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Chapter 1

Introduction

Swarms of male fireflies blinking in unison have been observed [1]. Similar pendulum
clocks swing synchronously if mounted on a common support [2]|. Everyone of us
has an internal, chemical clock with a period of roughly 24 hours that constantly
adapts to the light from the sun [3]. After long flights along longitudes, however,
this circadian clock is out of sync and needs a few days to readjust, which is the
reason for jetlag [4]. All these seemingly different examples are based on the same
principle: Some autonomous system - a firefly, a pendulum clock or the circadian
rhythm - shows self-sustained periodic behavior. These nonlinear oscillators then
adjust frequency and phase of their oscillation to match other oscillators or a periodic
signal: They synchronize.

Synchronization occurs in many scientific disciplines, with applications in engin-
eering, physics, chemistry, biology, medicine, and even in social sciences. The study
of synchronization has intensified in the last decades, with [5-12] summarizing the
state of the art.

Particularly intriguing, synchronization phenomena occur in neuroscience as well
[13]: Oscillations can be found at different length- and timescales in the nervous
system [14]. The synchronization of neural oscillators controls vital functions, but
is also responsible for some neural diseases such as epileptic seizures [15|. Synchron-
ization phenomena are also involved in cognition tasks of the brain [16].

Early attempts to understand the human brain also inspired the development of
artificial neural networks: Interaction of networks of small subunits, called “artificial
neurons”’, have been studied for roughly 70 years now [17]. After recent improve-
ments in both algorithms (e.g. [18-20]) and computational power (e.g. GPU com-
puting), today these artificial neural networks are successfully applied in industry
for e.g. image and speech recognition, speech generation, or forecasting. In contrast
to nerve cells, conventional artificial neurons are simple functions of their inputs and
are evaluated at discrete points in time, emitting a single value. Admittedly, these
rough simplifications are necessary to allow for efficient computation on conventional
computers. If specialized hardware is considered, however, artificial neurons are not
limited to clocked evaluation on CPUs: Oscillators, for instance, can be regarded as
artificial neurons. Any coupling to another oscillator’s signal continuously promotes
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synchronization at some specific phase difference. Consequently, coupling many os-
cillators can lead to complex dynamics. Can synchronization of oscillators thus be
used for computation?

Indeed, inherent parallel architectures have been proposed for such networks of
oscillators. Continuous processing of signals and low power consumption of some
proposed nano-oscillators [21-23] promise fast and energy efficient hardware, which
could support conventional processors in specialized tasks. However, many problems
are still unsolved. This thesis specifically aims to construct a network of oscillators
acting as autoassociative memory, while at the same time mitigating or removing
shortcomings of earlier architectures.

When an autoassociative memory is presented with a defective and/or incomplete
piece of data, it recognizes and retrieves the correct data from a set of correct
candidates. From a different point of view, the defective input data are mapped
onto the most similar of the candidates. The ability to "map” is also found in
complex physical systems: The trajectory of a system state will converge to an
attractor. If several attractors coexist, different sets of initial conditions, called
basins of attraction, will end up on different attractors. Therefore, the system "maps”
all initial conditions within one basin onto its attractor. Note that few physical
systems are actually suitable as autoassociative memories: First, suitable mappings
of the defective data onto the initial conditions and from the attractors back onto
the correct patterns have to be found. Additionally, initial conditions as well as
attractors of a system need to be controlled, with the latter usually being difficult.
Finally, the initial defective data should be mapped onto the most similar correct
data candidate, which requires that the basins of attraction actually conform with
a sensible definition of similarity. The idea to use basins of attractions for pattern
recognition has originally been proposed by Hopfield for use in conventional neural
networks [24]. Contributions from mathematics, physics and neuroscience made it
possible to merge his ideas with the studies of coupled nonlinear oscillators. (See
the end of [25] for a summary.)

Networks of nonlinear oscillators have been shown to act as autoassociative
memory devices for binary patterns [26-33] according to the above-mentioned
principle. In the original architecture [26-28], identical Kuramoto oscillators [25]
are fully interconnected via programmable connections that can change sign and
strength of the coupling according to the Hebbian Rule [34]: With /" being the

ith pixel of the m'™ memorized pattern, the coupling between oscillators i and j is

proportional to S;; = fozl a;"a’". Here, each of the M correct pattern candidates
consists of N pixels. Specifically, the phase ¥; of the i oscillator evolves according
to 191 = 0 — $S;sin (¥; —v;) with constants e and € representing the coupling
strength and the angular frequency of the oscillator. In a frame of reference rotating
with ©, this simplifies to ¢; = ¥, —Q = — Zjvzl 545 sin (¢; — ;). Here, fixed points
are the only type of attractors, and defective input patterns as well as correct pattern
candidates can be mapped on two synchronized groups of oscillators whose phases



differ by m. However, this design has two main disadvantages: First, no distinct,
well-separated fixed points exist for the memorized patterns [35]. Instead, there is
one global attractor consisting of lines of attractive fixed points with neutrally stable
eigendirections that connect every memorized pattern with every other. On short
timescales, pattern recognition still works: Starting at the defective pattern, the sys-
tem state quickly relaxes onto the global attractor close to the most similar pattern.
On the attractor, however, perturbations due to external noise or implementation
inaccuracies dominate and the system state drifts away from the correct pattern
on longer timescales. Additionally, recognition success cannot be guaranteed as no
well-defined basin of attraction exists for any single output pattern.

Second, the number of connections scales quadratically with the number of oscil-
lators, so no large networks can be implemented in hardware.

So far, no architecture that solves both issues has been proposed. How-
ever, separate solutions for each problem have been discussed: Nishikawa et
al. [32] showed that the degeneracy of the attractor can be lifted by adding
second order Fourier modes to the coupling, i.e. he explored dynamics ¢; =
Z;.Vzl (=Sijsin (i — @;) — Esin (2 [p; — ¢;])) with v being a small parameter. A
similar network with third order Fourier modes has been proposed as well [33].
However, it is unclear how such a coupling could be implemented. Additionally,
the number of physical connections still scales quadratically with the number of
oscillators. A partial solution for the scaling problem has been proposed by Hop-
pensteadt and Izhikevich [29] and has been further advanced by Holzel and Krischer
[30] and Kostorz et al. [31]: Oscillators of different frequencies are coupled to the
same global coupling that affects every oscillator differently. These architectures
require an external input of complex time-dependent functions, but the number
of connections scales with O(N). Although the coupling mechanism is different,
the effective dynamics ¢; = 0, — QO = — Zjvzl ~Si;8in (@; — ;) are identical to
the original architecture and thus, this approach inherits the unfavorable valleys of
neutrally stable fixed points.

In this thesis, a novel network architecture is designed that combines both isol-
ated attractors and minimal scaling of connection complexity without the need for
complex external input. In order to prove implementability in hardware, validate
our theoretical predictions and explore the limits of network parameters, we imple-
mented the architecture with electronic Van der Pol oscillators.

First, we will lay out some foundations of nonlinear dynamics and analog elec-
tronics in chapter 2. In chapter 3, the new network architecture is presented. It is
built on the aforementioned previous studies [29, 30| of globally coupled oscillatory
devices, but we introduced two peculiar features: Different temporal modulation of
the coupling strength and a replacement of the single network by two interconnected
subnetworks. The result is a robust autoassociative memory that can be readily read
out. Additionally, we can predict recognition success analytically. The implementa-
tion of the network in electronic circuits as well as the measurement environment are
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discussed in detail in chapter 4, before measurement results are outlined in chapter
5. Here, the automation of the network hardware allowed to gather statistics on
recognition success and recognition times in the presence of noise and inaccuracies.
Network performance, however, is close to ideal for a large range of parameters.
Finally, we summarize our results in chapter 6 and outline possible future research:
While both theoretical questions and unexplored improvement possibilities remain
open for our architecture itself, other applications in e.g. combinatorics can be
explored as well.



Chapter 2

Foundations

This thesis is interdisciplinary, thus touching or requiring selected topics from phys-
ics, information technology and electrical engineering. Consequently, the current
chapter aims to communicate the most necessary foundations from nonlinear dy-
namics and analog electronics, convey intuition and provide resources for further
reading. However, these excursions are kept simple on purpose and do not claim
to be fully sufficient for understanding all details of the following chapters. Both
the books Nonlinear Dynamics and Chaos |36] and The art of electronics 37| are
suitable as an introduction, but also cover fine details, edge cases and exceptions.

2.1 Nonlinear dynamics

As mentioned in the introduction, we aim to construct a network of oscillators with
several, separated attractors. Both internal dynamics of oscillators as well as their
collaborative behavior can be described with methods of nonlinear dynamics: First,
differential equations are rewritten as system of first order differential equations. If
we consider e.g. a single electrical oscillator, variables could be a voltage U and a
current I. Instead of focusing on individual trajectories as functions of time, the
system is then described in the space spanned by its variables. Consequently, a
single point in this phase space describes a possible state of the system. Over time,
the system state “flows” through phase space, with its velocity vector determined
by the time derivatives of the variables, which are in turn conveniently provided by
the differential equations. Finally, after some transient, the system state settles on
some structure in phase space and stays there for all future times. These structures,
called attractors, come in different shapes: Points, which correspond to a constant
system state, closed curves called limit cycles, which correspond to oscillations, and
other, more complicated shapes like tori or even fractals. Note that a dynamical
system can have several attractors, and all initial conditions that end up on one
attractor belong to its basin of attraction.
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(a) Periodic long-term behavior:

After an initial transient (not shown), vari-
ables describing an oscillator show periodic
motion. In this example, variables are a
voltage U and a current I, but generally,
they depend on the oscillator: For e.g. a
metronome, they could be position and ve-
locity of its tip, while the variables for a
firefly’s blinking are concentrations of chem-
icals inside their bodies. Note that although
we use oscillators with roughly sinusoidal
voltages, oscillations need not be sinusoidal
in general.
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(b) Limit cycle:

Variables describing a nonlinear oscil-
lator’s internal dynamics are plotted
against each other. Then, the periodic
motion is situated on a closed curve,
the so-called limit cycle.(black) Any
displacement of the variables quickly
settles on the limit cycle (red). If per-
turbations from the limit cycle are not
too large, the dynamic of the oscillator
can thus be described with a phase
¥ € [0, 27| only.

Figure 2.1: Exemplary dynamics of a nonlinear oscillator.

(Specifically, the data shown is from simulations of an electrical Van der Pol os-
cillator, which are also used in the prototype network. The simulated oscillator
had a capacitance C' = 1nF, an inductance L = 15,8 mH and an effective negative
resistance R, ., = —33 k(2 and oscillates with a frequency f ~ 40kHz. For further

simulation details, see Sec. 5.1.1.)



