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1

Introduction

Quantum computers are poised to revolutionize the way we process information. There is now a
great scientific effort to build them and understand how to harness their power to solve different
problems. One of the big obstacles to building large-scale quantum computer is the fact that
any physical system is subject to noise. Therefore, understanding how to characterize, quantify
and suppress noise is of central importance to the development of quantum technologies. On
the other hand, in some situations, noise and randomness can actually be helpful to solve
some computational task. The main example are Monte Carlo algorithms which have a wide
applicability. Thus, understanding how we can develop and adapt such techniques to quantum
computers is a very promising avenue for developing new quantum algorithms that profit from
noise. This thesis is concerned with the two sides of this coin. On one hand, we develop several
different techniques to quantify how noisy a given quantum system is for a given task. On the
other hand, we discuss how noisy processes can be used to develop algorithms to sample from
quantum states that are analogous to Markov chain Monte Carlo techniques in the classical
setting. The main technical tool we use are quantum dynamical semigroups and we study their
convergence in detail. These mathematical objects can be used to model quantum systems
under memoryless noise and provide a good approximate description for many physical systems
of relevance.

We start by giving a brief summary of the two core contributed articles and of the individual
contributions of the author. We then proceed to give brief summaries of the articles of which the
present is the principal author, but are still under review and one for which the present author is
not the principal author. After that, we lay the mathematical and technical foundations related
to the articles, besides setting our notation. We start by introducing the basic notions of finite-
dimensional quantum mechanics, followed by some basic facts on and examples of quantum
dynamical semigroups. We proceed by discussing several different distance measures used in
quantum information theory and their operational interpretations. After that, we give a brief
overview of how functional inequalities can be used to study the convergence of semigroups
under several of the distance measures introduced before and finally discuss some applications
of these techniques. Considering that this is an extensive area of research, we focus only on
results and concepts from the existing literature which are particularly relevant for the present
dissertation. This is followed by the contributed articles. We start with the article in which
the author of this dissertation is a co-author, V [1]. This is justified by the fact that one of
the core articles, I [2], is inspired by it. We then include the core published articles and later
include the articles under review. Each article is preceded by a technical summary of its main
results, which, although still short, is more involved than the one found in the next section, and
a more elaborate account of the individual contributions of the present author. They are also
accompanied by the authorization to include the the articles in this thesis in case they have
already been published.
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1. INTRODUCTION

1.1 Summary and Discussion of Results

The articles included in the present dissertation can be classified loosely into three categories.
The first one consists of those concerning quantifying how noisy some given quantum dynamical
semigroup is. The figure of merit to quantify this depends on the specific task at hand. Articles
I, IV and V [1, 2, 3] are concerned with this issue. The second category consists of those
involved with the question of how to prepare quantum states on a quantum computer exploring
quantum dynamical semigroups, ideally efficiently. This includes articles I and II [2, 4]. The
last category, which is admittedly slightly disjoint thematically from the others, consists of
article III [5], where we show how to explore the compression power of positive maps to solve
semidefinite programs, a natural framework to formulate and solve many optimization problems
in quantum information theory. Here we also study the limitations of such maps for these tasks.

Core articles as principal author

• Article I [2]: Sandwiched Renyi Convergence for Quantum Evolutions
In this article, we develop the technical machinery necessary to study the convergence of
quantum dynamical semigroups with full rank stationary states using the recently intro-
duced sandwiched Rényi divergences entropies with p ≥ 1 as a distance measure [6, 7].
Focusing on semigroups in continuous time, we show that the convergence is always ex-
ponential and equivalent to a functional inequality and define the optimal convergence
rates. Using Pinsker’s inequality, it is possible to derive rapid mixing times for such semi-
groups. We explore how these convergence rates connect to other essential constants in
the study of the convergence of semigroups, such as the spectral gap and the logarithmic
Sobolev constant. As expected, we find that the spectral gap of the semigroup gives an
upper bound on the optimal convergence rates in the reversible case. Moreover, we also
show that these convergence rates are lower-bounded by logarithmic Sobolev constants.
Both of these proofs work by relating the functionals involved in the definition of such
constants. By connecting the convergence rates with respect the sandwiched Rényi di-
vergences and logarithmic Sobolev constants, we are able to derive mixing time bounds
from them without resorting to technical assumptions such as lp−regularity that were
needed before [8]. We provide evidence that obtaining analytical bounds or even optimal
values for these constants is much more feasible than using regular logarithmic Sobolev
inequalities by computing the optimal constants for p = 2 in the case of depolarizing
channels. The same computation for the p = 1 case, done in [1] is significantly more
involved and was one of our inspirations to search for better techniques to compute con-
vergence rates. This result implies a universal lower bound for the convergence rate in
terms of the spectral gap and stationary state of the semigroup. We also briefly comment
on how to use a similar approach to derive mixing times in discrete time. The techniques
developed here are therefore natural candidates to show rapid mixing for some classes of
quantum dynamical semigroups which are relevant for algorithmic applications. Finally,
we explore the connection between sandwiched Rényi divergences and strong converse
bounds on the classical capacity of quantum channels established in [7] and tensorization
results for logarithmic Sobolev constants to obtain upper bounds on the classical capacity
of quantum dynamical semigroups as a function of time, their spectral gap , and proper-
ties of the stationary state. Putting these together with bounds on the spectral gap of
Davies generators available in the literature [9, 10], we obtain the first bound available on
the classical capacity of stabilizer Hamiltonian under thermal noise as a function of time
and temperature. These include widely studied models such as the 2D−toric code. More-
over, these are bounds in the strong converse sense. These results clearly show that the
techniques developed here are a powerful tool to study the classical capacity of quantum
dynamical semigroups. I am the principal author of this article. The project’s idea was
motivated by discussions between Alexander Müller-Hermes and me after we finished [1].
I proved all main results and wrote all sections of it, except Appendix A, Theorem 4.1
and Theorem 4.3.
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1.1 Summary and Discussion of Results

• Article II [4]: Perfect Sampling for Quantum Gibbs States
In this article we propose an algorithm to overcome the need of having mixing time bounds
to obtain certifiably good samples from measurements on quantum Gibbs states. That
is, we develop an algorithm to obtain perfect samples from any measurement on a Gibbs
state. We assume we can implement on a quantum computer a quantum dynamical semi-
group satisfying certain conditions and a phase estimation routine for the Hamiltonian of
interest. This is conceptually different to usual approaches to this problem which focus on
obtaining approximate samples and usually do not provide any certificate on the quality
of the samples. Moreover, the run-time analysis of these approaches is far from trivial,
as the huge literature dedicated to Markov chain mixing attests. The algorithm works by
adapting the coupling from the past algorithms developed by Propp and Wilson [11] to
solve the analogous problem in the classical setting. The classical algorithm produces a
perfect sample of the stationary distribution of a Markov chain given a black box which,
fed some initial state, outputs a valid transition of the chain. Here we suppose we have ac-
cess to a quantum computer that can run the phase estimation routine for the Hamiltonian
of interest and also implement a quantum channel that drives the system to the desired
Gibbs state and has some extra properties. These ensure that, fixing some eigenbasis of
the Hamiltonian, the dynamics of this eigenbasis under the channel can be modelled as a
classical Markov chain and that the transition probabilities between different eigenstates
only depend on their energies. One example of such a channel is the one proposed in the
quantum Metropolis algorithm of [12]. The algorithm then works by feeding transitions
of the chain in the eigenbasis to a classical computer running an adapted version of the
CFTP algorithm of Propp and Wilson. The runtime of the algorithm is probabilistic and
its mean time depends strongly on the degeneracy of the Hamiltonian. Given that each
eigenspace of the Hamiltonian in a d−dimensional Hilbert space has dimension at least
dr(d)−1 for some function r, then the runtime is of order O(r(d)2 log(r(d))tmix), where
tmix is the mixing time of the channel. This is efficient for Hamiltonians with an extremely
degenerate spectrum, i.e. r(d) = log(d)m, and in the worst case of nondegenerate spectra,
i.e. r(d) = 1, this runtime is the same as the classical one, up to a logarithmic factor. We
also investigate the stability of the algorithm with respect to different sources of noise.
We start by showing that the algorithm is stable against perturbations of the channel. We
also show that the algorithm is stable against faulty phase estimation. Roughly speaking,
the algorithm will be more stable against faulty phase estimation the further different
eigenvalues are apart and if eigenvalues that are close have eigenspaces whose dimensions
are of the same order of magnitude. Moreover, we show how to adapt other variations of
perfect sampling algorithms to the quantum setting. I am solely responsible for all the
writing and results of this article.

Further articles as principal author under review

• Article III [5]: Dimensionality reduction of SDPs through sketching
Although most of the articles discussed before are concerned with quantifying or ex-
ploring noise in quantum systems, here we consider how to compress observables using
positive maps and apply our results to the solution of semidefinite programs (SDPs).
SDPs provide a natural framework to formulate and solve many optimization problems in
quantum information theory. Although they are solvable in polynomial time under mild
assumptions, their practical application is however restricted by the prohibitive amount of
memory required to solve problems of even moderate dimension. Therefore, we develop
an algorithm based on positive maps to approximately solve them using less memory.
We start by showing how to use Johnson-Lindenstrauss transforms to obtain completely
positive maps that approximately preserve the Hilbert-Schmidt scalar product between
two hermitian matrices, but have a much smaller output dimension. We then apply this
result to improve both complexity and storage space requirements to solve SDPs given
in a certain universal form. This works by applying the positive maps we obtain to the
matrices that define the SDP constraints and target functional to obtain a smaller SDP,

3



1. INTRODUCTION

which we call the sketched SDP. This new SDP then has a much smaller dimension, and
as the maps approximately preserve feasibility and the value of the original SDP, solving
this sketched SDP yields information about the original one. One of the main advantages
of this approach is that one can use already available solvers or algorithms for SDPs to
solve the sketched version. These techniques work best for problems in which the Schatten
1-norm of the matrices specifying the SDP and of a solution to the problem is constant in
the problem size. Moreover, we show how to apply similar ideas to probe the feasibility
of certain linear matrix inequalities. We clarify the limitations of this and other slightly
more general approaches to approximating the value of SDPs by showing some no-go
results. We show that it is not possible to compress all SDPs nontrivially using linear
maps by relating this problem to sketching the operator norm, which is known not to be
sketchable [13]. Furthermore, we show that our results concerning positive maps that ap-
proximately preserve the Hilbert-Schmidt scalar product cannot be improved significantly,
a result which might be of independent interest to the quantum information community
and complements those of [14]. The project’s idea was motivated by discussions between
Andreas Bluhm and me. I proved the majority of the statements of the article and wrote
most of the sections, although the discussions with Andreas Bluhm were central in the
process.

• Article IV [3]: Approximate Randomized Benchmarking for Finite Groups
Randomized benchmarking [15] is an experimental protocol to estimate the average gate
fidelity of a set of quantum gates efficiently. It is usually used to estimate the average
fidelity of Clifford gates and works under the assumption that the quantum channel that
describes the noise in the implementation is independent of the gate and constant in time.
The protocol works by exploring the properties of twirled and covariant channels and
by estimating how fast a covariant quantum channel converges. From the information
on the speed of the convergence of the quantum channel, it is then possible to infer
the average gate fidelity of the channel. In this article, we generalize the randomized
benchmarking protocol in three different ways. First, we show how to apply the protocol
to estimate the average gate fidelity of an arbitrary representation of a finite group, not
necessarily Cliffords. How to interpret the experimental data and extract the average
fidelity from it depends on properties of the representation at hand. In the usual setting
of randomized benchmarking, it is also assumed that we have access to samples from the
Haar distribution of the group. As it may not be possible or straightforward to obtain
these efficiently, we show that obtaining samples that are approximately Haar also suffices
for the implementation of the protocol. These results allow us to apply Markov chain
Monte Carlo techniques to obtain approximate samples efficiently and are also a stability
result for randomized benchmarking protocols. Finally, we show how to implement the
randomized benchmarking protocol only having to implement a set of gates that generate
the group and that is closed under taking inverses, and one arbitrary element of the group.
These results simplify the implementation of the protocol and makes it easier to justify
the error model, as usually gates have to be broken down into generators. The price to
pay is that we need to assume that the quantum channel that describes the model is close
to a covariant channel. We apply our methods to the subgroup of unitary matrices that is
formed by permutation matrices multiplied by diagonal unitaries whose entries are roots
of unity. These are interesting candidates for the application of our methods because one
is only required to estimate two parameters when performing randomized benchmarking
with them, the scaling of multiplying and inverting elements of this group is not too
prohibitive, and gates from this set allow for universal quantum computation together
with the Cliffords. We also apply our methods of approximate samples and generator
benchmarking to the Clifford group with success. This project started after Anna-Lena
K. Hashagen asked me to review a paper of hers on a similar topic. I realized that many
techniques could be generalized and we followed this path. I proved, formulated and wrote
most of the statements of the article.
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1.1 Summary and Discussion of Results

Articles as co-author

• Article V [1]: Relative entropy convergence for depolarizing channels
This article investigates how fast states converge under depolarizing semigroups which
have full rank fixed points in terms of the relative entropy. This convergence is always
exponential in time, and we compute the optimal exponents as a function of the state.
Therefore, these exponents quantify how noisy these semigroups are. Moreover, these are
the first known results of optimal constants for convergence in the relative entropy. To
arrive at this result, we explore properties of quasi-convex functions and show how to sim-
plify the computation of these constants using Birkhoff’s Theorem on doubly-stochastic
matrices. By reformulating the relative entropy in terms of the von Neumann entropy,
we also show how our results imply improved concavity bounds for it. We compare it
to other estimates available in the literature, such as the one by Kim et al. [16], and
provide numerical evidence that they are not comparable. We prove a quantum version of
Shearer’s inequality by again exploring the connections between the relative entropy and
the von Neumann entropy. This inequality is then used to establish a uniform bound on
the convergence exponent of the relative entropy under tensor powers of the depolarizing
semigroup going to the maximally mixed state. Finally, we prove an optimal version
of Pinsker’s inequality for a fixed second argument of the relative entropy. Alexander
Müller-Hermes is the principal author of this article.
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1. INTRODUCTION
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2

Notation and Preliminaries

Throughout this thesis Md,d′ will denote the space of d×d′ complex matrices. We will write Md

for short in case d = d′. Given a matrix A ∈Md,d′ , we will express its adjoint by A†. Moreover,
for linear operators T : Md → Md′ , we will denote their adjoint w.r.t. the Hilbert-Schmidt
scalar product by T ∗. By M+

d we denote the set of positive definite matrices. We will use the
symbol 1d for the identity matrix on Md and will denote the identity map from Md →Md by
idd : Md →Md. Sometimes we will drop the d index if the dimension is clear from context. We
will denote the set of orthogonal projections in Md by Pd. Given vector spaces V,W , we will
denote the set of bounded linear maps from V to W by B (V,W ) or just B(V ) in case V = W .
We adopt the bra-ket notation to denote vectors, matrices and their duals. We will denote
the group of d−dimensional unitary matrices by U(d). Given some unitary Ug ∈ U(d), we will
denote the unitary conjugation with Ug by Ug. That is, we define the map Ug : Md →Md as

Ug (·) = Ug · U†g .

We will sometimes call self-adjoint matrices A ∈Md observables or Hamiltonians.

2.1 Finite Dimensional Quantum Mechanics

Throughout this thesis we will only deal with finite dimensional systems. This will allow us
to bypass many of the technicalities involved when studying infinite dimensional systems. We
will briefly introduce most of the concepts of quantum mechanics we will need throughout this
thesis. We will adopt a quantum information perspective on quantum mechanics and refer
to [17] for more on these basic concepts from a similar point of view.

2.1.1 States and Measurements

The state of a d-dimensional quantum system is described by a density matrix ρ ∈ Md, which
are positive semi-definite matrices of trace 1. We will denote the set of d-dimensional quantum
states by Dd and by D+

d = M+
d ∩Dd the set of full rank states. A measurement of the system

corresponds to a positive operator valued measure (POVM) on Cd. These are positive semi-
definite operators {Ei}ki=1 ⊂M+

d such that

k∑

i=1

Ei = 1. (2.1)

We will call each Ei a POVM element and k the number of outcomes.
These conditions on states and POVMs assure that they induce a probability distribution

p ∈ Rk through p(i) = Tr (Eiρ). This probability distribution describes the probability of
observing outcome i when measuring the POVM on a system described by the state ρ. Given
two systems A,B of dimensions dA, dB , respectively, the composite system AB is described by

7
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the tensor product of the individual systems. That is, a state ρAB of the composite system AB
is an element of MdA ⊗MdB 'MdAdB . Given a XAB ∈MdA ⊗MdB we will denote the partial
trace over B by TrB (·). When it is clear from context which system is of primary interest and
which one is the auxiliary system, we will denote the partial trace over the auxiliary system by
Tr2 (·). Given an inverse temperature β > 0 and a Hamiltonian H ∈ Md, we define its Gibbs

state to be given by e−βH

Tr(e−βH)
. The function β 7→ Tr

(
e−βH

)
is called the partition function and

we will denote it by Zβ .

2.1.2 Time Evolutions

The most general way to describe the time evolution of states of a quantum system is through
quantum channels:

Definition 2.1.1 (Quantum Channel). We call a linear map T : Md →Md′ a quantum channel
if it is trace preserving and completely positive.

Recall that a linear map T : Md → Md′ is trace preserving if for all X ∈ Md we have
Tr (X) = Tr (T (X)) or equivalently T ∗(1) = 1. A map is completely positive if we have for all
D ∈ N that for X ∈ (Md ⊗MD)

+
that T ⊗ idD(X) ≥ 0. The trace preserving property and

the complete positivity ensure that states are mapped to states under T , even when considering
composite systems. One can alternatively characterize and describe quantum channels TMd →
Md′ in terms of their duals with respect to the Hilbert-Schmidt scalar product, T ∗ : Md′ →Md.
The map T is usually referred to as the channel in the Schrödinger picture and the map is the
channel in the Heisenberg picture. T ∗ can be seen as describing the evolution of observables
under the channel. One can easily see that T being a quantum channel in the Schrödinger
picture is equivalent to T ∗ being completely positive and unital, i.e. T ∗(1) = 1.

There are many different equivalent characterizations of quantum channels or more generally
completely positive maps. Here we recall some of them. We again refer to [17] for more details
on this and proofs. A very useful characterization of completely positive maps is given through
the Choi-Jamiolkowski isomorphism. Define the maximally entangled state |Ω〉〈Ω| ∈Md ⊗Md

to be given by

|Ω〉〈Ω| = 1

d

d∑

i,j

|i〉〈j| ⊗ |i〉〈j| .

Here {|i〉}di=1 is an orthonormal basis of Cd. The Choi-Jamiolkowski matrix is then given by

T ⊗ id (|Ω〉〈Ω|) . (2.2)

One can infer many properties of the map T from properties of the state defined in Equation
(2.2). For instance, T is completely positive if and only if the Choi matrix is positive semi-
definite. Another important characterization of completely positive maps is given through the
Kraus decomposition.

Theorem 2.1.2 (Kraus decomposition). Let T : Md → Md′ be a linear map. Then T is
completely positive if and only if, there exist Ki ∈Md′,d, 1 ≤ i ≤ r, s.t.

T (X) =

r∑

i=1

KiXK
†
i .

Moreover, T is trace preserving if and only if,
r∑
i=1

K†iKi = 1.

Note that this decomposition is not unique. We call the minimal r s.t. such a decomposition
exists the Kraus rank of the completely positive map. One can show that this corresponds to
the rank of the Choi matrix. The evolution of closed systems is described by the conjugation

8



2.1 Finite Dimensional Quantum Mechanics

with unitary operators in quantum mechanics. The connection between the dynamics of closed
system and dynamics described by quantum channels is made clear by the Stinespring dilation,
which gives yet another characterization of quantum channels:

Theorem 2.1.3 (Stinespring Dilation). Let T : Md →Md′ be a quantum channel. Then there
exists a D ≤ d2, a unitary operator U on Cd ⊗ CD and a state ρ ∈ DD such that

T (X) = Tr2
(
UX ⊗ ρU†

)
(2.3)

for all X ∈Md.

Equation (2.3) can be interpreted in the following way: the evolution under T of any state
σ ∈ Dd can be implemented by preparing the initially uncorrelated state σ⊗ρ, evolving it with
the unitary U and then tracing out the auxiliary system. The quantum channel can thus be
interpreted as describing the evolution of a state that interacts with a larger, closed system,
and is initially uncorrelated with it.

9
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3

Quantum Dynamical Semigroups

In this chapter, we will introduce some of the basic concepts related to quantum dynamical
semigroups, which are semigroups of quantum channels, and their convergence properties. We
will mostly work in the Schrödinger picture here.

Definition 3.0.1 (Quantum dynamical semigroup). Let I ∈ {R+,N}. A function f : I →
B (Md) is called a quantum dynamical semigroup if

1. f(0) = idd

2. f(t+ s) = f(t)f(s) for all t, s ∈ I

3. f(t) is a quantum channel for all t ∈ I.

In case I = R+ we also demand that f(t) depends continuously on t. We will refer to the case
I = R+ as a semigroup in continuous time and I = N as a semigroup in discrete time.

We will usually denote a quantum dynamical semigroup by Tt, where Tt = f(t) and will
usually denote f(I) by {Tt}t∈I . One should think of Tt as the time evolution of the system in
a time interval [0, t]. The semigroup structure ensures that the evolution is both homogeneous
and memoryless over time. It is easy to see that in case we have a semigroup in discrete time
there is a quantum channel T : Md →Md such that Tt = T t, that is, we just iterate a quantum
channel t times. We call this quantum channel the generator of the chain. In the case of
continuous time we may also find generators of the semigroup and they have a richer structure:

Theorem 3.0.2 (Generators of semigroups in continuous time). Let {Tt}t∈R+ be a quantum
dynamical semigroup. Then there exists a L : Md → Md s.t. Tt = etL. Moreover, L may be
written in any of these equivalent forms:

L(X) = Φ(X)−Xκ− κ†X (3.1)

L(X) = i[X,H] +
∑

j

LjXL
†
j −

1

2
{L†jLj , X}, (3.2)

where Φ : Md → Md is completely positive and satisfies Φ∗(1) = κ + κ†, κ,H,Lj ∈ Md and
H = H†. We will refer to any operator satisfying Equation (3.1) as a Liouvillian.

We refer to e.g. [17] for more details on this and proofs.

3.1 Convergence of Semigroups

In this section, we will discuss some properties of quantum channels or Liouvillians that simplify
the study of their convergence as t → ∞. Given a quantum channel T : Md → Md, we will
call the states ρ ∈ Md such that T (ρ) = ρ stationary states. Analogously, for Liouvillians

11
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L : Md →Md we call states such that L(ρ) = 0 stationary states, as these are then stationary
states of the semigroups they generate for all t ∈ R+. One of the most important concepts in
this thesis is that of a primitive channel or Liouvillian.

Definition 3.1.1 (Primitive generator). We call a semigroup {Tt}t∈I primitive if there is a
unique full-rank state σ ∈ D+

d such that for all ρ ∈ Dd

lim
t→∞

Tt(ρ) = σ.

Analogously, we call a Liouvillian L : Md → Md primitive if there is a unique full-rank state
σ ∈ D+

d such that L(σ) = 0.

We will refer to the state σ as the stationary state of the semigroup. Another concept which
is closely related to the convergence of semigroups is that of irreducibility:

Definition 3.1.2 (Irreducible quantum channel). A quantum channel T : Md → Md is called
irreducible if for a hermitian projection P ∈Md we have that T (PMdP ) = PMdP implies that
P ∈ {0,1}.

With some abuse of terminology, we will call a Liouvillian primitive or irreducible if the
semigroup it generates is primitive for some t. There are many different equivalent characteri-
zations of primitive or irreducible quantum channels. We will now collect some of them which
are central to the other sections and refer to e.g. [18] for more details and proofs. Here we also
differentiate between continuous and discrete time, as it is easier to characterize primitive or
irreducible semigroups in continuous time.

Theorem 3.1.3 (Generators of primitive semigroups). The semigroup generated by a Liou-
villian L : Md → Md is primitive and irreducible if one of the following equivalent conditions
holds:

1. There is a t0 > 0 such that Tt0 is irreducible.

2. Tt is irreducible for all t > 0.

3. Tt is primitive for all t > 0.

4. kerL = span{σ}

That is, primitivity and irreducibility are equivalent in continuous time and one just has to
check the kernel of L to determine whether it is primitive or not. In discrete time the situation
is more subtle. One can show that any quantum channel satisfies ‖T‖∞ = 1 and there is always
a positive semi-definite X ∈Md such that T (X) = X. We call eigenvalues λ ∈ C of a quantum
channel of the peripheral spectrum if |λ| = 1 and call the peripheral spectrum of the channel
trivial if it only contains 1 with multiplicity 1. We then have

Theorem 3.1.4 (Primitive quantum channels). Let T : Md → Md be a quantum channel.
Then the following are equivalent:

1. T is primitive.

2. T has a trivial peripheral spectrum.

3. there is an n ∈ N such that for all ρ ∈ Dd T
n(ρ) > 0.

Theorem 3.1.4 allows us to characterize primitive quantum channels in terms of their spec-
trum, which is usually more readily accessible. Another property of semigroups that signif-
icantly simplifies the study of their convergence is that of detailed balance, as it is the case
for classical Markov chains. There are many different generalizations of this condition to the
quantum setting which are not equivalent (see e.g. [19]). The following is the most appropriate
for our purposes:

12
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Definition 3.1.5 (Detailed balance/reversibility). A semigroup {Tt}i∈I is said to satisfy de-
tailed balance with respect to a state σ ∈ D+

d if for all X ∈Md and t ∈ I

Tt

(
σ

1
2Xσ

1
2

)
= σ

1
2T ∗t (X)σ

1
2 . (3.3)

We will also sometimes call semigroups that satisfy detailed balance reversible.

We will see later in Subsection 4.1.1 that the condition in Equation (3.3) is equivalent to
the generator of the semigroup being self-adjoint with respect to a certain scalar product.

3.1.1 The Phase Estimation Algorithm

The quantum phase estimation algorithm and its variations, first developed in [20], certainly
is one of the most important quantum algorithms. Although not strictly related to quantum
dynamical semigroups, at first sight, this algorithm is a vital subroutine to implement primitive
quantum channels that converge to quantum Gibbs states, such as the quantum Metropolis
algorithm proposed in [12]. We will discuss how exactly this is used in quantum Gibbs sampling
later and discuss the basics of this subroutine here. The perfect phase estimation procedure or
algorithm has as an input a Hamiltonian H ∈Md and produces a unitary U ∈Md ⊗M2m that
acts as follows. Given an eigenstate |ψi〉 of H such that H |ψi〉 = Ei |Ei〉, we have that

U |ψi〉 ⊗ |0〉 = |ψi〉 ⊗ |Ei〉 .

Here we have assumed that Ei can be expressed exactly with m binary digits. This will not
generally be the case for generic Hamiltonians and most phase estimation procedures only
produce an output that peaks around |ψi〉⊗ |Ei〉. Phase estimation algorithms are still subject
of current research, but we will briefly discuss here the probability of making errors for a simple
implementation discussed in [21]. To implement the phase estimation algorithm we assume we
may implement the semigroups of unitaries generated by H, Vt = eitH ∈ U(d). We also assume
we may implement Hadamard gates Ha ∈ U(2), where

Ha =
1√
2

[
1 1
1 −1

]

on each of the qubits of the second register. We also need to apply a controlled Vt gate between
the first system and any of the m qubits on the second register, CVj , where j is the qubit. The
unitary acts as

CVj |x〉 |0〉 7→ |x〉 |0〉 , CVj |x〉 |1〉 7→ V2j−1 |x〉 |1〉

and as the identity on the other qubits. Finally, we also need to implement the inverse discrete
Fourier transform, FT †. Following the notation of [21], for a binary sequence j1, j2, . . . , jm we
set 0.jl, jl+1, . . . , jn to be the binary fraction

0.jl, jl+1, . . . , jm =
jl
2

+
jl+1

4
+ . . .+

jm
2n−l+1

.

The Fourier transform gate FT then acts as follows in the computational basis:

|j1j2 . . . jn〉 7→
1

2m/2
(
|0〉+ e2πi0.jm |1〉

) (
|0〉+ e2πi0.jm−1jm |1〉

)
. . .
(
|0〉+ e2πi0.j1j2...jm |1〉

)
.

The phase estimation procedure is given by applying the sequence of gates

(1d ⊗ FT †)(CVmCVm−1 . . . CV1)(1d ⊗Ha⊗m).

It is possible to check that if Ei can be expressed exactly with m binary digits, we will indeed
observe Ei if we measure the second register in the computational basis, but in general it will
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only peak around the best approximation of Ei using m binary digits. Given that the eigenstate
of the system is |ψi〉, we have that the probability that the observed outcome is E is bounded
by

|2m(Ei − E) mod 2m|−2.

Using this it is then possible to show that if we use

m ≥ n+ log
(
2 + (2δ)−1

)

qubits to perform phase estimation, then we obtain Ei accurate to n bits with probability at
least 1− δ.

The relevance of discussing faulty phase estimation is that it might lead us to implement
quantum channels that do not have the desired state as their stationary state and it is therefore
always important to also show the stability of the quantum channels with respect to such errors.

3.1.2 Important Examples

Here we discuss some examples of semigroups that are important in the theory of quantum
dynamical semigroups.

Depolarizing Channels:
The depolarizing channels may be considered the simplest example of a quantum dynamical
semigroup. Given a full rank state σ ∈ D+

d , we define the semigroup generated by

Lσ(X) = Tr (X)σ −X (3.4)

to be the σ−depolarizing semigroup. It is easy to see that the channels generated, the depolar-
izing channels, are of the form

Tt,σ(ρ) = e−tσ + (1− e−t)ρ (3.5)

for a state ρ ∈ Dd. As was made clear by [1], the depolarizing channels play a central role
in the theory of functional inequalities for semigroups, as they are a very simple example of a
primitive semigroup for any initial state σ ∈ D+

d .
Davies Generators:

Davies generators describe a system weakly coupled to a thermal bath under an appropriate
approximation [22]. Here we will only review their most basic properties and refer to [23, 24, 25]
for more details.

Suppose a d−dimensional system is weakly coupled to a thermal bath of dimension dB at
inverse inverse temperature β > 0. Consider a Hamiltonian Htot ∈ Md ⊗MdB of the system
and the bath of the form

Htot = H ⊗ 1dB + 1S ⊗HB +HI ,

where H ∈Md is the Hamiltonian of the system, HB ∈MdB of the bath and

HI =
∑

α

Sα ⊗Bα ∈Md ⊗MdB (3.6)

describes the interaction between the system and the bath. Here the operators Sα and Bα are
self-adjoint. Let {λk}k∈[d] be the spectrum of the Hamiltonian H. We then define the Bohr-
frequencies ωi,j to be given by the differences of eigenvalues of H, that is, ωi,j = λi − λj for
different values of λ. We will drop the indices on ω from now on to avoid cumbersome notation,
as is usually done. Moreover, we introduce operators Sα(ω) which are the Fourier components
of the coupling operators Sα and satisfy

eiHtSαe−iHt =
∑

ω

Sα(ω)eiωt.
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The canonical form of the Davies generator at inverse temperature β > 0 in the Heisenberg
picture, L∗β , is then given by

L∗β(X) = i[H,X] +
∑

ω,α

L∗ω,α(X),

where

L∗ω,α(X) = Gα(ω)

(
Sα(ω)†XSα(ω)− 1

2
{Sα(ω)†Sα(ω), X}

)
.

Here {X,Y } = XY + Y X is the anticommutator and Gα : R → R are the transition rate
functions. Their form depends on the choice of the bath model [24]. For our purposes, it will
be enough to assume that these are functions that satisfy the KMS condition [26], that is,
Gα(−ω) = Gα(ω)e−βω. Note that under some assumptions on the operators Sα(ω) [10, 27] and
on the transition rate functions, the semigroup generated by Lβ converges to the Gibbs state
e−βH

Tr(e−βH)
and is reversible [26]. In the examples considered here, this will always be the case.

Their relevance comes from the fact that they are one of the standard ways of modelling
quantum systems under thermal noise [10].

Quantum Metropolis:
Although the last two classes of examples are of semigroups in continuous time and most

of the methods we will discuss later are more suited for semigroups in continuous time, an
example of a semigroup in discrete time which is particularly relevant is the one described in
the quantum Metropolis algorithm introduced in [12]. It can be seen as a generalization of the
classical Metropolis algorithm to sample from classical Gibbs states. As before, the goal is to
obtain a quantum channel T : Md → Md which will be primitive and whose stationary state

will be e−βH

Tr(e−βH)
for some given Hamiltonian H ∈ Md and inverse temperature β > 0. The

algorithm works with four registers, ABCD. The first register, A, will be of dimension d, the
second and the third one, BC, will be of dimension 2m and the fourth, D, will be of dimension
2. We will assume we are able to perform phase estimation for the Hamiltonian H exactly. We
refer to [12] for more details on the performance of the algorithms with faulty phase estimation.
Moreover, we will assume we may sample from a probability distribution µ on U(d) with the
property that dµ(C) = dµ(C†). The convergence of the quantum channel will typically depend
on how we choose these unitaries. Assuming for simplicity that the support of µ is finite, the
only thing necessary to ensure convergence is that for any eigenstate |ψi〉 of H, there is another
eigenstate |ψj〉 and C ∈ U(d) such that

µ(C) > 0, | 〈ψi|C |ψj〉 |2 > 0.

If d = 2k for some k ∈ N we may take e.g. the uniform measure on the Clifford group on k
qubits. The algorithm works as follows. We first start by preparing some fixed initial state, say
|0〉 |0〉 |0〉 |0〉. We will then follow a combination of these steps:

1. Step 1: reinitialize registers BCD to |0〉 |0〉 |0〉. Perform phase estimation between
registers A and B and measure B in the computational basis. The state of the system
now is

|ψi〉 |Ei〉 |0〉 |0〉

for some eigenstate |ψi〉 such that H |ψi〉 = Ei |ψi〉.
2. Step 2: apply a random unitary drawn according to µ, V , to the first register followed

by a phase estimation routine between registers A and C.

3. Step 3: define the unitary W (Ei, Ej) ∈ U(2) with

W (Ei, Ej) =

[√
1− f(Ei, Ej)

√
f(Ei, Ej)√

f(Ei, Ej) −
√

1− f(Ei, Ej)

]
,
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where f : R2 → R is defined as f(Ei, Ej) = min{1, e−β(Ej−Ei)}. Apply W (Ei, Ej) to
register D conditioned on registers BC. Denote this unitary on BCD by W .

4. Step 4: measure register D in the computational basis. If the outcome is 1, go back
to Step 1. If the outcome is 0, apply the unitary W ∗, followed by V ∗ and the inverse of
phase estimation on the system. Call this sequence of unitaries U∗. Define the following
POVM elements a POVM Q = {Q0, Q1}:

Q0 = U∗ (1⊗ 1⊗ 1⊗ |0〉〈0|)U,
Q1 = U∗ (1⊗ 1⊗ 1⊗ |1〉〈1|)U.

Moreover, also define the following POVM R = {R0, R1}:

R0 =
∑

i

Pi ⊗ |Ei〉〈Ei| ⊗ 1⊗ 1,

R1 = 1− P0.

Here the sum is over all eigenvalues of H and Pi corresponds to the orthogonal projection
onto the eigenspace of H corresponding to the eigenvalue Ei. We note that the POVM R
may easily be implemented using phase estimation. We then measure the POVM R. If
the outcome is 0, then we go to step 1. If not, for a fixed number of tries, say k ∈ N, we
measure the POVM Q followed by another measurement of R. If at any point we observe
the outcome 0 after measuring R we go back to step 1 and we abort the procedure if this
is not the case after k steps.

As shown in [12], the probability of observing 1 after measuring R decreases exponentially in
the number of tries. We can interpret the unitary C as implementing the proposed moves, as
in the classical Metropolis. The choice of W (Ei, Ek) is also inspired by the function used in the
classical Metropolis algorithm for the probability of accepting or rejecting a proposed move.
Whether we accept or reject a proposed move is decided by the measurement of register D,
with an outcome of 1 being accepting the move and 0 rejecting. Therefore, we have to reverse
the move at step 4 in that case. It is easy to see that the algorithm just implements a classical
random walk on the eigenspaces of H that is very similar to the classical Metropolis algorithm.
Let Tβ : Md →Md be the quantum channel which describes one complete step of the algorithm
for some inverse temperature β > 0 on register A. Our assumptions on the distribution of
unitaries µ ensures that this quantum channel is irreducible, as we may observe any eigenstate
of H with positive probability by iterating Tβ . Moreover, with the choice of W (Ei, Ek) it
is possible to show that the quantum channel Tβ satisfies detailed balance with respect to the

Gibbs state e−βH

Tr(e−βH)
and therefore it is a stationary state. As shown in Section 3.1, this ensures

that the implemented channel is indeed primitive.

3.1.3 Covariant Channels and Twirling

A very useful tool to study symmetry properties or the structure of quantum dynamical semi-
groups is that of covariance or twirling of quantum channels. Given a compact or finite group
G and a representation g 7→ Ug ∈ U(d) of it, we say that a quantum channel T : Md → Md is
covariant with respect to this representation if we have that for all X ∈Md and g ∈ G

T (UgXU
†
g ) = Ug(X)U†g .

One could in principle also consider the case in which we have two different representations of
the group acting on each side of the equation or more general classes of groups, but this goes
beyond our purposes. Moreover, one can also define the twirl of a channel with respect to this
representation, T(T ), given by

T(T ) =

∫

G

U†gT (UgXU
†
g )UgdUg,
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where we integrate over the Haar measure on G. It is easy to check that T(T ) is covariant with
respect to the representation. This concept is useful in many settings in quantum information,
as many properties of a channel are invariant under twirls. One important example is that of
the depolarizing channels converging to 1

d , Tt, 1d , as defined in Equation (3.5) as for them we
have

Tt, 1d (UXU†) = UTt, 1d (X)U†

for all U ∈ U(d).

3.1.4 Classical Markov Chains

As we often use tools and draw inspiration from the classical analogues of quantum channels,
Markov chains, we will review some of their basic properties and fix our notation. We refer to
[28] for more details on these topics.

Definition 3.1.6 (Markov chain). A sequence X0, X1, X2, . . . of random variables taking values
in a (finite) set S, referred to as the state space, is called a Markov chain if we have

P (Xn+1 = j|Xn = i) = π(i, j)

for a |S| × |S| matrix π. π is called the transition matrix of the chain.

As in the case of quantum dynamical semigroups, we will be interested in the behaviour
of the Markov chain as n → ∞. It is easy to see that if the probability distribution of X0 is
ν ∈ R|S|, then the distribution of Xn is given by πnν. We briefly discuss the translation of the
definitions and results mentioned in Section 3.1 to the classical setting.

A probability distribution µ on S is called stationary if we have that πµ = µ. A transition
matrix is called primitive if there exists a stationary distribution µ such that for any other
distribution ν on S we have that lim

n→∞
πnν = µ and µ is strictly positive on all elements of S.

A Markov chain is said to be irreducible if

∀i, j ∈ S ∃n : πn(i, j) > 0.

It is aperiodic if

∀i ∈ S : gcd{n ∈ \{0} : πn(i, i) > 0} = 1.

The importance of these concepts comes from the fact that together they imply that the chain
is primitive. Analogously to the quantum case, we say that the transition matrix π satisfies
detailed balance with respect to µ if

π(i, j)µ(i) = µ(j)π(j, i).

If µ satisfies detailed balance it again implies that it is stationary.
There is a standard way of embedding a Markov chain into a quantum channel. Let d = |S|

and {|i〉}di=1 be the computational basis. Given π, we define the quantum channel T : Md →Md

as

T (X) =

d∑

i,j=1

Tr (|i〉〈i|X)π(i, j) |j〉〈j| .

If the distribution of X0 is ν and defining the state

ρ =

d∑

i=1

ν(i) |i〉〈i| ,

17



3. QUANTUM DYNAMICAL SEMIGROUPS

it is easy to see that ν′n ∈ Rd defined as

ν′n(i) = Tr (Tn(ρ) |i〉〈i|)

is a probability distribution which coincides with the one of Xn. One example of a Markov
chain which will be of importance is that of a random walk on a (finite) group. Given a finite
group G and a set A ⊂ G, we define the sequence of random variables X0, X1, X2, . . . with

X0 = e, Xn+1 = Yn+1Xn.

Here e ∈ G is the group’s identity and the Yi are i.i.d. random variables distributed according
to some probability measure µ on A. It is easy to check that the Xi are indeed a Markov chain
and that the transition matrix is given by

π(g1, g2) = µ(g2g
−1
1 ).

One case of particular importance is that of a set A that is closed under inversions, i.e.

g ∈ A =⇒ g−1 ∈ A,

and such that A generates G. If we pick µ as the uniform measure on A it is not difficult to see
that the resulting Markov chain is primitive, converges to the Haar measure on the group and
satisfies detailed balance.

Another concept of Markov chains which will be important for our purposes will be that
of a lumpable chain, sometimes also called a projected chain. Given an equivalence relation
∼ on the state space of a Markov chain X0, X1, X2, . . . it is possible to define new random
variables from the Markov chain. The state space of these new random variables is given by
the equivalence classes of the equivalence relation and they are defined as follows. Define the
function f : S → S\ ∼ which maps a state to its equivalence class. The random variables are
then given by f(X0), (X1), f(X2), . . .. If this stochastic process is again a Markov chain for all
possible initial probability distributions on S, the chain is said to be lumpable with respect
to this equivalence relation. The next Theorem gives necessary and sufficient conditions for
lumpability.

Theorem 3.1.7 (Lumpable Chain). A necessary and sufficient condition for a Markov chain
with state space S to be lumpable with respect to an equivalence relation ∼ on S is that for every
pair Sl, Sk ∈ S\ ∼ we have for all l, l′ ∈ Sl

∑

k∈Sk
π(l, k) =

∑

k∈Sk
π(l′, k) (3.7)

Moreover, the transition probability between Sl and Sk in the lumpable chain is given by Equation
(3.7).

Proof. We refer to [29, Theorem 6.3.2] for a proof.

Lumpable chains are a natural setting when we can only access partial information about
the current state of the Markov chain or as a technique to reduce the size of the state space of
a given Markov chain. We extend the concept of a lumpable chain to a lumpable channel.

Definition 3.1.8. Let T : Md →Md be a quantum channel,

H =

d′∑

i=1

EiPi ∈Md

be a Hamiltonian and Pi ∈ Pd the projections onto its eigenspaces. The quantum channel T

is said to be lumpable with respect to the Gibbs state e−βH

Zβ
if e−βH

Zβ
is a stationary state, it is

primtive and there exists a function f : R→ R s.t.

Tr (T (|ψi〉〈ψi|) |ψj〉〈ψj |) = f(Ei, Ej)
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3.1 Convergence of Semigroups

for all eigenstates s.t. H |ψi〉 = Ei |ψi〉 , H |ψj〉 = Ej |ψj〉. Moreover, we demand that

[T (Pi), Pj ] = 0

for all eigenprojectors of H.

The reason to consider lumpable channels is that they induce a classical Markov chain when
we fix an eigenbasis of H that is lumpable with respect to the equivalence relation given by
different elements of the basis corresponding to the same eigenvalue.
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4

Distance Measures and
Convergence of Quantum Markov
Chains

There are many different distance measures that can be used to quantify how close two quantum
states are or how fast a quantum dynamical semigroup converges. Of course, the right distance
measure depends on the particular application one has in mind. We will now review the main
distance measures used in this work and comment on their interpretation. Note that most of
the times we use the concept of a distance measure loosely, that is, any way of quantifying how
close states are, and not necessarily in the mathematical definition of a metric.

4.1 Standard Distance Measures

One of the most standard distance measures used in quantum information theory is that induced
by Schatten norms.

Definition 4.1.1 (Schatten p−Norm). For X ∈ Md and p ∈ [1,∞) we define the Schatten
p−Norm of X, denoted by ‖ · ‖p, to be given by

‖X‖pp = Tr (|X|p) ,

with |X| = (XX∗)
1
2 . Moreover, for p =∞ we set ‖X‖∞ = lim

p→∞
‖X‖p.

It is easy to see that if X has singular values {si}di=1, then ‖X‖pp =
∑d
i=1 s

p
i and ‖X‖∞ =

max{si}di=1. These norms have similar properties as the usual lp norms in Rn. The norm for
p = 2, also called the Hilbert-Schmidt norm, is induced by a scalar product on Md given by
〈X|Y 〉 = Tr

(
X†Y

)
and the space of matrices equipped with this scalar product is a Hilbert

space. Moreover, these norms satisfy a Hölder inequality and are monotonically decreasing in
p.

Given a linear operator Φ : Md →MD we may define the p→ q norm which is induced by
the Schatten norms.

Definition 4.1.2 (p→ q norm). Let Φ : Md →MD be a linear operator and p, q ∈ [1,∞]. We
define the p→ q norm of Φ, denoted by ‖ · ‖p→q, to be given by

‖Φ‖p→q = sup
X∈Md,X 6=0

‖Φ(X)‖q
‖X‖p

.
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4. DISTANCE MEASURES AND CONVERGENCE OF QUANTUM MARKOV
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The Schatten 1−norm, also called trace norm, will be of particular importance to quantify
the convergence of Quantum Markov chains. Given two states ρ, σ ∈ Dd, we have that

‖ρ− σ‖1 = 2 sup
P∈Pd

Tr (P (ρ− σ)) , (4.1)

where again Pd is the set of d−dimensional orthogonal projections. We refer to e.g. [21, p. 404]
for a proof of this claim. Equation 4.1 has a clear operational interpretation: the trace norm
between two quantum states gives the optimal probability of distinguishing two quantum states
from one measurement. Similarly, we have that the 1→ 1 norm between two quantum channels
gives twice the optimal probability of distinguishing them by performing a measurement on the
output state. Thus, it is natural to define the l1−mixing time of a quantum Markov chain to
be given by

Definition 4.1.3 (l1− mixing time). Given a quantum Markov chain {Tt}t∈I with stationary
state σ ∈ Dd we define the l1−mixing time for some ε > 0, denoted by t1(ε), to be given by

t1(ε) = inf{t ∈ I|∀ρ ∈ Dd : ‖Tt(ρ)− σ‖1 ≤ ε}.

The interpretation of this quantity is clear. It tells us how long the quantum dynamical
semigroup has to run so that we may not distinguish the current state from the stationary state
with probability greater than ε regardless of the initial state. Another standard measure is the
fidelity F between two quantum states ρ, σ ∈ Dd, which is given by

F (ρ, σ) = ‖√ρ√σ‖1. (4.2)

It is easy to see that 0 ≤ F (ρ, σ) ≤ 1 and F (σ, ρ) = 1 if and only if, ρ = σ. The fidelity is
one of the most used distance measures in quantum information theory, as it is easily accessible
experimentally. It also has an operational interpretation, although it is not as natural as for
the trace distance. Given two quantum states σ, ρ ∈ Dd, their fidelity is just

sup
T,|ψ〉,|φ〉

|〈ψ|φ〉|2

s.t. T : MD :→Md is a quantum channel and

T (|ψ〉〈ψ|) = σ, T (|φ〉〈φ|) = ρ.

As in the case of Schatten norms, one can also lift the fidelity, a distance measure between
states, to the average fidelity, a distance measure for quantum channels.

Definition 4.1.4 (Average fidelity). Let T1, T2 : Md →Md be quantum channels. The average
fidelity between T1 and T2, F(T1, T2), is defined to be

F(T1, T2) =

∫
‖
√
T1(|ψ〉〈ψ|)

√
T2(|ψ〉〈ψ|)‖1dψ,

where we integrate over the Haar measure on quantum states.

4.1.1 Noncommutative lp Spaces

Given a full rank state σ ∈ D+
d , one can define the following generalization of the classical

(lp, µ) spaces, with µ a probability measure.

Definition 4.1.5 (σ p-Norm). Let σ ∈ D+
d and p ∈ [1,+∞). We define the noncommutative

p−norm for X ∈Md to be given by

‖X‖pp,σ = Tr
(
|σ 1

2pXσ
1
2p |p

)
. (4.3)

For p = +∞ we set ‖X‖∞,σ = ‖X‖∞.
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4.2 Entropic Measures

The motivation to choose this particular generalization of the norm comes from interpolation
theory [30]. Given these definitions, we may define p → q norms of linear operators between
these spaces in an analogous way to those of Schatten norms (see Definition 4.1.2). If we fix
‖ ·‖1,σ to be given by Equation (4.3) and ‖ ·‖∞,σ to just be the regular operator norm, then the
definition of the other p-norms follows from the construction based on complex interpolation.
This gives the norms many desirable features, such as the fact that they satisfy a Riesz-Thorin
interpolation theorem:

Theorem 4.1.6 (Riesz-Thorin Interpolation Theorem). Let L : Md → Md be a linear map,
1 ≤ p0 ≤ p1 ≤ +∞ and 1 ≤ q0 ≤ q1 ≤ +∞. For θ ∈ [0, 1] define pθ to satisfy

1

pθ
=

θ

p0
+

1− θ
p1

and qθ analogously. Then for σ ∈ D+
d we have:

‖L‖pθ→qθ,σ ≤ ‖L‖θp0→q0,σ‖L‖1−θp1→q1,σ

As we will see later, this Theorem implies many fundamental inequalities for quantum Renyi
divergences, such as the data processing inequality.

To obtain more accessible expressions when working with these spaces it is often useful to
define the power operator Γp : Md → Md for some p ∈ R. This operator acts as Γp(X) =
σ
p
2Xσ

p
2 . We also adopt the convention Γ1 = Γ.

As the Schatten norms, they also satisfy a Hölder inequality and p = 2 has a Hilbert space
structure. The scalar product,〈·|·〉σ is given by

〈X|Y 〉σ = Tr
(
X†Γσ(Y )

)
.

It is then easy to check that a semigroup satisfies detailed balance w.r.t. σ if it is self-adjoint
w.r.t. this scalar product.

However, the ordering of the noncommutative p-norms is reversed. That is, we have
‖X‖p,σ ≥ ‖X‖q,σ for p ≥ q.

An important measure which might be used to quantify convergence of semigroups is the
variance.

Definition 4.1.7 (Variance). Let X ∈ Md and σ ∈ D+
d . We define the variance of X w.r.t.

to σ to be given by

Varσ(X) = ‖X‖22,σ − ‖X‖21,σ
Unlike the trace norm, this can be seen as a distance or convergence measure for observables

instead of states. We define the l2-mixing time of a semigroup, t2(ε), to be given by

t2(ε) = inf{t ∈ I|∀X ∈Md s.t.‖X‖1,σ = 1 : Varσ(T ∗t (X)) ≤ ε}.

A very useful concept in the study of convergence of semigroups is that of the relative density
of a state w.r.t. another one. If σ ∈ D+

d we may define the relative density of a state ρ ∈ Dd as

Xρ = Γ−1(ρ) = σ−
1
2 ρσ−

1
2 . Through relative densities, it is possible to upper-bound the trace

distance between two states as follows. We have

‖ρ− σ‖21 ≤ Varσ(Xρ). (4.4)

4.2 Entropic Measures

4.2.1 Sandwiched Rényi divergences

In [6, 7] the following generalization of the Rényi divergence was proposed:
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Definition 4.2.1 (Sandwiched p-Rényi divergence). Let ρ, σ ∈ Dd. For p ∈ (0, 1)∪ (1,∞), the
sandwiched p-Rényi divergence is defined as:

Dp (ρ‖σ) =

{
1
p−1 ln

(
Tr
((
σ

1−p
2p ρσ

1−p
2p

)p))
if ker (σ) ⊆ ker (ρ) or p ∈ (0, 1)

+∞, otherwise
(4.5)

where ker (σ) is the kernel of σ.

We may recover another important entropic quantity from taking limits of these entropies.
One can show that

lim
p→1

Dp (ρ‖σ) = D (ρ‖σ) = Tr (ρ (log ρ− log σ)) ,

where D (ρ‖σ) is the quantum relative entropy [31].
They have been shown to satisfy a data processing inequality [32, 33], that is, they contract

under quantum channels. Moreover, they have become a useful tool in quantum Shannon theory,
as we will explain further in Chapter 6. They share a strong connection to the noncommutative
lp norms introduced in Definition 4.1.5. It is easy to see that

Dp (ρ‖σ) =
log(‖X‖pp,σ)

p− 1
.

This allows us to translate statements or inequalities for the p−norms to the sandwiched p-
Rényi divergence. Observe that the conditions for a matrix ρ ∈ Md to be a quantum state,
Tr (ρ) = 1 and ρ ≥ 0, translate to a matrix X ∈Md being a relative density with respect to σ
if we have X ≥ 0 and ‖X‖1,σ = 1. From this one can easily prove that

sup
ρ∈Dd

Dp (ρ‖σ) = log
(
‖σ−1‖∞

)
. (4.6)

For our purposes it will be important that we may upper-bound the trace norm through the
sandwiched p-Rényi divergences using Pinsker’s inequality:

Theorem 4.2.2 (Pinker’s inequality). For the quantum Kullback-Leibler divergence we have

1

2
‖σ − ρ‖21 ≤ D (ρ‖σ) ≤ Dp (ρ‖σ) (4.7)

for any p ≥ 1 and all ρ, σ ∈ Dd. Moreover, Equation (4.7) is optimal.

Proof. See [34, Theorem 3.1] for a proof of Pinsker’s inequality. The constant 1
2 has been shown

to be optimal in the classical case (see [35]), i.e. restricting to ρ that commute with σ, and is
therefore also optimal here.

Although not a distance measure, an important concept related to the Rényi divergences is
that of Rényi entropies:

Definition 4.2.3 (Rényi entropy). Let ρ ∈ Dd and p ∈ (1,∞). We define the p−Rényi entropy,
Sp(ρ), to be given by

Sp(ρ) = Dp (ρ||1) =
log
(
Tr
(
ρp−1

))

p− 1
.

