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Abstract 

In recent years, the biogas sector has grown on a global level as a result of the 

sustainable and low emission energy policy. Anaerobic digestion is considered a 

cornerstone of both energy transition and circular economy. Moreover, biogas is 

advantageous compared to other energy sources due to the fact that it can be stored and 

utilized independent of time and place at times of higher energy demand. Two concepts 

for demand-driven flexible operations of a biogas plant have been suggested, based on 

either the storage of biogas or on-demand biogas production by means of the 

feedstocks. 

Energy crops (first generation biomass) are currently the main feedstock of agricultural 

biogas plants. However, due to increasing land use for the production of energy crops, 

they have been critically discussed (fuel vs. food debate), and the public acceptance of 

the agricultural biogas plants has been negatively affected. Thus, the utilization of 

second generation biomass (non-food material) is desirable. To determine their 

suitability as feedstocks of a biogas plant many factors should be taken into account; 

one of them is the biomethane potential (BMP). 

The BMP and the degradation rate of feedstocks can be determined by standardized 

anaerobic digestion batch tests (BMP tests). However, those tests are very complex, 

costly, time-consuming and their standardization is still very challenging. The 

experimental procedure of BMP tests is well described in different guidelines and 

methods books, but round robin tests have revealed a high deviation of measured 

methane yield from the same substrate among different laboratories. 

Thus, the aims of this study were: a) to identify and quantify the mathematical 

relationship between the chemical compounds (fodder analysis) and BMP of feedstocks 

and b) to develop a model for predicting the biogas and methane yield. In addition, it 

attempted to describe the complex biological process based on the chemical 

composition of plants and a first-order reaction.  

In this study, fodder analysis and BMP tests with high temporal resolution were 

performed in order to identify statistical correlations between the biogas production rate, 

biogas yield and the chemical composition of various energy crops. Different species 

and cultivars of energy crops were analyzed in order to develop a broadly applicable 

regression model. The crops were collected at varying developmental stages between 

2012 and 2016. Based on those samples, four datasets were developed in order to 

statistically investigate the effect of the plant’s chemical compounds on the biogas 

production. 

The results showed that the acid detergent lignin (ADL) content of various energy crops 

had a strong negative correlation with biogas and methane yields, and for a mono-causal 
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regression model, the ADL was the only candidate of the chemical compounds. Based 

on regression analysis, more than 80 % of the samples’ variation in BMP could be 

explained by ADL. Apart from ADL, the principal component analysis showed that 

hemicellulose (HC) was statistically important for biogas yield prediction. As no other 

variables yielded significant influence, ADL and HC are suggested as the suitable 

variables to predict biogas yields across different species of energy crops, with a 

prediction error for the calibration of about 8 %. However, the ADL content of a 

specific plant group (grassland samples) dataset could not explain the samples’ variation 

in BMP. The estimation error of the global model for the prediction of biogas yield 

from grassland plant species was about 12 %. For high accuracy in predicting the biogas 

yield (prediction error 5 % for the calibration), a third regressor was needed and crude 

protein (XP) was added. The results showed that a global model can predict the 

variation of BMPs among the different plant species, but in order to precisely predict 

the variation on BMP among the plant cultivars, a specific (local) model is needed. 

Besides biogas yield prediction, the kinetics of biogas production during a BMP test 

was described. This was accomplished by investigating the statistical correlations 

between the hydrolysis rate constant (kh) and the chemical composition of various 

energy crops. Results indicated that the analytical parameters non-fiber carbohydrates 

(NFC) and XP were statistically suitable for the prediction of kh. The regressors of kh 

prediction model and the regressors of BMP prediction model are different; this 

observation indicates that the biogas production rate is not necessary correlated with the 

biogas yield. Furthermore, a first-order kinetic model and the proposed regression 

models can be utilized for the prediction of the biogas yield and biogas rate in a BMP 

test.  

Finally, an independent dataset was used to assess and validate previously published 

prediction models and those developed in this study, as well as to expose the power and 

limitation of linear regression models for BMP prediction. The results revealed that 

linear regression models suitably depict the variation in the biogas yield to get a 

substrate ranking. However, the prediction error for the absolute values may be high 

since systematic external effects cannot be identified from the regression models. 

Despite the fact that the prediction is limited due to its simplicity and cannot 

accommodate extreme cases, this approach can be a useful tool for practitioners in order 

to assess different feedstocks for biogas production. The study proposes a novel 

approach for the prediction of both biogas yield and biogas production rate 

simultaneously based only on fodder analysis.  
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Zusammenfassung 

In den letzten Jahren ist die Biogasbranche durch die nachhaltige und emissionsarme 

Energiepolitik weltweit gewachsen. Die anaerobe Vergärung hat sich als Eckpfeiler der 

Energiewende und der Kreislaufwirtschaft etabliert. Darüber hinaus bietet Biogas im 

Vergleich zu anderen Energieträgern den entscheidenden Vorteil, dass es zeit- und 

ortsunabhängig gespeichert und zu Zeiten höheren Energiebedarfs abgerufen werden 

kann. Es wurden zwei Konzepte für die bedarfsorientierte, flexible Stromerzeugung 

einer Biogasanlage vorgeschlagen, die Biogasspeicherung oder die variable 

Biogaserzeugung durch die Einsatzstoffe. 

Energiepflanzen (Biomasse der ersten Generation) sind derzeit der wichtigste 

Einsatzstoff für landwirtschaftliche Biogasanlagen. Aufgrund der zunehmenden 

Landnutzung für die Produktion von Energiepflanzen wurde deren Einsatz in der 

Öffentlichkeit jedoch lange kontrovers diskutiert (Teller-Tank-Diskussion) und führte 

zur aktuell geringen Akzeptanz landwirtschaftlicher Biogasanlagen in der Bevölkerung. 

Folglich gewinnt die Nutzung von Biomasse der zweiten Generation (Rest- und 

Abfallstoffe) immer mehr an Bedeutung. Um ihre Eignung als Einsatzstoffe einer 

Biogasanlage zu ermitteln, müssen viele Faktoren berücksichtigt werden, einer davon 

ist das Biomethanpotenzial (BMP). 

Das BMP und die Abbaurate der Einsatzstoffe können durch anaerobe Batchversuche 

(BMP-Tests) bestimmt werden. Diese Untersuchungen sind jedoch sehr komplex, 

kostenintensiv, zeitaufwändig und ihre Standardisierung ist immer noch sehr 

anspruchsvoll. Das experimentelle Verfahren der BMP-Tests ist in verschiedenen 

Richtlinien und Methodenbüchern gut beschrieben, allerdings haben Ringversuche eine 

hohe Abweichung in der gemessenen Methanausbeute desselben Substrates zwischen 

verschiedenen Laboren ergeben. 

Daher waren die Ziele dieser Studie: a) den mathematischen Zusammenhang zwischen 

den Inhaltsstoffen (Futtermittelanalytik) und dem BMP von Einsatzstoffen zu 

identifizieren und zu quantifizieren, und b) ein Modell zur Vorhersage der Biogas- und 

Methanausbeute zu entwickeln. Darüber hinaus wurde versucht, den komplexen 

biologischen Prozess basierend auf der chemischen Zusammensetzung der Pflanzen und 

einer Reaktion erster Ordnung zu beschreiben. 

In dieser Studie wurden Futtermittelanalysen und BMP-Tests mit hoher zeitlicher 

Auflösung durchgeführt, um statistische Korrelationen zwischen Biogasproduktionsrate, 

Biogasausbeute und der chemischen Zusammensetzung verschiedener Energiepflanzen 

zu identifizieren. Verschiedene Arten und Sorten von Energiepflanzen wurden 

analysiert, um ein breit anwendbares Regressionsmodell zu entwickeln. Die Pflanzen 

wurden zwischen 2012 und 2016 in unterschiedlichen Entwicklungsstadien geerntet. 

Anhand dieser Proben wurden vier Datensätze entwickelt, um die Wirkung der 
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chemischen Verbindungen der Pflanzen auf die Biogasproduktion statistisch zu 

untersuchen. 

Die Ergebnisse zeigten, dass der Gehalt an Säure-Detergenz-Lignin (ADL) 

verschiedener Energiepflanzen eine starke negative Korrelation mit den Biogas- und 

Methanausbeuten aufweist und ADL für ein monokausales Regressionsmodell der 

einzige Kandidat der chemischen Verbindungen war. Basierend auf einer 

Regressionsanalyse konnten mehr als 80 % der Probenvariation an BMP durch ADL 

erklärt werden. Eine Hauptkomponentenanalyse zeigte, dass neben ADL nur 

Hemizellulose (HC) für die Vorhersage der Biogasausbeute statistisch geeignet war. Da 

keine anderen Variablen einen signifikanten Einfluss auf die Biogasausbeute hatten, 

wurden ADL und HC als geeignete Variablen zur Vorhersage der Biogasausbeute von 

unterschiedlichen Pflanzenarten vorgeschlagen. Der Vorhersagefehler der Kalibrierung 

lag bei 8 %. Der ADL-Gehalt eines spezifischen Pflanzengruppen-Datensatzes 

(Grünlandproben) konnte jedoch die Variation der Proben im BMP nicht erklären. Für 

die Grünlandproben lag der Vorhersagefehler des globalen Modells bei 12 %. Für eine 

höhere Vorhersagegenauigkeit der Biogasausbeute (Vorhersagefehler 5 % bei der 

Kalibrierung) wurde ein dritter Regressor nämlich das Rohprotein (XP) hinzugefügt. 

Die Ergebnisse zeigten, dass ein globales Modell die Variation der BMPs zwischen den 

verschiedenen Pflanzenarten vorhersagen kann. Um allerdings die Variation der BMPs 

der Pflanzensorten präzise vorhersagen zu können, wird ein spezifisches (lokales) 

Modell benötigt. 

Neben der Vorhersage der Biogasausbeute wurde die Kinetik der Biogasproduktion 

während eines BMP-Tests beschrieben. Dazu wurden die statistischen Zusammenhänge 

zwischen der Hydrolysekonstante (kh) und der chemischen Zusammensetzung 

verschiedener Energiepflanzen untersucht. Die Ergebnisse zeigten, dass die analytischen 

Parameter Nicht-Faser-Kohlenhydrate (NFC) und XP für die Vorhersage von kh 

statistisch geeignet waren. Die Regressoren des kh-Vorhersagemodells und die 

Regressoren des BMP-Vorhersagemodells sind unterschiedlich. Diese Beobachtung 

zeigt, dass die Biogasrate nicht zwingend mit der Biogasausbeute korreliert. Darüber 

hinaus können ein kinetisches Modell erster Ordnung und die vorgeschlagenen 

Regressionsmodelle zur Vorhersage der Biogasausbeute und der Biogasrate in einem 

BMP-Test verwendet werden. 

Schließlich wurde ein unabhängiger Datensatz verwendet, um bereits veröffentlichte 

und die in dieser Studie entwickelten Vorhersagemodelle zu bewerten und zu validieren. 

Darüber hinaus wurden das Potenzial und die Grenzen linearer Regressionsmodelle zur 

BMP-Vorhersage aufgezeigt. Die Ergebnisse zeigten, dass lineare Regressionsmodelle 

die Variation der Biogasausbeute für ein Substrat-Ranking geeignet abbilden. Der 

Vorhersagefehler für die absoluten Werte kann jedoch hoch sein, da systematische 

externe Effekte nicht aus den Regressionsmodellen identifiziert werden können. Trotz 

der Tatsache, dass die Vorhersage aufgrund ihrer Einfachheit begrenzt ist und extreme 
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Fälle nicht berücksichtigen kann, kann dieser Ansatz ein nützliches Werkzeug für die 

Praxis sein, um verschiedene Einsatzstoffe für die Biogasproduktion zu bewerten. Diese 

Studie schlägt ein neues Konzept zur gleichzeitigen Vorhersage der Biogasausbeute und 

der Biogasproduktionsraterate auf Basis der Futtermittelanalyse vor. 
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1 Introduction 

 

In order to reduce the anthropogenic contribution to greenhouse gas (GHG) emissions 

and global warming, sustainable energy policy and low emission energy production are 

needed. In 2010, the European Commission proposed a ten-year strategy and set targets 

in order to accelerate sustainable growth (Bere et al., 2015). For each member state, 

specific targets are defined concerning the reduction of GHG emissions, the increase of 

the share of renewable energy and the increase of energy efficiency, which must be 

achieved by the year 2020 (Zervos et al., 2011). In Germany, for instance, the share of 

renewable energy should reach at least 18 % of the total energy consumption. 

Moreover, institutions from across the political and scientific spectrum state the 

importance of acting against the environmental damage and new targets were set in the 

2015 Paris climate agreement (Liobikienė and Butkus, 2017). 

Electricity production from fossil fuels is the main source of GHG emissions. By 

switching to renewable energy sources, the impact on GHGs can be reduced or, in some 

cases eliminated. The utilization of biogas allows for less dependence on fossil fuels 

and will reduce GHG emissions (Meyer-Aurich et al., 2012; Uusitalo et al., 2013). 

However, due to the increasing allocation of agricultural land for energy crop 

production, the use of energy crops has been critically discussed. For instance, the 

increasing maize cultivation in Germany has damaged the public acceptance of biogas 

plants (Kortsch et al., 2015). Recent studies have shown that there is a sufficient 

quantity of sustainable alternatives to the use of maize in all the member states of the 

EU-28 to ensure continuous development of the European biogas sector (Meyer et al., 

2018). These alternatives include utilizing biomass which cannot be used as feed or 

food, so called second generation biomass. A desirable example of this is non-

agricultural grasslands and roadside grass as they exhibit a high potential of biomass. 

Methane production from second generation biomass leads to the sustainable energy 

generation avoiding the “food versus fuel” debate (Chandra et al., 2012). The produced 

biogas can have a variety of potential uses, e.g. as part of a co-generation energy system 

for electricity and heat production. Moreover, it can be utilized to fill electricity 

production gaps (Ellabban et al., 2014; Esen and Yuksel, 2013). 

The number of biogas plants in Germany started to rise in 2004 with the political 

support of the Renewable Energy Act (EEG). As a result, the production of renewable 

raw materials or energy crops (especially maize silage) as feedstock for biogas plants 

has also increased. Biogas plants have a high impact on regional agriculture in 

Germany, as maize is currently the most important energy crop for biogas production at 

agricultural biogas plants. However, the renewable energy policy in 2012 introduced an 

amendment to the EEG act. Among other strategies, a maximum amount of 60 % on the 
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share of maize and cereal grain kernels was introduced to prevent monoculture. 

Therefore, the need for alternative feedstocks is increasing. 

In Germany there is regional grassland available that is not needed for livestock 

farming. Furthermore, agricultural residues (e.g. maize stover) and perennial plant 

species (e.g. cup plant) can also be utilized. These types of biomass could be used for 

biogas production, as they exhibit a significant energetic potential. 

The determination of the biogas and methane yield of energy crops is a central element 

in biogas technology and a key parameter for substrate assessment and biogas plant 

planning and design. The biomethane potential (BMP) can be determined with lab-scale 

experiments. However, the practical use of these experiments is limited by the costly 

nature of BMP tests (ca. 200 - 500 € per sample) due to the expensive technical 

equipment, labor effort and long duration of the tests (ca. 25 - 45 d). Moreover, the 

BMP tests are biological systems and their standardization is very challenging. Due to 

this, it is difficult to ensure repeatability and reproducibility of the data among different 

laboratories (Raposo et al., 2011). Although a number of standard protocols are 

available (Angelidaki et al., 2009; Holliger et al., 2016; VDI, 2016; VDLUFA, 2011), 

the experimental setup is not always comparable. 

A modeling approach based on the fodder analysis could provide quick and reliable 

information about the biogas and methane yield potential of different substrates. Fodder 

analyses are well-established standard methods based on analytical chemistry with high 

repeatability and reproducibility. The complexity is further reduced with the use of 

near-infrared spectroscopy (NIRS). 

Several authors have developed a mathematical estimation for BMP prediction. 

However the effect of each compound on the BMP differs. For instance, crude lipids 

(XL) have been reported to have both a positive and a negative effect on biogas yield 

(Amon, 2007; Amon et al., 2007a). Crude fibers (XF) have also been reported to have 

sometimes a positive and sometimes a negative effect on biogas yield  

(Weißbach, 2008). Kaiser (2007) reported a positive effect of cellulose (CL) on BMP, 

while Triolo et al. (2011) reported a negative effect. 

In order to expose the effect of the chemical compounds of the plant on the biogas yield 

and biogas production rate, defined plant species and varieties were collected at 

different developmental stages. During the field experiments, changes in composition of 

the chemical compounds were systematically recorded. A wide composition range of 

the chemical compounds were studied to expose the mono-causal effect and the 

interaction effect of the compounds on the biogas yield. In total, 312 samples were 

collected and tested in batch fermentation trials (BMP tests) under defined laboratory 

conditions; their chemical composition were analyzed (i.e. fodder analysis) as well. 

Based on statistical tools, specific chemical compounds were selected as regressors in 
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order to develop mathematical models that can predict the biogas production and degree 

of degradation of a feedstock. 

The aim of this study was to develop a mathematical model which can be utilized to 

estimate the BMP test results quickly and cost-effectively. The study can be divided 

into four parts. The first part aimed to develop an across plant-species (global) model to 

identify the key variables for the prediction of biogas yield. The second part of the study 

aimed to minimize the estimation error by a plant group specific (local) model. In the 

third part, the effect of the chemical composition of energy crops on the hydrolysis rate 

constant was studied and a prediction model was developed. Finally, in fourth part BMP 

prediction models (two models from the literature and the developed ones) were 

assessed and validated to prove the accuracy potential of each modeling approach 

(global and local) and to compare with existing ones. 
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2 State of the knowledge 

 

2.1 Biogas production process 

Anaerobic digestion (AD) is a complex microbiological process that takes place in four 

steps (Fig. 1). Although the four groups of microorganisms have a different optimum 

growth range (Bauer et al., 2009), the biogas process is only stable when all four steps 

are in equilibrium due to the synergetic effects of the microbes. The process involves a 

broad variety of microorganisms, bacteria and archaea. The population dynamics of the 

microorganisms are dependent mainly on the environmental conditions in biogas 

reactors and on the feedstocks used (Blasco et al., 2014; Karakashev et al., 2005; 

Lebuhn et al., 2014). However, the population dynamics can be changed by lag of trace 

elements or other process inhibitory factors (Munk et al., 2010; Pobeheim et al., 2011). 

The AD process is divided into four steps: hydrolysis, acidogenesis, acetogenesis and 

methanogenesis. In hydrolysis, complex organic substances are broken down into their 

monomers by hydrolytic bacteria or anaerobic fungi (Dollhofer et al., 2017). During this 

enzymatic process, particulate organic material is decomposed to solutes capable of 

being actively or passively transported across cell membranes before they can be 

microbially metabolized. Insoluble complex molecules (carbohydrates, proteins and 

lipids) are degraded into sugars, fatty acids and amino acids. Then, the acidogenesis 

takes place through acid-forming bacteria, producing mainly volatile fatty acids and 

alcohols. In the next step, acetogenesis, the anaerobic oxidation of long-chain fatty acids 

takes place to produce mainly acetic acid and hydrogen. The last step, methanogenesis, 

is the formation of methane by the hydrogenotrophic and acetoclastic methanogens. 

Biogas formation is a process in which microbial and chemical aspects are closely 

linked (Angelidaki et al., 2009; Mittweg et al., 2012). Moreover, the chemical 

composition, in particular the lignocellulosic matrix, of the different plant species can 

affect the degree of degradation and the BMP (Li et al., 2013; Lübken et al., 2010). 

Under uninhibited anaerobic digestion conditions, hydrolysis of complex organic 

particulate material can be considered as the rate-limiting step of the anaerobic process 

(Pavlostathis and Giraldo-Gomez, 1991). 
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Figure 1: Flow diagram of the biogas process (Gerardi, 2003). 

 

The AD process efficiency depends on substrate characteristics and operational 

conditions. The anaerobic digestion model no. 1 (ADM1) simulates the whole AD 

process including multiple steps of biochemical, as well as physico-chemical processes. 

Although modeling of the biogas production process is very challenging, it allows a 

better understanding and visualization of the biochemical processes and can optimize 

the performance of biogas plants. 

 



 State of the knowledge   

6 

2.2 Biogas and methane yields 

The biogas yield describes the ultimate biogas production per amount of substrate added 

under defined conditions. The methane content in biogas will be analyzed to define the 

methane yield. Although, for energy production only the methane amount can be 

utilized, the biogas amount has to be known in order to undertake biogas plant design 

and operation. To achieve a more efficient operation of biogas plants, it is important to 

determine the biogas yield in advance. Anaerobic batch test (BMP test) under laboratory 

conditions make this possible, but a strict standardization is needed to assure inter- and 

intra-laboratory reproducibility (Angelidaki et al., 2009; Koch and Drewes, 2014). 

BMP tests allow also quantifying the actual microbiological activity indirectly, 

according to the hourly biogas production. Since the BMP tests are performed under 

defined laboratory conditions, a comparison of the hourly production among the 

samples is possible. Hydrolysis is the rate limiting step of the whole anaerobic process 

and hydrolysis rate constant can be used as a variable for quantifying the velocity of the 

degradation of feedstock. 

 

2.3 Experimental determination of biogas and methane yields 

The biogas and methane yields of a substrate can be determined by discontinuous co-

digestion under defined laboratory conditions. The Association of German Engineers 

(VDI) has developed guideline VDI 4630 for the determination of biogas and methane 

yields of organic substances (VDI, 2006). The main process conditions for a 

standardized batch test according to the guideline VDI 4630 are listed as follows: The 

particle size of the sample should be less than 10 mm; the volatile solids (VS) of the 

inoculum should be over 50 % of the total solids (TS); the inoculum should be degassed 

at the test temperature for a week; 1.5 to 2 % of the digester’s working volume should 

be VS from the inoculum; the amount of VS from the substrate should be less than half 

the amount of the VS from the inoculum; microcrystalline cellulose should be used as a 

positive control, since it is 100 % degradable in a batch test; and the experiment should 

be terminated only when the daily rate of biogas falls below 1 % of the biogas 

production produced by then. 

Angelidaki et al. (2009) proposed a protocol for the determination of the methane 

potential of solid organic wastes and energy crops in BMP tests. The authors 

highlighted the importance of the particle size of the test sample, the quality of 

inoculum, and the experimental setup. 

In 2011, the Association of German Agricultural Analytic and Research Institutes 

(VDLUFA) published a method for the determination of biogas and methane yields of 
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agricultural biomass (VDLUFA, 2011). In the VDLUFA method some process 

conditions were defined more specifically with respect to the batch test of agricultural 

substrates. The stricter conditions are presented as follows: The inoculum should be 

biologically active material from a biogas plant and should have a total acid 

concentration below 500 mg acetic acid-equivalent per liter; the weighing accuracy 

should be at least 1 %; the TS content should be less than 10 % in the batch digester; the 

test temperature is defined at 37 ± 2 °C; and the biogas produced from inoculum alone 

should not be more than 20 % of the total biogas production of the sample with the 

inoculum. Moreover, to decide if the experiment ran properly, the absolute difference 

on biogas yield among the replicates of the test sample should be considered in addition 

to the biogas yield (validity of the measurement). 

Although several norms and guidelines for BMP tests exist, inter-laboratory tests 

regularly still show a high variability of biogas and methane yields for the same 

substrate. To address this, Holliger et al. (2016) proposed that not only inter-laboratory 

but also intra-laboratory tests are needed for a BMP test assessment. They further 

suggested correcting the standard deviation of the samples considering the standard 

deviation of the inoculum. The experiment should be repeated if the coefficient of the 

variation of inoculum or the coefficient of a single sample is too high, and if the 

methane yield of the positive control is too high or too low.  

In 2016, a revised version of the guideline VDI 4630 (VDI, 2016) was published with a 

stricter standard for batch tests. The standardization of BMP tests is very challenging 

and the main reason is that a BMP test is a biological test and the microbial growth and 

performance cannot be entirely defined. 

 

2.4 Prediction of biogas and methane yields 

Several authors have published studies on the mathematical modeling of anaerobic 

degradation and the prediction of biogas and methane yields. Two main groups of 

models exist within the literature: a) white-box approach, which is extremely 

demanding for modeling due to the high variability of microbes, feedstock specific 

microbial communities involved, and the different optimal growth conditions of the 

microbes (Mulka et al., 2016); b) black-box approach, which is a simple approach and 

allows the simulation of the biological process with less effort, however systematic 

effects (e.g., microclimate of local cultivation conditions, new cultivars, etc.) cannot be 

predicted by static models. 