2.1 Nonlinear dynamics

2.1.1 Nonlinear oscillators

The aforementioned principles will now be applied to a single nonlinear oscillator
and illustrated with simulation data of the oscillators used in our experiment: The
variables describing a nonlinear oscillator show periodic motion after a transient
(Fig. 2.1a). In the two-dimensional phase space (Fig. 2.1b), which is spanned by
these variables (e.g. U and I in our example), the dynamics of the system are much
more visible: All system states that belong to the periodic motion lie on a limit cycle
(black). Any trajectory, e.g. the red curve, does quickly end up on this attractor.
Consequently, the amplitude of the oscillation is constant after a transient. Note that
nonlinear oscillators strongly differ from linear, harmonic oscillators in this regard:
The amplitude of undamped harmonic oscillators is not fixed, but depends on their
total energy, which is conserved. Damped harmonic oscillations quickly die down -
their attractor is thus a fixed point - and thus their oscillations are not a long-term,
but only a transient phenomenon. On the other hand, nonlinear oscillators need an
energy source to stabilize the limit cycle against perturbation. On the limit cycle,
the system state can be described by a single variable: The phase ¥ € [0, 27| of the
oscillation, which increases linearly with time. Actually, as close trajectories always
approach the attractor, the definition of the phase can be extended to any points in
the limit cycle’s basin of attraction [38, 39]. Furthermore, interactions of oscillators
can conveniently be described by their phases, if deviations from the limit cycle stay
sufficiently small [38|.

2.1.2 Phase description

While an oscillator’s state can be described by a phase alone, any external sig-
nals first influence its internal variables. Imagine an external signal perturbing the
voltage of the exemplary oscillator in Fig. 2.1b: If e.g. ¥ &~ 0 or «, the perturbation
in U is almost parallel to the limit cycle and directly increases or decreases phase.
However, for 9 ~ 7 or 37“, the perturbation is perpendicular to the limit cycle and
the phase remains the same. The phase change at an arbitrary phase to an internal
variable X is generally described with a phase response curve % and depends on
the shape of the limit cycle and its neighborhood [38]. The phase dynamics of a
single oscillator can then be summed up:

: Ao
I =Q+) —AX,
X,

Here, Q) = 27 f is the angular frequency of the oscillator. A phase response curve
for our exemplary oscillator is shown in Fig. 2.2. Simplifying, we restrict our further
analysis to oscillators that emit a sinusoidal signal (e.g. their voltage) and have a
sinusoidal phase response shifted by 7 with respect to the oscillation. (Note that all
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Figure 2.2: Phase response curve % of the exemplary oscillator from Fig. 2.1.
Black dots show the simulated phase response to voltage perturbations. The red
curve is a cosine fit.

oscillators close to a Hopf-bifurcation [40] fulfill that requirement. Thus, the analysis
remains valid for a large class of oscillators independent of their exact differential
equations. )

2.1.3 Synchronization

Now, we couple two oscillators symmetrically, meaning that for each oscillator, an
internal variable is perturbed proportional to the other’s signal:

191 =y +ecosV; -sindy
192 =)y + €costIy - sind,

Here, 9, and 95 are the phases of the individual oscillators, 2; and )5 their angular
frequencies and the coupling strength € is a constant encapsulating amplitudes of
signals and phase response curves as well as factors due to details of the coupling
mechanism. If both oscillators synchronize, their frequencies align. Then, the dif-
ference between their phases AY¥ = 1, — ¥/ must thus become constant or at least
be limited to a small range of values. Thus, we express the dynamics in Av and
simplify with the trigonometric identity sinz cosy = 3 [sin (z — y) + sin (z + y)]:

AD =) — U,
= AQ + € (cos W - sinvy — cos vy - sin )
AV = AQ — esin AD (2.1)
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Now, the only variable describing our oscillator pair is the phase difference A and
the phase space of the system is thus on a line. If A¢ grows without bound, the
frequencies cannot be equal. Consequently, for synchronization to occur an attractor
must exist. In a one-dimensional system, this can only be a stable fixed point [36]:
On a fixed point, the flow vanishes, so a trajectory starting on the fixed point remains
there for all times:

e For |AQ| > ¢, the flow Ad (Eq. (2.1)) is always larger than 0, so our oscillator
pair cannot synchronize.

e For |AQ| < ¢, the flow intersects with 0 at two points. Regarding stability,
there is always one stable (attractive) and one unstable (repulsive) fixed point,
as Av either flows towards the fixed point or away from it, as illustrated in
Fig. 2.3c. As no other attractors exist, the system moves to the stable fixed
point, where the oscillators are perfectly synchronized. Note that for AQ2 = 0,
the stable fixed point is at a phase difference of 0. If |AQ)| increases, the fixed
point moves away from zero till it annihilates with the unstable fixed point at
|AQ| = e. Similarly, if the coupling had a negative prefactor, the sin Ad-term
would be inverted as well. Then, the fixed points had inverted stability and
the stable fixed point was close to 7.

The synchronization of multiple oscillators with different frequencies - with every
oscillator being coupled to every other - is substantially more complex and has been
extensively studied by Kuramoto [41]. The main message, however, stays the same:
As long as the coupling is sufficiently larger than the frequency differences, the
oscillators synchronize.

2.1.4 Saddle-node bifurcations

In the last section, we discussed two symmetrically coupled oscillators. Particularly,
when A€} =~ ¢, only minuscule changes to the angular frequency difference A
were necessary to switch from synchronization and a phase-locked state to an ever
increasing phase difference. Such qualitative and substantial changes of a systems
behavior due to small parameter changes are called bifurcations. The behavioral
change coincides with a creation, change or annihilation of attractors, repellers or
saddles in phase space. (Saddles are attractive in at least one direction and repulsive
in at least another.) The bifurcation in our synchronization example is a saddle-
node bifurcation, where a pair of fixed points annihilates. This is illustrated in Fig.
2.3, where one stable and one unstable fixed point are created if |AQ| is reduced to
values smaller than €, or annihilated if |AQ2] is increased again. Note that saddle node
bifurcations arise in many systems and the exact shape of the flow is not critical:
As long as the flow close to the bifurcation can be approximated with a parabola -
more precisely, as long as the flow is topologically equivalent to X = r 4+ X2 close



Chapter 2 Foundations

(a) No fixed points:

As AQ > ¢, the flow of
A4} is positive in the whole
phase space and one oscil-
lator will always pass the
other.

AV
AQ{
ES > —> >
0 u 2m
AY
(b) Omne half-stable

fixed point: At AQ = ¢,
there is exactly one fixed
point AY* = F, where
AY = 0. Everywhere else,
the flow is still positive
and Av will increase until

it reaches the fixed point.

A

...................... "
2m
A

(c) Fixed point pair:

For AQ < ¢, there are
two intersections of AY
with the Ad-axis. The
flow on the phase space
line strictly flows to the
stable fixed point (black
circle), while it flows away

from the unstable fixed
point (white circle) on
both sides.

The fixed point, however,
is not stable: Any positive
perturbation in AY will
grow.

Figure 2.3: A fixed point pair emerges in a saddle-node bifurcation: Synchroniz-
ation of two oscillators requires a stable fixed point in the phase space spanned by
their phase difference AvY. As seen in Eq. (2.1), zeros of A occur only for AQ < e
and correspond to a half-stable fixed point or a stable and an unstable fixed point,
as can be seen in b) and c). The flow AV on the one-dimensional phase space is
additionally visualized with blue arrows.

to the bifurcation, with r being the bifurcation parameter - the structurally same
annihilation or creation of a fixed point pair will take place. In this thesis, saddle-
node bifurcations will appear more often, e.g. in the context of frequency annealing
(Sec. 3.6.2 and 4.1.3) or removal of spurious coupling (Sec. 4.1.4). Note that in
higher dimensions, saddle node bifurcations still occur. Stability of fixed points,
however, must be determined for as many directions as there are dimensions.

2.1.5 Stability

Admittedly, we did not define stability rigorously yet. Actually, several definitions
of stability exist [42]:

e Trajectories close to a Ljapunov stable attractor X* stay in a neighborhood of
X* for t — oo.

10
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e An asymptotically stable attractor is always Ljapunov stable, but trajectories
X (t) also approach it, so | X (t) — X*| — 0 for t — oc.

e Fxponentially stable attractors are again a special case of asymptotic stability:
Here, | X (t) — X*| < e™ in a neighborhood of X* as ¢t — oo.

Attractors that are only Ljapunov stable, but not asymptotically stable, are also
called neutrally stable. One example of neutrally stable structures are the potential
valleys in previous oscillatory neural networks [26-31|, that were already mentioned
in the introduction: In a unperturbed system, the system state would move to
the closest attractor, which is part of a line of infinitely many neutrally stable fixed
points. When deviations of the systems or perturbations are considered - e.g. a “tilt”
of the potential function - we see that Ljapunov stable attractors are not desirable
for an attractor network: The attractors loose their stability and the system state
will move along the valleys.

In the oscillator network proposed in chapter 3, many fixed points exist, but
only a few fixed points are attractors. Stability analysis for a fixed point X* starts
with a linearization around the fixed point: First, we determine all components
Ji; = ﬁ—ﬁlsz* of the Jacobian matrix J at the fixed point. They describe, how the

flow in the i*" coordinate changes if we perturb the ;' coordinate. In other words,
we approximate the dynamics around the fixed point with

J

In our one-dimensional synchronization example, this reduces to a single component:
The derivative of the flow Ad with respect to Ad. If %|Aﬂ:Aﬁ* < 0, the flow is
negative for AY > Av¥* and positive for AY < AY* and thus the fixed point is
stable and vice-versa, a positive slope of the flow indicates an unstable fixed point.
For a general Jacobian matrix with more than one dimension, perturbations in one
coordinate influence the flow in others, so the analysis is not as straightforward.
However, remembering linear algebra, we diagonalize J by solving the eigenvalue
equation Jv = Av for eigenvalues A\ and eigenvectors v, which corresponds to a
coordinate change. (Specifically, eigenvalues are usually retrieved by solving the
characteristic polynomial det(J — A1) = 0. Note that eigenvalues can be complex
numbers.) As J is symmetric, we can always do this. Furthermore, it is guaranteed
that the eigenvectors form an orthogonal base. In other words, any perturbations
along one eigendirection can be treated independent of the others. If we express the
dynamics around the fixed point in new coordinates X; along the eigendirections
and centered around X*, the dynamics simplify:

J

11



Chapter 2 Foundations

= XZ = X?e)\it

Consequently, the eigenvalues \; directly specify the stability along the correspond-
ing eigendirection:

e Re()\) < 0: stable eigendirection (exponentially stable).
e Re(\) > 0: unstable eigendirection (exponentially unstable).

e Re(A\) = 0: The linear term of the flow is zero along the eigendirection, so our
linearization cannot decide on stability: Any non-zero higher order term will
change the sign of the flow, and other methods must be applied to determine
stability.

In chapter 3, a novel oscillator network for pattern recognition is presented, where
N pairs of oscillators represent pixels of a pattern. The dynamics are expressed in
phase differences Av;, attractors are exponentially stable fixed points, and analysis
in this N-dimensional phase space is based on the principles presented here. Prepar-
ing for chapter 4, which covers the implementation of the network with electronic
circuits, the next section outlines basics of analog electronics.

12



2.2 Electronic circuitry

2.2 Electronic circuitry

Any circuits and circuit components used in the experiment are well-known in elec-
tronics literature [37], but are probably unknown to readers with a pure physics
background. This section gives a short overview over electronic principles, circuit
components and subcircuits.