Moreover, for p = 1, we may take the limit p → 1 and consistently define the von Neumann
entropy to be given by

S1(ρ) = S(ρ) = −Tr (ρ log (ρ)) .
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5

Functional Inequalities and
Convergence of Semigroups

In this chapter, we will show how one can use functional inequalities to estimate the convergence
of semigroups. We will mostly focus on continuous time. Most of the estimates will be based
on the following simple observation: let f(t, ρ) = d(Tt(ρ), σ) with f differentiable with respect
to t, σ ∈ D+

d a stationary state and ρ ∈ Dd. For most distance measures, one expects that if
the semigroup is primitive, then Tt(ρ)→ σ exponentially fast, that is, we have

d(Tt(ρ), σ) ≤ e−µtd(ρ, σ), (5.1)

where µ > 0 is independent of ρ. It is then easy to see that an inequality like the one in
Equation (5.1) is equivalent to the differential inequality

f(t, ρ) ≤ −µ∂f(t, ρ)

∂t
. (5.2)

Note that we assume that the inequality is valid for all ρ. One can then take the supremum
over all µ that satisfy the inequality in Equation (5.2) and obtain the optimal exponential
convergence rate for this particular distance measure under this semigroup. We will now discuss
the exact form inequality (5.2) takes for different distance measures, what they imply for the
convergence in the trace norm and how different convergence rates are related to each other.
Although we formulated the general framework here for distance measures based on states,
formulating everything in terms of relative densities will often lead to simpler expressions, as
we will see. To this end, it is also useful to define the following

Definition 5.0.1 (Generator of the evolution of the relative density). Let L : Md → Md be a
primitive Liouvillian with stationary state σ ∈ D+

d . We define the generator of the evolution of

the relative density, L̂, to be

L̂ = Γ−1 ◦ L ◦ Γ.

As the name already suggests, it is easy to see that given some initial state ρ ∈ Dd and
let X = Γ−1σ (ρ) be its relative density w.r.t. σ. Then the relative density of ρt = etL(ρ) is

given by Xt = etL̂(ρ). That is, etL̂ describes the time evolution of the relative density. L̂ also
has some other desirable properties, such as the fact that it has the same spectrum of L, as it
is just given by a similarity transformation on L. Moreover if L satisfies detailed balance, we
have that L̂ = L∗. Analogously to what we have done for the generator, we will denote the
semigroup that gives the evolution of the relative density by T̂t.

5.1 Convergence in Variance: Spectral Gap

One of the simplest ways to bound the convergence of semigroups is through the spectral gap of
the generator. It is what we get if we choose the variance (see Definition 4.1.7) as our distance
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measure. Let X be a relative density w.r.t. σ and Tt a primitive semigroup in continuous time.
One can then show (see e.g. [8]) that

d

dt
Varσ(Xt) = −EL

2 (Xt),

where EL
2 (X) = − 1

2Tr
(
L̂(X)σ

1
2Xσ

1
2

)
is the 2-Dirichlet Form. This motivates the following

definition:

Definition 5.1.1 (Spectral Gap or Poincaré Inequality). Let L : Md → Md be a primitive
Liouvillian with stationary state σ ∈ D+

d . We define the spectral gap of L, λ(L), to be given by

λ(L) = sup{λ ∈ R+|∀X ∈ Dd,σ : 2λVarσ(X) ≤ EL
2 (X)}.

From the previous discussion, it follows that

Theorem 5.1.2. Let L : Md → Md be a primitive Liouvillian with stationary state σ ∈ D+
d

and spectral gap λ > 0. Then for all X ≥ 0 we have

Varσ(etL̂X) ≤ e−2λtVarσ(X). (5.3)

Moreover, we have the following bounds on mixing times for ε > 0:

t2(ε) ≤ 1

2λ
log

(‖σ−1‖∞
ε

)
(5.4)

and

t1(ε) ≤ 1

λ
log

(‖σ−1‖∞
ε

)
(5.5)

Proof. As we have d
dtVarσ(Xt) = −EL

2 (Xt), Equation (5.3) follows from the previous discussion.
The bounds on t2(ε) follows from (5.3) after noting that

Varσ(X) ≤ ‖σ−1‖∞, (5.6)

for X ≥ 0 and ‖X‖1,σ = 1, from which it follows that

Varσ(etL̂X) ≤ e−2λt
(
‖σ−1‖∞

)
. (5.7)

Choosing t as in the r.h.s. of Equation 5.4 we obtain the claim. The statement in Equation
(5.5) follows from the bound in Equation (4.4) and the previous discussion.

In case the Liouvillian L is reversible, it is not difficult to see that the spectral gap is nothing
but the smallest nonzero eigenvalue of −L by the variational characterization of eigenvalues.

5.2 Convergence in Information-Theoretic Divergence

We will now discuss how to study the convergence of quantum dynamical semigroups under the
sandwiched Rényi divergences introduced in Subsection 4.2.1 and how this convergence can be
related to hypercontractive and logarithmic Sobolev inequalities.
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5.2 Convergence in Information-Theoretic Divergence

5.2.1 Convergence of Rényi Divergences

If we take our distance measure d as in Equation (5.1) to be given by d(ρ, σ) = Dp (ρ||σ), we
may study its convergence using ideas similar to those introduced in Section 5.1. As in the case
of the spectral gap, it is more convenient to express all quantities in terms of relative densities
instead of states. In order to express derivatives of sandwiched Rényi divergences and later of
lp-norms it is convenient to introduce the following:

Definition 5.2.1 (Power Operator). The power operator Iq,p : Md → Md for a state σ ∈ Dd

and q, p ∈ R\{0} is defined as

Ip,q(X) = Γ
− 1
p

σ

(∣∣∣∣Γ
1
q
σ (X)

∣∣∣∣
q
p

)
.

Definition 5.2.2 (Dirichlet Form). Let L : Md →Md be a Liouvillian with full rank fixed point
σ ∈ D+

d . For p > 1 we define the p-Dirichlet form of X ∈M+
d as

EL
p (X) = − p

2(p− 1)
〈Iq,p(X)|L̂(X)〉σ

where 1
p + 1

q = 1. For p = 1 we may take the limit p→ 1 and consistently define the 1-Dirichlet
form by

EL
1 (X) = −1

2
Tr
(

Γσ

(
L̂(X)

)
(log (Γσ (X))− log(σ))

)
.

Note that both the power operator and the Dirichlet form depend on the state σ, which
we omit from the notation as it will always be the stationary state of some semigroup which
should be clear from context.

We also introduce the following functional:

Definition 5.2.3 (κp-Functional). For any p > 1 we introduce the functional κp : M+
d → R as

κp (X) =
1

p− 1
‖X‖pp,σ log

(
‖X‖pp,σ
‖X‖p1,σ

)
(5.8)

for X ∈M+
d . For p = 1 we may again take the limit p→ 1 and obtain κ1(X) := limp→1 κp(X) =

Tr (Γσ(X) (log (Γσ(X))− log(σ))).

Note that κp is well-defined and non-negative as ‖X‖p,σ ≥ ‖X‖1,σ for p ≥ 1. Strictly
speaking, the definition also depends on a reference state σ ∈ D+

d , which we usually omit as it
is always the fixed point of the primitive Liouvillian under consideration. The motivation to
introduce this functional is the following , which we proved in [2, Theorem 3.1]:

Theorem 5.2.4 (Derivative of the sandwiched p-Rényi divergence). Let L : Md → Md be a
Liouvillian with full rank fixed point σ ∈ D+

d . For any ρ ∈ Dd and p > 1 we have

d

dt
Dp(e

tL(ρ)‖σ)
∣∣∣
t=0

=
p

p− 1
‖X‖−pp,σ〈Iq,p(X)|L̂ (X)〉σ (5.9)

with 1
p + 1

q = 1.

We can see that the l.h.s. of Equation (5.9) is closely related to the Dirichlet form. Moreover,
the κp-Functional is closely related to the sandwiched Rényi divergences , as one can see that

d
dtDp(e

tL(ρ)‖σ)

Dp(etL(ρ)‖σ)
= −EL

p (X)

κp(X)
.

For the relative density X associated to ρ. From the discussion preceding Equation (5.1)

it follows that a lower bound on
EL
p (X)

κp(X) for all relative densities X implies the exponential

convergence the sandwiched Rényi divergences . We therefore define
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5. FUNCTIONAL INEQUALITIES AND CONVERGENCE OF SEMIGROUPS

Definition 5.2.5 (Entropic convergence constant for p-Rényi divergence). For any primitive
Liouvillian L : Md →Md and p ≥ 1 we define

βp(L) = sup{β ∈ R+ : βκp(X) ≤ EL
p (X)∀X ∈ Dd,σ}. (5.10)

We then know that
Dp

(
etL(ρ)‖σ

)
≤ e−2βp(L)tDp (ρ‖σ) . (5.11)

From this, it is straightforward to derive mixing time bounds.

Theorem 5.2.6 (Mixing time from Rényi convergence). Let L : Md → Md be a primitive
Liouvillian with fixed point σ ∈ D+

d . Then

t1(ε) ≤ 1

2βp(L)
log

(
2 log

(
‖σ−1‖∞

)

ε2

)
.

Proof. From Pinsker’s inequality (see Theorem 4.2.2) and the fact thatDp (ρ‖σ) ≤ log
(
‖σ−1‖∞

)

it follows that

log
(
‖σ−1‖∞

)
e−2βp(L)t ≥ 1

2
‖etL(ρ)− σ‖21.

for any ρ ∈ Dd. The claim follows after rearranging the terms.

5.2.2 Logarithmic Sobolev Inequalities and Hypercontractivity

One of the most powerful frameworks to obtain convergence bounds for semigroups is that of
Logarithmic Sobolev (LS) inequalities and their relation to hypercontractive inequalities. This
framework was first introduced in the quantum setting in [36] and further developed from the
quantum information perspective in [8]. However, based on the results of [2], we will take
the approach of understanding them through sandwiched Rényi divergences . We will only
show the results that establish the connection between convergence results in Section 5.2.3,
but will introduce the basic definitions and give the intuition why studying hypercontractive
inequalities is related to convergence already in this section. We begin by introducing one of
the main functionals in the study of LS inequalities:

Definition 5.2.7 (p-relative entropy). For a full rank state σ ∈ M+
d and p > 1 we define the

p-relative entropy of X ∈M+
d as

Entp,σ(X) = 〈Iq,p (X) , Sp(X)〉σ − ‖X‖pp,σ log (‖X‖p,σ) , (5.12)

where 1
q + 1

p = 1. For p = 1 we can consistently define

Ent1,σ(X) = Tr (Γσ(X) (log (Γσ(X))− log(σ))) .

by taking the limit p→ 1.

Although this is called a relative entropy in the literature, note that this is not a relative
entropy in the information theoretic sense, although it is related to the usual relative entropy
through

Entp,σ
(
Ip,1

(
Γ−1σ (ρ)

))
=

1

p
D (ρ‖σ) .

We are now ready to introduce LS constants:

Definition 5.2.8 (Logarithmic Sobolev Inequalities). For a Liouvillian L : Md → Md with
full rank fixed point σ ∈ D+

d and p ≥ 1 the p-logarithmic Sobolev constant is defined as

αp (L) = sup{α ∈ R+ : αEntp,σ(X) ≤ EL
p (X) for all X > 0}. (5.13)
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At first sight, it is not clear how this inequality fits into the framework of differential
inequalities we discussed before unless p = 1, as in this case Ent1,σ = κ1 and we obtain
α1 = β1. That is, α1 characterizes the optimal convergence rate in the usual relative entropy.
The connection to differential inequalities comes from the intimate relationship between LS
inequalities and hypercontractivity for p ≥ 2:

Lemma 5.2.9. Let L : Md →Md be a Liouvillian with full rank fixed point σ ∈ D+
d and p ≥ 2

and suppose that

‖T̂t‖p→p(t),σ ≤ 1 (5.14)

with p(t) = 1 + (p− 1)e2αt. Then αp (L) ≥ α.

Proof. As it is shown in e.g. [8, Lemma 14], we have for any X ∈M+
d that

d

dt
log
(
‖T̂t(X)‖p,σ

) ∣∣
t=0

=
p′(0)

p(0)‖X‖p,σ

(
Entp,σ(X)− 1

α
EL
p (X)

)
.

Define the function f(t) = ‖T̂t(X)‖p(t),σ. Note that we clearly have f(0) = ‖T̂0(X)‖p,σ and from

Equation (5.14) it follows that d
dt log (f(t))

∣∣
t=0
≤ 0. To see this, note that d

dt log (f(t))
∣∣
t=0

> 0

would imply that ‖T̂t0‖p→p(t),σ > 1 for t0 sufficiently small, as log is a monotone function. This
contradicts Equation (5.14). As X was arbitrary, it follows that

Entp,σ(X)− 1

α
EL
p (X) ≤ 0,

which is equivalent to αp ≥ α.

From Lemma 5.2.9 we see that a LS inequality is implied by a hypercontractive inequality
by looking at the derivative of p → q norms under semigroups. Thereofre, hypercontractive
inequalities provide a framework to obtain lower bounds on LS constants, which in turn can
be used to obtain bounds on βp, as we will see later. We also note that under some technical
assumptions (see e.g. [8, Theorem 15]) the converse to Lemma 5.2.9 also holds: one can derive
hypercontractive inequalities from a LS inequality. At last, we would like to provide some
intuition why hypercontractive inequalities are related to convergence in the first place, as it
might seem elusive why one should consider them. The ratio ‖X‖p,σ‖X‖−1q,σ for p > q ≥ 1
provides a measure of how flat the spectrum of X is weighted by σ. To see this, consider X
commuting with σ. Then we have

‖X‖pp,σ =

d∑

i=1

σiX
p
i ,

where σi, Xi are the eigenvalues of σ and X, respectively. If the Xi are close to each other for
large eigenvalues of σ, then ‖X‖p,σ ' ‖X‖q,σ and they will differ significantly if the spectrum
is not flat. Moreover, the larger the difference between p and q, the more accentuated this
difference becomes. As for a primitive semigroup we have T̂t(X) → Tr (Xσ)1 as t → ∞, all
initial operators converge to an operator with a constant, and therefore very flat, spectrum. A
hypercontractive inequality like that in Equation (5.14) therefore allows us to quantify how fast
the spectrum of operators becomes flat under the semigroup. Therefore, it should be expected
that this also gives information on the convergence of the semigroup.

5.2.3 Relations between the constants

All the constants introduced in this section are related to each other. We will only formulate
the relation for semigroups that are reversible, as the general result is a bit more involved and
technical, but remark that similar relations hold in general.
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Theorem 5.2.10 (Relation between constants). Let L : Md → Md be a primitive, reversible
Liouvillian with stationary state σ ∈ D+

d . Then, for all p ≥ 1:

λ (L) ≥ βp(L) ≥ αp(L)

p
. (5.15)

Proof. As L is reversible, there is a s.a. X ∈ Md such that L(X) = λ (L)X. For ε0 small
enough, 1+ εX is positive for all ε ∈ (0, ε0). One can then show that (see [2, Theorem 4.1])

lim
ε→0

EL
p (1+ εX)

κp(1+ εX)
= λ (L) .

This implies the upper bound in Equation 5.15 by the variational definition of βp. To show the
lower bound, note that it holds that

κp(Y )

p
≤ Entp,σ(Y ) (5.16)

for all Y ∈M+
d . We refer to [2, Lemma 4.2] for a proof of Equation (5.16). It then follows from

Equation (5.16) that

αp(L)

p
κp(Y ) ≤ αp(L)Entp,σ(Y ) ≤ EL

p (Y )

for all Y ∈M+
d and the claim follows from the variational definition of βp.

Theorem 5.2.10 has implications for convergence rates of semigroups. First of all, it shows
that a LS inequality always implies a mixing time bound, as can easily be seen by combining
it with Theorem B.1.3. This was only known to hold under further assumptions on the semi-
group [8]. As remarked before, if the spectral gap and βp are of the same order, then βp gives
an exponentially better mixing time, but the convergence rate cannot be larger than the one
given by the spectral gap. The proof of the Theorem also illustrates that the convergence rate
in the sandwiched Rényi divergences is governed by the spectral gap for operators that are close
to the identity. One can also show inequalities in the other direction for p = 2. That is, lower
bounds on βp or αp in terms of the spectral gap. But they must have a dimensional factor, as
we will explain below. To illustrate these bounds, we show:

Theorem 5.2.11. Let L : Md →Md be a primitive Liouvillian with full rank stationary state
σ ∈ D+

d . Then

β2 (L) ≥ λ (L)
1− 1

‖σ−1‖∞
log (‖σ−1‖∞)

. (5.17)

Moreover, this inequality is tight.

Proof. We have for all X ∈M+
d that

1− 1
‖σ−1‖∞

log (‖σ−1‖∞)
κp(X) ≤ Varσ(X).

To prove this, one can e.g. compute the optimal constant for the depolarizing semigroups. The
claim then follows from the variational definition of βp, as

λ (L)
1− 1

‖σ−1‖∞
log (‖σ−1‖∞)

κp(X) ≤ λ (L) Varσ(X) ≤ EL
2 (X)

holds for all X ∈ M+
d . Moreover, for the Liouvillian Lσ(X) = Tr (X)σ −X, we have (see [2,

Theorem 3.3]):

β2(Lσ) =
1− 1

‖σ−1‖∞
log (‖σ−1‖∞)

, λ (L) = 1,

which shows that the inequality is tight.
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5.2 Convergence in Information-Theoretic Divergence

One can also show lower bounds on α2 in terms of β2 [2] for reversible Liouvillians and all
bounds available have dimensional factors, although they are of order log(log(‖σ−1‖∞)). It is
an open question if this is indeed optimal.

5.2.4 Tensorization

As we will see later in Chapter 6, it is of central importance to applications to obtain functional
inequalities that tensorize. That is, inequalities of the form

µ(L(n)) ≥ c, (5.18)

where µ is one of the constants discussed in the last section, such as the spectral gap or the
LS constant, and c ∈ R is a constant which is independent of n ∈ N. It is easy to see that the
spectral gap tensorizes, that is if we show a bound on the spectral gap of L, it also holds for
L(n) for all n. It is known that LS inequalities tensorize for classical Markov chains [37] but
this is unexpected to hold in the quantum case. By the equivalence between hypercontractivity
and LS constants, the tensorization of a LS inequality would imply that

‖T̂⊗nt ‖2→q,σ = ‖T̂t‖n2→q,σ (5.19)

for small t. As shown in [38], the p → q norm of quantum channels is not multiplicative
in general and it is therefore not expected that Equation 5.19 holds in general, although the
multiplicativity was established in some cases [39, 40]. It is therefore not immediately clear that
an inequality like that of Equation 5.18 can hold for the LS inequality or the βp constants. It
follows from the results of Section 5.2.3 that it is sufficient to obtain lower bounds on the LS-2
constant to also obtain lower bounds on other quantities of interest. Therefore, we focus on
obtaining lower bounds on LS-2 constants and outline a strategy developed in [41] to accomplish
this task, although other approaches exist, e.g. the one followed in [42]. Note that for all
functional inequalities discussed here, only the Dirichlet form depends on the semigroup in
question, the other functional involved depends only on the stationary state. Thus, if we can
show a comparison inequality of the form

EL
2 ≤ aEL′

2 (5.20)

for some constant a ∈ R and L,L′ : Md →Md primitive Liouvillians with the same stationary
state, we may obtain lower bounds on many functional inequalities for L′ from functional
inequalities for L. As shown in [41], inequalities like that in Equation 5.20 tensorize. We
therefore pursue the following strategy to obtain functional inequalities that tensorize for a
generator L′:

1. Pick a generator L with a particularly simple structure and show a functional inequality
that tensorizes, such as a LS-2 inequality.

2. Show an inequality like that of Equation 5.20 relating the Dirichlet forms.

With this general strategy, it is possible to obtain many different tensorization results, as illus-
trated in [2, 41]. In particular, one can show using this strategy with depolarizing semigroups
that we have

α2(L(n)) ≥ 2
λ(L)

2 (ln (d4‖σ−1‖∞) + 11)

for all n ∈ N.
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6

Applications of Convergence
Bounds

In this chapter, we will briefly discuss some of the applications of convergence estimates for
quantum dynamical semigroups.

6.1 Dissipative preparation of states

Markov chain Monte Carlo methods are ubiquitous in the design of classical algorithms. It is
expected that with the advent of the quantum computer we will be able to implement powerful
algorithms that are based on sampling not from a classical distribution but rather quantum
states. Therefore, one needs techniques to (approximately) prepare states of interests. One
of the ways proposed to do this is through dissipative processes [43]. That is, to design a
primitive quantum dynamical semigroup that drives the system to the state we want to sample
from. The runtime of algorithms based on such ideas is given by the mixing time of the chain
and it is, therefore, of central importance to develop tools to estimate this. Although one
can perform universal quantum computation in this computational model [43], the dissipative
preparation of one class of states is of particular importance, namely Gibbs states. This class is
particularly important because these states describe quantum systems in thermal equilibrium
and preparing them is therefore important to many questions of physical relevance. Moreover,
in the many-body setting, understanding how the mixing time scales with the size of the system
has deep physical implications. These range from statements on the correlations of the Gibbs
state [44] and on the stability of these states and preparation processes to perturbations [45, 46].
Tools based on functional inequalities such as the ones described in Section 5 played a central
role in the establishment of such connections in the classical setting [47], and one can expect
that further developing them is of importance to translating these statements to the quantum
setting. A further motivation to focus on Gibbs states are the recent quantum algorithms
based on Gibbs sampling to solve semidefinite programs [48]. These algorithms are based on
subroutines in which Gibbs states are prepared and their runtime is again given by how fast
we can prepare a given Gibbs state of interest. Thus, it is no exaggeration to say that the
preparation of Gibbs states is one of the central tasks of quantum computation.

6.2 Entropic inequalities and Capacity Bounds

It is possible to derive entropic inequalities and capacity bounds from the convergence bounds
of the form

Dp (Tt(ρ)||σ) ≤ e−αtDp (ρ||σ)

for some of the divergences Dp discussed before. One example is the following:
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Theorem 6.2.1 (Entropy production and Convergence). Let L : Md → Md be a primitive
Liouvillian with stationary state 1

d ∈ D+
d and p ∈ [1,∞). Then βp(L) ≥ β is equivalent to

Sp(Tt(ρ)) ≥ (1− e−βt) log(d)− e−βtSp(ρ) (6.1)

for all ρ ∈ Dd and t ≥ 0.

Proof. Note that we have

Dp

(
ρ

∣∣∣∣
∣∣∣∣
1

d

)
= log(d)− Sp(ρ).

As βp(L) ≥ β is equivalent to

Dp

(
Tt(ρ)

∣∣∣∣
∣∣∣∣
1

d

)
≤ e−βtDp

(
ρ

∣∣∣∣
∣∣∣∣
1

d

)

for all ρ ∈ Dd and t ≥ 0. The claim then follows by rearranging the terms.

Statements like that of Theorem 6.2.1 are useful when estimating important parameters of
quantum channels, such as its minimal output entropy [41]. Other examples of entropic inequal-
ities that can be obtained this way include estimates for the concavity of the von Neumann
entropy [1]. Another quantity we may bound from convergence inequalities is the information
radius:

Definition 6.2.2 (p-information radius). Let T : Md → Md be a quantum channel and p ∈
[1,∞). The p-information radius, Kp(T ), of T is defined as

Kp(T ) =
1

log(2)
min
σ∈Dd

max
ρ∈Dd

Dp(T (ρ)‖σ). (6.2)

The connection between the information radius and convergence inequalities is given by the
following theorem:

Theorem 6.2.3. Let L : Md →Md be a primitive Liouvillian with full-rank fixed point σ ∈ D+
d

such that for some p ∈ (1,∞) βp(L) ≥ β. Then

Kp(Tt) ≤ e−βt log2

(
‖σ−1‖∞

)
.

Proof. It is clear by the definition of the information radius in Equation 6.2 that Kp(Tt) ≤
log(2)−1 max

ρ∈Dd

Dp(Tt(ρ)‖σ). Applying the convergence bound and Equation (4.6) the claim

follows.

The relevance of the information radius follows from its strong connection to the classical
capacity of a quantum channel.

When classical information is encoded in a quantum state and sent through a quantum
channel, the classical capacity is the supremum of transmission rates such that the probability
for a decoding error goes to 0 as we allow arbitrarily many uses of the channel. In general,
it is not possible to retrieve the information perfectly when it is sent over a finite number of
channels, and the probability for successful decoding will be smaller than 1. Here we want
to derive bounds on this probability for quantum dynamical semigroups. More specifically we
are interested in strong converse bounds on the classical capacity. An upper bound on the
capacity is called a strong converse bound if whenever a transmission rate exceeds the bound
the probability of successful decoding goes to zero as the number of channel uses goes to infinity.

We refer to [21, Chapter 12] for the exact definition of the classical capacity C(T ) of a
quantum channel T and to [7, 49, 50, 51, 52] for more details on strong converses and strong
converse bounds.

34



6.3 Randomized Benchmarking

We will call a coding scheme for the transmission of m classical bits via n uses of the channel
T for which the probability of successful decoding is p (see again [21, Chapter 12] for an exact
definition) a (m,n, p)-coding scheme for classical communication using a quantum channel T .
The following theorem shown in [7, Section 6] relates the information radius and the probability
of successful decoding and thus to classical capacities:

Theorem 6.2.4 (Bound on the success probability in terms of information radius). Let T :
Md → Md be a quantum channel, n ∈ N and R ≥ 0. For any (nR, n, psucc)-coding scheme for
classical communication via T we have

psucc ≤ 2−n( p−1
p )(R− 1

nKp(T
⊗n)). (6.3)

Putting these pieces together we obtain

Theorem 6.2.5. Let L : Md →Md be a primitive Liouvillian with full-rank fixed point σ ∈ D+
d

such that for some p ∈ (1,∞) there exists β > 0 fulfilling βp(L
(n)) ≥ β for all n ∈ N. Then

for any (nR, n, psucc)-coding scheme for classical communication via the quantum dynamical
semigroup Tt = etL we have

psucc ≤ 2−n( p−1
p )(R−e−2ct log2(‖σ−1‖∞)).

Proof. Combining Equation (C.7) and Equation (4.6) we have

Kp(T
⊗n
t ) ≤ 1

log(2)
max
ρ∈Ddn

Dp(T
⊗n
t (ρ)‖σ) ≤ n

log(2)
e−2βp(L

(n))t log2(‖σ−1‖∞).

Now Theorem 6.2.4 together with the assumption βp(L
(n)) ≥ β finishes the proof.

Theorem 6.2.5 implies in particular that the classical capacity C(Tt) is bounded by

e−βt log2(‖σ−1‖).

Exploring the relation between βp and LS inequalities and tensorization results for LS inequal-
ities discussed in Sections 5.2.2 and 5.2.4, respectively, it is then possible to derive bounds on
the classical capacity in terms of the spectral gap. It is notoriously difficult to compute the
classical capacity of a quantum channel [53, 54]. Through these methods, it is possible to obtain
bounds on this quantity for new classes of quantum channels, such as the semigroups generated
by Davies generators. These can then be used to study the lifetime of quantum memories under
thermal noise.

6.3 Randomized Benchmarking

Another area in which semigroups of quantum channels play a central role is randomized bench-
marking [15]. The goal of randomized benchmarking is to efficiently estimate the average gate
fidelity of a set of quantum gates {Ug}g∈G ⊂ U(d) that are a representation of a (usually finite)
group G. This is an important figure of merit when assessing the quality of a given imple-
mentation of the gates and how long we may perform computations. One makes the further
assumption that all gates are affected by the same noise, that is, there is a quantum channel
T : Md → Md such that for all g ∈ G we actually implement Tg = Ug ◦ T . We then wish to
estimate F(Tg,Ug). One can show that

Lemma 6.3.1. Let T : Md →Md be a quantum channel, {Ug}g∈G ⊂ U(d) a unitary represen-
tation of a finite group G and Tg = Ug ◦ T . Then

F(Tg,Ug) =
dTr (T ) + d2

d2(d+ 1)
.

Here we mean the trace of T as a linear operator between the vector spaces Md.
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Lemma 6.3.1 implies that to estimate the average gate fidelity in the scenario described
above, we only need to determine the trace of the channel T . The next crucial observation for
the randomized benchmarking protocol is that twirling the channel with respect to the group
G does not change the trace of a channel. Working with the twirled channel T(T ), which is
covariant with respect to the group, simplifies the estimation of its trace. We will not discuss the
randomized benchmarking protocol in detail, but remark that by preparing random sequences
of gates it allows us to estimate the quantity:

Tr (T(T )m(ρ)Ei) (6.4)

for some initial state ρ ∈ Dd and POVM element Ei. To make the analysis more concrete
and as it is the simplest case, we will now restrict to the case in which the group G is given
by the Clifford group. It plays a central role in the theory of quantum computation and
error correction [55] and is the usual setting for randomized benchmarking, although we have
extended the protocol to arbitrary representations. One of the reasons one usually considers
the Clifford group is that we have

T(T ) = Tt0, 1d .

for some t0 ∈ R+. We refer to [15] for a proof of this fact. Here Tt, 1d is again the depolarizing

channel. It is easy to see that we have Tr
(
Tt0, 1d

)
= (d2 − 1)e−t0 + 1. Therefore, we only have

to estimate the parameter t0 to obtain an estimate on the average fidelity. This corresponds to
estimating how fast the semigroup {Tn

t0,
1
d

}n∈N converges. As we have access to the expectation

values in Equation (6.4), we can plug in the exact form of T(T ) and see that

Tr (T(T )m(ρ)Ei) = Tr

(
1

d
Ei

)
+ e−t0mTr

((
ρ− 1

d

)
Ei

)
.

By fitting the experimental data to a curve of the form f(m) = A + Be−λm we may then
estimate t0, the convergence speed and the average fidelity.
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Relative Entropy Convergence for Depolarizing Channels

A. Müller-Hermes, D. Stilck França and M.M. Wolf

We study the convergence of quantum Markovian time-evolutions generated by Liouvillians
depolarizing to a full rank state in the relative entropy. These are Liouvillians Lσ : Md →Md

given by Lσ(ρ) = Tr (ρ)σ − ρ for some quantum state σ ∈ D+
d . We compute the optimal

convergence rate α such that

D(etLσ (ρ)‖σ) ≤ e−2αtD(ρ‖σ) (A.1)

holds for any ρ ∈ Dd and any t ∈ R+. This can be seen to be equal to the logarithmic-Sobolev
constant α1 (Lσ).

A.1.1 Main result

I would like to start by clarifying that A. Müller-Hermes is the principal author of this article.
Our main result is the computation of α1 (Lσ). This is the first class of semigroups for which
we know the exact value of α1. Here D2(x‖y) denotes the relative entropy between the binary
distributions (x, 1− x) and (y, 1− y).

Theorem A.1.1. Let Lσ : Md →Md be the depolarizing Liouvillian with full-rank fixed point
σ ∈ Dd. Then we have

α1 (Lσ) = min
x∈[0,1]

1

2

(
1 +

D2(smin(σ)‖x)

D2(x‖smin(σ))

)
,

where smin(σ) denotes the minimal eigenvalue of σ.

As a direct consequence of Equation (A.1), we have to solve the following optimization
problem to show the theorem:

α1 (Lσ) = inf
ρ∈D+

d

1

2

(
1 +

D(σ‖ρ)

D(ρ‖σ)

)
.

We show that the quotient of relative entropies appearing in the optimization is a quasi-linear
function in the entries of the doubly stochastic matrix Pij = | 〈vi|wj〉 |2. Here {|vi〉} and {|wj〉}
are eigenbasis of ρ and σ. As the infimum of a quasi-linear function over a convex set is attained
at extreme points, Birkhoff’s theorem implies that the optimal ρ has to commute with σ. This
simplification allows us to apply Lagrange-multipliers to obtain the claimed expression for the
minimum.

As one can imagine from the sketch of the proof, computing the α1 constant is not a
trivial task even for very simple semigroups like depolarizing channels. This motivated A.
Müller-Hermes and me to find tools to obtain similar results in a simpler way than using these
techniques in [2]. Moreover, in this article we also obtain tensorization results for the case in
which σ = 1

d :

Theorem A.1.2 (Tensorization for the maximally mixed state). For n tensor powers of the
semigroup generated by L 1

d
we have

α1

(
L

(n)
1
d

)
≥ 1

2
.

This bound is a direct consequence of the following entropy-production estimate:

Theorem A.1.3. For any σ, ρ ∈ Dd (not necessarily full rank) we have

S((Tσt )⊗n(ρ)) ≥ e−tS(ρ) + (1− e−t)S(σ⊗n).



This theorem was first considered (though with a wrong proof) in [56] for the particular
case σ = 12

2 . We prove the above theorem using a quantum version of Shearer’s inequality
for entropies. This bound can also be used to obtain bounds on different capacities of this
class of depolarizing channels. Again, this proof explores the structure of depolarizing channels
crucially. Tensorization results like this one are central in many applications of LS inequalities
in classical probability theory and are usually obtained through the connection between α1

and hypercontractive inequalities. Therefore, it would be desirable to obtain similar results
for general semigroups, but this seems to be technically challenging, as it is not known if α1

is always related to hypercontractive properties of the semigroup in the quantum case. This
missing piece necessary to adapt classical techniques motivated us to find new ways to obtain
tensorization results for the convergence in relative entropy in [2]. I, therefore, also include
this article in this dissertation. Although A. Müller-Hermes is the principal author of it, it is
intimately related to [2] and served as an inspiration for it.
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We study the convergence of states under continuous-time depolarizing channels
with full rank fixed points in terms of the relative entropy. The optimal exponent
of an upper bound on the relative entropy in this case is given by the log-Sobolev-1
constant. Our main result is the computation of this constant. As an application, we
use the log-Sobolev-1 constant of the depolarizing channels to improve the concavity
inequality of the von Neumann entropy. This result is compared to similar bounds
obtained recently by Kim and we show a version of Pinsker’s inequality, which is
optimal and tight if we fix the second argument of the relative entropy. Finally, we
consider the log-Sobolev-1 constant of tensor-powers of the completely depolarizing
channel and use a quantum version of Shearer’s inequality to prove a uniform lower
bound. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939560]

I. INTRODUCTION

Let Md denote the set of complex d × d-matrices, Dd ⊂ Md the set of quantum states, i.e.,
positive matrices with trace equal to 1, andD+

d
the set of strictly positive states. The relative entropy

(also called quantum Kullback-Leibler divergence) of ρ,σ ∈ Dd is defined as

D(ρ∥σ) :=


tr[ρ(log ρ − logσ)], if supp(ρ) ⊂ supp(σ)
+∞, otherwise

. (1)

The relative entropy defines a natural distance measure to study the convergence of Markovian time-
evolutions. For some state σ ∈ Dd, consider the generalized depolarizing Liouvillian Lσ :Md →
Md defined as

Lσ (ρ) := tr [ρ]σ − ρ. (2)

This Liouvillian generates the generalized depolarizing channel Tσ
t :Md → Md with Tσ

t (ρ) :=
etLσ(ρ) = (1 − e−t)tr [ρ]σ + e−t ρ, where t ∈ R+ denotes a time parameter. As Tσ

t (ρ) → σ for
t → ∞ we can study the convergence speed of the depolarizing channel with a full rank fixed point
σ ∈ Dd by determining the largest constant α ∈ R+ such that

D(Tσ
t (ρ)∥σ) ≤ e−2αtD(ρ∥σ) (3)

holds for any ρ ∈ Dd and any t ∈ R+. This constant is known as the logarithmic Sobolev-1 con-
stant1,2 of Lσ, denoted by α1 (Lσ). In the following, we will compute this constant and then use it to
derive an improvement on the concavity of von Neumann entropy.

a)Electronic address: muellerh@posteo.net
b)Electronic address: dsfranca@mytum.de
c)Electronic address: m.wolf@tum.de
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II. PRELIMINARIES AND NOTATION

Consider a primitive21 Liouvillian L with full rank fixed point σ ∈ Dd and denote by Tt := etL

the quantum dynamical semigroup generated by L. Consider the function f (t) := D
�
Tt(ρ)

�
σ
�

for
some initial state ρ ∈ Dd and note that if

df
dt
≤ −2α f

holds for some α ∈ R+, then it follows that f (t) ≤ e−2αt f (0). The time derivative of the relative
entropy at t = 0, also called the entropy production,3 is given by

d
dt

D
(
Tt(ρ)σ) ����t=0

= −tr[L(ρ)(log(σ) − log(ρ))] (4)

as tr(L(ρ)) = 0 for any ρ ∈ Dd. This motivates the following definition.

Definition 2.1 (log-Sobolev-1 constant,1,2). For a primitive Liouvillian L :Md → Md with
full rank fixed point σ ∈ Dd, we define its log-Sobolev-1 constant as

α1(L) := sup

α ∈ R : tr[L(ρ)(log(σ) − log(ρ))] ≥ 2αD (ρ∥σ) ,∀ρ ∈ D+d


(5)

For a primitive Liouvillian L :Md → Md the preceding discussion shows that (3) holds for
any α ≤ α1(L). Furthermore, α1(L) is the optimal constant for which this inequality holds indepen-
dent of ρ ∈ Dd (for states ρ not of full rank, this follows from a simple continuity argument).

In the following, we will need some functions defined as continuous extensions of quo-
tients of relative entropies. We denote by Qσ : D+

d
→ R the continuous extension of the function

ρ → D(σ∥ρ)
D(ρ∥σ) (see Appendix B) given by

Qσ(ρ) :=


D(σ∥ρ)
D(ρ∥σ) , ρ , σ
1, ρ = σ

. (6)

Note that for x ∈ [0,1] and y ∈ (0,1), the binary relative entropy is defined as

D2(x∥y) := x log
(

x
y

)
+ (1 − x) log

(
1 − x
1 − y

)
. (7)

This is the classical relative entropy of the probability distributions (x,1 − x) and (y,1 − y). For
y ∈ (0,1), we denote by qy : (0,1) → R the continuous extension of x → D2(y∥x)

D2(x∥y) given by

qy(x) :=


D2(y∥x)
D2(x∥y)

, x , y

1, x = y
. (8)

III. LOG-SOBOLEV-1 CONSTANT FOR THE DEPOLARIZING LIOUVILLIAN

Note that for the depolarizing Liouvillian Lσ with σ ∈ D+
d

as defined in (2), we have

tr[Lσ(ρ)(log(σ) − log(ρ))] = D(ρ∥σ) + D(σ∥ρ).
Inserting this into Definition 2.1, we can write

α1(Lσ) = inf
ρ∈D+

d

1
2

(
1 +Qσ(ρ)

)
. (9)

Our main result is the following theorem.

Theorem 3.1. Let Lσ :Md → Md be the depolarizing Liouvillian with full rank fixed point
σ ∈ Dd as defined in (2). Then, we have
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FIG. 1. α1(Lσ) for smin(σ) ∈ [0,1].

α1 (Lσ) = min
x∈[0,1]

1
2
�
1 + qsmin(σ)(x)

�
,

where smin(σ) denotes the minimal eigenvalue of σ.

In Figure 1, the values of α1 (Lσ) depending on smin(σ) ∈ [0,1] are plotted. Note that by
Theorem 3.1, we have α1 (Lσ) → 1/2 in the limit smin(σ) → 0 (as D2(smin(σ)∥0.5) ≤ log(2) and
D2(0.5∥smin(σ)) → ∞ in this case).

Before we state the proof of Theorem 3.1 we need to make a technical comment. By (6),
we have Qσ(ρ) → +∞ as ρ → ∂Dd, i.e., as ρ converges to a rank-deficient state. Therefore, the
infimum in (9) will be attained in a full rank state ρ̃ ∈ D+

d
and we can restrict the optimization to

the compact set Kσ ⊂ Dd (depending on σ) defined as

Kσ = {ρ ∈ D+d : smin(ρ) ≥ smin ( ρ̃) − ϵ} (10)

for some fixed ϵ ∈ (0, smin ( ρ̃)) and where smin(·) denotes the minimal eigenvalue. Note that the
minimizing state ρ̃ is contained in the interior of Kσ. Now we have to solve the following optimiza-
tion problem for fixed σ ∈ D+

d
:

inf
ρ∈D+

d

Qσ(ρ) = inf
ρ∈Kσ

Qσ(ρ). (11)

To prove Theorem 3.1, we will need the following lemma showing that the infimum in (11) is
attained at states ρ ∈ Dd commuting with the fixed point σ.

Lemma 3.1. For any σ ∈ D+
d

we have

inf
ρ∈Kσ

Qσ (ρ) = inf
ρ∈Kσ,[ρ,σ]=0

Qσ (ρ)

where Qσ : D+
d
→ R denotes the continuous extension of ρ → D(σ∥ρ)

D(ρ∥σ) (see (6)).

Proof. Consider the spectral decompositionσ =
d

i=1 si |vi⟩⟨vi | for s ∈ Rd
+ and fix a vector r ∈ Rd

+

which is not a permutation of s and fulfills mini(ri) ≥ smin ( ρ̃) − ϵ (see (10)) and
d

j=1 r j = 1. For some
fixed orthonormal basis {|w j⟩} j, consider ρ :=

d
j=1 r j |w j⟩⟨w j | ∈ Kσ. Inserting ρ into Qσ gives

Qσ(ρ) =
D(σ∥ρ)
D(ρ∥σ) =

−S(σ) − tr[σ log(ρ)]
−S(ρ) − tr[ρ log(σ)] =

−S(σ) − ⟨s,P log(r)⟩
−S(ρ) − ⟨log(s),Pr⟩ =: F(P), (12)

where we introduced P ∈ Md given by Pi j = | 
vi |w j

� |2 and log(s), log(r) ∈ Rd are defined as
(log(s))i = log(si) and (log(r)) j = log(r j). Note that P is a unistochastic matrix, i.e., a doubly sto-
chastic matrix whose entries are squares of absolute values of the entries of a unitary matrix. We
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will show that the minimum of F over unistochastic matrices P is attained at a permutation matrix.
By the definition of P, this shows that there exists a state ρ′ ∈ Kσ with spectrum r and commuting
with σ, which fulfills Qσ(ρ′) ≤ Qσ(ρ).

As the set of unistochastic matrices is in general not convex,4 we want to consider the set
of doubly stochastic matrices instead. By Birkhoff’s theorem [Ref. 5, Theorem II.2.3], we can
write any doubly stochastic D ∈ Md as D =

k
i=1 λiPi for some k ∈ N, numbers λi ∈ [0,1] withk

i=1 λi = 1 and permutation matrices Pi. Now we can write the denominator of F(D) as

−S(ρ) − ⟨log(s),Dr⟩ =
k

i=1

λi (−S(ρ) − ⟨log(s),Pir⟩) =
k

i=1

λiD(ρi∥σ) > 0,

where ρi is the state obtained by permuting the eigenvectors of ρ with Pi. In the last step, we
used Klein’s inequality [Ref. 6, p. 511] together with the fact that ρi , σ for any 1 ≤ i ≤ k as their
spectra are different. The previous estimate shows that F is also well-defined on doubly stochastic
matrices.

Any unistochastic matrix is also doubly stochastic and we have

inf

F(P) : P ∈ Md doubly stochastic


≤ inf


F(P) : P ∈ Md unistochastic


.

Note that S(σ) and S(ρ) in (12) only depend on s ∈ Rd
+ and r ∈ Rd

+ and thus the numerator and
the denominator of F are positive affine functions in P. This shows that F is a quasi-linear function
[Ref. 7, p. 97] on the set of doubly stochastic matrices. It can be shown (see Ref. 7) that the mini-
mum of such a function over a compact and convex set is always attained in an extremal point of the
set. By Birkhoff’s theorem [Ref. 5, Theorem II.2.3], the extremal points of the compact and convex
set of doubly stochastic matrices are the permutation matrices. As these are also unistochastic
matrices, we have

inf

F(P) : P ∈ Md unistochastic


= inf


F(P) : P ∈ Md permutation matrix


.

This finishes the first part.
To prove the lemma, note that we have

inf
ρ∈Kσ

Qσ(ρ) = Qσ( ρ̃)

for some minimizing full rank state ρ̃ ∈ D+
d
. Now consider some sequence (ρn)n∈N ∈ KN

σ with
ρn → ρ̃ as n → ∞ and such that the spectra of the ρn are no permutations of the spectrum of σ. By
the first part of the proof, we find a sequence (ρ′n)n∈N ∈ KN

σ commuting with σ, such that

Qσ( ρ̃) ≤ Qσ(ρ′n) ≤ Qσ(ρn) → Qσ( ρ̃)

as n → ∞. Thus, Qσ(ρ′n) → Qσ( ρ̃) as n → ∞. On the compact set Kσ, the sequence (ρ′n)n has
a converging subsequence

(
ρ′nk

)
k ∈N with ρ′nk → ρ′ ∈ Kσ as k → ∞. By continuity of Qσ, we

have Qσ(ρ′) = Qσ( ρ̃) = infρ∈Kσ Qσ(ρ) and by continuity of the commutator ρ → [ρ,σ] we have
[ρ′,σ] = 0. �

With this lemma we can prove our main result.

Proof of Theorem 3.1. By Lemma 3.1, we may restrict the optimization in (11) to states which
commute with σ. Thus, we can repeat the construction of the compact set Kσ (see (10)) for a
minimizer ρ̃ ∈ D+

d
with [ ρ̃,σ] = 0. By construction, ρ̃ lies in the interior of Kσ, which will be

important for the following argument involving Lagrange-multipliers.
To find necessary conditions on the minimizers of (11), we abbreviate C := infρ∈Kσ Qσ(ρ)

and note that C > 0. To see this, note that we may extend Qσ(ρ) continuously to 1 at σ, so
there exists δ > 0 s.t. for ∥ρ − σ∥1 ≤ δ, we have Qσ(ρ) ≥ 1

2 and for ρ s.t. ∥ρ − σ∥1 > δ, we have
Qσ(ρ) ≥ δ2

2 log(smin(σ−1)) using Pinsker’s inequality and D(ρ∥σ) ≤ log (smin (σ)). For any ρ ∈ Kσ

with [ρ,σ] = 0 and ρ , σ have
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D(σ∥ρ)
D(ρ∥σ) ≥ C,

which is equivalent to

S(σ) ≤ CS(ρ) + C
d

i=1

ri log(si) −
d

i=1

si log(ri). (13)

Here, {ri}di=1 denote the eigenvalues of ρ ∈ Kσ (see (10)) fulfilling [ρ,σ] = 0 and {si}di=1 the eigen-
values of σ. As ρ̃ is a minimizer of (11) and commutes with σ its spectrum is a minimizer of the
right-hand-side of (13) minimized over the set S := {r ∈ Rd : mini(ri) ≥ smin( ρ̃) − ϵ} ⊂ Rd with
ϵ chosen in the construction of Kσ (see (10)). We will now compute necessary conditions on the
spectrum of ρ̃ using the formalism of Lagrange-multipliers (note that by construction the spectrum
of ρ̃ lies in the interior of S).

Consider the Lagrange function F : S ×R → R given by

F(r1, . . . ,rd, λ) = CS(ρ) + C
d

i=1

ri log(si) −
d

i=1

si log(ri) + λ *,
d

i=1

ri − 1+- .
The gradient of F is given by

[∇F(r1, . . . ,rd, λ)] j =


C(− log(r j) − 1 + log(s j)) −
s j
r j
+ λ 1 ≤ j ≤ d

d

i=1
ri − 1 j = d + 1

. (14)

By the formalism of Lagrange-multipliers, any minimizer r = (r1, . . . ,rd) of the right-hand-side of
(13) in the interior of S has to fulfill ∇F(r1, . . . ,rd, λ) = 0 for some λ ∈ R. Summing up the first d
of these equations (where the jth equation is multiplied with r j) implies

λ = 1 + C(1 + D(ρ∥σ)).

Inserting this back into the equations [∇F(r1, . . . ,rd, λ)] j = 0 and using u j =
r j
s j

, we obtain

u j(1 + CD(ρ∥σ)) − 1 = Cu j log(u j) (15)

for 1 ≤ j ≤ d. For fixed D(ρ∥σ), there are only two values for u j solving the Equations (15), as
an affine functions (the left-hand-side) can only intersect a strictly convex function (the right-hand-
side) in at most two points. Thus, for a minimizer {ri}di=1 of the right-hand-side of (13) in the
interior of S there are constants c1,c2 ∈ R+ such that for each i ∈ {1, . . . ,d} either ri = c1si or
ri = c2si holds.

We have obtained the following conditions on the spectrum of the minimizer ρ̃ ∈ Kσ (fulfilling
[ ρ̃,σ] = 0) of (11): There exist constants c1,c2 ∈ R+ a permutation ν ∈ Sd (where Sd denotes the
group of permutations on {1, . . . ,d}) and some 0 ≤ n ≤ d such that the spectrum r ∈ R+

d
of ρ̃

fulfills rν(i) = c1sν(i) for any 1 ≤ i ≤ n and rν(i) = c2sν(i) for any n + 1 ≤ i ≤ d. Note that the cases
c1 = c2 = 1, n = 0, and n = d, all correspond to the case ρ = σ where we have Qσ(σ) = 1. Thus, we
can exclude the cases n = 0 and n = d as long as we optimize over c1 = c2 = 1. Furthermore, note
that we can use the normalization of ρ̃, i.e., c1

n
i=1 sν(i) + c2

d
i=n+1 sν(i) = 1 to eliminate c2. Given a

permutation ν ∈ Sd and n ∈ {1, . . . ,d}, we define p(ν,n) = n
i=1 sν(i). Inserting the above conditions

in (11) and setting c1 = x and 0 < n < d yields

inf
ρ∈Kσ

Qσ(ρ) = inf
ν∈Sd

inf
1≤n≤(d−1)

inf
x∈[0,p(ν,n)−1]

qp(ν,n) (xp(ν,n)) (16)

= inf
ν∈Sd

inf
1≤n≤(d−1)

inf
x∈[0,1]

qp(ν,n)(x), (17)

where qy : [0,1] → R denotes the continuous extension of x → D2(y∥x)
D2(x∥y) (see (8)). By Lemma A.1

in the Appendix, the function y → qy(x) is continuous and quasi-concave and hence the minimum
over any convex and compact set is attained at the boundary. Thus, we have

qsmin(σ)(x) ≥ inf
ν∈Sd

inf
1≤n≤(d−1)

qp(ν,n)(x) ≥ inf
y∈[smin(σ),1−smin(σ)]

qy(x) = qsmin(σ)(x)
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using q1−smin(σ)(x) = qsmin(σ)(x) for any x ∈ [0,1]. Inserting this into (17) leads to

inf
ρ∈Kσ

Qσ(ρ) = inf
x∈[0,1]

qsmin(σ)(x).

�

Lemma 3.1 implies that the log-Sobolev-1 constant of the depolarizing channels coincides with
the classical one of the random walk on the complete graph with d vertices and distribution given
by the spectrum of σ. This constant has been shown to imply other inequalities, such as in [Ref. 8,
Proposition 3.13]. Using this result, Theorem 3.1 implies a refined transportation inequality on
graphs.

Using the correspondence with the classical log-Sobolev-1 constant of a random walk on the
complete graph, we may apply Ref. 9 [Example 3.10], which proves the following:

Corollary 3.1. Let Lσ :Md → Md be the depolarizing Liouvillian with full rank fixed point
σ ∈ Dd as defined in (2). Then we have

α1(Lσ) ≥ 1
2
+


smin (σ) (1 − smin (σ))

with equality iff smin (σ) = 1
2 . Again smin(σ) denotes the minimal eigenvalue of σ.

IV. APPLICATION: IMPROVED CONCAVITY OF VON NEUMANN ENTROPY

It is a well-known fact that the von Neumann entropy S(ρ) = −tr [ρ log(ρ)] is concave in ρ.
Using Theorem 3.1 we can improve the concavity inequality:

Theorem 4.1 (Improved concavity of the von Neumann entropy). For ρ,σ ∈ Dd and q ∈
[0,1], we have

S((1 − q)σ + qρ) − (1 − q)S(σ) − qS(ρ) ≥

max


q(1 − qc(σ))D(ρ∥σ)
(1 − q)(1 − (1 − q)c(ρ))D(σ∥ρ)

,

with

c(σ) = min
x∈[0,1]

D2(smin(σ)∥x)
D2(x∥smin(σ))

and c(ρ) defined in the same way.

Note that this bound becomes trivial if both σ and ρ are not of full rank (as we have
c(ρ) = c(σ) = 0 in this case). However, as long as D(ρ∥σ) or D(σ∥ρ) < ∞, we may still get a
bound by restricting both density matrices to the support of σ or ρ, respectively.

Proof. Note that for the Liouvillian L := − log(q)Lσ, we have

eL(ρ) = qρ + (1 − q)σ.
By Theorem 3.1 and (3), we have

D
�
eL(ρ)∥σ� ≤ e(1+c(σ)) log(q)D (ρ∥σ) (18)

Rearranging and expanding the terms in (18), we get

S(qρ + (1 − q)σ) ≥ (1 − q)S(σ) − qtr [ρ log(σ)] + q1+c(σ)D(ρ∥σ)
= (1 − q)S(σ) + qS(ρ) + q(1 − qc(σ))D(ρ∥σ).

Interchanging the roles of ρ and σ in the above proof gives the second case under the maximum. �
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In Ref. 10, another improvement on the concavity of the von Neumann entropy is shown,

S((1 − q)σ + qρ) − (1 − q)S(σ) − qS(ρ) ≥ q(1 − q)
(1 − 2q)2 D(ρrev∥ρavg) (19)

≥ 1
2

q(1 − q)∥ρ − σ∥2
1, (20)

where ρavg = (1 − q)σ + qρ and ρrev = (1 − q)ρ + qσ. Note that this bound is valid for all states
ρ, σ ∈ Dd while our bound in Theorem 4.1 becomes trivial unless the support ρ is contained in
the support of σ or the other way around. We will therefore consider only full rank states in the
following analysis.

By simple numerical experiments, our bound from Theorem 4.1 seems to be worse than (19).
However, one can argue that (19) is not much simpler than the left-hand-side itself. In particular, the
dependence on ρ and σ is only implicit via the relative entropy between ρavg and ρrev. Our bound
from Theorem 4.1 depends on some spectral data (in terms of the smallest eigenvalues of ρ or σ),
but whenever this is given, we have a bound for any q ∈ [0,1] in terms of the relative entropies of ρ
and σ.

