fixed-point algorithm (3.7).
In particular, for the case when there exists no information regarding the condition of the grid
exists, it was shown that the choice (u?, s?) = (w, 0), i.e., no-load condition can be checked for
solution existence and uniqueness. This can be simply seen by inserting (uE, sE) in (3.8), (3.9),
to obtain new set of unique solution guaranteeing equations:

£(0) =0 < uh;, (3.12)
A= £(s.) < 0.25. (3.13)

Note that, as for no-load conditions v, = 1, so condition (3.12) is always satisfied.

Example 3.2

Consider the grid data in Table. 3.1 for the exemplary system of Fig. 3.2. All values in
Table. 3.1 are in per unit (p.u.)?.

Table 3.1: Grid Data for Fig. 3.2.

Bus() p Ja |Lne(i)) rj x;
0 - - [ 101 01 0.1
1 1 )| 2(12) 01 0.1
2 05 0.5

In Table. 3.1, positive/negative load value means generation/consumption. Now, we eval-
uate two grid conditions to demonstrate the effectiveness of the fixed-point solution. First
condition is at the original loading level §, as given in Table. 3.1. Second condition is at
new loading level of sg = 1.1§.. For both conditions, Fig. 3.3 compares the fixed-point
based solution in Fig. 3.2 against the Newton-Raphson based power flow solution [84].
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For the original loading, the fixed-point method is initialized at u? = (1.05,1.05) and the
root-node voltage magnitude and angles are fixed at 1.05 and Oradians. It can be seen in
Fig. 3.3 that the solution from (3.6) is similar to the Newton-Raphson method. For second
condition, we have initialized the fixed-point method at the rated solution pair, i.e. (&, §.).
The is done so that we can now interpret our solution guarantee conditions as follows: for
given a new set point s and the solution pair (@i, §.), the new solution u_ is guaranteed
to exist and be unique if it satisfies conditions (3.8), (3.9). Table 3.2 presents the required
values for demonstrating the uniqueness of the new operating point u:

Table 3.2: Relevant quantities to check conditions (3.8), (3.9).

E(8)  &(sL—8L) &(s)  wii, A 14
0.3628 0.0363 0.3991 0.8883 0.0851 0.0941

From Table 3.2, we have both conditions satisfied, i.e.,

¢(3L) < u?;, < 03628 < 0.8883
A>0 < 0.0851>0.

Hence, this guarantees the existence and uniqueness of the solution u,. This can be also
observed from Fig. 3.4, where it can be seen that the new operating point u_ lies in the
feasible set D. The feasible set is constructed using radius p = 0.0941.

Similarly, assuming we don’t know the grid operating point, and we have to initialize
the fixed-point algorithm with no-load operating condition, i.e., the pair (w,0), we can
generate the unique solution guarantee within the power set-point interval [0, max(s.)].
For the case of the considered grid, maximum limit of this interval is found to be max(s.) =
1.3. That means in this limit, both no-load solution guarantee conditions (3.12), (3.13) are
satisfied.

#The per unit system is a calculation procedure in which all quantities of grid are converted to one
equivalent unit, i.e., per unit (p.u.) In general, quantity x (p.u.) is calculated as: x (actual)/ x (base), where x
(actual) is the quantity in actual units and x (base) is a base quantity of same unit but same for all components
in the grid. For example, power of 1 MW (actual) on 1 MW (base) amounts to 1 p.u.

With the load-flow solution obtained G := (up, (4.)T)T from (3.7), we represent the resulting
complex line flows and complex system losses?

P+ jq/t = s/t = diag(AV'6)Y"'G (3.14)

p+jqd =5 =aTYa, (3.15)

In the above, we assume that grid has m number of lines with index {1,..., m}, making
vector s/t = (si/ R s%t)T € C™ to collect complex line flows “from”/“to” buses of the grid.

The incidence matrix A/t is an m x n matrix containing 1’s at buses connected, zero elsewhere

and the modified admittance matrix Vf/ Ye cmxN appropriately selects contribution of bus
voltages in calculating complex line flows “from”/“to” buses. The overall system loss s' € C is
a scalar. For derivation of (3.14) and (3.15), see example 3.3.

2Line flows and system losses are derived here because they play a key role in calculating energy prices.
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Figure 3.3: Voltage magnitude v comparison between the load-flow solution from fixed-
point (3.7) and Newton-Raphson method [84].
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Figure 3.4: The identified domain for solution uniqueness of the new operating point u, given
the current operaing point @ .

Example 3.3

We derive line flows in a form given by (3.14) for the exemplary system of Fig. 3.2. For
line element k € (i,}), complex line flows direction “from” bus i to j is denoted as s .
Hence, keeping the notation consistent, for the grid of Fig. 3.2, we have:

f — f —
S1 = Uolo1, Sy = u1h2
Recalling from example 3.1, line currents are defined as:

fo1 = Yshoto + yo1(uo — u1), 12 = Yshau1 + y12(u1 — u2),
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giving us complex line flows in terms of voltages as:
st = uo(Vsholo + Yor(Uo — 1)), s = 1 (Ven1ti + yiz(1 — 12))

Now to obtain vector form of complex line flows “from” buses (3.14), we collect the above
in appropriate vector forms to give:

s' = diag(A'u)¥'u,  where,

f Uo
I B v [ySh,O + yo1 —Yo1 0 ] Af — [1 0 0}
| [SJ - Z; ’ 0 Yshi+yi2  —yi2|’ 0o 1 0}

Similarly, For line element k € (i, ), by denoting complex line flows from bus j to i as s},
we can repeat the above procedure to derive its relationship as given in (3.14). For the
grid of Fig. 3.2, the overall system losses can be derived as:

SlZ

SlZ

s+ sl +sh+ s

Uolor + Urho + Urito + Uzixy

Now we utilize line currents definitions from example 3.1, complex power flows definition
from the above and combine them together to separately list the individual line losses:

st 4 st = uo(Venotio + ¥o1(To — T1)) + t1 (Venoti + ¥or(T1 — T))

4T

fuol” [Yeho +¥o1  —Yor 0] [w0]
= |w —Yo1 Ysho+Yor O (o1
w] | o 0 0| |m.
sh+ 55 = uy (Vepatn + yi2(T1 — W) + u2(Ven 102 + yi2(Ta — T1))
Tuel ™ [0 0 0 7 ool
= | 0 VYen1+y12 Y12 uy
L] 10 vz Vewi+yizl lm
fuo] ™ [Vsho + Yor —Yo1 0 o
s =sl+si+sh+sh=|u Yo Veho+ VoI +Yeni+va  —yiz | |m
lw] |0 V12 Ven1 +vi2) L@
s =u'Yu

Similar to (3.5), we also now split (3.14) and (3.15) to only present in terms of the desired

solution variable 4. To this end, consider incidence matrix A"t and admittance matrix Vf/t to
be arranged as follows:

A= (AL A Y = (VYY) (3.16)

Then following the similar structure of (3.3), we get both complex line flows and system losses
as a function of desired solution variables:

s/t = diag(AY'uo + AV'a ) (Y Go + Y 'G0), (3.17a)
s' = uo(Yoolo + Yor0) + (L) "(YioTo + YLl ). (3.17b)
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Figure 3.5: Comparison between local and global approximation types. It can be seen that
the local approximation is the best approximation at a given point xo, whereas the global
approximation aims to give a more global behavior of the approximation function f(x), which
is the interpolation between points (x1, f(x1)) and (x2, f(x2)) [7].

3.3 Single-Phase Approximation Modeling

As an alternative to the complex-valued load-flow solution, we aim to find the following real-
valued approximations:

U =a+M's", (3.18a)
2 =6+ Mms (3.18Db)
S22 =e+ M), (3.18c)

B =d+MPs" (3.18d)

§=ée+MIs" (3.18¢)

wheres” := ((p.)7, (q.)7)T € R*" and (4, b, &, d, é) are appropriate constants. Note that (3.18)
has a linear approximation structure, i.e. desired approximates (-) are related to real-valued
grid injections s[” as a function of their corresponding constant matrices M) and a fixed
constant vector (-).

The approximations in (3.18) are going to be deployed in the subsequent chapters for im-
plementing optimal power flow and consequently electricity prices. To this end, next subsec-
tion presents two methods for obtaining these approximations. Qualitative difference between

these two methods is provided in Fig 3.5.

3.3.1 Local Approximation

The first order complex-valued approximation of (3.5) w.r.t. complex injection s can be ob-
tained as:

- - 0 — Ou
U = diag(YiLoto + YLLUL)% + diag(uL)YLLa—lelL' S Cn><2n, (3.19)

where U := (I,;I) € C"*?", The above approximation is in a complex plane (uy,s.). How-
ever, from (3.18), we intend real-valued approximations in terms of augmented real-valued
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injections s:_”j. To this end, we define a real-valued version of (3.19),

U =JM, (3.20a)
M=J1uU, (3.20b)

where U, := I, and real-valued sensitivity matrix M arranged in terms of sensitivity of voltage
magnitudes v|_ and angles 8 with respect to active power p, and reactive power qy injections,

o ow MY
M := lggt ggt] = l'\"g] . (3.21)
Op. Oq,
The Jacobian J then follows,
J= (<diag(VL0U0 +Yuu)) + (diag(uL))N(YLL)) R(u) € R*2", (3.22)

where the above compact representation utilizes the following shorthands [9],

[ I Onxn [R(A) —Z(A) nx2n
__ [diag(cos 8,) — diag(v.) diag(sin 6,) n%2n
R(u) := [diag(sin 0||:) diag(vL)Ldiag(cos GLIS } € R (3.23b)

Matrix I, € R"*" is an identity matrix, i.e. with 1’s at all diagonal. A small example to explain
the shorthands of (3.23) follows.

Example 3.4

We utilize the notations of [9] to obtain compact representation of our Jacobian J in (3.22).
We demonstrate the working of shorthands in (3.23) for small scalar cases.

First, equation (3.19) can be imagined as directly obtained from the product rule,
where in a scalar form we have:

L O I RO R LRV )

Ox
Now regarding the operator (-), it is used to keep the real-valued nature of the formulation.
To this end, consider function f(x) = ax : R — R for a complex constant a € C and a
complex variable x € C

of(x) _ 2(3) —‘5(;) — (a)
Lo

The matrix N (let’'s denote it as N here for the scalar case) is used to represent complex
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conjugate operation. This can be shown now for function f(x) = ax

Finally, the operator R(uL) (let’'s denote it as R(u) here for the scalar case) is obtained by
utilizing Euler’s identity for the complex voltage

u=vel =vcosh+ jvsinb,

and then combining it with the above shown real-valued partial derivatives,

[cose —vsine} — R(u)

sin@ v cosf

The Jacobian matrix J in (3.22) is shown to be invertible [101, 10], allowing us to solve the sys-

tem of equations (3.20) for a given grid conditions (SL VL, 0|_). The individual approximation
quantities in (3.18) are obtained as given below:

Linear Voltage Magnitude (3.18a): The sensitivity matrix M" is simply obtained as shown
in (3.21). The vector & := v — M"§"™ which completes the approximation of (3.18a).

Linear Squared Line Flow (3.18b), (3.18¢c): First, consider squared line flows “from” buses
expressed as:

Is'|? := diag(s)s'.
To obtain (3.18b), we then proceed as:

fl2 f <
T = ) 5 () %

asiL”j GSiLnj
o e os' os' el os' e s’
= diag (R(s) () (Rl ) + /() + g (R(E) 496 (R 5) - 8(.5))
where cross products cancels out to give the expression
§ . as? , ¢ s’ , ¢ Os'
ms os0 .2(d|ag(ﬂ?(s))%(asi[]j)—i—dlag(S(s))%(aS:_nj)) (3.25a)
R(Z)

(diag (R(s")), diag (S(s")) ) g(a;st, (3.25b)
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Now, the required sensitivities from above are obtained as:

os'
Rlam) | _ [REEIRE)] _ [RED] 526
a2~ la@hez) T ue 220
s up 9sin du

where line flow sensitivity with respect to voltage can be obtained from the relationship of
complex flows to voltages in (3.17a) and shorthands in (3.23):

f

[%(3;)
(&)
Now by setting, b := |32 — M*'§™ we recover (3.18b), where [§'|? is the absolute flow squared
obtained from the load-flow problem, i.e. for @i. satisfying (3.5). By inspection, we can see
that the complex line flow sensitivities of (3.27) deploy the same structure as voltage sensitivity
matrix M, in order to be appropriately utilized in (3.26). An exactly similar procedure exists for
obtaining complex line flow approximations for “to” buses (3.18c).

] = (<diag(vgno+7[uﬁ)A[>+<diag(Aguo+A[uL)>N<Y[>)R(uL) € R™2 (3.27)

Linearized system losses (3.18d), (3.18e) Similar to the above mentioned procedure, we
proceed to obtain (3.18d), (3.18e) by first considering the following chain rule:

we]  [RGES [w;’ﬁmgﬂa )} rre(gf")]
1 _ e o) | Ptau )| 3.28
[Mq] S(aasf‘Lnj )] 3(%)3(35#1) g(%{) -
and,
s
[fg%‘;f ;] = <<u0>N<Yo|_> + ((Yiotio + Yoot )" + <ﬁLT>N<YLL>>R(UL) € RPN (3.29)
“Bu

Now [(3.18d), (3.18¢€)] is obtained by setting

dl _ A7 MP AN

el T gl |md|T
where (p', §') represent system active and reactive power losses, which satisfy the load-flow
problem, i.e. for G satisfying (3.5).

3.3.2 Global Approximation

For the same set of approximates (3.18), we proceed now with their global approximation.
As explained earlier that one of the advantages of the fixed-point structure of the load-flow
problem is its utilization in obtaining global approximation of grid quantities. In particular, we
present global approximation as an interpolation between two load-flow points, i.e., at the
solution pair (i, §) and at no-load condition (w, 0).

Consider the first iteration from the satisfied fixed point load-flow equation (3.6), then the
complex-valued voltage sensitivity with respect to real-valued injections is simply obtained as:

MC .=

. 0u|_ L (GUL .6u|_

—14: — \—1 . —14: — \—1 nx2n
— = |=——,j=— ) = (Y “diag(u.) ", —jYL “diag(u. eC )
Os|" opL GQL) < () (u) )

(3.30)
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Linear Voltage Magnitude (3.18a): By utilizing the following partial derivative rule [8],

Of(x) 1 —0f(x)
o 00 R(F(x) 5 ) (3.31)
we obtain (3.18a) by defining:
M := diag(v.) "R diag(m)M®), (3.32a)
a:=v — Mg (3.32b)

Linear Squared Line Flow [(3.18b), (3.18c)]: First, consider line flows "from" buses along
with the following relationship already presented in (3.25),

os'
;AP o R( )
W = Gy =2 g (). g (36) | o (339)

Now, we follow the chain rule of (3.26) to obtain the above required sensitivities. To this
end, from (3.17a), we have the complex-valued sensitivity of line flows "from" with respect to

voltages,
f

6u|_
Now utilizing (3.30) and (3.26), we obtain:

= g(isf . |V|<C>

S( Os
At no load, we have the sensitivity equation (3.34) turned as:

= diag(vgﬂo + VI_UT_)A[ + diag(Afdo + A{_UL)VI_ e Cc™", (3.34)

€ R2mx2n, (3.35)

as‘L“"
' dia (Yido + YLW)A! + diag(ALdo + Alw)Y| € ™ (3.36)
aw  ¢1as(Yoto LW)AL + diag(Aglo LW)Y, € ' :
with the required coefficient no load obtained as:
6f
b— §R(£ 'W>
(8 )

Exactly similar procedure exists for (3.18c) and is left here in the interest of space.

e R?™. (3.37)

Linearized system losses (3.18d), (3.18¢e):  First, consider the complex-valued system loss
sensitivity of (3.17b) with respect to voltages as:

os' - -
07:_ = uYoL + (YLQUO + Y|_|_U|_)T +uTY € (Cl><n_ (3.38)

Now follow the chain rule (3.28) and sensitivity (3.30), we get

][R0 _ [ w0
M7 | g(gsffj) .

€ R2x2n, (3.39)
os' C
(M)
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In order to complete the loss approximation [(3.18d), (3.18e)], the required no-load condition
(3.38) can now be written as:

|
2% = UOVOL + (YLOUO + Y|_|_W)T + WTVLL c (Cl><n_ (3.40)

with the required no load coefficients now obtained as:

0 R aisl W
9 - <a““| ) eR. (3.41)
7 ol )
Bus 1
1.55 : : : : : :
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Figure 3.6: Voltage magnitude approximation for the exemplary grid.

Example 3.5

For the exemplary grid in Fig. 3.2 with data from example 3.3, we present verification for
both local and global approximation methods. To this end, we do continuation analysis
which varies grid loading as si. = §, where k € [—0.5,1.5] and § is the rated load-
ing (see example 3.3) where a solution i exists. The voltage at the root-node is imposed
at 1.5 p.u. For each step of the loading, the actual grid solution is obtained using the
fixed-point load-flow equation (3.7). For both local and global approximation methods,
Fig. 3.6, 3.7 and 3.8 respectively present approximation of voltage magnitude, absolute
line square flow “from” buses and system active and reactive power loss. We omit “t0”
buses line flows in this example as the procedure for obtaining them, the obtained results
and their characteristics are very similar to “from” bus line flows. Note that as no charg-
ing currents (zero capacitance in the pi-model) exists, the no-load conditions shows flat
voltage( equal to 1 p.u.) and zero losses and line flows.

53
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Line 1

_1 / |
‘ — Local Global — Actual ‘

_2 | | T
-04 -02 0 02 04 06 08 1 12 14

Line 2

s' (p.u.)

-04 -02 0 02 04 06 038 1 12 14

Figure 3.7: Absolute squared line flow “from” buses approximation for the exemplary grid.

For local approximation, the individual sensitivity matrices in (3.18) are found to be:

MY — [0.0742 0.0678 0.0742 0.0678]

0.0710 0.1290 0.0710 0.1290

—1.2225 —-1.1176 —1.2225 —1.1176
0.0041 0.8770 0.0041 0.8770 |’

0.0565, —0.0087, —0.0565, —0.0087),
0.0565, —0.0087, —0.0565, —0.0087)

|
(
(

M =
MP =
M¢

and constants representing local grid conditions as:

. [1.4268] - [0.6033] 5 R B
4= [1_4937] . b= [0_4562] . d=0.0492,& = 0.0492.

For global approximations, the individual sensitivity matrices are found to be as:

0.0701  0.0669 0.0701 0.0669
0.0701 0.1339 0.0701 0.1339]"

—1.1548 —-1.1031 —-1.1548 —1.1031
0.0448 0.9552 0.0448 0.9552 |

MP = (0, 0, —0.1027, —0.0084),
M? = (—0.1027, —0.0084, 0, 0),

M":[

MS':[

and constant representing no-load grid condition as: (&, b, d, é) = ((1.5,1.5)T, (0,0)T, 0, 0)
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Figure 3.8: System active power loss (top) and reactive power loss (bottom) approximation
for the exemplary grid.

From Fig. 3.7 and 3.8, we notice that for global approximation method, at the rated solution
pair (@i, 8. ), the approximated quantities are actually double the rated value. For example,
approximate active power loss 7' at rated loading §, is twice the actual active power loss p',
i.e., P = 2p'. Next, we show this property for global approximation method for the case of
complex system losses s' and absolute line squared flow “from” buses §f|2. For brevity, we
take the solution pair of the whole grid, i.e. (u,s) := ((uo,uL), (so,sL)), instead of only PQ
buses.

Double System Loss Approximation: Consider the overall total system loss approximation
from (3.15) and its derivative with respect to injections:

s =u'Yu
9s' — - Ou —ou
Y (Ya)T o v
Os (Ya) Os tu Yas

At the rated solution pair (i1, §), we have % = 0. Hence, at the rated loading, where we intend

to linearize the power flow at, we have the following global system loss sensitivity:
aSI X7 A~ N ATNZ ~ ATNZ ~ ATN & Al
% =(YO)Ta+a'Ya=4aTYa+aTYdh = 28,
where one can observe (Y&)Td = GTYd. This proves the experimental observation of Fig. 3.8
where at rated loading we obtained double the rated losses §'.

Double Absolute Line Flow Squared Approximation: Consider the squared line flow
“from” buses definition |sf|? = diag(s')s', with its desired sensitivity in terms of injections as
a|sf|? 675f os' 67sf s’ os'

T _f . fHOS _f . NS _ . 95
o dlag(s)65 —|—d|ag(s)as dlag(s)as 4—d|ag(s)as 2d|ag(s)as (3.42)
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Now we utilize line flow definition of s" = diag(Afu)Vfﬁ from (3.14) and derive its sensitivity to
injections:

f L _+Ou
%z - diag(Yfﬁ)Afglsl + diag(Afﬁ)Yfa—:.
At the rated solution pair (i1, §), we have % = 0, giving us the above sensitivity at the rated-
loading as:
os'

5= diag(A'a)Y'd + diag(A'a)Y'a
= 28,

where we have used the equivalence of diag(A'a)Y'a = diag(Y'a)A'a. By comparing the
above results from the desired sensitivity term in (3.42), we prove the experimental observa-
tion in Fig. 3.7 where the global approximation produces twice the value of rated “from” buses
line flows. Similar derivation exists for “to” buses line flows.