In this study only the black-box approach has been investigated as the objective was to 

create a global model for energy crops, which can be utilized by both the scientific 

community and practitioners. 
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The black-box approach can also be divided into two groups: stoichiometric and 

empirical models. A stoichiometric model refers to the chemical formula of the organic 

substrate, whereby the maximum methane (CH4) and carbon dioxide (CO2) production 

can be calculated based on an oxidation-reduction reaction involving water (Buswell 

and Mueller, 1952). These models do not consider any degree of biological degradation 

and produce similar results for various energy crops, since biomass always contains 

about 45 % of carbon. In order to determine the differences among the energy crops and 

to show reasonable results, advanced stoichiometric models were developed including 

chemical composition of the energy crops (Baserga, 1998). The chemical composition 

of the sample can be determined based on the laboratory analysis for animal feed 

(fodder analysis), using wet chemical analytical methods (classical laboratory analysis) 

or near-infrared spectroscopy (NIRS). Consequently, the share of the three main organic 

fractions carbohydrates, protein and fats can be defined. The percentage of each organic 

fraction can be multiplied with the reference value (stoichiometric biogas yield), 

respectively, to calculate the biogas yield of the sample. However, for energy crops this 

approach is very imprecise, since the difference between slowly digestible fractions 

such as cellulose and readily digestible fractions such as starch is not considered. 

Empirical models were developed based on the chemical analysis of the samples and the 

experimental values of the batch tests for the biogas yield determination. Although, 

many studies have been performed, it still remains unclear what effect the different 

concentrations of the chemical compounds could have on the biogas yield. These 

models consider the difference between the slowly and readily digestible fractions, 

albeit insufficiently.  

Table 1 shows a list of mathematical equations developed for the estimation of biogas 

yield. Buswell and Mueller (1952) developed a model that describes the stoichiometric 

reduction of the organic substrate. Boyle (1976) extended this model to include the 

chemical elements nitrogen (N) and sulphur (S), which are converted to ammonia (NH3) 

and hydrogen sulphide (H2S), respectively. The models of Buswell and Mueller (1952) 

and Boyle (1976) are based solely on the chemical formula of the organic substrate, and 

the biological degradation is not addressed. 
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Table 1: Selected models for biogas and methane yield prediction. 

Author Model 

Buswell und 
Mueller (1952) ������ + �	 − �

4 −	
�
2����	 → �	2 +

�
8 −

�
4� ��� + �	2 −

�
8 +

�
4���� 

Boyle (1976) 

���������� + �	 − �
4 −	

�
2 +

3�
4 + �

2����	
→ �	2 +

�
8 −

�
4 −

3�
8 − �

4����

+ �	2 −
�
8 +

�
4 +

3�
8 + �

4� ��� + ���� + ���� 

Baserga 
(1998) 

YB = 790 (XF + NfE) + 700 XP + 1250 XL 

Keymer and 
Schilcher 
(1999) 

YB = 790 (XF VQXF + NfE VQNfE)  + 700 XP VQXP + 1250  XL VQXL 

Kaiser (2007) 
YB = 307 XP + 781 XL + 627 OR + 938 HC + 691 CL  − 358 ADL 
YM = 147 XP + 560 XL + 289 OR + 459 HC + 382 CL  − 271 ADL 

Weißbach 
(2008) 

YB = 800 FOM 
YM = 420 FOM 

Triolo et al. 
(2011) 

YM = 447 – 7 CL – 277 ADL 

Rath et al. 
(2013) 

YB = 64.83 – 2678 ADL + 4299 HC + 12857XL – 3657 RS 

Thomsen et al. 
(2014) 

YM = 347 (CL + HC + R) – 438 ADL 

 

The model of Baserga (1998) refers to the three main organic components: 

carbohydrates (crude fiber (XF) and nitrogen free extract (NfE)), crude protein (XP) and 

crude lipids (XL). The share of the sample’s chemical composition can be defined by 

fodder analysis and the ultimate biogas yield of each chemical compound is calculated 

with the stoichiometric model (Table 2). However, this model does not consider the 

lignocellulosic matrix and 100 % degradability is always assumed. Due to this fact, the 
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biogas yield prediction is similar for most energy crops species and no difference can 

been observed for the cultivars of a species.  

 

Table 2: Biogas yield and methane content of the three main organic components 

(Baserga, 1998). 

Organic component 
Biogas yield 

[L/kgVS] 

CH4 content 

[%] 

Carbohydrates 790 50 

Crude lipids 1250 68 

Crude protein 700 71 

 

Keymer and Schilcher (1999) modified the model of Baserga (1998) by including the 

quotient of digestibility (VQ) from DLG (1997), which were determined empirically by 

biological methods (in vitro or in vivo). The model is based on the assumption that the 

microbiological degradation in the rumen is similar to degradation in the biogas plant. 

Although the biological process of the two systems (rumen and biogas plant) is similar, 

the final products (VFAs vs. biogas) of the systems and physical properties (e.g., 

retention time, particle size etc.) are different. This may cause the biogas yield 

prediction of energy crops to be underestimated. 

Multiple linear regression models were also used for BMP prediction. Kaiser (2007) 

developed a model based on regression analysis among the share of the six components 

(crude protein, crude lipid, organic rest, hemicellulose, cellulose, and lignin) and the 

experimental values (BMP tests) of biogas yield from energy crops. Because the 

substrate on the models of Kaiser (2007) is divided into several components, a higher 

accuracy is expected. However, for external datasets the estimation error of biogas yield 

prediction is high, since the inter-correlation of the regressors is not considered and 

causes a high prediction error. 

Weißbach (2008) developed a model based on the determination of the content of 

fermentable organic matter (FOM). FOM as a parameter is described by a regression 

function, with each energy crop needing a separate function. For these models, only the 

laboratory analyses of crude ash (XA) and XF are necessary. The models are based on 

the assumption that only the carbohydrates are the main source for biogas production, 

and the lipid and protein contents have only little influence on the biogas yield 

(Weißbach, 2009a). 

Triolo et al. (2011) published regression models to assess biodegradability of energy 

crops and manure. In both cases lignin (ADL) and cellulose (CL) content were suitable 
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variables for BMP prediction. On the one hand, lignin is indigestible under anaerobic 

conditions and therefore is expected to have a low biogas yield. On the other hand, 

cellulose is well degradable under anaerobic conditions and often is used as a reference 

substrate in laboratory-scale experiments. Triolo et al. (2011) found that both variables 

(ADL and CL) contributed negatively to BMP prediction when both are used at the 

same time as regressors. This result of CL is contrary to the literature, since CL was 

expected to be positively correlated with biogas yield. However, this can be explained 

by the fact that all chemical compounds are inter-correlated and by the fact that the 

regressors also describe co-effects.  

Rath et al. (2013) developed a maize-specific model in order to identify the 

differentiation among maize cultivars. The model shows that lignin and sugars 

negatively influence the biogas yield (YB), whereas crude lipids and hemicellulose have 

a positive influence. However the model is very specific and cannot be used for other 

energy crops. 

Thomsen et al. (2014) developed a global model for energy crops and proved to be in 

agreement with Triolo et al. (2011) by showing that lignin is the most suitable variable 

for a mono-causal regression. There are two versions of this model based on the 

biomass analysis method. In this study the model based on fodder analysis was used. 

The authors used their own data, but also values from the literature for a total of 64 

samples in order to develop a global model for BMP prediction. The model was 

presented as YM = 347 (CL + HC + R) – 438 ADL, but since residuals (R) were defined 

as R = 1 – CL – HC – ADL, the regressors of the model can be limited only to ADL, 

YM = 347 – 785 ADL. 
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3 Problem statement and objectives  

 

Biomass can be degraded by a biochemical process in the absence of oxygen (anaerobic 

digestion) and the products of this process are digestate and biogas (mainly CH4 and 

CO2). The biogas and biomethane potential (BMP) are important parameters for 

assessing any biodegradable material in order to define its suitability as feedstock in a 

biogas plant. However, the experimental determination of the BMP is a time-consuming 

and costly process. The fodder analysis is a standardized method to assess the nutritive 

value of feedstock; these values can be taken from pre-existing databases or the samples 

can be analyzed with low cost and readily available test kits. Therefore, a BMP 

prediction based on the chemical composition of the feedstock is desirable. 

In previous studies, the lignin content was strongly negatively correlated to the biogas 

and methane yields (Thomsen et al., 2014; Triolo et al., 2011). Simple mono-causal 

regression models were developed with lignin being the only regressor for biogas and 

methane yield prediction. Nevertheless, the accuracy in the mono-causal models is low 

and multiple regression is required (Gunaseelan, 2009; Xu et al., 2014). At this point, it 

should be noted that the regressors’ selection is limited due to inter-correlation among 

the chemical compounds of the feedstock. Various authors have developed models to 

predict the biogas and methane yield from energy crops based on fodder analysis. 

However, the effect of the chemical compounds on the biogas production cannot be 

clearly determined. Among the studies, contradictory results were published considering 

the effect of each chemical compound on the methane yield. Moreover, the high number 

and the selection of the regressors led to poor performance of the models with an 

external dataset. 

The partly contradictory results published so far and the lack of studies which are aimed 

to address the diversity of classical agricultural plants motivated this study. The 

objectives of this study were: Firstly, to analyze the correlations and interactions of the 

chemical compounds with the biogas and methane yields and to develop a model to 

estimate the biogas and methane yields across different plant species; secondly, to 

develop a specific model that predicts the biogas potential of grassland samples 

focusing on the question whether a more precise prediction of the biogas yield relies on 

a strict selection of samples than presented so far; thirdly, to analyze the correlation 

between the hydrolysis rate constant and the chemical composition of the feedstock 

based on a high variety of plant species and cultivars and to develop and evaluate a 

regression model in order to predict hydrolysis rate constant; and fourthly, to assess and 

validate the developed prediction models and to compare them with previously 

published ones. 
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4 Research questions and hypotheses  

 

The following research questions are introduced and addressed: 

1. How are the biogas and methane yields affected by the chemical composition 

of energy crops?  

2. Is the effect of a specific chemical compound on the biogas production 

independent of the plant species? 

3. Can the respective effect be expressed as a continuous function? 

4. Which chemical components cause a statistically significant change on the 

biogas production and which of them can be used simultaneously in a 

prediction model? 

5. Can the biogas production rate in a BMP test be accurately predicted? 

At this point it should be clarified that firstly, a statistically significant effect of a 

chemical compound on biogas production is not necessarily connected with its 

properties, because the relationship between the compound and biogas yield is 

described only empirically and not by the biochemical degradation process steps. For 

instance, the structure of a protein and the various protein groups cannot be considered 

since all protein groups are recorded as crude protein based on the nitrogen content. 

Secondly, the parameters of the fodder analysis are analytical parameters and do not 

necessarily describe the biological and chemical structure of the whole plant  

(Jung, 1997). Thirdly, one of the assumptions when performing multiple linear 

regression analysis is that the regressors are not inter-correlated. The parameters of the 

fodder analysis are expressed in percentage of total solids, and the share of one 

compound will automatically change if the content of another changes. Hence, co-

effects between the regressors cannot be avoided. 

Based on the research questions and with regard to the analytical status quo, the 
following hypotheses were proposed and tested:  

a.) The variation in biogas yield is a function of the plant’s chemical composition 
(Paper I). 

b.) The biogas potential can be mathematically described by the plant’s chemical 
components (Paper I). 

c.) For high estimation accuracy of biogas yield, plant groups or even plant species, 
specific models are needed (Paper II). 

d.) More than two regressors are needed for high accuracy and carbohydrates (fiber 
and not) alone cannot predict accurately biogas yield (Paper II). 

e.) The hydrolysis rate constant can be predicted based on the plant’s chemical 
compounds (Paper III). 

f.) The determination of the hydrolysis rate constant affects its correlation with the 
chemical compounds (Paper III). 
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g.) The regression model can precisely predict each individual sample of an 
independent dataset (Paper IV). 

h.) Linear regression models are suitable for feedstock assessment (Paper IV). 

To test these hypotheses, field experiments were carried out in order to collect different 

plant species and cultivars of energy crops under well-defined growing conditions. 

Samples were analyzed according to the Weender and van Soest methods. The BMP 

tests were run with a high temporal resolution in order to identify statistical correlations 

between the chemical composition of the samples and their biogas potential. 
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5 Materials and methods 

 

5.1 Test substrates 

The various species and cultivars of energy crops used in this experiment were grown in 

field experiments under defined conditions and were harvested depending on their 

development according to the Biologische Bundesanstalt, Bundessortenamt und 

Chemische Industrie (code of the phenological growth stages of plants) (BBCH)-scale 

(Hess et al., 1997; Meier, 2018). The BBCH scale is a system for coding phenologically 

similar growth stages of plant species. It is a decimal system, with 10 principal growth 

stages and up to 10 secondary ones. The principal and the secondary growth stages are 

descripted with a two-digit code. 

The field experiments were performed from 2012 to 2016. After harvest, the samples 

were immediately dried in a convection oven at 40 °C to stabilize the actual plant status. 

The samples were ground to 10 mm with a cutting mill (RETSCH, model SM 200, 

Haan, Germany) in order to achieve a homogeneous sample. After that, they were stored 

at room temperature. Fodder analysis and a BMP test were performed for all samples. 

The values (biogas yield and chemical composition) of each sample are given in 

Appendix (Paper I, II, III and IV). The selected samples can be divided into four groups:  

• Various energy crops at individually defined optimal harvest times, which are 

then suitable to be used as feedstock in a biogas plant (harvested 2012; 

41 samples). 

• Selected species of grassland systematically harvested at different 

developmental stages within certain re-growth periods and in two different years 

(harvested 2013 and 2014; 116 samples). 

• Selected maize cultivars systematically harvested at specific developmental 

stages to produce maize stover, which is suitable to be used as feedstock in a 

biogas plant (harvested 2014; 64 samples).  

• Selected perennial energy crops systematically harvested at different 

developmental stages (harvested 2015; 91 samples). 

 

5.1.1 Various energy crops 

The first set of samples was selected to determine the global influence of the chemical 

composition of various plant species on the biogas yield, 41 samples of 11 different 

plant species were investigated (Table 3). The samples were selected according to the 

following criteria: a) the samples should be suitable feedstock for a biogas plant in 

Bavaria; b) the samples should be harvested at a BBCH-code, when a reasonable 
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amount of biomass can be selected, and c) the biogas and methane yields of the samples 

should follow a normal distribution. 

 

Table 3: Number of samples within the 11 investigated plant groups of the first set of samples. 

Samples n 

Cup plant 2 

Barley 2 

Grassland 9 

Millet 4 

Potato 2 

Clover 3 

Maize 4 

Rye 4 

Sunflower 2 

Triticale 8 

Sugar beet 1 

 

 

5.1.2 Grassland biomass 

The second set of samples consisted of selected grassland species. The species selection 

and the field experiments were performed by the Institute for Crop Science and Plant 

Breeding (IPZ) at the Bavarian State Research Center for Agriculture (LfL) in Freising, 

Germany. The most important criterion for the selection of plant species and harvest 

dates was their use of grassland as feedstock for an agricultural biogas plant.  

Two field experiments were conducted and six selected grassland plant species were 

investigated (Table 4). Four grass species (Lolium perenne, Dactylis glomerata, 

Poa pratensis, Festuca pratensis) and two legume species (Trifolium pratense, 

Trifolium repens) were grown in field plots (10 m2). In addition, four cultivars of 

Lolium perenne (Table 4) were tested. Each species of plant was grown on a single field 

plot. 
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Table 4: Investigated grassland plant species of the second set of samples. 

Species Cultivar n 

1. Ray grass 
 (Lolium perenne) 

1a. Arvicola  12 

1b. Respect 14 

1c. Sponsor 10 

1d. Sirius 11 

2. Orchard grass 
(Dactylis glomerata) 

2. Husar 14 

3. Common meadow-grass  
(Poa pratensis) 

3. Lato 12 

4. Meadow fescue 
(Festuca pratensis) 

4. Preval 13 

5. Red clover 
(Trifolium pratense) 

5. Titus 15 

6. White clover 
(Trifolium repens) 

6. Lirepa 15 

 

The selected grass and clover species were grown under defined conditions at the test 

site in Pulling, Germany during 2013 and 2014. To obtain information about the change 

of the chemical composition of the plants during their development, each plant 

underwent several harvests. The goal was to create a dataset with a wide range of 

chemical compositions, which would also be suitable for statistical analysis.  

The collection of the samples took place during the first, second, and third growth 

cycles with advancing harvest dates in each growth cycle. At defined phenological 

development stages based on the BBCH scale, five harvest dates were scheduled during 

the first growth cycle and three harvest dates were scheduled during each the second 

and third growth cycles. However, due to the weather conditions the plants were not 

harvested according to the schedule (Table 5, Table 6). 
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Figure 2 represents the average monthly precipitation across ten years (2003-2012), as 

well as the monthly precipitation in both 2013 and 2014 per month. The data was 

obtained from the weather station in Freising, Germany. The harvests took place in 

May/June, in July/August and in September/October, for the first, second and third 

growth cycle, respectively, as documented in Tables 5 and 6. Water availability is 

crucial for the development (quality) and growth (quantity) of grasslands. In May, 

September and October in both 2013 and 2014, the monthly values of precipitation were 

higher than the ten-year average. In June 2013 precipitation was also higher, but was 

extremely low in July 2013 and vice versa in 2014. 

 

Figure 2: Precipitation observations at the weather station in Freising, Germany. 

 

The first harvest of the first growth cycle is the most important since that is when the 

highest biomass amount can be collected. In contrast, the second growth cycle usually 

has a lower biomass production and its composition is more variable. The third growth 

cycle is characterized by very low biomass production, but with a rather repeatable plant 

composition. For this reason, various cuts (harvest dates) of each growth cycle were 

investigated. 
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5.1.3 Maize stover 

The third set of samples consisted of four different maize cultivars. The maize was 

harvested at full maturity, i.e. BBCH ≥ 89, since the goal was to create a dataset 

containing agricultural residues, i.e. maize stover. Three different harvest dates were 

undertaken two in October and one in November. Furthermore, each fraction of the 

maize stover (leaves, stalks, cobs) was tested separately. The species selection and the 

field experiments were performed by the Institute for Crop Science and Plant Breeding 

(IPZ) of the Bavarian State Research Center for Agriculture (LfL) in Freising, Germany. 

 

5.1.4 Perennial energy crops 

The fourth set of samples consisted of eight perennial crops and two annual cultures 

(maize and rye) (Table 7). The samples were grown in various locations in the state of 

Bavaria, Germany and harvested at different harvest dates or cycles. The species 

selection and the field experiments were performed by the Technology and Support 

Centre (TFZ) in Straubing, Germany. 

 

Table 7: Investigated plant species of the fourth set of samples.  

Common name Species n 

Maize Zea mays 6 

Rye Secale cereale 5 

Wild rye Secale multicaule 14 

Virginia Wildrye Elymus virginicus 2 

Sorghum 
Sorghum bicolor x 

Sorghum sudanense 
1 

Tall wheatgrass Elymus elongatus 30 

Reed canary grass Phalaris arundinacea 1 

Virginia mallow Sida hermaphrodita 11 

Cup plant Silphium perfoliatum 8 

Switchgrass Panicum virgatum 13 
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5.2 Experimental set-up 

In total, 19 incubators with 228 digesters were available for the BMP tests (Fig. 3). The 

BMP tests were performed according to the guideline VDI 4630 (VDI, 2006) and the 

VDLUFA method book (VDLUFA, 2011). Each incubator contains 12 digesters; each 

digester is connected by tubes with milligascounters (Ritter Apparatebau GmbH, 

Bochum, Germany) for gas volume recording. A gas bag was attached to three digesters 

(three technical replicates) and a gas analysis was performed for every 1.5 L biogas 

produced. The batch digesters have a total volume of 2 L and a working volume of 

approximately 1.4 L. The experiments were run at mesophilic conditions, i.e. the 

temperature was set to 38 ±1 ºC. Two control samples were included to verify the 

biological activity of the inoculum. Microcrystalline cellulose and a defined sample of 

dried whole plant maize served as positive controls. Additionally, the inoculum alone 

was tested to determine its gas potential.  

 

 

Figure 3: Batch system of LfL for BMP tests. 

 

Each sample was tested in triplicate (technical replicate) (Fig. 4). Microcrystalline 

cellulose was used as a reference sample, as well as for correcting the biogas yield for 

all experiments. In order to ensure statistical accuracy, six replicates (two analytical 

replicates) were used with cellulose. For dry samples, each digester was filled with 400 

mL of distilled water, 1000 g fresh matter (FM) inoculums, and 20 g of FM sample. The 

ratio of volatile solids of the test substrate to volatile solids of the inoculum was 
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0.5 ± 0.1. The TS content in the digester was between 4 and 5 % of FM. If the daily 

biogas production was less than 0.5 % of the total volume of biogas produced, the 

measurement was terminated. 

 

 

Figure 4: Schematic diagram of the BMP test system of LfL. D: digester,  

MGC: Milligascounter, SV: solenoid valve. 

 

The volume of the produced biogas was measured with an accuracy of ± 3 %. The 

produced biogas flows through the gas inlet nozzle into a capillary of the counter tank, 

which is filled with silicon oil. The gas then moves to the two-chamber measurement 

cell. The measuring of the gas volume occurs in discrete steps by counting the tilts of 

the measurement cell with a resolution of approximately 1 mL. Each gas counter was 

regularly calibrated to define the exact volume for each tilt. The measurements were 

recorded online and the data was stored on an hourly basis. 

During the experiment, around 33 gas analyses took place per sample for the biogas 

produced from the three digesters. The gas analysis was carried out using infrared 

sensors for the content of methane and carbon dioxide, and an electrochemical sensor 

for the content of oxygen (Awite Bioenergie GmbH, Langenbach, Germany). Table 8 

shows the range and the accuracy for each individual analysis unit. Air pressure and 

temperature were recorded each hour. The saturation vapor pressure in the biogas was 

calculated by the Magnus formula and the biogas volume was normalized at 273.15 K 

and 1013.25 hPa. The biogas yields are reported as per liter of dry gas at standard 

temperature and pressure per kilogram volatile solids added (L/kgVS). The value of the 
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biogas yield was the average value of the three replicates with a coefficient of variation 

(CV) less than 10 % (Heuwinkel et al., 2009). 

 

Table 8: Overview of the measuring principle, range, repeatability and accuracy of the sensors 

of the gas analyzer. 

Sensor Principle Range Repeatability Accuracy 

CH4 Infrared 0 – 100 Vol.- % + 0.2 % + 2 % 

CO2 Infrared 0 – 100 Vol.- % + 0.2 % + 2 % 

O2 Electrochemical 0 – 25 Vol.- % + 0.1 % + 1 % 

 

 

5.3 Inoculum 

The origin of the inoculum and its properties is very important for the BMP 

experiments, since the microbial community can influence the biological degradability 

of the substrate (Gu et al., 2014; Lopes et al., 2004; Xu et al., 2014). Therefore, inocula 

with similar chemical and physical properties were used for all BMP experiments 

performed in this study.  

To obtain a defined biocoenosis, a pilot digester (continuously stirred-tank reactor) with 

a working volume of 2.5 m3 was operated under steady-state conditions (the coefficient 

of variation of 5 days of methane productivity was continuously less than 10 %). The 

digester was run at an organic loading rate of 3.0 kgVS/(m3
*d) with an 80 % cattle 

manure and 20 % dairy cattle feed mixture (total mixed ration (TMR)). TMR was 

composed of 44.4 % maize silage, 39.5 % grass silage, 4.9 % supplementary feed 

(23.4 % shredded barley, 23.4 % shredded corn, 46.9 % grain maize, 1.1 % calcium 

carbonate, 0.3 % cattle salt and 4.8 % VitalMiral Hofmix (RKWSüd)), 3.7 % hay, 3.7 % 

molasses, 2.5 % Bovigold ® SojaPlus (BayWa) and 1.2 % straw. The digester was 

operated at 38 ± 1 °C and the hydraulic retention time (HRT) was 19 days. The digester 

was located in Freising, Germany. 

To prove the current fitness of the inoculum, chemical analyses were carried out 

regularly. One week prior to BMP testing, the effluent of the digester (defined 

biocoenosis) was sieved through a 10 mm sieve and was stored at the test temperature 

of 38 ± 1 °C without feeding to reduce endogenous biogas potential. The degassed 

material was used as an inoculum for the BMP experiments. Table 9 demonstrates the 

average values of the chemical parameters of the inoculum. 



 Materials and methods  

25 

Table 9: Chemical characterization of the inoculum just prior to the experiments (n = 17). 