Again, we can do simple numerical experiments to compare bounds (20) and Theorem 4.1.
Recall that our bound is given in terms of the relative entropy and (20) in terms of the trace norm.
In Figure 2, the bounds are compared for randomly generated quantum states in dimension d = 10.
These plots show that the bounds are not comparable and depending of the choice of the states the
bound from Theorem 4.1 will perform better than (20) or vice versa. Note that for q close to 0 or
1, our bound seems to perform better in both Figures. This is to be expected as α1 (Lσ) is defined
as the optimal constant α bounding the entropy production (4) (in t = 0) by −2αD(ρ∥σ). Therefore,
Theorem 4.1 should be the optimal bound (in terms of relative entropy) for q near 0 or 1.

Note that by applying Pinsker’s inequality,

D (ρ∥σ) ≥ 1
2
∥ρ − σ∥2

1 (21)

for states ρ,σ ∈ Dd to our bound from Theorem 4.1 we can obtain an improvement on the con-
cavity inequality in terms of the trace-distance similar to (20). Unfortunately, a simple computation
shows that the resulting trace-norm bound is always worse than (20). In Sec. V, we will show
that Pinsker’s inequality can be improved in the case where the second argument in the relative
entropy is fixed (which is the case in the bound from Theorem 4.1). This will lead to an additional
improvement of the trace-norm bound obtained from Theorem 4.1, such that in some (but only very
few) cases the bound becomes better than (20).

(a) (b)

FIG. 2. Comparison of bound (20) (red) and the bound from Theorem 4.1 (blue, where both choices of the ordering of ρ and
σ are plotted) and the exact value S((1−q)σ+qρ)− (1−q)S(σ)−qS(ρ) (black) two pairs of randomly generated 10 × 10
quantum states and q ∈ [0,1].
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V. STATE-DEPENDENT OPTIMAL PINSKER’S INEQUALITY

Pinsker’s inequality (21) can be applied to the bound in Theorem 4.1 to get an improvement
of the concavity in terms of the trace distance of the two density matrices. It can also be applied
to (3) to get a mixing time bound2 for the depolarizing channel. Note that in both of these cases,
the second argument of the relative entropy is fixed. Other improvements have been considered in
the literature,11 but here we will improve Pinsker’s inequality in terms of the second argument of the
relative entropy. More specifically, we compute the optimal constant C (σ) (depending on σ) such
that D (ρ∥σ) ≥ C (σ) ∥ρ − σ∥2

1 holds when σ has full rank.
We will follow a strategy similar to the one pursued in Ref. 12 in proving this, where the

analogous problem was considered for classical probability distributions. For a state ρ ∈ Dd let
s(ρ) = (s1(ρ), . . . , sd(ρ)) denote its vector of eigenvalues decreasingly ordered. We will adopt the
convention that the minimum over an empty set is +∞ and that D2(x∥y) = +∞ for x, y < [0,1].

Lemma 5.1. Let σ ∈ D+
d

and for A ⊆ {1, . . . ,d}, define Pσ (A) = 
i∈A

si(σ). Then we have for

ϵ > 0:

min
ρ:∥ρ−σ∥1≥ϵ

D (ρ∥σ) = min
A⊆{1, ...,d}

D2

(
Pσ (A) + ϵ

2
Pσ (A)

)
(22)

Proof. Suppose that there exists ρ ∈ Dd such that ∥ρ − σ∥1 = δ, with δ ≥ ϵ . By Lidskii’s
theorem [Ref. 5, Corollary III.4.2], we have

s (σ − ρ) = s (σ) − Ls (ρ) ,

where L is a doubly stochastic matrix. Define ρ′ to be the state which has eigenvalues Ls (ρ) and
commutes with σ. Then, we have

∥ρ − σ∥1 = ∥ρ′ − σ∥1.

By the operational interpretation for the 1− norm [Ref. 6, Theorem 9.1], there exist Hermitian
projections Q,Q′ ∈ Mn such that

2tr[Q (ρ − σ)] = ∥ρ − σ∥1 = ∥ρ′ − σ∥1 = 2tr[Q′ (ρ′ − σ)]. (23)

Now define the quantum channel T :Md → M2 given by

T (ρ) = tr[Qρ]|0⟩⟨0| + tr[(1 −Q) ρ]|1⟩⟨1|,

where |0⟩, |1⟩ is an orthonormal basis of C2. By the data processing inequality, we have

D (ρ∥σ) ≥ D (T (ρ) ∥T (σ)) . (24)

It is easy to see that the image of Q′must be spanned by eigenvectors of σ. Thus, we may associate
a subset A ⊆ {1, . . . ,d} to the projector Q′ indicating the eigenvectors of σ spanning this subspace.
Using (23) and the assumption that ∥ρ − σ∥1 = δ we have

tr[Q′ρ′] = Pσ (A) + δ
2
.

Also observe that

D (T (ρ) ∥T (σ)) = D2

(
Pσ (A) + δ

2
Pσ (A)

)
≥ D2

(
Pσ (A) + ϵ

2
Pσ (A)

)

as the binary relative entropy is convex and δ ≥ ϵ was assumed. With (24), we have

min
ρ:∥ρ−σ∥1≥ϵ

D (ρ∥σ) ≥ min
A⊆{1, ...,d}

D2

(
Pσ (A) + ϵ

2
Pσ (A)

)
(25)
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Now given any A ⊆ {1, . . . ,d} such that Pσ (A) + ϵ
2 ≤ 1 (otherwise D2

�
Pσ (A) + ϵ

2 ∥Pσ (A)� = +∞
by convention), define a state τ ∈ Dd which commutes with σ and has spectrum:

si (τ) =


(Pσ (A) + ϵ/2) si(σ)
Pσ (A) for i ∈ A

(1 − Pσ (A) − ϵ/2) si(σ)
1 − Pσ (A) else

. (26)

Note that ∥σ − τ∥1 = ϵ and D (τ∥σ) = D2
�
Pσ (A) + ϵ

2 ∥Pσ (A)�, i.e., the lower bound in (25) is
attained.

If there does not exist ρ ∈ Dd such that ∥ρ − σ∥1 = δ, with δ ≥ ϵ , then the minimum on
the l.h.s. of (22) is +∞ by our convention. In this case, we also have Pσ(A) + ϵ

2 > 1 for all A ⊆
{1, . . . ,d} and the minimum on r.h.s. of (22) is also +∞ by convention. If we have Pσ(A) + ϵ

2 < 1
for some A ⊆ {1, . . . ,d}, we may construct a density matrix τ as in (26) s.t. ∥τ − σ∥1 = δ, a
contradiction. �

We define the function φ : [0, 1
2 ] → R as

φ (p) = 1
1 − 2p

log
(

1 − p
p

)
, (27)

extended continuously by φ
� 1

2

�
= 2. Furthermore for any σ ∈ Dd, we define

π (σ) = max
A⊆{1, ...,d}

min {Pσ(A),1 − Pσ(A)} . (28)

With essentially the same proof as given in Ref. 12 for the classical case, we obtain the following
improvement on Pinsker’s inequality.

Theorem 5.1 (State-dependent Pinsker’s Inequality). For σ, ρ ∈ Dd, we have

D (ρ∥σ) ≥ φ (π (σ))
4

∥ρ − σ∥2
1 (29)

with φ as in (27) and π (σ) as in (28). Moreover, this inequality is tight.

Proof. For convenience, set ∥ρ − σ∥1 = δ. Then we have

D (ρ∥σ) ≥ min
ρ′:∥ρ′−σ∥1≥δ

D (ρ′∥σ) = min
A⊆{1, ...,d}

D2

(
Pσ (A) + δ

2
∥Pσ (A)

)
(30)

using Theorem 5.1. By Ref. 12 [Proposition 2.2] for p ∈ [0, 1
2 ] and ϵ ≥ 0, we have

D2 (p + ϵ ∥p) ≤ D2 (1 − p + ϵ ∥1 − p)

so we may assume Pσ (A) ≤ 1
2 in (30). In Ref. 13 [Theorem 1] it is shown that for p ∈ [0, 1

2 ], we
have

inf
ϵ∈(0,1−p]

D2 (p + ϵ ∥p)
ϵ2 = φ (p) (31)

which implies

min
A⊆{1, ...,d}

D2

(
Pσ (A) + δ

2
Pσ (A)

)
≥ min

A⊆{1, ...,d}
φ (Pσ (A))

4
∥ρ − σ∥2

1.

By Ref. 12 [Proposition 2.4], the function φ is strictly decreasing. Thus, we have

min
A⊆{1, ...,d}

φ (Pσ (A))
4

=
φ (π (σ))

4

which, after combining the previous inequalities, finishes the proof of (29). To show that the
inequality is tight, we may again follow the proof of Ref. 12 [Proposition 2.1]. Let B ⊆ {1, . . . ,d}
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be a subset such that π (σ) = Pσ (B) =: p. Define a minimizing sequence {ϵ i}i∈N with ϵ i > 0 for
the infimum (with respect to p) in (31), i.e., such that

lim
i→∞

D2 (p + ϵ i∥p)
ϵ2
i

= φ (p) .

Next, define a sequence of states ρi that commute with σ and have spectrum,

s j (ρi) =


(p + ϵ i) si(σ)
p

for j ∈ B

(1 − p − ϵ i) si(σ)
1 − p

else
.

One can check that ∥ρi − σ∥1 = 2ϵ i and D (ρi∥σ) = D2 (p + ϵ i∥p), from which we get:

lim
i→∞

D (ρi∥σ)
∥ρi − σ∥2 =

φ (π (σ))
4

.

�

In some cases, the bound can be made more explicit, as illustrated in the next corollary.

Corollary 5.1. Let σ, ρ ∈ Dd be such that ∥σ∥∞ ≥ 1
2 . Then:

D (ρ∥σ) ≥ φ (1 − ∥σ∥∞)
4

∥ρ − σ∥2
1 (32)

Proof. In this , it is clear that π (σ) = 1 − ∥σ∥∞. �

Note that we have φ (x) → +∞ for x → 0. Thus, there might be an arbitrary large improvement
of (29) compared to usual Pinsker’s inequality (21). This happens for instance in Corollary 5.1 when
∥σ∥∞ → 1, i.e., when σ converges to a pure state.

By applying the improved inequality (29) to Theorem 4.1, we obtain for quantum states
ρ,σ ∈ Dd and q ∈ [0,1],

S((1 − q)σ + qρ) − (1 − q)S(σ) − qS(ρ) ≥ max


q(1 − qc(σ))φ (π (σ))
4

||ρ − σ ||2

(1 − q)(1 − (1 − q)c(ρ))φ (π (ρ))
4

||ρ − σ ||2

with φ as in (27) and π (σ) as in (28).
Even using this refinement of Pinsker’s inequality, some numerical experiments indicate that

(20) is stronger for randomly generated states. From Corollary 5.1, we can expect, our bound to
perform well if σ has a large eigenvalue and the smallest eigenvalue is as large as possible. Such
states have spectrum of the form

(
p, 1−p

d−1 , . . . ,
1−p
d−1

)
. Indeed for σ ∈ D5 with spectrum (0.99,0.0025,

0.0025,0.0025,0.0025) and q < 0.2 our bound performs better than (19) for randomly generated ρ.
However, even in this case, the improvement is not significant.

Still we can expect that Theorem 5.1 will find more applications, for instance improving the
mixing time bounds. Such bounds have been derived from log-Sobolev inequalities in Ref. 2. The
next theorem can be used to improve these results.

Theorem 5.2. Let L :Md → Md be a primitive Liouvillian with fixed point σ that satisfies

D
�
etLρ∥σ� ≤ e−2αtD (ρ∥σ) (33)

for some α > 0 and for all ρ ∈ Dd and t ∈ R+. Then we have

∥etL(ρ) − σ∥1 ≤ 2e−αt


log (smin(σ))
φ (π (σ)) (34)

with φ as in (27), π (σ) as in (28) and where smin(σ) is the smallest eigenvalue of σ.

Proof. This is a direct consequence of (3) and (29). �
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VI. TENSOR PRODUCTS OF DEPOLARIZING CHANNELS

For a Liouvillian L :Md → Md generating the channel Tt = etL and any n ∈ N, we denote by
L(n) :Mdn → Mdn the generator of the tensor-product semigroup (Tt)⊗n, i.e.,L(n) :=

n
i=1 id⊗i−1

d ⊗
L ⊗ id⊗(n−i)

d
.

Here we study α1 (Ln
σ) in the special case where σ = 1d

d
. For simplicity, we denote the depo-

larizing Liouvillian onto σ = 1d
d

by Ld := L 1d
d

and by Td
t = etL

d
the generated semigroup. In the

case d = 2, it is known2 that α1

(
L(n)

2

)
= 1 for any n ∈ N. It is, however, an open problem to deter-

mine this constant for any d > 2 and any n ≥ 2. We will now show the inequality α1

(
L(n)

d

)
≥ 1

2
for any d ≥ 2 and n ≥ 1, which is the best possible lower bound that is independent of the local
dimension. Note that for σ = 1d

d
inequality (3) for the channel

�T d
t

�⊗n can be rewritten as the
entropy production inequality,

S((Td
t )⊗n(ρ)) ≥ (1 − e−t)n log(d) + e−tS(ρ).

This inequality has been studied in Ref. 14 for the case where d = 2, for which, however, an
incorrect proof was given. We will provide a proof of a more general statement, from which the
claim α1

(
L(n)

dep

)
≥ 1

2 readily follows by the previous discussion.

Theorem 6.1. For any σ, ρ ∈ Dd (not necessarily full rank), we have

S((Tσ
t )⊗n(ρ)) ≥ e−tS(ρ) + (1 − e−t)S(σ⊗n).

For the proof, we will need a special case of the quantum Shearer’s inequality. We will denote
by ρ ∈ D �

Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn
�

a multipartite density matrix (where the di are the local dimen-
sions of each tensor factor). Furthermore, we write S(i1, i2, . . . , ik)ρ for the entropy of the reduced
density matrix ρ on the tensor factors specified by the indices i1, i2, . . . , ik. Similarly, we write

S(i1, . . . , ik | j1, . . . , jl)ρ = S(i1, . . . , ik, j1, . . . , jl)ρ − S( j1, . . . , jl)ρ
for a conditional entropy. The proof of the quantum version of Shearer’s inequality is essentially the
same as the proof given by Radhakrishnan and Llewellyn for the classical version (see Ref. 15). For
convenience, we provide the full proof.

Lemma 6.1 (Quantum Shearer’s inequality). Consider t ∈ N and a family F ⊂ 2{1, ...,n} of sub-
sets of {1, . . . ,n} such that each i ∈ {1, . . . ,n} is included in exactly t elements of F . Then for any
ρ ∈ D �

Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn
�
, we have

S(1,2, . . . ,n)ρ ≤ 1
t



F ∈F
S(F)ρ . (35)

Proof. For F ⊂ {1, . . . ,n}, denote its elements by (i1, . . . , ik), increasingly ordered. For any
ρ ∈ D �

Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn
�

we have

|F |

j=1

S(i j |i1, . . . , i j−1)ρ = S(i1)ρ + S(i2|i1)ρ + · · · + S(i |F ||i1, i2, . . . , i |F |−1)ρ

= S(i1, i2, . . . , i |F |)ρ = S(F)ρ,

where we used a telescopic sum trick. By strong subadditivity16 conditioning decreases the entropy.
This implies

|F |

j=1

S(i j |1,2, . . . , i j − 1)ρ ≤
|F |

j=1

S(i j |i1, . . . , i j−1)ρ = S(F)ρ. (36)
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Now consider a family F ⊂ 2{1, ...,n} with the properties stated in the assumptions. Using (36) for
the first inequality gives



F ∈F
S(F)ρ ≥



F ∈F

|F |

j=1

S(i j |1,2, . . . , i j − 1)ρ (37)

= t
n

i=1

S(i |1,2, . . . , i − 1)ρ = tS(1,2, . . . ,n)ρ. (38)

Here we used the assumption that each i ∈ {1, . . . ,n} is contained in exactly t elements of F and
(36) in the special case of F = {1, . . . ,n} for the final equality. �

Note that in the classical case, Shearer’s inequality is true under the weaker assumption that any
i ∈ {1, . . . ,d} is contained in at least t elements of F . However, as the quantum conditional entropy
might be negative,17 we have to use the stronger assumption to get the equality between (37) and
(38) where an ≥ would be enough.

In the special case where F = Fk := {F ⊆ {1, . . . ,n} : |F | = k} denotes the family of k-
element subsets of {1, . . . ,n} (i.e., every i ∈ {1, . . . ,d} is contained in exactly

(
n−1
k−1

)
= k

n

� n
k

�
elements of Fk) the quantum Shearer inequality gives

k
n

S(1, . . . ,n) ≤ 1� n
k

� 

F ∈Fk
S(F). (39)

This inequality was also proved in Ref. 18, but in a more complicated way and without mentioning
the more general quantum Shearer’s inequality. It is also used as a lemma (with wrong proof) in
Ref. 14, where the rest of the proof of their entropy production estimate is correct. The proof of
Theorem 6.1 follows the same lines. For completeness, we will include the full proof here.

Proof of Theorem 6.1. In the following, we will abbreviate p := e−t. For a subset F ⊂ {1, . . . ,n},
we denote by ρ|F the reduced density matrix on the tensor factors specified by F. Using this notation,
we can write

(Tσ
t )⊗n(ρ) =

n

k=0



F ∈Fk
(1 − p)kpn−k *,



l ∈F
σ ⊗ ρ|Fc+- ,

where Fc = {1, . . . ,n} \ F. Concavity of the von Neumann entropy implies

S
�(Tσ

t )⊗n(ρ)
� ≥ n

k=0



F ∈Fk
(1 − p)kpn−k �kS(σ) + S(Fc)ρ

�

≥ (1 − p)nS(σ) +
n

k=0

( n
n − k

) n − k
n

(1 − p)kpn−kS(ρ)

= (1 − p)S(σ⊗n) + pS(ρ).

Here we used the elementary identity
n

k=0

� n
k

� (1 − p)kpn−kk = (1 − p)n and (39) for the (n − k)-
element subsets Fc. �
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APPENDIX A: QUASI-CONCAVITY OF A QUOTIENT OF RELATIVE ENTROPIES

In this appendix, we will prove the quasi-concavity of the function y → qy(x) for any x ∈
(0,1). As defined in (8), the function qy : (0,1) → R denotes the continuous extension of x →
D2(y∥x)
D2(x∥y) . In the following, we consider f x : [0,1] → R defined as f x(y) = qy(x) for any y ∈ (0,1)
and with f x(0) = f x(1) = 1. It can be checked easily that f x is continuous for any x ∈ (0,1). We
have the following Lemma:

Lemma A.1. For any x ∈ (0,1) the function f x : [0,1] → R given by f x(y) = D2(y∥x)
D2(x∥y) for y <

{0, x,1} and extended continuously by f x(x) = 1 and f x(0) = f x(1) = 0 is quasi-concave.

Proof. Note that without loss of generality we can assume x ≥ 1
2 , as f x(y) = f1−x(1 − y). By

continuity, it is clear that there exists an m f ∈ (0,1) (we can exclude the boundary points since
f x(x) > f x(0) = f x(1)) such that f x(m f ) is the global maximum. By Ref. 7 [p. 99] it is sufficient
to show that f x is unimodal, i.e., that f x is monotonically increasing on

�
0,m f

�
and monotonically

decreasing on
�
m f ,1

�
. We will use the method of L’Hospital type rules for monotonicity developed

in Refs. 19 and 20.
For any x ∈ (0,1) and y ∈ (0,1) with x , y , we compute

∂yD2 (y∥x) = log
(
y(1 − x)
x(1 − y)

)
, ∂yD2 (x∥y) =

y − x
y(1 − y) ,

∂y log
(
y(1 − x)
x(1 − y)

)
=

1
y(1 − y) , ∂y

y − x
y(1 − y) =

y2 + x − 2yx
(1 − y)2y2

and define

gx(y) =
∂yD2 (y∥x)
∂yD2 (x∥y)

=
log

(
x(1−y)
y(1−x)

)
y(1 − y)

x − y , (A1)

hx(y) =
∂y log

(
x(1−y)
y(1−x)

)

∂y
x−y

y(1−y)
=

y(1 − y)
y2 + x − 2yx

, (A2)

where again gx is extended continuously by gx(0) = gx(1) = 0 and gx(x) = 1. As y → y2 + x − 2yx
has no real zeros for x ∈ (0,1), the rational function hx is continuously differentiable on (0,1). A
straightforward calculation reveals that for x ≥ 1

2 and on (0,1), the derivative h′x only vanishes in

mh =



x − 
x(1 − x)

2x − 1
for x >

1
2

1
2

for x =
1
2

,

which has to be a maximum as hx(0) = hx(1) = 0. By the lack of further points with vanishing
derivative, we have h′x(y) < 0 for any y < mh and also h′x(y) > 0 for any y > mh. Note that mh ≤ x
for any x ≥ 1

2 .
Consider first the interval (x,1) ⊂ (0,1). For y → x we have log

(
x(1−y)
y(1−x)

)
→ 0 and x−y

y(1−y) → 0.
Also it is clear that y → x−y

y(1−y) does not change sign on the interval (x,1). Therefore and by
(A2), we see that the pair gx and hx satisfy the assumptions of Ref. 19 [Proposition 1.1.] and as
hx is decreasing we have that g′x(y) < 0 for any y ∈ (x,1). We can use the same argument for
the (possibly empty) interval (mh, x) where hx is decreasing as well and obtain g′x(y) < 0 for any
y ∈ (mh, x). By continuity of gx in x, we see that gx is decreasing on (mh,1).

Note that in the case where x = 1
2 , we can directly apply19 [Proposition 1.1.] to the remaining

interval (0, 1
2 ) where h1/2 is increasing. This proves g′1/2(y) > 0 for any y ∈ (0, 1

2 ). By continuity,
mg =

1
2 is the maximum point of g1/2. For x , 1

2 , where the remaining interval is (0,mh), we apply
the more general Proposition 2.1. in Ref. 20. It can be checked easily that the assumptions of this
proposition are fulfilled for the pair gx and hx. As for y ∈ (0,mh), we have y−x

y(1−y)
y2+x−2yx
(1−y)2y2 < 0 and

as hx is increasing the proposition shows that g′x(y) > 0 for any y ∈ (0,mg) and g′x(y) < 0 for any
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y ∈ (mg ,mh). Here mg ∈ (0,mh) denotes the maximum point of gx (note that a maximum mg has to
exist due to continuity and gx(0) = gx(1) = 0).

The previous argument shows that for any x ≥ 1
2 there exists a point mg ∈ (0,mh] ⊂ (0, x]

(we have mg = mh =
1
2 for x = 1

2 ) such that g′x(y) > 0 for y ∈ (0,mg) and g′x(y) < 0 for y ∈
(mg ,1) \ {x}. We can now repeat the above argument for the pair f x and gx. This gives the
existence of a point m f ∈ (0,mg] such that f ′x(y) > 0 for any y ∈ (0,m f ) and f ′x(y) < 0 for any
y ∈ (m f ,1) \ {x}. By continuity in x this shows that the function f x is unimodal and therefore
quasi-concave. �

APPENDIX B: CONTINUOUS EXTENSION OF A QUOTIENT OF RELATIVE ENTROPIES

In this section, we show that the function Qσ : D+
d
→ R as defined in (6) is indeed continuous.

As Qσ is clearly continuous in any point ρ , σ we have to prove the following:

Lemma B.1. For σ ∈ D+
d

and X ∈ Md with X = X†, tr[X] = 0 and X , 0, we have

lim
ϵ→0

D (σ ||σ + ϵX)
D (σ + ϵX ||σ) = 1.

Proof. To show the claim, we will expand the relative entropy in terms of ϵ up to second order.
Observe that for ρ ∈ Dd we have

D (ρ∥σ) =
∞

0

tr

ρ
(
(ρ + t)−1 − (σ + t)−1

)
dt . (B1)

In the following, we assume ϵ > 0 to be small enough such that σ + ϵX ∈ D+
d
. To simplify the

notation, we introduce A(t) := (σ + t)−1 and B(t) := (σ + ϵX + t)−1. Applying the recursive relation

B(t) = −ϵB(t)X A(t) + A(t),

twice leads to

B(t) − A(t)= −ϵB(t)X A(t) = ϵ2B(t)X A(t)X A(t) − ϵA(t)X A(t)
= ϵ2A(t)X A(t)X A(t) − ϵA(t)X A(t) + O �

ϵ3� .
Inserting this into (B1) gives

D (σ∥σ + ϵX) =
∞

0

tr
�
ϵσA(t)X A(t) − ϵ2σA(t)X A(t)X A(t) + O(ϵ3)� dt (B2)

and

D (σ + ϵX ∥σ) =
∞

0

tr
�−ϵσA(t)X A(t) + ϵ2σA(t)X A(t)X A(t) − ϵ2X A(t)X A(t) + O(ϵ3)� dt.

(B3)

As [A(t),σ] = 0, we can diagonalize these operators in the same orthonormal basis {|i⟩} ⊂ Cd,
which leads to

∞

0

tr [σA(t)X A(t)] dt =
d

i=1

⟨i |X |i⟩
∞

0

si
(si + t)2 dt =

d

i=1

⟨i |X |i⟩ = 0, (B4)

where {si}di=1 denotes the spectrum of σ. Note that again by diagonalizing σ and A(t) in the same
basis, we have
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∞

0

tr [(2σA(t) − 1) (X A(t)X A(t))] dt (B5)

=

d

i, j=1

|⟨i |X | j⟩|2
∞

0

2si
(si + t)2(s j + t) −

1
(si + t)(s j + t)dt

=

d

i, j=1

|⟨i |X | j⟩|2
(si − s j)2

(
2(si − s j) − (si + s j) log

(
si
s j

))
. (B6)

= 0.

The last equality follows from the fact that the expression in (B6) clearly changes its sign when si
and s j are exchanged. This is only possible if the value of the integral (B5) vanishes. Rearranging
the integral (B5) gives

∞

0

tr [σA(t)X A(t)X A(t)] dt =

∞

0

tr [−σA(t)X A(t)X A(t) + X A(t)X A(t)] dt . (B7)

Finally applying (B4) and (B7) to the formulas for the relative entropies (B2) and (B3) gives

D (σ∥σ + ϵX)
D (σ + ϵX ∥σ) =

c + O(ϵ)
c + O(ϵ) → 1

as ϵ → 0. Here, c :=
∞
0

tr [σA(t)X A(t)X A(t)] dt > 0 as σ, A(t) > 0 for any t ∈ [0,∞) and X , 0 is

Hermitian. �
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Sandwiched Rényi Convergence for Quantum Evolutions

D. Stilck França, A. Müller-Hermes

We study the convergence of quantum dynamical semigroups under sandwiched Rényi diver-
gences. We derive expressions for the optimal convergence rates and relate these to other
essential constants related to the convergence of semigroups, such as the spectral gap and the
logarithmic Sobolev constant. These connections allow us to derive mixing time bounds from
logarithmic Sobolev inequalities without any further assumptions and obtain bounds on the
classical capacity of these semigroups as a function of time. Moreover, we combine these re-
sults with other results in the literature to obtain the first bounds on the capacity of stabilizer
Hamiltonians under thermal noise.

B.1.1 Main Results

Let L : Md → Md be a primitive Liouvillian with full rank stationary state σ ∈ D+
d . We will

denote the p−sandwiched Rényi divergence [6, 7] by Dp (·||·) , the p−Dirichlet form by EL
p and

the noncommutative lp-norm with respect to σ by ‖ · ‖p,σ for p ∈ [1,∞].

Theorem B.1.1 (Entropy Production for Sandwiched Rényi Divergences). Let L : Md →Md

be as above, p ≥ 1 and βp (L) be the largest constant β such that

Dp

(
etL

∗
(ρ) ||σ

)
≤ e−2βtDp (ρ||σ) (B.1)

holds for all t ≥ 0 and ρ ∈ Dd. Define κp(X) = 1
p−1‖X‖pp,σ log

(‖X‖pp,σ
‖X‖p1,σ

)
for X ∈ M+

d . Then

we have

βp (L) inf
{EL

p (X)

κp(X)
: X ∈Md, X > 0

}
.

The theorem follows from reformulating Equation (B.1) as a differential inequality for some
fixed state and then optimizing over all initial states. It is known [8, 36] that under technical
conditions known as lp−regularity, one can relate the convergence in the 1−divergence to other
convergence constants related to the semigroup, such as the logarithmic Sobolev constant and
the spectral gap. The same holds here but without any extra technical assumptions.

Theorem B.1.2 (Comparison of Constants). Let L : Md → Md be as before and denote its
logarithmic Sobolev constant by α2 (L) and its spectral gap by λ (L). Then

λ (L) ≥ β2 (L) ≥ α2 (L)

2
. (B.2)

Both the upper and the lower bound in Equation (B.2) follow from showing relations between
the functionals used in the definition of the involved constants. We show Var2,σ(X) ≥ κ2(X) ≥
2−1Ent2,σ(X), from which the claim follows.

B.1.2 Applications

One of the main applications of this framework is to derive mixing time bounds directly from
LS inequalities, something which was only possible under extra technical assumptions before.

Theorem B.1.3 (Mixing time bounds). Let L : Md → Md be a primitive Liouvillian with
stationary state σ ∈ D+

d . Then

t1(ε) ≤ 1

2β2(L)
log

(
2 log

(
‖σ−1‖∞

)

ε2

)



and

t1(ε) ≤ 1

α2(L)
log

(
2 log

(
‖σ−1‖∞

)

ε2

)
.

The theorem follows from applying Pinsker’s inequality to the convergence bound in Equa-
tion (B.1) and combining this with the relations of the constants given in (B.2).

We can also explore the connection between sandwiched Rényi divergences and bounds on
the classical capacity of quantum channels [7], tensorization results for logarithmic Sobolev
inequalities [57] and estimates on spectral gaps of semigroups [10] to obtain the first estimates
on the classical capacity of stabilizer Hamiltonians under thermal noise. To this end, we model
thermal noise with Davies generators. Here we specialize in the case of the 2D-toric code, a
widely studied stabilizer code.

Theorem B.1.4. Let H be the stabilizer Hamiltonian of the 2D toric code on a N ×N lattice
and Lβ be its Davies generator at inverse temperature β > 0. Then the classical capacity
C(etLβ ) is bounded by

C(etLβ ) ≤
(
2N2 + 2N + 1 + log(2)4βN(N + 1)

)
e−r(β,N)t, (B.3)

with

r(β,N) =
e−8β

6 ((10N2 + 10N + 5) log(2) + 4βN(N + 1)) + 66
.

Moreover, this is a bound in the strong converse sense.

B.1.3 Individual Contribution

I am the principal author of this article. The project’s idea was motivated by discussions be-
tween Alexander Müller-Hermes and me. After our work on computing optimal convergence
rates for depolarizing channels, we were looking for technical tools that could simplify such
computations. Noticing many similarities in the expressions involved in the definitions of sand-
wiched Rényi divergences and logarithmic Sobolev inequalities, I proposed to further investigate
these similarities and try to find deeper connections. I was responsible for making all the rel-
evant computations of derivatives necessary to define the βp constants, which are essentially
the results of sections 3.1 and 3.2, and showing how they can be used to characterize the con-
vergence of semigroups. I also did all the computations in section 3.3. I first proved Theorem
B.1.2 for the case p = 2 and A. Müller-Hermes was responsible for proving the more general
version of this statement found in the article (Theorem 4.1 and Theorem 4.3 in the article).
My version of the proof that the spectral gap is an upper bound on β2 is contained in Theorem
4.2. I was responsible for formulating the applications to mixing times and proving the discrete
version of the convergence bounds in section 5, although their derivation from the results of
the previous chapters was immediately clear to both of us. The converse bound relating the
l2 mixing time and β2 in Theorem 5.3 was also formulated and proved by me. I was also re-
sponsible for proving the mixing time bounds for random Pauli channels in Corollary 5.3. The
idea to use these convergence bounds to obtain bounds on classical capacities was inspired by
our previous article also included in this dissertation, where we use similar techniques. I was
responsible for showing the bounds on the classical capacity of stabilizer Hamiltonians. I proved
the bounds on their smallest eigenvalue, such as in Lemma 7.1, and searched the literature for
bounds on spectral gaps. Moreover, I made the first version of all plots, and A. Müller-Hermes
then improved them. I wrote all sections of the paper, excluding Appendix A, Theorem 4.1
and Theorem 4.3.
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each of these distance measures the convergence is typically exponentially fast
and the best exponent is given by a constant (similar to a logarithmic Sobolev
constant) depending only on the generator of the time evolution. We establish
relations between these constants and the logarithmic Sobolev constants as
well as the spectral gap. An important consequence of these relations is the
derivation of mixing time bounds for time evolutions directly from logarithmic
Sobolev inequalities without relying on notions like lp-regularity. We also derive
strong converse bounds for the classical capacity of a quantum time evolution
and apply these to obtain bounds on the classical capacity of some examples,
including stabilizer Hamiltonians under thermal noise.

Alexander Müller-Hermes: muellerh@posteo.net
Daniel Stilck França: dsfranca@mytum.de

Accepted in Quantum 2018-02-01, click title to verify 1



Contents
1 Introduction 3

2 Notation and Preliminaries 4
2.1 Noncommutative lp-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Quantum dynamical semigroups . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Logarithmic Sobolev inequalities and the spectral gap . . . . . . . . . . . . 7

3 Convergence rates for sandwiched Rényi divergences 9
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1 Introduction
Consider a quantum system affected by Markovian noise modeled by a quantum dynamical
semigroup Tt (with time parameter t ∈ R+) driving every initial state towards a unique
full rank state σ. Using the framework of logarithmic Sobolev inequalities as introduced
in [1, 2] the speed of the convergence towards the fixed point can be studied. Specifically,
the α1-logarithmic Sobolev constant (see [1, 2]) is the optimal exponent α ∈ R+ such that
the inequality

D(Tt(ρ)‖σ) ≤ e−2αtD (ρ‖σ) (1)

holds for the quantum Kullback-Leibler divergence, given byD (ρ‖σ) = tr [ρ(ln(ρ)− ln(σ))],
for all t ∈ R+ and all states ρ.

The framework of logarithmic Sobolev constants is closely linked to properties of non-
commutative lp-norms, and specifically to hypercontractivity [1, 2]. Noncommutative lp-
norms also appeared recently in the definition of generalized Rényi divergences (so called
“sandwiched Rényi divergences” [3, 4]). It is therefore natural to study the relationship
between logarithmic Sobolev inequalities and noncommutative lp-norms more closely. The
approach used here is to define constants (which we call βp for a parameter p ∈ [1,∞)),
which resemble the logarithmic Sobolev constants, but where the distance measure is a
sandwiched Rényi divergence instead of the quantum Kullback-Leibler divergence. More
specifically, the constants βp will be the optimal exponents such that inequalities of the
form (1) hold for the sandwiched Rényi divergences Dp, given by

Dp (ρ‖σ) =





1
p−1 ln

(
tr

[(
σ

1−p
2p ρσ

1−p
2p

)p])
if ker (σ) ⊆ ker (ρ) or p ∈ (0, 1)

+∞, otherwise,
(2)

instead of the quantum Kullback-Leibler divergence D.
Our main results are two-fold:

• We derive inequalities between the new βp and other quantities such as logarithmic
Sobolev constants and the spectral gap of the generator of the time evolution. These
inequalities not only reveal basic properties of the βp, but can also be used as a
technical tool to strengthen results involving logarithmic Sobolev constants.

• We apply our framework to derive bounds on the mixing time of quantum dynam-
ical semigroups. Using the interplay between the βp and the logarithmic Sobolev
constants we show how to derive a mixing time bound with the same scaling as that
of the one derived in [2] directly from a logarithmic Sobolev constant. Previously,
this was only known under the additional assumption of lp-regularity (see [2]) of the
generator or for the α1-logarithmic Sobolev constant. It is still an open question
whether lp-regularity holds for all primitive generators.

As an additional application of our methods we derive time-dependent strong converse
bounds on the classical capacity of a quantum dynamical semigroup. We apply these to
some examples of systems under thermal noise. These include stabilizer Hamiltonians,
such as the 2D toric code, and a truncated harmonic oscillator. To the best of our
knowledge, these are the first bounds available on the classical capacity of these channels.
We also apply our bound to depolarizing channels, whose classical capacity is known [5],
to benchmark our findings.
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2 Notation and Preliminaries
Throughout this paper Md will denote the space of d × d complex matrices. We will
denote by Dd the set of d-dimensional quantum states, i.e. positive semi-definite matrices
ρ ∈ Md with trace 1. By M+

d we denote the set of positive definite matrices and by
D+
d =M+

d ∩ Dd the set of full rank states.
In [3, 4] the following definition of sandwiched quantum Rényi divergences was pro-

posed:

Definition 2.1 (Sandwiched p-Rényi divergence). Let ρ, σ ∈ Dd. For p ∈ (0, 1) ∪ (1,∞),
the sandwiched p-Rényi divergence is defined as:

Dp (ρ‖σ) =





1
p−1 ln

(
tr
[(
σ

1−p
2p ρσ

1−p
2p

)p])
if ker (σ) ⊆ ker (ρ) or p ∈ (0, 1)

+∞, otherwise
(3)

where ker (σ) is the kernel of σ.

Note that we are using a different normalization than in [3, 4], which is more convenient
for our purposes. The logarithm in our definition is in base e, while theirs is in base 2.
When we write log in later sections we will mean the logarithm in base 2.

Taking the limit p→ 1 gives the usual quantum Kullback-Leibler divergence [6]

lim
p→1

Dp (ρ‖σ) = D (ρ‖σ) :=
{

tr[ρ (ln(ρ)− ln(σ))] if ker (σ) ⊆ ker (ρ)
+∞, otherwise

.

Similarly by taking the limit p→∞ we obtain the max-relative entropy [3, Theorem 5]

lim
p→∞Dp (ρ‖σ) = D∞ (ρ‖σ) = ln

(
‖σ− 1

2 ρσ−
1
2 ‖∞

)
.

The sandwiched Rényi divergences increase monotonically in the parameter p ≥ 1 (see [7,
Theorem 7]) and we have

D (ρ‖σ) = D1 (ρ‖σ) ≤ Dp (ρ‖σ) ≤ Dq (ρ‖σ) ≤ D∞ (ρ‖σ) . (4)

for any q ≥ p ≥ 1 and all ρ, σ ∈ Dd. Next we state two simple consequences of this
ordering, which will be useful later.

Lemma 2.1. For σ ∈ D+
d and p ∈ [1,+∞)

sup
ρ∈Dd

Dp (ρ‖σ) = ln
(
‖σ−1‖∞

)
. (5)

Proof. Using (4) for ρ ∈ Dd we have

Dp(ρ‖σ) ≤ D∞ (ρ‖σ) = ln
(
‖σ− 1

2 ρσ−
1
2 ‖∞

)
≤ ln

(
‖σ−1‖∞

)
.

Here we used that any quantum state ρ ∈ Dd fulfills ρ ≤ 1d. Clearly, choosing ρ =
|vmin〉〈vmin| for an eigenvector |vmin〉 ∈ Cd corresponding to the eigenvalue ‖σ−1‖∞ of σ−1

achieves equality in the previous bound.
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Using (4) together with the well-known Pinsker inequality [8, Theorem 3.1] for the
quantum Kullback-Leibler divergence we have

1
2‖σ − ρ‖

2
1 ≤ D (ρ‖σ) ≤ Dp (ρ‖σ) (6)

for any p ≥ 1 and all ρ, σ ∈ Dd. The constant 1
2 has been shown to be optimal in the

classical case (see [9]), i.e. restricting to ρ that commute with σ, and is therefore also
optimal here.

2.1 Noncommutative lp-spaces
In the following σ ∈ D+

d will denote a full rank reference state. For p ≥ 1 we define the
noncommutative p-norm with respect to σ as

‖X‖p,σ =
(

tr

[∣∣∣σ
1

2pXσ
1

2p
∣∣∣
p
]) 1

p

(7)

for any X ∈ Md. The space (Md, ‖ · ‖p,σ) is called a (weighted) noncommutative lp-
space. For a linear map Φ : Md → Md and p, q ≥ 1 we define the noncommutative
p→ q-norm with respect to σ as

‖Φ‖p→q,σ = sup
Y ∈Md

‖Φ(Y )‖q,σ
‖Y ‖p,σ

.

We introduce the weighting operator Γσ :Md →Md as

Γσ (X) = σ
1
2Xσ

1
2 .

For powers of the weighting operator we set

Γpσ (X) = σ
p
2Xσ

p
2

for p ∈ R and X ∈Md. We define the so called power operator Ip,q :Md →Md as

Ip,q(X) = Γ
− 1
p

σ

(∣∣∣∣Γ
1
q
σ (X)

∣∣∣∣
q
p

)
(8)

for X ∈Md. It can be verified that

‖Ip,q(X)‖pp,σ = ‖X‖qq,σ
for any X ∈ Md. As in the commutative theory, the noncommutative l2-space turns out
to be a Hilbert space, where the weighted scalar product is given by

〈X,Y 〉σ = tr
[
Γσ
(
X†
)
Y
]

(9)

for X,Y ∈Md. With the above notions we can express the sandwiched p-Rényi divergence
(3) for p > 1 in terms of a noncommutative lp-norm as

Dp (ρ‖σ) = 1
p− 1 ln

(
‖Γ−1

σ (ρ) ‖pp,σ
)
. (10)

For a state ρ ∈ Dd the positive matrix Γ−1
σ (ρ) ∈ Md is called the relative density of ρ

with respect to σ. Note that any X ≥ 0 with ‖X‖1,σ = 1 can be written as X = Γ−1
σ (ρ)

for some state ρ ∈ Dd. We will simply call operators X ≥ 0 that satisfy ‖X‖1,σ = 1
relative densities when the reference state is clear.

We refer to [1, 2] and references therein for proofs and more details about the concepts
introduced in this section.
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2.2 Quantum dynamical semigroups
A family of quantum channels, i.e. trace-preserving completely positive maps, {Tt}t∈R+

0
,

Tt :Md →Md, parametrized by a non-negative parameter t ∈ R+
0 is called a quantum

dynamical semigroup if T0 = idd (the identity map in d dimensions), Tt+s = Tt ◦ Ts for
any s, t ∈ R+

0 and Tt depends continuously on t. Any quantum dynamical semigroup can
be written as Tt = etL (see [10, 11]) for a Liouvillian L :Md →Md of the form

L(X) = S(X)− κX −Xκ†,

where κ ∈Md and S :Md →Md is completely positive such that S∗(1d) = κ+κ†, where
S∗ is the adjoint of S with respect to the Hilbert-Schmidt scalar product. We will also
deal with tensor powers of semigroups. For a quantum dynamical semigroup {Tt}t∈R+

with Liouvillian L we denote by L(n) the Liouvillian of the quantum dynamical semigroup
{T⊗nt }t∈R+ .

In the following we will consider quantum dynamical semigroups having a full rank
fixed point σ ∈ D+

d , i.e. the Liouvillian generating the semigroup fulfills L(σ) = 0 (implying
that etL(σ) = σ for any time t ∈ R+

0 ). We call a quantum dynamical semigroup (or the
Liouvillian generator) primitive if it has a unique full rank fixed point σ. In this case for
any initial state ρ ∈ Dd we have ρt = etL(ρ)→ σ as t→∞ (see [12, Theorem 14]).

The notion of primitivity can also be defined for discrete semigroups of quantum chan-
nels. For a quantum channel T : Md → Md we will sometimes consider the discrete
semigroup {Tn}n∈N. Similar to the continuous case we will call this semigroup (or the
channel T ) primitive if there is a unique full rank state σ ∈ D+

d with lim
n→∞T

n(ρ) = σ for

any ρ ∈ Dd. We refer to [12] for other characterizations of primitive channels and sufficient
conditions for primitivity.

To study the convergence of a primitive semigroup to its fixed point σ we introduce the
time evolution of the relative density Xt = Γ−1

σ (ρt). For any Liouvillian L : Md → Md

with full rank fixed point σ ∈ D+
d define

L̂ = Γ−1
σ ◦ L ◦ Γσ (11)

to be the generator of the time evolution of the relative density. Indeed it can be checked
that

Xt = Γ−1
σ

(
etL (ρ)

)
= etL̂ (X)

for any state ρ ∈ Dd and relative density X = Γ−1
σ (ρ). Note that ‖Xt‖1,σ = ‖X‖1,σ = 1

for all t ∈ R+
0 . Clearly the semigroup generated by L̂ is completely positive and unital,

but it is not trace-preserving in general. In the special case where

Γ−1
σ ◦ L ◦ Γσ = L∗, (12)

the map L̂ generates the adjoint of the initial semigroup, i.e. the corresponding time
evolution in Heisenberg picture. A semigroup fulfilling (12) is called reversible (or said
to fulfill detailed balance), and in this case the Liouvillian L̂ is a Hermitian operator
w.r.t. the σ-weighted scalar product. We again refer to [2, 1] for more details on these
topics. For discrete semigroups we similarly set T̂ = Γ−1

σ ◦ T ◦ Γσ.
One important class of semigroups are Davies generators, which describe a system

weakly coupled to a thermal bath under an appropriate approximation [13]. Describing
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them in detail goes beyond the scope of this article and here we will only review their
most basic properties. We refer to [14, 15, 16] for more details.

Suppose that we have a system of dimension d weakly coupled to a thermal bath
of dimension dB at inverse inverse temperature β > 0. Consider a Hamiltonian Htot ∈
Md ⊗MdB of the system and the bath of the form

Htot = H ⊗ 1B + 1S ⊗HB +HI ,

where H ∈Md is the Hamiltonian of the system, HB ∈MdB of the bath and

HI =
∑

α

Sα ⊗Bα ∈Md ⊗MdB (13)

describes the interaction between the system and the bath. Here the operators Sα and
Bα are self-adjoint. Let {λk}k∈[d] be the spectrum of the Hamiltonian H. We then
define the Bohr-frequencies ωi,j to be given by the differences of eigenvalues of H, that
is, ωi,j = λi − λj for different values of λ. We will drop the indices on ω from now on to
avoid cumbersome notation, as is usually done. Moreover, we introduce operators Sα(ω)
which are the Fourier components of the coupling operators Sα and satisfy

eiHtSαe−iHt =
∑

ω

Sα(ω)eiωt.

The canonical form of the Davies generator at inverse temperature β > 0 in the Heisenberg
picture, L∗β, is then given by

L∗β(X) = i[H,X] +
∑

ω,α

L∗ω,α(X),

where

L∗ω,α(X) = Gα(ω)
(
Sα(ω)†XSα(ω)− 1

2{S
α(ω)†Sα(ω), X}

)
.

Here {X,Y } = XY + Y X is the anticommutator and Gα : R→ R are the transition rate
functions. Their form depends on the choice of the bath model [15]. For our purposes it will
be enough to assume that these are functions that satisfy the KMS condition [17], that is,
Gα(−ω) = Gα(ω)e−βω. Although this presentation of the Davies generators is admittedly
very short, for our purposes it will be enough to note that under some assumptions on
the operators Sα(ω) [18, 19] and on the transition rate functions, the semigroup generated

by Lβ converges to the thermal state e−βH

tr(e−βH) and is reversible [17]. In the examples

considered here this will always be the case.

2.3 Logarithmic Sobolev inequalities and the spectral gap
To study hypercontractive properties and convergence times of primitive quantum dy-
namical semigroups the framework of logarithmic Sobolev inequalities has been developed
in [1, 2]. Here we will briefly introduce this theory. For more details and proofs see [1, 2]
and the references therein.

We define the operator valued relative entropy (for p > 1) of X ∈M+
d as

Sp(X) = −p d
ds
Ip+s,p (X) |s=0. (14)

With this we can define the p-relative entropy:
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Definition 2.2 (p-relative entropy). For any full rank σ ∈ M+
d and p > 1 we define the

p-relative entropy of X ∈M+
d as

Entp,σ(X) = 〈Iq,p (X) , Sp(X)〉σ − ‖X‖pp,σ ln (‖X‖p,σ) , (15)

where 1
q + 1

p = 1. For p = 1 we can consistently define

Ent1,σ(X) = tr[Γσ(X) (ln (Γσ(X))− ln(σ))].

by taking the limit p→ 1.

The p-relative entropy is not a divergence in the information-theoretic sense (e.g. it
is not contractive under quantum channels). It was originally introduced to study hyper-
contractive properties of semigroups in [1], where they also show it is positive for positive
operators. There is however a connection to the quantum relative entropy as

Entp,σ
(
Ip,1

(
Γ−1
σ (ρ)

))
= 1
p
D (ρ‖σ) .

As a special case of the last equation we have

Ent1,σ
(
Γ−1
σ (ρ)

)
= D(ρ‖σ).

We may also use it to obtain an expression for Ent2,σ:

Ent2,σ(X) = tr



(

Γ
1
2
σ (X)

)2
ln


Γ

1
2
σ (X)
‖X‖2,σ




− 1

2tr

[(
Γ

1
2
σ (X)

)2
ln(σ)

]
.

We also need Dirichlet forms to define logarithmic Sobolev inequalities:

Definition 2.3 (Dirichlet form). Let L :Md →Md be a Liouvillian with full rank fixed
point σ ∈ D+

d . For p > 1 we define the p-Dirichlet form of X ∈M+
d as

ELp (X) = − p

2(p− 1)
〈
Iq,p(X), L̂(X)

〉
σ

where 1
p + 1

q = 1 and L̂ = Γ−1
σ ◦ L ◦ Γσ denotes the generator of the time evolution of the

relative density (cf. (11)). For p = 1 we may take the limit p→ 1 and consistently define
the 1-Dirichlet form by

EL1 (X) = −1
2 tr

[
Γσ
(
L̂(X)

)
(ln (Γσ (X))− ln(σ))

]
.

Formally, by making this choice we introduce the logarithmic Sobolev framework for
L̂ (i.e. the generator of the time-evolution of the relative density) instead of L∗. While
this is a slightly different definition compared to [2], where the Heisenberg picture is used,
they are the same for reversible Liouvillians.

In [1] the Dirichlet forms were introduced to study hypercontractive properties of
semigroups. As we will see in Theorem 3.1, they appear naturally when we compute the
entropy production of the Sandwiched Rényi divergences. From Corollary 3.1 we will be
able to infer that the Dirichlet form is positive for positive operators, a fact already proved
in [1]. Both the Entp,σ and the Dirichlet form are intimately related to hypercontractive
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properties of semigroups, as we have for a relative density X, some constant α > 0 and
p(t) = 1 + e2αt that

d

dt
ln
(
‖Xt‖p(t),σ

)
= αeαt

(1 + eαt) ‖Xt‖p(t)p(t),σ

(
Entp(t),σ(Xt)−

1
α
Ep(t)(Xt)

)
,

as shown in [1].
Notice that when working with EL2 we may always suppose the Liouvillian is reversible

without loss of generality. This follows from the fact that

EL2 (X) = −
〈
X, L̂(X)

〉
σ

is invariant under the additive symmetrization L̂ 7→ 1
2
(L∗ + Γ−1

σ ◦ L ◦ Γσ
)

for X ≥ 0.
We can now introduce the logarithmic Sobolev constants:

Definition 2.4 (Logarithmic Sobolev constants). For a Liouvillian L : Md →Md with
full rank fixed point σ ∈ D+

d and p ≥ 1 the p-logarithmic Sobolev constant is defined
as

αp (L) = sup{α ∈ R+ : αEntp,σ(X) ≤ ELp (X) for all X > 0} (16)

As Ent2,σ does not depend on L and, as remarked before, EL2 is invariant under an addi-
tive symmetrization, we may always assume without loss of generality that the Liouvillian
is reversible when working with α2.

For any X ∈M+
d we can define its variance with respect to σ ∈ D+

d as

Varσ (X) = ‖X‖22,σ − ‖X‖21,σ. (17)

This defines a distance measure to study the convergence of the semigroup. Given a
Liouvillian L :Md →Md with fixed point σ ∈ D+

d we define its spectral gap as

λ(L) = sup
{
λ ∈ R+ : λVarσ (X) ≤ EL2 (X) for all X > 0

}
(18)

where L̂ : Md → Md is given by (11). We can always assume the Liouvillian to be
reversible when dealing with the spectral gap, as it again depends on EL2 .

The spectral gap can be used to bound the convergence in the variance (see [20]), as
for any X ∈M+

d we have

d

dt
Varσ(Xt) = 2

〈
L̂ (X) , X

〉
σ

(19)

and so
Varσ (Xt) ≤ e−2λtVarσ (X) . (20)

3 Convergence rates for sandwiched Rényi divergences
In this section we consider the sandwiched Rényi divergences of a state evolving under
a primitive quantum dynamical semigroup and the fixed point of this semigroup. It is
clear that these quantities converge to zero as the time-evolved state approaches the fixed
point. To study the speed of this convergence we introduce a differential inequality, which
can be seen as an analogue of the logarithmic Sobolev inequalities for sandwiched Rényi
divergences.
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3.1 Rényi-entropy production
In [18] the entropy production for the quantum Kullback-Leibler divergence of a Liouvillian
was computed. We will now derive a similar expression for the entropy production for the
p-Rényi divergences for p > 1.

Theorem 3.1 (Derivative of the sandwiched p-Rényi divergence). Let L :Md →Md be
a Liouvillian with full rank fixed point σ ∈ D+

d . For any ρ ∈ Dd and p > 1 we have

d

dt
Dp(etL(ρ)‖σ)

∣∣∣
t=0

= p

p− 1

tr
[(
σ

1−p
2p ρσ

1−p
2p

)p−1
σ

1−p
2p L (ρ)σ

1−p
2p

]

tr
[(
σ

1−p
2p ρσ

1−p
2p

)p] . (21)

Using the relative density X = Γ−1
σ (ρ) and (11) this expression can be written as:

d

dt
Dp(etL(ρ)‖σ)

∣∣∣
t=0

= p

p− 1‖X‖
−p
p,σ

〈
Iq,p(X), L̂ (X)

〉
σ

(22)

with 1
p + 1

q = 1.