2.2.1 Circuit elements

Before presenting individual subcircuits, we first introduce single components. We
start with the operational amplifier, which is used in many circuits that utilize
feedback:

Operational amplifiers

An operational amplifier (op-amp) has one output and two inputs and needs to be
powered. The op-amp amplifies the difference of the input voltages with a very
high amplification factor (typically 10° —10°, ideally co), but without exceeding the
positive or negative supply voltage. However, an op-amp is almost always used with
feedback, which means that the surrounding circuitry allows the output voltage to
influence the input voltages. Consequently, the feedback network must be considered
for the analysis of an op-amp’s behavior. Feedback to the inverting input (marked
with “—” in circuits) diminishes the voltage difference AU = U, — U_ between
the inputs and is thus called negative feedback. Positive feedback goes to the non-
inverting input (“+”) and enhances AU. If negative feedback is larger than positive
feedback, behavior of an ideal op-amp is described by the golden rules, as stated
in [37]:

1. “The output attempts to do whatever is necessary to make the voltage differ-
ence between the inputs zero.”

2. “The inputs draw no current.”
Op-amp circuits offer multiple advantages:

e First, the low output resistance of most op-amp circuits allows to consider
different parts of circuitry independently: Voltages provided by the op-amp
circuit do not depend on the input resistance of the following circuitry. Sim-
ilarly, circuit components leading to the inputs lose no current to the inputs
or lose a well-defined current to the feedback circuitry. Combining op-amp
circuits is thus straightforward and predictable.

e Second, the output almost exclusively depends on the feedback network.
Choosing precise components for the feedback network, combined with the
first point, allows for precise output.

13
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e Third, many different circuits are known and information on pitfalls and non-
ideal behavior is easily available.

e Forth, op-amps are inexpensive and integrated circuits (ICs) housing several
op-amps can be purchased, which diminishes layout complexity and space.

Consequently, op-amp circuits are used in abundance for the design of the experi-
mental network.

JFETs as voltage controlled resistors

JFETs are 3-terminal-devices with inputs called source, drain and gate and can
be used as voltage-controlled resistors with some additional circuitry. The gate
draws no current and controls the current between source and drain. If the voltage
difference Vpg between source and drain is small, the current is
v2

Ips = 2k[(Uc — Us — Vis.orf)Vbs — %] :
Here, k and Vgg,ofs are constants. Voltages V' with two indices indicate voltage
differences between two points, while U with a single index is measured relative to
ground.
An ideal resistance would be constant for any change of drain or source voltage. In
other words, Ipg should be exactly proportional to Vpg. If we add parts of source
and drain voltage to a control voltage Ux at the gate, the quadratic term and the
dependency on Ug can be removed:

Us = Uc+05-Us+0.5-Up
= Ip=2k-(Uc— Vasoerf)Vbs
Vps 1
Ig 2k - (UC_VG’S,off)

= Rjrpr =

In the experiment, we use the JFET 2N5486 (gate-source cutoff voltage Vg orf €
[-2V,—6V] ) as a voltage controlled resistor for frequency annealing of oscillator
pairs. (See Sec. 4.1.3) Note that the gate forms a semiconductor junction with the
channel connecting source and drain similar to a diode. In order to avoid unintended
diode conduction and thus any gate current for the the JFET 2N5486, Uy — Ug <
40,5V and Ug — Up < 40,5V must be ensured.

Integrated circuits

Frequently required circuits are produced on silicon wafers and can be bought as
chips, also called integrated circuits (ICs). ICs usually save cost, space, and avoid

14



2.2 Electronic circuitry

implementation errors and we consequently used some for building the experimental
network:

e The ICs TLO74 and TLO072 contain 4 resp. 2 operational amplifiers which
perform well at the frequencies used.

e The Multiplier IC AD633 offers precise analog multiplication for all different
combination of input voltage signs. The ADG633 offers two fully differential
inputs, an additional summation input and an output range of [£10V]. It’s
output voltage W follows the function

(X1 — X5)(Y; — 1))

W= 0V

+ 7.

Here, X1,X5,Y; and Y, are the input voltages and Z is the voltage at an
additional summation input. Note that the multiplication result is divided by
10V.

If resistors Ry z and Rz, form a voltage divider between the output W, the
summation input Z, and ground, the output is amplified: Voltage at the
summation input is Z = ﬁ, which infers

g
Rz, + Rwz ' (X1 — Xo)(Y1 = Y5)

w
Rw z 10V

e The LF398 contains a “sample and hold” circuit. During “sampling”, the 1C
passes voltages unchanged, but voltage levels are "recorded" on a capacitor.
When a logic signal switches the IC to “hold”-mode, the input is disconnected
and the output is set to the voltage on the capacitor, mirroring the last sampled
value. The capacitor is not part of the IC, but needs to be added on one pin
of the IC and can be selected for holding time or speed of sampling. If a serial
resistor is added to the capacitor, the sampled value is additionally low-passed.

e The ICs DG411 and DG412 contain 4 analog switches respectively. Each
analog switch can be opened / closed by changing the digital signal applied.

2.2.2 Subcircuits

Numerous subcircuits are used in the implementation of the network and the exper-
iment: Summations, amplifications, inversions and multiplications are necessary for
the construction of signals between the oscillators. Supporting circuitry for readout
of phase differences and frequency adjustment requires removal of frequency com-
ponents. Finally, electrical oscillators need to be implemented as well, with subcir-
cuits imitating coils and negative resistances. First, the inverting summer will be
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analyzed to illustrate the application of the golden rules on op-amp circuits. Other
simple op-amp circuits are only displayed together with their purpose, as accurate
descriptions can easily found in the literature [37]. Afterwards, filters and finally
Van der Pol oscillators will be discussed.

Inverting summer

The inverting summer (Fig. 2.4a) is used in most modules. It can be easily analyzed
by applying the golden rules:
Golden rule 1:

U.=U; =0V

As U_ is effectively grounded, any input voltage cannot influence the other inputs.
Due to golden rule 2, currents at the inverting input must cancel out:

Lin = —Lout (Ohm’s Law)
i Ui=U. Ut~ U-
i=1 Rz Rout
N
Rout
Uou Uz 22
t i=1 R, 22

Amplification factors for different inputs can be chosen with appropriate values for
R; and R,,;.

If the circuit has only one input, it is called “inverting amplifier” or “inverter”.
Another variation of this circuit is the addition of input voltages at the non-inverting
input, which are counted with positive sign. However, compensation resistors have
to be chosen appropriately in order to guarantee stable circuit performance.

Other often used subcircuits are shown in Fig. 2.4, 2.5 and 2.6. The analysis for
most of them is analog to the inverting summer.

Filters

At first sight, a network of oscillators requires no removal of frequencies: After all,
oscillators require the reception of the other oscillator’s signals for synchronization.
Frequencies sufficiently different from the oscillator’s intrinsic frequency do not in-
fluence its phase and thus need not be filtered as well.

There is, however, supporting circuitry that requires low-pass filtering:

e Voltages proportional to cos AY can be constructed with multiplications and
low pass filters (Sec. 3.6.3 and 4.1.2). Compared to measurements of the
oscillator voltages, they are easier to measure and provide the phase difference
directly.
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Rl Rout
U, ANAN Ry Ry
Us [
: R2 Uout
Un —O Uout
Ry Uin T ©

(b) Non-inverting amplifier:

1 2 Z ]Z

Upt = — Zf\; 1 R}%?t U;. Analysis of this Uput =
circuit is shown in Sec. 2.2.2 as an ex-
ample. If there is only one input, this

circuit is called inverting amplifier.

Ry
Uin B Uout

Ry

L

(c) Conditional inverter / optional
inverter: If the switch is closed, this
circuit is an inverting amplifier with gain
1, inverting the input. If the switch is
open, U, = Uy, is mirrored by both U_
and Uy, passing the input unchanged.

Figure 2.4: Circuits used for summation, amplification and inversion

e Frequencies of oscillators differ in any experiment and can also drift. The
readout voltages can be fed into a feedback loop that adjusts frequencies auto-
matically (Sec. 3.6.2 and 4.1.3). The precision of this frequency annealing can

be further increased with a low pass filter.

Most importantly, a perfect filter - corresponding to a step function in frequency
space - does not exist. In order to perfectly analyze and separate frequencies of a
signal, the whole signal, including it’s future evolution, must be known. Imagine
physicists who Fourier transform a partially known signal in order to remove higher
frequencies: They can approximate the correct solution with window functions or
continuation of the known part to both past and future, but they will get an imper-

17



Chapter 2 Foundations

Ryrr
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Rir
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" 33nF
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Rpeg = 6.19kQ 1k€2

=W

(a) Gyrator: The gyrator cir- (b) Negative impedance con-
cuit emulates an inductance L = verter (NIC): Acts as a negat-
RiRi1RivC/Ryrr. Compared to a ive resistance by supplying neg-
coil, the gyrator has greater thermal ative current corresponding to
stability and accuracy. Additionally, the supplied voltage U. The ab-
the inductance can be changed by solute value of the negative res-
varying a resistor. (See also [43], [37] istance is equal to the value of
chapter 5.10.) the resistor marked as Ry¢g.

Figure 2.5: Subcircuits of the Van der Pol oscillator

fect result. An electronic filter is similarly limited, but additionally it is supposed
to output the filtered signal at once. In practice, low-pass filters show non-ideal
characteristics and filter design is usually a trade-off for a specific use case:

e Real filters do not show a step-like frequency response at the cutoff-frequency
fzap. Instead, they show a constant slope in a double-logarithmic plot of
amplification(“gain”) versus frequency (“Bode plot”) at high frequencies.

e At frequencies lower than f3;5 (passband), the signal is approximately un-
damped.

e f34p does not separate passband and the so-called stopband perfectly: There
is a transition region around f3,p, the “knee curve”.

e Ripples can exist in passband or stopband depending on low-pass type.
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17.4k

Figure 2.6: Low pass: Removes higher frequency components from the input signal
with a cutoff frequency f3yp = 4,16 Hz. While many quantities like number of com-
ponents, steepness of frequency response, delay behavior etc. can be adjusted with
the filter design, this specific filter type is a solid compromise, a 2-pole Butterworth-
filter. This specific low pass circuit is called a voltage-controlled voltage-source
(VCVS) filter. The low-pass filter is optimized for the readout mechanism and the
frequency annealing implementation shown in Sec. 4.1.2 and 4.1.3.

e The filtered frequencies are delayed as well. The delay or the respective phase
shift depend on the frequency.

e Filters can be designed with a specific “response”’;, where trade-offs between
steepness of transition, ripples in pass- and/or stopband and delay behaviors
tailor a filter to fit a specific use case.

e Filter response in the time domain varies between filters as well.

e Additionally, there is the “order” of a filter: Filters of higher order need more
components, are more complex and have a larger signal delay, but they have
a steeper slope in the Bode plot.

