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Abstract

The extremogram is a widely common measure to assess extremal dependence for random processes and is
applicable throughout different fields in extreme value theory. For example, the tail dependence coefficient,
which is often considered in the finance industry, is one of its special cases. We investigate the asymptotic
properties of the empirical version of the extremogram, which is based on a kernel estimator, and assume that
the observations of the random process come from a multidimensional Poisson process inducing a so-called
irregular grid. We present the proof of a central limit theorem for the empirical spatial extremogram in full
detail. In particular, we show that this central limit theorem holds when the underlying distribution of the
random process is that of a Brown-Resnick process with an isotropic dependence function. Moreover, in this
case, we give a new bias corrected version of the empirical extremogram to obtain better convergence rates for
the asymptotic normality. The results are then applied to real precipitation data. We compare the empirical
extremogram with its bias corrected version under different kernel functions and apply a transformation of the
observation space to justify the assumption of isotropic data.
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1 Introduction

Extremal events affect our daily lives in various ways. Extraordinary losses or gains in the financial markets
such as during the financial crises 2007 brought the financial system to the edge all over the globe, provoked a
worldwide recession and made governmental action necessary for years to cope with the consequences. More-
over, extreme rainfalls and floodings cause hundreds of fatalities and billions in material damage as seen during
the hurricane season 2017 when hurricanes Harvey, Irma and Jose devastated large areas around the Gulf of
Mexico. In 2015, an earthquake with a magnitude of 7.8 to 8.1 killed 9,000 people and left about 22,000 injured
in Nepal. Even 30 months after the catastrophe, only 12% of the destroyed buildings were reconstructed, affect-
ing the Nepalis life for years and leaving many homeless. So, it is of major interest, not only for underwriting
in the insurance business and pricing of catastrophe bonds but as well for natural disaster prevention, to model
such events as accurately as possible. In almost every field dealing with extremes, history shows that such
events tend to occur simultaneously which consequently results in a growing interest in modelling extremal
dependence.
An essential tool to investigate extremal dependence for a stationary regularly varying random process X in
Rd is the so-called extremogram, introduced by Davis and Mikosch [9] for time series. Assuming stationarity
means that the probabilistic structure of the underlying random process is invariant under spatial translations.
So stationary random processes give no space for modelling directional dependence. Even though this assump-
tion may exclude some physical applications it is not as restrictive as imposing isotropy, i.e. invariance under
rotation implying stationarity. In this setting the extremogram can be seen as the covariance function of indica-
tor functions of exceedance events in an asymptotic sense. It allows to measure extremal dependence on various
combinations of extremal sets that are bounded away from 0. This means that, by choosing the extremal sets
accordingly, a wide range of measures of extremal dependence like dependence among large absolute values
or the (upper and lower) tail dependence coefficient can be seen as special cases of the extremogram. We will
make use of this fact when showing a central limit theorem (CLT) for the tail dependence coefficient under an
isotropic Brown-Resnick process. The tail dependence coefficient can be interpreted as the conditional prob-
ability of given an extreme event at one location s1 to simultaneously observe an extreme event at a different
location s2 and is therefore of the utmost importance to assess extremal dependence in a spatial setting.
Since in real life the extremogram needs to be estimated on the basis of observed data, we consider the empiri-
cal extremogram. We formulate the estimator in line with Cho et al. [7] who did this for a spatial d-dimensional
random process. Buhl et al. [4] as well as Steinkohl [21] investigate the empirical spatial extremogram, when
having observations on a regular grid. Cho et al. [7] prove a CLT for the empirical extremogram centered by its
pre-asymptotic version for a finite set of spatials lags. Bolthausen [2] set the stage for their work and the CLT
for the space-time covariance estimators, proved by Li et al. [16].
Cho et al. [7] showed a CLT when observing the random process on locations that are assumed to follow a
homogeneous d-dimensional Poisson process. For that purpose, they employ a kernel estimator for the ex-
tremogram, transferring the idea of the estimate of autocorrelation from Li et al. [16] to their setting. However,
parts of their proof lack details and contain several obscurities which is why we developed these arguments in
a more explicit scope.
We note that the assumption of observation locations following a homogeneous Poisson process, that is inde-
pendent of the random process X , implies that not only the locations are randomly distributed on the observa-
tion space but also that the number of such locations is random. Furthermore, Karr [13] emphasized that this
hypothesis comes with an important statistical argument as there is only one parameter, namely the intensity
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of the Poisson process, to estimate in the sampling part of the model. Additionally, it is a common assertion
within the fields of geography and geology that locations of cities fit Poisson models. The Poisson assumption
does not only allow to model measuring stations of rain- or snowfall, but also enables us to consider various
other applications like test borings or strokes of lightning. On the other hand, Karr [13] stressed that Poisson
processes inherit a major disadvantage when it comes to studying extremal dependence in rainfall since mea-
suring stations do not vary over time and thus temporal dependence is enforced in the model. We avoid this
issue in our rainfall study by taking only isolated and independent single periods into account.
The main goal of this work is to present a complete proof of a CLT for the empirical spatial extremogram on
an irregular grid and a new bias correction when considering a Brown-Resnick process. The results are then
applied to estimate the tail dependence coefficient for precipitation data.
This thesis is organized as follows.
In Chapter 2, we formulate the general setting, present the concept of regular variation and α-mixing coeffi-
cients and give the formal definition of the extremogram. Furthermore, in line with Cho et al. [7], we introduce
a kernel estimator for the extremogram consisting of two separate estimators, one estimating the numerator, τ̂
and another one being the empirical version of the denominator, ρ̂. The resulting estimator can be seen as an
estimator of a conditional probability.
Chapter 3 contains the proof of the CLT for the empirical extremogram. We first show some technical details,
beginning with the continuity of the limit measure τ in section 3.1. Then we proceed with proving asymptotic
unbiasedness and consistency for the estimator of the denominator ρ̂, chapter 3.2, and the estimator of the nu-
merator τ̂ , chapter 3.3, including the derivation of its asymptotic covariance matrix. In chapter 3.4, we infer a
CLT for τ̂ which is employed along with previous results to give a CLT for the estimator of the extremogram
centered by the pre-asymptotic version, chapter 3.5.
Chapter 4 considers the empirical extremogram when the underlying random process X follows the law of a
Brown-Resnick process, see Brown and Resnick [3]. We introduce the Brown-Resnick process in chapter 4.1
and show that the CLT is applicable for an isotropic Brown-Resnick process in particular, section 4.2. Further-
more, we establish conditions under which the empirical extremogram can be centered by its theoretical version
in chapter 4.3 and introduce a new bias correction to give a better range of rates so that asymptotic normality
holds.
In chapter 5, we apply our results to spatial rainfall data in Germany from 1971 to 2010 and employ the empir-
ical extremogram to investigate the effect of extremal dependence in precipitation. We apply different kernel
densities and transform the observation space to obtain an isotropic random field. Moreover, we compare the
empirical extremogram with the new bias corrected version presented chapter 4.
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2 General setting- Regular variation and the extremogram

Before investigating asymptotic properties of the empirical extremogram, we need to establish some back-
ground on regular variation for stochastic processes and vectors, for this purpose also see Hult and Lindskog
[11]. Resnick [19], [20] gives a more detailed insight into this field. Let {Xs : s ∈ Rd} be a strictly stationary
random process, d ∈ N. For every finite set I ⊂ Rd, we define the vector

XI := (Xs : s ∈ I )> .

In the following, |I| denotes the cardinality of I and f(n) ∼ g(n) means that the positive functions f(·) and
g(·) are asymptotically equivalent as n→∞, i.e. f(n)/g(n)→ 1 as n→∞.

Definition 2.1 (Regularly varying process). A strictly stationary random process {Xs : s ∈ Rd} is called
regularly varying, if there exists some normalizing sequence 0 < an → ∞ such that P (|X(0)| > an) ∼ n−1

as n→∞ and for every finite set I ⊂ Rd

nP
(
XI

an
∈ ·
)

v−→ µI (·), n→∞,

for some non-null Radon measure µI on the Borel sets in R̄|I |\{0}, where R̄ = R ∪ {−∞,∞} and v−→ denotes
vague convergence. In that case, there exists the so-called index of regular variation β > 0 such that

µI (xC) = x−βµI (C), x > 0,

for every Borel set C ⊂ R̄|I |\{0}. We call such a limit measure homogeneous of order −β.

By vague convergence µI ,n(·) v−→ µI (·) as n→∞, we mean that∫
R̄|I |\{0}

f(x)µI ,n(dx)
n→∞−−−→

∫
R̄|I |\{0}

f(x)µI (dx)

for all continuous, non-negative functions f : R|I |\{0} → (0,∞) with compact support. Note that by station-
arity for every s ∈ Rd, we have µ{s}(·) = µ{0}(·) =: µ(·). We now introduce the extremogram for random
processes, on which we focus in this thesis, see also Davis and Mikosch [9] for time series.

Definition 2.2 (Extremogram). Let {Xs : s ∈ Rd} be a strictly stationary regularly varying random process in
Rd. We define the extremogram by

ρAB(h) := lim
n→∞

P
(
Xh

an
∈ B

∣∣∣∣ X0

an
∈ A

)
= lim

n→∞

P
(
X0
an
∈ A, Xhan ∈ B

)
P
(
X0
an
∈ A

) , h ∈ Rd,

where A and B are two µ-continuous Borel sets in R̄\{0}, i.e. µ(∂A) = µ(∂B) = 0, where ∂A denotes the
boundary of the set A, and µ(A) > 0. In the special case of A = B = (1,∞), we define the tail dependence
coefficient

χ(h) := ρ(1,∞)(1,∞)(h), h ∈ Rd.
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Remark 2.3. In the upcoming proofs we make frequent use of the pre-asymptotic version of the extremogram
ρAB,m(·) given by

ρAB(h) = lim
n→∞

ρAB,m(h) = lim
n→∞

τAB,m(h)

pm(A)
, h ∈ Rd,

where the sequence mn is later specified in condition (M1) and

ρAB,m(h) := P
(
Xh

am
∈ B

∣∣∣∣ X0

am
∈ A

)
τAB,m(h) := mnP

(
X0

am
∈ A, Xh

am
∈ B

)
pm(A) := mnP

(
X0

am
∈ A

)
.

The goal of this work is to establish asymptotic properties of the empirical version of the extremogram. This
will include consistency and a multivariate central limit theorem (CLT). In contrast to Buhl and Klüppelberg
[6], we assume that the random process is not observed on a regular grid, but the observations are given by a
d−dimensional Poisson process. Cho et al. [7] already provided essential results. However, we present the
proofs in more detail and prove a new CLT for a bias corrected version of the estimator. In order to do this, we
need to control dependence within the random process. For this purpose, we introduce the concept of α-mixing
processes, also see Bolthausen [2].

Definition 2.4 (α-mixing coefficients). Let {Xs : s ∈ Rd} be a strictly stationary regularly varying random
process in Rd. Let d(·, ·) be some metric introduced by a norm | · | on Rd. For Λ1,Λ2 ⊂ Rd set

d(Λ1,Λ2) := inf{|s1 − s2| : s1 ∈ Λ1, s2 ∈ Λ2}

and denote for i = 1, 2 the σ-algebra generated by {Xs : s ∈ Λi} by FΛi = σ{Xs : s ∈ Λi}. Then, we define
the α-mixing coefficients for k, l ∈ N ∪ {∞} and r > 0 by

αk,l(r) = sup{|P(A1 ∩A2)− P(A1)P(A2)| : A1 ∈ FΛ1 , A2 ∈ FΛ2 , |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ r}.

Here, |Λi| denotes the number of elements contained in the set Λi.

In this work, the considered norm | · | is the L2-norm, if not stated differently.

For ease of notation, we consider a 2-dimensional strictly stationary regularly varying random process {Xs :
s ∈ R2} throughout this thesis. We emphasize that all results can be generalized to higher dimensions
by analogous arguments. We assume that the sampling locations are generated by a 2-dimensional Pois-
son process N with intensity parameter ν > 0 that is independent of X and define the product measure
N (2)(ds1, ds2) := N(ds1)N(ds2)1 {s1 6= s2}. Furthermore, we consider a sequence of convex sets Sn ⊂ R2

with Lebesgue measure |Sn| = O(n2) and boundary ∂Sn such that |∂Sn| = O(n). These sets Sn model the
spaces where the Poisson observations occur.
In line with Karr [14], chapter 10.3, we introduce a kernel-based estimator for the spatial extremogram ρ̂AB,m(h) =
τ̂AB,m(h)/p̂m(A), where

p̂m(A) :=
mn

ν|Sn|

∫
Sn

1

{
Xs1

am
∈ A

}
N(ds1)
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τ̂AB,m(h) :=
mn

ν2|Sn|

∫
Sn

∫
Sn

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2).

The sequence of weight functions wn(·) = 1
λ2n
w
(
·
λn

)
is chosen in such way that w(·) is a positive, bounded,

isotropic probability density function on R2, the bandwidth λn satisfies λn → 0, and λ2
n|Sn| → ∞ as n→∞.

Our goal is to derive a CLT for the empirical extremogram ρ̂AB,m(h). In order to prove consistency of the
estimator p̂m(A), we need the subsequent conditions to hold:

(M1) There exist increasing sequences mn →∞ and rn →∞, as n→∞, with mn = o(n) and r2
n = o(mn)

such that

lim
k→∞

lim sup
n→∞

∫
B[k,rn]

mnP (|Xy| > εam, |X0| > εam) dy = 0, ∀ε > 0 (1)

lim
n→∞

∫
R2\B[0,rn)

mnα1,1(|y|)dy = 0 (2)∫
R2

τAA(y)dy <∞ (3)

where am satisfies P (|X0| > am) ∼ 1
m , B[a, b) := {s ∈ R2 : a ≤ |s| < b} and τAA(y) := lim

n→∞
τAA,m(y).

A CLT for τ̂AB,m(·) requires to assume the following conditions.

(M2) Let Bn ⊂ Sn be a cube with |Bn| = O(n2γ) and |∂Bn| = O(nγ) for some γ ∈ (0, 1). Furthermore,
assume there exists an increasing sequence mn →∞, as n→∞, with mn = o(nγ) and λ2

nmn
n→∞−−−→ 0 such

that for every h ∈ R2

sup
n

E


√ |Bn|λ2

n

mn

∣∣∣∣∣τ̂AB,m(h : Bn)− E [τ̂AB,m(h : Bn)]

∣∣∣∣∣
2+δ

 ≤ Cδ, for some δ > 0, Cδ <∞ (4)

∫
R2

τAB(y)dy <∞ (5)∫
R2

α2,2(|y|)dy <∞ (6)

sup
l∈N

αl,l(|h|)
l2

= O(|h|−ε), for some ε > 0. (7)

Finally, we need a smoothness condition for the random process.

Definition 2.5 (local uniform negligibility condition (LUNC)). A strictly stationary regularly varying random
process {Xs : s ∈ Rd} satisfies the local uniform negligibility condition (LUNC), if for an increasing sequence
an such that P(|X| > an) ∼ 1

n and for all ε, δ > 0, there exists δ′ > 0 such that

lim sup
n→∞

nP

(
sup
|s|<δ′

|Xs −X0|
an

> δ

)
< ε.
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3 A central limit theorem for the empirical extremogram on an irregular grid

In this chapter, we prove a central limit theorem (CLT) for the empiricial extremogram observed on a grid,
which is generated by a 2-dimensional Poisson process N on a space Sn ⊆ R2. We assume |Sn| = O(n2)
with |∂Sn| = O(n), and denote the intensity parameter of N by ν. Before presenting the CLT in Theorem
3.6, we show continuity of the measure of the vector of finite length (X0, . . . , Xsk) ∈ Rk+1, Proposition 3.1.
Furthermore, we need some auxiliary results on the asymptotic expectation and covariance of the empirical
denominator p̂m(·) and numerator τ̂m(·), Proposition 3.2 and Proposition 3.3. This enables us to prove a
multivariate CLT for the numerator, Proposition 3.5, which we will use to show the final result of Theorem 3.6.
These results were already shown in Cho et al. [7]. However, we will give a more detailed insight into the
proofs, especially those of Proposition 3.5 and Theorem 3.6.

3.1 Continuity of the measure

We show a continuity property of the limit measure τ that we will constantly apply when proving asymptotic
properties of the estimators.

Proposition 3.1. Consider a strictly stationary, regularly varying random process {Xs : s ∈ Rd} with index
β > 0 satisfying the LUNC. Let k be a positive integer. For a continuity set A0 × A1 × · · · × Ak of the limit
measure

τA0A1...Ak(s1, . . . , sk) := lim
n→∞

nP
(
X0

an
∈ A0,

Xs

an
∈ A1, . . . ,

Xsk

an
∈ Ak

)
, (8)

where s1, . . . , sk are arbitrary elements in Rd, we define the pre-asymptotic limit measure by

τ
(n)
A0A1...Ak

(s1, . . . , sk) := nP
(
X0

an
∈ A0,

Xs1+λn

an
∈ A1, . . . ,

Xsk+λn

an
∈ Ak

)
. (9)

Then if λn → 0 as n→∞, it holds that

lim
n→∞

τ
(n)
A0A1...Ak

(s1, . . . , sk) = τA0A1...Ak(s1, . . . , sk).

Proof. We will apply a Portmanteau theorem, see [15]. For this purpose, let f be a continuous function with
compact support on Rk+1\{0}.
Then f is bounded and uniformly continuous, i.e. for every ε > 0 there exists δ > 0 such that |f(x1, . . . , xk+1)−
f(y1, . . . , yk+1)|1 < ε whenever |(x1, . . . , xk+1)− (y1, . . . , yk+1)|1 < δ, where | · |1 denotes the L1-norm.
We define Xn := (X0, Xs1+λn , . . . , Xsk+λn) and X := (X0, Xs1 , . . . , Xsk) and consider

nE
[∣∣∣∣f (Xn

an

)
− f

(
X

an

)∣∣∣∣
1

]
= nE

[
|·|1 1

{∣∣Xn −X
∣∣
1

an
> δ

}]
+ nE

[
|·|1 1

{∣∣Xn −X
∣∣
1

an
≤ δ

}]
=: Cn +Dn.

By boundedness of f we see M := supx∈Rk+1

∣∣∣f ( x
an

)∣∣∣
1
<∞. This gives

∣∣∣f (Xn
an

)
− f

(
X
an

)∣∣∣
1
≤ 2M .

Without loss of generality let

max
i∈{1,...,k}

P
(
|Xsi+λn −Xsi |1 >

δan
k

)
= P

(
|Xs1+λn −Xs1 |1 >

δan
k

)
= P

(
|Xλn −X0|1 >

δan
k

)
,
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where the second equality follows from stationarity of the random process. Then we can find an upper bound
for Cn by

lim sup
n→∞

Cn = lim sup
n→∞

nE

[∣∣∣∣f (Xn

an

)
− f

(
X

an

)∣∣∣∣
1

1

{∣∣Xn −X
∣∣
1

an
> δ

}]

≤ lim sup
n→∞

2MnP

(∣∣Xn −X
∣∣
1

an
> δ

)

≤ lim sup
n→∞

2MnP
(
|Xsi+λn −Xsi |1 >

δan
k

for at least one i ∈ {1, . . . , k}
)

= lim sup
n→∞

2MnP

(
k⋃
i=1

{
|Xsi+λn −Xsi |1 >

δan
k

})

≤ lim sup
n→∞

2Mn

k∑
i=1

P
(
|Xsi+λn −Xsi |1 >

δan
k

)
≤ 2Mk lim sup

n→∞
nP
(
|Xλn −X0|1 >

δan
k

)
by stationarity

≤ 2Mk lim sup
n→∞

nP

(
sup
|s|≤δ′

|Xs −X0|1
an

>
δ

k

)
< 2Mε

where the second last inequality follows from the fact that λn → 0 and thus for n large enough there is
δ′ > λn > 0 such that P

(
|Xλn−X0|1

an
> δ

k

)
≤ P

(
sup|s|≤δ′

|Xs−X0|1
an

> δ
k

)
. Applying the LUNC with ε and δ

from Definition 2.5 corresponding to ε/k and δ/k, respectively, gives the last inequality.
Now, we turn to Dn and find by continuity of f

lim sup
n→∞

Dn = lim sup
n→∞

nE

[∣∣∣∣f (Xn

an

)
− f

(
X

an

)∣∣∣∣
1

1

{∣∣Xn −X
∣∣
1

an
≤ δ

}]

≤ ε lim sup
n→∞

nP

(∣∣Xn −X
∣∣
1

an
≤ δ

)
.