Parameter Unit Average value 

TS [% FM] 4.37 ±0.25 

VS [% FM] 3.12 ±0.24 

pH [-] 7.7 ±0.1 

TIC [mg/kgFM] 8,851 ±625 

VFA [mg/kgFM] 256 ±92 

VOA/TIC [-] 0.18 ±0.05 

NH4
+-N [mg/kgFM] 1,637 ±144 

 

 

5.4 Chemical analysis 

All samples were analyzed for their chemical composition. In addition, the inoculum of 

the BMP test was analyzed before and after each experiment. Table 10 presents the 

methods that were used to determine the laboratory parameters. Fodder analyses were 

performed according to the methods of the Association of German Agricultural Analytic 

and Research Institutes (VDLUFA, 1976). All chemical analyses were carried out in 

duplicate by the Central Department for Quality Assurance and Analytics (AQU) at LfL 

in Freising, Germany. 

According to the fodder analysis methods, some of the parameters were analyzed and 

some were calculated, but all were consistently expressed as percentages. Total solids 

(TS), crude ash (XA), crude lipid (XL), crude fiber (XF), starch (ST), reducing sugar 

(RS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent 

lignin (ADL) were measured. Volatile solids (VS), crude protein (XP), nitrogen free 

extract (NfE), hemicellulose (HC), cellulose (CL), non-fiber carbohydrate (NFC), and 

organic residue (OR) were calculated as follows: 

 

VS = TS – (XA x TS / 100),  

XP = 6.25 x N,  

NfE = 100 – XA – XP – XL – XF,  

HC = NDF – ADF,  
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CL = ADF – ADL,  

NFC = 100 – XA – XP – XL – NDF, 

OR = 100 – XA – XP – XL – ST – RS – NDF. 

 

TS and VS content are expressed as % of FM, all others parameters are expressed as % 

of TS. However, due to the fact that only the organic complex can be used during the 

anaerobic digestion, the contents of all chemical compounds were expressed as grams 

per kilogram of volatile solids added (g/kgVS). 

 

Table 10: Parameters and methods of chemical analyses. 

Parameter Guideline Remarks 

Total solids  
(TS) 

DIN 12880  
DIN 38414-S2 

Dry the sample at 105 °C  

Crude ash  
(XA) 

DIN 12879 
DIN 38414-S3 

Burn the sample at 550 °C 

pH 
DIN 38404-C5 
DIN 12176 

Glass-Electrode 

Total inorganic carbon  
(TIC) 

DIN 38409 H7 Titration 

Volatile organic acids to 
total inorganic carbon 
(VOA/TIC) 

Titrator, TitroLine® 
alpha plus 
(SCHOTT AG, 
Germany) 

Titration pH 5.0 and 4.4 

Total volatile fatty acids 
(VFAtotal) 

DIN 38414 S.19 Distillation and titration 

C2-C8 volatile fatty acids 
(VFAGC) 

Agilent 6890N Gas 
chromatograph 
(Agilent 
Technologies, USA) 

Gas chromatography 

 

Ammonium nitrogen  
(NH4

+-N) 
DIN 38406 E5-2 Distillation and titration 

Crude protein  
(XP) 

VDLUFA MB III 
4.1.2 

Dumas-Method 

Crude lipid  
(XL) 

VDLUFA MB III 
5.1.1/2 
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Crude fiber  
(XF) 

VDLUFA MB III 
6.1.1/2 

Weender - Method 

Reducing sugar  
(RS) 

VDLUFA MB III 
7.1.1 

Volumetrically 

Starch  
(ST) 

VDLUFA MB III 
7.2.1 

Polarimetric Method 

Neutral detergent fiber 
(NDF) 

VDLUFA MB III 
6.5.1 

Van Soest - Method 

Acid detergent fiber  
(ADF) 

VDLUFA MB III 
6.5.2 

Van Soest - Method 

Acid detergent lignin  
(ADL) 

VDLUFA MB III 
6.5.3 

Van Soest - Method 

 

 

5.5 Statistical analysis 

The correlation among the parameters was tested by the Pearson correlation coefficient 

(r) and a cross correlation matrix was developed to show inter correlations among the 

parameters. The normal distribution and the residues of the regression were analyzed 

using the Kolmogorov-Smirnov test. Furthermore, descriptive statistics such as standard 

deviation, coefficient of variation, standard error were conducted in order to compare 

and evaluate the datasets. 

In order to reduce the interrelated effect of the parameters, while keeping the variation 

as high as possible, principal components analysis (PCA) was used. PCA can expose 

and visualize correlations within the dataset. Similarities and differences among the 

samples can be revealed by plotting the measured parameters in a plot of the 

mathematically defined variables called principal components (PC). Parameters that are 

correlated with each other but are largely independent from other subsets of parameters 

are combined into principal components. The PCs are the linear combination of 

observed parameters and are not correlated (orthogonal) with each other. The first PC 

extracts the maximum variability of the observed parameters. Sequential PCs are 

formed from the correlation of the residuals and are orthogonal to all other PCs  

(Jolliffe, 2002; Tabachnick and Fidell, 2012).  

In addition, regression analysis was performed to develop models for biogas yield 

prediction. Moreover, the Mallows’ Cp model selection method has been applied in 

order to find out the best fit model. A low Cp value indicates a good fit and robustness 

of the model. The parameters, coefficients of determination (R2), the root mean square 
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error (RMSE), the coefficient of variation of the RMSE (CVRMSE) and the systematic 

error (bias) were used for evaluation and comparison of the models. 

The software 9.3 SAS (SAS Institute, USA) and Unscrambler 10.3 (CAMO Software, 

Norway) were used for statistical analysis. 
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6 Research accomplishments 

 

6.1 Paper I 

Correlation between biogas yield and chemical composition of energy crops. 

Bioresource Technology 174, 2014, 316–320. 

https://doi.org/10.1016/j.biortech.2014.10.019 

 

The objectives of the first paper were firstly to investigate the influence of the 

chemically defined compounds of various energy crops on biogas and methane yields, 

and secondly to develop a global model for BMP prediction. 

In total, 41 different plants were analyzed in batch and their composition was 

chemically determined. A wide range in YB and YM was recorded; the YB ranged from 

339 to 799 L/kgVS and the YM from 177 to 401 L/kgVS. For ADL content below 10 % of 

TS, a strong negative correlation between ADL and BMP was recorded. Based on a 

simple regression analysis, more than 80 % of the variation of the samples can be 

explained through ADL. According to the PCA, it is concluded that only carbohydrates 

(fiber and non-fiber) are mathematically suitable variables for BMP prediction, even 

though XP and XL are characterized by a higher BMP than carbohydrates. This finding 

is in line with the observation of Weißbach (2008) and can be explained by the fact that 

no protein or fat rich samples were dominate in this dataset. 

Statistically, it was shown that HC and ADL were suitable regressors for biogas yield 

prediction across plant species. This finding is in line with Triolo et al. (2011) and 

Thomsen et al. (2014), who also showed that ADL has a negative effect on BMP and 

the main influence on BMP prediction. Furthermore, Rath et al. (2013) also reported a 

strong positive effect of HC on BMP.  

Based on the results of this paper both hypotheses (see Chapter 4) have been tested and 

it can be confirmed that a) the variation in biogas yield is a function of the plant’s 

chemical composition and b) the biogas potential can be mathematically described by 

the feedstock’s chemical compounds. 
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6.2 Paper II 

Correlation between biogas yield and chemical composition of grassland plant 

species.  

Energy Fuels 29, 2015, 7221–7229.  

https://doi.org/10.1021/acs.energyfuels.5b01257 

 

The objectives of the second paper were firstly to investigate the accuracy of YB 

prediction of energy crops using a global model, and secondly, to develop a specific 

model that predicts the biogas potential of grassland samples. Moreover, this paper 

focused on whether a precise prediction of biogas yield relies on a more strict selection 

of samples. 

This study investigated and analyzed the composition and the YB of different grassland 

plant species at various harvest dates during the first three growth cycles to investigate 

the accuracy of YB prediction. 

According to the batch trials, the YB ranged from 500 to 768 L/kgVS and the YM from 

263 to 425 L/kgVS with a coefficient of variation of approximately 10 %. Although all 

tested samples are grassland species, they can be classified into two groups based on the 

plant family: The first group is the grass species and the second group is the legume 

species. A t-test revealed that the average XP and ADL contents of grass species were 

significantly lower than those of the legumes species. Moreover, the average RS, HC 

and CL contents of grass species were significantly higher than those of the legumes 

species. However, no significant difference was found in the average XL content 

between the two plant groups. 

While the results proved that a global model is not sufficient to predict accurately the 

YB of typical grassland species, the grassland specific model increased the accuracy of 

BMP prediction. In particular, the developed grassland model reduced the estimation 

error to 5 %. The present model predicts the biogas yield of grassland plant species with 

an accuracy of 31 L/kgVS using three regressors, namely ADL, HC and XP content. 

According to the model, ADL reduces biogas yield, while both HC and XP increase it. 

The regressors of the grassland model reflect the necessity to describe the actual 

physiological status of the plant.  

In conclusion, it was shown that plant-group species specific models can predict the 

BMP with high estimation accuracy. However, more than two regressors are needed and 

crude protein was needed in addition to carbohydrates for accurate BMP prediction. 

Hence, both hypotheses (see Chapter 4) of this paper have been accepted. 
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6.3 Paper III 

Correlation between hydrolysis rate constant and chemical composition of energy 

crops.  

Renewable Energy 118, 2018, 34–42.  

https://doi.org/10.1016/j.renene.2017.10.100 

 

The objectives of the third paper were firstly to analyze the correlation between the 

hydrolysis rate constant (kh) and the chemical composition of the feedstock based on a 

high variety of plant species and cultivars, and secondly, to develop and evaluate a 

regression model in order to predict kh based on the feedstock chemical composition. 

Fodder analysis and BMP tests with high temporal resolution were performed in order 

to identify statistical correlations between the hydrolysis rate constant (kh) and the 

chemical composition of various energy crops. Different species and cultivars of energy 

crops were analyzed in order to develop a broadly applicable regression model for the 

prediction of kh. 

The hydrolysis rate constant was defined at 50 % of YB produced as follows: 

	k�_ ." = ln(2)
t ."  

The results indicated that the analytical parameters NFC and XP were statistically 

suitable for a multiple linear regression model for the prediction of kh. In addition, the 

kh prediction model was combined with the biogas yield prediction model presented in 

Paper I in order to predict both the biogas yield and biogas production rate based on a 

first-order kinetic model. Finally, the modeling approach was validated by an 

independent dataset. The results indicated that a first-order model can reproduce the 

biogas production rate during a BMP test and linear regression models can precisely 

predict the differentiation of the biogas production of various energy crops. The 

proposed approach offers a fast and reliable prediction of the biogas production rate and 

allows a feedstock assessment according to their biogas potential. 

The hypotheses of this paper (see Chapter 4) have been accepted and it was confirmed 

that a) the hydrolysis rate constant can be predicted based on the plant’s chemical 

compounds, namely non-fiber carbohydrates and crude protein, and b) the hydrolysis 

rate constant, determined at the time period of the half-maximum biogas production 

(kh_0.5), describes the kinetics of the biogas production in a BMP test well. 
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6.4 Paper IV 

Predicting methane yield by linear regression models: A validation study for 

grassland biomass. 

Bioresource Technology 265, 2018, 372–379. 

https://doi.org/10.1016/j.biortech.2018.06.030 

 

The objectives of this study were firstly, to assess and validate previously published 

prediction models with an independent dataset and secondly, to expose the power and 

limitation of linear regression models for biomethane potential prediction. Three global 

models for the methane yield prediction of energy crops and one grassland species 

specific model were assessed and validated. Two datasets were used for the validation, 

one with 55 individual samples of grassland species and one with average values from 

9 cultivars. 

The results revealed a similar performance of all four models for the individual samples. 

The correlation between the measured and predicted values of BMP was moderate and 

the prediction error 11 %. The models could not explain more than 27 % of the data 

variation of the individual samples. For the methane yield prediction of the average 

values, all four models performed well. Moreover, the grassland specific model 

represented the variation of the dataset with a correlation coefficient of 0.92 and 

achieved a prediction error of only 2 %. Hence, linear regression models are suitable in 

order to depict the variation of the BMP and to define a ranking of substrates. In order 

to minimize the prediction error and improve the estimation of the differences among 

the samples, average values of the same cultivar should be used. However, the 

prediction error for the absolute values may be high since systematic external effects 

cannot be identified from the regression models; therefore, the calibration dataset should 

always be updated. 

The first hypothesis of this paper (see Chapter 4) cannot be entirely accepted. On the 

one hand, the regression model can precisely predict an independent dataset if similar 

information is included in the calibration dataset. On the other hand, an independent 

model validation exposes the insufficiency of a static model to explain external effects, 

such as new cultivars. The second hypothesis has been accepted and it was confirmed 

that linear regression models are suitable for BMP test prediction within the calibration 

range and this information can be used for feedstock assessment. 
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6.5 Summary of outcomes 

In Chapter 4 the research questions and the hypotheses of this dissertation were stated. 

According to the outcomes of the four peer-reviewed published papers, the questions 

can be answered as follows: 

1. How are the biogas and methane yields affected by the chemical composition 

of energy crops? 

ADL has a clear negative impact on biogas yield with a correlation coefficient up to  

-0.9. Therefore, ADL seems to be the only regressor candidate for a mono-causal 

regression model of BMP prediction. The ADL content of energy crops is usually below 

6 %, but the effect on BMP prediction is the highest. Lignin alone is likely not the sole 

contributor to a decrease in the BMP, as the complex lignocellulosic structure is proven 

to as well. Thus, the regressor ADL in the models reflects the negative influence of the 

whole fiber matrix. The HC was used in MLR to explain the positive effect of the fiber 

matrix on biogas production. For grassland species XP content significantly affected the 

biogas production. Although XP is occasionally negatively correlated with YB, it has a 

positive impact on YB, according to the MLR. This negative mono-correlation between 

XP and YB was observed probably because the protein content decreases during the 

plant senescence, while the fiber and ADL content increases, attributing to a lower 

digestibility. Hence, XP depicts plant maturity and it has a positive effect on YB. 

Statistically, for XL has not found any significant effect on biogas production; however 

it can be used for a species specific model (Rath et al., 2015). NFC and XP have been 

identified to be important variables for the prediction of kh_0.5. Probably because the 

variable NFC describes the share of all carbohydrates in the crop and carbohydrates 

(fiber and non-fiber) typically occupy more than 80 % of the total VS of energy crops 

and hence, are the main source for biogas production. XP was also statistically 

significant for the prediction model, since it characterizes the ageing of the crop, 

whereas young plants are characterized by high share of XP and good anaerobic 

digestibility and vice versa. 

 

2. Is the effect of a specific chemical compound on the biogas production 

independent of the plant species? 

Based on the regression coefficient of a specific chemical compound (e.g. ADL) on 

different regression models (local or global), it has been revealed that the impact of a 

specific chemical compound is dependent on the plant species, since different values of 

the regression coefficient are used. The matrix and the chemical structure of the 

compounds are plant species specific.  
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3. Can the respective effect be expressed as a continuous function? 

It has been shown that the effect of ADL on BMP is a continuous function for ADL 

values up to 10 % of TS. Probably for values above 10 % of TS, the effect can no longer 

be descripted by a linear model. Triolo et al. (2012) characterized the ADL content of 

10 % as a critical limit for biodegradability as well. 

 

4. Which chemical components cause a statistically significant change on the 

biogas production and which of them can be used simultaneously in a 

prediction model? 

The variables for a MLR should be as independent as possible, which means variables 

that summarize similar information of the dataset variation should not be used 

simultaneously. This study showed that no more than two variables of carbohydrates 

(fiber and non-fiber) can be used simultaneously. For a global BMP prediction model, it 

was shown that ADL and HC were suitable regressors. The prediction accuracy was 

improved for a grassland species model with the introduction of one more regressor, 

namely XP. 

 

5. Can the biogas production rate in a BMP test be accurately predicted? 

This study showed that a first-order model can simulate the biogas production rate in a 

BMP test, and linear regression models can precisely predict the variation on the biogas 

production of different energy crops. This approach can be used to assess the suitability 

of different feedstocks for biogas production. 
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7 Discussion and conclusions 

 

7.1 Accuracy of the prediction 

7.1.1 Across plant species model 

In Chapter 6.1, a global biogas yield prediction model for energy crop species was 

introduced. The model was developed based on a dataset of 31 samples. Although the 

dataset was small, it can be considered representative. The samples were suitable as 

feedstock of a biogas plant; they were harvested at developmental stages, at which a 

reasonable biomass amount could be recovered. Moreover, the biogas yields of this 

dataset were normally distributed, which is an important requirement for further 

statistical analyses. However, the accuracy and the suitability of a regression model can 

be validated only with external datasets. The across plant species model was tested and 

validated with four independent external datasets: firstly, with a small dataset of 10 

various energy crop samples similar to the dataset of the calibration (Chapter 6.1), 

secondly, with a medium dataset of 61 grassland species samples (Chapter 6.2), thirdly, 

with a large dataset of 131 various energy crops samples (Chapter 6.3), and fourthly, 

with a large dataset of 91 perennial energy crops samples (Chapter 6.3). These four 

validation approaches of the across plant species model (global model) can define the 

potential application areas of the model and the boundaries of its application range. In 

Table 11, the results of these three validations are summarized. 

 

Table 11: Performance of the across plant species model tested with different independent 

datasets. 

Parameter 1. Dataset 2. Dataset 3. Dataset 4. Dataset 

Number of samples 10 61 131 91 

Slope 1.00 1.13 0.79 0.68 

Intercept [L/kgVS] -9.72 -122 138 167 

Bias [L/kgVS] -11.1 -39.9 9.11 -3.81 

r 0.85 0.75 0.65 0.62 

R2 0.72 0.57 0.43 0.38 

RMSE [L/kgVS] 60.6 74.8 72.9 59.8 

CVRMSE [%] 9.77 11.9 12.0 10.4 
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The validation was performed for each individual sample. Based on all four validations, 

it can be concluded that the model depicted the variation of the datasets with an 

estimation error (CVRMSE) of about 11 % and with a moderate correlation between the 

measured and the predicted values.  

 

 

 

       

Figure 5: Performance of the across plant species model tested with different independent 

datasets; measured versus predicted values of biogas yield. Top left: first dataset, top right: 

second dataset, lower left: third dataset and lower right: forth dataset. 

 

Based on the validation with the first dataset, the regression line indicated a precise 

prediction with the values for the slope, intercept and bias to be very close to the 

optimum values. The correlation between the measured and predicted values was strong 

(r = 0.85) and the R2 indicated that 72 % of the total validation of the dataset was 
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explained. With this dataset the best values of external validation were achieved 

(Table 11). Although the dataset was small and similar to the calibration’s dataset, the 

validation revealed the high potential of the model. 

Based on the validation with the second dataset, the regression line between the 

measured and predicted values indicated a slight underestimation (bias = - 39.9) of the 

prediction. However, since the slope is above 1 and the intercept below 0, the model 

underestimated the measured values below the average and overestimated the measured 

values above the average. The correlation between the measured and predicted values 

was moderate (r = 0.75) and the R2 was 0.57 (Figure 5, Table 11). 

For the third and fourth validation datasets, similar statistical values were observed. 

Both datasets consisted of samples of various plant species and plant groups. The bias 

value was very small and the estimation error was low (CVRMSE of 12.0 % and 10.4 

%, respectively). This indicates that the average prediction of the dataset was precise. 

However, the prediction of each individual sample was not sufficient with R2 values 

below 0.5. 

In summary, predicting the behavior of a biological system is very challenging. The 

model can predict the variation of various datasets with an estimation error of 11 %, and 

it can expose the differentiation of the samples on the biogas yield within a dataset. 

However, the biogas yield prediction of each single sample within a dataset was not 

sufficient. 

 

7.1.2 Grassland plant species model 

The specific model for grassland plant species was validated with a cross-validation 

method, as detailed in Chapter 6.2. The results were satisfying; however, an external 

validation would be desirable to confirm the results. In Chapter 6.4, an independent 

dataset of 55 grassland samples was analyzed to validate the grassland species model. 

The plant species selected for the model validation were the same plant species as were 

used for calibration, but they were cultivated and collected in a different year (2014).  

In total, four models were assessed and validated. The across plant species model 

(Dandikas et al., 2014), the grassland species specific model (Dandikas et al., 2015), 

and two existing models developed for energy crops (global models) were selected to 

compare the results of the validation as developed by Triolo et al. (2011) and 

Thomsen et al. (2014). Both models were created to predict only the methane yield and 

thus not the biogas yield. Therefore, only the values of the methane yield were 

presented during the validation. 
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The validation of the models was performed with two different approaches. The first 

approach was a validation of each individual sample (n = 55), and the second approach 

with the mean value of each cultivar (n = 9). During the first approach the effect of each 

harvest date and cut were emphasized; during the second approach the differences of the 

cultivars were emphasized. According to the BMP tests and the fodder analysis, 

significant differences between the datasets from 2013 and 2014 were observed. The 

main reason for this effect was most likely the different weather conditions in 2013 and 

2014 (Figure 2).  

During the single sample validation approach, none of the models could explain more 

than 27 % of the dataset variation, despite the estimation error (CVRMSE) being 

between 8 and 13%. The correlation between the measured and the predicted values can 

be characterized as weak, since the r value varied between 0.39 and 0.52. Similar results 

were published by Rath et al. (2015). An explanation for this observation could be that 

each value in the dataset was an individual sample, leading to a high uncertainty. 

Possible reasons for this are: Firstly, the sample could not be considered representative 

due to the microclimate conditions and/or other external effects that caused the chemical 

structure of the sample to be atypical for this specific harvest date or phenological stage 

(defined BBCH code). In both years (2013 and 2014), each harvest date was defined at 

a specific BBCH code; however, due to different weather conditions the phenological 

stages could have been shifted or not visually well recognized. Secondly, the precision 

and accuracy of the chemical analysis (fodder analysis) and moreover the batch test 

(biological test) can be affected by many factors. These two reasons caused model 

uncertainty and this could be minimized by the use of average values with respect to the 

plant cultivars. 

The methane yield prediction performance of each model for each individual sample 

can be summarized as follows: 

Model of Triolo et al. (2011): The average value of the predicted methane yield of the 

dataset was very close to the measured methane yield. Although the maximum value 

was overestimated and the minimum value was underestimated, which led to a higher 

range of YM, the slope of the regression line was 0.71 and was the best value among the 

three following models. Since the values were close to the best fit line, the estimation 

error (CVRMSE) was 11 %.  

Model of Thomsen et al. (2014): The average value of the predicted methane yield of 

the dataset was very close to the measured methane yield, as well. However, the 

maximum value was underestimated and the minimum value was overestimated. This 

led to an impressive reduced range of YM values. The slope of the regression line was 

0.19, and the variation among the samples could not be shown. However, since the 

values were close to the best fit line, the estimation error (CVRMSE) reached only 8 %, 

which is the best value compared to the values of the other models.  
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Model of Dandikas et al. (2014): The average value of the predicted methane yield of 

the dataset was very close to the measured methane yield. The maximum value of the 

dataset was slightly overestimated and the minimum value was underestimated; 

however, the range of the values could be predicted with only an 18 L/kgVS difference, 

thus the variation of the dataset could be well predicted. The slope of the regression line 

was 0.47 and the estimation error (CVRMSE) was 11 %.  

Model of Dandikas et al. (2015): The correlation between the measured and predicted 

values was 0.44 and the values of the methane yield were always overestimated with a 

bias of 32 L/kgVS. The slope of the regression line was 0.34 and the estimation error 

(CVRMSE) was 13 %, since the values were systematically above the perfect fit line.  

For the second validation approach, the average values of each cultivar were used. All 

four models showed a better performance using average values; however, the results 

revealed differences among the models. A high correlation (r > 0.85) between the 

predicted and the measured values was observed for all four models, and thus more than 

70 % of the dataset variation could be explained (R2 > 0.7). The global models of Triolo 

at al. (2011) and Dandikas et al. (2014) showed similar behavior with similar values for 

the statistical parameters (Table 4, in Paper IV). Both models could expose the two 

plant groups, grass and legume species, and both models performed better for the grass 

species than for the legume species (their values were underestimated). The model of 

Thomsen at al. 2014 could also expose the difference between the two plant groups, but 

the range of the values was underestimated. Within the two plant groups similar values 

were predicted and almost no difference could be seen. The regression line of the model 

of Dandikas et al. (2015), which was a grassland species specific model, showed the 

best performance with the predicted values significantly correlated with the measured 

values. However, the values were systematically overestimated, probably due to 

external factors, and a bias correction was applied. 