The active low-pass used is the experiment is shown in Fig. 2.6. More details can
be found in [37]| chapter 5, “active filters”, but are not essential for understanding
this thesis. Summing up, a low-pass cannot remove a high frequency perfectly.
Additionally, the signal will be slightly delayed, and response to fast changes in
time depends heavily on the filter. Finally, electric oscillator are required for any
network:
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2.2.3 Van der Pol oscillators

Electrical Van der Pol oscillators consist of an LC circuit and an active nonlinear
element.(Fig. 2.7a) The nonlinear element supplies energy at low voltages, which
sustains the oscillations. See [44] for an explanation of the oscillation mechanism
and Fig. 2.7b for a I-U curve of the nonlinear element used. Oscillations can be
both sinusoidal or relaxational depending on L,C, and R,,.,. An extensive analysis of
parameter dependence is done in [45]. A circuit implementation with good frequency
stability, tunable frequencies and sinusoidal oscillations was published in [31, 45] and
is shown in Fig. 2.7c: The nonlinear element (red) is implemented with a negative
impedance converter (NIC; see Fig. 2.5b and [37], Chapter 5.03) and two diodes.
The NIC acts as a negative resistor, which means it supplies a current proportional
to the voltage, but with opposing sign. The diodes limit the negative resistance, so
the nonlinear element supplies power at low voltages, but damps at high voltages.
As coils are prone to temperature drifts and their inductance does not have high
precision, a gyrator circuit (blue) is used instead. Apart from a precisely defined
inductance, manual frequency tuning is enabled by placing a potentiometer inside
the gyrator circuit. The gyrator and its modifications will be discussed in more
detail in Sec. 4.1.3.

Now, with foundations in both nonlinear dynamics and analog circuitry, our novel
network architecture is presented and analyzed in the next chapter.
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(a) Idealized circuit: (b) I-U-curve of the nonlinear
A electrical Van der Pol element used (N-type). It con-
oscillator can be built by sists of a negative resistance
adding a non-linear ele- limited by two diodes. (Rpeq =
ment (NL) to a LC cir- —6,19kQ2.  Model and con-
cuit. The non-linear ele- stants for the diodes are from
ment ideally has a cubic [45])
I-U-curve, thus showing
differential negative resist-
ance between the inflection
points [44].
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(c) Actual Van der Pol oscillator circuit used in [31, 45| and this thesis. The
coil in the idealized circuit 2.7a is replaced by a gyrator circuit, which offers
better precision and temperature stability and allows for frequency tuning. The
negative resistance consists of a negative impedance converter (NIC; See [37],
Chapter 5.03.) limited by two diodes. In [31, 45|, R;r = Rrrr = Ry = 1kQ,
Ry consisted of a 1k() potentiometer in series with a 1002 resistor. Necessary
modifications of the gyrator are described in Sec. 4.1.3. Note that the oscillators
lose energy to the coupling circuitry, so coupling resistors have to be comparable
to get similar oscillation shapes and phase response curves (Sec. 4.1.1).

Figure 2.7: Electrical Van der Pol oscillator 21






Chapter 3

Theoretical results

3.1 A new scalable architecture

The proposed architecture consists of two identical networks of N oscillators each
with equal frequency distribution. Oscillators within each of these “subnetworks” are
globally coupled and the coupling strength is additionally modulated in time. For
the first network, the coupling modulation® is constructed from products of signals
of the second network’s oscillators and vice versa. Due to its symmetrical layout,
which is visualized in Fig. 3.1, we name the network the MONACO-Architecture:
Mirrored Oscillator Networks for Autoassociative COmputation.

Motivated by experiments with networks of electrical Van der Pol oscillators [30,
31], we assume that the oscillators are weakly coupled in one variable, have sinusoidal
signals and a phase response curve proportional to a cosine. Then, the recognition
dynamics can be reduced to a phase description [46]:

N
19£1] _ le} + cos 19£1] al(t) - % Z sin 19;1]
j=1

N
9 = o+ cos ol all(e) - > sinol?
=1
§ J (3.1)
a[l] (t) = Z Skl sin 195] sin 19;1]

k=1

N
a3 (t) = Z Sh1 sin ﬁf] sin 19%21

k=1

195-” is the phase of the i*" oscillator in the first network and QE” its natural frequency.
In the global signal al(t)-¢/N - Zévzl sin 1951], a'?(t) denotes the coupling modulation

!Note that coupling modulations were named “coupling functions” by Holzel [30], but this term
is already used differently in the field.
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Figure 3.1: Schematics of our new MONACO-Architecture: Oscillators (depicted
as black circles surrounding a green sine-wave) are divided into two networks with
the same frequency distribution that are both globally coupled. Coupling strength
of both global couplings is modulated in time with functions al')(t) / a?(¢) that
depend on physical signals of oscillators from the other network and patterns shown
in the middle.

generated from the second network’s signals and ¢ is a small parameter which will
be shown to be the effective coupling strength of the averaged dynamics. The
amplitude perturbation is converted into a change in phase by multiplying with the
phase response function cos 19£1] and the coupling matrix S controls attractors of the
system.

Note that the frequency distribution is ideally the same in both networks, so N
pairs of oscillators with approximately equal angular frequencies QEI] R~ Q?} exist.
We will first assume QE” = Q?] = (); for the main analysis. Afterwards, the influence
of frequency differences is outlined in Sec. 3.6.1. For sufficiently weak coupling
and specifically chosen frequencies, S;; only effectively connects oscillator pairs ¢
and j and the architecture can act as an autoassociative memory: Apart from
Q # Q; Vi # j, all frequencies ; must be larger than ,,,,/3 and all difference
frequencies A€2;; = Q; — Q; must be pairwise different as shown in Appendix A. As
we demonstrate below(Eq. (3.5)), these conditions allow for further simplification of

Eq. (3.1).

24



3.1 A new scalable architecture

As the oscillator pairs of equal frequency synchronize at phase differences Av; =
195-” — 19?] of either 0 or 7w (+27n) in this setup, the Ad; are easy to read out (e.g.
with one signal multiplication and a low-pass filter) and will be our “system state”
to be manipulated. The coupling matrix is chosen according to the Hebbian Rule

[34]:

(2

M
Sy =Y ool with o; € {£1} (3.2)
m=1
Then attractors will exist for each memorized pattern o™ and its inverse —a'™
according to the following {Ad¥ — a}-mapping(see also Sec. 3.2):

0+ 2mn — +1

T+ 2mn— —1 (3.3)

When we talk about patterns “being attractive”, it is meant in the sense that at-
tractors in Ad exist according to this mapping.

Assume a defective pattern a should be recognized as a pattern o, which is
the most similar to a? out of M correct pattern candidates a™. For the recognition,
a® is set as initial condition of the network according to Eq. (3.3) and the coupling
matrix S;; contains all correct pattern candidates as memorized patterns according
to Eq. (3.2). As the defective pattern is close to the correct pattern in phase space,
the system state will move to an attractor representing o™ and can be read out.
Note that setting initial conditions is fast and easy in the MONACO-architecture:
As the system state is coded into phase differences, simply coupling oscillator pairs
with negative or positive sign according to AY; = —af - Esin AY; and E > ¢ for a
short time T},;; < 1/€ ensures a correct initialization.

If instead of an erroneous pattern only a small correct part of a pattern is known,
missing pixel in a? can be filled with +1 or —1 with equal probability. Afterwards,
recognition is performed as above.

Phase differences Av; from an exemplary simulation of the phase dynamics (Eq.
(3.1)) are shown in Fig. 3.3 for N = 49 oscillator pairs and 6 defective pixels. The
memorized patterns a™ used are visualized in Fig. 3.2 and are not orthogonal in
the sense that (o™, a™?) # 0 Ymy, my and my; # ms ({,) denotes the standard
scalar product.). The erroneous phase differences change to represent the correct
J-shaped output pattern.

However, the recognition process can fail if the number of erroneous pixels is too
large. A failed recognition is shown in Fig. 3.4: The system state moves to an
unknown attractor which corresponds to none of the a™. In order to predict recog-
nition success, a simple criterion is derived and tested in Sec. 3.3. Before analyzing
the dynamics, we want to point out that the coupling matrix S does not need to be
wired explicitly, which would require O(N?) connections. By rewriting both coup-
ling modulations as squares of scalar products instead, they can be generated with
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Figure 3.2: Non-orthogonal patterns with 49 pixels that were used as memorized
patterns & in simulations for Fig. 3.3, Fig. 3.4 and the statistics in Sec. 3.3. of* =
+1 is visualized as a black pixel and white pixels correspond to a]* = —1.

O(N - M) connections only:

o2 gip 11/

sin

WE
M=

aVA(t) = ap'a)" sin

o
.
]
H
3

Il
M=
N
1= 1

2
' sin 19?/2]) (3.4)
1

3
I

Whenever MONACO is used as an autoassociative memory as presented here, al'(¢)
and al?(t) should therefore always be constructed according to Eq. (3.4) instead of
Eq. (3.1). Depending on usage, the a™ can be hardwired or changed for each
recognition process.

3.2 Analysis of the dynamics

3.2.1 Simplification of the evolution equations

Prior to determining attractors, we simplify the phase equations (Eq. (3.1)) with
the technique of averaging [47]: The right hand sides of Eq. (3.1) consist of many
different frequency components. If the coupling strength e is sufficiently small, larger
frequencies average out on times much smaller than the largest timescale and the
smallest frequencies dominate the dynamics:

19?] ~ QO + 68_]\]6 sin (2A192-)

N
€ : :
~ N Z Sij [sin (AY; + AV;) + sin (AY; — AY;) ]
j=1

N
€ . )
+ _4N ; Sij [sm (A??i —+ Aﬁj) -+ sin (Aq?i — Aﬁj)]
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Figure 3.3: Successful Recognition: A binary pattern with 6 erroneous pixels
(framed) shown on the top left is correctly recognized as one of 3 memorized pat-
terns shown in Fig. 3.2. White pixels are mapped onto Av; = 7 and black pixels
correspond to Ad; = 0 or 27. Trajectories representing erroneous pixels (thick and
marked with stars) successfully change by 7, which corresponds to an inversion of
the pixel. Trajectories corresponding to already correct pixels, however, do not
change. For simulation details, see Sec. 3.4.

The lengthy averaging calculation is shown in Appendix A and includes restric-
tions on the frequency distribution of the oscillators. Using the trigonometric the-
orem sinz cosy = 1/2(sin (z + y) + sin (z — y)), we can express our equation system
with the phase differences Ad; only:

N
— 5 D S [sin (A0; + Ad) + sin (A0, — Av)]
j=1
eM
+ N sin (2A191-)
. € al M
AY; = N sin Av; ( ; Sijcos AU — — cos Aﬁi> (3.5)

This is the main evolution equation that governs the dynamics of the architecture.
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Figure 3.4: Recognition fails due to too many defects: A binary pattern with 11
erroneous pixels (framed) shown on the top left should be recognized as one of three
memorized patterns shown in Fig. 3.2. Trajectories representing erroneous pixels
(thick and marked with stars) are supposed to change. However, the recognition
fails: No trajectories corresponding to erroneous white pixels change from Ad; = =
to AY; = 0 (or 2m). Likewise, only two trajectories representing erroneous black
pixels change by m, although seven should change to white. Additionally three
trajectories, corresponding to already correct pixels, change to wrong values (Both
pixels and trajectories are marked with arrows). The system settles at the pattern
shown on the top right, which is none of the memorized patterns. For simulation
details, see Sec. 3.4.

3.2.2 Fixed points and their stability

At fixed points AY* of the dynamics, all velocity components Ad; must vanish.
Depending on which factor in Eq. (3.5) vanishes, pixel indices can be sorted into
two sets p and ¢:

eicp s sinAY; =0 < AU € {0, 7} +2mn

N
M
eicq & ZSMCOSA’&;—ECOSA’[%‘:O (3.6)

Jj=1
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We show in Appendix B that all fixed points with indices in ¢ are unstable. There-
fore, all attractors are well-separated fixed points with i € p Vi.

