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Abstract Endovascular aneurysm repair (EVAR) can

involve some unfavorable complications such as endo-

leaks or stent-graft (SG) migration. Such complications,

resulting from the complex mechanical interaction of

vascular tissue, SG and blood flow or incompatibility

of SG design and vessel geometry, are difficult to pre-

dict. Computational vascular mechanics models can be

a predictive tool for the selection, sizing and placement

process of SGs depending on the patient-specific vessel

geometry and hence reduce the risk of potential com-

plications after EVAR. In this contribution, we present

a new in silico EVAR methodology to predict the final

state of the deployed SG after intervention and eval-

uate the mechanical state of vessel and SG, such as

contact forces and wall stresses. A novel method to ac-

count for residual strains and stresses in SGs, resulting
from the precompression of stents during the assembly

process of SGs, is presented. We suggest a parameter

continuation approach to model various different sizes

of SGs within one in silico EVAR simulation which can

be a valuable tool when investigating the issue of SG

oversizing. The applicability and robustness of the pro-
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posed methods are demonstrated on the example of a

synthetic abdominal aortic aneurysm geometry.
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1 Introduction

An abdominal aortic aneurysm (AAA) is characterized

by an abnormal dilatation of the infrarenal aorta. In

order to assess AAA rupture risk the aneurysm diame-

ter and the rate of growth [62] are used. Once the risk

of rupture of an AAA outbalances the risk of surgery,

the surgeon has to decide between a conventional open

repair and an endovascular aneurysm repair (EVAR)

where a stent-graft (SG) is deployed inside the AAA

to exclude the aneurysm sac from the main blood flow.

Most SGs are composed of a wire mesh (stent) which is

sewn on a polymeric fabric (graft). In order to exclude

the AAA both ends of the SG need to be attached in

a “healthy” part of the vessel, i.e. a part of the aorta

without dilatation. The part where SG and “healthy”

vessel overlap is called landing zone or sealing zone.

The landing zone requires certain conditions, such as

a certain length, to properly seal the aneurysm leak-

proof. Although EVAR is less invasive for candidates

and is associated with reduced 30-day operative mortal-

ity rate [33], it is not free of complications and might re-

quire secondary interventions. The most frequent com-

plications after EVAR are (i) endoleaks associated with

an inappropriate seal between SG and vessel wall and

ongoing aneurysm rupture risk [34,12], (ii) SG migra-

tion [75,74,2], (iii) neck dilatation resulting from SG

induced tissue-overstress and tissue remodeling [48,74],
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(iv) graft kinking resulting in occlusion of blood ves-

sels [14,55], and (v) SG fracture [46,5]. The mechanical

behavior of the SG, the biomechanical behavior and

physiological state of the vessel appear to have an es-

sential impact on the occurrence of these complications

[83,12,2,42].

The objective of this work is to develop an in silico

EVAR methodology to predict the final state of the de-

ployed SG after intervention. We aim to find the final

SG position in the vessel geometry under static condi-

tions rather than reproducing the intra-operative steps

of EVAR. The methodology has to be applicable to any

patient-specific AAA and any type of SG. The results

of the final state of SG and vessel shall be evaluated

with respect to the mechanical state of vessel and SG,

such as wall stresses as well as contact forces between

SG and vessel. Throughout this work, we use the defi-

nitions given in table 1 as the notation in literature is

not unique.

Table 1 Definition of terms.

SG placement :
Process of positioning the SG within the vessel.

SG deployment :
Process of removing the delivery system and therefore
allowing the SG to freely deform within the vessel.

Stent predeformation:
Stents generally are manufactured with a diameter
larger than the associated graft. Stents are radially
compressed during the assembling process of SGs
resulting in an assembled SG with residual strains and
stresses. The modeling approach to consider this effect
is denoted as stent predeformation.

Vessel prestress:
Geometry reconstruction from medical imaging such as
CT scans involve an initial geometric configuration
that is not stress-free. Vessel prestressing is the
modeling approach of initializing the vessel model to
this stressed configuration.

Landing zone:
The most proximal/distal part of the SG which is
directly attached to the luminal vessel surface and
which is responsible for proper sealing between SG and
vessel.

SG oversize:
SG oversize describes the ratio of outer SG diameter to
luminal vessel diameter in the landing zone of the SG.

Computational vascular mechanics models can be a

promising tool to get deeper insight into the mechan-

ical state of vessel and SG after the insertion of the

SG which cannot be received from medical imaging.

The additional information of the mechanical state of

vessel and SG can be helpful in further localizing the

source of SG related complications and help to give an-

swers to open question such as the best value for SG

oversizing [75,9]. Applied to clinical cases, an in silico

EVAR methodology can be used as predictive tool for

a better risk assessment of the intervention indicating

potential SG related complications already in the pre-

operative planning phase. SG selection and sizing is one

of the most difficult steps in the pre-operative planning

phase as this step requires a lot of experience of the

surgeon and strongly depends on the patient-specific

case [26,43]. Some oversizing of the SG with respect to

the luminal vessel diameter is necessary to obtain an

adequate seal and fixation of the SG in the proximal

and distal landing zones [75,9,74]. But excessive SG

oversizing might lead to negative results as well. Most

frequently stated EVAR complications arising from ex-

cessive SG oversizing are (i) tissue-overstress [48,74]

related to growth and remodeling of the tissue, vessel

dilatation and subsequent SG migration or endoleaks,

and (ii) incomplete SG expansion [45,52,41]. The in-

structions for use of marketed SGs generally suggest an

oversizing of 10 − 20%, however, there is no consensus

with regard to optimal degree of SG oversizing and even

SG oversizing above 30% is practically used [75,74,56].

A computational, predictive tool can be very valuable

in finding the optimal SG type and size which depends

on the patient-specific vessel geometry [83]. Hence, it

further reduces the risk of EVAR related complications

and the risk of secondary treatments.

The process of SG placement and deployment is a

highly nonlinear process mainly due to the occurrence

of complex contact scenarios between SG and vessel,

buckling of the very thin graft as well as nonlinear ma-

terial behaviors. Hence, numerical modeling of this pro-

cess is challenging and the methodology how the SG is

placed and deployed within the vessel are essential for
the efficiency and robustness of the approach. Stent pre-

deformation [72] as well as in vivo non-stress-free ves-

sel geometries [30] require special computational tech-

niques which have to be consistently integrated into

the mechanical framework. High complexity of vessel

and SG shapes and their large inter-patient variability

are further challenges of the presented in silico EVAR

methodology.

The presented methods are based on finite element

methods (FEM) and a novel 3D morphing algorithm

for SG geometries which is closely related to morph-

ing algorithms originally used in image processing (e.g.

Beier et al. [6], Lerios et al. [51] or Lazarus et al. [50])

and sweeping algorithms (e.g. Wang et al. [81]). In this

methodology, the intra-operative steps of EVAR are

strongly simplified to reduce the numerical complexity

of the problem. This means, e. g. medical devices such

as guidewires are not considered in the in silico EVAR

approach.
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Mortar based frictional contact [68] is considered

between the vessel and the SG model which both can

undergo finite deformations. Further, attention is payed

to detailed modeling of the vessel. This includes an

anisotropic and hyperelastic law for the vessel wall as

well as the consideration of the constituents intralumi-

nal thrombus (ILT) and calcifications since these con-

stituents are known to be able to have a distinct im-

pact on the success of the EVAR treatment [83,73,82].

Furthermore, we apply a blend between vessel material

models for a “healthy” vessel wall and an “aneurys-

matic” vessel wall as both have been shown to exhibit

distinct material behavior [61,77]. This differentiation

between “healthy” and “aneurysmatic” vessel wall is

quite essential as in general the landing zone of the SG

is in the region of “healthy” vessel tissue and not in the

diseased aneurysmatic part [34].

Stent predeformation should be considered in an in

silico EVAR simulation to be able to compute con-

tact forces between SG and vessel more accurately [72].

We propose a stent predeformation methodology which

is based on the alteration of the stress-free reference

configuration of the stent after SG assembly. This ap-

proach is flexible and does not require any additional as-

sembling simulation or mechanical experiments for pa-

rameter fitting. Instead, it can be implicitly integrated

within the actual in silico EVAR methodology.

Addressing the question of SG sizing, we suggest a

parameter continuation approach. It allows to model

various different diameters of SGs within one in silico

EVAR simulation and thus results in an enormous sav-

ing in simulation time compared to other approaches

[69,16]. Furthermore, the parameter continuation ap-

proach allows for a continuous variation of the SG di-

ameter which is not possible when doing separate sim-

ulations for distinct SG choices.

Several studies have already been conducted in the

field of vascular modeling and in silico EVAR simu-

lations. Among others, Humphrey and Holzapfel [40],

Gasser et al. [27], Maier et al. [54], Vande Geest et al.

[76] and Fillinger et al. [25] focused on computational

models of AAAs mainly to assess the rupture risk. Kle-

instreuer et al. [46], De Bock et al. [15], Demanget et

al. [20,21] and Roy et al. [72] performed experimental

and numerical tests on marketed SGs considering the

mechanical behavior of stent and graft.

Other groups (e.g. Holzapfel et al. [39], Auricchio et

al. [3], Mortier et al. [60], Iannaccone et al. [41,17] and

Morlacchi et al. [59]) studied the virtual deployment of

stents which can be seen as pioneering works for in silico

EVAR simulations. Some in silico EVAR simulations of

SGs in idealized aneurysms or vessels (e.g. De Bock et

al. [16,18] and Perrin et al. [66]) and some in patient-

specific vessels (Auricchio et al. [4], Perrin et al. [64,

65]) exist.

In most previous in silico EVAR studies [4,16,18,

66], the in silico EVAR methodology was adopted from

virtual stent deployment simulations. The methodol-

ogy consists of a rigid, cylindrical catheter in which

the SG is radially crimped, placed within the vessel

and finally deployed within the vessel. Perrin et al. [64,

65] presented a different in silico EVAR methodology

which was applied to patient-specific and bifurcated

AAA geometries. In this methodology, first the SG was

crimped inside a rigid, tubular catheter and afterwards

the catheter was deformed onto the pre-operative geom-

etry of the patients vessel. Contact constraints forced

the SG to remain inside the catheter and gradually de-

formed the SG. Finally, vesel material properties were

assigned to the catheter allowing the catheter to deform

elastically.

A major challenge of all previously mentioned in

silico EVAR methodologies was the high complexity of

the problem arising from the high degree of nonlinear-

ity mainly due to buckling of the graft and complex

contact phenomena. The highest degree of complexity

occurs during crimping and placement as in these con-

figurations the SG is radially compressed and the graft

strongly buckles. The only published in silico EVAR

methodology that avoids the high degree of complexity

during crimping and placement of the SG is presented

by Prasad et al. [69]. They inflated the vessel by an un-

physiological pressure increase to make room for the SG

and subsequently released this artificial pressure dur-

ing the virtual deployment step. This approach however

is restricted to simple vessel geometries. The objective

of all previously mentioned studies of in silico EVAR

was to obtain the deployed configuration of the SG in-

side the vessel rather than reproducing the mechani-

cally and numerically complex single steps of an EVAR

intervention. Hence, there actually is no need for repre-

senting this high degree of complexity during crimping

and placement of the SG as long as the influence of these

steps on the deployed configuration is small. This raises

the interest for an in silico EVAR methodology which

avoids extremely complex steps during placement of the

SG but nevertheless provides a high level of accuracy

of the deployed SG in the patient-specific vessel.