As we only consider events that are bounded away from 0 ∈ Rk+1 we may assume the existence of some
K > 0 such that the support of f is a subset of

{
x ∈ Rk+1 : |x|1 > K

}
. In particular, we only have to consider

|Xn|1/an > K and |X|1/an > K, giving

ε lim sup
n→∞

nP

(∣∣Xn −X
∣∣
1

an
≤ δ

)
≤ ε lim sup

n→∞
nP

({∣∣Xn

∣∣
1

an
> K

}
∪

{∣∣X∣∣
1

an
> K

})

≤ ε lim sup
n→∞

nP

(∣∣Xn

∣∣
1

an
> K

)
+ P

(∣∣X∣∣
1

an
> K

)

≤ ε lim sup
n→∞

n

[
2P
(
|X0|1
an

>
K

k + 1

)
+

k∑
i=1

(
P
(
|Xsi+λn |1

an
>

K

k + 1

)
+ P

(
|Xsi |1
an

>
K

k + 1

))]
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= 2ε(k + 1) lim sup
n→∞

nP
(
|X0|1
an

>
K

k + 1

)
, by stationarity

= 2ε(k + 1)τBB(0) <∞

where B :=
{
x : |x|1 > K

k+1

}
. The last inequality is due to the fact that

{|x |1 > K} ⊆
{
|x0|1 >

K

k + 1

}
∪ · · · ∪

{
|xk|1 >

K

k + 1

}
, for every x = (x0, x1, . . . , xk)

> ∈ Rk+1.

Combining these results gives

nE
[∣∣∣∣f (Xan

)
− f

(
X

an

)∣∣∣∣
1

]
≤ 2ε(M + (k + 1)τBB(0)).

Since ε > 0 may be chosen arbitrarily, letting ε → 0 and recalling the definitions of the limit measure τ from
(8) and the pre-asymptotic measure τ (n) from (9), we find∫

f (y0, y1, . . . , yk) τ
(n)
dy0,dy1,...,dyk

(s1, . . . , sk) = nE
[
f

(
Xn

an

)]
= nE

[
f

(
X

an

)]
n→∞−−−→

∫
f (y0, y1, . . . , yk) τdy0,dy1,...,dyk(s1, . . . , sk)

for any arbitrary continuous and bounded function f with compact support. Then Portemanteau’s theorem
implies

τ
(n)
A0A1...Ak

(s1, . . . , sk)
n→∞−−−→ τA0A1...Ak(s1, . . . , sk)

which concludes the proof.

3.2 Asymptotic results for the estimator of the denominator

In this section, we prove the asymptotic unbiasedness of p̂m(·) and infer an asymptotic result for its variance.

Proposition 3.2. Under condition (M1) and the LUNC it holds that

E [p̂m(A)] = pm(A)
n→∞−−−→ µ(A)

and
|Sn|
mn

Var (p̂m(A))
n→∞−−−→ µ(A)

ν
+

∫
R2

τAA(y)dy.

In particular, it holds that p̂m(A)
P−→ µ(A).
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Proof. We begin with the proof of asymptotic unbiasedness of p̂m(A). Using the definition of p̂m(A), we
obtain by the law of total expectation and independence of X and N

E [p̂m(A)] =
mn

|Sn|
1

ν
E
[∫

Sn

1

{
Xs1

am
∈ A

}
N(ds1)

]
(10)

=
mn

|Sn|
1

ν
E
[
E
[∫

Sn

1

{
Xs1

am
∈ A

}
N(ds1)

∣∣∣∣X]]
=

mn

|Sn|
1

ν
E
[∫

Sn

1

{
Xs1

am
∈ A

}
E [N(ds1)|X]

]
, by measurability

=
mn

|Sn|
1

ν
E
[∫

Sn

1

{
Xs1

am
∈ A

}
E [N(ds1)]

]
, by independence

=
mn

|Sn|
1

ν
E
[∫

Sn

1

{
Xs1

am
∈ A

}
νds1

]
, since E [N(ds1)] = νds1

=
mn

|Sn|

∫
Sn

E
[
1

{
Xs1

am
∈ A

}]
ds1, by Fubini

=
mn

|Sn|

∫
Sn

P
(
Xs1

am
∈ A

)
ds1

=
mn

|Sn|

∫
Sn

P
(
X0

am
∈ A

)
ds1, by stationarity

= mnP
(
X0

am
∈ A

)
= pm(A)

n→∞−−−→ µ(A), by regular variation.

This concludes the asymptotic unbiasedness of the estimator p̂m(A) and we turn to its variance. Recall from
Karr [14], equation (1.6), that N (2)(ds1, ds2) = N(ds1)N(ds2)1{s1 6= s2}. We compute the second moment

E
[
p̂m(A)2

]
=

m2
n

|Sn|2
1

ν2
E
[∫

Sn

∫
Sn

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ A

}
N(ds1)N(ds2)

]

=
m2
n

|Sn|2
1

ν2

[
E
[∫

Sn

1

{
Xs1

am
∈ A

}
N(ds1)

]
+ E

[∫
Sn

∫
Sn

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ A

}
N (2)(ds1, ds2)

]]

=
mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|2
1

ν2
E
[∫

Sn

∫
Sn

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ A

}
E
[
N (2)(ds1, ds2)

∣∣∣X]]
using (10) for the first and the law of total expectation for the second summand. By independence of X and N
the last equation is equivalent to

=
mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|2
1

ν2
E

∫
Sn

∫
Sn

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ A

}
E
[
N (2)(ds1, ds2)

]
︸ ︷︷ ︸

=ν2ds1ds2, by Proposition A.1


=

mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|2
E
[∫

Sn

∫
Sn

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ A

}
ds1ds2

]
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=
mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|2

∫
Sn

∫
Sn

P
(
Xs1

am
∈ A, Xs2

am
∈ A

)
ds1ds2 − pm(A)2 + pm(A)2︸ ︷︷ ︸

=E[p̂m(A)]2

=
mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|2

∫
Sn

∫
Sn

P
(
Xs1

am
∈ A, Xs2

am
∈ A

)
− 1

m2
n

pm(A)2ds1ds2 + E[p̂m(A)]2

=
mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|2

∫
Sn−Sn

∫
Sn∩(Sn−y)

(
P
(
X0

am
∈ A, Xy

am
∈ A

)
− 1

m2
n

pm(A)2

)
dsdy + E[p̂m(A)]2,

where in the last step we substituted y = s2 − s1 and s = s1. Note that we intepret Sn − y as the set
{x− y : x ∈ Sn}. Recalling that P

(
X0
am
∈ A, Xyam ∈ A

)
= 1

mn
τAA,m(y), we can proceed with the calculations

and obtain since the integrand does not depend on s

=
mn

|Sn|
1

ν
E [p̂m(A)] +

m2
n

|Sn|

∫
Sn−Sn

|Sn ∩ (Sn − y)|
|Sn|

(
1

mn
τAA,m(y)− 1

m2
n

pm(A)2

)
dy + E[p̂m(A)]2

=
mn

|Sn|

[
1

ν
E [p̂m(A)] +

∫
Sn−Sn

|Sn ∩ (Sn − y)|
|Sn|

(
τAA,m(y)− 1

mn
pm(A)2

)
dy

]
+ E[p̂m(A)]2.

Let k > 0 and rn sucht that r2
n = o(mn) (by (M1)). Then

|Sn|
mn

Var (p̂m(A)) =
|Sn|
mn

(
E[p̂m(A)2]− E[p̂m(A)]2

)
=

1

ν
E [p̂m(A)] +

∫
Sn−Sn

|Sn ∩ (Sn − y)|
|Sn|

(
τAA,m(y)− 1

mn
pm(A)2

)
dy

=
1

ν
E [p̂m(A)] +

∫
B[0,k)∩(Sn−Sn)

|Sn ∩ (Sn − y)|
|Sn|

(
τAA,m(y)− 1

mn
pm(A)2

)
dy

+

∫
B[k,rn)∩(Sn−Sn)

|Sn ∩ (Sn − y)|
|Sn|

(
τAA,m(y)− 1

mn
pm(A)2

)
dy

+

∫
(Sn−Sn)\B[0,rn)

|Sn ∩ (Sn − y)|
|Sn|

(
τAA,m(y)− 1

mn
pm(A)2

)
dy

=:
1

ν
E [p̂m(A)] +A1n +A2n +A3n.

Note that Sn − Sn
n→∞−−−→ R2. We consider the limit behaviour of A1n, A2n and A3n and find by dominated

convergence

lim
n→∞

A1n = lim
n→∞

∫
B[0,k)∩(Sn−Sn)

|Sn ∩ (Sn − y)|
|Sn|︸ ︷︷ ︸

→1 by Lemma A.2

τAA,m(y)︸ ︷︷ ︸
→τAA(y)

− 1

mn︸︷︷︸
→0

pm(A)2︸ ︷︷ ︸
→µ(A)2

 dy

=

∫
B[0,k)

τAA(y)dy
k→∞−−−→

∫
R2

τAA(y)dy.
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Concerning A2n, recall that the set A is bounded away from 0 i.e. there is ε > 0 such that A ⊆ R2\B[0, ε) and

lim
k→∞

lim sup
n→∞

|A2n|

≤ lim
k→∞

lim sup
n→∞


∫
B[k,rn)

|Sn ∩ (Sn − y)|
|Sn|︸ ︷︷ ︸
≤1

mnP
(
X0

am
∈ A, Xy

am
∈ A

)
dy +

∫
B[k,rn)

1

mn
pm(A)2dy



≤ lim
k→∞

lim sup
n→∞


∫
B[k,rn)

mnP (|X0| > εam, |Xy| > εam) dy︸ ︷︷ ︸
→0 by (M1)

+π
r2
n

mn︸︷︷︸
→0

pm(A)2︸ ︷︷ ︸
→µ(A)2

 = 0,

And finally for A3n by the triangular inequality and taking the definition of the mixing rate α11(·) into account

lim sup
n→∞

|A3n| ≤ lim sup
n→∞

∫
(Sn−Sn)\B[0,rn)

|Sn ∩ (Sn − y)|
|Sn|

∣∣∣∣τAA,m(y)− 1

mn
pm(A)2

∣∣∣∣ ds
≤ lim sup

n→∞

∫
R2\B[0,rn)

|Sn ∩ (Sn − y)|
|Sn|︸ ︷︷ ︸
≤1

∣∣∣∣τAA,m(y)− 1

mn
pm(A)2

∣∣∣∣ dy

≤ lim sup
n→∞

∫
R2\B[0,rn)

∣∣∣∣τAA,m(y)− 1

mn
pm(A)2

∣∣∣∣ dy

= lim sup
n→∞

∫
R2\B[0,rn)

mn

∣∣∣∣∣∣∣∣∣∣∣
P
(
X0

am
∈ A, Xy

am
∈ A

)
− P

(
X0

am
∈ A

)
P
(
X0

am
∈ A

)
︸ ︷︷ ︸

=P
(
Xy
am
∈A
)

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≤α11(y), where Λ1={0}, Λ2={y} such that |Λ1|=|Λ2|=1

dy

≤ lim sup
n→∞

∫
R2\B[0,rn)

mnα11(|y|)dy = 0, by condition (M1).

Combining the results for A2n and A3n gives that

lim
k→∞

lim
n→∞

A2n = 0 = lim
k→∞

lim
n→∞

A3n.

Putting all results together, we can derive the statement of the proposition

lim
n→∞

|Sn|
mn

Var (p̂m(A)) = lim
n→∞

(
1

ν
E [p̂m(A)] +A1n +A2n +A3n

)
=
µ(A)

ν
+ lim
k→∞

lim
n→∞

(A1n +A2n +A3n) =
µ(A)

ν
+

∫
R2

τAA(y)dy.
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3.3 Asymptotic results for the estimator of the numerator

Similarly to the previous section, we show asymptotic unbiasedness of τ̂AB,m(·) and derive asymptotics for its
covariance.

Proposition 3.3. Assume the strictly stationary random process {Xs : s ∈ R2} satisfies the LUNC. Further let
(M2) hold. Then

(i) E [τ̂AB,m(h)]
n→∞−−−→ τAB(h), for every arbitrary spatial lag h ∈ R2,

(ii)
|Sn|λ2

n

mn
Cov (τ̂AB,m(h1), τ̂AB,m(h2))

n→∞−−−→ 1

ν2
[τAB(h1)1{h1 = h2}+ τA∩B,A∩B(h1)1{h1 = −h2}]

∫
R2

w(y)2dy,

(iii)
|Sn|λ2

n

mn
Var (τ̂AB,m(h))

n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy.

Proof. (i) From the stationarity of {Xs : s ∈ R2} and by independence of X and N , we obtain for a fixed
spatial lag h ∈ R2

E [τ̂AB,m(h)]

= E
[
mn

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2)

]

=
mn

|Sn|
1

ν2
E


∫
Sn

∫
Sn

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
E
[
N (2)(ds1, ds2)

∣∣∣X]︸ ︷︷ ︸
=E[N(2)(ds1,ds2)]=ν2ds1ds2, by Lemma A.1


=

mn

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h+ s1 − s2)P
(
Xs1

am
∈ A, Xs2

am
∈ B

)
ν2ds1ds2

=
mn

|Sn|

∫
Sn

∫
Sn

1

λ2
n

w

(
h+ s1 − s2

λn

)
P
(
X0

am
∈ A, Xs2−s1

am
∈ B

)
ds1ds2. (11)

Next, we set y = h+s1−s2
λn

, u = s2 and define the integral transformation φ : R4 → R4 such that s1 =
φ1(y, u) = λny + u− h and s2 = φ2(y, u) = u. Then the determinant of the Jacobian is given by

|Dφ(y, u)| =
∣∣∣∣(λn12 12

0 12

)∣∣∣∣ = λ2
n,

where 12 denotes the 2-dimensional identity matrix. For the integration we need that s2 = s1 + h − λny and
s2 − s1 = h− λny. Applying this transformation to (11) gives

mn

|Sn|

∫
h+(Sn−Sn)

λn

∫
Sn∩(h+Sn−λny)

1

λ2
n

w (y)P
(
X0

am
∈ A,

Xh−λny
am

∈ B
)

︸ ︷︷ ︸
= 1
mn

τAB,m(h−λny)

λ2
ndudy
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=

∫
h+(Sn−Sn)

λn

|Sn ∩ (h+ Sn − λny)|
|Sn|

w (y) τAB,m(h− λny)dy, (12)

since the inner integral does not depend on u. Note that

|Sn ∩ (h+ Sn − λny)|
|Sn|︸ ︷︷ ︸
≤1

τAB,m(h− λny) ≤ mnP
(
X0

am
∈ A,

Xh−λny
am

∈ B
)

≤ mnP
(
X0

am
∈ A

)
= pm(A)

and, since w(·) is a probability density on R2,∫
R2

w(y)pm(A)dy = pm(A)

∫
R2

w(y)dy = pm(A)
n→∞−−−→ µ(A) <∞.

Hence, monotone convergence is applicable and by the virtue of Proposition 3.1,∫
h+(Sn−Sn)

λn

|Sn ∩ (h+ Sn − λny)|
|Sn|︸ ︷︷ ︸
→1

w (y) τAB,m(h− λny)︸ ︷︷ ︸
→τAB(h), by Proposition 3.1

dy
n→∞−−−→

∫
R2

w(y)τAB(h)dy = τAB(h).

For the convergence of the integrating area, we employed that, for n large enough, h+ (Sn − Sn) contains an
open ball around 0 ∈ R2. Then together with λn → 0 as n → ∞, we obtain that h+(Sn−Sn)

λn

n→∞−−−→ R2. This
concludes the proof of part (i).

(ii) For sets A and B we define

τ∗m(s1, s2, s3, s4) := mnP
(
Xs1

am
∈ A, Xs2

am
∈ B, Xs3

am
∈ A, Xs4

am
∈ B

)
and compute by conditioning and independence of N and X

|Sn|λ2
n

mn
E [τ̂AB,m(h1)τ̂AB,m(h2)]

=
|Sn|λ2

n

mn
E
[
m2
n

|Sn|2
1

ν4

∫
Sn

∫
Sn

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(h2 + s3 − s4)

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
1

{
Xs3

am
∈ A

}
1

{
Xs4

am
∈ B

}
N (2)(ds1, ds2)N (2)(ds3, ds4)

]

=
mnλ

2
n

|Sn|
1

ν4

∫
Sn

∫
Sn

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(h2 + s3 − s4)

P
(
Xs1

am
∈ A, Xs2

am
∈ B, Xs3

am
∈ A, Xs4

am
∈ B

)
︸ ︷︷ ︸

= 1
mn

τ∗m(s1,s2,s3,s4)

E
[
N (2)(ds1, ds2)N (2)(ds3, ds4)

]
. (13)
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According to equation (4.7) in Karr [13] the expectation is given by

E
[
N (2)(ds1, ds2)N (2)(ds3, ds4)

]
= ν4ds1ds2ds3ds4 + ν3ds1ds2δs1(ds3)ds4 + ν3ds1ds2δs2(ds3)ds4

+ ν3ds1ds2ds3δs1(ds4) + ν3ds1ds2ds3δs2(ds4) + +ν2ds1ds2δs1(ds3)δs2(ds4) + ν2ds1ds2δs2(ds3)δs1(ds4)
(14)

where δx(A) = 1{x ∈ A} denotes the Dirac-measure. We denote the integrals in (13) corresponding to (14)
by Ij , j ∈ {1, . . . , 7} and we compute the different terms, beginning with I2

I2 =
λ2
n

|Sn|
1

ν4

∫
Sn

∫
Sn

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(h2 + s3 − s4)τ∗m(s1, s2, s3, s4)ν3ds1ds2δs1(ds3)ds4

=
λ2
n

|Sn|
1

ν

∫
Sn

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(h2 + s1 − s4)τ∗m(s1, s2, s1, s4)ds1ds2ds4

=
1

λ2
n|Sn|

1

ν

∫
Sn

∫
Sn

∫
Sn

w

(
h1 + s1 − s2

λn

)
w

(
h2 + s1 − s4

λn

)
τ∗m(0, s2 − s1, 0, s4 − s1)ds1ds2ds4.

Note that the last equality results from stationarity and definition of wn(·). In the next step, we substitute
x = h1+s1−s2

λn
, y = h2+s1−s4

λn
and u = s4. The corresponding integral transform φ : R6 → R6 and the

determinant of its Jacobian reads

s2 = φ1(x, y, u) = u+ λn(x+ y)− h1 − h2, s1 = φ2(x, y, u) = u+ λny − h2, s4 = φ3(x, y, u) = u

|Dφ(x, y, u)| =

∣∣∣∣∣∣
λn12 λn12 12

0 λn12 12

0 0 12

∣∣∣∣∣∣ = λ4
n

such that I2 becomes

λ2
n

|Sn|
1

ν

∫
(Sn−Sn)+h1

λn

∫
(Sn−Sn)+h2

λn

∫
Sn∩(Sn−λn(x+y)+h1+h2)∩(Sn−λny+h2)

w (x)w (y)

× τ∗m(0, h1 − λnx, 0, h2 − λny)dudydx

=
λ2
n

ν

∫
(Sn−Sn)+h1

λn

∫
(Sn−Sn)+h2

λn

|Sn ∩ (Sn − λn(x+ y) + h1 + h2) ∩ (Sn − λny + h2)|
|Sn|

w (x)w (y)

× τ∗m(0, h1 − λnx, 0, h2 − λny)︸ ︷︷ ︸
=mnP

(
X0
am
∈A,

Xh1−λnx
am

∈B,
Xh2−λnx

am
∈B
)
≤mnP

(
X0
am
∈A
)

=pm(A)

dydx

≤ λ2
n

ν

∫
(Sn−Sn)+h1

λn

∫
(Sn−Sn)+h2

λn

w(x)w(y)pm(A)dydx

≤ pm(A)
λ2
n

ν

∫
R2

∫
R2

w(x)w(y)dydx = pm(A)︸ ︷︷ ︸
→µ(A)

λ2
n

ν︸︷︷︸
→0

n→∞−−−→ 0.
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Analogously, we can establish I3 → 0, I4 → 0 and I5 → 0 as n→∞.
So, we turn to I6 and first elucidate the case when h1 = h2. We find by substituting y = h1+s1−s2

λn
and u = s2

as in (i)

I6 =
λ2
n

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h1 + s1 − s2)2τ∗m(s1, s2, s1, s2)ds1ds2

=
1

λ2
n|Sn|

1

ν2

∫
Sn

∫
Sn

w

(
h1 + s1 − s2

λn

)2

τ∗m(s1, s2, s1, s2)ds1ds2

=
1

λ2
n|Sn|

1

ν2

∫
Sn

∫
Sn

w

(
h1 + s1 − s2

λn

)2

τAB,m(s2 − s1)ds1ds2

=
1

|Sn|
1

ν2

∫
(Sn−Sn)+h1

λn

∫
Sn∩(Sn+h1−λny)

w (y)2 τAB,m(h1 − λny)dudy

=
1

ν2

∫
(Sn−Sn)+h1

λn

|Sn ∩ (Sn + h1 − λny)|
|Sn|

w (y)2 τAB,m(h1 − λny)dy. (15)

At this point, recall that w(·) is a bounded probability density function on R2 and let 0 < M <∞ be its upper
bound. Then it follows that∫

R2

w(y)2dy =

∫
{y∈R2:w(y)<1}

w(y)2dy +

∫
{y∈R2:w(y)≥1}

w(y)2dy

≤
∫
{y∈R2:w(y)<1}

w(y)2dy +M2
∣∣{y ∈ R2 : w(y) ≥ 1}

∣∣︸ ︷︷ ︸
≤C<∞

≤
∫
R2

w(y)dy +M2C = 1 +M2C <∞.