Proof. Rewriting the p-Rényi divergence in terms of the relative density X = Γ−1
σ (ρ) and

the corresponding generator L̂ = Γ−1
σ ◦ L ◦ Γσ (see (11)) we have

Dp(etL(ρ)‖σ) = 1
p− 1 ln

(
‖etL̂ (X) ‖pp,σ

)
. (23)

By the chain rule

d

dt
Dp(etLρ‖σ)

∣∣∣
t=0

= 1
p− 1‖X‖

−p
p,σ

(
d

dt
‖etL̂(X)‖pp,σ

) ∣∣∣
t=0

.

Define the curve γ : R+
0 →Md as γ(t) = σ

1
2p etL̂ (X)σ

1
2p and observe that

‖etL̂ (X) ‖pp,σ = tr[γ(t)p].

As the differential of the function X 7→ Xp at A ∈ M+
d is given by pAp−1, another

application of the chain rule yields

d

dt
‖etL̂(X)‖pp,σ

∣∣∣
t=0

= p

〈
γ(0)p−1,

dγ

dt
(0)
〉
.

It is easy to check that dγ
dt (0) = σ

1
2p L̂ (X)σ

1
2p . Inserting this in the above equations and

writing it in terms of the power operator (8) we finally obtain

d

dt
Dp(etL(ρ)‖σ)

∣∣∣
t=0

= p

p− 1‖X‖
−p
p,σ

〈
Iq,p(X), L̂ (X)

〉
σ

with 1
p + 1

q = 1. Expanding this formula gives (21).

By recognizing the p-Dirichlet form in the previous theorem we get:
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Corollary 3.1. Let L : Md → Md be a Liouvillian with full rank fixed point σ ∈ D+
d .

For any ρ ∈ Dd and p > 1 we have

d

dt
Dp(etL(ρ)‖σ)

∣∣∣
t=0

= −2‖X‖−pp,σELp (X) ≤ 0, (24)

where we used the relative density X = Γ−1
σ (ρ).

As we remarked before, Corollary 3.1 implies that the Dirichlet form is always positive
for relative densities. To see this, recall that the divergences contract under quantum

channels [7] and therefore we have that d
dtDp(etL(ρ)‖σ)

∣∣∣
t=0
≤ 0. As ELp (λX) = λpELp (X)

for λ > 0, this shows that it is positive for all positive operators by properly normalizing
X.

3.2 Sandwiched Rényi convergence rates
For any p > 1 we introduce the functional κp :M+

d → R as

κp (X) = 1
p− 1‖X‖

p
p,σ ln

(
‖X‖pp,σ
‖X‖p1,σ

)
(25)

for X ∈ M+
d . For p = 1 we may again take the limit p → 1 and obtain κ1(X) :=

limp→1 κp(X) = Ent1,σ(X). Note that κp is well-defined and non-negative as ‖X‖p,σ ≥
‖X‖1,σ for p ≥ 1. Strictly speaking the definition also depends on a reference state σ ∈ D+

d ,
which we usually omit as it is always the fixed point of the primitive Liouvillian under
consideration.

Given a Liouvillian L : Md → Md with full rank fixed point σ ∈ D+
d it is a simple

consequence of Corollary 3.1 that for ρ 6= σ

d
dtDp(etL(ρ)‖σ)

∣∣∣
t=0

Dp (ρ‖σ) = −2
ELp (X)
κp(X) , (26)

where we used the relative density X = Γ−1
σ (ρ), which fulfills ‖X‖1,σ = 1. This motivates

the following definition.

Definition 3.1 (Entropic convergence constant for p-Rényi divergence). For any primitive
Liouvillian L :Md →Md and p ≥ 1 we define

βp(L) = sup{β ∈ R+ : βκp(X) ≤ ELp (X) for all X > 0}. (27)

Note that as a special case we have α1(L) = β1(L). It should be also emphasized that
the supremum in the previous definition goes over any positive definite X ∈M+

d and not
only over relative densities. However, it is easy to see that we can equivalently write

βp(L) = inf
{ELp (X)
κp(X) : X > 0

}
= inf

{ELp (X)
κp(X) : X > 0, ‖X‖1,σ = 1

}
(28)

as replacing X 7→ X/‖X‖1,σ does not change the value of the quotient ELp (X)/κp(X).
Therefore, to compute βp it is enough to optimize over relative densities (i.e. X > 0
fulfilling ‖X‖1,σ = 1). By inserting βp into (26) we have

d

dt
Dp(etL(ρ)‖σ) ≤ −2βp(L)Dp

(
etL(ρ)‖σ

)
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for any ρ ∈ Dd and Liouvillian L : Md → Md with full rank fixed point σ ∈ D+
d . By

integrating this differential inequality we get

Theorem 3.2. Let L :Md →Md be a Liouvillian with full rank fixed point σ ∈ D+
d . For

any p ≥ 1 and ρ ∈ Dd we have

Dp

(
etL(ρ)‖σ

)
≤ e−2βp(L)tDp (ρ‖σ) (29)

where βp(L) is the constant defined in (27).

3.3 Computing βp in simple cases
In general it is not clear how to compute βp and it does not depend on spectral data
of L alone. This is not surprising, as the computation of the usual logarithmic Sobolev
constants α2 or α1 is also challenging and the exact values are only known for few Liou-
villians [21, 2, 22]. In the following we compute β2 for the depolarizing semigroups.

Theorem 3.3 (β2 for the depolarizing Liouvillian). Let Lσ : Md → Md denote the
depolarizing Liouvillian given by Lσ(ρ) = tr (ρ)σ − ρ with fixed point σ ∈ D+

d . Then

β2(Lσ) =
1− 1

‖σ−1‖∞
ln (‖σ−1‖∞) . (30)

Proof. Without loss of generality we can restrict to X > 0 with ‖X‖1,σ = 1 in the
minimization (28). Observe that the generator of the time evolution of the relative density
(see (11)) for the depolarizing Liouvillian is

L̂σ(X) = tr
(
σ

1
2Xσ

1
2
)
1−X.

An easy computation yields ELσ2 (X) = ‖X‖22,σ − 1 and so

ELσ2 (X)
κ2(X) =

1− 1
‖X‖2

2,σ

ln
(
‖X‖22,σ

) .

As the function x 7→ 1− 1
x

ln(x) is monotone decreasing for x ≥ 1, we have

inf
X>0

ELσ2 (X)
κ2(X) =

1− 1
‖σ−1‖∞

ln (‖σ−1‖∞) , (31)

where we used
sup

X≥0,‖X‖1,σ=1
‖X‖22,σ = ‖σ−1‖∞,

which easily follows from Lemma 2.1 by exponentiating both sides of Equation (5) and
using the correspondence between relative densities and states.

The exact value of α2(Lσ) is open to the best of our knowledge, but in the case of σ = 1
d

we have α2
(
L 1
d

)
= 2(1−2/d)

ln(d−1) [2, Theorem 24], which is of the same order of magnitude as

β2 for these semigroups.
Computing βp for p 6= 2 seems not to be straightforward even for depolarizing channels,

but for the semigroup depolarizing to the maximally mixed state we can at least provide
upper and lower bounds.
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Theorem 3.4 (βp for the Liouvillian depolarizing to the maximally mixed state). Let
L(ρ) = tr(ρ)1d − ρ. For p ≥ 2 we have

p

2(p− 1)
1

ln(d) ≥ βp(L) ≥ p

2(p− 1)
d
p−1
p − 1

d
p−1
p ln(d)

.

Proof. The Dirichlet Form of this Liouvillian for X > 0 with ‖X‖1, 1
d

= 1 is given by

ELp (X) = p

2(p− 1)(‖X‖p
p, 1
d

− ‖X‖p−1
p−1, 1

d

).

Dividing this expression by κp(X) we get

ELp (X)
κp(X) =

1−
‖X‖p−1

p−1, 1
d

‖X‖p
p, 1
d

2 ln
(
‖X‖p, 1

d

) . (32)

By the monotonicity of the weighted norms, we have

‖X‖p−1
p−1, 1

d

‖X‖p
p, 1
d

≤ 1
‖X‖p, 1

d

and so

ELp (X)
κp(X) ≥

‖X‖p, 1
d
− 1

2‖X‖p, 1
d

ln
(
‖X‖p, 1

d

) (33)

The expression on the right-hand side of (33) is monotone decreasing in ‖X‖p, 1
d

and so
the infimum is attained at

sup
‖X‖1, 1

d
=1
‖X‖p, 1

d
= d

p−1
p ,

which again easily follows from Lemma 2.1. The upper bound follows from (32) as

ELp (X)
κp(X) ≤

1
2 ln

(
‖X‖p, 1

d

) .

which is again monotone decreasing in ‖X‖p, 1
d
.

From the relations between LS constants [2, Proposition 13], it follows that for the LS

constants of the depolarizing channels we have αp
(
L 1
d

)
≥ α2

(
L 1
d

)
= 2(1−2/d)

ln(d−1) for p ≥ 1.

The constants βp and αp are therefore of the same order in this case for small p ≥ 2.

4 Comparison with similar quantities
4.1 Comparison with spectral gap
Here we show how βp, see (27), compares to the spectral gap (18) of a Liouvillian. This is
motivated by similar results for logarithmic Sobolev constants, where it was shown [2, The-
orem 16] that α1(L) ≤ λ(L) for reversible semigroups, a result we recover and generalize
here.
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Theorem 4.1 (Upper bound spectral gap). Let L : Md → Md be a primitive and
reversible Liouvillian with full rank fixed point σ ∈ D+

d and p ≥ 1. Then

βp (L) ≤ λ (L) . (34)

Proof. Let (si)di=1 denote the spectrum of σ1/p and choose a unitary U such that

σ1/p = Udiag (s1, s2, . . . , sd)U †.

As L is reversible, there is a self-adjoint eigenvector X ∈ Md of L̂ corresponding to the
spectral gap, i.e. L̂(X) = −λ(L)X. Let ε0 > 0 be small enough such that Yε = 1d + εX
is positive for any |ε| ≤ ε0. For |ε| ≤ ε0 we use Lemma A.1 of the appendix to show

βp(L) ≤ E
L
p (Yε)
κp(Yε)

=
λ(L) p

2(p−1)

(
2ε2∑1≤i≤j≤d fp(si, sj)bijbji +O(ε3)

)

ε2
p−1

(
p
∑

1≤i≤j≤d fp(si, sj)bijbji
)

+O(ε3)
(35)

where bij = (U †σ1/2pXσ1/2pU)ij and

fp(x, y) =
{

(p− 1)xp−2 if x = y
xp−1−yp−1

x−y else.
(36)

Observe that fp(si, sj) > 0 for si, sj > 0. Moreover, as U †σ1/2pXσ1/2pU is non-zero and
self-adjoint we have bijbji ≥ 0 for all i, j and this inequality is strict for at least one choice
of i, j. Therefore, the terms of second order in ε in the numerator and denominator of
(35) are strictly positive, and we obtain λ(L) as the limit of the quotient as ε→ 0.

A similar argument as the one given in the previous proof shows that all real, nonzero
elements of the spectrum of L̂ are upper bounds to βp without invoking reversibility.

Note that in the case of p = 2 (see the discussion after (16)) we may assume that the
Liouvillian is reversible without loss of generality and drop the requirement of reversibility
in the previous theorem. Alternatively, we can obtain the same statement directly from a
simple functional inequality. In this case we can also give a lower bound on β2 in terms
of the spectral gap.

Theorem 4.2 (Upper and lower bound for β2). Let L : Md → Md be a primitive
Liouvillian with full rank fixed point σ ∈ D+

d . Then

λ (L)
1− 1

‖σ−1‖∞
ln (‖σ−1‖∞) ≤ β2 (L) ≤ λ (L) . (37)

To prove Theorem 4.2 we need the following Lemma.

Lemma 4.1. For any X ∈Md we have

Varσ(X) ≤ κ2(X).
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Proof. For X > 0 dividing both sides of the inequality by ‖X‖21,σ yields

‖X‖22,σ
‖X‖21,σ

− 1 ≤ ‖X‖
2
2,σ

‖X‖21,σ
ln
(
‖X‖22,σ
‖X‖21,σ

)
.

This follows from the elementary inequality x − 1 ≤ x ln(x) for x ≥ 1, where we use the
ordering ‖X‖2,σ ≥ ‖X‖1,σ for any X ∈Md.

Proof of Theorem 4.2. Using the definition of β2 (see (27)) and Lemma 4.1 yields

β2Varσ(X) ≤ β2κ2(X) ≤ EL2 (X).

Now the variational definition of λ(L) (see (18)) implies the second inequality of (37).
To prove the first inequality of (37) consider the depolarizing Liouvillian

Lσ(X) = tr(X)σ −X.

By Theorem 3.3 we have
1− 1

‖σ−1‖∞
ln (‖σ−1‖∞)κ2(X) ≤ ELσ2 (X)

As ELσ2 (X) = Varσ(X), we have ELσ2 (X) ≤ 1
λ(L)EL2 (X) by the variational definition of

λ(L) (see (18)). Inserting this in the above inequality finishes the proof.

4.2 Comparison with logarithmic Sobolev constants
Here we show how βp, see (27), compares to the logarithmic Sobolev constant αp.

Theorem 4.3. Let L : Md → Md be a primitive Liouvillian with full rank fixed point
σ ∈ D+

d . Then for any p ≥ 1 we have

βp (L) ≥ αp (L)
p

. (38)

We will need the following Lemma.

Lemma 4.2. For any full rank state σ ∈ D+
d , any p > 1 and X ∈ M+

d with ‖X‖1,σ = 1
we have

Entp,σ(X) ≥ κp(X)
p

. (39)

Proof. The function p 7→ Dp (ρ‖σ) is monotonically increasing [3, 7] and differentiable
(as the noncommutative lp-norm is differentiable in p [1, Theorem 2.7]). Thus, with
f : R+ → R given by f(t) = t+ p we have

0 ≤ ‖X‖pp,σ
d

dt

(
Df(t) (ρ‖σ)

) ∣∣∣
t=0

= − 1
(p− 1)2 ‖X‖

p
p,σ ln

(
‖X‖pp,σ

)
+ 1
p− 1

d

dt

(
‖X‖f(t)

f(t),σ

) ∣∣∣
t=0

.
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where we used the relative density X = Γ−1
σ (ρ). The remaining derivative in the above

equation has been computed in [1, Theorem 2.7] and we have

d

dt

(
‖X‖f(t)

f(t),σ

) ∣∣∣
t=0

= 〈Iq,p(X), Sp(X)〉σ

with the operator valued entropy Sp defined in (14) and 1
p+ 1

q = 1. Inserting this expression
in the above equation we obtain

1
p− 1‖X‖

p
p,σ ln

(
‖X‖pp,σ

)
≤ 〈Iq,p(X), Sp(X)〉σ . (40)

for any X ∈ M+
d with ‖X‖1,σ = 1, i.e. for any X = Γ−1

σ (ρ) for some state ρ ∈ Dd. Now
we get

pEntp,σ(X) = p 〈Iq,p(X), Sp(X)〉σ − ‖X‖pp,σ ln(‖X‖pp,σ)

≥ p

p− 1‖X‖
p
p,σ ln(‖X‖pp,σ)− ‖X‖pp,σ ln(‖X‖pp,σ)

= κp(X)

where we used (40).

Proof of Theorem 4.3. There is nothing to show for p = 1 as α1(L) = β1(L) and we can
assume p > 1. For X ∈M+

d with ‖X‖1,σ = 1 we can use Lemma 4.2 and the definition of
αp (L) to compute

αp (L)
p

κp(X) ≤ αp (L) Entp,σ(X) ≤ ELp (X).

By the variational definition (27) of βp the claim follows.

Theorem 4.3 will be applied in Section 5 to obtain bounds on the mixing time of a
Liouvillian with a positive logarithmic Sobolev constant without invoking any form of
lp-regularity (see [2]). As usually a logarithmic Sobolev is implied by a hypercontractive
inequality [1], we would like to remark that one can also make a similar statement as that
of Theorem 4.3 from a hypercontractive inequality. One can easily show that

||etL̂||p(t)→p,σ ≤ 1 (41)

for p(t) = (p− 1)e−αpt + 1 implies that βp(L) ≥ αp
p .

5 Mixing times
In this section we will introduce the quantities of interest and prove the building blocks
to prove mixing times from the entropy production inequalities of the last sections, dis-
tinguishing between continuous and discrete time semigroups. We will mostly focus on
β2, as this seems to be the most relevant constant for mixing time applications. This is
justified by the fact that the underlying Dirichlet form is a quadratic form and the entropy
related to it stems from a Hilbert space norm. Moreover, as the same Dirichlet form is
also involved in computations of the spectral gap, it could be easier to adapt existing
techniques, such as the ones developed in [23, 19].
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Definition 5.1 (Mixing times). For either I = R+ or I = N let {Tt}t∈I be a primitive
semigroup of quantum channels with fixed point σ ∈ D+

d . We define the l1 mixing time
for ε > 0 as

t1(ε) = inf{t ∈ I : ‖Tt(ρ)− σ‖1 ≤ ε for all ρ ∈ Dd}.
Similarly we define the l2 mixing time for ε > 0 as

t2(ε) = inf{t ∈ I : Varσ
(
T̂t (X)

)
≤ ε for all X ∈M+

d with ‖X‖1,σ = 1}.

In the continuous case I = R+ we will often speak of the mixing times of the Liouvillian
generator of a quantum dynamical semigroup which we identify with the mixing times of
the semigroup according to the above definition.

5.1 Mixing in Continuous Time
It is now straightforward to get mixing times from the previous results.

Theorem 5.1 (Mixing time from entropy production). Let L :Md →Md be a primitive
Liouvillian with fixed point σ ∈ D+

d . Then

t1(ε) ≤ 1
2βp(L) ln

(
2 ln

(‖σ−1‖∞
)

ε2

)
.

Proof. From (6) and Lemma 2.1 we have

ln
(
‖σ−1‖∞

)
e−2βp(L)t ≥ 1

2‖e
tL(ρ)− σ‖21. (42)

for any ρ ∈ Dd. The claim follows after rearranging the terms.

Using Theorem 4.3 we can lower bound βp in terms of the usual logarithmic Sobolev
constant αp. Combining this with Theorem 5.1 shows the following Corollary.

Corollary 5.1 (Mixing time bound from logarithmic Sobolev inequalities). Let L :Md →
Md be a primitive Liouvillian with fixed point σ ∈ D+

d . Then

t1(ε) ≤ p

2αp(L) ln
(

2 ln
(‖σ−1‖∞

)

ε2

)
. (43)

By Corollary 5.1 a nonzero logarithmic Sobolev constant always implies a nontrivial
mixing time bound. One should say that the same bound was showed in [2] for p = 2,
however under additional assumptions (specifically lp-regularity [2]) on the Liouvillian in
question. While these assumptions have been shown for certain classes of Liouvillians (in-
cluding important examples like Davies generators and doubly stochastic Liouvillians [2])
they have not been shown in general. Moreover, the bound in Theorem 5.1 clearly does not
depend on p and one could in principle optimize over all βp. However, as the computations
in subsection 3.3 already indicate, it does not seem to be feasible to compute or bound βp
for p 6= 2 even in simple cases and one will probably only work with β2 in applications.

The bound from Corollary 5.1 also has the right scaling properties needed in recent
applications of rapid mixing, such as the results in [24, 25]. In particular, together with
the results in [26], the last Corollary shows that the hypothesis of Theorem 4.2 in [24] is
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always satisfied for product evolutions and not only for the special classes considered in
[2].

One may also use these techniques to get mixing times in the l2 norms which are
stronger than the ones obtained just by considering that β2 is a lower bound to the
spectral gap.

Theorem 5.2 (l2-mixing time bound). Let L : Md → Md be a Liouvillian with fixed
point σ ∈ D+

d . Then

t2(ε) ≤ 1
2β2(L) ln

(
ln
(‖σ−1‖∞

)

ln(1 + ε)

)
. (44)

Proof. For X > 0 with ‖X‖1,σ = 1 we have Varσ(X) = ‖X −1‖22,σ = ‖X‖22,σ − 1 and thus

κ2(X) = (1 + Varσ(X)) ln (1 + Varσ(X)) .

In the following let Xt = etL̂ (X) denote the time evolution of the relative density X.
Using (19) and the definition of β2(L) (see (27)) we obtain

d

dt
Varσ(Xt) = −2EL2 (Xt) ≤ −2β2(L)(1 + Varσ(Xt)) ln(1 + Varσ(Xt)).

Integrating this differential inequality we obtain

ln
( ln(1 + Varσ(X))

ln(1 + ε)

)
≤

t2(ε)∫

0

1
(1 + Varσ(Xt)) ln (1 + Varσ(Xt))

[
d

dt
Varσ(Xt)

]
dt

≤ −2β2t2(ε).

As 1 + Varσ(X) ≤ ‖σ−1‖∞, the claim follows after rearranging the terms.

In the remaining part of the section we will discuss a converse to the previous mixing
time bounds, i.e. a lower bound on the logarithmic Sobolev constant in terms of a mixing
time. This excludes the possibility of a reversible semigroup with both small β2 and short
mixing time with respect to the l2 distance. For this we generalize [21, Corollary 3.11] to
the noncommutative setting.

Theorem 5.3 (LS inequality from l2 mixing time). Let L : Md → Md be a primitive,
reversible Liouvillian with fixed point σ ∈ D+

d . Then

1
2 ≤ α2 (L) t2

(
e−1

)
≤ 2β2 (L) t2

(
e−1

)
. (45)

Moreover, this inequality is tight.

Proof. We refer to Appendix B for a proof.

As remarked in [21], even the classical result does not hold anymore if we drop the
reversibility assumption. Therefore, this assumption is also needed in the noncommutative
setting. By considering a completely depolarizing channel it is also easy to see that no
such bound can hold in discrete time.

Theorem 5.3 implies that for reversible Liouvillians β2 and α2 cannot differ by a large
factor. More specifically we have the following corollary.
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Corollary 5.2. Let L :Md →Md be a primitive, reversible Liouvillian with fixed point
σ ∈ D+

d . Then

2β2(L) ≥ α2(L) ≥ β2(L) ln
(

ln
(‖σ−1‖∞

)

ln(1 + e−1)

)
. (46)

Proof. We showed the first inequality in Theorem 4.3. The second inequality follows by
combining (45) and (44).

5.2 Mixing in Discrete Time
In this section we will obtain mixing time bounds and also entropic inequalities for discrete-
time quantum channels T :Md →Md. We will then use these techniques to derive mixing
times for random local channels, which we will define next. These include channels that
usually appear in quantum error correction scenarios, such as random Pauli errors on
qubits [27, Chapter 10]. They will be based on the following quantity:

Definition 5.2. For a primitive quantum channel T : Md → Md with full rank fixed
point σ ∈ D+

d , we define

βD(T ) = β2(T ∗T̂ − idd). (47)

Here we used T̂ = Γ−1
σ ◦ T ◦ Γσ.

The definition of βD(T ) can be motivated by the following improved data-processing
inequality for the 2-sandwiched Rényi divergence.

Theorem 5.4. Let T : Md → Md be a primitive quantum channel with full rank fixed
point σ ∈ D+

d . Then for all ρ ∈ Dd we have

D2 (T (ρ)‖σ) ≤ (1− βD(T ))D2 (ρ‖σ) . (48)

Proof. Let X = σ−
1
2 ρσ−

1
2 denote the relative density of ρ with respect to σ. Observe that

the 2-Dirichlet form (see Definition 2.3) of the semigroup L = T ∗T̂ − idd can be written
as

EL2 (X) = ‖X‖22,σ − ‖T̂ (X)‖22,σ.
From the definition of β2(L) (see (27)) it follows that

‖X‖22,σ − ‖T̂ (X)‖22,σ ≥ β2κ2(X),

which is equivalent to

ln(‖T̂ (X)‖22,σ)− ln(‖X‖22,σ) ≤ ln(1− β2 ln(‖X‖22,σ).

Using the elementary inequality ln(1−β2 ln(‖X‖22,σ) ≤ −β2 ln(‖X‖22,σ), that ln(‖T̂ (X)‖22,σ) =
D2(T (ρ)‖σ) and ln(‖X‖22,σ) = D2(ρ‖σ) hold, the statement of the theorem follows after
rearranging the terms.

One should note that, unlike in Theorem 3.2, the constant βD is not optimal in (48). As

an example take T (ρ) = tr[ρ]1dd for which βD(T ) = 1−d−1

ln(d) , but D2
(
T (ρ)‖1dd

)
= 0. Also,

βD(T ) > 0 is not a necessary condition for primitivity, as there are primitive quantum
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channels that are not strict contractions with respect to D2. To see this, consider the map
T :M2 →M2 which acts as follows on Pauli operators:

T (1) = 1, T (σx) = 0, T (σy) = 0 and T (σz) = σx.

One can check that this is a a primitive quantum channel with T 2(ρ) = 1
2 for any state

ρ ∈ Dd. However, T maps the pure state 1
2(1 + σz) to the pure state 1

2(1 + σx), which
implies that D2 does not strictly contract under T . We can now prove the following bound
on the discrete mixing time.

Theorem 5.5 (Discrete mixing time). Let T :Md →Md be a primitive quantum channel
with full rank fixed point σ ∈ D+

d and βD(T ) > 0. Then

t1(ε) ≤ − 1
ln(1− βD(T )) ln

(
2 ln

(‖σ−1‖∞
)

ε2

)
.

Proof. By Theorem 5.4 we have

D2(Tn(ρ)‖σ) ≤ (1− βD(T ))nD2(ρ‖σ).

for any ρ ∈ Dd. The claim then follows from (6) and Lemma 2.1.

Convergence results for primitive continuous-time semigroups can often be lifted to
their tensor powers. In discrete time a similar result holds for the following class of
channels:

Definition 5.3 (Random Local Channels). For a quantum channel T : Md → Md and
probabilities p = (p1, . . . , pn) with pi ≥ 0 and ∑

i pi = 1 we define a random local
channel T (n)

p :M⊗nd →M⊗nd by

T
(n)
p =

n∑

i=1
pi id⊗i−1

d ⊗ T ⊗ id⊗n−id . (49)

The previous definition can be generalized to the case where not all local channels are
identical, i.e. if we have Ti :Md →Md acting on the ith system in the expression (49).
As long as the local channels are all primitive our results also hold for this more general
class of channels. However, for simplicity we will restrict here to the above definition.

Theorem 5.6. Let T : Md → Md be a primitive quantum channel with full rank fixed
point σ ∈ D+

d such that the Liouvillian L̂ = T ∗T̂ − idd fulfills β2
(
L(n)

)
≥ q for some q > 0

and all n ∈ N. Then for any n ∈ N and probabilities p = (p1, . . . , pn) with pi ≥ 0 and∑
i pi = 1 we have

D2(T (n)
p (ρ)‖σ⊗n) ≤ (1− qp2

min)D2(ρ‖σ⊗n), (50)

for any ρ ∈ Ddn and where pmin = min pi.

Proof. By Theorem 5.4 it is enough to show that βD(Tp) ≥ qp2
min.

Observe that the Dirichlet form of (T (n)
p )∗T̂ (n)

p − idd is given by

EL2 (X) =
∑

i 6=j
pipj

〈
X − T ∗i T̂j(X), X

〉
σ⊗n

+
∑

i

p2
i

〈
X − T ∗i T̂i(X), X

〉
σ⊗n
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where the map T ∗i T̂j acts as T ∗ on the i-th system, T̂ on the j-th and as the identity
elsewhere. As T ∗i T̂j ≤ idd with respect to 〈·, ·〉σ⊗n we have

EL2 (X) ≥
∑

i

p2
i

〈
X − T ∗i T̂i(X), X

〉
σ⊗n
≥ p2

minEL
(n)

2 (X).

From the comparison inequality EL2 ≥ p2
minEL

(n)
2 and the assumption β2

(
L(n)

)
≥ q it then

follows that βD(Φ) ≥ qp2
min.

As an application we can bound the entropy production and the mixing time in a
system of n qubits affected (uniformly) by random Pauli errors. The time evolution of
this system is given by the channel Tn :M⊗n2 →M⊗n2 given by

Tn = 1
n

n∑

i=1
id⊗i−1

2 ⊗ T ⊗ id⊗n−i2 (51)

with T (ρ) = tr(ρ)12 .

Theorem 5.7. For Tn defined as in equation (51) we have

D2

(
Tn(ρ)‖12n

2n
)
≤
(

1− 1
2n2

)
D2

(
ρ‖12n

2n
)
.

for any ρ ∈ D2n.

Proof. From [2] it is known that
α2

(
L(n)

1
2

)
= 1.

Now combining Theorem 4.3 and Theorem 5.6 gives

βD(Tn) ≥ 1
2n2α2

(
L(n)

1
2

)
.

Corollary 5.3. Let Tn be defined as in (51). Then we have

t1(ε) ≤ − 1
ln
(
1− 1

2n2

) ln
(
n

ε2

)
. (52)

Proof. This follows directly from the previous theorem and Theorem 5.5.

6 Strong converse bounds for the classical capacity
When classical information is sent via a quantum channel, the classical capacity is the
supremum of transmission rates such that the probability for a decoding error vanishes in
the limit of infinite channel uses. In general it is not possible to retrieve the information
perfectly when it is sent over a finite number of uses of the channel, and the probability
for successful decoding will be smaller than 1. Here we want to derive bounds on this
probability for quantum dynamical semigroups. More specifically we are interested in
strong converse bounds on the classical capacity. An upper bound on the capacity is
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called a strong converse bound if whenever a transmission rate exceeds the bound the
probability of successful decoding goes to zero in the limit of infinite channel uses.

We refer to [27, Chapter 12] for the exact definition of the classical capacity and to
[28, 29, 30, 4, 31] for more details on strong converses and strong converse bounds.

In [4] the following quantity was used to study strong converses.

Definition 6.1 (p-information radius). Let T : Md → Md be a quantum channel. The
p-information radius T is defined as1

Kp(T ) = 1
ln(2) min

σ∈Dd
max
ρ∈Dd

Dp(T (ρ)‖σ).

We will often refer to a (m,n, p)-coding scheme for classical communication using a
quantum channel T . By this we mean a coding-scheme for the transmission of m classical
bits via n uses of the channel T for which the probability of successful decoding is p (see
again [27, Chapter 12] for an exact definition). The following theorem shown in [4, Section
6] relates the information radius and the probability of successful decoding.

Theorem 6.1 (Bound on the success probability in terms of information radius). Let
T : Md → Md be a quantum channel, n ∈ N and R ≥ 0. For any (nR, n, psucc)-coding
scheme for classical communication via T we have

psucc ≤ 2−n
(
p−1
p

)
(R− 1

n
Kp(T⊗n)). (53)

We will now apply the methods developed in the last sections to obtain strong converse
bounds on the capacity of quantum dynamical semigroups.

Theorem 6.2. Let L : Md → Md be a primitive Liouvillian with full rank fixed point
σ ∈ D+

d such that for some p ∈ (1,∞) there exists c > 0 fulfilling βp(L(n)) ≥ c for all
n ∈ N. Then for any (nR, n, psuch)-coding scheme for classical communication via the
quantum dynamical semigroup Tt = etL we have

psucc ≤ 2−n
(
p−1
p

)
(R−e−2ct log(‖σ−1‖∞)).

Proof. Using Theorem 3.2 and Lemma 2.1 we have

Kp(T⊗nt ) ≤ 1
ln(2) max

ρ∈Ddn
Dp(T⊗nt (ρ)‖σ) ≤ ne−2βp(L(n))t log(‖σ−1‖∞).

Now Theorem 6.1 together with the assumption βp(L(n)) ≥ c finishes the proof.

Together with Theorem 4.3 the previous theorem shows that a quantum memory can
only reliably store classical information for small times when it is subject to noise described
by a quantum dynamical semigroup with “large” logarithmic Sobolev constant, as we will
see more explicitly later in Section 7. Moreover, we can use the results from [26] to give
a universal lower bound to the decay of the capacity in terms of the spectral gap and the
fixed point.

1The ln(2) factor is due to our different choice of normalization for the divergences.
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Corollary 6.1. Let L : Md → Md be a primitive Liouvillian with full rank fixed point
σ ∈ D+

d and spectral gap λ(L). Then for any (nR, n, psuch)-coding scheme for classical
communication via the quantum dynamical semigroup Tt = etL we have

psuch ≤ 2−
n
2 (R−e−k(λ,σ)t log(‖σ−1‖∞))

where k(λ, σ) := λ
2(ln(d4‖σ−1‖∞)+11) .

Proof. It was shown in [26, Theorem 9] that α2(L(n)) ≥ 2k(λ(L), σ) for all n ∈ N. Using
Theorem 4.3 we have β2(L(n)) ≥ k(λ(L), σ) for all n ∈ N. Together with Theorem 6.2
this gives the claim.

For unital semigroups, i.e. for σ = 1d
d , one can improve the bound from the previous

theorem slightly using (see [32, Theorem 3.3])

k

(
λ,
1d

d

)
= λ(1− 2d−2)

2(ln(3) ln(d2 − 1) + 2(1− 2d−2) (54)

For d = 2 we even have k(λ, 1d2 ) = λ
2 (see [2]).

7 Examples of bounds for the classical capacity of Semigroups
We will now apply the estimate on the capacity given by Corollary 6.1 to some examples
of semigroups. Here C(T ) will denote the classical capacity of a quantum channel T .

7.1 Depolarizing Channels
In [5] it is shown that for L 1

d
(X) = tr(X)1d −X we have

C

(
e
tL 1

d

)
= log(d) +

(
e−t + c(t, d)

)
log

(
e−t + c(t, d)

)
+ (d− 1)c(t, d) log (c(t, d)) (55)

with c(t, d) = (1 − e−t)d−1. In [30] the strong converse property was established. The
semigroup generated by L 1

d
is therefore a natural candidate to evaluate the quality of our

bounds, as determining its classical capacity can be considered a solved problem. As L 1
d

is just the difference of a projection and the identity, it is easy to see that the spectral gap
of L 1

d
is 1, which gives us the upper bound

C

(
e
tL 1

d

)
≤ log(d)e−

(1−2d−2)
2(ln(3) ln(d2−1)+2(1−2d−2) t (56)

for d > 2 and

C

(
e
tL 1

2

)
≤ e− t2 (57)

for d = 2.
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Figure 1: Comparison of the capacity of the depolarizing channel, given in Equation (55), and the
bound obtained by our methods, given in Equation (56).

7.2 Stabilizer Hamiltonians
Estimates on the spectral gap of Davies generators of stabilizer Hamiltonians were obtained
in [19]. In the following we will make the same assumptions as in [19] on the coupling of
the system to the bath. That is, we assume that the operators Sα (see (13)) are given by
single qubit Pauli operators σx, σy or σz. For the transition rates Gα(ω) we only assume
that they satisfy the KMS condition [17], that is, Gα(−ω) = Gα(ω)e−βω. This condition
implies that the semigroup is reversible. Recall that for Davies generators at inverse
temperature β > 0, which we will denote by Lβ, the stationary state is always given by

the thermal state e−βH

tr(e−βH) .

We will not discuss stabilizer Hamiltonians and groups and their connection to error-
correcting codes, but refer to [27, Section 10.5] for more details. Given some stabilizer
group S ⊂ Pn, where Pn is the group generated by the tensor product of n Pauli matrices,
with commutative generators S =< P1, . . . , Pk >, we define the stabilizer Hamiltonian to
be given by

HS = −
k∑

i=1
Pi.

We then have:

Lemma 7.1. Let HS be the stabilizer Hamiltonian of the stabilizer group S =< P1, . . . , Pk >
on n qubits. Denote by σβ = e−βHS

tr(e−βHS ) the corresponding thermal state at inverse inverse
temperature β > 0. Then

‖σ−1
β ‖∞ ≤ 2ne2kβ.

Proof. The eigenvalues of each Pi are contained in {1,−1}, as they are just tensor products
of Pauli matrices. From this we have

−k1 ≤ HS ≤ k1, (58)

as HS is just the sum of k terms such that −1 ≤ Pi ≤ 1. From (58) it follows that

tr
(
e−βHS

)
≤ 2neβk, (59)
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as we have 2n eigenvalues, including multiplicities. Moreover, it also follows that

‖eβHS‖∞ ≤ eβk. (60)

As ‖σ−1
β ‖∞ = ‖eβHS‖∞tr

(
e−βHS

)
, the claim follows by putting (59) and (60) together.

In [19, Theorem 15] they show

λ ≥ h∗

4η∗ e
−2βε̄

for the spectral gap λ of the Davies generators of stabilizer Hamiltonians at inverse tem-
perature β > 0. Here ε̄ is the generalized energy barrier, h∗ is the smallest transition
rate and η∗ the longest path in Pauli space. We refer to [19] for the exact definition of
these parameters. It is important to stress that in general η∗ will scale with the number
of qubits, so our estimate on the capacity will not be very good as the number of qubits
increases.

However, in [19, Theorem 15] they also show the estimate

λ ≥ h∗

4 e
−2βε̄,

for the special case in which the generalized energy barrier can be evaluated with canonical
paths Γ1. We again refer to [19] for the exact definition. For these cases the gap does not
scale with the dimension and our estimate is much better. Summing up we obtain:

Theorem 7.1. Let HS be the stabilizer Hamiltonian of the stabilizer group S =< P1, . . . , Pk >
on n qubits. Moreover, let Lβ be its Davies generator at inverse temperature β > 0. Then
the classical capacity C(etLβ ) is bounded by

C(etLβ ) ≤ (n+ 2βk log(e)) e−r(β,n,k)t,

with

r(β, n, k) = e−2βε̄ h∗

8η∗ (2kβ + 5n ln (2) + 11)

and

r(β, n, k) = e−2βε̄ h∗

8 (2kβ + 5n ln (2) + 11)

in case the generalized energy barrier can be evaluated with canonical paths Γ1. Moreover,
this is a bound in the strong converse sense.

Proof. The claim follows immediately after inserting the bounds from Lemma 7.1 and [19,
Theorem 15,16] into Corollary 6.1.

In [19] one can find more explicit bounds for the parameters ε̄, η∗ and h∗ for some
stabilizer groups. To the best of our knowledge this is the first bound available for the
classical capacity of this class of quantum channels. To make the bound in Theorem 7.1
more concrete, we show what we obtain for the 2D toric code.
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7.3 2D Toric Code
Here we consider the 2D toric code as originally introduced in [33], which is a stabilizer
code. We consider only square lattices: We take an N × N lattice with N2 vertical and
(N+1)2 horizontal edges; associating a qubit to each edge gives a total of n = 2N2+2N+1
physical qubits. The stabilizer operators are N(N + 1) plaquette operators (including the
“open” plaquettes along the rough boundary) and N(N +1) vertex operators, all of which
are independent. It goes beyond the scope of this article to explain the 2D toric code in
detail and we refer to [34, Section 19.4] for a discussion. But from the previous observations
we obtain that we have k = 2N(N + 1) generators for the stabilizer group of the 2D toric
code on n = 2N2 + 2N + 1 qubits. We will make the same assumptions on the the Davies
generators at inverse temperature β > 0 for the toric code as in [19]. These are discussed
in the beginning of Subsection 7.2.

In [35] it was proved that the spectral gap for the Davies generators for the 2D toric
code at inverse temperature β satisfies λ ≥ 1

3e
−8β, a result which was reproved in [19]

using different techniques. We therefore obtain:

Corollary 7.1. Let H be the stabilizer Hamiltonian of the 2D toric code on a N × N
lattice and Lβ be its Davies generator at inverse temperature β > 0. Then the classical
capacity C(etLβ ) is bounded by

C(etLβ ) ≤
(
2N2 + 2N + 1 + log(2)4βN(N + 1)

)
e−r(β,L)t, (61)

with

r(β,N) = e−8β

6 ((10N2 + 10N + 5) ln(2) + 4βN(N + 1)) + 66 .

Moreover, this is a bound in the strong converse sense.

Proof. The claim follows immediately from Lemma 7.1 and the spectral gap estimate of
[35] for the toric code.

From Figure 2 it becomes evident that we cannot retain information in the 2D toric
for long times at small inverse temperatures and that we can get nontrivial estimates even
for very high dimensions, as the size of the gap does not scale with the size of the lattice.
It is conjectured that if the spectral gap of the Davies generators of a Hamiltonian with
local, commuting terms satisfies a lower bound which is independent of the size of the
lattice, then the logarithmic Sobolev 2 constant also satisfies such a bound [36]. As the
Hamiltonian of the 2D toric code is of this form, proving this conjecture would lead to a
bound similar to the one in Corollary 7.1, but with a rate r(β,N) independent of the size
of the lattice. This would of course lead to much better bounds for large lattice sizes.

7.4 Truncated harmonic oscillator
Consider the Hamiltonian of a truncated harmonic oscillator

H =
d∑

n=0
n|n〉〈n| ∈ Md+1.
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Figure 2: Plot for a 5× 5 lattice of the minimum of the bound in Equation (61) and the trivial bound
C(etLβ ) ≤ 2N2 + 2N + 1 = 61 as a function of the inverse temperature and time for the Davies
generator of the 2D toric code.

Suppose that the systems couples to the bath via S = (a+ a†), with

a† =
d∑

n=1

√
n |n〉 〈n− 1| (62)

and the transition rate functionG(x) = (1+e−xβ)−1. Let σβ = e−βH
tr(e−βH) . As the eigenvalues

of e−βH are just a geometric sequence, we have

‖σ−1
β ‖∞ = 1− e−β(d+1)

1− e−β eβd. (63)

In [23, Section V, Example 1] they show

λ ≥ 1
2 min{((1 + e−β)d)−1,

[
(G(1)(

√
d− 1−

√
d)2 +G(−1)(

√
d− 2−

√
d− 1)2)

]
}, (64)

for the spectral gap λ of the Davies generator Lβ of the truncated harmonic oscillator at
inverse temperature β > 0. We will denote the value of the lower bound in Equation (64)
by µ(d, β). As we can compute ‖σ−1

β ‖ exactly and have a bound on the spectral gap from
we can apply Corollary 7.1 to these semigroups.

Note that in this case the bound scales with the dimension. Putting these inequalities
together with the bound given in Corollary 6.1 for the capacity, we have for the classical
capacity of this semigroup:

C(etL) ≤
(

log
(

1− e−β(d+1)

(1− e−β)

)
+ βd log(e)

)
e−r(d,β)t, (65)

with

r(d, β) =
(

8 ln (d+ 1) + 2 ln
(

1− e−β(d+1)

1− e−β

)
+ 2βd+ 22

)−1

µ(d, β). (66)
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Figure 3: Plot of the minimum of the bound in Equation (65) and the trivial bound C(etLβ ) ≤ log(10) '
3.32 as a function of the inverse temperature and time for the classical capacity of the Davies generator
of the truncated harmonic oscillator with d+ 1 = 10.

In this example we see that, as the estimate available on the gap scales with the
dimension, our estimates are not much better than the trivial log(d+1) for high dimensions
unless we are looking at large times.

8 Conclusion and open questions
We have introduced a framework similar to logarithmic Sobolev inequalities to study
the convergence of a primitive quantum dynamical semigroup towards its fixed point in
the distance measure of sandwiched Rényi divergences. These techniques can be used
to obtain mixing time bounds and strong converse bounds on the classical capacity of a
quantum dynamical semigroup. Moreover, these results show that a logarithmic Sobolev
inequality or hypercontractive inequality always implies a mixing time bound without the
assumption of lp-regularity (which is still not known to hold for general Liouvillians [2]).
Although we have some structural results concerning the constants βp, some questions
remain open. For logarithmic Sobolev inequalities it is known that α2 ≤ αp for p ≥ 1 under
the assumption of lp-regularity (see [2]). It would be interesting to investigate if a result
of similar flavor also holds for the βp. In all examples discussed here, β2 and α2 are of the
same order and it would be interesting to know if this is always the case. The framework of
logarithmic Sobolev inequalities has recently been extended to the nonprimitive case [37].
It should be possible to develop a similar theory for the sandwiched Rényi divergences to
get rid of regularity assumptions present in their main results, as we did here for the usual
logarithmic Sobolev constants.

We restricted our analysis to the sandwiched Rényi divergences, as they can be ex-
pressed in terms of relative densities and noncommutative lp-norms. This allowed us to
connect the convergence under the sandwiched divergences to the theory of hypercontrac-
tivity and to use tools from interpolation theory which were vital to prove estimates on
capacities. There are however other noncommutative generalizations of the Rényi diver-
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gences that are known to contract under quantum channels, such as the one discussed
in [38, p. 113]. It would be interesting to explore the entropy production and convergence
under semigroups for this and other families of divergences in future work.

In a similar vein, it would be interesting to investigate the entropy production or
convergence rate for the range 1

2 < p < 1, as the sandwiched Rényi divergences are known
to contract under quantum channels for all p > 1

2 [39]. However, looking closely at the
proof of Theorem 3.1, we see that for p < 1 the sandwiched Rényi divergence is only
differentiable at t = 0 if the initial state has full rank. The study of the convergence of
these divergences for p < 1 therefore requires a different technical approach than that
of this work. Finally, it would of course be relevant to obtain bounds on the βp for
more examples without relying on the estimate based on the spectral gap, such as Davies
generators.
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A Taylor Expansion of the Dirichlet Form
In order to compute the Taylor expansions of the Dirichlet forms and of the noncommu-
tative lp-norms we define fp : R2 → R and gp : R2 → R for p > 1 as

fp(x, y) =
{

(p− 1)xp−2 if x = y
xp−1−yp−1

x−y else
(67)

and

gp(x, y) =





p(p−1)
2 xp−2 if x = y

(p−1)xp−pxp−1y+yp
(x−y)2 else.

(68)

Note that the following identity holds

gp(x, y) + gp(y, x) = pfp(x, y) (69)

for any x, y ∈ R.
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Lemma A.1 (Taylor expansion). Consider a primitive, reversible Liouvillian L :Md →
Md with full rank fixed point σ ∈ D+

d . Let X ∈Md be an eigenvector of L̂ = Γ−1
σ ◦L ◦Γσ

with corresponding eigenvalue λ ∈ R (i.e. L̂(X) = λX) and Yε = 1d + εX. Then we have

ELp (Yε) = p

2(p− 1)


2ε2

∑

1≤i≤j≤d
fp(si, sj)bijbji +O(ε3)


 . (70)

and
κp(Yε) = pε2

p− 1
∑

1≤i≤j≤d
fp(si, sj)bijbji +O(ε3). (71)

Where σ1/p = Udiag (s1, s2, . . . , sd)U † and bij = (U †σ1/2pXσ1/2pU)ij.

Proof. Using that X ∈Md is an eigenvector of L̂ a simple computation gives

ELp (Yε) = pεσ

2(p− 1)tr
(
(A+ εB)p−1B

)

for A = σ1/p and B = σ1/2pXσ1/2p. Note that

dk

dεk
tr
(
(A+ εB)p−1B

) ∣∣∣
ε=0

= tr
(
DkF (A)(B,B, . . . , B)B

)

for the matrix power F :Md →Md given by F (X) = Xp−1. We apply the Daleckii-Krein
formula (see [40] and [41, Theorem 2.3.1.] for the version used here) and obtain

d

dε
tr
(
(A+ εB)p−1B

) ∣∣∣
ε=0

=
d∑

i=1

d∑

j=1
fp(si, sj)bijbji.

Using that
tr
(
(A+ εB)p−1B

) ∣∣∣
ε=0

= 〈1d, X〉σ = 0

by the orthogonality of eigenvectors, and that fp(x, y) = fp(y, x) for any x, y ∈ R we
obtain (70).

To obtain (71) we write
‖Yε‖pp,σ = tr ((A+ εB)p)

with A = σ1/p and B = σ1/2pXσ1/2p as above. Again it is easy to see that

dk

dεk
tr ((A+ εB)p)

∣∣∣
ε=0

= tr
(
DkG(A)(B,B, . . . , B)

)

for the matrix power G : Md → Md given by G(X) = Xp. Using the Daleckii-Krein
formulas we obtain the derivatives

d

dε
tr ((A+ εB)p)

∣∣∣
ε=0

= p 〈1d, X〉σ = 0

d2

dε2
tr ((A+ εB)p)

∣∣∣
ε=0

=
d∑

i=1

d∑

j=1
gp(σi, σj)bijbji

= p
∑

1≤i≤j≤d
fp(σi, σj)bijbji
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where we used the identity (69) in the last step. The above shows that

‖Yε‖pp,σ = 1 + ε2p
∑

1≤i≤j≤d
fp(σi, σj)bijbji +O(ε3). (72)

With the well-known expansion ln(1 + x) = x− x2

2 +O(x3) we obtain

κp(Yε) = κp(Yε) = pε2

p− 1
∑

1≤i≤j≤d
fp(λi, λj)bijbji +O(ε3).

which is (71).

B Interpolation Theorems and Proof of Theorem 5.3
In order to prove Theorem 5.3 we will need the following special case of the Stein-Weiss
interpolation theorem [42, Theorem 1.1.1]. This classic result from interpolation spaces
has been applied recently to solve problems from quantum information theory, such as in
[7, Section III].

Theorem B.1 (Hadamard Three Line Theorem). Let S = {z ∈ C : 0 ≤ z ≤ 1} and
F : S → B (Md) be an operator-valued function holomorphic in the interior of S and
uniformly bounded and continuous on the boundary. Let σ ∈ D+

d and assume 1 ≤ p ≤ q ≤
∞. For 0 < θ < 1 define p0 ≤ pθ ≤ p1 by

1
pθ

= 1− θ
p0

+ θ

p1

Then for 0 ≤ y ≤ x ≤ 1 we have

‖F (y) ‖2→pθ,σ ≤ sup
a,b∈R

‖F (ia) ‖1−θ2→p0,σ‖F (x+ ib) ‖θ2→p1,σ (73)

One important consequence of the Stein-Weiss interpolation theorem is the following
interpolation result. We again refer to [42, Theorem 1.1.1] for a proof.

Theorem B.2 (Riesz-Thorin Interpolation Theorem). Let L : Md → Md be a linear
map, 1 ≤ p0 ≤ p1 ≤ +∞ and 1 ≤ q0 ≤ q1 ≤ +∞. For θ ∈ [0, 1] define pθ to satisfy

1
pθ

= θ

p0
+ 1− θ

p1

and qθ analogously. Then for σ ∈ D+
d we have:

‖L‖pθ→qθ,σ ≤ ‖L‖θp0→q0,σ‖L‖1−θp1→q1,σ

With these tools at hand we can finally prove Theorem 5.3:

Proof. Define E :Md →Md by E (X) = tr (σX)1d and set τ = t2 (ε) for some ε > 0. In
the following we use Tz = eτzL for z ∈ S = {z ∈ C : 0 ≤ Rez ≤ 1}. We will show that for
s ∈ [0, 1]:

‖ (Ts − E) (X) ‖ 2
1−s ,σ

≤ εs‖X‖2,σ. (74)

Accepted in Quantum 2018-02-01, click title to verify 31



The family of operators Tz − E clearly satisfies the assumptions of the Stein-Weiss inter-
polation theorem. We therefore have

‖Ts − E‖2→ 2
1−s ,σ

≤ sup
a,b∈R

‖Tia − E‖1−s2→2,σ‖T1+ib − E‖s2→∞,σ. (75)

Observe that by reversibility of L the map Tia is a unitary operator with respect to 〈·, ·〉σ.
We also have Tia ◦ E = E, as Tia(1d) = 1d. This gives

‖ (Tia − E) (X) ‖2,σ = ‖Tia (X − E (X)) ‖2,σ = ‖X − E (X) ‖2,σ ≤ ‖X‖2,σ,

where the last equality follows from ‖X−tr (σX)1d‖2,σ = min
c∈R
‖X−c1d‖2,σ. We therefore

have
||Tia − E||1−s2→2,σ ≤ 1. (76)

Furthermore, by the unitarity of Tib we can compute

‖ (T1+ib − E) (X) ‖∞,σ = ‖Tib ◦ (T1 − E) (X) ‖∞,σ ≤ ‖T1 − E‖2→∞,σ‖X‖2,σ
Using duality of the norms and that both T1 and E are self-adjoint we have

‖T1+ib − E‖2→∞,σ ≤ ‖T1 − E‖2→∞,σ = ‖T1 − E‖1→2,σ = ε (77)

using the definition of τ in the last equality. Inserting (76) and (77) into (75) we get

ε−s‖ (Ts − E) (X) ‖ 2
1−s ,σ

≤ ‖X − E (X) ‖2,σ, (78)

as ‖ (Ts − E) (X) ‖ 2
1−s ,σ

= ‖ (Ts − E) (X − E (X)) ‖ 2
1−s ,σ

.
Taking the derivative of (78) with respect to s on both sides at s = 0 we get

1
2‖X − E (X) ‖2,σ

(
−2‖X − E (X) ‖22,σ ln (ε) + Ent2,σ (|X − E (X) |)− 2τE (X)

)
≤ 0.

(79)
Rearranging the terms in (79) we obtain

Ent2,σ (|X − E (X) |) ≤ 2τE (X) + 2Var (X) ln (ε) . (80)

In [1, Theorem 4.2] the following inequality (known as Rothaus’ inequality) was shown

Ent2,σ (X) ≤ Ent2,σ (|X − E (X) |) + 2Var (X) . (81)

Combining inequalities (81) with (80) and setting ε = 1
e we get t2

(
1
e

)
α2 (L) ≥ 1

2 by the
definition of the LS constant.

To prove that the inequality is tight, consider the depolarizing Liouvillian Lσ(X) =
tr (X)σ−X for some full rank σ ∈ D+

d . It is easy to see that Varσ
(
etL̂σX

)
= e−tVarσ(X)

and so t2
(
e−1) = 1 + ln

(‖σ−1‖∞ − 1
)
. Restricting to operators commuting with σ, it

follows from [21, Theorem A.1] that

α2 (Lσ) ≤ (1− 2‖σ−1‖−1
∞ ) 1

2 ln (‖σ−1‖∞ − 1) .

Thus, for a sequence σn ∈ D+
d converging to a state that is not full rank we have

lim
n→∞ t2

(
e−1

)
α2 (Lσn) = 1

2
.
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We develop a quantum algorithm to obtain perfect samples from the distribution of any POVM
measured on a quantum Gibbs states. The algorithm relies on the voter Coupling from the
Past algorithm developed by Propp and Wilson [11] and requires us to be able to implement
a lumpable quantum channel for the Gibbs state and phase estimation for the underlying
Hamiltonian. The expected run-time of the algorithm depends on how degenerate the spectrum
of the underlying Hamiltonian is, being more efficient the more degenerate the spectrum is.
Moreover, we show that the algorithm is stable against noise in the implementation of the
channel and faulty phase estimation.