Although numerous studies on the mechanical be-

havior of SGs had been performed, the stent predefor-

mation was rarely considered. Perrin et al. [65] devel-

oped a mechanically sophisticated SG assembling strat-

egy for AnacondaTM SGs (Vascutek, Inchinnan,UK)

which considered the predeformed stent configuration.

Roy et al. [72], who called this effect “stent pre-load”,

developed a more general rule for Cook Zenith R© SGs
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(Cook Medical, Bloomington, Indiana, USA). They aug-

mented the Young’s modulus of the stent by a factor

of 2 to consider the effect of stent predeformation. This

was based on the assumption of a linear relationship

between radial force and diameter reduction of stents

and required mechanical tests for calibration.

Some studies (e.g. Prasad et al. [69] or De Bock et al.

[16]) numerically investigated the issue of SG oversizing

after having applied one of the aforementioned in silico

EVAR methodologies. For each degree of SG oversizing

that was considered a separate in silico EVAR simula-

tion was applied. Consequently, investigating different

ranges of oversizing was computationally expensive and

only discrete realizations of oversizing could be investi-

gated.

The outline of this paper is as follows: in section 2

we introduce the mathematical description of the 3D

morphing algorithm and the in silico EVAR methodol-

ogy as well as constitutive models of SG and vessel. In

section 3, a tube demonstrator is used to perform con-

vergence studies of the 3D morphing algorithm and to

show its robustness. Also, the in silico EVAR method-

ology is applied to a synthetic AAA geometry. Using

this geometry, a continuous variation of the degree of

SG oversize is investigated by application of the param-

eter continuation approach. The influence of the degree

of SG oversize on SG and vessel is analysed. Further, we

compare the results obtained by the parameter continu-

ation approach to a ”direct” in silico EVAR simulation

to be able to quantify the error induced by the param-

eter continuation approach. At the end of section 3, we

examine the influence of stent predeformation on inter-

nal stress states of stent and graft as well as on contact

tractions and vessel stresses in the deployed state of the

SG. The findings of section 3 are discussed in section 4.

Limitations and conclusions are drawn in section 5 and

6, respectively.

2 Materials and methods

2.1 Model assumptions

We use a model which incorporates the following basic

assumptions:

• No medical tools, such as e.g. guidewires, other than

the SG itself are considered.

• The simplified intra-operative steps only have a mi-

nor influence on the final deployed SG configuration.

• Friction between SG and vessel is modeled as dry

friction using Coulomb’s law. Lubrication is

neglected.
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Fig. 1 Domains and boundaries of the abdominal aorta ΩAo
0

(I), the graft ΩG
0 (II) and the stent ΩS

0 (III) in the reference
configuration and in the current configuration (IV). (•)ex de-
notes the exterior boundaries of the aorta ΓAo

ex , the graft ΓG
ex

and the stent ΓS
ex; (•)l describes the luminal boundaries of

the aorta covered by the graft γAo
l,c and not covered by the

graft γAo
l,n as well as the luminal boundary of the graft ΓG

l ;

ΓAo
io denotes the boundary at the in- and outlet of the aortic

segment.

• Treatment as purely solid mechanics problem. For

now, fluid dynamics of the blood flow is neglected.

A quasi-static pressure state is considered.

• Variability in patient-specific vessel material prop-

erties is neglected. Population averaged mean values

are used for vessel material parameters.

• Constant vessel wall thickness is assumed.

2.2 3D nonlinear elastostatics including frictional

contact

We consider the boundary value problem (BVP) of

multibody finite deformation elastostatics with frictional

contact:

∇ · (F (Π)S(Π)) + b0 = 0 in Ω
(Π)
0 , (1a)

σ(Π)n(Π) = t̂
(Π)

on γ(Π)
σ , (1b)

(FAoSAo)NAo = −k̂exu
Ao on ΓAo

ex , (1c)

(FAoSAo)NAo = −k̂iou
Ao on ΓAo

io , (1d)

uS = uG on Γm, (1e)

gn ≥ 0, ||tn|| ≤ 0, ||tn||gn = 0 on γG
ex, (1f)

Λ := ||tτ || − µ||tn|| ≤ 0,

vτ,rel + βtτ = 0,

β ≥ 0, Λβ = 0 on γG
ex, (1g)

where Ω
(Π)
0 with Π = {Ao,G,S} is the reference con-

figuration of body Π. “Ao” denotes the vessel, “S”

the stent and “G” the graft (Figure 1). The displace-

ments u(Π), being the state variables, relate the

coordinates of the reference configuration
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X(Π) ∈ Ω
(Π)
0 with the coordinates of the current con-

figuration x(Π) ∈ Ω(Π) by the diffeomorphic mapping

Φ(X(Π)) = x(Π) = X(Π) + u(Π). (2)

Further, F (Π) = 1 + ∇u(Π) is the deformation gradi-

ent, S(Π) the second Piola-Kirchhoff stress tensor and

σ(Π) = 1
det(F (Π))

F (Π)S(Π)(F (Π))T the Cauchy stress

tensor. t̂
(Π)

(u(Π)) is a nonlinear traction load on the

Neumann boundary γ
(Π)
σ of body Ω(Π) with its unit

outward surface normal n(Π) given in the current con-

figuration. The Neumann boundaries γ
(Π)
σ are further

specified in section 2.5. The vessel is embedded in spring

boundary conditions (equations (1c) and (1d)) on the

abluminal surface of the aorta ΓAo
ex and the in- and

outlet of the aorta ΓAo
io , respectively. k̂ex and k̂io are

spring stiffnesses per unit reference area and NAo is

the unit outward surface normal of the reference con-

figuration. Equation (1e) is a tied contact constraint

on Γm = ΓG
l ∩ ΓS

ex. The conditions (1f) are contact

constraints in normal direction given in the form of

Karush-Kuhn-Tucker conditions where tn is the nor-

mal contact traction at the contact interface and gn is

the gap function between the potential contact surfaces

in the spatial configuration: the slave surface (γG
ex) and

the master surface (γAo
l ). The constraints (1g) are fric-

tional contact constraints according to Coulomb’s law

where µ ≥ 0 is the friction coefficient.

2.3 3D morphing algorithm based on control curves

The presented in silico EVAR methodology heavily re-

lies on a 3D morphing algorithm introduced in this sec-

tion.

Morphing (Metamorphosis) is the process of con-

tinuously and smoothly transforming one object into

another originally used in image processing (e.g. [6,51,

50]). From a mechanical perspective the morphing pro-

cess describes a gradual transition of a body Ω̃B(t) ⊂ R3

from its initial configuration Ω̃B
I = Ω̃B(tI) ⊂ R3 into

the target configuration Ω̃B
T = Ω̃B(tT) ⊂ R3. We re-

strict the morphing algorithm to discretized bodies de-

scribed by nB nodes with the coordinates x̃iI ∈ Ω̃B
I and

x̃iT ∈ Ω̃B
T, respectively, with i = 1, 2, ..., nB. The objec-

tive is to find all intermediate configurations

Ω̃B(t) ⊂ R3 × T \ {tI, tT} with T = [tI, tT] with the

nodal coordinates x̃i(t) ∈ ΩB(t) satisfying the following

conditions:

• Mechanical compatibility: Maintain the proper

history of mechanical quantities with regard to the

stress-free reference configuration.

t
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I

II

CI

7!
7!

i
j

(1)

(2)

(3)

(1)

(2)

(3)

CT ⇢ R3, x̃j
C,T 2 CT

⌦̃B
I

⌦̃B
I ⇢ R3, x̃i

I 2 ⌦̃B
I ⌦̃B(t) ⇢ R3, x̃i(t) 2 ⌦̃B(t)

'
'�1

 

 

'�1

'
'�1

CI ⇢ R3, x̃j
C,I 2 CI

CT

Fig. 2 Schematic overview (I) and algorithmic overiew (II)
of the proposed morphing algorithm based on control curves
consisting of three main steps: Initialization (1), path inter-
polation (2) and inverse mapping from C(t) to Ω̃B(t) (3); solid
lines indicate the given configurations Ω̃B

I , CI and CT; dashed

lines refer to unknown configurations of Ω̃B and C.

• Smoothness: The transition from Ω̃B
I to Ω̃B

T has to

be smooth in space and in pseudo-time t.

We use the notation (•̃) to indicate that the morphing

algorithm is a pure geometrical problem. Nevertheless,

for a consistent embedding into the mechanical frame-

work of section 2.2, the first of the above conditions

is required. To satisfy the second condition, morphing

algorithms generally deal with two main issues:

• Point correspondence: Establishing a correspon-

dence of each point (or node) of Ω̃B
I to a point of

Ω̃B
T.

• Path interpolation: Creating an interpolation
along a pseudo-time t between all corresponding

points.

Especially the point correspondence problem can be

challenging in general 3D problems. Hence, a common

way is to reduce the dimensionality of the problem dur-

ing the morphing process to 2D [44], 1D [6] or even 0D

[11]. This approach called “field morphing” or “feature-

based metamorphosis” was first introduced by Beier et

al. [6] for 2D problems. The presented morphing algo-

rithm strongly follows the idea of Beier et al. [6] and

Lerios et al. [51] who reduced a multidimensional mor-

phing object to 1D curves.

2.3.1 Mapping between morphing object and control

curve and definition of rotation minimizing local

frames

Given a piecewise linear approximation C(t) ⊂ R3 × T
to a 1D curve described by nC discrete points in its
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initial configuration CI = C(tI) ⊂ R3, x̃jC,I ∈ CI and in

its target configuration CT = C(tT) ⊂ R3, x̃jC,T ∈ CT
with j = 1, 2, ..., nC, it is possible to define a unique de-

formation path of the 3D body from Ω̃B
I to Ω̃B

T based

on the deformation of the curve from CI to CT (Figure

2I). In doing so, we reduce the dimensionality of the

problem from general 3D morphing objects Ω̃B to 1D

curves C. Hence, the two main issues of the morphing al-

gorithm, point correspondence and path interpolation,

only have to be established for 1D curves. In contrast, to

classical morphing algorithms, the target configuration

of the morphing object Ω̃B
T is unknown. Only the ini-

tial configuration of the morphing object Ω̃B
I , the initial

configuration of the curve CI and the target configura-

tion of the curve CT are given.

Obviously, at any pseudo-time t a map between the

1D curve C, in the following called control curve1, and

the 3D body Ω̃B is required. Accordingly, the map

ϕ :

{
Ω̃B(t) → C(t)
x̃i(t) 7→ x̃jC(x̃i(t))

(3)

and its inverse

ϕ−1 :

{
C(t) → Ω̃B(t)

x̃jC(t) 7→ x̃i(x̃jC(t))
(4)

are defined.