Only fixed points with sin AY; = 0 Vi and Zjvzl Sij cos A5 — M /2 cos AJ; # 0
remain as candidates for attractors.

The stability of fixed points can generally be examined by linearizing the dy-
namics around the fixed point by evaluating the eigenvalues of the Jacobian

Ji = aAﬂi/aAﬁk at the fixed point Ad*:

N
€ M
Jik = — N COS Aﬁzélk ( E Sij COS Aﬂ] — 7 COS A791>

j=1

M
_ % sin AW, ( — Su sin A + -6y sin Aﬂi)

As i € pVi implies sin AV} = 0V7, the second term vanishes:

N
. € i} ., M .
Ji(A9") = —(5ikﬁ cos AV’ ( E Sij cos A — 5 coS Az?l->

j=1

J is a diagonal matrix, therefore eigenvectors é; are the standard base with the
following eigenvalues:

€ > M
Ai = N cos AU} (JZl Sij cos A — 0} cos Aﬁ:)

We can simplify the analysis further by defining “pattern coordinates” a with
a; = cos A, as generalization of Eq. (3.3) and inserting the definition of the coupling
matrix S:

M N
N\ = _c oot oot — %Q*Q
;= E m ) E (P ;
N et} . 7 g 9 i
m=1 7=1

€ M M
)\i:—ﬁ<mz:1ai o (o ,a>—7) (3.7)

The signs of the eigenvalues determine the stability: Positive eigenvalues denote
growing perturbations along the corresponding eigendirection, while negative ei-
genvalues indicate decay. Therefore, all fixed points with \; < 0V: are isolated
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attractors:
- mo ok M *
> ala; (@™ o) > A af € {1} (3.8)
m=1

Memorized patterns map to isolated attractors, if inter-pattern scalar products
are sufficiently small. If patterns a™ are orthogonal, inter-pattern scalar products
vanish completely:

& M < 2N (3.9)

Not more than N orthogonal patterns can exist (span(a™) < N, but span(a™) = M
for linear independent patterns.), so M < 2N is always fulfilled and orthogonal
patterns are guaranteed to be stable.

For general a™, we get

!
Ai(a™) <0
. M
—e——(Zaiai <a , >—7><0
m#m/
M
’ / M
—Za;"a;" <am,am><N—7.
m#m/

As we want a criterion to ensure that all memorized patterns are attractors, we must
exclude that any eigendirection of any pattern becomes unstable:

- M
max ( — Z o™ <am,am/>> <N — >

m#£m/

Yar = max(ZKa a >‘><N—% (3.10)

m#m/

Additionally, if the a™ are attractors, their inverses will be attractors as well
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3.2 Analysis of the dynamics

because their eigenvalues are identical:

Moreover, there are further spurious attractors that do not represent one of the
a™, but they are difficult to describe. If the initial pattern does not start in the
basin of attraction of an a™, the output of the system will be one of these attractors.
Therefore, stability is not sufficient for recognition success and we have to derive
a criterion from the basins of attraction. However, first we derive a more com-
mon criterion for the network capacity that can be compared in different network
architectures.

3.2.3 Error-free capacity

The error-free capacity M. (N)/N is a measure for the amount of memorized
patterns a™ that can be stored in a given network while any pattern can still be re-
trieved without errors. Specifically, we determine the maximum number of patterns
Myaz(N) so P(a™ is stable) — 1 for M < Mn..(N) and P(a™ is stable) — 0 for
M > M. (N). Similar to approaches for other architectures, we derive M,,q. (V)
in a probabilistic manner for random memorized patterns with P(a* = +1) =
P(af™ = —1) = 0.5VYm, i in the limes N — oo.
First, we simplify the rescaled Jacobian J=1J /€ at a memorized pattern a™:

1 (& al M 2
Ji (™) _5zkﬁ ( Z ol Z ajtal — - % >
m=1 7j=1
M N
1 m m/ m m/ M
__52kN<ZOéi o jZIa] Q; —|—N—7>

33
Tl
S\D—l

|
|
S
ol
2=
VR
[]=
[]=
o
=3
o
83\
o
=3
o
QE\

33
Tl
S\H
1

31



Chapter 3 Theoretical results

J(a™) = - (1+ M-

2
I+D
)1

Here, I is the identity matrix and
| Mo
. m._m' _m_m
D = _(5ikﬁ Z Z% o agtal
m=1 j=1
m#Em' ki

As J, I and D are diagonal,

<

)\max(

)=~ (1 + MQJ_VQ) + Amaz (D)

M -2
:—(1+ SN )—i-mzdeDii-

Then, the stability condition can be expressed as function of max; D;; alone:

Aman(J) < 0
& Amaz(J) < 0
M —2
D; <1 11
& max Di; < 1+ 5N (3.11)

The following lemma concerning this largest eigenvalue A,,q..(D) = max; D;; has
been proven in [32] as Lemma 6 under the assumption that all pixels of all mem-
orized patterns a™ are randomly chosen with probability P(+1) = P(—1) = 0.5:
(All occurring logarithms are natural.)

Lemma 1.
Let x >0, and
= M(N)log (N)

£ = limsup

, [ =liminf —M(N> log (N)
N—oo N

- N—oo N

If B < 2%/2, then P(max;Dy > x) — 0 as N — oc.
If B > 2?/2, then P(max;Dy > x) = 1 as N — oc.

According to Eq. (3.11), o™ is stable for N — oo and M > 1 if max; D;; < 1 is
fulfilled. Therefore, we are interested in the probability P(maz;D;; > 1) and choose
=1
P(a™ stable) = 1 — P(max;D;; > 1) — 1if § < 1/2 and P(a™ unstable) =
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Figure 3.5: The analytic criterion for the error-free capacity Eq. (3.12) is compared
to explicit evaluation of the patterns’ eigenvalues. For each data point, 1000 sets
of pattern were created randomly with P(af* = +1) = P(a/* = —1) = 0.5 and the
stability of each pattern was determined with Eq. (3.8).

P(max;D;; > 1) — 1if § > 1/2, which implies

N
Hnea ) = 310 ()
Moz (N) 1
TN 2lg(N) (312)

Note that other capacity measures exist, such as the loading rate, which describes
the fraction M,,,,/N under the assumption that attractors for each pattern do ex-
ist, but might be shifted, so retrieved patterns might have some errors. Therefore,
the error-free capacity always is a lower bound on the loading rate. While these
probabilistic measures are useful for comparing architectures, their validity is con-
strained in reality: Real networks are of finite size and memorized patterns need not
be chosen randomly. Bounds on guaranteed stability were derived in Eq. (3.10) and
a criterion for guaranteed recognition is derived in Sec. 3.3.
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3.2.4 Intuitive explanation of the recognition mechanism

The results of the fixed point analysis allow a more intuitive view of Eq. (3.5) by
partially expressing the system state in pattern coordinates a with a; = cos Ad;:

N
. € . M
AY; = N sin AQ?Z( E Sijcos AU — > cos Az%)

Jj=1

7j=1 m=1
M
€ M
= —sin AY; ¥ ( Z " (o™ a) — 70@)
m=1
Let o™ be the memorized pattern the system state a is closest to:
. ) ;€
AY; = —sin AY; - a" - N
M
! ! M !
'(<am ,a> + Z o> o (o™, o) — 704;" ai>
m=1

m#£m/’

Now assume the system state a is sufficiently close to a™: Then (o™, &) is larger
than the sum of all other terms in parentheses. Hence, the fixed points and their
stability are the same as in d/dt AY; = —a" sin AY;. If o = 41, A¥¥ = 0 is stable
and AY; = 7 is unstable and vice-versa for 042“/ = —1,s0limy_,o, o; = cos AU} = az’-”'.

From another point of view, the system “defines” “relative closeness” to memorized
patterns by comparing their projections onto the system state a. This fails, however,
if the scalar products are of comparable size: Then the distribution of the "
matters for each pixel, which leads to spurious attractors unequal to all a™. Note
that the —Mq;/2-term does not really contribute to the recognition mechanism.
While it increases eigenvalues of all stable fixed points slightly, therefore reducing
stability (see Eq. (3.7)), it does not influence the basins of attraction much, as we
will illustrate in the next section.

3.3 Basins of attraction and guaranteed
recognition

We have a firm understanding of the system now and can guarantee that the chosen
patterns a™ are attractive. However, we cannot guarantee recognition success yet:
The system state might relax to the additional unwanted attractors described by
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3.3 Basins of attraction and guaranteed recognition

Eq. (3.8) or even worse, the basins of attraction of the @™ might be malformed,
leading to a a™ whose projection on the defective pattern is not the largest.

3.3.1 Lower bound on the basins of attraction

Matching success is guaranteed if the defective starting pattern is in the basin of
attraction of the correct memorized pattern a”. A lower bound on the basin of
attraction can be derived by proofing the following lemmata:

1. Surfaces of constant projection on the correct memorized pattern o™ confine
the system state to larger projections if the initial projection is sufficiently
large.

2. o™ is the only attractor inside this confined space.

As the system state cannot leave the confined space, it has to settle on ™ as the
only attractor. Therefore, the confined space is part of a™'s basin of attraction.

Transformation to a-space

For our following discussion, we will transfer the Ad¥;-dynamics (Eq. (3.5)) com-
pletely into the “ pattern coordinates ” a with «;; = cos Av;, which are a generaliz-
ation of the mapping of the memorized patterns a™.

a; = (cos AY;)
_ dcos Av; DAY,
OAY;, ot
€ N M
= —sin AY; | — N sin AY; ( Z Sijcos AU — > Cos A§i>
j=1
€ M M
=~ sin? AY; ( Z Z ;"o cos Av; — 5 coS Aﬁi)
j=1 m=1
€ N M
- N(l — cos® AY;) (Z Z o cos Ay — 5 cos AQ?Z)
j=1 m=1
M N
€ m m M
= N(l — Oé?)(ZO{Z ZOéj aj — 70@)
m=1  j=1
M
o 12 migm oy~ M
a; = N(l a;) (ml o (a™, o) 5 (le) (3.13)
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Note that although the mapping between Av; and «; is not injective, the transform-
ation is still valid: Eq. (3.5) is mirror-symmetric to 0 + 7n with n € N, so space
can be divided into regions separated by AvY; = [0, 7] + 2mn or AY; = [, 27| 4+ 27n
in every ¢ and flow lines in each region are mapped onto the same a-coordinates.
As the flow across the boundaries of these hypercubes is zero, it is not necessary
to consider the periodicity of the flow. From another point of view, the ambiguity
of attractors in A is removed in the a-coordinates. As the dynamics of a do not
depend on the sign or periodicity of A1, it is a more natural coordinate for the
autoassociative memory.