Hence, together with Proposition 3.1, we may apply dominated convergence to (15) such that for h1 = h2

I6 =
1

ν2

∫
(Sn−Sn)+h1

λn

|Sn ∩ (Sn + h1 − λny)|
|Sn|

w (y)2 τAB,m(h1 − λny)dy
n→∞−−−→ 1

ν2
τAB(h1)

∫
R2

w(y)2dy.

In the consecutive step, let h1 6= h2. Thus, I6 becomes, using the substitution y = h1+s1−s2
λn

and u = s2

I6 =
λ2
n

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(h2 + s1 − s2)τ∗m(s1, s2, s1, s2)ds1ds2

=
1

λ2
n|Sn|

1

ν2

∫
Sn

∫
Sn

w

(
h1 + s1 − s2

λn

)
w

(
h2 + s1 − s2

λn

)
τAB,m(s2 − s1)ds1ds2

=
1

|Sn|
1

ν2

∫
(Sn−Sn)+h1

λn

∫
Sn∩(Sn+h1−λny)

w (y)w

(
y +

h2 − h1

λn

)
τAB,m(h1 − λny)dudy

=
1

ν2

∫
(Sn−Sn)+h1

λn

|Sn ∩ (Sn + h1 − λny)|
|Sn|

w (y)w

(
y +

h2 − h1

λn

)
τAB,m(h1 − λny)dy.
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We want to apply dominated convergence again. For this purpose, we estimate∫
(Sn−Sn)+h1

λn

w

(
y +

h2 − h1

λn

)
w(y)dy ≤

∫
R2

max{w(y), w

(
y +

h2 − h1

λn

)
}dy

=

∫
{
y∈R2:w(y)>w

(
y+

h2−h1
λn

)}w(y)2dy +

∫
{
y∈R2:w(y)≤w

(
y+

h2−h1
λn

)}w
(
y +

h2 − h1

λn

)2

dy

≤ 2

∫
R2

w(y)2dy <∞

and as in part (i)

|Sn ∩ (Sn + h1 − λny)|
|Sn|

τAB,m(h1 − λny) ≤ pm(A)
n→∞−−−→ µ(A) <∞.

Note that w (y) → 0 as y → ∞ and λn → 0 as n → ∞. Using these arguments and Proposition 3.1, I6 reads
for h1 6= h2

I6 =
1

ν2

∫
(Sn−Sn)+h1

λn

|Sn ∩ (Sn + h1 − λny)|
|Sn|︸ ︷︷ ︸
→1

w (y)w

(
y +

h2 − h1

λn

)
︸ ︷︷ ︸

→0

τAB,m(h1 − λny)︸ ︷︷ ︸
→τAB,m(h1)

dy
n→∞−−−→ 0.

In the following, the asymptotics for I7 are considered. We distinguish the cases h1 6= −h2 and h1 = −h2 and
begin with the latter such that I7 can be written as

I7 =
λ2
n

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(−h1 + s2 − s1) τ∗m(s1, s2, s2, s1)︸ ︷︷ ︸
=mnP

(
Xs1
am
∈A,Xs2

am
∈B,Xs2

am
∈A,Xs1

am
∈B
) ds1ds2

=
λ2
n

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(−h1 + s2 − s1)τA∩BA∩B,m(s2 − s1)ds1ds2

=
1

|Sn|
1

ν2

∫
(Sn−Sn)+h1

λn

∫
Sn∩(Sn+h1−λny)

w(y)w(−y)τA∩BA∩B,m(h1 − λny)dudy

=
1

ν2

∫
(Sn−Sn)+h1

λn

|Sn ∩ (Sn + h1 − λny)|
|Sn|

w(y)2τA∩BA∩B,m(h1 − λny)dy,

where the last equality follows from isotropy of w(·) and the independence of the inner integral of u. Then by
dominated convergence and Proposition 3.1

I7 =
1

ν2

∫
(Sn−Sn)+h1

λn

|Sn ∩ (Sn + h1 − λny)|
|Sn|︸ ︷︷ ︸
→1

w(y)2 τA∩BA∩B,m(h1 − λny)︸ ︷︷ ︸
→τA∩BA∩B(h1)

dy

n→∞−−−→ τA∩BA∩B(h1)
1

ν2

∫
R2

w(y)2dy.
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If h1 6= −h2 we will obtain, by the same arguments as for I6 in the h1 6= h2 case,

I7
n→∞−−−→ 0.

Lastly, we turn to I1. We will prove∣∣∣∣I1 −
|Sn|λ2

n

mn
E [τ̂AB,m(h1)]E [τ̂AB,m(h1)]

∣∣∣∣ n→∞−−−→ 0

and find using the same reasoning as in (11), stationarity and the triangle inequality∣∣∣∣I1 −
|Sn|λ2

n

mn
E [τ̂AB,m(h1)]E [τ̂AB,m(h1)]

∣∣∣∣
=
mnλ

2
n

|Sn|ν4

∣∣∣∣∣
∫
S4
n

wn(h1 + s1 − s2)wn(h2 + s3 − s4)
τ∗m(s1, s2, s3, s4)

mn
ν4ds1ds2ds3ds4

−
∫
S4
n

wn(h1 + s1 − s2)wn(h2 + s3 − s4)P
(
X0

am
∈ A, Xs2−s1

am
∈ B

)
P
(
X0

am
∈ A, Xs4−s3

am
∈ B

)
ν4ds1ds2ds3ds4

∣∣∣∣∣
≤ mnλ

2
n

|Sn|

∫
S4
n

wn(h1 + s1 − s2)wn(h2 + s3 − s4)∣∣∣∣ 1

mn
τ∗m(0, s2 − s1, s3 − s1, s4 − s1)− 1

m2
n

τAB,m(s2 − s1)τAB,m(s4 − s3)

∣∣∣∣ ds1ds2ds3ds4

=
mnλ

2
n

|Sn|

∫
(Sn−Sn)3

∫
Sn∩(Sn−v1)∩(Sn−v2)∩(Sn−v3)

wn(h1 − v1)wn(h2 − (v3 − v2))∣∣∣∣ 1

mn
τ∗m(0, v1, v2, v3)− 1

m2
n

τAB,m(v1)τAB,m(v3 − v2)

∣∣∣∣ dv4dv1dv2dv3. (16)

In the last step we substituted v1 = s2 − s1, v2 = s3 − s1, v3 = s4 − s1 and v4 = s1. Again, the integral does
not depend on v4 and |Sn∩(Sn−v1)∩(Sn−v2)∩(Sn−v3)|

|Sn| ≤ 1 such that (16) is bounded by

mnλ
2
n

∫
(Sn−Sn)3

wn(h1 − v1)wn(h2 − (v3 − v2))

∣∣∣∣ 1

mn
τ∗m(0, v1, v2, v3)− 1

m2
n

τAB,m(v1)τAB,m(v3 − v2)

∣∣∣∣ dv1dv2dv3

= mnλ
2
n

∫
h2−(Sn−Sn)−(Sn−Sn)

λn

∫
h1−(Sn−Sn)

λn

∫
Sn−Sn

1

λ4
n

w(y1)w(y2)∣∣∣∣ 1

mn
τ∗m(0, h1 − λny1, u, u+ h2 − λny2)− 1

m2
n

τAB,m(h1 − λny1)τAB,m(h2 − λny2)

∣∣∣∣λ4
ndudy1dy2,

(17)

where we used y1 = h1−v1
λn

, y2 = h2−(v3−v2)
λn

and u = v2 and the corresponding integral transformation
φ : R6 → R6 given by v1 = φ1(y1, y2, u) = h1 − λny1, v3 = φ2(y1, y2, u) = h2 + u − λny2 and v2 =
φ3(y1, y2, u) = u with the Jacobian

|Dφ(y1, y2, u)| =

∣∣∣∣∣∣
−λn12 0 0

0 −λn12 12

0 0 12

∣∣∣∣∣∣ = λ4
n.
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Note that by stationarity and definitions of τAB,m and τ∗m∣∣∣∣ 1

mn
τ∗m(0, h1 − λny1, u, u+ h2 − λny2)− 1

m2
n

τAB,m(h1 − λny1)τAB,m(h2 − λny2)

∣∣∣∣
=

∣∣∣∣P(X0

am
∈ A,

Xh1−λny1
am

∈ B, Xu

am
∈ A,

Xu+h2−λny2
am

∈ B
)

−P
(
X0

am
∈ A,

Xh1−λny1
am

∈ B
)
P
(
Xu

am
∈ A,

Xu+h2−λny2
am

∈ B
)∣∣∣∣

≤ sup{|P(A1 ∩A2)− P(A1)P(A2)| : A1 ∈ FΛ1 , A2 ∈ FΛ2 ,Λ1 = {0, h1 − λny1},Λ2 = {u, u+ h2 − λny2}}

≤ sup{|P(A1 ∩A2)− P(A1)P(A2)| : A1 ∈ FΛ1 , A2 ∈ FΛ2 , |Λ1| ≤ 2, |Λ2| ≤ 2, d(Λ1,Λ2) ≤ k}

= α22(k),

where d(A,B) := inf{|a − b| : a ∈ A, b ∈ B} denotes the minimal distance between two sets A,B ⊂ R2,
FA := σ{(Xs : s ∈ A} the sigma-algebra generated by the random process {Xs}s∈A. Furthermore, we define
k = min{|u|, |u+ h2 − λny2|, |u− h1 + λny1|, |u+ h2 − λny2 − h1 + λny1|} and observe

α22(k) ≤ α22(|u|) + α22(|u+ h2 − λny2|) + α22(|u− h1 + λny1|) + α22(|u+ h2 − λny2 − h1 + λny1|)

Thus, (17) is bounded by

mnλ
2
n

[∫
R2

∫
R2

∫
R2

w(y1)w(y2)α22(|u|)dy1dy2du

+

∫
h2−(Sn−Sn)−(Sn−Sn)

λn

∫
R2

∫
Sn−Sn

w(y1)w(y2)α22(|u+ h2 − λny2|)dudy1dy2

+

∫
R2

∫
h1−(Sn−Sn)

λn

∫
Sn−Sn

w(y1)w(y2)α22(|u− h1 + λny1|)dudy1dy2

+

∫
h2−(Sn−Sn)−(Sn−Sn)

λn

∫
h1−(Sn−Sn)

λn

∫
Sn−Sn

w(y1)w(y2)α22(|u+ h2 − λny2 − h1 + λny1|)dudy1dy2

]

=: mnλ
2
n [A1n +A2n +A3n +A4n] .

Since w(·) is a probability density on R2, we find by condition (M2)

A1n =

∫
R2

α22(|u|)du <∞.

Proceeding with A2n and substituting x = u+ h2 − λny2 and y = y2, gives

A2n =

∫
h2−(Sn−Sn)−(Sn−Sn)

λn

∫
Sn−Sn

w(y2)α22(|u+ h2 − λny2|)
∫
R2

w(y1)dy1︸ ︷︷ ︸
=1

dudy2

≤
∫
R2

∫
R2

w(y)α22(|x|)dxdy =

∫
R2

α22(|x|)dx <∞, by (M2),
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where the integral transformation function φ : R4 → R4 is given by u = φ1(x, y) = x + λny − h2 and
y2 = φ2(x, y) = y. The determinant of the Jacobian is

|Dφ(x, y)| =
∣∣∣∣(12 λn12

0 12

)∣∣∣∣ = 1.

Analogous arguments allow us to infer

A3n <∞.

For A4n we find by substituting x = u+ h2 − λnz − h1 + λny, y = y1 and z = y2

A4n ≤
∫
R2

∫
R2

∫
(Sn−Sn)+h2−h1+λny−λnz

w(y)w(z)α22(|x|)dxdydz

=

∫
R2

α22(|x|)dx
(∫

R2

w(y)dy

)2

︸ ︷︷ ︸
=1

=

∫
R2

α22(|x|)dx <∞, by (M2),

where the integral transform function is given by φ : R6 → R6 such that u = φ(x, y, z) = x − h2 + λnz +
h1 − λny, y1 = φ2(x, y, z) = y and y2 = φ2(x, y, z) = z. Therefore, the determinant of its Jacobian reads

|Dφ(x, y, z)| =

∣∣∣∣∣∣
12 λn12 −λn12

0 12 0
0 0 12

∣∣∣∣∣∣ = 1.

Finally, we combine the results for A1n, A2n, A3n and A4n to obtain∣∣∣∣I1 −
|Sn|λ2

n

mn
E [τ̂AB,m(h1)]E [τ̂AB,m(h1)]

∣∣∣∣ ≤ mnλ
2
n [A1n +A2n +A3n +A4n]

= 4 mnλ
2
n︸ ︷︷ ︸

→0 by (M2)

∫
R2

α22(|x|)dx n→∞−−−→ 0.

This means we may conclude the proof of (ii), since for the covariance we can infer

|Sn|λ2
n

mn
Cov (τ̂AB,m(h1), τ̂AB,m(h2)) = I6 + I7 + I1 −

|Sn|λ2
n

mn
E [τ̂AB,m(h1)]E [τ̂AB,m(h1)]

n→∞−−−→ 1

ν2
[τAB(h1)1{h1 = h2}+ τA∩B,A∩B(h1)1{h1 = −h2}]

∫
R2

w(y)2dy.

(iii) This is a direct result of (ii), setting h1 = h2.

Remark 3.4. Consider the estimator τ̂AB,m(h : Bi
n) of τAB(h), i ∈ {1, . . . , kn}, that is confined to observa-

tions on the cube Bi
n ⊂ Di

n and |Bi
n| = |Di

n| = O(n2γ), where Di
n is a bigger cube, containing Bi

n. Then we
have

|B1
n|2λ2

n

|D1
n|mn

Cov(τ̂AB,m(h1 : Bi
n), τ̂AB,m(h2 : Bi

n))

n→∞−−−→ 1

ν2
[τAB(h1)1{h1 = h2}+ τA∩B,A∩B(h1)1{h1 = −h2}]

∫
R2

w(y)2dy.
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Proof. The proof is completely analogous to the proof of Proposition 3.3. We only give a brief outline of the
steps. First note that

|B1
n|2λ2

n

|D1
n|mn

E
[
τ̂AB,m(h1 : Bi

n)τ̂AB,m(h2 : Bi
n)
]

=
mnλ

2
n

|D1
n|

1

ν4

∫
(Bin)4

wn(h1 + s1 − s2)wn(h2 + s3 − s4)
1

mn
τ∗m(s1, s2, s3, s4)E

[
N (2)(ds1, ds2)N (2)(ds3, ds4)

]
.

Then again we obtain seven integrals Ĩj , j ∈ {1, . . . , 7} according to (14). We observe that since |B1
n| and

|D1
n| both are in O(n2γ) and Bi

n ⊂ Di
n. We obtain for every y ∈ R2

|Bi
n ∩ (Bi

n − y)|
|D1

n|
n→∞−−−→ 1

|Bi
n ∩ (Bi

n − y)|
|D1

n|
≤ 1.

This allows us to conduct the same steps as in the proof above such that we obtain∣∣∣∣Ĩ1 −
|Sn|λ2

n

mn
E
[
τ̂AB,m(h1 : Bi

n)
]
E
[
τ̂AB,m(h2 : Bi

n)
]∣∣∣∣ n→∞−−−→ 0,

Ĩj
n→∞−−−→ 0, j = 2, 3, 4, 5

Ĩ6
n→∞−−−→ 1{h1 = h2}

1

ν2
τAB(h1)

∫
R2

w(y)2dy,

Ĩ7
n→∞−−−→ 1{h1 = −h2}

1

ν2
τAB(h1)

∫
R2

w(y)2dy,

and thus the remark follows.
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3.4 A CLT for the estimator of the numerator

Applying the previous results, we are now able to prove a CLT for the estimator of the numerator τ̂AB,m(·)
which then enables us to prove the CLT for the empirical extremogram, Theorem 3.6.

Proposition 3.5. Assume that the strictly stationary random process {Xs : s ∈ R2} satisfies the LUNC.
Further let (M1), (M2) hold. Then for an arbitrary, but fixed, lag h ∈ R2√

|Sn|λ2
n

mn
(τ̂AB,m(h)− E [τ̂AB,m(h)])

d−→ N(0, σ2(h)), n→∞,

where σ2(h) = 1
ν2
τAB(h)

∫
R2 w(y)2dy. Furthemore, if E [τ̂AB,m(h)]− τAB(h) = o

(√
mn
|Sn|λ2n

)
, then

√
|Sn|λ2

n

mn
(τ̂AB,m(h)− τAB(h))

d−→ N(0, σ2(h)), n→∞.

Proof. We follow Li et al. [16] and use a blocking technique. For this purpose let Di
n be non-overlapping

equal-sized cubes in Sn for i = 1, . . . , kn, where kn = |Sn|
|D1
n|

is the number of such cubes. Within each Di
n

there is a smaller inner cube, denoted by Bi
n with |Bi

n| = |B1
n| for all i = 1, . . . , kn, that shares the same center

as Di
n and d(∂Di

n, B
i
n) ≥ nη. Furthermore, let |D1

n| = n2γ and |B1
n| = (nγ − 2nη)2 = O(n2γ) with η > 0

such that 6
2+ε < η < γ < 1 for some ε > 2+4γ

η that satisfies the last condition of (M2). Then we have that
kn = O

(
n2(1−γ)

)
. To ease notation in the upcoming proof, we introduce

An =

√
mnλ2

n

|Sn|
1

ν2

∫
Sn

∫
Sn

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2)

=

√
|Sn|λ2

n

mn
τ̂AB,m(h)

ani =

√
mnλ2

n

|Sn|
1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2)

=

√
mnλ2

n

|Di
n|kn

1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2)

=

√
|Bi

n|2λ2
n

|Sn|mn
τ̂AB,m(h : Bi

n)

Ãn = An − E [An]

ãni = ani − E [ani]

an =

kn∑
i=1

ani
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ãn =

kn∑
i=1

ãni

ã′n =

kn∑
i=1

ã′ni,

where ã′ni are independent copies of ãni, i = 1, . . . , kn. We divide the proof in three steps.

Step 1

We will show Var
(
Ãn − ãn

)
n→∞−−−→ 0 which then implies by an application of Chebyshev’s inequality that

Ãn − ãn
P−→ 0: Note that by definitions of Ãn and ãn, we obtain that E

[
Ãn − ãn

]
= 0. Then Chebyshev’s

inequality gives for every ε > 0

P
(
Ãn − ãn > ε

)
≤ 1

ε2
Var

(
Ãn − ãn

)
n→∞−−−→ 0.

The result Var
(
Ãn − ãn

)
n→∞−−−→ 0 is proven by showing:

(i) Var(Ãn)
n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy

(ii) Cov(Ãn, ãn)
n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy

(iii) Var(ãn)
n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy

(i) This is an immediate result of Proposition 3.3 (ii) since

Var
(
Ãn

)
= Var (An) = Var

√ |Sn|λ2
n

mn
τ̂AB,m(h)

 =
|Sn|λ2

n

mn
Var (τ̂AB,m(h))

n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy.