The mapping is based on the definition of nC local,

orthonormal coordinate frames (tnb)j(t) at each point

of the control curve tangentially aligned to the curve at

any pseudo-time t ∈ T , where tj(t) is the unit tangent

vector, nj(t) the unit normal vector and bj(t) the unit

binormal vector (Figure 3).

The resulting description must be independent of

the orientation of the control curve C(t) in R3. This

means the local coordinate frames (tnb)j(t) have to

be uniquely defined for any configuration C(t) of the

control curve at any pseudo-time t ∈ T . The base vec-

tors tj(t), nj(t) and bj(t) change over pseudo-time t,

but for reasons of clarity we do not explicitly write the

pseudo-time as function parameter in the following. Un-

less specified differently, the variables are valid for any

pseudo-time t ∈ T .

Whereas the definition of the unit tangent vector

tj = C
′j

||C′j || is straight forward with C
′j being the first

derivative of the curve at point j, the definition of nj

and bj in general is not unique. In the present algo-

rithm, we use a discrete form of a rotation minimizing

frame (RMF) definition [47,35,81]. Such a set of nC

1 according to [6] who introduced the term “control primi-
tives”

CI

EX

EY

EZ
tj

nj

bj

ri,j

✓i
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ẑi
j

j � 1

j + 1

h

Bj

i

ei,j
r

ei,j
✓

ei,j
ẑ

1

1

1

1

x̃i
I

x̃j
C,I

Fig. 3 Illustration of the local cylindrical coordinate system
and the bounding box (red) around point j of the control
curve CI.

local frames (tnb)j is called rotation minimized if

tj =
C
′j

||C′j ||
=

1
2 (x̃j+1

C − x̃j−1
C )

|| 12 (x̃j+1
C − x̃j−1

C )||
, (5a)

nj = argmin
n

 nC∑
j=1

|τ j | ||C′j ||

 , (5b)

nj · tj = 0, (5c)

bj = tj × nj , ∀ j = 1, 2, ..., nC (5d)

holds. Equation (5b) states that for RMFs the total an-

gle of rotation of the normal vectors nj around curve C
has to be minimal where the torsion

τ j = −nj · b′j (6)

is a measure of the speed of rotation of the normal vec-

tor around the control curve at point j [81,24] with

b
′j being the first derivative of the binormal vector at

pointj. Equations (5c) and (5d) preserve the orthogo-

nality property of the triads (tnb)j . Accordingly, the

triad (tnb)j at any point j is given by the solution of

an initial-value problem [47], where n1 and b1 at point

j = 1 can be chosen arbitrarily2. A number of powerful

methods to approximate the given problem are avail-

able [47,8,81]. We follow the approximation in Bloo-

menthal [8] which allows an explicit computation of all

nC local frames starting from a given frame spanned by

2 obviously the orthogonality property of the triad accord-
ing to equations (5c) and (5d) has to be preserved
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the unit vectors t1, n1 and b1 at point j = 1. Accord-

ingly, the triad at point j is defined by

tj =
C
′j

||C′j ||
=

1
2 (x̃j+1

C − x̃j−1
C )

|| 12 (x̃j+1
C − x̃j−1

C )||
, (7a)

nj =
bj−1 × tj
||bj−1 × tj ||

, (7b)

bj =
tj × nj
||tj × nj || , ∀ j = 2, 3, ..., nC. (7c)

In section 3.1, we demonstrate that this is an approx-

imation of the exact initial-value problem of RMFs,

which is largely sufficient for the presented application

and also represents an exact solution of the RMFs for

the trivial case of straight segments of curves (τ j = 0).

At each point j of the control curve in the initial

configuration with x̃jC,I ∈ CI, a semi-infinite bounding

box Bj ⊂ R3 spanned by two infinite planes in the local

(nb)j(tI)-plane with a search distance of h is used to

assign the nodes i of the morphing object with x̃iI ∈ Ω̃B
I

to one point on the control curve CI (Figure 3). Ac-

cordingly, the semi-infinite bounding box Bj is infinite

in radial direction but finite in tangential direction. All

nodes i of the morphing object Ω̃B
I with x̃iI ∈ Bj are

assigned to point j of the control curve CI and are put

into the subset AjI ⊆ AI = {1, 2, ..., nB} where

nC⋃
j=1

AjI = AI, (8a)

AjI ∩ AkI = ∅, ∀k 6= j (8b)

holds. Accordingly, all nodes i = 1, 2, ..., nB of the mor-

phing object Ω̃B
I are assigned to a point j = 1, 2, ..., nC

of the control curve CI (equation (8a)). Further, equa-

tion (8b) states that all subsets AjI are pairwise disjoint

sets, i.e. every node i = 1, 2, ..., nB of the morphing ob-

ject Ω̃B
I is assigned to exactly one point j = 1, 2, ..., nC

of the control curve CI. Within this section we restrict

to a generic description of the morphing algorithm in

which the subsets Aj are constant during the total mor-

phing process, i.e.

Aj = AjI , ∀ j = 1, 2, ..., nC. (9)

However, in section 2.5, a different definition of Aj will

be used for the in silico deployment of the SG.

The primary objective of the described morphing

algorithm is to morph tube-like structures such as SGs

which are rotationally symmetric about the longitudi-

nal axis. Hence, we describe the position vectors x̃i(t)

of the morphing object in local cylindrical coordinate

systems (ereθeẑ)
i,j(t) (Figure 3). The relation between

the previously introduced local frames (tnb)j(t) and

the local cylindrical coordinate systems (ereθeẑ)
i,j(t)

with the base vectors ei,jr (t), ei,jθ (t) and ei,jẑ (t) is given

by

ei,jr (t) = nj(t) cos(θi) + bj(t) sin(θi), (10a)

ei,jθ (t) = −nj(t) sin(θi) + bj(t) cos(θi), (10b)

ejẑ(t) = tj(t), (10c)

θi ∈ [0; 2π], ∀ i ∈ Aj , j = 1, 2, ..., nC.

Hence, the position vectors of the object Ω̃B to be mor-

phed can be expressed by

x̃i(t) = x̃jC(t) + ri,j(t)

= x̃jC(t) + riei,jr (t) + ẑiejẑ(t) (11)

∀ i ∈ Aj , j = 1, 2, ..., nC.

Consequently, the position x̃i of all nodes i ∈ Aj of

the morphing object Ω̃B assigned to point j of the

control curve are described in the local cylindrical co-

ordinate systems (ereθeẑ)
i,j(t) according to equations

(10a)-(10c) and (11) (Figure 3). Within this section we

restrict to constant local cylindrical coordinates:

ri = riI, ẑ
i = ẑiI , θ

i = θiI, ∀ i = 1, 2, ..., nB. (12)

This means during the total morphing process, the local

cylindrical coordinates ri, ẑi and θi are equal to the lo-

cal cylindrical coordinates riI, ẑ
i
I and θiI that correspond

to the initial configuration of the morphing object Ω̃B
I .

However, as the cylindrical base vectors ei,jr (t), ei,jθ (t)

and ei,jẑ (t) are aligned to the control curve C at any

pseudo-time t ∈ T , the base vectors ei,jr (t), ei,jθ (t) and

ei,jẑ (t) change during the morphing process. The change

in the base vectors ei,jr (t), ei,jθ (t) and ei,jẑ (t) leads to a

transformation of the morphing object Ω̃B(t) from Ω̃B
I

to Ω̃B
T based on the transformation of the control curve

C(t) from CI to CT (Figure 2). The transformation of

the control curve C(t) over the pseudo-time t will be

further specified in section 2.3.2.

In section 2.5, we will use a different definition of

equation (12) in order to change the radius of the SG

during morphing operations in the in silico EVAR

methodology.

2.3.2 Point correspondence and path interpolation

In the previous section, we reduced the dimensionality

of the problem from general 3D morphing objects Ω̃B to

a 1D control curve C. Hence, point correspondence and

path interpolation are only an issue of the 1D control

curve. We use the point correspondence

x̃jC,I ↔ x̃jC,T, ∀ j = 1, 2, ..., nC (13)
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between the two known configurations CI and CT of the

control curve, i.e. the first point of configuration CI cor-

responds to the first point of configuration CT, the sec-

ond point of configuration CI corresponds to the second

point of configuration CT and so on.

Addressing the path interpolation problem, we look

for a map ψ(t) that generates the intermediate config-

uration C(t) at any pseudo-time t ∈ T \ {tI, tT} of the

two known configurations CI and CT:

ψ :

{
CI, CT → C(t)
x̃jC,I, x̃

j
C,T 7→ x̃jC(t, x̃jC,I, x̃

j
C,T).

(14)

We apply a simple linear path interpolation, defined by

x̃jC(t) :=(1− t− tI
tT − tI

)x̃jC,I +
t− tI
tT − tI

x̃jC,T, (15)

∀ j = 1, 2, ..., nC,

despite some known shortcomings of linear interpola-

tion between the initial configuration CI and the tar-

get configuration CT. This approach might fail when

the two known configurations CI and CT strongly differ

in their orientation as this would lead to inappropri-

ate intermediate configurations C(t) with possible self-

intersections as described in detail in [1,32].

To prevent the morphing object Ω̃B from spurious

torsion between two different configurations Ω̃B(t) and

Ω̃B(t + ∆t), we apply the same explicit RMF scheme

of equations (7a)-(7c) not only in space but also in

pseudo-time. The RMF computation in pseudo-time

t is done only for the local coordinate system of the

first point (j = 1) of the control curve C as all other

RMFs for j > 1 are explicitly computed by the RMF

scheme in space (equations (7a)-(7c)). Hence, from ar-

bitrarily chosen base vectors n1(tI) and b1(tI) at point

j = 1 of CI, all other RMFs at point j = 1 of C(t) with

t ∈ T \ {tI} can be computed explicitly according to:

t1(t+∆t) =
C(t+∆t)

′1

||C(t+∆t)′1|| , (16a)

n1(t+∆t) =
b1(t)× t1(t+∆t)

||b1(t)× t1(t+∆t)||
, (16b)

b1(t+∆t) =
t1(t+∆t)× n1(t+∆t)

||t1(t+∆t)× n1(t+∆t)|| , (16c)

where C
′1 is the first spatial derivative of the control

curve at point j = 1.

Morphing algorithms might lead to self intersections

leading to unphysical configurations of Ω̃B. Especially,

local self intersections have to be prevented. Local self

intersections arise if the radius of curvature rjκ of the

control curve is smaller than the local radius ri of the

morphing object at this point. Hence, during the whole

morphing operation

f jr (t) :=max

(
rjκ(t)

ri

)
(17)

=max

(
1

||tj+1 − tj−1|| ri
)
> εr, ∀ i ∈ Aj

has to be guaranteed where εr > 1 is a user-defined

tolerance and rjκ is the radius of curvature of the control

curve at point j. In the limit case of a straight control

curve, the radius of curvature rjκ of the control curve

would be infinity at any point j = 1, 2, ..., nC and the

condition of equation (17) would be satisfied for any

radius ri of the morphing object.