The prediction performance of each model of the methane yield from the nine cultivars 

can be summarized as follows: 

Model of Triolo et al. (2011): The predicted values were significantly correlated with 

the measured values (r = 0.90). The average value of the predicted methane yield of the 

dataset was very close to the measured average methane yield. However, the slope of 

the regression line was 1.80. This means the maximum value was overestimated, and 

the minimum value was underestimated. The variation among the samples could be well 

predicted, but the range of the values was overestimated. The estimation error 

(CVRMSE) was 6 %. 

Model of Thomsen et al. (2014): This model also showed similar performance with the 

average values of the samples. The correlation between the predicted and the measured 

values was 0.89, but the slope of the regression line was 0.52. Therefore, the maximum 
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value was underestimated and the minimum value was overestimated, leading to a lower 

range of the values. However, since the values were close to the best fit line, the 

estimation error (CVRMSE) was 3 %. 

Model of Dandikas et al. (2014): The predicted values were significantly correlated with 

the measured values (r = 0.85). The average value of the predicted methane yield of the 

dataset was very close to the measured average methane yield. However, the slope of 

the regression line was 1.69. This means the maximum value was overestimated and the 

minimum value was underestimated. The variation among the samples could be well 

predicted, but the range of the values was overestimated. The estimation error 

(CVRMSE) was 6 %. 

Model of Dandikas et al. (2015): The predicted values were significantly correlated with 

the measured values with the best r value of 0.92. Moreover, the slope of the regression 

line was 1, which means all values were predicted accurately. However, the whole 

dataset was systematically overestimated with a bias of 33 L/kgVS. Since the values 

were systematically deviated from the best fit line, the estimation error (CVRMSE) was 

10 %. An overestimation of the values was to be expected, as the values of the dataset 

for the calibration were higher than the values of the dataset for the validation. This can 

be characterized as systematic error, and therefore, a bias correction can be conducted. 

The bias correction reduced the estimation error to 2 %. 

Finally, based on the external validation, it could be concluded that: Firstly, regression 

models can reveal the plant differentiation on methane yield; secondly, average values 

are needed for estimation error reduction, since average values reduce the analytical 

error and increase the accuracy of the model; and thirdly, external parameters (e.g. 

weather conditions) have a significant influence on the predicted values. 

 

7.1.3 Hydrolysis rate constant model 

The model developed for predicting the hydrolysis rate constant was introduced in 

Paper III. The average prediction error (CVRMSE) was 15 % for an external dataset. 

The range of the dataset was underestimated, and the CV was 10 points lower than the 

one of the measured values. However, the mean of the predicted values was similar to 

the mean of the measured values, and the predicted values were strongly correlated with 

the measured values as indicated by a correlation coefficient of 0.93. The results 

indicate that the kh_0.5 model could predict the variation in the dataset very well. This is 

further manifested in the plot of measured versus predicted values, as the points were 

very close to their regression line with a R2 value of 0.86 (Figure 3 in Paper III). The 

model has proven its suitability as a global model since it was able to predict the BMP 

curve of unknown species (not included in calibration dataset). Although the values 
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could not be estimated with high accuracy, feedstock ranking according to their BMP 

and hydrolysis rate constant was possible. The biochemical processes of anaerobic 

digestion are very complex and cannot be precisely described by a simple first-order 

kinetic model, as has already been concluded by Li et al. (2016). However, the models 

could accurately predict the differentiation of the samples and these results depict the 

main advantage of this study’s approach. 

 

7.2 Chemical compounds as regressors 

Fodder analysis is a well-established standard method for animal feed assessment. 

Round robin tests have shown that although the relative standard deviation for the 

chemical analyses among laboratories was high (Henkelmann and Fischer-Kaiser, 

2014), the deviation within the laboratory was low and the repeatability lain within the 

acceptable range. This fact makes the analytical parameters suitable for statistical 

analysis and several authors have reported a significant correlation between the 

chemical compounds and the biogas yield. However statistically, the properties of the 

chemical compound cannot be considered related to the methane yield, but rather the 

proportion of the chemical compound included. Moreover, it needs to be considered that 

any change in the content of one compound will change the content of the others, due to 

the fact that they are recorded in percentage of total solids.  

In this study, it has been shown that the biogas yield can be predicted by ADL and HC 

for a global model, and XP needs to be included for grassland samples to reduce the 

prediction error. For the prediction of the hydrolysis rate constant, XP and NFC are 

needed. Each of these regressors contributed differently to the MLR model. Below, the 

importance of each analytical parameter for the prediction of the biogas yield is 

discussed. 

ADL has a strong negative effect on the biogas yield. The standardized regression 

coefficient of the models confirmed that ADL is the most important regressor. Several 

authors have confirmed the negative correlation of ADL with the biogas yield 

(Gunaseelan, 2009; Rath et al., 2013). Other authors did not use ADL as a regressor 

(Amon et al., 2007b; Weißbach, 2009b). However, this does not exclude, at least 

indirectly, the negative effect of ADL on the biogas yield. The analytical parameter 

ADL represents the complex lignocellulosic structure, which means lignin as well as a 

portion of HC and CL that is hardly bioavailable. Thus, the regressor ADL reflects the 

negative influence of the cell-wall components on the biogas yield. 

In this study, HC was the second most important regressor, and it was used in MLR to 

explain the positive effect of the fiber matrix on biogas production. Hemicellulose and 

cellulose are structured together to be part of the cell-wall. However, hemicellulose is 



 Discussion and conclusions   

42 

available faster, since it can be faster diluted in water, and it was expected to be a 

readily digestible fiber fraction. The analytical parameter HC is defined as the 

difference between NDF and ADF. Thomsen et al. (2014) also reported the positive 

effect of HC on YB.  

XP was utilized in MLR to improve the prediction accuracy of the grassland species 

specific model. Despite the low potential contribution on the biogas yield of XP (since 

the absolute amount of XP is low), XP depicts the variation in YB within the grassland 

species. XP was also statistically significant for the prediction model of kh_0.5. Although 

the hydrolysis rate of proteins is known to be lower than for carbohydrates (Lübken et 

al., 2015), the analytical parameter XP characterizes the ageing of the crop, with young 

plants characterized by a high share of XP and a good anaerobic digestibility and vice 

versa. 

NFC also has a positive effect on the prediction of kh_0.5. Carbohydrates (fiber and non-

fiber) are the main feed source for biogas production, since they occupy more than 80 % 

of the total VS of energy crops. During the anaerobic process in a BMP test, the readily 

digestible fractions are degraded first, and these are mostly characterized by NFC. 

 

7.3 Power and limitation of BMP prediction 

As it was discussed previously, a BMP test is a costly and time-consuming examination 

method and this disadvantage led to the need for a new method to obtain the same 

information. Strömberg et al. (2015) suggested reducing the experimental duration of a 

BMP test and modeling the ultimate methane production. However, the uncertainty of 

the prediction still exists and a proper experimental set up is still needed. The BMP 

prediction based on the chemical composition of the crops is a fast and low-cost 

method. But, these regression models also have disadvantages. Therefore, the models 

have to be studied with external validations, in order to define their capabilities and 

limits. The uncertainty of the analytical parameters of the chemical compounds also has 

to be considered. At this point it should be clear that a chemical analysis can be defined 

quite well when the measurement can be repeated. But the biological analytical method 

of a BMP test cannot be expected to be exactly the same for each assay. Moreover, the 

effect of the environmental factors on the crops can be reflected by their chemical 

compositions, since these vary with respect to plant species, plant maturity and climate 

conditions (Wahid et al., 2015). This cause of variation must be regularly included into 

the calibration dataset. 

The BMP prediction based on the chemical compounds of the feedstock is also 

challenging, since co-effects among the chemical compounds always exist.  

Bekiaris et al. (2015) showed the importance of lignin and hemicelluloses in the 
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protection of cellulose in respect to its bioavailability. Mussatto et al. (2008) observed 

an increase in the cellulose conversion into glucose when hemicelluloses and lignin 

were removed. They concluded that the lower the hemicellulose and lignin contents are 

in the sample, the higher the efficiency of cellulose hydrolysis will be. Hence, the 

cellulose hydrolysis was affected by the presence of hemicellulose and lignin in the 

sample. The fiber matrix (lignocellulosic biomass) influences the velocity and the 

degree of degradation, and even more the specific biogas production. However, the fiber 

matrix is a plant species specific trait. This indicates the necessity for plant species 

specific models; however, this is an expensive procedure in terms of time and resources.  

The first-order kinetic model was used for the prediction of the hourly biogas 

production. In this study the suitability of the first-order model has been shown. 

However, it can be found in literature that the difference between the predicted and 

measured biogas yields (fitting error) was higher with the first-order kinetic model than 

with the modified Gompertz model for non-fiber biomass (Yono et al., 2014) and for 

fiber biomass (Tsapekos et al., 2017). For agricultural residuals, it has been also 

reported that the conventional first-order hydrolysis kinetic model was not suitable for 

describing the entire hydrolysis process of maize stover, because there were two first-

order decay periods for hydrolysis (Li et al., 2016). Although, the estimation error of 

this approach is high, it is suitable for a global prediction model. 
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8 Outlook 

 

The simulation of the biogas production process as a white box is extremely demanding 

(Mulka et al., 2016) due to the high variability of microbes, the feedstock specific 

microbial communities involved, and the different optimal growth conditions  

(Batstone et al., 2015; Blasco et al., 2014; Lebuhn et al., 2014). The anaerobic digestion 

model no. 1 (ADM1) describes biochemical and physicochemical processes resulting in 

a large number of stoichiometric and kinetic equations (Batstone et al., 2002). The 

complexity of ADM1 leads to the need for many input parameters and often their 

identification is difficult or not possible (Donoso-Bravo et al., 2011). However, 

considering the anaerobic process as a black box is a much more simple approach and 

allows the prediction of the biogas production. As these models disregard reaction 

mechanisms, they would be more suitable to control AD processes, rather than to design 

and scale them up (Yu et al., 2013). Simple calculators mainly use the relation that 

exists between volatile solids and biogas production. Nevertheless, the aim of these 

calculators is not to simulate the process of anaerobic digestion, but to estimate the 

applicability of the process to a specific farm and to provide information to a farmer or a 

decision maker (Kythreotou et al., 2014). 

In this study, the biochemical anaerobic process was considered as a black box system 

and the BMP test was explained in terms of input (feedstock) and output (biogas). 

Moreover, a simple first-order model was used to estimate the kinetics of a BMP test. It 

has been proven that for various energy crops the proposed approach reflected the 

differentiation of the samples. A large dataset for the calibration and the validation of 

the model was used. Hence, the model should be considered as a global model. Future 

studies could enhance the existing model by extending the calibration dataset with 

additional plant species or cultivars. Specific models can be developed following the 

proposed approach in order to identify variables that could minimize the estimation 

error. New analytical parameters can also be included, such as a non-fodder analysis 

parameter like the high calorific value (HCV) for BMP prediction  

(Edwiges et al., 2018). In addition, the identification of rapidly digestible and slowly 

digestible fractions is crucial for future research (Weinrich and Nelles, 2015), as also 

supported by Li et al. (2016) having also proposed two first-order decay periods for 

hydrolysis. 
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Short Communication

Correlation between biogas yield and chemical composition of energy

crops
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h i g h l i g h t s

� 41 energy crops were analyzed in batch anaerobic digestion tests.

� Furthermore, the chemical composition of all samples was determined.

� 80% of the sample variation on biogas yield can be explained through lignin.

� Lignin and hemicellulose are suggested as model variables.
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a b s t r a c t

The scope of this study was to investigate the influence of the chemical composition of energy crops on

biogas and methane yield. In total, 41 different plants were analyzed in batch test and their chemical

composition was determined. For acid detergent lignin (ADL) content below 10% of total solids, a signif-

icant negative correlation for biogas and methane yields (r � �0.90) was observed. Based on a simple

regression analysis, more than 80% of the sample variation can be explained through ADL. Based on a

principal component analysis and multiple regression analysis, ADL and hemicellulose are suggested

as suitable model variables for biogas yield potential predictions across plant species.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In order to maintain a high cost-efficiency of agricultural biogas

plants, a flexible operation using different feed stocks is desired.

Previous studies have reported that long-term mono-digestion of

energy crops can result in biochemical or mechanical process

instability (De Moor et al., 2013; Koch et al., 2009; Lebuhn et al.,

2008). Anaerobic degradation is a process where microbiological

and chemical aspects are closely linked (Angelidaki et al., 2009;

Mittweg et al., 2012). Additionally, the chemical composition of

the plant species and, more specifically, the lignocellulosic matrix

can affect the potential biogas yield (Li et al., 2013; Lübken et al.,

2010). Determining the potential biogas yield of different sub-

strates a priori can guide a more efficient operation of biogas facil-

ities. Anaerobic batch tests under standardized laboratory

conditions offer information about the potential biogas and

methane yield (Angelidaki et al., 2009; Koch and Drewes, 2014).

However, conducting batch tests is complex and time consuming.

To estimate quickly and reliably the biogas and methane yield

potential, empirical models were developed based on the chemical

composition of the biomass and experimental values of biogas

yield (YB). Amon et al. (2007) developed a model based on maize

samples, where crude protein, crude lipids, cellulose and hemicel-

lulose had a positive impact on methane yield (YM). For the differ-

entiation of maize cultivars, Rath et al. (2013) found a negative

influence of lignin and water soluble carbohydrates on YB, while

crude lipids and hemicellulose increased biogas formation. For a

more diverse substrate (energy crops and animal manure), Triolo

et al. (2011) suggested a YM prediction model with lignin content

as the only one regressor, which reduced YM with increasing lignin

content. Moreover, Thomsen et al. (2014) confirmed a strong neg-

ative influence of lignin on YM. However, statistically the content of

a chemical compound is related to its effect on YM and not neces-

sarily to its properties. The contradictory results published so far

http://dx.doi.org/10.1016/j.biortech.2014.10.019

0960-8524/� 2014 Elsevier Ltd. All rights reserved.
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and the lack of studies addressing the diversity of agricultural

plants for biogas production motivated this study. The aim of this

study was to develop a model to estimate the YB and YM that is

applicable across different plant species.

2. Methods

2.1. Substrate

To assess the influence of plant species’ chemical composition

on YB, a total of 41 samples of 11 different crops were selected.

All samples were gently dried at 40 �C to prevent the ensiling pro-

cess. Fodder analysis was carried out according to the European

regulations (Commission Regulation, 2009) and to the methods

of Association of German Agricultural Analytic and Research Insti-

tutes (VDLUFA, 1976). Total solids (TS), crude ash (XA), crude lipids

(XL), crude fibers (XF), starch (ST), water soluble carbohydrates

(WSC), neutral detergent fibers (NDF), acid detergent fibers

(ADF), and acid detergent lignin (ADL) were measured; volatile sol-

ids (VS), crude protein (XP), nitrogen-free extract (XX), hemicellu-

lose (HC), cellulose (CL), non-fiber carbohydrates (NFC), and

organic residue (OR) were calculated.

Table 1

Chemical composition, biogas and methane yield of all 41 samples. The randomly selected 10 samples for model validation are highlighted in gray.

Crop
TS 

[%FM]

VS 

[%FM]

XP 

[%TS]

XL

[%TS]

XF 

[%TS]

ST 

[%TS]

WSC 

[%TS]

NDF 

[%TS]

ADF 

[%TS]

ADL

[%TS]

YB

[L/kgVS]

YM

[L/kgVS]

Barley 1 91.2 86.0 7.7 2.0 22.3 8.4 13.5 50.2 28.2 2.5 663 337

Barley 2 90.6 86.3 7.3 1.8 17.5 11.4 18.1 43.2 22.3 1.8 617 311

Clover 1 92.0 81.9 12.5 3.0 21.5 ND 14.1 47.9 28.5 2.4 619 323

Clover 2 88.9 79.4 14.9 3.4 19.4 ND 13.4 45.1 26.3 1.9 713 370

Clover 3 88.0 80.0 20.1 2.5 13.3 13.4 8.3 32.5 20.6 4.2 531 280

Cup plant 1 91.8 81.0 9.0 4.4 23.8 3.5 2.8 47.0 41.7 6.6 443 231

Cup plant 2 90.3 79.4 11.9 4.0 19.8 4.5 2.2 46.7 36.0 5.5 446 233

Grassland 1 90.2 84.7 11.7 2.5 19.0 ND 23.6 42.5 22.4 1.3 701 360

Grassland 2 91.2 84.2 7.6 3.0 32.8 4.0 5.8 55.9 46.3 8.3 431 225

Grassland 3 91.4 85.5 13.9 3.0 22.4 ND 12.5 52.8 27.8 4.0 653 338

Grassland 4 93.9 88.8 9.5 1.3 23.6 6.2 7.2 57.6 32.5 5.0 555 281

Grassland 5 91.3 85.5 8.3 3.6 29.5 4.6 3.9 54.7 49.2 9.8 437 216

Grassland 6 90.1 84.4 7.9 2.9 30.2 6.6 4.6 59.1 47.3 9.3 339 177

Grassland 7 90.4 84.9 11.8 2.9 21.6 ND 15.7 51.3 27.2 2.0 715 371

Grassland 8 92.3 86.3 8.8 2.1 22.7 6.2 3.6 59.5 39.7 10.8 356 180

Grassland 9 89.7 82.8 7.1 4.5 23.7 5.5 11.7 47.1 35.9 5.8 490 253

Maize 1 90.5 87.9 7.6 3.7 17.8 26.1 6.2 40.0 25.1 2.4 733 369

Maize 2 91.1 87.5 8.5 3.4 13.3 34.0 6.4 35.5 18.7 1.2 799 401

Maize 3 90.1 87.7 7.1 3.2 19.9 27.0 5.6 45.0 26.6 3.3 706 360

Maize 4 90.3 87.4 7.8 3.4 15.4 33.6 4.8 42.1 21.3 1.8 640 327

Millet 1 91.2 86.4 8.5 2.5 26.4 11.6 6.1 57.7 36.6 5.9 514 264

Millet 2 91.8 86.7 8.1 1.4 20.7 18.0 15.0 43.8 27.2 2.4 665 328

Millet 3 92.7 88.1 8.4 2.0 28.2 1.1 10.0 66.7 39.1 5.8 464 238

Millet 4 90.2 84.3 9.9 2.5 19.0 12.8 13.5 47.2 28.7 4.4 667 342

Potato 1 89.2 84.4 8.3 0.3 4.5 66.8 1.5 10.9 7.1 0.1 746 362

Potato 2 88.5 83.3 6.6 0.3 3.8 70.9 1.7 8.3 5.8 0.1 700 352

Rye 1 90.2 86.1 6.5 1.7 22.9 16.2 13.0 45.1 29.3 2.9 629 318

Rye 2 93.1 86.1 10.0 1.8 28.9 1.6 8.2 62.0 35.8 4.0 689 347

Rye 3 92.4 88.6 6.1 1.5 27.2 2.6 15.2 55.4 34.2 3.2 713 352

Rye 4 90.7 84.6 10.0 2.3 27.1 ND 12.7 58.5 33.7 3.7 642 327

Sugar beet 1 94.4 88.3 3.9 0.1 3.8 0.5 72.8 11.0 5.6 0.3 700 350

Sunflower 1 91.5 81.8 9.8 13.3 19.2 3.9 9.0 40.8 30.1 3.7 519 285

Sunflower 2 91.4 82.8 10.8 12.1 18.7 6.5 8.6 42.3 32.1 5.0 621 340

Triticale 1 90.4 82.4 12.6 1.9 26.0 4.4 9.3 52.2 30.9 2.5 680 351

Triticale 2 92.2 87.2 10.3 1.4 29.3 5.3 7.0 62.7 37.3 5.1 617 313

Triticale 3 91.4 85.1 8.1 1.5 31.8 ND 10.3 64.2 37.6 3.5 622 316

Triticale 4 91.3 87.3 6.1 2.4 24.8 9.5 11.9 54.3 33.1 4.1 630 303

Triticale 5 91.1 83.6 11.8 1.7 31.0 2.5 5.2 63.6 37.8 3.5 602 310

Triticale 6 90.5 86.1 6.6 2.1 25.0 6.1 13.5 55.1 32.3 3.1 751 378

Triticale 7 91.5 86.5 10.0 1.7 29.1 5.7 7.4 62.8 38.3 5.4 597 310

Triticale 8 89.7 83.9 8.6 1.6 26.0 6.3 11.0 56.8 35.3 3.4 648 329

MIN 88.0 79.4 3.9 0.1 3.8 0.5 1.5 8.3 5.6 0.1 339 177

MAX 94.4 88.8 20.1 13.3 32.8 70.9 72.8 66.7 49.2 10.8 799 401

SD 1.3 2.5 2.9 2.5 7.1 15.9 11.0 13.6 9.9 2.5 112 55

Median 91.1 85.5 8.5 2.4 22.7 6.3 9.0 50.2 32.1 3.5 630 327

Mean 91.0 85.0 9.3 2.8 22.0 13.2 10.9 48.2 30.5 4.0 610 311

CV 1% 3% 31% 88% 32% 121% 101% 28% 32% 63% 18% 18%

ND: not delectable 
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2.2. Inoculum for the batch test

The effluent of a pilot biogas plant (working volume of 2.5 m3)

was used as inoculum for all batch experiments. The pilot biogas

plant was located in Freising, Germany. The digester was fed with

80% cattle manure and 20% of a dairy cattle feeding mixture

(mostly maize and grass silage) at an organic loading rate of

3.0 kgVS/(m
3 * d) and a hydraulic retention time of 19 days at

38 ± 1 �C.

2.3. Batch test

In order to determine YB and YM, batch experiments were per-

formed based on the German technical guideline VDI 4630

(2006). The batch digester had a working volume of approximately

1.5 L and each sample was tested in triplicate. The ratio of organic

dry matter of the sample to organic dry matter of the inoculum

was 0.5 ± 0.1. The batch test was conducted at 39 ± 0.5 �C. The vol-

ume of biogas was measured via milligas counter (Ritter Apparate-

bau GmbH, Bochum, Germany). The produced biogas from all three

replicates of one sample was stored in a gas bag. A gas analysis

automatically took place for aliquots of 1.5 L of produced gas.

The gas analysis was performed using an infrared sensor for meth-

ane und carbon dioxide measurement and by an electrochemical

sensor for oxygen measurement (Awite Bioenergie GmbH, Langen-

bach, Germany). The YB and YM potentials were reported as stan-

dard liter (dry gas at 273.15 K and 1013.25 mbar) for each

kilogram volatile solids (LN/kgVS).

2.4. Statistical analysis

Descriptive statistics using simple and multiple linear regres-

sions were performed to develop models to predict the potential

YB. Furthermore, to reduce the interrelated effect of the variables,

a principal components analysis (PCA) was conducted. To evaluate

and compare the models, the parameters coefficient of determina-

tion (R2), root mean square error (RMSE), normalized RMSE

(NRMSE), and coefficient of variation of the RMSE (CVRMSE) were

used. The software SAS 9.3 (SAS Institute, USA) and Unscrambler

10.3 (CAMO Software, Norway) were used for the statistical analy-

sis. For the calibration of the developed model, a total of 31 sam-

ples were used. In addition, to validate the model 10 samples

were randomly selected which were not used during the model

calibration (Table 1).

3. Results and discussion

3.1. Biogas yield potential and chemical composition

Based on the batch experiments, the measured YB ranged from

339 to 799 LN/kgVS and the YM from 177 to 401 LN/kgVS (Table 1).

The high differentiation of the biogas yields is likely due to the dif-

ferent chemical composition of the feed stocks used. Based on

chemical composition of the samples, WSC, ST and XL exhibited

the highest variation among all parameters. Additionally, ST and

XL values were not normally distributed. These findings suggest

that these parameters are not suitable variables for a linear regres-

sion analysis.

3.2. Correlation between variables and simple regression analysis

Since a strong positive correlation between YB and YM was noted

for all samples (r = 0.99, p < 0.001) (Table 2), the statistical analysis

focused on understanding the impact of key parameters on YB. YB
was negatively correlated with ADL with a correlation coefficient

of �0.90 (p < 0.001). In the monocausal regression model

(R2 = 0.80, RMSE = 55, NRMSE = 12%, CVRMSE = 9 %), ADL reduced

YB starting with an intercept value of 775 L/kgVS (Eq. (1)). YM was

obtained by multiplying the predicted YB with a factor of 0.51.