(ii) For part (ii) we consider

E [Anan] =
mnλ

2
n

|Sn|ν4
E

[
kn∑
i=1

∫
Sn

∫
Sn

∫
Bin

∫
Bin

wn (h+ s1 − s2)wn (h+ s3 − s4)

1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
1

{
Xs3

am
∈ A

}
1

{
Xs4

am
∈ B

}
N (2)(ds1, ds2)N (2)(ds3, ds4)

]

=
λ2
n

|Sn|ν4

kn∑
i=1

∫
Sn

∫
Sn

∫
Bin

∫
Bin

wn (h+ s1 − s2)wn (h+ s3 − s4)

mnP
(
Xs1

am
∈ A, Xs2

am
∈ B, Xs3

am
∈ A, Xs4

am
∈ B

)
︸ ︷︷ ︸

=τ∗m(s1,s2,s3,s4)

E
[
N (2)(ds1, ds2)N (2)(ds3, ds4)

]
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=
λ2
n

|Sn|ν4

kn∑
i=1

[∫
Sn\Bin

∫
Sn\Bin

∫
Bin

∫
Bin

[
·
]

+

∫
Sn\Bin

∫
Bin

∫
Bin

∫
Bin

[
·
]

+

∫
Bin

∫
Sn\Bin

∫
Bin

∫
Bin

[
·
]

+

∫
Bin

∫
Bin

∫
Bin

∫
Bin

[
·
]]

(18)

=: Ā1 + Ā2 + Ā3 + Ā4 =:
4∑
i=1

7∑
j=1

Āji ,

where Āji corresponds to the i-th term of the four integrals in (18) with the j-th term of the seven terms
mentioned in the proof of Proposition 3.1 equation (14).
Since ∪kni=1B

i
n ⊂ Sn and ∪kni=1Sn\Bi

n ⊂ Sn, we infer that
∑4

i=1 Ā
i
j ≤ Ij

n→∞−−−→ 0 such that
∑4

i=1 Ā
i
j
n→∞−−−→ 0

for j ∈ {2, 3, 4, 5} and Ij as in the proof of Proposition 3.3.
Also with ∪kni=1B

i
n ⊂ Sn and by the same arguments as for the I1-term in part (ii) in the proof of Proposition

3.3, we obtain ∣∣∣∣∣
4∑
i=1

Ā1
i − E[An]E[an]

∣∣∣∣∣ n→∞−−−→ 0.

Note that if j = 6 and j = 7, we have s1 = s3 and s2 = s4, respectively, s1 = s4 and s2 = s3, for the
integrating variables in (18). Thus, since Sn\Bi

n ∩ Bi
n = ∅, the terms Āj1, Ā

j
2 and Āj3 vanish, j ∈ {6, 7}.

Therefore, we only consider Ā6
4 and Ā7

4 to see by stationarity and the known substitutions from the proof of
Proposition 3.3

Ā6
4 =

λ2
n

ν4|Sn|

kn∑
i=1

∫
Bin

∫
Bin

wn (h+ s1 − s2)2 τ∗m(s1, s2, s1, s2)︸ ︷︷ ︸
=mnP

(
X0
am
∈A,

Xs2−s1
am

∈B
) ν

2ds1ds2

=
λ2
n

ν2|Sn|

kn∑
i=1

∫
B1
n

∫
B1
n

wn (h+ s1 − s2)2 τAB,m(s2 − s1)ds1ds2

=
kn

ν2|Sn|

∫
(B1
n−B1

n)+h
λn

∫
B1
n∩(B1

n+h−λny)
w(y)2τAB,m(h− λny)dudy

=
1

ν2

∫
(B1
n−B1

n)+h
λn

|B1
n ∩ (B1

n + h− λny)|
|D1

n|
w(y)2τAB,m(h− λny)dy, using kn =

|Sn|
|D1

n|

n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy,

where we used the facts that |B
1
n∩(B1

n+h−λny)|
|D1
n|

≤ 1, |B
1
n∩(B1

n+h−λny)|
|D1
n|

n→∞−−−→ 1, which can be directly inferred

from B1
n ⊂ D1

n and |B1
n| and |D1

n|, both being in O(n2γ), as well as (B1
n−B1

n)+h
λn

n→∞−−−→ R2. Combining this

together with Proposition 3.1, the fact that τAB,m(h − λny) ≤ pm(A)
n→∞−−−→ µ(A) and applying dominated
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convergence, the upper result follows. For Ā7
4 we conduct the same steps as for I7 in the proof of Proposition

3.3 (ii) and find by the known substitutions and isotropy of w(·)

Ā7
4 =

λ2
n

ν4|Sn|

kn∑
i=1

∫
Bin

∫
Bin

wn (h+ s1 − s2)wn (h+ s2 − s1) τ∗m(s1, s2, s2, s1)︸ ︷︷ ︸
=mnP

(
X0
am
∈A,

Xs2−s1
am

∈B,
Xs2−s1
am

∈A,X0
am
∈B
)ν2ds1ds2

=
λ2
n

ν4|Sn|
kn

∫
B1
n

∫
B1
n

wn (h+ s1 − s2)wn (h+ s2 − s1) τA∩BA∩B(s2 − s1)ds1ds2

=
1

|Sn|
1

ν2

∫
(B1
n−B1

n)+h1
λn

∫
B1
n∩(B1

n+h1−λny)
w(y)w(−y)τA∩BA∩B,m(h1 − λny)dudy

=
1

ν2

∫
(B1
n−B1

n)+h1
λn

|B1
n ∩ (B1

n + h1 − λny)|
|Sn|

w(y)2τA∩BA∩B,m(h1 − λny)dy.

Now, we note that |B
1
n∩(B1

n+h1−λny)|
|Sn|

n→∞−−−→ 0, since |B1
n| = O(n2γ) and |Sn| = O(n2), where γ < 1. Then

applying dominated convergence gives

Ā7
4 =

1

ν2

∫
(B1
n−B1

n)+h1
λn

|B1
n ∩ (B1

n + h1 − λny)|
|Sn|︸ ︷︷ ︸
→0

w(y)2 τA∩BA∩B,m(h1 − λny)︸ ︷︷ ︸
→τAB(h1)<∞

dy
n→∞−−−→ 0.

Combining all of the results above, we are able to show part (ii) by

Cov(An, an) = E [Anan]− E [An]E [an] =

4∑
i=1

7∑
j=1

Āji − E[An]E[an]

=
4∑
i=1

5∑
j=2

Āji︸ ︷︷ ︸
→0

+
3∑
i=1

Ā6
i︸ ︷︷ ︸

=0

+ Ā6
4︸︷︷︸

→ 1
ν2
τAB(h)

∫
R2 w(y)2dy

+
3∑
i=1

Ā7
i︸ ︷︷ ︸

=0

+ Ā7
4︸︷︷︸
→0

+
4∑
i=1

Ā1
i − E[An]E[an]︸ ︷︷ ︸
→0

n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy.

(iii) First note that Var(ãn) =
∑kn

i=1 Var(ãni) +
kn∑
i=1

kn∑
j=1

j 6=i

Cov(ãni, ãnj). By stationarity and Remark 3.4, we

derive

kn∑
i=1

Var(ãni) = knVar(ãn1) = knVar(an1) = kn
|B1

n|2λ2
n

|Sn|mn
Var(τ̂AB,m(h : B1

n))

=
|B1

n|2λ2
n

|D1
n|mn

Var(τ̂AB,m(h : B1
n))

n→∞−−−→ 1

ν2
τAB(h)

∫
R2

w(y)2dy.
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Furthermore, ãni and ãnj are integrals over disjoint sets for i 6= j, also {Xs : s ∈ R2} and N are independent
implying that E [ãni|N ] and E [ãnj |N ] are independent. This is since ani only depends on Poisson points in
Bi
n. In the following, the argument is explained in more detail:

E [ani|N ] = E

[√
mnλ2

n

|Sn|
1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2)

∣∣∣∣∣N
]

=

√
mnλ2

n

|Sn|
1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)E

[
1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2)

∣∣∣∣∣N
]

=

√
mnλ2

n

|Sn|
1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)E

[
1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}∣∣∣∣∣N
]
N (2)(ds1, ds2)

=

√
mnλ2

n

|Sn|
1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)E
[
1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}]
N (2)(ds1, ds2)

=

√
mnλ2

n

|Sn|
1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)P
(
Xs1

am
∈ A, Xs2

am
∈ B

)
N (2)(ds1, ds2)

=

√
λ2
n

|Sn|mn

1

ν2

∫
Bin

∫
Bin

wn(h+ s1 − s2)τAB,m(s2 − s1)N (2)(ds1, ds2).

Now since Bi
n and Bj

n are disjoint cubes, the conditional expectations only depend on a Poisson process on
disjoint sets. Thus, they are independent. Then by the law of total covariance and the independence argument
from above

kn∑
i=1

kn∑
j=1

j 6=i

|Cov(ãni, ãnj)| =
kn∑
i=1

kn∑
j=1

j 6=i

∣∣∣E [Cov(ãni, ãnj |N)] + Cov (E [ãni|N ] ,E [ãnj |N ])
∣∣∣

=

kn∑
i=1

kn∑
j=1

j 6=i

|E [Cov(ãni, ãnj |N)] |.

We proceed by finding an almost sure upper bound for ani given the process N

|ani| ≤
1

ν2

√
mnλ2

n

|Sn|

∫
Bin

∫
Bin

wn(h+ s1 − s2)N (2)(ds1, ds2)

=
1

ν2

√
mnλ2

n

|Sn|

∫
Bin

∫
Bin

1

λ2
n

w

(
h+ s1 − s2

λn

)
N (2)(ds1, ds2)

This allows us to apply Lemma A.3 with U = Bi
n and V = Bj

n, i 6= j such that d(U, V ) ≥ nη > 0 and
max

{
|Bi

n|, |B
j
n|
}

= |B1
n| =: M resulting in
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E [Cov(ãni, ãnj |N)] |

≤ 4

ν4

λ2
nmn

|Sn|
E

[∫
Bin

∫
Bin

∫
Bjn

∫
Bjn

1

λ4
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
N (2)(ds1, ds2)N (2)(ds3, ds4)

]
αMM (nη)

≤ C

ν4

n−ηεmn

λ2
n|Sn|

∫
Bin

∫
Bin

∫
Bjn

∫
Bjn

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
E
[
N (2)(ds1, ds2)N (2)(ds3, ds4)

]
M2

=
C

ν4

n−ηεmn

λ2
n|Sn|

∫
Bin

∫
Bin

∫
Bjn

∫
Bjn

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
E
[
N (2)(ds1, ds2)

]
E
[
N (2)(ds3, ds4)

]
|B1

n|2

= C
n−ηεmn|B1

n|2

λ2
n|Sn|

∫
Bin

∫
Bin

∫
Bjn

∫
Bjn

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
ds1ds2ds3ds4

= C
n−ηεmn|B1

n|4λ2
n

|Sn|

∫
Bin−Bin+h

λn

∣∣Bi
n ∩

(
Bi
n − λny1 + h

)∣∣
|B1

n|
w (y1) dy1

∫
B
j
n−B

j
n+h

λn

∣∣∣Bj
n ∩

(
Bj
n − λny2 + h

)∣∣∣
|B1

n|︸ ︷︷ ︸
≤1

w (y2) dy2

≤ Cn
−ηεmn|B1

n|4λ2
n

|Sn|
,

where the second inequality holds due to condition (M2) and C > 0 is some appropriate constant. For the last
equality, we substituted y1 = h+s1−s2

λn
, u1 = s2 and y2 = h+s3−s4

λn
, u2 = s4 such that the integrand becomes

independent of u1 and u2. Recalling that kn = |Sn|/|D1
n|, the upper bound derived above allows us to estimate

kn∑
i=1

kn∑
j=1

j 6=i

|E [Cov(ãni, ãnj |N)] | ≤ Ck2
n

n−ηεmn|B1
n|4λ2

n

|Sn|
= C

|Sn|2

|D1
n|2

n−ηεmn|B1
n|4λ2

n

|Sn|
= O

(
n2+4γ−εηmnλ

2
n

)

which converges to 0 since mnλ
2
n → 0 and ε > 2+4γ

η by assumption.

Step 2

Let φn(·), φ′n(·) be the characteristic functions of ãn and ã′n. We follow the idea of Davis and Mikosch [9]∣∣φn(x)− φ′n(x)
∣∣ = E

[
eixãn − eixã′n

]
=
∣∣∣E [eix∑kn

l=1 ãnl − eix
∑kn
l=1 ã

′
nl

]∣∣∣
=

∣∣∣∣∣∣E
 kn∑
j=1

(
eix(

∑j
l=1 ãnl+

∑kn
l=j+1 ã

′
nl) − eix(

∑j
l=1 ãnl+

∑kn
l=j+1 ã

′
nl)
)

+ eix
∑kn
l=1 ãnl − eix

∑kn
l=1 ã

′
nl

∣∣∣∣∣∣
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=

∣∣∣∣∣∣E
 kn∑
j=1

eix(
∑j
l=1 ãnl+

∑kn
l=j+1 ã

′
nl) −

kn−1∑
j=0

eix(
∑j
l=1 ãnl+

∑kn
l=j+1 ã

′
nl)

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
 kn∑
j=1

(
eix(

∑j
l=1 ãnl+

∑kn
l=j+1 ã

′
nl) − eix(

∑j−1
l=1 ãnl+

∑kn
l=j ã

′
nl)
)∣∣∣∣∣∣ , change of index

=

∣∣∣∣∣∣E
 kn∑
j=1

j−1∏
l=1

eixãnl
(
eixãnj − eixã

′
nj

) kn∏
l=j+1

eixã
′
nl

∣∣∣∣∣∣
≤

kn∑
j=1

∣∣∣∣∣∣∣E
j−1∏
l=1

eixãnl
(
eixãnj − eixã

′
nj

)
︸ ︷︷ ︸

mean zero


∣∣∣∣∣∣∣E
∣∣∣∣∣∣

kn∏
l=j+1

eixã
′
nl

∣∣∣∣∣∣


︸ ︷︷ ︸
=1

, triangle inequality and independence of ã′nl

=

kn∑
j=1

∣∣∣∣∣Cov

(
j−1∏
l=1

eixãnl , eixãnj − eixã
′
nj

)∣∣∣∣∣

=

kn∑
j=1

∣∣∣∣∣∣∣∣∣∣
Cov

(
j−1∏
l=1

eixãnl , eixãnj

)
− Cov

(
j−1∏
l=1

eixãnl , eixã
′
nj

)
︸ ︷︷ ︸

=0,by independence

∣∣∣∣∣∣∣∣∣∣
=

kn∑
j=1

∣∣∣∣∣Cov

(
j−1∏
l=1

eixãnl , eixãnj

)∣∣∣∣∣

=

kn∑
j=1

∣∣∣∣∣∣∣∣∣∣
E

[
Cov

(
j−1∏
l=1

eixãnl , eixãnj

∣∣∣∣∣N
)]

+ Cov

(
E

[
j−1∏
l=1

eixãnl

∣∣∣∣∣N
]
,E

[
eixãnj

∣∣N])︸ ︷︷ ︸
=0, by the same reasoning as in step 1 part (iii)

∣∣∣∣∣∣∣∣∣∣
Now again, we apply the Lemma A.3. This time let U =

⋃j−1
l=1 B

l
n and V = Bj

n such that d(U, V ) ≥ nη and

max{|U |, |V |} = max
{∣∣∣(⋃j−1

l=1 B
l
n

)∣∣∣ , ∣∣∣Bj
n

∣∣∣} = (j − 1)|B1
n| =: M . Together with

∣∣eix∣∣ = 1 for all x ∈ R
and condition (M2), we deduce for some constant C > 0

∣∣∣∣∣E
[
Cov

(
j−1∏
l=1

eixãnl , eixãnj

∣∣∣∣∣N
)]∣∣∣∣∣ ≤ E [4αMM (nη)] = 4αMM (nη)

≤ Cn−εηM2 = Cn−εη(j − 1)2|B1
n|2.
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Hence, by using
∑kn

j=1(j − 1)2 ≤ k3
n = O(n6−6γ) and |B1

n| = O(n2γ)

kn∑
j=1

∣∣∣∣∣E
[
Cov

(
j−1∏
l=1

eixãnl , eixãnj

∣∣∣∣∣N
)]∣∣∣∣∣ ≤ Cn−εηk3

n|B1
n|2 = O

(
n6−2γ−εη) ,

which converges to 0 since 6
2+ε < η < γ < 1.

Note that from step 1, we already have ε > 2+4γ
η . Choosing γ = 3

4 , η = 1
2 and ε = 11 shows that the set of

possible rates for γ, η and ε is non-empty.

Step 3

We will show the central limit theorem for ã′n by applying the theorem of Lindeberg-Feller. For notational ease,
we consider

Ini :=

∫
Bin

∫
Bin

wn(h+ s1 − s2)1

{
Xs1

am
∈ A

}
1

{
Xs2

am
∈ B

}
N (2)(ds1, ds2).

Then we may infer for δ > 0, according to condition (M2), and some Cδ > 0 chosen accordingly

E
[∣∣∣√knã′n1

∣∣∣2+δ
]

= E

∣∣∣∣∣√kn
√
mnλ2

n

|Sn|
1

ν2
(In1 − E [In1])

∣∣∣∣∣
2+δ


= E

∣∣∣∣∣
√
mnλ2

n

|D1
n|
|B1

n|
mn

(
τ̂AB,m(h : B1

n)− E
[
τ̂AB,m(h : B1

n)
])∣∣∣∣∣

2+δ


= E

∣∣∣∣∣
√
|B1

n|2λ2
n

mn|D1
n|
(
τ̂AB,m(h : B1

n)− E
[
τ̂AB,m(h : B1

n)
])∣∣∣∣∣

2+δ


< E


∣∣∣∣∣∣
√
|B1

n|λ2
n

mn

(
τ̂AB,m(h : B1

n)− E
[
τ̂AB,m(h : B1

n)
])∣∣∣∣∣∣

2+δ
 , since

|B1
n|

|D1
n|
< 1

≤ Cδ, by condition (M2).

This gives by independence and the same argument as in the beginning of Step 1 part (iii)

σ2
n := Var

(
kn∑
i=1

ã′ni

)
=

kn∑
i=1

Var
(
ã′ni
)

= knVar
(
ã′n1

)
= knVar (ãn1)

n→∞−−−→ 1

ν2
τAB(h)

∫
R
w(y)2dy =: σ2.

Furthermore, we observe for δ > 0∑kn
i=1 E

[
|ã′ni|

2+δ
]

σ2+δ
n

=
knk

−1− δ
2

n E
[∣∣√knã′ni∣∣2+δ

]
σ2+δ
n

≤ Cδ
k
−δ/2
n

σ2+δ
n

n→∞−−−→ 0
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and for the sake of completeness, we know that E [ãni] = 0 and Var (ãni) are finite. This means Lyapunov’s
condition holds and we may infer the central limit theorem

ã′n
σn

d−→ N(0, 1).

Then Step 2 and Slutsky’s theorem imply that ãn
σn

d−→ N(0, 1) or, equivalently, ãn
d−→ N(0, σ2). Since con-

vergence in probability implies weak convergence, Step 1 yields Ãn
d−→ N(0, σ2) which is, by inserting the

definitions of Ãn and τ̂AB,m(h), equivalent to√
|Sn|λ2

n

mn
(τ̂AB,m(h)− E [τ̂AB,m(h)])

n→∞−−−→ N(0, σ2)

and obviously, if E [τ̂AB,m(h)]− τAB(h) = o

(√
mn
|Sn|λ2n

)
we have

√
|Sn|λ2

n

mn
(τ̂AB,m(h)− τAB(h))−

√
|Sn|λ2

n

mn
(E [τ̂AB,m(h)]− τAB(h))︸ ︷︷ ︸

→0

d−→ N(0, σ2), n→∞

⇔

√
|Sn|λ2

n

mn
(τ̂AB,m(h)− τAB(h))

d−→ N(0, σ2), n→∞,

which proves Proposition 3.5.

3.5 A CLT for the empirical extremogram

The following theorem is one of the key results of this work. The result is given in Cho et al. [7] but lacks some
essential parts of the proof which we provide in full detail.

