Referenzarchitektur eines integrierten Informationssystems zur Unterstützung der Instandhaltung

Andreas Reidt

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Vorsitzender: Prof. Dr. Martin Bichler
Prüfer der Dissertation: 1. Prof. Dr. Helmut Krcmar
 2. Prof. Dr. Florian Matthes

Die Dissertation wurde am 08.06.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 29.01.2019 angenommen.
Zusammenfassung

Die fortschreitende Digitalisierung und Trends wie die Industrie 4.0 führen zu großen Umwälzungen im produzierenden Gewerbe. Unterstützende Prozesse wie die Instandhaltung trifft dieser Wandel besonders stark, da deren Komplexität und Bedeutung durch neuartige Technologien und Geschäftsmodelle sowie die zunehmende Serviceorientierung wächst. Höhere Anforderungen an das Personal durch kürzere Innovationszyklen, komplexere Tätigkeiten, steigende IT-Durchdringung und Kostendruck sind die Folge und stehen einem steigenden Alter der Beteiligten in Deutschland und einer hohen Fluktuation des Personals gegenüber. Um diese Herausforderungen zu meistern und zur Unterstützung des Personals bei der Instandhaltung können Informationssysteme entwickelt werden, die ein Wissensmanagement anbieten, Fernwartung und vorrausschauende Instandhaltung ermöglichen und kontextsensitive Informationen über neuartige Benutzerschnittstellen bereitstellen.

Um die integrierte Entwicklung von Instandhaltungssystemen zu erleichtern, wird in dieser Arbeit eine Referenzarchitektur für ein integriertes Informationssystem zur Unterstützung der Instandhaltung entwickelt. Referenzarchitekturen sind in Forschung und Praxis ein probates Mittel, um Domänen- und Architekturwissen bereitzustellen und damit die Entwicklung zu fördern. Die entworfene Referenzarchitektur soll die Entwicklung durch die Bereitstellung von Domänenwissen über die Instandhaltung, generische und spezifische Anforderungen an Instandhaltungssysteme sowie eine abstrakte, auf Erweiterung ausgelegte Architektur des zu entwickelnden Systems mit vorab definierten Variationspunkten unterstützen. Die Informationen sollen so dargestellt werden, dass dadurch die domänenübergreifende Zusammenarbeit zwischen an dem Entwicklungsprozess beteiligten Stakeholdern gefördert wird.

der Entwicklung erarbeitet. Um die Eignung der Referenzarchitektur dahingehend zu überprüfen, wird sie mittels verschiedener Methoden evaluiert und ihre Nützlichkeit damit attestiert.
Inhaltsverzeichnis

ZUSAMMENFASSUNG .. II
INHALTSVERZEICHNIS .. IV
ABBILDUNGSVERZEICHNIS ... IX
TABELLENVERZEICHNIS .. XI
ABKÜRZUNGSVERZEICHNIS .. XIII

1 EINLEITUNG .. 1
 1.1 Motivation und Relevanz .. 1
 1.2 Forschungsleitende Fragestellungen .. 5
 1.3 Wissenstheoretische Grundlagen .. 8
 1.3.1 Einordnung in die Wirtschaftsinformatik ... 8
 1.3.2 Forschungsdesign .. 8
 1.4 Aufbau der Arbeit ... 13

2 MERKMALE VON REFERENZARCHITEKTUREN .. 15
 2.1 Einleitung .. 15
 2.2 Begriffliche und theoretische Grundlagen .. 16
 2.2.1 Softwarearchitektur ... 16
 2.2.2 Produktlinienarchitektur ... 17
 2.2.3 Referenzmodell ... 17
 2.2.4 Definition Referenzarchitektur .. 18
 2.3 Methodik zur Erstellung von Referenzarchitekturen .. 34
 2.3.1 Methoden zur Erstellung von Referenzarchitekturen .. 34
 2.3.2 Verwendete Methodik zur Erstellung von Referenzarchitekturen 37
 2.4 Zusammenfassung .. 41

3 INSTANDHALTUNG IM KONTEXT DER INDUSTRIE 4.0 .. 42
 3.1 Einleitung .. 42
 3.2 Definition und Begriffe der Instandhaltung .. 44
 3.3 Instandhaltungskonzepte und -strategien .. 46
 3.3.1 Instandhaltungskonzepte .. 47
 3.3.2 Instandhaltungsstrategien ... 52
 3.4 Verbundene Systeme für die Instandhaltung ... 54
 3.4.1 Informationssysteme eines produzierenden Unternehmens 55
 3.4.2 Informationssysteme zur expliziten Unterstützung der Instandhaltung 61
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Einleitung</td>
<td>129</td>
</tr>
<tr>
<td>6.2</td>
<td>Funktionale Sicht</td>
<td>130</td>
</tr>
<tr>
<td>6.2.1</td>
<td>M.1. Handlungsleitfäden/Checklisten/Prüflisten</td>
<td>133</td>
</tr>
<tr>
<td>6.2.2</td>
<td>M.2. Dokumentenmanagement</td>
<td>135</td>
</tr>
<tr>
<td>6.2.3</td>
<td>M.3. Wiki</td>
<td>136</td>
</tr>
<tr>
<td>6.2.4</td>
<td>M.4. Anlageninformationen</td>
<td>138</td>
</tr>
<tr>
<td>6.2.5</td>
<td>M.5. Anlagenübersicht und -auswertung</td>
<td>140</td>
</tr>
<tr>
<td>6.2.6</td>
<td>M.6. Berechnung/Zugriff auf Produktionsplanung</td>
<td>142</td>
</tr>
<tr>
<td>6.2.7</td>
<td>M.7. Interne Navigation</td>
<td>143</td>
</tr>
<tr>
<td>6.2.8</td>
<td>M.8. Kataster für Hilfs- und Betriebsstoffe der Anlagen</td>
<td>144</td>
</tr>
<tr>
<td>6.2.9</td>
<td>M.9. Auftragsverwaltung/Priorisierung</td>
<td>145</td>
</tr>
<tr>
<td>6.2.10</td>
<td>M.10. Mitarbeitermanagement</td>
<td>150</td>
</tr>
<tr>
<td>6.2.11</td>
<td>M.11. Wartungsmanagement</td>
<td>152</td>
</tr>
<tr>
<td>6.2.12</td>
<td>M.12. Auftragsmanagement in Verbindung mit ERP</td>
<td>155</td>
</tr>
<tr>
<td>6.2.13</td>
<td>M.13. Schichtbuchfunktionalität/Synchronisation</td>
<td>156</td>
</tr>
<tr>
<td>6.2.15</td>
<td>M.15. Arbeitszeiterfassung</td>
<td>158</td>
</tr>
<tr>
<td>6.2.16</td>
<td>M.16. Fehlererkennung & Condition Monitoring</td>
<td>160</td>
</tr>
<tr>
<td>6.2.17</td>
<td>M.17. Fehlerdatenbank</td>
<td>164</td>
</tr>
<tr>
<td>6.2.18</td>
<td>M.18. Fehlermeldung und -darstellung</td>
<td>167</td>
</tr>
<tr>
<td>6.2.19</td>
<td>M.19. Predictive Maintenance</td>
<td>169</td>
</tr>
<tr>
<td>6.2.20</td>
<td>M.20. Synchronisation Hersteller und Betreiber</td>
<td>172</td>
</tr>
<tr>
<td>6.2.22</td>
<td>M.22. Reisekostenabrechnung</td>
<td>174</td>
</tr>
<tr>
<td>6.2.23</td>
<td>M.23. Serviceprotokolle</td>
<td>175</td>
</tr>
<tr>
<td>6.2.24</td>
<td>M.24. Vertragsmanagement</td>
<td>176</td>
</tr>
<tr>
<td>6.2.25</td>
<td>M.25. Signierfunktion</td>
<td>177</td>
</tr>
<tr>
<td>6.2.26</td>
<td>M.26. Kommunikation</td>
<td>178</td>
</tr>
<tr>
<td>6.2.27</td>
<td>M.27. Konnektivität/Intranetzugang</td>
<td>180</td>
</tr>
<tr>
<td>6.2.28</td>
<td>M.28. Ersatzteilmanagement</td>
<td>181</td>
</tr>
<tr>
<td>6.2.29</td>
<td>M.29. QR-CODE auslesen</td>
<td>182</td>
</tr>
<tr>
<td>6.2.30</td>
<td>M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen</td>
<td>184</td>
</tr>
<tr>
<td>6.2.31</td>
<td>M.31. Technisches Nutzermanagement</td>
<td>185</td>
</tr>
<tr>
<td>6.2.32</td>
<td>M.32. Verarbeitung audiovisueller Medien</td>
<td>187</td>
</tr>
</tbody>
</table>
7 Evaluation der Referenzarchitektur RAI

7.1 Einleitung ... 227
7.2 Ziele und Vorgehen der Evaluation 228
7.3 Anforderungen an die RAI 231
7.4 Analytische Evaluation der RAI 240
7.5 Evaluation der RAI anhand des Anwendungsfalles „Ressourcen-Cockpit“ 246
 7.5.1 Prototyp Ressourcen-Cockpit 246
 7.5.2 Vorgehen Experteninterview 254
7.6 Zusammenfassung .. 264

8 Fazit und Ausblick .. 265
Inhaltsverzeichnis

8.1 Einleitung .. 265
8.2 Zusammenfassung und Ausblick .. 266
8.3 Implikationen für die Praxis und die Forschung ... 271
 8.3.1 Theoretischer Beitrag und Forschungsergebnisse ... 271
 8.3.2 Praktischer Beitrag der Forschungsergebnisse ... 273
8.4 Limitationen ... 276
8.5 Ausblick ... 277

REFERENZEN .. 279

AUFLISTUNG DER RELEVANTEN VORVERÖFFENTLICHUNGEN 296

ANHANG .. 297
 8.6 Fragebogen Anforderungsaufnahme .. 297
 8.7 Leitfaden Telefoninterview ... 302
Abbildungsverzeichnis

Abbildung 1: Design Science Rahmenkonzept mit drei Zyklen .. 10
Abbildung 2: Forschungsvorgehen der vorliegenden Arbeit (FF = Forschungsfragen) 11
Abbildung 3: Aufbau der Arbeit .. 13
Abbildung 4: Ziele und Treiber von Referenzarchitekturen ... 26
Abbildung 5: Abstraktionsniveau und Architekturhierarchie von Referenzarchitekturen 30
Abbildung 6: Abbau des Abnutzungsvorrates und seine Erstellung durch Maßnahmen der Instandhaltung ... 44
Abbildung 7: Unterscheidung zwischen Instandhaltungskonzepten, -strategien und -maßnahmen .. 46
Abbildung 8: Die acht Pfeiler des TPM nach dem Vorschlag der JIPM .. 50
Abbildung 9: Kategorisierung von Instandhaltungsarten ... 53
Abbildung 10: Übersicht der potentiellen Informationssysteme für Produktion und Instandhaltung .. 55
Abbildung 11: Häufigkeit von Systembezeichnungen und Techniken in den Ergebnissen der Literaturrecherche ... 78
Abbildung 12: Verteilung der gefundenen Artikel nach Wissenschaftsdomäne 79
Abbildung 13: 4+1 Sichten einer Softwarearchitektur ... 115
Abbildung 14: Darstellung des Sichtenmodells der RAI ... 118
Abbildung 15: Erklärung Aufbau der Module .. 121
Abbildung 16: Legende simplifizierte Moduldarstellung ... 121
Abbildung 17: Darstellung Prozesssicht – Veränderte Darstellungselemente 125
Abbildung 18: Übersicht über generische/optionale Module und Bausteine 131
Abbildung 19: Gesamtübersicht Module/Bausteine der RAI ... 132
Abbildung 20: Soll-Ist Vergleich auf Basis dynamischer Prozesseingriffsgrenzen 162
Abbildung 21: Verteilungssicht .. 198
Abbildung 22: Aktivität – Grundaktivität (graue Aktionen/Module sind optional) 204
Abbildung 23: Aktivität A1 – Use Case UC1- U1 – Inspektion/Wartung TPM 205
Abbildung 24: Aktivität A2 – Use Case UC2-U1 – Inspektion Wartung IH 206
Abbildung 25: Aktivität A3 – Use Case UC3-U1 – Instandsetzung ... 207
Abbildung 26: Aktivität A4 – Use Case UC4-U3 – Vereisung der Windenergieanlage (WEA) .. 208
Abbildungsverzeichnis

Abbildung 27: Aktivität A5 - Use Case UC5-U2 – Ereignisgesteuerte Instandsetzung von Anlagen ... 209
Abbildung 28: Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung 210
Abbildung 29: Aktivität A7 – Use Case UC7-U2 – Zustandsabfrage Wartung (Condition Monitoring) .. 211
Abbildung 30: Aktivität A8 – Use Case UC8/UC9 – Auswertungen Verfügbarkeit (technisch/Organisatorisch) ... 213
Abbildung 31: Aktivität A9 – Use Case UC9-U2: Auswertungen Fehlerhistorie einer Anlage .. 214
Abbildung 32: Aktivität A10 – Use Case Unteraktivität – Synchronisation 215
Abbildung 33: Unterteilung des Evaluationsvorgehen in drei Abschnitte 229
Abbildung 34: Fehlerkatalog und Fehlermeldung ... 249
Abbildung 35: Anzeige aktueller Fehler mit Status .. 249
Abbildung 36: Anzeige aktuelle Aufträge und Auftragshistorie 250
Abbildung 37: Ansicht Handlungsanweisungen zur Fehlerbehebung Ressourcen-Cockpit.. 250
Abbildung 38: Dashboard eines Mitarbeiters mit Übersicht der aktuellen Aufträge und Mitteilungen ... 251
Abbildung 39: Anlageninformationen und Betriebsdaten .. 251
Abbildung 40: Wartungsmanagement .. 252
Abbildung 41: Ersatzteilmanagement des Ressourcen-Cockpits 252
Abbildung 42: Nachrichtenhub Ressourcen-Cockpit .. 253
Abbildung 43: Allgemeines inhaltsanalytisches Ablaufmodell nach Mayring 257
Abbildung 44: Auswertung Evaluation Experteninterview nach einzelnen Personen 262
Abbildung 45: Auswertung Evaluation Experteninterview Gesamt 263
Abbildung 46: Beitrag Forschung und Praxis ... 274
Tabellenverzeichnis

Tabelle 1: Übersicht über Definitionen des Begriffs Referenzarchitektur 19
Tabelle 2: Klassifikationsschema Referenzarchitekturen 31
Tabelle 3: Angewandtes Klassifikationsschema auf die RAI 32
Tabelle 4: Suchtermine und (benutzte) Ergebnisse der Literaturrecherche 73
Tabelle 5: Klassifikation der Ergebnisse der Literaturanalyse von Instandhaltungssystemen 77
Tabelle 6: Anforderungen Instandhaltungssystem – Technischer Kundendienst und Teleservice .. 80
Tabelle 7: Anforderungen Instandhaltungssystem - Remote Maintenance 81
Tabelle 8: Anforderungen Instandhaltungssystem – Auftragsmanagement und Auftragsinformationen .. 82
Tabelle 9: Anforderungen Instandhaltungssystem – Wartungsmanagement 82
Tabelle 10: Anforderungen Instandhaltungssystem – Instandhaltungsplanung, -optimierung und Risikoklassifikation ... 83
Tabelle 11: Anforderungen Instandhaltungssystem – Anlagenübersicht und -informationen. 84
Tabelle 12: Anforderungen Instandhaltungssystem – Ersatzteilmanagement 85
Tabelle 13: Anforderungen Instandhaltungssystem – Mitarbeitermanagement 85
Tabelle 14: Anforderungen Instandhaltungssystem – Kommunikation 86
Tabelle 15: Anforderungen Instandhaltungssystem – Mobiles System 87
Tabelle 16: Anforderungen Instandhaltungssystem – (Historische) Auswertungen 87
Tabelle 17: Anforderungen Instandhaltungssystem – Fehlermanagement 88
Tabelle 18: Anforderungen Instandhaltungssystem – Condition Monitoring und Predictive Maintenance ... 88
Tabelle 19: Anforderungen Instandhaltungssystem – Dokumentenmanagement 89
Tabelle 20: Anforderungen Instandhaltungssystem – Wissensmanagement 89
Tabelle 21: Anforderungen Instandhaltungssystem – Handlungsempfehlungen 90
Tabelle 22: Anforderungen Instandhaltungssystem – Externe Dienste 90
Tabelle 23: Anforderungen Instandhaltungssystem – Anforderungen Systemadministration. 91
Tabelle 24: Anforderungen an ein Instandhaltungssystem – Übersicht der häufigsten Anforderungen (Angabe ab 10 Nennungen) ... 92
Tabelle 25: Aspekte der Instandhaltung in den untersuchten Unternehmen 95
Tabelle 26: Aufgenommene Anforderungen in den untersuchten Unternehmen 98
Tabelle 27: Generische Anforderungen ... 100
Tabellenverzeichnis

Tabelle 28: Optionale Anforderungen.. 101
Tabelle 29: Priorisierung der generischen Anforderungen ... 103
Tabelle 30: Generische Anforderungen in Verbindung mit den Anforderungen der Literaturrecherche ... 106
Tabelle 31: Spezifische Anforderungen im Vergleich mit den Anforderungen aus der Literaturrecherche ... 109
Tabelle 32: Tabellarischer Aufbau eines Moduls der RAI .. 123
Tabelle 33: Kategorisierte Übersicht von Evaluationsmethoden .. 228
Tabelle 34: Anforderungen an die RAI .. 239
Tabelle 35: Darstellung der Managementfunktionen des Ressourcen-Cockpits 248
Tabelle 36: Komponentenüberprüfung Ressourcen-Cockpit .. 254
Tabelle 37: Schritte 1-5 des allgemeinen Ablaufmodells nach Mayring angewandt auf die Evaluation der RAI .. 259
Tabelle 38: Übersicht Kodierung mit Ankerbeispiel und Kodierregeln ... 261
Tabelle 39: Elemente einer Designtheorie ... 273
Tabelle 40: Priorisierung von Anforderungen ... 297
Tabelle 41: Fragebogen Anforderungserhebung .. 301
Tabelle 42: Leitfaden Telefoninterview .. 303
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Augmented Reality</td>
</tr>
<tr>
<td>ASP</td>
<td>Active Server Pages</td>
</tr>
<tr>
<td>BCM</td>
<td>Business Centered Maintenance</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CBM</td>
<td>Condition Based Maintenance</td>
</tr>
<tr>
<td>CBR</td>
<td>Case-Based Reasoning (fallbasiertes Schließen)</td>
</tr>
<tr>
<td>CMMS</td>
<td>Computerized Maintenance Management System</td>
</tr>
<tr>
<td>CMS</td>
<td>Condition Monitoring System</td>
</tr>
<tr>
<td>CPS</td>
<td>Cyber-physische Systeme</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer Relationship Management</td>
</tr>
<tr>
<td>CRMS</td>
<td>Customer Relationship Managementsystem</td>
</tr>
<tr>
<td>CSS</td>
<td>Cascading Style Sheets</td>
</tr>
<tr>
<td>DMS</td>
<td>Dokumentenmanagementsystem</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>EDM</td>
<td>Engineering Data Management</td>
</tr>
<tr>
<td>eETK</td>
<td>Elektronische Ersatzteilkataloge</td>
</tr>
<tr>
<td>E-MS</td>
<td>E-Maintenance System</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode and Effects Analysis</td>
</tr>
<tr>
<td>FMECA</td>
<td>Failure Mode and Effects and Criticality Analysis</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>HW/SW</td>
<td>Hardware/Software</td>
</tr>
<tr>
<td>IIS</td>
<td>Integriertes Instandhaltungssystem (IIS)</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnik</td>
</tr>
<tr>
<td>IMS</td>
<td>Intelligent Maintenance System</td>
</tr>
<tr>
<td>IPS</td>
<td>Instandhaltsplanunngs- und -steuerungssysteme</td>
</tr>
<tr>
<td>JSON</td>
<td>JavaScript Object Notation</td>
</tr>
<tr>
<td>KMS</td>
<td>Knowledge Management System</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Costing</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MES</td>
<td>Manufacturing Execution System</td>
</tr>
<tr>
<td>MQTT</td>
<td>Message Queue Telemetry Transport</td>
</tr>
<tr>
<td>MSS</td>
<td>Mobile Support System</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time between Failures</td>
</tr>
<tr>
<td>MTTR</td>
<td>Mean Time to Repair</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>OPC UA</td>
<td>Open Platform Communications Unified Architecture</td>
</tr>
<tr>
<td>PDM</td>
<td>Produktdatenmanagementsystem</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PIS</td>
<td>Performance Information System</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PLMS</td>
<td>Product Lifecycle Management System</td>
</tr>
<tr>
<td>PMS</td>
<td>Predictive Maintenance System</td>
</tr>
<tr>
<td>PSS</td>
<td>Product Service System</td>
</tr>
<tr>
<td>RAI²</td>
<td>Referenzarchitektur eines integrierten Informationssystems zur Unterstützung der Instandhaltung</td>
</tr>
<tr>
<td>RBCM</td>
<td>Risk Based Centered Maintenance</td>
</tr>
<tr>
<td>RCM</td>
<td>Reliability Centered maintenance</td>
</tr>
<tr>
<td>RDF</td>
<td>Resource Description Framework</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SP</td>
<td>Serviceplattform</td>
</tr>
<tr>
<td>SPS</td>
<td>Speicherprogrammierbare Steuerung</td>
</tr>
<tr>
<td>TKD</td>
<td>Technischer Kundendienst</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>VDM</td>
<td>Value Driven Maintenance</td>
</tr>
<tr>
<td>WMS</td>
<td>Wissensmanagementsystem</td>
</tr>
<tr>
<td>WYSIWYG</td>
<td>What You See Is What You Get</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Motivation und Relevanz

Die fortschreitende Digitalisierung führt nicht nur zu völlig neuen Unternehmen, sondern stellt auch traditionelle, etablierte Unternehmen vor große Herausforderungen, da auch sie einer fundamentalen Veränderung unterliegen (Horváth, 2017, S. 113). Besonders betroffen ist das in Deutschland stark vertretene produzierende Gewerbe. Als Treiber der Digitalisierung wirken hier verbundene Trends wie die digitale Fabrik (Himmler/Amberg, 2013), Cyber-physische Systeme (CPS) (Lee et al., 2015) das Internet der Dinge (Gubbi et al., 2013), Industrie 4.0 (Lachenmaier et al., 2015) oder dessen Pendant, das Industrial Internet (Lin et al., 2015). Dies hat einerseits zur Folge, dass bestehende Prozesse der produzierenden Industrie einem starken rein technologischen Wandel unterliegen, andererseits werden Änderungen am bisher betriebenen Geschäftsmodell durch die aktuellen Technologien nicht nur möglich, sondern auch nötig und zwingen Unternehmen, sich für einen disruptiven Wandel ihres Geschäfts vorzubereiten (Reidt et al., 2017a, S. 23). Im Bereich der produzierenden Unternehmen können diese Effekte darin erkannt werden, dass diese sich zunehmend von ursprünglich rein produzierenden Unternehmen zu produzierenden Serviceanbietern wandeln (Daeuble et al., 2015b, S. 1018). Damit verbunden sind insbesondere Auswirkungen auf unterstützende Prozesse wie der Instandhaltung, welche sich mit enorm erhöhter Komplexität, aber auch Bedeutung auseinandersetzen muss (Reidt et al., 2016a, S. 1). Die Abgrenzung von einst wertschöpfenden und unterstützenden Prozessen fällt im Zuge der Digitalisierung daher immer schwerer (Bley/Leyh, 2016, S. 1651). Unter Instandhaltung wird in dieser Arbeit nach der Definition der DIN die „Kombination aller technischen und administrativen Maßnahmen sowie Maßnahmen des Managements während des Lebenszyklus einer Betrachtungseinheit zur Erhaltung des funktionsfähigen Zustandes oder der Rückführung in diesen, so dass sie die geforderte Funktion erfüllen kann“ (DIN 31051:2012-09, S. 6) verstanden.

Neben den steigenden Anforderungen durch den technologischen Fortschritt ermöglicht dieser ebenfalls, dass die Instandhaltung durch effiziente Informationssysteme Unterstützung erhält. Neben häufig vorhandenen Steuerungs- und Planungssystemen wie dem Computerized
Maintenance Management System (CMMS)\(^1\) (Bohoris et al., 1995; Gabbar et al., 2003), kann der Instandhalter u. a. bei der Fehlersuche durch ein mobiles Assistenzsystem oder auch Mobile Support Systems (MSS)\(^2\) die nötigen Informationen zur Arbeitsbewältigung aggregiert dargestellt bekommen (Daeuble et al., 2015a; Fellmann et al., 2013). Diese Informationen können weiterhin durch Augmented Reality (AR) (Emmanouilidis et al., 2011) vereinfacht dargestellt werden. Wartungspläne können durch Condition Monitoring Systeme (CMS)\(^3\) in Abhängigkeit von der aktuellen Abnutzung bestimmter Komponenten berechnet (Abdennadher et al., 2010) oder bevorstehende Ausfälle durch die Anwendung von Data Mining Techniken im Rahmen von Predictive Maintenance\(^4\) erkannt werden (Lee et al., 2009).

In der in einem späteren Kapitel vorgestellten Analyse der Instandhaltung bei vier Unternehmen bestätigt sich dieser Sachverhalt: In den untersuchten Unternehmen müssen bspw. Daten aus einer Vielzahl an Informationssystemen oder analogen Quellen manuell gesucht und extrahiert werden. Dieser Umstand führt bei der Arbeit eines Instandhalters zu hohen Wartezeiten, erhöhter Fehleranfälligkeit und in letzter Konsequenz längeren Stillstandszeiten.

\(^1\) Computerized Maintenance Management System (CMMS) werden im deutschen Sprachraum auch „Instandhaltungsplanungs- und -steuerungssysteme“ (IPS) (Reichel et al., 2009, S. 153) genannt. In dieser Arbeit wird aufgrund der größeren Verbreitung des englischen Begriffs dieser bzw. dessen Abkürzung CMMS verwendet.

\(^3\) Condition Monitoring Systeme (CMS) werden im deutschen Sprachraum auch „Zustandsüberwachungssysteme“ (Pawellek, 2016, S. 64) genannt. In dieser Arbeit wird aufgrund der größeren Verbreitung des englischen Begriffs dieser bzw. dessen Abkürzung CMS verwendet.

Um jedoch ein solches Informationssystem entwickeln zu können bedarf es einer umfassenden Sicht auf die zu entwickelnde Architektur, da sie eine große Bandbreite an Funktionalitäten, Systemen und Schnittstellen unterstützen muss oder durch diese erweitert werden kann. Dabei besteht zudem die Herausforderung, dass die an der Entwicklung beteiligten Personen und späterer Nutzer aus unterschiedlichen Domänen stammen und unterschiedliche Rollen im Unternehmen begleiten (bspw. aus den Domänen der Anwendungsentwicklung, Produktion und Instandhaltung sowie aus den Rollen der Manager, Controller und Instandhalter). Dies führt zu einer unterschiedlichen Sichtweise auf die spätere Nutzung und den Nutzen des zu entwickelnden Informationssystems sowie zu stark individuellen Anforderungen, deren Erhebung oftmals Fachexperten der jeweiligen Domäne bedarf.

Die Identifizierung von individuellen Anforderungen an ein umfassendes Instandhaltungssystem und die Entwicklung der verbundenen Softwarearchitekturen selbst ist daher aufwändig und erfordert erhebliche Ressourcen. Insbesondere kleine und mittelständische Unternehmen können aufgrund dieses hohen Aufwandes kaum Informationssysteme entwickeln, welche deren individuellen Anforderungen genügen, noch können alle Anforderungen vorab erhoben werden. Dies liegt auch daran, dass mangelndes Know-how bei Beurteilung der technologischen Potentiale von Instandhaltungslösungen ein großes Hemmnis darstellt, die verfügbaren Technologien effizient einzusetzen (Bienzeisler et al., 2014, S. 7). Dies spielt insbesondere eine große Rolle, da ein Instandhaltungssystem für

Daher wird in diesem Beitrag eine Referenzarchitektur für ein integratives Informationssystem zur Unterstützung der Instandhaltung (RAII) präsentiert, um die Entwicklung für diese Klasse von Informationssystemen durch die Festlegung von allgemeinen Richtlinien zu erleichtern. Diese Richtlinien werden in dem vorliegenden Fall dadurch gesetzt, dass in abstrakter Weise dargestellt wird, welche Funktionen, Prozesse, Konzepte und damit verbunden, welche Intelligenzverteilung zwischen verschiedenen Systemen durch effiziente Ausnutzung der Fähigkeiten eines CPS und mobilen Endgeräten abgebildet werden können. Durch eine einfache und intuitive Darstellungsweise und eine einheitliche Domänensprache soll zudem die domänenübergreifende Zusammenarbeit gefördert werden.
1.2 Forschungsleitende Fragestellungen

Trotz dieser Entwicklung fehlt es an Referenzarchitekturen, die eine umfassende Entwicklung der Instandhaltung und den damit verbundenen Informationssystemen zur Unterstützung der Instandhaltung behandeln. Unternehmen mit dem Bedürfnis, die Instandhaltung durch Digitalisierung zu optimieren, würden Referenzarchitekturen darin unterstützen, sich mit den Anforderungen der Digitalisierung und den daraus entstehenden Möglichkeiten im Bereich der Instandhaltung zu beschäftigen. Referenzarchitekturen existieren nur für Teilbereiche wie CMS (Wollschläeger et al., 2015) und besitzen somit keinen Fokus auf einer umfassenden Sichtweise für IIS. Da der Bedarf in der Praxis an solchen Systemen zweifellos vorhanden ist und in der Literatur die Problematik der Integration und die Verbindung zwischen Systemen im Kontext der Instandhaltung als besonders kritisch eingeschätzt wird, sind dies weitere Gründe für die Erstellung einer Referenzarchitektur zur Unterstützung der Entwicklung von integrierten Informationssystemen für die Instandhaltung.

Die Entwicklung einer solchen Referenzarchitektur, die an der Schnittstelle von Fachverantwortlichen und Entwicklern eingesetzt wird und deren Kommunikation erleichtern soll, umfasst mehrere zu erforschende Aspekte: Es bedarf einer Untersuchung hinsichtlich der Domäne der Referenzarchitekturen und der Instandhaltung, um die nötige inhaltliche Basis für den Entwurf der Referenzarchitektur zu erlangen. Dazu gehören ableitend Anforderungen an ein IIS, potentielle Entwicklungspfade dieses Informationssystems, mögliche Teilsysteme und bestehende Informationssysteme in der Produktion und Instandhaltung. Weiterhin müssen die nötigen Elemente und die Darstellung der Referenzarchitektur bestimmt und in eine abstrakte, technische Architektur übersetzt werden. Diese Architektur muss das grundlegende Ziel erfüllen, die Entwicklung von IIS zu erleichtern. Diese Aspekte lassen sich in die folgenden drei Forschungsfragen überführen:

Forschungsfrage 1: Welche Anforderungen an Informationssysteme zur Unterstützung der Instandhaltung existieren in Literatur und Praxis?

Zur Erstellung einer Referenzarchitektur, welche ein IIS umfassen soll, ist es vonnöten, möglichst allgemeingültige Anforderungen aus verschiedenen Perspektiven an diese aus Literatur und Praxis zu bestimmen. Dazu müssen aktuelle Informationssysteme, welche für die Instandhaltung eine Rolle spielen, gesammelt und hinsichtlich Zweck und Nutzen untersucht werden. Zwei Arten von Informationssystemen sind für diese Untersuchung relevant: Zum
einen Informationssysteme, aus denen Informationen für die Instandhaltung benötigt werden, jedoch nicht speziell für die Instandhaltung ausgerichtet sind. Zum anderen Informationssysteme, die direkt zur Unterstützung der Instandhaltung entwickelt worden sind.

Anforderungen und Funktionen aus den jeweiligen Informationssystemen sollen gesammelt und auf eine einheitliche Basis gesetzt werden, sodass ein umfassendes Bild über Anforderungen für Instandhaltungssysteme entsteht. Diese Informationen bilden die Basis für die spätere Erstellung der Referenzarchitektur, da diese die elementaren Anforderungen und Eigenschaften von bestehenden Informationssystemen adressiert.

Um diese Anforderungen aufzunehmen, wird eine Literaturanalyse hinsichtlich Anforderungen für verschiedene Instandhaltungssysteme durchgeführt und Anforderungen für IIS in der Praxis bei vier Unternehmen aufgenommen. Die Unternehmen werden so ausgewählt, dass sie sich in der Ausführung der Instandhaltung stark unterscheiden und somit eine große Breite an Anforderungen aufweisen. Als Ergebnis wird eine Auflistung relevanter Instandhaltungssysteme, deren Anforderungen sowie eine Auswertung zu Anforderungen an IIS erstellt.

Forschungsfrage 2: Welche funktionellen Module werden für ein integriertes Informationssystem benötigt, das effektiv die Instandhaltung unterstützt?

Um diese funktionalen Module zu bestimmen, werden die Ergebnisse aus der ersten Forschungsfrage genutzt, um aus ihnen generische und optionale Anforderungen an IIS abzuleiten. Im nächsten Schritt werden ähnliche Anforderungen gruppiert und gemäß technischer Umsetzbarkeit in funktionale Module überführt. Auf Basis dieser Anforderungen, Module und dem Wissen über aktuelle und bestehende Systeme werden die Entitäten festgelegt, auf denen ein IIS arbeiten muss. Dazu werden auch die Interaktion bzw. Interaktionsmuster zwischen den Modulen und den Entitäten untersucht, sodass eine effiziente Verteilung der funktionalen Komponenten zwischen verschiedenen Entitäten möglich ist.

Als Endergebnis werden generische und optionale Module beschrieben, welche mit den Anforderungen aus Forschungsfrage 1 verbunden sind und Entitäten zugeordnet werden können. Diese bilden die Grundlage zur Erschaffung und Darstellung einer Referenzarchitektur.

Forschungsfrage 3: Wie sieht eine Referenzarchitektur aus, die die Entwicklung eines integrierten Informationssystems zur Unterstützung der Instandhaltung erleichtert?

Das Ergebnis wird eine evaluierte, auf Basis des Feedbacks angepasste Referenzarchitektur sein, deren Nützlichkeit bei der Erleichterung der Entwicklung von IIS nachgewiesen wird.
1.3 Wissenstheoretische Grundlagen

1.3.1 Einordnung in die Wirtschaftsinformatik

1.3.2 Forschungsdesign

Im Bereich der Wirtschaftsinformatik kann nach Hevner et al. (2004, S. 75) grundlegend zwischen zwei Forschungsparadigmen unterschieden werden: Zwischen dem behavioristischen
Paradigma, das auch als verhaltenswissenschaftliches Paradigma (engl. „Behavioral Science“) bezeichnet wird, und dem gestaltungsorientierten Paradigma (engl. „Design Science“).

verbindet die Artefakterstellung mit der Evaluation. Der Zyklus wird iterativ durchlaufen und währenddessen werden solange Designalternativen erstellt und evaluiert, bis eine die Anforderungen zufriedenstellend erfüllt. Input hinsichtlich Anforderungen und Wissensbasis wird kontinuierlich durch die zwei anderen Zyklen geliefert. Die Durchführung des Design Zyklus läuft davon abgesehen weitestgehend unabhängig ab.

Abbildung 1: Design Science Rahmenkonzept mit drei Zyklen
Quelle: in Anlehnung an Hevner und Chatterjee (2010, S. 16)

Bezüglich der Forschungsparadigmen in der Wirtschaftsinformatik ist die Arbeit dem Bereich der gestaltungsorientierten Forschung zuzuordnen, da von einer konkreten Problemstellung (Erstellung von (integrierten) Instandhaltungssystemen) innovative Artefakte erstellt werden (Referenzarchitektur, generischen und optionale Anforderungen und Elemente der Architektur und domänenübergreifend verständliche Darstellung der Referenzarchitektur).

Die Referenzarchitektur wird anhand dieser iterativen Zyklen erstellt, als Rahmenkonzept zur Durchführung dieser Arbeit wird jedoch das Vorgehensmodell von Becker (2010) benutzt, welches die folgenden Phasen durchläuft:

- Entwurfsphase: In der Entwurfsphase wird das Artefakt anhand anerkannter Methoden entworfen, erstellt und gegen bekannte Lösungen abgegrenzt.
- Evaluationsphase: Um die Rigorosität zu erfüllen, wird das geschaffene Artefakt mit den in der Analysephase festgelegten Methoden gegen die auch dort festgelegten Ziele überprüft. Hier soll insbesondere der Nutzen, der durch das Artefakt hergestellt wird, dargestellt und begründet werden.
- Diffusion: In der Diffusionsphase werden die erzeugten Ergebnisse an die jeweiligen Stakeholder verbreitet. Dies sollte durch wissenschaftliche Publikationen oder
Praxisveröffentlichungen, Konferenzbeiträge, Dissertationen oder weiteren der Anspruchsgruppe gerechten Veröffentlichungen geschehen.

Abbildung 2: Forschungsvorgehen der vorliegenden Arbeit (FF = Forschungsfragen)
Quelle: Eigene Darstellung

In der zweiten Entwurfsphase werden auf Basis der Ergebnisse von Forschungsfrage 1 die generischen und optionalen Anforderungen identifiziert, die ein IIS erfüllen muss bzw. kann. Die Darstellungsart und der Umfang der Referenzarchitektur wird festgelegt und die dazugehörigen Module und Prozesse definiert. Die Referenzarchitektur wird in dieser Phase erstellt. Die Entwicklung der Referenzarchitektur erfolgt iterativ mit kontinuierlichem Feedback. Mit den festgelegten Modulen und Prozessen wird die zweite Forschungsfrage...
hinsichtlich der generischen und optionalen Module und deren Verbindung zueinander beantwortet.

Als Endergebnis soll einerseits eine anhand des Feedbacks verbesserte Referenzarchitektur für IIS stehen, die nachweislich die Entwicklung erleichtert. Andererseits soll auf Basis des State of the Art über Referenzarchitekturen aus Forschungsfrage 1 in Kombination mit der erschaffenen Referenzarchitektur Wissen über Definitionen, Methoden, Darstellungsformen und Klassifikationen für Referenzarchitekturen bereitgestellt werden, um die zukünftige Entwicklung von Referenzarchitekturen zu erleichtern. Mit diesen Ergebnissen wird die dritte Forschungsfrage beantwortet.
1.4 Aufbau der Arbeit

Ziel der vorliegenden Arbeit ist die Konzeption, Entwicklung und Evaluation der RAII. Die einzelnen Aspekte dieses Vorgehens und der jeweilige Inhalt werden in dieser Arbeit in acht Kapiteln strukturiert dargestellt. Der Aufbau der Arbeit ist in Abbildung 3 zusammengefasst dargestellt und untergliedert sich wie folgt:

<table>
<thead>
<tr>
<th>Kapitel 1: Einleitung</th>
<th>Forschungsleitende Fragestellungen</th>
<th>Wissenstheoretischer Hintergrund</th>
<th>Aufbau der Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitel 2: Merkmale von Referenzarchitekturen</td>
<td>Eigenschaften Referenzarchitekturen</td>
<td>Klassifikationsschema Referenzarchitekturen</td>
<td>Methodik zur Erstellung von Referenzarchitekturen</td>
</tr>
<tr>
<td>Kapitel 3: Instandhaltung im Kontext der Industrie 4.0</td>
<td>Strategien und Konzepte der Instandhaltung</td>
<td>Informationssysteme der Produktion</td>
<td>Instandhaltungssysteme</td>
</tr>
<tr>
<td>Kapitel 4: Extraktion generischer Anforderungen an ganzheitliche Instandhaltungssysteme</td>
<td>Literaturanalyse Anforderungen Instandhaltungssysteme</td>
<td>Aufnahme von Anforderungen aus der Praxis</td>
<td>Ableitung generischer und optionaler Anforderungen</td>
</tr>
<tr>
<td>Kapitel 5: Darstellungsmodell der RAII</td>
<td>Architekturkonzept nach Kruchten</td>
<td>Darstellungsmodell RAII</td>
<td></td>
</tr>
<tr>
<td>Kapitel 6: Referenzarchitektur</td>
<td>Funktionale Module</td>
<td>Prozesssicht</td>
<td>Verteilungssicht</td>
</tr>
<tr>
<td>Kapitel 7: Evaluation der Referenzarchitektur</td>
<td>Analytisch merkmalsbasierte Evaluation</td>
<td>Implementierung Prototyp</td>
<td>Experteninterviews</td>
</tr>
<tr>
<td>Kapitel 8: Fazit und Ausblick</td>
<td>Zusammenfassung und Diskussion der Arbeit</td>
<td>Praktischer und Theoretischer Beitrag</td>
<td>Limitationen</td>
</tr>
</tbody>
</table>

Abbildung 3: Aufbau der Arbeit

Quelle: Eigene Darstellung

Abschließlich werden die Erkenntnisse aus der Dissertation in Kapitel 8 zusammengefasst, der praktische und theoretische Beitrag herausgestellt sowie die Limitationen und zukünftigen Forschungsrichtungen beleuchtet.
2 Merkmale von Referenzarchitekturen

2.1 Einleitung

Auf Basis dieser Informationen werden Methoden für die Erstellung bestimmter Arten von Referenzarchitekturen in Kapitel 2.3 vorgestellt. Insbesondere wird das Vorgehen zur Erstellung einer Referenzarchitektur anhand spezifischer Anforderungen von Reidt et al. (2017a) präsentiert, welches zur Erstellung der RAII benutzt wurde und die einzelnen Schritte am Beispiel der RAII erläutert.
2.2 Begriffliche und theoretische Grundlagen

2.2.1 Softwarearchitektur

Softwarearchitekturen sind für die Erstellung von Softwaresystemen essentiell, da sie die konkreten Architekturentscheidungen darstellen und so die Entwicklung anleiten bzw. das Ergebnis beschreiben. In dieser Arbeit wird daher eine Softwarearchitektur nach der Definition von Bruns und Dunkel (2010, S. 202) wie folgt beschrieben:

„Eine Softwarearchitektur beschreibt die übergeordnete Struktur eines Softwaresystems und deren globale Kontrollstrukturen. Sie beschreibt die wesentlichen Softwarebausteine in Form von Komponenten und legt fest, wie diese interagieren und kooperieren“.

Im Rahmen dieser Arbeit werden Softwarearchitekturen auch als konkrete Softwarearchitekturen bezeichnet, um diese klar von Referenzarchitekturen abzugrenzen und die Spezifizität dieser Art von Architekturen auszudrücken.
2.2.2 Produktlinienarchitektur

2.2.3 Referenzmodell

Einige Autoren sehen eine Referenzarchitektur als eine softwaretechnische Weiterführung eines Referenzmodells (Bass et al., 2003), andere benutzen auch diesen Begriff synonym. In dieser Arbeit wird der Begriff wie folgt definiert:

2.2.4 Definition Referenzarchitektur

Der Begriff der Referenzarchitektur wird zunehmend in wissenschaftlichen wie auch in praxisorientierten Veröffentlichungen verwendet. Dies geschieht jedoch in den meisten Fällen ohne fundierte Definition des Begriffs, was dazu führt, dass der Begriff Referenzarchitektur unterschiedlichste Bedeutungen für verschiedene Personen besitzt (Cloutier et al., 2009, S. 16). Daneben herrscht auch in der wissenschaftlichen Literatur kein eindeutiges Begriffsverständnis. Mittlerweile lassen sich dort unterschiedliche Definitionen und Sichtweisen beobachten. Nachfolgend ist in Tabelle 1 eine Auswahl an aktuellen Definitionen aufgeführt, die im Anschluss diskutiert werden. Dabei stellen die nachfolgenden Punkte des Kapitels 2.2.4 eine erweiterte Fassung des Beitrages von Reidt et al. (2018a) dar.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergey et al., 1999, S. 32f</td>
<td>„A reference architecture is an architectural style and/or design pattern for a specific domain or product line. It is insufficient for building systems in that a style or pattern by its nature requires the binding of unresolved issues. In addition, an architectural style represents a set of constraints on architectures of individual products to be built as part of the product line, and therefore expresses the commonality among the architectures of the different products.“</td>
</tr>
<tr>
<td>Bass et al., 2003, S. 33f</td>
<td>“A reference architecture is a reference model mapped onto software elements (that cooperatively implement the functionality defined in the reference model) and the data flows between them. Whereas a reference model divides the functionality, a reference architecture is the mapping of that functionality onto a system decomposition.”</td>
</tr>
<tr>
<td>Gallagher, 2000, S. 3</td>
<td>“A reference architecture is the generalized architecture of several end systems that share one or more common domains. The reference architecture defines the infrastructure common to the end systems and the interfaces of components that will be included in the end systems. The reference architecture is then instantiated to create a software architecture of a specific system. The definition of the reference architecture facilitates deriving and extending new software architectures for classes of systems. A reference architecture, therefore, plays a dual role with regard to specific target software architectures. First, it generalizes and extracts common functions and configurations. Second, it provides a base for instantiating target systems that use that common base more reliably and cost effectively.”</td>
</tr>
<tr>
<td>Pohl et al., 2005, S. 124</td>
<td>“The reference architecture is a core architecture that captures the highlevel design for the applications of the software product line. The reference architecture includes the variation points and variants documented in the variability model. It provides limits for the architectures of the separate applications, i.e. the application architectures. It determines which components are reusable and thus have to be developed during domain realization”</td>
</tr>
<tr>
<td>Cloutier et al., 2009, S. 17</td>
<td>“Reference Architectures capture the essence of existing architectures, and the vision of future needs and evolution to provide guidance to assist in developing new system architectures.”</td>
</tr>
</tbody>
</table>
| OASIS Committee, 2012, S. 9 | “A reference architecture models the abstract architectural elements in the domain of interest independent of the technologies, protocols, and products that are used to implement a specific solution for the domain. It differs from a reference model in that a reference model describes the important concepts and relationships in the domain focusing on what distinguishes the elements of the domain; a reference architecture elaborates further on the model to show a more complete picture that includes showing what is involved in realizing

Pohl et al. (2005) sehen eine Referenzarchitektur als Kernarchitektur, die jedoch das übergeordnete Design für mehrere Produkte einer Softwareproduktlinie definiert. Dabei spielt

<table>
<thead>
<tr>
<th>Autor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>the modeled entities, while staying independent of any particular solution but instead applies to a class of solutions.”</td>
<td></td>
</tr>
</tbody>
</table>

“Modell für eine Architekturbeschreibung (für Industrie 4.0), die allgemein genutzt wird und als zweckmäßig anerkannt ist (Referenzcharakter hat)”

“A reference architecture provides guidance for the development of system, solution and application architectures. It provides common and consistent definitions in the system of interest, its decompositions and design patterns, and a common vocabulary with which to discuss the specification of implementations so that options may be compared. A reference architecture provides a common framework around which more detailed discussions can center. By staying at a higher level of abstraction, it enables the identification and comprehension of the most important issues and patterns across its applications in many 80 different use cases. By avoiding specifics, a reference architecture allows subsequent designs to follow the reference architecture without the encumbrance of unnecessary and arbitrary restrictions.”

Tabelle 1: Übersicht über Definitionen des Begriffs Referenzarchitektur

Quelle: Eigene Darstellung
bei ihnen vor allem die Wiederverwendbarkeit von bestimmten Komponenten eine Rolle, welche bei den restlichen Definitionen oft nicht direkt genannt wird. Sie betonen ebenso wie Bergey et al. (1999), dass Referenzarchitekturen Randbedingungen festlegen, die bei der Ableitung konkreter Softwarearchitekturen berücksichtigt werden müssen, aber auch Hilfestellung bei der Ableitung geben können.

Die Definition des OASIS Committee (2012) stellt vor allem den abstrakten Charakter einer Referenzarchitektur heraus. Hier wird die Hauptaufgabe einer Referenzarchitektur darin gesehen, ein komplettes Bild einer Klasse von Lösungen darzustellen und zu vermitteln. Abstrakte Architekturelemente werden nach dieser Definition technologieneutral definiert und zeigen die wichtigsten Konzepte und Verbindungen zueinander auf. Darüber hinaus werden nicht nur die Elemente selbst beschrieben, sondern auch wie diese realisiert werden können und wer und was daran beteiligt ist.

Die Definition, die insbesondere bei deutschen Referenzarchitekturen im Kontext der Industrie 4.0 benutzt wird, ist die des VDI/VDE Fachauschuss Industrie 4.0 (2017). Diese Definition betont vor allem den Referenzcharakter und damit die allgemeine Nutzung einer Referenzarchitektur. Die Definition ist sehr breit gehalten, da von einer Architekturbeschreibung gesprochen wird, die jedoch nicht weiter definiert wird. Von den hier vorgestellten Definitionen lässt diese den größten Interpretationsspielraum zu.

Die Definition von Lin et al. (2015), die in der Referenzarchitektur des Industrial Internet präsentiert wird, betont hingegen nicht nur den technischen Aspekt, sondern auch die Bereitstellung von allgemeinen Definitionen und eines einheitlichen Vokabulars, durch die die Entwicklung von Systemen und Architekturen unterstützt wird. Anhand einer
Referenzarchitektur soll aufgrund dieser Eigenschaften die Diskussion über das zu entwickelnde Systeme und der Referenzarchitektur an sich ermöglicht werden. Sie betonen die übergreifende Wirkung von Referenzarchitekturen, die nicht nur für ein bestimmtes System oder einer Klasse von Systemen genutzt werden können. Diese Definition unterscheidet sich demnach im Bereich der Kommunikationsunterstützung und dem expliziten Hinweis auf die Use Case-übergreifende Wirkung von Referenzarchitekturen.