Eq. (2) describes the equivalent expression for YM:

YB½L=kgVS� ¼ 775� 3:93 ADL ½g=kgVS� ð1Þ

YM ½L=kgVS� ¼ 395� 2:00 ADL ½g=kgVS� ð2Þ

The model of Triolo et al. (2011) (YM = 460.6–2.58 ADL, n = 10)

indicates a stronger impact of lignin and an intercept that was

approximately 65 L higher (reflecting higher values for lignin-free

fibrous biomass than in this study). This difference may be

explained through the lower lignin content (1–6% TS) of the sam-

ples used in the Triolo et al. (2011) study.

Statistically, ADL was the most suitable variable for a mono-

causal model across all energy crops species investigated. How-

ever, the accuracy of the model needs improvement to become a

useful tool in practice.
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Fig. 1. Correlation loadings of plant chemical compounds (PC1, PC2). The outer

circle indicates 100% explained variance and the inner circle indicates 50%

explained variance.

Table 2

Correlation matrix of biogas yield, methane yield and the chemical compounds

(extended Weender – Van Soest analysis) of all samples.

XL XF XX ST WSC HC CL ADL OR NFC YB YM

XP 0.15 -0.02 -0.39 -0.33 0.18 0.08 -0.02 0.02 0.25 -0.27 -0.11 -0.04

XL -0.05 -0.36 -0.22 0.00 -0.29 0.13 0.15 0.27 -0.19 -0.19 -0.08

XF -0.85 -0.83 0.19 0.60 0.95 0.59 0.17 -0.90 -0.43 -0.42

XX 0.91 -0.23 -0.44 -0.86 -0.57 -0.33 0.94 0.48 0.41

ST -0.50 -0.60 -0.82 -0.50 -0.40 0.94 0.38 0.33

WSC 0.48 0.06 -0.30 0.04 -0.25 0.34 0.36

HC 0.39 0.00 -0.36 -0.66 0.16 0.16

CL 0.71 0.36 -0.88 -0.59 -0.57

ADL 0.42 -0.60 -0.90 -0.89

OR -0.20 -0.44 -0.42

NFC 0.46 0.41

YB 0.99
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3.3. Principal component analysis (PCA)

The experimental data were subject to a PCA where the first two

principal components (PCs) explained 94% of the variance (Fig. 1).

XP and XL are located very close to the center of the plot, i.e. they

did not explain the variation of the samples. Therefore, these

parameters do not represent suitable variables for a regression

model. ADL, HC, CL and NFC are the parameters that mainly

explained the variation of the samples and thus can be potentially

useful variables for a regression analysis. Based on the correlation

matrix (Table 2), only HC was statistically independent from ADL

(r = 0.003). In contrast, CL and NFC were highly correlated to ADL

and hence these are not resilient as a second regression parameter.

3.4. Multiple linear regression analysis

A MLR analysis with ADL and HC as regressors and YB as regres-

sand was performed. Both variables were significant for the model

(p < 0.05) and the statistical performance parameters were slightly

improved (R2 = 0.83, RMSE = 47, NRMSE = 10%, CVRMSE = 8%). The

model is described by Eq. (3). The equivalent model for YM can

be derived by multiplying YB times 0.51 (Eq. (4)):

YB ½L=kgVS� ¼ 727þ 0:25 HC ½g=kgVS� � 3:93 ADL ½g=kgVS� ð3Þ

YM ½L=kgVS� ¼ 371þ 0:13 HC ½g=kgVS� � 2:00 ADL ½g=kgVS� ð4Þ

The residuals of the model have been analyzed with the Kol-

mogorov–Smirnov test for normality and the null hypothesis could

not be rejected (Fig. 2a). Moreover, data illustrated in Fig. 2b sug-

gests that the residuals were unsystematically distributed. This

residual analysis indicates that the model has a good ability to

account for the variability of the data.

These findings agree with the ones reported by Rath et al.

(2013), where HC was a prominent variable in their model as well,

and even though ST was present at higher concentration in maize it

did not differentiate maize cultivars. The key argument for the

irrelevance of ST is that it is easily biologically converted. This

may explain why even the extremely high concentration of ST in

potato and maize did not affect the regression model.

3.5. Validation

Using an independent data set, the suggested model (Eq. (3))

was validated and resulted in a regression line (measured YB versus

predicted YB) of y = 0.997 x � 9.717 with a R2 of 0.72. The slope was

very close to 1 and the intercept was �9.7, both values were close

to unity (y = x) indicating a close approximation to the data. A YB
prediction model based on specific plant species could potentially

be more accurate. However, due to high variety of substrate used in

agricultural biogas plant, the development of crop specific models

would be very costly. To assist in adopting the proposed model for

field applications, an independent validation with more samples

should be conducted.

4. Conclusion

Based on the fodder analysis of different energy crops, it was

revealed that the biogas yield is significantly negatively correlated

with ADL. Statistically, it was shown that apart from ADL, only HC

a

b

Fig. 2. Kolmogorov–Smirnov test for normal distribution of the residuals of Eq. (3) at significance level of 1% (a) and the residuals of the model plotted versus the predicted

values (b).
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seems to be relevant for the difference in biogas yield. For the esti-

mation of biogas and methane yields across energy crops species

and for an ADL concentration below 10% of TS, the following equa-

tions are proposed:

YB ¼ 727þ 0:25 HC� 3:93 ADL ð5Þ

YM ¼ 371þ 0:13 HC� 2:00 ADL ð6Þ
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ABSTRACT: Although grassland has a significant biomass potential, many different factors can affect the quality of grassland
feedstock. Changes in the chemical composition of grassland biomass can lead to a high variation in biogas potential, even within
the same plant species. Therefore, four grass species and two legume species were grown in field plots and harvested at sequential
stages of maturity in the first three growths. The samples were investigated in order to mathematically describe the relation
between their chemical composition and biogas yield. A global biogas yield prediction model for energy crops allowed the
differentiation between the samples for biogas yield. However, due to their distinct difference in plant chemical composition, the
estimation accuracy was rather low. A model considering lignin, hemicellulose, and crude protein as regressors was most suitable
for predicting the biogas yield of grassland plant species, with an accuracy of 31 L/kg volatile solids.

1. INTRODUCTION

Energy generation by biogas production can be an environ-
mentally and economically attractive alternative to using fossil
fuels.1 Consequently, the number of agricultural biogas plants
has increased all over the world. While maize appears to be the
most appealing energy crop, the monocultivation and
monodigestion of maize can lead to potentially adverse
environmental, biological, and economic effects.2,3 A more
flexible operation involving the use of different feedstock is
desirable.
In temperate regions, grassland represents a low-cost biomass

resource for biogas production.4 However, due to many factors,
such as plant species, date of harvest, stage of plant maturity,
habitats, and microclimate, a high variation of the biogas yield
(YB) can occur.5 Moreover, it has been reported that the use of
grass as feedstock for biogas plants could lead to technical and
biological difficulties;6 thus, substrate pretreatment is nee-
ded.7Consequently, grassland biomass may be an effective
source of green energy production, but its characterization
should be taken into consideration.
The biomethane potential (BMP) is a useful parameter for

feedstock characterization. Determining the BMP experimen-
tally is a laborious and costly process. Additionally, due to a lack
of standardization, it is difficult to ensure accuracy and
reproducibility of data among different laboratories. Although
a number of standard protocols are available,8 the experimental
setup used is not always comparable.9 Instead, a modeling
approach based on empirical data could potentially quickly
generate reliable information regarding the YB potential of
different substrates used in practice. Moreover, process
modeling can also be a useful tool for optimized process
control strategies.10

Several authors have proposed linear regression models to
predict the YB and methane yield (YM) of energy crops. In
previous studies, the lignin content of energy crops was

strongly negatively correlated with YB and YM.
11−13 However,

since the prediction accuracy of monocausal models is not high
enough, multiple regressor models are needed.14,15

The first objective of this study was to investigate the
accuracy of YB prediction of energy crops using a global model.
The second objective was to develop a specific model that
predicts the biogas potential of grassland samples. The study of
Dandikas et al.11 has demonstrated that the differentiation on
YB is a function of the plant’s chemical composition and that
the YB of energy crops can be predicted by the analytical
parameters of the fodder analysis. This study focused on the
question whether a precise prediction of YB relies on more
strictly selection of samples than presented so far. Grassland
samples are composed of several plant species, even from
contrasting plant families (e.g., grasses and legumes) at different
development stages. Therefore, this study investigated and
analyzed the chemical composition and the YB of different
grassland plant species at various harvest dates during the first
three growth cycles to investigate the accuracy of YB prediction
by a more homogeneous sample selection.

2. MATERIAL AND METHODS

2.1. Plant Material and Chemical Analysis. Six plant species
from grassland were selected for the experiment. Four grass species
(Lolium perenne, Dactylis glomerata, Poa pratensis, Festuca pratensis) and
two legume species (Trifolium pratense, Trifolium repens) were grown
in field plots (10 m2). Moreover, four cultivars were tested from the
species Lolium perenne (Table 1). A single field plot was used for each
plant species. The aim of the crop trial was to create a representative
data set that would be suitable for statistical analysis. The trial was
performed in 2013 in Pulling, Germany (48°36′ N, 11°71′ E). The
altitude of the test plot was 470 m above sea level. In order to gain
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information about the chemical composition of the crops during their
development, each crop underwent several harvests. The collection of
the samples took place at primary, secondary, and tertiary growth
cycles with advancing harvest dates in each growth cycle. At defined
phenological development stages based on the BBCH scale, five
harvest dates were scheduled during the primary growth cycle and
three harvest dates were scheduled during the secondary and tertiary
growth cycles. However, the unusual weather conditions in 2013
affected the plant growth. Hence, the harvest dates of the plants were
reduced (Table 1). In May and June, precipitation was unusually high
and the physiological maturity of the plants was delayed. Moreover,
the warm and dry weather in July 2013 accelerated the plant
maturation, after which the plants did not properly develop, even
under rather normal weather conditions during the subsequent
months of August and September.
The plant species were selected by the Institute for Crop Science

and Plant Breeding of the Bavarian State Research Center for
Agriculture (Freising, Germany). The most important criterion for the
selection of plant species and harvest dates was the potential and
practical relevance of using grassland biomass as feedstock in an
agricultural biogas plant.
Immediately after harvesting the crops, they were dried in a forced-

air oven at 40 °C. The samples were then ground with a cutting mill
and passed through a 10 mm sieve (Retsch, Haan, Germany) before
they were stored at room temperature. Forage analysis (Weender and
Van Soest analysis) was carried out according to European
regulations16 and in accordance with the methods of the Association
of German Agricultural Analytic and Research Institutes.17 All
chemical analyses were performed in duplicate by the Central
Department for Quality Assurance and Analytics of Bavarian State
Research Center for Agriculture (Freising, Germany). Total solids
(TS), crude ash (XA), crude lipids (XL), crude fibers (XF), starch
(ST), reducing sugars (RS), neutral detergent fibers (NDF), acid
detergent fibers (ADF), and acid detergent lignin (ADL) were
measured. Volatile solids (VS), crude protein (XP), nitrogen-free
extract (NfE), hemicellulose (HC), cellulose (CL), nonfiber
carbohydrates (NFC), and organic residue (OR) were calculated
[VS = TS − (XA × TS/100), XP = 6.25 N, NfE = 100 − XA − XP −
XL − XF, HC = NDF − ADF, CL = ADF − ADL, NFC = 100 − XA
− XP − XL − NDF, OR = 100 − XA − XP − XL − ST − RS −
NDF]. The parameters TS and VS are expressed as percent fresh

matter (FM) and all others parameters are expressed as percent total
solids (% TS).

2.2. Batch Trial and the Experimental Setup. The source of
inoculum for a batch test can strongly influence the microbial
community and, consequently, the biodegradation of a substrate.18−20

Therefore, a defined inoculum was used for all batch tests. A pilot
digester has been operated for several years in order to obtain a
defined biocoenosis. This digester had a working capacity of 2.5 m3

and it had been operating under steady-state conditions (the
coefficient of variation of 5 days of methane productivity was
continuously lower than 5%). The digester was fed with 80% cattle
manure and 20% dairy cattle feeding (total mixed ratio, mostly maize
and grass silage) based on volatile solids at an organic loading rate of
3.0 kg VS/(m3 d) at 38 ± 1 °C and a hydraulic retention time of 19
days. The pilot digester was located in Pulling, Germany. Chemical
and microbiological analyses were carried out regularly to control the
actual status of the biocoenosis (data not shown). One week prior to a
batch trial, the digester effluent was stored at batch test temperature
without feeding in order to reduce its own biogas potential.21 The
degassed digester effluent was used as inoculum for the batch tests.
The average values of the chemical parameters from inoculum were
recorded at 3.5 ± 0.1% FM of volatile solids, 192 ± 82 mg/kg FM of
volatile fatty acids, 8642 ± 868 mg/kg FM of total inorganic carbon,
and a pH value of 7.6 ± 0.1.

The batch experiments were performed according to the German
standard procedure.21,22 The batch digester had a total volume of 2 L
and a working volume of approximately 1.4 L. The batch digester was
filled with 400 mL of distilled water, 1000 g of FM inoculum, and 20 g
of FM sample. The ratio of the volatile solids of the sample to the
volatile solids of the inoculum was 0.5 ± 0.1. The batch test ran at 39
± 0.5 °C. Two control samples were used to check the biological
activity of the inoculum. Microcrystalline cellulose and a defined
sample of dried whole crop maize were used as reference samples. The
inoculum alone served as the blank value. Each sample was tested in
triplicate (technical replicates), but microcrystalline cellulose was
tested in sextuplicate. The TS content in the batch digester ranged
between 4% and 5% of fresh matter. The measurement was terminated
when the daily biogas production fell below 0.5% of the total volume
of biogas that was sampled until that point in time.22

The biogas produced was measured with milligas counters (Ritter
Apparatebau GmbH, Bochum, Germany) at an accuracy of ±3%. The

Table 1. Investigated Plant Species Harvested at Different Dates during the First Three Growths in 2013

harvest datesa

growth cycle 1 growth cycle 2 growth cycle 3

scientific
name cultivar 1 2 3 4 5 1 2 3 1 2 3

total
samples

L. perenne Arvicola May 2 May 6 May 8 May 14 Jun 6 Jul 16 − − Sep 9 − − 7

(41) (49) (52) (55) (65) (30) (29)

Respect May 14 May 16 May 17 May 21 Jun 6 Jul 18 − − Sep 6 − − 7

(43) (49) (51) (55) (60) (30) (29)

Sponsor May 19 − Jun 12 Jun 15 Jun 18 − − − − − − 4

(39) (53) (56) (60)

Sirius May 19 − Jun 12 Jun 15 Jun 18 − − − − − − 4

(39) (53) (56) (60)

D. glomerata Husar May 14 May 16 May 19 May 21 Jun 13 Jul 16 − − Sep 14 − − 7

(41) (45) (51) (56) (60) (30) (29)

P. pratensis Lato May 6 May 8 May 14 May 17 Jun 6 Jul 23 − − Sep 4 − − 7

(41) (47) (52) (56) (61) (30) (30)

F. pratensis Preval May 14 May 16 May 19 May 21 Jun 13 Jul 11 − − Sep 14 − − 7

(41) (45) (51) (55) (60) (30) (30)

T. pratense Titus May 16 Jun 17 Jun 20 Jun 21 − Jul 26 Aug 2 − Aug 29 Sep 5 Sep 14 9

(51) (55) (61) (65) (55) (61) (59) (65) (69)

T. repens Lirepa May 16 Jun 12 Jun 15 Jun 17 − Jul 5 Jul 16 Jul 23 Aug 29 − Sep 5 9

(51) (55) (59) (65) (61) (65) (69) (61) (69)
aThe “−” indicates sample loss. Within the parentheses is written the BBCH code.
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measurements were recorded online and the data saved on an hourly
basis. After the gas volume determination, the biogas produced from
all three replicates of one sample was stored in a gas bag (Figure 1). A
gas analysis automatically took place when 1.5 L of gas was collected,
i.e., about 0.5 L gas per digester. The gas analyzer individually
measured each gas bag. During the experiment, an average of 33 gas
analyses was recorded per triplicate of a sample. To perform the gas
analysis, an infrared sensor measured methane and carbon dioxide at
an accuracy of ±2% and an electrochemical sensor measured oxygen at
an accuracy of ±1% (Awite Bioenergie GmbH, Langenbach,
Germany). In addition, air pressure and room temperature were
recorded on an hourly basis. The YB and YM were calculated as
standard liter (dry gas at 273.15 K and 1013.25 mbar) for each
kilogram of volatile solids (L/kg VS).22 The values of YB and YM were
the average value of three replicates resulting in a coefficient of
variation (CV) below 10%.23

2.3. Statistical Analysis. Due to the fact that only the organic
complex can be utilized during the anaerobic digestion, the content of
all chemical compounds were calculated as grams per kilogram of
volatile solids (g/kg VS).
The Kolmogorov−Smirnov test was applied at a significance level of

5% to analyze the normal distribution of the samples. Moreover,
descriptive statistics and principal component analysis (PCA) were
conducted to investigate the correlations among the chemical
compounds. The PCA was used to reduce the interrelated effect of
the variables, while as much of the variation as possible was retained.
Variables that are correlated with each other but are largely
independent from other subsets of variables were combined into
principal components (PC). Each PC is a linear combination of
observed variables and is not correlated (orthogonal) with another PC.
The first PC extracts the maximum variability of the observed
variables. Sequential PCs are formed from the residual correlations and
are orthogonal to all other PCs.24,25

Furthermore, multiple linear regression (MLR) analysis was
performed in order to develop models predicting the potential YB.
The parameters coefficient of determination (R2), root-mean-square
error (RMSE), and coefficient of variation of the RMSE (CVRMSE)
were used for evaluation and comparison of the models. The software
SAS 9.3 (SAS Institute) and Unscrambler 10.3 (CAMO Software)
were used for statistical analysis.

3. RESULTS AND DISCUSSION

3.1. Biogas Yield Prediction Using a Global Model.
According to the batch trials, the YB ranged from 500 to 768 L/
kg VS and the YM from 263 to 425 L/kg VS with a coefficient of
variation of approximately 10% for both variables (Table 2). As
expected, a wide range of normally distributed YB and YM was
recorded. The forage analysis of the samples reflected the plant
senescence. The different contents of chemical compounds
affected the biogas production. Figure 2 displays the chemical
composition (XP, NDF, and ADL) and the measured YB of the
samples obtained from the first growth cycle. It was observed

that an increase of slowly biodegradable fractions resulted in a
decrease of YB. Moreover, ADL was significantly negatively
correlated with YB (Table 3). However, only around 50% (R2 =
0.53) of the variance could be explained by ADL. Since the
correlation between YB and each individual chemical compound
was weak, a monocausal regression did not sufficiently explain
the variation. Similar observations were reported by Gunasee-
lan.26

Since the Van Soest analysis provides information beyond
the Weender analysis and the fractions NDF, ADF, and ADL
describe the status of cell wall development, the less complex
variables XF and NfE were not used in statistical analysis.
Moreover, YB was weakly correlated with XF and NfE (Table
3). At this point, it should be considered that although both
analytical methods insufficiently describe the cell wall as a
biological structure,27 these analytical parameters can reflect the
differentiation of the plant samples’ chemical composition and
can be thus used for statistical analysis.
For all grass species, no ST was detected, the CV value was

extremely high, and the values of this parameter were not
normally distributed. Thus, ST could not be used for further
statistical analysis. The variations of RS, XP, ADL, and HC
were the highest, displaying CV of 43%, 42%, 40%, and 35%,
respectively. The highest correlation coefficient (r) between YB
and these four single variables (RS, XP, ADL, HC) was
recorded for ADL and HC, with a r of −0.73 and 0.63,
respectively (Table 3). The high variation of these two variables
and their good correlation with YB potentially explain the
variation in YB. These findings agree with the results obtained in
the study of Dandikas et al.11 Thus, the across plant species
model from Dandikas et al.11 was utilized for predicting YB.
Figure 3 depicts the measured versus predicted data in an XY

plot. On the basis of slope and offset of the regression line
between the two data sets, the model underestimated the YB
with a bias of −40. Moreover, the RMSE was 75 L/kg VS and
the CVRMSE was approximately 12%. Although the estimation
error was higher than the estimation error during calibration,
the model predicted the YB of all samples with a slope of 1.13
(Figure 3). A slope close to 1 demonstrates that the model can
predict the range of the measured values and the differentiation
between the samples on YB. The low accuracy of the model
could be explained by the fact that the values for ADL and HC
(the two regressors of the model) were not normally
distributed. Another reason might have been the fact that for
grassland samples the variables HC and ADL alone did not
explain sufficiently the YB.

Figure 1. (a) Schematic diagram and (b) photo of the biogas/biomethane potential test system.
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Table 2. Chemical Composition, Biogas Yield, and Methane Content of the 61 Samplesa

sampleb TS VS XP XF XL ST RS NDF ADF ADL YB CH4

(% FM) (% FM) (% TS) (% TS) (% TS) (% TS) (% TS) (% TS) (% TS) (% TS) (L/kgVS) (%)

G_1 89.0 81.1 17.1 22.0 3.0 ND 17.0 48.5 27.1 3.0 720 53

G_2 90.2 83.5 14.2 21.9 2.5 ND 16.8 49.9 27.0 2.1 768 55

G_3 88.2 80.9 12.4 25.7 2.1 ND 15.8 54.3 31.1 3.8 748 52

G_4 91.3 85.4 9.8 24.5 2.0 ND 18.3 55.1 31.6 2.5 671 55

G_5 91.2 85.9 6.7 27.0 1.6 ND 18.5 60.0 34.3 3.7 646 55

G_6 89.4 82.4 7.2 20.9 2.1 ND 21.9 50.0 28.7 2.8 639 51

G_7 91.8 84.7 15.1 19.7 3.5 ND 15.4 49.8 25.8 5.6 644 53

G_8 89.8 82.2 15.1 23.7 2.7 ND 14.0 53.5 30.5 3.8 732 53

G_9 91.1 84.4 12.1 22.2 2.4 ND 15.5 54.3 30.8 3.2 669 55

G_10 90.3 83.1 13.4 25.1 2.4 ND 15.3 54.6 30.0 2.6 715 52

G_11 90.6 84.4 10.6 24.0 1.9 ND 17.3 53.9 30.0 2.6 675 55

G_12 90.5 85.7 8.3 27.4 1.4 ND 17.2 59.6 33.5 3.2 622 55

G_13 91.5 85.2 7.3 23.8 1.8 ND 15.4 58.0 32.3 3.6 609 52

G_14 94.0 85.8 18.4 20.5 3.6 ND 7.9 53.2 26.2 5.0 599 55

G_15 90.4 82.8 14.6 21.4 2.9 ND 16.7 51.1 27.5 2.4 699 52

G_16 91.2 85.3 7.4 31.1 1.4 ND 15.6 61.9 35.3 3.4 622 55

G_17 91.0 86.4 6.6 26.6 1.4 ND 21.6 57.0 32.3 3.0 631 54

G_18 91.3 86.0 6.7 28.3 1.3 ND 18.6 59.4 34.9 3.8 598 54

G_19 89.4 81.1 14.5 21.8 2.9 ND 16.9 49.5 26.9 2.0 691 52

G_20 91.0 85.7 7.1 27.2 1.6 ND 18.1 57.8 33.0 2.6 630 55

G_21 91.5 87.1 5.9 25.0 1.3 ND 25.7 52.6 30.9 2.7 625 53

G_22 92.1 87.4 5.9 27.9 1.5 ND 20.8 57.4 34.2 3.6 598 54

G_23 90.1 82.1 13.8 28.6 2.7 ND 9.3 62.2 36.3 5.4 633 53

G_24 91.5 84.2 12.2 26.8 2.5 ND 8.5 61.8 35.7 3.1 679 51

G_25 91.2 83.5 11.3 30.7 2.3 ND 10.5 64.5 37.2 3.7 646 53

G_26 91.8 84.6 9.9 27.3 2.7 ND 10.8 62.5 36.0 3.5 655 55

G_27 92.2 86.5 6.6 30.4 1.8 ND 10.8 67.7 40.3 4.4 570 55

G_28 87.4 78.1 9.1 25.2 2.6 ND 10.0 59.4 32.3 4.3 642 53

G_29 93.0 85.3 12.8 24.5 3.0 ND 11.1 57.3 31.4 6.6 697 54

G_30 89.7 82.9 20.3 25.2 2.8 ND 11.6 60.3 29.5 2.7 682 53

G_31 91.5 85.3 18.5 22.4 2.9 ND 9.2 57.7 33.0 4.5 704 56

G_32 90.4 83.8 14.4 30.4 2.4 ND 8.9 68.5 36.7 4.0 642 53

G_33 93.2 87.7 12.6 27.0 2.2 ND 8.7 65.3 35.3 3.6 696 51

G_34 91.8 86.7 9.9 27.6 1.7 ND 10.6 65.3 37.5 4.6 667 54

G_35 90.6 83.6 6.5 21.1 1.6 ND 18.4 59.1 30.3 3.3 717 53

G_36 92.6 86.1 14.6 23.3 2.0 ND 14.4 56.8 29.4 3.1 693 54

G_37 90.1 82.6 14.1 30.3 2.2 ND 8.6 60.5 36.1 3.5 646 51

G_38 92.7 86.3 11.3 27.3 2.0 ND 10.3 59.8 34.5 2.2 687 56

G_39 91.3 84.3 10.8 32.0 1.8 ND 9.9 63.8 37.8 3.3 632 52

G_40 92.1 85.7 9.3 29.6 1.9 ND 10.5 63.9 38.4 3.6 627 55

G_41 91.2 85.9 7.3 30.7 1.7 ND 11.1 66.5 40.0 4.1 604 55

G_42 90.6 82.0 10.7 23.0 2.5 ND 9.9 57.7 31.2 4.3 654 53

G_43 92.5 85.1 14.4 24.2 3.2 ND 7.0 61.2 31.3 5.3 592 55

L_1 88.8 80.5 23.3 19.2 2.6 6.2 9.7 42.7 27.9 6.4 581 54

L_2 90.0 83.6 14.6 25.4 1.9 4.5 10.6 46.0 35.8 6.1 547 56

L_3 89.7 82.3 15.8 25.1 1.9 4.6 7.3 50.6 38.0 6.4 510 56

L_4 89.9 84.5 13.3 27.7 2.7 4.7 8.3 49.6 39.8 6.9 519 56

L_5 88.6 80.8 19.8 19.6 2.5 5.6 7.1 43.5 29.9 6.0 596 53

L_6 89.7 82.3 16.8 18.4 1.8 5.5 6.3 47.7 35.8 6.7 515 53

L_7 91.5 83.3 20.5 19.6 1.9 5.9 7.7 33.6 28.1 5.2 629 55

L_8 91.3 83.4 19.0 21.1 1.8 5.5 8.3 36.4 30.6 5.6 555 54

L_9 91.9 85.1 17.3 22.4 1.5 6.0 9.5 41.2 35.2 7.2 553 54

L_10 88.2 79.6 29.0 15.3 3.0 7.4 7.6 46.3 23.9 8.4 617 52

L_11 89.5 80.2 28.6 23.0 1.9 6.6 2.0 44.6 31.3 7.4 538 56

L_12 88.5 79.8 24.4 17.9 2.3 7.2 7.2 45.3 27.7 6.5 598 52

L_13 89.4 81.7 23.0 19.0 2.5 6.4 7.3 32.4 29.7 7.4 592 56

L_14 90.5 81.5 23.4 23.8 2.0 5.7 4.3 41.9 32.4 8.6 532 53

L_15 89.7 81.2 20.3 19.5 2.1 5.9 5.3 47.4 32.6 7.8 500 53

L_16 89.4 80.9 18.5 20.5 2.0 6.3 5.0 47.7 35.9 8.8 520 53
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Table 2. continued

sampleb TS VS XP XF XL ST RS NDF ADF ADL YB CH4

(% FM) (% FM) (% TS) (% TS) (% TS) (% TS) (% TS) (% TS) (% TS) (% TS) (L/kgVS) (%)