Theorem 3.6. Let {Xs : s ∈ R2} be a strictly stationary regularly varying random process with index β >
0 satisfying the LUNC. Assume N is a homogeneous 2-dimensional Poisson process with parameter ν and
independent of X . Consider a sequence of compact and convex sets Sn ⊂ R2 satisfying |Sn| → ∞ as n→∞.
Assume conditions (M1) and (M2) hold. Then we obtain for every finite set of non-zero lags H = {h1, . . . , hp}
in R2 √

|Sn|λ2
n

mn
(ρ̂AB,m(h)− ρAB,m(h))h∈H

d−→ N(0,Σ), n→∞,

where Σ is specified in the proof of this theorem. If ρAB,m(h)− ρAB(h) = o

(√
mn
|Sn|λ2n

)
for every h ∈ H , we

have √
|Sn|λ2

n

mn
(ρ̂AB,m(h)− ρAB(h))h∈H

d−→ N(0,Σ), n→∞.
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Proof. We have to make the following assumption which is not mentioned in Cho et al. [7] but is still necessary
in the idea of the proof they present

E [τ̂AB,m(h)]− τAB,m(h) = o

(√
mn

|Sn|λ2
n

)
. (19)

Due to Proposition 3.2, that yields p̂m(A)
P−→ µ(A) as n → ∞, Proposition 3.5, the continuous mapping

theorem and Slutsky’s theorem, we may infer for every fixed lag h ∈ R2 by employing assumption (19)√
|Sn|λ2

n

mn

(
τ̂AB,m(h)

p̂m(A)
−
τAB,m(h)

p̂m(A)

)

=

√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)−

τAB,m(h)

p̂m(A)

)

=

√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)−

E [τ̂AB,m(h)]

p̂m(A)

)
+

1

p̂m(A)

√
|Sn|λ2

n

mn

(
E [τ̂AB,m(h)]− τAB,m(h)

)

=

√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)−

E [τ̂AB,m(h)]

p̂m(A)

)
+ oP (1)

d−→ N

(
0,

σ2

µ(A)2

)
, n→∞. (20)

We can compute√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)−

τAB,m(h)

p̂m(A)

)
=

√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)− ρAB,m(h) + ρAB,m(h)−

τAB,m(h)

p̂m(A)

)

=

√
|Sn|λ2

n

mn
(ρ̂AB,m(h)− ρAB,m(h)) +

√
|Sn|λ2

n

mn

(
τAB,m(h)

pm(A)
−
τAB,m(h)

p̂m(A)

)

=

√
|Sn|λ2

n

mn
(ρ̂AB,m(h)− ρAB,m(h)) +

√
|Sn|λ2

n

mn

τAB,m(h) (p̂m(A)− pm(A))

pm(A)p̂m(A)

=

√
|Sn|λ2

n

mn
(ρ̂AB,m(h)− ρAB,m(h)) +

√
|Sn|λ2

n

mn

τAB,m(h) (p̂m(A)− pm(A))

(p̂m(A)− µ(A)) pm(A) + µ(A)pm(A)
.

(21)

We consider the denominator for the second summand first and find by Slutsky’s theorem

(p̂m(A)− µ(A))︸ ︷︷ ︸
=oP (1)

pm(A)︸ ︷︷ ︸
→µ(A)

+µ(A)pm(A)︸ ︷︷ ︸
→µ(A)2

P−→ µ(A)2, n→∞.

Turning to the numerator, including the rate, we obtain for every ε > 0 by an application of Chebyshev’s
inequality (note that by Proposition 3.2 E [p̂m(A)] = pm(A), which gives the numerator a mean of zero) and
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the result from Proposition 3.3 (ii)

P

∣∣∣∣∣∣
√
|Sn|λ2

n

mn
τAB,m(h) (p̂m(A)− pm(A))

∣∣∣∣∣∣ > ε

 ≤ λ2
n

ε2︸︷︷︸
→0

τAB,m(h)2︸ ︷︷ ︸
→τAB(h)2

|Sn|
mn

Var (p̂m(A))︸ ︷︷ ︸
→µ(A)

ν
+
∫
R2 τAA(y)dy<∞

n→∞−−−→ 0. (22)

We conclude that the numerator converges to 0 in probability while the denominator has a limit different from
0 in probability. An application of Slutsky’s theorem then gives that (21) equals√

|Sn|λ2
n

mn
(ρ̂AB,m(h)− ρAB,m(h)) + oP (1)

proving, in combination with (20), the central limit theorem for
√
|Sn|λ2n
mn

(ρ̂AB,m(h)− ρAB,m(h)).

Next, we prove the multivariate normality of all lags in H by application of the Cramér-Wold device. For an
arbitrary z = (z1, . . . , zp)

> ∈ Rp we consider kn i.i.d. copies of

Tnj(z) :=

p∑
i=1

zi

√
|B1

n|2λ2
n

|Sn|mn

(
τ̂AB,m(hi : Bj

n)− E
[
τ̂AB,m(hi : Bj

n)
])
, j = 1, . . . , kn

and denote the independent copies by T̃nj . Then for the finite set of lags H = {h1, . . . , hp} we compute

E
[∣∣∣√knT̃n1(z)

∣∣∣2+δ
]

= E

∣∣∣∣∣√kn
√
|B1

n|2λ2
n

|Sn|mn

p∑
i=1

zi
(
τ̂AB,m(hi : B1

n)− E
[
τ̂AB,m(hi : B1

n)
])∣∣∣∣∣

2+δ


≤ max
i∈{1,...,p}

{zi}E

∣∣∣∣∣
√
|B1

n|2λ2
n

|D1
n|mn

p∑
i=1

(
τ̂AB,m(hi : B1

n)− E
[
τ̂AB,m(hi : B1

n)
])∣∣∣∣∣

2+δ


≤ p2+δ max
i∈{1,...,p}

{zi}E

∣∣∣∣∣
√
|B1

n|2λ2
n

|D1
n|mn

max
i∈{1,...,p}

∣∣τ̂AB,m(hi : B1
n)− E

[
τ̂AB,m(hi : B1

n)
]∣∣∣∣∣∣∣

2+δ


< p2+δ max
i∈{1,...,p}

{zi}E


∣∣∣∣∣∣
√
|B1

n|λ2
n

mn
max

i∈{1,...,p}

∣∣τ̂AB,m(hi : B1
n)− E

[
τ̂AB,m(hi : B1

n)
]∣∣∣∣∣∣∣∣

2+δ
 , since

|B1
n|

|D1
n|
< 1.

(23)
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Since condition (M2) holds and the set H is finite, (23) is bounded by C?δ := p2+δ · max
i∈{1,...,p}

{zi} · Cδ, for some

appropriate and finite positive Cδ. Not that E
[
T̃nj(z)

]
= E [Tnj(z)] = 0 for all j ∈ {1, . . . , kn}. Then we

observe by and independence of the T̃nj and Remark 3.4,

kn∑
j=1

Var
(
T̃n1(z)

)
= knE

[
T̃n1(z)2

]
= knVar

(
T̃n1(z)

)

= knVar

(
p∑
i=1

zi

√
|B1

n|2λ2
n

|Sn|mn

(
τ̂AB,m(hi : B1

n)− E
[
τ̂AB,m(hi : B1

n)
]))

=

p∑
i=1

z2
i kn
|B1

n|2λ2
n

|Sn|mn
Var

(
τ̂AB,m(hi : B1

n)
)

+

p∑
i=1

p∑
j=1

j 6=i

zizjkn
|B1

n|2λ2
n

|Sn|mn
Cov

(
τ̂AB,m(hi : B1

n), τ̂AB,m(hj : B1
n)
)

=

p∑
i=1

z2
i

|B1
n|2λ2

n

|D1
n|mn

Var
(
τ̂AB,m

(
hi : B1

n

))
+

p∑
i=1

p∑
j=1

j 6=i

zizj
|B1

n|2λ2
n

|D1
n|mn

Cov
(
τ̂AB,m

(
hi : B1

n

)
, τ̂AB,m

(
hj : B1

n

))

= z′Vnz
n→∞−−−→ z′V z <∞,

where Vn and V are p× p-matrices with the following entries

Vn :=

(
|B1

n|2λ2
n

|D1
n|mn

Cov
(
τ̂AB,m

(
hi : B1

n

)
, τ̂AB,m

(
hj : B1

n

)))
i=1,...,p
j=1,...,p

V :=

(
1

ν2

[
τAB(hi)1{hi = hj}+ τA∩B,A∩B(hi)1{hi = −hj}

] ∫
R2

w(y)2dy

)
i=1,...,p
j=1,...,p

.

Thus we obtain asymptotic normality of
∑kn

j=1 T̃nj(z) by showing Lyapunov’s condition, namely,

∑kn
i=j E

[∣∣∣T̃nj(z)∣∣∣2+δ
]

(z′Vnz)
2+δ

=

knk
−1− δ

2
n E

[∣∣∣√knT̃n1(z)
∣∣∣2+δ

]
(z′Vnz)

2+δ
<

C?δ k
− δ

2
n

(z′Vnz)
2+δ

n→∞−−−→ 0.

Hence, we obtain
∑kn

j=1 T̃nj(z)
d−→ N(0, z′V z), as n→∞.

Denote the characteristic functions of
∑kn

j=1 Tnj(z) and
∑kn

j=1 T̃nj(z) by φ(·) and φ̃(·), respectively. We use
the same technique as in the proof of Proposition 3.5 Step 2, and find

∣∣∣φ(x)− φ̃(x)
∣∣∣ ≤ kn∑

j=1

∣∣∣∣∣E
[
Cov

(
j−1∏
l=1

eixTnl(z), eixTnj(z)

∣∣∣∣∣N
)]

+ Cov

(
E

[
j−1∏
l=1

eixTnl(z)

∣∣∣∣∣N
]
,E

[
eixTnj(z)

∣∣∣∣∣N
])∣∣∣∣∣ .

(24)
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Since
(⋃j−1

l=1 B
l
n

)
∩Bj

n = ∅, we obtain that {Tnl : l = 1, . . . , j−1} and Tnj are independent, givenN . Hence,
the second term vanishes. The first term can be bounded by Lemma A.3. For this virtue, recall that, given N ,
Tnj(z) and

∑j−1
l=1 Tnl(z) are U := Bj

n and V :=
⋃j−1
l=1 B

l
n measurable, respectively. This gives d(U, V ) ≥ nη.

Let M := (j − 1)|B1
n| = max

{
|Bj

n|,
∣∣∣⋃j−1

l=1 B
l
n

∣∣∣}. Together with
∣∣∣∏j−1

l=1 e
ixTnl(z)

∣∣∣ =
∣∣eixTnj(z)∣∣ = 1 and

condition (M2), we get for an appropriate C > 0

E

[
Cov

(
j−1∏
l=1

eixTnl(z), eixTnj(z)

∣∣∣∣∣N
)]
≤ 4E [αMM (nη)] = 4αMM (nη) ≤ Cn−εηM2

= Cn−εη(j − 1)2|B1
n|2

Then by kn = |Sn|
|D1
n|

= O
(
n2(1−γ)

)
and B1

n = O(n2γ), we obtain the following uppper bound for (24)

∣∣∣φ(x)− φ̃(x)
∣∣∣ ≤ C kn∑

j=1

n−εη(j − 1)2|B1
n|2 ≤ Ckn3n−εη|B1

n|2 = O(n6−2γ−εη),

which converges to 0 as already seen in Step 1 of the proof of Proposition 3.5. Hence, we conclude
kn∑
j=1

Tnj(z)
d−→ N(0, z′V z)

for any arbitrary z ∈ Rp. Applying the Cramér-Wold-device gives

√
|B1

n|2λ2
n

|Sn|mn

kn∑
j=1


τ̂AB,m(h1 : Bj

n)− E
[
τ̂AB,m(h1 : Bj

n)
]

...

τ̂AB,m(hp : Bj
n)− E

[
τ̂AB,m(hp : Bj

n)
]
 d−→ N(0, V ), n→∞

⇔
kn∑
j=1

anj(h1)− E [anj(h1)]
...

anj(hp)− E [anj(hp)]

 d−→ N(0, V ), n→∞

⇔

ãn(h1)
...

ãn(hp)

 d−→ N(0, V ), n→∞

⇒

Ãn(h1)
...

Ãn(hp)

 =

Ãn(h1)
...

Ãn(hp)

−
ãn(h1)

...
ãn(hp)


︸ ︷︷ ︸

d−→0, since ãn(hi)−Ãn(hi)=oP (1), ∀i∈{1,...,p}

+

ãn(h1)
...

ãn(hp)

 d−→ N(0, V ), n→∞

⇔

√
|Sn|λ2

n

mn

τ̂AB,m(h1)− E [τ̂AB,m(h1)]
...

τ̂AB,m(hp)− E [τ̂AB,m(hp)]

 d−→ N(0, V ), n→∞. (25)



343 A CENTRAL LIMIT THEOREM FOR THE EMPIRICAL EXTREMOGRAM ON AN IRREGULAR GRID

Then, we can observe, using similar steps as in the sketch of the proof of Theorem 4.2 in Buhl and Klüppelberg
[6], √

|Sn|λ2
n

mn
(ρ̂AB,m(hi)− ρAB,m(hi)) =

√
|Sn|λ2

n

mn

(
τ̂AB,m(hi)

p̂m(A)
−
τAB,m(hi)

pm(A)

)

=

√
|Sn|λ2

n

mn

1

p̂m(A)pm(A)
(τ̂AB,m(hi)pm(A)− τAB,m(hi)p̂m(A))

=

√
|Sn|λ2

n

mn

pm(A)/p̂m(A)

pm(A)2

[(
τ̂AB,m(hi)− E [τ̂AB,m(hi)]

)
pm(A)

+ E [τ̂AB,m(hi)] pm(A)− τAB,m(hi)p̂m(A)
]

=

√
|Sn|λ2

n

mn

pm(A)/p̂m(A)

pm(A)2

[(
τ̂AB,m(hi)− E [τ̂AB,m(hi)]

)
µ(A)

pm(A)

µ(A)

−
(
p̂m(A)− pm(A)

)
τAB(hi)

τAB,m(hi)

τAB(hi)
−
(
τAB,m(hi)− E [τ̂AB,m(hi)]

)
pm(A)

]

=

√
|Sn|λ2

n

mn

pm(A)/p̂m(A)

pm(A)µ(A)

[(
τ̂AB,m(hi)− E [τ̂AB,m(hi)]

)
µ(A)

]

−

√
|Sn|λ2

n

mn

pm(A)/p̂m(A)

pm(A)2

[(
p̂m(A)− pm(A)

)
τAB(hi)

τAB,m(hi)

τAB(hi)︸ ︷︷ ︸
=1+o(1)

]

−

√
|Sn|λ2

n

mn

pm(A)/p̂m(A)

pm(A)2

[(
τAB,m(hi)− E [τ̂AB,m(hi)]

)
pm(A)

]

=

√
|Sn|λ2

n

mn

1 + oP (1)

µ(A)2

[(
τ̂AB,m(hi)− E [τ̂AB,m(hi)]

)
µ(A)

]

− 1 + oP (1)

µ(A)2

[√
|Sn|λ2

n

mn

(
p̂m(A)− pm(A)

)
︸ ︷︷ ︸

=oP (1) compare equation (22)

τAB(hi)

]

− 1 + oP (1)

µ(A)2

[√
|Sn|λ2

n

mn

(
τAB,m(hi)− E [τ̂AB,m(hi)]

)
︸ ︷︷ ︸

=o(1) by assumption (19)

pm(A)

]

=

√
|Sn|λ2

n

mn

1 + oP (1)

µ(A)

(
τ̂AB,m(hi)− E [τ̂AB,m(hi)]

)
+ oP (1).
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This then gives by (25)√
|Sn|λ2

n

mn

ρ̂AB,m(h1)− ρAB,m(h1)
...

ρ̂AB,m(hp)− ρAB,m(hp)

 =

√
|Sn|λ2

n

mn

1 + oP (1)

µ(A)

τ̂AB,m(h1)− E [τ̂AB,m(h1)]
...

τ̂AB,m(hp)− E [τ̂AB,m(hp)]

+ oP (1)

d−→ N
(
0, µ(A)−2V

)
, n→∞

such that we can define the asymptotic covariance matrix Σ by Σ := µ(A)−2V .
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4 The extremogram for the Brown-Resnick process

4.1 The Brown-Resnick process

In this section we consider the strictly stationary isotropic Brown-Resnick process
{
ηs : s ∈ R2

}
, introduced

in Brown and Resnick [3] in a time setting and in a spatial setting in Kabluchko et al. [12], with

ηs =

∞∨
j=1

ξ−1
j exp(Wj(s)− δ(|s|), s ∈ R2 (26)

where | · | denotes the Euclidean norm in R2, (ξj)j∈N are points of a unit rate Poisson process on [0,∞), the
dependence function δ(·) is nonnegative and conditionally negative definite.

{
Wj(s) : s ∈ R2

}
j∈N are indepen-

dent samples of the Gaussian process
{
W (s) : s ∈ R2

}
with stationary increments W (0) = 0, E [W (s)] = 0

and covariance function

Cov (W (s1),W (s2)) = δ(|s1|) + δ(|s2|)− δ(|s1 − s2|).

All finite dimensional distributions are multivariate extreme value distributions with standard unit Fréchet mar-
gins. This implies, applying a Taylor expansion, for the sequence an according to Definition 2.1

1

n
∼ P (η0 > an) = 1− e−

1
an =

1

an
+O

(
1

a2
n

)
⇒ an ∼ n.

In our case, let the dependence function be given by

δ(u) = 2θ1u
α1 , u ≥ 0. (27)

According to equation (2.6) in Davis et al. [10], the bivariate distribution function F (x1, x2) of (η0, ηs) is given
for x1, x2 > 0 by

F (x1, x2) = exp

[
− 1

x1
Φ

(
log(x2/x1)√

2δ(|s|)
+

√
1

2
δ(|s|)

)
− 1

x2
Φ

(
log(x1/x2)√

2δ(|s|)
+

√
1

2
δ(|s|)

)]
. (28)

The following Lemma, coming from equation (3.1) in Davis et al. [10], gives the explicit form of the tail de-
pendence coefficient of a Brown-Resnick process.

Lemma 4.1. Let
{
ηs : s ∈ R2

}
be the strictly stationary Brown-Resnick process in R2 as defined in (26) with

dependence function given by (27). Then the tail dependence coefficient is given by

χ(u) = 2

(
1− Φ

(√
1

2
δ(u)

))
= 2

(
1− Φ

(√
θ1uα1

))
, u ∈ R, (29)

where Φ(·) denotes the standard normal distribution function.
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Thus, applying a Taylor expansion, we show that for x > 0

P (η0 > x, ηs > x) = 2[1− F (x)]− 1 + F (x, x)

= 1− 2 exp

(
−1

x

)
+ exp

(
−2

x
Φ

(√
1

2
δ(|s|)

))

= 1− 2 exp

(
−1

x

)
+ exp

(
1

x
(χ(|s|)− 2)

)
= 1− 2 +

2

x
+O

(
1

x2

)
+ 1 +

χ(|s|)− 2

x
+O

(
1

x2

)
=
χ(|s|)
x

+O

(
1

x2

)
, as x→∞, (30)

where, by stationarity, F (·) denotes the univariate distribution function of ηs for every s ∈ R2.

4.2 The central limit theorem for the tail dependence coefficient in the Brown-Resnick case

Since we want to apply Theorem 3.6 to the tail dependence coefficient of the Brown-Resnick process, we need
to show that η satisfies the corresponding regularity conditions. We will see that this is the case if the rates from
(M1) and (M2) satisfy the conditions

sup
n

λ2
nn

2γ

mn
<∞ (31)

sup
n

mn

λ2
nn

2γ
<∞ (32)

and sup
n
m3
nλ

6
nn

2γ <∞. (33)

Lemma 4.2. Let the rates from (M1) and (M2) satisfy (31), (32) and (33). Then the Brown-Resnick process{
ηs : s ∈ R2

}
as defined in (26) satisfies the regularity conditions M(1), M(2) and the LUNC when considering

A = B = (1,∞).