Confinement by hypersurfaces of constant projection

Let’s consider a hypersurface of constant projection on the correct output pattern
o™ In the pattern coordinates the equation (a,a™) = C describes a hyperplane
that divides the N-dimensional hypercube of all possible patterns into patterns with
a projection larger or smaller than C. If projections on a™ do not decrease for all
points on the surface, the system state can only move tangential to the hyperplane
or towards larger projections. (Movement tangential to the hyperplane is in fact
impossible with a slightly stricter condition, as shown further below.)

d 1

Z(l —a)al” ( Dol (e o) — %a) >0 (3.14)

If Eq. (3.14) is fulfilled for all & on a hypersurface (o, &™) = C, it confines the
system state. However, to exclude additional attractors besides ™ in the confined
space is difficult with Eq. (3.14) and a good criterion for guaranteed recognition
should neither depend on the hyperplanes nor on the specific pixels of o or the
memorized patterns a’™. Therefore, we employ a series of worst-case approximations
and upper bounds:

Eq. (3.14) is fulfilled if all single summands are greater than zero. Note that this
approximation also excludes movement tangential to the hypersurfaces: Without the
possibility for summands to cancel each other, d/d¢ <a, am/> = 0 is only fulfilled if
a = 0, so all remaining solutions are fixed points. Then the following inequalities
must hold Vi and Vo on the surface:

l M
1—a?) o oo™ o) — —a; | >0
(e ctyer’ (S or e - Yo )

>0
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M
! M !
;" ZO‘T (o, a™) — 704?1 a; >0

m=1
M
M
(a, ™ Z ama™ (o, ™) + 7042” Q;
m;ﬁm

As the left hand side is constant on a hypersurface, the criterion needs to be
evaluated for a maximized right hand side only and the criterion for the surface can
be reduced to one single inequality:

i,

u M
(o, @™) > max ( — Z amal (o, ™) + 70417-”/%)

The sum is maximal in i for a* = —a/" sgn({a,@™)) ¥m # m/, as all scalar
products add up. (If such an ¢ always exists is not relevant here, as we look for a
worst case approximation independent of the a™.) The second term is generally
much smaller, but M /2 at most:

M M
/ M M
max (— E alal" (o, ™) + 7@?‘ ozl-> < max ( E ?)

As the maximum of one single |{a, @™)| is much easier to calculate, we approximate
an upper bound:

mj‘x( Z |<a,am>\+%> < Z mgx(|<a,am>\)+%
”

m#£m/’ m#m

In total, our criterion on the hypersurface has reduced to

al M
C = <a,am/>2 E mgx(|(a,am)|) + - (3.15)
m=1
m#m’

While any hyperplane that fulfills Eq. (3.15) confines the system state to larger
projections, it is still not trivial to evaluate due to the direct dependence on cx.
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Removing direct dependence on «

max, (|(c, @™)|) can be approximated as a function of (a,a™) = C and inter-

pattern scalar products.

First, (o, ™) is expressed with the difference vector A = o — @™ between a

and the closest memorized pattern o :

<a, am/> = <a — am/, am/> + <am/, am/>

= (Aa, am/> + N

N
= Z Aoz + N

=1

With sgn(Aaq;) = sgn(a/” (o —1)) = —a?" we get:
——

<1

N
(a,a™) = N =) |Aajl
i=1

= (e @) ) = max ({2, a) + (o ™))
< max (Z Aaﬂ?’) + [{a™, ™)
=3 [da] + (e o)
— N (e + (o am)

Volumes of growing projection

Finally, we can remove all direct dependence on a from Eq. (3.15):

2 M
(a, ™) > m; max (|[{a, ™)) + 5
m#m/’

m=1
m#m/’
M M
M-{a,a™)>(M—1)-N+ ) |<am’,am>|+7
m=1
m#£m/
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3.3 Basins of attraction and guaranteed recognition

/ M—1 1 / 1
(a, ™) > i 'N+ME ’<am,am>’—|—§ (3.17)
m=1
m#m/’

This final criterion for a confining hyperplane does not depend on a point on the
surface.

Additionally, every surface <a,am/> = Cpn that fulfills Eq. (3.17) defines a
volume of growing projection for larger C: As the right hand side of Eq. (3.17) is
constant, all hyperplanes with C' > C,,,;,, fulfill the criterion as well.

If several attractors existed in the confined space, however, no conclusion could
be made on the basins of attraction, as a confined system state could move to any
of them. Therefore, we exclude that any attractor besides a” exists in a volume of
growing projection:

a™ being the only attractor enclosed

Assume an attractor a” exists inside the region defined by Eq. (3.17). Now consider
a small perturbation around a® that increases <a,am'>, for example ea?””/ - e, if
a® £ a. As d/dt{a, ™) > 0 in the confined space, the system cannot relax back
to a®. No non-isolated attractor exists (see Sec. 3.2), so a® has at least one unstable
eigendirection which contradicts the assumption that a® is an attractor.

The only exception is the attractor o™ itself: As it has the largest projection on
itself, all perturbations must lower (a, ™).

Summing up: Every system state a that obeys Eq. (3.17) must be in the basin of
attraction of a™', as projection on o increases monotonically along the trajectory
and ™ is the only attractor for larger projections.

3.3.2 Guaranteed recognition
Recognition criteria

As any defective initialized pattern is binary, it can be characterized by the number
of defective pixels n/ in which defective input pattern and correct memorized pattern
are different. Eq. (3.17) can be solved for n/ with Eq. (3.16), as n/ is a special case

of 3, [Aay] /2:

M-—1 1,
N —2n/ > i -N + Z|<a , O >|+—
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;1 e 1

m#m/’

(The equality in Eq. (3.17) must be dropped here, as perturbations and higher
order terms neglected in Eq. (3.5) might push a defective pattern on the outermost
hyperplane out of the confined space.)

For pairwise orthogonal patterns, (o™, a™) = 0 ¥m # m' and Eq. (3.18) becomes:

N 1
/ 1 3.19
SO T a (3.19)

We now treat general patterns with (o™, a™) # 0. A criterion that does not
depend on the correct memorized pattern @™ is obtained with the definition ¥,,,; =
maxgn (M mo [(@7 @T)]) > Z%zlm#m, (@™, a™)| from Sec. 3.2. Then the

worst case of Eq. (3.18) is

N_Zmzzr
nf « X~ Zmaz _

1
— 2
2M 4 (3:20)

Eq. (3.20) guarantees successful recognition for arbitrary patterns.

Consistency check

The basin of attraction has to vanish when the fixed point looses stability. Therefore,
we can regain stability criteria for the a™ by minimizing the necessary extension of
the basin of attraction in Eq. (3.19) and Eq. (3.20), which corresponds to lim :

nf—0

N 1
lim Eq. (3.19): 0< — — -

M < 2N

This coincides with our calculation that pairwise orthogonal patterns are always
stable: At most, N orthogonal patterns can exist, as they are linear independent
and dim(span({a™})) < N, so M < 2N is always fulfilled.

N_¥ 1
lim Eq. (3.20) : N~ 2mas L
Jim Eq. (3.20): 0< = 1
M
Yo« N- 2
5

This again reproduces our result for the stability of non-orthogonal patterns.
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3.4 Numerical simulations

3.4 Numerical simulations

In this section we validate our criterion for successful pattern recognition with sim-
ulations of the full phase dynamics Eq. (3.1).

3.4.1 Numerical methods and parameters

The equations have been implemented in C and integration was performed with the
classical Runge-Kutta method. A timestep dt = 1-107* and a coupling strength
e = 0.1 were used. The angular frequencies were distributed according to €2; =
1200 + 1800 - G;/Gn, where G; is the i*" element of a Golomb ruler [48]. (See also
Appendix A.) The near optimal Golomb rulers used were both taken from [49]: {0,
17, 20, 86, 119, 140, 166, 227, 240, 255, 353, 430, 520, 539, 564, 565, 602, 675, 724,
781, 817, 833, 905, 929, 961, 970, 980, 1131, 1162, 1189, 1212, 1319, 1403, 1433,
1437, 1451, 1462, 1497, 1504, 1589, 1601, 1680, 1763, 1785, 1825, 1880, 1888, 1956,
1958} for N = 49 and {0, 34, 44, 91, 95, 147, 207, 278, 332, 364, 375, 405, 458, 520,
682, 698, 701, 710, 853, 868, 901, 946, 973, 1022, 1080, 1150, 1155, 1172, 1240, 1254,
1290, 1429, 1540, 1546, 1605, 1642, 1682, 1684, 1705, 1751, 1771, 1806, 1835, 1943,
1967, 2041, 2151, 2164, 2182, 2189, 2190, 2270} for N = 52.

For simulations in Fig. 3.3 and Fig. 3.4, defective patterns were chosen manu-
ally and memorized patterns are taken from Fig. 3.2. All pseudorandom numbers
(necessary for random distribution of erroneous pixels and construction of random
orthogonal patterns) were created using C’s standard random number generator
rand() from stdlib, which was seeded with the time in microseconds times the pro-
cess ID.

3.4.2 Testing criteria for guaranteed recognition

In order to test criteria Eq. (3.19) and (3.20), simulations were performed for both
the non-orthogonal patterns shown in Fig. 3.2 with N=49 pixels as well as for 3
random orthogonal patterns with N=52 pixels. Simulations started after setting the
initial conditions to a defective pattern similar to one of the memorized patterns
but different in exactly n/ randomly distributed erroneous pixels. In order to save
simulation time, simulations were aborted if the system state reached one of the
memorized patterns, as they are proven to be attractors. In all other cases, sim-
ulations were continued until |a;| > 0.9Vi for a period t,.; = 500. Recognition
success was tested by projecting the a-coordinates of the final system state on the
memorized patterns: If (o, a™)/N > 0.99, recognitions were counted as successful.

For the non-orthogonal patterns with M = 3, N =49 and ,,,, = 10, the recog-
nition criterion Eq. (3.20) predicts recognition success for nf < (N —X,,4.)/(2M) —
0.25 = 6.25. 300 simulations were performed for n/ € {6..16} for each pattern and
results are summed up in Table 3.1. All recognitions were successful for n/ < 11 and
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n']6-1112]13|14]15]16

failed recognitions ®| 0 [0 [ 0| 1|5 |13
failed recognitions & | 0 | 2 |2 |3 |3 |15
failed recognitions w| 0 |1 |2 |6 | 6 |22
failure rate (%) 0 [0.3/0.4|1.1|/1.6|5.6

Table 3.1: Failed Recognitions with non-orthogonal patterns as shown in Fig. 3.2.
300 recognitions were performed for each pattern and each number of erroneous
pixels n/. Erroneous pixels were distributed randomly for each simulation.

nf|8-12]13|14]15[16 |17
failed recognitions| 0 |1 | 1| 4 |13|29
failure rate (%)| 0 [0.1{0.1/0.4]{1.3|2.9

Table 3.2: Failed Recognitions with random orthogonal patterns with N = 52 pixels.
1000 recognitions were performed for each number of erroneous pixels nf. Random
distribution of erroneous pixels and the construction of random orthogonal patterns
was repeated for each simulation.

the rate of failed recognitions grows slowly for larger nf. Obviously, our criterion
seems to be too strict.

Similarly, 1000 simulations were performed with orthogonal random patterns with
N =52 and M = 3 for each n/ € {8..17}. Here, n/ < N/(2M) — 0.25 = 8.42 is
predicted by Eq. (3.19). Random orthogonal patterns were constructed by using the
elementwise product o: As orthogonal patterns with «; € +1 differ in exactly N/2
pixels, a pattern o orthogonal to any pattern a! can be easily found by creating
a “difference vector” d'?, where N/2 +1- and —1-entries are randomly distributed.
Then o? = a! o d*2.