2.2.4.1 Diskussion Eigenschaften einer Referenzarchitektur

Im Begriffsverständnis dieser Arbeit wird eine Referenzarchitektur als tendenziell abstrakt bezeichnet, jedoch existieren mehrere Arten von Referenzarchitekturen, die sich bezüglich des Abstraktionsgrades unterscheiden. Daher wird bei dieser Eigenschaft zwischen einer detaillierten Referenzarchitektur auf Codebasis, einer Mischform, die teils abstrakte Elemente und teils spezifische Elemente enthält, sowie einer abstrakten Art der Referenzarchitektur unterschieden. Eine Referenzarchitektur auf Codebasis kann konkrete Elemente implementieren, Interfaces spezifizieren und eine lauffähige Lösung beinhalten, wenn dies dem Ziel dient, die Entwicklung zu erleichtern oder eine Standardisierung herbeizuführen. Abstrakte Architekturen, die von der Codebasis abstrahieren, versuchen damit bspw. Gemeinsamkeiten zwischen Architekturen herauszustellen, Technologieneutralität zu gewähren (OASIS

Eine weitere Eigenschaft einer Referenzarchitektur betrifft den Produktfokus. Einige Definitionen gehen davon aus, dass Referenzarchitekturen auf ein Produkt oder eine Produktgruppe bzw. -linie fokussiert sind, wobei die Produkte vorab feststehen bzw. deren ungefähre Ausgestaltung fixiert ist (Arboleda et al., 2014; Bergey et al., 1999; Pohl et al., 2005). Dies ist vor allem bei Autoren anzutreffen, für die der Begriff Referenzarchitektur synonym mit dem Begriff Produktlinienarchitektur ist. Im Kontrast dazu existieren Referenzarchitekturen, die produkt- und produktklassenunabhängig sind. Diese beschreiben beispielweise Securityelemente, die in vielen unterschiedlichen Produkten aus unterschiedlichen Domänen genutzt werden können, oder sie beschreiben abstrakte Konzepte, die domänenübergreifend eingesetzt werden können. Beispiele sind Industrie 4.0/Industrial

Referenzarchitekturen können explizite Variationspunkte enthalten (Bergey et al., 1999; Pohl et al., 2005). Wenn Architekturen von Referenzarchitekturen abgeleitet werden, können diese
genutzt werden, um sich für bestimmte Varianten zu entscheiden und vorab Möglichkeiten der Variation an bestimmten Ankerpunkten zuzulassen. Die Verwendung von Variationspunkten ist im hier angewandten Begriffsverständnis eine fakultative Möglichkeit, definierte Wahlmöglichkeiten oder optionale Elemente in die Referenzarchitektur zu integrieren. Demzufolge wird zwischen Referenzarchitekturen mit Variationspunkten und Referenzarchitekturen ohne Variationspunkten unterschieden.

Referenzarchitekturen können **unvollständig** sein (Bergey et al., 1999). Sie müssen nicht alle Teile bereithalten, die zur Ableitung einer konkreten Architektur nötig sind. Bestimmte Aspekte einer konkreten Architektur können der jeweiligen Implementierung überlassen werden und werden daher nicht in der Referenzarchitektur behandelt. Taylor et al. (2009, S. 589) unterscheiden zwischen drei Arten von Referenzarchitekturen hinsichtlich der Vollständigkeit:

- **Vollständige Referenzarchitekturen** für ein einzelnes Produkt. Diese bilden komplette System für eine spezielle Domäne ab und werden daher als vollständig bezeichnet.
- **Unvollständige invariante Referenzarchitekturen** zeichnen sich dadurch aus, dass eine Teilarchitektur dieser spezifiziert werden kann, die konstant und ohne Anpassung bei allen Produkten eingesetzt wird. Teile, die bei abgeleiteten Produkten unterschiedlich sind, werden nicht spezifiziert. Teilweise kann jedoch ein Leitfaden Teil der Referenzarchitektur sein, der ein Vorgehen für die Implementierung der offenen, nicht spezifizierten Elemente beschreibt.

Referenzarchitekturen können nach Angelov et al. (2014a, S. 2) entweder **praxisgetrieben** sein und bestehendes Wissen einer Domäne zusammenfassen, sofern genug bewährtes Wissen zusammengetragen wurde. Oder sie sind **forschungsgetrieben** und haben die Unterstützung

2.2.4.2 Ziele einer Referenzarchitektur

Die Ausprägungen der jeweiligen Eigenschaften hängen stark von den verfolgten Zielen einer Referenzarchitektur ab. In der Literatur werden verschiedene Faktoren und übergeordnete Ziele für die Entwicklung von Referenzarchitekturen genannt:

⁶ Auf die Nennungen weiterer genannter Vor- und Nachteile von Martínez-Fernández et al. (2013a), die auch als übergeordnete Ziele interpretiert werden kann, wird hier verzichtet, da diese Punkte meist Spezialisierungen der bereits angeführten Ziele darstellen.
Abbildung 4: Ziele und Treiber von Referenzarchitekturen

Quelle: In Anlehnung an Reidt et al. (2018a)

Referenzarchitekturen sollen daher zum einen die Komplexität beherrschbar machen, zum anderen die Erfüllung von übergeordneten Zielen einer Organisation bzw. mehrerer Organisationen ermöglichen. Dabei ist die Komplexitätsbeherrschung eine Grundbedingung zur Erfüllung der übergeordneten Ziele. Je nachdem wie Referenzarchitekturen die Komplexität beherrschbar machen sollen oder wie sie die übergeordneten Ziele erfüllen, können sie nach Angelov et al. (2012, S. 421) auch selbst nach ihren Zielen unterschieden werden:

- **Referenzarchitekturen mit Standardisierungsziel**: Das Ziel dieser Referenzarchitekturen ist es, eine Standardisierung der Architektur bzw. der entwickelten Systeme zu erreichen.
- **Referenzarchitekturen mit Erleichterungsziel**: Referenzarchitekturen mit diesem Ziel versuchen durch Richtlinien, Wissen oder Inspirationen die Entwicklung von Systemen zu erleichtern.

Insbesondere die Erleichterung der Entwicklung wird von vielen Referenzarchitekturen angestrebt, doch die Wege, wie dies geschieht, wird bei Referenzarchitekturen sehr unterschiedlich behandelt. Nachfolgend werden verschiedene Möglichkeiten aufgezählt, die zur Erreichung der Ziele führen.

Erfassung von Wissen - Referenzarchitekturen können Sammlungen von bestimmtem Wissen enthalten. Dieses Wissen soll die Entwicklung erleichtern. Häufig genannt werden folgende Arten:

- Referenzarchitekturen erfassen **architektonisches Wissen** in Form von: Architekturmustern und bestimmten Architekturstilen (Muller/van de Laar, 2009, S. 3) oder durch Darstellung von Gemeinsamkeiten verschiedener Architekturen einzelner Produkte/Systeme (Bergey et al., 1999; Gallagher, 2000; Galster/Angelov, 2015).
- Daneben wird von einigen Autoren die Bereitstellung von explizitem und implizitem **Domänenwissen** als ein sehr wichtiger Aspekt zur Bereitstellung von Wissen genannt (Martínez-Fernández et al., 2013b, S. 100; Nakagawa et al., 2011b, S. 210; Vogel et al., 2009, S. 254). Das Domänenwissen kann durch die Bereitstellung einer einheitlichen, eindeutigen, breit verstandenen **Domänterminologie** verfügbar gemacht werden (Martínez-Fernández et al., 2013b, S. 100; Nakagawa et al., 2014a, S. 144) oder durch die Integration und Präsentation von **Geschäftsregeln und -abläufen** (Martínez-Fernández et al., 2013b, S. 100; Nakagawa et al., 2014a, S. 144).
- Daneben können Referenzarchitekturen **Softwareelemente** enthalten, welche die Wiederverwendbarkeit fördern und fordern, sodass hierdurch Arbeitersparnisse erzielt werden (Arboleda et al., 2014, S. 173).
 - Diese Softwareelemente können Infrastrukturkomponenten sein, die bei allen auf der Referenzarchitektur basierenden Systemen eingesetzt werden (Gallagher, 2000).
- Neben ausgearbeiteten Softwareelementen können auch Funktionalitäten von Komponenten auf Systemebene beschrieben werden, um Wissen bereitzustellen. Die Beschreibung kann dabei auch abstrakt sein (Bass et al., 2003; Vogel et al., 2009).
- **Randbedingungen** zur Ableitung von konkreten Architekturvorgaben können vorgegeben werden, sodass sich die Entwicklung innerhalb eines festen Rahmens bewegen kann (Bergey et al., 1999; Pohl et al., 2005).
- Daneben wird die Entwicklung durch Referenzarchitekturen nicht nur durch das Bereitstellen von Wissen erleichtert, sondern auch dadurch, dass die
Referenzarchitektur als **Kommunikationselement** eingesetzt werden kann: Dabei wird eine Referenzarchitektur vordergründig als Kommunikationselement benutzt (Lin et al., 2015, S. 10f), um durch Bereitstellung eines **kompletten Bildes** des zu entwickelnden Systems und einer einheitlichen Begriffswelt in Form von bspw. Taxonomien eine Zusammenarbeit verschiedener Stakeholder zu fördern (Martinez-Fernandez et al., 2015, S. 154).

2.2.4.3 Diskussion und Einordnung des Begriffs Referenzarchitektur

Von der wissenschaftlichen Literatur abgesehen wird der Begriff vor allem stark bei praktischen Beiträgen für Industrie 4.0, Internet of Things oder Digitalisierung benutzt. Die Beiträge haben jedoch oft wenig gemeinsam, weder bei der Darstellung, noch beim Inhalt. Es scheint oft nur um den Referenzcharakter zu gehen bzw. um den Versuch, einen Referenzcharakter herzustellen.

Die meisten Definitionen beinhalten aktuell keine umfassende Bestimmung, die alle validen wissenschaftlichen Aspekte umfasst. Falls doch, umreißen sie das Thema auf eine solch generische Art und Weise, dass sie zu großen Interpretationsraum ermöglichen. Die Entwicklung macht den Vergleich und die Interpretation von Referenzarchitektur enorm schwierig und es bedarf daher eine grundlegende Einordnung, welche die relevanten Aspekte und Ziele zusammenfasst. Die Frage die sich an diesen Punkten anschließt ist daher, ob es überhaupt möglich ist, die aktuelle Forschung und die Entwicklung von Referenzarchitekturen einzuzgrenzen und ob eine klare Abgrenzung zu anderen Begriffen wie bspw. ein Referenzmodell möglich ist. Durch die identifizierten Aspekte in den vorangegangenen Kapiteln kann dies aus Sicht des Autors klar bejaht werden. Einige der Punkte finden sich nicht typischerweise bei anderen Artefakten, auch wenn die Trennung zu anderen Begriffen nicht komplett Trennscharf definiert werden kann. Durch die Auswahl, Aufzählung und Aggregation ist es möglich, den Begriff exakter zu umreißen.

Basierend auf den vorgestellten Erkenntnissen wird in dieser Arbeit daher eine eigene Begriffsdefinition des Begriffs Referenzarchitektur herausgearbeitet und verwendet. Nachfolgend wird diese vorgestellt und Abgrenzung hinsichtlich der bereits vorgestellten benachbarten Begriffe vorgenommen.

„Eine Referenzarchitektur ist eine abstrakte Architektur, die den Menschen die Entwicklung von Systemen, Lösungen und Applikationen erleichtern soll, indem sie Wissen bereitstellt und einen Rahmen zur Entwicklung vorgibt. Die Beziehung
zwischen Referenzarchitektur und konkreter Architektur ist dadurch gekennzeichnet, dass Gegenstand oder Inhalt der Referenzarchitektur bei der Konstruktion der konkreten Architektur des jeweiligen zu entwickelnden Systems (wieder-)verwendet werden. Die Referenzarchitektur besitzt einen technischen Fokus, verbindet diesen jedoch mit dem dazugehörigen Fachwissen der jeweiligen Domäne. Sie bildet durch ihre Ausprägung und ihren Inhalt ein gemeinsames Rahmenwerk, um die detaillierten Diskussionen aller bei der Entwicklung beteiligten Stakeholder geführt werden können (Reidt et al., 2018a).

Die konkrete Softwarearchitektur ist eine Instanziierung der Referenzarchitektur bzw. der Produktlinienarchitektur und gibt eine konkrete Architektur für eine spätere Implementierung vor. Die konkrete Architektur wird von der Referenzarchitektur abgeleitet und konkretisiert, was in der Referenzarchitektur bisher nur abstrakt beschrieben wurde. Dabei werden auf Basis von evtl. vorhandenen Variationspunkten die Varianten ausgewählt, die zur Umsetzung der der Architektur zugrundeliegenden Anwendungsfälle nötig sind. Die Implementierung bezeichnet hingegen die Umsetzung der konkreten Architektur. Im Kontext der Softwareentwicklung wäre die Implementierung das entstandene Softwaresystem, welches durch die Architektur beschrieben wird.
2.2.4.4 Klassifikation von Referenzarchitekturen

Basierend auf der vorgestellten Definition und den vorgestellten Eigenschaften und Zielen lässt sich folgende Klassifikation für Referenzarchitekturen erstellen.

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>Ausprägungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraktionsgrad</td>
<td>Detailliert (Codebasis)</td>
</tr>
<tr>
<td>Technologieneutralität</td>
<td>Ja</td>
</tr>
<tr>
<td>Industriefokus</td>
<td>Industriespezifisch</td>
</tr>
<tr>
<td>Produktfokus</td>
<td>Fokus auf ein Produkt</td>
</tr>
<tr>
<td>Unternehmensfokus</td>
<td>Unternehmensspezifisch</td>
</tr>
<tr>
<td>Referenzcharakter</td>
<td>Bezugspunkt</td>
</tr>
<tr>
<td>Variationspunkte</td>
<td>Enthalten</td>
</tr>
<tr>
<td>Technisch Fokus</td>
<td>Rein technisch</td>
</tr>
<tr>
<td>Vollständigkeit</td>
<td>Vollständig</td>
</tr>
<tr>
<td>Praxis- oder Forschungsgetrieben</td>
<td>Praxis</td>
</tr>
<tr>
<td>Ziel</td>
<td>Standardisierung</td>
</tr>
<tr>
<td>Vorgehensweise</td>
<td>Induktiv</td>
</tr>
<tr>
<td>Enthaltenes Wissen</td>
<td>Architekturwissen</td>
</tr>
</tbody>
</table>

Tabelle 2: Klassifikationsschema Referenzarchitekturen

Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>Ausprägung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraktionsgrad</td>
<td>Detailiert (Codebasis)</td>
</tr>
<tr>
<td></td>
<td>Mischform</td>
</tr>
<tr>
<td></td>
<td>Abstrakt</td>
</tr>
<tr>
<td>Technologieneutralität</td>
<td>Ja</td>
</tr>
<tr>
<td></td>
<td>Teilweise</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
</tr>
<tr>
<td>Industriefokus</td>
<td>Industriespezifisch</td>
</tr>
<tr>
<td></td>
<td>Teilweise Industrieübergreifend</td>
</tr>
<tr>
<td>Produktfokus</td>
<td>Fokus auf ein Produkt</td>
</tr>
<tr>
<td></td>
<td>Produktfamilie</td>
</tr>
<tr>
<td></td>
<td>Produktübergreifend</td>
</tr>
<tr>
<td>Unternehmensfokus</td>
<td>Unternehmensspezifisch</td>
</tr>
<tr>
<td></td>
<td>Unternehmensübergreifend</td>
</tr>
<tr>
<td>Referenzcharakter</td>
<td>Bezugspunkt</td>
</tr>
<tr>
<td></td>
<td>Allgemeingültigkeit</td>
</tr>
<tr>
<td></td>
<td>Empfehlungscharakter</td>
</tr>
<tr>
<td>Variationspunkte</td>
<td>Enthalten</td>
</tr>
<tr>
<td></td>
<td>Nicht enthalten</td>
</tr>
<tr>
<td>Technisch Fokus</td>
<td>Rein technisch</td>
</tr>
<tr>
<td></td>
<td>Technisch mit Domäneninformationen</td>
</tr>
<tr>
<td>Vollständigkeit</td>
<td>Vollständig</td>
</tr>
<tr>
<td></td>
<td>Unvollständig</td>
</tr>
<tr>
<td>Praxis- oder Forschungsgetrieben</td>
<td>Praxis</td>
</tr>
<tr>
<td></td>
<td>Forschung</td>
</tr>
<tr>
<td>Ziel</td>
<td>Standardisierung</td>
</tr>
<tr>
<td></td>
<td>Erleichterung</td>
</tr>
<tr>
<td>Vorgehensweise</td>
<td>Induktiv</td>
</tr>
<tr>
<td></td>
<td>Kombination</td>
</tr>
<tr>
<td></td>
<td>Deduktiv</td>
</tr>
<tr>
<td>Enthaltes Wissen</td>
<td>Architekturwissen</td>
</tr>
<tr>
<td></td>
<td>Softwareelemente</td>
</tr>
<tr>
<td></td>
<td>Richtlinien</td>
</tr>
<tr>
<td></td>
<td>Weiteres Wissen: Optionale und generische Anforderungen</td>
</tr>
</tbody>
</table>

Tabelle 3: Angewandtes Klassifikationsschema auf die RAI

Quelle: Eigene Darstellung

Die Referenzarchitektur besitzt Variationspunkte und offene Erweiterungsmöglichkeiten. Diese sind nicht ausformuliert und informell gehalten. Aus diesem Grund ist die Referenzarchitektur auch unvollständig. Sie beinhaltet neben technischen Aspekten auch Domäneninformationen und bietet ein Vokabular, um die stakeholderübergreifende Kommunikation zu erleichtern. Sie ist praxis- wie auch forschungsgetrieben, sodass zum einen bestehende Lösungen zusammengefasst werden und auf bewährte Teilaspekte zurückgegriffen wird. Zum anderen werden jedoch viele innovative Elemente und die zukünftige Entwicklung von der Referenzarchitektur beschrieben, sodass ein innovativer Charakter erhalten bleibt. Weiterhin basieren die Informationen nicht auf bestehenden Systemen, sondern auf Anforderungen auf Literatur und Praxis, was für eine Forschungsorientierung steht.
2.3 Methodik zur Erstellung von Referenzarchitekturen

2.3.1 Methoden zur Erstellung von Referenzarchitekturen

In der Literatur finden sich verschiedene Ansätze zur Erstellung von Referenzarchitekturen. Diese unterscheiden sich stark in ihrem Grad an Abstraktion und der Art der Referenzarchitektur, für den diese entworfen wurden.

Galster und Avgeriou (2011) erkennen das Problem der fehlenden systematischen Erstellung von Referenzarchitekturen und stellen einen Ansatz vor, Referenzarchitekturen empirisch

- **Schritt 2 – Festlegen der Designstrategie:** Abhängig vom Typ der Referenzarchitektur wird diese entweder aus Best Practices bzw. Projekterfahrung und bestehenden Architekturen gebildet oder von Grund auf neu gebildet.

- **Schritt 4 – Konstruktion der Referenzarchitektur:** In diesem Schritt wird die Referenzarchitektur modelliert und in verschiedene Architektursichten unterteilt. Dabei wird zwischen gemeinsamen und spezifischen Elementen auf Basis der Informationen aus Schritt 3 unterschieden. Gemeinsame Elemente sind jene Elemente, die in jeder zugrundeliegenden Architektur enthalten sind und demnach einen Kernbestandteil der Referenzarchitektur darstellen müssen.

- **Schritt 5 – Ermöglichung der Variabilität:** In diesem Schritt wird die Variabilität in Form von spezifischen Elementen bspw. als Variationspunkte in die Referenzarchitektur eingefügt.

- **Schritt 6 – Evaluation der Referenzarchitektur:** Abhängig vom Typ und damit vom Ziel der Referenzarchitektur wird die Nützlichkeit oder die Unterstützung für die effiziente Adaption und Instanzierung im Vordergrund stehen.

die Erstellung der RAII nicht ausreichend, sondern kann nur einen Rahmen für die Vorgehensweise vorgeben.

Nakagawa et al. (2014a) stellen den Prozess ProSA-RA vor, der die Erstellung, Repräsentation und Evaluation von Referenzarchitekturen systematisieren soll. Bei diesem wird zuerst der Anwendungsbereich der Referenzarchitektur festgelegt, bspw. die Zieldomäne. Anschließend werden folgende vier Schritte durchgeführt:

- **Schritt 1 – Auswahl und Untersuchung von Informationsquellen:** Bei diesem Prozessschritt werden die relevanten Informationsquellen ausgewählt, sodass aus diesen die nötigen Informationen über Prozesse, Aktivitäten und Aufgaben, die durch das Softwaresystem der Zieldomäne unterstützt und abgedeckt werden sollen, extrahiert werden können. Im Vergleich zu „normalen“ konkreten Architekturen wird umfassenderes Domänenwissen für die Erstellung von Referenzarchitekturen benötigt, da diese die Grundlage für mehrere unterschiedliche Systeme darstellt. Als potentielle Informationsquellen werden Personen (Kunden, Benutzer, Entwickler, etc.), Softwaresysteme, Publikationen und Domänenontologien o. Ä. genannt.

- **Schritt 2 – Identifizierung von Architekturanforderungen:** Ausgehend von den Informationen aus Schritt 1 müssen die relevanten Informationen der Applikationsdomäne identifiziert und als Resultat die Anforderung an die Referenzarchitektur aufgestellt werden. Dabei untergliedert sich diese Aufgabe in die Identifikation von Systemanforderungen (funktionale und nicht funktionale Anforderungen) durch Techniken der Anforderungserhebung und in die Etablierung von Referenzarchitekturanforderungen, die auf den Systemanforderungen aufbauen und mehrere Systemanforderungen umfassen können. Sie besitzen daher eine höhere Abstraktionsstufe und können funktionale wie auch nicht funktionale Anforderungen umfassen. Anschließend werden Domänenkonzepte herausgearbeitet, die wiederum die Referenzarchitekturanforderungen umfassen und demzufolge einen noch höheren Abstraktionsgrad besitzen. Diese Domänenkonzepte sind die Grundlage für das architekturelle Design der Referenzarchitektur.

- **Schritt 3 – Etablierung der architektonischen Beschreibung der Referenzarchitektur:** Die Repräsentation und damit die Modellierung der Referenzarchitektur wird in diesem Schritt so bestimmt, dass diese einer großen Anzahl von Stakeholdern verständlich ist. In den meisten Fällen ist die Modellierung daher informell. Auch bei diesem Vorgehen werden verschiedene Architekturstilsichtungen empfohlen, die jedoch bis auf eine Konzeptsicht sehr technisch gehalten sind (technische Modulsicht, Laufzeitumgebungssicht, Verteilungssicht).

- **Schritt 4 – Evaluation der Referenzarchitektur:** Im letzten Schritt wird die Referenzarchitektur mit anzupassenden Methoden wie bspw. die Architectural Tradeoff Analysis, Software Architecture Analysis Method oder einer checklistbasierten Evaluation hinsichtlich ihrer Nützlichkeit untersucht. Hier spielen insbesondere die Verständlichkeit und die Darstellung der Referenzarchitekturen eine Rolle.

Anforderungen hinsichtlich Systemanforderungen, Referenzarchitekturnanforderungen und Domänenkonzepten kann als Grundlage zur Erstellung der RAII genutzt werden.

2.3.2 Verwendete Methodik zur Erstellung von Referenzarchitekturen

Die RAII wird anhand dieses Vorgehens erstellt, welches sich in den in Kapitel 1 vorgestellten Forschungsrahmen einbettet. Dabei stellen die nachfolgend vorgestellten Schritte Teile der Analyse-, Entwurfs- und Evaluationsphase aus Abbildung 2 dar.

 - Im Fall der RAII ist das Ziel die Erleichterung der Entwicklung durch die Bereitstellung eines Rahmenkonzeptes zur Erstellung von IIS und durch die Förderung der domänenübergreifenden Zusammenarbeit. Der Betrachtungsrahmen umfasst demzufolge den gesamten Bereich von Informationssystemen zur Unterstützung der Instandhaltung. Um diesen Bereich abzubilden sowie eine

Stakeholder bei der Benutzung sind alle bei der Instandhaltung beteiligten Personen, seien es die Instandhalter selber, Maschinenführer, externe Dienstleister der Instandhaltung, Maschinenhersteller, die Instandhaltungskomponenten einbinden wollen oder Manager der Instandhaltung und Controller ebenjener. Diese Personen sollten auch bei der Instanzierung bei den für sie relevanten Teilen der Referenzarchitektur eingebunden werden.

 • Im Falle der RAI wurde der aktuelle Status quo zu Instandhaltungsthemen und -systemen im wissenschaftlichen Kontext ergründet, weitere Komponenten für Instandhaltungssysteme erfasst und möglichst verwandte Referenzarchitekturen identifiziert. Eine Darstellung dieser Untersuchung findet sich in diesem Kapitel sowie in den Kapiteln 3 und 4 wieder.

Lösung zu extrahieren. Mit den Schritten 2 und 3 wird das Domänenwissen, welches zur Erstellung der Referenzarchitektur nötig ist, erlangt, und von praktischer wie auch wissenschaftlicher Seite untersucht.

 - Das genaue Vorgehen im Fall der RAIU wird in Kapitel 4 beschrieben.

 - Die genaue Darstellung von Modulen, die jeweilige Aufteilung von Anforderungen und der Inhalt der Module wird in Kapitel 6.2 beschrieben. In der RAIU wird zusätzlich eine Verteilungssicht eingeführt (vgl. Kapitel 6.3), welche die Verteilung
von Modulen auf verschiedenen Entitäten und Endgeräten aufzeigt. Dadurch soll die Diskussion um Intelligenzverteilung und Dezentralität von Architekturen erleichtert und diese Aspekte in die Planung von konkreten Architekturen einbezogen werden.

- **Schritt 8 – Feedbackzyklen & Anwendung der Referenzarchitektur**: Zusätzlich müssen im Kontext der Anforderungsaufnahme und Entwicklung mehrere Feedbackgespräche mit Entwicklern und Stakeholdern bzgl. der Referenzarchitektur geführt werden, um die Anforderungen nach dem jeweiligen Feedback zu verbessern. Weiterhin ist der Entwurf der Module, der einzelnen Sichten und der Anforderungen ein iterativer Prozess, da diese sich im Designprozess mehrmalig ändern.
 - Die in dieser Arbeit behandelte Referenzarchitektur wurde für die Entwicklung verschiedener Prototypen im Rahmen des Forschungsprojektes S-CPS genutzt und diente dem generellen Anforderungsmanagement und der Entwicklung des in Kapitel 7.5 vorgestellten Prototypen. Die Schritte 3-8 wurden und in mehrmaligen Iteration samt Feedback durchlaufen, um so die Referenzarchitektur stetig zu verbessern.

2.4 Zusammenfassung

Ein wichtiges Fundament dieses Vorgehens ist die Erlangung von Domänenwissen zur Erstellung der Referenzarchitektur. Für die RAII ist ein Teil dieses Domänenwissen das Wissen über die Instandhaltung, deren Arten, Konzepte und Systeme. Im nächsten Kapitel werden diese Aspekte vorgestellt.
3 Instandhaltung im Kontext der Industrie 4.0

3.1 Einleitung

Weiterhin dient die Aufnahme der Systeme als Basis, um im nächsten Kapitel eine Literaturrecherche durchzuführen. Nachfolgend wird die Aufteilung des Kapitels vorgestellt, wodurch die angesprochenen Aspekte näher beleuchtet werden:

Zuerst werden in Kapitel 3.2 der Begriff der Instandhaltung und damit verbundene Unterbegriffe beleuchtet und definiert. Dieses Kapitel wurde in weiten Teilen der Veröffentlichung der Referenzarchitektur von Reidt et al. (2016a) übernommen. In Kapitel 3.3 werden unterschiedliche Instandhaltungskonzepte und damit verbundene Instandhaltungsstrategien vorgestellt, welche aktuell betrieben werden. Basierend auf diesem Wissen lassen sich die Anforderungen an die Instandhaltung und die unterstützenden Systeme ableiten. Nachdem die Basis der Instandhaltung, dazugehörige aktuelle Konzepte und Strategien beleuchtet wurden, werden in Kapitel 3.4 die Informationssysteme untersucht, welche für eine effektive Instandhaltung nötig sind. Dabei wird eine Differenzierung vorgenommen: Zuerst werden die typischen Informationssysteme der Produktion vorgestellt,
aus denen Daten für die Instandhaltung benötigt werden. Anschließend werden die Informationssysteme genannt, welche explizit die Instandhaltung unterstützen sollen. Die zu entwickelnde Referenzarchitektur muss als Grundlage die genannten Systeme integrieren oder bestimmte Aufgaben dieser übernehmen können. Die gewonnenen Erkenntnisse werden in Kapitel 3.5 zusammengefasst.
3.2 Definition und Begriffe der Instandhaltung

Abbildung 6: Abbau des Abnutzungsvorrates und seine Erstellung durch Maßnahmen der Instandhaltung
Quelle: In Anlehnung an DIN 31051:2012-09 (S. 8)

Der erwähnte Verlauf des Abnutzungsvorrates skizziert einen typischen Anwendungsfall einer Instandhaltung. Instandhaltung ist hierbei ein notwendiger Bestandteil der betrieblichen Anlagenwirtschaft, orientiert sich typischerweise am Ist- und Sollzustand der Betrachtungseinheit, ist für die Werterhaltung und -steigerung sowie für die Nutzung des Anlagenvermögens eines Unternehmens nach VDI 2895:2012-12 (S. 3) verantwortlich.

Im Rahmen der Instandhaltung existieren verschiedene Maßnahmen, um die Ziele der Werterhaltung und -steigerung zu erreichen. Nach der DIN 31051:2012-09 (S. 4 ff.) werden diese Möglichkeiten in vier Grundmaßnahmen unterteilt, welche nachfolgend beschrieben werden:

- Wartung – Maßnahmen zur Verzögerung des Abbaus des vorhandenen Abnutzungsvorrats.
- Instandsetzung – physische Maßnahmen, die ausgeführt werden, um die Funktion einer fehlerhaften Einheit wiederherzustellen.
- Verbesserung – Kombination aller technischer Maßnahmen sowie Maßnahmen des Managements zur Steigerung der Zuverlässigkeit und/oder Instandhaltbarkeit und/oder Sicherheit einer Einheit, ohne ihre ursprüngliche Funktion zu ändern.

3.3 Instandhaltungskonzepte und -strategien

Abbildung 7: Unterscheidung zwischen Instandhaltungskonzepten, -strategien und -maßnahmen
Quelle: Eigene Darstellung

„**Instandhaltungsstrategien sind Regeln, die angeben, zu welchen Zeitpunkten welche Aktionen an welchen Aggregaten bzw. Bauteilen vorgenommen werden sollen**“.

Der Zusammenhang zwischen Instandhaltungsstrategie, -konzepten und -maßnahmen wird auf der nachfolgenden Grafik erläutert. Dort sind pro Kategorie mehrere Ausprägungen dargestellt, die in nachfolgenden Unterkapiteln behandelt werden, beginnend mit den verschiedenen Ausprägungen der Instandhaltungskonzepte.

3.3.1 Instandhaltungskonzepte

3.3.1.1 Reliability Centered Maintenance

Reliability Centered Maintenance (RCM), in Deutsch auch als „zuverlässigkeitsorientierte Instandhaltung“ bezeichnet, stellt eine hochstrukturierte Methode für die Planung der Instandhaltung und der damit verbundenen Aktivitäten dar (Starr et al., 2010, S. 7).

Das Vorgehen von RCM berücksichtigt Instandhaltungsanforderungen für einzelne Komponenten eines untersuchten Systems in ihrem Einsatzumfeld, was auch Sicherheitsabwägungen, Instandhaltungskosten und die Kosten von Produktionsausfall inkludiert (Mikler, 2015, S. 224).

Ein maßgeblicher Bestandteil des RCM-Konzeptes sind die folgenden sieben Kernfragen des RCM, die für jede Ausrüstungskomponente und jedes System beantwortet werden sollten. Diese Fragen sind nach Moubray (1996, S. 20) wie folgt:

- „Welche Funktionen und damit verbundenen Leistungsnormen gibt es für die Anlagenkomponente unter Berücksichtigung der momentanen Betriebsbedingungen?
- Wie versagt eine Anlagenkomponente bei der Ausführung ihrer Funktionen?
- Welche Ursachen hat die Funktionsstörung?
- Was geschieht, wenn die Anlagenkomponente versagt?
- Auf welche Weise stört das Versagen?
- Was kann getan werden, um der Störung vorzubeugen?
- Was sollte unternommen werden, wenn keine annehmbar vorbeugende Lösung gefunden werden kann?“

Zur Beantwortung dieser sieben Fragen existieren klare Schritt-für-Schritt-Prozeduren und weitere Materialien. Kern des systematischen Vorgehens der RCM ist oftmals die Failure Mode and Effects Analysis (FMEA) (Ahuja/Khamba, 2008, S. 714), in Deutsch auch „Fehlermöglichkeiten- und -einflussanalyse“ genannt, oder die Failure Mode and Effects and
Criticality Analysis (FMECA) (Rausand, 1998, S. 123), um die relevanten Komponenten und Fehlermodi zu identifizieren (Starr et al., 2010, S. 8). Damit hilft dieses Konzept bei der Wahl der optimalen Instandhaltungsstrategie zum Betrieb von bestimmten technischen Anlagen.

- RCM bietet keine Möglichkeiten, Aufgaben zu paketieren und automatisch einen durchführbaren Arbeitsplan von relevanten Instandhaltungsmaßnahmen abzuleiten.
- Die standardisierten Entscheidungsdiagramme in vielen RCM-Implementierungen sind hilfreich, jedoch weit entfernt davon perfekt zu sein.
- Besonders ist von akademischer Seite zu bemängeln, dass die wissenschaftliche Basis der RCM, die FMEA Analyse, oft nur auf eine ad-hoc Basis durchgeführt wird. Oft sind die statistischen Daten unzureichend oder nicht genau. Der Abnutzungsprozess der eingesetzten Komponenten (Fehlermechanismus) in der physischen Umgebung (z. B. staubige Umgebung) wird oftmals nicht verstanden. Dies führt dazu, dass die Balance zwischen wertvoller Erfahrung und objektivem statistischen Wissen nicht gewahrt werden kann.
- Im Allgemeinen ist die Einführung eines RCM ein sehr herausforderndes Projekt, welches eine ständige Beschäftigung erfordert, weswegen diese Projekte oft nicht korrekt durchgeführt werden, da diese sehr ressourcenintensiv sind.

Neben den Nachteilen, die von Pintelon und Parodi-Herz (2008) diskutiert werden, wenden auch Starr et al. (2010, S. 9) folgende Punkte gegen RCM ein:

- Ähnlich wie die statistischen Daten sind Fehlerdaten schwer zu erlangen, da Komponenten vor dem Auftreten von Fehlern üblicherweise ersetzt werden, um hohe folgende Kosten, insbesondere in der Prozess- und Chemieindustrie, zu vermeiden.
- Zuverlässigkeit ist eventuell nicht der Hauptfokus der Instandhaltung, Produktionsanlagen fokussieren hauptsächlich die Verfügbarkeit.

3.3.1.2 Total Productive Maintenance

Total Productive Maintenance (TPM) ist eine spezifische japanische Philosophie, die durch die Nippon Denso Company Co. Ltd, einem Zulieferer der Toyota Motor Company entwickelt wurde (Ahuja/Khamba, 2008, S. 715). Als eine Antwort auf die zunehmend wettbewerbsintensiveren Märkte, welche die Unternehmen dazu zwangen, die Produktion zu

- Verluste durch Ausfallzeiten:
 - Dazu gehören Ausfallzeiten, die auf Anlagenstörungen und -ausfälle zurückzuführen sind sowie
 - Ausfallzeiten, welche durch Rüstzeiten verursacht werden.
- Geschwindigkeitsverluste durch
 - Fehlermeldungen von Sensoren, Werkstückblockierungen, die kurze Stopps verursachen oder Geschwindigkeitsverluste durch
 - gedrosselte Produktionsgeschwindigkeit, welche dann resultiert, wenn die geplante Geschwindigkeit nicht mit der realen Geschwindigkeit übereinstimmt.
- Fehler aus Defekten
 - Verluste, die aus Bearbeitungsfehlern im Prozess entstehen.
 - Ungünstige Anlagenanlaufphasen können zu verringertem Ertrag führen, da die Zeit zwischen Start und stabiler Produktion zu lange dauert.

Abbildung 8: Die acht Pfeiler des TPM nach dem Vorschlag der JIPM
Quelle: In Anlehnung an Ahuja und Khamba (2008, S. 721)

- **Autonome Instandhaltung**: Hintergrund dieses Pfeilers ist die Erkenntnis, dass ohne das Interesse und die Kooperation der Produktionsmitarbeiter keine ordentliche Instandhaltung etabliert werden kann (Yamashina, 1995, S. 36). Der Grundgedanke einer autonomen Instandhaltung ist daher, dass von Mitarbeitern der Produktion signifikante Instandhaltungsaufgaben durchgeführt werden müssen (Starr et al., 2010, S. 9), aber auch das Sammeln von nötigen Instandhaltungsdaten der Maschine obliegt (Lee/Lapira, 2011, S. 70f). Hierdurch wird ein schnelleres Handeln und eine Verantwortung für die „eigene“ Maschine erzeugt, sodass zukünftig vom Produktionspersonal Gegenmaßnahmen bei erkannten Fehlern getroffen werden können. Der Einführung der autonomen Instandhaltung liegen nach Tsuchiya (1992, S. 31ff) die folgenden fünf Prinzipien zugrunde: Seiri (Organisation, Aussortieren), Seiton (effiziente Ordnung), Seiso (Reinigung, Säuberung), Seiketsu (Sauberkeit, Standardisierung) und Shitsuke (Disziplin, Training).

- **Geplante Instandhaltung**: Ein weiteres Grundelement des TPM stellt das geplante Instandhaltungsprogramm dar (Schröder, 2009, S. 151). Dabei handelt es sich um

- **Qualitätsmanagement:** Designfehler und die Qualitätsverbesserung von produzierten Gütern sollen durch geeignete Tools zur Qualitätsmessung erreicht werden.

- **Arbeitssicherheit, Umwelt- und Gesundheitsschutz:** Allgemein soll die Arbeitsumgebung ein sicheres, umweltgerechtes Arbeiten ermöglichen und durch entsprechende Maßnahmen zur Sicherung Arbeitsunfälle verhindern.

- **TPM in administrativen Bereichen:** Die angeschlossenen Funktionen und Büroutätigkeiten sollen die Grundgedanken des TPMs und Konzepte übernehmen, da nur eine ganzheitliche Durchführung von TPM einen Erfolg verspricht.

3.3.1.3 Weitere Planungskonzepte

3.3.2 Instandhalungsstrategien

Abbildung 9: Kategorisierung von Instandhaltungsarten

3.4 Verbundene Systeme für die Instandhaltung

Abbildung 10: Übersicht der potentiellen Informationssysteme für Produktion und Instandhaltung

Quelle: In Anlehnung an Reidt et al. (2018b, S. 251)

3.4.1 Informationssysteme eines produzierenden Unternehmens

3.4.1.1 Produktdatenmanagementsystem

Weiterhin hat ein PDM-System nach Hänsch und Endig (2010, S. 275) folgende Ziele:

- Inhalte, Abhängigkeiten und Strukturen der Daten bereitstellen, welche ein Produkt beschreiben
- Auffinden, Weitergabe und Verwaltung von Daten
Abbilden von Abläufen
Integration bzw. Verbindung mit anderen Informationssystemen

Für die Instandhaltung sind aus diesem System insbesondere 3D-Zeichnungen von Bedeutung. PLMS können darüber hinaus viele zusätzliche Daten für die Instandhaltung beinhalten, sodass abhängig von der konkreten Ausprägung z. B. Daten für Ersatzteile oder dem After-Sales vorhanden sein können.

3.4.1.2 Elektronische Ersatzteilkataloge

Elektronische Ersatzteilkataloge (eETK) sind digitalisierte oder digital erzeugte Kataloge, die Informationen, Daten und Dokumente über Ersatzteile in sich vereinen. Dazu gehören bildliche Darstellungen, 3D-Modelle wie auch Stücklisteninformationen. Damit ist es möglich, benötigte Ersatzteile zu identifizieren und diese zu bestellen.

Nach VDI 4500-3 (VDI 4500-3:2006-6) sind folgende Funktionalitäten durch einen eETK gegeben:
- Grafische Darstellungen von Ersatzteilen – Grafische (3D/2D) Darstellung der Ersatzteile samt korrekter Verbindung zu Stücklisten.
- Bestellfunktion – Direkte Bestellung von Ersatzteilen beim Hersteller und Händler sind durch das System möglich.
- Navigationsstrukturen – Der Katalog ist ähnlich wie das Produkt strukturiert und kann entsprechend durchsucht werden.
- Suchfunktionalitäten – Suchfunktionalitäten über das reine Suchen per Identifikationsnummer werden angeboten.
- Mehrsprachigkeit – verschiedene Sprachen werden bei Bedarf unterstützt.
- Publishing – der Ersatzteilkatalog kann in mehreren Formen publiziert werden.

Existiert dieses System bei Unternehmen, werden hierdurch auch die für die Instandhaltung nötigen Ersatzteile und dazugehörigen Informationen bereitgestellt. Weiterhin ist eine Verbindung zur Instandhaltungsmaßnahme und den dazu benötigten und im Anschluss verbrauchten Ersatzteilen möglich.

3.4.1.3 Wissensmanagementsystem

Ein Wissensmanagementsystem (WMS) (engl. Knowledge Management System (KMS)) ist ein Informationssystem im Sinne einer IKT-Plattform oder -Applikation, das Funktionen

Die Art der Systeme, die unter den Begriff WMS fallen, sind sehr vielfältig: Es lassen sich Wikisysteme, Tasklisten, Notizsysteme, Suchsysteme, strukturierte Wissensdatenbanken und Groupwaresysteme unter diesen Begriff subsummieren.

3.4.1.4 Dokumentenmanagementsystem

Dokumentenmanagementsysteme (DMS) dienen der Verwaltung von in physischer bzw. digitaler Form auftretenden heterogenen Dokumenten innerhalb von Unternehmen. Grundsätzlich sollten DMS nach Götzter et al. (2004, S. 10) alle wichtigen Belangen unterstützen, die für Unternehmen hinsichtlich

- der Erzeugung,
- dem Empfang,
- der Ablage,
- dem Verwalten,
- dem Wiederauffinden und
- der Weiterverarbeitung eines Dokumentes von Relevanz sind.

Um dies zu erreichen, stellt ein DMS nach Hänsch und Endig (2010, S. 273) folgende Funktionen bereit:

- Indizierung – Indizierung der jeweiligen Dokumente mithilfe von Stichworten oder Inhalten des Textes.
- Verwaltung – Hierzu zählen die Möglichkeiten Dokumente und ihre Metadaten sicher zu hinterlegen, Freigabe- und Änderungsmanagement anzubieten und in Verbund dazu verschiedene Versionen eines Dokumentes mitsamt einer Versionsverwaltung bereitzustellen.
- Archivierung – Darunter ist zum einen die sichere Langzeitverwahrung von Dokumenten bzw. Metadaten zu verstehen, zum anderen die Verwaltung des Archivs und eventueller Sicherheitsmechanismen.
- Recherche – Zum möglichst schnellen Auffinden von Dokumenten werden vielfältige Suchmechanismen durch das DMS zur Verfügung gestellt.
- Reproduktion – Die Möglichkeit im System vorhandene Dokumente anzuzeigen, sie wieder physisch greifbar zu machen bzw. sie zu vervielfältigen.

3.4.1.5 Enterprise Resource Planning

3.4.1.6 Manufacturing Execution System

Als Manufacturing Execution System (MES) wird ein am technischen Produktionsprozess operierendes Informationssystem bezeichnet. Es zeichnet sich gegenüber ähnlich wirksamen Systemen zur Produktionsplanung (ERP-Systeme) durch die direkte Anbindung an die verteilten Systeme des Prozessleitsystems aus und ermöglicht die Führung, Lenkung, Steuerung und Kontrolle der Produktion in Echtzeit.

Die Funktionalitäten hierbei sind nach VDI 5600-3 (VDI 5600-3:2013-7) u. a.:

- Feinplanung und -steuerung.
- Unterstützt die Erledigung des Arbeitsvorrats unter Beachtung vorhandener Einschränkungen und Zielvorgaben.
- Betriebsmittelmanagement.
- Sicherstellung der termin- und bedarfsgerechten Verfügbarkeit und technische Funktionsfähigkeit der Betriebsmittel.
- Materialmanagement.
- Termin- und bedarfsgerechte Versorgung der Fertigung mit Material und Führung von Umlaufbeständen.
- Personalmanagement.
Termingerechte Zurverfügungstellung von Personal mit ausreichender Qualifikation für den Produktionsprozess.
Qualitätsmanagement.
Unterstützt die Sicherstellung der Produkt- und Prozessqualität.
Informationsmanagement.
Datenerfassung.
Manuelle, halb- oder vollautomatische Erfassung von Daten aus dem Prozess inklusive Eingangs- und Vorverarbeitung der Informationen und Bereitstellung von Statusinformationen.
Leistungsanalyse.

Viele der im MES enthaltenen Informationen sind für die Instandhaltung oder auch die Instandhaltungsplanung von entscheidender Bedeutung. Performance-Indikatoren sind u. U. auch für Instandhaltungssysteme essentiell, ebenso Daten für die Leistungsanalyse oder das Betriebsmittelmanagement können bei der Instandhaltung von Interesse sein.

3.4.1.7 Speicherprogrammierbare Steuerung

Der Aufbau ist zweigeteilt: Es wird ein Hardwaresystem benötigt, welches u. a. die Verbindung zum Prozess und den weiteren Informationssystemen der Automatisierung realisiert. Als zweites Bestandteil ist die Software zu nennen, die den Zugriff auf die Hardware umsetzt (Heinrich et al., 2015, S. 304). In der SPS werden die Überwachungs-, Regelungs- oder auch Steuerungsaufgaben realisiert (Heinrich et al., 2015, S. 28).

Für die Instandhaltung ist die Überprüfung der Programme ein wichtiger Bestandteil der Arbeit, da daraus Fehlerursachen hergeleitet werden können. Weiterhin sind die Daten, die zum Teil in einer SPS enthalten sind, auch für die Zustandsüberwachung relevant.

3.4.1.8 Supervisory Control and Data Acquisition (SCADA)

SCADA-Systeme sind durch ihre Features im Bereich der Überwachung und Kontrolle schon zum Teil wichtige Systeme der Instandhaltung, da sie hierdurch Remote Maintenance ermöglichen.

3.4.1.9 Customer Relationship Management System

Insbesondere wenn die Instandhaltung bei (externen) Kunden ausgeführt wird, sind die damit verbundenen Daten im CRMS zu finden und von elementarer Bedeutung für die Instandhaltung. Auftragsmanagement, Service- und Kontrolltermine, Ansprechpartner und weitere Informationen sind meist im CRMS vorhanden oder müssen mit dem CRMS synchronisiert werden. Ein exemplarisches Beispiel, welche Rolle ein CRM-System bzw. die Kundendienstverwaltung für die Instandhaltung spielt, wird bei Nüttgens et al. (2014) ausführlich präsentiert.

3.4.1.10 Advanced Planning Systeme

3.4.2 Informationssysteme zur expliziten Unterstützung der Instandhaltung

3.4.2.1 Computerized Maintenance Management Systeme

Die Funktionalitäten hierbei sind nach Häschn und Endig (2010, S. 275) u. a.:

- **Auftragsplanung** – Festlegung der nötigen Instandhaltungsaufträge und ihrer Art (Zustands-, Störungs-, Intervallbasierend).
- **Auftragssteuerung** – Übersicht über aktuell laufende Instandhaltungsmaßnahmen und auch Möglichkeiten zum direkten Eingreifen in diese.
- **Kostencontrolling** – Umfasst Funktionen zur Kostenplanung, -steuerung und -kontrolle.
- **Ersatzteil- und Bestellwesen** – Ersatzteilbeschaffung und Überwachung.
- **Auswertungen, Analysen und Berichte** – Trends und Kennzahlen können anhand von Auswertungen, Analysen und Berichten erstellt werden.

3.4.2.2 Mobile Support Systems

relativ neu und werden vor allem durch die Entwicklung im Bereich der mobilen Endgeräte vorangetrieben. Es entstehen immer kleinere und leistungsfähigere Endgeräte wie Smartphones, Tablets oder Smartglasses, welche die Nutzungsszenarien von Informationssystemen deutlich erweitern und verändern können. So ist es möglich, durch diese Systeme den Instandhalter direkt bei seiner Arbeit mit kontextsensitiven Informationen zu versorgen und sogar die eigene Sichtweise durch Techniken der AR (Aschenbrenner et al., 2016) anzureichern.

3.4.2.3 Condition Monitoring System

Um dieses Aufgaben zu bewältigen, bieten CMS nach Hänsch und Endig (2010, S. 272) die folgenden Funktionalitäten an:

- Messwerterfassung,
- Messwertspeicherung und -verdichtung,
- Online-Überwachung und -Verknüpfung von Messwerten,
- Auswertung der Messdaten,
- Erfassung und Verarbeitung von Zusatzinformationen.

3.4.2.4 E-Maintenance System

- Zum einen das Auftreten von Technologien, welche die Effizienz, Geschwindigkeit und generell die Optimierung der Instandhaltung ermöglichen.
- Zum anderen der Bedarf, dass die Instandhaltung andere Dienste des Unternehmens bzw. in diese integriert wird und mit diesen kollaboriert.

3.4.2.5 Intelligent Maintenance System

Ungefähr zeitgleich mit dem Begriff des E-Maintenance kam der Begriff der Intelligent Maintenance Systeme (IMS) auf. Fokus sind hier insbesondere Arbeiten um Jay Lee (vgl. dazu
Lee et al., 2006), die insbesondere auch das Center of Intelligent Maintenance Systems betreiben (Webseite des Center for Intelligent Maintenance Systems).

Derselbe Autorenkreis verwendet die Bezeichnung Prognostics and Health Management System (PHMS) (Crabb, 2014; Lee et al., 2011; Monnin et al., 2011) für eine Kombination aus RCM, CBM sowie Preventive Maintenance. Innerhalb dieser Arbeit werden aufgrund der großen Überschneidungen die Begriffe PHMS und IMS synonym benutzt.

3.4.2.6 Predictive Maintenance System

PMS sind teilweise sehr ähnlich zu CMS und IMS. Sie benötigen den aktuellen Zustand und historische Zustände einer Maschine oder Komponente, um Vorhersagen abzuleiten. CMS bieten diese Daten als Kern ihrer Funktionalität an, darüber hinaus werden mittlerweile auch bei den meisten CMS Prognosen über den zukünftigen Zustand von Maschinen und Komponenten erstellt. Der entscheidende Unterschied ist der ursprüngliche Kern der jeweiligen Systeme, der bei den CMS die Zustandsbewertung und bei den PMS die Vorhersage ist.

3.4.2.7 Decision Support System (for Maintenance)

Der Term DSS beinhaltet eine enorme Definitionsweite und lässt sich auf fast alle bisherigen Systeme anwenden, da alle dazu genutzt werden, durch intuitive Darstellungen zu unterstützen und viele auch Analysemethoden zur Informationsgewinnung benutzen. Jedoch ist der Term nicht für Instandhaltungssysteme speziell festgelegt und wird für jedes Entscheidungsunterstützungssystem genutzt werden. Ein Aspekt, der bei diesen Systemen vernachlässigt wird, ist, dass die Datenintegration und die Herausforderungen zur Gewinnung und Extraktion aktueller Daten kaum eine Rolle spielen.