As condition (17) would restrict the algorithm to

relatively straight control curves, local smoothing of the

curve is used which locally increases the radius of cur-

vature rjκ of the control curve such that condition (17)

is satisfied. In the presented approach, local, iterative

Laplacian smoothing according to

x̃jC(t) =

{
1
2 (x̃j−1

C (t) + x̃j+1
C (t)), f jr (t) ≤ εr

x̃jC(t), f jr (t) > εr
, (18)

∀ j = 1, 2, ..., nC

is applied at locations where condition (17) is violated.

The number of required smoothing iterations depends

on the shape of the control curve. Laplacian smoothing

induced shrinkage is removed by edge length scaling of

all subsequent points of point j

x̃kC(t) = x̃k−1
C (t) +∆sjtj , ∀ k ≥ j, (19)

where ∆sj is the mean edge length of the two adjacent

edges of point j.

Due to the inherent map ϕ−1 from equation (4) any

smoothing of the control curve C results in a smoothed

morphing object Ω̃B as well.

In summary, the proposed morphing algorithm com-

putes all configurations Ω̃B ⊂ R3 × (tI, tT] of the mor-

phing object from the given initial configuration of the

morphing object Ω̃B
I , the initial configuration of the

control curve CI and the target configuration of the con-

trol curve CT (Figure 2). The morphing algorithm is the

solution to a purely geometric problem, i.e. the BVP of

equations (1a)-(1g) does not have to be solved to ob-

tain the deformation of the morphing object Ω̃B. In

section 2.5, the morphing algorithm will be applied in

the in silico EVAR methodology where the SG will be

the morphing object.
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2.4 Constitutive modeling

For all bodies ΩAo, ΩG and ΩS we assume the exis-

tence of an hyperelastic strain energy function (SEF) Ψ

such that S = 2 ∂Ψ∂C with the right Cauchy-Green tensor

C = FTF .

2.4.1 Stent-graft

In contrast to [21,72], isotropy as in [46] is assumed

for the graft made up of woven PET fabric which is

sufficient in the first instance in which we are rather in-

terested in the development of an in silico methodology.

Hence, the graft material is modeled by the compress-

ible neo-hookean model

ΨG(I1, J) =
cG

βG
(J−2βG − 1) + cG(I1 − 3), (20)

where J = det(F ) and I1 = tr(C).

Stainless steel stents are modeled as elastic material

[21,72]. The pure elastic regime can be assumed for self-

expandable stent-grafts as reported for instance in [72,

65]. We therefore apply the SEF

ΨS(I1, J) =
cS

βS
(J−2βS − 1) + cS(I1 − 3) (21)

for this type of material behavior.

2.4.2 Vessel

Since arterial tissue is almost incompressible [10], an ad-

ditive split of the corresponding SEF into a volumetric

and an isochoric part is used. The isochoric-volumetric

split enables the penalization of volumetric changes to

sustain the almost incompressibility of the material. An

Ogden volumetric SEF [22,63] of type

Ψ
(•)
vol (J) =

K(•)

4
(J2 − 2lnJ − 1) (22)

is applied to all vessel constituents (•) considered in the

model, i.e. for the SEF of “healthy” aortic wall (AA),

“aneurysmatic” aortic wall (AAA), ILT and calcifica-

tions (calc). K is the volumetric bulk modulus which is

chosen sufficiently large to sustain almost incompress-

ibility.

Different constitutive models are used for the

“healthy” and the “aneurysmatic” parts of the vessel

wall as substantial differences in the material behav-

ior of “healthy” aortic walls and “aneurysmatic” aortic

walls can be identified [61]. The “healthy” abdominal

aortic wall is described by the anisotropic, hyperelas-

tic two-fiber model proposed by Gasser et al. [29]. The

isochoric SEF is a superposition of an isotropic ground

substance ΨAA
iso and an anisotropic part ΨAA

fi consider-

ing the collagen fibers of the vessel. The total SEF of

the “healthy” vessel wall reads

ΨAA(Ī1, Ī4, Ī6, J)

= ΨAA
iso (Ī1) + ΨAA

fi (Ī4, Ī6) + ΨAA
vol (J)

= cAA(Ī1 − 3) +
k1

2k2

∑
i=4,6

(ek2[κĪ1+(1−3κ)Īi−1]2 − 1)

+ ΨAA
vol (J), (23)

where Ī1 = J−2/3tr(C) refers to the first modified in-

variant of the right Cauchy-Green strain tensor C and

Ī4 as well as Ī6 to the squares of the stretches in fiber di-

rection as defined in [29]. κ is the transversely isotropic

dispersion parameter, cAA is the isotropic shear mod-

ulus and k1 as well as k2 are fiber-specific stiffness pa-

rameters.

In the “aneurysmatic” abdominal aortic wall, the

collagen fibers are more dispersed and isotropy is a

widely used model assumption [70,71,54,31]. Here, the

following SEF is applied for the “aneurysmatic” aortic

wall

ΨAAA(Ī1, J)

= ΨAAA
iso (Ī1) + ΨAAA

vol (J)

= a(Ī1 − 3) + b(Ī1 − 3)2 + ΨAAA
vol (J), (24)

where a and b are material parameters according to

Raghavan and Vorp [70].

A geometrical parameter

λ(d) =


0, d < d0,
1
2

(
1− cos

(
π d−d0
d1−d0

))
, d0 ≤ d ≤ d1,

1, d > d1

(25)

is defined to blend smoothly between “healthy” and

“aneurysmatic” aortic wall:

Ψwall = (1− λ(d))ΨAA + λ(d)ΨAAA. (26)

λ(d) ∈ [0; 1] is a function of the local diameter d of the

vessel. The bounds d0 and d1 are chosen as d0 = 1.2dAA

and d1 = 1.5dAA with dAA being the mean diameter

of the vessel in the most proximal region which is as-

sumed to be in “healthy” state. Accordingly, regions of

the vessel with a local diameter d smaller than d0 are

fully described by the SEF ΨAA of a “healthy” vessel

whereas regions with a local diameter d larger than d1

are fully described by the SEF ΨAAA of an “aneurys-

matic” vessel. In-between a transition zone of partly

“aneurysmatic” vessel material arises as shown in Fig-

ure 7I.

ILT is a fibrin structure incorporated with blood

cells and proteins, platelets and cellular debris [80] with



10 André Hemmler et al.

macroscopically isotropic mechanical behavior [28,80,

78]. The SEF

Ψ ILT(Ī1, Ī2, J) = Ψ ILT
iso (Ī1, Ī2) + Ψ ILT

vol (J)

= cILT(Ī2
1 − 2Ī2 − 3) + Ψ ILT

vol (J) (27)

proposed by Gasser et al. [28] is utilized to model the

mechanical properties of ILT. Ī2 = J−4/3tr(C)det(C)

refers to the second modified invariant of the right

Cauchy-Green strain tensor C. The constitutive model

resolves the material properties of three different ILT

layers with decreasing stiffness cILT: luminal clum, me-

dial cmed and abluminal cabl. The material parame-

ter cILT is piecewise linearly interpolated between these

distinct ILT layers from the luminal to the abluminal

surface of the ILT.

Since calcifications can have a very irregular shape

and since they can be located at a large number of

separated spots, modeling and discretization of calcifi-

cations as separate constituents is not practicable. In-

stead, calcifications are considered implicitly within the

domains of ILT and aortic wall. The SEF represent-

ing the mechanical behavior of calcifications is super-

imposed to the SEF of ILT and the aortic wall, respec-

tively.

Ψ̂ ILT = Ψ ILT + Ψ calc, (28a)

Ψ̂wall = Ψwall + Ψ calc. (28b)

The SEF Ψ̂ ILT and Ψ̂wall consider the material behavior

of calcifications implicitly within the aortic tissue. The

SEF Ψ calc is a function of the local Hounsfield units

(HU) of the vessel which generally are extracted from

CT images. The almost linear material behavior of cal-
cifications reported in [53] is modeled by a neo-Hookean

material for the isochoric component of the SEFgray

Ψ calc(Ī1, J) = Ψ calc
iso (Ī1) + Ψ calc

vol (J)

= ccalc(Ī1 − 3) + Ψ calc
vol (J), (29)

where ccalc is the additional stiffness of the calcified re-

gions that is added to the base material of ILT and

vessel wall, respectively. As stated for instance in [53],

“pure calcifications” and “calcified tissue” have to be

distinguished, the latter one meaning a compound of

aortic tissue and dispersed calcifications. This moti-

vates the definition of α as a smooth transition from

”noncalcified” to ”pure calcification” with

ccalc(h) =


0, h < h0,

f calc(h), h0 ≤ h ≤ h1,

ĉcalc, h > h0

, (30a)

f calc(h) =
1

2
ĉcalc

(
1− cos

(
π
h− h0

h1 − h0

))
, (30b)

Table 2 Material parameters of vessel and SG constitutive
models.

Stent [21] Graft [72]
cS [GPa] 40.4 cG [GPa] 0.050a

βS [-] 0.75 βG [-] 2.625
Healthy aortic wall [37] AAA wall [70]
cAA [kPa] 100.9 a [kPa] 174.0
k1 [kPa] 4070.0 b [kPa] 1881.0
k2 [-] 166.5
κ [-] 0.16

ILT [28] Calcification [53]
clum [kPa] 2.62 ĉcalc [kPa] 8929.0
cmed [kPa] 1.98
cabl [kPa] 1.73

Surrounding tissue [57]

k̂ex [kPa/mm] 2.0

k̂io [kPa/mm] 4.0
a mean of Young’s modulus in axial and in circumferential
direction from Roy et al. [72]

where h is the local HU value, h0 is the HU value at

which the transition from noncalcified aortic tissue to

calcified tissue starts, h1 is the HU value above which

the material is considered as pure calcification.

Table 2 summarizes the material parameters of all

proposed constitutive laws.

2.5 In silico EVAR methodology

Given the vessel as well as the SG in the undeformed

configuration, we aim to find the final deployed SG con-

figuration within the elastically deformable vessel under

physiologically meaningful conditions, where nonethe-

less a pseudo-stationary problem is assumed. Investiga-

tions on the influence of the dynamics of the pulsatory

blood flow are not part of the present study. The pre-

sented methodology of in silico EVAR is subdivided

into the steps: Vessel prestressing, Stent predeforma-

tion, SG placement and SG deployment. Subsequent SG

parameter continuation is used to continuously change

the SG diameter starting from an already deployed SG

configuration.

In the in silico EVAR methodology we make use

of a change in the reference configuration, i.e. the ini-

tial configuration not necessarily has to be equivalent

to the stress-free reference configuration. Depending on

the particular stage of the in silico EVAR methodol-

ogy, the stress-free state is defined by a different ref-

erence configuration. We define six distinct configura-

tions of the SG where the configurations visualized in

Figure 4I-III describe stress-free reference configurations

and the configurations visualized in Figure 4IV-VI de-

scribe current configurations. All reference configura-

tions are denoted by the subscript (•)0 whereas all

other configurations are current configurations. Further,
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Fig. 4 Overview of configurations of the SG Ω
{S,G}
(Υ ) with Υ = {I,Pre,Pl,De,PC} during the in silico EVAR methodology

(initial state (I), stent predeformation (Pre), SG placement (Pl) and SG deployment (De)) and SG parameter continuation
(PC); subscript (•)0 indicates a stress-free reference configuration described by the reference coordinates X; configurations

without subscript (•)0 are current configurations described by the current coordinates x; diffeomorphic morphing maps M̃
and m̃ as well as deformation maps Φ, ΦPre and ΦPC define the relation between the different configurations of the SG; initial
configuration CI and target configuration CT of the control curve (green).

the subscript (•)Pre denotes the stent predeformation,

(•)Pl denotes the SG placement and (•)De the SG de-

ployment. The subscript (•)PC describes the parame-

ter continuation approach which is used to change the

diameter of the SG, i.e. the degree of SG oversizing.