Remark 3.3. The doubled system losses obtained from the approximation procedure has also
been noticed in transmission grid DC loss approximations [61, 54]. System operators account
for this by introducing an offset term in their economic dispatch problem, which aims to cancel
out this effect of doubled system loss. Interested readers are referred to [61, 54, 40], for more
information regarding the calculation of this offset.

Remark 3.4. With the numerical evaluation of both method presented in example 3.5, we now
qualitatively comment on complexity of both (local and global) approximation methodology [8].
In local approximation, for an n buses system, solving system of (3.20) which is in rectangular
coordinates amount to computational complexity of (4/N)? (see size of M in (3.21)). However,
the global approximation, only algebraic multiplication is required, given Y[Ll is precomputed.
This shows the computational benefits of global approximation obtained through the fixed-
point solution.

iz

1 Phase a

Bus j|

:_

Figure 3.9: Exemplary three-phase grounded wye-connected (left) and delta-connected (right)
sources with net current and complex power injections. Similar connections can be made for
loads. Procedure to translate mixture of wye-connected and delta-connected sources/loads
for both primary and secondary distribution transformer is given in [8].

3.4 Multi-Phase Distribution Grid Model

The above presented load-flow problem is now extended to include multi-phase characteris-
tics of the distribution grid. From the previously described methods, we present the fixed-point
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solution technique for the multi-phase load-flow problem and also present its natural deploy-
ment in obtaining the global approximation.

Assumption 3.5. For exposition simplicity, we first assume that the multi-phase grid is a full
three-phase grid model.

However, we show in R. 3.6 the procedure to relax this assumption. Moreover, consistent
with A. 3.3 and 3.4 we assume that distribution grid has one connection (root-bus) to the
transmission grid along with n buses modeled as constant PQ model. However, as mentioned
in R. 3.1, the results can be naturally extended to more generic load models [5].

With reference from Fig. 3.9, we proceed with the development of multi-phase grid nota-
tions.

For bus j in Fig. 3.9 with three-phases {a, b, c}, we have: complex net current injections

for each phase-ground i} := (i#,i?,if)T and phase-phase it = (i#P, iP<,if?)T connections
along with net complex power injections from wye-connected s := (s?, s, sf)T and delta-

connected sjA = (sjab, sjbc, sfa)T sources. Now for each phase-to-ground voltage represented
as u; = (uj"-", uJ'F’, uj‘?)T, similar to (3.1a), we have the following from the Kirchoff Law (see
Fig. 3.9 for the reference),

si = diag(lu;)if, (3.43a)
s/ = diag(uw))i} — diag(u)rTi* (3.43b)
where,
1 -1 0
r=|10 1 -1
-1 0 1
Bus j
| U
1 ! Phase a \
Spa lCCl S'ab lab Sg la
J oY j 0
) » W
Phase ¢ Phase b
Figure 3.10: lllustration example for three-phase injections
Example 3.6

Fig. 3.10 is presented to explain combined delta and wye injections of (3.43). For bus j,
we assume voltage between phase a to ground is u?. At the intersection of phase a
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in Fig. 3.10, we have the following nodal balance:

a_ ,aa A, a
S = Uil s

where the injection contribution from connected delta devices to phase a of bus j is given

—ab R . o
as: s := u?(i;° — 77"). Substituting this result into the above equation gives us:
a__ a:a a/,7ab  =ca
SJ—UJIJ—UJ(IJ _IJ )

Similarly, we have uj’ and ujc as the phase to ground voltage for phase b and c. The delta
connections in Fig. 3.10, have the relationship of

b py=ab b b =bc
si0 = (U] — uP)ig s7¢ = (uf — uf)i;
Now, for full three-phase grid with desired injections for delta s := (s7°, sp¢, s72)T

and wye connections s}( = (s7, sj’, s7)T, the above results can be collected in a vector

format which gives the relationship of (3.43).

3.4.1 Multi-Phase Load-Flow Problem

Similar to equivalent single-phase notation, we again consider one slack bus and n PQ
buses for multi-phase load-flow solution. However, in single-phase modeling, we first pre-
sented full grid equations (including root-bus and n PQ buses (3.1)) and then shown their
translation to represent only n buses. For multi-phase grid, we only directly present all
equations in n buses. In order to extend grid equations of (3.43) for the whole grid ex-

cept slack-bus, we have complex voltages as: u?®® = (u],...,u})T, if = (i],....iH)T,
i = ()T G S = ()T G SR = (58)T L (s8)T)T all having
size C3". The multi-phase load-flow problem is then to satisfy the following set of equations:
diag(uZ)HTiC +s) = diag(u®®)i,, (3.44a)
s2 = diag(Hu™®)i™, (3.44b)
il = Yf5up + YPouf®™, (3.44c)
where,
r abc abc
H = . Yabc e Y Y
S . ' Yabc Yabc
r

and ug := (ud, uf, u8)T is the voltage at the root-bus and Y3° ¢ C3(1+1)x3(n+1) ig the bus
admittance matrix of the whole grid (root-bus and n buses) with individual components from it
extracted as: Y£5¢ € C3n%3, YaPe ¢ C3x3n yabe ¢ C3%3 gnd Y&P°© ¢ 313,

Remark 3.5. Contrary to the superscript “Y”, we denote phase to ground complex voltage
as uﬁb". This on one hand keeps the notation consistent with the single-phase equivalent dis-
tribution grid notation and on the other hand establishes the fact that u2® is the only solution
variable of the multi-phase load-flow problem.

From (3.44), one can see that (3.44a) and (3.44b) are simply the augmented versions of
the single bus injection formulations in (3.43). However, (3.44c) is a new equation which is
explained in example 3.7.
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Figure 3.11: Exemplary three-phase grid model with three buses connected using two lines.
The modeled distribution grid line elements represent a standard w-model for a generic three-
phase line [48, 15, 112]. The vectors sg, s;, and s, are generic injection variables which
depending upon delta or wye connected sources/loads can be included in load-flow problem
as shown in (3.44).

For bus i and j, the phase admittance matrix Yf-’jh contains equivalent self admittances (e.g.

;7 for phase a between bus i and j) and equivalent mutual admittances (e.g. y,-j-b between
phase a and b of the line between bus i and j). These equivalent admittances are obtained
after performing Kron’s reduction on the original three-phase conductor admittances, which
also contain effect of ground and neutral nodes [48, chapter 6]. Similarly, shunt admittance
matrix represent equivalent charging capacitance of the three-phase line element, which is
then placed in equal halves at both ends of the line element (standard = model). The indi-
vidual entities of shunt admittance matrix represent coupling between line element’s phases,
ie., jwc;j-a is the equivalent self shunt capacitance of phase a and jwc;’jb is the equivalent
mutual shunt capacitance between phase a and b of the line element connecting bus i and ;.
For calculating individual values of phase and shunt admittance matrices and their overall
construction methodologies, interested readers are referred to [48, chapter 4-6].

Example 3.7

We now assume a grid with two three-phase distribution grid lines connecting three
buses Fig. 3.11, where all buses contain three-phases. For line currents we have the
relationship:

s __wysh ph . _ wysh h
o1 = Y01u0 + YOl(uo — ul), 110 = Y01u1 + Ygl(ul — UO)

. h h . h h
1o = Yﬁzul + Y?Z(ul — UQ), Iy = Y?2U2 + Y?_z(u2 — ul).
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Above, phase to ground voltages and line currents contain all three phases. For exam-
ple ug := (g, ug, u§)T and o1 := (igy, ib, i§;)T- From Kirchoff’s current law we have that
for all k buses directly connected to bus j, i.e., 3_, ij «, the sum should be equal to zero:

. . . sh ph
ip = ip1, io = Yopiuo + Yor(uo — ug)
. . . \sh th B ysh th _
i1 =i10 +i12, i1 = Y{ur + Yo (ur —ug) + Yious + Yo (ur — u2)
- . . sh ph
ip =i, i =Y}ux + Y (u2 —up)

Now collecting phase to ground current injections as: i’ := (io7,i17,i2T)T and voltages

as: u?° := (ugT,u;T, upT)T, we can write the compact representation of above equations
as:

Y — Yabc abc where
Y3 + YR —Yg'; 03X3h
Yabe — _Yg'; Y YO vsh - vRh yPh
033 Y12 Y$h + le>2

Now in terms of representing above equations only in PQ buses, i.e., bus 1 and 2 in the
example, we have the following relationship:

i = Y&Cug + YZu®°,  where

Y |11 abc _ |U1 abc _ Yo abc _
- [iz] e [Uz] Yo = lO ><3] i

The above expression is exactly similar to (3.44c).

Y YR Y v YD) ]
h
—Y'i2 Y3+ Y5

Similar to the single-phase load-flow problem in (3.6), the following fixed-point equation
can be obtained for three-phase load-flow problem (3.44) [8]:

uEbc_ abc Yabc (dlag( abC) + HT diag(Hu abC) 1§LA) (3.45)
abc

where w —yabeyabey s the no-load voltage and for given (sB, s, ud), can be
solved for each iteration k as:

wibe ) _ g, (uﬁbC‘ )) (3.46)

with Ggvea (- ) defined in (3.46). Similar to unique solution convergence for single-phase fixed-
point operator G(-) in (3.7). The conditions to guarantee solution uniqueness and existence
for the multi-phase fixed point operator Ggvsa are given in [8, Theorem 1, 2]. Since, these
proofs follow similar interpretations, as of single-phase solution uniqueness conditions, we
do not pursue the proof of these theorems here. Instead, solution comparison of the fixed-
point method of (3.46) with an open-source software, the open distribution system simulator
(OpenDSS) [85], is given in example 3.8.

Example 3.8

For the exemplary system of Fig. 3.12, primary side (before transformer) of the grid is
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Figure 3.12: Modified IEEE 4-bus grid [47]. To illustrate multi-phase and unbalanced nature
of the grid, phase c after bus 3 has been removed and mixture of wye and line to line (which
is equivalent to single-phase delta connection) loads are included at bus 4. Example 3.8
describes solution values for this system.

rated at 12.47 kV (Line-Line)? and secondary side (after transformer) at 4.16 kV (Line-
Line). The readers are referred to the openDSS script file in Appendix A.1.3 for more
information regarding the modeled grid. It can be seen from Fig. 3.13 that the solution
obtained from the fixed-point equation and openDSS is exactly similar.

2In this thesis, we always termed the voltage quantities, for example u®*

Line-Line voltage/+/3.

, as line-neutral, which is simply

va vb v©
8 T 8 T 8 T
> @ 1@ @
O Fixed-Point
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3 s 3 s 3 s
2 | G\B G\B 2 | G\B 6\9 2 | 69
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Figure 3.13: Comparison of voltage magnitude v(*) of phase () between the fixed point load-
flow method (3.46) and openDSS [85].

Let 63 := (uoT, G7°") be the whole grid’s voltage vector which contains the solution @ from
solving (3.45). Then, we can formulate line flows and total system losses for three-phase
distribution grids. To this end, we consider for grid with m three-phase distribution lines, having

. YT ] . f,ab t,abC f,ab t,ab
from’/“to’buses complex line flows of shabe/tabe .— ((ghabe/tabeyr - (ghabe/tabeyryy o oam
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and total complex system loss s2°¢ ¢ C as:

Sf,abc/t,abc _ diag(Af,abc/t,abcﬁabc)Yf,abc/t,abcﬁabcv (3.47a)

shabe _ fabeTypabogabe. (3.47b)

Example 3.9

We derive now complex line flows for multi-phase grids in a form given by (3.47a) for the
exemplary system of Fig. 3.11. We provide derivation for only “from” buses line flows as
“to” buses follow exactly the same procedure. For line element k € (i, ), complex line
flows direction “from” bus i to j is denoted as s;2°° :=:= (sk?, si°, si°)T. Hence, keeping

the notation consistent, for the grid of Fig. 3.11, we have:

Si?° = diag(uo)ior, 5™ = diag(u1)in2
Recalling multi-phase line currents from example 3.7:
o1 = YS?uo + Ygg(uo —uy), i = Y?gul + Y?g(ul — up)
giving us complex line flows in terms of voltages as:
52 = diag(io) (Yoruo + Yo (o — U1)), 5™ = diag(th)(You1 + Yis(th — W)

Now to obtain vector form of complex line flows “from” buses (3.47a), we collect the above
in appropriate vector forms to give:

. < fabc_.
Sf,abc — dlag(Af'abcuabc)Y uabc' where,
f,abc up sh ph ph
fabc __ |51 abc __ yfabe _ Yo1 + You =Yo1 0343
S - f,abc u = (u1], - 0 Ysh th th !
52 u, 3x3 2t Y —Yi

Afabe _ [ Iz 0343 03><3:| .
0343 I 03x3

For the grid of Fig. 3.11, the overall system losses can be derived as:
Sl,abc — 13T(sf1,abc + Stl,abc + sBabc + sgabC)
b3 — 137(diag(ug)igr + diag(uy)izo + diag(uy)irz + diag(uz)iar)

Now we utilize line currents definitions and complex power flows definition from exam-
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ple 3.7 to combine them together to separately list the individual line losses:
P W
spabe | ghabe _ 9,7 (d|ag(u0)(Y31uo + Y5, (tip — u1))>

+ 13T(diag(ﬁl)(vgr;ﬁ1 + Yor(m — o))

_ —ph .
uo] ' Y01 +Y h—Y81 i 03x3| [uo
=" ~Yor Yo+ Yor O3z UL
u2 03x3 03x3 03x3] Lu2
s;,abc tabc = 13T(d|a Y12U1 + Y12( u; — u2)))
+ 13T(d|ag ) Y12uz + le(uz - ul)))
a1 T [03x3 0343 033 Ug
fo ~sh | oph ~Ph 70
= |u 03x3 Yo +rl2 h_Y12 ) up
Lu2] | 033 -Y5 Y5, + Yo LUz
T h h .
| f o] " [Y31 —Hh(81 ;Ygl h h 03X3h Ho
sS=stsitsnts= u; ~Yo1 Y81+ Y0 + Y + YD le)z uy
(2] | 0343 —Y®h Y$h+ Yo Loz

. zabC_
Sl,abc — uabcTY uabc_

Note that in the above derivation, the introduction of conjugate between the changing of
component-wise multiplication to vectorial form comes from the standard inner product
rule of multiplying two complex vectors.

Similar to (3.44), we now split definitions in (3.47) in the desired solution variable @i.. To this

end, consider incidence matrix A"@¢/ta¢ 3 3m % 3(n 4 1) matrix containing 1's at buses

connected at the “from”/“to” ends of lines, zero elsewhere and admittance matrix Yf abe/tabe €

C3mx3(n+1) to be arranged as follows:

Af,abc/t,abc _

fabc/tabc ,fabc/tabc) sghabc/tabc _ (—fabc/tabc of.abc/tabe
(Aot Al ). Y = (v} Y ). (49

Then following the similar structure of (3.47), we get both complex line flows and system
losses as a function of desired solution variables:

sf’abc/t’abc . dlag(Af ,abc/t, abc o+ Af,abc/t,abcAabc)(Yf ,abc/t, abcA o+ Yf ,abc/t,abc abc)y (3.49a)

abcxabc —abcT ,abc__ abcxabc

$h850 — Gio (Voo o + Yor 0y ) + Gy (Yio o+ Yo Gy ). (3.490)

Remark 3.6. Equations in (3.44) can be easily modified to represent generic number of
phases in the grid For buses, the only required modification would be to appropriately collect
vectors s, s! and u along with the reconstruction of matrix H as a n® x nY matrix, where n”
is the total number of phases and n® is the available phase-phase connections in the grid.
Similarly, phase and shunt admittance matrices shall also be appropriately adjusted to repre-
sent it in the modified bus admittance matrix Y2 € n¥ x nY to compliment the modified H
matrix.
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3.4.2 Multi-Phase Approximation Modeling

Similar to Sec. 3.3, we aim to find the following real-valued approximations for multi-phase
grids, in order to be deployed later:

7,70 = 3300 | VLYY pvLAgiA, (3.50a)
ghaboj2 — N Ve mJY_I_Msz A (3.50b)
|ghabe|2 — gabe 4 ms S:TJ,Y i MstAs'[”’A, (3.50c)

ghabe — gabe |\t ini,Y + MP iL”J"A (3.50d)

ghabe — gabe | Mg '”JY + Mae '”J A (8.50¢e)

where s/ = ()T, (a))T)T € R, s = ((p)T, (a®)T)T € R and (8%, 67", &2

, dabe, abc) are appropriate constants. Similar to single-phase approximations (3.18), multi-
phase grid approximations (3.50) also have a linear approximation structure, i.e. desired
approximate ( ) is related to grid injections (s'nlY . A) through their corresponding constant
matrices (MY M()2) As mentioned earlier, for multi-phase systems we only present
global approximation. However, for obtaining the local approximation, interest readers can
follow:

1. Find system of equation describing complex-valued voltage sensitivities with respect to
injections. For reference, see (3.20) for single-phase equivalent grid and [8, Sec. IV-A]
for three systems.

2. With the complex valued sensitivities obtained, follow the steps given in Sec. 3.3.1 to
obtain the rest of the approximations.

Now, we proceed with multi-phase load-flow global approximation. To this end, we utilize
the fixed point variant of the multi-phase load-flow problem (3.45), giving the complex-valued
voltage sensitivity with respect to both wye MY € C3"%6" and delta injections M ¢ C31x6n
as:

auabc auabc
MY = (S 2N ) = (Y diag(uf®) ', YR diag(@™) ), (3.51a)
(apf dq )= )
<9uabc 6uabc
MA = L=t ) = YfEC Hleag(H abc) jYﬁEC HTdiag(H abc)
(o730 ) = ( )
(3.51b)
Linear Voltage Magnitude (3.50a) We again utilize the following rule
o|f (x)| 1 ——0f(x)
= f 52
ox {f(x)\%< )5 ) (3:52)
to obtain (3.50a) as
MveY = diag(vfbc)_:l?)?(dlag( abc)MY>, (3.53a)
M2 = diag(v3)~ §R(d|ag( w)MA), (3.53b)

A ~ ainjY ainj,A
a3 1= e — MY 4 MeAg (3.53c)
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Linear Squared Line Flow (3.50b), (3.50c) First, consider sensitivities of line flows "from"
buses. We start with the already presented sensitivity of line flows "from" with respect to
injections for the single-phase equivalent model, already presented in (3.25) but repeated
below for convenience:

Msfabc . a‘sf|2 _ 2(d|ag (?R(Sf)) diag (g(sf))) %(aifé‘)
os." | (o)

For the multi-phase grid, the above relationship is simply changed to consider both wye, and
delta connections as:

M £y a| fabc|2 (d (?R( fabC)) d (c»( fabC))> _m(agf‘ibc )- ( )
= iag (R(s" , diag (S(s" :ac , 3.54a
os) _g(aafsz )
I asf,abc 7
' a| fab0|2 . §R( A )
M = diag (R(s"2)), diag ((s"2°) S e (3.54b)
pen = 2(ding (R('), ding (3(s*)) ) BES

Now, we follow the chain rule of (3.26), used to obtain the equivalent single-phase model’s
sensitivities. To this end, first consider complex-valued sensitivity of line flows (3.47a) from
with respect to voltage,

asf,abc — dia ( fabcfabc_'_YfabcfabC)Afabc+d|a (Afabc —abc Afabc abC)Yfabc C3m><3n
ouibe 78 &
(3.55)
then combining it with (3.51) to obtain:
o f,abc asf,abc Y
éR( ng ) L ‘SR(auabC M ) 6mx6n
o(asfébc) = fos vy | € R : (3.56a)
S J(6U‘Ebc )
asfabc asf,abc ] A
§R( aSLAb ) e §R<auﬁbc M ) c R6m><6n (3 56b)
C\}( osha C) - g<65f,abc . MA) .
aSLA aufbc

For no-load condition, we have the no load version of the sensitivity term in (3.55), as

asf,abc fabc—abc fabc—abc f,abc f,abc—: abc f.abogabe ) yf.abe 3mx3n
Soras = diag(Yq +Y/ YA + diag(Ag +A] Y2 eC
w
(3.57)
with the required no load coefficient obtained as:
A R 650 . wabe
b= <ag i ) c R2™, (3.58)
N

Exactly similar procedure exists for (3.50c) and is left here in the interest of space.
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Linearized system losses [(3.50d), (3.50e)] First, consider the complex-valued system
loss sensitivity of (3.47b) with respect to voltages as:

asl,abc

abc abc
— yabeTy + yabe, abc +Yabcuabc T4 udbeTy e Clx3n, 3.59
Auabe 0 oL Lo *o LL YL L LL
L

Similar to equivalent single-phase model, we follow the chain rule (3.28) and combine it
with (3.51) to obtain:

_ ¢ Hsl-abe Y
MR %(Bii‘“ ™) 2x6n
e = o o = (o €eR (3.60a)
L asz d([‘)uﬁbc ' )
i _ 55 Hslabe A
MPLA B %(%) B §R( asuﬁbc M ) R2%6n 3.60b
¢ | T gy T |fosie aa)| © oo
M | _\S(@) \S(auﬁbc M )

Finally, in order to complete the loss approximation (3.50d), (3.50e), we obtain no-load loss
sensitivity term as:

o sI,abc
abc
ow?