3.4.3 Weitere verwandte Systembegriffe

Neben diesen Systemen und den Produktionssystemen existieren in einigen Publikationen weitere Systeme, die zur Unterstützung der Instandhaltung eingesetzt werden. Jedoch ist der Fokus dieser Systeme meist nicht allein die Instandhaltung oder die Begriffe werden nur bei einigen wenigen Publikationen verwendet. Weiterhin sind manche der Systembegriffe nur eine Erweiterung eines bestehenden Systems mit einer bestimmten Technik oder Methode. Für die Vollständigkeit und Ableitung von Anforderungen in Kapitel 4 wird diese Gruppe der Systeme nachfolgend vorgestellt:

Ein Product Service System (PSS) ist eine integrierte Kombination von Produkten und Services, indem es die traditionelle Funktionalität eines Produktes mit zusätzlichen Services anreichert (Baines et al., 2007, S. 1543). Instandhaltung und Instandhaltungssysteme spielen als Teil eines PSS eine große Rolle, da sie das Produkt um Services, wie die Instandhaltung, erweitern können. Der Begriff zielt jedoch nicht alleine auf Instandhaltung ab und wird nicht im Speziellen für Instandhaltungssysteme oder Systeme genutzt, aus denen die Instandhaltung Daten zwingend benötigt.

Case-Based Reasoning Systeme/Systeme für Fallbasiertes Schließen sind eine spezielle Form der Entscheidungsunterstützungssysteme bzw. der Assistenzsysteme. Solche Systeme benutzen die Methodik des Case-Based Reasonings, dass durch eine Basis von bereits gelösten Fällen, wie bspw. Reparaturfällen, ähnliche Fälle erkannt und eine Problemlösung bereitstellt. Diese Systeme werden in der Literatur meist jedoch anderen Systemen zugeschrieben und sind Teil von Ihnen, z. B. den MSS (Nüttgens et al., 2014), E-MS (Rasoyska et al., 2005), RCM-Systemen (Cheng et al., 2010), Entscheidungsunterstützungssystemen (Rasovska et al., 2008) oder Wissensmanagement im weiteren Sinne (Potes Ruiz et al., 2013). Es wird daher nicht als einzelnes System betrachtet, sondern als einzelne Methodik.

3.4.4 Diskussion verbundene Systeme
Mit dieser Übersicht ist ersichtlich, dass viele Informationssysteme in einem produzierenden Unternehmen vorhanden sein können, aus denen Daten für die Instandhaltung benötigt werden können. Erkennbar ist aber auch, dass viele unterschiedliche Informationssysteme und damit verschiedene Ansätze existieren, die Instandhaltung zu unterstützen. Der Fokus der jeweiligen Systeme liegt bei den meisten Systemen auf einem ganz bestimmten Aspekt oder einer bestimmten Art, die Instandhaltung zu unterstützen. Eine aktuelle Entwicklung, die bei der Weiterentwicklung der jeweiligen Systeme zu erkennen ist die, dass die ursprünglich für einen Einsatzzweck entworfenen Systeme zunehmend um die Fähigkeiten anderer Systeme erweitert werden, jedoch oft ihren ursprünglichen Namen behalten. Daher zeigt sich in der Praxis, dass die Grenzen der Systeme zunehmend verschwimmen. Es sind vermehrt Module in einzelnen Systemen verfügbar, welche die „typischen“ Aufgaben eines anderen Systems übernehmen. Darüber hinaus ist der Zweck der Informationssysteme meist nicht allein der Unterstützung der Instandhaltung zu dienen, sondern der Produktion, der Abrechnung oder der Bestellung von Ersatzteilen. Diese Punkte
können die Interpretation der vorhandenen Daten und Systeme eines Unternehmens erschweren. Dennoch sind die Anforderungen und Funktionen mancher Systeme stark unterschiedlich und erfordern eine komplett andere Konzipierung von Systemen.

Ein CMMS kann bspw. traditionell zentral aufgebaut werden, wobei ein CMS zwangsläufig dezentral sein muss, jedoch um zentrale Komponenten erweitert werden kann, um eine Fernwartung oder -überwachung zu gewährleisten. Ein PMS benötigt darüber hinaus Daten aus einer Vielzahl an dezentralen CMS und zur Berechnung zwangsläufig eine zentrale Instanz. Die Resultate einer solchen Analyse müssen weiterhin in ein CMMS übertragen werden, damit dieses System Wartungs- und Instandhaltungspläne erstellen kann.

Aus diesem Beispiel können zwei Schlüsse gezogen werden: Zum einen ist allein aus der Anzahl der genannten Systeme erkennbar, dass eine Vielzahl von potentiellen Schnittstellen notwendig ist, damit die unterschiedlichen Informationen sinnvoll genutzt werden können. Zum anderen ist es nötig, dass die einzelnen Aspekte der Systeme je nach Bedarf miteinander kombiniert oder zumindest Daten miteinander ausgetauscht werden können, um das volle Potential der IT-Unterstützung der Instandhaltung zu erreichen. Dazu muss die interne IT-Architektur eines Unternehmens es ermöglichen, diese Verbindungen zwischen den Systemen zu etablieren. Um eine solche Architektur zu ermitteln, müssen die essentiellen Funktionalitäten eines jeden Systems und insbesondere die Kernfunktionalitäten (Funktionalitäten, die zwingend erforderlich sind) bestimmt und in einen ganzheitlichen Kontext gesetzt werden.

Daher ist eine umfassende Sicht auf ein Informationssystem zur Unterstützung der Instandhaltung nötig, welches zum einen den Informationsbedarf und -austausch aus den typischen Informationssystemen für die Produktion erleichtert und zum anderen die Integration aller Aspekte der Systeme zur Unterstützung der Instandhaltung ermöglicht. Dieses Informationssystem wird daher nicht nach einem bestehenden System zur Unterstützung der Instandhaltung benannt, sondern als integriertes Informationssystem zur Unterstützung der Instandhaltung bezeichnet, da es die jeweiligen Informationen und Anforderungen der bestehenden Systeme integrieren kann und eine umfassende Sicht auf alle möglicherweise benötigen Ressourcen zulässt.

Zusammenfassend können daher folgende Aspekte für den Betrachtungsrahmen der RAI abgeleitet werden:

- Die Referenzarchitektur umfasst die essentiellen Funktionalitäten der untersuchten Informationssysteme zur Unterstützung der Instandhaltung.
- Die Referenzarchitektur umfasst eine integrierte Sicht über die Informationssysteme, sodass eine Verbindung aus Funktionalitäten aus mehreren System hergestellt werden kann.
- Die Referenzarchitektur muss Teilsysteme, die bestimmte Funktionalitäten abdecken, integrieren können.
- Die Referenzarchitektur muss die essentiellen Schnittstellen zu den in der Produktion vorhandenen Systemen unterstützen.

Zur Ergründung der essentiellen Funktionalitäten, Anforderungen und Bestandteile der RAI dienen die identifizierten Systeme.
3.5 Zusammenfassung

Aus diesem Grund wurde der Begriff des IIS gewählt, da die zu entwickelnde Referenzarchitektur systemübergreifend funktionieren soll, keinen Aspekt der jeweiligen Systeme überbetonen will und sich auch nicht als reinen Ersatz, sondern auch als Architektur zur Bündelung vorhandener Systeme sieht. Dadurch sollen die auf dieser Referenzarchitektur zu entwickelnde Systeme integriert, d. h. mit dem umfassenden Blick auf alle Systeme zur Unterstützung der Instandhaltung entwickelt bzw. erweitert werden können. Mitsamt des in Kapitel 2 und 3 gewonnenem Domänenwissens wurde damit der Grundstein für die in Kapitel 4 durchzuführende Anforderungsaufnahme gelegt.
4 Extraktion generischer Anforderungen an integrierte Instandhaltungssysteme

4.1 Einleitung

In Kapitel 2 wurde die Methodik zur Erstellung einer Referenzarchitektur anhand spezifischer Anforderungen vorgestellt. Die Ergebnisse der ersten Schritte dieses Vorgehens werden in diesem Kapitel mit Fokus auf die spezifischen Anforderungen präsentiert, welche die Grundlage der RAIII bilden. Aufbauend auf dem Domänenwissen aus Kapitel 3 wird zu Beginn eine Literaturanalyse bzgl. der Anforderungen an ein IIS durchgeführt und deren Ergebnisse präsentiert. Basierend auf diesen Literaturanforderungen werden zusätzlich Anforderung an ein IIS bei vier Praxisunternehmen aufgenommen. Aus diesen wissenschaftlichen und praktischen Anforderungen wird die Grundlage für die Referenzarchitektur gewonnen, indem generische und optionale Anforderungen an ein IIS extrahiert werden.

Das Kapitel gliedert sich in eine Vorstellung der in Kapitel 4.2 durchgeführten Literaturanalyse, in dem auch die Ergebnisse hinsichtlich der Häufigkeit und Verteilung der Anforderungen diskutiert werden. In Kapitel 4.3 wird die Anforderungsaufnahme bei vier Praxisunternehmen vorgestellt und deren Ergebnisse präsentiert. Dabei werden generische und optionale Anforderungen an ein IIS extrahiert. Abschließend werden die Ergebnisse in Kapitel 4.4 diskutiert und in Kapitel 4.5 erfolgt die Zusammenfassung des gesamten Kapitels.
4.2 Literaturlanalyse: Anforderungen an ein integriertes Instandhaltungssystem

4.2.1 Vorgehen Literaturlanalyse

- Die erste Kategorie umfasst alle Treffer des Suchterms,
- die zweite Kategorie umfasst interessante Publikationen, deren Relevanz jedoch nur anhand des Titels und des Abstracts bewertet wird.
- Die dritte Kategorie umfasst alle benutzten Publikationen. Sofern diese als interessant angesehen werden, werden sie dahingehend untersucht, ob Anforderungen aus ihnen extrahiert werden können. Ist dies der Fall, werden sie in der Literaturanalyse verwendet und finden sich dementsprechend in dieser Kategorie wieder. Anforderungen können extrahiert werden, wenn Publikationen diese Anforderungen an Instandhaltungssysteme explizit nennen oder wenn sie die implizite Ableitung von Anforderungen an solche Systeme ermöglichen. Bei folgenden Fällen können diese implizite extrahiert werden:
 - Belegte und beschriebene Gründe für die Entwicklung eines Systems, aus denen sich Anforderungen ableiten lassen.
 - Erfahrungen und Beschreibungen von bestimmten Systemen, d. h. welche Erfahrungen können damit gemacht werden, in welchen Fällen sind sie erfolgreich? Darüber hinaus: welche Funktionen und Elemente enthalten sie, sodass aus diesen Anforderungen destilliert werden können?
 - Literaturstudien oder Praxisberichte über Probleme und erfolgreichen Einsatz bestimmter Systeme, aus denen sich Anforderungen ableiten lassen.
 - Wenn implizite Eigenschaften/Features von Systemen übernommen werden können, da diese genau erkennbar sind oder ausführlich beschrieben werden.

Nachfolgend werden in Tabelle 4 die Suchterme samt ihren Ergebnissen aufgelistet. Dabei basieren die einzelnen Spalten der Tabelle auf folgenden Begriffen:

- **Suchtermnummer (StNr.):** Die Nummer des Suchterms zur Kategorisierung.
- **Suchterm:** In dieser Spalte wird der in Google Scholar verwendete Suchterm genauso eingetragen, wie er in die Suchmaske eingegeben wurde. Terme in Anführungszeichen müssen genau in dieser Form in der untersuchten Literatur vorkommen. Terme ohne Anführungszeichen hingegen können eine andere Reihenfolge oder Zusammensetzung in der Literatur besitzen.
- **Anzahl der untersuchten Seiten (AuS.):** Bei einer sehr großen Anzahl an Treffern bei einem bestimmten Term werden nicht alle Ergebnisse untersucht, da die Treffer vom ersten Ergebnis ausgehend deutlich an Relevanz verlieren. Die Spalte gibt daher an, wie viele Treffer untersucht werden. Pro Suchterm wird entweder die Anzahl der durchsuchten Seiten angegeben (z. B. AnS. = Ende Seite (E. S., 11 bedeutet, dass bis zur Ende Seite 11 durchsucht wurde) oder falls die kompletten Ergebnisse durchsucht wurden wird dies per „k.“ angegeben. Eine Seite enthält 20 Ergebnisse.
- **Ergebnisse (Erg.):** Die Anzahl der Treffer der jeweiligen Suchanfrage, wie Google Scholar sie zurückgibt, ohne jegliche Bewertung.
- **Interessant (Int.):** In dieser Kategorie der interessanten Publikationen finden sich alle Treffer, die als interessant eingestuft werden. Diese Einstufung wird nur anhand des Titels und des Abstracts vorgenommen.
- **Benutzt (Ben.):** Hierunter fallen Paper, die zur Extraktion von Anforderungen an Instandhaltungssysteme genutzt werden können.
 - Beiträge, die sich vor allem der Leistungsmessung und Beurteilung sowie der Bildung von KPIs ohne Systembezug widmen, werden nicht in dieser Spalte inkludiert. Übersichten finden sich hierzu bei (Kumar et al., 2013; Stenström et al., 2013).

<table>
<thead>
<tr>
<th>StNr.</th>
<th>Suchterm</th>
<th>AuS.</th>
<th>Erg.</th>
<th>Int.</th>
<th>Ben.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Product-Service Systems" maintenance requirements</td>
<td>E. S. 11</td>
<td>4090</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>"produkt service system" instandhaltung anforderung</td>
<td>k.</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>"produkt service system" Wartung Anforderung</td>
<td>k.</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Diagnosesystem Instandhaltung System</td>
<td>k.</td>
<td>302</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>"Diagnostic system" maintenance requirements</td>
<td>E. S. 4</td>
<td>11000</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>"fault diagnostic system" maintenance requirements</td>
<td>k.</td>
<td>525</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Wartungsmanager instandhaltung system</td>
<td>k.</td>
<td>22</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>"Preventive maintenance requirements" system</td>
<td>k.</td>
<td>168</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>"Preventive maintenance system" requirements</td>
<td>E. S. 4</td>
<td>562</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Predictive maintenance system requirements</td>
<td>E. S. 4</td>
<td>495</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>maintenance "decision support system" requirements</td>
<td>E. S. 20</td>
<td>17400</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>"E-maintenance" system</td>
<td>E. S. 20</td>
<td>4970</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>"e-Maintenance system" requirements</td>
<td>E. S. 4</td>
<td>341</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>"intelligent maintenance" system</td>
<td>E. S. 20</td>
<td>2800</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>cmms maintenance system</td>
<td>E. S. 20</td>
<td>5500</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>"Computerized Maintenance Management System" system</td>
<td>E. S. 20</td>
<td>2030</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Instandhaltungsplanungs- und -steuerungssystem</td>
<td>E. S. 4</td>
<td>507</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>"Instandhaltungsplanungs und -steuerungssystem" Anforderungen</td>
<td>k.</td>
<td>34</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Zustandsüberwachung instandhaltung Anforderung</td>
<td>k.</td>
<td>226</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Condition Monitoring System Requirements</td>
<td>E4</td>
<td>5510</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>"Mobiles Assistenzsystem"</td>
<td>k.</td>
<td>33</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>"mobile system" requirement "customer service"</td>
<td>E. S. 20</td>
<td>467</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>"mobile system" requirement "field service"</td>
<td>k.</td>
<td>71</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>"mobiles System" technischer Kundendienst</td>
<td>k.</td>
<td>93</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>"mobile support system" maintenance requirements</td>
<td>k.</td>
<td>109</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>teleservice instandhaltung system</td>
<td>E. S. 17</td>
<td>176</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Teleservice maintenance system requirements</td>
<td>E. S. 20</td>
<td>1150</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>"remote service maintenance" requirements system</td>
<td>k.</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>StNr.</td>
<td>Suchterm</td>
<td>AuS.</td>
<td>Erg.</td>
<td>Int.</td>
<td>Ben.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>29</td>
<td>Fernwartung System Instandhaltung Anforderungen</td>
<td>k.</td>
<td>188</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>requirements "industrial maintenance"</td>
<td>E. S. 20</td>
<td>2420</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>"industrial maintenance" "internet of things"</td>
<td>k.</td>
<td>83</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>"industrial maintenance" cloud</td>
<td>E. S. 20</td>
<td>234</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>"industrial maintenance" Wearable Computing</td>
<td>k.</td>
<td>195</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>intelligent factory "industrial maintenance"</td>
<td>E. S. 20</td>
<td>319</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>"maintenance performance" requirements system</td>
<td>E. S. 20</td>
<td>5360</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>36</td>
<td>"maintenance control" requirements systems</td>
<td>E. S. 20</td>
<td>3230</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>maintenance management requirements system</td>
<td>E. S. 20</td>
<td>Ü10k</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>38</td>
<td>"Value driven maintenance" requirements system</td>
<td>k.</td>
<td>101</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>"Risk-based maintenance" requirements system</td>
<td>E. S. 20</td>
<td>1390</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>"reliability-centered maintenance" requirements system</td>
<td>E. S. 20</td>
<td>4280</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>"RCM System" requirements</td>
<td>E. S. 4</td>
<td>355</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>"TPM System" Requirements</td>
<td>E. S. 4</td>
<td>274</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>"Total Productive Maintenance" System Requirements</td>
<td>E. S. 4</td>
<td>7870</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td>1164955</td>
<td>405</td>
<td>85</td>
</tr>
</tbody>
</table>

Tabelle 4: Suchterme und (benutzte) Ergebnisse der Literaturrecherche

Quelle: Eigene Darstellung

Es wurden insgesamt 43 unterschiedliche Suchterme benutzt, die aus 61 benutzten Publikationen resultierten. Einzelne Prototypen und Entwicklungen wurden in mehreren Beiträgen vorgefunden. Um zu verhindern, dass das Ergebnis durch Vielfachnennung einzelner Prototypen und deren Anforderungen verzerrt wird, wird einer der Beiträge als Referenz in die Literaturreanalyse integriert, die anderen hingegen ausgeschlossen. Die Anforderungen aus den ausgeschlossenen Beiträgen werden gesammelt und als eine Anforderung aus dieser Referenzpublikation gezählt. Mehrfachnennungen der Anforderungen werden ausgeschlossen und nur einmal gezählt. Nachfolgend sind die Beiträge genannt auf welche dies zutrifft und derjenige Beitrag gefettet markiert, der stellvertretend für die exkludierten Beiträge in die Analyse miteinbezogen wurde.

- Prototypen im Rahmen des Projektes DYNAMITE werden in folgenden Beiträgen behandelt:
 - Development of a maintenance system based on web and mobile technologies (Campos et al., 2007)
 - A Mobile Maintenance Decision Support System (Campos et al., 2008)
 - A web and mobile device architecture for mobile e-maintenance (Campos et al., 2009)

- Prototypen und Systeme, die im Rahmen eines Projektes für Saab bzw. das schwedische Militär entwickelt wurden, werden in den folgenden Beiträgen behandelt:
 - eMaintenance-Information logistics for maintenance support (Candell et al., 2009)
4.2.2 Diskussion der Ergebnisse

Nach der Reduzierung der gewonnenen Ergebnisse werden für die nachfolgende Ergebnisvorstellung und -diskussion 56 Publikationen genutzt. Diese Beiträge lassen sich nach dem in Tabelle 5 vorgestellten Schema klassifizieren. Dort werden die Beiträge anhand der Autoren und dem Veröffentlichungsjahr genannt und folgende Kriterien dem Beitrag zugeteilt:

- **System (Sys.):** Die untersuchten Beiträge stellen ein selbstentwickeltes System zur Unterstützung der Instandhaltung vor und beschreiben dieses. Dabei handelt es sich meist um einen speziellen Prototyp oder ein spezielles System, das in der Industrie im Einsatz ist.
- **Vo./VE./FW.:** Diese Beiträge stellen eine Vorgehensweise, ein Verfahren oder ein Framework vor, das unmittelbar der Instandhaltung zugeordnet ist, jedoch nicht in einem Software-Prototyp umgesetzt wurde. Anhand dieser Beschreibung lassen sich (implizite) Anforderungen an ein Instandhaltungssystem ableiten, welches die elementaren Teile der Vorgehensweisen umsetzt.
- **Explizite Nennung von Anforderungen (Ex. Anf.):** Beiträge dieser Kategorie nennen explizite Anforderungen an ein bestimmtes Instandhaltungssystem, diskutieren diese und oftmals sind die Anforderungen selbst der Hauptfokus des Beitrags.
- **Literaturreview Anforderungen an ein bestimmtes System (Lr. AS):** Beiträge, die Literaturübersichten über Anforderungen an eine bestimmte Systemklasse, wie bspw. MSS (Ebke/Däuble, 2015) aggregieren.
- **(Literatur-)Review Trends, Funktionen, Systeme (Lr. TFS):** Hierunter fallen Beiträge, die Literaturübersichten oder technologische Übersichten beinhalten, die Trends, Funktionen und Systeme der Instandhaltung behandeln. Die herausgearbeiteten Eigenschaften und Verbindungen zu Instandhaltungssystemen lassen sich in Anforderungen überführen oder werden explizit genannt.
- **System-/Technologiefokus:** In dieser Spalte werden die technischen Systeme oder Technologien eingetragen, denen die Publikationen thematisch zugeordnet werden können. Beschreibt die Publikation Anforderungen oder Konzepte zur Anforderungserhebung bei einem CMMS, dann ist CMMS in dieser Spalte einzutragen. Ist ein Beitrag eindeutig dem Condition Monitoring zuzuordnen oder beinhaltet es ein CMS, so steht in der Spalte CMS. Werden Trends in der Instandhaltung bei der Publikation behandelt und lassen sich mehrere Anforderungen bzgl. Remote Maintenance und CMS ableiten, dann werden diese beiden Systeme eingetragen. Es muss sich demzufolge nicht um eine Publikation handeln, die nur ein bestimmtes System behandelt. Für die Systembeschreibung werden folgende Abkürzungen in der Tabelle verwendet:
 - WMS = Wissensmanagementsystem
 - PSS = Product Service System
 - CMMS = Computerized Maintenance Management System
 - E-MS = E-Maintenance System
- PMS = Predictive Maintenance System
- CMS = Condition Monitoring System
- DSS = Decision Support System
- SP = Serviceplatform
- RM = Remote Maintenance
- TKD = Technischer Kundendienst (System oder Fokus)
- SCADA = SCADA System
- OPT = Systemfokus mit Methoden der (mathematischen) Optimierung
- MSS = Mobile Support System
- PIS = Systemfokus mit System zur Performance Messung und Nachverfolgung
- DS = Diagnosesysteme
- IMS = Intelligent Maintenance System
- AR = Augmented Reality
- RCM = System mit Fokus auf das Reliability Centered Maintenance
- PER = Systeme mit Fokus Performancemessung

<table>
<thead>
<tr>
<th>Publikation/Kriterium</th>
<th>Sys.</th>
<th>Vo./Ve./FW.</th>
<th>Ex. Anf.</th>
<th>L.R. AS.</th>
<th>Lr. TFS.</th>
<th>System-/Technologiefokus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Zhu et al., 2012)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>WMS, PSS</td>
<td></td>
</tr>
<tr>
<td>(Fellmann et al., 2011)</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>TKD</td>
<td></td>
</tr>
<tr>
<td>(Crespo Marquez/Gupta, 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>CMMS</td>
<td></td>
</tr>
<tr>
<td>(Candell et al., 2011; Karim, 2008; Karim et al., 2009)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>E-MS</td>
<td></td>
</tr>
<tr>
<td>(Kans, 2008)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>CMMS</td>
<td></td>
</tr>
<tr>
<td>(Swift et al., 2011)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>PM, CMS, DSS</td>
<td></td>
</tr>
<tr>
<td>(Pistofidis et al., 2012)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>E-MS</td>
<td></td>
</tr>
<tr>
<td>(Anaya-Lara et al., 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>RM, SCADA</td>
<td></td>
</tr>
<tr>
<td>(Muller et al., 2008a)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>E-MS</td>
<td></td>
</tr>
<tr>
<td>(Potes Ruiz et al., 2014)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>WMS</td>
<td></td>
</tr>
<tr>
<td>(Qingfeng et al., 2011)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>PM, OPT</td>
<td></td>
</tr>
<tr>
<td>(Sharma et al., 2011)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>(Campos et al., 2007, 2009, 2008)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>MSS, E-MS, DSS</td>
<td></td>
</tr>
<tr>
<td>(Gómez Fernández/Crespo Márquez, 2009)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>(Carnero/Novés, 2006)</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>CMMS</td>
<td></td>
</tr>
<tr>
<td>(Hwang et al., 2007)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>CMMS, OPT, PER</td>
<td></td>
</tr>
<tr>
<td>(Potes Ruiz et al., 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>WMS</td>
<td></td>
</tr>
<tr>
<td>(Arnaiz et al., 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>MSS, E-MS, CMS</td>
<td></td>
</tr>
<tr>
<td>(Cannata et al., 2009)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>E-MS</td>
<td></td>
</tr>
<tr>
<td>(Ebke/Däuble, 2015)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MSS, TKD</td>
<td></td>
</tr>
<tr>
<td>(Matijacic et al., 2013)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MSS, TKD</td>
<td></td>
</tr>
<tr>
<td>Publikation/Kriterium</td>
<td>Sys.</td>
<td>Vo./Ve./FW.</td>
<td>Ex. Anf.</td>
<td>LR. AS.</td>
<td>Lr. TFS.</td>
<td>System-/Technologiefokus</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>(Grundig/Raschhofer, 2010)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RM, DS</td>
</tr>
<tr>
<td>(Schmidt/Hoof, 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
</tr>
<tr>
<td>(Persona et al., 2007)</td>
<td>x</td>
<td></td>
<td></td>
<td>E-MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fonseca et al., 2008)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td></td>
</tr>
<tr>
<td>(Klos/Patalas-Maliszewskas, 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>CMMS, PER</td>
<td></td>
</tr>
<tr>
<td>(Marquez/Iung, 2008)</td>
<td>x</td>
<td></td>
<td></td>
<td>E-MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Goh et al., 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS, PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Muller et al., 2008b)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS, PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lee et al., 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>E-MS, CMS, PM, IMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tsang et al., 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS, OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lee et al., 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td>DSS, CMS, IMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lee/Akin, 2011)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sawoja et al., 2007)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bahga/Madisetti, 2012)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS, PM, WMS, DS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pistofidis et al., 2016)</td>
<td>x</td>
<td></td>
<td></td>
<td>PM, WMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wang et al., 2007)</td>
<td>x</td>
<td></td>
<td></td>
<td>DSS, CMS, RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ni/Jin, 2012)</td>
<td>x</td>
<td></td>
<td></td>
<td>DSS, OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Efthymiou et al., 2012)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS, WMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ali et al., 2008)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS, CMS, RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Karray et al., 2011)</td>
<td>x</td>
<td></td>
<td></td>
<td>E-MS, WMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Levrat/Iung, 2007)</td>
<td>x</td>
<td></td>
<td></td>
<td>E-MS, CMS, RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wang et al., 2006)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS, PM, RM, DSS, IMS, OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Houy et al., 2012)</td>
<td>x</td>
<td></td>
<td></td>
<td>SP, TKD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hameed et al., 2010)</td>
<td>x</td>
<td></td>
<td></td>
<td>CMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Schlicker, 2014)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS, SP, TKD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Syafar/Gao, 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Özcan et al., 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ziegler et al., 2011)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Daubele et al., 2015b)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS, TKD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Niemöller et al., 2016)</td>
<td>x</td>
<td></td>
<td></td>
<td>MSS, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fay, 2009)</td>
<td>x</td>
<td></td>
<td></td>
<td>RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kühl/Fay, 2010)</td>
<td>x</td>
<td></td>
<td></td>
<td>RM, TKD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kamsu-Foguem/Noyes, 2013)</td>
<td>x</td>
<td></td>
<td></td>
<td>WMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kamsu-Foguem/Mathieu, 2014)</td>
<td>x</td>
<td></td>
<td></td>
<td>RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bae et al., 2009)</td>
<td>x</td>
<td></td>
<td></td>
<td>RCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publikation/Kriterium</td>
<td>Sys.</td>
<td>Vo./Ve. /FW.</td>
<td>Ex. Anf.</td>
<td>L.R. AS.</td>
<td>Lr. TFS.</td>
<td>System-/Technologiefokus</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Summe</td>
<td>35</td>
<td>8</td>
<td>15</td>
<td>4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Prozentual von 56 Beiträgen</td>
<td>62,5%</td>
<td>14,3%</td>
<td>26,8%</td>
<td>7,1%</td>
<td>23,2%</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: Klassifikation der Ergebnisse der Literaturanalyse von Instandhaltungssystemen
Quelle: Eigene Darstellung

Die Ergebnisse zeigen, dass ein Großteil der Beiträge (62,5 %) direkt entwickelte Systeme vorstellt und diskutiert. Diese Systeme haben in den meisten Fällen einen bestimmten Hauptfokus (z. B. CMS, Optimierung oder Predictive Maintenance) und ermöglichen einen umfassenden Blick auf die aktuellen Entwicklungen zu Instandhaltungssystemen. Von diesen Beiträgen, die ein speziell entwickeltes System behandeln, werden jedoch nur in sechs Publikationen (17 %) explizite Anforderungen genannt, beim Rest mussten die Anforderungen implizit extrahiert werden. 14,3 % aller Beiträge behandeln Verfahren, Vorgehensweisen und Frameworks, ohne ein eigenes Informationssystem zu entwickeln. Diese Beiträge ermöglichen es, Anforderungen zu extrahieren, da Informationssysteme zur Durchführung der Vorgehensweisen bestimmte Anforderungen erfüllen müssen oder diese explizit genannt werden. 23,2 % der Beiträge sind der Kategorie des Reviews von Systemen, Trends und Funktionen der Instandhaltung zuzuordnen. Nur vier Beiträge und damit 7,1 % sammeln per Literaturreview Anforderungen für ein bestimmtes Instandhaltungssystem. Diese Publikationen sind dabei einem bestimmten Institut bzw. Fachrichtung zuzuordnen und betrachten ausschließlich Anforderungen für MSS. Insgesamt werden explizite Anforderungen für ein Instandhaltungssystem bei 26,8 % der Beiträge beschrieben.

Abnehmend nach der Anzahl sortiert ergibt sich Folgendes: MSS (14), CMS (13) und E-MS (11) haben jeweils über 10 Nennungen. Ebenso häufig werden Systeme im Bereich PMS, Remote Maintenance, TKD, WMS, CMMS und DSS genannt (jeweils über 5). IMS, Serviceplattformen, Diagnose-, Performance- RCM- sowie PS-Systeme sind hingegen seltener vertreten (unter 5). Techniken wie Optimierung (7) und AR (3) werden genannt. Letztere besonders häufig verbunden mit MSS.

MSS. Eine eindeutige Unterscheidung zwischen bestimmten Systemgruppen ist jedoch schwer zu treffen, was sich ebenso in den extrahierten Anforderungen zeigt. Hier wird wiederum der Bedarf nach einer integrierten Sichtweise sichtbar, um bestimmte Aspekte nicht mehrfach abzudecken.

Abbildung 11: Häufigkeit von Systembezeichnungen und Techniken in den Ergebnissen der Literaturrecherche
Quelle: Eigene Darstellung

Durch diese große Bandbreite an untersuchten Systemen, die jeweils zwar unterschiedliche Schwerpunkte besitzen, jedoch ebenso viele Überschneidungen, kann davon ausgegangen werden, dass anhand der zu untersuchenden Anforderungen an die einzelnen Instandhaltungssysteme zusammengenommen eine integrierte Sicht auf Anforderungen an Instandhaltungssysteme abgeleitet werden kann.

Um eine umfassende Sicht auf die Anforderungen an ein Instandhaltungssystem abzudecken, bedarf es weiterhin, dass unterschiedliche Sichtweisen aus verschiedenen Domänen und Forschungsrichtungen in die Untersuchung integriert werden. Ansonsten könnten die Publikationen einer einzelnen Domäne nur Anforderungen abdecken, die für eine Domäne relevant wären oder diese zu stark gewichten, und stattdessen Anforderungen aus anderen Domänen nicht behandeln. Dass die untersuchten Publikationen eine umfassende domänenübergreifende Sicht auf Anforderungen an die Instandhaltungssysteme erlauben, spiegelt sich in der Betrachtung der Forschungsdomäne der 56 Publikationen wieder. Abbildung 12 zeigt die Verteilung der untersuchten Paper nach vorgenommener Einteilung nach Domänen.

Dabei wird aufgrund des Publikationsortes (Konferenz, Journal) eine Kategorisierung nach folgenden Domänen vorgenommen:

- **P/IA/MB:** Publikationen, die sich der Produktion(-forschung), Industrieautomatisierung oder Maschinenbauhemen widmen, werden in diese Kategorie einsortiert. Aufgrund der schwierigen Abgrenzbarkeit zwischen den einzelnen Themen wird keine Unterscheidung zwischen diesen vorgenommen. Jedoch
kann bei den unterschiedlichen Themenbereichen von einer großen Bandbreite gesprochen werden.

- **Informatik**: Publikationen, die einen klaren Bezug zu reinen Informatikheminen besitzen, werden in diese Kategorie eingesortiert. Hier spielen vor allem Big-Data und Softwarearchitekturen eine Rolle.
- **Wirtschaftsinformatik**: In diese Kategorie werden Beiträge eingeordnet, die klar dem Spektrum der Wirtschaftsinformatik zugeordnet werden können.
- **Instandhaltung**: Beiträge, die in reinen Instandhaltungspublikationen veröffentlicht werden oder klar der Instandhaltung zuzuordnen sind, werden in diese Kategorie eingesortiert.

Die Ergebnisse illustrieren, dass durch die Literaturrecherche und die verwendeten Suchtermen Beiträge gefunden wurden, die zum einen unterschiedliche Instandhaltungssysteme behandeln und zum anderen diese Systeme aus verschiedenen Wissenschaftsdomänen betrachten und untersuchen. Dadurch kann von einer umfassenden Sicht auf die Domäne der Instandhaltungssysteme und deren Anforderungen ausgegangen werden. Für eine umfassende Sicht auf die Instandhaltungssysteme und die daraus resultierenden Anforderungen können die Ergebnisse als Grundlage genutzt werden.
4.2.2.1 Auflistung der gefundenen Anforderungen an Instandhaltungssysteme

Aufbauend auf den Ergebnissen der Literaturrecherche werden aus diesen Anforderungen an die Instandhaltungssysteme extrahiert. Zur Extraktion der Anforderungen aus der Literatur werden folgende Schritte durchgeführt:

- Zuerst werden logisch nachvollziehbare Anforderungen aus allen Beiträgen einzeln in ihrer jeweiligen Detailierungsstufe extrahiert und gesammelt.
- Im nächsten Schritt werden Anforderungen von Beiträgen, die bestimmte bereits aufgenommene Anforderungen voraussetzen, aber diese bisher nicht erwähnen, so behandelt, als ob diese auch die Anforderungen nennen.
- Anschließend werden gleiche und ähnliche Anforderungen zusammengeführt.
- Gruppen von ähnlichen Anforderungen werden übergreifenden Kategorien zugeordnet.
- Die Kategorisierung wird iterativ weiterentwickelt und Anforderungen werden zu allgemeineren Anforderungen aggregiert, um ein einheitliches Abstraktionsniveau von sehr ähnlichen Anforderungen zu erreichen.

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anzeige d. Information über Kundenbeziehung inklusive Vertragsdaten, Serviceinformationen und Maßnahmenverlauf-/Historie</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Kundenverwaltung (Anlegen, Pflege d. Daten)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Möglichkeit Experten zur Lösung per Teleservice heranzuziehen/optimal Bild und Audio</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Interface für Kunden um Service beim Hersteller/Serviceanbieter anzumelden</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Interface für Kunden mit Beschweredefunktion</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Einbindung ext. Dienstleister Instandhaltung (Informationsweitergabe, Kommunikation, Eskalation)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Automatische Erstellung von Leistungsberichten und Serviceprotokollen nach Beendigung der Tätigkeit beim Kunden</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>(Automatische) Abrechnungsmöglichkeit/Rechnungsstellung nach Beendigung der Tätigkeit</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Auswahlmöglichkeit potentieller externen Dienstleister bei Auftrag</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 6: Anforderungen Instandhaltungssystem – Technischer Kundendienst und Teleservice

Quelle: Eigene Darstellung

Die Anforderungen im Bereich des technischen Kundendienstes und des Teleservice richten sich an ein Instandhaltungssystem, das in der Lage sein muss, entweder aus Serviceanbietersicht Kunden extern einzubinden oder aus Servicenehmersicht Dienstleister für
die Instandhaltung in das interne System einzubinden und zu verwalten. Hierbei ist vor allem eine Kundenverwaltung oder Anbieterverwaltung als Grundlage wichtig, um die restlichen Anforderungen erfüllen zu können. Weiterhin sind Anforderungen im Bereich der Informationsweitergabe und (automatischen) Erstellung von Leistungsberichten und Rechnungen häufig. Diese Anforderungen spielen nur bei Publikationen eine Rolle, bei denen Betrieb und Instandhaltung von unterschiedlichen Unternehmen durchgeführt werden. Wohingegen die Anforderungen, einen Teleservice Experten durch das System hinzuzuziehen zu können (Anforderung LNr. 3), extern wie auch intern relevant ist.

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Remote Maintenance/Fokus Fernüberwachung</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Fernzugriff (Ändern der Einstellungen, Steuerung von Komponenten)</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Audioübertragung der Maschine</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bildübertragung der Maschine</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 7: Anforderungen Instandhaltungssystem - Remote Maintenance

Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Auftragsmanagement</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>Automatisiertes Erstellen von Aufträgen durch bestimmte Ereignisse (CM, Fehler, Wartung)</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>Priorisierung von Instandhaltungsaufgaben</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>Abfrage des Auftragsstatus</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Management von ungeplanten Serviceaufträgen (kurzfristiges Einplanen von Aufträgen)</td>
<td>2</td>
</tr>
</tbody>
</table>
Daneben wird das automatisierte Erstellen von Aufträgen durch Ereignisse wie Fehlervorhersage aus dem Condition Monitoring sowie die Priorisierung und die Abfrage der Auftragsstatus häufig genannt. Neben diesen Anforderungen werden zum einen Anforderungen identifiziert, die Auftragsmanagementfunktionen mit Mitarbeiterfokus besitzen, wie die Darstellung der Aufträge pro Instandhalter oder eine Erinnerungsfunktion für kommende Aufgaben. Zum anderen sind Anforderungen häufig zu finden, die sich mit der Informationsanreicherung von Aufträgen bzw. Auftragsdaten befassen, wie bspw. die Zeitvorhersage von Aufträgen, eine genaue Beschreibung und benötigte Skills zur Lösung des Auftrages sowie rechtliche Regularien etc.

Die Anforderungen des Wartungsmanagements stellen sicher, dass Wartungspläne für Anlagen bzw. Komponenten im System vorhanden sind (um ggfs. eine automatische Auftragsfertigstellung auslöszen zu können). Die Anforderungen manuelles Festlegen der Wartungsgrenzen ermöglicht neben der Wartungsplanerstellung, dass Grenzwerte festgelegt werden sowie ab wann Wartungen bei bestimmten Komponenten und Maschinen fällig sind. Dies kann beispielweise im Zusammenspiel mit den Wartungsplänen zeitlich oder nach der Abnutzung in Kombination

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Optimierung der Instandhaltung hinsichtlich, Aufträgen, Inspektionen, Zeiten (Window of Opportunity) etc.</td>
<td>13</td>
</tr>
<tr>
<td>33</td>
<td>Intelligente Disposition von Mitarbeitern (Standorte, Fähigkeiten, Regularien, Prioritäten)</td>
<td>12</td>
</tr>
<tr>
<td>34</td>
<td>Möglichkeit eine Disposition manuell zu ändern</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risikoklassifikation und RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kostenmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
</tr>
</tbody>
</table>

Tabelle 10: Anforderungen Instandhaltungssystem – Instandhaltungsplanung, -optimierung und Risikoklassifikation

Quelle: Eigene Darstellung

Die letzte Unterkategorie betrifft das Kostenmanagement der Instandhaltung. Diese Anforderung enthält die finanzielle Bewertung von Instandhaltungsaufgaben hinsichtlich

<table>
<thead>
<tr>
<th>L.Nr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Übersicht über Anlagen mitsamt Anlageninformation (Standort, Ersatzteile, Funktionalität,...)</td>
<td>24</td>
</tr>
<tr>
<td>40</td>
<td>Komponentenübersicht/-bäume der Anlage verfügbar</td>
<td>13</td>
</tr>
<tr>
<td>41</td>
<td>Technische Dokumente für Anlagen verfügbar</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>Zuweisung von Instandhaltungsunternehmen bzw. Instandhalter zu Anlage mitsamt Kontaktdaten</td>
<td>7</td>
</tr>
<tr>
<td>43</td>
<td>Anzeige von Serviceverträgen für Anlagen</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>GPS Koordinaten der Anlagen</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>Darstellung der GPS Informationen auf Karte</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td>Übersicht über Fehler/Störungen/Aufträge/Maßnahmen zu einer Anlage</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>Bereitstellung von Informationen zur Selbstwartung/Self-Service für Kunden</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>CAD-Zeichnungen für Anlagen verfügbar</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Optische Identifizierung Anlagen (AR)</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Softwarestand von Komponenten/Anlagen anzeigen</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 11: Anforderungen Instandhaltungssystem – Anlagenübersicht und -informationen
Quelle: Eigene Darstellung

Anforderung bildet die Bedingung für die meisten anderen Anforderungen in dieser Kategorie, da durch diese eine Mitarbeiterverwaltung eingeführt wird. In diese Kategorie fallen Anforderungen zur Arbeitsbewertung wie die Arbeitszeitmessung und die Evaluationsmöglichkeit der Mitarbeiter. Zusätzlich wird die Anzeige der Verfügbarkeit von Instandhaltern und die Anzeige des Ortes als Anforderungen genannt sowie auch die Reisekostenerfassung und das Bereitstellen von Trainingsprogrammen durch das System. Ein Beitrag nennt explizit das automatische Erkennen des verfügbaren Personals mit nötigen Fähigkeiten bei einem bestimmten Auftrag als Anforderung.

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Kommunikation und Kontaktaufnahme zu anderen Mitarbeitern/Personen (E-Mail, SMS, Nachrichten, Telefon)</td>
<td>14</td>
</tr>
<tr>
<td>68</td>
<td>Nachrichtenservice</td>
<td>4</td>
</tr>
<tr>
<td>69</td>
<td>Videofunktionalität</td>
<td>3</td>
</tr>
<tr>
<td>70</td>
<td>Social Web 2.0 Fähigkeiten, Kommentieren, Bewerten, diskutieren</td>
<td>2</td>
</tr>
<tr>
<td>71</td>
<td>Feedback Funktion für Informationen und Verbesserungsvorschläge</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>Blog</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 14: Anforderungen Instandhaltungssystem – Kommunikation
Quelle: Eigene Darstellung

In die Kategorie Kommunikation fallen Anforderungen, welche die Kommunikation z. B. per E-Mail, SMS; Messaging und Telefon sicherstellen, aber auch Social Web Funktionalitäten wie das Kommentieren, Bloggen und Feedbackfunktionen bereitstellen. Zusätzlich fallen unter diese Kategorie ein allgemeiner Nachrichtenservice und eine Video- Funktionalität, die das Aufnehmen und das Abspielen von digitalen Videos ermöglicht. Die mit Abstand am häufigsten genannte Anforderung betrifft dabei die allgemeine Kommunikation und die Kontaktaufnahme zu anderen Mitarbeitern und Personen durch das Instandhaltungssystem, die auch eine notwendige Bedingung für den Teleservice darstellt.

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Barcode Unterstützung (Identifikation Maschinen/Material)</td>
<td>6</td>
</tr>
<tr>
<td>74</td>
<td>Mobiler Zugriff auf Instandhaltungsinformationen</td>
<td>5</td>
</tr>
<tr>
<td>75</td>
<td>Diagnosefunktion für Instandhaltungsobjekte/dezentrales Abgreifen von Daten/Wireless Zugriff auf Daten z. B. per Nahnetzwerk</td>
<td>5</td>
</tr>
<tr>
<td>76</td>
<td>Arbeiten im Offlinemodus</td>
<td>2</td>
</tr>
<tr>
<td>77</td>
<td>Fotografiefunktion</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>Signierfunktion</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>GPS Routenplanung</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>Benachrichtigung Kunde über Eintreffen Mitarbeiter</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>Broadcast Multicastfunktion</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 15: Anforderungen Instandhaltungssystem – Mobiles System

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Direkt die Anzeige drucken</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>Proaktives Bereitstellen von Informationen zu Auftrag</td>
<td>1</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung

Tabelle 16: Anforderungen Instandhaltungssystem – (Historische) Auswertungen

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Fehlerhistorien</td>
<td>27</td>
</tr>
<tr>
<td>85</td>
<td>Informationen über Maßnahmen- und Werkzeughistorie von Anlagen</td>
<td>22</td>
</tr>
<tr>
<td>86</td>
<td>Zustandshistorie von Teilen/Anlagen</td>
<td>19</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung

Fehlermanagement

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Fehlermeldung mit ausführlicher Beschreibung</td>
<td>12</td>
</tr>
<tr>
<td>91</td>
<td>Fehlermeldungen werden direkt auf die mobilen Endgeräte der zuständigen Personen gesendet</td>
<td>8</td>
</tr>
<tr>
<td>92</td>
<td>Fehlermeldungen mit Ursache-Wirkungsbeziehung</td>
<td>6</td>
</tr>
<tr>
<td>93</td>
<td>Möglichkeit Fehler manuell zu melden</td>
<td>4</td>
</tr>
<tr>
<td>94</td>
<td>Fehlerpriorisierung</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 17: Anforderungen Instandhaltungssystem – Fehlermanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNr.</td>
</tr>
<tr>
<td>95</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>Tabelle 18: Anforderungen Instandhaltungssystem – Condition Monitoring und Predictive Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNr.</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>98</td>
</tr>
<tr>
<td>99</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Dokumentenmanagement (Speichern von Dokumenten, Freigabe/Teilen von Dokumenten, Bereitstellung von Dokumenten)</td>
<td>15</td>
</tr>
<tr>
<td>102</td>
<td>Teilautomatische Dokumentation abgeschlossener Aufträge/Fehler und Reports</td>
<td>11</td>
</tr>
<tr>
<td>103</td>
<td>Ausfüllassistent für Formulare und Reports</td>
<td>4</td>
</tr>
<tr>
<td>104</td>
<td>Traceability aller Interaktionen und Aktionen in System</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 19: Anforderungen Instandhaltungssystem – Dokumentenmanagement
Quelle: Eigene Darstellung

In vielen der untersuchten Beiträge spielt Wissensmanagement als Teil eines Instandhaltungssystems eine sehr wichtige Rolle. Entsprechend wird diese Anforderung 21-mal genannt. Insbesondere sollen Informationen zu einem Auftrag oder Instandhaltungsfall verknüpft werden können. Dies kann manuell oder analytisch geschehen, indem ähnliche Fehler oder Lösungsansätze verglichen werden. Weiterhin werden Ontologien oder Taxonomien zur semantischen Wissensspeicherung als notwendig angesehen, um bspw. kontextsensitives Wissen zur Verfügung zu stellen und zu speichern. Das Auffinden von Daten wird so erleichtert, jedoch soll dies zusätzlich durch eine Suche bei drei Beiträgen, eines Wikis (zwei Beiträge) sowie eines Informationsportals (1 Beitrag) und dem Taggen und Bestätigen von

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>Wissensmanagement</td>
<td>21</td>
</tr>
<tr>
<td>106</td>
<td>Informationen zum aktuellen Instandhaltungsfall automatisch verknüpfen (CBR, Wahrscheinlichkeiten etc.)</td>
<td>10</td>
</tr>
<tr>
<td>107</td>
<td>Ontologie/Taxonomie für semantische Wissensspeicherung</td>
<td>7</td>
</tr>
<tr>
<td>108</td>
<td>Suche und Aufrufen von strukturierten und unstrukturierten Daten</td>
<td>3</td>
</tr>
<tr>
<td>109</td>
<td>Bestätigung einer passenden Lösung fürs das spätere Lernen</td>
<td>2</td>
</tr>
<tr>
<td>110</td>
<td>Wiki</td>
<td>2</td>
</tr>
<tr>
<td>111</td>
<td>Informationsportal</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>Taggen von Wissen und Informationen (Verschlagwortung)</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 20: Anforderungen Instandhaltungssystem – Wissensmanagement
Quelle: Eigene Darstellung
Wissen weiter vereinfacht werden. All diese Anforderungen können in einem Instandhaltungssystem einen Beitrag zur Wissensarchivierung und -bereitstellung leisten.

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>Handlungsempfehlungen für Fehler</td>
<td>11</td>
</tr>
<tr>
<td>114</td>
<td>Handlungsempfehlungen für Fehlerdiagnose</td>
<td>7</td>
</tr>
<tr>
<td>115</td>
<td>Feedback für jeden Schritt der Handlungsempfehlung möglich</td>
<td>1</td>
</tr>
<tr>
<td>116</td>
<td>Sicherheitsinstruktionen</td>
<td>1</td>
</tr>
<tr>
<td>117</td>
<td>Feedback über Erfolg der Reparatur</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 21: Anforderungen Instandhaltungssystem – Handlungsempfehlungen

Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>Anbindung beliebiger externer Datenquellen</td>
<td>2</td>
</tr>
<tr>
<td>119</td>
<td>Strombörsen implementieren</td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>Wetterprognosen einbinden</td>
<td>2</td>
</tr>
<tr>
<td>121</td>
<td>Terminmanagement und Koordination (mit externen Anbietern)</td>
<td>1</td>
</tr>
<tr>
<td>122</td>
<td>Feedbackfunktion für Anlagenhersteller zum Übermitteln von Maschinenendaten</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>Ableiten von dispositiven Daten zur Verbesserung der Produktion</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>Erzeugung von Informationen für die Produktentwicklung</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 22: Anforderungen Instandhaltungssystem – Externe Dienste

Quelle: Eigene Darstellung

Sehr selten werden Anforderungen aus den Kategorien der externen Dienste genannt, die insbesondere zur Einbindung spezifischer externer Quellen dienen. Hierzu gehören Strombörsen, Wetterdienste oder Produktionssysteme. Daneben wird die Anforderung für die Bereitstellung von Daten für die Anlagenhersteller, für die Produktion und für die Produktentwicklung genannt.