Proof. In the following proof, we denote appropriate constants by C, where C might vary between the lines
and different equations but is always a positive and finite constant.
We start with showing (1). Then, since am ∼ mn, we may infer for θ1, α1 > 0 and every ε > 0

lim
k→∞

lim sup
n→∞

mn

∫
B[k,rn]

P (|Xy| > εam, |X0| > εam) dy

= lim
k→∞

lim sup
n→∞

mn

∫
B[k,rn]

1

εmn
χ(|y|) +O

(
1

m2
n

)
dy, by (30)

= lim
k→∞

lim sup
n→∞

∫
B[k,rn]

2

ε

(
1− Φ

(√
θ1|y|α1

))
+O

(
1

mn

)
dy, by (29)
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= lim
k→∞

lim sup
n→∞

(∫ rn

k

∫ 2π

0

2R

ε

(
1− Φ

(√
θ1Rα1

))
dθdR+O

(
r2
n

mn

))
, transformation to polar coordinates

= lim
k→∞

lim sup
n→∞

(∫ rn

k

4πR

ε

(
1− Φ

(√
θ1Rα1

))
dR+O

(
r2
n

mn

))

≤ lim
k→∞

lim sup
n→∞

(
4π

ε

∫ rn

k
Re−θ1R

α1/2dR+O

(
r2
n

mn

))
, since 1− Φ(x) ≤ e−x2/2

≤ lim
k→∞

lim sup
n→∞

(
Ck2e−θ1k

α1/2 +O

(
r2
n

mn

))
, by Lemma A.5

= lim
k→∞

Ck2e−θ1k
α1/2 + lim sup

n→∞
O

(
r2
n

mn

)
︸ ︷︷ ︸

=0, since r2n=o(mn) by (M1)

= 0.

We proceed with showing (2) and obtain for every k, l ∈ N the more general result

lim
n→∞

∫
R2\B[0,rn)

mnαk,l(|y|)dy

= lim
n→∞

mn

∫ ∞
rn

∫ 2π

0
Rαk,l(R)dθdR, transformation to polar coordinates

= lim
n→∞

mn

∫ ∞
rn

2πRαk,l(R)dR

≤ lim
n→∞

8klπmn

∫ ∞
rn

Re−θ1R
α1/2dR, by Lemma A.4

≤ lim
n→∞

Cmnr
2
ne
−θ1r

α1
n /2, by Lemma A.5

= 0, since θ1, α1 > 0 and rn
n→∞−−−→∞.

In the next step, we prove (3) and observe∫
R2

τAA(y)dy =

∫
R2

lim
n→∞

mnP (X0 > am, Xy > am) dy

=

∫
R2

lim
n→∞

χ(|y|) +O

(
1

mn

)
︸ ︷︷ ︸
→0

 dy, by (30)

=

∫
R2

2
(

1− Φ
(√

θ1|y|α1

))
dy, by (29)

=

∫ ∞
0

∫ 2π

0
2R
(

1− Φ
(√

θ1Rα1

))
dθdR, transformation to polar coordinates
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≤ 4π

∫ ∞
0

Re−θ1R
α1/2dR, since 1− Φ(x) ≤ e−x2/2

≤ 4π + 4π

∫ ∞
1

Re−θ1R
α1/2dR

≤ 4π + Ce−θ/2 <∞, by Lemma A.5.

Note that in our case A = B = (1,∞). Hence, (5) and (3) are equivalent.
We continue with the proof of (6) and find for all k, l ∈ N by the same techniques as before∫

R2

αk,l(|y|)dy =

∫ ∞
0

∫ 2π

0
Rαk,l(R)dθdR, transformation to polar coordinates

≤ 2π

∫ ∞
0

klRe−θ1R
α1/2dR, by Lemma A.4

≤ 2klπ + 2klπ

∫ ∞
1

Re−θ1R
α1/2dR

≤ 2klπ + Ce−θ1/2 <∞ by Lemma A.5. (34)

Turning to (7), we calculate for every h ∈ R2 by Lemma A.4

sup
l

αl,l(|h|)
l2

≤ sup
l

4e−θ1|h|
α1/2 = 4e−θ1|h|

α1/2 = O(|h|−ε), for every ε > 0,

which is even stronger than (7) since this holds for arbitrary ε > 0.
In the following, we show that the Brown-Resnick process satisfies the LUNC from Definition 2.5. For this
purpose, we consider ηs = U1

s ∨ U2
s , where U1

s := ξ−1
1 Y 1

s , U2
s :=

∨
j≥2 ξ−1jY

j
s and Y j

s := exp(Wj(s) −
δ(|s|)), where ∨ denotes the maximum operator. First, we show that for arbitrary δ > 0{

|U1
s ∨ U2

s − U1
0 ∨ U2

0 | > δan
}
⊂
{
|U1
s − U1

0 | > δan
}
∪
{
|U2
s − U2

0 | > δan
}
. (35)

This can be verified by considering the following cases

|U1
s ∨ U2

s − U1
0 ∨ U2

0 | > δan ⇒



|U1
s − U1

0 | > δan, if U1
s ≥ U2

s and U1
0 ≥ U2

0

|U1
s − U1

0 | > δan, if U1
s ≥ U2

s , U
1
0 < U2

0 and U1
s ≥ U2

0

|U2
s − U2

0 | > δan, if U1
s ≥ U2

s , U
1
0 < U2

0 and U1
s < U2

0

|U2
s − U2

0 | > δan, if U1
s < U2

s and U1
0 ≤ U2

0

|U2
s − U2

0 | > δan, if U1
s < U2

s , U
1
0 > U2

0 and U2
s ≥ U1

0

|U1
s − U1

0 | > δan, if U1
s < U2

s , U
1
0 > U2

0 and U2
s < U2

0 .
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Hence, we obtain for all δ > 0, δ′ > 0

nP

(
sup
|s|<δ′

|ηs − η0| > anδ

)
= nP

(
sup
|s|<δ′

|U1
s ∨ U2

s − U1
0 ∨ U2

0 | > anδ

)

≤ nP

({
sup
|s|<δ′

|U1
s − U1

0 | > anδ

}
∪

{
sup
|s|<δ′

|U2
s − U2

0 | > anδ

})
, by (35)

≤ nP

(
sup
|s|<δ′

|U1
s − U1

0 | > anδ

)
+ nP

(
sup
|s|<δ′

|U2
s − U2

0 | > anδ

)
=: A1 +A2.

Note that Ys has continuous sample paths, since it is a continuous function of a continuous Gaussian process.
Therefore, every path of Ys is bounded on a compact set such that E

[
sup|s|<δ′ |Ys|

]
< ∞. We define Z :=

sup|s|<δ′ |Y 1
s − Y 1

0 | and obtain

A1 = nP

(
sup
|s|<δ′

|U1
s − U1

0 | > anδ

)

= nP
(
ξ1 <

Z

anδ

)

= nE
[
1

{
ξ1 <

Z

anδ

}]

= nE
[
E
[
1

{
ξ1 <

Z

anδ

}∣∣∣∣Z]]

= nE
[
P
(
ξ1 <

Z

anδ

∣∣∣∣Z)]
= n

∫ ∞
0

1− e−
z
anδF (dz), since ξ1 ∼ Exp(1) as the first time point of a Poisson process

= n

∫ ∞
0

z

anδ
+O

(
1

a2
n

)
F (dz), applying a Taylor expansion, (36)

where F (·) denotes the distribution function of Z. In particular, the continuity of Ys implies for every δ′ > 0

that E [Z] = E
[
sup|s|<δ′ |Ys − Y0|

]
<∞. Since an ∼ n, we have

A1 =
n

an

∫ ∞
0

z

δ
F (dz) +O

(
1

a2
n

)
n→∞−−−→ 1

δ
E[Z]

δ→∞−−−→ 0.
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Turning to A2, we follow the arguments of Remark 3.6 in Davis and Mikosch [8] and denote the distribution
function of sup|s|<δ′ |Y

j
s | by G(·) such that

A2 = nP

 sup
|s|<δ′

∞∨
j=2

ξ−1
j |Y

j
s − Y

j
0 | > anδ



≤ nP

 sup
|s|<δ′

∞∨
j=2

2ξ−1
j |Y

j
s | > anδ



= nP

 ∞⋃
j=2

{
sup
|s|<δ′

2ξ−1
j |Y

j
s | > anδ

}
≤ n

∞∑
j=2

P

(
2 sup
|s|<δ′

|Y j
s | > ξjδan

)

= n

∫ ∞
0

∞∑
j=2

P
(
ξj <

2y

δan

)
G(dy), by the law of total probability and Fubini

= n

∫ ∞
0

∞∑
j=1

P
(
ξj <

2y

δan

)
− P

(
ξ1 <

2y

δan

)
G(dy)

= n

∫ ∞
0

2y

δan
−
(

1− e−
2y
δan

)
G(dy).

The last equality holds since ξ1 ∼Exp(1) and
∑∞

j=1 P
(
ξj <

2y
δan

)
= E

[
N
(

0, 2y
δan

)]
= 2y

δan
, where N [0, t) =∑∞

j=1 1 {ξj < t}, t > 0, is a homogeneous unit-rate Poisson point process on R.

Define fn(y) := n
(

2y
δan
−
(

1− e−
2y
δan

))
and note that since an ∼ n as n → ∞ and e−

2y
γan ≤ 1, we obtain

fn(y) ≤ 2yn
δan
≤ Cy for some appropriate constant C > 0. Hence, again due to E

[
sup|s|<δ′ |Y

j
s |
]
<∞ which

implies that
∫
CyG(dy) <∞, we may apply dominated convergence and calculate via a Taylor expansion

lim
n→∞

A2 = lim
n→∞

n

∫ ∞
0

2y

δan
−
(

1− e−
2y
δan

)
G(dy) =

∫ ∞
0

lim
n→∞

O

(
ny2

a2
n

)
G(dy) = 0, since an ∼ n.

Altogether, we showed limδ→∞ lim supn→∞ nP
(

sup|s|<δ′ |ηs − η0| > anδ
)

= 0, for all δ′ > 0, which im-

plies the LUNC for the process
{
ηs : s ∈ R2

}
.
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Next, we check condition (4) for δ = 1 by showing that sup
n

|Bn|
3
2 λ3n

m
3
2
n

E
[
τ̂AB,m(h : Bn)3

]
< ∞ for every

h ∈ R2 when |Bn| = O(n2γ). This means, similar to the proof of Proposition 3.3 ii), we have to compute

1

ν6

m
3
2
n

|Bn|
3
2λ3

n

∫
B6
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
w

(
h+ s5 − s6

λn

)
× P

(
Xs1

am
∈ A, Xs2

am
∈ B, Xs3

am
∈ A, Xs4

am
∈ B, Xs5

am
∈ A, Xs6

am
∈ B

)
E
[
N (2)(ds1, ds2)N (2)(ds3, ds4)N (2)(ds5, ds6)

]
.

(37)

Thus, we consider terms that are integrated with respect to

E
[
N (2)(ds1, ds2)N (2)(ds3, ds4)N (2)(ds5, ds6)

]
=

6∑
k=2

νk
∑
Ijk∈Īk

Ijk,

where

Īk := {ds1ds2ds3ds4ds5ds6 : s1 /∈ ds2, s3 /∈ ds4, s5 /∈ ds6 and |{si ∈ dsj : i, j = 1, . . . , 6}| = 6− k}.

Instead of showing the result for every single integrand, we show it for representative terms. By the same
arguments, it can easily be checked that the remaining terms give analogous results.

i) We start with the integral with respect to ν2ds1ds21 {s1 ∈ ds3}1 {s2 ∈ ds4}1 {s2 ∈ ds5}1 {s1 ∈ ds6}.
Then the integral (37) reads

1

ν4

m
3
2
n

|Bn|
3
2λ3

n

∫
B2
n

w

(
h+ s1 − s2

λn

)2

w

(
h+ s2 − s1

λn

)
P
(
Xs1

am
∈ A ∩B, Xs2

am
∈ A ∩B

)
︸ ︷︷ ︸

= 1
mn

τA∩BA∩B,m(s2−s1)

ds1ds2

and we substitute with y = h+s1−s2
λn

and u = s2 such that above term equals

=
1

ν4

m
1
2
n

|Bn|
3
2λn

∫
h+(Bn−Bn)

λn

∫
Bn∩(Bn+h−λny)

w (y)2w

(
2h

λn
− y
)
τA∩BA∩B,m(h− λny)dudy

≤ 1

ν4

m
1
2
n

|Bn|
1
2λn

∫
h+(Bn−Bn)

λn

w (y)2w

(
2h

λn
− y
)
τA∩BA∩B,m(h− λny)dy,

where we used that the integrand does not depend on u and |Bn∩(Bn+h−λny)|
|Bn| ≤ 1. Since w(·) is a bounded

probability density on R2, and τA∩BA∩B,m(h − λny) ≤ pm(A ∩ B), we apply dominated convergence and
obtain by λn

n→∞−−−→ 0, condition (32) and Proposition 3.2

≤ 1

ν4

∫
R2

m
1
2
n

|Bn|
1
2λn︸ ︷︷ ︸

≤C<∞

w (y)2w

(
2h

λn
− y
)

︸ ︷︷ ︸
→0

pm(A ∩B)︸ ︷︷ ︸
→µ(A∩B)<∞

dy
n→∞−−−→ 0 <∞.
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ii) We proceed with the integral with respect to ν2ds1ds21 {s1 ∈ ds3}1 {s2 ∈ ds4}1 {s1 ∈ ds5}1 {s2 ∈ ds6}
such that the integral (37) becomes

m
3
2
n

|Bn|
3
2λ3

n

1

ν4

∫
B2
n

w

(
h+ s1 − s2

λn

)3

P
(
Xs1

am
∈ A, Xs2

am
∈ B

)
︸ ︷︷ ︸

= 1
mn

τAB,m(s2−s1)

ds1ds2

and again by substituting with y = h+s1−s2
λn

and u = s2, we have by boundedness of w(·), Proposition 3.1 and
condition (32)

lim sup
n→∞

m
1
2
n

|Bn|
3
2λn

1

ν4

∫
h+(Bn−Bn)

λn

∫
Bn∩(Bn+h−λny)

w (y)3 τAB,m(h− λny)dudy

≤ lim sup
n→∞

1

ν4

∫
R2

m
1
2
n

|Bn|
1
2λn︸ ︷︷ ︸

≤C<∞

τAB,m(h− λny)︸ ︷︷ ︸
→τAB(h)<∞

w (y)3 dy <∞,

where we used dominated convergence in the last step.

iii) Next, we consider the integral (37) with respect to ν3ds1ds21 {s1 ∈ ds3} ds41 {s1 ∈ ds5}1 {s2 ∈ ds6}
and obtain

m
3
2
n

|Bn|
3
2λ3

n

1

ν3

∫
B3
n

w

(
h+ s1 − s2

λn

)2

w

(
h+ s1 − s4

λn

)
P
(
Xs1

am
∈ A, Xs2

am
∈ B, Xs1

am
∈ A, Xs4

am
∈ B

)
︸ ︷︷ ︸

= 1
mn

τ∗m(0,s2−s1,0,s4−s1)

ds1ds2ds4

=
m

1
2
nλn

|Bn|
3
2

1

ν3

∫
(
h+(Bn−Bn)

λn

)2
∫
Bn∩(Bn−λny+h)

w (x)2w (y) τ∗m(0, h− λnx, 0, h− λny)dudxdy,

where we substituted x = h+s1−s2
λn

, y = h+s1−s4
λn

and u = s4 and τ∗m(·, ·, ·, ·) is defined in part ii) in the proof
of Proposition 3.3. We observe that the integrand is independent of u and τ∗m(0, h−λnx, 0, h−λny) ≤ pm(A).
Thus, we may bound the above term by

≤ 1

ν3

m
1
2
nλn

|Bn|
1
2

pm(A)

∫
(
h+(Bn−Bn)

λn

)2 w (x)2w (y) dxdy

≤ 1

ν3

m
1
2
nλn

|Bn|
1
2︸ ︷︷ ︸

→0 by (M2)

pm(A)︸ ︷︷ ︸
→µ(A)<∞

∫
R2

w (x)2 dx︸ ︷︷ ︸
<∞

∫
R2

w (y) dy︸ ︷︷ ︸
=1

n→∞−−−→ 0.
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iv) We continue with the integral (37) with respect to ν3ds1ds21 {s2 ∈ ds3}1 {s1 ∈ ds4} ds51 {s1 ∈ ds6} and
find

1

ν3

m
3
2
n

|Bn|
3
2λ3

n

∫
B3
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s2 − s1

λn

)
w

(
h+ s5 − s1

λn

)
× P

(
Xs1

am
∈ A ∩B, Xs2

am
∈ A ∩B, Xs5

am
∈ A

)
ds1ds2ds5

≤ 1

ν3

m
1
2
n

|Bn|
3
2λ3

n

∫
B3
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s2 − s1

λn

)
w

(
h+ s5 − s1

λn

)
τA∩BA∩B,m(s2 − s1)︸ ︷︷ ︸

≤pm(A)

ds1ds2ds5

≤ 1

ν3

m
1
2
nλn

|Bn|
3
2

pm(A)

∫
(
h+(Bn−Bn)

λn

)2
∫
Bn∩(Bn−λnx+h)

w (x)w

(
2h

λn
− x
)
w (y) dudxdy,

where we substituted x = h+s1−s2
λn

, y = h+s5−s1
λn

and u = s2. Then the above term is bounded by

≤ 1

ν3

m
1
2
nλn

|Bn|
1
2

pm(A)

∫
R2

∫
R2

w (x)w

(
2h

λn
− x
)
w (y) dxdy

=
1

ν3

m
1
2
nλn

|Bn|
1
2

pm(A)

∫
R2

w (x)w

(
2h

λn
− x
)
dx

=
1

ν3

m
1
2
nλn

|Bn|
1
2︸ ︷︷ ︸

→0, by (M2)

pm(A)︸ ︷︷ ︸
→µ(A)

∫
R2

w (x)w

(
2h

λn
− x
)

︸ ︷︷ ︸
→0

dx
n→∞−−−→ 0, by dominated convergence.

v) In the following, we investigate the integral (37) with respect to ν4ds1ds21 {s1 ∈ ds3} ds4ds51 {s2 ∈ ds6}
and compute

1

ν2

m
3
2
n

|Bn|
3
2λ3

n

∫
B4
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s1 − s4

λn

)
w

(
h+ s5 − s2

λn

)
× P

(
Xs1

am
∈ A, Xs2

am
∈ B, Xs4

am
∈ B, Xs5

am
∈ A

)
︸ ︷︷ ︸

≤ 1
mn

pm(A)

ds1ds2ds4ds5

=
1

ν2

m
1
2
nλ3

n

|Bn|
3
2

pm(A)

∫
(
h+(Bn−Bn)

λn

)3
∫
Bn∩(Bn−λny2+h)

w (y1)w (y2)w (y3) dudy1dy2dy3,

where we substituted y1 = h+s1−s2
λn

, y2 = h+s1−s4
λn

, y3 = h+s5−s2
λn

and u = s4. Hence, the integrand does not
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depend on u and is bounded by

≤ 1

ν2

m
1
2
nλ3

n

|Bn|
1
2

pm(A)

∫
R2

∫
R2

∫
R2

w (y1)w (y2)w (y3) dy1dy2dy3

≤ 1

ν2

m
1
2
nλ3

n

|Bn|
1
2︸ ︷︷ ︸

→0, by (M2)

pm(A)︸ ︷︷ ︸
→µ(A)<∞

n→∞−−−→ 0.

vi) Next, we integrate (37) with respect to ν4ds1ds21 {s2 ∈ ds3}1 {s1 ∈ ds4} ds5ds6. Then the supremum of
(37) over n becomes

sup
n

1

ν2

m
3
2
n

|Bn|
3
2λ3

n

∫
B4
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s2 − s1

λn

)
w

(
h+ s5 − s6

λn

)
× P

(
Xs1

am
∈ A ∩B, Xs2

am
∈ A ∩B, Xs5

am
∈ A, Xs6

am
∈ B

)
ds1ds2ds5ds6.