L_17 92.8 85.0 23.7 18.1 2.0 7.3 5.2 42.4 30.2 6.9 542 54

L_18 91.5 83.4 23.6 17.3 1.8 7.0 5.9 34.8 31.4 7.6 560 54

MIN 87.4 78.1 5.9 15.3 1.3 2.0 32.4 23.9 2.0 500 51

MAX 94.0 87.7 29.0 32.0 3.6 7.4 25.7 68.5 40.3 8.8 768 56

CV 1% 3% 42% 16% 25% 158% 43% 16% 12% 40% 10% 3%
aFor the meaning of the truncations, see the List of Abbreviations. bG: Grass sample, L: Legume sample, ND: not detectable.

Figure 2. Average values with the standard deviations of crude protein (XP), neutral detergent fiber (NDF), and acid detergent lignin (ADL)
content during the plant senescence and the obtained biogas yield (YB) during the five harvest dates (HD) of the first growth cycle. Grass samples
and legume samples are demonstrated separately.

Table 3. Correlation Matrix of Chemical Compounds Biogas and Methane Yields from the 61 Samplesa

XL XF NfE ST RS HC CL ADL OR NFC YB YM
XP 0.41 −0.64 −0.80 0.79 −0.70 −0.57 −0.67 0.72 0.10 −0.11 −0.34 −0.35

XL −0.30 −0.39 −0.06 −0.26 0.19 −0.44 0.12 −0.30 −0.44 0.27 0.23

XF 0.06 −0.61 0.17 0.52 0.88 −0.47 −0.31 −0.37 0.17 0.19

NfE −0.51 0.77 0.29 0.21 −0.54 0.15 0.48 0.26 0.27

ST −0.64 −0.85 −0.49 0.86 0.47 0.29 −0.71 −0.70

RS 0.42 0.09 −0.74 −0.16 0.36 0.53 0.52

HC 0.36 −0.68 −0.80 −0.64 0.63 0.59

CL −0.41 −0.12 −0.23 0.03 0.06

ADL 0.34 0.05 −0.73 −0.73

OR 0.81 −0.45 −0.38

NFC −0.23 −0.19

YB 0.96
aFor the meaning of the truncations, see the List of Abbreviations.
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It has been demonstrated earlier for diverse energy crops that
only carbohydrates are statistically significant for a YB

prediction model.11,13 However, for maize samples, Amon et
al.28 have shown that crude protein and crude lipids are suitable
variables for YM estimation. Rath et al.29 reported that crude
lipids are statistically significant for the prediction of YB of
maize cultivars.
Hence, a global model to predict YB of typical grassland

species is not sufficient, which leads to two hypotheses for the
YB prediction of grassland samples. First, more than two
regressors are needed for a highly accurate model; second, the
regressors do not only refer to carbohydrates. Consequently, a
plant-specific model may reduce the estimation error.

3.2. Descriptive Statistics. Since a strong positive
correlation between YB and YM was recorded with a r of 0.96
(Table 3) and in order to avoid an additional measurement and
its uncertainty, the statistical analysis was focused on the
explanation of YB. The average methane content of the
grassland species was recorded as 54 ± 1.4%.
Although all tested samples are grassland species, they can be

classified into two groups based on the plant family. The first
group is the grass species and the second group is the legume
species. A t-test was conducted to evaluate the difference of the
chemical composition between the two plant groups. Figure 4
depicts the average values of the chemical compounds in the
two plant groups. A t-test showed that the average XP and ADL
contents of grass species were significantly lower than those of
the legumes species. Moreover, the average RS, HC, and CL
contents of grass species were significantly higher than those of
the legumes species. However, no significant difference was
found in the average XL content between the two plant groups.
For all grass species, no ST was detected. Since during the first
growth cycle fewer weather-related sample losses occurred, the
t-tests were performed also with the samples only from the first
growth cycle (data not shown) in order to check if the number
of samples of each plant group affected the t-test results, and
similar p-values for each chemical compound were recorded.
As expected, high variance in the chemical composition

between the two plant groups was observed. A possible reason
for this observation, besides the morphological−physicochem-
ical differences in the two plant groups, could be that the
harvest dates and the number of samples were not identical.
However, since a mixture of different plant species grow in
grassland and are probably at dissimilar morphological
development stages for certain harvest dates, the study focused
on deriving a global grassland model, which could be a useful
tool for practitioners.

3.3. Principal Component Analysis (PCA). For the
principal component analysis, the parameters of XP, XL, NFC,
HC, CL, and ADL were selected. NFC was selected instead of
RS, ST, and OR due to the fact that the variances of these

Figure 3. Measured values versus predicted values of biogas yield (YB)
based on the model of Dandikas et al.

Figure 4. Average values and standard deviations of the chemical compounds of the two plant groups (grass and legume species); p-values were
determined by Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001).
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parameters were significantly high and they were not normally
distributed. A PCA biplot with the first two principal
components is shown in Figure 5. The closer to the outer

circle a variable is, the better it can explain the variance. In
addition, variables located in the same direction are positively
correlated, while variables that are located in opposite
directions are negatively correlated. If the angle between two
variables is 0° or 180°, they are highly correlated (r = ±1); if
the angle is 90°, they are highly independent.15,30 The first two
PCs explained 90% of the total variation. According to the
correlation loadings (Figure 5), XL and CL are not suitable as
variables for a regression model. ADL, HC, XP, and NFC are
the parameters that mainly explained the variation of the
samples and could, therefore, be suitable variables for a
regression analysis. Although, XL and CL have been reported as
significant variables earlier,15,29 they were not statistically
significant in this study. This was probably due to the fact
that XL and CL variations were low in the samples of different
growth stages and species.
3.4. Multiple Linear Regression Analysis. An MLR

analysis was performed with ADL, HC, XP, and NFC as
regressors and YB as the regressand. NFC was found not to be
significant for the model (p > 0.05). Therefore, the MLR
analysis was conducted with only three variables (ADL, HC,
and XP). During the MLR analysis, three samples were
detected as outliers and were excluded from the model
calibration. A sample was identified as outlier when the square
root of the ratio between the residual calibration variance per
sample and the average residual calibration variance for the
model was more than 3.0. The analysis of variance (ANOVA)
indicated that the model was significant (p < 0.05). The R2 of
the model was 0.75; however, the RMSEC was 31 L/kg VS
with CVRMSE of 5% (Figure 6). The residuals of the model
have been analyzed with the Kolmogorov−Smirnov test for
normality at a significance level of 5%, and the null hypothesis
could not be rejected (data not shown). Additionally, the

unsystematic distribution of the residuals indicated that the
model was useful for explaining the variability of the data. The
model is described by eq 1.

= + + −Y 670 0.44XP 0.16HC 3.02ADLB (1)

where YB is expressed in L/kg VS and the chemical compounds
are expressed in g/kg VS.
Similar MLR analysis was performed for the estimation of

YM. The analysis has shown that the R2 of the model was 0.70,
the RMSEC was 18 L/kg VS, and the CVRMSE was 5%. The
model is described by eq 2.

= + + −Y 370 0.21XP 0.05HC 1.61ADLM (2)

where YM is expressed in L/kg VS and the chemical compounds
are expressed in g/kg VS.
The cross-validation has been performed for both models,

and similar results were obtained. The results indicated that the
XP content of grassland species significantly affected the biogas
production of the samples. The correlation matrix showed a
weak negative correlation between XP content and YB, but
according to the MLR, it has a positive influence on YB. The
monocausal negative correlation between XP and YB can be
explained by the two plant groups (grass species and legume
species). Lower XP values and higher YB values were recorded
for the grass species, and vice versa for the legume species
(Figure 2). The combination of the data led to a mathematical
negative correlation. Amon et al.28 and Gunaseelan14 have
reported a positive effect of XP on YB prediction. In contrast,
Weissbach31 has reported that crude protein is not significant
for YB prediction. Moreover, the protein content decreases
during the plant senescence, while the fiber and ADL content
increases (Figure 2), attributing to a lower digestibility. Hence,
XP depicts plant maturity and it has a positive effect on YB.
Therefore, eq 1 illustrates that younger plants have higher YB.
HC content was the variable with the widest range from 2.7

to 31.8% TS, but in the MLR model it had the lowest
contribution, with a regression coefficient of 0.16. The HC was
used in MLR to explain the positive effect of the fiber matrix on

Figure 5. Correlation loadings plot for the first principal component
(PC1) versus the second principal component (PC2) of crude protein
(XP), crude lipids (XL), nonfiber carbohydrates (NFC), hemicellulose
(HC), cellulose (CL), and acid detergent lignin (ADL). The outer
circle indicates 100% and the inner circle 50% explained variance.

Figure 6. Measured versus predicted values of biogas yield (YB) of
grassland samples, expressed in L/kg VS. R2, coefficient of
determination; RMSEC, root-mean-square error of calibration; SEC,
standard error of calibration.
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biogas production. In agreement with our findings, Amon et
al.28 and Rath et al.29 reported a positive influence of HC on YB
prediction.
The ADL content was recorded in a range from 2.0 to 8.8%

TS (Table 2), but the effect on YB prediction was the highest.
Lignin is an amorphous polymer and does not degrade under
anaerobic conditions.32 It is probable that not only lignin alone
decreases the YB but that the complex lignocellulosic structure
also does so, since also a portion of HC and CL is hardly
bioavailable. Thus, the regressor ADL in the MLR model
reflects the negative influence of the whole fiber matrix. Rath et
al.29 and Triolo et al.13 have also reported a significant negative
influence of ADL on the YB prediction.
On the basis of the results of this study, grassland samples

with high XP and HC content and low ADL content are
preferred feedstock for an agricultural biogas plant.

4. CONCLUSION

The present study revealed that specific models for defined
plant groups increase the accuracy of biogas yield prediction. In
particular, the developed grassland model reduced the
estimation error to 5%. The present model predicts the biogas
yield of grassland plant species with an accuracy of 31 L/kg VS
using three regressors, namely, acid detergent lignin (ADL),
hemicellulose (HC) and crude protein (XP) content. It was
shown that ADL reduces biogas yield, while both HC and XP
increase it. The regressors of the grassland model reflect the
necessity to describe the actual physiological status of the plant
and not only its composition. However, plant-specific models
lose robustness and increase the risk of misinterpretation if the
model is not sufficiently tested to define its range of validity.
Consequently, detailed validations with independent data sets
should be carried out.

■ AUTHOR INFORMATION

Corresponding Author

*Tel: +49 8161 71 3792. Fax: +49 8161 71 4363. E-mail:
vasilis.dandikas@lfl.bayern.de.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors would like to thank the associate editor and the
anonymous reviewers for their invaluable comments and
suggestions. This work was funded by the Bavarian State
Ministry of Food, Agriculture and Forestry and the Bavarian
State Ministry of Economic Affairs and Media, Energy and
Technology, Project code BE/14/15.

■ LIST OF ABBREVIATIONS

ADF = acid detergent fiber
ADL = acid detergent lignin
ANOVA = analysis of variance
BBCH = Biologische Bundesanstalt, Bundessortenamt and
Chemische Industrie
BMP = biomethane potential
CH4 = methane
CL = cellulose
CV = coefficient of variation
CVRMSE = coefficient of variation of root-mean-square
error
FM = fresh matter

HC = hemicellulose
HD = harvest date
MLR = multiple linear regression
N = total nitrogen by the Dumas method
NDF = neutral detergent fiber
NFC = nonfiber carbohydrates
NfE = nitrogen-free extract
OR = organic residue
PCA = principal component analysis
r = correlation coefficient
R2 = coefficient of determination
RMSE = root-mean-square error
RMSEC = root-mean-square error of calibration
SEC = standard error of calibration
ST = starch
TS = total solids
VS = volatile solids
XA = crude ash
XF = crude fibers
XL = crude lipids
XP = crude protein
RS = reducing sugars
YB = biogas yield
YM = methane yield

■ REFERENCES

(1) Weiland, P. Appl. Microbiol. Biotechnol. 2010, 85, 849−860.
(2) Mast, B.; Lemmer, A.; Oechsner, H.; Reinhardt-Hanisch, A.;
Claupein, W.; Graeff-Hönninger, S. Ind. Crops Prod. 2014, 58, 194−
203.
(3) Mayer, F.; Gerin, P. A.; Noo, A.; Lemaigre, S.; Stilmant, D.;
Schmit, T.; Leclech, N.; Ruelle, L.; Gennen, J.; von Francken-Welz, H.;
Foucart, G.; Flammang, J.; Weyland, M.; Delfosse, P. Bioresour.
Technol. 2014, 166, 358−367.
(4) McEniry, J.; O'Kiely, P.; Crosson, P.; Groom, E.; Murphy, J. D.
Biofuels, Bioprod. Biorefin. 2011, 5, 670−682.
(5) McEniry, J.; O’Kiely, P. Bioresour. Technol. 2013, 127, 143−150.
(6) Thamsiriroj, T.; Murphy, J. D. Energy Fuels 2010, 24, 4459−4469.
(7) Tsapekos, P.; Kougias, P. G.; Angelidaki, I. Bioresour. Technol.
2015, 182, 329−335.
(8) Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos,
J. L.; Guwy, A. J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J. B. Water Sci.
Technol. 2009, 59, 927−934.
(9) Raposo, F.; Fernańdez-Cegrí, V.; De la Rubia, M. a.; Borja, R.;
Beĺine, F.; Cavinato, C.; Demirer, G.; Fernańdez, B.; Fernańdez-
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a b s t r a c t

Besides biogas yield, the kinetic of biogas production in a biomethane potential (BMP) test also provides

important information for feedstock characterization. In this study, fodder analysis and BMP tests with

high temporal resolution were performed in order to identify statistical correlations between the hy-

drolysis rate constant (kh) and the chemical composition of various energy crops. Different species and

cultivars of energy crops were analyzed in order to develop a broadly applicable regression model for the

prediction of kh. Two independent datasets (222 samples in total) were used, one for the calibration of

the model and one for its validation. The results indicated that the analytical parameters non-fiber

carbohydrates and crude protein were statistically suitable for a multiple linear regression model for

the prediction of kh. Furthermore, a first-order kinetic model and the proposed regression models can be

utilized for the prediction of the biogas production in a BMP test. The proposed approach offers a fast and

reliable prediction of the biogas production rate and allows a feedstock assessment according to their

biogas potential.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Biogas utilization is a form of sustainable energy production and
allows for less dependence on fossil fuels and for greenhouse gas
emission reduction [1,2]. Moreover, biogas as part of a cogeneration
energy system for electricity and heat production based on
renewable resources has high potential, and those cogeneration
systems could meet the current energy demand [3,4]. However, the
feedstock characteristics and regional production conditions
should also be considered [5]. It has been reported that even
lignocellulosic-rich biomass has a high biogas potential and if the
harvesting technology is appropriate, it could be utilized as a co-
substrate to improve methane production of an agricultural
biogas plant [6].

Compared to other renewable energy resources, such as solar

and wind power, biogas is advantageous because it can be stored
and utilized independent of time and place at times of higher en-
ergy demand [7,8]. Different concepts for demand-driven flexible
operation of a biogas plant have been suggested [9,10] based on
either the storage of biogas or on-demand biogas production by
means of the feedstocks. However, the demand-driven flexible
operation of biogas plants creates new challenges in biogas tech-
nology, and in order to define an optimal flexible operational
concept, many factors should be taken into account; one of them is
feedstock characteristics [11]. Thus, accurate feedstock assessment
is required for an efficient biogas plant operation, which is the main
goal on anaerobic digestion technology [12]. Biogas potential and
the biogas production rate (kinetics) are crucial parameters for
substrate characterization.

When complex substrates are applied, such as biowaste or en-
ergy crops, it can be assumed that hydrolysis is the rate limiting
step during anaerobic degradation [13,14]. Hence, when no mi-
crobial inhibition occurs during the anaerobic digestion process, it
can be assumed that the rate of the overall process is mainly driven
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by hydrolysis, which can be described by the hydrolysis rate con-
stant kh [15].

The experimental determination of biogas and methane po-
tential is commonly carried out in biomethane potential (BMP)
tests. Although this method is well described in different guidelines
[16e18], round robin tests have highlighted a high deviation of
biogas yields from the same feedstocks by different laboratories
[19]. Therefore, a recently published guideline aims for a stricter
standardization in order to increase both inter- and intra-
laboratory reproducibility [20]. However, a BMP test is a high-
effort and time-consuming process [21], and a precise prediction
of biogas yield by the chemical composition of the substrate is
desirable [22e25]. The simulation of the anaerobic digestion pro-
cess as a white-box is extremely demanding [26] due to the high
variability of microbes, feedstock specific microbial communities
involved, and the different optimal growth conditions [27e29]. In
contrast, considering the anaerobic process as a black-box is a
simpler approach and allows the simulation of the biological pro-
cess with less effort [30]. The most commonly applied approach is a
first-order model to describe the biogas production rate in a BMP
test [16,31].

Although modeling of biogas production has been well studied
already [32e34], knowledge on the correlation between the
chemical compounds and the hydrolysis rate constant is limited,
and studies on the prediction of hydrolysis rate constant of a BMP
test are lacking in the peer-reviewed literature so far. Since fodder
analyses are well-established standard methods, and extensive
databases of feed chemical composition already exist, a model
allowing the simultaneous prediction of both biogas yield and
biogas production rate based only on the chemical composition to
assess various feedstock based on their biogas potential, is desirable
for both researchers and biogas plant operators.

Therefore, the objectives of this studywere firstly, to analyze the
correlation between the hydrolysis rate constant (kh) and the
chemical composition of the feedstock based on a high variety of
plant species and cultivars, and secondly, to develop and evaluate a
regressionmodel in order to predict kh based on feedstock chemical
composition. BMP tests and fodder analyses were performed, and
the data were statistical analyzed to define and quantify the effect
of the various plants' chemical compounds on biogas production. In
addition, the kh prediction model was combined with a previously
published biogas yield prediction model [22] in order to predict
both biogas yield and biogas production rate based on a first-order
kinetic model. Finally, the modeling approach has been validated
with an independent dataset.

2. Material and methods

2.1. Substrates

Field experiments were carried out in order to collect different
plant species and cultivars of energy crops under well-defined
conditions. The field experiments were performed in 2011, 2013,
2014 and 2015 in order to include also different weather conditions.
The plants were grown at various locations in Bavaria, Germany. In
total, twenty-one different plant species were cultivated and sys-
tematically harvested at various developmental stages or growth
cycles (grassland species). The collected samples were dried in a
forced air oven at 40 �C directly after harvest, then ground in a
cutting mill (Retsch, SM 200, Germany) to pass a 10 mm sieve and
were stored at room temperature. The plant selection and the field
experiments were carried out by the Institute for Crop Science and
Plant Breeding of the Bavarian State Research Center for Agricul-
ture, Freising, Germany and by the Technology and Support Center,
Straubing, Germany.

Two independent datasets were generated based on the harvest
year: one dataset for the calibration of the model with 131 samples
of 13 plant species (the samples were harvested in 2011, 2013,
2014), and one dataset for the validation of the model with 91
samples of 10 plant species (the samples were harvested in 2015).
All 222 samples were collected and analyzed to assess the influence
of plants' chemical composition on biogas potential and on biogas
production rate (hydrolysis rate), respectively (see Table SM-1 and
SM-2 in the supplementary material (SM)).

2.2. Inoculum and BMP test

Several studies have confirmed that the biological, physical, and
chemical characteristics of inoculum can affect the results of a BMP
test andmoreover the hydrolysis rate [35e38]. It has been reported
that the origin of an inoculum for BMP test has a significant effect
on the biogas production rate [38]. In order to obtain awell-defined
inoculum for the BMP tests, a digester of 2.5 m3 had been operating
at an organic loading rate of 3 kgVS/(m

3 * d) and at mesophilic
temperature. More details about the source of inoculum can be
found in [39].

In total, eight BMP trials have been carried out to analyze all
samples of the calibration's dataset. Table 1 provides the charac-
teristics of the inoculum prior to the experiments. As indicated by
the values, the inoculum quality was very similar during the eight
independent experiments allowing a comparison of the hydrolysis

Acronym

ADF Acid detergent fiber
ADL Acid detergent lignin
ANOVA Analysis of variance
BMP Biomethane potential
CL Cellulose
CV Coefficient of variation
CVRMSE Coefficient of variation of root mean square error
FM Fresh matter
HC Hemicellulose
kh Hydrolysis rate constant
MLR Multiple linear regression
NDF Neutral detergent fiber
NFC Non-fiber carbohydrates

NfE Nitrogen free extract
OR Organic residue
PCA Principal component analysis
R2 Coefficient of determination
RMSE Root mean square error
RS Reducing Sugar
ST Starch
TS Total solids
VS Volatile solids
XA Crude ash
XF Crude fibers
XL Crude lipids
XP Crude protein
YB Biogas yield
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rate of the samples not only within a trial but also among all trials.
Moreover, the biogas potential of the inocula (residual gas poten-
tial) was similar during the BMP tests with an average value of
104 ± 12 L/kgVS (data not shown).