<table>
<thead>
<tr>
<th>LNr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>Funktionen zur Systemadministration (Nutzermanagement, Rollenmodell)</td>
<td>7</td>
</tr>
<tr>
<td>126</td>
<td>Unterstützung von Webtechnologien/Zugang über Browser</td>
<td>5</td>
</tr>
<tr>
<td>127</td>
<td>Authentifizierung</td>
<td>3</td>
</tr>
</tbody>
</table>

Systemadministration

4.2.2.2 Zusammenfassung der häufigsten Anforderungen

<table>
<thead>
<tr>
<th>L.Nr.</th>
<th>Anforderung</th>
<th>Anz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>Condition Monitoring</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>Auftragsmanagement</td>
<td>27</td>
</tr>
<tr>
<td>84</td>
<td>Fehlerhistorien</td>
<td>27</td>
</tr>
<tr>
<td>39</td>
<td>Übersicht über Anlagen mitsamt Anlageninformation (Standort, Ersatzteile, Funktionalität,..)</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Remote Maintenance/Fokus Fernüberwachung</td>
<td>22</td>
</tr>
<tr>
<td>85</td>
<td>Informationen über Maßnahmen- und Werkzeughistorie von Anlagen</td>
<td>22</td>
</tr>
<tr>
<td>105</td>
<td>Wissensmanagement</td>
<td>21</td>
</tr>
<tr>
<td>86</td>
<td>Zustandshistorie von Teilen/Anlagen</td>
<td>19</td>
</tr>
<tr>
<td>51</td>
<td>Ersatzteilmanagement (Ansicht Lagerort, Verfügbarkeit, Kosten)</td>
<td>18</td>
</tr>
<tr>
<td>97</td>
<td>Predictive Maintenance</td>
<td>18</td>
</tr>
<tr>
<td>29</td>
<td>Wartungspläne für Anlagen bereitstellen</td>
<td>16</td>
</tr>
<tr>
<td>87</td>
<td>Performancebewertung und -überprüfung der Anlagen (OEE, Stopps etc.)</td>
<td>15</td>
</tr>
<tr>
<td>101</td>
<td>Dokumentenmanagement (Speichern von Dokumenten, Freigabe/Teilen von Dokumenten, Bereitstellung von Dokumenten)</td>
<td>15</td>
</tr>
<tr>
<td>67</td>
<td>Kommunikation und Kontaktaufnahme zu anderen Mitarbeitern/Personen (E-Mail, SMS, Nachrichten, Telefon)</td>
<td>14</td>
</tr>
<tr>
<td>32</td>
<td>Optimierung der Instandhaltung hinsichtlich Aufträgen, Inspektionen, Zeiten (Window of Opportunity) etc.</td>
<td>13</td>
</tr>
<tr>
<td>40</td>
<td>Komponentenübersicht/-bäume der Anlage verfügbar</td>
<td>13</td>
</tr>
<tr>
<td>98</td>
<td>Darstellung Anlagenzustand in Dashboard</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>Fernzugriff (Ändern der Einstellungen, Steuerung von Komponenten)</td>
<td>12</td>
</tr>
<tr>
<td>33</td>
<td>Intelligente Disposition von Mitarbeitern (Standorte, Fähigkeiten, Regularien, Prioritäten)</td>
<td>12</td>
</tr>
<tr>
<td>52</td>
<td>Ersatzteil-, Material- und ggfs. Werkzeuglisten pro Auftrag verfügbar</td>
<td>12</td>
</tr>
<tr>
<td>58</td>
<td>Anzeige einer Übersicht über interne und externe Kompetenzträger für die Instandhaltung mitsamt Personaldaten</td>
<td>12</td>
</tr>
<tr>
<td>90</td>
<td>Fehlermeldung mit ausführlicher Beschreibung</td>
<td>12</td>
</tr>
<tr>
<td>102</td>
<td>Teilautomatische Dokumentation abgeschlossener Aufträge/Fehler und Reports</td>
<td>11</td>
</tr>
<tr>
<td>113</td>
<td>Handlungsempfehlungen für Fehler</td>
<td>11</td>
</tr>
<tr>
<td>35</td>
<td>Bewertung und Erfassung von kritischen Risiken, Prioritätszuweisung sowie Klassifikation von Anlagen/Komponenten</td>
<td>10</td>
</tr>
<tr>
<td>38</td>
<td>Kostenmanagement der Instandhaltung (Mitarbeiter, Materialen, Tools, Historie, Planung und Bewertung)</td>
<td>10</td>
</tr>
<tr>
<td>41</td>
<td>Technische Dokumente für Anlagen verfügbar</td>
<td>10</td>
</tr>
<tr>
<td>106</td>
<td>Informationen zum aktuellen Instandhaltungsfall automatisch verknüpfen (CBR, Wahrscheinlichkeiten etc.)</td>
<td>10</td>
</tr>
</tbody>
</table>

Anzahl Anforderungen mit mindestens 10 Nennungen 28

Tabelle 24: Anforderungen an ein Instandhaltungssystem – Übersicht der häufigsten Anforderungen (Angabe ab 10 Nennungen)

Quelle: Eigene Darstellung
4.3 Praxisanforderungen an ein integriertes Instandhaltungssystem

4.3.1 Vorgehensweise der Anforderungserhebung

- Zuerst wurde der aktuelle Stand der Instandhaltung bei den einzelnen Unternehmen aufgenommen inklusive Instandhaltsprozessen, beteiligter Systeme und wie diese zur Unterstützung der Instandhaltung herangezogen werden.
- Im Laufe der Entwicklung der Systeme wurden die Bedürfnisse der Unternehmen deutlich klarer. Daher wurden aufbauend auf den aufgenommenen Anforderungen aus dem Lastenheft und den Anforderungen aus der Literatur zusätzlich nach 1,5 Jahren iterativer Entwicklung die Anforderungen anhand eines Fragebogens persönlich abgefragt (der Fragebogen ist in Tabelle 41 im Anhang dargestellt). Die Priorisierung der dort abgefragten Anforderungen richtet sich nach der numerischen Priorisierung von Karlsson et al. (1998).
- Anschließend wurden die Anforderungen aggregiert und die Ergebnisse auf Basis des Lastenheftes und der Befragung zusammengeführt.
4.3.2 Die untersuchten Unternehmen

Die angesprochenen Unternehmen und deren Auswahl werden in diesem Abschnitt detaillierter hinsichtlich der Instandhaltung vorgestellt. Dabei basieren die nachfolgenden Aspekte auf den Ausführungen von Reidt et al. (2016a). Ein wichtiges Kriterium für die Auswahl der Unternehmen ist die Verwendung unterschiedlicher Modelle zur Durchführung und Betrieb der Instandhaltung. Dies führt im Stadium der Anforderungsanalyse zu einem umfassenden Blick auf die Domäne der Instandhaltung. Die Unternehmen werden gemäß § 267 I-III Handelsgesetzbuch (HGB) in Größenklassen anhand der Bilanzsumme, den Umsatzerlösen und der Mitarbeiterzahl eingeordnet:

- Unternehmen U1 – stellt einen Automobilzulieferer dar, der in die Kategorie der großen Kapitalgesellschaft fällt.
- Unternehmen U2 – stellt einen Automobilhersteller dar, der in die Kategorie der großen Kapitalgesellschaft fällt.
- Unternehmen U3 – stellt einen Windparkbetreiber dar, der in die Kategorie der kleinen Kleinstkapitalgesellschaft fällt.
- Unternehmen U4 – stellt einen Maschinenhersteller dar, der in die Kategorie der mittelgroßen Kapitalgesellschaft fällt.

Bei der Rolle der Instandhaltung in den vier untersuchten Unternehmen können vier Fälle unterschieden werden. Im ersten Fall, bei Unternehmen U2, wird die Instandhaltung nahezu komplett autark vom produzierenden Unternehmen geleistet, während im zweiten Fall, bei Unternehmen U3, die Instandhaltung nur als Service bezogen wird. Im dritten Fall, bei Unternehmen U4, wird die Instandhaltung für die eigenen verkauften Maschinen als Service angeboten und ist Teil des Geschäftsmodells. Im Rahmen der RAII konzentriert man sich bei diesem Unternehmen auf die externe Serviceerbringung. Die Instandhaltung der eigenen internen Maschinen wird bei diesem Unternehmen nicht betrachtet. Abschließend ist eine Mischform von hauptsächlich eigenem Betrieb mit einer Kombination aus externem Service bei Unternehmen U1 anzutreffen. Zusammengefasst werden diese Aspekte in Tabelle 25. Zusätzlich werden in dieser Tabelle die Rolle und der betrachtete Funktionsbereich dargestellt. Neben den organisatorischen Aspekten enthält die Tabelle die technische Systemstruktur der Instandhaltung der untersuchten Unternehmen, den Ort der Durchführung der Instandhaltung.
sowie den momentanen Hauptfokus der Optimierung der Instandhaltung zum Zeitpunkt der Untersuchung. Neben den unterschiedlichen Betriebsarten der Instandhaltung variieren die Orte der Durchführung stark und das Optimierungsziel hinsichtlich Instandhaltung durch die Einführung eines umfassenden Instandhaltungssystems ist ebenso unterschiedlich.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Unternehmen U1</th>
<th>Unternehmen U2</th>
<th>Unternehmen U3</th>
<th>Unternehmen U4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E-Mail</td>
<td>Kurze prägnante Meldetexte bei Störungsfall + Fehlercode</td>
<td>Informationsaustausch mit Anlage</td>
<td>Betriebsprotokollierung der Anlage (Störung, Zulassungsdaten)</td>
</tr>
<tr>
<td>2</td>
<td>Zustandsbezogene Infos der Anlage</td>
<td>Handlungsleitfäden zu Störungen/Editierbar</td>
<td>Mail</td>
<td>Remote Anlagen-/Komponentensteuerung durch Hersteller</td>
</tr>
<tr>
<td>3</td>
<td>Auftragsmanagement zusammen mit ERP</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
<td>Internet</td>
<td>Remote Anlagenüberwachung (auch SPS)</td>
</tr>
<tr>
<td>4</td>
<td>Barcode scannen</td>
<td>Automat. Doku und Ausw. d. Maßnahmen der Störungsbehebung</td>
<td>Detaillierte Fehlerbeschreibung</td>
<td>Standardschnittstelle und -datenstruktur an Maschine</td>
</tr>
<tr>
<td>5</td>
<td>Fehlercodierung, eindeutige Fehlerbeschreibung</td>
<td>Zugriff Herstellerunterlagen</td>
<td>Anzeigen Anlagentermperatur</td>
<td>Optimierung der Auswertung der Dokumentation</td>
</tr>
<tr>
<td>6</td>
<td>Anleitung zur Fehlerbehebung</td>
<td>Fehlerdatenbank mit Suchfunktion (Historie)</td>
<td>Anzeige Windrichtung/-stärke</td>
<td>Abgleich von Betriebsdaten (z. B. Protokoll Störfälle & Fehlermeldungen) zwischen Anlagenbetreiber und -hersteller zur zentralen (Cloud-) Speicherung</td>
</tr>
<tr>
<td>7</td>
<td>Anzeige Maschinenpläne</td>
<td>Schichtbuch</td>
<td>Anzeige der Wetterbeschaffenheit</td>
<td>Erweiterung der Leitfäden zur Fehlerbehebung</td>
</tr>
<tr>
<td>8</td>
<td>Möglichkeit zur Ergänzung/Korrektur von Dokumentationen + Wikis</td>
<td>Automatischer Link zu Leitfäden bei Störung</td>
<td>Dokumentations-möglichkeit</td>
<td>Unterstützung bei Kommunikation mit Kollegen und Kunden</td>
</tr>
<tr>
<td>9</td>
<td>Bild/Videoinformation</td>
<td>Zugriff Fachbereichs-information</td>
<td>Fehlerkategorisierung</td>
<td>Anzeige Störungsmeldung</td>
</tr>
<tr>
<td>10</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
<td>Mobiles Endgerät als Telefonersatz</td>
<td>GPS Genauigkeit für die Kartenversion (Zustand der Anlage)</td>
<td>Nachverfolgung offener Punkte</td>
</tr>
<tr>
<td>11</td>
<td>Condition Monitoring</td>
<td>Condition Monitoring</td>
<td>Betriebsprotokollierung</td>
<td>Telefonbücher</td>
</tr>
<tr>
<td>12</td>
<td>Wartungspläne und -historie verfügbar</td>
<td>Wartungspläne und -historie verfügbar</td>
<td>3D-Darstellung mit Fehlerlokalisierung</td>
<td>Anlagenplan</td>
</tr>
<tr>
<td>13</td>
<td>Anzeige offener und abgeschlossener Aufträge durch das System</td>
<td>Anzeige offener und abgeschlossener Aufträge durch das System</td>
<td>Anlagenplan</td>
<td>Fotografieren</td>
</tr>
<tr>
<td>15</td>
<td>Bauteilinformationen für Anlagen verfügbar</td>
<td>Synchronisations-mechanismus zwischen Geräten und Systemen</td>
<td>People Tracking</td>
<td>Mailfunktion</td>
</tr>
<tr>
<td>16</td>
<td>Anlagenbeschreibung vom Hersteller</td>
<td>Anzeige Maschinenpläne</td>
<td>Ticket System</td>
<td>Internet</td>
</tr>
<tr>
<td>17</td>
<td>Synchronisationsmechanismus zwischen Geräten und Systemen</td>
<td>Störungsbereitstellung und Anlagenzuweisung zu Personengruppe</td>
<td>Wartungsberichte</td>
<td>Unterstützung Datentypen</td>
</tr>
<tr>
<td>18</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zuständen in Form eines Dashboards</td>
<td>Status Störung</td>
<td>Bereitstellung von 3D-Daten</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td>Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td>Instandhaltungsmaßnahmenhistorie</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Anonymisierungs- funktion der Mitarbeiter für das Management</td>
<td>Ersatzteilmanagement</td>
<td>Übersicht über Instandhalter samt Kontaktdaten, Zuweisung und Verfügbarkeit</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td>Mobiler Zugriff auf Prozessgeräte</td>
<td>Erfassung der Arbeitszeit der Instandhalter</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Algorithmus präventive Instandhaltung</td>
<td>Mobiles Abarbeiten von Checklisten und Prüflisten</td>
<td>OPC UA Schnittstelle zum Empfang bzw. Senden von Maschinendaten</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Priorisierung Instandhaltungsfälle</td>
<td>Anzeige Stördauer (mittell und aktuell)</td>
<td>Maschinenpläne im System verfügbar</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3D-Darstellung mit Fehlerlokalisierung</td>
<td>Übersicht installierter Anlagen und deren Fehler/Status</td>
<td>Mobiles Arbeiten im Offlinemodus</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ersatzteilmanagement</td>
<td>Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td>Erfassung von Reisekosten durch das System</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Anzeige Softwarestände und Besonderheiten</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zuständen in Form eines Dashboards</td>
<td>Anzeige von aktuellen Vertragsdaten für Auftrag (Leistungen etc.)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Link zum Kataster von Hilfs- und Betriebsstoffen für die jeweilige Anlage</td>
<td>Predictive Maintenance (kontinuierlich lernendes, vorausschauendes System)</td>
<td>Signierfunktion durch Auftraggeber und Instandhalter</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Anzeige Betriebstemperatur</td>
<td>Personalisierung</td>
<td>Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Produktionsplanung/Anlagenbelegung</td>
<td>Barcodescanner</td>
<td>Anzeige Wartungsbericht</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Bestands-/Liefersituation</td>
<td>Synonymfunktion/Wörterbuch</td>
<td>Serviceprotokoll automatisch in digitaler Version erstellen lassen</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Intranet/Internet Zugang</td>
<td>Bauteilinformationen</td>
<td>Condition Monitoring</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Fehlerdatenbank mit Suchfunktion im System verfügbar</td>
<td>Intranetzugang</td>
<td>Fehlerdatenbank mit Suchfunktion im System verfügbar</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Remotesteuerung Anlage</td>
<td>WhatsApp/Bild versenden/Foto</td>
<td>Predictive Maintenance (kontinuierlich lernendes, vorausschauendes System)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Auswertung und Anzeige der aktuellen und mittleren Laufzeiten aller Anlagen (Stördauer/Anzahl Störungen etc.)</td>
<td>Wiki/Forum</td>
<td>Kommunikation mit ERP-System</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Mobiles Arbeiten im Offlinemodus</td>
<td>Push Benachrichtigung Updates bei Änderungen von HW/SW Komponenten d. Anlage</td>
<td>Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Übersicht über Instandhalter samt Kontaktdaten, Zuweisung und Verfügbarkeit</td>
<td>Automatische Priorisierung Instandhaltungsfälle</td>
<td>Störmeldung mitsamt Fehlermeldung und Zustand Anlage</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Eskalationsmöglichkeit mit Informationsweitergabe</td>
<td>"Hilfe-Button"</td>
<td>Störmeldungsformular wird automatisiert vollständig ausgefüllt und an Servicedienstleister versandt</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Status Mitarbeiter</td>
<td>Bauteilinformationen verfügbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Mobiler Zugriff auf SPS</td>
<td>Bereitstellung Handlungsleitfäden für Kunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Installations-berechtigung Apps</td>
<td>Navigation zum Kunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Spracheingabe</td>
<td>Barcodescanner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Laufkarte zur Anlage</td>
<td>Eskalationsmöglichkeit mit Informationsweitergabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Outlook Zugang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Internetzugang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Videofunktion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Eskalationsmöglichkeit mit Informationsweitergabe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 26: Aufgenommene Anforderungen in den untersuchten Unternehmen
Quelle: Eigene Darstellung

Die Anforderungen der einzelnen Unternehmen zeigen, dass deutlich weniger Anforderungen genannt wurden bzw. die Granularität in der Beantwortung im ersten Schritt von den
Anforderungen aus der Literatur abwich. Im Folgenden werden die praktischen Anforderungen miteinander verglichen und anschließend mit den Literaturerkenntnissen abgeglichen.

4.3.3.2 Generische Anforderungen

<table>
<thead>
<tr>
<th>PNr.</th>
<th>Generische Anforderung</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automatische Fehlermeldung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>Detaillierte Fehlermeldung und Störungsart</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>Kommunikation (Messenger, Telefon, Mail, Kontakte)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>Condition Monitoring an der Maschine</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände in Form eines Dashboards</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>Auftragsverwaltung mit Anzeige Status der Instandhaltungsaufträge durch das System</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>(Mobiler) Zugriff auf relevante Maschinendaten</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>Zugang zu relevanten Webanwendungen über Internet (z. B. Intranet)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>Dokumentenmanagement und -bearbeitung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>Anzeige von Maschinenplänen (Steuerungspläne, SPS, etc.)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>Handlungsleitfäden/Checklisten für Instandhaltungsaufgaben</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>Anlagen-, Bauteil-, und Maßnahmenhistorie</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>Synchronisationsmechanismus zwischen Geräten und Systemen</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td>Technisches Nutzermanagement inklusive Rollensystem</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>OPC UA Schnittstelle zum Empfang und Senden von Maschinendaten</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>Bauteilübersicht der Anlagen verfügbar</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Herstellerunterlagen der Anlage verfügbar</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>18</td>
<td>Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>19</td>
<td>Ersatzteilmanagement (Informationen und Verfügbarkeit)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Mobiles Arbeiten im Offlinemodus
Wartungsplanmanagement & Historie (manuell und automatisch)
Priorisierung der abzuarbeitenden Tätigkeiten (automatische Priorisierung der Aufträge, Tätigkeiten, Fehler, Auftragsverteilung)
Remote Zugriff auf Anlage
Auftragsmanagement in Verbindung mit ERP
Anlagenübersicht
Möglichkeit zur Erweiterung der Handlungsanweisungen
Automatische Doku und Auswertung der Instandhaltungsmaßnahmen
Bereitstellung von 3D-Daten/3D-Darstellung der Anlage
Anzeige von Betriebstemperaturen
Scannen der Anlagencodierung (Barcodescanner)
Auswertung und Anzeige der aktuellen und mittleren Laufzeiten aller Anlagen (Stördauer/Anzahl Störungen etc.)
Predictive Maintenance (kontinuierlich lernendes, vorausschauendes System)
Wiki
Fehlerdatenbank mit Suchfunktion
Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen
Übersicht über Instandhalter samt Kontaktdaten, Zuweisung und Verfügbarkeit
Mohler Zugriff auf die SPS
Verarbeitung audiovisueller Medien (Erstellen, Speichern, Anzeigen von Foto, Video und Audio)
Eskalationsmöglichkeit mit Informationsweitergabe

Tabelle 27: Generische Anforderungen
Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>PNr.</th>
<th>Optionale Anforderung</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anzeigen Softwarestände und Besonderheiten</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Link zum Kataster der Hilfs- und Betriebsstoffe</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3D-Darstellung mit Fehlerlokalisation</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Informationen zur Produktionsplanung/Anlagenbelegung</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Anonymisierungsfunktion der Mitarbeiter für das Management</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mobiles Endgerät als Telefonersatz</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Störungsbennachtigungs-/Anlagenzuweisung zu Personengruppe</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Personalisierung des Systems</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Synonymfunktion/Wörterbuch</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Schichtbuch</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei den optionalen Anforderungen konnten die Anforderungen mitsamt der Priorisierung übernommen werden, jedoch spielen diese Anforderungen nur bei Spezialfällen eine Rolle.
<table>
<thead>
<tr>
<th>PNr.</th>
<th>Priorisierung</th>
<th>Anforderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Automatische Fehlermeldung</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Detaillierte Fehlermeldung und Störungsart</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Kommunikation (Messenger, Telefon, Mail, Kontakte)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Condition Monitoring an der Maschine</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände in Form eines Dashboards</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Auftragsverwaltung mit Anzeige Status der Instandhaltungsaufträge durch das System</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(Mobiler) Zugriff auf relevante Maschinendaten</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Zugang zu relevanten Webanwendungen über Internet (z. B. Intranet)</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Dokumentenmanagement und -bearbeitung</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Anzeige von Maschinenplänen (Steuerungspläne, SPS, etc.)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Handlungsleitfäden/Checklisten für Instandhaltungsaufgaben</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Anlagen-, Bauteil-, und Maßnahmenhistorie</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Synchronisationsmechanismus zwischen Geräten und Systemen</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Technisches Nutzermanagement inklusive Rollensystem</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>OPC UA Schnittstelle zum Empfang und Senden von Maschinendaten</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Bauteilübersicht der Anlagen verfügbar</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Herstellerunterlagen der Anlage verfügbar</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>Ersatzteilmanagement (Informationen und Verfügbarkeit)</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>Mobiles Arbeiten im Offlinemodus</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>Wartungsplanmanagement & Historie (manuell und automatisch)</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>Priorisierung der abzuarbeitenden Tätigkeiten (automatische Priorisierung der Aufträge, Tätigkeiten, Fehler, Auftragsverteilung)</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>Remote Zugriff auf Anlage</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>Auftragsmanagement in Verbindung mit ERP</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>Anlagenübersicht</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>Möglichkeit zur Erweiterung der Handlungsanweisungen</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Automatische Doku und Auswertung der Instandhaltungsmaßnahmen</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>Bereitstellung von 3D-Daten/3D-Darstellung der Anlage</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>Anzeige von Betriebstemperaturen</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>Scannen der Anlagencodierung (Barcodescanner)</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>Auswertung und Anzeige der aktuellen und mittleren Laufzeiten aller Anlagen (Stördauer/Anzahl Störungen etc.)</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>Predictive Maintenance (kontinuierlich lernendes, vorausschauendes System)</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>Wiki</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>Fehlerdatenbank mit Suchfunktion</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übersicht über Instandhalter samt Kontaktdaten, Zuweisung und Verfügbarkeit</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>Mobiler Zugriff auf die SPS</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>Verarbeitung audiovisueller Medien (Erstellen, Speichern, Anzeigen von Bildern, Video und Audio)</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>Eskalationsmöglichkeit mit Informationsweitergabe</td>
</tr>
</tbody>
</table>

Tabelle 29: Priorisierung der generischen Anforderungen

Quelle: Eigene Darstellung
4.4 Diskussion der Ergebnisse

Zur Diskussion der Ergebnisse sollen die in der Praxis aufgenommen Anforderungen den aus dem Literaturteil extrahierten gegenübergestellt werden. Bei diesem Vergleich der Anforderungen aus Literatur und Praxis ergeben sich gleich mehrere Herausforderungen:

Trotz dieser Herausforderungen sind die Überschneidungen leicht erkennbar und eine Gegenüberstellung ermöglicht Rückschlüsse über die Validität der in der Praxis aufgenommenen Anforderungen. Daher werden nachfolgend in Kapitel 4.4.1 die generischen und spezifischen Anforderungen mit den jeweiligen vergleichbaren Anforderungen aus der Literaturanalyse gegenübergestellt. Anschließend werden in Kapitel 4.4.2 die Ergebnisse diskutiert.

4.4.1 Diskussion Verbindung Literatur- und Praxisanforderung

In Tabelle 30 werden die generischen und in Tabelle 31 die spezifischen Anforderungen den Literaturanforderungen gegenübergestellt den Literaturanforderungen gegenübergestellt. Beide Tabellen sind bis auf die Unterscheidung zwischen generischen und spezifischen Anforderungen identisch aufgebaut.

- In der ersten Spalte (PGNr.) steht die Nummer der generischen Praxisanforderung.
- In der zweiten Spalte (Anforderung) wird der Name der jeweiligen Praxisanforderung genannt.
- Die dritte Spalte (LitAnf. = Literaturanforderung) enthält die Literaturnummer (LNr.) der Anforderungen aus der Literaturanalyse, die mit den Anforderungen aus der Praxis vergleichbar sind. Es können dabei mehrere Anforderungen genannt werden, wenn die Praxisanforderung mehrere Anforderungen aus der Literatur abdeckt bzw. diesen ähnlich ist.
- Weiterhin sind in der vierten Spalte verbundene Anforderungen (Verb. Anf. = Verbundene Anforderung) aufgeführt, die implizit auch durch die Anforderung aus der Praxis abgedeckt werden müssen, jedoch nicht direkt genannt werden oder diese nur teilweise erfüllen.
- In der fünften Spalte (Topanf. = Topanforderung) ist hinterlegt, ob die Literaturanforderungen, die durch die Praxisanforderungen abgedeckt sind, eine der am häufigsten genannten Anforderungen aus Tabelle 24 enthalten. Dabei können auch mehrere dieser Anforderungen abgedeckt werden. Diese Anforderungen werden im folgenden Topanforderungen genannt, da sie besonders häufig genannt werden.
In Spalte TopVerb. wird die gleiche Logik auf die verbundenen Anforderungen angewandt.

Am Ende der jeweiligen Tabellen befinden sich drei Summenreihen, die eine Übersicht über die Anzahl der vergleichbaren Anforderungen geben. In der ersten Reihe wird die Anzahl der Anforderungen eingetragen, die in den jeweiligen Spalten vorkommen. In der zweiten Reihe werden Duplikate der jeweiligen Spalten eliminiert und die Anzahl der insgesamt vorkommenden unterschiedlichen Anforderungen genannt. Die dritte Spalte bildet die Summe aller Anforderungen, wiederum werden die Duplikate entfernt und so ergibt sich eine Zahl der Anforderungen, die direkt oder indirekt durch die praktischen Anforderungen behandelt werden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automatische Fehlermeldung</td>
<td>91; 15</td>
<td>14</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Detaillierte Fehlermeldung und Störungsart</td>
<td>90; 92</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kommunikation (Messenger, Telefon, Mail, Kontakte)</td>
<td>67</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Condition Monitoring an der Maschine</td>
<td>96</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände in Form eines Dashboards</td>
<td>86; 98</td>
<td>96</td>
<td>x, x</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>Auftragsverwaltung mit Anzeige Status der Instandhaltungsaufträge durch das System</td>
<td>14; 17</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(Mobiler) Zugriff auf relevante Maschinendaten</td>
<td>74</td>
<td>10; 75</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Zugang zu relevanten Webanwendungen über Internet (z. B. Intranet)</td>
<td></td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dokumentenmanagement und -bearbeitung</td>
<td>101</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Anzeige von Maschinenplänen (Steuerungspläne, SPS, etc.)</td>
<td></td>
<td>41</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Handlungsleitfäden/Checklisten für Instandhaltungsaufgaben</td>
<td>113; 114</td>
<td>115; 116; 117, 106, 105</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>Anlagen-, Bauteil-, und Maßnahmenhistorie</td>
<td>85</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Synchronisationsmechanismus zwischen Geräten und Systemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Technisches Nutzermanagement inklusive Rollensystem</td>
<td>125</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>OPC UA Schnittstelle zum Empfang und Senden von Maschinendaten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Bauteilübersicht der Anlagen verfügbar</td>
<td>40</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Herstellerunterlagen der Anlage verfügbar</td>
<td>41</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ersatzteilmanagement (Informationen und Verfügbarkeit)</td>
<td>51; 52</td>
<td>53; 54; 55; 56; 57</td>
<td>x, x</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Mobiles Arbeiten im Offlinemodus</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>21</td>
<td>Wartungsplanmanagement & Historie (manuell und automatisch)</td>
<td>29; 30</td>
<td>31</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Priorisierung der abzuarbeitenden Tätigkeiten (automatische Priorisierung der Aufträge, Tätigkeiten, Fehler, Auftragsverteilung)</td>
<td>16; 32; 33; 94</td>
<td>14; 35; 38</td>
<td>x, x</td>
<td>x, x, x</td>
</tr>
<tr>
<td>23</td>
<td>Remote Zugriff auf Anlage</td>
<td>11</td>
<td>10</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>24</td>
<td>Auftragsmanagement in Verbindung mit ERP</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Anlagenübersicht</td>
<td>39</td>
<td>46</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Möglichkeit zur Erweiterung der Handlungsanweisungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Automatische Doku und Auswertung der Instandhaltungsmaßnahmen</td>
<td>102</td>
<td>109; 71; 7</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Bereitstellung von 3D-Daten/3D-Darstellung der Anlage</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Anzeige von Betriebstemperaturen</td>
<td>96</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Scannen der Anlagencodierung (Barcodescanner)</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Auswertung und Anzeige der aktuellen und mittleren Laufzeiten aller Anlagen (Stördauer/Anzahl Störungen etc.)</td>
<td>87</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Predictive Maintenance (kontinuierlich lernendes, vorausschauendes System)</td>
<td>97</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Wiki</td>
<td>110</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Fehlerdatenbank mit Suchfunktion</td>
<td>84; 108</td>
<td>89</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Übersicht über Instandhalter samt Kontaktdaten, Zuweisung und Verfügbarkeit</td>
<td>20; 58; 60</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Mobiler Zugriff auf die SPS</td>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Verarbeitung audiovisueller Medien (Erstellen, Speichern, Anzeigen von Foto, Video und Audio)</td>
<td>70; 78; 29</td>
<td>101</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>39</td>
<td>Eskalationsmöglichkeit mit Informationsweitergabe</td>
<td>3; 23</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>50</td>
<td>32</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Summe abzüglich Duplikate der Kategorie</td>
<td></td>
<td>46</td>
<td>27</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>Summe abzüglich Duplikate aggregiert</td>
<td></td>
<td>68</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Tabelle 30: Generische Anforderungen in Verbindung mit den Anforderungen der Literaturrecherche |
| Quelle: Eigene Darstellung |

Die generischen praktischen Anforderungen behandeln insgesamt 50 Anforderungen aus der Literatur direkt, 32 sind indirekt verbunden, wobei sie 26 Topanforderungen direkt und 12 indirekt nennen. Nach Reduzierung der mehrmals genannten Anforderungen werden durch die 39 praktischen generischen Anforderungen insgesamt 46 Anforderungen aus der Literatur direkt abgedeckt, 27 sind hingegen indirekt verbunden. Die 46 abgeckten Anforderungen enthalten 23 Topanforderungen, wodurch 82 % der Topanforderungen direkt durch die
generischen praktischen Anforderungen abgedeckt werden. Daher kann von einer großen Überschneidung des generischen Kerns der praktischen Anforderungen mit den Topanforderungen ausgegangen werden. Folgende Topanforderungen werden nicht direkt durch die praktischen Anforderungen abgedeckt:

- LNr. 10: Remote Maintenance/Fokus Fernüberwachung
- LNr. 35: Bewertung und Erfassung von kritischen Risiken, Prioritätszuweisung sowie Klassifikation von Anlagen/Komponenten
- LNr. 38: Kostenmanagement der Instandhaltung (Mitarbeiter, Materialen, Tools, Historie, Planung und Bewertung)
- LNr: 105: Wissensmanagement
- LNr. 106: Informationen zu aktuellem Instandhaltungsfall automatisch verknüpfen (CBR, Wahrscheinlichkeiten etc.)

Daneben wird kein explizites Wissensmanagement (LNr. 105) in der Praxis gefordert, sondern es bestehen nur Anforderungen, die dieses in Spezialisierungsfällen umsetzen. Sei es durch PNr. 33 „Wiki“, durch PNr. 26 „Möglichkeit zur Erweiterung der Handlungsanweisungen“ sowie vor allem PNr. 11 „Handlungskonzept/Checklisten für Instandhaltungsaufgaben“. LNr. 106 „Informationen zu aktuellem Instandhaltungsfall automatisch verknüpfen (CBR, Wahrscheinlichkeiten etc.)“ wird ebenso durch die Handlungsempfehlungen teilweise abgedeckt, da diese automatisch zu ähnlichen Fällen zugeordnet werden müssen. Jedoch wird in der Praxis kein explizites CBR oder eine Ähnlichkeitsanalyse gefordert.

Drei der praktischen Anforderungen finden sich nicht direkt in den Literaturanforderungen wieder, zwei der praktischen Anforderungen LNr. 15 „OPC UA Schnittstelle zum Empfang und Senden von Maschinendaten“ und PNr. 13 „Synchronisationsmechanismus zwischen Geräten und Systemen“ lassen sich überhaupt nicht in der Literatur finden.

Zusammengefasst werden alle 28 Topanforderungen entweder direkt oder indirekt durch die generischen Anforderungen aus der Praxis abgedeckt. Insgesamt lassen sich mit den generischen Anforderungen aus der Praxis über 50% der Literaturanforderungen in Verbindung setzen. Aus den 39 praktischen generischen Anforderungen lässt sich eine Verbindung zu 68 Literaturanforderungen ableiten, was einen Faktor von 1,74 von praktischer zur Literaturanforderungen ergibt. Der Faktor bestimmt, wie viele Anforderungen aus der Literatur durch eine Anforderung aus der Praxis abgedeckt werden. Liegt dieser höher als 1, lässt dies auf einen höheren Abstraktionsgrad und Generalisierbarkeit der Anforderungen aus
Der Praxis schließen. Der Wert 1,74 ergibt sich daher durch die Division von 68 durch 39. Daraus lässt sich auf eine relativ breite Abdeckung und einen höheren Aggregations- bzw. Abstraktionsgrad der generischen Anforderungen aus der Praxis schließen.

In der nachfolgenden Tabelle ändert sich die Nummerierung der Anforderungen aufgrund des Wechsels von generischer zu optionaler Anforderungen von PGNr. zu PONr.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anzeigen Softwarestände und Besonderheiten</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Link zum Kataster der Hilfs- und Betriebsstoffe</td>
<td>52</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3D-Darstellung mit Fehlerlokalisation</td>
<td>95</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Informationen zur Produktionsplanung/Anlagenbelegung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Anonymisierungsfunktion der Mitarbeiter für das Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mobiles Endgerät als Telefonersatz</td>
<td>67</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Störungsbenachrichtigungs-/Anlagenzuweisung zu Personengruppe</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Personalisierung des Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Synonymfunktion/Wörterbuch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Schichtbuch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Push Benachrichtigung Updates bei Änderungen von HW/SW Komponenten d. Anlage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Hilfe-Button für Anforderung eines Instandhalters</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Installationsberechtigung Apps auf mobilem Gerät</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Spracheingabe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Laufkarte zur Anlage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Anzeige Windrichtung/-stärke</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Anzeige der Wetterbeschaffenheit</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Tracking der Instandhalter</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GPS Genauigkeit für die Kartenversion (Zustand der Anlage)</td>
<td>44; 45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Anzeige Wartungsbericht</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Signierfunktion durch Auftragneber und Instandhalter</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Anzeige von aktuellen Vertragsdaten für Auftrag (Leistungen etc.)</td>
<td>1; 43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Erfassung von Reisekosten durch das System</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Remote Anlagen-/Komponentensteuerung durch Hersteller</td>
<td>11</td>
<td>10</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>Standardschnittstelle und -datenstruktur an Maschine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Abgleich von Betriebsdaten (z. B. Protokoll Störfälle & Fehlermeldungen) zwischen Anlagenbetreiber und - Hersteller zu zentralen (Cloud-) Speicherung</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- LNr. 101 das Wissensmanagement,
- LNr. 10 Remote Maintenance/Fokus Fernüberwachung sowie
- LNr. 67 Kommunikation und Kontaktaufnahme zu anderen Mitarbeitern/Personen (E-Mail, SMS, Nachrichten, Telefon),

welche speziellere Anforderungen aus der Praxis indirekt ermöglichen. Das gleiche gilt für die direkte Verbindung zu den Topanforderungen Fernzugriff sowie dem Link zu dem Kataster, die ebenso Spezialfälle von Literaturanforderungen darstellen, jedoch auch einen Teil der Topanforderung implementieren und ebenso von den generischen praktischen Anforderungen erfüllt werden.

Zusammengefasst lassen sich über 83 generische, wie auch optionale praktische Anforderungen aus der Literatur in Verbindung mit den 70 praktischen Anforderungen setzen. Damit decken die praktischen Anforderungen ca. 61 % aller Anforderungen in der Literatur ab, von den häufig genannten sogar 100 %. Dabei decken diese 61 % der Literaturanforderungen 628 Nennungen ab. Daraus ergibt sich, dass diese 61 % der Literaturanforderungen 84 % aller Nennungen auf
sich vereinen. Aufgrund dieser Überdeckung kann von den erhobenen generischen Anforderungen aus der Praxis auf eine herausragende Relevanz für umfassende Instandhaltungssysteme gesprochen werden.

4.4.2 Diskussion der Anforderungsbetrachtung

Die Aufnahme der Anforderungen aus Literatur und Praxis und der Vergleich der Ergebnisse führt zu folgender Erkenntnis:

- Trotz vieler unterschiedlicher Instandhaltungssysteme existiert ein generischer Kern an Anforderungen an umfassende Instandhaltungssysteme.

Denn 22 aufgenommene Kernanforderungen der Literatur decken 52 % aller Anforderungsnennungen in der Literatur ab und werden als Topanforderungen bezeichnet. Die 28 häufigsten genannten Anforderungen decken gar knapp 60 % aller Nennungen ab. Durch den Vergleich der Literaturanforderungen mit den Praxisergebnissen im vorherigen Kapitel ist erkennbar, dass die generischen Anforderungen aus der Praxis 82 % dieser 28 Literaturanforderungen direkt abdecken. Zählt man die indirekten Nennungen dazu, sind es 100 %. Damit werden die Ergebnisse aus der Literatur durch die Praxisergebnisse validiert und bestätigt. Die generischen Anforderungen aus der Praxis stellen demnach mit hoher Wahrscheinlichkeit den generischen Kern eines IIS dar.
Weiter decken die Praxisanforderungen zwar nur 61 % aller genannten Anforderungen aus der Literatur ab, diese 61% enthalten jedoch alle besonders häufig genannten Anforderungen. Diese decken somit knapp 84 % aller Nennungen von Anforderungen aus der Literatur ab. Daher kann konstatiert werden:

- Die häufig genannten Anforderungen, die jeweils in Praxis und in der Literatur behandelt werden, sind von besonderer Bedeutung.
- Die häufig genannten Ergebnisse der Literaturrecherche werden auch in der Praxis bestätigt.

Daraus folgt auch, dass sich Praxis und Literaturanforderungen stark überschneiden und die nicht in der Praxis genannte Literaturanforderungen demzufolge auch tendenziell eine geringere Relevanz besitzen.

- Die gefundenen Ergebnisse in der Praxis fügen sich weitestgehend in die Literaturergebnisse ein und ergänzen diese insbesondere hinsichtlich dezentraler Aspekte und der umfassenden Sicht, die endgeräteübergreifende Faktoren eines Systems betonen.

Mit diesem Punkt und der tendenziell höheren Aggregationsstufe der praktischen Anforderungen sowie der Bestätigung durch den Abgleich mit den Literaturanforderungen werden diese als Grundlage für den Schnitt der Referenzarchitektur genommen. Die Literaturanforderungen werden nur als Ergänzung herangezogen. Folglich kann daher folgendes festgehalten werden:

- Generische Praxisanforderungen in Kombination mit den Literaturanforderungen können als Grundlage zur Identifizierung des generischen Kerns eines IIS genutzt werden.

Damit ermöglichen die Ergebnisse der Anforderungsuntersuchung eine umfassende Betrachtung der Anforderungen an ein IIS. Weiter werden ein Vergleich und die Ableitung eigener Anforderungen bei der Entwicklung anhand dieser Ergebnisse ermöglicht. Die optionalen Anforderungen aus der Praxis und die geringe Überschneidung mit den häufig genannten Anforderungen aus der Literatur sprechen weiter für die Optionalität dieser
Anforderungen. Aufgrund des unterschiedlichen Abstraktionsgrades der Anforderungen und deren Form kann jedoch nicht von eindeutigen Anforderungen gesprochen werden.

Zusammenfassend kann daher konstatiert werden, dass die aufgenommenen Praxisanforderungen im folgenden Verlauf der Arbeit als Grundlage zur Erstellung der Referenzarchitektur genutzt werden. Die damit verbundenen Literaturanforderungen fließen nicht nur in die praktischen Anforderungen hinein, sie werden auch dazu genutzt, Erweiterungen der logischen funktionalen Module, die auf den generischen und optionalen Anforderungen aus der Praxis basieren, in Kapitel 6 auszuformulieren.
4.5 Zusammenfassung

5 Darstellungsmodell der RAI

5.1 Einleitung

Die Art der Darstellung einer Referenzarchitektur ist entscheidend für deren Akzeptanz und beeinflusst stark die Art und Weise, wie mit dieser gearbeitet wird. Das mit einer Referenzarchitektur verbundene Ziel und die damit arbeitende Zielgruppe beeinflussen daher stark die Wahl der Darstellung. Für Guessi et al. (2014, S. 2) ist eine adäquate Darstellung essentiell für den Erfolg einer Referenzarchitektur, da durch diese Darstellung die Referenzarchitektur für eine große Bandbreite an Stakeholdern verständlich gemacht werden kann. In diesem Kapitel soll daher die für die RAI gewählte Darstellungsart einer Referenzarchitektur vorgestellt werden, um die Darstellung von Referenzarchitekturen im Allgemeinen und der RAI im Speziellen zu diskutieren und um die Grundlagen zum Verständnis der RAI bereitzustellen.

5.2 Darstellung von Referenzarchitekturen

![Diagramm: 4+1 Sichten einer Softwarearchitektur](image)

Das Modell von Kruchten unterscheidet ursprünglich zwischen 4+1-Sichten, die jeweils einen Blickwinkel eines bestimmten Stakeholders (z. B. Endnutzer, Entwickler oder Projektmanager) auf das zu entwickelnde System darstellen. Dies erlaubt für jeden Projektbeteiligten eine übersichtliche Darstellung der benötigten Informationen. Darüber hinaus können neue Sichten einfach eingefügt werden, falls zusätzliche Blickpunkte wünschenswert sind. Die Sichten selbst
sind in ihrer Notation und ihrem Aufbau nicht festgelegt und die Auswahl der adäquatesten Darstellungsform wird an den jeweiligen Anwendungsfall angepasst. Nachfolgend werden die auf Abbildung 13 dargestellten 4+1-Sichten beschrieben und anschließend wird auf Anpassungen hinsichtlich der Referenzarchitektur eingegangen.

5.2.1 Logische Sicht

5.2.2 Entwicklungssicht

5.2.3 Prozesssicht

5.2.4 Physische Sicht
Die „Physical View“ bzw. physische Sicht beschäftigt sich mit der Systemtopologie, der Verteilung und Kommunikation der verschiedenen Komponenten auf physischer Ebene. Es ist eine Sicht für Systemarchitekten, welche die Verteilung des zu entwickelnden Systems auf verschiedene Hardwarekomponenten und Netzwerkverbindungen planen.

5.2.5 Szenarios
Die der Architektur zugrundeliegenden Szenarien bilden die fünfte Sicht. Diese Szenarien stellen die wichtigsten Anwendungsfälle der Architektur bzw. der Anwendung dar. Die
5.3 Angepasstes Sichtenmodell der RAI

Abbildung 14: Darstellung des Sichtenmodells der RAI

Wie im vorherigen Abschnitt dargelegt, ist die logische Sicht im ursprünglichen Modell von Kruchten sehr detailliert dargestellt. Dort werden die funktionellen Anforderungen in Klassen

5.3.1 Funktionale Sicht

Daher wird die ursprüngliche logische Sicht dahingehend angepasst, dass sie den logischen Aufbau und die Funktionsweise der RAI in abstrakter, möglichst technologieneutraler Weise beschreibt. Dazu wird die gesamte Architektur bzw. das komplette integrierte Informationssystem zur Unterstützung der Instandhaltung in einzelne Bausteine, Module und Anforderungen untergliedert. Der Kern dieser Sicht bezieht sich auf die Module, die Beschreibung der Funktionalität dieser Module und die Darstellung der Verbindungen der Module zueinander. Module sind in dieser Sicht nicht wie bei Kruchten Elemente, die verschiedene Klassen oder Objekte enthalten. Module stellen im Kontext der RAI eine logische/technische Funktionseinheit dar und entsprechen eher einem Modul im Sinne der ursprünglichen Entwicklungssicht. Jedoch sind sie auf einem deutlich höheren Abstraktionsniveau und enthalten daher keine konkreten Klassen, Verweise auf technische Bibliotheken oder Vererbungshierarchien. Sie stellen vielmehr eine abstrakte Funktionsbeschreibung einer logischen Einheit dar, die jeweils aus einer bestimmten Menge an unternehmensspezifischen, optionalen und generischen Anforderungen aus Kapitel 4 gebildet wird.

Darstellung der Funktionalen Sicht

Abbildung 15: Erklärung Aufbau der Module
Quelle: In Anlehnung an Reidt et al. (2016a, S. 52)

Die gewählte einfache schematische Darstellung ermöglicht eine Verständlichkeit über alle Stakeholder eines solchen Projektes hinweg, da kein Expertenwissen nötig ist, um den Zusammenhang zwischen Modulen und Anforderungen zu erkennen und die Funktionsweise zu verstehen. Das Schema der Nummerierungen, Unternehmen und Farbgebung der einzelnen Elemente werden in der nachfolgenden Abbildung erklärt.

Abbildung 16: Legende simplifizierte Moduldarstellung
Quelle: In Anlehnung an Reidt et al. (2016a, S. 53)

Die detaillierte Darstellung eines Moduls erfolgt tabellarisch, wobei die visuelle Darstellung zur besseren Übersicht als ein Element in dieser integriert ist. In Tabelle 32 werden diese Art der Darstellung und die einzelnen Kategorien der Tabelle erläutert. Die Beschreibung ist dabei

<table>
<thead>
<tr>
<th>Komponente</th>
<th>In dieser Sektion wird der Name der Komponente eingetragen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>In dieser Sektion wird der vergrößerte Ausschnitt, welcher das Modul beschreibt, aus Abbildung 19 übernommen. Dadurch ist klar erkennbar, welche Anforderungen dem Modul zugeordnet sind und wie sich dieses in die Gesamttarchitektur einbettet.</td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Hier wird das Ziel, das mit dem Modul verfolgt wird bzw. der Zweck des Moduls, beschrieben.</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Dieses Feld beschreibt, ob das Modul als generisch oder als optional zu betrachten ist.</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td>Eine Aufteilungen des Moduls in Unterfunktionen wird hier anhand der Funktionsnennung aufgelistet.</td>
</tr>
</tbody>
</table>
| Verbindungen zu anderen Modulen | Hier werden die Module genannt mit welchen das vorliegende Modul im Austausch steht bzw. zusammen einen Baustein bildet. Zuerst werden die Module im eigenen Baustein genannt und folgend die außerhalb.

 Baustein in dem sich das Modul befindet:
 - Module, die sich ebenso in diesem Baustein befinden, zu denen das vorliegende Modul Verbindungen besitzt.
 Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
 - Module, die sich nicht in dem gleichen Baustein befinden und Verbindungen zu dem vorliegenden Modul besitzen. |
| Verbundene Aktivitäten | Hier werden die jeweiligen Aktivitäten genannt, in denen das Modul vorkommt. |

Tabelle 32: Tabellarischer Aufbau eines Moduls der RAI
Quelle: In Anlehnung an Reidt et al. (2016a, S. 54f)

Die Module bilden in der RAI die Basis für eine einheitliche Domänensprache eines solchen Informationssystems und stellen in ihrer Ausprägung die Grundlage für die weitere Entwicklung dar. So bieten die Module ein Fundament für die spätere Implementierung, ohne jedoch entscheidende Freiheitsgrade bei dieser einzuschränken. Der Name dieser Sicht ist demgemäß "Funktionale Sicht", auf eine isolierte Entwicklungssicht wird komplett verzichtet.

5.3.2 Verteilungssicht

Weitergehend wird die physische Sicht stark angepasst. Sie wird ursprünglich genutzt, um den physischen Aufbau mitsamt Hardwareallokation so zu beschreiben, dass die Architektur nichtfunktionale Anforderungen wie Performance oder die Verfügbarkeit erfüllen kann. Da der

5.3.3 Use Case Sicht

5.3.4 Prozesssicht

Mit dieser Form der Darstellung unterscheidet sich die Prozesssicht stark von der bei Kruchten verwendetem, da ein höherer Abstraktionsgrad und eine zweite Form der Verknüpfung der übrigen Sichten erreicht wird. Sie stellt damit die generische Überführung der Use Cases mitsamt Verknüpfung zu den restlichen Sichten dar und ist die Basis für eine iterative Weiterentwicklung der Architektur. Weiterhin wird anhand dieser Sicht das Wissen über die Gesamtarchitektur punktgenau dargelegt, sodass eine Evaluation der restlichen Sichten durch
das Wechselspiel erreicht werden kann. Im Kontext der RAII wird insbesondere durch diese Sicht die Kommunikation zwischen allen Stakeholdern ermöglicht.

Aktivitätsname (Legende)

Folgende Anpassungen sind für die Darstellung der Prozesssicht in der RAII nötig:

- Das Rechteck um eine Aktion gibt an, zu welchem Modul sie gehört. Durch diese Art der Darstellung ist die Zugehörigkeit einer Aktion zum jeweiligen Modul ersichtlich und die Verbindung zu der Funktionalen Sicht wird plastisch dargestellt.
- Die großen Rechtecke, die mehrere Module und Aktionen umfassen, sind Entitäten, die den Ort des jeweiligen Moduls angeben. Durch diese Visualisierung ist die Verbindung zu der Verteilungssicht gewahrt und Aktionen zwischen mehreren Entitäten leicht darstellbar.
- An einigen Punkten wird auf Entscheidungsknoten verzichtet, falls diese solange eine Schleife nach sich ziehen würden, bis eine bestimmten Bedingung erfüllt wird. Aus Gründen der Übersichtlichkeit wird in diesen Fällen darauf verzichtet, da diese Bedingung sich aus dem jeweiligen Kontext ergeben wird. Weiter wird nach einem öffnenden Parallelisierungsknoten als Vereinfachung eine Bedingung ohne Entscheidungsknoten für den Fall verwendet, dass diese Bedingung eine optionale Aktion nach sich zieht.