Accordingly, Ω
{S,G}
Pre,0 describes the stress-free reference

configurations of stent (superscript (•)S) and graft (su-

perscript (•)G) after the stent predeformation has been

applied to the SG. Ω
{S,G}
Pl are the current configura-

tions of stent and graft after the in silico SG place-

ment has been performed and Ω
{S,G}
De are the current

configurations of stent and graft after the in silico SG

deployment has been done. Ω
{S,G}
PC,0 are the stress-free

reference configurations of stent and graft and Ω
{S,G}
PC

are the current configurations of stent and graft after

the SG diameter has been changed by the parameter

continuation approach (Figure 4).

The initial reference configurations of stent and graft

Ω
{S,G}
I,0 , i.e. the discretized stent and graft configura-

tions with which the in silico EVAR methodology starts,

are visualized in Figure 4III. The final deployed config-

urations of stent and graft Ω
{S,G}
De , i.e. the result of the

in silico EVAR methodology without parameter con-

tinuation, are visualized in Figure 4V.

We describe the position vector of a reference con-

figuration by the capital letter X and the position vec-

tor of a current configuration by the small letter x.

At any stage of the in silico EVAR methodology, the

current configurations Ω
(Π)
(Υ ) with Π = {Ao,G,S} and

Υ = {I,Pre,Pl,De,PC} are related to the correspond-



12 André Hemmler et al.

ing stress-free reference configurations Ω
(Π)
(Υ ),0 via the

mapping Φ (equation (2)) based on the BVP of equa-

tions (1a)-(1g). However, as in the in silico EVAR

methodology the stress-free reference configurations of

stent and graft are modified, we additionally define the

mappings ΦPre and ΦPC. ΦPre relates the current con-

figurations to the corresponding stress-free reference

configurations after the stent predeformation has been

applied. ΦPC relates the current configurations to the

corresponding stress-free reference configurations after

the parameter continuation has been applied (Figure

4).

The in silico EVAR methodology is strongly based

on the 3D morphing algorithm presented in section 2.3.

In contrast to section 2.3, now the morphing opera-

tions are applied to stent and graft, i.e. the morphing

operations are applied to physical bodies underlying

the BVP of equations (1a)-(1g). The methodology is

governed by a series of prescribed morphing maps M̃

and m̃. In section 2.3 we have introduced the pseudo-

time t ∈ [tI, tT] which describes the interpolation be-

tween the two known configurations of the control curve

CI and CT (equation (15)). This means the pseudo-

time t describes the deformation of the morphing ob-

ject according to the evolution of the control curve C(t).
From now on, CI is the centerline of the initial config-

uration of the SG Ω
{S,G}
I,0 and CT is the centerline of

the initial, undeformed configuration of the vessel ΩAo
I,0.

Both, CI and CT are described by nC points. Indepen-

dently of the control curve induced deformation of the

morphing object according to the pseudo-time t, we de-

fine a prescribed change in the radius of the morphing

object and a prescribed release of the morphing con-

straints.

A prescribed change in the radius of the morphing

object by the factor ∆r is induced by redefining equa-

tion (12) such that the local radius ri of the morphing

object is given by

ri = riI +∆r, ∀ i = 1, 2, ..., nB, (31)

where riI are the local radii of the morphing object in the

initial state corresponding to the initial configuration CI
of the control curve and nB is the number of nodes

of the morphing object. This prescribed change in the

radius is used in the SG placement substep to apply

radial crimping to the SG such that after morphing

the SG inside the vessel, it will not touch the luminal

vessel surface before contact is turned on. Further, this

prescribed change in the radius of the morphing object

will be used in the substeps: stent predeformation and

SG parameter continuation.

A prescribed release of the morphing constraints is

induced by the redefinition of the morphing sets Aj with

j = 1, 2, ..., nC (equation (9)). If the deformation of a

node of the morphing object is prescribed by the mor-

phing induced deformation or not, depends on whether

this node is part of the total set of morphed nodes

A =

nC⋃
j=1

Aj , (32)

i.e. whether this nodes is assigned to any of the points

of the control curve C (cf. equation (8a)). This means

that by emptying the sets Aj a prescribed release of the

morphing constraints is possible. A prescribed release of

the morphing constraints will be used in the following

substep: SG deployment.

As the three morphing operations, control curve in-

duced deformation, radius change in the morphing ob-

ject and release of the morphing constraints shall be

independent of each other, we define a second pseudo-

time ξ ∈ [0; 1] which defines the progress of the applied

morphing maps M̃(ξ) and m̃(ξ). Hence, t(ξ) defining

the control curve induced deformation, ∆r(ξ) defining

the radius change in the morphing object and Aj(ξ)
defining the release of the morphing constraints are

functions of the pseudo-time ξ, i.e. they depend on the

progress of the applied morphing map.

The change in the reference configuration from

Ω
{S,G}
(Υ ),0

∣∣∣
ξ=0

to Ω
{S,G}
(Υ ),0

∣∣∣
ξ=1

with Υ = {I,Pre,Pl,De,PC} by

a geometrically prescribed morphing process is defined

by the diffeomorphic morphing map

M̃
(
t(ξ),∆r(ξ),Aj(ξ)

)
:

Ω
{S,G}
(Υ ),0

∣∣∣
ξ=0

→ Ω
{S,G}
(Υ ),0

∣∣∣
ξ=1

X
{S,G}
(Υ )

∣∣∣
ξ=0

7→ X
{S,G}
(Υ )

∣∣∣
ξ=1

, (33)

where Ω
{S,G}
(Υ ),0

∣∣∣
ξ=0

, X
{S,G}
(Υ )

∣∣∣
ξ=0
∈Ω
{S,G}
(Υ ),0

∣∣∣
ξ=0

describes the

stress-free reference configuration at the beginning of

the morphing process ((•) |ξ=0), i.e. at ξ = 0. At the end

of the morphing process ((•) |ξ=1), the reference config-

uration is given by Ω
{S,G}
(Υ ),0

∣∣∣
ξ=1

, X
{S,G}
(Υ )

∣∣∣
ξ=1
∈Ω
{S,G}
(Υ ),0

∣∣∣
ξ=1

. In-

between, i.e. for ξ ∈ (0, 1), the reference configuration

is determined by an interpolation between the configu-

rations Ω
{S,G}
(Υ ),0

∣∣∣
ξ=0

and Ω
{S,G}
(Υ ),0

∣∣∣
ξ=1

which is driven by t(ξ),

∆r(ξ) and Aj(ξ).
Analogously, the change in the current configura-

tion from Ω
{S,G}
(Υ )

∣∣∣
ξ=0

to Ω
{S,G}
(Υ )

∣∣∣
ξ=1

by a geometrically

prescribed morphing process is defined by the diffeo-

morphic morphing map

m̃
(
t(ξ),∆r(ξ),Aj(ξ)

)
:

Ω
{S,G}
(Υ )

∣∣∣
ξ=0

→ Ω
{S,G}
(Υ )

∣∣∣
ξ=1

x
{S,G}
(Υ )

∣∣∣
ξ=0

7→ x
{S,G}
(Υ )

∣∣∣
ξ=1

, (34)
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where Ω
{S,G}
(Υ )

∣∣∣
ξ=0

, x
{S,G}
(Υ )

∣∣∣
ξ=0
∈Ω
{S,G}
(Υ )

∣∣∣
ξ=0

describes the cur-

rent configuration at the beginning of the morphing

process ((•) |ξ=0). At the end of the morphing pro-

cess ((•) |ξ=1), the current configuration is determined

by Ω
{S,G}
(Υ )

∣∣∣
ξ=1

, x
{S,G}
(Υ )

∣∣∣
ξ=1
∈Ω
{S,G}
(Υ )

∣∣∣
ξ=1

. In-between, i.e. for

ξ ∈ (0, 1), the current configuration is determined by a

t(ξ)-∆r(ξ)-Aj(ξ)-driven interpolation between the con-

figurations Ω
{S,G}
(Υ )

∣∣∣
ξ=0

and Ω
{S,G}
(Υ )

∣∣∣
ξ=1

. These abstract def-

initions of M̃(ξ) changing a reference configuration and

m̃(ξ) changing a current configuration will be further

specified in the following subsections 2.5.2 to 2.5.5. To

clearly distinguish between a change in the current con-

figuration and a change in the reference configuration,

we denote any morphing map that changes the current

configuration by a small letter m̃ and any morphing

map that changes the reference configuration by a cap-

ital letter M̃ .

The structure of the following subsections is divided

into the single substeps of the in silico EVAR methodol-

ogy: Vessel prestressing, Stent predeformation, SG place-

ment and SG deployment which are visualized in Fig-

ure 5. In section 2.5.5, we introduce a parameter con-

tinuation approach to continuously change the SG di-

ameter starting from the configuration of a deployed

SG. This continuous change in the SG diameter is a

valuable tool when addressing the issue of the optimal

degree of SG oversizing.

2.5.1 Vessel prestressing

In patient-specific modeling the geometry naturally is

reconstructed from in vivo medical imaging such as CT

scans and therefore involves an initial geometric con-

figuration that is not stress-free. In order to initialize

the model to this stressed configuration, we apply a

Modified Update Lagrangian Formulation proposed in

[30] and prestress the vessel to the diastolic pressure

pd = 80 mmHg (Figure 5I).