B.2.1 The Algorithm

Consider the following algorithm for generating perfect samples of the Gibbs state at inverse
temperature β > 0 of a Hamiltonian H ∈ Md for a POVM {Fi}i∈I . We assume H has d′

distinct eigenvalues, we may implement a primitive lumpable quantum channel T : Md → Md

and a phase estimation routine for H. One example of such a channel is the one implemented
in the quantum Metropolis algorithm discussed in [12]. For a lumpable channel, when we
fix an eigenbasis of H the dynamics for states which are diagonal in that basis is a classical
Markov chain. The equivalence relation that defines the lumped chain is then given by lumping
together eigenvectors that have the same energy. The algorithm needs three registers ABC. A
is of dimension d, and B and C are of dimension 2m. Here m is large enough to tell different
eigenvalues of H apart using phase estimation.

Theorem B.2.1. Suppose we run the algorithm depicted in the flowchart in Figure ?? with H
and T as described above. Moreover, assume that each eigenspace of H is of dimension at least
d/r(d), for a real function r. Denote the mixing time of the lumped chain by tmix. Then the
algorithm outputs a perfect sample after an expected number of

O(tmixr(d)2 log(r(d)))

steps.

The fact that we obtain perfect samples follows from the fact that the classical algorithm
by Propp and Wilson, voter coupling from the past [11], outputs perfect samples when the
underlying Markov chain is primitive. The only difference here to the algorithm by Propp and
Wilson is that we cannot choose the initial state of the chain deterministically. Therefore, we
randomize the initial state. The expected number of steps follows from combining a bound for a
generalized coupon collector problem, which comes from the fact that we randomize the initial
state and the expected value for the classical algorithm by Propp and Wilson. This result shows
that the algorithm is efficient for Hamiltonians with a uniformly highly degenerate spectrum.

B.2.2 Stability Results

There are two possible sources of noise for the algorithm. The first one comes from implementing
the channel and the second comes from faulty phase estimation. The algorithm is stable against
the two sources of error.

Theorem B.2.2. Let T be as before and T ′ : Md →Md be a quantum channel such that

‖T − T ′‖1→1 ≤ ε
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for some ε > 0 and define

κ(T ) = sup
X∈Md,Tr(X)=0

‖(id− T + T∞)−1(X)‖1
‖X‖1

with T∞(X) = Tr (X)σ. Moreover, denote by p the probability distribution we obtain by mea-

suring {Fi}i∈I on e−βH

Zβ
and by p′ the one we obtain by measuring the POVM on the output of

the algorithm using T instead of T ′. Then

‖p− p′‖1 ≤ (κ(T ) + 2)ε.

The algorithm is also stable against faulty phase estimation. The stability depends on
how likely we are to obtain the right outcome when measuring system B and C after the
phase estimation step. That is, given that the state of the system A is some eigenstate |ψi〉
of H, what is the probability that we correctly identify it after phase estimation. Denote the
minimum probability over all eigenspaces of identifying the right eigenspace by ξ. The stability
also depends on the probability of making the reverse error. That is, the probability of the
system A being in the eigenstate |ψi〉 given that we observed this outcome. Denote the minimum
over all possible outcomes by ξ′. Then we have

Theorem B.2.3. Let ξ and ξ′ be defined as above and T as before. Let p be the distribution we
obtain at the output of the algorithm with perfect phase estimation and p′(i) be the probability
of observing Fi at the output of the algorithm with faulty phase estimation. Then

‖p− p′‖1 ≤ 1− ξ′ + 2 (κ(T ) + 2) ((1− ξξ′ + (1− ξ)ξ′ + ξ(1− ξ′) + (1− ξ)(1− ξ′)).

The values of ξ and ξ′ depend on the particular implementation of phase estimation, prop-
erties of the spectrum of H and the size of m. We also provide some more explicit estimates
for their values for a standard, simple implementation of phase estimation.

B.2.3 Individual Contribution

This project was initiated after Michael M. Wolf inquired if it is possible to obtain perfect
samples of quantum Gibbs states on a quantum computer. This question motivated this work
and I am solely responsible for all the writing and results.
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We show how to obtain perfect samples from a quantum Gibbs state on a quantum

computer. To do so, we adapt one of the “Coupling from the Past”-algorithms proposed

by Propp and Wilson. The algorithm has a probabilistic run-time and produces perfect
samples without any previous knowledge of the mixing time of a quantum Markov chain.

To implement it, we assume we are able to perform the phase estimation algorithm for

the underlying Hamiltonian and implement a quantum Markov chain such that the
transition probabilities between eigenstates only depend on their energy. We provide

some examples of quantum Markov chains that satisfy these conditions and analyze

the expected run-time of the algorithm, which depends strongly on the degeneracy of
the underlying Hamiltonian. For Hamiltonians with highly degenerate spectrum, it is

efficient, as it is polylogarithmic in the dimension and linear in the mixing time. For non-
degenerate spectra, its runtime is essentially the same as its classical counterpart, which is

linear in the mixing time and quadratic in the dimension, up to a logarithmic factor in the

dimension. We analyze the circuit depth necessary to implement it, which is proportional
to the sum of the depth necessary to implement one step of the quantum Markov chain

and one phase estimation. This algorithm is stable under noise in the implementation

of different steps. We also briefly discuss how to adapt different “Coupling from the
Past”-algorithms to the quantum setting.

Keywords: quantum Gibbs states, perfect sampling, quantum algorithms

Communicated by: I Cirac & B Terhal

1 Introduction

Markov chain Monte Carlo methods are ubiquitous in science. They have a similar structure:

the solution to a problem is encoded in the stationary distribution of a Markov chain that can

be simulated. The chain is then simulated for a “long enough” time until the current state of

the chain is “close enough” to a sample of the stationary distribution of interest.

It is expected that with the advent of quantum computers one could use similar methods

to develop algorithms to simulate quantum many-body systems that do not suffer from the

sign problem [1], and many quantum algorithms with this property were proposed [2, 3, 4,

5, 6, 7, 8, 9].

361



362 Perfect sampling for quantum Gibbs states

However, as for classical Monte Carlo methods, it is in general difficult to obtain rigorous

bounds on how long is “long enough”, as the huge literature dedicated to Markov chain mixing

attests [10]. This prompted research on an algorithm that would “decide for itself” when the

current state of the Markov chain is close to or is even a perfect sample of the stationary

distribution, without any prior knowledge of the mixing properties of the chain.

One of the first algorithms to do so was developed in [11]. Later Propp and Wilson

proposed the “Coupling from the Past” (CFTP)-algorithm [12] and showed how it can be

applied to efficiently obtain perfect samples for the Ising model. They also showed how to

sample perfectly from the stationary distribution of an unknown Markov chain for which we

can only observe transitions in a subsequent paper [13] and many perfect sampling algorithms

were developedasince. There are also proposals of quantum speedups to these algorithms [14].

In this article, we will generalize some of these algorithms to get perfect samples from a

Gibbs state of a Hamiltonian on a quantum computer. By this, we mean that we are able

to perform any measurement and observe the same statistics for the outcomes as if we were

measuring the actual Gibbs state.

To implement them, we will need to be able to perform the phase estimation algorithm [15]

for the underlying Hamiltonian. Furthermore, we assume we can implement a quantum

Markov chain that drives the system to the desired Gibbs state and fulfills certain assumptions,

such as reversibility of the chain, which we elaborate on below. We comment on which of

the current proposals to prepare Gibbs states on quantum computers may be adapted for our

purposes.

Like it is the case for the classical algorithms, our quantum algorithms do not require any

previous knowledge about the mixing properties of the quantum Markov chain. They “decide

for themselves” when the current state of the system corresponds to a perfect sample of the

target Gibbs state and their run-time is probabilistic.

We will focus on adapting the “voter CFTP” algorithm. For the classical voter CFTP the

expected run-time is quadratic in the dimension of the system and linear in the mixing time.

The run-time of our version will depend highly on the number of distinct eigenvalues of the

Hamiltonian and the dimension of the eigenspaces. In the worst case, which corresponds to

Hamiltonians with a non-degenerate spectrum, our version of this algorithm will turn out to

have the same expected run-time as its classical counterpart, up to a logarithmic factor in the

dimension. However, for Hamiltonians with degenerate spectra, our algorithm can be more

efficient than the classical CFTP. In the case of Hamiltonians with an extremely degenerate

spectrum, our algorithm can even have a run-time which is proportional to the time necessary

to obtain approximate samples. We discuss how to explore this fact to obtain certifiably good

samples efficiently for Hamiltonians whose spectrum can be “lumped together” into a small

number of intervals. We also briefly discuss how to generalize other variations of CFTP.

These algorithms are stable under noise and we give bounds on their stability with respect

to the implementation of the quantum Markov chain and the phase estimation steps. A

potential advantage of the “voter CFTP” in comparison to other methods proposed in the

literature is that it only requires the implementation of a quantum circuit of low depth a

(potentially prohibitive) number of times and significant classical post-processing to obtain

aThe website http://dimacs.rutgers.edu/~dbwilson/exact/, maintained by Wilson, contains a comprehen-
sive list of references concerning the topic and other related material.
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a perfect sample without any prior knowledge of the mixing time. Other methods require

the implementation of a circuit of (potentially prohibitive) length one time to obtain an

approximate sample, but only under the previous knowledge of or assumptions on the mixing

time. Therefore, these algorithms are qualitatively different from ours, as our algorithm

provides a certificate that we are obtaining good samples.

Another motivation for this work is to explore how coupling techniques for classical Markov

chains may be applied and generalized to the quantum setting. These are one of the most

useful tools to derive mixing times [10, Section 4.2] and lie at the heart of many perfect

sampling algorithms, as their name already suggests. The fact that we still lack a notion of

a quantum analog of a coupling is, therefore, one of the main technical hurdles to generalize

many results in the theory of classical Markov chains and is by itself an interesting open

problem which hopefully this work can shed some light on.

2 Preliminaries

2.1 Notation and basic concepts

We begin by introducing some basic concepts we will need and fixing the notation. Through-

out this paper, Md will denote the space of d × d complex matrices and [d] = {1, . . . , d}.
We will denote by Dd the set of d-dimensional quantum states, i.e. positive semidefinite

matrices ρ ∈ Md with trace 1. We will call a Hermitian operator H ∈ Md a Hamiltonian.

We will always denote its spectral decomposition by H =
∑d′

i=1EiPi, with Pi orthogonal

projections. Here d′ denotes the number of distinct eigenvalues of H. As we will see later,

the expected run-time of the algorithm will depend more on this number than the dimension.

The eigenspace corresponding to the energy level Ei of H will be denoted by Si and we will

denote its dimension by |Si|. When we write H =
∑d
i=1Ei|ψi〉〈ψi| we mean that {|ψi〉}di=1 is

an orthonormal eigenbasis of H. For an inverse temperature β > 0, we define Zβ = tr[e−βH ]

to be its partition function and e−βH/Zβ its Gibbs state. A quantum channel T :Md →Md

is a trace preserving completely positive map. We will also refer to such a map as quantum

Markov chain. A state σ ∈ Dd is a stationary state of T if we have T (σ) = σ. The channel

is called primitive if we have ∀ρ ∈ Dd : lim
n→∞

Tn(ρ) = σ and σ > 0. There is an equivalent

spectral characterization of primitive quantum channels. A quantum channel is primitive if

σ > 0 is the only eigenvector corresponding to eigenvalues of modulus 1 of the channel [16]. In

particular, this implies that the property of being primitive is stable under small perturbations

of the channel.

A collection of self-adjoint operators {Fi}i∈I is called a POVM (positive-operator valued

measure) if the Fi ∈ Md are all positive semidefinite and
∑
i∈I Fi = 1. Here 1 ∈ Md is the

identity matrix. A state ρ ∈ Dd and a POVM {Fi}i∈I induce a probability distribution p

through p(i) = tr[Fiρ]. All the algorithms we will discuss have as their goal to produce exact

samples of the distribution p generated by an arbitrary POVM in the case that ρ is a Gibbs

state.

The following class of quantum channels will be one of the backbones of the algorithms

we will present later.

Definition 2.1 (Eigenbasis preserving quantum channels). A quantum channel T : Md →
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Md is called eigenbasis preserving for a Hamiltonian H =
d′∑
i=1

EiPi and inverse temperature

β > 0 if we have that for all i, j ∈ [d′] the commutator

[T (Pi), Pj ] = 0

vanishes and T
(
e−βH

Zβ

)
= e−βH

Zβ .

By the commutator property, we can model the dynamics under T on states that commute

with e−βH/Zβ as a classical Markov chain. One should not take this condition to imply that

the dynamics under T are classical, as will become clear in subsection 3.2, where we present

some examples of eigenbasis preserving channels. We will first suppose that we can implement

these channels exactly, but will later relax this condition and discuss the influence of noise in

section 4.1.

We will need some distinguishability measures for quantum states and channels and con-

vergence speed measures for primitive quantum channels. One of the main ones is through

the Schatten 1−Norm ‖X‖1 = tr[|X|] for X ∈ Md. This is justified by the clear operational

interpretation given by its variational expression [17, p. 404]. If we denote by Pd the set of

orthogonal projections in Md, we have for ρ, σ ∈ Dd
‖ρ− σ‖1

2
= sup
P∈Pd

tr[P (ρ− σ)]. (1)

That is, ‖ρ−σ‖1/2 expresses the maximal probability of correctly distinguishing two states σ, ρ

by a projective measurement. This norm induces the 1→ 1 norm on operators T :Md →Md:

‖T‖1→1 = sup
X∈Md

‖T (X)‖1
‖X‖1

. (2)

As a measure of the convergence speed of a quantum channel, we define the l1-mixing

time threshold of a primitive quantum channel T : Md →Md with unique stationary state

σ, which is given by

tmix = min{n ∈ N : sup
ρ∈Dd

‖Tn(ρ)− σ‖1 ≤ 2e−1}.

We will say that a channel T : Md → Md satisfies detailed balance or is reversible with

respect to e−βH

Zβ if we have that

T

((
e−βH

Zβ

) 1
2

X

(
e−βH

Zβ

) 1
2

)
=

(
e−βH

Zβ

) 1
2

T ∗ (X)

(
e−βH

Zβ

) 1
2

holds for all X ∈ Md. Here T ∗ is the adjoint of the channel with respect to the Hilbert-

Schmidt scalar product. Satisfying detailed balance with respect to e−βH

Zβ implies in particular

that e−βH

Zβ is a stationary state of the channel.

A crucial ingredient for our sampling algorithm is the phase estimation algorithm, dis-

covered originally in [15]. There are now many variations of it [18, 19, 20] and it is still
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the subject of active research. We will neither discuss in detail how to implement it nor its

complexity and refer to [20] for that. For our purposes, we will just suppose that for a given

Hamiltonian H acting on Cd we may implement a unitary U on Cd ⊗ (C2)⊗t for some t ∈ N
that acts as follows:

For |ψi〉 an eigenstate of a Hamiltonian H with H |ψi〉 = Ei |ψi〉 we have U |ψi〉 ⊗ |0〉 =

|ψi〉 ⊗ |Ei〉, where |Ei〉 is the binary expansion of Ei in the computational basis of (C2)⊗t.
We will first assume that we may implement U exactly, but later discuss how imperfections

in the implementation of the phase estimation algorithm influence the output of the sampling

algorithm in section 4.1.

We will now fix some notation and terminology for classical Markov chains. A sequence

X0, X1, X2, . . . of random variables taking values in a (finite) set S, referred to as the state

space, is called a Markov chain if we have

P (Xn+1 = j|Xn = i) = π(i, j)

for a |S| × |S| matrix π. π is called the transition matrix of the chain. We will always denote

by π the transition matrix of a Markov chain that should be clear from context. Most of the

times it will be the one induced by an eigenbasis-preserving channel through

π(i, j) = tr (T (|ψi〉〈ψi|)|ψj〉〈ψj |) .
A probability distribution µ on S is called stationary if we have that πµ = µ. A Markov chain

is said to be irreducible if

∀i, j ∈ S ∃n : πn(i, j) > 0.

It is aperiodic if

∀i ∈ S : gcd{n ∈ N \ {0} : πn(i, i) > 0} = 1.

Analogously to the quantum case, we say that the transition matrix π satisfies detailed balance

with respect to µ if

π(i, j)µ(i) = µ(j)π(j, i).

Satisfying detailed balance again implies that µ is stationary. It is a well-known fact that if a

Markov chain is aperiodic and irreducible there exists a unique stationary distribution µ such

that for any other distribution ν on S we have that lim
n→∞

πnν = µ. We define the variational

distance between probability distributions ν, µ as

‖ν − µ‖1 =
∑

i∈S
|µ(i)− ν(i)|. (3)

With a slight abuse of notation, we will also denote the l1-mixing time threshold in vari-

ation distance for a Markov chain by

tmix = min{n ∈ N : sup
ν
‖πnν − µ‖1 ≤ 2e−1}. (4)

Let

C = min{T |∀i ∈ S∃1 ≤ k ≤ T such that Xk = i}.
We will denote by Ei(C) the expected time it takes to observe all states starting from

X0 = i and by TC = maxi∈S Ei(C) the cover time of the chain. We refer to e.g. [10, Chapter

1] for a review of these basic concepts of Markov chains.
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2.2 Lumpable Channels and Chains

Given an equivalence relation or equivalently a partition of the state space S =
⊔d′
i=1 Si of

a Markov chain X0, X1, X2, . . ., it is possible to define a new stochastic process in which

the state space is given by the equivalence classes in the following way. Define the function

f : S → [d′] which maps a state to its equivalence class, that is

f(x) = i⇔ x ∈ Si.

This new stochastic process is then given by the random variables f(X0), (X1), f(X2), . . .. If

this stochastic process is again a Markov chain for all possible initial probability distributions

on S, the chain is said to be lumpable with respect to this equivalence relation. We refer

to [21, Section 6] for more on lumpable chains. These are sometimes also called projective

chains. The next Theorem gives necessary and sufficient conditions for lumpability.

Theorem 2.1 (Lumpable Chain). A necessary and sufficient condition for a Markov chain

to be lumpable with respect to a partition S =
⊔d′
i=1 Si is that for every pair Sl, Sk we have for

all l, l′ ∈ Sl
∑

k∈Sk
π(l, k) =

∑

k∈Sk
π(l′, k) (5)

Moreover, the transition probability between Sl and Sk in the lumpable chain is given by Eq.

(5).

Proof: We refer to [21, Theorem 6.3.2] for a proof.

In order to perfectly sample from Gibbs states with degenerate spectra, we will need the

concept of a lumpable channel, which we introduce here.

Definition 2.2 (Lumpable channel). An eigenbasis preserving quantum channel T :Md →
Md is called lumpable for a Hamiltonian H =

∑d′

i=1EiPi at inverse temperature β > 0 if it

is reversible and there is a function f : R×R→ [0, 1] such that

tr (T (|ψi〉〈ψi|)|ψj〉〈ψj |) = f(Ei, Ej)

for any unit vectors |ψi〉 ∈ Pi(Cd) and |ψj〉 ∈ Pj(Cd).

Here Pj(C
d) denotes the image of the projection. That is, the transition probabilities for

eigenstates of H depend only on their respective energies. Notice that as we demand that

the quantum channel satisfies detailed balance, the classical transition matrix induced by the

channel will also satisfy detailed balance. The definition of lumpable channels is motivated

by the following lemma.

Lemma 2.1 (Lumping energy levels). Let T : Md → Md be a lumpable quantum channel

for a Hamiltonian H =
∑d
i=1Ei|ψi〉〈ψi| and inverse temperature β > 0. Here {|ψi〉}di=1 is an

orthonormal eigenbasis of H. Define the classical Markov chain on [d] with transition matrix
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given by

π(i, j) = tr(T (|ψi〉〈ψi|)|ψj〉〈ψj |)

and partition the state space according to their energy into {S1, . . . , Sd′}, that is, the equiva-

lence relation on the state space is given by

i ∼ j ⇔ tr(H|ψi〉〈ψi|) = tr(H|ψj〉〈ψj |). (6)

Then the Markov chain is lumpable with respect to this partition and the lumped chain has

transition matrix

π̃(Sl, Sk) = |Sk|f(El, Ek). (7)

Moreover, the stationary distribution of the lumped chain is given by

µ̃(Si) = |Si|
e−βEi

Zβ
, (8)

where |Si| is the degeneracy of the energy level, and the chain satisfies detailed balance with

respect to µ̃.

Proof: It follows from Theorem 2.1 that it is sufficient and necessary for the chain to be

lumpable that for Sl, Sk we have for all l, l′ ∈ Sl
∑

k∈Sk
π(l, k) =

∑

k∈Sk
π(l′, k). (9)

Eq. (9) holds for lumpable quantum channels, as we have
∑
k∈Sk

π(l, k) = |Sk|f(El, Ek), which

clearly only depends on the equivalence class of l. Therefore, we may define a Markov chain

with respect to this partition and from Theorem 2.1 it follows that the transition matrix of

the lumpable chain is given by (7). We will now show that it satisfies detailed balance with

respect to µ̃ and therefore µ̃ is the stationary distribution of the chain. We have

µ̃(Si)π̃(Si, Sj) = |Si|
e−βEi

Zβ
|Sj |f(Ei, Ej). (10)

Now, as the original chain satisfied detailed balance, it holds that

e−βEi

Zβ
f(Ei, Ej) = f(Ej , Ei)

e−βEj

Zβ
. (11)

Plugging Eq. (11) into (10) we see that the lumpable chain satisfies detailed balance with re-

spect to µ̃. This implies that µ̃ is the stationary distribution of the lumped Markov chain.

When working with lumpable channels, tmix will always refer to the mixing time of the

lumped chain. It is in general not clear how the mixing time of the lumpable chain relates to

the mixing time of the original chain and this is a topic of current research. Surprisingly, the

mixing time may even increase under lumping, as was shown recently in [22]. However, as is
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shown e.g. in [10, Lemma 12.8] and remarked in [22], important parameters that describe the

convergence of a Markov chain, such as the spectral gap or Cheeger constant [10, Chapter 12],

can only increase when lumping chains. This implies that the mixing time cannot increase

significantly by lumping. For example, in the counterexample found in [22], lumping increases

the mixing time by a factor of Θ(log(d)).

2.3 (Classical) Voter CFTP

We will briefly describe a perfect sampling algorithms based on CFTP for Markov chains

introduced in [13], called “voter CFTP”. We mostly stick to their terminology and notation.

The goal of this algorithm is to produce perfect samples of the stationary distribution µ of

some Markov chain. One of the main advantages of this algorithm is that we only need to be

able to observe valid transitions of this Markov chain to obtain perfect samples of the target

distribution.

One should note that this is in general not the most efficient algorithm for perfect sampling

[13], but arguably the simplest to understand. Besides the pedagogical motivation to present

it, it turns out that this version is of interest in the quantum case, as we will see later. For this

algorithm we suppose we have access to a randomized procedure RandomSuccessor : S → S

such that P (RandomSuccessor(i) = j) = π(i, j), where π is a transition matrix having µ

as a stationary measure. Let G be a vertex-labeled graph with vertices −N0 × S and labels

S. We will define the labels and edges as the algorithm runs and denote by G(k, i) the label

of the vertex (k, i). Pseudocode for the algorithm is provided below in algorithm 1 .

One does not need to add the edge in step 7. This only helps to visualize the process. The

expected run-time of this algorithm and its complexity, of course, depend on properties of

RandomSuccessor : S → S. We will discuss these when we analyze the same questions for

our algorithm in the quantum case. We now provide a proof that algorithm 1 indeed produces

a perfect sample if it terminates almost surely.

Theorem 2.2. Suppose algorithm 1 terminates with probability 1 and denote the output by

Y . Then P (Y = i) = µ(i).

Proof: Let ε > 0. As the algorithm terminates with probability 1, there is a Nε such that

P (algorithm terminates after at most Nε steps) ≥ 1− ε.

Denote by Aε the event that the algorithm terminates after at most Nε steps. Define a Markov

chain X−M , X−M+1, X−M+2, . . . , X0 for some M ∈ N and choose X−M according to µ, i.e.

P (X−M = i) = µ(i). The transitions are defined by the graph, which we suppose was labeled

for all (k, i) with k > −M . Given Xk = j we set Xk+1 = i, where {(k, j), (k + 1, i)} is an

edge of the graph G. As we chose X−M according to µ and RandomSuccessor has µ as a

stationary distribution, P (Xk = i) = µ(i) for all −M ≤ k ≤ 0. We have

P (X0 6= Y ) = P (X0 6= Y |Aε)P (Aε) + P (X0 6= Y |ACε )P (ACε ).

One can check that the label on the graph at (−M, i) is nothing but the value of X0. Thus,

if we assume that the algorithm has terminated, the value of X0 does not depend on the

initial value and will always be equal to Y . Therefore P (X0 6= Y |Aε) = 0 if −M ≤ Nε. Also,
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1: procedure Voter CFTP
2: Set G(0, i) = i and k = 0.
3: while ∃j, i ∈ S s.t. G(k, i) 6= G(k, j) do
4: for i ∈ S do
5: Let j = RandomSuccessor(i).
6: Set G(k − 1, i) = G(k, j).
7: Add the edge {(k − 1, i), (k, j)}
8: end for
9: Set k → k − 1

10: end while
11: return G(k, i0) for some i0 ∈ S
12: end procedure

Fig. 1. Voter CFTP [13]
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Fig. 2. Possible first two columns of the graph after running the for-loop in the fourth step one
time for d = 3. Notice that the third column has still not been labeled.

1

2

3

2

3

1

3

3

3

Fig. 3. Possible graph after running the for-loop one more time. Notice the algorithm has

terminated and outputs the sample 3.
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by construction, P (X0 6= Y |ACε )P (ACε ) ≤ ε. We then conclude P (X0 6= Y ) ≤ ε and so the

value of Y and X0 coincide, as ε was arbitrary. As X0 is distributed according to µ, so is Y .

3 CFTP for quantum Gibbs states

3.1 Voter CFTP

We will now show how to adapt the voter CFTP algorithm to quantum Gibbs state. We start

by focusing on Hamiltonians that have a non-degenerate spectrum, as we need less assump-

tions in this case and the proof is simpler. We later generalize to arbitrary Hamiltonians.

Given a Hamiltonian H ∈Md with non-degenerate spectrum, an eigenbasis preserving quan-

tum channel T for some inverse temperature β > 0 and a POVM F = {Fi}i∈I , the following

algorithm allows us to obtain perfect samples from the distribution p(i) = tr
[
Fi

e−βH

Zβ

]
. The

algorithm uses three registers corresponding to the tensor factors Cd ⊗
(
C2
)⊗t ⊗

(
C2
)⊗t

,

where t is large enough to perform phase estimation for H and tell apart the different eigen-

values of H. We will discuss how to choose t in section 4.1. The first one will encode the

current state of our system, while the other two will be used to record the output of two phase

estimation steps. Define a labeled graph G with vertices V = −N0 × {1, . . . , d} and labels

given by {0, . . . , d}. We assume that G has no edges at the beginning of the algorithm and

the vertices are labeled as

G(k, j) =

{
j if k = 0

0 otherwise
. (12)

We assume we can prepare the maximally mixed state 1
d . This can be done by picking

a uniformly distributed integer between 1 and d and preparing the corresponding state of

the computational basis, for example. We will assume that the Hamiltonian has a spectral

decomposition given by H =
∑d
i=1Ei|ψi〉〈ψi|. The number n denotes how many samples we

wish to obtain in total and c will denote a counter for the number of samples we still wish to

obtain. The pseudocode for the algorithm is below in algorithm 4.

We now prove it indeed outputs perfect samples.

Theorem 3.1. Let T be a primitive, eigenbasis preserving quantum channel for a Hamilto-

nian H and inverse temperature β > 0. Then algorithm 4 terminates with probability 1 and

generates n perfect samples of the distribution p defined above.

Proof: We will first show that with probability 1 there is a k ∈ −N and l ∈ [d] such that

∀i ∈ [d] G(k, i) = l. The probability that we observe an eigenstate |ψi〉 at step 6 is 1
d , so with

probability 1 we will observe it if we run the loop at step 3 often enough. This implies that we

will assign a label different to 0 to arbitrary vertices of the graph G if we run the while-loop

at step 3 for long enough. Observe that as T is an eigenbasis preserving quantum channel, the

dynamics on the eigenbasis of H under T is just a classical Markov chain. As T is primitive

and the stationary state has full rank, this Markov chain is aperiodic and irreducible [16].

Because of that, the probability that we will obtain a k such that G(k, i) = l ∀i ∈ [d] is 1,

using the same argument as the one given in [13] for the classical case. By the same argument,

the probability that this label is l is given by e−βEl
Zβ , as this is the stationary distribution of



D. S. França 371

1: procedure Quantum Voter CFTP (non-degenerate case)
2: Set R = ∅ and c = n.
3: while c 6= 0 do
4: Prepare the state 1

d ⊗ |0〉〈0| ⊗ |0〉〈0|
5: Run phase estimation on the first and second register.
6: Measure the second register in the computational basis.
7: if i ∈ R then
8: Measure F on the first register.
9: Update c to c− 1.

10: else
11: Apply T ⊗ id2t ⊗ id2t to the system.
12: Run phase estimation on the first register and third register.
13: Measure the third register in the computational basis. Let the result be j.
14: For the largest k s.t. G(k, i) = 0 we add the edge {(k, i), (k + 1, j)}.
15: if G(k + 1, j) 6= 0 then
16: Change the labels on all the vertices (k′, i′) with k′ < k for which there is a

path to (k, i) from 0 to G(k + 1, j).
17: end if
18: if There is k0 ∈ −N and l ∈ [d] s.t. ∀i ∈ [d] G(k0, i) = l then
19: Append l to R.
20: Erase all edges to the vertices (k0, i) and set the labels to G(k0, i) = i and

G(k, i) = 0 for k < k0.
21: end if
22: end if
23: end while
24: end procedure

Fig. 4. Voter CFTP for quantum Gibbs states
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Fig. 5. Possible first four columns of the graph after running the while-loop in step 3 five times
for d = 3.
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Fig. 6. Possible graph after running the while-loop two more times. Notice the algorithm has
terminated and outputs the sample 2.

the underlying classical Markov chain. As before, we will observe |ψl〉 |El〉 |0〉 at step 6 with

probability 1 if we run the while-loop at step 3 often enough and this will then be a perfect

sample by the previous discussion.

Note that we could check if the measurement outcome we observe at step 13 is one of the

desired outcomes to increase our probability of observing it.

Given how many distinct eigenvalues the Hamiltonian has and that we are able to imple-

ment a lumpable channel, we may run a modified version of algorithm 4 and obtain perfect

samples. The steps of the algorithm are exactly the same and we do not write them out in

detail. The only difference is the graph we feed the transitions to and what we feed. Let d′

be again the number of distinct eigenvalues of H. In the case of degenerate Hamiltonians, we

define a labeled graph G with vertices V = −N0×{1, . . . , d′} and labels given by {0, . . . , d′}.
We assume that G has no edges at the beginning of the algorithm and the vertices are labeled

as

G(k, j) =

{
j if k = 0

0 otherwise
. (13)

That is, the graph is essentially the same as in the non-degenerate case but with d′ instead

of d labels and vertices. At step 14 we then label the graph according to the energy levels

we measured before at steps 6 and 13, as we can only tell apart states with different energies

using phase estimation. We then have:
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Theorem 3.2. Let T be a primitive, lumpable quantum channel for a Hamiltonian H and

inverse temperature β > 0. Suppose further that H has d′ distinct eigenvalues. Then, if we

run algorithm 4 with a graph modified as explained above, it terminates with probability 1 and

generates n perfect samples of the distribution p(i) = tr
(
Fi

e−βH

Zβ

)
.

Proof: It should be clear that in this case the classical CFTP algorithm we are running based

on the measurement outcomes will generate perfect samples from the stationary distribution

of the lumped chain defined in Lemma 2.1. The convergence is guaranteed by the same

argument as in the proof of Theorem 3.1. From Lemma 2.1 it follows that we will obtain the

sample Sj with probability

|Sj |
e−βEj

Zβ
. (14)

Now, given that we have observed the label associated to Sj after the first phase estimation

step, we know that the state of the first register is given by

ρj =
1

|Sj |
Pj . (15)

Measuring Fi on the outputs of the algorithm, therefore, gives perfect samples from the dis-

tribution p.

3.2 Examples of eigenbasis preserving and lumpable channels

In order to run algorithm 4, we need to be able to implement a primitive eigenbasis preserving

quantum channel for the Gibbs state we want to sample from in the case of non-degenerate

spectrum and further that it is lumpable for the general case. In recent years many algo-

rithms have been proposed to approximately prepare quantum Gibbs states on a quantum

computer [2, 3, 4, 5, 6, 7, 8, 9]. We will here briefly discuss how some of them provide us with

eigenbasis preserving or lumpable quantum channels for Gibbs states.

One class of eigenbasis preserving channels in the non-degenerate case are quantum dynam-

ical semigroups with Davies generators. These are Markovian approximations for a quantum

system weakly coupled to a thermal reservoir. A detailed description of the derivation and

structure of Davies generators is beyond the scope of this article and can be found in [23, 24].

Under some conditions on the Hamiltonian and the coupling of the system to the bath, the

Davies semigroup is primitive. The exact speed of this convergence is the subject of current

research. We refer to [25] for a discussion of the conditions under which the Davies genera-

tors are primitive and some bounds on the convergence speed. In [9] Davies generators are

proposed as a way of preparing thermal states on a quantum computer.

For our purposes, their main relevant property is that if the underlying Hamiltonian has a

non-degenerate spectrum, the dynamics in the eigenbasis of the Hamiltonian does not couple

diagonal terms to off-diagonal terms. They are therefore eigenbasis preserving. This was

observed by many authors since the beginning of their study [24, 26, 27] and we refer to those

for a proof of this claim.

More generally, it can be shown that dynamical semigroups that satisfy a quantum version

of the detailed balance condition and whose stationary state has a non-degenerate spectrum
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are always eigenbasis preserving [28]. Our two previous examples fall into that category. This

gives us a simple sufficient criterion to check whether a given implementation is eigenbasis

preserving.

Note, however, that it is not a priori clear that a quantum dynamical semigroup can be

implemented efficiently or by only using local operations. We refer to [9, 29] for a discussion

of these topics.

An example of a lumpable channel is given by the implementation of the quantum Metropo-

lis algorithm proposed in [7], as the quantum channel implemented at each step maps eigen-

states of H to eigenstates of H and the transition probabilities are a function of their energy

difference. However, it can be simplified for our purposes. As in the usual Metropolis al-

gorithm, at each step we have to accept or reject a move that was made. One of the main

difficulties to implement the quantum algorithm is reversing the evolution of the system if we

reject the move. This is because, by the No-Cloning Theorem [30], we can’t make a copy of the

previous state of the system. But the information that we rejected the move is enough for our

algorithm, as we may simply copy the previous label when labeling the vertices. Therefore,

we may skip the procedure of reversing the move.

3.3 Lumping Eigenstates together to obtain good samples

Until now we assumed we are able to implement phase estimation exactly and know the

number of distinct eigenvalues of H. We may loosen this assumption and lump different

eigenvalues together.

Definition 3.1 (ε-Spectral Covering). Let H ∈ Md be a Hamiltonian and ε > 0 be given.

We call {e1, . . . , ed′} ⊂ R a ε-Spectral Partition for H if

σ(H) ⊂
d′⊔

i=1

(ei − ε, ei + ε)

and for all i ∈ [d′] : σ(H) ∩ (ei − ε, ei + ε) 6= ∅. Here σ(H) denotes the spectrum of H. We

will refer to d′ as the size of the covering.

It should be clear that ε-spectral coverings are not unique and may have different sizes for

fixed ε. Although an ε-spectral covering will not be readily available in most cases, there

are some methods to obtain them. One can use e.g. the Gershgorin circle Theorem [31,

Section VIII] to obtain a covering. If we can decompose H into local commuting terms it

is also possible to obtain an ε-spectral covering by considering that the spectrum of H must

consist of sums of the eigenvalues of the local terms. Spectral coverings will be useful later to

quantify the stability of algorithm 4 with respect to measuring the wrong energy with phase

estimation. Here we will focus on showing how we may still obtain good samples based on

an ε-spectral covering and that the algorithm is stable w.r.t. introducing degeneracies into

the spectrum because we can only obtain an estimate of it to a finite precision. Given an

ε-spectral covering for the Hamiltonian, we may run algorithm 4 with the number of labels

being given by the size of the covering. If we use the Metropolis algorithm from [7] with the

ei as the possible energies to define the transition probabilities we obtain:
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Theorem 3.3. Let H ∈ Md be a Hamiltonian and {e1, . . . , ed′} ⊂ R be an ε-spectral cover-

ing. Suppose we run algorithm 4 with this ε-spectral covering as described above. Then the

probability distribution p̃ of samples obtained from outputs of algorithm 4 satisfies

‖p̃− p‖1 ≤
√

4εβ (16)

Proof: The stationary distribution of the lumped chain will be

µ̃(i) = |σ(H) ∩ (ei − ε, ei + ε)|e
−βei

Z̃β
,

with Z̃β =
∑d′

i=1 |σ(H) ∩ (ei − ε, ei + ε)|e−βei . Let P̃i be the projection onto the subspace

spanned by the eigenvectors of H corresponding to eigenvalues in σ(H)∩ (ei− ε, ei+ ε). From

the proof of Theorem 3.2, it follows that algorithm 4 will output the state

ρ̃ =
1

Z̃β

d′∑

i=1

e−βei

|σ(H) ∩ (ei − ε, ei + ε)| P̃i. (17)

We will now show
∥∥∥ρ̃− e−βH

Zβ

∥∥∥
1
≤ √4εβ, from which the claim again follows from the vari-

ational definition of the trace norm. From Pinsker’s inequality [32, Theorem 3.1], it follows

that

∥∥∥∥ρ̃−
e−βH

Zβ

∥∥∥∥
1

≤
√

2D

(
e−βH

Zβ
||ρ̃
)
, (18)

where D
(
e−βH

Zβ ||ρ̃
)

= tr
(
e−βH

Zβ (log( e
−βH

Zβ )− log(ρ̃)
)

is the relative entropy. As ρ̃ and

e−βH

Zβ
=

1

tr (e−βH)

∑

Ej∈σ(H)

e−βEjPj

commute, we have

D

(
e−βH

Zβ
||ρ̃
)

=
d′∑

i=1

∑

Ej∈σ(H)∩(ei−ε,ei+ε)

e−βEj

Zβ

(
log

(
Z̃β
Zβ

)
+ β (Ej − ei)

)
. (19)

As we have an ε-spectral covering, we have Ej − ei ≤ ε for Ej ∈ σ(H) ∩ (ei − ε, ei + ε) and
Z̃β
Zβ ≤ e

βε. From this we obtain

D

(
e−βH

Zβ
||ρ̃
)
≤ 2βε. (20)

Plugging Eq. (20) into (18) we obtain the claim.

This result may be interpreted as a first stability result. This shows that if we lump

eigenvalues that are very close together, the Gibbs state does not change a lot. That is, if
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we introduce artificial degeneracies by not being able to tell apart eigenvalues that are very

close through phase estimation this will not change the output of the algorithm significantly.

As observed in [7], one could argue that a similar effect could in principle also affect classical

Markov chain methods, as we are only able to compute the transition probabilities up to a

finite precision. This does not seem to affect them in practice. Moreover, if we want samples

that are certifiably at most δ apart in total variation distance at inverse temperature β > 0,

we may lump together eigenvalues that are at most δ2/4β apart. As we will see later, high

levels of degeneracy can reduce the run-time of the algorithm and this can be used to obtain

good samples more efficiently.

4 Stability of the Algorithm

We will now address two possible sources of noise for algorithm 4 and show it is stable under

these two. First, in the implementation of the channel and second in the phase estimation

steps.

4.1 Stability in the implementation of the Channel

As shown in [33], one may quantify the stability of primitive quantum Markov chains with

the following constant:

Definition 4.1. Let T : Md → Md be a primitive quantum channel with stationary state

σ ∈ Dd. We define

κ(T ) = sup
X∈Md,tr(X)=0

‖(id− T + T∞)−1(X)‖1
‖X‖1

with T∞(X) = tr(X)σ.

We refer to [33] for bounds on it and how it can be used to quantify the stability of a quan-

tum Markov chain with respect to different perturbations. Note that due to the spectral

characterization of primitive quantum channels [34], the set of primitive quantum channels is

relatively open in the convex set of quantum channels.

Theorem 4.1. Let T :Md →Md be a primitive eigenbasis preserving channel for a Hamil-

tonian H and inverse temperature β > 0 and T ′ :Md →Md a quantum channel satisfying

‖T − T ′‖1→1 ≤ ε (21)

for some ε > 0 small enough for T ′ to be primitive too. For a POVM {Fi}i∈I , let p and p′ be

probability distributions we obtain by measuring {Fi}i∈I on the output of algorithm 4 using T

and T ′ respectively. Then

‖p− p′‖1 ≤ (κ(T ) + 2)ε. (22)

Proof: Let {Pi}1≤i≤d′ be the eigenprojections of H and define Q : Md → Md to be the

quantum channel given by

Q(X) =
d′∑

i=1

tr(PiX)
Pi
|Si|

. (23)
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Note that as T is an eigenbasis preserving channel, QTQ is an eigenbasis preserving channel

with stationary state e−βH

Zβ . As T ′ is assumed to be primitive, QT ′Q is primitive too, as

‖QT ′Q−QTQ‖1→1 ≤ ‖T ′ − T‖1→1. Denote by ρ the stationary state of the channel QT ′Q.

By the variational expression for the trace distance, we have that

‖p− p′‖1 ≤
∥∥∥∥
e−βH

Zβ
− ρ
∥∥∥∥
1

. (24)

From theorem 1 in [33] it follows that

∥∥∥∥
e−βH

Zβ
− ρ
∥∥∥∥
1

≤ κ(QTQ)‖Q(T − T ′)Q‖1→1. (25)

As Q is a quantum channel, it follows that ‖Q‖1→1 ≤ 1 and so

‖Q(T − T ′)Q‖1→1 ≤ ‖T − T ′‖1→1. (26)

Eq. (22) would then follow from κ(QTQ) ≤ 2 + κ(T ). Note that as T is primitive, we

have that ‖T − T∞‖ < 1, where we use the operator norm. Also, QT∞Q = T∞ and Q is a

projection. Thus

‖QTQ− T∞‖ ≤ ‖T − T∞‖ < 1.

As T is an eigenbasis preserving channel, we have that

Q(T − T∞)Q = (T − T∞)Q

and so

(Q(T − T∞)Q)n = Q(T − T∞)nQ.

We therefore have

(id− (Q(T − T∞)Q))−1 =
∞∑

n=1

(Q(T − T∞)Q)n

n!
= (27)

id−Q+Q

( ∞∑

n=0

(T − T∞)n

n!

)
Q = id−Q+Q(id− (T − T∞))−1Q. (28)

As ‖Q‖1→1, ‖id‖1→1 ≤ 1 and from (27) we obtain

κ(QTQ) = sup
X∈Md,tr(X)=0

‖[Q(id− (T − T∞))−1Q+ id−Q](X)‖1
‖X‖1

≤ (29)

sup
X∈Md,tr(X)=0

‖Q(id− (T − T∞))−1Q(X)‖1 + ‖(id−Q)(X)‖1
‖X‖1

≤ 2 + κ(T ),

which completes the proof.

Theorem 4.1 shows that the algorithm is stable under perturbations of the eigenbasis

preserving channel. The stability for lumpable channels follows by observing that every

lumpable channel is in particular eigenbasis preserving.
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4.2 Faulty Phase Estimation

We will now analyze the errors stemming from faulty phase estimation. It is important to

differentiate two different types of error that are caused by the phase estimation procedure.

The first type of error comes from the fact that we are only able to obtain an estimate of the

energy up to t bits from the phase estimation procedure. This leads to round-off errors and

may introduce degeneracies. As discussed in section 3.3 in theorem 3.3, algorithm 4 is stable

against this sort of error. Moreover, as we will see later, this can even lead to the algorithm

being more efficient.

The second kind of error comes from the fact that the phase estimation procedure only

gives the correct energy of the state with high probability. This can cause some transitions

we record to be corrupted. We will now show that algorithm 4 is stable against this kind of

error.

We note that the exact distribution of the outcomes of the phase estimation procedure

depends on which version is being used and this is still a topic of active research [20].

However, it is reasonable to assume that for any phase estimation routine the distribution

of the outcomes will concentrate on the correct output. We will give bounds in terms of how

large this peak is and explicit bounds for the implementation discussed in [17, Section 5.2].

We now assume we have some rule to assign the labels based on the outcome of the phase

estimation step. In case we have an ε-spectral covering, this might just be a function which

assigns the label based on which interval of the covering the outcome of the measurement

belongs to. Let X1 ∈ [d′] be the random variable which describes which label we assign to the

graph after the measurement and Y1 ∈ {E1, . . . , Ed′} the random variable which describes in

which eigenspace the system finds itself after the first measurement at step 6. Let analogously

Y2 be the random variable which is distributed according to the probability of each eigenspace

at step 13 and X2 the second label which we assign. We will now assume that the errors

stemming from the phase estimation steps are independent and have the same distribution.

That is, given that the system is in a given eigenstate, the probability distribution of the

measurement outcomes is the same in the two steps. Let the stochastic matrix Ξ ∈ Md′ be

given by

Ξ(i, j) = P (Y1 = Ej |X1 = i).

Then, given that we have assigned the label i to the graph after step 16 in algorithm 4, the

state of the system is described by

ρ =

d′∑

j=1

Ξ(i, j)
Pj
|Sj |

,

where Pj is the projection onto the eigenspace corresponding to Ej . After we apply an

eigenbasis preserving channel T , the state of the system is described by the state

T (ρ) =

d′∑

k=1

d′∑

j=1

π(j, k)Ξ(i, j)
Pk
|Sk|

. (30)

Furthermore, denote by Ξ′ ∈Md′ the stochastic matrix

Ξ′(i, j) = P (X2 = j|Y2 = Ei).
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From Eq. (30) it then follows that the probability that the second label is l given that the

first label was i is

P (X2 = l|X1 = i) =
d′∑

k,j,l=1

Ξ′(k, l)π(j, k)Ξ(i, j). (31)

From Eq. (31) it is clear that the transition matrix for the labels is given by

π′ = Ξ′πΞ (32)

when we have faulty phase estimation.

As mentioned before, we expect P (X1 = i|Y1 = Ej) ' δi,j , that is, that the distribution

peaks around the right outcome. To quantify this we define

ξ = min
i∈[d′]

Ξi,i (33)

and ξ′ analogously. We then have

Lemma 4.1. Let ξ and ξ′ be defined as above and {Fi}i∈I a POVM. For a primitive lumpable

channel T : Md → Md for a Hamiltonian H and inverse temperature β > 0, let p(i) =

tr
(
Fi

e−βH

Zβ

)
and p′(i) be the probability of observing Fi at the output of algorithm 4 with

faulty phase estimation. Then

‖p− p′‖1 ≤ 1− ξ′ + 2 (κ(T ) + 2) ((1− ξξ′ + (1− ξ)ξ′ + ξ(1− ξ′) + (1− ξ)(1− ξ′)).

Proof: As discussed in Eq. (32), the transition matrix for the observed energy labels is given

by π′ = Ξ′πΞ. It easily follows from the definition of ξ and ξ′ that

Ξ = ξ1 + (1− ξ)Ξ̃,
Ξ′ = ξ′1+ (1− ξ′)Ξ̃′,

where Ξ̃ and Ξ̃′ are again stochastic matrices. We may therefore write

π′ = ξξ′π + ξ(1− ξ′)Ξ̃′π + (1− ξ)ξ′πΞ̃ + (1− ξ)(1− ξ′)Ξ̃′πΞ̃.

This transition matrix will still be primitive for ξ and ξ′ sufficiently large. Let µ be the

stationary distribution of π and µ′ the one of π′. Observe that, as κ(π) ≤ κ(QTQ), we may

use the bound κ(QTQ) ≤ 2 + κ(T ) from the proof of theorem 4.1 and obtain

‖µ− µ′‖1 ≤
(κ(T ) + 2) ‖ξξ′π + ξ(1− ξ′)Ξ̃′π+(1− ξ)ξ′πΞ̃ + (1− ξ)(1− ξ′)Ξ̃′πΞ̃− π‖1→1

≤ 2 (κ(T ) + 2) ((1− ξξ′+(1− ξ)ξ′ + ξ(1− ξ′) + (1− ξ)(1− ξ′)).
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Here we have used that ‖π‖1→1 ≤ 1 for a stochastic matrix π. At the output of the algorithm,

we would be measuring the POVM on the state ρ′ =
∑d′

i=1 µ
′(i) Pi
|Si| if no error occurs at step

6 of algorithm 4. But as an error might occur when we try to identify a given eigenstate,

we will be measuring the state ρEM =
∑d′

i=1(Ξ′µ′)(i) Pi
|Si| . By the definition of ξ′, we have

Ξ′µ′ = ξ′µ′ + (1− µ′)Ξ̃′µ′. We will measure the POVM on the state

ρEM = ξ′ρ′ + (1− ξ′)ρ′′. (34)

Here ρ′′ is some density matrix. It then follows that
∥∥∥∥ρEM −

e−βH

Zβ

∥∥∥∥
1

≤ 1− ξ′ + 2 (κ(T ) + 2) ((1− ξξ′ + (1− ξ)ξ′ + ξ(1− ξ′) + (1− ξ)(1− ξ′)).

The claim then follows from the variational expression for the trace distance as in the proof

of theorem 4.1.

Using Bayes’ rule it is possible to express the entries of the matrix Ξ in terms of those of

Ξ′, which are more readily accessible. We have

Ξ(i, j) = P (Y1 = Ej)
P (X1 = i|Y1 = Ej)

d′∑
l=1

P (X1 = i|Y1 = El)P (Y1 = El)

. (35)

As the initial state is the maximally mixed one, we have that P (Y1 = Ej) = |Sj |d−1. From

this discussion it follows that:

Theorem 4.2. Let ξ be defined as in Eq. (33). Then

ξ = min
j∈[d′]

P (X1 = j|Y1 = Ej)

|Sj |−1
d′∑
l=1

P (X1 = j|Y1 = El)|Sl|
.

Proof: See the discussion above.

This shows that the algorithm is stable if we do not have eigenvalues that we can misiden-

tify with considerable probability and s.t. the degeneracy levels are of different order.

We now give estimates of ξ and ξ′ for the implementation of phase estimation considered

in [17, Section 5.2] in case we have an ε-spectral covering of the Hamiltonian or know that

different eigenvalues are ε apart. In [17] it is shown that if we use

t ≥ n+ log
(
2 + (2δ)−1

)

qubits to perform phase estimation, then we obtain Ei accurate to n bits with probability at

least 1 − δ. This implies that ξ′ ≥ 1 − δ. To estimate ξ we need to control the terms of the

form P (X1 = i|Y1 = Ej) for i 6= j. To this end we define

∆(i, j) = inf{|2tx− 2ty mod 2t||(x, y) ∈ A(i, j)} (36)

with

A(i, j) = {x ∈ σ(H) ∩ (Ei − ε, Ei + ε)} × {y ∈ (Ej − ε, Ej + ε)}.
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Lemma 4.2. Let H ∈Md be a Hamiltonian and {e1, . . . , ed′} be an ε-spectral covering of it.

Suppose we implement phase estimation for H using t qubits. Then

P (X1 = j|Y1 = ei) ≤
2t+1ε+ 1

∆(i, j)2

for j 6= i and ∆i,j defined as in Eq. (36).

Proof: In [17, Section 5.2] it is shown that given that the eigenstate of the system is Ei, we

have that the probability that the observed outcome is E is bounded by

|2t(Ei − E) mod 2t|−2.

For any point of the spectrum of H in (ei− ε, ei + ε) and for a point in E ∈ (ej − ε, ej + ε)

we have that |2t(ei −E) mod 2t|−2 ≥ ∆(i, j). There are at most 2ε2t + 1 possible outcomes

that lie in the interval (ej − ε, ej + ε). We therefore have

P (X1 = j|Y1 = ei) ≤
2t+1ε+ 1

∆(i, j)2
.

Note that we have 2t ≤ ∆(i, j), so the probability of misidentifying the labels goes to zero

exponentially fast with the number of qubits for fixed ε. We then obtain for ξ and ξ′:

Corollary 4.1. Let H ∈Md be a Hamiltonian and {e1, . . . , ed′} be an ε-spectral covering of it

with ε ≥ 2−n. Suppose we implement phase estimation for H using t ≥ n+1+log
(
2 + (2δ)−1

)

qubits. Then ξ′ ≥ 1− δ and

ξ ≥ min
j∈[d′]

1− δ
1− δ + (2t+1ε+ 1)|Sj |−1

∑
l 6=j

∆(j, l)−2|Sl|
. (37)

Proof: As ε ≥ 2−n and with probability at least 1 − δ we will obtain an output which is

accurate up to n + 1 bits, with probability at least 1 − δ we will correctly identify in which

element of the covering we are from the output. From this, it follows that ξ′ ≥ 1− δ. As the

function (x, y) 7→ x
x+y is monotone increasing in x and decreasing in y for x, y > 0, we obtain

Eq. (37) by inserting the bound on ξ′ and the result of Lemma 4.2 into the expression we

derived for ξ in theorem 4.2.

Corollary 4.1 clarifies that the algorithm requires a larger number of qubits to be rea-

sonably stable if we have close Ej and Ej′ s.t. |Sj | � |Sj′ |. The converse is also true; if

|Sj | w |Sj′ | for all j, j′ the algorithm is already stable with a small precision.

5 Expected run-time, Memory Requirements and Circuit Depth

We will now address the expected run-time of algorithm 4. To this end, we will only consider

the number of calls of the phase estimation and eigenbasis preserving or lumpable channel

and not the necessary classical post-processing, as we consider the quantum routines the more

expensive resources.
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In [13, Theorem 5], it was shown that the expected time to obtain a sample using algo-

rithm 1 is O(tmix|S|2) steps, where again tmix is the time such that the chain is e−1 close to

stationarity and |S| the size of our state space. In the case of Hamiltonians with degener-

ate spectrum tmix will denote the mixing time of the classical lumped chain induced by the

lumpable channel (see Eq. (7)).