Abbildung 17: Darstellung Prozesssicht – Veränderte Darstellungselemente
Quelle: Eigene Darstellung
• Graue Rechtecke stellen entweder eine optionale Aktion oder ein komplett optionales Modul dar. Eine Aktion kann dabei in einem generischen Modul optional sein, jedoch kann es niemals eine generische Aktion in einem optionalen Modul geben.

5.3.5 Weitere Besonderheiten bei der Darstellung

Variationen

Die Variationen sind bei der RAI1 daher möglichst einfach und intuitiv verständlich in den jeweiligen Sichten dargestellt. Sie äußern sich dabei wie folgt:

• In der Prozesssicht sind Variationspunkte innerhalb eines Prozesses beschrieben und werden, wie in der Legende im vorherigen Kapitel dargestellt, als graue Elemente
gekennzeichnet. Sind Elemente als optional deklariert bzw. grafisch in Grau gehalten, so kann dieser Prozessschritt in Abhängigkeit von der Implementierung des jeweiligen optionalen Moduls getätigt werden.

- Die Verteilungssicht stellt einen Empfehlungscharakter dar und durch die Beschreibung wird ersichtlich, dass die Grenzen zwischen den Endgeräten bei Bedarf aufgehoben werden können. Variabilität ist daher direkt in die Art der Darstellung integriert. Auch hier gilt jedoch, dass die aufgezeigten Module, je nachdem ob sie generisch oder optional sind, ebenso Variationspunkte darstellen.

Integrationsmöglichkeiten

Anforderungen und Domänenwissen

5.4 Zusammenfassung

In diesem Kapitel wurde die Darstellungart der RAI vorgestellt. Zuerst wurden die Konzepte präsentiert, auf denen die Darstellung basiert und erläutert, wie diese im Zusammenhang mit der in Kapitel 2 erstellen Klassifikation stehen. Dabei wurde die Darstellungart des 4+1 Sichtenkonzept nach Kruchten vorgestellt. Aufgrund der Art der hier vorgestellten Referenzarchitektur und der damit verbundenen Ziele wurden jedoch Änderungen am ursprünglichen Sichtenkonzept vorgenommen, sodass nur 3+1 Sichten in dieser Arbeit verwendet und inhaltlich und darstellerisch auf die Bedürfnisse der hier vorliegenden Referenzarchitektur angepasst wurden. Diese Änderungen hängen mit der Abstraktheit und den potentiellen Variationspunkten der Referenzarchitektur zusammen, die ebenso erläutert wurden. Die hier vorgestellten Informationen dienen damit als Grundlage zum Verständnis des Inhalts und der Darstellung der im nächsten Kapitel vorgestellten einzelnen Sichten der RAI.
6 Referenzarchitektur RAI

6.1 Einleitung

6.2 Funktionale Sicht

Die Besonderheit dieser Module rührt daher, dass sie jeweils Kernfunktionalitäten darstellen, die die validierten Anforderungen aus Kapitel 4.3.3 erfüllen. Dadurch können die generischen Module in nahezu jedem Instandhaltungssystem wiedergefunden werden. Der umfassenden Gültigkeit drückt sich dahingehend aus, dass die Module mit sehr hoher Wahrscheinlichkeit alle Elemente eines Instandhaltungssystems umfassen. Das heißt ein Instandhaltungssystem für Produktionsanlage wird zwingend die Module bzw. die generischen enthalten müssen. Weiter werden durch die optionalen Module alle erkannten Anforderungen abgedeckt, die für bestimmte Sonderfälle gelten, so dass die nachfolgenden Informationen bei der Erstellung jedweder Art von Instandhaltungssystemen für Produktionsanlagen behilflich sein können.

Nach den beiden Grafiken werden in den folgenden Kapiteln, die in den Abbildungen dargestellten Module, einzeln in tabellarischer Darstellungsform beschrieben.
Übersicht über generische/optionale Module und Bausteine

<table>
<thead>
<tr>
<th>B.1 Lösungsunterstützung / Wissensmanagement</th>
<th>B.2 Anlagenübersicht – und -auswertung</th>
<th>B.3 Tätigkeitsmanagement der Instandhaltung</th>
<th>B.4 Fehlermanagement</th>
<th>B.5 Technischer Kundendienst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>M.11. Wartungsmanagement</td>
<td>M.22. Reisekostenabrechnung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.24. Vertragsmanagement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.25. Signierfunktion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.26. Kommunikation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.13. Schichtbuchfunktionalität/ Synchronisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.14. Work and People Tracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.15. Arbeitscenterfassung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.16. Fehlererkennung & Condition Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.17. Fehlerdatenbank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.18. Fehlermeldung und -darstellung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.19. Predictive Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.28. Ersatzteilmanagement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.29. QR-CODE auslesen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.30. Remote Zugriff/ Fernwartung auf Anlagen/ Maschinen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.31. Technisches Nutzermanagement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.32. Verarbeitung audiovisueller Medien</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.33. Funktionalitäten mobiles Endgerät</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.34. Synchronisation zw. Geräten und Systemen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.35. Maschinenpezifika</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.36. Pluginintegration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.37. Wetterdaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.38. Semantische Suche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.39. Personalisierung des Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.40. Telefonersatz</td>
</tr>
</tbody>
</table>

Abbildung 18: Übersicht über generische/optionale Module und Bausteine

Quelle: Eigene Darstellung
Abbildung 19: Gesamtübersicht Module/Bausteine der RAI
Quelle: In Anlehnung an Reidt et al. (2016a, S. 54)
6.2.1 M.1. Handlungsleitfäden/Checklisten/Prüflisten

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.1. Handlungsleitfäden/Checklisten/Prüflisten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.1. Handlungsleitfäden/Checklisten/Prüflisten</td>
</tr>
<tr>
<td></td>
<td>G.11.1. Handlungsleitfäden/Checklisten für Instandhaltungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>G.27.2. Automatische Doku und Auswertung der Instandhaltungsmaßnahmen</td>
</tr>
<tr>
<td></td>
<td>U1.6. Anleitung zur Fehlerbehebung</td>
</tr>
<tr>
<td></td>
<td>U2.2. Handlungsleitfäden zu Störungen/ Editierbar</td>
</tr>
<tr>
<td></td>
<td>U2.4. Automat. Doku und Ausw. d. Maßnahmen der Störungsbehebung</td>
</tr>
<tr>
<td></td>
<td>U2.22. Mobiles Abarbeiten von Checklisten und Prüflisten</td>
</tr>
<tr>
<td></td>
<td>U4.5. Optimierung der Auswertung der Dokumentation</td>
</tr>
<tr>
<td></td>
<td>U4.39. Bereitstellung Handlungsleitfäden für Kunden</td>
</tr>
</tbody>
</table>

| Generisch/optional | Generisch |

Diese Fälle wären:

Abhängig von den gewünschten Darstellungsarten muss es möglich sein, eine Vielzahl von möglichen Inhalten, wie z. B. Videos, 3D Modelle, Handbücher, textuelle Checklisten, interaktive Anleitungen etc. in diesem Modul darzustellen.

Voraussetzungen für eine ordnungsgemäß Funktionsweise des Moduls wäre es eine gepflegte Datenbasis und eine leichte Editierbarkeit bei der Umsetzung zu erreichen, die die Akzeptanz bei den Nutzern fördert. Zu jedem Fehler und jeder Maßnahme müssen Inhalte händisch hinterlegt werden und häufig aktualisiert werden. Die grafische Darstellung und Anwendung der Handlungsleitfäden muss hohen ergonomischen Anforderungen entsprechen, damit die Arbeit der Instandhalter erleichtert wird und die Akzeptanz bei den Anwendern hoch ist.

Mögliche Unterfunktionen

- Erstellen und Verändern von Handlungsleitfäden/Checklisten/Prüflisten
- Darstellung bzw. grafische Aufbereitung von Anweisungen und Listen
- Abruf von weitergehenden Informationen zu einzelnen Schritten
- Standardvorgehen erstell- und veränderbar für bestimmte Fehlergruppen machen
- Protokollierung der einzelnen Schritte
- Mechanismus zur automatischen Dokumentation nach Benutzung von Handlungsleitfäden/Checklisten

Verbindungen zu anderen Modulen

Baustein B.1. Lösungsunterstützung/Wissensmanagement:
- Modul M.2. Dokumentenmanagement – Dieses Modul beinhaltet die Editierfunktion für die hier zugrundeliegenden Inhalte.

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.10. Mitarbeitermanagement
- Modul M.11. Wartungsmanagement
- Modul M.15. Arbeitszeiterfassung
- Modul M.16. Fehlererkennung & Condition Monitoring
- Modul M.18. Fehlermeldung und -darstellung
- Modul M.23. Serviceprotokolle
- Modul M.26. Kommunikation
- Modul M.28. Ersatzteilmanagement
- Modul M.29. QR-CODE auslesen

Verbundene Aktivitäten

- Grundaktivität
- Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
- Aktivität A2 – Inspektion Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
<table>
<thead>
<tr>
<th>Aktivität A5 – Ereignisgesteuerte Instandsetzung</th>
<th>Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung</th>
<th>Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)</th>
</tr>
</thead>
</table>

Aufteilung nach Entität

Dieses Modul befindet sich auf dem mobilen Endgerät, wie auch im Backend (Editierfunktion).

6.2.2 M.2. Dokumentenmanagement

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.2. Dokumentenmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.2. Dokumentenmanagement</td>
</tr>
<tr>
<td></td>
<td>G.9.1. Dokumentenmanagement und -bearbeitung</td>
</tr>
<tr>
<td></td>
<td>G.26.2. Möglichkeit zur Erweiterung der Handlungsanweisungen</td>
</tr>
<tr>
<td></td>
<td>U1.8. Möglichkeit zur Ergänzung/Korrektur von Dokumentationen + Wikis</td>
</tr>
<tr>
<td></td>
<td>U3.8. Dokumentationsmöglichkeit</td>
</tr>
<tr>
<td></td>
<td>U4.7. Erweiterung der Leitfäden zur Fehlerbehebung</td>
</tr>
<tr>
<td></td>
<td>U4.17. Unterstützung Datentypen</td>
</tr>
</tbody>
</table>

Zweck/Ziel

Generisch/optional

Generisch

Funktionsbeschreibung

Mögliche Unterfunktionen

- Auffinden und Bearbeiten von Dokumenten
- Umwandeln von Informationen in verschiedene Formate
- Versionierung von Dokumenten
- Hinzufügen, Editieren, Löschen von Dateien und Dokumenten
- Bereitstellen von Schnittstellen und Funktionen zum Aufrufen aus anderen Modulen

Verbindungen zu anderen Modulen

Baustein B.1. Lösungsunterstützung/Wissensmanagement:
- Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
- Modul M.3. Wiki
Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:

- Modul M.4. Anlageninformationen
- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.17. Fehlerdatenbank
- Modul M.18. Fehlermeldung und -darstellung

Verbundene Aktivitäten

- Grundaktivität
- Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
- Aktivität A2 – Inspektion Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)

Aufteilung nach Entität

Das Modul Dokumentenmanagement ist zentral im Backend vorhanden, die Dokumente sind jedoch von mobilen Endgerät erreichbar.

6.2.3 M.3. Wiki

Komponente	M.3. Wiki

Darstellung in Referenzarchitektur | M.3. Wiki

Zweck/Ziel

Generisch/optional

Generisch, jedoch abhängig von den bisherig existierenden Lösungen im Unternehmen.

Funktionsbeschreibung

die verfügbaren Schriften und deren Größe auswählen. Gewünschte Seiten können in andere Formate, z. B. PDF, umgewandelt und ausgedruckt werden.

Voraussetzungen für die Funktionsfähigkeit

Um die nötige Akzeptanz zu erreichen, müssen dem Nutzer bestimmte Funktionen zur Verfügung stehen und spezielle Anreize gesetzt werden, die die Weiterentwicklung des Wikis fördern. Hier ist der problemlose und möglichst leichte Zugang zum Wiki, wie auch eine möglichst selbsterklärende Nutzung der grafischen Benutzeroberfläche, zu nennen. Diese sollte hinsichtlich Schriftgröße, Kontrast und eventuell bestehender Farbschwächen personalisiert werden können. Eine Bewertungsfunktion für Seiten und Inhalte ist nötig, um einen Qualitätsstandard zu etablieren und einen gewissen Ehrgeiz zu erzeugen das Wiki zu verbessern. Benachrichtigungen über Änderungen können per E-Mail, Pushnachricht auf das mobile Endgerät oder RSS-Feed dem Benutzer zugestellt werden. Schlussendlich erhöht eine gut funktionierende Suchfunktion die generelle Nutzbarkeit und Nützlichkeit enorm.

| Mögliche Unterfunktionen | • Anzeige von vorhandenen Einträgen
| | • Kommentieren von Einträgen
| | • Logfunktion für das Editieren der Informationen
| | • Hinzufügen von Dokumenten und Medien zu Wiki-Artikeln
| | • Bewertungsfunktion von Artikeln |

| Verbindungen zu anderen Modulen | Baustein B.1. Lösungsunterstützung/Wissensmanagement:
| | • Modul M.2. Dokumentenmanagement
| | Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
| | • Modul M.9. Auftragsverwaltung/Priorisierung |

| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
6.2.4 M.4. Anlageninformationen

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.4. Anlageninformationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in</td>
<td>G.10.1. Anzeige von Maschinenplänen (Steuerungspläne, SPS, etc.)</td>
</tr>
<tr>
<td>Referenz-architektur</td>
<td>G.17.1. Herstellerunterlagen der Anlage verfügbar</td>
</tr>
<tr>
<td></td>
<td>U2.5. Zugriff Herstellerunterlagen</td>
</tr>
<tr>
<td></td>
<td>U2.31. Bauteilinformationen</td>
</tr>
<tr>
<td></td>
<td>U4.38. Bauteilinformationen verfügbar</td>
</tr>
</tbody>
</table>

Zweck/Ziel	Das Modul bietet Zugriff auf Anlageninformationen, die im Zusammenhang mit der Instandhaltung stehen. Diese Informationen umfassen direkte Informationen zu einer Anlage, wie bspw. die Lokation, Ausrüstung, Bauteile, Funktion der Anlage und dient als zentraler Ort für anlagenbezogene Dokumente wie die Herstellerunterlagen, Maschinenpläne aber auch SPS-Pläne. Dabei ist der zentrale Zugangspunkt für die Form der Informationen entscheidend.
---------------------	Generisch/optional
	Funktionsbeschreibung
Die Informationen, die in diesem Modul enthalten sind, können dahingehend erweitert werden, sodass sie als Grundlage für den digitalen Zwilling der Anlage benutzt werden können.

Das Updaten und Bearbeiten der Dokumente kann mithilfe des Moduls M.2. Dokumentenmanagement umgesetzt werden.

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bereitstellung von Herstellerunterlagen</td>
</tr>
<tr>
<td>• Bereitstellung von Maschinenplänen und SPS-Programmen</td>
</tr>
<tr>
<td>• Bereitstellung der Information über Bauteile einer Anlage</td>
</tr>
<tr>
<td>• Zentraler Datenspeicherort z. B. für Messwerte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustein B.2. Anlagenübersicht und -auswertung:</td>
</tr>
<tr>
<td>• Modul M.5. Anlagenübersicht und -auswertung</td>
</tr>
<tr>
<td>• Modul M.6. Berechnung/Zugriff auf Produktionsplanung</td>
</tr>
<tr>
<td>• Modul M.7. Interne Navigation</td>
</tr>
<tr>
<td>• Modul M.8. Kataster für Hilfs- und Betriebsstoffe der Anlagen</td>
</tr>
<tr>
<td>Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:</td>
</tr>
<tr>
<td>• Modul M.2. Dokumentenmanagement</td>
</tr>
<tr>
<td>• Modul M.19. Predictive Maintenance</td>
</tr>
<tr>
<td>• Modul M.20. Synchronisation Hersteller und Betreiber</td>
</tr>
<tr>
<td>• Modul M.29. QR-CODE auslesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbundene Aktivitäten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundaktivität</td>
</tr>
<tr>
<td>• Aktivität A1 – Inspektion/Wartung Total Productive Maintenance</td>
</tr>
<tr>
<td>• Aktivität A2 – Inspektion Wartung Instandhalter</td>
</tr>
<tr>
<td>• Aktivität A3 – Instandsetzung</td>
</tr>
<tr>
<td>• Aktivität A4 – Vereisung der Windenergieanlage (WEA)</td>
</tr>
<tr>
<td>• Aktivität A5 – Ereignisgesteuerte Instandsetzung</td>
</tr>
<tr>
<td>• Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung</td>
</tr>
<tr>
<td>• Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aufteilung nach Entität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobiles Endgerät, Maschine und Backend.</td>
</tr>
</tbody>
</table>
Darstellung in Referenzarchitektur

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.5. Anlagenübersicht und -auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.5.1</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände in Form eines Dashboards</td>
</tr>
<tr>
<td>M.12.1</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
</tr>
<tr>
<td>M.25.2</td>
<td>Anlagenübersicht (Auswertung, Ersatzteile, Lokationen, Funktionaliät)</td>
</tr>
<tr>
<td>U.10.1</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
</tr>
<tr>
<td>U.18.1</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände</td>
</tr>
<tr>
<td>U.2.3.1</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
</tr>
<tr>
<td>U.2.2.1</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
</tr>
<tr>
<td>U.2.2.2</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
</tr>
<tr>
<td>U.2.2.3</td>
<td>Anlagen-, Bauteil- und Maßnahmenhistorie</td>
</tr>
<tr>
<td>U.26.1</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände in Form eines Dashboards</td>
</tr>
<tr>
<td>U.3.10.1</td>
<td>GPS Genauigkeit für die Kartierversion (Zustand der Anlage)</td>
</tr>
<tr>
<td>U.3.13.1</td>
<td>Anlagenplan</td>
</tr>
<tr>
<td>U.4.1.1</td>
<td>Betriebsprotokollierung der Anlage (Störung, Zustandsdaten)</td>
</tr>
<tr>
<td>U.4.12.1</td>
<td>Anlagenplan</td>
</tr>
<tr>
<td>U.4.19.1</td>
<td>Inspektionsmaßnahmenhistorie</td>
</tr>
</tbody>
</table>

Zweck/Ziel

Generisch/optional

Generisch

Funktionsbeschreibung

Die Funktionalitäten des Moduls gliedern sich in mehrere Teilbereiche, die nachfolgend aufgelistet werden:

- Beziehen der benötigten Daten für die Auswertung und Abspeicherung der Daten für die Betriebsprotokollierung.

Beispiele für die Auswertung von Kennzahlen sind bspw. die Berechnung der MTTR oder die MTBF, die Kosten bei Stillstand und Wartung sowie vergleichbare Kennzahlen.

Voraussetzungen für die Funktionsfähigkeit

Schnittstellen zu den Systemen, welche die genannten Daten halten, sind zu implementieren. Zugriff zu diesen muss möglich sein oder es müssen eigene Datenspeicher und -pflegemöglichkeiten implementiert werden. Die Auswertungen müssen an das Unternehmen angepasst werden können und es müssen genügend Daten verfügbar sein, um sinnvolle Analysen erstellen zu können.

Mögliche Unterfunktionen
- Berechnen und grafisches Auswerten von Indikatoren anhand der jeweiligen Werte der Anlagen.
- Darstellung eines übersichtlichen, editierbaren Anlagenplans.
- Anzeige von Anlagenhistorie (Störungen, Maßnahmen, Ersatzteile, Laufzeiten).
- Anpassen der Anzeige, z. B. Sortierung von Anlagenwerten, Auswertungen, neue Indikatoren.
- Betriebsprotokollierung der Anlagen
- Bereitstellung von konfigurierbaren Dashboards
- Konfiguration und Komposition von Dashboards

Verbindungen zu anderen Modulen
Baustein B.2. Anlagenübersicht und -auswertung:
- Modul M.4. Anlageninformationen
- Modul M.6. Berechnung/Zugriff auf Produktionsplanung

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.11. Wartungsmanagement
- Modul M.13. Schichtbuchfunktionalität/Synchronisation
- Modul M.16. Fehlererkennung & Condition Monitoring
- Modul M.17. Fehlerdatenbank
- Modul M.19. Predictive Maintenance
- Modul M.20. Synchronisation Hersteller und Betreiber
- Modul M.26. Kommunikation
- Modul M.29. QR-CODE auslesen

Verbundene Aktivitäten
- Grundaktivität
- Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
- Aktivität A2 – Inspektion/Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
- Aktivität A5 – Ereignisgesteuerte Instandsetzung
- Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung
- Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)
- Aktivität A8 – Verfügbarkeit (technisch/organisatorisch)
- Aktivität A9 – Auswertung Fehlerhistorien einer Anlage

Aufteilung nach Entität
Dieses Modul muss vom mobilen Endgerät und dem Backend aus erreichbar sein, wobei aufwendigere Berechnungen auf dem Backend stattfinden und sich das mobile Endgerät vorwiegend auf die Darstellung konzentrieren sollte.

6.2.6 M.6. Berechnung/Zugriff auf Produktionsplanung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.6. Berechnung/Zugriff auf Produktionsplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.6. Berechnung/Zugriff auf Produktionsplanung</td>
</tr>
</tbody>
</table>

Zweck/Ziel

Generisch/optional
Optional

Funktionsbeschreibung

Voraussetzung für die Funktionstüchtigkeit des Moduls wäre es, Zugriff bzw. offene Schnittstellen für bestehende Produktionsplanungssysteme zu besitzen

Mögliche Unterfunktionen
Keine Unterfunktionen spezifiziert
Verbindungen zu anderen Modulen

- Modul M.4. Anlageninformationen
- Modul M.5. Anlagenübersicht und -auswertung

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:

- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.19. Predictive Maintenance

Verbundene Aktivitäten

- Grundaktivität

Aufteilung nach Entität

Backend und mobiles Endgerät.

6.2.7 M.7. Interne Navigation

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.7. Interne Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>![M.7. Interne Navigation](U2.42. Laufkarte zur Anlage)</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| Mögliche Unterfunktionen | - Lageplanbereitstellung mit Editierfunktion
 - Möglichkeit Maschinen/Anlagen in die Pläne einzutragen
 - Wegfindung zu Anlagen/Maschinen |
| Verbindungen zu anderen Modulen | Baustein B.2. Anlagenübersicht und -auswertung:
 - M.4. Anlageninformationen |
<p>| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |</p>
<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.8. Kataster für Hilfs- und Betriebsstoffe der Anlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>Das Modul stellt ein Kataster für Hilfs- und Betriebsstoffe von Produktionsanlagen zur Verfügung. Eine fehlerhafte Auswahl von Hilfs- und Betriebsstoffen kann somit durch den Instandhalter überprüft und eingeschätzt werden.</td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| Mögliche Unterfunktionen | • Extraktion von Hilfs- und Betriebsstoffen aus vorhandenem Kataster.
• Darstellung von Hilfs- und Betriebsstoffen einer Anlage.
• Editierung von Hilfs- und Betriebsstoffen. |
| Verbindungen zu anderen Modulen | Baustein B.2. Anlagenübersicht und -auswertung
• Modul M.4. Anlageninformationen |
| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
| Aufteilung nach Entität | Backend und mobiles Endgerät. |

6.2.8 M.8. Kataster für Hilfs- und Betriebsstoffe der Anlagen
6.2.9 M.9. Auftragsverwaltung/Priorisierung

Zweck/Ziel

Darüber hinaus benötigt das Modul eine hohe Individualisierbarkeit und aggregiert eine große Menge an Daten aus anderen Modulen bzw. Systemen, um die Aufträge zu priorisieren bzw. festzulegen. Insbesondere durch die Möglichkeit eine objektive Priorisierung anzugeben, die sich klar nach Managementregeln richtet, ergeben sich enorme Verbesserungspotentiale für die Aufgabenverteilung innerhalb der Instandhaltung.

Generisch/optional

Generisch – bestimmte Teilfunktionalitäten dieses Moduls sind jedoch optional.

Funktionsbeschreibung

Eingang neuer Aufträge

Nach dem Erstellen dieses Maßnahmenauftrages, wird dieser durch spätere Funktionen mit Informationen zur Durchführung angereichert und wandelt sich von einem Maßnahmenauftrag zu einem konkreten Arbeitsauftrag.

Auftragsverwaltung und Historie

Das Modul kann zur Verfolgung und Verwaltung der Aufträge genutzt werden. Der aktuelle Status der Aufträge kann nachvollzogen, die aktuelle Bearbeitung und abgelaufene Aufträge können betrachtet werden. Durch diese Funktionalität kann das Management von Instandhaltungsaufträgen deutlich verbessert werden, da das Management offene Aufträge immer im Blick hat.

Datenaggregation

Zur Festlegung, Priorisierung bzw. dem Managen der Instandhaltungsaufträge werden weitere Informationen über den eingegangenen Auftrag oder den aktuellen Status aller Aufträge benötigt, die über die ursprüngliche Meldung der Maschine bzw. des Wartungsmanagements hinausgehen. Diese Daten werden vom Auftragsverwaltungsmodul aus anderen Modulen extrahiert, sodass z. B. Daten zu einem Fehler oder der beauftragte Mitarbeiter bzw. dessen Identifikator im System mit dem Arbeitsauftrag in Verbindung gesetzt werden können. Diese Daten werden für den Arbeitsauftrag bzw. die Aufträge oder auch für die komplette Neuplanung zusammengestellt. Dazu zählen können u. a.:

- Anlagenpläne
- Produktionspläne
- Maschinenbelegungen
- Pufferbestände vor und nach der Maschine
- Mitarbeiterpläne, -verfügbarkeit und deren Schichten
- Nötige Ersatzteile und deren Verfügbarkeit
- Kostenberechnung von Stillständen
- Nötige Werkzeuge
- (Wetterdaten)
- Kundenaufträge – Enddaten bestimmter Aufträge
- Aufbereitete Fehlerinformationen
- Handlungsleitfäden/Checklisten
- Anlageninformationen und -auswertungen

Mit all diesen Informationen ist es dem Modul möglich, eine Auftragsplanung zu vollziehen oder diese zu ändern. Des Weiteren sind Informationen für den

Automatische Festlegung des Zeitpunktes/Priorisierung

Die Festlegung des Zeitpunktes der Instandhaltungsmaßnahmen kann erfolgen, nachdem alle nötigen Daten dafür zur Verfügung stehen. Hierbei sind mehrere Funktionen nötig diese zu priorisieren.

Algorithmus zur Priorisierung

Managementansatz Priorisierung

Auswahlmöglichkeiten Priorisierung

Zwischen verschiedenen Priorisierungsmöglichkeiten sollte ein schneller Wechsel möglich sein. Verschiedene Profile mit vorkonfigurierten Einstellungen wären möglich.

Zeitraum für Komplettplanung

Zeiträume für die komplette Neuplanung oder Komplettaktualisierung müssen festgelegt werden. Insbesondere wenn deren zeitlicher Aufwand aufgrund langer Laufzeiten und anderen Randbedingungen, wie eine nötige Synchronisation mit anderen Geräten, zu Komplikationen führen kann.

Ein weiterer Faktor für die Priorisierung bzw. Auftragsplanung könnte sein, dass eine Mitarbeiterzuweisung berechnet werden muss, die die Verfügbarkeit von Mitarbeitern sowie die nötigen Fähigkeiten oder Schulungen zur Instandhaltung der Mitarbeiter betrachtet.

Manuelle Priorisierung

Bestätigung durch Instandhalter

Neben der Planung und Priorisierung versendet das Modul einen Arbeitsauftrag an das Modul M.10. Mitarbeitermanagement. Diesen müssen die jeweiligen
Instandhalter bestätigen. Daraufhin wird die Antwort an das Modul geschickt und eine dazu passende Entscheidung getroffen:

- M.10. Mitarbeitermanagement zur Benachrichtigung der Verantwortlichen.

Bearbeitung des Auftrages durch Instandhalter

Eskalation des Auftrages

Synchronisation

Voraussetzungen für die Funktionsfähigkeit

Die Daten der jeweiligen anderen Module müssen vorhanden und verfügbar sein. Zusätzlich müssen Verbindungen zu den beteiligten Systemen bestehen und eine ausreichend hohe Rechenleistung zur Berechnung der Aufträge muss vorhanden sein.

Mögliche Unterfunktionen

- Aufnahme und Speicherung neuer eingehender Aufträge bzw. Meldungen
- Anlegen von Instandhaltungsaufträgen
- Manuelle Bearbeitung von Aufträgen
- Manuelle Priorisierung von Aufträgen
- Löschen von Aufträgen
- (Automatische) Priorisierung und zeitliche Festlegung von Instandhaltungsaufträgen
<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustein B.3. Tätigkeitsmanagement der Instandhaltung:</td>
</tr>
<tr>
<td>• Modul M.10. Mitarbeitermanagement</td>
</tr>
<tr>
<td>• Modul M.11. Wartungsmanagement</td>
</tr>
<tr>
<td>• Modul M.12. Auftragsmanagement in Verbindung mit ERP</td>
</tr>
<tr>
<td>• Modul M.13. Schichtbuchfunktionalität/Synchronisation</td>
</tr>
<tr>
<td>• Modul M.14. Work and People Tracking</td>
</tr>
<tr>
<td>• Modul M.15. Arbeitszeiterfassung</td>
</tr>
<tr>
<td>Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:</td>
</tr>
<tr>
<td>• Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten</td>
</tr>
<tr>
<td>• Modul M.2. Dokumentenmanagement</td>
</tr>
<tr>
<td>• Modul M.3. Wiki</td>
</tr>
<tr>
<td>• Modul M.5. Anlagenübersicht und -auswertung</td>
</tr>
<tr>
<td>• Modul M.6. Berechnung/Zugriff auf Produktionsplanung</td>
</tr>
<tr>
<td>• Modul M.16. Fehlererkenntnung & Condition Monitoring</td>
</tr>
<tr>
<td>• Modul M.17. Fehlerdatenbank</td>
</tr>
<tr>
<td>• Modul M.18. Fehlermeldung und -darstellung</td>
</tr>
<tr>
<td>• Modul M.19. Predictive Maintenance</td>
</tr>
<tr>
<td>• Modul M.21. Navigation</td>
</tr>
<tr>
<td>• Modul M.22. Reisekostenabrechnung</td>
</tr>
<tr>
<td>• Modul M.23. Serviceprotokolle</td>
</tr>
<tr>
<td>• Modul M.24. Vertragsmanagement</td>
</tr>
<tr>
<td>• Modul M.25. Signierfunktion</td>
</tr>
<tr>
<td>• Modul M.26. Kommunikation</td>
</tr>
<tr>
<td>• Modul M.29. QR-CODE auslesen</td>
</tr>
<tr>
<td>• Modul M.28. Ersatzteilmanagement</td>
</tr>
</tbody>
</table>

- Import und Erstellung neuer Prioritätsregeln und Profilen mit vordefinierten Einstellungen
- Austausch der benutzten Algorithmen
- Schnellpriorisierung (für dringende Aufträge, statt kompletter neuer, laufzeitintensiver Priorisierung)
- Automatische vollständige Priorisierung in Abhängigkeit von Neuplanungsbedarf
- Extraktion von benötigten Daten zur Priorisierung aus anderen Modulen
- Erstellen und Weiterleiten von Arbeitsaufträgen
- Protokollierung der Instandhaltungstätigkeit
- Darstellung des Status von aktuellen Aufträgen (bspw. offen, in Bearbeitung, gelöst)
- Eskalation eines Auftrages (manuell oder automatisch)
- Informationsweitergabe von Auftragsdaten an externe Unternehmen
Modul M.37. Wetterdaten

Verbundene Aktivitäten
- Grundaktivität
- Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
- Aktivität A2 – Inspektion Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
- Aktivität A5 – Ereignisgesteuerte Instandsetzung
- Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung
- Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)
- Aktivität A8 – Verfügbarkeit (technisch/organisatorisch)
- Aktivität A10 – Synchronisation

Aufteilung nach Entität
Backend.

6.2.10 M.10. Mitarbeitermanagement

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.10. Mitarbeitermanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.10. Mitarbeitermanagement</td>
</tr>
<tr>
<td>G.1.18.1. Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td>G.36.2. Übersicht über Instandhalter samt Kontaktdaten, Zuweisung und Verfügbarkeit</td>
</tr>
<tr>
<td>U.4.28. Annahme und Ablehnung von Aufträgen durch Instandhalter möglich</td>
<td></td>
</tr>
</tbody>
</table>

Zweck/Ziel
Das Modul dient der Organisation der an der Instandhaltung beteiligten Mitarbeitern. Zum einen durch eine Selbstverwaltung der eigenen Aufträge durch die Instandhalter selbst, zum anderen durch eine Übersicht für das Management, bei der die aktuelle Zuweisung und Verfügbarkeit der Instandhalter dargestellt wird.

Generisch/optional
Generisch, mit einer optionalen Möglichkeit zur Anonymisierung der Mitarbeiter.

Funktionsbeschreibung

Beispielsweise wird eine Kalenderfunktion mit Terminen/Aufgaben der einzelnen Mitarbeiter in diesem Modul bereitgestellt, so dass klar ersichtlich wird, für welche Aufgaben die Instandhalter eingeplant sind und wann sie noch bestimmte Arbeiten ausführen können. Diese Kalenderfunktion kann selbst implementiert oder im Verbund mit bestehenden unternehmenseigenen Kalendersystemen umgesetzt werden.

Eine Synchronisation zwischen Mitarbeitern und deren Terminen aus diesem Modul muss mit den zugehörigen Aufträgen, aus Modul M.9.
Auftragsverwaltung/Priorisierung, stattfinden. Ein instandhaltungsbezogener Termin eines Mitarbeiters stellt einen Auftrag dar, der den Mitarbeiter für einen gewissen Zeitraum „belastet“. Der Auftrag aus dem besagten Modul muss also direkt dem Termin zugeordnet werden können. Die Kalenderfunktion muss dazu durch andere Module angesprochen und neue Termine müssen hinzugefügt werden können.

Diese Funktion ist die Grundlage für eine Managementsicht, bei der die aktuelle Zuweisung aller Instandhalter übersichtlich dargestellt wird. Eine Verteilung der Instandhalter auf einzelne Aufgaben kann hier per Drag-and-Drop durch die zuständigen Personen getätigt werden, sofern dieses nicht automatisch durch das System erledigt werden soll. Weiterhin ist insbesondere bei Unternehmen mit hohen Datenschutzanforderungen eine Möglichkeit der Anonymisierung der Mitarbeiter wichtig, sodass Aufgaben bspw. rollenbezogen oder schichtbezogen vergeben werden können. Letztere Funktion ist jedoch davon abhängig, ob die Anforderung an eine anonyme Darstellung der eigenen Mitarbeiter von Relevanz ist.

Voraussetzungen für die Funktionsfähigkeit

Mögliche Unterfunktionen

- Bereitstellung einer Kalenderfunktionalität
- Terminplanung der Mitarbeiter
- Termine für den Tag anzeigen
- Anlegen von Mitarbeitern in Verbindung mit technischer Anlage von Benutzern
- Einordnen der Mitarbeiter in Rollenmodell des Unternehmens
- Annehmen und Ablehnen von Aufträgen durch Instandhalter
- Import und Export von Kalendern in Verbindung mit evtl. bestehenden Lösungen
- Anzeigen der verfügbaren Mitarbeiter
- Anzeige der aktuellen Zuweisung der Mitarbeiter
- Verbindung der Termine mit Aufträgen herstellen
Anonymisierungsfunktion für Mitarbeiter

Verbindungen zu anderen Modulen

Baustein B.3. Tätigkeitsmanagement der Instandhaltung:
- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.13. Schichtbuchfunktionalität/Synchronisation
- Modul M.14. Work and People Tracking
- Modul M.15. Arbeitszeiterfassung

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
- Modul M.26. Kommunikation
- Modul M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen

Verbundene Aktivitäten

- Grundaktivität
- Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
- Aktivität A2 – Inspektion Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
- Aktivität A5 – Ereignisgesteuerte Instandsetzung
- Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung
- Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)

Aufteilung nach Entität

6.2.11 M.11. Wartungsmanagement

Komponente

<table>
<thead>
<tr>
<th>M.11. Wartungsmanagement</th>
</tr>
</thead>
</table>

Darstellung in Referenzarchitektur

- G.21.2. Wartungsplanmanagement & Historie (manuell und automatisch)
- U1.12. Wartungsplane und -historie verfügbar
- U2.12. Wartungsplane und -historie verfügbar
- U3.17. Wartungsberichte
- U4.29. Anzeige Wartungsbericht

Zweck/Ziel

Generisch/optional

<table>
<thead>
<tr>
<th>Funktionsbeschreibung</th>
<th>Generisch</th>
</tr>
</thead>
</table>

Das Modul Wartungsmanagement regelt die Aktivitäten, welche die Wartung betreffen. Es umspannt viele dezentrale Aktivitäten, welche auf der jeweiligen Maschine vorhanden sind oder sein können, sowie viele Funktionen, die zentral optimale Wartungspläne erstellen und Wartungsmeldungen an das Auftragsmanagement weitergeben.

Der automatisierte Teil des Prozesses und die daraus berechneten Wartungspläne können dezentral auf der Maschine stattfinden, indem dort lokal Wartungsgrenzen angepasst werden und der Wartungsplan dezentral gehalten wird. Dieser lokale Wartungsplan bedarf jedoch ggfs. einer zentralen Synchronisation. Diese spielt eine wichtige Rolle, sofern das Wissen über Wartungsgrenzen und Abnutzung über mehrere Maschinen und Anlagen geteilt werden soll. Wird erkannt, dass ein Bauteil besonders häufig gewartet werden muss, so können die Wartungsgrenzen bei allen ähnlichen Maschinen angepasst werden.

Im Sinne eines CPS ist es angedacht, dass sich das Wartungsmanagement auch dezentral auf der Maschine befindet, so dass eine Maschine von selbst erkennen kann, ob und wann sie und ihre Komponenten Wartung bedürfen und eine entsprechende Meldung an die zuständigen Personen und Systeme senden kann. Des Weiteren besteht die Möglichkeit, dass die Maschine teils autonom bestimmte Wartungsvorgänge selbst vornimmt. Die Implementierung dieser Funktionalitäten hängt stark von der Anpassbarkeit der Maschinen ab.

Des Weiteren sind in dem Modul die Wartungshistorien vorhanden und darstellbar. Dedizierte Wartungsberichte können als optionale Funktion, verbunden mit oder ohne den zugehörigen Auftrag, in dem Modul erstellt und hinterlegt werden.

Voraussetzungen für die Funktionsfähigkeit

Je nach Ausprägung der Funktionalitäten müssen die beteiligten Maschinen so angepasst werden können, dass ein dezentraler Wartungsplan mit dem zentralen Wartungsplan synchronisiert werden kann, und, dass Wartungsmeldungen von diesen – ähnlich wie Fehlermeldungen – versendet werden können. Können die Funktionalitäten nicht dezentral erstellt werden, so müssen die nötigen Daten zur
|--------------------------|---|
| Verbindungen zu anderen Modulen | B.3. Tätigkeitsmanagement der Instandhaltung:
- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.13. Schichtbuchfunktionalität/Synchronisation
Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
- Modul M.5. Anlagenübersicht und -auswertung
- Modul M.16. Fehlererkennung & Condition Monitoring
- Modul M.19. Predictive Maintenance
- Modul M.29. QR-CODE auslesen |
| Verbindete Aktivitäten | Grundaktivität
- Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
- Aktivität A2 – Inspektion Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
- Aktivität A5 – Ereignisgesteuerte Instandsetzung
- Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung
- Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring) |
| Aufteilung nach Entität | Dieses Modul befindet sich auf der Anlage und Backend. Zugreifbar sind die Informationen auch vom mobilen Endgerät aus. |
Zweck/Ziel

Funktionsbeschreibung
Soweit ein ERP-System vorliegt, werden die nötigen Daten aus dem IIS-eigenen Auftragsmanagement automatisch mit dem ERP Auftragsmanagement synchronisiert bzw. abgeglichen. Dadurch können Funktionalitäten aus dem ERP übernommen und gegebenenfalls in bestehende CMMS innerhalb des ERPs eingebunden werden.

Die exakte Art der Synchronisation/Verbindung kann nur in Abhängigkeit von den verwendeten Lösungen bestimmt werden.

Voraussetzungen für die Funktionsfähigkeit
Es muss eine Verbindung zum Auftragsmanagement des ERPs bestehen. Das Bereitstellen aller benötigten Daten sollte ohne Zeitverzug, mehrfacher Datenhaltung oder Buchungsfehler stattfinden.

Mögliche Unterfunktionen
- Aufträge aus ERP erhalten, abgleichen und generell synchronisieren
- Auftragsdaten aus Instandhaltungssystem und ERP nach Beendigung abgleichen

Verbindungen zu anderen Modulen
Baustein B.2. Tätigkeitsmanagement der Instandhaltung:
- Modul M.9. Auftragsverwaltung/Priorisierung

Verbundene Aktivitäten
Keine Aktivitäten spezifiziert.

Auftteilung nach Entität
Dieses Modul befindet sich im Backend.
6.2.13 M.13. Schichtbuchfunktionalität/Synchronisation

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.13. Schichtbuchfunktionalität/Synchronisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td></td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Das Modul Schichtbuchfunktionalität stellt die Funktionalität eines Schichtbuches zur Verfügung bzw. synchronisiert die Daten zwischen einem Schichtbuch und dem vorliegenden IIS.</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>
 - Aktuelle Meldungen in dieser Schicht
 - Aktuelle offene Meldungen anzeigen
 - Auflistung und
 - Protokollierung der durchgeführten Maßnahmen
 - Anlagenauswertung

Diese werden aus den jeweiligen Modulen, die diese Informationen beinhalten geladen und in diesem Modul grafisch übersichtlich dargestellt. Das besondere Augenmerk dieses Moduls liegt auf der einfachen Bedienung und Darstellung auf einer Touchoberfläche.

Weitere mögliche Funktionen wären die
 - Schichtübergabe mit dedizierten Protokoll mit Signatur
 - Abnahme der durchgeführten Maßnahmen

Neben dem Fall, dass diese Funktionen selbst implementiert werden, muss es die Möglichkeit geben, die Daten des vorliegenden IIS automatisch mit bestehenden Schichtbüchern zu synchronisieren. |
| Mögliche Unterfunktionen | Darstellung aktuelle Meldungen dieser Schicht für die zugehörigen Anlagen
 - Aktuelle offene Meldungen
 - Auflistung der durchgeführten Maßnahmen |
| Verbindungen zu anderen Modulen | B.3. Tätigkeitsmanagement der Instandhaltung:
 - Modul M.9. Auftragsverwaltung/Priorisierung
 - Modul M.5. Anlagenübersicht und -auswertung |
6.2.14 M.14. Work and People Tracking

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.14. Work and People Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.14. Work and People Tracking</td>
</tr>
</tbody>
</table>

| Zweck/Ziel | Das Modul dient dazu, den Aufenthaltsort und die Arbeit von internen wie auch externen Instandhaltern zu tracken, um anhand ihrer Position Arbeitsaufträge zu vergeben und den Arbeitsfortschritt nachzuvollziehen. |
| Generisch/optional | Optional |

Voraussetzungen für die Funktionsfähigkeit

Ein mobiles Endgerät muss die Position des Instandhalter übermitteln können. Des Weiteren dürfen datenschutzrechtliche Bedenken in dem Unternehmen nicht gegen diese Funktion sprechen.
Mögliche Unterfunktionen

- Positionsbestimmung des Instandhalters
- Änderungen der Position bestimmen
- Weiterleitung der Position des Instandhalters
- Protokollierung der Positionen
- Arbeitstracking

Verbindungen zu anderen Modulen

Baustein B.3. Tätigkeitsmanagement der Instandhaltung:

- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.10. Mitarbeitermanagement
- Modul M.15. Arbeitszeiterfassung

Verbundene Aktivitäten

Keine Aktivitäten spezifiziert.

Aufteilung nach Entität

Backend und mobiles Endgerät.

6.2.15 M.15. Arbeitszeiterfassung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.15. Arbeitszeiterfassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.15. Arbeitszeiterfassung</td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Das Modul dient der Arbeitszeiterfassung der Instandhalter. Wird die Instandhaltung als Service angeboten, kann durch die Erfassung der Arbeitszeit die Abrechnung mit dem Kunden erleichtert und durch diese Genauigkeit Vertrauen aufgebaut werden. Falls die Instandhaltung intern betrieben wird, kann hierdurch die Arbeitszeit der Instandhalter automatisch dokumentiert werden.</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td>Arbeitszeitmanagement</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Automatische Tracking der Arbeitszeit</td>
</tr>
<tr>
<td></td>
<td>Bearbeitung der Arbeitszeiten</td>
</tr>
<tr>
<td></td>
<td>Extraktion und Integration der Auftragsinformationen in Daten zu Arbeitszeit</td>
</tr>
<tr>
<td></td>
<td>Extraktion von Arbeitszeitdaten aus Auftragsinformationen (auch aus Metadaten)</td>
</tr>
<tr>
<td></td>
<td>Hinterlegen von Kommentaren und Notizen zu Arbeitstagen und -zeiten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
<th>B.3. Tätigkeitsmanagement der Instandhaltung:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modul M.9. Auftragsverwaltung/Priorisierung</td>
</tr>
<tr>
<td></td>
<td>Modul M.10. Mitarbeitermanagement</td>
</tr>
<tr>
<td></td>
<td>Modul M.14. Work and People Tracking</td>
</tr>
<tr>
<td>Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten</td>
</tr>
<tr>
<td></td>
<td>Modul M.22. Reisekostenabrechnung</td>
</tr>
<tr>
<td></td>
<td>Modul M.23. Serviceprotokolle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbundene Aktivitäten</th>
<th>Grundaktivität</th>
</tr>
</thead>
</table>

| Aufteilung nach Entität | Backend und mobiles Endgerät. |
Zweck/Ziel

Generisch/optional
Generisch

Funktionsbeschreibung
Das Modul M.16. Fehlererkennung & Condition Monitoring erzeugt Warnungen/Meldungen über existierende Fehler oder einen zukünftig entdeckten Wartungsbedarf aufgrund von Condition Monitoring und Fehlererkennung. Es ist in der Lage, diese an weitere Komponenten zu versenden. Hinsichtlich der technischen Umsetzung kann ein Diagnosesystem bspw. auf einer dezentralen, standardisierten Recheneinheit platziert sein, wenn die Maschine diese Erweiterung nicht bereits unterstützt. Das Modul wird insbesondere aufgrund folgender Punkte benötigt:

- **Diagnose:** Bei allen auftretenden Problemen müssen Instandhalter genaue Fehlerursachen identifizieren. Die Lösung ist ein intelligentes Diagnosesystem, das einen Soll-/Istwert-Abgleich für eine effiziente Fehlerdiagnose anbietet. Das Vorgehen bzgl. der Diagnose beschränkt sich nicht nur auf Fehler, sondern auch auf die Überprüfung von physikalischen Messgrößen durch das Condition Monitoring. Hier werden Abweichungen identifiziert, die „noch“ nicht als Fehler klassifiziert sind. Diese

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.16. Fehlererkennung & Condition Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td></td>
</tr>
<tr>
<td>M.16. Fehlererkennung & Condition Monitoring</td>
<td></td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td></td>
</tr>
<tr>
<td>Generisch/optional</td>
<td></td>
</tr>
<tr>
<td>Funktionsbeschreibung</td>
<td></td>
</tr>
</tbody>
</table>
Abweichungen können jedoch auch Instandhaltungsmaßnahmen nach sich ziehen.

- Unterstützung der Diagnose von komplexen Fehlerbildern und Zusammenhängen an Maschinen und Anlagen, die von klassischen Diagnosesystemen bisher nicht unterstützt oder angeboten werden.
- Automatisches Versenden von Fehlermeldungen und Wartungsbedarfen muss durch das Modul unterstützt werden.

Die Fehlerdiagnose unterstützt zwei Arten der Diagnose, die im Bereich Instandhaltung notwendig sind. Diese Teile werden nachfolgend getrennt voneinander beschrieben.

Maßnahmendiagnose auf Basis eines kontinuierlichen Soll-Ist-Vergleichs

Diese vorgestellten Methoden lassen sich dahingehend erweitern, dass die Einstellung der Grenzwerte nicht nur über die Zeit gesteuert werden, sondern taskorientiert. Unter Taskorientiert wird hier verstanden, dass die Grenzwerte bezogen auf den gerade ausgeführten Arbeitsschritt (Task) festgelegt werden und nicht zeitbasiert. Damit folgt das Condition Monitoring dynamisch den

Fehler-/Maßnahmendiagnose durch herstellerspezifische Fehlercodes

Neben der Diagnose muss das Modul auch in diesem Fall bei erkanntem Handlungsbedarf automatisch Fehlermeldungen und unerwartete Wartungsbedarfe an das Modul M.9. Auftragsverwaltung/Priorisierung senden, woraus dort Maßnahmenaufträge erstellt werden.

Voraussetzungen für die Funktionsfähigkeit

Das Modul und damit das Diagnosesystem benötigen lesenden Zugriff auf die Maschine bzw. auf die aktuellen Logdateien, die Betriebsdatenerfassung oder das Modul muss direkt in die Maschine integriert werden. Die Auswertung sollte in Echtzeit oder mit kurzer Verzögerung erfolgen. Weiterhin muss das Diagnosesystem Fehlermeldungen und Aufträge/Meldungen absenden können.