~ab ~ab
— ugbcTYgLC + (Yﬁgcugbc + YeLlEcwabC)T + wabcTYELC € (C1><3n_ (3.61)

with the required coefficients now obtained as:

d R (agibc 'Wabc>
lé] = %( os' _Wabc)

Awabc

eR. (3.62)

Example 3.10

For the considered multi-phase grid in Fig. 3.12, we present verification for global approx-
imation method. To this end, we do continuation analysis which varies grid loading as
s/ = k8§ and s® = k8, where k € [-0.5,1.5] and 8§ /5" are the rated loading given
in example 3.8, with a corresponding solution ﬁﬁbc. The voltage at the root (bus 0) for all
phases imposed at 7.1996 kV (Line-Neutral) or 12.47 kV (Line-Line). For each step of the
loading, the actual grid solution is obtained using the fixed-point load-flow equation (3.46)
Fig. 3.14, 3.15 and 3.16 respectively present approximation of voltage magnitude, abso-
lute line square flow “from” buses and system active and reactive power loss. We omit
“to” buses line flows in this example as the procedure for obtaining them, the obtained
results and their characteristics are very similar to “from” bus line flows.

Remark 3.7. Recall that, for single-phase equivalent model, we have double system loss
and absolute squared power flows, when estimated using global approximation method at the
desired solution point. From example 3.10, it can be seen that similar behavior is observed
for the multi-phase system. Hence, the similar doubled system loss and squared flows proof
exists for multi-phase grid.

The approximation matrices derived in this chapter resembles similarity to the market
indexes of transmission grid. For example, MP and M* can be considered as distribution
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Figure 3.14: Voltage magnitude approximation for bus 2’s phase a (top) and b (bottom) of the
exemplary grid in Fig. 3.12.

grid’s approximation of the famous Loss Factor (LF) and Power Transfer Distribution Factor
(PTDF) matrices, deployed for calculating marginal loss and congestion prices in transmission
grids [61, 54]. To this end, in the next chapter, we show how these approximations can help
us in setting up distribution grid market framework. In doing so, we show that the derived
sensitivity matrices of this chapter lend themselves naturally in decomposing the final price at
the bus into its energy, loss, congestion and voltage components. As these decompositions
are already existing for transmission grid wholesale markets, the presented market framework
have a high chances of being favored when it comes to realizing distribution grid level markets.
We show this in the next chapter.



68 3. Distribution Grid Modeling: Load-Flow, Approximations and Extensions

o
15 T T T T T T
— Approx. — Actual E
10 g
S os5) |
=
0 |
705 | | | | | | | | |
-04 -02 0 02 04 . 06 08 1 12 14
P
0.3 T
0.2} &
§ 0.1 /
=
0F |
_0]_ | | | | | | | |

| |
-04 -02 0 02 04 06 08 1 12 14

Figure 3.15: Absolute squared line flow “from” buses approximation for line 2’s phase a (top)
and phase b (bottom) of the exemplary grid in Fig. 3.12.
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Figure 3.16: System active power loss (top) and reactive power loss (bottom) approximation
of the exemplary grid in Fig. 3.12.



Chapter 4

Distribution Grid Economic Dispatch:
Solution, Prices and Extensions

In this chapter, we collect concepts regarding convexity and grid approximation, presented
in chapter 2 and 3 respectively and present Economic Dispatch (ED) problem for distribution
grids. First, we deploy the optimality concepts of chapter 2 to derive the price, which resem-
bles closely to the price formulation at the transmission level. We call this price as Distribution
Locational Marginal Price (DLMP). Then, from the approximations derived in chapter 3, we
provide a solution methodology for obtaining a Distribution Locational Marginal Price (DLMP).
Regarding grid modeling, the explanation is first provided on equivalent single-phase grid
models and then extended to multi-phase grid models.

The main contributions of this chapter are: i) proposing a tractable solution algorithm for
calculating DLMPs and ii) utilizing approximation quantities developed in chapter 3 to aid in
decomposing and physically interpreting DLMPs.

4.1 Distribution Grid Economic Dispatch Problem

In this section, Economic Dispatch (ED) for equivalent single-phase distribution grids is pre-
sented. First, a brief overview of the assumed system model is presented in Sec. 4.1.1. Then,
Sec. 4.1.2 describes the optimization problem which is needed to be solved for achieving the
ED in distribution grid. The main goal of this section is in deriving prices from the ED problem.

4.1.1 System Model

For the grid model, we use similar assumptions and notations as given in Sec. 3.1. However,
we augment the grid model with flexibility resources, in order to be optimized in the ED prob-
lem. Apart from flexibility resources, we consider the grid to be also containing number of
Constant Load (CL) which are always satisfied. The active powers of CLs are denoted as:
p® := (p§, ..., pT and reactive power as: q° := (q¢', ..., ¢S)T. We also consider number
of both Flexible Load (FL) and Distributed Generator (DG). The FLs are assumed to optimize
their energy procurement cost of active powers p' := (pl,..., pl)T. As controlling reac-
tive power q" := (qf,..., ") is not a usual load behavior, it is kept as uncontrollable and
modeled simply through a specified power factor. The DGs are assumed to optimize their in-
stantaneous active powers p% := (p$9, ..., p39)T and reactive powers q% := (g%, ..., ¢2%)T

69
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independently . Aggregation of low voltage PV systems with controllable active and reac-
tive power support to the grid can be considered as a practical application of these types of
DGs [109, 3, 97, 59].

Remark 4.1. For brevity, CLs and flexibility resources (FLs and DGs) are assumed of size n.
However, one can see that the developed model is naturally extend-able to contain an arbitrary
number of CLs, FLs and DGs. This is also demonstrated in (to be presented) examples of this
chapter.

In the ED framework adopted in this chapter, it is assumed that DGs and FLs are price-
taking, utility maximizing agents. To this end, the overall social welfare w,(p”, p9) as the
aggregate benefit of DGs and FLs from the active power procurement is:

wp(p", %) =(U"(p") — C3(p%) ). (@.1)

where p¢ = (p° (p%9)T)T collects all individual DGs p% and the root-bus p® with their
marginal cost of supplying energy as C9(p?). The utility function of FLs is simply assumed as
the negative cost of purchasing energy, i.e., U"(p") := —C"(p"). See R. 4.2 for the informa-
tion regarding assumed cost/utility interpretations. We also consider reactive power costs in
the model on the basis that reactive power pricing has been the subject of interest [12, 59, 28].
As only DGs optimize their reactive power dispatch, social welfare from reactive power pro-
curement is:

wy(a®) = —C%(q?), (4.2)

with total reactive power generations: q9 := (q°, (q99)7)T.

Remark 4.2. For all x € {g, fl} procuring power y € {p, q}, costs are defined as C*(y*) :=
c; T y*, where marginal cost is of the form ¢ := aj +BJy* with a positive price per unit vector
aj € R” (in $/MWh) and symmetric, positive definite matrix B}, € R™*" of small positive price
sensitivity coefficients (in $MWh?), turning the social welfares introduced in (5.2) and (4.2)
strictly convex. Regarding the cost interpretation, let A be the cleared active power per unit

price, then the cost/utility function for DGs/FLs in (5.2) is simply:

fl ol
p" = argmax U"(p") — Ap" = max {O, {pﬂ | ou (p)) = A}} ,

pfleRrn 0 pﬂ

C9 (p9
p? = argmax A\p9 — C9(p9) = max {0, {pg | oc (p%) = A}} .
pIcRn opY

Same interpretation holds for reactive power cost functions. Note that the above definitions are
directly in spirit with the optimality discussion in Sec. 2.2.3, where it is shown how econom-
ically efficient ED is attained when independent price-taker agents’ individual minimization
problems turn to the overall social welfare of the system.

4.1.2 Economic Dispatch

From the generalized ED problem presented in Sec. 2.3, we now present its distribution grid
variant. It is assumed that the distribution system operator (DSO) is responsible for running

'This assumption is realized through first specifying the maximum and minimum allowed power factor and
then linearizing it to obtain reactive power dispatch capabilities [3].
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the distribution grid ED, i.e. it collects all FLs/DGs’ individual supply/bid functions and then
solves the following optimization problem:

maximize  w(p", p% q%) := wp(p", ) + ug(q®) (4.3a)
subject to  1]p? — 17(p® + p") = p': AP (4.3b)
a® - 13(q® +q") = ¢': A (4.3¢)
s’ < (s')? ph (4.3d)
82 < (s')? T (4.3¢)
v <v. < vf DRy y,\‘,ﬁ_ (4.3f)
pdg— < pdg < pdg+ . ”gg—, ”dg+ (4.3g)
q¥9 < q% < q¥* L ped T uget (4.3h)
p'm <pl<p™ Ly By (4.3i)

Constraints (4.3b) and (4.3c) respectively present global active and reactive power balance
of the distribution grid. Consistent with the previous chapter, we denote active power loss
as p' and reactive power loss as g'. Constraint (4.3i) dispatches FLs. All DGs’ active/reactive
power are constrained through (4.3g)/(4.3h), respectively. As mentioned in Sec. 4.1.1, the
maximum and minimum reactive power limits are obtained with a ratio of reactive power to its
corresponding nominal apparent power injections. Apparent power flowing in distribution grid
lines from/to ends of the lines are constrained through (4.3d)/(4.3e). The variables listed to
the right of each constraint (behind colon) are their respective Lagrangian multipliers. Note
that the optimization problem in (4.3) is a classical global energy balance formulation, used to
calculate LMPs [88, 82].

Remark 4.3. As classic marginal pricing [88] contains power flows as congestion components,
we also opt for them. However, an extension of this model to consider thermal limits (in
Amperage) can also be performed, as shown in [9, Appendix].

4.2 Distribution Locational Marginal Price

4.2.1 Derivation

Based on the ED problem in (4.3), this section derives DLMPs. First, we follow the generic
procedure of Sec. 2.2.2, where the obtained prices achieved individual cost minimization and
overall social welfare maximization. Consider Lagrangian of (4.3):

O DD T Tl T T i T R TR T aa T T R (S O

=2 (1p® = 150 + p") — p') = 37(1]a® - 1(a” + a") — o) — ()7 (Is'2 - (s)?)
— )T (ISP = 187 12) = ()T (v =) = (o) (v — )
_ (ﬂgg+)r (pdg dg+) ( )T(pdg— ) _ (ﬂdg+)T (ng _ ng+)

— (1) (0% —a%) — (up")T(p" — ™) — (p )T (P" — ") (4.4)
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Now from the optimality conditions, for a given solution of (4.3), we have satisfaction of the
following KKT conditions:

ow(p"p% %) |, ' \vp 09 14 OIS 0ls'|*\
s M- (a gl)TA (6pg)TA —( op )T — ( op )Ty
Ov _ _
—(GT)Z)T(MV*L —py) — (BT —p)=0, (45a)
aw(p", g% q9) ap' aq' dls"? als'*\;
oq9 e (aiqg)TAp - (aiqg)T)\C/ - ( aq9 )T st ( 8q9 ) Hst
Ov _ _
—(aTlg)T(MJL —py) — (P —pP)=0,  (45b)
ow(p" p9 q op dq’ o|s’ o|s!|?
(ap") >\p1n+(ap )T)\P+(a f|)T>‘q+( a| f|| ) ”sf+( g f|| )T”'st
Ov _ _
+(07§)T(uvt —py)+ (Bt —pp)=0,  (45c)
pa(s']? - (s")?) =0,  (4.50)
pa(ls'? = (sF)?) =0, (450
p,“,"L(vL —v) =0, (4.5f)
By (—vL+v )=0 (4.59)
pedt(p® — p¥*t) =0,  (4.5h)
”dg—( pdg + pd9+) =0, (4.5i)
pt(q® —q®") =0 (4.5))
pe (—q® +q% %) =0,  (4.5K)
u:'ﬁ( —-p') =0,  (45)
py (—p"+p") =0,  (4.5m)

along with primal feasibility conditions [(4.3b) — (4.3i)] and all inequality Lagrange multipliers
to be non-negative, i.e.,

()™, ()T, Cpra )T, (pa )T ()T, (38)T, ()T, ()T, ()T, ()T) " = 0.

Note that compared to stationary conditions (4.5a), (4.5b), in stationary conditions (4.5c),
the sign reversal is due to convention that demand is actually a negative injection, i.e., for
generic injection variable p we have the convention p := p9 — p/. Hence, for any grid vari-
able (), the derivative follows the rule:

oL oL a()

ap" — o(") op'"
where partial derivative of the grid variable (-) is obtained as:
o) _ () o _ o) _,
op' op op" op :
As explained in the demonstrative example 2.2, the optimal price recovered from ED prob-
lem enforces condition of all supply functions (from generators) to be equal to the bid func-

tions (from flexible demand). We follow the similar line of arguments to find DLMPs in (4.3) as
follows.
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First, we obtain the relationship of root-bus with respect to power deliverance to the dis-
tribution grids. Note that in (4.5), the only stationary conditions providing the relationship to
the root-bus is given in (4.5a). Moreover, from the distribution grid modeling setup explained
in chapter 3, we have voltages at the root-bus fixed, and not as the solution of the load-flow
problem. Hence, with respect to root-bus there exists no sensitivity of root-bus with respect
to the load-flow solution variables, i.e. all sensitivity terms in (4.5a) are zero, except the cost
term (first term in (4.5a)). Hence, at the root-bus, we have the following relationship.

cg=X, and c¢o =), (4.6)
where consistent from the definition in R. 4.2, cg and cg are the marginal cost of providing
power at the root-bus.

Second, we define the marginal value of supplying active and reactive power by flexibility
resources, i.e. active power from DGs TI'¢ and FLs TI'8 and reactive power by genera-

tion T[E'ex

T = g + ¥ — ™, (4.7)
T = —cdg +pdt - pde, (4.8)
Fle . fl-+ fl—
LI X = c —HBp +Hy - (4.9)
In the above definitions, it can be observed that marginal values of supplying erxibiIity re-
sources are simply linear combinations of their internal marginal costs (cﬁg ng c ) of energy

procurement and maximum and minimum dispatch limitations (poe", 99~ u;’9+, pad, pht,

p,;'f). Hence, it can be concluded that these marginal values represent internal constraints of
all flexibility resources.

Finally, from the definition of grid cleared price, the DLMP must exist in equilibrium with
marginal value of satisfying grid conditions and supplying dispatch from flexibility resources.
This can be written as the following equivalence condition:

“Srid — “EL%X — ]-I'FleX, (410)

e = ™ (4.11)

where TIS"Y/TIS™ represent marginal value of delivering active/reactive power at all grid
buses. We call this value DLMP, as this value exists in equilibrium with grid conditions and

marginal values of flexibility resources. To this end, we obtain DLMP using the following ma-
nipulations:

1. by substituting [(4.7) — (4.9)] into stationary KKT conditions (4.5a) — (4.5¢),
2. utilizing the equilibrium conditions [(4.10), (4.11)] and
3. using the equivalence of marginal value of delivering power at root-bus (4.6).

This yields the following expression of DLMP for all n grid buses:
o|s|? Ov

op! o _
I _ 01n+( P )T 0, ( )T 04+ ( | ‘ Vg + ( )Tust+(7L)T(l"\J:rL —y)
op op
(4.12)
_ f 9|st|? Ov -
anrld:C21n+( )T o+( )T o+( V s )”‘5‘+(<‘9q|)wst+( L) (P«VL By)

(4.13)
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Note that, one can verify that the above expression is generic in grid injections p/q =
p% — p"/q% — q", i.e., the derivation holds true for positive/negative power injections, i.e., for
both DGs (p9, q9) and FLs p'.

4.2.2 Decomposition

The DLMP values in [(4.12), (4.13)] are decomposable into energy TT5/TI5, loss TI; /T,
congestion TIS /TIS and voltage components TTY /TTY:

T = 105 4+ 10, + 105 + MY (4.14)
Grid _ 1yE L C v
M =T 4+ T + Ty + T (4.15)
where active power terms are:
TS = o1, (4.16a)
op! aq'
L._ 0 0
"P = (aip)TCp + (aip)TCq, (416b)
0|Sf’2 a’st‘2
C._
my = (Tp)Tﬂ’sf + (Tp)Tﬂsh (4.16¢)
aVL _
Ty = (5 ) (ke — 1), (4.16d)
P
and similarly reactive power terms are:
g = cJ1, (4.17a)
op' dq’
L._ 0 0
My = ( 24 )Tep + ( 34 )Teq (4.17b)
a|sf|2 0|St|2
C._
my = (W)Tﬂsf + (Tq)Tﬂst (4.17¢)
aVL _
Mg = (g ) (e — B (4.17d)

4.2.3 Discussion

The DLMP derived in [(4.12), (4.13)] with its decomposition provided in [(4.16), (4.17)] is
able to represent price as contribution of each bus towards grid conditions, i.e. energy, loss,
congestion and voltage. In this way, better justification of the imposed price for the respective
bus can be made. For example, a bus causing voltage to bind at lower/upper limits due to its
injected has also to be charged for its contribution to voltage binding in the grid. This structure
is very similar to already existing transmission grid level electricity market price, where the final
price conveyed to the loads/generators is decomposed into their contribution to energy, loss
and congestion components 2. Hence, it can be concluded that the DLMP structure of [(4.12),
(4.13)] is able to provide the impact of crucial grid conditions on the cleared prices. Moreover,
due to the similar structure adopted in transmission grid, the proposed DLMP structure of this
thesis maintains high practical relevance. As the tools and knowledge developed over the
years from transmission level pricing can be simply transfered to DLMP.

2We wish to emphasize here that voltage contributions in transmission level pricing has still not been included
because usually transmission grids have a reliable voltage profile. However, as voltage issues are more com-
mon for distribution grids, we believe their contribution in the final price to be passed on to the user must be
incorporated.
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4.2.4 Challenges

In order to be deployed in a practical settings, a reliable and robust solution methodology is
required to calculate DLMP. On the transmission level, this has been achieved by adopting
an approximation of power flows, i.e., DC load-flow model, where it is assumed that voltage
across the grid is flat (same) [61, 54]. With the inclusion of DC load-flow, the resultant ED
problem is a LP/QP problem. These problems have a reliable solution methodology and
consequently price calculation, as many off-the-shelf software exists to solve them [11, 30,
65]. However, in distribution grids, due to higher losses, a DC load-flow model is inefficient
and generally not accurate. Moreover, with the advent of DGs/FLs in distribution grids, the
injection/loading can vary drastically which makes the assumption of constant voltage profile
too strong [26, 3, 63]. Hence, for DLMP recovery, a great barrier exist in solving (4.3) in
its given form. Mainly the main non-convexity can be seen to arise from constraints (4.3b)—
(4.3f) [see grid modeling parts of chapter 3]. Due to this, the DLMP determination from (4.3)
is difficult as off-the-shelf solvers can not solve it in this form. This reduces solution reliability
and future practical realization of the proposed DLMPs.

4.3 Solution Algorithm: Methodology

To construct the solution methodology, which is not only as intuitive as the DLMP struc-
ture [(4.12), (4.13)], but also mitigates grid nonlinearities, we proceed as follows:

1. perform approximate power flow equations developed in chapter 3 and deploy them to
obtain an an approximate convex problem variant of (4.3); and

2. iteratively optimize the approximate convex program and obtain new approximate power
flow solution points, so that it moves in a trust-region solution space, i.e., where the
approximate grid model matches closely to the actual grid model.

Next, we explain the above mentioned solution methodology steps in detail.