Recall that d′ denotes the number of distinct eigenvalues of the Hamiltonian or the size

of the ε-spectral covering being used. That is, d′ is just the number of different labels of

the graph. We will say that a column indexed by k ∈ −N of G is complete if ∀i ∈ [d′]
G(k, i) 6= 0. In [13], it is shown that we need to complete on average O(tmixd

′) columns of

the graph G before the labels on a column become constant. As each step to complete a

column needs O(d′) calls of RandomSuccessor, this leads to a total of O(tmixd
′2) calls of

RandomSuccessor. The dynamics in the eigenbasis of H is classical, so we may use the

exact same reasoning to conclude that we will need an expected O(tmixd
′) number of complete

columns until we obtain one perfect sample.

But in our case, we may need more uses of the channel and phase estimation, as we may

not prepare an arbitrary eigenstate of H ∈ Md which might be necessary to complete a

column deterministically. We will denote the expected number of measurements necessary

to complete a column by φ(H) and in theorem A.1 in the Appendix A we give an explicit

expression for this quantity.

In Appendix A we prove bounds on φ(H) for various cases of interest and remark that in

the worst case, namely Hamiltonians with a non-degenerate spectrum, φ(H) = O (d log(d)).

Preparing the initial states probabilistically does not significantly change the overall efficiency

of the algorithm, as illustrated by the next theorem.

Theorem 5.1. Let T :Md →Md be a lumpable quantum channel for a Hamiltonian H at

inverse temperature β > 0 with mixing time tmix. Then the expected number of steps until

algorithm 4 returns a perfect sample is O(tmixd
′φ(H)).

Proof: We will need an average of φ(H) measurements to complete a column. From the

result [13, Theorem 5] we know that we will need an expected number of O(tmixd
′) number

of complete columns to obtain a sample. As the number of measurements needed to complete

a column and complete columns to obtain a sample are independent, we have an expected

O(tmixd
′φ(H)) number of steps to obtain a sample.

It should be clear from theorem 5.1 that algorithm 4 is considerably less efficient than

other algorithms such as quantum Metropolis [7] if we are willing to settle for an approximate

sample for Hamiltonians with a non-degenerate spectrum. In this case we have d′ = d and

φ(H) = O (d log(d)), giving a total complexity of O(tmixd
2 log(d)) in the worst case. After all,

to obtain a sample that is e−1 close in trace distance to the Gibbs state, one only needs tmix

steps of the Metropolis algorithm instead of the O(tmixd
2 log(d)) needed for CFTP. Therefore,

it is important to stress again that these algorithms are very different in nature. Algorithm 4

provides us with perfect, not approximate samples, and it is the first algorithm of this form

for quantum Gibbs states to the best of our knowledge. It provides a certificate that we are

indeed sampling from the right distribution when it terminates, while most other algorithms
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require some mixing time bounds to obtain a sample that can be considered close to the target

distribution. Moreover, it only requires us to be able to implement one step of the chain.

However, for the case of Hamiltonians with a highly degenerate spectrum, our algorithm

is efficient, as is illustrated by the next theorem:

Theorem 5.2. Let T : Md → Md be a lumpable quantum channel for a Hamiltonian H ∈
Md at inverse temperature β > 0 with mixing time tmix. Moreover, assume that we have

d ≤ |Si|r(d) for some function r : R→ R and all eigenspaces Si. Then the expected number

of steps until algorithm 4 returns a perfect sample is O(tmixr(d)2 log(r(d))).

Proof: From d ≤ |Si|r(d) it follows that d′ ≤ r(d). It follows from theorem A.2 that we

will need an average of O (r(d) log(r(d))) measurements to complete a column. From the

result [13, Theorem 5] we know that we will need an expected number of O(tmixd
′) number

of complete columns to obtain a sample. As the number of measurements needed to complete

a column and complete columns to obtain a sample are independent, we have an expected

O(tmixr(d)2 log(r(d))) number of steps to obtain a sample.

In particular, for the cases r(d) = c for some c ∈ R, which corresponds to having

eigenspaces with a degeneracy proportional to the dimension, we have that we only need

O (tmix) steps to obtain a perfect sample. That is, the time necessary to obtain perfect sam-

ples with our algorithm and approximate ones are the same up to a constant factor. Slightly

more generally, for r(d) = c log(d)m our algorithm still has a polylogarithmic runtime and

is efficient. Admittedly such level of degeneracy is not usual for Hamiltonians of physical

relevance. One could use the strategy discussed in section 3.3 and still obtain certifiably good

samples by lumping together eigenvalues that are close. Moreover, as we will only need to

run a r(d) dimensional version of classical CFTP, the classical part of the algorithm will be

efficient.

Although the worst case O(tmixd
2 log(d)) scaling is prohibitive for applications, this is still

more efficient than explicitly diagonalizing H as long as tmix log(d) = O(dω−2). Here 2 < ω <

2.373 is the optimal exponent of matrix multiplication, which has the same complexity as

diagonalization [35]. That is, as long as approximate sampling is efficient, obtaining perfect

samples is faster than diagonalizing even in the worst case.

We now analyze the circuit depth and memory requirements to obtain a sample.

Theorem 5.3. Let CPT and CT be the circuit depth needed to implement the phase estimation

for H and the eigenbasis preserving channel, respectively. Then one needs to implement a

quantum circuit of depth O(CPT +CT ) to obtain a sample and moreover an expected O(φ(H))

classical memory.

Proof: The circuit length part follows easily from just going through the steps of algorithm

4, as to label the new vertex we need to implement two phase estimation steps and apply the

eigenbasis preserving channel once.

To see the that we only need O(φ(H)) classical memory, notice that we only need to store

the information contained in the last complete column to perform the later steps. This is
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because it contains all possible labels for future columns. By corollary A.2, we have that the

expected number of labels we obtain before completing a column is O(φ(H)), and so we need

a total classical memory of size O(φ(H)).

The quantum part of algorithm 4 can be easily parallelized, as we could use different

quantum computers feeding a classical computer with valid transitions. Note that the classical

resources necessary to run the algorithm are also not very large in the cases in which we have

a highly degenerate spectrum, as discussed before.

6 Adapting other Variations of CFTP

In [13] the authors discuss other variations of CFTP that can be more efficient, such as the

cover time CFTP algorithm. We will not discuss in detail how to adapt these other proposals,

but it should be straightforward to do so from the results in the last sections. In this section,

we will just mention the main ideas. Note that the only thing necessary to implement all these

variations is a valid RandomSuccessor function and the outputs of the measurements in

steps 6 and 13 of algorithm 4 do exactly that. This information could then be fed to a classical

computer running a variation of CFTP. The only difference to the classical case is that we

may not choose arbitrary initial states, but do so probabilistically. However, by waiting until

each initial state is observed, we may circumvent this and do not have a significant overhead

by the result of corollary A.2.

For some variations of CFTP, like again the cover time CFTP, one needs to iterate

RandomSuccessor. This is also straightforward. If we want to obtain a given number of

iterations of RandomSuccessor, we just apply an eigenbasis preserving or lumpable chan-

nel T to the first register, repeated by a phase estimation step and a measurement in the

computational basis. We then repeat this procedure to obtain the iterations.

One could then repeat the analysis done in this section and see that the run-time is again

of the same order of magnitude as the classical version of the CFTP algorithm and obtain

a perfect sampling algorithm with a run-time proportional to the cover time of the lumped

chain.

7 Conclusion and Open Problems

We have shown how to adapt perfect sampling algorithms for classical Markov chains to

obtain perfect samples of quantum Gibbs states on a quantum computer. These algorithms

have an average run-time which in the worst case is similar to their classical counterparts.

For highly degenerate Hamiltonians this algorithm gives an efficient sampling scheme and in

the extreme case of having degeneracies proportional to the dimension, the time required to

sample perfectly is even proportional to the time necessary to obtain an approximate sample.

In these cases, the classical post-processing required can be done efficiently. We showed how

to increase the efficiency of the sampling scheme and still obtain certifiably good samples by

lumping close eigenstates together. We argue that one of its main advantages is its short

circuit depth. We show that the algorithm is stable under noise in different steps of the

implementation. It would be interesting to find sampling applications or models that satisfy

the conditions under which our algorithms are efficient. Moreover, it would be worthwhile to

investigate if there is a class of models to which we can tailor the perfect sampling algorithms
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to be efficient, as was done with success for attractive spin systems [12].
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Appendix A Expected number of observations to sample all possible outputs

To estimate the expected run-time of algorithm 4, we need to determine how often, on average,

we must measure projections {Pi}1≤i≤d′ on the state 1
d until we observe all possible outcomes

i. Here the Pi correspond to projections onto different eigenspaces of the Hamiltonian Gibbs

state e−βH

Zβ we are trying to sample from. The number of measurements corresponds to the

time necessary to complete a column in algorithm 4 and will be denoted by φ(H).

One can see that this corresponds to the classical problem of determining how many

coupons one must collect to obtain at least one of each, the coupon collector problem [36].

But in our case, we have unequal probabilities for the coupons or outcomes, as the probability

q(i) of observing i is given by

q(i) = tr

(
Pi
1

d

)
=
|Si|
d
. (38)
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Theorem A.1 (Coupon collector with unequal probabilities). Let q ∈ Rd′ be the probability

distribution of the measurement outcomes as in Eq. (38). Let Y be the random variable given

by the number of measurements necessary to observe all possible outputs. Then

φ(H) = E(Y ) =

d′−1∑

j=0

(−1)d
′−1−j ∑

|J|=j
(1−QJ)−1, (39)

where QJ is defined as QJ =
∑
i∈J q(i) for J ⊂ [d′] and the second sum is over all subsets of

size j.

Proof: We refer to [37, Corollary 4.2] for a proof.

Although the expression in Eq. (39) is exact, its asymptotic scaling is not clear from it.

Therefore, we show the following bound which is more directly accessible.

Theorem A.2. Let q ∈ Rd′ be the probability distribution of the measurement outcomes as

in Eq. (38). Let Y be the random variable given by the number of measurements necessary

to observe all possible outputs. Moreover, assume that d ≤ |Si|r(d) for some r(d) : R → R.

Then

φ(H) = E(Y ) ≤ r(d)ϕd′ = O (r(d) log (r(d))) ,

where ϕd′ =
d′∑
l=1

1
l .

Proof: We mimic the proof of the classical result for the coupon collector problem with

uniform probability distribution. Denote by tl the expected time to collect a new coupon

after l − 1 have been collected. We then have

E(Y ) =
d′∑

l=1

E(tl).

We clearly have E(t1) = 1. Define k(d) = d
r(d) . For l ≥ 2, note that as we have that we get

each coupon with probability at least k(d)
d , the probability of getting a new coupon after having

collected l− 1 is at least (d′− l+ 1)k(d)d . From this, it follows that E(tl) ≤ d
k(d) (d′ − l + 1)

−1

and so

E(Y ) ≤ 1 +
d

k(d)

d′∑

l=2

1

d′ − l + 1
≤ d

k(d)

d′∑

l=1

1

l
.

The claim follows from observing that ϕd = O(log(d)) and that d′ ≤ r(d).

From this, it is easier to get estimates for cases that might be of interest. Here we collect

the bounds for the extreme cases of highly degenerate spectra, that is, with each eigenspace

having dimension Ω (d log(d)−m) for m ∈ N and the non-degenerate case.



388 Perfect sampling for quantum Gibbs states

Corollary A.1. Let q ∈ Rd′ be the probability distribution of the measurement outcomes as

in Eq. (38). Let Y be the random variable given by the number of measurements necessary

to observe all possible outputs. Moreover, assume that |Si| ≥ c d
log(d)m for some c ∈ R and all

i ∈ [d′]. Then

φ(H) = E(Y ) ≤ log(d)m

c
ϕc−1 log(d)m = O (log (d)

m
log [m log(d)]) .

Proof: Just take r(d) = c−1 log(d)m in theorem A.2.

Corollary A.2. Let q ∈ Rd′ be the probability distribution of the measurement outcomes as

in Eq. (38). Let Y be the random variable given by the number of measurements necessary to

observe all possible outputs. Moreover, assume that q(i) = 1
d . Then

φ(H) = E(Y ) = O (d log (d))

Proof: Just take r(d) = d in theorem A.2.

That is, we might go from a constant number of samples necessary to complete a column

in the case of degeneracies proportional to the dimension to a scaling like d log(d). One should

note that applying the bound in corollary A.2 to analyze the runtime of algorithm 4 probably

leads to bounds that are too pessimistic for spectra that are not very degenerate. To see why

this is the case, note that in algorithm 4 we do not discard measurements outcome we have

already observed, but rather use them to complete other columns, which we do not take into

account in this analysis.
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Dimensionality reduction of SDPs through sketching

D. Stilck França, A. Bluhm

Semidefinite programs (SDPs) are a natural framework to formulate and solve many optimiza-
tion problems encountered in quantum information theory. One of the main bottlenecks for
their more widespread application in practice is the prohibitive amount of memory required to
solve them. In this work, we investigate if one can apply concepts from quantum information
theory to solve SDPs using less memory. In particular, we show how to construct positive maps
whose output dimension is much smaller than its input and that approximately preserve the
Hilbert Schmidt scalar product between matrices based on Johnson-Lindenstrauss transforms.
We call such maps positive linear sketches. We then use them to approximately solve SDPs with
inequality constraints using substantially less memory, as such map approximately preserve fea-
sibility sets of SDPs. The effectiveness of our methods depends on the Schatten 1−norm of the
matrices that define the constraints. We show how to apply similar ideas to linear matrix in-
equality feasibility problems. Moreover, we show some no-go results that clarify the limitations
of this approach to the solution of SDPs and the limitations of positive, linear sketches, results
which might be of independent interest to the quantum information community.

C.1.1 SDPs and Quantum Information

Many optimization problems in quantum information theory can be naturally cast as SDPs.
Examples related to the problems discussed here before are e.g. upper bounds on the classical
capacity of quantum channels [58]. Other interesting problems related to the convergence
of (classical) semigroups can be cast as SDPs, such as the fastest mixing Markov chain on a
certain graph [59]. Although SDPs are solvable in polynomial time, the large amount of memory
required to solve them limits their application in practice to problems of moderate dimension.
It is therefore of great importance to develop methods that can (approximately) solve larger
instances of SDPs using fewer resources. Although the previous works in this dissertation are
concerned with how noisy a certain semigroup of quantum channels is, here it will be central
to see how much we can compress matrices while approximately preserving positivity and the
geometry induced by the Hilbert-Schmidt scalar product. We will focus on real matrices now,
but note that all results can be generalized to complex matrices. Given a matrix A ∈ Md, we
will denote its transpose by AT . Moreover, we denote the set of symmetric matrices, i.e. A
such that A = AT , by M

sym
D .

Given that in SDPs one optimizes a linear functional over positive matrices that satisfy linear
constraints, one natural approach to “compress” SDPs and reduce their dimension is to apply
positive linear maps that approximately projects the feasible set to a set of smaller dimension
without changing the target value too much. To find such positive maps we drew inspiration
from the field of sketching [60]. Sketching is an idea that is currently studied intensively in
theoretical computer science and mathematics.

C.1.2 Sketching the HS scalar product

The main idea in sketching is to (probabilistically) compress the input to a problem and to give
a (probabilistic) algorithm that yields an approximate solution to the original problem with
high probability. A handy set of tools in this setting are Johnson-Lindenstrauss transforms,
which we also explore in this work.

Definition C.1.1 (Johnson-Lindenstrauss transforms). A random matrix S ∈Md,D is a JLT
with parameters (ε, δ, k) if with probability at least 1− δ for any k-element subset V ⊂ RD and
for all v, w ∈ V it holds that

|〈Sv, Sw〉 − 〈v, w〉| ≤ ε‖v‖2‖w‖2.



It is known that there are (ε, δ, k)-JLT with d = O(ε−2 log (δk)). Those can also be chosen
sparse.

As mentioned before, we want to construct random maps that approximately preserve the
HS scalar product, and the following construction delivers exactly that.

Lemma C.1.2. Let B1, . . . , Bm ∈ M
sym
D and S ∈ Md,D be an (ε, δ, k)-JLT with ε ≤ 1 and k

such that

k ≥
m∑

i=1

rank(Bi).

Then

P
[
∀i, j ∈ [m] : |Tr

(
SBiS

TSBjS
T
)
− Tr (BiBj) | ≤ 3ε‖Bi‖1‖Bj‖1

]
≥ 1− δ. (C.1)

This claim follows immediately if we diagonalize the matrices Bi and apply the JLT property
to their eigenvectors combined with the Cauchy-Schwarz inequality. The usual JLT theorem
gives a scaling of the error with the Schatten 2−norm, which is smaller than the 1−norm, and
thus the scaling in Equation (C.1) is worse than expected. Given that this proof is admittedly
crude, it is natural to ask if it is possible to obtain better bounds using more sophisticated
techniques or a better family of positive maps. Some no-go theorems in this direction were
already proved in [14], but we also prove the following theorem that shows that our results
cannot be improved significantly:

Theorem C.1.3 (No-go for Sketching HS). Let Φ : MD →Md be a random positive map such
that with positive probability for any Y1, . . . , YD+1 ∈MD and 0 < ε < 1

4 we have

|Tr
(
Φ(Yi)

TΦ(Yj)
)
− Tr

(
Y Ti Yj

)
| ≤ ε‖Yi‖2‖Yj‖2. (C.2)

Then d = Ω(D).

The proof of this statement uses the fact that for any set {Pi}i∈I of |I| ≥ d positive
semidefinite matrices in Md such that Tr

(
P 2
i

)
= 1 we have that

∑

i 6=j
Tr (PiPj)

2 ≥ (|I| − d)2|I|
(|I| − 1)d2

.

We then use this to show that if d is not Ω(D) we could violate this bound.

C.1.3 Sketching SDPs to approximate the optimum value

The kind of SDPs we consider are given in terms of inequality constraints, i.e. they have the
form

maximize Tr (AX)

subject to Tr (BiX) ≤ γi, i ∈ {1, . . . ,m}
X ≥ 0

where A, Bi ∈ M
sym
D and γi ∈ R for all i ∈ {1, . . . ,m}. We will always assume that our SDPs

satisfy Slater’s condition. The sketched SDP for this problem will be:

Definition C.1.4 (Sketched SDP). Let A, Bi ∈ M
sym
D and η, γi ∈ R for all i ∈ {1, . . . ,m}

and ε > 0. Given the existence of an optimal solution X∗ ≥ 0 satisfying Tr (X∗) ≤ η and given
further an (ε, δ, k)-JLT S ∈Md,D, we call the d-dimensional optimization problem

maximize Tr
(
SASTY

)

subject to Tr
(
SBiS

TY
)
≤ γi + 3εη‖Bi‖1, i ∈ {1, . . . ,m} (C.3)

Y ≥ 0

the sketched SDP. Here, k ≥ rank(X∗) + rank(A) +
∑m
i=1 rank(Bi).



The sketched SDP gives an approximation of the value of the original problem with high
probability.

Theorem C.1.5 (Bounds on sketched value). Let αS be the value of the sketched SDP defined
by A, Bi and S. Then

αS + 3εη‖A‖1 ≥ α (C.4)

with probability at least 1− δ. Moreover, we also have

α ≥ αS − εC. (C.5)

Here C scales linearly with ‖Bi‖1, η, (α − Tr (X0A)) and maxi(γi − Tr (X0Bi))
−1. X0 is a

strictly feasible solution to the original problem.

The upper bound in Equation (C.4) follows from noting that by our result on sketching the
HS norm and our choice of the JLT S we have that Tr

(
SBiS

TSX∗ST
)
≤ γi + 3εη‖Bi‖1 for all

1 ≤ i ≤ m. This implies that SX∗ST , which is again positive semidefinite, will be a feasible
point of the sketched SDP with value at least α− 3εη‖A‖1, from which the claim follows. The
lower bound follows from observing that, by the cyclicity of the trace, STX∗SS, where X∗S is
an optimal point of the sketched SDP, will be a feasible point of a perturbed version of the
sketchable SDP. Using continuity estimates for SDPs we obtain the claim.

These results suggest the following simple algorithm to solve SDPs approximately. Sample a
JLT S with the desired parameters, compute the sketched matrices SBiS

T and SAST and solve
the sketched SDP. The previous Theorem then guarantees that the error will not be significant.

We also note that we can obtain approximately optimal points of the original SDP in the
case that all γi ≥ 0.

C.1.4 Linear Matrix Inequality feasibility problems

Using similar ideas, we can also handle linear matrix inequality feasibility problem.

Theorem C.1.6. Let A,B1, . . . , Bm ∈M
sym
D \{0} such that

m∑

i=1

ciBi −A 6≥ 0

for all c ∈ Rm+ . Suppose further that

Λ = cone{B1, . . . , Bm}

is pointed and Λ ∩ S+
D = {0}. Moreover, let ρ ∈ S+D be such that for all i ∈ [m]

Tr (ρBi) < 0, Tr (−Aρ) < 0 and Tr (ρ) = 1.

Set

ε =
1

2
min

{∣∣∣∣
Tr (ρB1)

‖B1‖1

∣∣∣∣ , . . . ,
∣∣∣∣
Tr (ρBm)

‖Bm‖1

∣∣∣∣ ,
∣∣∣∣
Tr (ρA)

‖A‖1

∣∣∣∣
}

and take S ∈Md,D to be an (ε, δ, k)-JLT. Here,

k ≥ rank(A) + rank(ρ) +

m∑

i=1

rank(Bi).

Then

m∑

i=1

ciSBiS
T − SAST 6≥ 0 (C.6)

for all c ∈ Rm+ , with probability at least 1− δ.



The proof relies on the fact that under these assumptions such a ρ always exists and defines
a hyperplane that separates the LMI and the cone of positive semidefinite matrices. It follows
from our result on positive sketches of the HS scalar product that SρST will also define a
separating hyperplane with high probability. This results suggest an algorithm to certify that
a certain LMI is not feasible. We first check if the LMI

m∑

i=1

ciSBiS
T − SAST 6≥ 0

is feasible. If it is not, then the original problem was not feasible as well, as any feasible point
remains feasible when we conjugate with S. The results of the last theorem assure that we will
be able to detect that the original problem was not feasible with a high enough probability if
we choose ε small enough.

C.1.5 Complexity and Memory Considerations

The main bottleneck of the algorithm is to compute the matrices SBiS
T . For a fixed error

ε, probability of success δ, ‖Bi‖1 = O(1) = ‖A‖1, m = poly(D) and solving SDPs to a fixed
accuracy we have:

General Solver Sketched Ellipsoid method
Complexity SDP(m,D) O(D2m log(mD) + SDP(m, log(mD)) O(max{m,D2}D6)

Memory O(D2m) O(m log(mD)) O(D2m)

We obtain further improvements in the complexity and memory if we suppose that the Bi
are sparse. If the SDP can be sketched, doing so gives a speedup as long as SDP(m,D) =
Ω(mD2+µ), µ > 0.

C.1.6 Individual Contribution

The project’s idea was motivated by discussions between Andreas Bluhm and me. I am the
principal author of this article. I had the idea that one could use conjugations with JLTs to
reduce the dimensionality of SDPs while approximately preserving their feasible set. I proved
and formulated Lemma C.1.2 (Lemma 3.1 in the article) and Theorem C.1.3 (Theorem 3.2 in
the article). A further no-go result not included in this summary, Theorem 5.1 in the article,
was also formulated and proved by me. In the case of Theorem C.1.5, I was responsible for
proving and formulating the upper bound on the value, which corresponds to Theorem 5.3 in the
article, while A. Bluhm formulated and proved the lower bound, which corresponds to Theorem
5.5, although the idea of obtaining the bound through continuity bounds on the relaxed SDP
was mine. He then observed that duality of SDPs would deliver the desired bound. The idea of
relaxing the original SDP as done in the sketched SDP also goes back to me. The observation
that we can also obtain a point which is close to optimal from SDP-packing problems, formulated
in Theorem 5.6, goes back to me and I formulated and proved the theorem. Regarding Theorem
C.1.6 (Lemma 4.1 in the article), I was responsible for formulating and proving a slightly less
general version of it and A. Bluhm for arguing that the same proof would apply to the current
more general setting. A. Bluhm was responsible for the discussion on complexity and memory
considerations and I was responsible for the numerics and applications section. I wrote all the
code necessary for our examples and thought of the applications. I wrote sections 1, 2, 3, 4, 5, 7
and Appendix B. A. Bluhm was responsible for the appendices on complexifying JLTs and we
contributed equally to the section on random feasibility problems. After the completion of the
first draft, we discussed together how we could improve the presentation of the article, leading
to its current form.
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1. Introduction

Semidefinite programs (SDPs) are a prominent class of optimization problems [LA16].
They have applications across different areas of science and mathematics, such as discrete
optimization [WA02] or control theory [BEFB94].

However, although there are many different algorithms that solve an SDP up to an
error ε in a time that scales polynomially with the dimension and logarithmically with
ε−1 [Bub15], solving large instances of SDPs still remains a challenge. This is not only
due to the fact that the number and cost of the iterations scale superquadratically with
the dimension for most algorithms to solve SDPs, but also due to the fact that the mem-
ory required to solve large instances is beyond current capabilities. This has therefore
motivated research on algorithms that can solve SDPs, or at least obtain an approximate
solution, with less memory requirements. One such example is the recent [YUAC17],
where ideas similar to ours were applied to achieve optimal storage requirements neces-
sary to solve a certain class of SDPs. While their work proposes a new way to solve an
SDP using linear sketches, our approach relies on standard convex optimization methods.

In this work, we develop algorithms to estimate the value of an SDP with linear
inequality constraints and to determine if a given linear matrix inequality (LMI) is
feasible or not. These algorithms convert the original problem to one of the same type,
but of smaller dimension, which we call the sketched problem. Subsequently, this new
problem can be solved with the same techniques as the original one, but potentially
using less memory and achieving a smaller runtime. Therefore, we call this a black box
algorithm. With high probability an optimal solution to the sketched problem allows us
to infer something about the original problem.

In the case of LMIs, if the sketched problem is infeasibile, we obtain a certificate
that the original problem is also infeasibile. If the sketched problem is feasible, we are
able to infer that the original problem is either “close to feasible” or feasible with high
probability, under some technical assumptions.

In the case of estimating the value of SDPs, we are able to give an upper bound that
holds with high probability and a lower bound on the value of the SDP from the value

2



of the sketched problem, again under some technical assumptions. For a certain class of
SDPs, which includes the so-called semidefinite packing problems [IPS05], we are able
to find a feasible point of the original problem which is close to the optimal point and
most technical aspects simplify significantly. For this class it can be checked whether
this feasible point is indeed optimal.

Our algorithms work by conjugating the matrices that define the constraints of the
SDP with Johnson-Lindenstrauss transforms [Woo14], thereby preserving the structure
of the problem. Similar ideas have been proposed to reduce the memory usage and
complexity of solving linear programs [VPL15]. While those techniques aim to reduce
the number of constraints, our goal is to reduce the dimension of the matrices involved.

Unfortunately, the dimension of the sketch needed to have a fixed error with high
probability scales with the Schatten 1-norm of the constraints and that of an optimal
solution to the SDP, which significantly restricts the class of problems to which these
methods can be applied. We are able to show that one cannot significantly improve this
scaling and that one cannot sketch general SDPs using linear maps.

This paper is organized as follows: in Section 2, we fix our notation and recall some
basic notions from matrix analysis, Johnson-Lindenstrauss transforms, semidefinite pro-
grams and convex analysis which we will need throughout the paper. We then proceed to
show how to sketch the Hilbert-Schmidt scalar product with positive maps in Section 3.
We apply these techniques in Section 4 to show how to certify that certain LMIs are
infeasible by showing the infeasibility of an LMI of smaller dimension. In Section 5, we
apply similar ideas to estimate the value of an SDP with linear inequality constraints
by solving an SDP of lower dimension. This is followed by a discussion of the possible
gains in the complexity of solving these problems and for the memory requirements in
Section 6. Furthermore, we make some numerical simulations in Section 7 to benchmark
our findings by applying our techniques to a problem from the field of optimal designs
of experiments and to a random LMI with matrices sampled from the Gaussian unitary
ensemble.

2. Preliminaries

We begin by fixing our notation. For brevity, we will write the set {1, . . . , d} as [d].
The set of d×D matrices over some field K ∈ {R,C} will be written as Md,D(K) and
just Md(K) if d = D. We will often omit the underlying field if it is not relevant for
the statement. We will denote by Msym

d the set of symmetric d × d matrices in the
real case and the set of Hermitian matrices in the complex case. For A ∈ Md, A

T will
denote the transpose of A in the real case and the Hermitian conjugate in the complex
case. To avoid cumbersome notation and redundant theorems, we will prove most of the
statements only for real matrices. However, note that all statements translate to the
complex case in a straightforward fashion. We will state most of the definitions just for
real matrices, but it should be clear how to generalize them to the complex case. For
A ∈ Msym

d we will write A ≥ 0 if A is positive semidefinite. We will denote the cone of
d×d positive semidefinite matrices by S+d and its interior, the positive definite matrices,

3



by S++
d .

Definition 2.1 (Schatten p-norm and Hilbert-Schmidt scalar product). Let A ∈ Md

and s1, . . . , sd be its singular values. We define the Schatten p-norm of A for p ≥ 1,
denoted by ‖A‖p, to be given by

‖A‖pp =

d∑

i=1

spi

and for p = ∞ by ‖A‖∞ = max
1≤i≤d

si The Schatten 2−norm is induced by the Hilbert-

Schmidt scalar product, which is given by

〈A,B〉HS = Tr
(
ATB

)

for A,B ∈Md.

We will sometimes refer to the case p = 2 as the Hilbert-Schmidt (HS) norm and
p =∞ as the operator norm.

Definition 2.2 (Positive Map). A linear map Φ : MD → Md is called positive if
Φ(S+D) ⊆ S+d .

The structure of the set of positive maps is still not very well understood [Stø13].
For our purposes, however, we will only need maps of the form Φ(X) = SXST with
S ∈Md,D, which are easily seen to be positive.

We will adopt the standard Big O notation for the asymptotic behavior of functions.
That is, for two functions f, g : R → R, we will write g = O(f) if there exists a
constant M > 0 such that for all x > x0 we have |g(x)| ≤ M |f(x)|. Analogously, we
write g = Ω(f) if there exists a constant M > 0 such that for all x > x0 we have
|g(x)| ≥M |f(x)|.

The following families of matrices will play a crucial role for our purposes:

Definition 2.3 (Johnson-Lindenstrauss transform). A random matrix S ∈Md,D(K) is
a Johnson-Lindenstrauss transform (JLT) with parameters (ε, δ, k) if with probability at
least 1− δ, for any k-element subset V ⊆ KD, for all v, w ∈ V it holds that

|〈Sv, Sw〉 − 〈v, w〉| ≤ ε‖v‖2‖w‖2.

Note that one usually only demands that the norm of the vectors involved is distorted
by at most ε in the definition of JLTs, but this is equivalent to the definition we chose by
the polarization identity. There are many different examples of JLTs in the literature and
we refer to [Woo14] and references therein for more details. Most of the constructions of
JLTs focus on real matrices, but in Section A we show how to lift some of these results
to cover complex matrices. The most prominent JLT is probably the following:

Theorem 2.4. Let 0 < ε, δ < 1 and S = 1√
d
R ∈ Md,D(R), where the entries of R

are i.i.d. standard Gaussian random variables. If d = Ω(ε−2 log
(
kδ−1

)
), then S is an

(ε, δ, k)-JLT.
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Proof. We refer to [Woo14, Lemma 2.12] for a proof.

The main drawback of using Gaussian JLTs is that these are dense matrices. We will
denote by nnz(X) the number of nonzero elements of a matrix X ∈ MD. As we later
want to compute products of the form SXST , it will be advantageous to have a sparse
S to speed up the computation of this product. The computational cost of forming this
product will most often be the bottleneck of our algorithms. Fortunately, there has been
a lot of recent work on sparse JLTs. In particular, we have the following almost optimal
result.

Theorem 2.5 (Sparse JLT [KN14, Section 1.1]). There is an (ε, δ, k)-JLT S ∈ Md,D

with d = O
(
ε−2 log

(
kδ−1

))
and s = O(ε−1 log

(
kδ−1

)
) nonzero entries per column.

Proof. We refer to [KN14, Section 1.1] for a proof and remark that the proof is construc-
tive.

Given some JLT S ∈ Md,D, the positive map Φ : MD → Md, X 7→ SXST will be
called the sketching map and d the sketching dimension.

We will now fix our notation for semidefinite programs. Semidefinite programs are
a class of optimization problems in which a linear functional is optimized under linear
constraints over the set of positive semidefinite matrices. We refer to [LA16] for an
introduction to the topic. There are many equivalent ways of formulating SDPs. In this
work, we will assume w.l.o.g. that the SDPs are given in the following form:

Definition 2.6 (Sketchable SDP). Let A,B1, . . . , Bm ∈Msym
D and γ1, . . . , γm ∈ R. We

will call the constrained optimization problem

maximize Tr (AX)

subject to Tr (BiX) ≤ γi, i ∈ [m] (1)

X ≥ 0,

a sketchable SDP.

Sometimes we will also refer to a sketchable SDP as the original problem. We will
see later how to approximate the value of these SDPs. SDPs have a rich duality theory,
in which, instead of optimizing over positive semidefinite matrices that satisfy certain
constraints, one optimizes over the points that satisfy a linear matrix inequality (LMI).
The dual problem of a sketchable SDP is given by the following:

minimize 〈c, γ〉

subject to

m∑

i=1

ciBi −A ≥ 0 (2)

c ∈ Rm+ ,

where γ ∈ Rm is the vector with coefficients γi. Here, Rm+ = {x ∈ Rm : xi ≥ 0 }. SDPs
and LMIs will be called feasible if there is at least one point satisfying all the constraints,
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otherwise we will call it infeasible. A sketchable SDP will be called strictly feasible if
there is a point X ≥ 0 such that all the constraints in (1) are satisfied with strict
inequality.

Under some conditions the primal problem (1) and the dual problem (2) have the same
value. One widely used sufficient condition is Slater’s condition [LA16], which asserts
that if we have a strictly feasible point of full rank for the primal problem and if the
dual problem is feasible, then the primal and the dual have the same value and there is
an optimal solution to the dual problem.

We will need some standard concepts from convex analysis. Given a1, . . . , an ∈ V
for a vector space V , we denote by conv{a1, . . . , an} the convex hull of the points. By
cone{a1, . . . , an} we will denote the cone generated by these elements and a convex cone
C will be called pointed if C ∩ −C = {0}.

3. Sketching the Hilbert-Schmidt product with positive maps

One of our main ingredients to sketch an SDP or LMI will be a random positive map
Φ :MD →Md that preserves the Hilbert-Schmidt scalar product with high probability.
We demand positivity to assure that the structure of the SDP or LMI is preserved.
Below, we first consider the example Φ(X) = SXST with S a JLT.

Lemma 3.1. Let B1, . . . , Bm ∈Msym
D and S ∈Md,D be an (ε, δ, k)-JLT with ε ≤ 1 and

k such that

k ≥
m∑

i=1

rankBi.

Then

P
[
∀i, j ∈ [m] : |Tr

(
SBiS

TSBjS
T
)
− Tr (BiBj) | ≤ 3ε‖Bi‖1‖Bj‖1

]
≥ 1− δ. (3)

Proof. Observe that the eigenvectors of the Bi corresponding to nonzero eigenvalues of
the Bi form a subset of cardinality at most k of KD. Let A,B ∈ {B1, . . . , Bm}. As S is
an (ε, δ, k)-JLT, with probability at least 1 − δ we have for all normalized eigenvectors
ai of A and bj of B that ∣∣|〈Sai, Sbj〉| − |〈ai, bj〉|

∣∣ ≤ ε
by the reverse triangle inequality. We also have that for any ai, bj

‖Sai‖2; ‖Sbj‖2 ≤
√

1 + ε,

again by the fact that S is a JLT. As ε ≤ 1 and by the Cauchy-Schwarz inequality, it
follows that

|〈Sai, Sbj〉|+ |〈ai, bj〉| ≤ 3

and hence ∣∣|〈Sai, Sbj〉|2 − |〈ai, bj〉|2
∣∣ ≤ 3ε. (4)
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Now let λi and µj be the eigenvalues of A and B, respectively. We have:

∣∣Tr
(
SASTSBST

)
− Tr (AB)

∣∣ =

∣∣∣∣∣∣

D∑

i,j=1

λiµj(|〈Sai, Sbj〉|2 − |〈ai, bj〉|2)

∣∣∣∣∣∣

≤ 3ε

D∑

i,j=1

|λi||µj | = 3ε‖A‖1‖B‖1

with probability at least 1− δ. As A,B were arbitrary, the claim follows.

The scaling of the error with the Schatten 1-norm of the matrices involved in Lemma 3.1
is highly undesirable and the estimates used to prove it are admittedly crude. We
note that a similar estimate was proved in [SH15]. Moreover, just using the fact that

Msym
D (R) ' R

D(D+1)
2 as a Hilbert space, we could use an (ε, δ, k)-JLT L for R

D(D+1)
2

and isometrically embed the resulting vector into a symmetric matrix. Denoting this
transformation by L̃, we obtain

P
[
∀i, j ∈ [n] :

∣∣Tr
(
L̃(Bi)L̃(Bj)

)
− Tr (BiBj)

∣∣ ≤ 3ε‖Bi‖2‖Bj‖2
]
≥ 1− δ.

That is, if only demand the sketching map to map symmetric matrices to symmetric
matrices, we clearly obtain a better scaling of the error with this procedure. Note,
however, that the map L may not be positive, one of the requirements to later sketch
SDPs. The next theorem shows that a scaling of the error with the Schatten 2−norm
of the matrices involved is not possible with positive maps if we want to achieve a
non-trivial compression.

Theorem 3.2. Let Φ : MD → Md be a random positive map such that with strictly
positive probability for any Y1, . . . YD+1 ∈MD and 0 < ε < 1

4 we have

|Tr
(
Φ(Yi)

TΦ(Yj)
)
− Tr

(
Y T
i Yj

)
| ≤ ε‖Yi‖2‖Yj‖2. (5)

Then d = Ω(D).

Proof. We refer to Appendix B for a proof.

One could hope to achieve a better bound for low rank matrices, but we note that
this does not significantly improve our bound, as for A ∈MD of rank r we have ‖A‖1 ≤√
r‖A‖2. That is, by choosing an

(
ε
r , δ, k

)
-JLT, we may ensure that inequality (3) holds

with the HS norm if the rank of the matrices involved is bounded by r � d. This
just increases the dimension of the involved JLT matrices by a factor of r2 if we have
the usual ε−2 dependence on the dimension for the JLTs. It remains open if one could
achieve a better compression for a sublinear number of matrices.

7



4. Sketching linear matrix inequality feasibility problems

In this section we will show how to use JLTs to certify that certain linear matrix inequal-
ities (LMI) are infeasible by showing that an LMI of smaller dimension is infeasible. We
will consider inequalities like the ones in the following lemma:

Lemma 4.1. Let A,B1, . . . , Bm ∈Msym
D \ { 0 } such that

m∑

i=1

ciBi −A 6≥ 0 (6)

for all c ∈ Rm+ . Suppose further that

Λ = cone{B1, . . . , Bm}

is pointed and Λ ∩ S+
D = {0}. Then there exists a ρ ∈ S+D such that for all i ∈ [m]

Tr (ρBi) < 0, Tr (−Aρ) < 0 and Tr (ρ) = 1.

Proof. Let E = conv{−A,B1, . . . , Bm}. We will show that S+
D ∩ E = ∅. Suppose there

exists an X = −p0A+
m∑
i=1

piBi ∈ S+
D ∩ E with p ∈ [0, 1]m+1. If p0 > 0, we could rescale

X by p−10 and obtain a feasible point for (6), a contradiction. If p0 = 0 and X 6= 0,
this would in turn contradict Λ ∩ S+

D = {0}. And if X = 0, the cone Λ would not be
pointed. From these arguments it follows that 0 6∈ E. The set E is therefore closed,
convex, compact and disjoint from the convex and closed set S+D . We may thus find a
hyperplane that strictly separates S+D from E. That is, a ρ ∈ Msym

D such that w.l.o.g.
Tr (ρX) ≥ 0 for all X ∈ S+D , as 0 ∈ S+D , and Tr (Y ρ) < 0 for all Y ∈ E. As Tr (ρX) ≥ 0
for all X ≥ 0, it follows that ρ is positive semidefinite and it is clear that by normalizing
ρ we may choose ρ with Tr (ρ) = 1.

The main idea is now to show that under these conditions we may sketch the hyper-
plane in a way that it still separates the set of positive semidefinite matrices and the
sketched version of the set {∑m

i=1 γiBi −A|γi ≥ 0}.
Theorem 4.2. Let A,B1, . . . , Bm ∈Msym

D \ { 0 } such that

m∑

i=1

ciBi −A 6≥ 0

for all c ∈ Rm+ . Suppose further that

Λ = cone{B1, . . . , Bm}

is pointed and Λ ∩ S+
D = {0}. Moreover, let ρ ∈ S+D be such that for all i ∈ [m]

Tr (ρBi) < 0, Tr (−Aρ) < 0 and Tr (ρ) = 1.
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Set

ε =
1

2
min

{ ∣∣∣∣
Tr (ρB1)

‖B1‖1

∣∣∣∣ , . . . ,
∣∣∣∣
Tr (ρBm)

‖Bm‖1

∣∣∣∣ ,
∣∣∣∣
Tr (ρA)

‖A‖1

∣∣∣∣
}

and take S ∈Md,D to be an (ε, δ, k)-JLT. Here,

k ≥ rankA+ rank ρ+
m∑

i=1

rankBi.

Then

m∑

i=1

ciSBiS
T − SAST 6≥ 0 (7)

for all c ∈ Rm+ , with probability at least 1− δ.

Proof. It should first be noted that ρ exists and ε > 0 by Lemma 4.1. The matrix ρ
defines a hyperplane that strictly separates the set

E =

{
m∑

i=1

ciBi −A
∣∣∣∣∣ c ∈ R

m
+

}

and S+
D. We will now show that SρST strictly separates the sets

ES =

{
m∑

i=1

ciSBiS
T − SAST

∣∣∣∣∣ c ∈ R
m
+

}

and S+
d with probability at least 1− δ, from which the claim follows. Note that by our

choice of ρ and ε, it follows from Lemma 3.1 that we have

Tr
(
SρSTSBiS

T
)
≤ Tr (ρBi) + ε‖Bi‖1 < 0

with probability at least 1− δ and similarly for −A instead of Bi. Therefore, it follows
that Tr(ZSρST ) < 0 for all Z ∈ ES . As SρST is a positive semidefinite matrix, it follows
that Tr

(
Y SρST

)
≥ 0 for all Y ∈ S+d . We have therefore found a strictly separating

hyperplane for ES and S+
D and the LMI (7) is infeasible.

Theorem 4.2 suggests a way of sketching feasibility problems of the form

m∑

i=1

ciBi −A ≥ 0, c ∈ Rm+ . (8)
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If we are interested in the case in which it is infeasible, we investigate if the LMI

m∑

i=1

ciSBiS
T − SAST ≥ 0, c ∈ Rm+ (9)

is feasible, for S a suitably chosen JLT as in Theorem 4.2. If Equation (9) is infeasible,
we know that Equation (8) is infeasible, as any choice of a feasible c leads to a feasible
c for Equation (9). Moreover, it follows from Theorem 4.2 that if the cone spanned by
the Bi is well-behaved enough and the JLT is suitably chosen, it only happens with very
low probability that Equation (9) is feasible and Equation (8) is not. To obtain more
concrete bounds on the probability that the original problem is feasible, one would need
to know the parameter ε, which is not possible in most applications. We emphasize that
this is a black box algorithm. That is, we can decide whether a large instance of an LMI
is infeasible by showing that a smaller instance of an LMI is infeasible. In Section 6 we
will discuss the implications for the complexity and memory usage of the last theorems.

5. Approximating the value of semidefinite programs through
sketching

We will now show how to approximate with high probability the value of a sketchable
SDP by conjugating the target matrix and the matrices that describe the constraints
with JLTs and subsequently solving a smaller instance of an SDP. The next theorem
shows that in general it is not possible to approximate the value of a sketchable SDP
using linear sketches with high probability and that we need to make further assumptions
on the problem to achieve a non-trivial compression using linear maps.

Theorem 5.1. Let Φ :M2D → Rd be a random linear map such that for all sketchable
SDPs there exists an algorithm which allows us to estimate the value of an SDP up to a
constant factor 1 ≤ τ < 2√

3
given the sketch {Φ(A),Φ(B1), . . . ,Φ(Bm)} with probability

at least 9/10. Then d = Ω(D2).

Proof. By the duality relations for Schatten p-norms, it is easy to see that the value of
the SDP

maximize Tr (AX)

subject to Tr (X) ≤ 1 (10)

X ≥ 0

with

A =

(
0 G
GT 0

)

is twice the operator norm of the matrix G ∈MD. In [Woo14, Theorem 6.5] it was shown
that any algorithm that estimates the operator norm of a matrix from a linear sketch
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with probability larger than 9/10 must have sketch dimension Ω(D2). As the sketch
{ Φ(A),Φ(1) } would thus allow to sketch the operator norm, the assertion follows.

The above result remains true even if we restrict to SDPs that have optimal points
with small Schatten 1-norm and low rank. This follows from the fact that the SDP given
in Equation (10) has an optimal solution with rank 1 and trace 1.

We may even restrict to SDPs whose value scales sublinearly. To see that, notice that
to show that the operator norm cannot be sketched, [Woo14] constructs two families of
random matrices whose operator norm is of order

√
D (cf. [Woo14, Lemma 6.3]). As the

class of SDPs considered here covers this problem, we obtain the claim.
As we will see soon, the main hurdle to sketch SDPs and thus overcome the last no-go

theorem is that we also need to suppose that the matrices that define the constraints
and the target function have a small Schatten 1-norm, not only one optimal solution.
To this end, we define:

Definition 5.2 (Sketched SDP). Let A,B1, . . . , Bm ∈ Msym
D , η, γ1, . . . , γm ∈ R and

ε > 0. Given that an optimal point X∗ ∈ S+D of the sketchable SDP defined through
these matrices satisfies Tr (X∗) ≤ η and given a random matrix S ∈ Md,D, we call the
optimization problem

maximize Tr
(
SASTY

)

subject to Tr
(
SBiS

TY
)
≤ γi + µ‖Bi‖1, i ∈ [m] (11)

Y ≥ 0

with µ = 3εη the sketched SDP.

The motivation for defining the sketched SDP is given by the following theorem.

Theorem 5.3. Let A,B1, . . . , Bm ∈ Msym
D , η, γ1, . . . , γm ∈ R and ε > 0. Denote by α

the value of the sketchable SDP and assume it is attained at an optimal point X∗ which
satisfies Tr (X∗) ≤ η. Moreover, let S ∈Md,D be an (ε, δ, k)-JLT, with

k ≥ rankX∗ + rankA+
m∑

i=1

rankBi.

Let αS be the value of the sketched SDP defined by A, Bi and S. Then

αS + 3εη‖A‖1 ≥ α

with probability at least 1− δ.
Proof. It follows from Lemma 3.1 that SX∗ST is a feasible point of the sketched SDP
with probability at least 1− δ. Again by Lemma 3.1, we have that

Tr
(
SASTSX∗ST

)
≥ Tr (AX∗)− 3εη‖A‖1.
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It then follows that αS + 3εη‖A‖1 ≥ α.

In Section 6, we will discuss the implications for memory usage and complexity of
approximating the value of an SDP.

Note that the optimal value of an SDP is not necessarily attained. We could also
demand X∗ to be only close to optimality which would slightly increase the error made
by the sketch. Since this makes notation more cumbersome, we assume the existence of
such an optimal point.

Although it is not customary to assume a bound on the Schatten 1-norm of an optimal
solution to an SDP, it is common to assume that for example the solution lies in a given
ellipsoid when using the ellipsoid method to solve SDPs [LA16]. From such assumptions
it is straightforward to derive bounds on the HS norm of the solution. If we are also
given that an optimal solution to the SDP is low rank, the HS norm gives a good upper
bound on the Schatten 1-norm, as remarked after the proof of Lemma 3.1. Solutions of
low rank of SDPs have been extensively studied over the past years and there are many
results available in the literature which guarantee that the optimal solution to an SDP
has low rank. In general, it has been shown [Bar95, Pat98] that if we have m constraints

and the SDP is feasible, there is an optimal solution with rank at most r = b
√
8m+1−1

2 c.
Notice that Theorem 5.3 does not rule out the possibility that the value of the sketched

problem is much larger than that of the sketchable SDP. To investigate this issue, we
introduce the following:

Definition 5.4 (Relaxed SDP). Let A,B1, . . . , Bm ∈ Msym
D , η, γ1, . . . , γm ∈ R and

ε > 0. Given that an optimal point X∗ of the sketchable SDP defined through these
matrices satisfies Tr (X∗) ≤ η, we call the optimization problem

maximize Tr (AX)

subject to Tr (BiX) ≤ γi + µ‖Bi‖1, i ∈ [m] (12)

X ≥ 0

with µ = 3εη the relaxed SDP.

Notice that, given a feasible point Y to the sketched SDP, STY S is a feasible point
for the relaxed problem by the cyclicity of the trace. It follows that if the values of the
original and the relaxed are close, the values of the original and the sketched problem
are close as well. We formalize this intuition and prove the following bound in Appendix
C.

Theorem 5.5. We are in the setting of Definition 2.6. Assume that there exists an
X0 > 0 such that all the constraints of the sketchable SDP are strictly satisfied and that
the dual problem is feasible. Then the value of the sketched SDP αS is bounded by

αS ≤ α(0) + εC1 (α(0)− Tr (AX0)) /C2.
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Here

C1 = max { 3η‖Bi‖1 | i ∈ [m] } ,
C2 = min { (γi − Tr (BiX0)) | i ∈ [m] } ,

where η ≥ Tr (X∗) for an optimal point X∗ of the sketchable SDP.

Proof. We refer to Appendix C for the proof.

Note that this statement is not probabilistic and holds regardless of the choice of the
sketching map. It could also be the case that Tr (AX0) itself gives a better lower bound
on the value than the one in Theorem 5.5. One can therefore say that Theorem 5.5
guarantees that in general the value of the sketched SDP cannot differ significantly
from the value of the original one if we have feasible points which are not too close to
the boundary. Combining Theorem 5.3 and Theorem 5.5 it is possible to pick ε small
enough to have an arbitrarily small additive error under some structural assumptions
on the SDP. That is, we need bounds on the Schatten 1-norms of A and Bi, be given a
strictly feasible point for the relaxed SDP and a bound on the Schatten 1-norm of an
optimal solution to the sketchable SDP.

In the case that all the γi > 0 for a sketchable SDP we may obtain a bound on the
value and an approximate solution to it in a much simpler way. This class includes the
so-called semidefinite packing problems [IPS05], where we have in addition that Bi ≥ 0.
Note that we may set all γi = 1 w.l.o.g. by dividing Bi by γi. We then obtain:

Theorem 5.6. For a sketchable SDP with γi = 1 and κ = max
i∈[m]

‖Bi‖1, we have that

αS
1 + ν

≤ α, (13)

where ν = 3εηκ. Moreover, denoting by X∗S an optimal point of the sketched SDP, we
have that 1

1+νS
TX∗SS is a feasible point of the sketchable SDP that attains this lower

bound. Furthermore, if ‖Bi‖1 = κ for all i ∈ [m] it can be checked if this lower bound is
the optimal value.

Proof. The lower bound in Equation (13) follows immediately from the cyclicity of the
trace, as 1

1+νS
TX∗SS is a feasible point of the sketchable SDP. Given an optimal solution

{ci}i∈[m] to the dual of the sketched SDP and that ‖Bi‖1 = κ for all i ∈ [m], it is
possible to check if the lower bound given by the sketched SDP is indeed optimal as
follows. Slater’s condition holds for the sketched and sketchable SDP, as ϑ1 is a strictly
feasible point for ϑ > 0 small enough. If we have

m∑

i=1

ciBi −A ≥ 0,

then the obtained feasible point is indeed optimal for the sketchable SDP by strong
duality.
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It is possible to relax the condition that all the Schatten 1-norms of the matrices that
define the constraints are the same and still obtain a lower bound for which it can be
checked whether it is indeed optimal. To achieve this, it is necessary to modify all the
constraints of the sketched SDP, as in Equation (11), to 1 + µκ instead of 1 + µ‖Bi‖1.
In the primal picture, we will find an optimal point of the sketchable SDP through the
sketched SDP whenever there is a Y ∈ S+D such that STY S = X∗, for X∗ an optimal
point of the sketchable SDP. Note that for semidefinite packing problems it is possible
to derive a bound on the Schatten 1-norm of an optimal solution in a straightforward
way.

Lemma 5.7. Let B1, . . . , Bm ∈ MD be positive semidefinite matrices such that the

smallest strictly positive eigenvalue of
m∑
i=1

Bi is given by λ. Then for a sketchable SDP

with constraints Bi, γ1, . . . , γm ∈ R+, A ≥ 0 and finite value there exists an optimal
point X∗ such that

Tr (X∗) ≤ 1

λ

m∑

i=1

γi. (14)

Proof. As we assume that the SDP has a finite value, we may restrict to solutions whose

support is contained in the support of
m∑
i=1

Bi. Denote by P the projection onto the

support of
m∑
i=1

Bi. We then have

λP ≤
m∑

i=1

Bi. (15)

Conjugating both sides with (X∗)
1
2 and taking the trace we obtain

λTr (X∗) ≤
m∑

i=1

Tr (X∗Bi) ,

as we supposed w.l.o.g. that the support of X∗ is contained in the support of
m∑
i=1

Bi. As

X∗ is a feasible point, we have Tr (X∗Bi) ≤ γi and we obtain the claim.