2.5.2 Stent predeformation

Stents of most marketed SGs are manufactured with a

diameter DS
Pre > D where D is the nominal diameter

of the SG (Figure 5II or cf. [72]). The degree of stent

predeformation
DS

Pre

D depends on the SG type and man-

ufacturer. In our approach, initially the SG geometry is

generated with DS = DG = D (configuration Ω
{S,G}
I,0 ),

i.e. stent diameter DS as well as graft DG are equiva-

lent to the nominal diameter D of the SG. The stent is

attached to the graft by applying mortar based mesh ty-

ing on the common interface Γm = ΓG
l ∩ΓS

ex of stent and

80.0

60.0

40.0

20.0

0.0
SS

S - S

v. Mises Cauchy
stress [kPa]

D
DS

Pre

I II

reference configuration
of the stent ⌦S

Pre,0

after the stent
predeformation

D D

D0

initial configuration CI

of control curve
target configuration CT

of control curve

IIIa

IIIb

IVa IVb

release of morphing
constraints
on ⌦S and ⌦G

Fig. 5 Overview of the four steps of the in silico EVAR
methodology: Vessel prestressing (I), stent predeforma-
tion (II), SG placement (IIIa+IIIb) and SG deployment
(IVa+IVb).
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graft (equation (1e)). Application of the inverse mor-

phing map M̃
−1

Pre changes the reference configuration

of the stent (not the graft!) from ΩS
I,0, XS

I ∈ ΩS
I,0 (Fig-

ure 4III) to ΩS
Pre,0, XS

Pre ∈ ΩS
Pre,0 (Figure 4II) where

M̃
−1

Pre is defined as

M̃
−1

Pre

(
tPre(ξ), ∆rPre(ξ),AjPre(ξ)

)
:

ΩS
I,0

∣∣
ξ=0

→ ΩS
Pre,0

∣∣
ξ=1

XS
I

∣∣∣
ξ=0

7→ XS
Pre

∣∣∣
ξ=1

, (35a)

tPre(ξ) = tI, (35b)

∆rPre(ξ) =
1

2
ξ(DS

Pre −D), (35c)

AjPre(ξ) = AjI , ∀ j = 1, 2, ..., nC. (35d)

Inserting equation (35b) into the linear path interpo-

lation of equation (15) states that at any stage ξ of

the morphing map M̃
−1

Pre, the configuration of the con-

trol curve C is equal to the initial configuration of the

control curve CI. This means no control curve induced

deformation of the morphing object takes place. The

deformation is a pure change in the radius of the ref-

erence configuration of the stent from D/2 to DS
Pre/2

(equations (31) and (35c)) such that after the applica-

tion of the map M̃
−1

Pre the new reference coordinates of

the stent are given by XS
Pre. The reference configura-

tion of the graft remains unchanged during this step,

i.e. XG
Pre = XG

I and ΩG
Pre,0 = ΩG

I,0. All nodes of the

stent are morphed as the morphing sets AjPre are con-

stant and equal to the sets AjI that correspond to the

assignment based on the initial configuration CI of the

control curve (cf. section 2.3.1).

As the morphing map M̃
−1

Pre changes the reference

configuration from ΩS
I,0 to ΩS

Pre,0, this morphing map

also affects the deformation map Φ according to

ΦPre = Φ ◦ M̃Pre. (36)

After application of the morphing map M̃
−1

Pre, i.e. af-

ter application of the stent predeformation, the current

configuration of the SG is related to the reference con-

figuration via the deformation map (Figure 4)

ΦPre(X
{S,G}
Pre ) = x

{S,G}
Pre , (37)

where Ω
{S,G}
Pre , x

{S,G}
Pre ∈ Ω

{S,G}
Pre are the current config-

urations of stent and graft after the stent predeforma-

tion. The change in the reference configuration of the

stent from ΩS
I,0 to ΩS

Pre,0 in combination with the mesh

tying constraint between stent and graft results in resid-

ual strains and stresses within the predeformed SG (cf.

section 3.2.2). This approach for stent predeformation

is valid for all types of SGs, exterior and interior stents

and for all sizes of SGs.

2.5.3 SG placement

The in silico placement is a sequence of two steps (Fig-

ure 5IIIa+b). The first step is a transformation of the

SG from the initial, straight configuration Ω
{S,G}
I onto

the vessel centerline with a reduced SG diameter of

D0 such that the SG entirely fits into the vessel (Fig-

ure 5IIIa). A subsequent re-enlargement of the SG to

the nominal diameter D establishes potential contact

between SG and vessel (Figure 5IIIb) which is mod-

eled by the frictional contact constraints (1f)-(1g) with

a friction coefficient of µ = 0.4 [36,64].

Both steps of the in silico placement are described

by the morphing map m̃Pl which changes the current

configuration of stent and graft from Ω
{S,G}
I ,

x
{S,G}
I ∈ Ω

{S,G}
I (Figure 4III) to Ω

{S,G}
Pl , x

{S,G}
Pl ∈ Ω

{S,G}
Pl

(Figure 4IV) according to

m̃Pl

(
tPl(ξ), ∆rPl(ξ),A

j
Pl(ξ)

)
:

Ω
{S,G}
I

∣∣∣
ξ=0

→ Ω
{S,G}
Pl

∣∣∣
ξ=1

x
{S,G}
I

∣∣∣
ξ=0

7→ x
{S,G}
Pl

∣∣∣
ξ=1

, (38a)

tPl(ξ) =

{
tI + 2ξ(tT − tI), ξ < 1

2

tT, ξ ≥ 1
2

, (38b)

∆rPl(ξ) =

{
−ξ(D −D0), ξ < 1

2

(ξ − 1)(D −D0), ξ ≥ 1
2

, (38c)

AjPl(ξ) = AjI , ∀ j = 1, 2, ..., nC. (38d)

Equation (38b) triggers a control curve induced defor-

mation of the current configuration of the SG from the

initial configuration of the control curve CI (centerline

of the SG configuration Ω
{S,G}
I,0 ) to the target configu-

ration of the control curve CT (centerline of the vessel

configuration ΩAo
I,0) for ξ < 1

2 . For ξ ≥ 1
2 , no further con-

trol curve induced deformation takes place. The config-

uration of the control curve C(t(ξ)) for ξ ≥ 1
2 is equal to

the target configuration CT of the control curve. Equa-

tion (38c) states a change in the radius of stent and

graft from D/2 to D0/2 for ξ < 1
2 and a change in the

radius from D0/2 to D/2 for ξ ≥ 1
2 .

According to equation (38d) all nodes of the SG

are morphed for any ξ ∈ [0; 1]. Hence, during the to-

tal in silico SG placement step, the current configu-

ration of the entire SG is prescribed by the morphing

map m̃Pl(ξ). Therefore, buckling of the SG is prevented
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during the whole placement process. Further, since the

deformation of the entire SG is prescribed, the con-

tact between SG and vessel reduces to a computation-

ally simple Signorini contact problem. Still, the BVP of

equation (1a)-(1g) has to be solved for the vessel ΩAo
0 .

Those aspects make the in silico placement computa-

tionally very efficient and robust.

2.5.4 SG deployment

Before the SG is deployed, we apply the systolic pres-

sure state t̂
Ao

= t̂
G

= −ps · n on (γAo
l,n ∪ γG

l ) with

ps = 130 mmHg and remove the internal vessel pres-

sure on the luminal vessel surface γAo
l,c covered by the

SG, i.e. t̂
Ao

= 0 on γAo
l,c (Figure 1).

During the SG deployment, the morphing constraints

on the SG are gradually removed starting from the

proximal end (Figure 5IVa) by application of the map

m̃De

(
tDe(ξ), ∆rDe(ξ),AjDe(ξ)

)
:

Ω
{S,G}
Pl

∣∣∣
ξ=0

→ Ω
{S,G}
De

∣∣∣
ξ=1

x
{S,G}
Pl

∣∣∣
ξ=0

7→ x
{S,G}
De

∣∣∣
ξ=1

, (39a)

tDe(ξ) = tT, (39b)

∆rDe(ξ) = 0, (39c)

AjDe(ξ) =

{
AjI , ξ < j

nC

∅, ξ ≥ j
nC

, ∀ j = 1, 2, ..., nC, (39d)

where Ω
{S,G}
Pl , x

{S,G}
Pl ∈ Ω

{S,G}
Pl (Figure 4IV) are the

current configurations of stent and graft before

the in silico SG deployment (ξ = 0) and Ω
{S,G}
De ,

x
{S,G}
De ∈ Ω

{S,G}
De (Figure 4V) are the current configu-

rations of stent and graft after the in silico deploy-

ment (ξ = 1). No control curve induced deformation

and no morphing induced change in the radius (equa-

tion (39c)) takes place during the in silico SG deploy-

ment. The configuration of the control curve C(tDe(ξ))

for ξ ∈ [0; 1] is equal to the target configuration CT of

the control curve (equation (39b)).

Equation (39d) induces a gradual release of the mor-

phing constraints from the nodes of the SG by gradual

emptying of the morphing sets AjDe(ξ). Only nodes that

are part of the total morphing set ADe (equation (32))

are prescribed by morphing constraints. As

ADe(ξ = 1) =

nC⋃
j=1

AjDe(ξ = 1) = ∅ (40)

for ξ = 1, in the deployed state all morphing con-

straints are removed. Consequently, the current config-

urations Ω
(Π)
De are related to the corresponding stress-

free reference configurations Ω
(Π)
Pre,0 solely by means of

the deformation map

ΦPre(X
(Π)
Pre ) = (Φ ◦ M̃Pre)(X

(Π)
Pre )

= Φ
(
M̃Pre(X

(Π)
Pre )︸ ︷︷ ︸

=X
(Π)
I

)
= x

(Π)
De (41)

(cf. Figure 4) with Π = {Ao,G,S} based on the BVP

of equation (1a)-(1g). This means that the SG can elas-

tically deform within the elastically deformable vessel.

The final state of SG and vessel after the in silico de-

ployment is visualized in Figure 5IVb.

2.5.5 SG parameter continuation

Correct sizing of the SG is one of the major challenges

in the pre-operative planning phase of EVAR as the

optimal diameter of the SG depends on various factors

such as the shape of the vessel or the physical condi-

tion of the vessel. In classical studies investigating this

issue [69,16], for each considered SG diameter a sepa-

rate in silico EVAR simulation was required. This can

be computationally very expensive if many different SG

diameters are to be studied. Therefore, here we propose

a parameter continuation approach to model different

SG diameters within one simulation.

After the in silico placement and deployment of a

SG with the nominal diameter D, the nominal diame-

ter of the SG can be modified continuously from D to

DG
PC. Hence, all degrees of SG oversizing in the range

[ D
DAo ;

DG
PC

DAo ] can be investigated where DAo is the lumi-

nal diameter of the vessel in the landing zone.

The continuous change in the nominal diameter of

the SG is realized by altering the reference configuration

of the SG from Ω
{S,G}
Pre,0 , X

{S,G}
Pre ∈ Ω

{S,G}
Pre,0 (Figure 4II) to

Ω
{S,G}
PC,0 , X

{S,G}
PC ∈ Ω

{S,G}
PC,0 (Figure 4I) according to the

morphing map

M̃
−1

PC

(
tPC(ξ), ∆rS

PC(ξ), ∆rG
PC(ξ),AjPC

)
:

Ω
{S,G}
Pre,0

∣∣∣
ξ=0

→ Ω
{S,G}
PC,0

∣∣∣
ξ=1

X
{S,G}
Pre

∣∣∣
ξ=0

7→ X
{S,G}
PC

∣∣∣
ξ=1

, (42a)

tPC(ξ) = tI, (42b)

∆rS
PC(ξ) =

1

2
ξ(DS

PC −DS
Pre), (42c)

∆rG
PC(ξ) =

1

2
ξ(DG

PC −D), (42d)

AjPC(ξ) = AjI , ∀ j = 1, 2, ..., nC. (42e)
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The configuration of the control curve C(tPC(ξ)) = CI
does not change during the morphing process (equa-

tion (42b)). The morphing map M̃
−1

PC is a pure change

in the diameter of the stent from DS
Pre to DS

PC (equa-

tion (42c)) and the diameter of the graft from D to

DG
PC (equation (42d)). The diameter DS

PC of the stent

reference configuration ΩS
PC,0 after the parameter con-

tinuation is chosen such that the degree of stent prede-

formation

DS
Pre

D
=
DS

PC

DG
PC

(43)

is kept constant during the entire parameter continua-

tion.