4.3.1 Approximate Quadratic Program

In order to develop an Approximate Quadratic Program (AQP), we repeat below for conve-
nience our previously developed approximations % := ((¥.)7, (87, &Y, (5)7, (")7)T,

U =a+ Mg (4.18a)

52 =6+ Mm's (4.18b)

g2=e+ M s'L’”, (4.18¢)

p=d+ M (4.18d)

§ =&+ Mg (4.18e)

obtained using actual states % := ((¥)T,(8"7, (8")7,(p")7, (§")7)T satisfying the following
equations:

G = — Y Yiouo + Yo M diag(@) 8L (4.19a)

8/t = diag(AY uo + A e )(YY G0 + Y/ 'GL), (4.19b)

P+ j§ = & = up(Yooto + YoL ) + (6)T(YioTo + YiLhL). (4.19c)
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Refer to chapter 3 for more information regarding the above equations. After substituting the
approximation of (4.18) in the original nonconvex problem (4.3), we obtain the following AQP:

maximize  w(p", %, G%) := wp(p", P?) + wy(G°) (4.20a)
subject to  1]p¢ — 17 (p% +p") = p': AP (4.20b)
& - 17§ +§") =4 : 29 (4.20c)
52 < (s™)? Ty (4.20d)
87 < (s7)? pl (4.20e)
v <UL < Ly B (4.20f)
pOT <P <p®T it (4.209)
ng— < ﬁdg < ng-i- : I"'gg_i I_L(cilg-‘r (4.20h)
p'” <p' <p't By By (4.20)

Assuming that there exists a flexibility resource dispatch 4P := ((p9)T, (p")T, (§9)7)T which
(i

(§9)T)T in the direction of maximum overall social welfare.

Remark 4.4. The AQP in (4.20) is a QP, because its objective function (4.20a) has a positive
definite Hessian term (see R. 4.2) along with constraints which are affine in the dispatch
variables (4.18). QPs have a property of being strictly convex, i.e. the recovered solution
from QP is a global minimizer (see chapter 2). Note that adopting this property is not mere
a technicality, as (to be introduced later) it is going to be the cornerstone in our discussion
on price calculations. Note that if the objective function of (4.20a) had been linear, then
the resultant problem (4.20) would have been an LP. As mentioned before, both LPs and
QPs have freely available off-the-shelf solvers, able to provide timely solutions for very large
programs.

4.3.2 Trust-Region Algorithm

We present now a trust-region algorithm [17], [79, chapter 4] to obtain methodical iterative
procedure for improving the solution from AQP (4.20). The trust-region methods have been
applied to optimal power flow problems [27, 91, 44, 89]. However, they have not yet been
deployed for radial distribution grids with fixed-point solution guarantees (see grid modeling
part of chapter 3), which is the focus of this thesis. In general, trust-region based algorithm
mitigates the approximation inaccuracy, i.e. the approximate dispatch 9P obtained from
AQP (4.20), i.e., 9P may move the grid approximation quantities, i.e., % in (4.18) too far from
the operating point x. This renders the linearization (done around the operation point) in (4.18)
inaccurate®, i.e., not giving an accurate reflection of the original power flow equations (4.19).

Algorithm 1 describes a trust-region based methodology in 4 steps. The steps improve the
approximate solution of the AQP in an iterative manner for each iteration m. The explanation
of each step follows:

Step 1 — Trust-region Minimization: In this step, the AQP is modified by augmenting its in-
equality constraints to include a permissible value (a trust-region) which restrict their

8As we recall that both local and global approximations when moved away from the operating point yields an
error with respect to actual grid operation.
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movement. So clearly, we would like the algorithm to remember the previous state of
the problem as well as predicting its movement in future states [79]. To this end, let
us redefine the approximate state and dispatch quantities as the measure of change in
their operating state at the current iteration (m), i.e., X(m) = %(m) + Ax(m) and dis-
patch quantities §45P(m) = §9P(m) 4 As¥P(m), then the modified AQP (4.20) for each
iteration m becomes:

maximize w(8¥P(m)) := w(8%P(m)) + w(As¥P(m)) (4.21a)
subject to  (4.20b) — (4.20i) (4.21b)
— 6 < AsTP(m) < § (4.21c)
— 6 < AxIP(m) < 6 (4.21d)

where the trust-region is now denoted by a radius § > 0.

Remark 4.5. In (4.21), the constraints [(4.20b) - (4.20i)] are consistent with the new
constraints [(4.21c), (4.20d)]. This is because, recall from chapter 3, that the structure
of approximations in (4.18) is: (-) = (-) + MO)s. This can be rearrange and simply
represented as :

A(-) = MO Ag
where by definition of grid injections the only change in injection is due to flexible DGs
and FLs, .
ASICJ = Apdg _ Apﬂ o pcl +j(Ang o Aqﬂ . qC|)

where
Apdg/ﬂ _ ﬁdg/ﬂ . ﬁdg/ﬂ_

Also note that this also implies that inequality constraints in [(4.20b) - (4.20i)] are only
going to be active when (As¥P(m), Ax(m)) causes the movement of the original quan-
tities (8P(m), %(m)) to reach their allowable limits at iteration m. Finally, by observa-
tion, it can still be seen that the modified AQP is still a QP*, and within the allowable
given trust-region radius ¢ finds a global minimum (see R. 4.4).

Step 2 - Feasible Solution Projection: Using the dispatch result from the step-1, at itera-
tion m — 1, we project the newly calculated dispatch for iteration m §9P(m — 1) to the
actual power flows (4.19). This is done by subjecting the new injection to obtain the load-
flow solution from (4.19). This might yield a new state X(m + 1) for iteration m + 1. This
is because depending upon the approximation quality of the model, change in the root-
bus injection might happen, as the root-bus acts as a slack-bus, which compensates for
any difference in the approximated state X(m) and actual grid state X(m). This projected
dispatch which satisfies grid equations is then denoted as §d'3p(m).

Step 3 — Trust-Region Evaluation and Update: In this step, we evaluate the trust-region ra-
dius for the current iteration m using the following criteria:

_ WP (m 1)) — w(s™*P(m))
w(8(m — 1)) — w(3**(m))

(4.22)

The numerator shows the actual reduction in the objective function, whereas the denom-
inator shows the predicted reduction in the objective function. In principle, it is evaluated,

“This is because constraints of the modified AQP are still affine in the decision variable and the objective
function has a positive definite Hessian (see the definition of objective function in R. 4.2.
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for two consecutive iterations, whether the ratio of change in actual system progres-
sion (numerator) to the change in the approximate system progression is comparable.
Some observations regarding the trust-region evaluation step follows (for the generic im-
plementation, see Algorithm 1). The higher value of o(m) represents a good agreement
between approximation and actual system and hence advocates an increase in the size
of the trust-region. For o(m) < 0, the trust-region step must be reduced [79]. For our
case, this means that the new projected dispatch (at iteration m) is higher than the pre-
viously projected dispatch value (at iteration m — 1), i.e., w(3%P(m)) > w(3%P(m — 1)).
For the approximated dispatch showing a decrease in its objective value as compared
to the feasible solution, i.e., w(8%5P(m)) < w(3%P(m — 1)), we also do not expand the
trust-region as the approximated model is still not accurate enough. Similarly, for o = 0,
we also reduce the trust-region size.

Step 4 — Evaluate Solution Progress: Finally, if the solution at the current iteration makes a
satisfactory progress towards the optimal solution, i.e., yields improvement as compared
to the previous iteration’s objective function, we accept the solution and move to the next
iteration. Otherwise, we repeat the above steps using the modified trust-region o(m). A
safe heuristic measure to ensure that the progress in the objective function is made at
the current iteration is o(m) > 0 (see Algorithm 1 for more generic implementation.).

The trust-region algorithm is terminated when a change in dispatch |AS¥P(m)|s, := max
|39P (m) —89P(m —1)| where |-| is the absolute operator, is below a certain threshold e. From
the perspective of power system problems adopted for trust-region method, more information
regarding the choice of v, €, 1, T and d.max, can be found in [27, 91, 89]. The above mentioned
steps in an algorithmic form are presented in Algorithm 1.

4.3.3 Final DLMP Model

Upon convergence of Algorithm 1, the final DLMP model in its decomposed components of
energy TT5 /TIL, loss TT; /TTg, congestion TTS /TTS and voltage components TT /Ty is:

TS = TS 4+ T, + 105 + 1) (4.23)
g™ = TG + T, + TG + Ty (4.24)
where its can be observed that active power terms:
T = 01, (4.25a)
L = (MP)I1c + (M7)Ics, (4.25)
TS = (M) g + (M) g, (4.25¢)
= (M) () — By), (4.25d)
and reactive power terms:
g = 1, (4.26a)
L= (MP)IcS + (M7)] e (4.26D)
e = (M)l + (M) (4.26¢)
My o= (M)I(pd — py) (4.26d)

contain the approximated sensitivity matrices from (4.18). Note that matrix ML']/q simply cor-

responds to active/reactive injection entries of M.
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Algorithm 1: Trust-Region Algorithm

Input Using initial dispatch quantities §diSp(0) perform a base case power flow to
obtain feasible state X(0) satisfying (4.19)

while |AS%P(m)|s > ¢ do

Step 1 — Trust-region Minimization;

From a feasible %(m), obtain approximates from (4.18) and solve (4.20) to
get 9P (m) ;

Step 2: Feasible Solution Projection ;

Using 59" (m) solve (4.19) to obtain a new feasible state X(m) and a
corresponding feasible dispatch 8%SP(m) ;

Step 3: Trust Region Evaluation and Update;

if o(m) < nthen /* bad approx. */
| §(m—+1)=v-8(m);

else if o(m) > (1 — n) then /* good approx. x/
| 8(m+1) = min(26(m), bmax)

else
| 8(m+1) =68(m);

end

Step 4: Evaluate Solution Progress ;
if o(m) > T then
m=m-+1;
Accept the iteration, set new states as X(m) ;
else
\ Reject the iteration and repeat using the modified region;
end
end

4.4 Solution Algorithm: Discussion

In this subsection, we discuss how the proposed solution methodology of Algorithm 1 can be
analyzed from the viewpoint of already presented concepts of i) solution uniqueness (Sec. 3.2.2)
and ii) convexity (chapter 2).

4.4.1 Solution Existence & Uniqueness

Recall that for the fixed-point load-flow solution of (4.19), we have solution existence and
uniqueness under the satisfaction of two conditions. We repeat these conditions below for
convenience.

&(8L) < Uhin, (4.27)
&(5L)

min

A: )2 — 4¢(sL —8L) > 0, (4.28)

(Umin_
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within the set

D= {uL: |u.—b| < plwl|}, (4.29)
Umin — i(gL) —VA
p = g’" , (4.30)

which guarantees a unique solution u. € D and the pair (u, s.) satisfies (3.6) (see Sec. 3.2.2
for more information). Note that conditions [(3.8), (3.9)] are parameterized in the solution
pair (@i, §) satisfying the load-flow problem along with a new arbitrarily requested set-point s .
With regards to Algorithm 1, this is equivalent to being parameterized in actual states and dis-
patch (%, 89P) satisfying grid equations and a new requested set-point §4P calculated from
step 1 of Algorithm 1. Hence, it can be concluded that the satisfaction of [(4.27), (4.28)] en-
sures that the feasible solution projection, i.e., step 2 of the Algorithm 1 always exists and
yields a unique solution. This is an important result from the perspective of the proposed
algorithm as the feasible solution projection (step 2 of Algorithm 1) is deployed in subsequent
steps to measure the improvement in the solution obtained from the modified AQP (4.21a).
Moreover, it has been shown in [101] that for practical operating range of the distribution grid,
the conditions in [(3.8), (3.9)] are usually satisfied. We also observe the same in this thesis (to
be shown in subsequent examples and results).

Also note that Algorithm 1 is initialized using a base case load-flow. For the case of
uncertain base case load-flow, we can also initialize Algorithm 1 using a cold start, i.e., at
no-load condition (w, 0). Recall that this is obtained by inserting (u?, sP) in [(4.27), (4.28)], to
obtain new set of unique solution guaranteeing equations:

£00)=0< 2, (4.31)
A= ¢(sL) < 0.25. (4.32)

To summarize, the above conditions can be conveniently used for the scenario when no base
case operating conditions existing to initialize Algorithm 1. Hence, upon satisfaction of condi-
tions [(4.31), (4.32)], we can begin Algorithm 1 with no-load condition (w, 0).

4.4.2 Solution Progression

Assume that at iteration m, the dispatch §9P(m) satisfies [(4.27), (4.28)], then from the above
discussion we know that the new candidate set-point §°”Sp(m) yields a unique projection on
the actual grid power flows. Moreover, with regards to solution optimality of the new candi-
date set-point §%P(m), it is in itself a global minimizer of the modified AQP (4.21), within the
allowable trust-region radius §. This is simply because the modified AQP is still a QP (see
R. 4.5). This means that considering a feasible starting point of Algorithm 1, at the completion
of step 1, §*%P is a unique optimizer. Then throughout Algorithm 1, we ensure that for each
iteration m a new candidate dispatch $4SP(m) under [(4.27), (4.28)] maintains solution unique-
ness, while improving solution quality in terms of objective function (see (4.22)). Holistically,
this means that the algorithm finds new successive operating points with the aim to lower the
value of the objective functions (4.21a), where the operating point satisfies load-flow solution
exists. Now observing the termination conditions of Algorithm 1, one can see that this criteria
corresponds to the point where solving (4.21a) and projecting on (4.19) yields no improve-
ment, while conditions [(3.8), (3.9)] hold. This is true for two conditions, either the point found
is a local minimum or a global minimum. Hence, it can be concluded that in the worst-case the
proposed algorithm 1 finds a local minimum of the overall nonconvex problem (4.3) or in the
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best case a global minimum [11]. For radial grids and under practical operating conditions,
works of [10, 101, 6] have shown that the resultant power flow solution space is convex. Since
exploring the solution space is not the key focus here, we are not going to pursue it in detail
in this thesis. However, the results section of this chapter support these claims and provides
similar solution quality as compared to a benchmark optimal power flow software [113].

4.4.3 Practical Implications

The above described solution methodology handles non-convexity of the original program (4.3)
in two steps: (i) AC power flow calculation (step 2) and (ii) convex program solution (step 1).
Both these steps have off-the-shelf software, which can be readily deployed to obtain reliable
solution methodology®. Hence, the above described solution methodology has a high solu-
tion robustness and reliability. Moreover, the approximations developed in chapter 3 are also
directly deployed for solving the convex program as well as calculating DLMPs. This aids in
the ease of price interpretation. The solution methodology adopted in this thesis is different
to recent propositions of convex relaxation of power flows [97]. However, in appendix A.2, we
show that convex relaxation approach might not translate to intuitive DLMP formulation and
interpretation.

4.5 Results of the Proposed Solution Methodology

In this section, we demonstrate the above described solution strategy for solving the original
nonconvex problem (4.3) and recovering DLMPs [(4.25), (4.26)] from it. In doing so, we are
going to compare the results with MATPOWER [84]°.

Example 4.1

First, we present the analysis on the single-phase equivalent three-bus system of exam-
ple 3.2. More information of this grid can be found in appendix A.1.1. As evident from the
MATPOWER case file of appendix A.1.1, we have modified the test case by inserting a DG
at bus 2 and setting marginal value of active and reactive power supply by both DGs (at
bus 2 and root-bus (bus 0)) at 10 $/MWh and 1 $/MVarh, respectively. A small price sen-
sitivity coefficient of 1 - 10~* $/MWh?(MVarh?) is chosen to keep the objective function
strictly convex and hence the modified AQP as a QP (see R. 4.2). We demonstrate two
scenario. Scenario-1 contains no congestion whereas Scenario-2 is implemented by lim-
iting power flow on the line from bus 1 to bus 2 by 0.65 MVA. For both cases, we assume
there is no scarcity of generation, i.e., there is no maximum limit on active and reactive
power generation. For both cases, upon convergence of Algorithm 1, we demonstrate all
components of active and reactive power DLMP model, derived in [(4.25), (4.26)] in Ta-
ble 4.1 and 4.2 respectively.

Table 4.1: Active power DLMPs (in $/MWh) for scenario 1 (top) and 2 (bottom) for all grid
buses i.

SFor example, the convex optimization can be solved using [31] and AC power flow calculation can be per-
formed using [84].

5For MATPOWER, we experienced same results from both semi-definite and interior point solvers. For more
information regarding the solution methodologies of MATPOWER, interested readers are referred to [113, 84].
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i "E IT:; TTS ng "'C)%rid -n-l'\)/IAT ng ugg+ _ ”gg— "ELegX
0 0 0 0 10 10 10 0 10
1 10 0.5934 0 -0.0279 10.566 10.566 — - -
2 0.0507 0 -0.0507 10 10 10 0 10
0 0 0 0 10 10 10 0 10
1 10 0.668 0 0 10.668 10.668 - - -
2 0.1783 -0.1783 0 10 10 10 0 10

In Table 4.1, TTYT is the final DLMP value obtained from MATPOWER. Shown in

bold in Table 4.1, it can be observed that flexible DLMPs ITEL‘ZX representing the internal

flexible bus dynamics exist in equilibrium with the grid cleared DLMPs, i.e., TIS™ = TI7E"

and they are equal to the benchmarked MATPOWER solution. This on one hand verifies
the DLMP model’s equilibrium conditions (4.11) and on the other hand shows capability
of Algorithm 1 to handle the non-convex ED program (4.3) reliably. Hence, the value
of objective function along with dispatch of generator is similar and are not mentioned
here to save space. Some comments on the behavior of DLMP components follow. In
Table. 4.1, a negative value of the DLMP component at a bus means that a unit increase
demand at that bus increases the objective value of the non-convex ED problem (4.3a).
For example, positive loss components lT';, at bus 1 and 2 means that unit increase in
demand at bus 1 and 2 increases the cost of the overall system by this amount. This
is exactly why this component has been termed as marginal loss in transmission grid
market calculations [61]. Another interesting observation from Table. 4.1 is that originally
(Scenario 1) there exists nonzero voltage binding component of DLMP,i.e. Tl:,’. This was
because the DG, due to no constraints on line flow from bus 2 to bus 1 in Scenario 1,
dispatched power which caused voltage at its bus (bus 2) to reach the maximum value
of 1.5 p.u.. Now due to imposed line flow constraint of 0.65 MVA, the DG dispatches less
power, which removes the voltage binding and consequently removes the DLMP voltage
component. However, as compared to Scenario 1, the final cleared DLMP value at bus 1
is increased 10.668 > 10.565 for Scenario 2. This is because due to line flow congestion,
extra power has to come from the root-bus, which would have been provided more cost-
effectively (as in Scenario 1) by DG (at bus 2). This can also be verified by comparing
objective function values (costs) for both Scenario 1 and 2. Indeed, for Scenario 2 the
calculated objective function value is 11.552 $, whereas in Scenario 1 the final objective
function value is 11.537 $. This amounts to 0.13% increase in the cost when the grid
operates from non-congested to congested scenario, i.e., from Scenario 1 to Scenario-2.
Similar observations can be inferred regarding reactive power DLMPs, given in Table 4.2.

Table 4.2: Reactive power DLMPs (in $/MVarh) for scenario 1 (top) and 2 (bottom) for all
grid buses i.
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i "E "|c_| "qc "X -I-l-qGrid -n!\]/IAT ng Mgg+ . ”gg— nz!gx
0 0 0 0 1 1 1 0 1
1 1 0.593 0 -0.027 1.566 1.566 — - -
2 0.050 0 -0.050 1 10 1 0 1
0 0 0 0 1 1 1 0 1
1 1 0.668 0 0 1.668 1.668 - - -
2 0.173 -0.173 0 1 1 1 0 1

Next, we see algorithm performance for Scenario 2 (with congestion). The reason for
analyzing Scenario 2 is that it demonstrates all constraints in the optimization problem
being active, consequently posing a higher challenge to find a solution as compared to
non-congested scenario (Scenario-1). Fig. 4.1 shows the progress of control variable
error. For the given system, the maximum error in control variable reaches the value of 1 -
105 in 5 seconds (within 15 iterations). However, we use no-load conditions to initialize
Algorithm 1 to simulate the worst-case initialization scenario (zero dispatch values). The
number of iterations can be reduced by intelligently initializing Algorithm 1, i.e., selecting
a base-case which is closer to the actual operating condition.

Control Variable Error
10° ‘ ‘ ‘

1071 L

10721

| AP (M) oo (MW)
)
b
T

1074+

T

-6 | | | | | | |
10 0 2 4 6 8 10 12 14 16

lterations (m)

Figure 4.1: Control variable progression for each iteration (m) of Algorithm 1 for 3-bus
grid.

Fig. 4.2 shows the dispatched active/reactive generations for both root-bus (p°/q°) and
DG at bus 2 (pfg/qu) for each iteration of Algorithm 1. It can also be seen here that
we initialize Algorithm 1 using zero dispatch value for both generations. Moreover, it can
be verified that at the termination of Algorithm 1, the final dispatch value calculated from

~ A,

Algorithm 1 (-) and MATPOWER?s interior point non-convex program (-) is exactly the
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50, 529 40, §9%). The same results are also obtained when

. ~0 =09 ~0 ~d
same, i.e., (5%, p7°, G°, 5°) = (B° p1°, §
MATPOWER'’s solver is switched from interior point to semi-definite programming.

Active Power Dispatch
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Dispatched active/reactive generations for both root-bus (p%q°) and

Figure 4.2:
DG (p39/¢%9) for each iteration (m) of Algorithm 1 for 3-bus grid.