Of all the assumptions we needed for the results of Theorem 5.3, the bound on the
Schatten 1-norm of an optimal solution to the SDP is arguably the most difficult to
show, as bounds of this form are not readily available in the literature. Moreover, some
SDPs have Tr (X) ≤ η as constraint and would be natural candidates to apply these
methods to. As Tr (1) = D we will not be able to obtain any non-trivial compression
with the scheme discussed so far. However, if one is only interested in obtaining an
upper bound on the value of the SDP, it is still possible to have 1 as a constraint or as
the target matrix and achieve a non-trivial compression.

Theorem 5.8. Let A,B1, . . . , Bm−1 ∈ Msym
D , Bm = 1. Further, let γ1, . . . , γm−1 ∈ R,

γm = η and ε > 0. Denote the value of the sketchable SDP by α and assume it is attained
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at an optimal point X∗. Moreover, let S ∈Md,D be an (ε, δ, k)-JLT, with

k ≥ rankX∗ + rankA+
m∑

i=1

rankBi.

Let α′S be the value of the modifed sketched SDP defined by A, Bi and S, given by

maximize Tr
(
SASTX

)

subject to Tr
(
SBiS

TX
)
≤ γi + µ‖Bi‖1, i ∈ [m− 1] (16)

Tr (X) ≤ (1 + ε)η,

X ≥ 0

with µ = 3εη. Then
α′S + 3εη‖A‖1 ≥ α

with probability at least 1− δ.

Proof. The proof is essentially the same as the one of Theorem 5.3, as we have that
|Tr
(
SX∗ST

)
−Tr (X∗) | ≤ 3εTr (X∗) and so SX∗ST is a feasible point with probability

at least 1− δ.

The main difference between the modified sketched SDP and the sketched SDP is that
here we do not conjugate the identity with S, only the other constraints. With this, we
do not have that STX∗S is a feasible point of the relaxed SDP, but we do not need the
assumption Tr (X∗) ≤ η to obtain an upper bound. It should be clear from Theorem 5.8
that we may also optimize over the trace, i.e. A = 1, without conjugating with S and
still have an upper bound and non-trivial compression.

We may therefore summarize the results of this section as follows. If we want to
obtain an upper bound on the value of the sketchable SDP with our techniques, it is
necessary to have upper bounds on the Schatten 1-norm of all the matrices that define
the constraints, the target matrix and of an optimal solution. We may then choose a
JLT of suitable dimension to solve the sketched SDP, whose value will allow us to infer
an upper bound to the original problem with high probability. If we are addtionaly given
a strictly feasible point of the sketchable SDP or if we are solving a semidefinite packing
problem, we also obtain a lower bound on the value of the sketchable SDP in terms of
the sketched one. In the case of semidefinite packing problems, we even obtain a feasible
point of the sketchable SDP whose value is close to the sketched value. If we are not
given a bound on the Schatten 1-norm of an optimal solution, we may impose it as a
constraint as in Theorem 5.8 and obtain an upper bound on the value of the sketchable
SDP constrained to points which have their Schatten 1-norm bounded by η. Although
we are able to drop the assumption on the Schatten 1-norm of an optimal solution, we
are not able to prove that this upper bound cannot differ significantly from the true
value in this case.
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6. Complexity and memory gains

In this section, we will discuss how much we gain by considering the sketched SDP
instead of the sketchable SDP. We focus on the results of Section 5, but the discussion
carries over to the results of Section 4. Throughout this section we will assume that
we are guaranteed that the Schatten 1−norm of an optimal solution to our SDP and of
the matrices that define the constraints is O(1). It is therefore Theorem 5.3 for which
we need a sketch of appropriate size. The theorem states that we need an (ε, δ, k)-
JLT for the upper bound on α to hold with probability at least 1 − δ. As stated in
Theorem 5.3, we can choose a sketching matrix S ∈ Md,D with d = O(ε−2 log

(
kδ−1

)
)

and s = O(ε−1 log
(
kδ−1

)
) nonzero entries per column. Here k is as in Theorem 5.3. The

cost of generating S is at most O(dD), which will be of smaller order than the necessary
matrix multiplications. We will therefore not take this cost into account for the rest of
the analysis.

One could argue that one needs to know the Schatten 1-norm of the different matrices
that define our constraints for estimating the value or obtaining more concrete bounds
for the feasibility problems. We will, however, suppose that an upper bound on the
Schatten 1-norm of an optimal solution and the constraints is given or that this can be
computed in a time which is O(D2). This is the case if for example we have a semidefinite
packing problem, where the matrices are positive semidefinite and we can compute their
Schatten 1-norm in O(D) time.

To generate the sketched SDP, we need to compute m+1 matrices of the form SBST ,
where B ∈ MD. Each of this computations needs O(max { nnz(B), Dd } ε−1 log

(
kδ−1

)
)

operations. In the worst case, when all matrices {A,B1, . . . , Bm } are dense and have
full rank, this becomes O(mD2 log(mD)) operations to generate the sketched SDP for
fixed ε and δ.

Let us collect these considerations in a proposition:

Proposition 6.1. Let A,B1, . . . , Bm ∈ Msym
D , γ1, . . . , γm ∈ R of a sketchable SDP be

given. Furthermore, let z := max { nnz(A),nnz(B1), . . . ,nnz(Bm) } and SDP(m, d, ζ) be
the complexity of solving a sketchable SDP (up to accuracy ζ) of dimension d. Then a
number of

O(max
{
z,Dε−2 log

(
kδ−1

) }
ε−1m log

(
kδ−1

)
+ SDP(m, ε−2 log

(
kδ−1

)
, ζ))

operations is needed to generate and solve the sketched SDP, where k is defined as in
Theorem 5.3.

It is easy to see that we can parallelize computing the matrices SBiS
T . Typically,

the costs of forming the sketched matrices SBiS
T dominates the overall complexity.

For example, using the ellipsoid method [GS88, Chapter 3], the complexity of solving
an SDP becomes SDP(m,D, ζ) = O(max

{
m,D2

}
D6 log(1/ζ)) (cf. [Bub15, p.250]).

Assuming that ε, δ and ζ are fixed, we need O(max
{
m,D2

}
D6) operations to solve

the sketchable SDP, compared to O(mD2 log(mD)) operations to obtain an approximate
solution via first forming the sketched problem and then solving it. Admittedly, the
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ellipsoid method is not used in practice, but using interior point methods, we still need
SDP(m,D, ζ) = O(max

{
m3, D2m2,mDω

}
D0.5 log(D/ζ)) operations [dK02, Chapter

5], where ω is the exponent of matrix multiplication. The best known algorithms achieve
ω ≈ 2.37 [LG14]. If the SDP can be sketched, doing so gives a speedup as long as the
complexity of solving the SDP directly is Ω(mD2+µ), where µ > 0.

A great advantage is that for the sketched problem, we only need to store m + 1
matrices of size d× d instead of D ×D. We collect this in a proposition.

Proposition 6.2. Let A,B1, . . . , Bm ∈ Msym
D , γ1, . . . , γm ∈ R be a sketchable SDP.

Then we need only store O(mε−4 log(mk/δ)2) entries for the sketched problem, where k
is defined as in Theorem 5.3.

7. Applications and numerical examples

7.1. Estimating the value of a semidefinite packing problem

Inspired by [Sag11] we will test our techniques on an SDP stemming from the field of
optimal design of experiments. The problem is the following: an experimenter wishes
to estimate the quantity 〈c, θ〉, where θ ∈ RD is an unknown D-dimensional parameter
and c ∈ RD is given. To this end, one is given linear measurements of the parameter
yi = Aiθ, up to a (centered) measurement noise for Ai ∈ MD. We refer to [Puk06] for
more details on the topic. To find the amount of effort to spend on the i−th experiment
to minimize the variance is given by the SDP

maximize Tr
(
ccTX

)

subject to Tr (MiX) ≤ 1, i ∈ [m] (17)

X ≥ 0

with Mi = ATi Ai. This problem always admits optimal solutions of rank 1 [Sag11]. We
generated random instances of this SDP in the following way:

1. We sampled four matrices Ai distributed as follows: the first three rows of Ai are
sampled independently from the uniform distribution on the unit sphere in RD.
The other D − 3 rows of Ai are set to 0.

2. Given the Ai, we generate c by getting four samples k1, k2, k3, k4 from the uniform
distribution on { 1, 2, 3 } and four samples x1, x2, x3, x4 from the standard normal

distribution. c is then given by
4∑
i=1

xi(Ai)ki , where (Ai)ki is the ki-th row of Ai.

This gives matrices Mi of rank 3 almost surely and Schatten 1-norm equal to 3. The fact
that c is a linear combination of the rows of Ai ensures that the problem is bounded, as
can be easily seen by looking at the dual problem [Sag11]. Note that this is a semidefinite
packing problem, so we are able to use the results of Theorem 5.6 to obtain a lower bound.
There exists an optimal solution whose Schatten 1-norm is bounded by 8 with very high
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D d Value Error L.B. Error U.B. M.R.T. Sketchable [s] M.R.T Sketch [s]

100 10 2.52 0.0880 0.156 1.27 0.324
100 20 2.50 0.00 0.250 1.17 0.305
200 20 2.69 0.00 0.269 6.50 0.299
200 40 2.53 0.00 0.00102 6.82 0.375
500 50 2.55 0.00 0.255 98.0 0.453
500 100 2.66 0.00 0.266 97.6 1.23
700 70 2.57 0.00 0.257 557 1.38
700 140 2.49 0.00 0.249 548 3.53

Table 1: For each combination of the sketchable dimension (D) and dimension of the
sketch (d) we have generated 40 instances of the SDP in Equation (17). Here
“M.R.T.” stands for mean running time, “L.B.” stands for lower bound and
“U.B.” for upper bound and each column shows the mean of the sample. The
column “Value” stands for the optimal value of the sketchable SDP.

probability. This easily follows from Theorem 5.7 and the fact that i.i.d. unit vectors are
almost orthogonal. To obtain the upper bound we have used the results of Theorem 5.3
and for the lower bound Theorem 5.6. We have chosen η = 0.1 to generate these results.
We used sparse JLTs with sparsity parameter s = 1 [KN14] to obtain faster matrix
multiplications to form the sketches. We define the error of the lower bound to be given
by α− 1

1+ηαS and of the upper to be αS − α. To solve the SDP given in Equation (17)
we used cvx, a package for specifying and solving convex programs [GB14, GB08].

As we can see, the results of Table 1 show that, excluding the case where the sketching
dimension was 10, we were able to find feasible points which were numerically indistin-
guishable from being optimal by using our sketching methods. Moreover, the time needed
to find an optimal solution was smaller by 1 or 2 orders of magnitude.

7.2. Linear matrix inequality feasibility problems

We will now apply our techniques to an LMI feasibility problem. Let Gi ∈Md′ , i ∈ [m],
be random matrices sampled independently from the Gaussian unitary ensemble (GUE).
See for example [AGZ10, Section 2.2] or Section D for their definition. Consider the
rescaled and shifted matrices G̃i(α) = 1√

d′
Gi +α1 for some α ∈ R. For V :Md′ →MD

a random isometry, we will test our techniques on the feasibility of the LMI

m∑

i=1

tiV G̃i(α)V ∗ − V V ∗ ≥ 0, t ∈ Rm+ (18)

depending on α. As V is an isometry, Equation (18) is clearly feasible if and only if the
LMI

m∑

i=1

tiG̃i(α)− 1 ≥ 0, t ∈ Rm+ (19)
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is feasible. Using standard techniques from random matrix theory, we show that Equa-
tion (19), and so Equation (18), is feasible with high probability for α > 2√

m
and

infeasible with high probability for α < 2√
m

in case m� d′.
We refer to Appendix Section D for a proof of this claim. This therefore allows us to

quantify “how close to feasible” the LMI inequality is in terms of how close α is to 2√
m

and to know whether the LMI was feasible or not. We will choose d′ � D, as this way
we avoid having a Schatten 1-norm of the matrices that define the LMI which is of the
same order as the dimension. The technique we used to solve Equation (18) is the same
as discussed in Section 4. That is, we will check for the feasibility of

m∑

i=1

tiSV G̃i(α)V ∗ST − SV V ∗ST ≥ 0, t ∈ Rm+ (20)

for a complex Gaussian JLT S. That is, S = 1√
2
(S1 + iS2) with S1 and S2 independent

Gaussian JLTs. We refer to Section A for a proof that this choice of random matrices
indeed gives a JLT with the same scaling of the parameters as the real one. We refer to
Theorem D.4 for a proof that the LMI defined in Equation (20) satisfies the assumptions
of Theorem 4.2 with high probability. To solve the SDP given in Equation (20) we used
cvx, a package for specifying and solving convex programs [GB14, GB08]. The results
are summarized in Table 2. We can observe that by using our methods we were able
to show that the LMI is infeasibile in a much smaller running time or even show that
certain LMI were infeasible when a direct computation was not possible due to memory
constraints in most choices of the parameters. In some cases it was, however, necessary
to increase the sketch dimension to show that the inequality was infeasibile.

8. Conclusion

We have shown how to obtain sketches of the HS product using positive maps obtained
from JLTs, how to apply these to show that certain LMI are infeasible and to obtain
approximations of the value of certain SDPs. In some cases, these techniques can lead to
significant improvements in the runtime necessary to solve the instances of the SDPs and
significant gains in the memory needed to solve them. However, the class of problems
to which these techniques can be applied is significantly restricted by the fact that the
matrices that define the constraints of the problems and a solution must have Schatten
1-norms which do not scale with the dimension for them to be advantageous. Moreover,
the no-go theorems proved here show that one cannot significantly improve our results
using positive linear maps to sketch the HS norm or to approximate the value of SDPs.
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D d d′ α M.R.T. Original [s] M.R.T. Sketch [s] Error Rate

200 50 100 0.3 452 4.65 0
200 50 100 0.4 407 4.31 0
200 50 100 0.5 383 5.71 0
200 50 100 0.6 407 6.46 0
200 100 100 0.3 449 66.3 0
200 100 100 0.4 344 86.6 0
200 100 100 0.5 393 102 0
200 100 100 0.6 457 91.4 0
400 50 200 0.3 - 4.02 0
400 50 200 0.4 - 7.04 0
400 50 200 0.5 - 3.39 0.975
400 50 200 0.6 - 2.35 1.0
400 100 200 0.3 - 114 0
400 100 200 0.4 - 122 0
400 100 200 0.5 - 118 0
400 100 200 0.6 - 115 0

Table 2: For each combination of the dimension of the image of the random isometry (D),
dimension of the domain of the random isometry (d′), dimension of the sketch
(d) and α we have generated 40 instances of the random LMI in Equation (18)
with m = 9. Here “M.R.T.” stands for mean running time. The error rate
gives the ratio of infeasible problems that were not detected to be infeasible by
sketching. A dash in the running time means that we were not able to solve
the LMI because we ran out of memory.

.
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A. Complexifying Johnson-Lindenstrauss transforms

In this Appendix we will generalize some of the results we need concerning JLTs to
complex vector spaces. We will see that, up to a constant, most of the statements that
hold in the real case also hold in the complex case. We will consider matrices of the
form 1√

2d
(S + iT ), with S, T independent and with i.i.d. entries that are sub-gaussian

and show that they give us complex JLTs. Note that these constructions clearly give
sparse JLTs if the real JLTs used are sparse.

Definition A.1 (Sub-Gaussian Distribution). The probability distribution of a random
variable X is called sub-gaussian if there exist C, v > 0 such that ∀t > 0

P(|X| > t) ≤ Ce−vt2 .

A random variable is sub-gaussian if and only if for p ≥ 1, E(|X|p) = O(p)
p
2 and the

sub-gaussian norm of X is defined as:

‖X‖ψ2
= sup

p≥1
p−

1
2 (E(|X|p)

1
p . (21)

See for example [Ver12, Section 5.2.3] for more details on this. The main ingredient to
show how to generalize JLTs to the complex case will be the following theorem.

Theorem A.2 ([RV13, Theorem 2.1]). Let A ∈ Md,D(R) be fixed. Consider a random
vector X = (X1, . . . , XD), where Xi are independent random variables satisfying E[Xi] =
0, E[X2

i ] = 1 and ‖Xi‖ψ2
≤ K. Then for any t ≥ 0, we have

P [|‖AX‖2 − ‖A‖HS | > t] ≤ 2 exp

[
− ct2

K4‖A‖2∞

]
.

Using this, we have a different way of proving the Johnson-Lindenstrauss lemma which
generalizes to the complex case. We follow the proof of [RV13, Theorem 3.1].

Lemma A.3. Let S, T ∈Md,D(R) have independent sub-gaussian entries with E[Xij ] =
0, E[X2

ij ] = 1 and ‖Xij‖ψ2
≤ K, for all X ∈ { S, T }. Then for d = O

(
ε−2 ln(2/δ)

)
, we

have

P

[∥∥∥∥
S + iT√

2d
x

∥∥∥∥
2

∈ (1± ε)‖x‖2
]
≥ 1− δ

for any fixed x ∈ CD.
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Proof. Define the linear operator Φ : Md,D(C) → Cd, G 7→ Gx, where x ∈ Cd is a
fixed vector. We use the standard isomorphisms Md,D(C) ' R2dD and Cd ' R2d and
denote by Φ̃ the map Φ composed with these isomorphisms, which is now a linear map
from a real vector space to another real vector space. Moreover, observe that a matrix
of the form X + iY ∈ Md,D(C) with X,Y ∈ Md,D(R) is mapped to (X,Y ) under the
isomorphism. The map Φ̃ will play the role of A in the statement of Theorem A.2. It is
straightforward to compute the norms involved in the statement, as explained in [RV13,
Section 3.1]. We have

∥∥∥Φ̃
∥∥∥
2

2
= 2d‖x‖22,

∥∥∥Φ̃
∥∥∥
2

∞
= ‖x‖22,

∥∥∥Φ̃((S, T )T )
∥∥∥
2

2
= 2‖(S + iT )x‖22.

As S, T have sub-gaussian entries, the vector (S, T ) satisfies the assumptions of Theorem
A.2 and the statement follows.

Unfortunately, the sparse JLTs discussed in Theorem 2.5 are not of this form. The
entries of these JLTs are not independent from each other, one of the assumptions of
Lemma A.3.

B. Proof of Theorem 3.2

Theorem 3.2. Let Φ : MD → Md be a random positive map such that with positive
probability for any Y1, . . . , YD+1 ∈MD and 0 < ε < 1

4 we have

|Tr
(
Φ(Yi)

TΦ(Yj)
)
− Tr

(
Y T
i Yj

)
| ≤ ε‖Yi‖2‖Yj‖2. (22)

Then d = Ω(D).

Proof. Let {ei}1≤i≤D be an orthonormal basis of CD and define Xi = eie
T
i . As Equa-

tion (22) is satisfied with positive probability, there must exist a positive map Φ :MD →
Md such that Equation (22) is satisfied for Yi = Xi, i ∈ [D], and YD+1 = 1. As the Xi

are orthonormal w.r.t. the Hilbert-Schmidt scalar product and by the positivity of Φ we
have for i, j ∈ [D]

Tr (Φ(Xi)Φ(Xj)) ∈
{

[0, ε], for i 6= j

[1− ε, 1 + ε], for i = j.
(23)

Define the matrix A ∈ MD with (A)ij = Tr (Φ(Xi)Φ(Xj)) for i, j ∈ [D]. It is clear
that A is Hermitian and that its entries are positive. We have

∑

i,j∈[D]

Aij = Tr (Φ(1)Φ(1)) ∈ [(1− ε)D, (1 + ε)D] .

As Aii ≥ (1− ε), it follows that ∑

i 6=j
Aij ≤ 2εD. (24)
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Let

J = { (i, j) ∈ [D]× [D] | i 6= j, Aij ≤
1

D
} .

It follows from Equation (24) that | { (i, j) ∈ [D]× [D] | i 6= j, (i, j) /∈ J } | ≤ 2D2ε and
so

|J | ≥
(
(1− 2ε)D2 −D

)
.

Since for (i, j) ∈ J also (j, i) ∈ J , we can write J = (I × I)\{(i, i)|i ∈ I} for I ⊆ [D].
Thus, we infer for D ≥ 2

|J | = |I|(|I| − 1) ≥ ((1− 2ε)D2 −D) ≥
(

1

2
− 2ε

)
D2.

From this it follows that

|I|2 ≥ |I|(|I| − 1) ≥ (
1

2
− 2ε)D2,

and we finally obtain
|I| ≥

√
1/2− 2εD. (25)

Notice that it follows from Equation (23) that we may rescale all the Xi to X ′i such that

Tr
(
Φ(X ′i)

2
)

= 1 and the pairwise scalar product still satisfies Tr
(

Φ(X ′i)Φ(X ′j)
)
≤ 1

D(1−ε)
for (i, j) ∈ J . If there is an N ∈ N such that d >

√
1/2− 2εD for all D ≥ N , the

claim follows. We therefore now suppose that d ≤
√

1/2− 2εD. Hence, d ≤ |I| by
Equation (25). By the positivity of Φ and the fact that the X ′i are positive semidefinite,
we have that Φ(X ′i) is positive semidefinite. In [Wol12, Proposition 2.7] it is shown that
for any set {Pi}i∈I of |I| ≥ d positive semidefinite matrices inMd such that Tr

(
P 2
i

)
= 1

we have that ∑

i 6=j
Tr (PiPj)

2 ≥ (|I| − d)2|I|
(|I| − 1)d2

.

By the definition of the set J , we have that

∑

(i,j)∈J
Tr
(
X ′iX

′
j

)2 ≤ |J |
(1− ε)2D2

≤ 1

(1− ε)2 ,

as |J | ≤ D2. From Equation (25) it follows that

1

(1− ε)2 ≥
(√

1/2− 2εD

d
− 1

)2

and after some elementary computations we finally obtain

d ≥ (1− ε)
√

1/2− 2ε

2− ε D.
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C. Lower bound on the value of SDPs through sketching

We will obtain lower bounds on the value of the sketchable SDP in terms of the value
of the sketched SDP through continuity bounds on the relaxed SDP. As the continuity
bound we use is for SDPs given in equality form, we begin by giving an equivalent
formulation of a sketchable SDP with equality constraints. The method of using duality
to derive perturbation bounds on a convex optimization problem used here is standard
and we refer to [BV04, Section 5.6] for a similar derivation. Given a sketchable SDP,
define the maps Φ :MD →Mm

Φ(X) =

m∑

j=1

Tr (BjX) eje
T
j

for { ej }mj=1 an orthonormal basis of Rm and Ψ :MD+m →Mm

Ψ

([
X ∗
∗ Z

])
= Φ(X) + [Zjj ]j .

With the help of the matrix

G =
m∑

j=1

γjeje
T
j , (26)

the sketchable SDP can be written in equality form as

maximize Tr

([
A 0
0 0

] [
X ∗
∗ Z

])

subject to Ψ

([
X ∗
∗ Z

])
= G (27)

[
X ∗
∗ Z

]
≥ 0,

where ∗ are submatrices which are not relevant for our discussion. The dual problem of
Equation (27) may be written as

minimize

m∑

j=1

γjYjj

subject to

m∑

j=1

BjYjj ≥ A (28)

Yjj ≥ 0, ∀j ∈ [m].
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Lemma C.1. If there is an X > 0 such that the sketchable SDP is satisfied with strict
inequality and the dual problem is feasible, then both the primal problem given in Equation
(27) and dual in Equation (28) are feasible, there is no duality gap and there is a dual
solution which attains the optimal value. Furthermore, this condition is equivalent to
Slater’s condition.

Proof. If we can show equivalence with Slater’s condition, the first statement follows
automatically. Slater’s condition for the primal problem is the following. If there is a[
X ∗
∗ Z

]
> 0 which satisfies the constraints, then the duality gap is zero and there is a

Y which attains the optimal value. For such a block matrix, we also need X > 0, Z > 0.
Hence, we can formulate Slater’s condition with off-diagonal entries ∗ = 0. We observe

Ψ

([
X ∗
∗ Z

])
= G⇔



γ1 − Tr (B1X)

. . .

γm − Tr (BmX)


 = Z > 0.

Hence X > 0 satisfies the constraints with strict inequality. The converse is clear.

Now we can bound the optimal solution to Equation (11). We denote by A(ε) the
feasible set of the relaxed SDP as in Definition 5.4 for some ε > 0. With this notation,
A(0) is the feasible set for the primal problem. Analogously, we denote by α(ε) the
optimal value of the relaxed problem, by α(0) the optimal value of the sketchable SDP.

Lemma C.2. Assume that there exists X0 ∈ A(0) such that X0 > 0 and the constraints
are strictly satisfied. Then

α(0) ≤ α(ε) ≤ α(0) + 〈ε̃, y∗〉,

where y∗ is an optimal solution to the dual problem to the sketchable SDP and ε̃ ∈ Rm
with ε̃i = 3εη‖Bi‖.

Proof. The first inequality is obvious, since any X ∈ A(0) is also inA(ε). By Lemma C.1,
strong duality holds and there is a y∗ ≥ 0 which achieves the optimal value. Hence

α(0) =

m∑

j=1

y∗j γj

≥
m∑

j=1

y∗j γj − Tr

([
m∑

i=1

y∗iBi −A
]
X

)
, X ≥ 0

= Tr (AX)−
m∑

i=1

y∗i [Tr (BiX)− γi] . (29)
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The first line holds by duality. If we take the supremum over X ∈ A(ε), we infer

α(0) ≥ α(ε)−
m∑

i=1

y∗i ε̃i,

since y∗i ≥ 0.

Corollary C.3. Assume that there exists X0 ∈ A(0) such that X0 > 0 and the con-
straints are strictly satisfied. Then

α(ε) ≤ α(0) +

[
max
i∈[m]

ε̃i

]
(α(0)− Tr (AX0)) /

(
min
k

(γk − Tr (BkX0))

)
,

where ε̃ ∈ Rm is defined as in Lemma C.2.

Proof. By Equation (29), we have that

α(0) ≥ Tr (AX0)−
m∑

i=1

y∗i [Tr (BiX0)− γi] .

Since [Tr (BiX0)− γi] < 0, it follows that

m∑

i=1

y∗i ≤ (α(0)− Tr (AX0))/ min
i∈[m]

[γi − Tr (BiX0)] .

With 〈ε̃, y∗〉 ≤ [max
i∈[m]

εi]
∑m

i=1 y
∗
i for y∗ ≥ 0, the Corollary follows.

Theorem C.4. Assume that there exists X0 ∈ A(0) such that X0 > 0 and the constraints
are strictly satisfied. Then the value of the sketched SDP αS is bounded by

αS ≤ α(0) + εC1 (α(0)− Tr (AX0)) /C2.

Here

C1 = max { 3η‖Bi‖1 | i ∈ [m] } ,
C2 = min { (γi − Tr (BiX0)) | i ∈ [m] } ,

where η = Tr (X∗) for an optimal point X∗ of the sketchable SDP.

Proof. The key step is to recognize that Tr
(
SCSTX

)
is equal to Tr

(
CSTXS

)
by the

cyclicity of the trace. Thus, the relaxed SDP gives an upper bound for the sketched
SDP. The theorem then follows by Corollary C.3.

Note that this result is not probabilistic and holds regardless of the sketching matrix
S used.
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D. Random feasibility problems

In this section, we investigate under which conditions the convex hull of m random
GUE [AGZ10, Section 2.2] matrices shifted by a multiple of the identity both contains
a positive semidefinite matrix and the cone they define is pointed. This is used in
Section 7.2.

Let Gi ∈ Md′ , i ∈ [m], be random matrices sampled independently from the GUE.
This means that Gi is Hermitian and that

(Gi)kl =

{
(Gi)kl = Yk for k = l

(Gi)kl = Zkl for k > l
,

where Yk is a real normal random variable with mean 0 and variance 1 and Zkl is a
complex normal random variable with mean 0 and variance 1. Since we will need similar
matrices with different variance, we will call this distribution GUE(0, 1). Consider the
rescaled and shifted matrices G̃i(α) = 1√

d′
Gi + α1 for some α ∈ R. We call the convex

hull of these matrices
Xα := conv

({
G̃i(α)

∣∣∣ i ∈ [m]
})

.

Lemma D.1. Let α ≥ 2√
m

(1 + ε). Then

P
[
Xα ∩ S++

d′ 6= ∅
]
≥ 1− Ce−2d′ε3/2/C ,

where C is a numerical constant independent of m, d′, ε.

Proof. Let t ∈ Rm+ such that
∑m

i=1 ti = 1. By the definition of the GUE,

G(t) :=

m∑

i=1

tiGi

is again in GUE(0,
∑n

i=1 t
2
i ). By [LR10, Theorem 1] and the fact that the GUE is

invariant under unitary transformations, it holds that

P
[
λmin(G(t)/

√
d′) ≤ −2‖t‖2(1 + ε)

]
≤ Ce−2d′ε3/2/C .

The expression −2‖t‖2(1 + ε) is maximized by tmin = (1/m, . . . , 1/m), for which we
obtain the value −2/

√
m (see [Bha97, Remark II.3.7]). Hence, for α ≥ 2(1 + ε)/

√
m, we

infer that

P
[
λmin(G(tmin)/

√
d′ + α1) ≤ 0

]
= P

[
λmin(G(tmin)/

√
d′) ≤ −α

]

≤ P
[
λmin(G(tmin)/

√
d′) ≤ − 2√

m
(1 + ε)

]

≤ Ce−2d′ε3/2/C .
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As λmin(G(tmin)/
√
d′ + α1) > 0 implies that G(tmin)/

√
d′ + α1 is positive definite, the

assertions follows.

Lemma D.2. Let α ≤ 2√
m

(1− ε) with ε ∈
(
0, 12
)
. Then

P
[
Xα ∩ S+d′ = ∅

]
≥ 1−m

(
1 +

8
√
m

ε

)m
C4e−

1
4C

(8+d′ε3/2)ε3/2d′ ,

where C is a numerical constant independent of m, d′, ε.

Proof. Take an ε/(4
√
m)-net N for the `1-sphere Sm−11 in Rm. This means that for all

t ∈ Sm−11 , there is an s ∈ N such that ‖t− s‖1 < ε/(4
√
m). It can be shown as in [Ver12,

Section 5.2.2] that we can choose N such that |N | ≤ (1 + 8
√
m/ε)m. Now assume that

λmax(Gi/
√
d′) ≤ 2(1 + ε) ∧ λmin(Gi/

√
d′) ≥ −2(1 + ε) ∀i ∈ [m].

This implies that
∥∥∥Gi/

√
d′
∥∥∥
∞
≤ 2(1 + ε). By Weyl’s perturbation theorem [Bha97,

Theorem II.2.6], it follows that for t ∈ Sm−11 ∩Rm+ .

|λmin(G(t)/
√
d′)− λmin(G(s)/

√
d′)| ≤

∥∥∥G(t)/
√
d′ −G(s)/

√
d′
∥∥∥
∞

≤
m∑

i=1

|ti − si|
∥∥∥Gi/

√
d′
∥∥∥
∞

≤ 2(1 + ε)‖t− s‖1 ≤
ε√
m
.

Now assume further that λmin(G(s)/
√
d′ + α1) ≤ −ε/√m for all s ∈ N . Then clearly

Xα ∩ S+d′ = ∅ by the above. We thus have to estimate the probability with which our
assumptions are met. Using a union bound, we obtain

P
[
Xα ∩ S+d′ = ∅

]

≥P
[{

λmin

(
α1+

Gi√
d′

)
≤ − ε√

m

}
∀s ∈ N ∧

{ ∥∥∥∥
Gi√
d′

∥∥∥∥
∞
≤ 2(1 + ε)

}
∀i ∈ [m]

]

≥1−
∏

s∈N
P

[
λmin

(
G(s)√
d′

)
≥ − 2√

m

(
1− ε

2

)] ∏

i∈[m]

P

[
λmin

(
Gi√
d′

)
≤ −2(1 + ε)

]

P

[
λmax

(
Gi√
d′

)
≥ 2(1 + ε)

]
.
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Using again [LR10, Theorem 1] we infer that for all i ∈ [m]

P

[
λmin

(
Gi√
d′

)
≤ −2(1 + ε)

]
≤ Ce−2d′ε3/2/C ,

P

[
λmax

(
Gi√
d′

)
≥ 2(1 + ε)

]
≤ Ce−2d′ε3/2/C ,

P

[
λmin

(
G(s)√
d′

)
≥ − 2√

m

(
1− ε

2

)]
≤ P

[
λmin

(
G(s)√
d′

)
≥ −2‖s‖2

(
1− ε

2

)]

≤ C2e−2d
′2(ε/2)3/C .

For the last estimate, we have used that G(s) is again a GUE element with different
variance (cf. proof of Lemma D.1). Combining this with the estimates concerning |N |,
the assertion follows.

We obtain as a corollary that the cone generated by the G̃(α) is pointed with high
probability if m << d′.

Corollary D.3. Let α ≤ 2√
m

(1−ε) for ε ∈
(
0, 12
)

and denote by Cα = cone { G̃1(α), . . . , G̃m(α) }.
Then

P [Cα ∩ −Cα = { 0 }] ≥ 1−m
(

1 +
8
√
m

ε

)m
C4e−

1
4C

(8+d′ε3/2)ε3/2d′ ,

where C is a numerical constant independent of m, d′, ε.

Proof. We know from Lemma D.2 that we have the same lower bound for the probability
of the event A = {Xα ∩ S+d′ = ∅ }. But note that the event A implies that the cone is
pointed. That is because if the cone was not pointed, there would exist γ, µ ∈ Rm+\ { 0 }
such that

m∑

i=1

γiG̃i(α) = −
m∑

i=1

µiG̃i(α)

and so
1

m∑
i=1

(γi + µi)

m∑

i=1

(µi + γi)Gi(α) = 0,

which implies that Xα ∩ S+d′ 6= ∅.

Theorem D.4. Consider the LMI

m∑

i=1

tiG̃i(α)− 1.

Let ε ∈
(
0, 12
)
. Then for α ≥ 2√

m
(1 + ε), this LMI is feasible with probability at least

1− Ce−2d′ε3/2/C . (30)
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Moreover, for α ≤ 2√
m

(1 + ε), this LMI is infeasible, the cone generated by the G̃(α) is

pointed and we have Xα ∩ S+d′ = ∅ with probability at least

1−m
(

1 +
8
√
m

ε

)m
C4e−

1
4C

(8+d′ε3/2)ε3/2d′ . (31)

Proof. For the first assertion, by Lemma D.1 Xα contains a positive definite element∑m
i=1 riG̃i(α) with probability lower bounded by the expression in Equation (30). Then

G(µr) is feasible for µ ∈ R+ large enough. For the second assertion, we note that
the LMI being infeasible is equivalent to Xα not containing a positive definite element.
From Lemma D.2 the lower bound in (31) for the probability that the LMI is infeasible.
Moreover, the fact that the same lower bound holds for the probability that the cone is
pointed follows from Corollary D.3.
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C.2 Approximate Randomized Benchmarking for Finite
Groups



Approximate Randomized Benchmarking for Finite Groups

D. Stilck França, A.K. Hashagen

We extend and generalize the randomized benchmarking protocol in three directions. First, we
show how to adapt the protocol to estimate the average gate fidelity of a set of gates forming
a representation of a finite group. With a few exceptions, the previous literature only focused
on implementing Clifford gates. The usual randomized benchmarking protocol works under the
assumption that we may sample from the Haar measure of the group. We relax this assumption
and show that the protocol also works using approximate Haar samples, which allows us to use
Markov chain Monte Carlo techniques to obtain the samples. Inspired by these results, we
show how to implement the protocol only implementing gates from a set of generators of the
group that is closed under inverses and one arbitrary element of the group. Proceeding this way
significantly reduces the experimental cost of implementing the protocol and is a more natural
framework for the error model. This last version of the protocol works under the assumption
that the quantum channel that describes the noise is close to being covariant. Moreover, we
discuss some sets of quantum gates that might be relevant for applications and fit into our
framework and perform numerical tests of our results.

C.2.1 Main Results

Randomized benchmarking [15] is a protocol to efficiently estimate the average fidelity of the
implementation of a set of quantum gates Ug that is a representation of a finite group G. The
protocol works under the assumption that the quantum channel T : Md → Md that describes
the noise in the implementation is independent of the gates. It works by applying random
sequences of gates Uk from the group to the system initially in a state ρ and measuring a
POVM element E on it afterward. The decay of the probability of observing the particular
outcome with the sequence length m is called the survival probability and we denote it by
F (m,E, ρ).

Lemma C.2.1. Let G be a finite group and {Ug}g∈G ⊂ U(d) be a representation such that
Ug ⊗ Ūg ∈ ⊕α∈ĜCdα ⊗ 1mα is the decomposition of Ug ⊗ Ūg into irreps. Then there exist

λ1, . . . , λk ∈ B1(0) and a0, a1, . . . , ak with k ≤∑α∈Ĝmα such that for all m ≥ maxmα

F (m,E, ρ) = a0 +

k∑

l=1

ale
λlm. (C.7)

The proof of this Lemma follows from the fact that channels T : Md → Md that are
covariant with respect to this representation can be diagonalized for m ≥ maxα∈Ĝmα with a
block structure which is determined by the decomposition of the representation Ug ⊗ Ūg. After
diagonalizing the channel, Equation (C.7) follows immediately. Given the λl, it is then possible
to obtain estimates on the average fidelity of the quantum channel T .

The usual randomized benchmarking protocol assumes one has access to Haar distributed
samples of the group. We relax this to samples that are close to Haar.

Theorem C.2.2. Let µ be the Haar measure on G and ν1, . . . , νm probability measures on G
s.t.

‖µ− νk‖1 ≤ εk. (C.8)

for all 1 ≤ k ≤ m and εk ≥ 0. Suppose we pick the Uk independently from νk and denote the
resulting expectation value for the survival probability by F̃ (m,E, ρ). Then

|F̃ (m,E, ρ)− F (m,E, ρ)| ≤ 4

√√√√ log(|G|)
1− |G|−1

m∑

k=1

εk.



The proof of this statements estimates the 1 → 1 norm of the channel T(T )m and the
expected channel if we perform randomized benchmarking with the gates chosen approximately
at random. This is done by exploring the invariance of the total variation distance under
permutations and a tight reverse Pinsker inequality. From the estimate on the 1→ 1 norm, it
is then straightforward to obtain the claim using Hölder’s inequality.

Moreover, for quantum channels that are close to being covariant, we show that one can
also perform randomized benchmarking by just implementing a set of generators A of the
group closed under taking inverses and one arbitrary element. The channels are close to being
covariant in the sense that there is a δ > 0 such that T = (1− δ)Tc + δTn with Tc, Tn quantum
channels and Tc covariant, which we call δ-covariance. The protocol requires that we first apply
a random sequence of gates from A of length b, with b being proportional to the time it takes
for the random walk generated by A on G to mix. We can then show:

Theorem C.2.3. Let T be δ−covariant w.r.t. a representation Ug of a group G, A a subset
of G that generates G and is closed under taking inverses and δ > 0. Suppose we run the
protocol above with b = tmix(m−1ε) for some ε > 0. denote the resulting expectation value for
the survival probability for the protocol by Fgen(m,E, ρ). Then

|Fgen(m,E, ρ)− F (m,E, ρ)| ≤ ε+ O
(
δ2m

)
.

We prove this Theorem by expressing powers of T(T ) in terms of Tc and Tn and noting that
by choosing b this way all terms of first order in δ vanish.

C.2.2 Applications

We applied our generalized benchmarking protocol to the group of unitaries generated by prod-
ucts of d−dimensional permutation matrices and diagonal unitaries with entries that are n−th
roots of unity. This group contains the T gate for n ≥ 8 and thus these gates together with
Cliffords allow for universal quantum computation. We show that one only needs to estimate
two parameters when performing randomized benchmarking with these gates and one can mul-
tiply and invert them with complexity O(d), which makes it feasible to perform the protocol
for a moderate number of qubits. Additionally, we test our results for approximate samples
and generator based benchmarking numerically using the Clifford group and random quantum
channels that are approximately covariant. We take the set of generators to be given by the
Hadamard H, the π−gate and its inverse and the CNOT between different qubits. The numer-
ical results for the approximate sampling benchmarking protocol and the usual protocol were
indistinguishable. For the range δ < 0.3 the generator randomized benchmarking performance
was comparable to the usual protocol.

C.2.3 Individual Contribution

This project started after Anna-Lena K. Hashagen asked me to review a paper of hers on a
similar topic. I realized that many techniques could be generalized and some assumptions of the
usual randomized benchmarking protocol were too strong and should be relaxed. Therefore,
I proposed to pursue these ideas. I am the principal author of this article. We formulated
the protocol, which can be found in Section 4, for general groups together after discussions
and she derived the expression in Lemma 11 of the article for the case of irreducibly covariant
representations. I then generalized the expression to arbitrary representations of finite groups
in the version that can now be found in Lemma C.2.1 of this summary or Lemma 11 of the
article. I was responsible for proving that the protocol also works using approximate samples
of the Haar measure. That is, I proved and formulated all results of Section 5, and the idea
of generalizing the randomized benchmarking in this direction was also mine. Furthermore, I
formulated and proved the version of the protocol using generators of the group discussed in
Section 6. The idea of implementing the protocol only using generators goes back to me. A.K.
Hashagen initially suggested the group of monomial unitary matrices as a possible application
of our protocol. However, as this is not a finite group, it did not fit our framework properly.



I was then responsible for showing that the protocol would also work if we considered the
finite subgroup of monomial matrices with entries that are n−th roots of unity. Applying
our techniques to the Clifford group was a natural choice, and we both had this in mind. I
was responsible for all the numerics in the article and wrote all the code necessary for it. I
was also responsible for the contents of Appendix A and B, as the statistical and numerical
considerations included there were inspired by some observations I made during the process of
writing this article. A.K. Hashagen wrote section 2 on Notation and Preliminaries, and I wrote
all other sections but the Introduction, which we wrote together. After the first draft of the
paper was ready, we had many discussions on how to improve the presentation until we arrived
at the present form of the article.
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then be calibrated. Furthermore, we establish that randomized benchmarking can be
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as one additional arbitrary group element. In this case, we need to assume that the
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1. Introduction

One of the main obstacles to build reliable quantum computers is the need to implement

quantum gates with high fidelity. Therefore, it is key to develop techniques to estimate

the quality of quantum gates and thus certify the quality of a quantum computer. To

this end, one could perform tomography for the underlying noise in the implementation

and in principle obtain a complete description of it [1, 2]. However, in general, the

number of measurements necessary to estimate for a complete tomography of the noise

scales exponentially with the system size and is not a practical solution to the problem.

Thus, it is vital to develop techniques to estimate the level of noise in systems more

efficiently, even if we only obtain partial information.

Randomized benchmarking (RB) is a protocol to estimate the average fidelity of a

set of quantum gates forming a representation of a group [3, 4, 5, 6]. The very important

case of Clifford gates has already been widely studied and some rigorous results that

show its efficiency under some noise scenarios are available [7, 8], such as when the

noise is independent of the gate and time. Besides its efficiency, another highlight of

the protocol is that it is robust against state preparation and measurement errors. This

makes it very attractive from an experimental point of view and its applicability was

demonstrated successfully [9, 10, 11, 12, 13, 14, 15, 16, 17].

In this work, we show how to extend these protocols to gates that are representations

of a finite group‡; these must not necessarily be irreducible or form a 2-design. Although

other works, such as [18, 19, 20, 21], already extended the protocol to other specific

groups of interest, we focus on showing how to estimate the average fidelity based on

properties of the particular representation at hand for arbitrary finite groups. To this

end, we investigate the structure of quantum channels that are covariant under a unitary

representation of a group and derive formulas for their average fidelity in terms of their

spectra. We then show that one can use RB to estimate the average fidelity of these

gates under the assumption that they are subject to time and gate independent noise.

In order for this procedure to be efficient, it is necessary that we may multiply, invert

and sample uniformly distributed elements of the group efficiently and that the given

representation does not decompose into too many irreducible unitary representations,

as we will discuss in more detail later. This is the case for the well-studied case of

Cliffords.

The usual RB protocol assumes that we can implement sequences of gates that

are sampled from the Haar distribution of the group [3, 4, 5, 6]. We further generalize

the RB protocol by showing that it is possible to implement sequence gates that are

approximately Haar distributed instead. Therefore, it is possible to use Markov chain

Monte Carlo methods to obtain the samples, potentially more efficiently. This result

is of independent interest to the RB literature, as it shows that the protocol is stable

‡ Most of the results in this work can easily be extended to compact groups. However, as it is not clear

that implementing the RB protocol for compact groups is relevant for applications and given that this

would make some proofs less accessible, we restrict to finite groups here.
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against small errors in the sampling.

Moreover, we show how one can perform RB by just implementing gates that

generate the group and one arbitrary element of the group. This might provide a more

natural framework to the protocol, as often one is only able to implement a certain

number of gates that generate the group and must, therefore, decompose the gates into

generators. However, this protocol works under the assumption that the noise affecting

the gates is already close to being covariant w.r.t. the group and not for arbitrary

quantum channels, as in the usual setting.

To illustrate our techniques, we apply them to subgroups of the monomial unitary

matrices, i.e. products of d−dimensional permutation and diagonal unitary matrices.

These can be seen as a generalization of stabilizer groups [22]. We focus on the subgroup

of monomial unitary matrices whose nonzero entries are roots of unity. We show that we

only need to estimate two parameters and multiplying and inverting elements of it can be

done in time O(d). Moreover, they include the T gate, which is known to form a universal

set for quantum computation together with the Clifford gates [23]. Therefore, one can

use the protocol described here to estimate the noise from T gates more efficiently. We

make numerical simulations for our protocol and these subgroups and show that it is

able to reliably estimate the average gate fidelity. Moreover, we numerically compare

our techniques based on approximate Haar samples and implementation of generators

to the usual protocol for Cliffords and show that the three yield indistinguishable results

in the high fidelity regime.

This paper is structured as follows: we start by fixing our notation and reviewing

basic results on Markov chains and covariant quantum channels; needed in section 2. In

section 3 we derive the average fidelity of quantum channels in terms of their spectra and

we give basic results on the decay of the probability of measurement outcomes under

covariant quantum channels. These form the basis for the RB protocol for general

groups, which we discuss and analyze in section 4. In section 5 we prove that it is also

possible to implement the protocol using approximate samples. We then discuss the

generalized RB protocol based on implementing random sequences of gates that generate

the group in section 6. In this section, we also discuss the conditions under which this

protocol applies. Finally, in section 7, we apply our techniques to the subgroup of

monomial unitary matrices and perform numerical experiments for it. In the same

section, we also compare numerically the RB protocols developed here with the usual

one in the case of the Clifford group.

2. Notation and Preliminaries

We will be interested in finite dimensional quantum systems. Denote byMd the space of

d× d complex matrices. We will denote by Dd the set of d-dimensional quantum states,

i.e., positive semi-definite matrices ρ ∈ Md with trace 1. We will call a linear map

T : Md → Md′ a quantum channel if it is trace preserving and completely positive.

We will call a collection of positive semidefinite matrices {Ei}li=1 a positive operator
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valued measure (POVM) if the POVM elements Ei, called effect operators, sum up to

the identity. Throughout this paper, we will use the channel-state duality that provides

a one-to-one correspondence between a quantum channel T :Md →Md and its Choi-

Jamiolkowski state τT ∈Md2 obtained by letting T act on half of a maximally entangled

state, i.e.,

τT := (T ⊗ idd) (|Ω〉〈Ω|) , (1)

where |Ω〉〈Ω| ∈ Md2 is a maximally entangled state, that is,

|Ω〉〈Ω| = 1

d

d∑

i,j=1

|ii〉〈jj| , (2)

where {|i〉}di=1 is an orthonormal basis in Cd. Please refer to [24] for more on these

concepts. To measure the distance between two states we will use the Schatten 1−norm

for A ∈Md, denoted by ‖ · ‖1 and given by

‖A‖1 := Tr
(

(A∗A)
1
2

)
, (3)

where ∗ denotes the adjoint. Then, given two states ρ, σ ∈ Dd, their trace distance is

given by ‖ρ−σ‖1/2. This norm onMd induces a norm on linear operators Φ :Md →Md

through

‖Φ‖1→1 := sup
X∈Md,X 6=0

‖Φ(X)‖1
‖X‖1

. (4)

Given a random quantum channel T :Md →Md, we will denote its expectation value

by E(T ).

We will also need some basic facts from the representation theory of finite groups.

We refer to e.g. [25] for more on this and the proofs of the statements we use here. We

will be particularly interested in the commutant of the algebra generated by the group.

To this end we introduce:

Definition 1 (Commutant). Let A be an algebra of operators on a Hilbert space H.

Then the commutant A′ of A is defined by

A′ := {B|BA = AB for all A ∈ A} . (5)

Let U : G → Md be a unitary representation of a finite group G on a finite-

dimensional Hilbert space H ' Cd. We will denote the unitary corresponding to g

by Ug. From basic results of representation theory, we know that there exists distinct

α1, . . . , αk ∈ Ĝ, where Ĝ denotes the set of equivalence classes of irreducible unitary

representations (irreps), such that the unitary representation can be written as a direct

sum of irreps, i.e. U ∼= ⊕Uαi ⊗ Imα with mα > 0 denoting the degeneracy of the αi-th

irrep. The structure of the commutant is then described in the following theorem.
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Theorem 2 ([25, Theorem IX.11.2]). Let U be a unitary representation of a finite

group G on H. Write H = ⊕α∈Ĝ
(
Cdα ⊗ Cmα

)
so that Ug = ⊕ki=1U

αi
g ⊗ Imα with {αi}ki=1

distinct elements in Ĝ. Let A(U) be the algebra of operators generated by the {Ug}g∈G,

and A(U)′ its commutant. Then

A(U) =
{
⊕ki=1Ai ⊗ Imα

∣∣Ai ∈Mdαi

}
, (6a)

A(U)′ =
{
⊕ki=1Idαi ⊗Bi

∣∣Bi ∈Mmα

}
. (6b)

Given a finite group G, we will call the uniform probability distribution on it its

Haar measure. For a proof of its existence and basic properties, we refer to [25, Section

VII.3]. We will denote the character of a unitary representation α ∈ Ĝ by χα and remark

that one can find the decomposition in theorem 2 through characters [25, Section III.2].

2.1. Covariant Quantum Channels and Twirls

The definition of covariance of quantum channels is central to the study of their

symmetries and will be one of the building blocks of the generalized RB protocol:

Definition 3 (Covariant quantum channel [26]). A quantum channel T :Md →Md is

covariant with respect to a unitary representation U : G →Md of a finite group G, if

for all g ∈ G
T
(
Ug · U∗g

)
= UgT (·)U∗g . (7)

In general, one allows different unitary representations of the group in the input and

output of the channel in the definition of covariance, but here we will restrict to the case

when we have the same unitary representation. There are many different and equivalent

characterizations of covariance. Here we mention that covariance is equivalent to the

Choi-Jamiolkowski state τT commuting with Ug ⊗ Ūg for all g ∈ G. To see this, note

that given a unitary representation U of G we may define its adjoint representation

U : G→ End(Md) through its action on any X ∈Md by conjugation,

Ug(X) = UgXU
∗
g . (8)

Through the Choi-Jamiolkowski isomorphism, it is easy to see that the adjoint

representation is equivalent to the unitary representation Ug ⊗ Ūg ∈ Md2 . As we

can rephrase (7) as T commuting with the adjoint representation, this translates to

the Choi-Jamiolkowski state commuting with Ug ⊗ Ūg. This means in particular that

we may use structural theorems, like theorem 2, to investigate covariant channels, as

covariance implies that the channel is in the commutant of the adjoint representation.

Theorem 4. Let T :Md →Md be a quantum channel that is covariant w.r.t. a unitary

representation U of a finite group G and let ⊕α∈Ĝ
(
Cdα ⊗ Cmα

)
be the decomposition of

the underlying Hilbert space into irreps α of G with multiplicity mα for the unitary

representation U ⊗ Ū . Then:

T = ⊕α∈ĜIdα ⊗Bα (9)

with Bα ∈Mmα.
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Proof. As T is covariant, it must be an element of the commutant of the adjoint

representation, i.e. T ∈ A(U)′. The decomposition then follows from theorem 2.

This decomposition further simplifies when no multiplicities in the decomposition

of the unitary representations into its irreducible components are present. We call such

channels irreducibly covariant. Here we briefly mention some of the results of [27], where

the structure of such channels is investigated.

Theorem 5 ([27, Theorem 40]). A quantum channel T : Md → Md is irreducibly

covariant with respect to an irrep U : G→Md of a finite group G if and only if it has

a decomposition of the following form:

T = lidP
id +

∑

α∈Ĝ,α 6=id

lαP
α, (10)

with lid = 1, lα ∈ C and where P id, Pα :Md →Md are projectors defined as

Pα(·) =
χα(e)

|G|
∑

g∈G
χα
(
g−1
)
Ug · U∗g , (11)

with α ∈ Ĝ and e ∈ G the identity of the group. They have the following properties:

PαP β = δαβP
α, (Pα)∗ = Pα and

∑

α∈Ĝ

Pα = idd, (12)

where idd :Md →Md is the identity map and the coefficients lα are the eigenvalues of

the quantum channel T .

That is, in the case of an irreducibly covariant channel we can also write down the

projections onto different eigenspaces and diagonalize the channel.

One of the most important concepts in this paper is that of the twirl of a channel.

Definition 6 (Twirl). Let T :Md →Md be a quantum channel, G a finite group with

Haar measure µ and U : U →Md a unitary representation of G. We define the twirl of

T w.r.t. G, denoted by T (T ) :Md →Md, as

T (T )(·) =

∫

G

U∗g ◦ T ◦ Ug(·)dµ. (13)

Strictly speaking the twirled channel, of course, depends on the particular group

and unitary representation at hand. However, we will omit this in the notation, as the

group in question should always be clear from context. It is then easy to show that

T (T ) is a quantum channel that is covariant w.r.t. this representation.