We make use of A = B = (1,∞) and stationarity. This gives

= sup
n

1

ν2

m
3
2
n

|Bn|
3
2λ3

n

∫
B4
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s2 − s1

λn

)
w

(
h+ s5 − s6

λn

)
× P (X0 > am, Xs2−s1 > am, Xs5−s1 > am, Xs6−s1 > am) ds1ds2ds5ds6

= sup
n

1

ν2

m
3
2
n

|Bn|
3
2λ3

n

∫
(Bn−Bn)3

∫
Bn∩(Bn−v1)∩(Bn−v2)∩(Bn−v3)

w

(
h− v1

λn

)
w

(
h+ v1

λn

)
w

(
h− v3

λn

)
× P (X0 > am, Xv1 > am, Xv2 > am, Xv3 > am) dudv1dv2dv3,

where we substituted v1 = s2 − s1, v2 = s5 − s1, v3 = s6 − s1 and u = s1. We use the bivariate distribution
function (30) of the Brown-Resnick process and note that the integral does not depend on u such that the above
term is bounded by

≤ sup
n

1

ν2

m
3
2
n

|Bn|
1
2λ3

n

∫
(Bn−Bn)3

w

(
h− v1

λn

)
w

(
h+ v1

λn

)
w

(
h− v3

λn

)
× P (X0 > am, Xv1 > am, Xv2 > am, Xv3 > am) dv1dv2dv3

= sup
n

1

ν2

m
3
2
nλn

|Bn|
1
2

∫
(
h−(Bn−Bn)

λn

)2
∫

(Bn−Bn)∩((Bn−Bn)+λny2−h)
w (y1)w

(
2h

λn
− y1

)
w (y2)

× P (X0 > am, Xh−λny1 > am, Xz > am, Xz+h−λny2 > am) dzdy1dy2
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≤ sup
n

1

ν2

m
3
2
nλn

|Bn|
1
2

∫
R2

w(y1)w

(
2h

λn
− y1

)
dy1︸ ︷︷ ︸

<∞, proved in the proof of Proposition 3.3

∫
R2

w (y2) dy2︸ ︷︷ ︸
=1

×
∫

(Bn−Bn)∩((Bn−Bn)+λny2−h)
P (X0 > am, Xz > am) dz

≤ sup
n

C

ν2

m
3
2
nλn

|Bn|
1
2

∫
(Bn−Bn)∩((Bn−Bn)+λny2−h)

(
χ(z)

am
+O

(
1

a2
m

))
dz, by (30)

≤ sup
n
C

 m
3
2
nλn

|Bn|
1
2am

∫
R2

e−θ1|z|
α1/2dz︸ ︷︷ ︸

<∞, proved when showing (3)

+
|(Bn −Bn) ∩ ((Bn −Bn) + λny2 − h)|

|Bn|
1
2

m
3
2
nλn
a2
m



∼ C

sup
n

m
1
2
nλn

|Bn|
1
2︸ ︷︷ ︸

<∞, by (M2)

+ sup
n

|Bn|
1
2λn

m
1
2
n︸ ︷︷ ︸

<∞, by (31)

 <∞, since am ∼ mn and O(|Bn −Bn|) = O(|Bn|).

Here we applied an integral substitution with y1 = h−v1
λn

, y2 = h−(v3−v2)
λn

and u = v2 for the first equality.

vii) In the next case, we integrate (37) with respect to ν5ds1ds2ds3ds4ds51{s1 ∈ ds6} and obtain for its
supremum over n with A = B = (1,∞)

sup
n

1

ν

m
3
2
n

|Bn|
3
2λ3

n

∫
B5
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
w

(
h+ s5 − s1

λn

)
× P (Xs1 > am, Xs2 > am, Xs3 > am, Xs4 > am, Xs5 > am) ds1ds2ds3ds4ds5

= sup
n

1

ν

m
3
2
n

|Bn|
3
2λ3

n

∫
(Bn−Bn)4

∫
Bn∩(Bn−v1)∩(Bn−v2)∩(Bn−v3)∩(Bn−v4)

w

(
h− v1

λn

)
w

(
h− (v3 − v2)

λn

)
w

(
h− v4

λn

)
× P (X0 > am, Xv1 > am, Xv2 > am, Xv3 > am, Xv4 > am)︸ ︷︷ ︸

≤P(X0>am,Xv2>am)

dudv1dv2dv3dv4,

where we substituted v1 = s2 − s1, v1 = s2 − s1, v1 = s2 − s1, v1 = s2 − s1 and u = s1. The integral does
not depend on u and |Bn∩ (Bn−v1)∩ (Bn−v2)∩ (Bn−v3)∩ (Bn−v4)|/|Bn| ≤ 1 such that we may bound
the above term by

≤ sup
n

1

ν

m
3
2
n

|Bn|
1
2λ3

n

∫
(Bn−Bn)4

w

(
h− v1

λn

)
w

(
h− (v3 − v2)

λn

)
w

(
h− v4

λn

)
P (X0 > am, Xv2 > am) dv1dv2dv3dv4
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= sup
n

1

ν

m
3
2
nλ3

n

|Bn|
1
2

∫
(
h−(Bn−Bn)

λn

)2
∫
h−(Bn−Bn)+(Bn−Bn)

λn

∫
(Bn−Bn)∩((Bn−Bn)+λny2−h)

w (y1)w (y2)w (y3)

× P (X0 > am, Xu > am) dudy2dy1dy3.

The equality holds due to substituting y1 = h−v1
λn

, y2 = h−(v3−v2)
λn

, y3 = h−v4
λn

and u = v2. Since the integrand
is non-negative, the integral can be bounded by

= sup
n

1

ν

m
3
2
nλ3

n

|Bn|
1
2

∫
R2

∫
R2

∫
R2

∫
(Bn−Bn)∩((Bn−Bn)+λny2−h)

w (y1)w (y2)w (y3)P (X0 > am, Xu > am)︸ ︷︷ ︸
=
χ(u)
am

+O

(
1

a2m

)
, by (30)

dudy1dy2dy3

≤ sup
n

1

ν

m
3
2
nλ3

n

|Bn|
1
2

 2

am

∫
R2

e−θ1|u|
α1/2du︸ ︷︷ ︸

<∞

+C
|(Bn −Bn) ∩ ((Bn −Bn) + λny2 − h)|

a2
m

 , by Lemma A.4

∼ C

sup
n

m
1
2
nλ3

n

|Bn|
1
2︸ ︷︷ ︸

<∞, by (M2)

+ sup
n

|Bn|
1
2λn

m
1
2
n︸ ︷︷ ︸

<∞, by (31)

λ2
n︸︷︷︸
→0

 <∞, since am ∼ mn and O(|Bn −Bn|) = O(|Bn|).

vii) Finally, we show that the supremum of (37) is bounded when integrating with respect to ν6ds1ds2ds3ds4ds5ds6.
This term then reads with A = B = (1,∞)

I :=
m

3
2
n

|Bn|
3
2λ3

n

∫
B6
n

w

(
h+ s1 − s2

λn

)
w

(
h+ s3 − s4

λn

)
w

(
h+ s5 − s6

λn

)
×

× P (Xs1 > am, Xs2 > am, Xs3 > am, Xs4 > am, Xs5 > am, Xs6 > am) ds1ds2ds3ds4ds5ds6.

We will show∣∣∣∣∣I − m
3
2
nλ3

n

|Bn|
3
2

∫
B6
n

wn(h+ s1 − s2)wn(h+ s3 − s4)wn(h+ s5 − s6)

× P (Xs1 > am, Xs2 > am, Xs3 > am, Xs4 > am)P (Xs5 > am, Xs6 > am) ds1ds2ds3ds4ds5ds6

∣∣∣∣∣
n→∞−−−→ 0. (38)
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By substituting v1 = s2−s1, v2 = s3−s1, v3 = s4−s1, v4 = s5−s1, v5 = s6−s1 and u = s1 and employing
stationarity, we find that the left side of (38) is bounded by

m
3
2
n

|Bn|
3
2λ3

n

∫
(Bn−Bn)5

∫
Bn∩(Bn−v1)∩(Bn−v1)∩(Bn−v2)∩(Bn−v3)∩(Bn−v4)∩(Bn−v5)

w

(
h− v1

λn

)
w

(
h− (v3 − v2)

λn

)
w

(
h− (v5 − v4)

λn

)
×
∣∣∣P (X0 > am, Xv1 > am, Xv2 > am, Xv3 > am, Xv4 > am, Xv5 > am)

− P (X0 > am, Xv1 > am, Xv2 > am, Xv3 > am)P (Xv4 > am, Xv5 > am)
∣∣∣dudv1dv2dv3dv4dv5

≤ m
3
2
nλ3

n

|Bn|
1
2

∫
h−(Bn−Bn)

λn

∫
(
h−(Bn−Bn)+(Bn−Bn)

λn

)2
∫

(Bn−Bn)∩((Bn−Bn)+λny3−h)

∫
(Bn−Bn)∩((Bn−Bn)+λny2−h)

w (y1)w (y2)w (y3)

×
∣∣∣P (X0 > am, Xh−λny1 > am, Xu1+λny2−h > am, Xu1 > am, Xu2+λny3−h > am, Xu2 > am)

− P (X0 > am, Xh−λny1 > am, Xu1+λny2−h > am, Xu1 > am)P (Xu2+λny3−h > am, Xu2 > am)
∣∣∣

du1du2dy1dy2dy3, (39)

where we substituted y1 = h−v1
λn

, y2 = h−(v3−v2)
λn

, y3 = h−(v5−v4)
λn

, u1 = v3 and u2 = v5 and exploited the fact
that the first integral does not depend on u. By the same arguments that we employed in the proof of Propositon
3.3 for showing convergence of I1, we find that the absolute value above is bounded by the mixing coefficient
α44(k) with

k = min{|u2|, |u2 − λny3 + h|, |u2 − h+ λny1|, |u2 − λn(y3 − y1)|, |u2 − u1 − λny2 + h|, |u2 − λn(y3 − y2)|,
|u2 − u1|, |u2 + h− λny3 − u1|}

such that

α44(k) ≤ α44(|u2|) + α44(|u2 − λny3 + h|) + α44(|u2 − h+ λny1|) + α44(|u2 − λn(y3 − y1)|) (40)

+ α44(|u2 − u1 − λny2 + h|) + α44(|u2 − λn(y3 − y2)|) + α44(|u2 − u1|) + α44(|u2 + h− λny3 − u1|).

Then (39) is bounded by the sum of 8 integrals Ai, i ∈ {1, . . . , 8}, where Ai corresponds to (39) with the
absolute value replaced by the i-th summand in (40). Recall that, by (34),

∫
R2 αkl(|u|)du <∞ for the Brown-

Resnick process for every k, l ∈ N. This gives with |Bn| = O(n2γ)

A1 ≤
m

3
2
nλ3

n

|Bn|
1
2

∫
R2

∫
R2

∫
R2

∫
R2

∫
(Bn−Bn)∩((Bn−Bn)+λny2−h)

w (y1)w (y2)w (y3)α44(|u2|)du1du2dy1dy2dy3

≤ m
3
2
nλ

3
n|Bn|

1
2

∫
R2

∫
R2

|(Bn −Bn) ∩ ((Bn −Bn) + λny2 − h)|
|Bn|︸ ︷︷ ︸

≤C<∞, since |Bn|∼|Bn−Bn|

w (y2)α44(|u2|)du1dy2.
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This means that by (34) and (33), we can conclude

A1 ∼ Cm
3
2
nλ

3
n|Bn|

1
2 <∞

and by analogous substitution techniques as in the proof of Proposition 3.3, when considering I1, we find
Aj < ∞, for all j ∈ {1, . . . , 8}. Hence, we have to show that the limit of I is finite which follows from
condition (31), Proposition 3.3 i) and iii), since

lim sup
n→∞

m
3
2
nλ3

n

|Bn|
3
2

∫
B6
n

wn(h+ s1 − s2)wn(h+ s3 − s4)wn(h+ s5 − s6)

× P (Xs1 > am, Xs2 > am, Xs3 > am, Xs4 > am)P (Xs5 > am, Xs6 > am) ds1ds2ds3ds4ds5ds6

≤ lim sup
n→∞

|Bn|
1
2λn

m
1
2
n︸ ︷︷ ︸

<∞

|Bn|λ2
n

mn
E
[
τ̂AB,m(h : Bn)2

]
︸ ︷︷ ︸

→C≤∞

E [τ̂AB,m(h : Bn)]︸ ︷︷ ︸
→C≤∞

<∞.

Altogether, this proves the boundedness of the supremum of (37) over all n.

By Lemma 4.2, the Brown-Resnick
{
ηs : s ∈ R2

}
satisfies the conditions of Theorem 3.6 if A = B = (1,∞),

so that we can derive the following CLT as n→∞√
|Sn|λ2

n

mn
(ρ̂AB,m(h)− ρAB,m(h))h∈H

d−→ N(0,Σ).

We require (31), (32) and (33) whereas in contrast Cho et al. [7] assume the first two conditions to hold in
addition to logmn = o(rγn).
However, as we will see in the following chapter, we are required to impose some further restrictions on the
rates as we want to center the empirical extremogram with its theoretical version. For this purpose, we will
consider the tail dependence coefficient from Buhl et al. [4] as seen in Definition 2.2.
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4.3 The bias corrected empirical extremogram in the Brown-Resnick case

We follow the idea of the bias correction presented in Remark 3.4 of Buhl et al. [4] and consider the tail depen-
dence coefficient denoted by χ(h) := ρ(1,∞)(1,∞)(h) and its pre-asymptotic version χm(h) := ρ(1,∞)(1,∞),m(h).
We introduce the rate coefficients β1 > 0 and β2 > 0 for the rates mn and λn such that the conditions imposed
by (M1), (M2) and (33) read

|Sn| = O(n2)

mn = nβ1 = o(nγ) ⇒ β1 < γ < 1

λn = n−β2 → 0 ⇒ β2 > 0

λ2
n|Sn| → ∞ ⇒ β2 < 1

λ2
nmn = nβ1−2β2 → 0 ⇒ β2 >

1

2
β1

sup
n
m3
nλ

6
nn

2γ = sup
n
n3β1−6β2+2γ <∞ ⇒ β2 >

1

3
γ +

1

2
β1 >

1

2
β1.

This gives

γ ∈ (0, 1)

β1 ∈ (0, γ)

β2 ∈
(

1

3
γ +

1

2
β1, 1

)
.

If the conditions from Lemma 4.2 hold in addition to Theorem 3.6, we conclude that the pre-asymptotic ex-
tremogram in the central limit theorem can be replaced by the theoretical one if√

|Sn|λ2
n

mn
(χm(h)− χ(h))

n→∞−−−→ 0

holds for all lags h ∈ H . For the Brown-Resnick process we obtain from Lemma 3.1 in Buhl et al. [4] and the
fact that am ∼ mn√

|Sn|λ2
n

mn
(χm(h)− χ(h)) =

√
|Sn|λ2

n

mn

(
P (X0 > am, Xh > am)

P (X0 > am)
− χ(h)

)

=

√
|Sn|λ2

n

mn

1

2am
(χ(h)− 2) (χ(h)− 1) (1 + o(1))

∼ 1

2

√
|Sn|λ2

n

m3
n

(χ(h)− 2) (χ(h)− 1) (1 + o(1))
n→∞−−−→ 0,

if and only if, also compare Remark A8 in the supplement of Cho et al. [7],

|Sn|λ2
n

m3
n

∼ n2n−2β2n−3β1 = n2−2β2−3β1 n→∞−−−→ 0 ⇔ 2− 2β2 − 3β1 < 0 ⇔ β1 >
2

3
(1− β2) .



4.3 The bias corrected empirical extremogram in the Brown-Resnick case 51

This implies that β1 ∈
(

2
3 (1− β2) , γ

)
and, additionally, to ensure existence of such a β1, we require

2

3
(1− β2) < γ ⇔ β2 > 1− 3

2
γ. (41)

(I) Therefore, if β1 ∈
(

2
3 (1− β2) , γ

)
and (41) is met, i.e. β2 ∈

(
max

{
1− 3

2γ,
1
3γ + 1

2β1

}
, 1
)
, we obtain√

|Sn|λ2
n

mn
(χ̂m(h)− χ(h))h∈H

d−→ N(0,Σ), n→∞.

(II) On the other hand, consider β1 ∈
(
0, 2

3 (1− β2)
]
, requiring β2 ∈

(
1
3γ + 1

2β1, 1
)
, we need a bias correction.

For this virtue, recall that by Lemma 3.1 in Buhl et al. [4] for n→∞

χm(h) = (1 + o(1))

χ(h) +
1

2mn
(χ(h)− 2) (χ(h)− 1)︸ ︷︷ ︸

=:v(h)

 . (42)

Therefore, in line with Buhl et al. [4], we introduce the bias corrected empirical extremogram

χ̂m(h)− 1

2mn
v̂m(h)

where v̂m(·) is the empirical version of v(·). We define the bias corrected estimator as

χ̃m(h) :=

{
χ̂m(h)− 1

2mn
v̂m(h), if β1 ∈

(
2
5 (1− β2) , 2

3 (1− β2)
]

χ̂m(h), if β1 ∈
(

2
3 (1− β2) , γ

)
.

We prove asymptotic normality for the bias corrected version of the estimator. In particular, we will see why
we have to postulate β1 >

2
5 (1− β2).

Theorem 4.3. Let {ηs : s ∈ R2} be the Brown-Resnick prcoess with dependence function (27). If the rate
coefficients β1 and β2 satisfy conditions (31) and (32) as well as β1 ∈

(
2
5 (1− β2) , 2

3 (1− β2)
]

and β2 ∈(
1
3γ + 1

2β1, 1
)
, then the bias corrected estimator of the tail dependence coefficient satisfies√

|Sn|λ2
n

mn
(χ̃m(h)− χ(h))h∈H

d−→ N (0,Σ) , n→∞,

where Σ is the covariance matrix from Theorem 3.6.

Proof. Following the arguments of Buhl et al. [4], our equation (42) and the definition of the bias corrected
extremogram we get√

|Sn|λ2
n

mn
(χ̃m(h)− χ(h)) =

√
|Sn|λ2

n

mn
(χ̂m(h)− χ(h))− 1

2

√
|Sn|λ2

n

m3
n

v̂m(h)

∼

√
|Sn|λ2

n

mn
(χ̂m(h)− χm(h))−

√
|Sn|λ2

n

4m3
n

(v̂m(h)− v(h)) , n→∞.
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By Theorem 3.6, it suffices to show that
√
|Sn|λ2n
4m3

n
(v̂m(h)− v(h))

P−→ 0.
We define the pre-asymptotic version of v(·) by vm(h) := (χm(h)− 2)(χm(h)− 1). This then gives√

|Sn|λ2
n

4m3
n

(v̂m(h)− v(h)) =

√
|Sn|λ2

n

4m3
n

(v̂m(h)− vm(h)) +

√
|Sn|λ2

n

4m3
n

(vm(h)− v(h))

=: A1 +A2.

In the next step, we calculate

2mn

2χ(h)− 3
A1 =

√
|Sn|λ2

n

mn

1

2χ(h)− 3

(
v̂m(h)− vm(h)

)

=

√
|Sn|λ2

n

mn

1

2χ(h)− 3

(
χ̂m(h)2 − 3χ̂m(h)−

(
χm(h)2 − 3χm(h)

))

=

√
|Sn|λ2

n

mn

1

2χ(h)− 3

(
(χ̂m(h)− χm(h)) (χ̂m(h) + χm(h))− 3 (χ̂m(h)− χm(h))

)

=

√
|Sn|λ2

n

mn
(χ̂m(h)− χm(h))︸ ︷︷ ︸
d−→N(0,σ2)

χ̂m(h) + χm(h)− 3

2χ(h)− 3

and with A = B = (1,∞), we obtain from Proposition 3.3, Slutsky’s theorem and the continuous mapping
theorem

χ̂m(h) +
τAB,m(h)

p̂m(A)
=

1

p̂m(A)︸ ︷︷ ︸
P−→ 1

µ(A)

(
τ̂AB,m(h)− E [τ̂AB,m(h)]︸ ︷︷ ︸
P−→ 0, as n→∞ by Proposition 3.5

+E [τ̂AB,m(h)]︸ ︷︷ ︸
n→∞−−−→ τAB(h)

+ τAB,m(h)︸ ︷︷ ︸
n→∞−−−→ τAB(h)

)

P−→ 2τAB(h)

µ(A)
= 2χ(h), n→∞.

Hence by Proposition 3.5, Slutsky’s theorem and the continuous mapping theorem, we may infer that

χ̂m(h) + χm(h) = χ̂m(h) +
τAB,m(h)

p̂m(A)
−
τAB,m(h)

p̂m(A)
+
τAB,m(h)

pm(A)

= χ̂m(h) +
τAB,m(h)

p̂m(A)
+
τAB,m(h) (p̂m(A)− pm(A))

p̂m(A)pm(A)

= χ̂m(h) +
τAB,m(h)

p̂m(A)
+

τAB(h)oP (1)

µ(A)2(1 + oP (1))

P−→ 2χ(h), n→∞.