The BMP tests were performed according to the guidelines of
VDI 4630 and VDLUFA [17,18]. Three technical replicates for each
sample were used to determine the biogas potential. Moreover,
microcrystalline cellulose and dried whole-crop maize as an in-
ternal standard were used as positive controls in each trial to check
the activity of the inoculum. The biogas quality was analyzed every
1.5 L gas produced; methane and carbon dioxide concentrations
were detected with infrared sensors, and oxygen concentrationwas
detected with an electrochemical sensor (Awite Bioenergie GmbH,
Langenbach, Germany). The experiments were conducted at mes-
ophilic temperature (38 ± 1 �C). More details about the experi-
mental setup can be found in [39]. The biogas yields are reported as
liter of dry gas at standard temperature (273.15 K) and pressure
(1013.25 mbar) per kilogram volatile solids added (L/kgVS).

2.3. Chemical analysis

Total solids (TS) and volatile solids (VS) were determined
gravimetrically according to German Standard Methods for the
Examination of Water, Wastewater and Sludge [40]. Crude fiber
(XF) content was determined by the Weender analysis; moreover,
the important fiber fractions (NDF, ADF, ADL) were determined by
the Van Soest method [41]. Hemicellulose (HC) and cellulose (CL)
contents were calculated (HC ¼ NDF - ADF, CL ¼ ADF - ADL). Ni-
trogen content was determined by the Dumas method and crude
protein (XP) was calculated based on the nitrogen content multi-
plied by 6.25. Crude lipid (XL) content was determined by the
extraction method. Starch (ST) content was determined polari-
metrically and reducing sugar (RS) content volumetrically. Non-
fiber carbohydrates (NFC), and organic residue (OR) were calcu-
lated (NFC ¼ 100 - XA - XP - XL - NDF, OR ¼ 100 - XA - XP - XL - ST -
RS - NDF). All analytical methods were executed as described by
Naumann and Bassler [42] and they were carried out by the
Department of Quality Assurance and Analytics of the Bavarian
State Research Center for Agriculture, Freising, Germany.

2.4. Statistical analysis

The software SAS 9.3 (SAS Institute, USA) and Unscrambler 10.3
(CAMO Software, Norway) were used for the statistical analysis.
Correlation analysis was performed based on Pearson's method.
Furthermore, principal components analysis (PCA) was conducted
to determine themain explanatory variables for the variation of the
dataset. PCA can expose and visualize correlations within the
dataset. Similarities and differences of the samples can be revealed
plotting the measured variables in a plot of mathematically defined
variables called principal components (PC). The first PC extracts the

maximum variability of the observed variables. Sequential PCs are
formed from the residual correlations and are orthogonal to all
other PCs [43]. Consequently, multiple regression analysis was
performed to develop prediction models. Moreover, the Mallows'
Cpmodel selectionmethod has been applied in order to find out the
best fit model [33]. A low Cp value indicates a good fit of the model.
Hence, the lower the Cp value is, the higher the precision of the
model will be. The parameters coefficient of determination (R2),
root mean square error (RMSE), and coefficient of variation of the
RMSE (CVRMSE) were applied to evaluate and compare themodels.

2.5. Estimation of biogas production rate and yield

The cumulative biogas production of energy crops in BMP tests
is often described by a simple first-order approach [16,31,44].

YBðtÞ ¼ YB �
�

1� e�kh� t
�

(1)

Where YB(t) is the cumulative biogas production at time t in L/kgVS,
YB is the biogas yield in L/kgVS, and kh is the first-order hydrolysis
rate constant in h�1and t is the time in h.

Based on Eq. (1), the hydrolysis rate constant (kh) can be
determined from the slope of the curve after linearization when
plotting the logarithm versus time [16]. This approach of hydrolysis
rate constant determination is called kh_ln in this study.

To estimate the biogas yield, the model of Dandikas et al. [22]
has been chosen. The prediction is based on the content of both
hemicellulose (HC) and lignin (ADL):

YB ¼ 727 þ 250 HC � 3930 ADL (2)

where YB is expressed as L/kgVS, and the chemical compounds are
expressed as kg/kgVS.

3. Results and discussion

3.1. Calibration of the kh prediction model

3.1.1. Correlation of chemical compounds, biogas yield and

hydrolysis rate constant

Pearson's correlation coefficient (r) was used in order to express
themono correlation between the parameters (Table 2). Among the
parameters, a high correlation not only within the carbohydrates
but also among protein, lipids and carbohydrates was observed.
This can be explained by the plant growth process and the pro-
portional distribution of the chemical compounds, as they are
expressed as percentage of TS. A strong negative correlation be-
tween biogas yield and ADL was observed also for this dataset,
which is in agreement with previous studies [22,24,45,46].

According to Table 2, kh_ln was not or weakly correlated with all
chemical compounds, which is in line with observations reported
previously [45]. A possible explanation of this observation is that,
since linearization was done based on the whole duration of the
experiment, the regression line met the linearized curve approxi-
mately in the middle of the time axis. However, approximately 80%
or more of the total biogas production of energy crops is usually
recorded at the first half of the experiment. Thus, the variance of YB

in the middle of the experiment is similar to the variance of YB at
the end of the experiment in this dataset of energy crops.

If kh would be determined at the time period between the start
of the experiment and the half-maximum biogas production, then
the variation of the dataset may be better explained. Therefore, the
hydrolysis rate constant at 50% of YB has been defined as alternative
to kh_ln as follows:

Table 1

Inoculum characterization of the eight trails of the calibration's dataset.

Parameter Unit T1 T2 T3 T4 T5 T6 T7 T8

TS [% FM] 4.65 4.98 4.83 4.80 4.53 4.43 4.11 4.44

VS [% FM] 3.32 3.58 3.57 3.53 3.20 3.08 2.82 3.04

TICa [g/kg] 8.51 7.46 9.30 9.30 8.96 9.17 9.54 10.0

VFAb [g/kg] 0.39 0.11 0.21 0.15 0.11 0.45 0.25 0.31

NH4-N [g/kg] 1.60 1.78 1.93 1.68 1.34 1.51 1.61 1.58

pH [�] 7.5 7.5 7.7 7.6 7.8 7.6 7.9 7.8

Biogas ratec [mL/(L*d)] 213 313 304 321 234 244 244 221

a Total inorganic carbon.
b Volatile fatty acids in g of acetic acid equivalent.
c Daily biogas production rate of the inoculum, 24 h before the BMP test.
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kh 0:5 ¼
lnð2Þ

t0:5
(3)

where kh_0.5 is the hydrolysis rate constant at 50% of YB in h�1, and
t0.5 is the time when half of YB has been reached in h.

This approach follows the logic of Koch and Drewes [15], who
suggested a Monod-type instead of the first-order model for pre-
dicting the BMP of complex substrates.

From Table 2 it can be seen that kh_0.5wasmoderately correlated
with XP, XF, HC, CL and NFC. This result already confirmed the
hypothesis that kh determined at the time period between the start
of the experiment and half-maximum of biogas production (kh_0.5)
better describes the kinetics of the biogas production. Therefore,
only kh_0.5 was used as dependent variable for the subsequent
regression analysis. However, YB was only weakly correlated with
both hydrolysis constants. This leads to the conclusion that the
amount of biogas produced is apparently not directly related to the
rate of the anaerobic process. ADL was also not correlated with the
two hydrolysis rate constants kh_ln and kh_0.5. There might be two
reasons for that: Firstly, lignin is indigestible under anaerobic
conditions [47] and its solubilization during the hydrolysis has no
impact on the subsequent biogas production. Secondly, the amount
of ADL in the dataset was relatively low with an average of 4% and
the enzymatic disintegration of the lignocellulosic matrix could be
quickly performed.

The values of kh_0.5 were plotted in a histogram (Fig. 1) and were
apparently normally distributed around the mean value. This im-
plies that the hypothesis of normal distribution cannot be rejected,
which was also confirmed by a Kolmogorov-Smirnov test at a sig-
nificance level of 0.05. This result indicates that the kh_0.5 is suitable
for further statistical analysis and could be used as regressand.

3.1.2. Principal component analysis

In order to examine the correlations among those parameters, a
principal component analysis (PCA) with principal component
regression (PCR) was conducted. The selected parameters from the
cross-correlation matrix (XP, XF, HC, CL, NFC, and kh_0.5) were
standardizedwith the center (mean) and scale (standard deviation)
procedure in order to evaluate the relative influence of the

parameters on the dataset. According to the PCR and based on the
first two PCs, 64% of the kh_0.5 variation in this dataset could be
explained (Fig. 2a). Although all parameters (XP, XF, HC, CL, NFC) are
statistically significant in this dataset, they cannot be used simul-
taneously as predictors, since some of them are highly correlated
with each other. CL, XF and HC are strongly positively correlated,
because they are located in the same direction and are close to each
other. Moreover, NFC is strongly negatively correlated with CL, XF
and HC, as it is located in the opposite direction (Fig. 2a). From these
four parameters, only one could be used as regressor in order to
minimize co-effects among the regressors. Of course, based on the
plant chemical composition it is impossible to consider two pa-
rameters as independent, since they are expressed in percentage of

Table 2

Cross-correlation matrix of chemical compounds, biogas yield and hydrolysis rate constant of the 131 samples of the calibration's dataset.

Fig. 1. Histogram for kh_0.5 values of calibration's dataset.
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TS [24]. NFC is closer to the outer circle (100% explanation) and
moreover, it is weakly correlated with XP (almost 90� angle be-
tween them). Consequently, based on the correlation matrix and
PCA, the parameters NFC and XP have been selected as regressors in
the subsequent multiple linear regression analysis.

Fig. 2b exhibits the plot of the scores for each sample of the
calibration's dataset. Samples that are clustered together have a
similar composition. Sampleswith positive scores on PC1 are rich in
fiber carbohydrates (CL, HC, XF) and low in NFC, such as common
meadow-grass. Potato and sugar beet are far from the other sam-
ples and with negative scores on PC1. Hence, it is clear that the
composition of these samples is very different. Samples with pos-
itive scores on PC2 are rich in XP, like clovers. The higher XP and
NFC are, the higher the kh_0.5 value is and hence, the faster the
biogas production process. The maize samples are clustered in two

groups: one on the right side (positive score on PC1) and one on the
left side of the plot (negative sore on PC1). The reason for this
observation is that some of the maize samples are from the whole
plant, while some are from maize stover only. This means that not
only the NFC content due to present or missing kernels are
different, but also the fiber content (CL, HC, XF) due to different
harvesting times.

3.1.3. Mallows' Cp test

A second statistical process based on the Mallows' Cp was
applied in order to define the best fitting model. The selected pa-
rameters (XP, XF, HC, CL, NFC) were the potential regressors and
kh_0.5 was the regressand. Table 3 presents exemplary the results of
the selection model method for the 5 best models. The model with
the parameters NFC and XP as regressors had the lowest Cp value.
Moreover, it was observed that with additional regressors both R2

and adjusted R2 (R2
adj takes into account also the number of re-

gressors) were not improved, and the RMSE did not change at all.
Hence, additional regressors could only slightly improve the ac-
curacy of the model calibration, while the model would become
less robust for external datasets. Consequently, two different sta-
tistical approaches (PCA andMallows' Cp) indicate NFC and XP to be
the most suitable regressors for the prediction of kh_0.5.

3.1.4. Discussion of regressors

Potential reasons why NFC has been identified to be an impor-
tant variable for the prediction of kh_0.5 might be as follows: Firstly,
the variable NFC describes the share of all carbohydrates in the
crop, since it is a percentage of VS. Secondly, carbohydrates (fiber
and non-fiber) typically occupy more than 80% of the total VS of
energy crops and hence, are the main source for biogas production.
Thirdly, during the anaerobic process in a BMP test, the readily
digestible fractions are degraded first and these are mostly char-
acterized by the variable NFC.

XP was also statistically significant for the prediction model.
Although hydrolysis rate of proteins is known to be lower than for
NFC [48], the analytical parameter XP characterizes the ageing of
the crop, whereas young plants are characterized by high share of
XP and good anaerobic digestibility and vice versa.

3.1.5. Multiple linear regression analysis

As a next step, a multiple linear regression analysis was per-
formed. Table 4 summarizes the results of the analysis of variance
(ANOVA). Overall, the model was statistically significant with a p
value as low as 0.001 and the effect of all variables (intercept, XP,
NFC) were also significant (Table 4). The regression coefficient of XP
was higher than the regression coefficient of NFC. However, based
on the standardized regression coefficient, both regressors had
similar impact on the model.

Finally, based on the calibration dataset, the following predic-
tion model has been developed for the estimation of the hydrolysis
rate constant of energy crops:

a

Fig. 2. a) Correlation loadings plot of principal components PC1 vs. PC2 for plant

chemical compounds of the calibration dataset. The outer circle indicates 100%

explained variance and the inner circle indicates 50% explained variance. b) Principal

components analysis (PCA) scores for each sample.

Table 3

Mallows' Cp model selection for the prediction of kh_0.5.

Index Cp Value R2 R2
adj

a RMSE Regressors

1 2.4 0.662 0.657 0.00143 XP NFC

2 2.9 0.666 0.658 0.00143 XP NFC XF

3 3.7 0.669 0.658 0.00143 XP ADL NFC XF

4 3.9 0.663 0.655 0.00143 XP CL NFC

5 4.1 0.668 0.657 0.00143 XP XL NFC XF

a R2
adj: Adjusted coefficient of determination (R2).
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kh_0:5 ¼ 0:002 þ 0:022 XP þ 0:012 NFC (4)

where kh_0.5 is expressed in h�1, and the chemical compounds are
expressed in kg/kgVS.

The residuals of the regression model have been tested with the
Kolmogorov-Smirnov test for normal distribution at a significance
level of 5% and the assumption of normality cannot be rejected.
Hence, the model can be considered as valid and fairly precise.

3.2. Validation with external data

A total of 91 samples were analyzed for the validation of the
model (see Table SM-2 in SM). Those samples were not included in
the calibration of the model. Both YB and kh_0.5 prediction models
were validated with this dataset. Table 5 summarizes the results of
the validation. Both models predicted the reference values with
high accuracy and explained bulk of variation in the dataset.
However, the models' performances differed. Potential reasons are
discussed below.

3.2.1. Assessment of model performance for the prediction of YB
The biogas yield model could predict measured values with an

average prediction error (CVRMSE) of 10%. Although the mean of
the predicted values was very close to the mean of the measured
values, the range of the values could not be predicted so well
(Table 5). The validation of the YB model has shown that the
extreme values of the dataset (min and max) were predicted with
low accuracy. However, the model could predict the dataset with a
coefficient of variation (CV) similar to the measured data andwith a
remarkable correlation coefficient of 0.62 for such a diverse dataset.
The RMSE is relatively high for the YB model. However, this is a
typical characteristic of global models, as they are suitable for
diverse substrates, but with lower accuracy than plant species
specific models.

3.2.2. Assessment of model performance for the prediction of kh_0.5
Themodel for kh_0.5 performedworse compared to the YBmodel

with an average prediction error (CVRMSE) of 15%. The range of the
dataset was underestimated and the CV was 10 percentage points
lower than the one of the measurements. However, the mean of the
predicted values was similar to the mean of the measured values,
and the predicted values were strongly correlated with the
measured values as indicated by a correlation coefficient of 0.93

(Table 5). The results indicate that the kh_0.5 model could predict
the differentiation in the dataset very well. This is further man-
ifested in the plot of measured versus predicted values, as the
points were very close to their regression line with a R2 value of
0.86 (Fig. 3).

Results presented in Fig. 3 show that the model performed
better for the range of kh_0.5 between 0.004 and 0.009. For mea-
surements above 0.009, the model underestimated the values.
Consequently, the CVRMSE was relatively high (15%). The model
has particularly shown poor performance for the samples of “vir-
ginia mallow”. Although this plant species was characterized by
high XP and NFC values, the model clearly underestimated kh_0.5.
Since the kh_0.5 value of “virginia mallow” plants was within the
calibration range of kh_0.5, this global model was able to predict the
differentiation among the samples. However, due to fact that the
plant species “virginia mallow” has not been included in the cali-
bration, the model could only poorly predict the kh_0.5 value. This
moderate prediction accuracy might also be explained by the fact
that the complexmicrobial processes are approximated by a simple
first-order kinetic model. It has been shown that more complex
kinetic models can simulate more accurately the biogas production
than a first-order model [6]. However, the simplicity of a first-order
model makes this approach very attractive to rapid feedstock
assessment.

3.2.3. Assessment of model performance for the prediction of BMP

test

Two samples were selected to visualize the models' perfor-
mance. Based on the best and worst performance of the model,
sample V-4 (cup plant) and sample V-59 (virginia mallow) from the
validation dataset were selected (Table 6).

Table 4

ANOVA from the multiple regression analysis.

Variable Regression coefficients Standard error t value p value Standardized regression coefficients

Intercept 0.002 0.0004 5.33 <0.001 0

XP 0.022 0.0019 11.44 <0.001 0.59

NFC 0.012 0.0010 12.18 <0.001 0.63

Table 5

Parameters of the independent validation of biogas yield prediction model (Eq. (2))

and hydrolysis rate constant prediction model (Eq. (4)).

Parameter YB measured YBEq. (2) kh_0.5 measured kh_0.5Eq. (4)

Min 378 410 0.0040 0.0045

Max 720 678 0.0151 0.0113

Range 342 268 0.0111 0.0068

Mean 576 561 0.0069 0.0066

CV 11% 12% 31% 21%

RMSE e 60 e 0.0011

CVRMSE e 10% e 15%

r e 0.62 e 0.93
Fig. 3. Measured vs. predicted values of hydrolysis rate constant (kh_0.5) from the

validation of the model (Eq. (4)).
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Fig. 4 shows the measured and the predicted values for the
whole duration of the trial, whereas biogas yields were predicted
according to Eq. (2) (YB model), and biogas production rates were
predicted according to Eq. (1) (first-order kinetic model) based on
the kh_0.5 model (Eq. (4)). As for sample V-4, YB was well predicted
and the biogas production was also precisely estimated until the
half of YB. Between the half and the final value of YB, the model
slightly overestimated the biogas production (Fig. 4).

As for sample V-59, the biogas production was underestimated
until the half of YB, after which the biogas production and the YB

were overestimated. In order to explain the different behavior of
the models, the chemical compositions of the two samples have to
be considered. About 33% lower HC and 42% lower ADL was
recorded for sample V-59 than for sample V-4 (Table 6) and since
ADL has a higher impact on the YB model, the value was over-
estimated. Additionally, more than the double amount of XP and
NFC was recorded for sample V-59 and, as already mentioned, the
plant species of sample V-59 was not included in the dataset of the
model calibration. Hence, the global model could only roughly
predict the hourly biogas production of the unknown species. Being
able to at least roughly predict the BMP curve of an unknown
species, the model has proven its suitability as a global model. By
extending the calibration to more species, the existing model can
be modified in future studies.

The biochemical processes of anaerobic digestion are very
complex and cannot be precisely described by a simple first-order
kinetic model as has been concluded by Li et al. [49] already.
However, both models could accurately predict the differentiation
of the samples and these results depict the main advantage of this
study's approach.

Based on themodel's prediction, the biogas yield of sample V-59
was 25% higher than of sample V-4 and the time to reach the half-

maximum biogas production of sample V-59 was 54% less than of
sample V-4. Based on the experimental data, the biogas yield of
sample V-59 was 19% higher than of sample V-4 and the time to
reach the half-maximum biogas production of sample V-59 was
43% less than of sample V-4. Although the values could not be
estimated with high accuracy, both results lead to the same
conclusion concerning the feedstock characterization. Hence,
feedstock ranking with this approach is possible, which was the
main aim of the study.

The model is able to predict the different biogas production
rates of diverse samples and it can be applied for substrate ranking.
Consequently, linear regressionmodels can be utilized for substrate
assessment, defining differences between samples. However, the
prediction accuracy of individual samples may be less satisfying,
since systematic effects (e.g., microclimate of local cultivation
conditions, new cultivars, etc.) cannot be predicted by such static
models. Furthermore, the prediction of the biogas production rate
can provide additional information about the determination of an
optimal phenological stage of plants in order to optimize the
feedstock's quality for agricultural biogas plants providing biogas
on-demand.

3.3. Outlook and future research

The first-order kinetic model depicted the differentiation of the
samples well. The proposed approach for biogas production in BMP
test prediction was developed based on large datasets of various
energy crops. Hence, themodel can be considered as a global model
enabling the rough estimation even of unknown species. Future
studies should enhance the existing model by extending the cali-
bration dataset with additional plant species or cultivars. Specific
models can be developed following the proposed approach in order
to identify variables that could minimize the estimation error.

4. Conclusion

The results of this study indicate that a first-order model can
reproduce the biogas production rate in a BMP test and linear
regression models can precisely predict the differentiation in the
biogas production of different energy crops. Despite the fact that
the prediction is limited due to its simplicity and cannot accom-
modate extreme cases, this approach can be a useful tool for
practitioners in order to assess the suitability for biogas production
of different feedstocks. This is a first step towards the development
of a global model with high precision for the prediction of both
biogas yield and production rate simultaneously.
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Table 6

XP, HC, ADL and NFC content of the two selected samples.

Sample Nr. Common Name XP [kg/kgVS] HC [kg/kgVS] ADL [kg/kgVS] NFC [kg/kgVS]

V-4 Cup plant 0.076 0.153 0.077 0.209

V-59 Virginia mallow 0.168 0.103 0.045 0.450

Fig. 4. Cumulative biogas production in BMP test (solid curve) and the prediction

(dashed curve) for cup plant (V-4) and virginia mallow (V-59).
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Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.renene.2017.10.100.
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A B S T R A C T

The objectives of this study were to assess and validate previously published prediction models with an in-

dependent dataset and to expose the power and limitations of linear regression models for predicting biomethane

potential. Two datasets were used for the validation, one with all individual samples and one with the average

values of each cultivar. The results revealed similar performances of all four models for the individual samples.

The methane yields of the cultivars were predicted more accurately than the methane yields of the individual

samples. The grassland specific model predicted the variation in the dataset with an R2 of 0.84 and the slope of

the regression line was equal to 1.0. Linear regression models are suitable to depict the variation in methane

yield and for substrate ranking. However, the prediction error of the absolute values may be high since sys-

tematic external effects cannot be determined by a regression model.

1. Introduction

Sustainable energy policy and low emission energy production

systems are needed in order to reduce the anthropogenic contribution

to greenhouse gas emissions and global warming. Moreover, the

European Union (EU-28) has to increase the share of renewable energy

resources in order to achieve the targets committed in the Paris climate

agreement (Liobikienė and Butkus, 2017). Anaerobic digestion for the

production and utilization of biogas is considered a cornerstone of both

energy transition and circular economy. The biogas sector can provide

sustainable electrical energy with a low or neutral carbon footprint.

Methane production from lignocellulosic agricultural biomass is con-

sidered as an environmentally sound and sustainable form of energy

generation (Chandra et al., 2012). However, due to the increasing land

use for energy crops production, first generation biomass has been

critically discussed. For instance, the increasing maize cultivation in

Germany in the recent past has compromised public acceptance of

agricultural biogas plants (Kortsch et al., 2015). Recent studies have

shown that sustainable alternatives to the use of maize as an energy

crop are available in the EU-28 member states, the use of which would

assure a continuous progressive development of the European biogas

sector (Meyer et al., 2017). For that purpose, second generation bio-

mass is the key parameter for sustainable growth. Roadside grass and

agricultural and non-agricultural grasslands represent a high potential

of biomass, and its utilization is desirable.

Biogas can be utilized according to the current energy demand, in

order to cover electricity production gaps (Mauky et al., 2016). To

define an optimal flexible operational concept of a biogas plant, many

factors should be taken into account; one of them is the biogas potential

of the feedstock. This is accomplished through biomethane potential

(BMP) tests; however, the execution of those tests is a time-consuming

and costly process. Alternatively, fodder analysis is a standard method

to assess the nutritive value of feedstock, with low-cost and reliable

analytical methods already available. Thus, models allowing the pre-

diction of biogas and methane yield based only on the chemical com-

position of a sample are desirable. In this study, four BMP prediction

models were selected in order to demonstrate the differences of global

and specific models and the influence of the selected regressors on the

prediction. Firstly, the model developed by Triolo et al. (2011) was

selected. This methane yield (YM) prediction model was developed for

energy crops, and it was calibrated with ten values. During the cali-

bration of the model, a R2 of 0.77 was recorded with a relative average

estimation error of 6%. Cellulose (CL) and lignin (ADL) were used as

regressors. The model depicts only the negative effect of the fibers on

methane production. Thus, the model is not suitable for samples with

low or no detectable fibers or for samples with extremely high fiber

concentrations, since it will overestimate or underestimate the methane

production, respectively. The second selected model was developed by
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Thomsen et al. (2014). There are two versions of this model based on

different biomass analysis methods. In this study, the model based on

fodder analysis was used. The authors used a dataset consisting of their

own data, as well as values from literature. In total 64 samples were

used in order to develop a global model for BMP prediction. The re-

lative average estimation error was 18% with a R2 of 0.97 during ca-

libration (Thomsen et al., 2014). The model was presented as YM=347

(CL+HC+R)− 438 ADL, but since residuals (R) were defined as

R=1− CL−HC−ADL, the regressors of the model can be limited

only to ADL. The third selected model was developed by Dandikas et al.