Fig. 4.3 simulates verification of conditions [(4.27), (4.28)] at each iteration m. The values
in Fig. 4.3 are calculated as follow. For a pair (G (m — 1), 8 (m — 1)), satisfying (4.19)
we calculate whether the new dispatched candidate (injections) §, (m) from step 1 can
be successfully projected to actual power flow solution space (step-2) for iteration m. To

this end, we check conditions [(4.27), (4.28)] which are then parameterized in a satisfied
— 1)) and a new candidate § (m). Fig. 4.3 experimentally

solution pair (G (m —1),8.(m
verifies this, where it can be seen that both conditions [(4.27), (4.28)] are satisfied for
each iteration of Algorithm 1. Main takeaway from this experiment is that one can com-
ment that throughout Algorithm 1 for each iteration m a unique solution exists within the
defined trust-region radius 6. Moving on, Algorithm 1 moved towards optimal (minimum
cost in this example) solution. Eventually, at the termination of Algorithm 1, objective
function and consequently control variables ceases to change Fig. 4.1 and Fig. 4.2. Note
that the final dispatch value from Fig. 4.2 provides exactly same values as MATPOWER’s
semi-definite programming, which has been shown to provide a global optimal. This also
provides experimental verification of our concluding remarks of Sec. 4.4.2, where we
mentioned that, due to convexity of solution space for radial grids under normal operation

conditions, the proposed Algorithm 1 converges to a global optimal.
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Figure 4.3: Verification of solution uniqueness conditions [(4.27), (4.28)] for each itera-
tion (m) of Algorithm 1 for 3-bus grid.

4.5.1 Model Comparisons

In this subsection we compare the proposed solution methodology of DLMP, with state-of-the-
art methods from the literature. To this end, we compare in Fig. 4.4, the proposed methodol-
ogy of Sec. 4.3 (AQP) against an i) approximate (linearized) DLMP model (AQP’) [109] and
ii) an interior point® MATPOWER model (MAT) [84].

As AQP in [109] has been tested extensively for 33-bus system, we also perform DLMP
comparisons on the same grid. Moreover, to present realistic assessment, we introduce both
DGs and FLs in the 33-bus system. See Fig. 5.2 for pictorial representation of the grid
and Sec. A.1.2 in appendix for the MATPOWER code. DGs and FLs have dispatch capa-
bilities as follows; (1) the active and reactive power dispatch for DGs are within range [0, 0.5]
MW and [—0.3, 0.3] MVar and (2) the active power dispatch for FLs is within the range [—1.47,
0] MW (derived from [35]). Two DGs are introduced and placed at bus 22 and bus 18 whereas
two FLs are selected and placed at bus 33 and bus 25. In this way, each DG and FL is placed
closer and far-off from the root-bus. The marginal value of supplying power to the grid from
root-bus is fixed at 10 $/MWh and 3 $/Mvar. A small price sensitivity coefficient of 1 - 10~*
$/MWh?2(MVarh?) is chosen to keep the objective function strictly convex and hence the modi-
fied AQP as a QP (see R. 4.2). Similar to example 4.1 we simulate two scenarios. In principle,

"We also call this method AQP as we named (4.20). This is because, similar to AQP of (4.20), the final model
in [109] is also a quadratic program.
8The semi-definite solver of MATPOWER provided the same results. See Sec. 4.4.2 for more information.
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we manipulate supply/bid functions of DGs/FLs to obtain DLMPs with congestion (scenario 2)
and without congestion (scenario 1).

Scenario-1: For all flexible buses (DGs/FLs) and the root-bus, this case fixes the active
and reactive power marginal costs at 10 $/MWh and 3 $/MVarh. From Fig. 4.4 it can be
seen that the proposed AQP-TR, utilizing trust-region iterations, provides an improved solu-
tion quality compared to the AQP, and exactly similar solution as non-convex ACOPF (MAT).
The improvement from AQP is is because for buses far from the root-bus large voltage drops
exist causing higher errors in linearization, which is performed around a flat nodal voltage pro-
file (1 p.u) and negligible angle difference. As FLs, due to their locations, with same marginal
values to DGs are not dispatched, next we present Scenario-2 to evaluate their presence on
DLMPs.

Scenario-2: In this case, marginal utility for all FLs are increased to 15 $/MWh, all remain-
ing settings are similar to Scenario-1. The proposed LMOPF method again achieves almost
identical dispatch quantities and DLMPs as compared to the non-convex ACOPF solution [84].
The large power drawn by the FLs now binds the lower voltage and line flow limit at bus 25
and 33.

Scenario-1 Scenario-2
13 T T T 16 T T T
14
12
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| | | | | |
9O 10 20 30 80 10 20 30
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=
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Figure 4.4: Active (top) and reactive power (bottom) DLMP comparisons on 33-bus grid, ob-
tained using MATPOWER (MAT) [84]; a linear grid model (AQP) [109]; and the proposed
methodology of Sec. 4.3 (AQP-TR).

The general observation from both scenarios is that for buses 19-22, similar DLMPs are
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Figure 4.5: Active power DLMP comparison between the proposed LMOPF, ACOPF [84] and
LIOPF [109] for 141-buses (top), 564-buses (middle) and 1128-buses (bottom) grid.

obtained from all three methods. This happens because voltage magnitudes are close to their
upper voltage limits and binding at bus 22, making its feed-in branch experiencing DLMPs at
its marginal cost, i.e. 10 $/MWh and 3 $/MVarh. For Case-2, this effect is also caused by line
flow constraint binding at bus 33, causing the respective DLMPs to be closer to FLs’ marginal
utility value, i.e. 15 $/MWh. It was also confirmed that, for both scenarios, regardless of the
initialization point, the proposed Algorithm 1 method always converged to the same dispatch
and consequently DLMPs within only 4 iterations.

4.5.2 Model Scalability

To show the scalability of the proposed model, we implement the proposed model on three
distribution grids containing 141-buses [49], 564-buses and 1128-buses. For all the grids,
the marginal cost settings for DGs/FLs are kept similar to those of Scenario-2 of Sec. 4.5.1.
We construct the 564-buses and the 1128-buses grid by duplicating the 141-buses grid, while
preserving its original root-bus [109]. Similarly, the number of DGs/FLs in the 564-buses grid
and the 1128-buses grid are proportionally increased as compared to 141-buses grid. In
this way, we not only evaluate the feasible solution projection step but also the trust-region
minimization step of the proposed model (See Algorithm 1).

The scalability of the proposed method along with comparison of solution quality with
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other methods in the literature is shown in Fig. 4.5. We only present active power DLMPs in
Fig. 4.5 as reactive power DLMPs show similar results and are left out here to save space.
Similar to Fig. 4.4, Fig. 4.5 reiterates that the proposed model achieves the same results as
MATPOWER’s interior point ACOPF model, while outperforming the state-of-the-art linearized
model [109]. Table. 4.3 details the information regarding the simulated grids and the resultant
computation efforts of the proposed model. It can be seen that the proposed model scales
well with the increase in the size of the grid and the number of flexibility resources (DGs/FLs).

Table 4.3: Proposed Model Scalability

buses DGs FLs Iteration Time (sec.)

141 2 2 3 1.5
564 8 8 3 3.3
1128 16 16 4 13.3

4.6 Multi-Phase Economic Dispatch Problem

4.6.1 Multi-Phase System Model

In this section, we present extension of the proposed DLMP model of Sec. 4.2 for multi-
phase grid models. All assumptions regarding cost functions of flexible resources (DGs/FLs)
of single-phase system model (see R. 4.1) is also preserved for multi-phase grid model. How-
ever, we make a simplification that we only consider DGs as a flexible resource, while consid-
ering possibility of DGs having both wye and delta connections.

Combining the multi-phase grid notation of Sec. 3.4, with DGs, we have: let wye-/delta-

connected active and reactive power injections as p|_/A ; §R(sY/A) and qY/A = (s Y/A),

where in particular, p,_/A = (( VA _ Y/A) ..... (pz/,,A — pmA) )T, q\,_(/A = ((q\g(/lA -
Y/A) N Y/A  Y/Ayg

Pg1 P
qa; ag/n —a;5,")7T)T where py/ 2, pT/A, q)/” and qY/A of size R3" are active power
generatlon active power demand, reactive power generation and reactive power demand, re-
spectively. We make p'/q' := R(s')/S(s') as active/reactive power grid losses and p®/q° :=
R(s°)/H(s°) € R3 as active/reactive power injection from the bulk-transmission to the distribu-
tion grid’s slack bus. First, upon solution of multi-phase load-flow problem, we have a solu-
tion @22 for given injections (82, 8)), resulting in line flows and system losses (§h3b¢/tabe | ghabey,
All these relationships can be summarized in (4.33). These equations have been presented
earlier in detail in Sec. 3.4 and repeated below for convenience.

diag(d |°°)HT||_ +s|_ = dlag(“abc) Y, (4.33a)

2 = diag(HG2®)i>,  (4.33b)
iY = Yabey, 4 yabegabe (4 33¢)
( )
( )

§f,abc/t,abc _ diag(AEabc/t,abc + Af ,abc/t, abc,\abc)(YI)abc/t abc,\0 i Yf ,abc/t,abc+ ﬁbc), 4.33d
ghabe _ (YOO Uy + Ygﬁcuﬁbc) + ﬁEbCT (Yigcﬁo + YﬁEc ﬁbc). 4.33e

Refer to Sec. 3.4 for information regarding above equations and its variables.
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4.6.2 Multi-phase Economic Dispatch Problem

For dispatchable active and reactive power DGs, (4.34) presents a multi-phase variant of the
single-phase ED problem in (4.3):

min C,T,gp\g( + C|T)§ p? + cgzq\g( + cggqg + cgopo + cgoqo (4.34a)
s.t.

13p° + 15, (py + g — P/ — pf*) = pH¥°  AP20e (4.34b)
11q° + 1] (a) + a2 — af — af*) = ¢3¢ : x92° (4.34c)
|sf,abc‘2 < (sf,abC)2 iﬂjf,abc (4.34d)
|St,abC|2 < (St,abC)2 : M;'T,abc (4.34¢)
v e < yabe <y habe : ”;fb“ p,jfbc (4.34f)
Py <py<py’ gy By (4.349)
ay <aq) <aqjf gy Mgy (4.34h)
ps~ <ps <ps" Hpa B (4.34i)
a7 <qf <qg;" Hpn B (4.34))

The vector c v/a/€(p/q)0 represents marginal cost of providing energy from DGs/slack-bus,
(p/a)g

i.e. (p/q)z/A/ (p/q)°. The problem (4.34) minimizes the overall cost for dispatching gener-
ation resources, with respect to the following constraints: 1) constraints (4.34b) and (4.34c)
balances grid’s active and reactive powers, 2) constraint (4.34d)/(4.34€) considers the square
of the apparent power flow line limits in from/to directions, 3) the voltage magnitude v&° is
constrained in (4.34f), whereas active and reactive power of each wye-connected and delta-
connected generators are constrained through (4.34g) — (4.34j). The variables listed to the
right of the colon are the Lagrange multipliers and variables with superscript +/— the respec-
tive maximum/minimum limits.

4.6.3 Multi-Phase Distribution Locational Marginal Price model

We follow the same strategy for developing DLMP model, as Sec. 4.2. First, we obtain a linear
counterpart of (4.34) using the approximations developed in Sec. 3.4.2, repeated below for
the convenience:

VLabc — aabc + MVL,Ysi['er + MVL'AS[']'A, (435a)
|§f,abc‘2 _ Babc + Msf'Ysill_'U'»Y + Msf'As['ij, (4.35b)
|ghabe|2 — gabe 4 st Y | st A (4.35¢)

phabe _ gabe MP"YsiL”j’Y + MP"AsiL”j'A, (4.35d)

ghabe — gabe 4 Mq"YS:?J',Y + Mq"AsL”ivAy ) (4.35¢)
Note that after replacing nonlinear constraints in (4.34) with liner approximations of (4.35), the

resultant problem is now a multi-phase version of single-phase approximate quadratic pro-
gram (4.20). This is because of the similar assumptions for cost functions in (4.34a) as R. 4.2.
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Now following the similar procedure outlined before, we first obtain the Lagrangian of (4.34):
EabC(p\g(, A\P.abC 5 q.abc M:{abc: l‘l':;,abc' ﬂv_ﬁbc: P':,Ebc: F';gv ﬂ:;: ﬂ;;, “‘—12' IL;?, ”':é’ ”';?’ M,:?)
= CyPy + CpaPy g +claag +chop” + o’
—Ap’abc< Tp° +13n Py +Ps — P/ —pf) — Nlabc)
— 392 (15q° + 1] (a) + g — af — aft) - ")
—(n ;abc) (|sf abC| (Sf,abC) ) . (”;abc) (|St abC| —( t,abC)2>
—WMEMT@?° +a'°°)+(uabc)(fb° VE“?—4néfmz—pﬁﬂ+0%pT@§—p§)
()" (0 = a") + (g7 (0 — ) = g )" (pE — ™) + (k) (b =057
— (Bga)" (a8 —a5") + (ga)T(ag —a5). (4.36)

Using the similar methodology as single-phase equivalent grid model for deriving DLMPs,
we also develop multi-phase grid's DLMP model. The DLMP model must represent com-
ponents for both active and reactive power injections of wye/delta connections. We denote
active power DLMP cleared at all grid buses for wye/delta connection as TT @19 /T146rid and
reactive power DLMP for wye/delta connections as T & /126" Similar to single-phase
DLMP model, we desire grid cleared DLMP value to be decomposable into its energy, loss,
congestion and voltage components. First, consider for wye connections, the final grid cleared
DLMP /G4 /TTY. Gid s 10 be represented as a sum of its energy TI5Y /TT5 7, loss TI - /T L,

congestion T ©/TI" © and voltage components TIY V /1Y ¥, i.e.,
Y,Grid _ TqYE , mYL , 1YC L TV
T Grd — TYE Y 4 e 4 T (4.37)
Y, Grid _ {{YE , 1YL | 17Y.C L 1YV
WY Grd — Y Yt 4 e 4y

In order to derive the above form, recall from Sec. 4.2 DLMPs were defined as the marginal
value of providing incremental demand at a specified bus. Using this definition, we can pro-

ceed to obtain, for wye connections, active power DLMPs l'l:,(’G”d as:
Y, Grid . _ Lﬁabc = \pabcy, (Lﬁlabc )T)\p,abc B (adlyabc)T)\q,abc
P op/ op/ op/
agf,abc agt,abc agabc
nl; nl =) (e y 4.39
+( aply ) I"sf,abc + ( 6p7 ) I-"'St,abc + ( aply ) (l"vflbc + ”vfbc)’ ( )
and reactive power DLMPs I} as:
Y, Grid — aﬁabc — )\q,abcl3n (0 NI 2be )TAp,abc (a Nl abe )T)\q,abc
d oq) oq) oq)
agf,abc N ag’t,abc n aqﬁbc N 3
+( aqlY )Tll'sfvabc + ( aqlY )TI"'St,abc + ( anY )T(I‘vabc + ,‘l'vfbc)’ (440)

Note that the above presented sensitivities afy(?qY can be directly obtained from approxima-
! /
tions in (4.35). Utilizing these sensitivities gives us the desired decomposition of (4.37) as:
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TE = \Pay,,,

(4.412)
MY = —(MP7)TaPabe (M7 )Taa.a00, (4.41b)
(4.41c)
( )

f.Y t,Y
M= (M) ph+ (M )pd,
Y= (MY () — By,

and of (4.40) as:
MeE = X725, (4.42a)
"ZI,L — _(Mp'vy);g}\p,abc . (Mq"y)akq,abc, ( )
me .= (Ml + (M)l (4.42¢)
Y= (MY )Ty — g, (4.42d)
()

where sub-matrices Mp/q simply corresponds to active/reactive injection entries of MO in (4.35).
For delta connections DLMPs, similar expressions exist after simply evaluating for active

; abc . ; abc
power: TI5-GM9 .= 8L°E and for reactive power: TI3-G" = 2572 Next, we demonstrate the

6PA . an
implementation of mullti—phase DLMP method on an unbalanceld and multi-phase distribution
grid.

Example 4.2

The proposed method is tested on the multi-phase and unbalanced IEEE 4-bus radial
grid [47]. The readers are referred to the openDSS script file in Appendix A.1.3 for more
information regarding the modeled grid. In example 3.8- 3.10 we provided verification of
the load-flow solution and its approximation. Now we obtain DLMP for the modeled grid
by including at bus n4 one DG between phase a and b (n4—ab) and another between
phase a and ground (n4—a). In this way, we test the model for both delta and wye connec-
tions, where in this case delta and wye are simply a phase-phase and a phase-ground
connection, respectively. The DGs are assumed to be operated as follows: 1) all DGs can
control their per phase active and reactive power independently; 2) per-phase maximum
and minimum active and reactive power dispatch for all DGs is constrained within [0, 0.3]
MW and [—0.15, 0.15] MVar and; 3) marginal cost of active and reactive power for all
DGs is set at 1 $/MWh and 0.5 $/MVarh. In order to obtain higher dispatch values from
DGs, the marginal price of supplying active and reactive power to the grid (root-bus) is
kept higher than DGs, at 10 $MWh and 5 $/MVarh. Moreover, to demonstrate the full
capability of the developed model, we simulate a scenario where both grid voltage at bus
n4 and squared “from” line flow limits at the line connecting bus n3 and n4 are binding.

Table 4.4: Active (MW) and Reactive Power (MVar) Dispatch from DGs and root-bus.
root-bus—a root-bus—b root-bus—c nd4-a nd4-ab

pé/p? 0.257 0 0 0.297 0.300
ay/a% 0.244 0 0 0.118 0.150

The active and reactive power outputs of DGs and the root-bus are presented in Ta-
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ble. 4.4. Note that DGs are not dispatched equally, even though they share the exact
same marginal cost. This is because due to voltage and line flow binding at bus n4.
As injections from phase-ground (wye) connection has a higher impact on voltage re-
duction/increment (see example 3.10), DG with phase-ground connection is moved away
from its full dispatch capabilities instead of DG with phase-phase connection. This prop-
erty is also going to be analyzed later.

Fig. 4.6 and 4.7 shows DLMPs for all wye and delta connections. For wye connec-
tion, at n4—a, active power DLMP is equal to the marginal value of supplying power by
the respective wye connected DG at n4—a (1 $/MWh). However, for delta connection, at
n4—ab, the active power DLMP is 6.809, which is more than the marginal value of sup-
plying power by the respective wye connected DG at n4—ab (1 $/MWh). This is because
delta connected DG is dispatched to its maximum capabilities, hence the extra amount
of power flows comes from the root-bus, which has a higher marginal cost of supplying
power (10 $/MWh). The same observation holds true for reactive power DLMPs.

Wye Connection DLMPs
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Figure 4.6: DLMPs for all phase-ground (wye) connections.
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Figure 4.7: DLMPs for all phase-phase (delta) connections

For buses connected to DGs, Table 4.5 and 4.6 respectively present active and reactive
power DLMPs (in bold) along with their breakdown in terms of their energy, conges-

tion, losses, and voItage components. Moreover, the respective DG’s marginal supply,
aﬁab

le. 255 = Coya + T K —p R for active power and 2572 = ¢ yia + p 0 — B
Opg Oqg A g g

for reactive power is also shown in Table 4.5 and 4.6.

Table 4.5: Active Power DLMPs ($/MWh) for wye- and delta-connection.

Bus—phase ~TYE ¥t me myYo oy e Cpy p,;rg ~ By
root-bus—a 0 0 0 10 0
root-bus—b 0 0 0 10 10 0
root-bus—c 10 0 0 0 10 0
n4—a -1.2384 -6.7292 -1.0324 1 1 0
Bus-phases W& mY  mwHe  mavo qhend Cpa p,;? ~ Bpa
n4—ab 10 -0.5464 -2.7120 0.0678 6.8093 1 5.8093

Table 4.6: Reactive Power DLMPs ($/MVarh) for wye- and delta-connection.

93
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Bus—phase TE 't mee LM | MR Cqy y.:z ~ By
root-bus—a 0 0 0 5 0
root-bus—b 0 0 0 5 5 0
root-bus—c 5 0 0 0 5 0
n4—a -0.4064 -2.3664 -1.7272 0.5 0.5 0

Bus—phases T5E  mgY me© PR | Pt Cpa p,:A ~ Mg

q g

n4ab 5 -0.4860 -2.8847 -0.8779 0.7514 0.5 0.2514

As sum of both left and right side components to the final DLMPs (in bold) are equal in
Table 4.5 & 4.6, this validates that the obtained DLMPs represent true marginal value of
the delivered power. Also, one can observe that each DLMP component has a physical
interpretation. For example, non-zero congestion components 118'C is due to congestion
at line connecting {n—3a-n—4a}. Similarly, the voltage magnitude is binding at location
n4—a which is reflected upon 118'\/. Note that the negative DLMP component reflect that
the marginal increase in active/reactive power demand (decrease in active/reactive power
injection) improves the overall grid dispatch cost. This also explains the reason for DG at
location n4—a to dispatch active and reactive power below its maximum allowable limits.