For 3 orthogonal patterns, a!, d*? and d'® were first chosen randomly. Then
[(a?, a3)| = [{d"?, d'?)| was minimized by switching 2 randomly selected pixels in
a randomly selected difference vector, if the absolute value of the scalar product
diminished.

Results are summed up in Table 3.2. Similar to the simulations with non-
orthogonal patterns, recognitions are always successful for n/ < 12, which is sig-
nificantly larger than predicted by the criterion for guaranteed recognition. For
even larger n/, the rate of failed recognitions stays small.

3.4.3 Failed recognitions are rare events

One might expect that the criterion for guaranteed recognition is not optimal for
both the orthogonal random patterns and our choice of non-orthogonal patterns, so
that 7 respectively 9 erroneous pixels or even more can always be correctly recognized
as well. However, failed recognitions are just rare for n/ =7 / n/ =9 instead. We
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now construct problematic starting patterns with nf = 7 for the non-orthogonal
memorized patterns that fail in the recognition process:

According to Eq. (3.15), recognition will fail if the scalar products between the
defective starting pattern and non-similar memorized patterns are extremized. Con-
sidering the scalar products <a',a”> = +5, <a',a*> = —5, and <a”,oﬁ> = —1,
an erroneous heart-pattern is most likely to fail. Assume furthermore that the num-
ber of erroneous pixels n/ is fixed. Then the right hand side of Eq. (3.15) can be
maximized by distributing the errors on positions where they increase the projec-
tion on the 7- and decrease the projection on the -pattern. 10 such “worst-case”
positions can be found for the ¥-pattern and (¥ ) = 120 possible combinations exist
to distribute n/ = 7 erroneous pixels on the “worst-case” positions.

Simulations were performed for all of these "worst case patterns”. Recognition
failed for all simulations and the system state relaxed to an attractor with pro-
jections of 0.59, -0.51 and 0.51 on the ¥-, - and m-pattern. Possible worst-case
positions for erroneous pixels and the irregular output pattern are shown in Fig.
3.6. Indeed, simulations with randomly distributed errors could not recognize this:

CI ] CT (]
EEEEENN EEEEEEN
EEEGESE AN
ENEGEES® EEN NN
ml 1 [ ][ ]m I
O0m@ECO0 OO
OOoOmOooo mimin] m| m

Figure 3.6: On the left side, an unperturbed ¥-pattern is shown. Erroneous pixels
on red-circled positions extremize the sum of inter-pattern scalar products. All
erroneous ¥-patterns with 7 erroneous pixels on marked locations fail the recognition
process. Simulations of all such patterns resulted in the spurious attractor shown
on the right.

As there are (%) =~ 8,6 - 107 possibilities to distribute the erroneous pixel on the
pattern and only (%) = 120 worst case distributions can be found, the chance to
encounter a failing random starting pattern is almost negligible. Furthermore, all
(19) = 210 worst-case-patterns for nf = 6 were successfully recognized as the -
pattern in simulations, which again validates Eq. (3.20) as criterion for guaranteed
recognition. Similar calculations can be performed for the orthogonal case. This is a
good example that extracting basins of attractions in high-dimensional systems with
simulations can only give an approximation on the success rate but no guaranteed
criterion. From another point of view, failed recognitions are rare, so a higher n/ is
acceptable if a non-perfect recognition rate is sufficient.

3.5 Architecture discussion and comparison

MONACO gains its distinctive properties from two design features:
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1. Two marrored globally coupled subnetworks are used.

First of all, the use of two groups enables the internal generation of the coup-
ling modulations. Second, the effective coordinates of the network are phase
differences Av; of oscillators of equal frequency. Values of phase differences
can easily be read out by multiplying signals of an oscillator pair and using
a low-pass filter, gaining cos Av;. Similarly, setting the initial conditions re-
quires only positive or negative coupling between two oscillators forming a
pair. Third, the effective average coupling strength € is doubled with two
subnetworks, enabling faster recognition (compare with Appendix A). The
fourth advantage is much subtle: In all architectures with externally gener-
ated coupling modulations, frequencies in the coupling modulation are fixed
to the natural frequencies of the uncoupled oscillators. However, the so-called
"acceleration effect” [50] changes the frequencies of even weakly coupled oscil-
lators. Any mismatches between oscillator frequency and coupling modulation
frequency components would further limit the coupling strength €. As a higher
coupling strength reduces recognition time, we decided to avoid the problem
altogether: Since oscillators in both networks are affected symmetrically by the
coupling, the acceleration effect will be equal and frequencies in the coupling
modulations are adjusted automatically. It is noteworthy, that the coupling
between single oscillator pairs is above the Kuramoto threshold and thus fre-
quencies of the two oscillators adapt. Hence, the architecture allows for some
tolerance in the frequency mismatch of an oscillator pair.

2. Novel coupling modulations are used.
As shown in Eq. (3.4), the used coupling modulations can be constructed with
O(N - M) connections only. Note that there cannot be any better scaling,
as patterns consist of N - M independent pixels. Additionally, this coupling
modulations introduce novel effective dynamics Eq. (3.5), where the only ex-
isting attractors are isolated fixed points with cos AY; € {£1} (Section 3.2).
As every pixel settles at these binary values, the output is inherently digital,
which further simplifies readout and subsequent processing. All memorized
patterns are attractive if inter-pattern scalar products are not too large (see
Eq. (3.10) for guaranteed stability). As memorized patterns are no transient
phenomenon, but long-term stable, readout does not need to be exactly timed
and the output can be retrieved at a later time. Furthermore, the dynamics al-
low us to calculate a lower bound on the basins of attraction analytically (Sec.
3.3). This leads to a non-probabilistic criterion for guaranteed recognition that
includes finite-size effects, Eq. (3.20).

Note that the mirrored subnetwork structure should not be confused with "layers”
from "traditional” layered neural networks. MONACO is very similar to a continuous
version of the Hopfield model [24] (compare with Eq. (3.13) ): Each oscillator pair
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corresponds to an artificial neuron that "stores” its phase difference Av;. The syn-
chronization process can be seen as continuous updating of the AvY;. MONACO’s
subnetworks, however, change the properties of the "neurons”, while the ideal ef-
fective dynamics Eq. (3.5) remain unchanged except for the coordinates they are
represented in. This is distinct from more "traditional” layered neural networks,
where the layer structure is essential to the dynamics.

On the contrary, a design with two subnetworks is not necessary in order to ob-
tain the described dynamics including isolated attractors: A multiplicative coupling
modulation suffices; consider e.g. the following single-network-system:

N
J; = Q; + cos; - Aot () - % Zsin Y

j=1

N
Aozt (t) = Z Sy sin Qt sin Ot
k=1

Here, the averaged dynamics would be the same as for MONACO, but in coordinates
wi(t) = 94(t) — Q;t (compare with Appendix A):

¢ (& M
O = “oN (Z Sij sin p; cos @; — o sin ¢; cos %’)

j=1

Phase shifts ; must be used, as no oscillators with equal frequencies exist in this
setup and therefore, phase differences A1); are no useful coordinate. As discussed
below, tracking changes of the ¢; requires very precise frequency and time measure-
ments, which renders readout difficult and error-prone. Therefore, this exemplary
network is inferior to MONACO.

The MONACO-architecture will now be compared to other associative memories
consisting of phase oscillators. Distinctive features are compared in Table 3.3, while
schematics of are shown in Fig. 3.7. We discriminate between two types of networks:
In physically all-to-all connected networks (architectures (I) [26-28] and (III) [32]),
oscillators have the same frequencies and every oscillator is connected with every
other(see Fig. 3.7 a). Therefore, the number of connections scales with O(N?) in
these networks, which limits the networks’ size. As proposed in [29], oscillators of
different frequency can be all-to-all connected dynamically with only one physical
connection per oscillator if the oscillators’ coupling is modulated in time. In archi-
tecture (ITA) [29, 30|, the oscillators are globally coupled to a sum of the oscillators’
signals with a single temporal modulation of the coupling (see Fig. 3.7 b). Due to
the global coupling, the number of connections scales with O(V) connections only.

Architecture (IIB) [29, 31| follows a slightly more complicated scheme, where
every oscillator receives the signals of all other oscillators, but each oscillator has its
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network

all-to-all connec-

dynamically all-to-

dynamically all-to-

all-to-all connec-
ted with higher

ted network (I) all connected (IIA) | all connected (IIB) | [ 400 Fourier MONACO
property\_ || [26-28] [29, 30] 29, 31] modes (I1T) [32)
> 2.
Number of O(N) + external | O(N) + external oloMumM vpm:wo tion
nnection O(N?) coupling modula- | coupling modula- m ﬂvﬁbmsﬁmiob O(N - M)
CORNECHIONS tion > O(N - M) | tions > O(N - M) | P
unknown
frequency 0 2 In3/1In2 0 2
distribution O(N7) O(N7) ow ) O(N7) O(N)
E;ﬁ:gﬁ_os ambiguous, fast ambiguous [51], ambiguous [51], ambiguous, fast not ambiguous,
quality slow slow fast
effective Ui = Q= i = i = N WU .
recognition N . N . N . Sy sin (9; — ;) Sij sin A, cos AY;
dynamics € MU Sijsin (05 — ) | € MU Sijsin (05 —@i) | € MU Sijsin (@5 — ¢i) m ’ ’ j=1
j=1 j=1 j=1 +esin2(¥; — %@vv IW sin A; cos D%&
isolated
attractors? X 135] v v
loading rate < 0.048 [52-54] > _wm,\ > m_ow %
error-free 9 222 1
capacity ¥ [26, 32] log N 2log N

Table 3.3: Comparison of MONACO with other autoassociative memory architectures based on phase-oscillator net-
works. The best performances for every property are marked in bold.
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(a) all-to-all connected (b) dynamically all-to-all (¢) dynamically all-to-all
networks (I) and (III) connected (ITA) connected (IIB)

Figure 3.7: Schematics of previous oscillatory neural network architectures that act
as autoassociative memories

own coupling modulation (see Fig. 3.7 ¢). Nevertheless, the scaling of the number
of connections is still O(N).

MONACO is a dynamically all-to-all connected network as well. Each subnetwork
is globally coupled similar to (ITA), albeit with a different coupling modulation (see
Fig. 3.1). The use of two mirrored subnetworks allows for the internal generation
of the global coupling modulations. In contrast, the hardware implementation for
architectures (ITA) and (IIB) introduced in [30, 31] was fed by computer-generated
coupling modulations. In MONACO, the scaling of the number of connections is
O(N - M) (see Eq. (3.4) for the coupling modulations and consider that global
coupling scales with O(N)). This scaling is optimal if the generation of the coupling
modulations is considered, as N - M pixels have to be incorporated.

However, the reduction in the number of spatial connections is not for free: The
original complexity in space is transferred to a complexity in time with the number
of frequencies contained in the coupling modulation growing like O(N?) for archi-
tecture (ITA) and MONACO [29]. Frequency conditions for architecture (IIB) are
less restrictive and the number of frequencies scales with O(N™3/1n2) [31].