2.2. Random Walks on Groups

We will need some basic tools from the field of random walks on groups to motivate

and explain our protocol to perform RB with generators or with approximate samples.
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Therefore, we review these basic concepts here and refer to e.g. [28, Chapter 2.6] for

more details and proofs. Given a finite group G and a probability measure µ on G,

we denote the set of probability measures on G by P(G). If X, Y are two independent

random variables on G with distributions µ, ν ∈ P(G), respectively, we denote their

joint distribution on G×G by µ⊗ ν. Analogously, we will denote the joint distribution

of Y1, . . . , Yn i.i.d. variables with distribution ν by ν⊗n and the m-fold Cartesian product

of G with itself by Gm. The random walk on G with increment distribution ν is defined

as follows: it is a Markov chain with state space G. Given that the current state Xn of

the chain is g, the next state Xn+1 is given by multiplying the current state on the left

by a random element of G selected according to ν. That is, we have

P (Xn+1 = g2|Xn = g1) = ν
(
g2g
−1
1

)
. (14)

Another way of tracking the transition probabilities for these chains is through the

transition matrix of the chain, π. For g1, g2 ∈ G, this matrix is defined as

π(g1, g2) = ν
(
g2g
−1
1

)
. (15)

If X0 is distributed according to µ ∈ P(G), we have that the distribution of Xn is

given by πnµ, where we just expressed µ as a vector in R|G|. We recall the following

fundamental result about random walks on groups:

Theorem 7. Let G be a finite group and A be a set of generators of G that is closed

under inversion. Moreover, let ν be the uniform distribution on A and X1, X2, . . . be a

random walk with increment distribution ν. Then the distribution of Xn converges to

the Haar distribution on G as n→∞.

Proof. We refer to e.g. [28, Section 2.6.1] for a proof and more details on this.

Given a generating subset A of G that is closed under inverses and ν the uniform

distribution on A, we will refer to the random walk with increment ν as the random

walk generated by A. This result provides us with an easy way of obtaining samples

which are approximately Haar distributed if we have a set of generators by simulating

this random walk for long enough. The speed of this convergence is usually quantified

in the total variation distance. Given two probability measure µ, ν on G, we define their

total variation distance to be given by:

‖µ− ν‖1 :=
1

2

∑

g∈G
|µ(g)− ν(g)|. (16)

We then define the mixing time of the random walk as follows:

Definition 8 (Mixing Time of Random Walk). Let G be a finite group and A a set of

generators closed under inverses and µ be the Haar measure on the group. For ε > 0,

the mixing time of the chain generated by A, t1(ε), is defined as

t1(ε) := inf{n ∈ N|∀ν ∈ P(G) : ‖πnν − µ‖1 ≤ ε}. (17)
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We set tmix to be given by t1(4
−1). One can then show that t1(ε) ≤ dlog2 (ε−1)etmix

(see [28, Section 4.5] for a proof). There is a huge literature devoted to determining

the mixing time of random walks on groups and we refer to [29] and references therein

for more details. For our purposes it will be enough to note that in most cases we have

that t1(ε) scales logarithmically with ε−1 and |G|. Another distance measure which is

quite useful in the study of convergence of random variables is the relative entropy D.

For two probabilities measures µ, ν on {1, . . . , d} we define their relative entropy to be

D(µ||ν) :=





d∑
i=1

µ(i) log
(
µ(i)
ν(i)

)
, if µ(i) = 0 for all i s.t. ν(i) = 0,

+∞, else.

(18)

One of its main properties is that for µ, ν ∈ P(G) we have

D(µ⊗n||ν⊗n) = nD(µ||ν). (19)

3. Fidelities

Given a quantum channel T : Md → Md and a unitary channel U : Md → Md, the

average fidelity between them is defined as

F (T,U) =

∫
Tr (T (|ψ〉〈ψ|)U(|ψ〉〈ψ|)) dψ, (20)

where we are integrating over the Haar measure on quantum states. In case U is just the

identity, we refer to this quantity as being the average fidelity of the channel and denote

it by F (T ). As shown in [30], the average fidelity of a channel is a simple function of

its entanglement fidelity, given by

Fe(T ) = Tr (T ⊗ id (|Ω〉〈Ω|) |Ω〉〈Ω|) , (21)

with |Ω〉〈Ω| the maximally entangled state. One can then show that

F (T ) =
dFe(T ) + 1

d+ 1
. (22)

Thus, we focus on estimating the entanglement fidelity instead of estimating the average

fidelity. This can be seen to be just a function of the trace of the channel and the

dimension, as we now show.

Lemma 9. Let T :Md →Md be a quantum channel. Then Fe(T ) = d−2 Tr (T ). Here

we mean the trace of T as a linear operator between the vector spaces Md.

Proof. The entanglement fidelity is

Fe(T ) = Tr (T ⊗ id (|Ω〉〈Ω|) |Ω〉〈Ω|)

=
1

d2

d∑

i,j,k,l=1

Tr ([T (|i〉〈j|)⊗ |i〉〈j|] |l〉〈k| ⊗ |l〉〈k|)

=
1

d2

d∑

i,j=1

Tr (T (|i〉〈j|) (|i〉〈j|)∗) .
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Note that {|i〉〈j|}di,j=1 is an orthonormal basis of Md and Tr (T (|i〉〈j|) (|i〉〈j|)∗)
corresponds to the Hilbert-Schmidt scalar product between T (|i〉〈j|) and |i〉〈j|.
Therefore, we have that

d∑

i,j=1

Tr (T (|i〉〈j|) (|i〉〈j|)∗) = Tr (T ) ,

where again Tr (T ) is again meant as the trace of T as a linear operator.

That is, if we know the eigenvalues or the diagonal elements of T w.r.t. some basis,

we may determine its entanglement and average fidelity. The RB protocol explores the

fact that twirling a channel does not change its trace and that the trace of covariant

channels has a much simpler structure, as made clear in the next corollary.

Corollary 10. Let T : Md → Md be a quantum channel that is covariant w.r.t. a

unitary representation U : G → Cd of a finite group G and let ⊕α∈Ĝ
(
Cdα ⊗ Cmα

)
be

the decomposition of Cd ⊗ Cd into irreps α of G with multiplicity mα for the unitary

representation U ⊗ Ū . Choose a basis s.t.

T = ⊕α∈ĜIdα ⊗Bmα (23)

with Bα ∈Mmα. Then

Fe(T ) = d−2
∑

α∈Ĝ

dα Tr (Bα) . (24)

Proof. The claim follows immediately after we combine theorem 4 and lemma 9.

This shows that the spectrum of quantum channels that are covariant with respect

to a unitary representation of a finite group has much more structure and is simpler than

that of general quantum channels. In particular, if the unitary representation U ⊗ Ū
is such that

∑
αmα � d2, then we know that the spectrum of the quantum channel is

highly degenerate and we only need to know a few points of it to estimate the trace.

We will explore this fact later in the implementation of the RB protocol.

We will now show in lemma 11 the probability of measurement outcomes has a very

simple form for covariant channels and their powers.

Lemma 11. Let T : Md → Md be a quantum channel that is covariant w.r.t. a

unitary representation U : G → Md of a finite group G and let ⊕α∈Ĝ
(
Cdα ⊗ Cmα

)
be

the decomposition of Cd ⊗ Cd into irreps α of G with multiplicity mα for the unitary

representation U ⊗ Ū . Moreover, let ρ ∈ Dd, E ∈ Md be a POVM element and

m ≥ maxmα. Then there exist λ1, . . . , λk ∈ B1(0), the unit ball in the complex plane,

and a0, a1, . . . , ak ∈ C s.t.

Tr (Tm(ρ)E) = a0 +
k∑

i=1

akλ
m
i . (25)
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Moreover,

k ≤
∑

α∈Ĝ

mα − 1 (26)

corresponds to the number of distinct eigenvalues of T and λi are its eigenvalues.

Proof. As T is a linear map from Md to Md it has a Jordan decomposition [31]. That

is, there exists an invertible linear operator X :Md →Md such that

X−1 ◦ T ◦X = D +N, [D,N ] = 0.

Here D :Md →Md is diagonal in the standard basis {|i〉〈j|}di,j=1 of Md with diagonal

entries given by the eigenvalues of T and N : Md → Md nilpotent. As we have that

T is covariant, it follows from the decomposition in theorem 4 that the eigenvalues can

be at most maxmα = m0−fold degenerate and Nm0 = 0. Thus, it follows that Tm is

diagonalizable, as m ≥ maxmα. We then have

X−1 ◦ Tm ◦X = Dm.

We can then rewrite the scalar product

Tr (Tm(ρ)E) = Tr
(
X ◦Dm ◦X−1(ρ)E

)
= Tr

(
Dm(X−1(ρ))X∗(E)

)
.

Let bi,j and ci,j be the matrix coefficient of X∗(E) and X−1(ρ), respectively, in the

standard basis. That is

X∗(E) =
d∑

i,j=1

bi,j |i〉〈j| , X−1(ρ) =
d∑

i,j=1

ci,j |i〉〈j| .

Exploring the fact that D is diagonal in this basis we obtain

Tr (Tm(ρ)E) =
d∑

i,j=1

bi,jci,jd
m
i,j,

where di,j are just the eigenvalues of T , including multiplicities. To arrive at the curve

in (25), we group together all terms corresponding to the same eigenvalue λi. Moreover,

note that quantum channels always have 1 in their spectrum, which gives the a0 term

that does not depend on m. The fact that λi ∈ B1(0) follows from the fact that they

are given by the eigenvalues of the channel and these are always contained in the unit

circle of the complex plane [32].

Finally, we show that twirling does not change the entanglement fidelity and thus

does not change the average fidelity, as observed in [30] and elsewhere in the literature.

Thus, when we want to estimate the average fidelity of a channel T : Md → Md we

may instead work with the twirled channel T (T ) and explore its rich structure.
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Theorem 12. Let T : Md → Md be a quantum channel, G be a finite group and

U : G→Md be a unitary representation. Then

Fe(T ) = Fe(T (T )). (27)

Proof. We present a slightly different proof of this fact here. Note that U∗g ◦ T ◦ Ug is

just a similarity transformation of T and thus Tr
(
U∗g ◦ T ◦ Ug

)
= Tr (T ), where again

we mean the trace of these channels as linear operators. Thus, integrating over all Ug
does not change the entanglement fidelity, as Fe(T ) = d−2 Tr (T ).

4. Randomized benchmarking protocol

The RB protocol, as discussed in [3, 4, 5, 6, 8, 33, 34, 35, 36, 37, 38] is a protocol to

estimate the average fidelity of the implementation of gates coming from some group G.

Its usual setting is the Clifford group, but we discuss it for general groups here. Other

papers have investigated the protocol for gates beyond Cliffords, such as [18, 19, 21].

But all of these have restricted their analysis to some other specific group. As we will see

later, we can analyse the protocol for arbitrary groups by just investigating properties

of the given unitary representation. We mostly follow the notation of [37]. We assume

that the error quantum channel is gate and time independent. That is, whenever we

want to implement a certain gate Ug, where Ug(·) = Ug ·U∗g with Ug ∈ U(d), we actually

implement Ug ◦ T for some quantum channel T : Md → Md. We assume that we are

able to multiply and invert elements of G and draw samples from the Haar measure on

G efficiently to implement this protocol, but will later relax this sampling condition.

The protocol is as follows:

Step 1 Fix a positive integer m ∈ N that varies with every loop.

Step 2 Generate a sequence of m + 1 quantum gates. The first m quantum gates

Ug1 , . . . ,Ugm are independent and Haar distributed. The final quantum gate, Ugm+1

is chosen such that in the absence of errors the net sequence is just the identity

operation,

Ugm+1 ◦ Ugm ◦ . . . ◦ Ug2 ◦ Ug1 = id, (28)

where ◦ represents composition. Thus, the whole quantum gate sequence is

Sm =©m+1
j=1 Ugj ◦ T, (29)

where T is the associated error quantum channel.

Step 3 For every sequence, measure the sequence fidelity

Tr (Sm(ρ)E) , (30)

where ρ is the initial quantum state, including preparation errors, and E is an effect

operator of some POVM including measurement errors.
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Step 4 Repeat steps 2-3 and average over M random realizations of the sequence of

length m to find the averaged sequence fidelity given by

F̄ (m,E, ρ) =
1

M

∑

m

Tr (Sm(ρ)E) . (31)

Step 5 Repeat steps 1-4 for different values of m and obtain an estimate of the expected

value of the sequence fidelity

F (m,E, ρ) = Tr (E(Sm)(ρ)E) . (32)

4.1. Analysis of the Protocol

We will now show how we can estimate the average fidelity from the data produced by

the protocol, that is, an estimate on the curve F (m,E, ρ) = Tr (E(Sm)(ρ)E).

Theorem 13. Let T :Md →Md be a quantum channel and G a group with a unitary

representation U : G→Md. If we perform the RB protocol for G we have

E(Sm) = T (T )m. (33)

Proof. Although the proof is identical to the case in which G is given by the Clifford

group, we will cover it here for completeness. Given some sequence {Ug1 , . . . ,Ugm+1} of

unitary gates from G, define the unitary operators

Di =©i
j=1Ugi .

Note that we have

Sm =Ugm+1 ◦ T ◦ Ugm ◦ T ◦ . . . ◦ Ug2 ◦ T ◦ Ug1

=

=I︷ ︸︸ ︷
Ugm+1 ◦ (Ugm ◦ . . . ◦ Ug1 ◦

=D∗m︷ ︸︸ ︷
U∗g1 ◦ . . . ◦ U∗gm) ◦ T ◦ Ugm ◦ T◦

. . . T ◦ Ug3 ◦ (Ug2 ◦ Ug1︸ ︷︷ ︸
=D3

◦U∗g1 ◦ U∗g2︸ ︷︷ ︸
=D∗2

) ◦ T ◦ Ug2 ◦ (Ug1︸ ︷︷ ︸
=D2

◦ U∗g1︸︷︷︸
=D∗1

) ◦ T ◦ Ug1︸︷︷︸
=D1

=D∗m ◦ T ◦ Dm ◦ . . . ◦ D∗2 ◦ T ◦ D2 ◦ D∗1 ◦ T ◦ D1

=©m
j=1

(
D∗j ◦ T ◦ Dj

)
. (34)

As we have that each of the Ugi is independent and Haar-distributed, it follows that the

Di are independent and Haar distributed as well. It then follows from (34) that

E (Sm) = E
(
©m

j=1

(
D∗j ◦ T ◦ Dj

))
=©m

j=1E
(
D∗j ◦ T ◦ Dj

)
= T (T )m.

We can then use our structural results on covariant quantum channels to obtain a

more explicit form for the curve F (m,E, ρ).
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Corollary 14. Suppose we perform RB for a unitary representation U : G → Md of

a finite group G s.t. U ⊗ Ū = ⊕α∈Ĝ
(
Cdα ⊗ Cmα

)
and a channel T . Then there exist

λ1, . . . , λk ∈ B1(0) and a0, a1, . . . , ak ∈ C s.t.

F (m,E, ρ) = a0 +
k∑

i=1

akλ
m
i . (35)

for m ≥ maxmα. Moreover, k ≤ ∑
αmα corresponds to the number of distinct

eigenvalues of T (T ) and λi are its eigenvalues.

Proof. The claim follows immediately from theorem 13 and lemma 11.

That is, by fitting the curve to experimental data we may obtain estimates on the

λi and thus on the spectrum of T (T ). If we know the multiplicity of each eigenvalue,

then we can estimate the trace as well and thus the average fidelity. However, in the

case in which we have more than one parameter to estimate, it is not clear which

eigenvalue corresponds to which irrep and we therefore cannot simply apply the formula

in corollary 10. Thus, given an estimate {λ̂1, . . . , λ̂k} of the parameters, we define the

minimal fidelity, Fmin, to be given by

Fmin = min
∑

dαλ̂i (36)

and the maximum fidelity, Fmax, to be given by

Fmax = max
∑

dαλ̂i. (37)

That is, we look at the pairings of dα and λ̂i that produces the largest and the smallest

estimate for the fidelity. These then give the most pessimistic and most optimistic

estimate, respectively. The fact that we cannot associate a λi to each irrep causes some

problems in this approach from the numerical point of view and we comment on them

in appendix A. Moreover, we also offer some preliminary ideas of how to overcome these

issues.

5. Approximate Twirls

In the description of our RB protocol, we assume that we are able to obtain samples

from the Haar measure of the group G. It is not possible or efficient to obtain samples

of the Haar measure for most groups, but a lot of research has been done on how to

obtain approximate samples efficiently using Markov chain Monte Carlo methods, as

discussed in section 2.2. Here we discuss how to use samples which are approximately

Haar distributed for RB. Note that these results may also be interpreted as a stability

result w.r.t. not sampling exactly from the Haar measure of G. We will assume we are

able to pick the Ugk independently and that they are distributed according to a measure

νk s.t.

‖νk − µ‖1 ≤ εk, (38)
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for εk ≥ 0. Our goal is to show that under these assumptions we may still implement

the RB protocol discussed before and obtain measurement statistics that are close to

the ones obtained using Haar samples.

Motivated by this, we define the ν̃-twirl of a channel.

Definition 15 (ν̃-twirl to the power m). Let ν̃ be a probability measure on Gm,

T : Md → Md a quantum channel and U : G → Md a d−dimensional unitary

representation of G. We define the ν̃-twirl to the power m to be given by

Tν̃,m(T ) =

|G|∑

i1,...,im=1

ν̃ (gi1 , . . . , gim)©m
k=1 Ugik ◦ T ◦ U

∗
gik
. (39)

This definition boils down to the regular twirl for ν̃ = µ⊗m, µ the Haar measure on

G. We will now show that by sampling Ugk close to Haar we have that the ν̃-twirl of a

channel is also close to the usual twirl.

Lemma 16 (Approximate Twirl). Let T :Md →Md be a quantum channel, G a finite

group with a d−dimensional unitary representation U : G → Md and ν̃ a probability

measure on Gm. Let Tν̃,m(T ) be the ν̃-twirl to the power m and T (T ) be the twirl w.r.t.

the Haar measure on G given by µ. Moreover, let ‖ · ‖ be a norm s.t. ‖T‖ ≤ 1 for all

quantum channels. Then

‖Tν̃,m(T )− T (T )m‖ ≤ 2‖ν̃ − µ⊗m‖1. (40)

Proof. Observe that we may write

‖Tν̃,m(T )− T (T )m‖ =

∥∥∥∥∥∥

|G|∑

i1,...,im=1

(
ν̃ (gi1 , . . . , gim)− 1

|G|m
)
©m

k=1 Ugik ◦ T ◦ U
∗
gik

∥∥∥∥∥∥
.

The claim then follows from the triangle inequality and the fact that ‖©m
k=1 Ugik ◦ T ◦

U∗gik‖ ≤ 1.

Thus, in order to bound ‖Tν̃,m(T )−T (T )m‖ in any norm in which quantum channels

are contractions, it suffices to bound ‖ν̃ − µ⊗m‖1. Examples of such norms are the

1 → 1 norm and the diamond norm [39, Theorem 2.1]. We remark that other notions

of approximate twirling were considered in the literature [38, 40], but these works were

mostly concerned with the case of the unitary group and not arbitrary finite groups.

Although it would be straightforward to adapt their definitions to arbitrary finite groups,

it is not clear at first sight that their notions of approximate twirls behave well when

taking powers of channels that have been twirled approximately. This is key for RB.

Given random unitaries {Ui}mi=1 from G, let Dk =©k
i=1Ui, as before.

Theorem 17. Let µ be the Haar measure on G and ν1, . . . , νm probability measures on

G s.t.

‖µ− νk‖1 ≤ εk, (41)
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for all 1 ≤ k ≤ m and εk ≥ 0. Denote by ν̃ the distribution of (D1, . . . ,Dm) if we pick

the Uk independently from νk . Then

‖Tν̃,m(T )− T (T )m‖1→1 ≤ 4

√√√√ log(|G|)
1− |G|−1

m∑

k=1

εk. (42)

Proof. We refer to appendix C for a proof.

Note that the same result holds for any norm that contracts under quantum

channels, such as the diamond norm.

Corollary 18. Let µ be the Haar measure on G and ν1, . . . , νm probability measures on

G s.t.

‖µ− νk‖1 ≤ εk, (43)

for all 1 ≤ k ≤ m and εk ≥ 0. Denote by ν̃ the distribution of (D1, . . . ,Dm) if we pick

the Uk independently from νk. Then

|Tr (Tν̃,m(T )(ρ)E)− F (m,E, ρ)| ≤ 4

√√√√ log(|G|)
1− |G|−1

m∑

k=1

εk. (44)

Proof. It follows from Hölder’s inequality that

|Tr (Tν̃,m(T )(ρ)E)− F (m,E, ρ)| =|Tr (E (Tν̃,m(T )(ρ)− T (T )m (ρ))) |
≤‖E‖∞‖Tν̃,m(T )− T (T )m‖1→1.

As E is the element of a POVM, we have ‖E‖∞ ≤ 1 and the claim then follows from

theorem 17.

This shows that we may use approximate twirls instead of exact ones and obtain

expectation values that are close to the perfect twirl. Given that we want to assure that

the statistics we obtain for some m ∈ N are δ > 0 close to our target distribution, we

would have to sample the Ugk such that

‖µ− νk‖1 ≤
δ2(1− |G|−1)
16 log(|G|)m , (45)

as can be seen by plugging in this bound in the result of corollary 18. If we use a random

walk on a group to sample from the Haar distribution we have to run each chain for

t1

(
δ2(1−|G|−1)
16 log(|G|)m

)
steps, which gives a total runtime of O

(
tmix log

(
16 log(|G|)m
δ2(1−|G|−1)

))
. For a

fixed δ, this will be efficient if the chain mixes rapidly, that is, tmix is small, and we

choose m to be at most of the order of the dimension.
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6. Randomized benchmarking with generators

One of the downsides of the usual RB protocol [3, 4, 5, 6, 33, 34, 35, 36, 37, 38] is

that we assume that we may implement any gate of the group. Usually, gates have

to be broken down into generators, as discussed in [41, Section 1.2.3 and Chapter 8].

Therefore, it would be desirable both from the point of view of justifying the noise model

and the implementation level of the protocol to mostly need to implement gates from

a set of generators. We describe here a protocol to perform RB by just implementing

gates from a set of generators closed under inversion and one arbitrary gate. We also

make the additional assumption that the quantum channel that describes the noise is

already approximately covariant in a sense we will make precise soon. This protocol

is inspired by results of the last section that suggest a way of performing RB by just

implementing gates coming from a set A that generates the group G and is closed under

inversion and one additional arbitrary gate from G at each round of the protocol. From

the basic results of random walks discussed in section 2.2, we know that if we pick

gates Ug1 , Ug2 , . . . uniformly at random from A, it follows that UgbUgb−1
. . . Ug1 will be

approximately distributed like the Haar measure on G for b ' tmix. However, one should

note that in this setting the Di will not be independent of each other. To see this, note

that given Di = Ug, we know that the distribution of the Di+1 is restricted to elements

h ∈ G of the form h = ag with a ∈ A, which clearly show that they are not independent

in general. However, if we look at Di+l for l ∼ tmix, then their joint distribution will

be close to Haar. That is, looking at Di and Dj which are far enough apart from each

other, we may again assume that they are both almost Haar distributed and if we look

at each Di individually we may assume that they are almost Haar distributed. One way

to explore this observation for RB protocols only having to implement the generators is

to look at the following class of quantum channels:

Definition 19 (δ-covariant quantum channel). A quantum channel T : Md → Md is

called δ-covariant with respect to a unitary representation U : G →Md of a group G,

if there exist quantum channels Tc, Tn :Md →Md such that

T = (1− δ)Tc + δTn, (46)

and Tc is covariant with respect to U .

That is, T is almost covariant with respect to the group. Similar notions of

approximate covariance were also introduced in [42]. The standard example for our

purposes are quantum channels that are close to the identity channel, i.e., we have δ

small and Tc the identity channel.

We will need to fix some notation before we describe the protocol. For a given

sequence of unitaries si = (Ug1 , Ug2 , . . .) we let Ssi,c,d =©d
j=cUgj ◦T for c, d ∈ N and the

gates chosen according to the sequence.

Thus, if we apply random generators b times as an initialization procedure and

only start fitting the curve after this initialization procedure we may also estimate the

average fidelity.
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This yields the following protocol.

Step 1 Fix a positive integer m ∈ N that varies with every loop and another integer

b ∈ N.

Step 2 Generate a sequence of b+m+ 1 quantum gates, si. The first b+m quantum

gates Ug1 , . . . ,Ugb+m are chosen independently and uniformly at random from A.

The final quantum gate, Ugb+m+1
is chosen as

Ugb+m+1
= (Ugb+m ◦ . . . ◦ Ug2 ◦ Ug1)−1. (47)

Step 3 For each sequence si, measure the sequence fidelity

Tr (Ssi,b+1,b+m+1(Ssi,1,b(ρ))E) , (48)

where ρ is the initial quantum state and E is an effect operator of a POVM.

Step 4 Repeat steps 2-3 and average over M random realizations of the sequence of

length m to find the averaged sequence fidelity

F̄ (m,E, ρ) =
1

M

M∑

i=1

Tr (Ssi,b+1,b+m+1(Ssi,1,b(ρ))E) . (49)

Step 5 Repeat steps 1-4 for different values of m to obtain an estimate of the expected

value of the average survival probability

F (m,E, ρ) = E (Tr (Ssi,b+1,b+m+1(Ssi,1,b(ρ))E)) . (50)

We will now prove that this procedure gives rise to the same statistics as if we were

using samples from the Haar distribution up to O(δ2).

Theorem 20. Let T be δ−covariant w.r.t. a unitary representation U : G → Md of

a finite group G, A a subset of G that generates G and is closed under inversion and

δ > 0. Suppose we run the protocol above with b = tmix(m
−1ε) for some ε. Furthermore,

let π be the doubly-stochastic matrix associated with the random walk induced by A and

suppose that

‖π(ν)− µ‖1 ≤ λ (51)

for all ν ∈ P(G) and some λ ∈ [0, 1). Then

‖T (T )m − E(Sb,b+m+1)‖1→1 ≤ ε+ O

(
δ2

λ

1− λm
)
. (52)

Proof. We refer to appendix D for a proof.

Using standard methods from Markov chains it is possible to show that one can

always choose λ = (|G| − |A|)|G|−1.
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Corollary 21. Let Sb,m+b+1 and λ be as in theorem 20. Then for any POVM element

E and state ρ ∈Md:

|Tr (E (Sb,m+1) (ρ)E)− F (m,E, ρ)| ≤ ε+ O

(
δ2

λ

1− λm
)
. (53)

Proof. The proof is essentially the same as that of corollary 18.

This shows that performing RB by only implementing the generators is feasible

as long as we have a δ−covariant channel with δ small and a rapidly mixing set of

generators.

7. Numerics and Examples

Here we show how to apply our methods to groups that might be of special interest and

discuss some numerical examples. Many relevant questions for the practical application

of our work are still left open and have two different flavors: the numerical and statistical

side. From the numerical point of view, it is not clear at first how to fit the data gathered

by a RB protocol to an exponential curve if we have several parameters. We refer to

appendix A for a discussion of these issues and some proposals of how to overcome them.

From a statistical point of view, it is not clear how to derive confidence intervals for the

parameters and how large we should choose the different parameters of the protocol,

such as m and M . We refer to appendix B for a discussion of these issues and preliminary

results in this direction.

7.1. Monomial Unitary Matrices

We consider how to apply our methods of generalized RB to some subgroups of the

monomial unitary matrices MU(d).

Definition 22. Let {|i〉}di=1 be an orthonormal basis of Cd. We define the group of

monomial unitary matrices, MU(d) to be given by U ∈ U(d) of the form U = DP with

D,P ∈ U(d) and D diagonal w.r.t. {|i〉}di=1 and P a permutation matrix.

Subgroups of this group can be used to describe many-body states in a formalism

that is broader than the stabilizer formalism of Paulis and have other applications to

quantum computation (see [22]). As the group above is not finite and it is unreasonable

to assume that we may implement diagonal gates with phases of an arbitrary precision,

we focus on the following subgroups:

Definition 23. We define MU(d, n) to be the subgroup of the monomial unitary

matrices of dimension d whose nonzero entries consist only of n−th roots of unity.

Another motivation to consider these subgroups is that they contain the T -gate [23],

T = |0〉〈0|+ ei
π
4 |1〉〈1| (54)

in case n ≥ 8. Thus these gates, together with Cliffords, constitute a universal set of

quantum gates [23]. We now show that we have to estimate two parameters for them.
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Lemma 24 (Structure of channels covariant w.r.t. monomial unitaries). Let MU(d, n)

be such that n ≥ 3 and T : Md → Md a quantum channel. Then the following are

equivalent:

(i) T (ρ) = UT
(
U∗ρU

)
U∗ ∀U ∈MU(d, n), ρ ∈ Sd.

(ii) There are α, β ∈ R so that

T (·) = Tr (·) I
d

+α

(
id−

d∑

i=1

|i〉〈i| 〈i| · |i〉
)

+β

(
d∑

i=1

|i〉〈i| 〈i| · |i〉 − Tr (·) I
d

)
. (55)

Moreover, the terms in the r.h.s. of (55) are projections of rank 1, d2 − d and d − 1,

respectively.

Proof. We refer to appendix E for a proof.

This result shows that we only need to estimate two parameters when performing

RB with these subgroups. They are therefore a natural candidate to apply our methods

to and we investigate this possibility further. We begin by analyzing the complexity

of multiplying and inverting elements of MU(d, n). We show this more generally for

MU(d), as it clearly gives an upper bound for its subgroups as well. We may multiply

and invert elements of MU(d) in time O(d). To multiply elements in MU(d) we need

to multiply two permutations of d elements, which can be done in time O(d), multiply a

vector u ∈ Cd with a permutation matrix, which can be done in time O(d), and multiply

d elements of U(1) with each other, which again can be done in time O(d). This shows

that multiplying elements of this group takes O(d) operations. To invert an element of

MU(d) we need to invert a permutation, which again takes O(d), invert d elements of

U(1) and apply a permutation to the resulting vector. This also takes O(d) operations.

Moreover, one can generate a random permutation and an element of U(1)d in time

O(d), giving O(Mmd) complexity for the classical part of the RB procedure. Although

this scaling is not efficient in the number of qubits as in the case of Clifford gates [3],

the fact that it is linear in the dimension and not superquadratic as in the general case

still allows for our method to be applied to high dimensions.

To exemplify our methods, we simulate our algorithm for some dimensions and

number of samples M . We run the simulations for MU(d, 8), as it is the smallest one

that contains the T gate. We consider the case of a quantum channel T that depolarizes

to a random state σ ∈ Dd with probability (1− p), that is

T (ρ) = pρ+ (1− p)σ, (56)

where σ ∈ Dd is chosen uniformly at random from the set of states. It is not difficult

to see that in this case the entanglement fidelity Fe(T ) = (p(d2 − 1) + 1)/d2 and we,

therefore, measure our error in terms of the parameter p. The results are summarized

in table 1. These numerical results clearly show that we may estimate the fidelity to a

good degree with our procedure.
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Table 1. Error analysis of the RB protocol described in section 4 to the group

MU(d, 8). We take the initial state to be |0〉〈0|, the POVM element to be |0〉〈0|, p = 0.9

and we always choose m = 40. Moreover, we generate 100 different channels for each

combination of dimension and number of samples. The table shows the resulting mean

and median error as well as the standard deviation for different values of d and M .

d M Mean Error Median Error Standard Deviation

(×10−3) (×10−3) (×10−3)

64 1000 9.17 2.14 3.93

128 100 6.08 1.48 2.14

128 1000 5.17 1.01 1.13

1024 100 9.17 2.14 3.93

1024 1000 4.55 1.13 1.77

7.2. Clifford Group

As mentioned before, the Clifford group is the usual setup of RB, as we only have

to estimate one parameter and it is one of the main building blocks of quantum

computing [23]. Thus, we apply our protocols based on approximate samples of the

Haar distribution and generator based protocols to Clifford gates. It is known that the

Clifford group on n qubits, C(n), is generated by the Hadamard H, the π−gate and

the CNOT gate between different qubits. We refer to e.g. [43, Section 5.8] for a proof

of this claim. We need a set of generators that is closed under taking inverses for our

purposes. All but the π−gate are their own inverse, so we add the inverse of the π−gate

to our set of generators to assure that the random walk converges to the Haar measure

on the Clifford group. That is, we will consider the set A of generators of the Clifford

group C(n) consisting of Hadamard gates, π−gates and its inverse on each individual

qubit and CNOT between any two qubits,

A = {πi, π−1i , Hi, CNOTi,j}. (57)

To the best of our knowledge, there is no rigorous estimate available for the mixing

time of the random walk generated by A and it would certainly be interesting to

investigate this question further. However, based on our numerical results and the results

of [40], we conjecture that it is rapidly mixing, i.e. tmix = O(n2 log(n)). This would

be more efficient than the algorithm proposed in [44], which takes O(n3) operations.

To again test our methods we perform similar numerics as in the case of the monomial

unitaries.

We simulate the following noise model: We first pick a random isometry V :

(C2)
⊗n → (C2)

⊗n ⊗ (C2)
⊗n

and generate the quantum channel T (ρ) = pρ + (1 −
p)tr2 (V ρV ∗), where tr2 denotes the partial trace over the second tensor factor. That is,

T is just the convex combination of the identity and a random channel and is δ-covariant

w.r.t. to a group with δ = p. From the discussion in section 6 we expect this to work

best for p close to 1. The results for p close to 1 are summarized in table 2. The average
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Table 2. For each combination of p,M and b we generate 20 different random quantum

channels and perform generator RB for the Clifford group on 5 qubits. In all these

cases we pick m = 20. The average error is defined as the average of the absolute value

between the exact fidelity and the one estimated using our protocol. The table shows

the average error and its standard deviation in terms of different choices of b, M and

p.

p b M Average Error Standard Deviation of Error

(×10−3) (×10−4)

0.98 10 10 5.49 1.38

0.95 10 100 1.44 3.92

0.95 5 100 1.52 7.94

0.95 5 20 1.56 7.44

0.90 10 20 3.20 1.58

0.80 10 50 8.63 6.01

error increases as the channel becomes noisier, but generally speaking we are able to

obtain an estimate which is 10−3 close to the true value with M around 20 and m = 20.

We also performed some numerical experiments for p significantly away from 1,

which are summarized in table 3.

Table 3. For each combination of p,M and b we generate 20 different random quantum

channels and perform generator RB for the Clifford group on 5 qubits. In all these

cases we pick m = 20. The average error is defined as the average of the absolute value

between the exact fidelity and the one estimated using our protocol. The table shows

the average error and its standard deviation in terms of different choices of b, M and

p.

p b M Average Error Standard Deviation of Error

(×10−2) (×10−3)

0.7 5 100 2.07 1.15

0.65 5 100 2.29 1.95

0.60 5 100 27.1 52.30

0.55 5 100 44.5 67.30

These results show that these methods are effective to estimate the average fidelity

under less restrictive assumptions on the gates we may implement using RB if we have

a high fidelity, as indicated in table 2. However, in case we do not have a high fidelity,

these methods are not reliable, as can be seen in table 3. This should not severely restrict

the applicability of these methods, as one is usually interested in the high fidelity regime

when performing RB.

Finally, in figure 1 we compare the three different RB protocols discussed in this

paper. We compare the usual RB protocol, which we call the perfect sampling protocol,

to the one with approximate samples and the generator RB. The curve makes clear that

using approximate and exact samples leads to virtually indistinguishable estimates and
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(a)
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Figure 1. Plot of the average error (a) and mean error (b) as a function of p for

different versions of the RB protocol. For each value of p we generated 20 with M = 100

and m = 20. For the generator RB we chose b = 5 and to obtain the approximate

samples we ran the chain for 20 steps.
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that all protocols have similar performance for p close to 1.

8. Conclusion and Open Problems

We have generalized the RB protocol to estimate the average gate fidelity of unitary

representations of arbitrary finite groups. Our protocol is efficient when multiplying,

inverting and sampling elements from the group can be done efficiently and we have

shown some potential applications that go beyond the usual Clifford one. Moreover, we

showed that using approximate samples instead of perfect ones from the Haar measure

on the group does not lead to great errors. This can be seen as a stability result for RB

protocols w.r.t. sampling which was not available in the literature and is also relevant

in the Clifford case. We hope that this result can be useful in practice when one is not

given a full description of the group but rather a set of generators. Moreover, we have

shown how to perform RB by just implementing a set of generators and one arbitrary

gate under some noise models. This protocol could potentially be more feasible for

applications, as the set of gates we need to implement is on average simpler.

However, some questions remain open and require further work. It is

straightforward to generalize the technique of interleaved RB to this more general

scenario and this would also be a relevant development. It would be important to derive

confidence intervals for the estimates as was done for the Clifford case in [7]. Moreover,

it would be relevant to estimate not only the mean fidelity but also the variance of this

quantity. The assumption that the noisy channel is the same for all gates is not realistic

in many scenarios and should be seen as a 0-order approximation, as in [36]. It would

be desirable to generalize our results to the case in which the channel depends weakly

on the gate.
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Appendix

A. Numerical Considerations

Here we gather some comments on the numerical issues associated with the RB

procedure when estimating more than one parameter.

A.1. Fitting the Data to Several Parameters

In order to be able to estimate the average fidelity following the protocols discussed so

far, it is necessary to fit noisy data points {xi}mi=1 ⊂ R to a curve f : R→ R of the form

f(x) = a0 +
n∑

k=1

ake
−bkx, (A.1)

with a0, a1, . . . , an, b1, . . . , bn ∈ C. Although this may look like an innocent problem

at first sight, fitting noisy data to exponential curves is a difficult problem from the

numerical point of view for large n. It suffers from many stability issues, as thoroughly

discussed in [45]. Here we are going to briefly comment on some of the issues and

challenges faced when trying to fit the data, although we admittedly only scratch the

surface. For a more thorough analysis of some methods and issues, we refer to [45, 46].

We assume that we know the maximum number of different parameters, 2n + 1,

which we are fitting. This is given by the structure of the unitary representation at hand,

as discussed in lemma 11. Luckily, significant progress has been made in the recent years

to develop algorithms to overcome the issues faced in this setting and it is now possible

to fit curves to data with a moderate number of parameters. It is also noteworthy that

for n = 2 there exist stable algorithms based on geometric sums [46] which works for

equispaced data, as is our case. For estimating more than two parameters one can use

the algorithms proposed in [45], available at [47]. It should be said that the reliability

and convergence of most algorithms found in the literature depends strongly on the

choice of a good initial point. This tends not to be a problem, as we might have some

assumptions where our fidelity approximately lies and choose the initial bk accordingly.

What could be another source of numerical instabilities is the fact that we have to input

the model with a number of parameters, n. In case the eigenvalues of T are very close

for different irreps, then this will lead to numerical instabilities. This is the case if the

noise is described by a depolarizing channel, for example. Furthermore, it might be the

case that the initial state in our protocol does not intersect with all eigenspaces of the

channel. This may lead to some parameters ak being 0 and we are not able to estimate

some of the bk from them.

Moreover, it is in principle not possible to tell which parameter corresponds to

which irrep given the decomposition in lemma 11, which is again necessary to estimate

the trace of the channel. So even in the case in which we have a small number of

parameters, it is important that the different irreps associated to our parameters have

a similar dimension or to assume that the spectrum of the twirled channel contains
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eigenvalues that are very close to each other. In this way, the most pessimistic estimate

on the fidelity, as defined in (36), is not very far from the most optimistic, defined in

(37). This is one of the reasons we focus on examples that only have a small number

of parameters, say 1 or 2, and irreps of a similar dimension to avoid having numerical

instabilities or estimates that range over an interval that is too large.

It is therefore important to develop better schemes to fit the data in the context

of RB for more than one or two parameters. This is important from a statistical point

of view, as it would be desirable to obtain confidence intervals for the parameters from

the RB data. We will further develop this issue in appendix B. It would be worthwhile

pursuing a Bayesian approach to this problem, as was done in [48] for the usual RB

protocol.

A.2. Isolating the parameters

One way to possibly deal with issue is to isolate each parameter, that is, by preparing

states that only have support on one of the irreps that are not the trivial one. In the

case of non-degenerate unitary representations, discussed in theorem 5, we have the

following:

Theorem 25 (Isolating parameters). Let U : G → Md be a simply irrep of a finite

group G and T : Md → Md a channel which is covariant w.r.t. U . Then, for all

eigenvalues λα there is a quantum state ρα = I
d

+ X, where X = X∗ and Tr (X) = 0,

such that

Tm (ρα) =
I
d

+ λmαX. (A.2)

Proof. Consider the projections to the irreducible subspaces Pα defined in (11). For a

self-adjoint operator X ∈Md we have that

Pα(X)∗ =
χα(e)

|G|
∑

g∈G
χα (g)U∗gXUg = Pα(X),

as we are summing over the whole group and χα (g−1) = χα (g). Therefore, we have that

the Pα are hermiticity preserving. As the image of Pα is the eigenspace corresponding

to the irreps, we thus only have to show that there exists a self-adjoint X such that

Pα(X) 6= 0. But the existence of such an X is clear, as we may choose a basis of Md

that consists of self-adjoint operators. Moreover, as for α not the trivial representation

all eigenvectors are orthogonal to I, it follows that Tr (X) = 0 and that for ε > 0 small

enough I
d

+ εX is positive semidefinite. To finish the proof, note that simply irreducible

channels always satisfy

T (I) = I.

Note that this also proves that the spectrum of irreducibly covariant channels is

always real. That is, if we can prepare a state such as in (A.2), then we can perform the
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RB with this as an initial state and estimate the eigenvalue corresponding to each irrep.

This would bypass the problems discussed in appendix A.1. The proof of theorem 25

already hints a way of determining how to isolate the parameter: just apply the projector

Pα to some states ρi. If the output is not 0, then we can in principle write down a state

that “isolates” the parameter as in the proof of theorem 25. But we admit that it

is not clear at this stage how to prepare such states in a simple and efficient way or

how to extend such results to unitary representations which are not simply irreducible,

although it is certainly a direction which could be further investigated. This approach

would also lose one of the main advantages of the RB protocol, namely that it does not

assume that we are able to prepare a specific initial state [7]. However, in the case of the

monomial unitary matrices discussed in section 7.1, we can examine the projections and

see how to isolate the parameters. To isolate the parameter α in (55), we can prepare

initial states ρ ∈ Dd that have 1/d as their diagonal elements and at least one nonzero

off-diagonal element, as then the projector corresponding to β vanishes on ρ and does

not vanish on the one corresponding to α. To isolate the parameter β, one can prepare

states ρ that are diagonal in the computational basis but are not the maximally mixed

state, as can be seen by direct inspection.

B. Statistical Considerations

One of the main open questions left in our work is how to derive good confidence intervals

for the average fidelity. For the case of the Clifford group, discussed in section 7.2, one

can directly apply the results of [7, 8], but it is not clear how one should pick m and

M for arbitrary finite groups. Especially in the case in which we are not working with

Cliffords, it is not clear how many samples per point, M , we should gather and how

big m should be, as it depends on the choice of the algorithm picked for fitting the

curve. As noted in appendix A.1, this is not a trivial problem from a numerical point

of view. However, it is possible to obtain estimates on how much the observed survival

probability deviates from its expectation value by just using Hoeffding’s inequality:

Theorem 26. Let F̄ (m,E, ρ) be the observed average fidelity with M samples and

F (m,E, ρ) the average fidelity for any of the protocols discussed before and ε > 0.

Then:

P(|F (m,E, ρ)− F̄ (m,E, ρ)| ≥ ε) ≤ e−2Mε2 . (B.1)

Proof. This is just a straightforward application of Hoeffding’s inequality [49], as

F̄ (m,E, ρ) is just the empirical average of a random variable whose value is contained

in [0, 1] and whose expectation value is F (m,E, ρ).

This bound is extremely general, as we did not even have to use any property of

the random variables or of the group at hand. One should not expect it to perform well

for specific cases and the scaling it gives is still undesirable for applications. Indeed,

to assure we are 10−4 close to the expectation value with probability of 0.95, we need
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around 6×108 samples, which is not feasible. Thus, it is necessary to derive more refined

bounds for specific groups.

C. Proof of Theorem 17

Proof. From lemma 16 it suffices to show

‖ν̃ − µ⊗m‖1 ≤ 2

√√√√ log(|G|)
1− |G|−1

m∑

k=1

εk,

as the 1→ 1 norm contracts under quantum channels [39].

We will first show that

‖ν̃ − µ⊗m‖1 = ‖ ⊗mk=1 νk − µ⊗m‖1.

We may rewrite the distribution ν̃ in terms of the νk as follows:

P(D1 = g1,D2 = g2, . . . ,Dm = gm) =P(U1 = g1, U2 = g2g
−1
1 , . . . , Um = gmg

−1
m−1)

=ν1(g1)ν2(g2g
−1
1 ) . . . νm(gmg

−1
m−1),

as the Ugi are independent.

Note that the map σ : Gm → Gm, (g1, . . . , gm) 7→
(
g1, g2g

−1
1 , . . . , gmg

−1
m−1
)

is

bijective. Moreover, we have ν̃ = ⊗mk=1νk ◦ σ. As the total variation norm is invariant

under compositions with bijections on the state space, we have

‖ν̃ − µ⊗m‖1 = ‖ ⊗mk=1 νk ◦ σ − µ⊗m‖1 = ‖ ⊗mk=1 νk − µ⊗m ◦ σ−1‖1 = ‖ ⊗mk=1 νk − µ⊗m‖1,

where the last equality follows from the fact that the Haar measure is invariant under

bijections. We will now bound ‖⊗mk=1 νk−µ⊗m‖1. By Pinsker’s inequality [50], we have

‖ ⊗mk=1 νk − µ⊗m‖21 ≤ 4D
(
⊗mk=1νk||µ⊗m

)
= 4

m∑

k=1

D (νk||µ) . (C.1)

Here D is the relative entropy. In [50, Theorem 1] they show that

D (νk||µ) ≤ log(|G|)
1− |G|−1‖µ− νk‖1

and from Equation (41) it follows that

D (νk||µ) ≤ log(|G|)
1− |G|−1 εk. (C.2)

Combining (C.2) with (C.1) and taking the square root yields the claim.
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D. Proof of Theorem 20

Proof. Let Tc and Tn be as in definition 19. Then we have

T (T ) = (1− δ)Tc + δT (Tn),

as Tc is already covariant, and

T (T )m =(1− δ)mTmc + δ(1− δ)m−1
m−1∑

j=0

T jc T (Tn)Tm−j−1c

+ δ2(1− δ)m−2
∑

j1+j2+j3=m−2
T j1c T (Tn)T j2c T (Tn)T j3c + O(δ3). (D.1)

Moreover, as Tc is covariant with respect to this unitary representation, we have

E(Sb,m+b+1) = (1− δm)Tc + δ(1− δ)m−1
m−1∑

j=0

E
(
T jcDm−jTnD∗m−jTm−j−1c

)

+ δ2(1− δ)m−2
∑

j1+j2+j3=m−2
E
(
T j1c Dj2+1TnD∗j2+1T

j2
c Dj3+1TnD∗j3+1T

j3
c

)
+ O(δ3) (D.2)

It is clear that the terms of 0−order in δ in (D.1) and (D.2) coincide. Comparing each

of the summands of first order we obtain:

E
(
T jcDm−jTnD∗m−jTm−j−1c

)
− T jc T (Tn)Tm−j−1c

=
∑

g∈G

(
νm−j(g)− 1

|G|

)
T jc UgTnU∗gTm−j−1c ,

where νm−j is the distribution of Dm−j. Comparing the terms of second order we obtain:

E
(
T j1c Dj2+1TnD∗j2+1T

j2
c Dj3+1TnD∗j3+1T

j3
c

)
− T j1c T (Tn)T j2c T (Tn)T j3c

=
∑

g1,g2∈G

(
τj3+1,j2+1(g1, g2)−

1

|G|2
)
T j1c Ug1TnU∗g1T j2c Ug2TnU∗g2T j3c .

Here τj3+1,j2+1 is the joint distribution of Dj3+1 and Dj2+1. Then, using arguments

similar to those of theorem 17, we have that

‖T (T )m − E(Sb,m+1)‖1→1

≤ δ(1− δ)m−1
m∑

j=1

‖νj − µ‖+ δ2(1− δ)m−2
m−1∑

j1=1

m∑

j2=j1+1

‖τj1,j2 − µ⊗2‖1 + O(δ3).

Now, from our choice of b, we have ‖νj − µ‖1 ≤ ε
m

. Furthermore, we have that

τj1,j2(g1, g2) = P(Dj1 = Ug1 ,Dj2 = Ug2) = P(Dj2 = Ug2 |Dj1 = Ug1)P(Dj1 = Ug1).



Approximate randomized benchmarking for finite groups 29

By the construction of the Dj, it holds that

P(Dj2 = Ug2|Dj1 = Ug1) = πj2−j1(g1, g2),

where π is the stochastic matrix of the chain generated by A. From this we obtain

∑

g1,g2∈G

∣∣∣∣τj1,j2(g1, g2)−
1

|G|2
∣∣∣∣ =

∑

g1,g2∈G

∣∣∣∣νj1(g1)πj2−j1(g1, g2)−
1

|G|2
∣∣∣∣

≤
∑

g1,g2∈G

∣∣∣∣νj1(g1)−
1

|G|

∣∣∣∣ πj2−j1(g1, g2) +

∣∣∣∣
1

|G|π
j2−j1(g1, g2)−

1

|G|2
∣∣∣∣ . (D.3)

As the matrix π is doubly stochastic, summing over g2 first

∑

g1,g2∈G

∣∣∣∣νj1(g1)−
1

|G|

∣∣∣∣ πj2−j1(g1, g2) =
∑

g1∈G

∣∣∣∣νj1(g1)−
1

|G|

∣∣∣∣ ≤ εm−1,

which again follows from our choice of b. We now estimate the other term in (D.3).

From our assumption in (51) we have that

m−1∑

j=1

m∑

l=j+1

∑

g1,g2∈G

1

|G|

∣∣∣∣πj2−j1(g1, g2)−
1

|G|

∣∣∣∣ ≤
m−1∑

j=1

m∑

l=j+1

λl−j. (D.4)

Summing up both geometrical series which come up in the last expression of (D.4), we

finally obtain

m−1∑

j=1

m∑

l=j+1

∑

g1,g2∈G

1

|G|

∣∣∣∣πj2−j1(g1, g2)−
1

|G|

∣∣∣∣ ≤
λ

1− λ(m− 1).

Putting all inequalities together, we obtain the claim.

E. Proof of Lemma 24

Proof. (2) ⇒ (1) can be seen by direct inspection. In order to prove the converse,

we consider the Choi-Jamiolkowski state τT := 1
d

∑d
i,j=1 T

(
|i〉〈j|

)
⊗ |i〉〈j|. Then (1) is

equivalent to the statement that τT commutes with all unitaries of the form U ⊗ Ū ,

U ∈MU(d, n). That is, we have

d∑

i,j=1

U ⊗ Ū
(
T
(
|i〉〈j|

)
⊗ |i〉〈j|

)
(U ⊗ Ū)∗ =

d∑

i,j=1

T
(
|i〉〈j|

)
⊗ |i〉〈j| .

Restricting to the subgroup of diagonal unitaries in MU(d, n), for which U∗ = Ū , we

have

d∑

i,j=1

ei(φj−φi)UT
(
|i〉〈j|

)
Ū ⊗ |i〉〈j| =

d∑

i,j=1

T
(
|i〉〈j|

)
⊗ |i〉〈j| ,
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where eiφi is the i-th diagonal entry of U . Comparing the tensor factors it follows that

ei(φj−φi)UT
(
|i〉〈j|

)
Ū = T

(
|i〉〈j|

)
. (E.1)

We will now show that we have

τT =
d∑

i,j=1

Aij |i〉〈i| ⊗ |j〉〈j|+Bij |i〉〈j| ⊗ |i〉〈j| . (E.2)

We have

T (|i〉〈j|) =
d∑

k,l=1

ak,l |k〉〈l|

for some ak,l ∈ C. From (E.1) it follows that

d∑

k,l=1

ei(φk−φl)ak,l |k〉〈l| = ei(φi−φj)
d∑

k,l=1

ak,l |k〉〈l| (E.3)

for all diagonal unitaries. Again comparing both sides of (E.3) we have ak,le
i(φi−φj) =

ei(φk−φl)ak,l. Suppose now i 6= j. For ak,l 6= 0 we have

ei(φi−φj) = ei(φk−φl) (E.4)

for all diagonal entries of diagonal unitaries. If k, l, i and j are all pairwise distinct, we

have i = k and j 6= l or i 6= k and j = l, then it is clear that we may always find a

combination of φk, φl, φi and φj such that (E.4) is not satisfied, a contradiction. For

i = l and k = j, it is only possible to find such a combination for n > 2, as otherwise

φi − φj = −(φi − φj) always holds. This proves that we have

T (|i〉〈j|) = Bij |i〉〈j| (E.5)

for i 6= j. For i = j we have analogously that

UT (|i〉〈i|)Ū =
d∑

k,l=1

ei(φk−φl)ak,l |k〉〈l| =
d∑

k,l=1

ak,l |k〉〈l| .

In this case, we have ak,l = ei(φk−φl)ak,l for all possible phases of the form ei(φk−φl). It is

then clear that ak,l = 0 unless k = l by a similar argument as before. This gives

T (|i〉〈i|) =
d∑

j=1

Aij |j〉〈j| . (E.6)

Putting together (E.6) and (E.5) implies (E.2). Next, we will exploit that τT commutes

in addition with permutations of the form Uπ ⊗ Uπ for all π ∈ Sd. For i 6= j this

implies that Ai,j = Aπ(i),π(j) and Bi,j = Bπ(i),π(j) so that there is only one independent
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off-diagonal element for each A and B. The case i = j leads to a third parameter that

is a coefficient in front of
∑

α |ii〉〈ii|. Translating this back to the level of projections

then yields (55). The fact that the terms of (55) are projections can be seen by direct

inspection. Note that the term corresponding to α is the difference of two projections,

the identity and projection onto diagonal matrices. As the rank of the identity is d2

and the space of diagonal matrices has dimension d, we obtain the claim. The same

reasoning applies to the term corresponding to β, as it is the difference of the projection

onto diagonal matrices and the projection onto the maximally mixed state. The latter

is a projection of rank 1, which yields a rank of d− 1 for their difference.
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