From the above presented example, it is clear that DLMP at each phase is sensitive to in-
dividual phase-ground or phase-phase injections. This advocates the proposed DLMP model
for each phase as it can present higher granularity and provide better knowledge of marginal
value of supplying power to multi-phase and unbalanced distribution grids.



Chapter 5

Distribution Grid Market: Day-ahead
Efficient Resource Allocation
Dispatch

In this chapter, the developed solution algorithm and the price derivation of chapter 4 are
used to organize a distribution grid market framework. First, we develop a multi-period ED,
containing inter-temporal energy constraints from FLs. The underlying optimization problem
resembles the same structure as the global power balance formulation used at the transmis-
sion level (wholesale) market, as discussed in detail in chapter 4. Then, using the concept
of convexity in electricity market from chapter 2, we show that the proposed distribution grid
market framework allocates the available flexibility resource efficiently.

The main contributions of this chapter is in proposing a distribution grid market framework
which i) caters for both instantaneous (DGs) and inter-temporal energy constraints (FLs) ii)
includes nonlinear power flow equations and iii) while efficiently allocating flexibility resources
obtains a price structure which is physically interpretable and decomposable.

5.1 Local Distribution Grid Market: Overview

Fig. 5.1 presents the overview of the proposed local distribution grid market. The proposed
local market aims to schedule flexible loads (FLs) and distributed generators (DGs) on a day-
ahead basis. For the purpose of diversity and relevance to recent advances in inter-temporal
load modeling, the proposed model is multi-period. This has the following advantages:

e it allows for a more accurate description of flexible load modeling, because closer to the
consumption (distribution grids), static aggregated load modeling of transmission grids
might not be accurate [48];

e it aids in scheduling flexibility resources with inter-temporal energy requirements; and

o it allows for a wide range of model applications and extensions, to be shown in the
discussion part of this thesis (chapter 6).

Hence, the local market not only dispatches instantaneous power but also caters for energy
planned over a certain planning horizon. In doing so, the cleared price from the local distribu-
tion grid market aims to obtain an optimal resource allocation for the entire planning horizon
duration.
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Figure 5.1: Overview of the proposed local distribution grid Market, to be cleared on a day-
ahead basis. The input and output are marked with respect to their respective connected
entities. For example, energy requirements to the DSO is an input from the aggregator, which
is an output from aggregators after it has run its own optimization.

Holistically, the local distribution grid market is envisioned to operate as the following in-
teraction between two main entities, i.e. the DSO and aggregators:

1. Aggregators obtain energy requirements and preferences from its contracted distributed
generators (DGs) and flexible loads (FLs) and optimize their total energy requirements.
Once computed, aggregators pass their energy requirements to the DSO.

2. On a day-ahead basis, the DSO collects information regarding aggregators’ energy re-
quirements, energy prices cleared at the wholesale market and its underlying grid. With
this information, the DSO clears a spatio-temporal price, i.e., for each time interval of
the planning horizon and buses of the grid. We term this price as distribution locational
marginal price (DLMP).

Next, we describe the roles of the involved entities in the local distribution grid market.

5.2 Aggregator

We consider aggregator as a profit seeking entity, responsible for operating its contracted
flexible loads. We assume that aggregator is economically rational, i.e. it maximizes its in-
dividual surplus. In particular, we assume that, similar to flexibility resources, aggregator
aims to minimize the energy procurement cost while meeting the required energy require-
ments [41, 58, 35, 34]. The more involved aggregator formulations, such as risk aversion due
to price uncertainties [16, 46] are considered out of scope for this thesis'. Finally, it is as-
sumed that aggregator is a price-taking entity, with no market power. This is again a common
assumption taken when large number of players exist in a market [59].

"Nevertheless, these uncertain formulations can also be cast as convex optimization problems[87, 11].
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Remark 5.1. For notational convenience, we assume one aggregator for modeling the distri-
bution grid local market. However, the methodology can be easily extended to generic number
of aggregators along with DGs and FLs in the grid.

5.2.1 Models

We extend flexibility resource modeling presented in chapter 4 to represent FLs as planning
over a time (t) horizon ¥Vt € T. However, similar to chapter 4, we keep DGs as a source of
instantaneous power dispatch. The FLs are assumed to optimize their energy procurement
cost of active powers forall t € T, i.e., p} := (p ..., ph +)T while keeping track of their state-
of-charge (SOC) ch; := (chy ¢, ..., chp )T, given an initial SOC chg before the beginning of
planning horizon, i.e.,

ch! = ch) + Dp! - z,, (5.1)

More information regarding modeling of flexible loads is given in appendix A.3. As controlling
reactive power qY := (q} ..., g ;)T is not a usual load behavior, it is kept as uncontrollable
and modeled simply through a specified power factor.

For modeling DGs, convention similar to chapter 4 is followed. However, we only con-
sider instantaneous power dispatch from DG at each time interval t. Moreover, it is assumed
that DGs optimize their instantaneous active powers p%® := (pf?t ..... p3%)T and reactive

powers q%¢ = (qf?t, ..., q%%)T independently. Aggregation of low voltage PV systems with
controllable active and reactive power support to the grid can be considered as a practical
application of these types of DGs [109].

As mentioned earlier, we assume that aggregator similar to its contracted DGs and FLs are
price-taking, utility maximizing agents. To this end, the overall social welfare w, ((p/, p?) as
the aggregate benefit of DGs and FLs from their active power procurement over the planning
horizon T is:

wpe(PEPE) =Y (UL(RY) — € (p)). (5.2)

t=1

where C2(p?) and U"(p!) are respective the cost (utility) of generation (consumption) of
active power by aggregator’s contracted DGs and FLs. For FLs, we model this utility simply
as negative of the cost of purchasing energy from the wholesale market, i.e., Uft'(p‘;') = -
C‘: (pft') In the literature [59, 14, 56, 55, 105] there exists also other types of utility function
models for FLs. However, the final aim is mostly to obtain a convex optimization problem
through modeling of utility functions. Hence, the method developed in this thesis can be
easily adapted to other utility function formulations. Similarly, social welfare from reactive
power procurement of DGs amounts to:

Ne
g, (9% = — > C€P(q9). (5.3)
t=1

Similar to definition of cost functions for instantaneous dispatch in chapter 4, we extend it to
multi-period as:

Remark 5.2. For all x € {dg, fl} procuring power y € {p, q}, costs are defined as C}(y¥) :=
c; " - y;, where marginal cost is of the form cj , := aj , + BJ ,yf with a positive price per
unit vector aj , € R" (in $/MWh) and symmetric, positive definite matrix Bf , € R"*" of
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small positive price sensitivity coefficients (in $/MWh?), turning the social welfares introduced
in (5.2) and (4.2) strictly convex. In the end, we also assume that the single-period cost
function interpretations of R. 4.2 holds true for the above presented muti-period cost functions.

5.2.2 Aggregator Problem

Now we collect all aggregator information from the above and formulate its utility maximization
problem as:

fl f f fie . f
ch’~ < chll + D;p! — z; < ch* : [Ty uch+t

Vite T={1,...,n:}

.. d d

maximize Z (Wp,t(pftl, p:Y) + Wq,t(qtg)) (5.4a)
teT
subject to

dg— _ . d d _
pe” <p® < pit L pdo, pdot (5.4b)

dg— _ . d d _
q;7 <qp < g L pdo pdot (5.4c)
pi~ <pl <pft By By (5.4d)
(5.4e)

5.4e

Constraint (5.4d) limits dispatch capabilities of FLs within the allowable inter-temporal SOC

constraints givenin (5.4e). All DGs’ active/reactive power are constrained through (5.4b)/(5.4c),
respectively. The variables listed to the right of each constraint (behind colon) are their re-

spective Lagrangian multipliers. The aggregator problem in (5.4) is a quadratic program (QP)

because its objective function (5.4a) (see R. 5.2) along with constraints now which are affine

in the decision variables, i.e., (p't', q?g, qu). As discussed in chapter 4, this property is not

mere a technicality, as it is going to be the cornerstone in our discussion on efficient resource

allocation in the local distribution grid market. This is because, for the given a feasible solu-

tion (pt", qt%°, q:%) to (5.4) is a also a unique solution and a strict maximizer of (5.4). This is

because QPs are strict convex programs and achieve a unique solution (see chapter 2.).

Remark 5.3. From (5.4) is can be seen that aggregator does not have information regarding
grid conditions. Hence, they only are concerned with respect to energy requirements of its
contracted FLs and DGs. Another assumption is that the aggregator has full observability and
controllability over its respective FLs and DGs. Moreover, it is assumed that no delay or noise
exists in the communication link between the aggregator and its contracted FLs and DGs. We
do agree that at the current point in time this might be a strong assumption. However, as the
smart grid promises to provide a higher level of communication and information exchange in
the grid, the proposed framework of this thesis relies on this envisioned future development in
the grid.

5.3 Distribution System Operator

The Distribution System Operator (DSO) is responsible for managing its underlying grid un-

der its physical limits as well as providing energy to fixed loads p§ := (p§,,...,p%,)T. Itis
assumed that fixed loads are always met and there does not exist any extra utility to satisfy
them [58].

As mentioned in Sec. 5.1, the DSO seeks to maximize the overall surplus of the grid. This
is achieved as follows:
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1. The DSO receives the marginal price at its respective root-bus from the wholesale mar-
ket. Based on this price, it is assumed that at the root-bus of the grid, an equivalent
generator exists which supplies grid’s total active and reactive power. The marginal
cost of supplying this power is then taken as the respective root-bus from the wholesale
market.

2. The DSO assumes that the aggregator is economically rationale, i.e., within its allow-
able limits it maximizes the individual surplus. Note that this is directly in spirit with
aggregator program introduced in 5.2.1.

3. Aggregator also submits its energy requirements along with the dispatch capabilities to
the DSO. This assumption is true when there exists no privacy restriction between the
DSO and aggregator. However, for the convex programs [35, 34] privacy constraints
can also be introduced. Since this is not the main focus of this thesis, we don’t discuss
it here.

With this, the DSO formulates the overall surplus function of the grid as:
wp(pf, pE) =(U(pY) — C2(p)). (5.5)

where p? := (p?, (p2%)T)T now collects all individual aggregator’s DGs p and the root-bus p°
with their cost of supplying energy as C9(p®). Similarly, for the reactive power, the overall
social surplus becomes:

we,¢(a?) = —CZ(a7), (5.6)

with total reactive power generations: q? := (q°, (q2)T)T. The assumption regarding the
nature of cost function of active and reactive power at the root-bus are similar to the given for
aggregator’s DG Sec. 5.2.1.

5.3.1 Day-Ahead Local Distribution Grid Market

Incorporating the above assumption by the DSO and grid constraints, then under no un-
certainty and perfect communication, the DSO aims to solve the following multi-period con-
strained social welfare maximization problem:

maximize  w, +(p!, p¥) + g ¢ (qf) (5.7a)
subject to

1ypf — 17 (¢ + pl) = p} Y (5.7b)
1867 - 1, (af +af) = q; ¥ (5.7c)
st < () ¥ (5.7d)
|s* < (stF)? T (5.7¢)
viT <vi <wit : u;%,p.j% (5.7f)
P9 < pf® < pfot : y,g?_, p,g?Jr (5.79)
a’” <at <q¥"  plo, pdot (5.7h)
pi~ <p; <pi L pl pl (5.7)
chi™ < ch} + Dpl — z, < chllt : pl  pl (5.7j)
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forallt € T =4{1,...,n:}. Constraints (5.7b) and (5.7c) respectively present global active
and reactive power balance of the distribution grid. Apparent power flowing in distribution grid
lines from/to ends of the lines are constrained through (5.7d)/(5.7¢e). Refer to chapter 3 for
definition of these grid quantities. Explanation of constraints related to flexibility resources
[(5.79)—(5.79)] are provided in Sec. 5.2.1. The variables listed to the right of each constraint
(behind colon) are their respective Lagrangian multipliers. Note that the optimization problem
in (5.7) is a classical global energy balance formulation for calculating DLMPs [88, 82]. How-
ever, unlike transmission grid’s single period, it deploys multi-period modeling as explained
above for enhanced system controllability.

Remark 5.4. We solve the above non-convex problem using the trust-region based solution
methodology presented in chapter 4. Recall that at each iteration of trust-region, we turn the
above non-convex optimization problem into a quadratic program (QP) (see R. 4.4 in chapter 4
for more details.). Recall that this is not done merely for convenience, as this also allows us
to conclude that for a feasible solution of QP, we have an optimal and unique minimizer within
the allowable trust-region.

5.3.2 Multi-Period Distribution Locational Marginal Prices

We extend the derivation of single-step of chapter 4 for multi-period case here. The solution
of (5.7) can be obtained using the solution methodology proposed in chapter 4. The solu-
tion (resultant Lagrange multipliers) of (5.7) can then be utilized to clear DLMP at each time
step t and grid buses. For active power procurement at each time step t, there exist ac-
tive power DLMPs, i.e., TTg", which are under equilibrium and completely representable for

the whole grid as the sum of their (i) energy TT; , (ii) loss T} , (i) congestion TIS and (iv)
voltage IT'\,’t components, i.e.,

Grid _ qE L c v
nPtn - npt + "pt + "Pt + "pt' (58)
uniquely determined as: Ty := ¢ 15, T, = —(Mp'),T,tcg’t—(Mq'),Etcgyt, e = (M) g+

(Mst),T,tust + and lT\[ft = (MY)5, (pd — p.vL)Z. The explanation of this decomposition fol-
lows. Consider the KKT conditions to be satisfied by the solution of the market clearing
problem (5.7):

I I f t _
Che T A 10 — (MP)LA? — (M) AT + (M®)] p + (M®)] prge + (M) (1 — o)

teT\|T|

+ gt — pp + De(pll, — i) =0, (5.9a)
ch — At1N+(M")T M+ (MO — (ME)] g — (M)] g — (M) (3 — )
- u,ﬁ* + ¥ =0 (5.9b)

ALy + (M"')I]A’? + (MDA — (M) sy — (M) g — (M) (3 — i)
- qu+ +ugd =0 (5.9¢)
pa([8? — (s f+) )=0, (5.9d)
ps (87— (s7)*) =0, (5.9¢)

2Matrix ML]t Ja corresponds to active/reactive power parts of Mt Marginal cost of active/reactive power
supply at the root-bus is cg,t/cf;,t.
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po (0 —vi ) =0, (5.9f)
po (=g +vi) =0, (5.99)
ﬂﬁ?+(P c1'g+) =0, (5.9h)
pd=(—p¥ +pi*) =0, (5.9i)
ui’.?*(q 9—qi") =0, (5.9))
pE (—qf +q°") =0, (5.9K)
ﬂﬁf(pft' —pit) =0, (5.9)
mh (—pl+pit) =0, (5.9m)
pl (chl + Depl — 2. — chlt) =0, (5.9n)
ﬂﬂﬁt( chl — D:p" + z; + ch’™) =0, (5.90)

along with all primal feasible conditions of (5.7) and non-negative Lagrange multipliers. Note
that as stationary condition (5.9a) contains inter-temporal constraints, the last term only exists
for non-terminal period, i.e., 7 \ |T], else its zero [58]. Now, we proceed with the similar line
of derivation for obtaining DLMP, as presented in chapter 4 for single-step.

For active powers, the only stationary condition of KKT in (5.9) is (5.9b). This gives us the
following equivalence:

p P = =ML (5.10)

Now let respective marginal values of DGs and FLs be,

teT\|T|
M = —Cpe — by + ﬂﬂ‘ = D(kgr, — Ban,)
nF'eX = cpd + pd9t — pde e R (5.11)

As the definitions in (5.11) represent internal constraints of the flexibility resources, the cleared
DLMPs TI5", which is a grid equilibrium, must satisfy the following condition:

T =T =T (5.12)

After substituting (5.10) in [(5.92a), (5.9b)] and then utilizing (5.12), we recover the individual
components of grid cleared DLMPs, TIS™, as proposed in (5.8). Moreover, from (5.12) we
have also shown that these components exists in equilibrium with internal flexibility resources’
marginal value of supplying power. Hence, the obtain DLMP value is representative of both
flexibility resources’ internal constraints as well as grid conditions.

Similar to active power DLMPs TT5", reactive power DLMPs TTg" can be derived using
a similar method, i.e. evaluating the marginal cost of supplying reactive power at the root-
bus, c . With its corresponding stationary condition of (5.9c).

5.4 Distribution Grid Market: Efficient Resource Allocation

This section shows that the proposed local distribution grid market is able to achieve efficient
flexible resource allocation. This means that the cleared DLMPs of the local market in (5.12),
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optimizing the overall system dispatch in (5.7), achieves exactly same dispatch as to when
aggregator maximizes its individual surplus with the inclusion of DLMPs obtained from (5.7).
To show this, we make following assumptions:

e We assume that the DSO considers that the aggregator behave economically rational,
i.e., it maximizes its individual surplus. Note that this assumption is directly in spirit of
our defined entities in the distribution grids, i.e., the DSO and aggregator (see Sec. 5.1).
Hence, with the clearance of price at the respective buses of aggregators, it naturally
has to include this price in its original problem (5.4).

e We assume that no uncertainty in this grid cleared price exists as well as in predicting
local flexibility resources’ states by aggregators.

In principle, we need to show that under above assumptions, the DSO cleared DLMPs
(ITSt“d, quGt“d) correspond to a unique solution, maximizing the overall social welfare (5.7) as
well as aggregator’s individual surplus. To this end, consider individual aggregator maximiza-
tion problem, after the inclusion of grid cleared DLMPs:

maximize » — ((nS{‘d)Tpi’g + (lTS:id)Tpft' + (lTS:id)qug) (5.13a)

teT
. dg— d d _
subject to  pfY < pgd < piot Lo, pdet (5.13b)
dg— d d

q;0 < q 9<q" : uqt ~ et (5.13c)
pi~ <pl <pi* : upt mht (5.13d)
chi™ < ch{ +Dp} —z; <chl: pl  pi (5.13e)

As the overall DSO problem (5.7) has a strictly convex cost function (R. 5.2), the inclusion
of DLMPs (linear in (p2, g%, p)) also makes the cost function of individual aggregator prob-
lem (5.13a) strictly convex. Combining this with affine constraints [(5.13b)—(5.13e)], the indi-
vidual aggregator problem (5.13) is then also a QP, with a unique minimizer (pfg*, q? o* pftl*)
satisfying its following necessary and sufficient KKT conditions (5.14):

teT\|T|

ot gyt — ey, + Di(ply, — pl,) =0,

( )
ot — pdot + u"g* =0, (5.14b)
e — pg®t + ugd =0, (5.14c)
pd (pf — p) =0, (5.14d)
p (—pP +pi*) =0, (5.14e)
pdt (g — q") =0, (5.14f)
pP (-9 +a°") =0, (5.149)
ui',j(p' pi) =0, (5.14h)
upt (— Pt +pt) =0, (5.14i)
pl (chf + Dep! — z; — chl™) =0, (5.14j)

)

(ch
B (- chfI D:p! +z; +chl™) =0, (5.14k
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Vie T ={1,...,n:},

along with the primal feasible (5.13b), (5.13e) and all Lagrange multipliers non-negative con-
straints.
Observe that the grid cleared DLMPs, TTg", deployed in the individual problems of (5.14)

are in equilibrium with T[Ef'lex of (5.11). This means that from (5.12), we can substitute [(5.14a)—

(5.14¢)] using (5.8) for both active/reactive power DLMPs TTS"/TTe"e:
. . | f t )
Tor® = MLy — (MP)E 2 = (MT)L N (MP)], s+ (M) s+ (MU)], (ke — i)
. | | f t v B
o o= APl = (MR AL = (MTORAE + (M) s+ (M) s (MR, — p)
(5.15)

Now substituting (5.15) in aggregator KKTs (5.14), we can see that individual aggrgattor KKT
conditions are in fact embedded in the overall KKT conditions of the DSO problem (5.9).
This means that a valid overall solution (p2™", g™ p1**), satisfying (5.9), is also a so-
lution to (5.14). On the other hand, the individual problem (5.13) does not contain any
grid constraints, so a valid individual solution (pfg*, qu*, p't'*) to (5.14) may not necessar-
ily satisfy (5.9). However, TIg"® shared among the individual and overall problem is ob-
tained around a unique operating point, due to strictly convex subproblem (see R. 5.4),

ﬂ**

making the overall solution (p%*", q%™", p**) of (5.9) unique. Moreover, as the individual

aggregator problem (5.13) is also a strictly convex problem (see (5.13)), it also constitutes
* *

a unique solution (pc,:jg ,q?g ,pft'*). Due to this uniqueness, both the individual aggregator

problem solution and the overall DSO-run local distribution grid market solution are similar,
. d k% d k% * d * d *
l.e. (ptg Qg0 P! *) = (ptg ,qz° :pftl*)-

5.4.1 Final Organization of the Proposed Local Market

In the end, we collect the above mentioned framework to describe the final working of the
proposed distribution grid market framework as:

1. The DSO forecasts its daily underlying grid demand along with the cost to supply it using
the marginal-cost at the root-bus, i.e., ¢ ,/c0 ;;

2. Aggregator submits their energy requirements to the DSO; and

3. on a day-ahead basis, the DSO, assuming that the underlying aggregator is a price
taker, economically rationale entity, clears DLMPs for each interval and pass them to

aggregators.