After the change in the nominal diameter of the

SG from D to DG
PC, the relation between the stress-

free reference configuration Ω
{S,G}
PC,0 (Figure 4I) and the

current configuration Ω
{S,G}
PC (Figure 4VI) is determined

by the deformation map ΦPC where

ΦPC = ΦPre ◦ M̃PC = Φ ◦ M̃Pre ◦ M̃PC. (44)

Consequently,

ΦPC(X
(Π)
PC ) = (Φ ◦ M̃Pre ◦ M̃PC)(X

(Π)
PC )

= Φ
(
M̃Pre

( =X
(Π)
Pre︷ ︸︸ ︷

M̃PC(X
(Π)
PC )

)︸ ︷︷ ︸
=X

(Π)
I

)

= x
(Π)
PC (45)

with Π = {Ao,G,S} (cf. Figure 4).

2.6 Discretization and solution technique

change in We apply geometrically nonlinear FEM to

numerically solve the BVP of section 2.2. The stent

is discretized by linear, hexahedral elements with en-

hanced assumed strain (EAS) technology whereas the

graft is meshed by hexahedral solid-shell elements [79]

with EAS and assumed natural strain (ANS) technol-

ogy to reduce locking phenomena. The ILT is meshed

by linear, tetrahedral and pyramid elements. Pyramid

elements are utilized to guarantee conforming meshes

between ILT and the vessel wall which is meshed by

linear, hexahedral elements (Figure 7) with F-bar-based

element technology [19] to circumvent volumetric lock-

ing of the nearly incompressible material behavior of

the vessel.

We apply mortar-based discretization methods [67,

68] for mesh tying and contact interfaces Γm and γG
ex,

respectively. The contact constraint enforcement (equa-

tion (1f) and (1g)) is based on a penalty regularization

which represents a good compromise between accuracy

and efficiency. The penalty parameters are chosen suffi-

ciently large to reduce the penetration of contact bodies

to a minimum.

A parallel iterative GMRES method preconditioned

using algebraic multigrid [38] is utilized to solve the

large system of equations resulting from the lineariza-

tion of the Newton-type solver.

3 Results

3.1 3D morphing example based on RMF

To show the accuracy and robustness of the morph-

ing algorithm based on control curves with RMF, we

morph an exemplary straight tube demonstrator. The

discretized tube demonstrator and its centerline (con-

trol curve CI) are given at pseudo-time t = tI = 0.0.

Using the proposed morphing algorithm, the straight

tube demonstrator is morphed to a highly bend config-

uration at t = tT = 1.0 which is defined by the given

control curve CT at t = tT = 1.0 (Figure 6I). The con-

trol curve CT in the target configuration (t = tT = 1.0)

is arbitrarily orientated in the global coordinate system

to show the general applicability of the morphing algo-

rithm in 3D. The resulting morphing process has to be

smooth in pseudo-time t ∈ [tI; tT] = [0.0; 1.0] and space

s ∈ [0.0; 1.0] where s is the arclength parameter of the

control curve of constant length 1. The deformation of

the tube demonstrator is fully described by morphing

constraints, i.e. the given problem is a pure geometrical

problem and the BVP of section 2.2 does not have to

be solved. The RMF property (equations (7a)-(7c) and

(16a)-(16c)) of the local coordinate frames aligned to

the control curve is investigated in detail as this prop-

erty is essential to obtain a smooth morphing process.

The RMF property in pseudo-time t is visualized

in Figure 6I. Red color markers on the bottom of the

tube at t = 0.0 indicate the direction of the normal

vectors of the locally defined coordinate frames. The

red color markers transform smoothly in time with-

out undesired torsion around the centerline of the tube.

Without specification of the RMF in pseudo-time t

(equations (16a)-(16c)), the tube would arbitrarily ro-

tate around its centerline when transforming in pseudo-

time t.

The RMF property in space is additionally visual-

ized in Figure 6II where the arrows are the normal vec-

tors nj(t) of the local coordinate frames aligned to the

control curve at any pseudo-time t. The normal vectors

nj(t) indicate the orientation of the local coordinate

frames. Due to the RMF property in space s ∈ [0.0; 1.0]
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normal vectors of the locally defined coordinate frames (I); visualization of normal vectors of the locally defined coordinate
frames according to the RMF definition (II); local (III) and accumulated (IV) convergence behavior of the RMF approximation
for refinement of the control curve.

(equations (7a)-(7c)), the orientation of the normal vec-

tor nj(t) varies smoothly along the spatial coordinate s.

Any non-smooth variation of the orientation of the nor-

mal vectors along s would result in an undesirable tor-

sion τ j of the morphing object (equation (6)).

In Figure 6III and 6IV, the convergence behavior of

the suggested RMF approximation according to equa-

tions (7a)-(7c) is investigated for different discretiza-

tions of the control curve discretized by nC points. By

refinement of the control curve (nC → ∞), the local

torsion converges to τ j = 0 (Figure 6III, plotted for

t = 1.0). The configuration CT = C(t = 1.0) of the con-

trol curve consists of five straight segments arbitrar-

ily oriented in space (e.g. in the middle of the tube:

s = [0.47; 0.53]). At these straight segments the RMF

approximation scheme even leads to the exact solution

of τ j = 0 independent of the discretization of the curve

with exception of nC = 40 which discretization is too

coarse to geometrically capture the straight segments.

This property is essential for morphing SGs as SGs in

the undeformed configuration naturally are straight.

Figure 6IV illustrates the convergence behavior of

the accumulated torsion

T =

nC∑
j=1

|τ j | ||C′j || (46)

for different pseudo-time steps t which is a measure of

the total angle of rotation of the normal vectors nj(t)

around curve C. The convergence behavior is of first

order independent of the considered pseudo-time step t.

For t = 1.0 coarse discretizations are not able to capture

the full geometry of the curve as was already discussed

for the local convergence behavior in figure 6III. The
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curve for t = 0.0 is not visible in the logarithmic scale

of figure 6IV as T =0 for the perfectly straight curve.

3.2 In silico EVAR in synthetic AAA geometry

We demonstrate the approach of in silico EVAR with

subsequent parameter continuation at the example of a

tube SG with initial nominal diameter D = 25 mm

(Figure 7II). Furthermore, the mechanical impact of

stent predeformation of 15% with respect to the nomi-

nal diameter of the SG is examined. All other SG spe-

cific dimensions (e.g. thickness of stent wires and shape

of stent limbs) are aligned to typical marketed SGs and

are taken from [21]. The graft is a fabric with very lit-

tle bending stiffness. In [72,20,15] a reduced bending

stiffness of the graft was enforced by reducing the graft

thickness by a factor of 10 and increasing the elastic

modulus by the same factor to retain the membrane

stiffness of the graft. Here, we adopt this approach.

The SG is virtually deployed in a synthetic AAA

geometry with moderate calcification and ILT in the

aneurysm sac (Figure 7I). In this contribution we re-

strict the application of the in silico EVAR methodol-

ogy to synthetic AAA geometries as these geometries

have the advantage that geometrical parameters can

easily be varied. In addition, the influence of certain

parameters such as the SG oversize and the stent pre-

deformation can be investigated more easily than in

patient-specific geometries. In the considered synthetic

AAA geometry, the neck angle of 60◦ is chosen such

that the vessel represents a critical candidate for EVAR.

The instructions for use of the most marketed SGs are

limited to neck angles below 60◦ (e.g. [58]). Five cal-

cification spots with non-constant ccalc-value are ran-

domly placed within the synthetic AAA geometry. The

size of the calcification spots is chosen such that 5%

of the total volume of ILT and vessel wall are covered

by calcifications (Figure 7I). The luminal neck and iliac

diameter of the vessel are 22.5 mm resulting in a reason-

able SG oversizing of approximately 10%. A constant

vessel wall thickness of 1.5 mm is used. The length of

the proximal landing zone generally is limited by the

position of the renal arteries which are not part of the

vessel model. Nevertheless, the length of the proximal

landing zone is assumed to be 20 mm. The length of

the distal landing zone is assumed to be 20 mm as well.

Table 3 summarizes all geometrical parameters of SG

and vessel.

A summary of the discretization of this example is

given in table 4 and visualized in Figure 7.

The in silico EVAR according to the proposed

methodology was performed on 56 cores (Intel Haswell

nodes, SuperMUC, Leibniz Supercomputing Centre).
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Fig. 7 Conforming mesh of a synthetic AAA (I) using a char-
acteristic element length of hAo = 1.0 mm; mesh of the SG
(II) using a characteristic element length of hG = 0.5 mm for
the graft and an adaptive element size with mesh refinement
in the curved parts for the stent. Visualization of the different
constituents of the vessel and distribution of corresponding
material parameters ccalc, cILT and λ.
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Table 3 Geometric parameters of vessel and SG.

Vessel
Luminal diameter proximal/iliac [mm] 22.5
Outer AAA diameter [mm] 48.0
Vessel wall thickness [mm] 1.5
Max thrombus thickness [mm] 12.0
Neck angle [-] 60.0◦

Iliac angle [-] 15.0◦

SG
Nominal diameter D of SG [mm] 25.0
Stent diameter DS

Pre [mm] 28.75
Length of SG [mm] 102.5
Graft thickness [mm] 0.1
Stent wire width/height [mm] 0.33
Stent limb height [mm] 16.0
Number of sinus periods per stent limb [-] 10
Number of stent limbs [-] 5

Table 4 Summary of the number of degrees of freedom.

Stent: 29,700 Vessel wall: 39,312
Graft: 98,784 ILT/calc: 17,676∑

SG: 128,484
∑

vessel: 56,988

The simulation took around 12 h and additional 8 h

for the parameter continuation approach to vary the

degree of SG oversizing from 10% to 30%.

The results of the in silico EVAR for the SG with

10% oversizing are visualized in Figure 8 (left column).

The four slices, which are all orthogonal to the vessel

centerline, are selected such that S1 is a slice through

the proximal landing zone, S2 is a slice in the region of

maximum vessel curvature, S3 is a slice in the region of

maximum AAA diameter and S4 is a slice through the

distal landing zone.

In the proximal region of the vessel with a neck angle

of 60◦ the SG buckles in longitudinal direction. Conse-

quently, the distribution of normal contact traction in

the proximal landing zone is not uniform (Figure 8I).

At the rather straight distal landing zone the distribu-

tion of contact tractions is more uniform. For the case

of 10% SG oversizing no severe radial buckling of the

SG is observed.

An important quantity is the normal passive fixa-

tion force of the SG

F̂ =

∫
γ

||tn|| dA, (47)

which plays a key role in the sealing and prevention

of type I endoleaks and SG migration [72]. We denote

this force as passive fixation force as many SGs have

barbs at the proximal end whose fixation force is de-

noted as active fixation force. tn is the normal contact

traction at the contact interface between SG and lumi-

nal surface of the vessel. The outer surface of the SG

covered by the most proximal stent limb and the outer

surface of the SG covered by the most distal stent limb

in the deformed, current configuration are chosen as in-

tegration areas γ for the computation of the proximal

fixation force F̂prox and the distal fixation force F̂dist,

respectively (Figure 8I)3.