Bei Nutzung der Herstellercodes müssen diese zusätzlich auf Anlagenebene vorhanden sein. Das Diagnosesystem benötigt folglich Zugang zu den wesentlichen

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Generierung und automatische Versendung von Fehlermeldungen</td>
</tr>
<tr>
<td>• Generierung und Versenden von Maßnahmenaufträgen</td>
</tr>
<tr>
<td>• Automatisches Erkennen und Bewerten von Soll/Ist-Abweichungen (Condition Monitoring) und plötzlich auftretenden Fehlern auf Anlage(n)</td>
</tr>
<tr>
<td>• Auslesen von proprietären Diagnosesystemen</td>
</tr>
<tr>
<td>• Bereitstellung von relevanten Maschinendaten</td>
</tr>
<tr>
<td>• Soll-Ist-Vergleich des Zustandes der einzelnen Komponenten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobald das Modul an der Maschine Fehler, Warnungen oder sonstige Maßnahmenhinweise erkennt, muss eine Meldung generiert und an das Auftragsmanagement versandt werden, damit ein Maßnahmenauftrag erstellt werden kann. Im Zusammenspiel mit einem möglichen Predictive Maintenance kann auch die Diagnose verbessert werden. Daten über Grenzwerte oder Soll-/Ist-Abgleiche können daher getauscht werden. Dies stellt jedoch eine optionale Verbindung dar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindung außerhalb des eigenen Bausteins zu anderen Modulen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modul M.17. Fehlerdatenbank</td>
</tr>
<tr>
<td>• Modul M.18. Fehlermeldung und -darstellung</td>
</tr>
<tr>
<td>• Modul M.19. Predictive Maintenance</td>
</tr>
</tbody>
</table>

Verbundene Aktivitäten
• Grundaktivität
• Aktivität A1 – Inspektion/Wartung Total Productive Maintenance
• Aktivität A2 – Inspektion Wartung Instandhalter
• Aktivität A3 – Instandsetzung
• Aktivität A4 – Vereisung der Windenergieanlage (WEA)
• Aktivität A5 – Ereignisgesteuerte Instandsetzung
• Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung
• Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)

Aufteilung nach Entität
Das hier vorgestellte Modul wird sich an der Maschine befinden.
Zweck/Ziel

Funktionsbeschreibung
Voraussetzung für die systematische Fehlererfassung

Eindeutige Fehlercodes hinzufügen
Die Bildung der eindeutigen Fehlercodes kann auf zwei Arten geschehen:

Fehlermeldungen hinzufügen
Neben dieser rein technischen Datenhaltung und -identifikation beinhaltet dieses Modul noch eine Fehlerdatenbank, welche die vergangenen Fehler von allen Anlagen speichert. Neben dem Hinzufügen von eindeutigen Fehlercodes, dient daher das Modul dazu, Fehlerhistorien aufzubauen und die Informationen der jeweiligen...

Nachfolgend werden Begriffe vorgeschlagen, die zur Fehlerkategorisierung dienen könnten. Durch die Fehlerdatenbank mitsamt Historie können dann Aussagen über Häufigkeiten von Fehlern und Fehlerschwerpunkten getroffen werden. Die Klassen des Fehlerschlüssels sind:

- Fehlercodierung des Herstellers
- Fehlerart und -schwere
- Interne IIS-spezifische Anlagen-ID
- Eine eindeutige Fehler-ID (interne Fehlerzuordnung, jede Art von Fehler besitzt genau eine ID)
- Eine eindeutige Fehlernummer, welche sich von der Fehler-ID dadurch unterscheidet, dass mehrere identische Fehler mit einer Fehler-ID unterschiedliche Fehlernummern besitzen, um deren zeitliches und häufiges Auftreten zu unterscheiden. Jedes Auftreten eines Fehlers wird daher mit einer neuen Fehlernummer versehen
- Uhrzeit/Datum (Timestamp)
- Programmbezeichnung mit Versionsnummer bzw. Entwicklungsstand (falls Softwarefehler)
- Fehlerstatus z. B. offen, in Analyse, in Behebung, erledigt oder auch keine Maßnahme ergriffen
- Weitere Fehlerattribute und Informationen

Voraussetzungen für die Funktionsfähigkeit

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
<th>(Automatisches) Eintragen und Bearbeiten von Fehlern in Datenbank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auswertungsfunktionen für Fehler</td>
</tr>
<tr>
<td></td>
<td>Archivierung von Fehlerdaten</td>
</tr>
<tr>
<td></td>
<td>Suchfunktion für Fehler (Anlage, Fehlerart, etc.)</td>
</tr>
<tr>
<td></td>
<td>Fehlercode oder einfache Fehlermeldung in Verbindung mit vorhandenen Fehlerinformationen setzen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
<th>Baustein B.4. Fehlermanagement:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modul M.16. Fehlererkennung & Condition Monitoring</td>
</tr>
<tr>
<td>Modul M.18. Fehlermeldung und -darstellung</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Modul M.19. Predictive Maintenance</td>
<td></td>
</tr>
</tbody>
</table>

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:

<table>
<thead>
<tr>
<th>Modul M.2. Dokumentenmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul M.5. Anlagenübersicht und -auswertung</td>
</tr>
<tr>
<td>Modul M.9. Auftragsverwaltung/Priorisierung</td>
</tr>
</tbody>
</table>

Verbundene Aktivitäten

| Aktivität A1 – Inspektion/Wartung Total Productive Maintenance |
| |
| Aktivität A2 – Inspektion Wartung Instandhalter |
| Aktivität A3 – Instandsetzung |
| Aktivität A4 – Vereisung der Windenergieanlage (WEA) |
| Aktivität A5 – Ereignisgesteuerte Instandsetzung |
| Aktivität A6 – Ereignisgesteuerte Wartungsauflorderung |
| Aktivität A8 – Verfügbarkeit (technisch/organisatorisch) |
| Aktivität A9 – Auswertung Fehlerhistorien einer Anlage |

Aufteilung nach Entität

Dieses Modul befindet sich auf dem mobilen Endgerät wie auch im Backend.
6.2.18 M.18. Fehlermeldung und -darstellung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.18. Fehlermeldung und -darstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.18. Fehlermeldung und -darstellung</td>
</tr>
<tr>
<td></td>
<td>G.2.1. Detaillierte Fehlermeldung und Störungsart</td>
</tr>
<tr>
<td></td>
<td>G.28.2. Bereitstellung von 3D-Daten/3D-Darstellung der Anlage</td>
</tr>
<tr>
<td></td>
<td>U1.5. Fehlercodierung eindeutige Fehlerbeschreibung</td>
</tr>
<tr>
<td></td>
<td>U1.24. 3D-Darstellung mit Fehlerlokalisierung</td>
</tr>
<tr>
<td></td>
<td>U2.1. Kurze prägnante Meldetexte bei Störungsfällen + Fehlercode</td>
</tr>
<tr>
<td></td>
<td>U3.12. 3D-Darstellung mit Fehlerlokalisierung</td>
</tr>
<tr>
<td></td>
<td>U3.4. Detaillierte Fehlerbeschreibung</td>
</tr>
<tr>
<td></td>
<td>U3.9. Fehlerkategorisierung</td>
</tr>
<tr>
<td></td>
<td>U4.9. Anzeige Störungsmeldung</td>
</tr>
<tr>
<td></td>
<td>U4.18. Bereitstellung von 3D-Daten</td>
</tr>
<tr>
<td></td>
<td>U4.36. Störmeldung mitsamt Fehlermeldung und Zustand Anlage</td>
</tr>
</tbody>
</table>

Zweck/Ziel
Das Modul Fehlermeldung und -darstellung dient der eindeutigen Beschreibung und Darstellung von Fehlern, so dass deren Ursachen schneller und akkurater erkannt werden können. Dies wird mithilfe exakter und detaillierter Fehlermeldungen mitsamt Kategorisierung und 3D-Darstellung erreicht. Mit diesen Informationen wird die Kritikalität von Fehlern und die Schritte zur Behebung dieser schneller ersichtlich, wodurch sich die Instandhaltungszeit verkürzt.

Generisch/optional
Generisch

Funktionsbeschreibung

Neben rein textueller Beschreibung wird der Fehler und deren Ursache so hinterlegt, dass eine 3D-Darstellung der Anlage und des Fehlers möglich ist. Das heißt abhängig von der 3D-Darstellung und deren Format, werden die Koordinaten des Fehlers innerhalb dieser Darstellung hinterlegt.

Der Unterschied zu dem Modul Fehlerdatenbank besteht darin, dass neben den Anforderungen zur Darstellung, die Fehler aus der Datenbank in diesem Modul mit zusätzlichen Informationen angereichert werden, um visuelle, kontextsensitive Darstellungen und Auswertungen zu ermöglichen.

Voraussetzungen für die Funktionsfähigkeit

Die 3D-Daten der Anlagen müssen vorliegen und die Darstellung von Fehlerlokationen ermöglichen

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fehlerlokalisierung (grafisch) durchführen</td>
<td></td>
</tr>
<tr>
<td>• Editieren von Fehlerinformationen</td>
<td></td>
</tr>
<tr>
<td>• Anzeigen Fehlerbeschreibung</td>
<td></td>
</tr>
<tr>
<td>• Anreicherung des Fehlercodes mit zusätzlichen eindeutigen Beschreibungen</td>
<td></td>
</tr>
<tr>
<td>• Grafische Modellierung des Fehlers innerhalb der Anlage</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
<th>Baustein B.4. Fehlermanagement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modul M.16. Fehlererkennung & Condition Monitoring</td>
<td></td>
</tr>
<tr>
<td>• Modul M.17. Fehlerdatenbank</td>
<td></td>
</tr>
</tbody>
</table>

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
<th>Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten</td>
<td></td>
</tr>
<tr>
<td>• Modul M.2. Dokumentenmanagement</td>
<td></td>
</tr>
<tr>
<td>• Modul M.9. Auftragsverwaltung/Priorisierung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbundene Aktivitäten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundaktivität</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A1 – Inspektion/Wartung Total Productive Maintenance</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A2 – Inspektion Wartung Instandhalter</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A3 – Instandsetzung</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A4 – Vereisung der Windenergieanlage (WEA)</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A5 – Ereignisgesteuerte Instandsetzung</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A6 – Ereignisgesteuerte Wartungsauflistung</td>
<td></td>
</tr>
<tr>
<td>• Aktivität A9 – Auswertung Fehlerhistorien einer Anlage</td>
<td></td>
</tr>
</tbody>
</table>

| Aufteilung nach Entität | Dieses Modul befindet sich auf dem mobilen Endgerät wie auch im Backend. |
6.2.19 M.19. Predictive Maintenance

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.19. Predictive Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.19. Predictive Maintenance</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional. Dieses Modul wird als optional angesehen, obwohl es generische Anforderungen besitzt. Dies liegt daran, dass eine Umsetzung dieses Moduls als sehr herausfordernd anzusehen ist und daher nicht zwangsläufig in jedem IIS enthalten sein muss.</td>
</tr>
<tr>
<td>Funktionsbeschreibung</td>
<td>Dieses Modul unterteilt sich in zwei Teile, die die Mechanismen des Predictive Maintenance kennzeichnen. Diese Teile werden nachfolgend in Form abstrakter Designmuster beschrieben:</td>
</tr>
</tbody>
</table>

Der Klassifikator

Als Klassifikator wird hier ein meist dezentral bei der Maschine beheimateter, leichtgewichtiger Entscheider bezeichnet. Dieser prüft bspw. die aktuellen Sensor-/Logdaten und bestimmt anhand dieser Logdaten, ohne große Rechenzeit, den Bedarf nach Instandhaltung. Der Instandhalter muss jede falsche Entscheidung des
Klassifikators protokollieren. Der Klassifikator hängt von dem später beschriebenen Lerner dahingehend ab, dass der Lerner den Klassifikator erzeugt und diesen in gewissen Abständen aktualisiert. Eine Verbindung zum Lerner muss nur für die Aktualisierung oder Datenweitergabe erfolgen.

Der Lerner

Die Zweitteilung zwischen Klassifikator und Lerner wird aufgrund folgender Punkte als nötig angesehen:

- Datendurchsatz
- Rechenintensität
- Dezentrales Design
- Einfaches Aufspielen der Diagnoseintelligenz auf gleichartige Maschinen bzw. Anlagen
- Diagnoseintelligenz ebenfalls bei fehlendem Netzzugang
- Erhöhung der Effektivität, da Anlagen ggf. von mehreren Anlagen lernen können
- Statistische Validierung bzw. Absicherung von erlernten Klassifikatoren

Die Berechnung eines neuen Klassifikators ist in der Regel sehr rechen- und damit auch zeitintensiv. Sie kann nicht an der Maschine vorgenommen werden und muss daher zentral geschehen, so dass keine Produktionsressourcen der einzelnen Maschinen betroffen sind. Ein weiterer Grund hierfür ist, dass für die Berechnung des Klassifikators Daten aus mehreren Maschinen aggregiert werden können.
Im Sinne von CPS wäre dies ein Beispiel vom Wechselspiel zwischen dezentraler und zentraler Intelligenz mehrerer Systeme. Der Klassifikator an der Maschine entscheidet dezentral vor Ort ohne Verbindung zum zentralen System. Er wird jedoch, wenn nötig, von der zentralen Instanz aktualisiert. Die zentrale Instanz des Lerners kann hierbei beliebig viele dezentrale Klassifikatoren aktualisieren, sofern diese sich mit dem identischen Problem beschäftigen. Eine beispielhafte Implementierung dieses Konzeptes ist bei (Fleischmann et al., 2016b) zu finden.

Voraussetzungen für die Funktionsfähigkeit

Der Klassifikator benötigt lesenden Zugriff auf die Maschine bzw. auf die aktuellen Logdateien oder muss direkt in die Maschine integriert werden. Die Auswertung sollte in Echtzeit oder mit kurzer Verzögerung erfolgen. Weiterhin muss der Klassifikator Fehlermeldungen absetzen können.

Der Lerner benötigt Zugang zu den wesentlichen Log-/Maschinendaten, um die Klassifikatoren zu erzeugen. Dies muss nicht in Echtzeit geschehen, auch könnte er die Daten zu einem bestimmten Zeitpunkt importieren.

Insbesondere muss jedoch die Datenweitergabe zwischen Maschine und Lerner bzw. Klassifikator spezifiziert werden. Darüber hinaus muss eine Methode erdacht werden, wie die Synchronisierung zwischen Lerner und Klassifikator stattfindet.

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
<th>Verbindungen zu anderen Modulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Extraktion der Maschinendaten und Sensorwerte</td>
<td>Baustein B.4. Fehlermanagement:</td>
</tr>
<tr>
<td>• Automatische Klassifizierung aus Korrelierung von Sensordaten und Maschinenzustand</td>
<td>• Modul M.16. Fehlererkennung & Condition Monitoring</td>
</tr>
<tr>
<td>• Synchronisation zwischen Lerner und Klassifikator durchführen</td>
<td>• Modul M.17. Fehlerdatenbank</td>
</tr>
<tr>
<td>• Klassifikator trainieren</td>
<td>Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:</td>
</tr>
<tr>
<td>• Update aller verbundenen Klassifikatoren</td>
<td>• Modul M.4. Anlageninformationen</td>
</tr>
<tr>
<td>• Austausch der benutzten Algorithmen und Verfahren</td>
<td>• Modul M.5. Anlagenübersicht und -auswertung</td>
</tr>
<tr>
<td>• Automatisches Senden von potentiellen Wartungs- und Fehlermeldungen</td>
<td>• Modul M.6. Berechnung/Zugriff auf Produktionsplanung</td>
</tr>
</tbody>
</table>

Verbundene Aktivitäten

- Grundaktivität
- Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)

Aufteilung nach Entität

Das hier vorgestellte Modul befindet sich an der Maschine und im Backend. Dabei besteht eine Zweiteilung, welche im Text zuvor beschrieben worden ist.
6.2.20 M.20. Synchronisation Hersteller und Betreiber

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.20. Synchronisation Hersteller und Betreiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.20. Synchronisation Hersteller und Betreiber</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| Mögliche Unterfunktionen | • Senden von Betriebsprotokollen
• Einrichten einer Freigabe für den Hersteller
• Freigabe von Daten an den Hersteller
• Einstellungen über die zu übertragenden Daten
• Verbindung zu internen Datenhalten |
| Verbindungen zu anderen Modulen | B.5. Technischer Kundendienst:
• Modul M.23. Serviceprotokolle
Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
• Modul M.4. Anlageninformationen
• Modul M.5. Anlagenübersicht und -auswertung |
| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
| Aufteilung nach Entität | Maschine und mobiles Endgerät. |
6.2.21 M.21. Navigation

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zweck/Ziel</td>
<td>Das Modul stellt eine Navigation zur Verfügung, damit der Instandhalter per Routenplanung direkt zu dem Instandhaltungsort geleitet wird.</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Voraussetzungen für die Funktionsfähigkeit</td>
<td>Der Anwender benötigt ein mobiles Endgerät, welches über eine ausreichende Hardware/Software verfügen sollte, wodurch vielfältige Funktionen unterstützt und auf dem ausgewählte Apps installiert werden können.</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td>• Import und Update von Kartenmaterial</td>
</tr>
<tr>
<td></td>
<td>• Routensimulation</td>
</tr>
<tr>
<td></td>
<td>• Navigation</td>
</tr>
<tr>
<td></td>
<td>• Berechnung von Routen</td>
</tr>
<tr>
<td>Verbindungen zu anderen Modulen</td>
<td>B.5. Technischer Kundendienst:</td>
</tr>
<tr>
<td></td>
<td>• Modul M.22. Reisekostenabrechnung</td>
</tr>
<tr>
<td></td>
<td>Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:</td>
</tr>
<tr>
<td></td>
<td>• Modul M.9. Auftragsverwaltung/Priorisierung</td>
</tr>
<tr>
<td>Verbundene Aktivitäten</td>
<td>Keine Aktivitäten spezifiziert.</td>
</tr>
<tr>
<td>Aufteilung nach Entität</td>
<td>mobiles Endgerät.</td>
</tr>
</tbody>
</table>
M.22. Reisekostenabrechnung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.22. Reisekostenabrechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenz-architektur</td>
<td>M.22. Reisekostenabrechnung</td>
</tr>
<tr>
<td></td>
<td>U4.25 Erfassung von Reisekosten durch das System</td>
</tr>
</tbody>
</table>

Zweck/Ziel

Generisch/optional
Optional

Funktions-beschreibung

Mögliche Unterfunktionen
- Eingabemaske für Reisekosten
- Berechnung der Reisekosten
- Zuordnung Reisekosten zu durchgeführten Aufträgen
- Freigabe von Reisekosten

Verbindungen zu anderen Modulen
B.5. Technischer Kundendienst:
- Modul M.24. Vertragsmanagement
- Modul M.25. Signierfunktion

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.15. Arbeitszeiterfassung

Verbundene Aktivitäten
Keine Aktivitäten spezifiziert.

Aufteilung nach Entität
Backend und mobiles Endgerät.
6.2.23 M.23. Serviceprotokolle

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.23. Serviceprotokolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.23. Serviceprotokolle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funktionsbeschreibung</th>
<th>Nach Beendigung einer Instandhaltungstätigkeit kann per Formular ein Serviceprotokoll vom Instandhalter erstellt werden. Falls bereits Daten für dieses Formular wie Kundenname, Arbeitszeit oder durchgeführte Tätigkeit in anderen Modulen vorliegen, können diese automatisch integriert werden. Die benötigten Daten hängen von unternehmensindividuellen Anforderungen ab. Beispiele wären:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Geleistete Arbeitszeit</td>
</tr>
<tr>
<td></td>
<td>• Durchgeführte Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>• Auftragsnamen und Nummer</td>
</tr>
<tr>
<td></td>
<td>• Beteiligte Personen</td>
</tr>
<tr>
<td></td>
<td>• Verbrauchte Ersatzteile</td>
</tr>
</tbody>
</table>

Anschließend kann der Instandhalter noch nicht vollständige Informationen per Maske ein- und freigeben.

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
<th>• Bereitstellen von Eingabemasken Serviceprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Automatisches Befüllen von Daten aus anderen Modulen</td>
</tr>
<tr>
<td></td>
<td>• Versenden an Auftraggeber/Kunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindungen zu anderen Modulen</th>
<th>Baustein B.5. Technischer Kundendienst:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Modul M.15. Arbeitszeiterfassung</td>
</tr>
<tr>
<td></td>
<td>• Modul M.20. Synchronisation Hersteller und Betreiber</td>
</tr>
<tr>
<td></td>
<td>• Modul M.24. Vertragsmanagement</td>
</tr>
<tr>
<td></td>
<td>• Modul M.25. Signierfunktion</td>
</tr>
</tbody>
</table>

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:

	• Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
	• Modul M.9. Auftragsverwaltung/Priorisierung
	• Modul M.28. Ersatzteilmanagement

| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
M.24. Vertragsmanagement

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.24. Vertragsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.24. Vertragsmanagement</td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Das Modul dient der Darstellung der Vertragsdetails und Beziehung zum Servicenehmer. Es dient der Informationsgewinnung des Instandhalters, so dass dieser abhängig von den Vertragsdetails Instandhaltungsmaßnahmen vornehmen kann und die Grundlagen zur Abrechnung der eigenen Leistungen auf einen Blick hat.</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Funktionsbeschreibung</td>
<td>Die Vertragsdetails müssen in das System abhängig vom Kunden hinterlegt werden können. Diese müssen daher eindeutig dem Kunden zugeordnet werden können. Diese Daten können ggfs. aus einem bestehenden CRM-System geladen oder können in Form eines Formulars editiert und eingesehen werden. Alternativ können auch PDFs mit den aktuellen Daten hochgeladen und eingesehen werden.</td>
</tr>
</tbody>
</table>
| **Mögliche Unterfunktionen** | - Management der Vertragsdokumente der Kunden
- Eintragen und Bearbeiten von Kundendaten
- Darstellung von Vertragsdaten |
| **Verbindungen zu anderen Modulen** | Baustein B.5. Technischer Kundendienst:
 - Modul M.22. Reisekostenabrechnung
 - Modul M.23. Serviceprotokolle
Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
 - Modul M.9. Auftragsverwaltung/Priorisierung |
| **Verbundene Aktivitäten** | Keine Aktivitäten spezifiziert. |
| **Aufteilung nach Entität** | Backend und mobiles Endgerät. |
6.2.25 M.25. Signierfunktion

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.25. Signierfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.25. Signierfunktion</td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Das Modul stellt eine (rechtsverbindliche) Signierfunktion bereit. Mit dieser können Aufträge von Kunden und Instandhaltern per Unterschrift verbindlich quittiert werden.</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Funktionsbeschreibung</td>
<td>Das Modul stellt die Möglichkeit zur Verfügung, eine Unterschrift einer Person aufzuzeichnen und abzuspeichern. Einem Auftrag, Serviceprotokoll oder sonstigen Aktionen kann diese Unterschrift zugeordnet werden. Dies wird damit erreicht, dass die Signierfunktion aus anderen Modulen aufgerufen werden kann, indem ein Name und die zugehörige Aktion übergeben werden. Zu diesem Aufruf wird die Signatur per Toucheingabe oder per Stift gespeichert. Eine Umwandlung der Eingabe in ein digitales Format wird vom mobilen Endgerät übernommen. Anschließend wird die Signatur gespeichert und an das aufrufende Modul weitergeleitet.</td>
</tr>
<tr>
<td>Voraussetzungen für die Funktionsfähigkeit</td>
<td>Voraussetzung zur Funktionstüchtigkeit ist die Eingabemöglichkeit per Touch oder Stift. Das Endgerät muss auf diese Art von Eingaben reagieren und in rechtsverbindliche Genauigkeit speichern können.</td>
</tr>
</tbody>
</table>
| Mögliche Unterkonzepte | • Aufzeichnen einer Signatur
• Sicheres Ablegen der Signatur in Verbindung mit einem (Kunden-)Auftrag |
| Verbindungen zu anderen Modulen | Baustein B.5. Technischer Kundendienst:
• Modul M.22. Reisekostenabrechnung
• Modul M.23. Serviceprotokolle
Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
• Modul M.9. Auftragsverwaltung/Priorisierung
• Modul M.13. Schichtbuchfunktionalität/Synchronisation |
| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
| Aufteilung nach Entität | Backend und mobiles Endgerät. |
6.2.26 M.26. Kommunikation

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.26. Kommunikation</th>
</tr>
</thead>
</table>

Zweck/Ziel

Generisch/optional

Generisch

Funktionsbeschreibung

Die angesprochenen Funktionen bilden die Basis eines IIS, um mit anderen Akteuren der Instandhaltung in Kontakt zu treten und einen Informationsaustausch durchzuführen.

Die technologische Umsetzung hängt dabei stark von den zur Verfügung stehenden unternehmensinternen Lösungen ab (E-Mail, VoIP).

Ein weiterer wichtiger Funktionspunkt stellt das Kontaktmanagement dar. Bestehende unternehmensinterne Kontakte der zuständigen Personen (z. B. weitere Instandhalter oder externe Ansprechpartner) sollen in das IIS integriert und direkt
auswählbar gemacht werden. Diese können dann ausgewählt werden, um ihnen Nachrichten, Anrufe oder E-Mails zu senden.

Voraussetzungen für die Funktionsfähigkeit

Sofern die Funktionen von bestehenden Applikationen ohne Medienbrüche direkt in das IIS integriert oder implementiert werden sollen, müssen die Schnittstellen zu den bestehenden Funktionalitäten offen sein und integriert werden können.

Falls die Funktionen nicht im IIS direkt implementiert werden und der Anwender diese auf seinem mobilen Endgerät nutzen will, so muss dieses über eine ausreichende Hardware/Software verfügen, das die vielfältigen Funktionen unterstützt und auf dem ausgewählte Apps installiert werden können.

Dazu zählen der Mail-Client, eine Telefonie-Funktion und die benötigten Kontaktmanagementfunktionen. Zusätzlich wäre ein Messenger nötig, mit dem die aufgenommenen Daten mit anderen Akteuren geteilt werden können.

| Mögliche Unterfunktionen | • Import und Export von Kontaktdaten, z. B. Telefonbucheinträge und Mailadressen in Verbindung mit evtl. bestehenden Lösungen wie Outlook o. Ä.
• Kontaktdatenmanagement
• Nachrichtenaustausch
• Auswahl Kommunikationsmöglichkeiten in Verbindung mit Tätigkeit
• Telefonie
• Senden von Nachrichten mit Anhang
• Einbindung Outlook & diverse Apps
• Archivierung von Nachrichten
• Suchfunktion für Nachrichten |
| Verbindungen zu anderen Modulen | Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
• Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
• Modul M.5. Anlagenübersicht und -auswertung
• Modul M.9. Auftragsverwaltung/Priorisierung
• Modul M.10. Mitarbeitermanagement
• Modul M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen |
| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
| Aufteilung nach Entität | Mobilen Endgerät und Backend. |
M.27. Konnektivität/Intranetzugang

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.27. Konnektivität/Intranetzugang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.27. Konnektivität/Intranetzugang</td>
</tr>
<tr>
<td></td>
<td>G.8.1. Zugang zu relevanten Webanwendungen über Internet (z. B. Intranet)</td>
</tr>
<tr>
<td></td>
<td>U2.32. Intranetzugang</td>
</tr>
<tr>
<td></td>
<td>U2.9. Zugriff Fachbereichsinformation</td>
</tr>
<tr>
<td></td>
<td>U2.44. Internetzugang</td>
</tr>
<tr>
<td></td>
<td>U4.16. Internet</td>
</tr>
<tr>
<td></td>
<td>U1.31. Intranet/Internet Zugang</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Generisch</td>
</tr>
<tr>
<td>Funktionsbeschreibung</td>
<td>Der Benutzer will bspw. über eine Anwendung zusätzliche Informationen nachladen, die nicht lokal auf dem Endgerät vorliegen. Zu diesem Zweck muss eine Verbindung in das Internet oder Intranet aufgebaut werden. Diese kann entweder über das Mobilfunknetz (GPRS, UMTS, LTE) oder über ein Unternehmensnetzwerk (LAN, WLAN) erfolgen. Je nach Sicherheitsanforderungen (Virtuelles Privates Netzwerk, Zertifikate, Zugangsdaten, etc.) müssen noch weitere Dienste genutzt oder Einstellungen vorgenommen werden. Im Allgemeinen ist die Funktion des Moduls die Bereitstellung einer Internet-/Intranetverbindung, über die höherwertige Anwendungen genutzt werden können, um Daten abzurufen, die nicht lokal vorliegen.</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td>• Herstellung von stabiler Internetverbindung</td>
</tr>
<tr>
<td></td>
<td>• Verbindung zu Intranet (auch extern)</td>
</tr>
<tr>
<td></td>
<td>• Zugang zu Fachbereichsinformationen</td>
</tr>
<tr>
<td>Verbindungen zu anderen Modulen</td>
<td>Dieses Modul muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch davon abhängig, wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.</td>
</tr>
<tr>
<td>Verbundene Aktivitäten</td>
<td>Keine Aktivitäten spezifiziert.</td>
</tr>
</tbody>
</table>
Möglichst jeder Entität sollte Konnektivität besitzen, solange dies nicht gegen die Sicherheitsregularien verstößt. Die Konnektivität ist hier im Speziellen auf das mobile Endgerät gerichtet.

6.2.28 M.28. Ersatzteilmanagement

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.28. Ersatzteilmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.28. Ersatzteilmanagement</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Generisch</td>
</tr>
</tbody>
</table>
| Funktionsbeschreibung | Das Modul bietet die folgende Funktionalität:
 - Ersatzteile für Aufträge zusammenstellen
 - Bestandssituation prüfen
 - Ersatzteile nachbestellen (optional)

Eine weitere Funktion ist, dass ein Instandhalter nach Ersatzteilen suchen und deren Bestand prüfen kann. |
| Voraussetzungen zur Funktionsfähigkeit | Der Zugriffe auf Datenbanken, in denen die Verfügbarkeit bzw. der Bestand von Ersatzteilen hinterlegt wird, muss möglich sein. Dies kann entweder intern oder extern erfolgen. Darüber hinaus muss es für jeden Auftrag möglich sein die dafür benötigten Ersatzteile zu bestimmen. Dieser Zusammenhang muss händisch hergestellt oder später erweitert werden. |
Mögliche Unterfunktionen
- Bestandssituation von (benötigten) Ersatzteilen anzeigen
- Bestandssituation von (benötigten) Ersatzteilen bei Zulieferer/Hersteller/Servicedienstleister anzeigen
- (Automatische) Rückmeldung bei fehlenden Ersatzteilen für bestimmte Arbeitsaufträge bzw. generelle Lagerengpässe
- (Automatisches) Zusammenstellen des für den Instandhaltungsauftrag benötigten Ersatzteiles
- Bestellung von Ersatzteilen
- Buchung von Ersatzteilen nach Verbrauch
- Verbindung zu Herstellerersatzteilsystem

Verbindungen zu anderen Modulen
Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
- Modul M.9. Auftragsverwaltung/Priorisierung – Dieses Modul ruft das vorliegende Modul auf
- Modul M.23. Serviceprotokolle

Verbundene Aktivitäten
- Grundaktivität
- Aktivität A2 – Inspektion Wartung Instandhalter
- Aktivität A3 – Instandsetzung
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
- Aktivität A5 – Ereignisgesteuerte Instandsetzung
- Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung
- Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)

Aufteilung nach Entität
Dieses Modul befindet sich im Backend wie auch auf dem mobilen Endgerät.

6.2.29 M.29. QR-CODE auslesen

Komponente
M.29. QR-CODE auslesen

Darstellung in Referenzarchitektur
- G.30.2. Scannen der Anlagencodierung (Barcode-Scanner)
- U1.4. Barcode Scannen
- U2.29. Barcodescanner
- U4.41. Barcode Scanner

Zweck/Ziel
Das Modul „QR-CODE auslesen“ dient des vereinfachten, manuellen Abrufs der aktuellen Maschinendaten inklusive des Maschinenstatus sowie der Anzeige der abzuarbeiten Tätigkeiten an dieser Maschine durch ein mobiles Endgerät. Das Modul implementiert die Fähigkeit QR-Codes zu scannen, deren Daten auszulesen und dadurch Informationen über die Maschine lokal, wie auch aus dem Backend zu erlangen. Die zu übertragenden Daten können z. B. die Wartungs- und Betriebsdaten,

<table>
<thead>
<tr>
<th>Generisch/optional</th>
<th>Generisch, außer es besteht keine Nutzung von einem mobilen Endgerät.</th>
</tr>
</thead>
</table>
| **Mögliche Unterfunktionen** | • Scannen von QR-Code
• Herstellen der Zuordnung von QR-Code zu Anlage bzw. Bauteil
• Aufruf von Informationen (auf die der Code verlinkt) |
| **Verbindungen zu anderen Modulen** | Nachdem der QR-Code eingelesen worden ist, müssen die gewünschten Informationen zur gescannten Anlage aus folgenden Modulen im Backend geholt bzw. diese Module mitsamt dem Parameter der Anlage und der gewünschten Darstellung aufgerufen werden:
• Modul M.1. Handlungsleitfäden/Checklisten/Prüflisten
• Modul M.4. Anlageninformationen
• Modul M.5. Anlagenübersicht und -auswertung
• Modul M.9. Auftragsverwaltung/Priorisierung
• Modul M.11. Wartungsmanagement
• Modul M.16. Fehlererkennung & Condition Monitoring |
Verbundene Aktivitäten
Keine Aktivitäten spezifiziert.

Aufteilung nach Entität
Dieses Modul befindet sich auf dem mobilen Endgerät.

6.2.30 M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen</td>
</tr>
<tr>
<td></td>
<td>G.23.2. Remote Zugriff auf Anlage</td>
</tr>
<tr>
<td></td>
<td>U1.33. Remotesteuerung Anlage</td>
</tr>
<tr>
<td></td>
<td>U2.39. Mobiler Zugriff auf SPS</td>
</tr>
<tr>
<td></td>
<td>U4.2. Remote Anlagen-/Komponentensteuerung durch Hersteller</td>
</tr>
</tbody>
</table>

Zweck/Ziel

Generisch/optional
Generisch, außer ein Remotezugriff soll aus Sicherheitsgründen nicht möglich sein.

Funktionsbeschreibung

Weiterhin gilt, dass mögliche manuelle Sicherheitsmechanismen an der Anlage installiert werden, sodass sichergestellt werden kann, dass nicht unbefugt auf die Anlagen zugegriffen werden kann.

Im Zusammenhang mit der Fernwartung soll es Benutzern auch möglich sein einen Benutzer vor Ort, bspw. bei einer Instandhaltung, zu unterstützen.

Voraussetzungen zur Funktionsfähigkeit

Mögliche Unterfunktionen

- Aufbau einer Remote-Verbindung
- Authentifizierung des Users
- Freigabe der Maschine/Anlage durch Anlagenbesitzer/-betreiber
- Remote Zugriff auf bestimmte Maschinenfunktionalitäten (lesend)
- Remote Zugriff auf bestimmte Maschinenfunktionalitäten (schreibend)
- Manuelle Freigabe an der Maschine, die zwingend aktiviert werden muss für den Remotezugriff
- Remote Zugriff abhängig von den benötigten Use Cases (SPS, Bedienelemente, Prozessgeräte etc.)

Verbindungen zu anderen Modulen

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:
- Modul M.10. Mitarbeitermanagement
- Modul M.26. Kommunikation
- Modul M.29. QR-CODE auslesen

Verbundene Aktivitäten

Keine Aktivitäten spezifiziert.

Aufteilung nach Entität

Dieses Modul befindet sich auf dem mobilen Endgerät, der Maschine und im Backend.

6.2.31 M.31. Technisches Nutzermanagement

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.31. Technisches Nutzermanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.31. Technisches Nutzermanagement</td>
</tr>
<tr>
<td></td>
<td>G.14.1. Technisches Nutzermanagement inklusive Rollensystem</td>
</tr>
<tr>
<td>Zweck/Ziel</td>
<td>Dieses Modul ist zuständig für die zentrale technische Verwaltung, der mit dem System interagierenden Benutzer. Dies schließt zum einen die Aufnahme von Nutzerdaten ein, wodurch sich die Personen eindeutig im technischen wie im Unternehmenskontext identifizieren lassen. Zum anderen ist auch die komplette feingranulare Administrations von Verantwortlichkeiten, Rollen und Gruppen mit</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>• Benutzerdaten anlegen, löschen, verändern</td>
<td></td>
</tr>
<tr>
<td>• Anlegen von Rollen und Gruppen</td>
<td></td>
</tr>
<tr>
<td>• Erstellung von Berechtigungskonzepten und Kennwortregeln</td>
<td></td>
</tr>
<tr>
<td>• Integration mit vorhandenem Benutzerverwaltungssystem</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generisch/optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generisch</td>
</tr>
</tbody>
</table>

Funktionsbeschreibung

Administratoren und Anwender haben über eine grafische Benutzeroberfläche u. a. folgende Aktionen zur Auswahl:

- Benutzer anzulegen, deren Daten zu bearbeiten und diese wieder zu löschen
- Anfertigen von Rollen und Gruppen
- Erstellen von Berechtigungskonzepten, Zugriffskontrolllisten und Kennwortregeln

Voraussetzungen zur Funktionsfähigkeit

Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon wann und wo das Modul benötigt bzw. eingesetzt wird. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.

Verbindungen zu anderen Modulen

Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon wann und wo das Modul benötigt bzw. eingesetzt wird. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.

Verbundene Aktivitäten

Keine Aktivitäten spezifiziert.

Aufteilung nach Entität

Dieses Modul befindet sich im Backend und auf dem mobilen Endgerät.

6.2.32 M.32. Verarbeitung audiovisueller Medien

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.32. Verarbeitung audiovisueller Medien</th>
</tr>
</thead>
</table>
| Darstellung in Referenzarchitektur | M.32. Verarbeitung audiovisueller Medien
G.38.3. Verarbeitung audiovisueller Medien
(Ursprünge, Speichern, Anzeigen von Foto, Video und Audio)
U2.45. Videofunktion
U1.9. Bild/Videoinformation
U4.13. Fotografieren |

| Generisch/optional | Generisch |

| Funktionsbeschreibung | Bilder und Videos werden mit der im mobilen Endgerät eingebauten Kamera und Applikationen aufgenommen und auf diesem gespeichert. Dabei werden die nativen Applikationen des mobilen Endgeräts benutzt.
Die Dateien auf dem mobilen Endgerät können durch Verweise in den anderen Modulen eingefügt oder direkt die Applikationen aufgerufen werden.
Voraussetzungen zur Funktionsfähigkeit
Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon, wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.
Der Anwender benötigt ein mobiles Endgerät, das über eine ausreichende Hardware/Software verfügen sollte, wodurch vielfältige Funktionen unterstützt und auf dem ausgewählten Apps installiert werden können.
Damit dies alles gleichzeitig auf dem mobilen Endgerät verfügbar ist, muss genügend interner oder externer Speicher für die anfallenden Bilder und Videos |

| U2.45. Videofunktion | M.32. Verarbeitung audiovisueller Medien
(U.2.45. Fotografieren)
(U.2.45. Videoanzeige) |

| U1.9. Bild/Videoinformation | M.32. Verarbeitung audiovisueller Medien
(U.1.9. Bild/Videoanzeige)
(U.1.9. Videoanzeige)
(U.1.9. Bildanzeige) |

| U4.13. Fotografieren | M.32. Verarbeitung audiovisueller Medien
(U.4.13. Fotografieren)
(U.4.13. Bildanzeige)
(U.4.13. Videoanzeige) |

| U1.9. Bild/Videoinformation | M.32. Verarbeitung audiovisueller Medien
(U.1.9. Bild/Videoanzeige)
(U.1.9. Videoanzeige)
(U.1.9. Bildanzeige) |

| U4.13. Fotografieren | M.32. Verarbeitung audiovisueller Medien
(U.4.13. Fotografieren)
(U.4.13. Bildanzeige)
(U.4.13. Videoanzeige) |
vorhanden sein. Das ist abhängig von der verwendeten Bildkompression und dem Codec, der für die Aufnahme der Videos verwendet wird.

Die Qualität der hierbei verwendeten Verfahren muss hoch genug sein, damit auch in Umgebungen mit schwierigen Licht- und Farbverhältnissen aussagekräftige Aufnahmen gemacht werden können. Ebenfalls sollten die verwendeten Dateiformate eine hohe Verbreitung haben oder offen sein, damit eine Betrachtung mit einer Vielzahl an Systemen möglich ist.

Unabhängig vom Gerät muss eine ausreichende Verbindung zum Netz, z. B. WLAN, und ein befriedigender Mobilfunkempfang für die nötige Send- und Empfangsqualität sichergestellt sein. Zusätzlich sollten die Funktionen weitgehend mit den derzeit bestehenden Applikationen in Aussehen und Funktion übereinstimmen, damit zum einen die Einarbeitungszeit minimiert und zum anderen eine hohe Ergonomie bei der Bedienung erreicht wird. Ebenso wird die Akzeptanz durch ein solches Vorgehen gefördert.

Mögliche Unterfunktionen
- Aufnahme von Bildern, Audio- und Videomitschnitten
- Automatisches Archivieren von Dateien

Verbindungen zu anderen Modulen
Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon, wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.

Verbundene Aktivitäten
Keine Aktivitäten spezifiziert.

Aufteilung nach Entität
mobiles Endgerät.

6.2.33 M.33. Funktionalitäten mobiles Endgerät

Komponente

<table>
<thead>
<tr>
<th>M.33. Funktionalitäten mobiles Endgerät</th>
<th>M.33. Funktionalitäten mobiles Endgerät</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.20.2. Mobiles Arbeiten im Offlinemodus</td>
<td>U1.35. Mobiles Arbeiten im Offlinemodus</td>
</tr>
<tr>
<td>U2.40. Installationsberechtigung Apps</td>
<td>U2.41. Spracheingabe</td>
</tr>
<tr>
<td>U4.24. Mobiles Arbeiten im Offlinemodus</td>
<td></td>
</tr>
</tbody>
</table>

Zweck/Ziel
Dieses Modul beschäftigt sich mit speziellen Anforderungen, die an das mobile Endgerät des IIS gestellt werden und keiner übergeordneten Funktionalität zugerechnet werden können.

Generisch/optional
Generisch – Der Offlinemodus wird als generisch betrachtet, jedoch beinhaltet dieses Modul die optionalen Anforderungen der Spracheingabe und die
Installationsberechtigung für Apps auf dem mobilen Endgerät. Sofern kein mobiles Endgerät vorhanden ist, kann dieses Modul als optional betrachtet werden.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Die zweite Funktionalität ist die Spracheingabe, die zum Steuern bestimmter Funktionalitäten und als Diktierfunktion möglich benutzt werden kann. Beispielsweise könnten Protokolle mündlich verfasst oder einzelne Schritte des Handlungsleitfadens bestätigt werden.</td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen zur Funktionsfähigkeit</td>
</tr>
<tr>
<td></td>
<td>Ein qualitativ ausreichendes Mikrofon für die Spracheingabe das Störgeräusche, die in einer Industrieumgebung auftreten, herausfiltern kann. Die Aufnahme muss mithilfe eines geeigneten Codecs erfolgen, welcher zum einen die nötige Qualität besitzt und zum anderen keinen zu hohen Speicherbedarf aufweist. Zusätzlich wäre ein ausreichender dimensionierter interner oder durch zusätzliche Steckplätze erweiterbarer Speicher nötig um, die anfallenden Daten zwischen zu speichern, bevor diese synchronisiert werden.</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td>• Installationsmöglichkeit von Apps</td>
</tr>
<tr>
<td></td>
<td>• Liste von freigeschalteten Apps empfangen</td>
</tr>
<tr>
<td></td>
<td>• Sprachsteuerung IIS</td>
</tr>
<tr>
<td></td>
<td>• Diktierfunktion bei Protokollen</td>
</tr>
<tr>
<td>Verbindungen zu anderen Modulen</td>
<td>Keine Verbindungen spezifiziert.</td>
</tr>
<tr>
<td>Verbundene Aktivitäten</td>
<td>Keine Aktivitäten spezifiziert.</td>
</tr>
<tr>
<td>Aufteilung nach Entität</td>
<td>Dieses Modul befindet sich auf dem mobilen Endgerät.</td>
</tr>
<tr>
<td>Komponente</td>
<td>M.34. Synchronisation zw. Geräten und Systemen</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Darstellung in</td>
<td>M.34. Synchronisation zw. Geräten und Systemen</td>
</tr>
<tr>
<td>Referenz-architektur</td>
<td>G13.1. Synchronisationsmechanismus zwischen Geräten und Systemen</td>
</tr>
<tr>
<td></td>
<td>U2.15. Synchronisationsmechanismus zwischen Geräten und Systemen</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Generisch</td>
</tr>
<tr>
<td>Mögliche Unterfunktionen</td>
<td>• Synchronisationsbedarf feststellen</td>
</tr>
<tr>
<td></td>
<td>• Synchronisation durchführen</td>
</tr>
<tr>
<td></td>
<td>• Updateverteilung</td>
</tr>
<tr>
<td></td>
<td>• Synchronisationsoptionen je nach Modul, System und Daten konfigurieren</td>
</tr>
<tr>
<td>Verbindungen zu anderen Modulen</td>
<td>Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.</td>
</tr>
<tr>
<td>Verbundene Aktivitäten</td>
<td>Sämtliche Use Cases, die eine Interaktion mit dem Mobilen Endgerät oder eine Auslagerung von relevanten Funktionen auf einzelne Maschinen beinhalten.</td>
</tr>
<tr>
<td></td>
<td>• Aktivität A10 – Synchronisation</td>
</tr>
</tbody>
</table>
Aufteilung nach Entität

Dieses Modul befindet sich auf dem mobilen Endgerät, auf der Maschine wie auch im Backend.

6.2.35 M.35. Maschinenspezifika

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.35. Maschinenspezifika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.35. Maschinenspezifika</td>
</tr>
<tr>
<td></td>
<td>G.15.1. OPC UA Schnittstelle zum Empfang und Senden von Maschinendaten</td>
</tr>
<tr>
<td></td>
<td>U1.14. OPC UA Schnittstelle zum Empfang bzw. Senden von Maschinendaten</td>
</tr>
<tr>
<td></td>
<td>U2.14. OPC UA Schnittstelle zum Empfang bzw. Senden von Maschinendaten</td>
</tr>
<tr>
<td></td>
<td>U4.4. Standardschnittstelle und -datenstruktur an Maschine</td>
</tr>
<tr>
<td></td>
<td>U4.22. OPC UA Schnittstelle zum Empfang bzw. Senden von Maschinendaten</td>
</tr>
</tbody>
</table>

Zweck/Ziel	Dieses Modul beschäftigt sich mit Maschinenspezifika des Ressourcencockpits und angeschlossenen Maschinen bzw. der Anlagen.
Generisch/optional	Optional, denn obwohl die OPC UA Schnittstelle bei den untersuchten Unternehmen eine generische Anforderung darstellt, kann dies je nach Unternehmen stark abweichen. Darüber hinaus lassen sich bestehende Maschinenanbindungen nicht ändern.
Funktionsbeschreibung	Es sollen eine Standardschnittstelle und ein standardisiertes Protokoll an den Maschinen implementiert werden, welche eine vereinfachte Integration der Maschinen ermöglicht.
	Das Protokoll, das in diesem Modul zu implementieren ist, soll folgende Funktionen und Eigenschaften bieten:
	• Hohe Effizienz und teilweise Echtzeitfähigkeit
	• Geringer Implementierungsaufwand in die bestehende und geplante Infrastruktur („Plug and Work“)
	• Ausgeprägte Modularität und Erweiterbarkeit (z. B. Cloud Applikationen)
	• Nutzerfreundliche Bedienbarkeit über bekannte Schnittstellen
	• Sicherheit gegen Angriffe von außen wie innen
	• Moderne Verschlüsselung- und Authentifizierungsmethoden wie auch Zugriffskontrollen
	• Hoher Verbreitungsgrad und Akzeptanz in der Industrie durch eine Standardisierung
	• Offener, moderner und aktiv weiterentwickelter Standard
	• Möglicher Einsatz als Feldbus oder Middleware zwischen den Modulen und damit eingehende hohe Interoperabilität (vertikale und horizontale Kommunikation)

In den untersuchten Unternehmen wird als Machine to Machine Kommunikationsprotokoll standardmäßig OPC UA zur Bereitstellung einiger dieser

Voraussetzungen zur Funktionsfähigkeit

Um die volle Funktionalität nutzen zu können, ist eine möglichst störungsfreie und dauerhafte Verbindung zwischen allen Entitäten nötig, die mit dem IIS überwacht, kontrolliert oder gesteuert werden sollen. Die Art der Konnektivität ist hierbei nicht explizit spezifiziert und zudem maschinen- bzw. anlagenabhängig. Dabei sollte insbesondere das Auslesen der benötigten Informationen möglichst schnell bzw. in Echtzeit erfolgen können, was ein Protokoll mit geringem Overhead erforderlich macht. Für die Anbindung der Maschinen und Anlagen, die Einrichtung bzw. die Konfigurierung der Server sollte geschultes Personal zur Verfügung stehen, um die korrekte und schnelle Installation und Betriebsbereitschaft sicherzustellen. Die Sicherheit muss sichergestellt sein, was mehrere Aspekte umfasst: Zum einen den Schutz vor Angriffen von außen wie innen und dem Verhindern des Auslesens von Betriebsgeheimnissen durch geeignete Maßnahmen. Zum anderen die Abwehr von Manipulationsversuchen, die Mensch und Maschine gefährlich werden könnten.

<table>
<thead>
<tr>
<th>Mögliche Unterfunktionen</th>
<th>Keine Unterfunktionen spezifiziert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbindungen zu anderen Modulen</td>
<td>Keine Verbindungen spezifiziert.</td>
</tr>
<tr>
<td>Verbundene Aktivitäten</td>
<td>Keine Aktivitäten spezifiziert.</td>
</tr>
<tr>
<td>Aufteilung nach Entität</td>
<td>Dieses Modul befindet sich an der Maschine.</td>
</tr>
</tbody>
</table>

6.2.36 M.36. Pluginintegration

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.36. Pluginintegration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td></td>
</tr>
<tr>
<td>M.36. Pluginintegration</td>
<td></td>
</tr>
<tr>
<td>G.35.2. Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td>U1.19. Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
</tr>
<tr>
<td>U2.25. Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td>U4.35. Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
</tr>
<tr>
<td>Generisch/optional</td>
<td>Generisch</td>
</tr>
</tbody>
</table>
Funktionsbeschreibung

Mögliche Unterfunktionen

- Pluginsystem für das Einbinden verschiedener Plugins zum Senden und Empfangen von Daten aus unterschiedlichsten Quellen
- (Automatisches) Umwandeln von proprietären Datenformaten in ein einheitliches Format, das im IIS Verwendung findet

Verbindungen zu anderen Modulen

Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon, wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.

Verbundene Aktivitäten

Keine Aktivitäten spezifiziert.

Aufteilung nach Entität

Diese Modul befindet sich im Backend.

6.2.37 M.37. Wetterdaten

Komponente

M.37. Wetterdaten

Darstellung in Referenzarchitektur

Zweck/Ziel

Generisch/optional

Optional – nur benötigt, falls Windenergieanlagen im Einsatz sind

Funktionsbeschreibung

Der Input dieses Moduls stammt aus zwei verschiedenen Domänen, die separat behandelt werden müssen.