Next, we present some discussion related to the proposed local markets.

5.5 Simulation Setup and Results

The proposed method is tested on the IEEE 33-bus distribution system [4]. The modified
configuration of the grid is shown in Fig. 5.2. We assume each flexibility bus is an aggregator,
having a contracted DG/FL. A realistic scenario with DGs and FLs operating under different
cost functions and dispatch capabilities are simulated as follows.

e The active and reactive power dispatch for DGs are within range [0, 0.5] MW and [—0.3, 0.3]
MVar, with marginal cost of active and reactive power set at 10 $/MWh and 3 $/MVarh
for the whole day.



104 5. Distribution Grid Market: Day-ahead Efficient Resource Allocation Dispatch
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Figure 5.2: The modified 33-bus distribution grid with two FLs and two DGs, with PSP (root-
bus) connection from the transmission grid. For fully exploring the proposed method FL-1
and DG-1 are placed closer to the root-bus, whereas FL-2 and DG-2 are placed far from the
root-bus.
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Figure 5.3: The wholesale market price, at the respective substation root-bus CB,ts in half-hour
granularity, taken from [25].

e The active power dispatch for FLs is kept within the range [—1.47, 0] MW. This range is
derived from the RC thermal flexible building models, given in appendix A.3.

e For constructing utility function of FLs as negative of the cost function, we take the day-
ahead cleared price from the wholesale market at their respective root-bus of the grid.
In this way, the aggregator problem with FLs is simply a cost minimization problem [41,
58, 34, 35].

e A small value of price sensitivity coefficient of 1e-4 $/MWh?(MVarh?) is chosen to keep
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all cost functions strictly convex. This value is in line with the price sensitivity coeffi-
cients assumed for european distribution grids in [58]. Note that a considerably large
value of these coefficients makes flexible resources to dispatch their schedule more
conservatively, as then the quadratic term (Hessian) dominates their respective cost
functions (see R. 5.2). More information on obtaining these coefficients is provided
in [41, 99].

e \We take day-ahead wholesale price, similar to FLs, to deliver power by the DSO from
its respective root-bus. This is because recall that in Sec. 5.3 it was assumed that the
root-bus serves as an equivalent DG, to be dispatched by the DSO. As this equivalent
DG is located at the root-bus, similar to FLs, it is assumed that it is dispatched using the
day-ahead price at its respective bus, cleared from the wholesale market. Since there
exists no reactive power price in wholesale market, we simply take marginal price for
providing reactive power at root-bus as 3 $/MVarh. Note that this is also the value used
for dispatch DGs.

Parameters of the trust-region in Algorithm 1 are taken from [27]. All simulations are per-
formed on a 2.4-GHz processor with 64-GB RAM. Optimization problems are solved using
YALMIP [65] with GUROBI [30] as a solver. Power flows for the trust-region evaluation steps
in Algorithm 1 are performed using MATPOWER [84]. To explore the proposed method in
detail, we simulate three scenarios with the resultant active power DLMPs along with dispatch
quantities presented in Fig. 5.4 and Fig. 5.5, respectively.

Active Power DLMP

20 F T T T =
15
(-I-I-EJS.trid)18 ('I-I'Stl'id)22 ("Strid 25— ('I-I'Strld 33
< 20F \ \ =
; \ \
=
£ 15 -
0 10 20 30 40
20F T T T T =
15 |- N
10 : ‘ - :
0 10 20 30 40

Time steps (half hour)

Figure 5.4: Active power DLMPs for Scenario 1 (top), 2 (middle) and 3 (bottom) for all flexible
buses.
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Active Power Dispatch
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Figure 5.5: Active power dispatch values for Scenario 1 (top), 2 (middle) and 3 (bottom) for
all flexible buses. Above, each individual time series only refers to flexibility resource dispatch
connected at the bus. For example, time series (p,)1s refers to dispatch by DG1.

5.5.1 Scenario 1- No Voltage and Congestion Binding

Scenario 1 is simulated by relaxing all nodal voltages and line flow constraints. In doing so
we only show the effect of losses in the obtained DLMPs. As dispatching power from DGs
is cheaper than supplying from the root-bus, i.e. 10 $/MWh < C/(J),t’ VvVt € T, they are fully
dispatched for the whole time horizon in this scenario. However, this does not imply that
buses with DGs also experience lower DLMPs. This is because whenever DGs are dispatch
fully, the extra MW amount comes from the higher marginal cost providing the root-bus. The
interesting case is experience at step 10, where FLs draw a large amount of energy due to its
internal energy requirements®. This higher power drawn by FLs also increases DLMPs. This
is because higher power causes higher losses in the grid, raising the loss component of the
grid and consequently DLMPs.

3These energy requirements originate due to pre-cooling of the office space (from 5 am), to remain within the
comfortable temperature throughout the day (see [35] for details.
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5.5.2 Scenario 2 - Only Voltage Binding

Scenario 2 constrains all nodal voltage magnitude between 0.92 and 1.05 p.u., causing an
increase in DLMPs at time step 10 for FL2 as higher loading at bus 33 binds lower voltage
limits. As a consequence, FL2 draws lesser power at time step 10, as compared to Scenario 1.
The same dispatch phenomenon is observed for DG1 (bus 22), where active power dispatch
is reduced from its upper limit (as compared to Scenario 1)in order to respect upper voltage
limits. An interesting observation can then be made regarding DLMPs at bus 22, i.e., how
being fully served by its local DG (DG1) the DLMP value at the bus is equal to marginal cost
of DG1, i.e., 10 $MWh. However, around time step 10, where higher grid loading occurs
from FLs, DGs (both DG1 and DG2) are able to dispatch to their maximum limits. Similar, to
Scenario 1, this causes the extra MW amount at the DG buses to be satisfied by root-bus and
consequently raising DLMP around time-step 10.

5.5.3 Scenario 3 — Voltage and Congestion Binding

Scenario 3 constrains the distribution line serving FL1 by 1.6 MVA. This scenario is imple-
mented to demonstrate the capability of the proposed model to handle the most strict con-
ditions of the grid, as all constraints are active. Note that this rarely happens in the current
distribution grids due to small number of FLs and DGs. However, studies in [100, 58] have
shown that with higher integration of these devices, voltage and congestion limits are going to
be binding more than usual. From results (Fig. 5.5 and 5.4) it can be seen that, as compared
to Scenario 1 & 2, congestion limit causes FL1 to draw less power than it would have desired
at time step 10. Consequently, DLMP value at bus corresponding to FL1 can be seen to in-
crease, as congestion component in the DLMP calculation is nonzero due to the binding line
flows at the respective buses.

Table 5.1: DLMPs for scenario 1 (top), 2 (middle) and 3 (bottom) at time step t = 10 and bus i.

i '"'E 'ITL 'ITC 'ITV "Grid Cdg/fl "M 'I-I'D 'I-I'F|eX
P: Pt p?g/ﬂ

P: P: P: p.t Pt Pt
18 162 0 0 13.14 314 - 1314
22 004 0 o 1148 9 148 - 1148
o5 1152 453 0 13.06 284 2742 13.06
33 410 0 0 1563 1192 141 2856 15.63
18 145 0 083 13.80 380 -  13.80
22 004 0 -004 1144 O 144 - 1144
o5 1152 448 0 o024 1325 2267 27.44 13.25
33 350 0 278 17.80 11952 o 2932 17.80
18 142 0 082 13.77 377 - 1377
22 005 0 -004 1142 10 142 - 1142
o5 1152 4156 023 325 16.26 0 2779 16.26
33 350 0 276 1779 1192 o 2932 17.79

For time step 10 and all scenarios, we present active power DLMP values in Table 5.1.
In Table 5.1, M = po™/99" — pi/%9" and M8 = D, (uly, — uf;,). Table 5.1 also shows
the market equilibrium of the proposed model in Sec. 5.3. This is shown in bold values of
Table 5.1, where it can be observed that flexible DLMPs representing the internal flexible bus
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dynamics exist in equilibrium with the grid cleared DLMPs, i.e., TI¢™@ — TIF!X  Similar to the
q P: P:g/

physical intuition presented in chapter 4 for single time-step DLMPS, we observe consistent
behavior for multi-period DLMPS. For example, non-zero congestion components lT,?t is ob-
served for line connecting FL1, i.e., bus 25. Similarly, the voltage magnitude is binding only
for Scenario 2 and 3 which is reflected upon the respective DLMP voltage component ":)/t-
Moreover, note that the negative DLMP component reflects that the marginal increase in ac-
tive/reactive power demand (decrease in active/reactive power injection) improves the overall
grid dispatch cost. This is why DG1 (bus 22) is dispatched below its maximum allowable limits,
except for time-step 10, where it has to dispatch more power to meet grid constraints.



Chapter 6

Conclusions and Outlook

This chapter outlines the main conclusion from this thesis. It lays down the important features
of the presented work in the previous chapters. We also discuss the relevance of the pre-
sented method with respect to some of the practical work done in this field. Building on it, at
the end of this chapter, we provide an outlook on how to integrate this work in future grids and
also some possibilities to improve the theoretical foundation of this thesis.

6.1 Discussion

6.1.1 The Proposed Work: Overview
In this thesis, chapter 3 and 4 presented:

e local approximation methodology, given a feasible /load-flow solution; and
e global approximation methodology, which interpolates a linear function between a given
load-flow solution and no-load conditions.

Both these above mentioned approximation techniques were adopted to calculate DLMPs,
for:

¢ single-phase equivalent grid models, in case of a balanced portion of the distribution;
and
e multiphase grid models, with consideration of unbalanced loadings and missing phases.

Moreover, by formulating single time-step DLMP (chapter 4) and multi-period DLMP (chap-
ter 5) formulations, the proposed methods cater for:

e instantaneous energy dispatch, examples of such system consists of DGs with costs to
generate power; and

e planned time-horizon dispatch, examples of such system consists of FLs having inter-
temporal energy constraints.

The final calculated DLMPs expressed marginal cost of delivering both active and reactive
powers to grid buses, i.e. the cost of sending extra watt/var to the respective bus. More-
over, this marginal cost was decomposable into their respective energy, loss, congestion and
voltage components. Through a tractable solution methodology and power flow feasibility
properties we showed that the obtained DLMPs are in equilibrium with the grid conditions.
We also showed that the proposed DLMPs maximizing the overall social welfare of the grid
also maximized the individual social welfare of the flexibility resources (DGs, DLMPs).

109
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6.1.2 Practical Implications: Connection to Wholesale Market

The local distribution grid market proposed in this thesis can be simply extended to co-exist
with the current wholesale day-ahead energy markets [1]. This can be achieved by merely
adjusting the organization structure of the local distribution grid market of chapter 5 as:

1. Aggregators purchase/sell energy from/to the wholesale market.

2. The schedule from aggregators are then submitted to the local DSO.

3. The DSO can then proceed to run its local market (as proposed in chapter 5) and
formulate DLMPs which are then passed on to aggregators

4. Aggregators can then include these DLMPs into their individual energy planning and
proceed with their participation in the day-ahead wholesale market.

Note that this is also how most of the aggregators operate, i.e., they purchase energy from the
wholesale market and sell to their contracted customers. Note that the above method simply
introduces an additional layer, i.e., DLMPs, into the already established aggregator-customers
link. The main improvements from introducing this link is that, through DLMPs, the DSO can
indirectly influence aggregators to schedule their loads within the allowable grid conditions.
Moreover, with the talks of handing over the future DSO with more “transactive” actions, the
proposed methods of chapter 4 and 5 can be simply adopted to construct a local distribution
grid market.

Another interesting observation from the presented DLMP formulation of this thesis is the
discovery of reactive power price Tly,. Similar to active power, reactive power DLMPs are
also recovered using the forecast of the marginal cost of reactive power supply at the root-
bus. However, whether this marginal cost of supplying reactive power at the root-bus is made
available by existing wholesale markets is still a topic of ongoing discussion [12, 28, 111].
Nevertheless, the presented model is flexible enough to provide an option of pricing reactive
power only as a function of its marginal value at the root-bus, i.e. cgyt. If this information is
not available at the root-bus, this price can simply be set to zero. We take this as a flexibility
provided by the proposed methodology of this thesis.

6.1.3 Relevance to “Smart Grid” Promises

Now we discuss whether the proposed formulation aids in achieving the promises of “smart
grids”. A possible application of the proposed day-ahead local market, described in chapter 5
is in developing a grid-friendly demand response and congestion management programs. This
is possible because the cleared DLMP at a particular node automatically reflects its contribu-
tion of delivered energy towards system losses, congestion and voltage violations. Hence,
the submitted schedules by aggregators can be simply evaluated by the DSO and eventu-
ally drive day-to-day scheduling as well as future investments in the smart grid technologies
towards grid-friendly areas. This is going to help in increasing the lifetime of grid assets as
the overall cost-effective operation, as aggregator scheduling is influenced to better utilize the
grid. Similar analysis for lossless DLMPs can be found in [35, 34, 41, 58].

6.1.4 Diversity and Extensions

The proposed model of chapter 5 represents flexibility resources for both instantaneous and
multi-period dispatch. This allows for multiple extensions of the proposed method. For exam-
ple, similar to inter-temporal constraints of FLs, the formulation can be extended with generic
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energy storage systems, DGs with ramp-up/down limitations [12, 37]. In this way, the pro-
posed formulation not only allows to cater for the already deployed large set of various assets,
but also for an extension in the case of the development of future smart grid devices to be
integrated in distribution grids.

Similarly, the proposed method handles for multiple grid types, i.e., multiphase lines, un-
balanced loadings and mixture of wye/delta connections. In this way, the method can be
altered by the DSO to reflect its current grid conditions and hence calculate accurate DLMPs.

6.2 Future Research Directions

We hope that the work presented in this thesis is going to motivate academia and industry
in the pursuit of having an improved technical and economical operation of future distribution
grids. To this end, we believe there are certain aspects of the work to be expanded in the
future works. These expansions are listed below.

6.2.1 Solution Algorithms

We attempted to obtain a solution algorithm, which combines the mature technologies (load-
flow problem) with approximations to interpret the final price in terms of physical grid com-
ponents (energy, loss, voltage and congestion). However, the power flow feasibility check is
included in the solution algorithm as a separate step. For the practical grids, it is shown that
power flow feasibility is always respected. One of the future works in this direction exists in the
form of embedding power flow security (mostly steady state voltage security) constraints into
the proposed AQP of this thesis. In this way, the overall time required for implementing the
solution algorithm can be minimized, as there exists then no need to implement a feasibility
check of the approximated solution by projecting it to the load-flow problem. There has been
some recent works, which integrates stability constraints in the optimal power flow [20, 107].
However, more work is still required to reflect them in a market-based framework and translate
them into prices as proposed in this thesis.

6.2.2 Decentralized Calculations

There has been enormous literature discussing a decentralized/distributed operation of power
systems. For example see [77] for exhaustive literature review on the decentralized/distributed
optimization and control in power systems for transmission systems. However, there has been
a limited focus on adapting these works in the context of DLMP calculation, even though
closer to the consumption (distribution grids) there exists a higher need to preserve privacy.
Moreover, by distributing/decentralizing the calculation, the solution algorithms can also be
executed faster. We presented some preliminary work in [35, 34], which presented privacy
preserving algorithm for obtaining optimal DLMPs under uncertain load dynamics. However,
these works considered a simplified power flow calculations. Hence, one future direction
regarding the proposed work is to to obtain meaningful and interpretable DLMPs in a dis-
tributed/decentralized manner.

Need for a faster solution algorithm, for real-time or on-line DLMP calculations whereas for
improved distributed solutions to cater for nonlinearities
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6.2.3 Price Volatility

This thesis only addressed day-ahead distribution grid market to clear DLMPs for the entire
planning horizon. However, from the presented results and the theory presented in this the-
sis, one can observe that DLMPs vary based on the grid conditions. This means that there
value might be higher/lower at certain grid locations, this could mean that some nodes may
pay or get paid higher or lower depending, purely based on where they are located. Even
though DLMPs reflect truest cost of delivering power to a certain bus, this might not be ac-
ceptable in the current distribution grid retail structures (tariffs), which is designed to reflect
one price (equal for all) for a certain customer type (residential, commercial and industrial).
In this regards, in a much similar manner to transmission grids [38, 39], hedging rights might
be obtain to offset this DLMP volatility. We have done some preliminary work in this regards,
however it does not reflect nonlinear power flow. Hence, one of the future works might be to
look at removing the volatility of DLMPs. The main goal of removing this volatility could then
be to keep the physical power flow feasibility of DLMP, while maintaining revenue adequacy
of the local distribution grid along with proper merchandising surplus distribution by the DSO
among market participants.



Appendix A

Appendix

A.1 Codes

A.1.1 Modified 3 bus MATPOWER case file

The deployed three-bus grid in this thesis has been taken from the meshed grid given in [76].
However, the line connecting bus 1 and 3 has been removed to make the grid radial.

function mpc = case3

%% MATPOWER Case Format : Version 2
mpc.version = '2’;

Power Flow Data -----%%

% system MVA base

mpc.baseMVA = 1;

© N O U s W N R
o°
o
\
!

%% bus data
% bus_1i type Pd Qd Gs Bs area Vm Va baseKV zone
Vmax Vmin
9 mpc.bus = [
10 1 3 0 0 0 0 1 1.5 0 12.6 1 1.5
1.5;
1 2 1 1 1 0 0 1 1.0 0 12.6 1 1.5
0.8;
12 3 1 0 0 0 0 1 1.0 0 12.6 1 1.5
0.8;

131
14 %% generator data

15 % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1
Pc2 Qclmin Qclmax Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
16 mpc.gen = [
171 0.10.1 500 0 1.5 100 1.0 332.40 06 0 0
6 06 6 06 06 0 0 0,
183 0.10.1 500 0 1.0 100 1.0 140 0O 06 0 0
6 06 06 06 06 0 0 0,

19 1;

20 %% branch data

21 % fbus tbus r X b rateA rateB rateC ratio angle
status angmin angmax

22 mpc.branch = [

23 1 2 0.1 0.1 0 50 600 600 0 0 1 -360
360;
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24 2 3 0.1 0.1 0 50 600 600 0 0 1 -360
360;

25 1;

26 %%----- OPF Data -----%%

27 %% generator cost data

28 % 1 startup shutdown n x1 yl ... xn yn

29 % 2 startup shutdown n c(n-1) ... cO

30 mpc.gencost = [

312 0 0 2 10 1le-4 0;

22 0 0 2 10 1le-4 0;

32 0 0 2 1 le-4 0;

32 0 0 2 1 le-4 0;

35 1;

A.1.2 Modified 33-bus MATPOWER case file

The following code is used for implementing 33-bus system for single-period (chapter 4)
and multi-period (chapter 5) ED problem. For implementing Scenario-2 of Sec. 4.5.1, make
marginal cost of FLs as 15 $/MWh.

function mpc = case33_DGs_FLs
%CASE33d Power system data for 33 bus radial distribution systm.