(2014), which was also based on two regressors, namely hemicellulose

(HC) and ADL. HC was used to express the positive and ADL the ne-

gative effect of fibers on biogas production. To develop the model 31

samples were used, and during the calibration a R2 of 0.83 was re-

corded with a relative average estimation error of 8%. Finally, a

grassland species specific model developed by Dandikas et al. (2015)

was utilized. In contrast to the global model of Dandikas et al. (2014), it

was proven that for grassland species, crude protein (XP) was also

needed to depict the differentiation of the samples on YM. The cali-

bration of the model based on 61 samples and the relative average

estimation error was 5% with a R2 of 0.70.

The objective of this study is to assess and validate the previously

published grassland species specific model (Dandikas et al., 2015) by an

external independent dataset. Moreover, three global prediction models

for energy crops were chosen in order to expose the possibilities and

limitations of each modeling approach. All four biomethane potential

(BMP) prediction models were validated two times by an independent

dataset of grassland samples, once with all individual samples and once

with the average value of each cultivar.

2. Material and methods

2.1. Substrate

Field experiments have been performed under defined conditions in

order to create a dataset with grassland plant species at different de-

velopmental stages. The plants were harvested based on the BBCH-

scale. The BBCH-scale is a standard two-digit code, to describe the

phenological growth stage of plant species (Hess et al., 1997). Six ty-

pical agricultural grassland plant species were selected: four grass

species (Lolium perenne, Dactylis glomerata, Poa pratensis, Festuca pra-

tensis) and two legume species (Trifolium pratense, Trifolium repens),

grown in field plots of 10 m2. Moreover, four cultivars from the species

Lolium perenne were tested (Table 1). The crop trial was performed in

2014 in Pulling, Germany. In order to gain information about the

chemical composition of the crops along with their development, each

cultivar was harvested several times over a certain period in 2014 at

distinct phenological stages. The collection of the samples took place at

first, second and third growth cycles. During the first growth cycle, five

harvest dates were scheduled at defined phenological development

stages based on the BBCH-scale, and during the second and third

growth cycle, three harvest dates. However, due to weather conditions

in 2014, the harvest dates were reduced. In total, 99 samples were

scheduled to be harvested; however, only 55 samples could finally be

used in the dataset (Table 2). Directly after harvest, the samples were

dried in a forced air oven at 40 °C. After the drying process, the samples

were ground with a cutting mill to pass a sieve of 10mm (Retsch SM

200, Haan, Germany) and stored at room temperature.

The validation of the models was performed in two different ap-

proaches. The first approach was the validation of the models with each

individual sample (N=55) and the second approach with each cultivar

(N= 9). The mean value of seven individual samples was calculated for

the cultivars Respect, Sirius and Husar. The mean value of six samples

was calculated for the cultivars Sponsor, Preval, Titus and Lirepa. For

the cultivars Arvicola and Lato, the mean value of five samples was

used. During the first approach, the effect of harvest date (i.e. T
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developmental stage under different weather conditions) was empha-

sized, while the second approach focused on the differences of the

cultivars with respect to the different plant groups (i.e. species).

The field experiment and the plant species selection was organized

and performed by the Institute for Crop Science and Plant Breeding of

the Bavarian State Research Center for Agriculture in Freising,

Germany.

2.2. Fodder analysis

Total solids (TS), crude ash (XA) and volatile solids (VS) were de-

termined gravimetrically according to Standard Methods for the

Examination of Water and Wastewater (APHA, 2017). Crude fiber (XF)

content was determined by the Weender analysis; moreover, the

important fiber fractions (NDF, ADF, ADL) were determined by the Van

Soest method (Van Soest and Wine, 1967). Hemicellulose (HC) and

cellulose (CL) contents were calculated (HC=NDF− ADF,

CL=ADF−ADL). Nitrogen content was determined by the Dumas

method and crude protein (XP) was calculated based on the nitrogen

content multiplied by 6.25. Crude lipid (XL) content was determined by

the extraction method. Starch (ST) content was determined polarime-

trically and reducing sugar (RS) content volumetrically. Non-fiber

carbohydrates (NFC), nitrogen-free extract (NfE) and organic residue

(OR) were calculated (NFC=100− XA− XP− XL−NDF,

NfE= 100− XA− XP− XL− XF,

OR=100− XA− XP− XL− ST− RS−NDF). All analytical methods

were carried out by the Department of Quality Assurance and Analytics

of the Bavarian State Research Center for Agriculture in Freising,

Table 2

Chemical composition, biogas and methane yield of the 55 samples. The chemical compounds are expressed in g/kgVS, the biogas and methane yield in L/kgVS.

Sample XP XF NfE XL ST RS HC CL ADL OR NFC YB YM

G-1 138 189 643 30 ND 263 213 235 26 95 358 676 356

G-2 129 179 660 31 ND 292 198 216 14 120 412 645 345

G-3 108 205 657 30 ND 275 226 247 21 93 368 637 333

G-4 125 236 602 37 ND 146 277 259 62 94 240 547 291

G-5 144 213 629 14 ND 215 272 246 22 86 301 572 308

G-6 152 192 617 39 ND 198 197 261 36 118 315 655 354

G-7 170 178 611 40 ND 198 194 242 36 120 318 708 385

G-8 121 239 617 23 ND 162 191 296 36 171 333 698 374

G-9 220 245 499 36 ND 63 319 286 18 53 121 584 316

G-10 191 251 523 35 ND 57 299 296 26 92 153 577 313

G-11 163 231 571 34 ND 109 291 271 25 107 216 597 322

G-12 152 242 592 14 ND 160 295 267 28 83 243 606 328

G-13 161 185 619 35 ND 217 207 242 25 113 330 629 346

G-14 127 226 623 24 ND 162 166 288 37 192 357 652 349

G-15 149 243 580 28 ND 130 296 289 18 90 220 642 345

G-16 97 265 605 33 ND 108 310 315 25 112 220 594 306

G-17 175 240 543 41 ND 76 300 267 39 90 178 547 298

G-18 158 247 582 13 ND 135 343 270 25 57 192 549 302

G-19 169 176 618 37 ND 225 194 231 22 122 346 663 357

G-20 123 201 649 27 ND 252 206 251 17 125 376 651 342

G-21 130 179 659 32 ND 263 206 228 14 128 391 663 353

G-22 90 214 671 24 ND 261 243 265 16 101 361 662 352

G-23 79 267 630 23 ND 164 282 310 28 114 278 599 319

G-24 192 243 525 40 ND 89 289 274 37 79 168 612 362

G-25 155 204 626 15 ND 224 271 238 22 76 300 620 335

G-26 183 196 577 43 ND 182 215 240 37 101 282 679 377

G-27 164 221 574 41 ND 165 246 253 26 105 270 620 338

G-28 159 193 604 44 ND 187 219 245 36 109 297 696 379

G-29 124 222 619 35 ND 173 219 274 38 137 310 614 330

G-30 108 301 555 36 ND 87 305 321 37 107 194 570 308

G-31 109 327 527 37 ND 24 304 352 39 130 158 536 290

G-32 167 259 557 18 ND 86 304 306 36 83 169 524 288

G-33 182 208 576 33 ND 154 223 258 31 119 273 636 345

G-34 129 248 596 27 ND 141 244 294 39 126 267 603 329

G-35 108 274 594 24 ND 136 322 303 43 64 200 588 319

G-36 120 319 548 13 ND 51 401 358 39 16 68 488 269

G-37 152 264 572 12 ND 123 361 297 28 27 150 572 310

G-38 139 197 631 33 ND 224 222 251 24 108 332 621 336

G-39 134 225 612 29 ND 179 236 274 20 128 307 652 352

G-40 122 227 622 30 ND 172 254 279 21 121 294 662 359

G-41 109 243 621 28 ND 163 254 294 21 132 295 655 351

G-42 131 273 558 38 ND 105 295 282 50 99 204 574 305

G-43 157 251 579 13 ND 122 305 298 22 84 206 545 297

L-1 162 185 631 21 74 116 64 245 51 266 456 577 318

L-2 157 198 627 19 70 109 76 256 55 258 437 540 297

L-3 174 195 609 22 88 99 88 228 52 248 435 524 287

L-4 209 196 570 25 88 78 147 225 59 169 336 539 292

L-5 178 219 581 21 70 99 137 258 51 184 354 537 292

L-6 178 241 557 24 73 79 129 293 64 161 313 535 290

L-7 227 154 588 31 53 95 104 212 51 227 375 639 352

L-8 191 182 602 25 52 132 99 215 41 246 429 585 319

L-9 207 178 590 25 71 98 77 235 53 235 404 586 325

L-10 163 182 629 26 71 90 62 247 53 289 449 538 289

L-11 223 195 540 42 99 55 183 260 52 88 241 578 286

L-12 285 183 503 30 79 60 140 198 74 135 275 506 277

ND: not detectable, G: grass, L: legume.
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Germany.

2.3. BMP test

The biogas yield (YB) and methane yield (YM) has been determined

under laboratory conditions (BMP test). The experiments were per-

formed based on the German guideline VDI 4630 (2016). The inoculum

used for the experiments was the effluent of a pilot-scale agricultural

biogas plant. The biogas plant was fed with 80% cattle manure and 20%

of a dairy cattle feeding mixture (mostly maize and grass silage) at an

organic loading rate of 3.0 kgVS/(m
3 * d), with a hydraulic retention

time of 19 days. The digester was operated at 38 ± 1 °C. More in-

formation about the inoculum used can be found in Dandikas et al.

(2015).

The BMP test was performed with a substrate to inoculum ratio of

0.5 ± 0.1 based on VS at 38 ± 0.5 °C. The volume of biogas was

measured by Milligascounters (Ritter Apparatebau GmbH, Bochum,

Germany). The digester had a working volume of 1.5 L and each sample

was tested in triplicate. One gasbag was attached to three digesters

(three replicates) and a gas analysis was performed for every 1.5 L

biogas produced. The gas analysis was carried out by infrared sensor for

CH4 und CO2 and by an electrochemical sensor for O2 (Awite Bioenergie

GmbH, Langenbach, Germany). YB and YM are reported as standard liter

(dry gas at 273.15 K and 1013.25mbar) for each kilogram volatile so-

lids added (L/kgVS).

2.4. Statistical analysis

The predicted values were compared with the measured values from

the BMP tests. Descriptive statistic, correlation and variation analyses

were performed in order to quantify the relationship among the values.

To evaluate and compare the prediction models, the parameters cor-

relation coefficient (r), slope of the regression line (m), statistical bias

(average value of the residuals), root mean square error (RMSE) and

coefficient of variation of the RMSE (CVRMSE) were calculated.

3. Results and discussion

3.1. Measured biogas and methane yield

For the first validation approach, each individual sample was used.

According to the BMP tests, the biogas and methane yields ranged be-

tween 488 and 708 L/kgVS, and 269 and 385 L/kgVS, respectively, with

a coefficient of variation (CV) of 9% (Table 2). This indicates that the

dataset represents a wide range of different qualities of grassland spe-

cies, making it suitable as an independent dataset for validation. Among

all cultivars, a significant difference in YB and YM was detected with a p

value of 0.02 and 0.04, respectively. Within the two plant groups

(grasses and legumes), the difference of YM was not significant

(p > 0.1). However, the YM between the two plant groups (grasses and

legumes) was found to be highly significantly different from each other

(p < 0.01). For the second validation approach, the mean values for

each plant cultivar were used. Statistically, a significant difference was

found between the groups in the YB and YM with a p-value of 0.01.

Table 3 shows the mean values of the biogas yield and the chemical

composition of the nine cultivars.

3.2. Methane yield prediction of each individual sample

The models of Triolo et al. (2011) and Thomsen et al. (2014) were

developed only for the prediction of the methane yield of energy crops.

Therefore, only the values of the methane yield were presented during

the validation.

Fig. 1 shows the XY-plot of the measured values versus the predicted

values of methane yield, and Table 4 summarizes the performance of all

four models. The global models of Triolo et al. (2011), Thomsen et al.

(2014), and Dandikas et al. (2014) predicted the average YM value of

the dataset with high accuracy. The average difference between the

predicted and measured values (bias) was only 7, −6 and 6 L/kgVS,

respectively. The model of Triolo et al. (2011) overestimated the

maximum value and underestimated the minimum value, which led to a

higher YM range prediction. This observation can be explained by the

fact that the model starts at the maximum YM at 447 L/kgVS, which is

reduced with increasing content of CL and ADL. Since the extreme

values in the dataset are described by different plant groups (grasses

and legumes) and their composition was different (high CL and low

ADL content for grasses with a mean value of 274 and 29 g/kgVS, re-

spectively, and low CL and high ADL content for legumes with a mean

value of 239 and 55 g/kgVS, respectively), the model overestimated the

maximum value and underestimated the minimum value. The influence

of ADL content on YM seems to be higher than CL content, since the

coefficient of variation (CV) for ADL was higher than CL, with CV va-

lues of 41% and 13%, respectively. Herrmann et al. (2016) also high-

lighted the strong negative effect of ADL content on YM. The slope of the

regression line was at 0.71, and this was the best value among the

presented models (Fig. 1). Additionally, the best correlation coefficient

(r) between the measured and predicted values was recorded for this

model with a value of 0.52 (Table 4). This indicates that the model of

Triolo et al. (2011) could explain the variation in the dataset more

accurately than the other models. Since the values were relatively

closely distributed around the best fit line, the relative average esti-

mation error (CVRMSE) was 11%.

The model of Thomsen et al. (2014), which starts at a much lower

YM value than the model of Triolo et al. (2011) and reduces YM with

increasing ADL content, underestimated the maximum value and

overestimated the minimum value. This led to a lower YM range. The

slope of the regression line was 0.19 and the variation among the

samples could not be reflected. However, since the values gathered

close to the best fit line, the CVRMSE was only 8%, which is the best

value among the presented models.

The model of Dandikas et al. (2014) slightly underestimated both

the maximum value and the minimum value; however, the range of the

values could be well predicted (Table 4). The slope of the regression

line was 0.47 and the CVRMSE was 11%. The model developed speci-

fically for grassland samples of Dandikas et al. (2015) showed a bias of

32 L/kgVS, which caused an overestimation of almost all samples. The

range was quite well reflected (Table 4). The correlation between the

measured and predicted values was 0.44, the slope of the regression line

was 0.34, and the CVRMSE was 13%.

The selected models explained only 27% or less of the variation in

the dataset, although the CVRMSE was between 8 and 13%. The cor-

relation between the measured and the predicted values can be char-

acterized as weak or moderate, since the r value was between 0.39 and

0.52. A similar observation was reported by Rath et al. (2014) when

comparing stoichiometric and empirical biogas yield prediction models

using a dataset of maize cultivars. A possible explanation for this might

be the fact that each value in this dataset was treated as an individual

sample, despite likely not being a representative sample of the specific

harvest conditions. Due to microclimate conditions or other external

effects, the physico-chemical structure of the sample could probably not

be considered representative for the particular specific harvest date or

even the phenological stage (actual status versus BBCH-code). This in-

evitably can lead to high uncertainty. A second explanation for the poor

correlation between the measured and predicted values could be that

there are many factors that can affect the precision and accuracy of the

chemical fodder analysis and the biological BMP tests (Mittweg et al.,

2012; Raposo et al., 2011). For both analytical methods, errors of up to

10% are common; this causes a variation within the dataset, which is

not determined by the actual composition of the sample. These type of

random effects on the sample traits may hinder the detection of a clear

relationship between the composition of a sample and its YM (Rath

et al., 2014, 2013).
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3.3. Methane yield prediction of average values of each cultivar

The average values of the chemical compounds can be divided in

two groups: a) grass samples (7 cultivars) and b) legume samples (2

cultivars). The average XP, OR, NFC and ADL content of grasses were

significantly lower (p < 0.05) than those of legumes, whereas the

average XF, and HC content of the grass samples were significantly

higher (p < 0.05) than those of legumes (Table 3). The chemical

composition of the two plant groups was dissimilar. This chemical

structure influenced the rate of degradation, and even more the biogas

production.

Fig. 2 shows the measured values versus the predicted values of the

methane yield for the nine cultivars, and Table 5 summarizes the per-

formance of all four models. There was found a strong correlation

Table 3

Average values of each compound and biogas and methane yield of the nine cultivars. The compounds are expressed in g/kgVS, the biogas and methane yield in L/

kgVS.

Parameter Grasses Legumes

Arvicola Respect Sponsor Sirius Husar Lato Preval Titus Lirepa

XP 129 167 144 134 145 138 132 176 216

XF 204 225 234 212 245 263 236 206 179

NfE 638 576 592 626 573 577 604 596 575

XL 29 32 29 28 36 22 28 22 30

ST ND ND ND ND ND ND ND 77 71

RS 238 135 138 211 129 121 161 97 88

HC 237 255 270 242 259 310 261 107 111

CL 241 274 279 257 285 302 280 251 228

ADL 29 29 28 22 36 36 26 55 54

OR 98 106 109 106 110 70 112 214 203

NFC 336 243 249 317 240 192 273 388 362

YB 615 632 602 639 606 577 618 542 572

YM 326 342 324 346 330 314 333 296 308

ND: not detectable.

Fig. 1. Measured versus predicted values of methane yield (L/kgVS) from 55 individual samples. Top left: model of Triolo et al. (2011), top right: model of Thomsen

et al. (2014), bottom left: model of Dandikas et al. (2014) and bottom right: model of Dandikas et al. (2015).

V. Dandikas et al. Bioresource Technology 265 (2018) 372–379

376



(r > 0.85) between predicted and measured values for all four models

(Table 5), thus more than 70% of the variation of YM within the dataset

could be explained (R2 > 0.7, Fig. 2). The performance of all four

models was markedly improved by using average values; however,

differences among the models can be identified. To compare the models

and expose their pros and cons, the statistical parameters listed in

Table 5 were considered.

The predicted values were significantly correlated with the mea-

sured values with r values of 0.90, 0.89, 0.85 and 0.92, for the models

of Triolo et al. (2011), Thomsen et al. (2014), Dandikas et al. (2014),

and Dandikas et al. (2015), respectively. Again, the global model of

Triolo et al. (2011) and Dandikas et al. (2014) performed very similar

for the tested dataset. Both models predicted the average value of

methane yield close to the measured value and they separated the two

plant groups (grasses and legumes) well. Their slopes of the regression

lines were again too steep with 1.80 and 1.69, respectively. This re-

flected the overestimation of the maximum value and the under-

estimation of the minimum, resulting in an overestimated range of the

values. The CVRMSE was 6% for both global models.

The two groups (grasses and legumes) could not be clearly defined

in XY-plot by the global model of Thomsen et al. (2014), which showed

an overall similar performance as for the individual samples. Although

the difference of ADL content between the two plant groups was sig-

nificant (p < 0.01), a model based on ADL alone could not accurately

predict the methane yield. The correlation coefficient between the

predicted and the measured values was 0.89, but the slope of the

Table 4

Performance of the tested models to predict the methane yield of the 55 in-

dividual samples.

Parameter Measured

values

Triolo

et al.

(2011)

Thomsen

et al. (2014)

Dandikas

et al. (2014)

Dandikas

et al. (2015)

r – 0.52 0.50 0.39 0.44

CVRMSE – 11% 8% 11% 13%

Bias – 6.76 −5.61 5.68 32.4

Average 325 332 320 331 358

Max 385 393 336 376 403

Min 269 229 289 242 310

Range 116 164 47 134 92

Fig. 2. Measured versus predicted values of methane yield from 9 cultivars (average values). Top left: Model of Triolo et al. (2011), top right: Model of Thomsen et al.

(2014), bottom left: Model of Dandikas et al. (2014) and bottom right: Model of Dandikas et al. (2015).

Table 5

Performance of the tested models to predict the methane yield of each cultivar.

Parameter Measured

values

Triolo

et al.

(2011)

Thomsen

et al. (2014)

Dandikas

et al. (2014)

Dandikas

et al. (2015)

r – 0.90 0.89 0.85 0.92

CVRMSE – 6% 3% 6% 10% (2%*)

Bias – 7.08 −4.84 6.22 32.9

Average 324 331 319 331 357

Max 346 368 330 358 374

Min 296 277 304 274 323

Range 50 91 26 84 51

* After bias correction.
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regression line was 0.52. Therefore, the maximum value of the dataset

was underestimated and the minimum value was overestimated, re-

sulting in a lower range of the values. However, since the values were

close to the best fit line, the CVRMSE was only 3%.

The grassland species specific model of Dandikas et al. (2015)

predicted precisely the variation within the dataset, reflected by a slope

of the regression line of 1.0 and a correlation coefficient of 0.92.

However, a systematic overestimation of each value was observed,

since the regression line was parallel to the best fit line and the over-

estimations were consistently in the same direction. The residuals of the

model were recorded between 26 and 44 L/kgVS; the average value of

the residuals (bias) was 33 L/kgVS. This systematic deviation from the

best fit line caused an CVRMSE of 10%, which is reduced by bias cor-

rection to only 2%. It is assumed that the CVRMSE of 2% refers only to

the random error of the model. At this point, it should be noted that the

bias correction is valid only for this specific dataset. The shift in each

datapoint was most likely caused by the different range of the dataset

used in the calibration of the model (see Table 2 in Dandikas et al.,

2015), which could be explained by differences in the performance of

the inoculum and/or the other year and site of harvest. Locher et al.

(2005) faced this type of bias during their NIR model validation, as

well, which highlights that samples traits may show some systematic

year-specific variation.

4. Summary

The single-parameter model of Thomsen et al. (2014) did not fulfill

the minimum results expected during validation. This simple concept

(only ADL changes YM) does not reflect the complex variation of the

degradability of the samples, which can be seen by the minor slope of

the regression lines. However, this approach can be characterized as a

robust mono-causal model.

Using all individual samples for the validation, one key problem was

highlighted with all models: the prediction needs reliable data in the

sample composition as well as YM. The data of all individual samples

vary reasonably, causing a low correlation between predicted and

measured data. This finding is in line with von Cossel et al. (2018), who

also showed that for the prediction of individual samples, r values be-

tween 0.12 and 0.51 were recorded. The authors also highlighted the

importance of the crop-specific intercepts (bias correction) for high

model accuracy. The correlation between predicted and measured data

was increased by using average values of each cultivar. In this case, the

grassland specific model of Dandikas et al. (2015) proved to be better

than the other tested models. However, this positive observation is si-

multaneously a drawback, since the differentiation between harvest

dates (i.e. developmental stages of the plants) was kept hidden within

the values. The good prediction with the Dandikas et al. (2015) model

means that the model described the plant cultivars better than the

changes caused by aging of the plants. A possible explanation is that the

aging of these plants was less important for YM generation, at least

within the observed growth stages, than for the use for fodder pro-

duction (Tallowin, 1999). Mast et al. (2014) showed that the harvest

dates of perennial crops did not always significantly influence the YM.

Wahid et al. (2015) also reported, that a significant difference on YM

was not always observed among the harvest dates within a growth cycle

of grassland species. In contrast, the YM of grassland plants harvested

from May to February decreased substantially with a later harvest

(Herrmann et al., 2014) Another possible explanation could be that the

model may hide the effect of growth stage and this effect was related to

the random error of the model. Once again, the results support the

general limitation of empirical models that, specific models could dif-

ferentiate minor changes in the samples only by a distinct calibration.

On the other hand, the specific calibration of a model will reduce the

robustness and thereby the range of application of the model. For the

presented data the models of Dandikas et al. (2014) and Triolo et al.

(2011) can be used to rank samples according to YM into three levels

(low, medium, high) even for the dataset with the values of each in-

dividual sample.

5. Conclusions

The linear regression models could not explain more than 27% of

the dataset variation of all individual samples; however, they can be

used to rank feedstocks. Using the average values of each cultivar the

grassland species specific model could predict the variation of the da-

taset more precisely than the global models. Furthermore, using these

average values minimizes the prediction error and improves the esti-

mation of the differences among the samples. External factors may af-

fect the physical–chemical structure of the plants; therefore, a calibra-

tion dataset should be updated frequently.
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