Daten von der Anlage:
Das System hat lesenden Zugriff auf die Sensoren, die Umgebungs- bzw. Wetterdaten an der Anlage messen. Dies kann entweder direkt über die Maschine stattfinden, z. B. per Webservice, oder mithilfe eines Systems, welches die Daten von der Maschine in regelmäßigen Abständen abruft.

Daten von Wetterportalen:

Voraussetzungen zur Funktionsfähigkeit

Um die volle Funktionalität nutzen zu können, muss eine (Remote-)Verbindung zu den Anlagen bestehen. Zusätzlich benötigt das System lesenden Zugriff auf die aktuellen Logdateien bzw. die aktuellen Systemdaten, die brauchbare Sensordaten über Temperatur/Klima enthalten. Diese Informationen müssen bereitgestellt bzw. erstellt werden. Die Auswertung sollte dabei schnell aber nicht zwangweise in Echtzeit erfolgen. Weiterhin benötigt das System einen Internetzugang mit ausreichender Datenübertragungsgeschwindigkeit, um sich zusätzliche meteorologische Daten von Wetterportalen beschaffen zu können.

Mögliche Unterfunktionen

- Abrufen von meteorologischen Daten aus verschiedenen Portalen
- (Kontinuierlicher) Abruf aktueller Wetter- und Umgebungsdaten von Anlagen
- Umwandlung der Daten in ein einheitliches Format
- Weiterleitung von Wetterwarnungen

Verbindungen zu anderen Modulen

Verbindungen außerhalb des eigenen Bausteins zu anderen Modulen:

- Modul M.9. Auftragsverwaltung/Priorisierung
- Modul M.19. Predictive Maintenance

Verbundene Aktivitäten

- Grundaktivität
- Aktivität A4 – Vereisung der Windenergieanlage (WEA)
6.2.38 M.38. Semantische Suche

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.38. Semantische Suche</th>
</tr>
</thead>
</table>
| Darstellung in Referenzarchitektur | M.38. Semantische Suche
U2.30. Synonymfunktion/Wörterbuch |
| Zweck/Ziel | Das Modul dient dazu, den Suchprozess nach Bezeichnungen, Fehlern und weiteren Begrifflichkeiten zu vereinfachen. Dies wird damit erreicht, dass automatisch Synonyme erkannt werden und Suchanfragen vervollständigt werden. |
| Generisch/optional | Optional |
| Voraussetzungen zur Funktionsfähigkeit | Ausreichende Datenbasis zur Bildung von Synonymen vorhanden. |
| Mögliche Unterfunktionen | • Zuordnung von Synonymen zu Begrifflichkeiten
• Automatische Synonymlernfunktion
• Unterstützung einer Autovervollständigung bei der Suche |
| Verbindungen zu anderen Modulen | Keine Verbindungen spezifiziert. |
| Verbundene Aktivitäten | Keine Aktivitäten spezifiziert. |
| Aufteilung nach Entität | Backend und mobiles Endgerät. |
6.2.39 M.39. Personalisierung des Systems

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.39. Personalisierung des Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.39. Personalisierung des Systems</td>
</tr>
</tbody>
</table>

Zweck/Ziel
Das Modul erlaubt die Personalisierung des IIS in Hinblick auf Veränderung der Darstellung und um eigene Notizen für Instandhalter zu hinterlegen.

Generisch/optional
Optional

Funktionsbeschreibung
Das Modul stellt einen persönlichen Bereich der Anwendung zur Verfügung, bei der die Darstellung in Hinblick auf Schriftart, -größe und anderen optischen Merkmalen angepasst werden kann. Diese Änderungen werden anschließend auf das gesamte IIS der einzelnen Personen angewandt. Es wird also ein Mapping des Nutzeraccounts zu den Einstellungen erstellt.

Weiterhin beinhaltet die Funktionalität einen eigenen Bereich für jeden Nutzer, wo persönliche Vermerke o. ä. hinterlegt werden können.

Mögliche Unterfunktionen
- Bereitstellung eines personalisierten Bereichs des IIS
- Grafische Einstellungsmöglichkeiten
- Abspeichern von persönlichen Notizen

Verbindungen zu anderen Modulen
Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon, wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.

Verbundene Aktivitäten
Keine Aktivitäten spezifiziert.

Aufteilung nach Entität
Auf Backend und mobilen Endgerät vorhanden.

6.2.40 M.40. Telefonersatz

<table>
<thead>
<tr>
<th>Komponente</th>
<th>M.40. Telefonersatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darstellung in Referenzarchitektur</td>
<td>M.40. Telefonersatz</td>
</tr>
</tbody>
</table>

Zweck/Ziel
Das Modul Telefonersatz stellt eine Anforderung an das mobile Endgerät dar. Das mobile Endgerät soll demnach die komplette Funktionalität eines Telefons abbilden, um dieses zu ersetzen.

Generisch/optional
Optional
Das mobile Endgerät sollte ein typisches Unternehmenstelefon ersetzen. Dazu muss es alle Funktionalitäten der in dem jeweiligen Unternehmen verwendeten Mobilgeräte beinhalten.

| Mögliche Unterfunktionen | • Telefonfunktion
| | • Installationsberechtigung Apps |

Dieses Modul kann bzw. muss zu fast jedem Modul Verbindungen besitzen, dies ist jedoch abhängig davon, wann und wo das Modul benötigt bzw. eingesetzt werden muss. Es ist daher als übergeordnetes Modul zu verstehen, sodass Verbindungen nicht explizit genannt werden.

Keine Aktivitäten spezifiziert.

| Aufteilung nach Entität | Mobiles Endgerät. |
6.3 Verteilungssicht

E1. Maschine / Maschinensystem / dezentral

E2. Mobiles Endgerät

E3. Backend/zentral

Abbildung 21: Verteilungssicht

Quelle: In Anlehnung an Reidt et al. (2016a, S. 164)

• **E1. Maschine/Anlage** – Hiermit sind maschinennahe Systeme gemeint, die sich entweder in der Maschine selbst, oder an einem direkt an der Maschine lokal angeschlossenen System, befinden.

6.4 Prozesssicht

6.4.1 Grundaktivität

stellen einen generischen Aspekt der jeweiligen Module dar, jedoch wird bei den untersuchten Unternehmen und Prozessen die Instandsetzung gegenüber der Wartung als bevorzugt angesehen und daher mit höherer Priorität eingestuft. Daher werden in der Grundaktivität die Wartungsaktionen als optionaler Teil der Grundaktivität deklariert.

Der Startpunkt der Aktivität befindet sich am oberen rechten Rand der Aktivität. Dieser spaltet sich in drei Aktionen auf, die jeweils zu einer Erstellung eines Maßnahmenauftrages führen können (4). Diese laufen kontinuierlich ab und wären:

Sofern keine Auffälligkeiten oder Instandhaltungsbedarfe durch diese drei Aktionen erkannt werden, wiederholen sich die Aktionen kontinuierlich. Dieser Teilablauf der Grundaktivität ist daher eine Endloschleife, da die Überwachung der Maschinen in der Praxis kontinuierlich fortläuft. Wird jedoch eine Meldung durch die drei erwähnten Fälle erzeugt, wird der angesprochene Maßnahmenauftrag im Backend durch das Modul M.9. Auftragsverwaltung/Priorisierung erstellt (4) und mit den nötigen Informationen aus einer Vielzahl an Modulen angereichert. Diese sind:

M.10. Mitarbeitermanagement – die für die Instandhaltung zuständigen Personen für die Anlage/Fehler werden mitsamt allen beteiligten Personen auf verschiedenen Hierarchiestufen identifiziert und deren Verfügbarkeit überprüft.

M.28. Ersatzteilmanagement – die für die Instandhaltung nötigen Ersatzteile werden zusammengestellt, deren Verfügbarkeit überprüft und ggfs. reserviert sowie deren Lagerort hinterlegt.

M.5. Anlagenübersicht und -auswertung - Auswertungen, Historien zu der betrachteten Anlage werden mit dem Auftrag verbunden.

Nach diesen Schritten und vor der konkreten Durchführung der Instandhaltung (zu beachten ist hierbei, dass der Zeitpunkt der Durchführung der Instandhaltung deutlich von der Annahme der
Tätigkeit bzw. der Auftragserstellung abweichen kann) werden drei Aktionspfade synchron auf dem mobilen Endgerät durchlaufen:

- Die Handlungsleitfäden/Checklisten etc. werden zu dem aktuellen Auftrag heruntergeladen, sodass die einzelnen Schritte abgearbeitet werden können.
- Optional werden vor Beginn der Instandhaltung die nötigen Offlinedaten, die im Auftragsmanagement hinterlegt sind, auf das mobile Endgerät heruntergeladen.

Sind die Ersatzteile verfügbar, die Handlungsleitfäden, Checklisten etc. sowie optional die Offlinedaten auf dem mobilen Endgerät vorhanden, kann der Instandhalter mit seiner Tätigkeit beginnen. Der Beginn der Tätigkeit wird im Auftragsmanagement protokolliert, die Maschine wird, falls notwendig, gestoppt. Ist die Durchführung der Instandhaltung für die durchführende Person sicher, fängt der Instandhalter mit dieser an, indem die einzelnen Schritte des Handlungsleitfadens nach und nach abgearbeitet, protokolliert und quittiert werden. Ist die Instandhaltung abgeschlossen, wird dies im Auftragsmanagement protokolliert und der Auftragsstatus wird aktualisiert.

Nach Beendigung der Instandhaltung werden folgende Aktionen ausgeführt:

- Es werden Ersatzteile nachbestellt, sofern diese verbraucht wurden.
- Die Handlungsleitfäden können durch den Instandhalter bestätigt oder angepasst werden.
- Lessons Learned in Form von Notizen können zu dem Auftrag hinterlegt werden.
- Optional kann eine Arbeitszeiterfassung des Instandhalters erfolgen.
- Im Wartungsfall wird zusätzlich im Backend der Wartungszähler zurückgesetzt, bei Bedarf der Wartungsplan angepasst und dieser mitsamt den resultierenden Änderungen gespeichert.

Nach dem Senden der Auftragsquittierung wird die Maschine wieder in Produktion genommen bzw. freigegeben und die Aktivität endet.

Während all dieser Schritte wird die Teilaktivität Aktivität A10 – Synchronisation ausgeführt, die dafür sorgt, dass bei jeder Änderung des Datenbestandes eine Synchronisation zwischen alle Entitäten erfolgt.
6.4.2Aktivität A1 – Inspektion/Wartung Total Productive Maintenance

6.4.3 Aktivität A2 – Inspektion Wartung Instandhalter

6.4.4 Aktivität A3 – Instandsetzung

6.4.5 Aktivität A4 – Vereisung der Windenergieanlage (WEA)

Abbildung 25: Aktivität A3 – Use Case UC3-U1 – Instandsetzung
Quelle: In Anlehnung an Reidt et al. (2016a, S. 174)
6.4.6 Aktivität A5 – Ereignisgesteuerte Instandsetzung

6.4.7 Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung

Abbildung 27: Aktivität A5 - Use Case UC5-U2 – Ereignisgesteuerte Instandsetzung von Anlagen

Quelle: In Anlehnung an Reidt et al. (2016a, S. 176)
Abbildung 28: Aktivität A6 – Ereignisgesteuerte Wartungsaufforderung

Quelle: In Anlehnung an Reidt et al. (2016a, S. 177)

6.4.8 Aktivität A7 – Zustandsabfrage Wartung (Condition Monitoring)

Die Aktivität A7 ist nicht Teil der Grundaktivität. Sie ist eine detaillierte Aktivität auf niedrigerem Abstraktionsniveau und dient, wie Aktivität A8 und Aktivität A9, primär der Auswertung. Sie basiert auf dem Use Case UC7-U2: Zustandsabfrage Wartung (Condition Monitoring). Die Aktivität startet mit der Anforderung den aktuellen Status einer Anlage zu überprüfen. Der Ablauf ist in Abbildung 29 dargestellt und beginnt wie folgt:

angepasst werden muss. Sind keine Anpassungen nötig, werden für die untersuchte Anlage die Daten ermittelt, die für eine grafische Auswertung notwendig sind.

Aktivität A7 - Use Case UC7 - U2 – Zustandsabfrage Wartung (Condition-Monitoring)

Ist die Berechnung abgeschlossen, werden für die untersuchte Anlage die Daten ermittelt, die für eine grafische Auswertung nötig sind. Um diese bereit zu stellen, werden vorab die nächste Wartung, die benötigten Ersatzteile, optional Werkzeugteile und der spätestmögliche Zeitpunkt einer Wartung aufgrund der Zustandsveränderung abgerufen. Der spätestmögliche Zeitpunkt entspricht dem letzten Zeitpunkt, an dem noch keine Störung aufgrund einer unterlassenen Wartung auftritt. Diese Informationen werden anschließend so aufbereitet, dass sie für eine grafische Auswertung im Backend oder im mobilen Endgerät zur Verfügung stehen.

Dieser exemplarische Fall stellt die Zustandsabfrage und die grafische Auswertung einer Anlage dar. Bei der Konzeption dieser Aktivität ist zu beachten, dass typischerweise bei jedem Abruf keine komplette Neuberechnung des lokalen/globalen Wartungsplans durchzuführen ist, sondern dies eigenständig in bestimmten Intervallen durchgeführt wird oder Mechanismen zu implementieren sind, die den Aufwand geringhalten, so dass ein Soll-Ist-Vergleich keine großen Ressourcen kostet.

6.4.9 Aktivität A8 – Verfügbarkeit (technisch/organisatorisch)

6.4.10 Aktivität A9 – Auswertung Fehlerhistorien einer Anlage

Abbildung 31: Aktivität A9 – Use Case UC9-U2: Auswertungen Fehlerhistorie einer Anlage

Quelle: Eigene Darstellung

6.4.11 Aktivität A10 – Synchronisation

Abbildung 32: Aktivität A10 – Use Case Unteraktivität – Synchronisation

Quelle: In Anlehnung an Reidt et al. (2016a, S. 182)
6.5 Use Case Sicht

In dieser Sicht werden die Use Cases der RAII vorgestellt. Diese Use Cases bilden die wichtigsten Prozesse eines IIS innerhalb der untersuchten Unternehmen ab. Durch die große Vielfalt der Unternehmen und deren Ausprägung der Instandhaltung, können die vorgestellten Use Cases einen allgemeinen Blick auf die Instandhaltung per IIS geben. Es wird sich auf die Use Cases konzentriert, welche den Kern des Systems darstellen und die höchste Allgemeingültigkeit besitzen. Die Use Cases sind in ihrer Ausprägung jedoch abhängig von den jeweiligen Unternehmen dargestellt. Da mehrere Unternehmen betrachtet wurden, ist es ersichtlich, dass manche Use Cases Ähnlichkeiten aufweisen können. Diese ähnlich vorkommenden Use Cases sind in der RAII vorhanden, wenn deren explizite Ausführungen einen Mehrwert für die RAII mit sich bringt.

Der Fokus bei den untersuchten Anwendungsfällen ist, eine große Allgemeingültigkeit abzubilden, ohne dabei die spezifischen Anforderungen der betreffenden Branchen zu vernachlässigen. Aus den Analyse geht hervor, dass trotz der unterschiedlichen Branchen und Geschäftsmodelle ein großer Prozentsatz der Use Cases Ähnlichkeiten aufweisen.

Im Folgenden werden die erstellten Use Cases in aggregierter Form beschrieben. Auf die vollständige Darstellung der Use Cases wurde im Rahmen dieser Arbeit verzichtet, da die Kerninformationen durch die Prozesssicht und die aggregierte Darstellung in diesem Kapitel transportiert wird. Die vollständigen Use Cases sind bei Reidt et al. (2016a) nachlesbar. Die Use Cases sind von UC1 bis UC9 nummeriert und dem jeweiligen Unternehmen U1 bis U4 zugeordnet.

UC1-U1: Inspektion/Wartung Total Productive Maintenance

UC2-U1: Inspektion Wartung Instandhalter

An der Maschine ist eine vorbeugende Inspektion/Wartung durchzuführen, damit ein ungeplanter Stillstand der Maschine vermieden wird. Im Gegensatz zum Use Case UC1-U1 wird die Tätigkeit nicht vom Maschinenbediener ausgeführt, sondern von einem Instandhalter mit spezieller Schulung. Die notwendigen Tätigkeiten werden vom IIS vorgegeben. Der Anwendungsfall ist abgeschlossen, sobald alle Tätigkeiten erledigt sind.

UC3-U1: Instandsetzung

Eine Maschine kommt aufgrund eines Fehlers zum Stillstand. Dies wird automatisch oder durch den Bediener der Maschine an die Instandhaltung weitergeleitet. Je nach Priorität wird der

UC4-U3: Vereisung einer Windenergieanlage

UC5-U2: Ereignisgesteuerte Instandsetzung von Anlagen

UC6-U2: Ereignisgesteuerte Wartungsaufforderung von Anlagen

Das IIS wird in Echtzeit über das Erreichen eines Grenzwertes informiert. Die Maschine ist zu diesem Zeitpunkt noch einsatzfähig, benötigt aber zeitnah eine Wartung. Ziel ist es, den Abnutzungsvorrat wiederherzustellen, um einen ungeplanten Stillstand zu vermeiden (Steigerung Mean Time Between Failures (MTBF) (Mikler, 2015, S. 238)). Der Endzustand ist erreicht, sobald der Abnutzungsvorrat der Anlage wieder in den Ausgangszustand versetzt wird.

UC7-U2: Zustandsabfrage Wartung (Condition Monitoring)

Der Anwendungsfall wird verwendet, um einen Wartungsplan zu erstellen, der auf Basis des dezentral an der Anlage erfassten und prognostizierten Zustands, berechnet wird. Am Ende soll ein Wartungsplan stehen, der Wartungen so einplant, dass die Wartungen möglichst in produktionsfreien Zeiten durchgeführt werden und dass die spätestmöglichen Zeitpunkte bekannt sind an denen Wartungen durchzuführen sind.

UC8-U2: Auswertungen Verfügbarkeit (technisch/organisatorisch)

UC9-U2: Auswertungen Fehlerhistorie einer Anlage

Aus den vorgestellten Use Cases wird ersichtlich, dass diese in fünf Kategorien eingeteilt werden können:

- Instandsetzung von Anlagen
- Wartung/Inspektion von Anlagen durch Bediener
- Wartung/Inspektion von Anlagen durch Instandhalter
- Zustandsabfrage und Wartungsbedarfsanzeige von Anlagen
- Auswertung über die Verfügbarkeit der Anlagen sowie die
- Auswertung über die Fehlerhistorien
6.6 Diskussion Referenzarchitektur

Konkretheit/Abstraktheit der Referenzarchitektur

Eine grundlegende Entscheidung bei der Referenzarchitektur, deren Darstellung, der gesamten Beschreibung der Prozesse und Module war es, eine möglichst einheitliche Form der Abstraktheit im Allgemeinen bzw. eine einheitliche Abstraktionsstufe für jede Sicht zu wählen. Durch eine adäquate Abstraktion sollte zum einen ermöglicht werden, dass die Referenzarchitektur für eine möglichst große Menge an IIS gültig ist. Zum anderen sollte durch die Abstraktion die Verständlichkeit und dadurch das Hervorheben bestimmten Aspekte sowie domänenübergreifenden Diskussionen zwischen Personen erleichtert werden. Im Rahmen der RAI sollte dazu u. a. das Verständnis der Anforderungen erhöht und deren Verbindung zu den typischen Aktivitäten von Instandhaltungsfällen dargestellt werden.

Nachfolgend werden bestimmte Aspekte diskutiert, die unmittelbare Auswirkungen auf die Wahl der Abstraktion haben bzw. die Wahl der Abstraktion auf diese Elemente:

Ausrichtung: Die Wahl der Abstraktheit beeinflusst ebenso die allgemeine Ausrichtung der Referenzarchitektur. Wären Teile der RAII auf Codebasis modelliert worden, so hätte der Fokus deutlich stärker auf technischer Ebene gelegen und viele Entscheidungen hinsichtlich Technologie und Designentscheidungen müssten schon vorab getroffen worden. Die Referenzarchitektur wäre damit eine beispielhafte Implementierung auf Basis einer bestimmten Technologie. Eine Ableitung wäre für andere Entwickler, die ebenso auf diese Technologie setzen, deutlich vereinfacht. Auch hätten dadurch viele Entscheidungen bzgl. der Anforderungen getroffen werden müssen, da eine Implementierung von Anforderungen diese genauer abbildet. Das hätte den Vorteil, dass die Anforderungen auch eindeutiger wären, den
starken Nachteil, dass der Interpretationsspielraum eingeschränkt worden wäre und somit auch die Gültigkeit der Referenzarchitektur.

nicht gewesen, hätte es durchaus sinnvoll gewesen sein können, den Anforderungsteil deutlich aufzuwerten und die Anforderungen wohldefinierter zu beschreiben.

Wahl von Architekturmustern

Datenbanken in Modul oder extern

Aufteilung der Module

Die Aufteilung der Module wurde im Laufe des Entwicklungsprozesses iterativ entwickelt. In vielen Schritten, insbesondere bei der Aggregation, waren mehrere Möglichkeiten der Aufteilung und des Schnitts der Module möglich.

Das Modul M.2. Dokumentenmanagement ist aktuell für die Ablage und Speicherung von Dokumenten und ähnlichem zuständig. Es wäre genauso denkbar, dass dieses Modul gestrichen wird und die einzelnen Module jeweils ihre eigenen Daten verwalten. Das würde beispielsweise zu einer deutlich geringeren Kopplung führen. Nachteil bei dieser Entscheidung wäre jedoch,
dass bestimmte Implementierungen bzw. Funktionalitäten bei vielen Modulen vorkommen würden, womit es zu Code-Duplizierungen kommen würde.

Viele weitere Aspekte bei der Modulunterteilung sind ebenso diskussionswürdig, so sind manche Module sehr detailliert ausgearbeitet oder gar technisch relativ konkret, da sie eine hohe Relevanz besitzen. Andere Module hingegen sind aufgrund tendenziell geringerer Relevanz nicht in der gleichen Konkretheit beschrieben. Hier könnten alle Module auf eine einheitliche Basis gesetzt werden, welche jedoch die Lesbarkeit reduzieren und eine Gewichtung der relevanten Aspekte nicht genauso ermöglichen würde.

Anderer Schnitt von generischen Modulen

Zwangsläufig notwendig sind sie jedoch nicht, trotz der hohen Relevanz der Anforderungen. So konnte neben den technischen Aspekten auch im Gespräch mit den beteiligten Stakeholdern klar erkannt werden, dass diese Eigenschaften zwar bei neueren Systemen angestrebt werden, jedoch eine erweiterte Ausbaustufe darstellen.

Ähnliche Punkte betreffen die folgenden Module. Sie könnten als optional deklariert werden, sofern kein mobiles Endgerät benutzt werden sollte bzw. dies nur darstellenden Charakter hätte. Also keine Informationen aufnehmen müsste.

- M.33. Funktionalitäten mobiles Endgerät
- M.29. QR-CODE auslesen
- M.26. Kommunikation

Sichten der Referenzarchitektur

Begrenzung auf bestimmte Prozesse

In dieser Hinsicht ist auch die Beschränkung auf exakt drei Entitäten durchaus diskussionswürdig. Es wäre denkbar, mehr oder weniger Entitäten festzulegen. Zum Beispiel könnte zwischen verschiedenen mobile Endgeräten (Smartphone, Tablet, Augmented Reality fähige Brillen, Wearables im Allgemeinen) unterschieden werden. Es erschien für den Einsatzzweck der RAII und die Verallgemeinerbarkeit von Konzepten auf mobile Endgeräte sinnvoll, sich auf diese zu beschränken und nicht weiter zu unterteilen.

6.7 Zusammenfassung

Das Kapitel umfasst demnach die RAII und eine kritische Würdigung der jeweiligen Entscheidungen, die zu der hier vorgestellten Ausprägung geführt haben.
7 Evaluation der Referenzarchitektur RAI2

7.1 Einleitung

7.2 Ziele und Vorgehen der Evaluation

<table>
<thead>
<tr>
<th>Art</th>
<th>Methode</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beobachtend</td>
<td>Fallstudie</td>
<td>Untersuchung des Artefakts im jeweiligen Geschäftsumfeld</td>
</tr>
<tr>
<td></td>
<td>Feldstudie</td>
<td>Beobachtung der Nutzung des Artefakts in Projekten</td>
</tr>
<tr>
<td>Analytisch</td>
<td>Statische Analyse</td>
<td>Untersuchung der Struktur des Artefakts</td>
</tr>
<tr>
<td></td>
<td>Architekturanalyse</td>
<td>Untersuchung der Integrationsfähigkeit des Artefakts in die technische Infrastruktur</td>
</tr>
<tr>
<td></td>
<td>Optimierung</td>
<td>Demonstration der Optimalität des Artefakts für den Zweck oder zum Aufzeigen der Grenzen der Optimierung</td>
</tr>
<tr>
<td></td>
<td>Dynamische Analyse</td>
<td>Untersuchung des Laufzeitverhaltens des Artefakts</td>
</tr>
<tr>
<td>Experimentell</td>
<td>Kontrolliertes Experiment</td>
<td>Untersuchung von Artefakteigenschaften unter kontrollierten Bedingungen</td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td>Ausführen des Artefakts unter Nutzung nicht-realer Daten</td>
</tr>
<tr>
<td>Testend</td>
<td>Funktionale Tests</td>
<td>Verwenden der Schnittstellen des Artefakts, um Fehler zu finden (Black Box Tests)</td>
</tr>
<tr>
<td></td>
<td>Strukturelle Tests</td>
<td>Testen der inneren Funktionsweise des Artefakts um Fehler zu finden (White Box Tests)</td>
</tr>
<tr>
<td>Beschreibend</td>
<td>Expertenwissen/Informiertes Argument</td>
<td>Begründen der Nützlichkeit des Artefakts durch überzeugende Argumentation auf Basis von Informationen aus der Wissensbasis</td>
</tr>
<tr>
<td></td>
<td>Szenarios</td>
<td>Erstellung von Verwendungsszenarios, um die Nützlichkeit des Artefakts zu zeigen</td>
</tr>
</tbody>
</table>

Tabelle 33: Kategorisierte Übersicht von Evaluationsmethoden

Quelle: In Anlehnung an Hevner et al. (2004, S. 86)

Um eine Evaluation des Artefakts aus unterschiedlichen Perspektiven zu ermöglichen wird diese mit einem multimethodalen Ansatz durchgeführt. Angelehnt an die Einordnung der
Methoden aus Tabelle 33 können die später vorgestellten Evaluationsmethoden folgenden Kategorien zugeordnet werden: Zum einen werden beschreibende Methoden in Form von Szenarios verwendet, um durch deren Implementierung die Nützlichkeit aufzuzeigen. Zum anderen werden beschreibenden Methoden in Verbindung mit der analytischen statischen Architekturanalyse genutzt, um per Expertenwissen logische Schlüsse hinsichtlich der Nützlichkeit des Artefakts zu ziehen. Weiter hat die Anwendung der RAI
c

Abbildung 33: Unterteilung des Evaluationsvorgehen in drei Abschnitte
Quelle: Eigene Darstellung

c

Nach Cloutier et al. (2009, S. 21) stellt eine iterative Entwicklung anhand von Prototyping einen geeigneten Ansatz dar, um innovative Referenzarchitekturen zu validieren und damit zu evaluieren. Da die RAI
c
del in weiten Teilen als forschungsgetrieben klassifiziert wurde (siehe 2.2.4.4), stellt sie somit eine innovative Referenzarchitektur im Sinne von Cloutier et al. (2009, S. 21) dar. Aus diesem Grund bildet das zweite Element der Evaluation der RAI
c
del die Implementierung eines Prototyps anhand der Referenzarchitektur.
7.3 Anforderungen an die RAI

Die Merkmale, an denen sich Teile der Evaluation ausrichten, sind in dieser Arbeit Anforderungen, die an die RAI und ihre Modellierung gestellt werden. Durch deren Erfüllung wird das übergeordnete Ziel, den Entwicklungsprozess zu erleichtern, von der RAI erfüllt. Für die Referenzarchitektur eines IIS im Kontext von Trends wie Industrie 4.0, CPS und der Digitalisierung existieren Anforderungen, die aus verschiedenen Domänen und Themengebieten resultieren:

- **Industrie 4.0/Digitalisierung**: Die RAI als Blaupause einer Applikation für die Industrie 4.0 bzw. Digitalisierung besitzt in diesem Kontext spezielle Anforderungen, die sich von einer Standardapplikation unterscheiden. Industrie 4.0 und die Digitalisierung verlangen insbesondere eine fachbereichsübergreifende Kommunikation und Entwicklung sowie neuartiges Denken. Eine Förderung der domänenübergreifenden Entwicklung und Anforderungsaufnahme durch die RAI können daher als Anforderungen genannt werden. Weiterhin erfordert die zunehmende Dezentralität von neuartigen Systemen eine neuartige Form der Architektur und Darstellung.

- **Instandhaltung**: Die Instandhaltung als Einsatzort des IIS umfasst weitere spezifische Anforderungen. Diese resultieren insbesondere aus dem für die Entwicklung benötigten Domänenwissen der Instandhaltung und dem Bedarf, nahezu mit jedem Informationssystem eines produzierenden Unternehmens zusammenzuarbeiten. Weiter ergeben sich aus der oftmals unternehmensübergreifenden Zusammenarbeit bei der Instandhaltung auch Anforderungen, die eine unternehmensübergreifende Referenzarchitektur erfordern.

Ursprünglich aus dem Bereich des reinen Anforderungsmanagements eines PSS, müssen diese Herausforderungen auch für eine Referenzarchitektur und insbesondere die RAII, welche im besonderen Maße Anforderungen inkludiert, adressiert werden.

Nachfolgend werden auf Basis der genannten Hintergründe und Herausforderungen 14 Anforderungen definiert. Diese sind hinsichtlich Anforderungskomplexen gruppiert und befinden sich teilweise auf unterschiedlicher Aggregationsebene. Dies hat zur Folge, dass bestimmte Anforderungen Teile anderer Anforderungen darstellen, da diese nur einen
Teilaspekt deutlich konkreter abdecken. Diese Anforderungen und deren Zusammenhang werden nachfolgend vorgestellt.

Anforderung 1: Domänenübergreifende Kooperation

Daher lässt sich folgende Anforderung an die RAlI formulieren: Die RAlI muss eine Kooperation aller an der Entwicklung des Instandhaltungssystems beteiligten Personen ermöglichen und fördern, indem ein domänenübergreifendes Verständnis der Elemente des Systems, dessen Komponenten sowie den verbundenen Anforderungen über den Entwicklungszyklus hinweg möglich ist.

Anforderung 2: Bereitstellung von Domänenwissen

Daher lässt sich die Anforderung 2 an die RAlI wie folgt formulieren: Die RAlI soll Domänenwissen über die Instandhaltung, Instandhaltungssysteme und die zugrundeliegende Referenzarchitektur mitsamt generischer sowie optionaler Komponenten bereitstellen.

Anforderung 3: Bereitstellung einheitlicher Domänensprache

Aus diesem Grund kann folgende Anforderung an die RAI gestellt werden: Die RAI muss eine einheitliche Domänensprache über das zu entwickelnde System und die dazugehörige Domäne für alle Beteiligten der Entwicklung schaffen.

Anforderung 4: Leichte Verständlichkeit

Daher lautet die Anforderung wie folgt: Die RAI soll sich durch eine leichte Verständlichkeit der Darstellung auszeichnen, sodass das Beherrschen von komplexen Notationen und Hintergrundwissen keine Notwendigkeit darstellt, um mit ihr zu arbeiten.

Anforderung 5: Abbildung des generischen Kerns

Daher lautet die Anforderung: **Die RAII soll den generischen Kern eines IIS über unterschiedliche Instandhaltungsszenarien und Fokusse hinweg darstellen, sodass bei unterschiedlichen mit der RAII entwickelten IISs eine einheitliche Basis vorhanden ist.**

Anforderung 6: Fokussierung auf Standardprozesse

Daher: **Die RAII sollte Standardprozesse eines Instandhaltungssystems über unterschiedliche Instandhaltungsszenarien und Fokusse hinweg darstellen.**

Anforderung 7: Anpassbarkeit auf optionale Fälle

Daher lautet die Anforderung: **Die RAII soll es ermöglichen, dass die Architektur basierend auf dem generischen Kern um optionale, bereits bestehende und zukünftig hinzukommende Anwendungsfälle angepasst bzw. erweitert werden kann.**

Anforderung 8: Allgemeingültigkeit

Daher lautet die Anforderung wie folgt: Die RAI muss über die untersuchten Unternehmen hinaus als Referenzarchitektur für ein IIS anwendbar sein.

Anforderung 9: Rückverfolgbarkeit von Anforderungen in der technischen Lösung

Daher ist die Anforderung folgendermaßen: Die RAI soll Anforderungen an ein IIS mitsamt funktionalen Modulen so verbinden, dass sie über den gesamten Entwicklungsprozess hinweg in diesen Modulen nachverfolgbar sind.

Anforderung 10: Besseres Verständnis von generischen Anforderungen

Die generischen Anforderungen nehmen hierbei einen besonderen Status ein, da die Kenntnis und das Verständnis dieser Anforderungen elementar zur Planung eines Projektes zur Entwicklung eines Instandhaltungssystems sind.

Daher ist Anforderung 10: **Die RAI soll zum besseren Verständnis generischer Anforderungen beitragen.**

Anforderung 11: Besseres Verständnis der eigenen Anforderungen

Analog zu Anforderung 10 hilft ein genaues Verständnis eigener Anforderungen, diese konkret zu formulieren und die Entwicklung frühzeitig auf diese auszurichten. Konkrete Beispiele und bestehende Anforderungen helfen dabei, indem sie als Referenz und Vorlagen dienen. Dadurch eröffnen sie die Möglichkeit, eigene Anforderungen von diesen abzuleiten oder sich davon abzuziehen. Eine höhere Güte der eigenen Anforderungen und deren Beschreibung kann hiermit erzielt werden. Unterstützt die RAI Unternehmen darin, eigene Anforderungen abzuleiten, zu formulieren und verschiedene Aspekte dieser schneller aufzunehmen, gilt diese Anforderung als erfüllt.

Aus diesem Grund ist Anforderung 11 an die RAI: **Die RAI soll es Unternehmen ermöglichen, eigene Anforderungen an ein IIS besser zu identifizieren, zu verstehen und zu formulieren.**

Anforderung 12: Implementierbarkeit/Umsetzbarkeit in funktionale Applikationen

Daher gilt die praktische Anforderung: **Auf Basis der RAI und der in ihr enthaltenen Prinzipien, Komponenten und Gesamtdarchitektur sollen funktionale, praxistaugliche Applikationen erstellt werden können.**

Anforderung 13: Kompatibilität zwischen entwickelten Lösungen

Kurzum: **Die Verwendung der RAIIs als Basis von zu entwickelnden IISs soll die Kompatibilität zwischen diesen IISs dahingehend sicherstellen, dass Daten und Module mit geringen Anpassungen austauschbar sind.**

Anforderung 14: Unterstützung des Entwicklungsprozesses

Zusammenfassend wird die Anforderung wie folgt bezeichnet: **Die RAIIs sollen den Entwicklungsprozess von Instandhaltungssystemen unterstützen, indem ein architektonischer Rahmen des zu entwickelnden Systems bereitgestellt wird.**

Nachfolgend sind die genannten Anforderungen in Tabelle 34 mit Nummer, Kurzfassung und Beschreibung dargestellt.

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderung 1: Domänenübergreifende Kooperation</td>
<td>Die RAIIs müssen eine Kooperation aller an der Entwicklung des Instandhaltungssystems beteiligten Personen ermöglichen und fördern, indem ein domänenübergreifendes Verständnis der Elemente des Systems, dessen Komponenten sowie den verbundenen Anforderungen über den Entwicklungszyklus hinweg möglich ist.</td>
</tr>
<tr>
<td>Anforderung 2: Bereitstellung von Domänenwissen</td>
<td>Die RAIIs sollen Domänenkenntnisse über die Instandhaltung, Instandhaltungssysteme und die zugrundeliegende Referenzarchitektur mitsamt generischer sowie optionaler Komponenten bereitstellen.</td>
</tr>
<tr>
<td>Anforderung 3: Bereitstellung einheitlicher Domänensprache</td>
<td>Die RAIIs müssen eine einheitliche Domänensprache über das zu entwickelnde System und die dazugehörige Domäne für alle Beteiligten der Entwicklung schaffen.</td>
</tr>
<tr>
<td>Anforderung 4: Leichte Verständlichkeit</td>
<td>Die RAIIs sollen sich durch eine leichte Verständlichkeit der Darstellung auszeichnen, sodass das Beherrschen von komplexen Notationen und Hintergrundwissen keine Notwendigkeit darstellt, um mit ihr zu arbeiten.</td>
</tr>
<tr>
<td>Anforderung 5: Abbildung des generischen Kerns</td>
<td>Die RAIIs sollen den generischen Kern eines IIS über unterschiedliche Instandhaltungszenarien und Fokusse hinweg darstellen, sodass bei unterschiedlichen mit der RAII entwickelten IISs eine einheitliche Basis vorhanden ist.</td>
</tr>
<tr>
<td>Anforderung 6: Fokussierung auf Standardprozesse</td>
<td>Die RAIIs sollten Standardprozesse eines Instandhaltungssystems über unterschiedliche Instandhaltungszenarien und Fokusse hinweg darstellen.</td>
</tr>
<tr>
<td>Anforderung</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Anforderung 7: Anpassbarkeit auf optionale Fälle</td>
<td>Die RAI soll es ermöglichen, dass die Architektur basierend auf dem generischen Kern um optionale, bereits bestehende und zukünftig hinzukommende Anwendungsfälle angepasst bzw. erweitert werden kann.</td>
</tr>
<tr>
<td>Anforderung 8: Allgemeingültigkeit der Referenzarchitektur</td>
<td>Die RAI muss über die untersuchten Unternehmen hinaus als Referenzarchitektur für ein IIS anwendbar sein.</td>
</tr>
<tr>
<td>Anforderung 9: Rückverfolgbarkeit von Anforderungen in der technischen Lösung</td>
<td>Die RAI soll Anforderungen an ein IIS mitsamt funktionalen Modulen so verbinden, dass sie über den gesamten Entwicklungsprozess hinweg in diesen Modulen nachverfolgbar sind.</td>
</tr>
<tr>
<td>Anforderung 10: Besseres Verständnis von generischen Anforderungen</td>
<td>Die RAI soll zum besseren Verständnis generischer Anforderungen beitragen.</td>
</tr>
<tr>
<td>Anforderung 11: Besseres Verständnis der eigenen Anforderungen</td>
<td>Die RAI soll es Unternehmen ermöglichen, eigene Anforderungen an ein IIS besser zu identifizieren, zu verstehen und zu formulieren.</td>
</tr>
<tr>
<td>Anforderung 12: Implementierbarkeit</td>
<td>Auf Basis der RAI und der in ihr enthaltenen Prinzipien, Komponenten und Gesamtaufbau soll funktional, praxistaugliche Applikationen erstellt werden können.</td>
</tr>
<tr>
<td>Anforderung 13: Kompatibilität zwischen entwickelten Lösungen</td>
<td>Die Verwendung der RAI als Basis von zu entwickelnden IISs soll die Kompatibilität zwischen diesen IISs dahingehend sicherstellen, dass Daten und Module mit geringen Anpassungen austauschbar sind.</td>
</tr>
</tbody>
</table>

Tabelle 34: Anforderungen an die RAI

Quelle: Eigene Darstellung
7.4 Analytische Evaluation der RAI

Anforderung 1: Domänenübergreifende Kooperation – Analytische Evaluation

Die RAI stellt für alle Beteiligten eine gemeinsame Wissensbasis dar, welche die domänenübergreifende Zusammenarbeit fördert. Domänensprechen und eine einheitliche Domänenprache sind Teil der RAI, was dazu führt, dass die beteiligten Personen eine gemeinsame Begriffswelt teilen und anhand dieser gezielter diskutieren können. Die Nennung der Anforderungen und deren Klassifikation in generisch und optional bietet daneben weitere Anknüpfungspunkte zur Kommunikation zwischen den beteiligten Personen aus verschiedenen Domänen, wodurch sachtliche und zielführende domänenübergreifende Diskussionen unterstützt werden. Anhand der Auswahl generischer und optionaler Anforderungen und der damit leichteren Identifikation von eigenen Anforderungen wird die Zusammenarbeit ebenfalls gefördert.

Weiter ermöglicht die Nachverfolgbarkeit der Anforderungen über die verschiedenen Entwicklungsschritte hinweg die Möglichkeit für alle Beteiligten, bei jedem Schritt anhand des bereitgestellten Wissens zu diskutieren und die eigenen Vorstellungen zu konkretisieren. Interdependenzen zwischen domänenbezogenen Anforderungen werden durch die Zuordnung zu Modulen durch die Referenzarchitektur klar herausgestellt, sodass die beteiligten Domänen die Abhängigkeiten zwischen ihren Anforderungen erkennen und an den entsprechenden Punkten diese diskutieren können.

Zusammenfassend fördert die RAI bele eine gemeinsame Wissensbasis, einfache Illustration und generische sowie optionale Anforderungen die domänenübergreifende Zusammenarbeit. Die bereitgestellten Informationen helfen den einzelnen Beteiligten dabei, eine gemeinsame Sicht und Kommunikationsbasis anhand der RAI aufzubauen und über die einzelnen Punkte dieses Artefakts zu diskutieren.

Diese einzelnen Punkte werden zusammen mit der Erfüllung der Anforderungen 2, 3 und 4 durch die RAI abgeleistet.

Anforderung 2: Bereitstellung von Domänenwissen – Analytische Evaluation

Die RAI beinhaltet Domänenwissen hinsichtlich folgender Themenbereiche:

- Darstellung und Kontext von Referenzarchitekturen (siehe Kapitel 2)
- Instandhaltung, Instandhaltungsarten und -systemen bzw. Systemen der Produktion (siehe Kapitel 3)
- Generische und optionale Anforderungen an ein IIS (siehe Kapitel 4)
- Funktionale Module, deren Interdependenzen und die abstrakte Architektur des zu entwickelnden Systems inklusive Intelligenzverteilung, Standardprozessen und zugrundeliegender Use Cases (siehe Kapitel 6)

Durch diese Punkte wird ersichtlich, dass die RAI Domänenwissen bereitstellt.

Anforderung 3: Bereitstellung einheitlicher Domänensprache – Analytische Evaluation

In Verbindung mit Anforderung 2 wird einheitliches Domänenwissen mit klar definierten Bezeichnungen hinsichtlich Begrifflichkeiten der Instandhaltung, Referenzarchitekturen und innerhalb der Inhalte der RAI selbst bereitgestellt. Durch die feste Benennung der Anforderungen, der einzelnen Module und eine einheitliche Namenskonvention innerhalb der RAI wird eine einheitliche Domänensprache gewährleistet. Diese Begriffe können direkt übernommen werden und bilden eine gemeinsame Begriffswelt bei allen Beteiligten.

Anforderung 4: Leichte Verständlichkeit – Analytische Evaluation

Anforderung 5: Abbildung des generischen Kerns – Analytische Evaluation

Dabei basieren die Herleitungen auf einem umfassenden Wissensfundament aus Literatur und Praxis: Zum einen durch eine umfassende Literaturanalyse über verschiedene Instandhaltungssysteme und deren Einsatzwecke, zum anderen durch die dedizierte Aufnahme von Anforderungen an Instandhaltungssysteme in vier Unternehmen, die in sehr unterschiedlicher Art Instandhaltung betreiben.

Mit diesen Aspekten wird sichergestellt, dass die RAII den generischen Kern einer Architektur eines IIS abbildet.

Anforderung 6: Fokussierung auf Standardprozesse – Analytische Evaluation

Anforderung 7: Anpassbarkeit auf optionale Fälle – Analytische Evaluation

Zusammenfassend kann die RAIJ dazu genutzt werden, ein individuell auf den eigenen Anwendungsfall angelegtes IIS zu entwickeln.

Anforderung 8: Allgemeingültigkeit – Analytische Evaluation

Anforderung 9: Rückverfolgbarkeit von Anforderungen in der technischen Lösung – Analytische Evaluation

Anforderung 10: Besseres Verständnis von generischen Anforderungen – Analytische Evaluation

Allgemeingültige/generische Anforderungen werden in der RAIJ beschrieben, mit funktionalen Modulen verbunden und deren Umsetzung beschrieben. Interdependenzen mit anderen Modulen/Anforderungen werden aufgezeigt und Teilschritte in Form von Unterkonzepten beschrieben. Zusätzlich wird das Wirken der Module/Anforderungen durch Prozesse und Referenzprozesse auf unterschiedlichen Entitäten illustriert. Hierdurch wird eine Wissensbasis bereitgestellt, die dazu dient, dass die generischen Anforderungen besser verstanden und deren Umsetzung zielgerichteter beurteilt werden kann.
Anforderung 11: Besseres Verständnis der eigenen Anforderungen – Analytische Evaluation

Anforderung 12: Implementierbarkeit/Umsetzbarkeit in funktionale Applikationen – Analytische Evaluation

Auf Basis der RAIi ist ein Prototyp namens „Ressourcen-Cockpit“ entwickelt worden, der von mehreren Unternehmen in der Instandhaltung eingesetzt werden kann. Dieser Prototyp wird in Kapitel 7.5.1 vorgestellt. Mit dieser Implementierung gilt die Anforderung 12 als erfüllt.

Anforderung 13: Kompatibilität zwischen entwickelten Lösungen – Analytische Evaluation

Anforderung 14: Unterstützung des Entwicklungsprozesses – Analytische Evaluation

Die RAIi benennt Anforderungen an ein IIS, funktionale Module und deren Funktionsweise. Weiter werden Interdependenzen und Verbindungen zu Standardprozessen beschrieben. Mehrere Faktoren unterstützen die Entwicklung durch diese Informationen:

- **Anforderungserhebung und -management**: Durch die Bereitstellung von generischen und optionalen Anforderungen können eigene Anforderungen einfach abgeleitet oder mit Informationen aus den RAIi-Anforderungen angereichert werden. Hierdurch wird die Qualität der Anforderungen erhöht und die Wahrscheinlichkeit, wichtige Anforderungen zu spät zu erkennen, wird verringert. Zusätzlich werden die
Anforderungen direkt in funktionale Module überführt, wodurch die Verfolgbarkeit und Plastizität der Anforderungen gesteigert wird. Diese Punkte erhöhen die Anforderungsgüte hinsichtlich der Erhebung und des Managements, wodurch die Entwicklung verbessert wird, da diese konkreteren Anforderungen und nachträglichen Anforderungsänderungen belastet werden.

All diese Punkte führen dazu, dass die RAII das Ziel der Unterstützung der Entwicklung erfüllt.
7.5 Evaluation der RAII anhand des Anwendungsfalles „Ressourcen-Cockpit“

In diesem Zusammenhang stellt eine Referenzarchitektur eine essentielle Grundlage für die zielgerichtete Entwicklung und Umsetzung unterschiedlichster Prototypen dar. Durch Referenzarchitekturen können im Kern einheitliche und trotzdem für den Einzelfall individuelle Architekturen abgeleitet werden. Zudem kann durch die Fokussierung auf einheitliche Komponenten, Prozesse und Anforderungen der Entwicklungsprozess gesteuert werden. Weiterhin kann der Umgang mit der Referenzarchitektur und Feedback zu dieser genutzt werden, um so die Referenzarchitektur iterativ weiterzuentwickeln. Der Kontext eignet sich daher ideal, um die zur Entwicklung mithilfe einer Referenzarchitektur zu unterstützen und die Benutzung dieser bei der Entwicklung zu untersuchen.

7.5.1 Prototyp Ressourcen-Cockpit

7.5.1.1 Technische Architektur

Die Anwendung des Ressourcen-Cockpits wurde als Anwendung so konzipiert, dass sie betriebssystemunabhängig von beliebigen Endgeräten aus erreichbar und benutzbar ist. Sie

7.5.1.2 Beschreibung der Funktionalität des Ressourcen-Cockpits

Managementfunktionen

Der Prototyp verfügt über eine Reihe an Managementfunktionen, die eine dynamische Anpassung des entwickelten Ressourcen-Cockpits ermöglichen. Dargestellt sind diese in vier Grafiken, die in Tabelle 35 zusammengefasst sind. Der Screenshot oben links zeigt eine Übersicht über mehrere Managementfunktionen. Deren Ausprägungen werden beispielhaft auf den restlichen Screenshots der Tabelle illustriert:

- Dazu gehören ein frei konfigurierbares Rollensystem (siehe Screenshot unten links) und eine ausgiebige Benutzerwartung (siehe Screenshot rechts oben), die mit dem Rollensystem verbunden ist. Durch dieses System ermöglicht das Ressourcen-Cockpit, dass Rechte, Darstellungen und Funktionen auf den Benutzer und seine Rolle zugeschnitten werden können. Die einzelnen Benutzer können weiterhin Qualifikationen und Zertifikate zugeordnet werden, die in den jeweiligen Bereichen verwaltet werden können.

Abbildung 34: Fehlerkatalog und Fehlermeldung
Quelle: In Anlehnung an Horbach und Trommler (2017)

Wie in Abbildung 35 dargestellt, können auch sämtliche aktuelle offenen Fehler verbunden mit den jeweiligen Aufträgen dargestellt werden. Dort kann zudem angezeigt werden, welcher Instandhalter aktuell für den Fehler verantwortlich ist, wo er wann aufgetreten ist und ob die notwendigen Werkzeuge und Ersatzteile für die Behebung des Fehlers vorhanden sind. Weiterhin können hier durch die Auswahl des Lupensymbols weitere Details zum Fehler sowie die genaue Fehlerbeschreibung bis hin zur Handlungsempfehlung zur Fehlerbehebung aufgerufen werden.

Abbildung 35: Anzeige aktueller Fehler mit Status
Quelle: Horbach und Trommler (2017, S. 94)

Auftragsverwaltung & Mitarbeitermanagement

Neben der Fehlervерwaltung und -historie existiert eine dedizierte Auftragsverwaltung und zielgruppenspezifische Darstellung von Aufträgen. In Abbildung 36 sind die aktuellen und vergangenen Aufträge zu erkennen und die jeweilige Person, die diese bearbeitet hat oder an diesem Auftrag arbeitet. Darüber hinaus sind die Aufträge wie auch die Fehler mit Informationen zu Werkzeugen und Ersatzteilen verbunden. Ebenso sind genauere Informationen zu diesem Auftrag erreichbar und können wiederum durch das Lupensymbol ausgewählt werden.