The von Mises Cauchy stresses of the vessel are max-

imal in the SG landing zones (green arrow) with its peak

stresses in the calcified regions (red arrow) (Figure 8II).

Furthermore, the insertion of the SG almost entirely re-

moves the tissue stresses in the aneurysm sac as the SG

with 10% oversizing is not in contact with the vessel in

this region (Figure 8III, slice S3).

In Figure 8III, we consider the vessel maximum prin-

cipal Green-Lagrange strains and the vessel deforma-

tion compared to the vessel configuration without SG

insertion at the same pressure level of ps = 130 mmHg

(gray). In the strongly angulated neck the SG as well as

the surrounding vessel have an elliptical shape (slice S2).

Further, a reduction of the AAA diameter (slice S3) can

be observed as the insertion of the SG fully removes the

arterial pressure from the AAA sac.

3.2.1 Examination of SG oversizing using the

parameter continuation approach

Starting from the deployed configuration of the SG with

10% oversizing, the diameter of the SG is increased to a

SG oversizing of 30% using the parameter continuation

approach. According to equation (43), the ratio of the

diameter change in the stent and the graft is identical

such that the degree of stent predeformation remains

constant during the increase of the SG oversizing. The

change in the degree of SG oversizing from 10% to 30%

leads to the following findings visualized in Figure 8

and 9:

• Passive normal fixation forces increase from 50.4 N

to 77.0 N in the proximal landing zone and from

45.7 N to 76.8 N in the distal landing zone.

• Above 23 % SG oversizing, the normal fixation force

in the proximal landing zone does not further in-

crease.

• Tissue strains and stresses increase almost linearly

with increasing degree of SG oversizing.

• Radial buckling of the SG increases with increasing

degree of SG oversizing (Figure 8III, blue arrows).

As the given problem is nonlinear, the results might

be path-dependent. Especially, the parameter continu-

ation approach has to be validated carefully with re-

spect to this issue. Hence, to show that the use of the

3 The methodology can easily be extended to SG models
with an uncovered stent in the proximal landing zone. How-
ever, such SG designs are not considered here for now.
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Fig. 9 Vessel maximum principal Green-Lagrange strains, vessel von Mises Cauchy stresses as well as SG normal fixation
forces plotted over degree of SG oversizing for the example visualized in Figure 8.

parameter continuation approach for variable SG over-

sizing has a negligible influence on the final deployed

state of the SG, we do the following comparison: we

compare the results of the parameter continuation ap-

proach from 10% to 30% SG oversizing to the results of

the direct approach for a SG oversized by 30% and the

same synthetic AAA geometry as previously described.

By the direct approach, we mean the proposed in silico

EVAR methodology applied to a SG oversized by 30%

(Figure 10).

Qualitatively only slight differences in the buckling

pattern of the graft are visible (blue arrow) and marginal

differences in the resulting stent diameters (Figure 10II).

Quantitatively, we compare the absolute error

e = D̄S
cont − D̄S

dir between the resulting stent diameters

of the two simulations where D̄S
cont and D̄S

dir are the

stent diameters in the deployed state after the param-

eter continuation approach and the direct approach, re-

spectively. This investigation shows an error with

mean ± SD of µe ± σe = 0.02± 0.21 mm.

3.2.2 Examination of stent predeformation

Most marketed SGs consist of stents with a diame-

ter DS
Pre > D where D is the nominal diameter of

the SG. In this section, we show the practicability of

the approach for stent predeformation proposed in sec-

tion 2.5.2. Further, we show the effect of stent prede-

formation on passive fixation forces of the SG, on the

contact tractions between SG and vessel as well as on

internal stress states of stent, graft and vessel.

First, we investigate the influence of stent predefor-

mation on the internal stress states of stent and graft

(Figure 11). In this example, the SG is supported by a

very soft spring embedding on ΓG
ex to circumvent rigid

body movement of the SG in the static analysis. The

stiffness of the spring support is chosen as small as pos-

sible (k = 0.02 kPa/mm) and was proofed to have neg-

ligible effects on the results. Starting from an initial

configuration with stent diameter DS = D and a mesh

tying constraint between the outer stent surface ΓS
ex

and the inner graft surface ΓG
l , we gradually change

the stress-free reference configuration of the stent from

D to DS
Pre = 1.15D by application of the morphing

map M̃
−1

Pre according to equation (35a) (Figure 11I and

11II).

The change in the stress-free reference configuration

of the stent in combination with the mesh tying con-

straint between stent and graft leads to residual strains

and stresses within stent and graft. The maximum von

Mises Cauchy stresses of σS
Mises,max = 360 MPa occur

in the curved regions of the stent. The residual stresses

in the graft after the assembled SG with stent prede-

formation are very local at the regions connected to the

stent.
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Furthermore, in Figure 12 we investigate the influ-

ence of stent predeformation on SG and vessel in the

deployed state for the SG oversized by 10%. The com-

parison of the results of a SG with stent predeformation

(Figure 12Ia+IIa) and the results of a SG without stent

predeformation (Figure 12Ib+IIb) implies the following

findings:

• Increased radial buckling of the graft in the angu-

lated proximal neck in the case without stent pre-

deformation. Only very little radial buckling in the

case with stent predeformation.

• In the proximal landing zone the normal fixation

force is 42% higher in the case with stent prede-

formation (F̂prox = 50.4 N) compared to the SG

without stent predeformation (F̂prox = 35.5 N). In

the distal landing zone the normal fixation force is

9% higher in the case with stent predeformation

(F̂dist = 45.7 N) compared to the SG without stent

predeformation (F̂dist = 42.0 N). (Figure 12I)

• This effect is also reflected in the stress state of

the vessel: Stent predeformation leads up to 80 kPa

higher von Mises Cauchy stresses in the proximal

and distal landing zones. (Figure 12II)

4 Discussion

It was shown that the proposed morphing algorithm

based on control curves with RMF is a robust tool for

in silico EVAR. The in silico EVAR methodology ap-

plied to a synthetic AAA geometry showed increased

tissue strains and stresses in the proximal and distal

landing zones. Wyss et al. [83] already claimed the rel-

evance of the consideration of ILT and calcifications

based on a statistical analysis of 217 patients. The in

silico EVAR also showed distinct variations of local ves-

sel stresses and strains related to the strong variations
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of stiffness of the three vessel constituents ILT, calcifi-

cations and wall. The stiff behavior of calcifications has

an influence on the expansion behavior of the SG in

the landing zones which has to be further investigated

in subsequent investigations. A reduction of the AAA

diameter after the in silico EVAR could be observed

due to the removal of the luminal pressure from the

aneurysm sac. Similar observations, denoted as instan-

taneous change in AAA diameter, were reported e.g. in

[23].

Small qualitative errors emerging from the path-

dependency of the problem can be observed in the mi-

croscopic buckling pattern of the graft. However, the

exact buckling pattern is not a point of interest when

using the proposed methods of in silico EVAR and the

parameter continuation approach for the investigation

of SG oversizing. A reliable statement whether and how

strong the graft radially buckles, which is stated to be

an important indicator of EVAR complications [75,16],

is nevertheless possible. Considering the expansion di-

ameter of the stent, the error using the parameter con-

tinuation approach for SG oversizing was shown to be

negligibly small.

Investigations on the degree of SG oversizing using

the parameter continuation approach showed almost

linearly increasing passive normal fixation forces, ves-

sel stresses and strains with increasing SG oversizing.

However, the fixation forces in the strongly angulated

neck, which are an important indicator of a proper SG

fixation, did not further increase if the SG oversize was

increased above 23%. A possible explanation for this ob-

servation might be the increased radial buckling of the

SG above 23% SG oversizing which has negative effects

on the seal and force transmission between SG and ves-

sel. However, as in this study only one exemplary vessel

and one SG geometry were considered, these results do

not allow for general conclusions. Further investigations

on several vessel and SG geometries as well as compar-

isons to post-operative imaging are required.

It was shown that stent predeformation, whose ma-

jor intention is the reduction of radial buckling of the

graft, has an essential influence on the passive normal

fixation forces of the SG and on vessel stresses. The in-

fluence of stent predeformation is larger in the strongly

angulated proximal neck than in the rather straight dis-

tal landing zone as in the angulated neck the SG is

rather prone to buckle. A linear relation between de-

gree of stent predeformation and stresses in the stent

struts can be observed which corresponds to the linear

behavior between radial compression force and diame-

ter reduction of SGs observed in [72].

5 Limitations

Apart from the model simplifications stated in

section 2.1, this study is affected by five main lim-

itations. First, the in silico EVAR methodology is a

strongly simplified process compared to the real-world

medical intervention. The in silico EVAR methodology

does not model the single steps of the EVAR interven-

tion itself but only aims at giving an approximation of

the final deployed SG configuration under steady-state

conditions.

Second, in this study the vessel wall was modeled

with a constant wall thickness and we did not consider

inter- or intra-patient variability of wall thickness and

material parameters [7].

Third, large uncertainties arise in the frictional con-

tact model and parameters. We modeled friction be-

tween SG and vessel based on Coulomb’s law. A more
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elaborated frictional contact model should incorporate

lubrication between vessel and SG which however can-

not be considered by the proposed purely solid mechan-

ical model.

Another limitation is the negligence of residual sac

pressure after EVAR. In our model we assumed zero

sac pressure after the insertion of the SG. However, in

literature often a reduced but non-zero sac pressure in

the AAA is reported [13,49].

Finally, in this study the application of the in silico

EVAR methodology was restricted to synthetic tube

SGs. In future work the methodology has to be ap-

plied to patient-specific and bifurcated AAA geome-

tries. Also, the accuracy of the methodology has to be

validated using pre- and post-operative patient-specific

data similar to the studies of Auricchio et al. [4] and

Perrin et al. [64].

6 Conclusions

EVAR is a challenging intervention with still non-

negligible complication rates. This raises the need for

better pre-operative planning tools. We have proposed

a methodology for in silico EVAR intervention in AAAs

which enables deeper insight into the mechanical state

of the AAA and the SG after EVAR, such as contact

forces and wall stresses. Special focus was put on ad-

vanced modeling of the vessel constituents ILT, calcifi-

cations, “healthy” vessel wall as well as “aneurysmatic”

vessel wall.

A parameter continuation approach was applied for

the first time to enable an efficient investigation of dif-

ferent degrees of SG oversizing. A novel methodology

to consider stent predeformation was developed and it

was shown that stent predeformation can have major

effects on the mechanical state of SG and vessel after

SG insertion.

In summary, the in silico EVAR methodology pro-

vides a robust and efficient approximation of the con-

figurations of SG and vessel in the deployed state and

hence is a first step towards a medical tool for a better

risk assessment of the EVAR intervention as well as for

a better SG selection and sizing.
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dreau, J.-N. Albertini, and J.-P. Favre. Computational
comparison of the bending behavior of aortic stent-grafts.
Journal of the mechanical behavior of biomedical mate-
rials, 5(1):272–282, 2012.

21. N. Demanget, A. Duprey, P. Badel, L. Orgéas, S. Avril,
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