This then implies that

χ̂m(h) + χm(h)− 3

2χ(h)− 3

P−→ 1, n→∞.
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Thus, we see

2mn

2χ(h)− 3
A1

d−→ N(0, σ2), n→∞

such that A1
P−→ 0 for n → ∞ results from the fact that mn → ∞ as n → ∞. Next, we consider A2 and

employ (42) to find

vm(h) = χ2
m(h)− 3χm(h) + 2

=

(
χ(h) +

1

2mn
v(h)

)2

(1 + oP (1))− 3

(
χ(h) +

1

2mn
v(h)

)
(1 + oP (1)) + 2

=

(
χ2(h)− 3χ(h) + 2 +

1

mn
χ(h)v(h) +

1

4m2
n

v(h)2 − 3

2mn
v(h)

)
(1 + oP (1))

=

(
(χ(h)− 2) (χ(h)− 1) +

1

mn
χ(h)v(h) +

1

4m2
n

v(h)2 − 3

2mn
v(h)

)
(1 + oP (1))

=

[
v(h) +

v(h)

mn

(
χ(h) +

1

4mn
v(h)− 3

2

)]
(1 + oP (1)) .

This implies that √
4m3

n

|Sn|λ2
n

A2 =
v(h)

mn

(
χ(h) +

1

4mn
v(h)− 3

2

)
(1 + oP (1))

⇔ A2 =
1

2

√
|Sn|λ2

n

m5
n

v(h)

(
χ(h) +

1

4mn
v(h)− 3

2

)
(1 + oP (1)) .

So, A2 converges to 0 in probability if

|Sn|λ2
n

m5
n

→ 0, n→∞

⇔ n2n−2β2

n5β1
→ 0, n→∞

⇔ n2(1−β2)−5β1 → 0, n→∞

⇔ 2(1− β2)− 5β1 < 0

⇔ β1 >
2

5
(1− β2) .

Note that β1 ∈
(

2
5 (1− β2) , 2

3 (1− β2)
]

requires

2

5
(1− β2) <

2

3
(1− β2)⇔ β2 < 1,
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which does not impose a new condition on β2. Thus, the suitable sets for β1 and β2 are

β1 ∈
(

2

5
(1− β2) ,

2

3
(1− β2)

]
β2 ∈

(
1

2
β1, 1

)
.

Figure 1: Comparison of feasible sets for rates of γ = 0.9 and γ = 0.8 in the case of no bias correction versus the bias
corrected one.

We visualize the feasible sets of rates for β1 and β2 in Figure 1 for fixed γ = 0.9 and γ = 0.8. The conditions
(31) and (32) translate into β2 = γ − 1

2β1, which corresponds to the red line in the diagrams. Furthermore,
the grey areas are restrictions imposed by β2 >

1
3γ + 1

2β1 in addition to β1 ∈
(

2
3(1− β2), γ

)
in the not bias

corrected case and β1 ∈
(

2
5(1− β2), 2

3(1− β2)
)

for the bias corrected extremogram, respectively. Then, the
overall feasible set to apply the CLT centered by the true extremogram is the intersection of the red line with
the grey polygon. In particular, we may infer from Figure 1 that there exist rates β1 and β2 for which the bias
correction in Theorem 4.3 is justified.
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5 Data example: German rainfall

In this section, we apply the theory of Brown-Resnick process and estimate the empirical extremogram on real
rainfall data measurements in Germany. We remark in passing that real data usually does not follow a Brown-
Resnick process precisely. This is why Buhl et al. [4] generalized their Lemma 3.1, which we used in chapter
4.3, to a Brown-Resnick process disturbed by some noise variable, Lemma 5.1 in [4]. Thus, all other results
from that section are still applicable.
The dataset is provided by the German Meteorological Service (Deutscher Wetterdienst) and was collected by
a total of 5556 measuring stations between 01/01/1781 and 31/12/2016. It includes their location (in longitude
and latitude), the height above sea level at which the station is located as well as the amount of rainfall per day
(in millimeter). Since we focus on a 2-dimensional Poisson Process, we eliminate the influence of height in the
measurements by taking only stations into account that are located between 0 and 521 meters above sea level
where 521 meters correspond to the 85%-quantile of the height of all stations such that 4711 stations are left.
Furthemore, we only consider stations that recorded data in the period from 01/01/1971 to 31/12/2010. Thus,
1272 stations remain, visualized in Figure 2.

Figure 2: All measuring stations that are available in the dataset (left), the stations located below 521 meters above sea
level (center) and those that are active between 01/01/1971 and 31/12/2010 and are located below 521 meters above sea
level (right).

Since our model does not take time-dependence into account, we split the data into 731 periods of 20 days
and consider the first observation of each such period to obtain (nearly) independent samples. Figure 3 illus-
trates the daily rainfall data at the considered time points within the period of 01/01/1971 until 31/12/2010
at the two measuring stations in Augsburg (coordinates: (10.9351, 48.3474) ) and Munich-City (coordinates:
(11.5429, 48.1631)). This corresponds to a spatial lag of approximately (0.6078,−0.1843).
In the next step, we transform the data to standard Fréchet margins. This is done by setting a threshold at the
90%-quantile for each time point to model the tails by Generalized Pareto distributions, where the parameter
estimation is done by maximum likelihood. Missing values in the dataset are treated in such way that they
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are removed before conducting the computations. Figure 4 compares the untransformed with the transformed
data for the particular measuring date 01/01/1971. Note that, as expected, after the transformation to Fréchet
margins the extreme values become considerably larger.

Figure 3: Comparison of the rainfall (in millimeter) in Munich and Augsburg during the considered time period.

Figure 4: Rainfall data, measured in millimeter, on 01/01/1971 before (left) and after (right) the transformation to standard
Fréchet-margins with frequencies in log-scale.
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Figure 5: Radial lags of total length 0.1 and 1. For estimation we use the bivariate density of independent normal random
variables, the centralized beta density of independent random variables and the uniform density on a centered 6×6 square
for the weight function wn(·). Then by symmetry of the weight function wn(·) the above lags are sufficient to consider.

Figure 6: Boxplots of the uncorrected and bias corrected empirical extremogram for radial lags of 0.1 (upper row) and 1
(lower row) employing a normal kernel. The red lines correspond to the mean of the extremograms.
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We then compare the results for the bias corrected version of the tail dependence coefficient from section 4.3
with the original version as introduced in section 2. Since we modelled the tails on the basis of a 90%-quantile,
we choose the threshold am = 90%.
First, we analyze the data for radial dependence, i.e. we estimate the extremogram for lags (in langitude and
latitude) with a total length of 0.1 and 1, respectively, but different angles, compare Figure 5. This way, we
obtain lags of the same length but different directions, allowing for detection of directional dependence. Figure
6 shows the boxplots of both the uncorrected and bias corrected empirical extremogram for those lags using a
normal kernel function. We conclude that the direction does not have an impact for small distances whereas with
growing total lags it becomes clear that stations lagging primarily in the longitude, i.e. in east-west direction,
are more likely to assess extreme events simultaneously. This does not fit our assumption of an isotropic Brown-
Resnick process with dependence function (27). Moreover, considering lags with a length of 1 in Figure 6, we
observe that there are estimates that take values larger than 1 and are far off the mean and the median. Note that
in contrast to the theoretical extremogram the empirical one may take values greater than 1, where one might
think about introducing a restricted version of the estimator. We observe that for all lags the estimates with
values greater than 1 always correspond to the same 9 dates. On these days the threshold was exceeded at more
than 1200 stations, i.e. nearly all measuring stations recorded an extreme event, corresponding to total extremal
dependence. Figure 7 shows the number of exceedances from 1970 to 2010, the marked points symbolize the
discussed observations with empirical extremograms larger than 1.

Figure 7: Illustration of the number of threshold exceedances per day. The red marks correspond to the estimates of the
empirical extremograms in Figure 6 that are larger than 1.3 for lags of length 0.1 or larger than 1 for lags of length 1,
respectively.
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Figure 8: Boxplots of the uncorrected and bias corrected empirical extremogram for radial lags of 1 employing a uniform
6× 6 kernel density w(·). The red lines correspond to the mean of the empirical extremograms.

Figure 9: Boxplots of the uncorrected and bias corrected empirical extremogram for radial lags of 1 employing a centered
beta(2,2) kernel density w(·). The red lines correspond to the mean of the estimates.

To compensate for the non-isotropy we try different kernel functions, namely a uniform density on a square
of 6 × 6 as well as the centered product measure of two independent beta distributed random variables with
both shape parameters set to 2. Recall that the beta distribution is only symmetric and bell-shaped when both
parameters take the same value larger than 1. The resulting extremograms are depicted in Figure 8 and Figure
9, respectively. We recognize that the uniform density smoothens the effect of directional extremal dependence.
On the other hand, the issue still occurs under the usage of the beta kernel. Therefore, we compare the results
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of the normal with the uniform kernel in the following.
Blanchet and Davison [1] investigate non-isotropic models, Schlather’s model and Smith’s storm model, in the
context of snow depth. They present two modelling approaches, one by directly transforming the data and
another by transforming the space. Since in our case the first approach would require to know the value of α1

in the dependence function (27), we transformed the observation space. The 2−dimensional space S is given
in terms of longitude and latitude of 1272 stations, i.e. S ∈ R1272×2. We calculate the 2× 2 covariance matrix
V of these coordinates and compute the Cholesky decomposition of its inverse V −1 = U>U , where U is a
2 × 2 upper triangular matrix. This allows us to standardize the covariance of the data space and to obtain
the standardized space S̃ = SU>. Figure 10 shows the original space and the transformed space. We notice
that the overall shape of the map does not change dramatically. However, the map rescales to a more quadratic
shape, i.e. approximately 4 × 4 in longitude and latitude in contrast to 7 × 9 in the original space. When
investigating directional dependence on this transformed space, we see that the effect declines distinctly using
a bivariate standard normal kernel and disappears as we employ a uniform 6 × 6 kernel density, see Figures
11 and 12. Additionally, considering the quartiles of the estimates, the variation of the empirical extremogram
becomes significantly smaller in comparison to the variation of the estimates on the original space.

Figure 10: Comparison of the considered measuring stations before (left) and after (right) the transformation of the
observation space.
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Figure 11: Boxplots of the uncorrected and bias corrected empirical extremogram on the transformed space for radial
lags of 1 employing the bivariate density of two independent standard normally distributed random variables. The red
lines correspond to the mean of the estimates.

Figure 12: Boxplots of the uncorrected and bias corrected empirical extremogram on the transformed space for radial
lags of 1 using a uniform kernel. The red lines correspond to the mean of the estimates.
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Figures 13, 14, 15 and 16 compare the empirical extremogram with its bias corrected version in the original
space and the transformed space, where we use a normal and a uniform kernel. For example, when estimating
with a normal kernel on the original space (Figure 13) we find that for a lag of 0.01 in longitude both the uncor-
rected and the bias corrected extremogram take values of approximately 0.6, while for measuring stations that
are in distance of 5 degrees in lattitude and 1 degree in longitude, extreme dependence declines distinctly. Note
that for small values of χ̂m the bias corrected χ̃m could attain values smaller than 0. Since this is not possible
for its theoretical equivalent, we restrict χ̃m to 0 if the correction would lead to negative values. This can be
seen in the lags (3, 1), (3, 3), (1, 5) and (1, 7) for which the bias corrected extremogram takes the value 0 more
frequently than χ̂m. Furthermore, we test for extremal independence by employing a permutation test. In more
detail, for every lag and each of the 731 time points we permute the transformed data randomly and compute
the extremogram with a threshold of 90%. Repeating this procedure three times gives a total of 2193 estimates
for the extremogram in an independent setting for each lag and we may compute the 95%− quantile of these
estimates. Then a value below the 95%-quantile is an indicator for extremal independence. The quantile is
visualized by the blue lines in the corresponding figures. For example, in Figure 13, regarding the uncorrected
extremogram, we may conclude that there is extremal independence of the lag (1, 5), because the mean (and
median) are smaller than the quantile. On the other hand, there is no sign of extremal independence for the
smaller lag (0.5, 0.5).
Figure 14 shows the results of the extremogram and the bias corrected version for a normal kernel on the
transformed space S̃ . We note that the general magnitude of the estimates is smaller when estimating on the
transformed space, e.g. for the lag (0.01, 0) the estimate of the uncorrected extremogram declines by approx-
imately 0.2. This means that the transformation of space eliminates some extremal dependence in the data.
Moreover, regarding the uncorrected empirical extremogram, the independence test gives no indication of ex-
tremal dependence for the lag (1.1, 1) anymore. The results for the bias corrected extremogram show no sign
of extremal dependence for the lag (3, 1) contrasting the findings from Figure 13.
In Figure 15 we consider a uniform kernel on the original space and find that the results are smiliar to those
for the normal kernel in Figure 13 except for a general decrease in extreme dependence for lags of small total
length (0.01, 0) and (0, 0.1). The results of the independence test are identical for all lags when considering
the uncorrected extremogram as well as its bias corrected version.
When employing a uniform kernel on the transformed space, see Figure 16, we observe the same decline in
general extremal dependence as in the transition from Figure 13 to Figure 16. In opposition to our findings for
the transformed space with a normal kernel, the independence test still indicates extremal dependence for the
lag (1.1, 1) when considering the uncorrected extremogram and shows no sign of extremal independence for
lags of (3, 1) and longer.
Moreover, we find that the transformation of the observation space reduces the variation in the estimates, this
can be seen in the smaller distance between the quartiles.
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Figure 13: Comparison of the empirical extremogram with the bias corrected version for different lags in longitude and
latitude on the original space using a normal kernel density. The red lines correspond to the mean of the extremograms.
The blue lines represent the 95% quantile of the extremograms for randomly permuted data.

Figure 14: Comparison of the empirical extremogram with the bias corrected version for different lags in longitude and
latitude after transforming the observation space and employing a normal kernel density. The red lines correspond to the
mean of the extremograms. The blue lines represent the 95% quantile of the extremograms for randomly permuted data
on the transformed space.
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Figure 15: Comparison of the empirical extremogram with the bias corrected version for different lags in longitude
and latitude on the original space employing a uniform 6 × 6 kernel density. The red lines correspond to the mean of
the extremograms. The blue lines represent the 95% quantile of the extremograms for randomly permuted data on the
transformed space.

Figure 16: Comparison of the empirical extremogram with the bias corrected version for different lags in longitude and
latitude after transforming the observation space employing a uniform 6 × 6 kernel density. The red lines correspond to
the mean of the extremograms. The blue lines represent the 95% quantile of the extremograms for randomly permuted
data on the transformed space.
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6 Conclusion and outlook

Extremal dependence in space is a topic of high interest in the ongoing research on extreme value theroy. In
this thesis we presented a new spatial central limit theorem, Theorem 3.6 for the empirical extremogram, when
observing a random process

{
Xs : s ∈ R2

}
on a space where we assume that the underlying distribution of

the locations is inherited by a 2-dimensional Poisson process N with intensity measure ν. The results are
shown for processes in two dimensions, because this gives the widest range of applications since the locations
of measuring stations are expected to follow a 2-dimensional Poisson process. We remark in passing that this
results can be generalized to d-dimensional spaces in an analogous fashion as presented in this work. The
multivariate CLT applies in terms of spatial lags in the random process and was already proved in Cho [7]. We
developed the proof in more detail and fixed obscurities.
Then we focused on the Brown-Resnick process and showed that the assumptions of our CLT in particular hold
for this process, where we considered an isotropic dependence function (27). Additionally, we were able to
introduce a new bias corrected version of the extremogram that allowed us to generalize the previous CLT to
an advanced result with better rates, Theorem 4.3. This bias correction was useful as we aimed for centering
the empirical extremogram by its theoretical and not only its pre-asymptotic version.
Furthermore, we estimated the empirical extremogram to rainfall data in Germany from 1971 to 2010. We
found that the extremal dependence is larger when considering lags in east-west direction so that the direction
of the lag plays a significant role, which is consistent with Germany being located in prevailing westerlies.
However, the effect of the length of the considered lag dominates the impact of the direction. Furthermore,
employing a permutation test, we showed that for lags of certain length (and direction) there are signs of
extremal independence.
For future research, it might be of further interest to investigate the asymptotic behaviour for an empirical
extremogram in a space-time setting with observations on an irregular space, where the observation locations
follow the law of a Poisson-process but are fixed over time. Buhl et al. [4] looked into such a framework on a
regular grid. Note that for real life problems, one usually has to deal with a restricted space and only the time
component can be treated as going to infinity, i.e. a CLT for fixed space and a growing amount of measurements
of time would be a highly useful result.
We proved Theorem 3.6 for an isotropic kernel w(·), when considering an isotropic Brown-Resnick process.
Thus, we suggest that there is a CLT in terms of absolut spatial lags, as done in Buhl et al. [4] on regular grids.
However, note that their proof is not transferrable in an analagous manner as they employ the fact that on
a regular grid for a certain distance there is only a finite number of spatial lags, whereas this does not hold
true in our case. For every specific absolute lag the Poisson process may generate an unbounded number of
observations with the corresponding absolute lags.
When having completed the proof for such a CLT in terms of absolute lags, the empirical extremogram and its
bias corrected version may be used to conduct parameter estimation for the Brown-Resnick process, as done
in Buhl et al. [4] on regular grids. Their arguments, regarding asymptotic normality of the resulting parameter
estimates, will then work in our setting as well.
Due to time restrictions, we were not able to conduct a simulation study on the empirical extremogram. Since
we are interested in extreme events, a large amount of simulations is necessary to obtain a significant number of
extremes that allow for consistent estimation of the extremogram, making such computations time-consuming.
If being provided with sufficient computational resources, simulating a Brown-Resnick process on an irregular
grid and comparing the empirical extremogram with the bias corrected version from Theorem 4.3, will be an
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interesting study to compare the performance of the estimators with regard to their rate of convergence and
variation with respect to the theoretical value. Oesting et al. [17] give an algorithm to simulate the Brown-
Resnick process.
In chapter 4.5 of her dissertation Steinkohl [21] developed a pairwise maximum likelihood estimator. Hence,
analyzing the performances of her approach with parameter estimates based on the empirical extremogram and
the bias corrected empirical extremogram are of particular interest. Additionally, one might consider comparing
the accuracy of these estimators on a confined space with a growing number of observations in time.



67

A Auxiliary results

We compute the expected value of the product measure N (2)(ds1, ds2) = N(ds1)N(ds2)1 {s1 6= s2}.

Proposition A.1. Let N(·) be a 2-dimensional Poisson process with intensity rate ν > 0. If s1 6= s2, s1, s2 ∈
R2, we have

E
[
N (2)(ds1, ds2)

]
= ν2ds1ds2. (43)

Proof. For s1 6= s2, we note that there are disjoint, open, convex and non-empty environments around s1 and
s2. Then N(ds1) and N(ds2) are independent random variables by the properties of the Poisson process. This
gives

E
[
N (2)(ds1, ds2)

]
= E [N(ds1)N(ds2)]

= E [N(ds1)]E [N(ds2)] , by independence

= ν2ds1ds2, since E [N(ds1)] = νds1, since N is a Poisson process.

The subsequent result is stated in Karr [14] in Lemma 10.20.

Lemma A.2. Let (Sn){n∈N} be a sequence of convex, compact sets with S1 ⊂ S2 ⊂ · · · ⊂ Rd such that
|Sn| = O(n2) and y ∈ Rd, d ∈ N. Then

lim
n→∞

|Sn ∩ (Sn − y)|
|Sn|

= 1,

where Sn − y := {z − y : z ∈ Sn}.

In the course of the proof for the CLT of the empirical extremogram, we need an upper bound for the covariance
of two random variables in terms of the mixing coefficient. The following Lemma can be found in the proof of
Lemma 1 in Politis et al. [18].

Lemma A.3. Let N be a Poisson process on Rd independent of the random process {Xs : s ∈ Rd}. Let U, V
be two closed sets in Rd such that M := max{|U |, |V |} exists and d(U, V ) ≥ r > 0. Also let Y and Z be two
random variables that are functions of X observed on points of N that fall into U and V, respectively. Assume
that, given N , Y ≤ C1 and Z ≤ C2 almost surely. Then it holds that

Cov(Y, Z|N) ≤ 4C1C2αMM (r).
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The following Lemma is a result shown in the proofs of Proposition 1 and 2 in Buhl and Klüppelberg [5].

Lemma A.4. The mixing coefficient αkl(·), k, l ∈ N, of the Brown-Resnick process {ηs : s ∈ R2} satisfies the
inequality

αkl(r) ≤ 2kl sup
s∈R2, |s|≥r

χ(s) ≤ 4kle−θ1r
α1/2, r ≥ 0.

The proof of the next result can be found in the appendix of Buhl et al. [4].

Lemma A.5. Let k ∈ N. Then for θ, α > 0∫ ∞
r

yke−θy
α/2dy ≤ Crk+1e−θr

α/2, r > 0

for some constant C = C(k) > 0.
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