Abbildung 37 zeigt eine andere Darstellung der Auftragsverwaltung. Diese Darstellung ist das persönliche Dashboard eines Instandhalters, welches dieser zur Arbeitsplanung und als Informationshub nutzen kann. Hier sieht der Instandhalter die nötigen Informationen zu den

Abbildung 38: Dashboard eines Mitarbeiters mit Übersicht der aktuellen Aufträge und Mitteilungen
Quelle: Horbach und Trommler (2017, S. 86)

Anlagenübersicht

Abbildung 39: Anlageninformationen und Betriebsdaten
Quelle: Horbach und Trommler (2017, S. 91)
Wartungsmanagement

![Abbildung 40: Wartungsmanagement](image)

Quelle: Horbach und Trommler (2017, S. 96)

Ersatzteile, Werkzeuge und Nachrichtenhub

![Abbildung 41: Ersatzteilmanagement des Ressourcen-Cockpits](image)

Quelle: In Anlehnung an Horbach und Trommler (2017)

Auf Abbildung 42 ist der Nachrichten Hub des Prototyps zu erkennen, in dem sich die an der Instandhaltung beteiligten Personen Nachrichten senden und diese mit Aufträgen verbinden.
können. So kann bzgl. der Instandhaltung ohne Medienbruch kommuniziert und frühere Unterhaltungen und Kommentare bzgl. eines Auftrags erneut aufgegriffen werden.

Abbildung 42: Nachrichtenhub Ressourcen-Cockpit
Quelle: Horbach und Trommler (2017, S. 97)

7.5.1.3 Evaluation des Prototyps

<table>
<thead>
<tr>
<th>Modul</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.1. Handlungsleitfäden/Checklisten/Prüflisten</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.2. Dokumentenmanagement</td>
<td>Implementiert, einfache Ausbaustufe</td>
</tr>
<tr>
<td>M.3. Wiki</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.4. Anlageninformationen</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.5. Anlagenübersicht und -auswertung</td>
<td>Implementiert, Auswertung nur einfache Ausbaustufe</td>
</tr>
<tr>
<td>M.9. Auftragsverwaltung/Priorisierung</td>
<td>Implementiert, einfache Ausbaustufe – manuelle Priorisierung</td>
</tr>
<tr>
<td>M.10. Mitarbeitermanagement</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.11. Wartungsmanagement</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.12. Auftragsmanagement in Verbindung mit ERP</td>
<td>Implementiert, aktuell nur für ERP MS Dynamics</td>
</tr>
<tr>
<td>Modul</td>
<td>Status</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>M.16. Fehlererkennung & Condition Monitoring</td>
<td>Aktuell von Anlage implementiert, Aspekt Dezentralität</td>
</tr>
<tr>
<td>M.17. Fehlerdatenbank</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.18. Fehlermeldung und -darstellung</td>
<td>Implementiert, einfache Ausbaustufe</td>
</tr>
<tr>
<td>M.26. Kommunikation</td>
<td>Teilweise implementiert, nur die Kommunikation per Nachrichtenaustausch wurde umgesetzt, der Rest durch Standardapplikationen des mobilen Endgeräts</td>
</tr>
<tr>
<td>M.27. Konnektivität/Intranetzzugang</td>
<td>Wird durch das mobile Endgerät bereitgestellt</td>
</tr>
<tr>
<td>M.28. Ersatzteilmanagement</td>
<td>Implementiert in einfacher Ausbaustufe</td>
</tr>
<tr>
<td>M.29. QR-CODE auslesen</td>
<td>Nicht Implementiert</td>
</tr>
<tr>
<td>M.30. Remote Zugriff/Fernwartung auf Anlagen/Maschinen</td>
<td>Implementiert in einfacher Ausbaustufe</td>
</tr>
<tr>
<td>M.31. Technisches Nutzermanagement</td>
<td>Implementiert</td>
</tr>
<tr>
<td>M.32. Verarbeitung audiovisueller Medien</td>
<td>Nicht Implementiert</td>
</tr>
<tr>
<td>M.33. Funktionalitäten mobiles Endgerät</td>
<td>Werden durch das mobile Endgerät bereitgestellt, dort aber nur in rudimentärer Ausbaustufe</td>
</tr>
<tr>
<td>M.34. Synchronisation zw. Geräten und Systemen</td>
<td>Nicht Implementiert</td>
</tr>
<tr>
<td>M.36. Pluginintegration</td>
<td>Implementiert</td>
</tr>
</tbody>
</table>

Optionale Anforderungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.39. Personalisierung des Systems</td>
<td>Implementiert, in einfacher Ausbaustufe</td>
</tr>
<tr>
<td>M.40. Telefonersatz</td>
<td>Wird durch das mobile Endgerät bereitgestellt.</td>
</tr>
<tr>
<td>M.8. Kataster für Hilfs- und Betriebsstoffe der Anlagen</td>
<td>Implementiert</td>
</tr>
</tbody>
</table>

Tabelle 36: Komponentenüberprüfung Ressourcen-Cockpit

Quelle: Eigene Darstellung

Weiterhin wurden drei optionale Anforderungen umgesetzt, eine davon durch das mobile Endgerät. Durch die Umsetzung des Prototypens und die klare Orientierung an der Referenzarchitektur wird ein erweiterbares, flexibel einsetzbares System geschaffen, welches darlegt, dass die Entwicklung anhand der Referenzarchitektur möglich ist. Der Standardprozess ist darüber hinaus mit diesem System abbildbar.

7.5.2 Vorgehen Experteninterview

Die Experteninterviews wurden dabei auf Basis umfangreicher, in dieser Arbeit vorgestellter Literaturrecherchen vorbereitet und hatten die komplette RAI als Grundlage. Der Leitfaden untergliedert sich in verschiedene Themenblöcke, die an den Anforderungen aus Kapitel 7.3 angelehnt sind. Der Leitfaden ist im Anhang in Tabelle 42 dargestellt.

7.5.2.1 Experten

Für die Beantwortung der vorliegenden Fragestellung bzgl. der Evaluation der Referenzarchitektur ist zum einen ein tiefergehendes Verständnis und Erfahrung im Bereich der Entwicklung von Industrie 4.0 Projekten im Bereich der Instandhaltung bzw. Produktion
erforderlich. Zum anderen müssen sich die Personen intensiv mit der RAII auseinander gesetzt und diese für die Entwicklung genutzt haben bzw. an dieser beteiligt gewesen sein. Die befragten Personen besitzen den erforderlichen Expertenstatus bzgl. 4.0 Projekten und weisen Arbeitserfahrungen im Umgang mit der RAII auf. Nachfolgend werden die Personen vorgestellt.

7.5.2.2 Vorgehen qualitative Inhaltsanalyse

Nach dem Ablaufmodell wird zuerst eine Analyse des Ausgangsmaterials durchgeführt, um zu entscheiden, was hieraus interpretierbar ist. Dazu werden im Wesentlichen drei Analyseschritte unterschieden:

- **2. Analyse der Entstehungssituation**: Beschreibung, unter welchen Bedingungen das Material produziert wurde, z. B. hinsichtlich der Zielgruppe, des soziokulturellen Hintergrunds und der konkreten Entstehungssituation.
- **3. Die Beschreibung der formalen Charakteristika des Materials**: Beschreibung der Form, in der das Material vorliegt.

Nachdem das Ausgangsmaterial bestimmt, untersucht und beschrieben wurde, wird in den nächsten Schritten die Fragestellung der Analyse festgelegt. Damit wird bestimmt, was aus dem
Text herausinterpretiert werden soll (Mayring, 2010b, S. 58). Diese Analyse untergliedert sich in folgende Schritte:

- **4. Richtung der Analyse**: Hier soll bestimmt werden, was in den gesammelten Daten untersucht wird. Wird ein Gegenstand untersucht, den Experten beschreiben, oder wird der Experte an sich untersucht, um auf die Intention des Experten oder auf die Wirkung von etwas auf diesen Experten zu schließen.

- **5. Die theoriegeleitete Differenzierung der Fragestellung**: Bei diesem Schritt soll auf Basis von bestehenden Theorien die Fragestellung differenziert werden. Hierzu muss geklärt werden, an welche Theorien oder Forschung die Fragestellung der Analyse geknüpft ist bzw. auf welchen sie aufbaut, und wie diese Fragestellung weiter unterteilt werden kann.

Tabelle 37 gibt eine Übersicht der ersten fünf Schritte der Inhaltsanalyse und deren Ausprägung im Fall der Evaluation der RAII. In der linken Spalte ist der Schritt mit der jeweiligen Nummerierung genannt, in der rechten Spalte wird der Schritt in Hellgrau kurz zusammengefasst. Unter dieser Zusammenfassung wird die Ausprägung des jeweiligen Schrittes in dieser Evaluation der RAII beschrieben.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schritt</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

(4) Richtung der Analyse: Was wurde analysiert? Inhalt im Text, Analyse des Verfassers (Sprecher), Analyse der Wirkung des Verfassers (Sprecher) auf den Rezipienten: Ziel der Analyse ist die Evaluierung der Referenzarchitektur durch die Benutzung der Aussagen bzgl. vorab definierter Kategorien/Anforderungen und offenen Fragen durch die befragten Personen. Durch die Interviews sollen die Experten dazu angeregt werden über ihre Benutzung der Referenzarchitektur zu reflektieren und diese genau zu beschreiben. Sie sollen ihre Erfahrung der Nutzung anhand der einzelnen Fragen widergegeben und diese bei bestimmten Fragen bewerten.

(5) Theoretische Differenzierung der Fragestellung: Theoretische Verortung des Zwecks der Analyse: Die Erstellung der Referenzarchitektur hat den Zweck die Entwicklung von IISs zu erleichtern. Durch die Neuartigkeit dieser Art von Referenzarchitektur und ihrer Darstellung sollen die Benutzung und die Eigenschaften der Referenzarchitektur untersucht werden. Dazu sollen insbesondere folgende Unterteilung anhand des Inhalts analysiert werden:

- Inwiefern erfüllt die Referenzarchitektur die am Anfang der Erstellung festgelegten Anforderungen (vgl. Kapitel 7.3)?
- Wie sind die Erfahrungen der Industrie 4.0 Experten mit der Arbeit der Referenzarchitektur?
- Lassen sich aufgrund der Erfahrungen Verbesserungen der Referenzarchitektur ableiten?
- Eignet sich die Referenzarchitektur dazu die Entwicklung zu erleichtern und Domänenwissen bereit zu stellen?

Tabelle 37: Schritte 1-5 des allgemeinen Ablaufmodells nach Mayring angewandt auf die Evaluation der RAII

Quelle: Eigene Darstellung in Anlehnung an Mayring (2010b, S. 62)

Als erster Teilschritt werden bei der Bestimmung des Ablaufmodells die Analyseeinheiten festgelegt, um die Präzision der Inhaltsanalyse zu erhöhen. Diese Analyseeinheiten werden nach Mayring (2010b, S. 61) in folgende Kategorien unterteilt:

Die Kodiereinheit legt fest, welches der kleinste Materialbestandteil ist, der ausgewertet werden darf, was der minimale Textteil ist, der unter eine Kategorie fallen kann.

Die Kontexteinheit legt den größten Textbestandteil fest, der unter eine Kategorie fallen kann.

Die Auswertungseinheit legt fest, welche Textteile jeweils nacheinander ausgewertet werden.‘‘ (Mayring, 2010b, S. 61)

Als Kodiereinheit wird bei der Evaluation der Referenzarchitektur ein Satz bzw. eine Aussage des Interviewten verwendet, der eine Anforderung oder Eigenschaft beschreibt oder bewertet.

Zusammenfassung: Ziel dieser Analyse ist es, das Material so zu reduzieren, dass die wesentlichen Inhalte erhalten bleiben, durch Abstraktion einen überschaubaren Corpus zu schaffen, der immer noch Abbild des Grundmaterials ist.

Explikation: Ziel der Analyse ist es, zu einzelnen fraglichen Textteilen (Begriffen, Sätzen, ...) zusätzliches Material heranzutragen, das das Verständnis erweitert, das die Textstelle erläutert, erklärt, ausdeutet.

Strukturierung (deduktive Kategorienanwendung): Ziel der Analyse ist es, bestimmte Aspekte aus dem Material heraus zu filtern, unter vorher festgelegten Ordnungskriterien einen Querschnitt durch das Material zu legen oder das Material aufgrund bestimmter Kriterien einzuschätzen.“ (Mayring, 2010b, S. 67)

Für die Interviews wurde anschließend auf die Analysetechnik skalierende Strukturierung als Spezialform der Strukturierung zurückgegriffen. Diese Art der Strukturierung will zu einzelnen Einschätzungsdimensionen Ausprägungen in Form von Skalenpunkten definieren und das Material daraufhin einschätzen (Mayring, 2010b, S. 99f). Die Strukturierung basiert daher auf im Vorfeld festgelegte Kategorien, die sich im Kontext der durchgeführten Interviews aus den im Vorfeld definierten Anforderungen an die RAII ergeben (vgl. 7.3). Dabei werden Aussagen in den jeweiligen Interviews den Kategorien (hier Anforderungen) zugeordnet und dabei zusätzlich mit einer Zustimmungsausprägung bewertet. Zur Kodierung der untersuchten Interviews wurde als Einschätzungsdimension die Zustimmung bzw. Ablehnung zu einer Anforderung ausgewählt, da die Erfüllung der jeweiligen Anforderungen durch die RAII durch

<table>
<thead>
<tr>
<th>Zustimmungsausprägung</th>
<th>Definition</th>
<th>Ankerbeispiel</th>
<th>Kodierregeln</th>
</tr>
</thead>
</table>
| Z1: Volle Zustimmung | Komplette Erfüllung der Anforderung. | „ja, ein ganz klares ja“ (11-P2-01)
„ja das kann man so sagen“ (14-P1-01)
„Also es war für mich die wesentlichste Hilfestellung innerhalb des Projektes“ (01-P3-01) | Wenn einer Anforderung zugestimmt wird und keine Einschränkung in der Aussage enthalten ist (sonst Zustimmung mit Vorbehalt)- |
| Z2: Zustimmung mit Vorbehalt | Die Anforderung ist unter bestimmten Voraussetzungen erfüllt bzw. in bestimmten Grenzfällen nicht erfüllt | „Ja [...] aber, auf der Entwicklerseite wurde nicht alles so verstanden, wie es von den entsprechenden Partnern gewünscht wurde.“ (08-P3-01) | Die Aussage signalisiert Zustimmung hat aber Einschränkungen. |
| Z4: Bewertung nicht erschließbar | Keinerlei Aussage seitens der befragten Person möglich | „Das kann ich nicht beurteilen.“ (07-P2-01) | Wenn die Erfüllung/Nicht-Erfüllung einer Anforderung nicht beurteilt werden kann. |

Tabelle 38: Übersicht Kodierung mit Ankerbeispiel und Kodierregeln
Quelle: Eigene Darstellung

Die Ausprägungen der Zustimmung wird über eine einfache Skalierung mit vier Zustimmungsausprägungen definiert, die zur Grundlage der Kodierung der jeweiligen Zustimmung dienen. Die vier gewählten Kategorien sind:

- (Z1): Volle Zustimmung,
- (Z2): Zustimmung mit Vorbehalt,
- (Z3): Ablehnende Haltung und
- (Z4): Bewertung nicht erschließbar.

Die Zustimmungsausprägungen sind das Ergebnis eines iterativen Prozesses. Hierbei wurde das Analysematerial mehrmals durchlaufen, wobei Anpassungen an den Dimensionen der Zustimmungsausprägung durchgeführt wurden.

Im nächsten Schritt werden zu jeder Dimension (Z1-Z4) Definitionen und ein Ankerbeispiel bereitgestellt. Außerdem werden Kodierregeln festgelegt, mit denen die Zuordnung der einzelnen Aussagen im Zweifel durchgeführt wird. Die Informationen sind in Tabelle 38 dargestellt.
7.5.2.3 Analyse der Ergebnisse

Abbildung 44: Auswertung Evaluation Experteninterview nach einzelnen Personen
Quelle: Eigene Darstellung

Im Ganzen ist klar zu erkennen, dass die Referenzarchitektur die an sie gestellten Anforderungen erfüllt. Lediglich bei der Anforderung „Unterstützung des Entwicklungsprozesses“ ist die Zustimmung nicht so stark ausgeprägt. So wird z. B. bestätigt, dass das Abstraktionsniveau der RAI für Nicht-Entwickler in Ordnung ist („das Abstraktionsniveau war für nicht-Entwickler völlig in Ordnung“ (07-P3-01)). Für die Entwicklung einer Instanz sind jedoch noch Spielräume vorhanden, die nochmals näher spezifiziert werden müssen. „Für Entwickler ist das Abstraktionsniveau wahrscheinlich schon zu allgemein. Bei der eigenen Entwicklung ist es dann auch so gekommen, dass es noch ein paar Fragestellung gab [...]“ (06-P3-03). Dieser Gegensatz ist zu erwarten gewesen, da sich die RAI, wie viele Referenzarchitekturen, im Spannungsfeld zwischen Abstraktion, Anwendung auf vielen Einsatzgebieten und Detaillierung, spezifische Anpassungen auf einen Anwendungsfall, bewegt.
Auch in Punkt 4 „Einfache Verständlichkeit“ ist das Abstraktionsniveau ausschlaggebend für die unterschiedlichen Aussagen. Hier stehen die Aussagen verschiedener Stakeholder in Widerspruch zu den im vorherigen Abschnitt getätigten Aussagen „Ja [das Abstraktionsniveau ist angemessen], aber für Nicht-Entwickler, bei denen die Prozesse im Vordergrund stehen, kann man bestimmte Details reduzieren“ (07-P1-01).

Hervorzuheben ist, dass die RAI bei der Anforderungsanalyse der beteiligten Unternehmen durchweg geholfen hat, die eigenen Anforderungen zu verstehen ebenso wie auch die zur Verfügung gestellten generischen Anforderungen. Weiter wird hervorgehoben, dass man mit der Referenzarchitektur Anforderungen „gut priorisieren und sich auf die wesentlichen Anforderungen konzentrieren und diese leicht identifizieren“ (03-P1-01) kann, wobei hier angemerkt wird, dass ein Grundverständnis der Domäne (Instandhaltung) vorhanden sein muss.

7.6 Zusammenfassung

8 Fazit und Ausblick

8.1 Einleitung

8.2 Zusammenfassung und Ausblick

Forschungsfrage 1: Welche Anforderungen existieren an Informationssysteme zur Unterstützung der Instandhaltung in Literatur und Praxis

Auf Basis der Namen für verschiedene Instandhaltungsorten und verschiedene Produktions- und Instandhaltungssysteme konnte eine zielgerichtete Literaturrecherche bzgl. der Anforderungen an existierenden Systemen zur Unterstützung der Instandhaltung durchgeführt werden. Publikationen wurden in folgenden Fällen als relevant für die Beantwortung dieser Frage eingestuft: Entweder behandelten die Publikationen Instandhaltungslösungen in Form von Prototypen, wodurch es möglich war, implizit Anforderungen aus diesen Lösungen zu extrahieren. Oder die Publikationen behandelten Vorgehensweisen bzw. Frameworks für Instandhaltungslösungen, aus denen ebenfalls Anforderungen an IT-Lösungen extrahiert werden konnten. Weiter wurden auch Publikationen identifiziert, welche explizit Anforderungen an bestimmte Instandhaltungssysteme behandelten. Mehrere Aspekte ergaben sich durch diese Literaturrecherche:

- Insgesamt konnten 56 Paper nach Abzug doppelter Nennungen identifiziert werden die Anforderungen an Instandhaltungssysteme behandeln oder aus denen sich Anforderungen an Instandhaltungssysteme ableiten lassen.
62,5 % der Publikationen behandelten direkt spezifische Systeme der Instandhaltung und stellten diese vor.

Es konnten systemübergreifend insgesamt 135 Anforderungen in der Literatur identifiziert werden und diese den folgenden Kategorien zugeordnet werden:

- Technischer Kundendienst und Teleservice,
- Remote Maintenance,
- Auftragsmanagement und -informationen,
- Wartungsmanagement,
- Instandhaltungsplanung, -optimierung und Risikoklassifikation,
- Anlagenübersicht und -information,
- Ersatzteilmanagement,
- Mitarbeitermanagement,
- Kommunikation,
- Mobiles System,
- (Historische) Auswertungen,
- Fehlermanagement,
- Condition Monitoring und Predictive Maintenance,
- Dokumentenmanagement,
- Wissensmanagement,
- Handlungsempfehlungen,
- Externe Dienste und
- Funktionen zur Systemadministration.

Viele der Anforderungen wurden system- und publikationsübergreifend erwähnt, sodass bestimmte Anforderungen deutlich häufiger genannt wurden.

Aufgrund der Häufigkeit von bestimmten Anforderungen konnte auf deren Wichtigkeit geschlossen werden, ebenfalls darauf, ob diese als generisch angesehen werden können.

Die am häufigsten genannten Anforderungen waren das Condition Monitoring, das Auftragsmanagement, Fehlerhistorien sowie die Übersicht der verfügbaren Anlagen mit dazugehörigen Anlageninformationen.

Manche dieser Anforderungen (z. B. Condition Monitoring) sind typischerweise mit einem speziellen System verbunden, wurden jedoch auch sehr häufig in Publikationen genannt, die nicht dieses spezielle System behandelten.

Bestimmte Systeme wurden häufiger in der Literatur so behandelt, dass sich Anforderungen aus ihnen ableiten lassen. Dazu gehören insbesondere MSS, CMS, EMS sowie Systeme, die Predictive Maintenance und Remote Maintenance behandelten.

Als Ergebnis konnte eine umfassende Analyse der Anforderungen an Instandhaltungssysteme erstellt werden, wodurch die häufigsten relevantesten Anforderungen aus Wissenschaft und Praxis identifiziert und kategorisiert werden konnten. Daraus wurden generische und optionale Anforderungen an ein IIS abgeleitet.

Das IIS wird durch seine Funktionen definiert und deren Ausprägungen sind entscheidend für die Unterstützung der Instandhaltung. Weiterhin stellen funktionelle Module einen elementaren Teil einer Referenzarchitektur dar und bilden die Basis zur Verbindung mit dem zu entwickelnden System. Durch die Module wird konkret festgelegt welche Elemente die Referenzarchitektur enthalten und umfassen muss.

Forschungsfrage 2: Welche funktionalen Module werden für ein integriertes Informationssystem benötigt, welches effektiv die Instandhaltung unterstützt?

Forschungsfrage 3: Wie sieht eine Referenzarchitektur aus, die die Entwicklung eines integrierten Informationssystems zur Unterstützung der Instandhaltung erleichtert?

Auf Basis des Vorgehens und der Forschungsfragen 1 und 2 wurde die Darstellungsort und Ausprägung der Referenzarchitektur bestimmt. Es wurde eine Sichtendarstellung der Architektur als Darstellungsort gewählt, da auf diese Weise verschiedene Aspekte des Instandhaltungssystems hervorgehoben und diskutiert werden können, ohne die Komplexität der Darstellung zu steigern. Zusätzlich wurde eine nicht formale Darstellung innerhalb der Sichten gewählt, sodass kein Expertenwissen notwendig ist, um die Referenzarchitektur zu verstehen und anhand dieser zu diskutieren. Dadurch fördert die RAII die domänenübergreifende Zusammenarbeit mehrere Stakeholder, wodurch auch die Entwicklung erleichtert wird. Des Weiteren wurde Domänenwissen, ein einheitliches Vokabular und Anforderungen an ein IIS in die RAII und deren Sichten inkludiert. Die Sichten unterteilen sich dabei wie folgt:

- **Funktionale Sicht:** Diese beinhaltete die aus FF2 entstammenden logischen Module, erklärt diese und zeigt grafisch und inhaltlich die Verbindung mit den jeweiligen generischen und optionalen Anforderungen an. Durch diese Art der Darstellung ist die Verbindung der Module mit den jeweiligen Anforderungen leicht erkennbar und eine Nachverfolgbarkeit und Auswahl ebenjener wird ermöglicht.
- **Verteilungssicht:** Sie stellt die jeweiligen Module so dar, dass erkennbar ist, auf welcher Entität sich die Intelligenz des zu entwickelnden Informationssystems befinden soll. Hierdurch wird der Aspekt der Dezentralität, der insbesondere im IoT-Umfeld zunehmend wichtig ist, betont und als Planungsaspekt mit in die Referenzarchitektur miteinbezogen.
- **Prozesssicht:** Diese Sicht stellt einen Referenzprozess und nebengelagerte Prozesse dar, die durch das IIS abgedeckt werden müssen. Durch diese Sicht kann der Prozess, der durch das Informationssystem unterstützt wird, mit den nötigen Modulen, Variationspunkten und Endgeräten abgeleitet werden.
• Zusätzlich werden die **Use Cases** dargestellt, die der Entwicklung des Systems zugrunde liegen und eine möglichst umfassende Nutzung des Systems aufzeigen sollen. Diese bilden die Basis der Prozesssicht.

Weiter sind die vorgestellten Resultate im Sinne der gestaltungsorientierten Forschung nach Hevner et al. (2004, S. 87) neuartig, da außer der RAII keine Referenzarchitektur für IIS existiert. Daneben sind die Ergebnisse im Sinne eines Empfehlungscharakters und über die untersuchten Unternehmen hinweg verallgemeinerbar.

Mit diesem Ergebnis wurde gezeigt, wie eine Referenzarchitektur aussehen muss, welche die Entwicklung von IIS unterstützt. Dazu wurde aufgezeigt, wie ein Vorgang zur Erstellung dieser Art von Referenzarchitekturen, deren Klassifikation und die Einordnung in die wissenschaftliche Literatur über Referenzarchitekturen erfolgen kann.
8.3 Implikationen für die Praxis und die Forschung

8.3.1 Theoretischer Beitrag und Forschungsergebnisse

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Beschreibung</th>
<th>Referenzarchitektur eines integrierten Informationssystems für die Instandhaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernkomponente</td>
<td>Für was ist das System? Welche Anforderungen und Ziele spezifizieren das Artefakt? Welcher Geltungsbereich gilt für das Artefakt?</td>
<td>Die RAI soll die Entwicklung von IIS sowie Teilsystemen erleichtern. Der Anwendungsbereich betrifft alle Informationssysteme zur Unterstützung der Instandhaltung im Kontext der industriellen Produktion.</td>
</tr>
<tr>
<td>5) Nachprüfbare Aussagen</td>
<td>Die zugrundeliegende Theorie, die das Design des Artefakts ermöglichen bzw. dessen Ergebnis oder Methode rechtfertigen.</td>
<td>Die zugrundeliegende Theorie, die das Design des Artefakts ermöglichen bzw. dessen Ergebnis oder Methode rechtfertigen.</td>
</tr>
<tr>
<td>6) Rechtfertigbares Wissen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7) Umsetzungshinweise (causa efficiens)

8) Beispielhafte Instanzierung

| Eine physische Implementierung des Artefakts, welche die Darstellung der Theorie erleichtern kann. Entweder zur Demonstration oder zum Testen der Theorie. | Die praktische Implementierung der Referenzarchitektur wurde realisiert und ausgiebig in Kapitel 7.5.1 diskutiert. |

Tabelle 39: Elemente einer Designtheorie

Quelle: Gregor und Jones (2007, S. 322) in der Übersetzung nach Offermann et al. (2010, S. 289ff)

8.3.2 Praktischer Beitrag der Forschungsergebnisse

Beim gesamten Entwicklungszyklus ermöglicht die RAI die Diskussionen für die domänenübergreifende Zusammenarbeit zu fördern und sich auf eine gemeinsame Sicht des zu entwickelnden Systems zu einigen. Durch die einfache Darstellung und die gemeinsame Begriffswelt können interdisziplinäre Entwicklungen mit höherer Partizipation und weniger Missverständnissen durchgeführt werden. Der Forderung der domänenübergreifenden Zusammenarbeit zwischen Fachabteilung und IT-Abteilung bzw. Entwicklern wird mit der vorliegenden Referenzarchitektur Rechnung getragen.

Softwareentwickler können wichtige Architekturentscheidungen und konkrete Implementierungsentscheidungen auf Basis der wohldefinierten Referenzarchitektur treffen. Durch die Blaupause der Referenzarchitektur können solche Entscheidungen auf Grundlage genauerer Informationen und einem Gesamtüberblick des Informationssystems bzw. potentiell zu entwickelnden weiteren Systemen getroffen werden. Des Weiteren können domänenfremde Softwareentwickler durch die bereitgestellten Informationen über die Domäne der Instandhaltung die Beweggründe mancher Anforderungen besser verstehen und Architekturentscheidungen mit größerer Sorgfalt treffen. Die enthaltenen Informationen über potentielle Produktions- und Instandhaltungssysteme lassen weiterhin eine genauere Aufnahme
der Situation vor Ort bei der Entwicklung von neuen Systemen zu, da eine genauere Landkarte der IT-Architektur gezeichnet werden kann. Dies lässt insbesondere eine frühzeitige Schnittstellenplanung zu, da die relevanten Systeme vorab bekannt sind.

Ein weiterer Punkt betrifft nicht die Entwicklung direkt, sondern die Auswahl von IT-Lösungen im Unternehmen zur Unterstützung der Instandhaltung. Durch den integrativen Blick auf Instandhaltungssysteme können zukünftige Informationssysteme so ausgewählt werden, dass sie in das Konzept der Referenzarchitektur passen und so integrierbar sind, dass zukünftige Erweiterungen aus der Referenzarchitektur mit den neuen Systemen möglich sind.

Zusammengefasst kann die Entwicklung anhand der Referenzarchitektur beschleunigt werden, da die Zusammenarbeit zwischen Stakeholdern gefördert, die Qualität und Geschwindigkeit der Anforderungsberhebung gesteigert wird, Blaupausen für die Ableitung von konkreten Architekturen vorhanden sind und die RAI einen roten Faden für die Entwicklung von IIS liefert. Nicht zuletzt konnte der praktische Beitrag auch durch die Entwicklung verschiedener Prototypen bei unterschiedlichen Unternehmen dargelegt werden (siehe u. a. Kapitel 7.5).

<table>
<thead>
<tr>
<th>Forschungsartefakt</th>
<th>Theorie</th>
<th>Praxis</th>
</tr>
</thead>
</table>
| FF1 Anforderungen an ein IIS aus Forschung und Praxis | • Systematisierung von Instandhaltungsarten, - konzepten und -systemen
• Latenturteilsbericht und Vergleich von Anforderungen aus Literatur und Praxis
• Ableitung von genetischen Anforderungen | • Anforderungsbericht für Instandhaltungssysteme & Unterstützung der Anforderungsauflistung für IIS
• Domänenarten für die Instandhaltung |
| FF2 Funktionele Module für ein IIS | • Systematische Unterteilung eines integrierten IIS
• Herstellung einer konzeptionellen Verbindung von bestehenden Instandhaltungssystemen zu einem IIS
• Unterteilung in generische, in den optionalen, Module eines IIS | • Potentielle Ableitung & Vergleich von Anforderungen an ein IIS
• Förderung der dominanzübergreifenden Zusammenarbeit bei der Erstellung von IIS
• Unterstützung der Entwicklung eines IIS bzw. von einzelnen Komponenten
• Unterstützung bei dem Einkauf und Komposition von Instandhaltungsservices
• Die Entwicklung von mehreren Prototypen auf Basis der Referenzarchitektur |
| FF3 Referenzarchitektur für ein IIS | • Systematisierung des Referenzarchitekturbegriffs
• Klassifizierungssystem für Referenzarchitektur
• Methode zur Etablierung Evaluierung von Referenzarchitekt (Designtheorie)
• Artefakt RAI
• Forderung bessere Verständigung von IIS | |

Abbildung 46: Beitrag Forschung und Praxis
Quelle: Eigene Darstellung

Auf dieser Abbildung ist ersichtlich, dass Forschungsfrage 1 vor allem Beiträge für die Instandhaltung bzw. Instandhaltungs- und Produktionssysteme bietet. Dieses Wissen enthält einen theoretischen, wie auch praktischen Beitrag und lässt sich durch generische und optionale Anforderungen darstellen lässt.
8.4 Limitationen

In der vorliegenden Arbeit wurde eine Referenzarchitektur für ein integriertes Informationssystem zur Unterstützung der Instandhaltung konzipiert und deren Nützlichkeit bei der Erleichterung der Entwicklung von IIS durch eine ausführliche Evaluation demonstriert. Es existieren jedoch einige Limitationen bei der vorliegenden Arbeit und deren Vorgehen.

Die Referenzarchitektur wurde auf Basis von Anforderungen aus Wissenschaft durch Literaturrecherche und Anforderungen von vier Unternehmen aus der Praxis erstellt. Obwohl die Unternehmen große Unterschiede bei der Instandhaltung sowie in Größe und Geschäftsfeld aufweisen, können die gewonnen Informationen nicht sicher verallgemeinert werden. Dies bedürfte einer deutlich größeren Anzahl an untersuchten Unternehmen.

Weiterhin ist die entwickelte Referenzarchitektur nur eine mögliche Art, die Entwicklung zu erleichtern. Es kann jedoch keinerlei Aussage darüber getroffen werden, ob dies die bestmögliche Referenzarchitektur darstellt. Ähnliche oder andere Lösungen sind denkbar.

Eine weitere Limitation bei der Übertragbarkeit der Ergebnisse gilt der Domäne der Instandhaltung. Die entwickelte Referenzarchitektur zielt auf die Instandhaltung von Produktionsanlagen ab. Denkbar ist, dass die Ergebnisse auf andere Bereiche übertragbar sind, jedoch war dies nicht Gegenstand der vorliegenden Arbeit.
8.5 Ausblick

Ein weiterer Aspekt betrifft die Ausgestaltung von Teilaspekten der Architektur, so könnten Ontologien oder Teilsysteme für die generischen Komponenten untersucht und entwickelt werden. Erste Ansätze existieren hierzu in der wissenschaftlichen Literatur, sie behandeln jedoch oftmals nur isolierte Anwendungsfälle.

Damit verbunden ist die Bereitstellung von Referenzarchitektur für Predictive Maintenance Lösungen. Standardtemplates und Datenstrukturen für die schnelle Bearbeitung durch entsprechende Algorithmen könnten die Akzeptanz und die Implementierungsgeschwindigkeit deutlich steigern. Bisher wurden diese Aspekte jedoch nicht praxisgerecht aufbereitet und ergründet.

Vor dem Hintergrund dieser Arbeit wird die Entwicklung von Informationssystemen zur Instandhaltung besonders bei den Aspekten Predictive Maintenance, dezentrale Architekturen und AR ein spannendes Forschungsfeld bleiben. Die Arbeit und deren Ergebnisse ermöglichen den Blick auf die wesentlichen umfassenden Aspekte solcher Lösungen zu legen, ohne Freiheiten bei der Implementierung zu reduzieren.
Referenzen

architecture for cloud systems. REQUIREMENTS ENGINEERING, 21(2), 225–249.

Palo Alto, USA.

Stenström, C., Parida, A., Kumar, U., Galar, D. (2013). Performance indicators and

Voigt, K.-I., Steinmann, F., Bauer, J., Dremel, A. (2013). Condition monitoring as a key

Auflistung der relevanten Vorveröffentlichungen

Anhang

8.6 Fragebogen Anforderungsaufnahme

Der vorliegende Fragebogen ordnet die Fragen in vier Priorisierungsstufen ein. Diese Priorisierungsstufen sind wie folgt definiert:

<table>
<thead>
<tr>
<th>Priorisierung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorisierung 1 - Muss:</td>
<td>Die Anforderung muss implementiert werden, sonst ist bietet das System keinen Mehrwert/Mindestanforderung</td>
</tr>
<tr>
<td>Erklärung Prio 2 - Soll:</td>
<td>Das System würde durch die Umsetzung dieser Anforderung deutlich effizienter/effektiver</td>
</tr>
<tr>
<td>Erklärung Prio 3 - Kann:</td>
<td>Es wäre gut, wenn das System diese Eigenschaft besitzen würde, es ist aber kein Muss</td>
</tr>
<tr>
<td>Erklärung Prio 4:</td>
<td>Keine Priorität</td>
</tr>
</tbody>
</table>

Tabelle 40: Priorisierung von Anforderungen
Quelle: Eigene Darstellung

<table>
<thead>
<tr>
<th>Nr. FB.</th>
<th>Anforderung</th>
<th>Prio 1</th>
<th>Prio 2</th>
<th>Prio 3</th>
<th>Prio 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Detaillierte Fehlermeldung mit Störungsart im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fehlerkategorisierung nach Schwere und Dringlichkeit im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mehrsprachigkeit von Fehlermeldungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Maschine sendet automatisch Fehlermeldung an konfigurierbaren Empfänger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fehlermeldung an der Maschine auslesbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Detaillierte Fehlermeldung komplett auf der Maschine vorhanden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fehlerlokalisation auf 3D Modell der Anlage im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fehlerdatenbank mit Suchfunktion im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fehler bzw. Wartungsbedarf können manuell in das System eingetragen werden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(Mobiler) Zugriff auf relevante Zustandsdaten der Maschinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Anzeige Betriebstemperaturen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Maschinenplänen (Steuerungspläne, SPS) im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Bauteilübersicht der Anlagen im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Beschreibung und Informationen zu den anlagenspezifischen Bauteilen im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Bauteilhistorie pro Anlage im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3D Darstellung der Anlage im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. FB.</td>
<td>Anforderung</td>
<td>Prio 1</td>
<td>Prio 2</td>
<td>Prio 3</td>
<td>Prio 4</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>17</td>
<td>Informationen zur Produktionsplanung/Anlagenbelegung im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Link zum Kataster der Hilfs- und Betriebsstoffe einer Anlage im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Softwareversionen der Maschine im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Instant-Feedback zum Erfolg der Reparatur (durch Kunde und/oder Maschine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Kontaktdaten für Service des Herstellers/Serviceanbieters der Anlage im System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Anzeige aktuelle Störungen mitsamt Störungsmeldung pro Maschine im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Maßnahmenhistorie (Instandhaltungsmaßnahmen) pro Anlage im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Synchronisierung der Maßnahmenhistorie innerhalb einer Schicht mit einem evtl. vorhandenen elektronischen Schichtbuch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Anzeige/Berechnung produktionsfreier Zeiten im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Auswertung und Anzeige der aktuellen und mittleren Laufzeiten der Anlagen (Stördauer/Anzahl Störungen etc.) im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Überwachung/Protokollierung relevanter Maschinendaten und Zustände in Form eines Dashboards o. Ä. im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Änderungen an der HW-/SW-Konfiguration einer Anlage führen zu Benachrichtigungen durch das System an zuständige Personen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Anlagenübersicht mit Statusinformation im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Intranetzzugang bzw. Zugang zu relevanten firmeninternen Webanwendungen/Informationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Wiki im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Anlagenplan (örtlich) im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Navigation innerhalb des Standortes im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Handlungsleitfäden/Checklisten für Instandhaltungsaufgaben im System verfügbar (Hinzufügen, Speichern, Editieren, Anzeigen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Bearbeitung, Hinzufügen von Dokumenten zu Handlungsleitfäden, Checklisten, Wiki (PDF, Word, etc.) im System möglich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Handlungsleitfäden in einzelnen protokollierten Schritten abarbeitbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Darstellung, Abarbeitung und Speicherung der Handlungsleitfäden in Form von Entscheidungsbäumen möglich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Fehlerunabhängige Standard-Handlungsempfehlungen verfügbar/bearbeitbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Automatische Erstellung von Handlungsleitfäden anhand des Vorgehens des Instandhalters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. FB.</td>
<td>Anforderung</td>
<td>Prio 1</td>
<td>Prio 2</td>
<td>Prio 3</td>
<td>Prio 4</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>41</td>
<td>Mehrsprachigkeit Handlungsempfehlungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Handlungsleitpfaden zur Fehlerdiagnose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Abweichungen von Handlungsempfehlungen per Bestätigung im System zulassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Verfügbare Ersatzteile (intern)/Bestands situation mit Lagerort im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Anzeigen verfügbärer Ersatzteile (extern Bezugsquelle - Händler/Hersteller) im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Verbindung benötigte Ersatzteile zu Instandhaltungsmaßnahmen im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Nachbestellen von Ersatzteilen wird durch das System ermöglicht (fehlende Ersatzteile oder z. B. nach Verbrauch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Proaktives Bestellen der Ersatzteile durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Anzeige verfügbare Werkzeuge intern mit Lagerort im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Verbindung benötigte Werkzeuge zu Instandhaltungsmaßnahmen im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Anleitungen zur Benutzung und Beschreibung des Werkzeuges im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>(Automatische) Priorisierung der abzuarbeitenden Aufträge/Tätigkeiten durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Manuelle Auftragsverteilung/Priorisierung der abzuarbeitenden Aufträge/Tätigkeiten durch Management im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Rückstellung Auftrag bei fehlenden Ersatzteilen durch das System [Wiedervorlagedatum durch Instandhalter]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Mitarbeiter können im System offene Aufträge selbst auswählen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Automatische Benachrichtigung zuständiger Personen über Auftrags eingänge durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Automatische Dokumentation/Protokollierung der Maßnahmen der Instandhaltung (Wartung und Reparatur) und dazugehörigen Schritte der Handlungsleitfäden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Auswertung mit anschließender Anzeige eines Berichts über die durchgeführten Maßnahmen der Instandhaltung nach Beendigung der Tätigkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Manuelle Dokumentationsmöglichkeit nach abgearbeiteten Auftrag durch das System gegeben</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Protokollierung der auftragsbezogenen Kommunikation durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Anzeige offener Aufträge durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Auftrags historie vom System darstellbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Abfrage und Anzeige der Status der Instandhaltungsaufträge durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Auftragsmanagement in Verbindung mit internem ERP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. FB.</td>
<td>Anforderung</td>
<td>Prio 1</td>
<td>Prio 2</td>
<td>Prio 3</td>
<td>Prio 4</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>64</td>
<td>Auswählbare Eskalation bei laufenden Aufträgen an nächsthöhere Stufe im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Automatische (zeitlich abhängige) Eskalation bei laufenden Aufträgen an nächsthöhere Stufe durch System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Eskalationsmöglichkeit mitsamt Informationsweitergabe an Hersteller oder Fachfirma in System integriert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Gesetzliche Regelungen zu Instandhaltungsauftrag im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Anzeigen der Verfügbarkeit/aktuelle Zuweisung/der Instandhalter im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Speicherung von Mitarbeiterdaten in Bezug auf Schulungen, Zulassungen, Fähigkeiten für bestimmte Maschinen mit Ablaufdatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Annehmen, Ablehnen von Instandhaltungsaufträgen durch Instandhalter im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>GPS zur Mitarbeiterkoordination/Anzeige im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Zuweisung von Zuständigkeit von Personen bzw. Personengruppen für bestimmte Anlagen im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Erfassung der Arbeitszeit durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Anonymisierungsfunktion der Mitarbeiter für das Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Predictive Maintenance (kontinuierlich lernendes, vorausschauendes System)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Dedizierte Wartungsberichte sind im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Synonymfunktion/Wörterbuch mit Lernfunktion im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Wartungshistorie im System darstellbar und auswertbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Wartungsbenachrichtigung wird durch das System gesendet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Berechnung des Wartungsplans durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Wartungsstand wird durch das System zurückgesetzt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Wartungsgrenzen von Anlagen/Bauteilen werden durch das System berechnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Wetterdaten (Windrichtung, Temperatur) werden durch das System abgerufen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Übertragung von Informationen in interne Systeme (z.B. PDM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Personalisierungsfunktion bei Darstellung (Geräteeinstellungen, Darstellung etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Automatische Selbstwartung/-reparatur der Maschine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Condition Monitoring an der Anlage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>OPC UA Schnittstelle zum Empfang bzw. Senden von Maschinendaten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Pluginkonzept zur Integration von diversen Schnittstellen und Maschinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Freihändige Bedienung des mobilen Endgerätes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. FB.</td>
<td>Anforderung</td>
<td>Prio 1</td>
<td>Prio 2</td>
<td>Prio 3</td>
<td>Prio 4</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>113</td>
<td>Augmented Reality Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Remotesteuerung Anlage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Remotesteuerung Prozessgeräte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Remotesteuerung Bedienpulte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Manuelle Freigabe an Maschine für Remotezugriff erforderlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Mobiler Zugriff auf SPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Messengerfunktionalität (senden und Empfangen von Nachrichten mitsamt Bild, Ton und Video) im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Mailfunktionalität (Zugang zu internen Mailservice, Schreiben, Senden, Empfangen von Mails) im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Adressbuch/Kontakte im System verfügbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Aufgabenbezogene Kommunikation ohne Medienbrüche (Messaging, Anrufe aus Anwendung heraus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Scannen der Anlagencodierung und Identifikation im System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Mobiles Endgerät als Telefonersatz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Offline Abzugs möglichkeit von Anlagendaten per mobiliem Endgerät</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Synchronisationsmechanismus zwischen mobiliem Endgerät, Backend sowie Anlage zur Konsistenzhaltung aller Datenbestände</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Installationsmöglichkeit Apps auf mobilen Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Internetfähigkeit des mobilen Endgerätes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Mobiles Arbeiten im Offlinemodus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Verarbeitung audiovisueller Medien (Erstellen, Speichern, Anzeigen von Foto, Video und Audio) durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>GPS zur Navigation und Routenplanung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>(Semi-Automatisierter) Abgleich von Betriebsdaten (z. B. Protokoll Störfälle & Fehlermeldungen) zwischen Anlagenbetreiber und - hersteller durch System ermöglicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Benachrichtigung an den Kunden über Eintreffen des Mitarbeiters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Erfassung von Reisekosten durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Automatische Erstellung von Leistungsberichten durch das System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Freigabe von Handlungsempfehlungen an Kunden durch das System ermöglicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Anzeige von aktuellen Vertragsdaten für Auftrag (Leistungen etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Signierfunktion durch Auftraggeber und Instandhalter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 41: Fragebogen Anforderungserhebung
Quelle: Eigene Darstellung
8.7 Leitfaden Telefoninterview

Leitfaden zur Durchführung der Interviews zur Evaluierung der Referenzarchitektur

<table>
<thead>
<tr>
<th>Datum der Befragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beteiligte Personen</td>
</tr>
<tr>
<td>Aufnahme (Ja/Nein)</td>
</tr>
<tr>
<td>Mitschrift (Ja/Nein)</td>
</tr>
<tr>
<td>Telefoninterview (Ja/Nein)</td>
</tr>
<tr>
<td>Name der befragten Person</td>
</tr>
<tr>
<td>Unternehmen</td>
</tr>
<tr>
<td>Position im Unternehmen</td>
</tr>
<tr>
<td>Wie lange auf dieser Position tätig (in Jahren)</td>
</tr>
<tr>
<td>Erfahrung im Bereich IT-Projekte/Anforderungsaufnahme</td>
</tr>
<tr>
<td>Erfahrung im Bereich Industrie 4.0/Digitalisierung</td>
</tr>
<tr>
<td>Erfahrung im Bereich Architektur</td>
</tr>
</tbody>
</table>

Kategorie | Nr. | Frage (Abkürzungen RC=Ressourcen-Cockpit, RA=Referenzarchitektur) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemein</td>
<td>1</td>
<td>Wie haben Sie mit der Referenzarchitektur gearbeitet?</td>
</tr>
<tr>
<td>Allgemein</td>
<td>2</td>
<td>Haben Sie Kenntnis über weitere offen verfügbare Architekturen für Instandhaltungssysteme? Wenn ja, wie empfinden Sie diese im Vergleich zur RA?</td>
</tr>
<tr>
<td>Allgemein</td>
<td>3</td>
<td>Hilft die RA eine Diskussion über das zu entwickelnde System zu führen? Wenn ja, wie?</td>
</tr>
<tr>
<td>Allgemein</td>
<td>4</td>
<td>Wie empfinden Sie die Darstellung der Referenzarchitektur? War sie leicht verständlich? Für Entwickler, für nicht Entwickler?</td>
</tr>
<tr>
<td>Allgemein</td>
<td>5</td>
<td>Hilft die RA ein logisches, einfach zu kommunizierendes Bild des zu entwickelnden Systems zu vermitteln?</td>
</tr>
<tr>
<td>Allgemein</td>
<td>6</td>
<td>Wie bewerten Sie das Abstraktionsniveau der RA hinsichtlich der Entwicklung des RC? Zu Abstrakt für die Entwicklung oder zu konkret?</td>
</tr>
<tr>
<td>Allgemein</td>
<td>7</td>
<td>Wie bewerten Sie das Abstraktionsniveau der RA hinsichtlich allen Projektbeteiligten (Nicht Entwickler) des RC? Zu Abstrakt für die Entwicklung oder zu konkret?</td>
</tr>
<tr>
<td>Einheitlichkeit</td>
<td>8</td>
<td>Hilft die RA eine einheitliche Domänensprache zwischen den an der Entwicklung beteiligten Personen aufzubauen?</td>
</tr>
<tr>
<td>Einheitlichkeit</td>
<td>9</td>
<td>Hilft die RA dabei ein RC zu entwickeln, welches mit anderen RCs, die auf der RA aufbauen kompatibel ist?</td>
</tr>
<tr>
<td>Einheitlichkeit</td>
<td>10</td>
<td>Hilft die RA sich auf einen generischen Kern, den es umzusetzen gilt, zu fokussieren?</td>
</tr>
<tr>
<td>Anpassung</td>
<td>11</td>
<td>Hilft die RA unternehmensspezifische Anpassungen eines RCs vorzunehmen?</td>
</tr>
<tr>
<td>Anpassung</td>
<td>12</td>
<td>Hilft die RA die Prozesse zu identifizieren bei denen das RC den Instandhalter konkret helfen kann? (unababhängig vom Projekt)</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>13</td>
<td>Hilft Ihnen die RA die (generelle) Anforderungen an ein RC leichter zu verstehen?</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>14</td>
<td>Hilft die RA eigene Anforderungen an ein RC zu verstehen und klarer zu formulieren?</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>15</td>
<td>Hilft die RA um zwischen generischen und optionalen Anforderungen eines an ein RC zu unterscheiden?</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>16</td>
<td>Hilft die Verbindung zwischen Modul und Anforderungen den Entwicklern die Verbindung zw. Anforderungen und technischer Lösung zu erkennen?</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>17</td>
<td>Hilft es einer zielorientieren Diskussion mit den Stakeholdern des Projektes direkt Anforderungen mit den Modulen zu verbinden?</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>18</td>
<td>Hat die die Verbindung von Anforderungen zu Modul bei der Nachverfolgbarkeit von Anforderungen geholfen?</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>19</td>
<td>War die verwendet visuelle Darstellung in der RA hilfreich? Verwenden Sie diese Art der Darstellung auch in anderen Projekten? Wenn Nein, was verwenden Sie stattdessen?</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>20</td>
<td>Haben Sie weitere Anmerkungen zur Referenzarchitektur oder Verbesserungsvorschläge?</td>
</tr>
</tbody>
</table>

Tabelle 42: Leitfaden Telefoninterview

Quelle: Eigene Darstellung