Now, coordinates of the network dynamics will be discussed, as they determine
how initial conditions can be enforced as well as how the system state can be read
out. In (I) and (III), the desired dynamics occur in oscillators’ phases ¥; = Qt + ¢;,
so pixels of the same value have the same phase. An encoded pattern is then
represented by two groups of oscillators whose phases differ by 7. Note that this
representation itself is ambiguous, as it is physically impossible to decide if a group
follows or precedes the other one. In other words, the physical state represents a
pattern as well as its inverse. In (IIA) and (IIB), equal pixels are represented by
equal phase shifts ¢; and different pixels differ by a phase shift difference of 7. Note
that phase shifts are only unique up to a constant ¢9 = ¢;(t = 0). As a consequence,
only differences ¢;(t) — ;(t') can be determined. In MONACO patterns are coded
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into phase differences A1; = 192[1] — 19?] of oscillators of equal frequencies. Each pixel
is mapped onto a phase difference with «; = cos AY;, so a; = +1 corresponds to
a synchronized oscillator pair and a; = —1 to a antisynchronized one. Therefore,
MONACQO’s system state represents a pattern without ambiguity.

The different nature of the variables entail that also the setting of initial conditions
differs radically between architectures: Phase differences in MONACO are easily
manipulable: Oscillator pairs corresponding to +1 are directly coupled positively,
while pixels with —1 receive a negative coupling, resulting in synchronized pairs with
Av; = 0 or AY; = 7. Phases 9; change quickly in time, so they are difficult to control
directly. However, initial conditions in (I) and (III) can be set similar to MONACO
by coupling all N oscillators in a row, where oscillators representing equal pixels are
coupled positively and unequal pixels interact via a negative coupling. In (IIA) and
(IIB), two main problems must be overcome to set initial conditions: First, phase
shifts cannot be manipulated directly and second, phase shifts are undefined without
a temporal reference. Hoppensteadt and Izhikevich [29] proposed to use the same
coupling circuitry as used for the recognition, but with a different coupling matrix
S: S = 04;-10431 is used to initialize a defective pattern a?. Then, recognition is
performed with the usual coupling matrix S;; = Zn]\le a;"af'. By evaluating phase
shift changes between the introduced initial condition and the recognition, pixel
changes can be retrieved without the constants ¢9. However, initialized patterns
are ambiguous: As Sj;(—a?) = (=1)*afaf = Sjj(a?), the inverse pattern —a? is
initialized half of the time. Additionally, as this method is limited by the averaging
condition similar to the recognition, this method is of timescale 1/e and therefore
considerably slower than the direct coupling used for (I), (III) and MONACO.

Similarly, readout of the final pattern is easy in MONACO: As mentioned above,
cos AY; = «; can be read out directly from the corresponding oscillator pair.
Readout in (I) and (III) is analogue, but phase differences between different pixels
are determined, which again describes both a specific pattern and its inverse. For
(ITA) and (IIB), phase shifts have to be determined by comparing the phase of an
oscillator with an external reference?. Then, the difference of phase shifts between
final state and the initial conditions needs to be evaluated®. In refs. [30, 31], this
was done with a computer and analog-digital converter cards.

Ease of readout additionally depends on the effective dynamics of the architec-
tures: Traditional Kuramoto-type networks (I) employ a coupling that depends only
on the mutual phase differences of all oscillators (o sin (¢; — ¥;)). While (IIA) and
(IIB) have a seemingly more complex structure due to their coupling modulations,
dynamics are effectively the same as in (I) after averaging (Compare with Table

2This should in principle be possible with precise reference oscillators, a precise clock and a
memory for the initialized phase shift values.

3As Readout in (ITA) and (IIB) only measures changes between initial values and thus the final
pattern can be constructed non-ambiguously from the initial defective pattern, the ambiguity
introduced in the setting of initial values is effectively removed.
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3.3), albeit in different coordinates. In these dynamics, the individual patterns are
not individual attractors, but part of one large attractor. More precisely, patterns
are connected by lines of attractive non-isolated fixed points [35]. Consequently, re-
cognition is only possible for short times, as the system state drifts on the attractor
due to implementation inaccuracies and higher order terms and readout must occur
immediately after the recognition is successful. Additionally, the system state does
only settle close to the correct memorized pattern, so the output values are not
inherently digital as the patterns are.

MONACO’s dynamics ( ¢f. Eq. (3.1)) take on a simple mathematical form after
averaging (Eq. (3.5) for the formulation in phase differences, Eq. (3.13) in pattern
space a). In these novel dynamics, binary memorized patterns are individual at-
tractors. In [32], yet another dynamics was introduced with architecture (III) (see
Table 3.3). Memorized patterns are isolated attractors here as well due to higher or-
der Fourier modes in the coupling function. Due to the isolated attractors, readout
does not need to be exactly timed and the output is inherently digital in MONACO
as well as in architecture (IIT). Additionally, the dynamics of (III) enable the exclu-
sion of spurious attractors for specific parameter ranges, while MONACQO’s dynamics
allowed us to determine lower bounds on the basins of attraction, as discussed below
and in Section 3.3.

Concerning quantitative measures for associative networks, often the capacity or
loading rate of a network is used. It describes the maximum possible ratio of M
and N, where the system state still settles close to the correct memorized pattern.
Usually, it is computed for a set of random memorized patterns in the limes N —
oo. This definition, however, includes deviations from the memorized patterns,
so e.g. some bits may be erroneous at retrieval. Nishikawa et al. point out the
importance of error-free retrieval for engineering applications [32] and remind of the
error-free capacity (def. in Sec. 3.2.3) as a more meaningful quantity, as it is used for
traditional neural networks [55]. The error-free capacity of MONACO (Eq. (3.12))
is on a par with architecture (III) [32] and equal to the error-free capacity of the
Hopfield model [55] while memorized patterns are typically unstable in architectures
(I), (ITA) and (IIB) with an error-free capacity of 2/N [26, 32]. The loading rate
for architectures (I),(ITA) and (IIB) has been derived as 0.048 [52-54], while it has
not been calculated for neither architecture (III) nor MONACO yet. However, the
error-free capacities are lower bounds on the loading rates and may be larger than
the value for (I) - (IIB) similar to the error-free capacities.

While the loading rate and the error-free capacity are useful for comparing archi-
tectures, their probabilistic nature and the derivation for lim N — oo impair their
significance for real networks: Specific sets of memorized patterns are possibly not
random and finite size effects might improve or impair pattern stability as well as
recognition success. Non-probabilistic criteria valid for all network sizes allow to
exactly evaluate performance of a network for a specific use case and enable the de-
velopment of more complex algorithms using the recognition process repeatedly. We
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derived such criteria for MONACO: Eq. (3.10) guarantees stability of all memorized
patterns if scalar products between memorized patterns are not too large. Eq. (3.20)
guarantees recognition success by giving a lower bound on the number of allowed
erroneous pixels n/. If a network stores a large number of patterns M, the minimal
size of the basins of attraction will be quite small and few erroneous pixels nf can be
guaranteed to be corrected. In many applications, however, the number of patterns
M is much smaller than N and the ability to correct larger errors is desired.

The last aspects to be discussed concern recognition time and oscillator accuracy.
In physically all-to-all connected networks (I) and (III), oscillator frequencies are
not restrictive, as long as they are similar enough to be well above the Kuramoto
transition. In contrast, frequency conditions in dynamically all-to-all connected net-
works limit the network size: Since in practice there will be only a certain frequency
interval available, the number of oscillators is limited by the accuracy of the fre-
quencies [30]. Recognition times have not been calculated analytically for any of
the oscillatory neural networks presented here. However, we assume that the fre-
quency restrictions present in (IIA), (IIB) and MONACO lead to slower recognition
times compared to (I) or (III). Nevertheless, the shift of frequency due to the ac-
celeration effect [50] present in the real dynamics of (ITA) and (IIB) [29, 30, 35]
does not interfere with the recognition process in MONACO since the change in fre-
quency is identical in each oscillator pair due to its mirrored structure. Additionally,
it is possible to introduce several coupling modulations per subnetwork similar to
the transition from architecture (ITA) to (IIB) for the MONACO-architecture (Sec.

3.7). In this improved network the scaling of necessary frequencies is reduced to
O(Nln(3)/ 1n(2))'

3.6 Implementation considerations

Before actually designing the network’s circuitry, we outline difficulties and solutions
for the implementation. First, frequency deviations are discussed:

3.6.1 Influence of frequency deviations

The MONACO architecture and our previous analysis is based on two major as-
sumptions about the network’s frequencies:

El] = Q?] = (); of oscillators in a pair are equal.

1. Angular frequencies 2
2. Angular frequencies €); of different pairs fulfill the frequency conditions derived
in Appendix A:

o 2, —Q; # Q) — ) for pairwise different ¢,7,k,l or more precisely, frequency
differences must be sufficiently different: |(€2; — ;) — (Qx — Q)| >
0 Vi, j, k,l.
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o Q> Qpaw/3 Vi

An optimal distribution can be obtained by multiplying a minimal frequency
difference AQ,,;, with a Golomb-ruler [48|, a set of integers with non-equal
differences [30], and adding ,,4./3.

In any real system, however, drifts or inaccuracies of components will lead to
deviations of the frequencies.

Violating the frequency conditions would create unwanted resonant terms that
would modify the coupling matrix S in the main evolution equation Eq. 3.5. In [30],
Holzel et al. quantified permitted frequency deviations: If the oscillators in a pair
do not differ in frequency, deviations Aw; = €2; — €2; jgea 0f their frequency from the
optimal distribution do not create additional perturbation terms if Aw; < A,
1/N?. If a network is sufficiently small, this condition can be easily met.

If frequency conditions are fulfilled, differences A2, = QZ[” — Q?] of angular fre-
quencies between oscillators in a pair still modify Eq. 3.5:

N
. € M
AY; = AQ; — N sin A7.97,< jil Sij CcOos Aﬁ] — 7 COs Aﬁz) (321)

This frequency mismatch between the oscillator pairs is much more critical: While
small mismatches only shift A7 slightly, larger mismatches destabilize the attractors
till finally phase slips occur in the i'" oscillator pair. With the assumption that
we start in the correct basin of attraction and worst-case approximations of Eq.
(3.21), we gain AQ); < €¢/(2N). (Note that Stefan Litzel analyzed synchronization
of oscillator pairs with frequency differences according to a Gaussian distribution
very thoroughly in his bachelor’s thesis [56]. However, he explored an architecture
variant with slightly different dynamics.)

As € has to be sufficiently small to obtain Eq. (3.21) in the first place, the latter
condition seems to be difficult to fulfill with precise manufacturing alone. Therefore,
we chose to add an additional frequency annealing step before setting the initial
conditions, which is illustrated in the next section.

3.6.2 Frequency annealing mechanism

As shown in the last section, the network is sensitive to frequency differences AS2;
between oscillator pairs. Manual adjustment of the frequencies with a potentiometer
(or several stacked potentiometers) is tedious. More importantly, thermal drifts
shift the oscillator frequencies, thus making recurrent adjustment necessary. Con-
sequently, an automatic adjustment method is required.

We propose a frequency annealing mechanism based on nonlinear dynamics: Both
oscillators of the i*" pair can be described by the dynamics of their phases 19? and
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2]

19£ . If the phase difference between the oscillators does not change (d/dt(ﬁ‘g” -
192[-2]) = AY; = 0), the frequencies must be equal. If we can t