%% MATPOWER Case Format : Version 2
mpc.version = '2’;

%%----- Power Flow Data -----%%
%% system MVA base
mpc.baseMVA = 10;

© © N o U A W N

=
@

%% bus data

=
[

12 % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
13 mpc.bus = [

w1l 3 0 0 0 0 1 1 0 12.66 1 1.05 0.8;
15 2 1 0.1 0.06 0 0O 1 1 0 12.66 1 1.5 0.8;
16 3 1 0.090.04 0 O 1 1 0 12.66 1 1.5 0.8;

17 4 1 0.120.08 0 0 1 1 0 12.66 1 1.5 0.8;

18 5 1 0.060.03 0 0 1 1 0 12.66 1 1.5 0.8;

19 6 1 0.060.02 0 0 1 1 0 12.66 1 1.5 0.8;

20 7 1 0.2 0.1 0 0 1 1 0 12.66 1 1.5 0.8;

21 8 1 0.2 0.1 0 0 1 1 0 12.66 1 1.5 0.8;

2 9 1 0.060.02 0 0 1 1 0 12.66 1 1.5 0.8;
2316 1 0.06 0.02 0 0 1 1 0 12.66 1 1.5 0.8;

24 11 1 0.045 0.03 0 0 1 1 0 12.66 1 1.5 0.8;
2512 1 0.06 0.0350 0 1 1 0 12.66 1 1.5 0.8;

26 13 1 0.06 0.0350 0 1 1 0 12.66 1 1.5 0.8;
2714 1 0.12 0.08 0 0 1 1 0 12.66 1 1.5 0.8;
2615 1 0.06 0.01 0 0 1 1 0 12.66 1 1.5 0.8;
2916 1 0.06 0.02 0 0 1 1 0 12.66 1 1.5 0.8;

3 17 1 0.06 0.62 0 0 1 1 0 12.66 1 1.5 0.8;
31118 1 0.09 0.04 0 0 1 1 0 12.66 1 1.5 0.8;
3219 1 0.090.04 0 0 1 1 0 12.66 1 1.5 0.8;
3320 1 0.090.04 0 0 1 1 0 12.66 1 1.5 0.8;
321 1 0.090.04 0 O 1 1 0 12.66 1 1.5 0.8;
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52

53

54

55

56

57

58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

22 1 0.09 0.04
23 1 0.09 0.05
24 1 0.42 0.0
25 1 0.42 0.0
26 1 0.06 0.025
27 1 0.06 0.025
28 1 0.06 0.02
29 1 0.12 0.07
30 1 0.2 0.6
31 1 0.15 0.07
32 1 0.210.1

1 0.02 0.03

%% generator data

% bus Pg Qg Qmax

Qclmin Qclmax Qc2min

mpc.gen = [
% 1 500 0 150

0O 0 o0 o0
1 2.78 0
0 0 0
18 0.50 0.00
0 0 0
22 0.50 0.00
0 0 0
25 -1.0 0 0
0 0 0 0
33 -1.0 0 0
0 0 0 0
1;
%% branch data
% fbus tbus
angmin angmax
mpc.branch = [
1 2 0.005752591
2 3 0.030759517
3 4 0.022835666
4 5 0.023777793
5 6 0.051099481
6 7 0.011679881
7 8 0.106778574
8 9 0.064264305
9 10 0.062642099
10 11 0.012266371
11 12 0.023359763
12 13 0.091592232
13 14 0.033791794
14 15 0.036873985
15 16 0.046563544
16 17 0.08042397
17 18 0.045671331
2 19 0.010232375
19 20 0.093850842

0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
0 0 1 1 0 12.66 1 1.5 0.8;
Qmin Vg mBase status Pmax
Qc2Z2max ramp_agc ramp_10 ramp_30
-200 1.05 100 1 800 0 (0] (0] (0]
0;
100 -100 1.05 100 1
0 0 0 0 0 0 0; %PSP
0.30 0 1 100 1
0 0 0 0 0 0 0 0; %DG1
0.30 0 1 100 1
0 0 0 0 0 0 0 0; %DG2
0 1 100 1 0 -1.4725
0 0 0; S%FL
0 1 100 1 0 -1.4725
0 0 0; %FL
r x b rateA rateB rateC ratio
0.002976124 0 130 130 130 O 0 1 -360
0.015666764 0 130 130 130 O 0 1 -360
0.011629967 0 130 130 130 O 0 1 -360
0.01211039 © 130 130 130 O 0 1 -360
0.044111518 0 130 130 130 O 0 1 -360
0.038608497 0 130 130 130 O 0 1 -360
0.077061012 0 130 130 130 O 0 1 -360
0.046170471 0 130 130 130 O 0 1 -360
0.046170471 0 130 130 130 O 0 1 -360
0.004055514 0 130 130 130 0 0 1 -360
0.007724195 0 130 130 130 O 0 1 -360
0.072063371 0 130 130 130 O 0 1 -360
0.044479634 0 130 130 130 O 0 1 -360
0.03281847 0 130 130 130 O 0 1 -360
0.034003928 0 130 130 130 O 0 1 -360
0.107377542 0 130 130 130 O 0 1 -360
0.035813312 0 130 130 130 O 0 1 -360
0.009764431 0 130 130 130 O 0 1 -360
0.084566834 0 130 130 130 O 0 1 -360

Pmin

115

Pcl Pc2

ramp_q apf

0

0.50

0.50

angl

100

e

360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;

0o 0

status
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82
83
84
85
86
87
88
89
20
91
92
93
94
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

N
o

21
22
23
24
25
26
27
28
29
30
31
32
33

AN DN WN
E NIV

W INNNN
© O 00N

— ww
~ N R

o°
o°

ge
1

o°

n
2
pc.ge

0
0
0
0
0
0
0
0
0
0

SN NNNMNNNNNNDNI3 °

[cNoNoNoNoNoNoNoNoNoNoNoNO]

.025549741
.044230064
.028151509
.056028491
.055903706
.012665683
.017731957
.066073688
.050176072
.031664208
.06079528

.01937288

.021275852

.029848586
.058480517
.019235617
.044242542
.043743402
.006451387
.009028199
.058255904
.043712206
.016109751
.060084005
.022579856
.033080519

[cNoNoNoNoNoNoNoNoNoNoNoNO]

erator cost data
startup shutdown n
startup shutdown n

ncost = [

0

[cNoNoNoNoNoNoNRONO]

12.0
10
10
10
10

3

NNNNNNNNNNDNI

OO0 wWww

6 le-4;
le-4;
le-4;
le-4;
le-4;
le-4;
le-4;
le-4;

0;

0;

130
130
130
130
130
130
130
130
130
130
130
130
130

[cNoNoNoNoNoNoNoNoNoNoNoNO]

x1 yl
c(n-1)

130
130
130
130
130
130
130
130
130
130
130
130
130

130
130
130
130
130
130
130
130
130
130
130
130
130

cO

[cNoNoNoNoNoNoNoNoNoNoNoNO]

yn

[clNoNoNoNoNoNoNoNoNoNoNOoNO]

R R R R R PR RRRBRR &

-360
-360
-360
-360
-360
-360
-360
-360
-360
-360
-360
-360
-360

A. Appendix

360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;
360;

A.1.3 Modified 4 bus openDSS script file

© N o U A W N R

R e e e =
U A W N R O

16

17

=
©

clear

I TEEE modified 4-bus test case

I Originally given at OPENDSS Website, developed by Alan Dunn and Steve Sparling

new circuit.4bus  basekV=12.47 phases=3

~ mvasc3=200000 200000

new linecode.
~ rmatrix=[0.4576
~ xmatrix=[1.078

~ cmatrix=[0 [0 O

new linecode.
~ rmatrix=[0.4576
~ xmatrix=[1.078

~ cmatrix=[0 [0 O
I xxxx 12,47 KV LINE

new line.linel phases=3 busl=sourcebus bus2=n2 linecode=mtx601 Length=2000

units=ft

I ssxx 3-PHASE STEP-DOWN TRANSFORMER 12.47 to 4.16 KV Ygrd-Ygrd (remove ‘‘\'’
when inputing the code as .dss file)

0 0 0

]

new transformer.tl phases=3

~ wdg=2 bus=n3.1.2.3 conn=wye

mtx601 nphases=3 Units=mi
|0.1559 0.4666
|0.5017 1.04828

]

mtx602 nphases=2 Units=mi
|6.1559 0.4666]
|0.5017 1.04828]

windings=
~ wdg=1 bus=n2.1.2.3 conn=wye kV=12.47 kVA=6000 \%r=.55
kV=4.16 kVA=6000 \%r=.55

2

xhl=2

[0.1535 0.158 0.4615
|0.3849 0.4236 1.065

]
]

xht=1
x1t=1
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I oxsxx 4,16 KV LINE

new line.line2 phases=3 busl=n3.1.2 bus2=n4.1.2 linecode=mtx602 Length=2500
units=ft

I' skxx SINGLE PHASE WYE-CONNECTED DELTA-CONNECTED (LINE-LINE) LOADS with 4.16
KV-LL RATING

new load.loadl phases=1 busl=n4.1.0 kV=2.4018 kW=400 kvar=200 vminpu=0.75
model=1

new load.load2 phases=1 busl=n4.1.2 kV=4.16 kW=400 kvar=200 vminpu=0.75 model=1

set voltagebases=[12.47, 4.16]

set controlmode=0FF

calcvoltagebases

solve

A.2 DLMP Model for Convexified OPF

bus 0 bus 1 bus 2 bush
ro,X | ry, X |

S f f rovab i
| 2 |Iol,p0,q0 ) | |ll|2,p1{q1f 2 | 2
|Vd |V1| lpj_! q]_ |V2| 1p2’ q2 |V,J 1pn!qn

Figure A.1: Notations used to represent branch flow convexified power flow model of the
radial grid [57]. For line connecting bus j and k, squared line current, active power flow,
reactive power flow, resistance and reactance are represented as: ijsq = \ij\2, pjf, qu, r
and x;, respectively. For bus j, squared voltage, active power injection and reactive power

A N A i
injection are represented as: v;” := |vj|, pj and gj, respectively.

A.2.1 Convexified DLMP Formulation

In order to aid in developing branch flow convexification method [4, 57, 26], we adopt scalar
notation here to represent a radial grid in Fig. A.1. We formulate convexified ACOPF for a
generic injections (pj, g;) at each bus j and single time-step in (A.1)'. In (A.1), sjf and cJP(-) /
qu(-) are respectively the scalar version of the complex line flow “from” and cost function given
in (3.14) and Sec. 4.1.1. For more information regarding the formulation, interested readers
are referred to [57]. Constraints [(A.1b)—(A.1€e)] represent AC power flow relaxation. The con-
straint (A.1e) is actually a second order cone constraint, if satisfied as an equality constraint
makes the relaxation exact [26]. For detailed information on SOCP, interested readers are

'The full formulation (analogous to (4.3)) which considers FLs/DGs along with inter-temporal energy and
actuator constraints is a straight forward procedure and is left out here for exposition simplicity and brevity.
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referred to [57, 26].

n

max  —3 (cf(p)+cf(q))) (A12)
j=1

s.t.

ij = ij—&-l + rjijsq — Pj+1 : >‘JI'J (A.1b)
qf = a1+ %5077 = g 2 (Alc)

f f :Sq

viT = vl +2(5pf +xaf) — (7 +x7)irT A (A.1d)
(P> +(af)> . :

J\/#J < ,jsq : y,J’- (A.1e)

J

(p))? + (af * < (s 1) 0 (A1)
i<y <yt O (A19)

Now considering an exact solution of (A.1), the following KKT conditions are then satisfied:
¢/ +A7 =0
ch + qu =0
X =N 2N —2pf (B +uf) =0
A =X+ 250 —2¢f (B + ) =0
rj)\f+><j)\;7 — (rj2 +xj2)+uj"- =0
LG G/ T
Wy TR TR A A S

Along with the primal feasible (A.1) and non-negative Lagrange multipliers conditions. In (A.2),

we have §; := ;{,.

For active péwer, consider DLMP at bus j to be defined as )\J’.’. Then from (A.2), we have
DLMP at bus (j) >\J’-’ dependent upon DLMP at its ancestor-bus (j — 1) Af_l, along with other
terms which are only dependent on the bus (j) 2r;A7 and the line connecting the bus (/) and
its ancestor-bus (j — 1) 2pf(/3j + p,j-). Same explanation holds for the reactive power DLMP
at bus (j), i.e., )\J‘-’.

DLMP Representation Issues

The DLMP value obtained from the above mentioned convexified formulation (A.2) might be in-
terpreted as follows: a marginal change in injection at bus (j) only requires a marginal change
of injections at its own bus (j) and its ancestor-bus (j — 1), while leaving reset of the grid
unaffected. However, this interpretation is not physically true. As it has been shown in [82,
Proposition 3.3] that a marginal change in the injection at bus j also affects variables (e.g. volt-
ages, line flows) at buses other than its ancestor-bus (j—1). Moreover, Lagrange multipliers A}

and [.Lji- do not have straight forward interpretation. In light of these representation issues, we
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adopt global power balance formulation and its trust-region based iterative linearization for
calculating DLMPs.

A.3 Flexible Load Model

Table A.1: Flexible Load Model Nomenclature

Notation Description

wi, ri number of walls and rooms

Twis Tri, Tsi  Temperature of walls, rooms and air supply

Cwi, Cri Transmittance of window i and absorptivity coefficient of wall
Rij Thermal resistance between node i

Al Awi Total area of window i and total area of the wall wi

qlr/adr,-’ Gint,; ~ Solar radiation and internal heat generation in the room

Nyi, N, The set of all connected nodes to walls and the room

ri Equal to 0 for internal and 1 for peripheral walls

x(t) Temperature state [deg C]

ch(t) State of the charge [-]

Um,t Air mass flow energy schedule [kg/sec]

z(t) External and internal disturbances

Pheat.t> Pfan,t Heating and fan power [kW]

p, Ap, ¢, Air density, pressure difference across the fan, and air specific heat capacity

In the existing literature, (1) data driven models [72, 73], (2) high fidelity physical models [18,
98, 19] and (3) resistance-capacitance (R-C) based physical models [67, 21] of buildings are
found. Data driven models provide good performance when operated within trained (his-
torical) data sets. Hence, the main drawback of these models exists in the form of high data
requirements, covering range of operating and ambient conditions. High fidelity physical build-
ing models represent accurate complex thermal interactions within a building. Applications of
these models are mainly limited to the estimation of annual, monthly or weekly energy con-
sumption. The main disadvantages of these types of models are their size and complexity.
Hence, they cannot be easily incorporated into optimization problems, which is necessary for
quantifying load shifting potential.

For buildings, the R-C model is designed to achieve controllability. These types of models
attempt to mitigate issues related to data driven and high fidelity models. Even though R-C
models represent a simplified form of high fidelity physical models, they still provide accurate
enough prediction of important thermal states of the building. Compared to their counterparts,
R-C models are computationally tractable. This property has been specially useful in the
utilization of control theory in building operations [66, 81, 32, 33, 69, 80]. Hence in this thesis,
an R-C based physical model is used to predict thermal states and energy requirements of
the building.

Zone Model

An R-C (lumped) model of a zone consists of thermal resistances and thermal capacitances,
representing heat transfer and heat storage, respectively. Each node in a zone is represented
by one temperature (thermal) state. These buses are connected with each other through
thermal resistances, and to the ground through thermal capacitances. From A.2, it can also
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Figure A.2: Simple R-C model representing interpretation of walls and its surrounding en-
vironment (top right). The translation of one zone, into an R-C thermal network (left). For
simplification, zone 1 is assumed to contain only one room. The injections Quvac, Qabs
and Q;,: represent the second, third and fourth term of (A.2b), respectively. Similarly, Q¢rans
is evaluated using the second term of (A.2a).

be observed that heat flows are represented by current injections, whereas temperatures as
voltages. The differential equations representing temperature evolutions of walls and room
are:

dTyi 1 TJ — Twi "
_ AL ), A.2a
dt  Cyi (jE%W; ij i W’qradn) (A.22)
a1 T —T: . S
d; = C”(J | J R,‘j s + micp (Tsi - Tri) + WiTrIiA’riqrad”. + qint>r (A.2b)

The total number of state equations to represent one zone are n = wi + ri. There are
two sources of disturbances in the model: (i) external disturbances, experienced due to solar
radiation qlr’adn, and (ii) internal disturbances, caused by electronic components and occu-
pancy gin:- More details regarding parameters of the R-C model and their units can be found
in [67]. From (A.2), the temperature of the zone x; can be expressed as a nonlinear combina-
tion with the Heating Ventillation and Air-Conditioning (HVAC) mass flow rate u(t) as:

x(t+1) = x(t) + g(x(t), u(t)) — z(t). (A.3)

The expression shown above is of nonlinear nature. Since the most efficient controllers
are obtained for linear systems, the nonlinear model described above is linearized and dis-
cretized using sequential quadratic programing and zero order hold, respectively [68]. In [68],
it is shown that linearizing around the usual operating point does not introduce significant er-
rors. This is mainly because the temperature range of the building is normally not very large.
Another simplification made in obtaining an equivalent flexible load model is that only aggre-
gated room temperature is concerned, i.e., we omit the effect of wall temperatures. This is
done because from experiments it has been observed that wall temperature are always mov-
ing very slowly and hence can be assumed constant. Hence, we obtain the resultant discrete
time linear system at step k becomes:
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The above equation in a sequential form, i.e., as a linear combination of previous and
current state,

che=chy+ > dpli = z, (A.4)

t'<t—1 t<t

where ch; is now an equivalent state of charge of the room temperature. This state of flexible
load ch; at time period t is then represented sum of its initial state chg and the amount it
deviates due to flexible load provision till period t—1, pft', and the disturbance it experiences up
to time period t, i.e., z;. Interested readers are directed to [41, Sec. Il1], [58, Sec. ll] regarding
the above shown representation of flexible loads. In (A.4), pl = pheat.+(U¢) + Pran (), Where
it is assumed that a variable frequency drive fan based HVAC system is available for flexibile
consumption. In principle, by modulating the fan speed m,;, the energy consumption as
well as the temperature of the room is controlled. Hence, the electrical power consumed for
heating pheat,+ @and fan pgn ¢ @s a function of control variable is given as:

urcy(Tsi — Tri
Pheat,t = tp(i’r), (A.5a)
UtAp
Pfan,t = .
0

(A.5b)

Finally, the above flexible load state equations can be compactly represented as the vector of
all n flexible loads states in the grid,

ch! = ch) + D,p" — z,, (A.6)

where D places parameter d recursively in its entries to reflect inter-temporal flexible load
consumption so that the state ch; is dependent on both previous and current time steps.
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Figure A.3: Measurements used for conducting flexible load’s zone model identification.
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Identification & Validation

As an initial guess, the R-C thermal model is first developed using typical values of con-
struction materials. In order to adjust the developed theoretical model to represent the actual
thermal behavior of the zone, parameters of the model are adjusted. This is performed using
the “fmincon” function in Matlab. In particular, optimal parameters are found which minimizes
the least square error between the simulated and the actual temperature of the zone. The
identified parameters are then used to simulate the thermal behavior of the zone. Chapter A.4
shows a comparison between the measured temperature of an actual commercial building’s
zone [67] and the simulated temperature using the identified parameters. The maximum ab-
solute error of only 0.46 deg C is observed in A.4, which has a negligible effect on users.
To quantify the performance of the obtained model, two metrics are defined: (1) the mean
absolute percentage error (MAPE) and (2) the mean absolute error (MAE).

1 & T — T
MAPE = — 100 A7
1 N
MAE = — Tri — Tmil. A.7b
N kZ:l| ri = il (A7b)

In (A.7), Tmi and N are the measured temperature of the zone and time duration of the ex-
periment (24 hr), respectively. The MAPE and MAE for the model comes out to be 0.30% and
0.21, respectively. These values show that the modeled temperature evolution is close to the
actual one.
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Figure A.4: Comparison between the simulated and actual temperature profile (top), along
with the absolute error (bottom).

A.3.1 Practicality of the Adopted Flexible Model

The main advantages of adopting the proposed model to the Building-Resistance-Capacitance-
Modeling (BRCM) toolbox [96] is that: (1) it automates the connection of zone differential
equation, and (2) it allows for benchmarking and comparing of control/optimization techniques
for building simulation [33, 95, 13, 32]. Hence, the zone model described in A.3, is shown to
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be translatable to BRCM using the description provided below. The advantage of the BRCM
toolbox comes from its ability to separate the dynamic thermal model (heat transfer between
rooms, walls etc.) and the static external heat flux (EHF) model (solar and internal gains etc.)
of the building. Keeping the similar notation of A.3, the BRCM represents the interaction of
thermal states (temperatures), ch; with the aggregated EHF inputs, g; as:

chy = Ach; + Bqi(xt, u(t), zt). (A.8)

In principle, q: can be considered as a response in the form of heat due to the influence
of control inputs (u(t)) and disturbances (d;) on the system. For n, number of inputs, the
thermal model in A.8 is discretized in order to obtain a bilinear model of the system (the time
varying product of states and disturbances with control inputs)?

ny
Xer1 = Axe + Bute + Ezze + Y (Ezu,idk + Biu,iXi) Uk,i. (A.9)
i=1

In order to bring the model of (A.9) into the presented zone model in A.3, two simplifications
can be performed: (1) it is assumed that the temperature experienced by the outside of the
walls, solar irradiation and heat gains are known in advance (from historical data), and (2) only
the HVAC’s mass flow is taken as a control input. Under these assumptions, the input depen-
dent state By, and disturbance E;, ; matrices are concatenated into A and E, respectively.
The resultant discrete time linear state space model then becomes:

Xt+1 = AXt + BuUt + Zt (A10)

As a validation, A.5 shows the comparison between the simulated zone models and the
measured temperature. It can be observed that the BRCM toolbox represents a close simi-
larity to the actual temperature evolution. This validation enforces that the BRCM provides an
extensible, yet comprehensive tool for modeling the thermal dynamics of a building.
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27 T T T T T

I | I I
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20 | 2
19

deg C
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Figure A.5: Temperature profiles of simulated zone models, using BRCM and R-C
model( (A.10)), and their comparison with the actual measurements [67].

2Refer to [96] for the more information regarding the thermal model and its corresponding matrices of BRCM.
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