Deutsches Geodätisches Forschungsinstitut Technische Universität München (DGFI-TUM)

Development of an operational prototype for the determination of the thermospheric density on the basis of a thermosphere-ionosphere coupling model (TIK)

Ganesh Lalgudi Gopalakrishnan¹, Michael Schmidt¹, Florian Seitz¹, Kristin Vielberg², Jürgen Kusche², Klaus Börger³, contact: <u>ganesh.lalgudi-gopalakrishnan@tum.de</u>

Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (IGG), Bonn, ³German Space Situational Awareness Centre (GSSAC), Uedem

1. Introduction

With respect to the determination and propagation of the trajectories of LEO satellites or debris, the thermospheric drag is of particular important deceleration effect at that altitudes in the equation of motion. Today, the calculation of the thermospheric drag is usually carried out by empirical thermosphere models such as the Jacchia-Bowman model (JB2008), the NRLMSISE model or the brag Temperature Model (DTM2013). The project TIK will analyse and apply the relation between the thermosphere and the ionosphere to improve the estimation of both the neutral and the electron density using the inherent coupling. TIK will also introduce the use of data assimilation techniques using physical models which utilize the coupling between the thermosphere and the ionosphere (TI).

Figure 1: The data flow within TIK towards the development of an operational prototype by means of satellite measurements and other models

2. Accelerometer and thermosphere models

- > Goal: representation of the thermospheric density as a function of the ionospheric electron density
- > Accelerometer measurements on-board low-Earth orbit satellites are directly related to the atmospheric drag acting on the satellite
- Calibration the Of data accelerometer improved and of modeling the radiation pressure of the Sun and the Earth or the drag coefficient
- > The empirical thermosphere models provide rather different values during strong solar Coupled T activity. processes have to be considered

Figure 2: Neutral density measured along track of the satellite by accelerometers and comparison with thermosphere model values

3. Electron density modelling – parameterization

- > As shown in Fig. 3 the ionosphere can be split into 5 layers, namely the D, E, F_1 , F_2 layers and the plasmasphere P
- 14 key parameters (altogether 5 peak densities, 4 peak heights and 5 scale height parameters) have to be modelled and estimated from the observations [Liang (2017)].

$$\mathcal{K} = \{N_m^D, h_m^D, H^D, N_m^E, h_m^E, H^E, N_m^{F_1}, h_m^{F_1}, H^{F_1}, H^{F_$$

 \succ We choose **B-Spline series expansion** for each key parameters, e.g. for the F_2 layer peak height parameter $h_m^{F_2}$ as

$$h_m^{F_2}(\varphi,\lambda,t) = \sum_{k_1=0}^{K_{J_1}-1} \sum_{k_2=0}^{K_{J_2}-1} d_{k_1,k_2}^{J_1,J_2}(t) N_1$$

- \succ For each key parameter κ_r a series expansion in terms of 2-D tensor products of the polynomial B-splines $N_{I_1,k_1}^2(\varphi)$ and trigonometric B-splines $T_{I_2,k_2}^2(\lambda)$ with level values J_1, J_2 and shift values k_1, k_2 . The quantities $d_{k_1, k_2}^{J_1, J_2}(t)$ represent the time-dependent B spline coefficients.
- \succ The **B-spline levels** J_1, J_2 can be chosen for each key parameter individually (depending) e.g. on the spatial variability).
- European Geosciences Union (EGU), General Assembly 2018, Vienna, Austria

Figure 3 shows the height dependency of the electron density and neutral density within the thermosphere -ionosphere

In the ionosphere, different layers have to be considered for parameterization. The neutral density profile shows an exponential decay

For the electron density modelling, a multi-layer Chapman profile approach will be used within TIK:

 $N_e(h) = N_e^D(h, N_m^D, h_m^D, H^D) + N_e^E(h, N_m^E, h_m^E, H^E)$ $+N_{e}^{F1}(h, N_{m}^{F1}, h_{m}^{F1}, H^{F1}) + N_{e}^{F2}(h, N_{m}^{F2}, h_{m}^{F2}, H^{F2})$ $+N_e^P(h, N_0^P, H^P)$

Figure 3: Representation of a typical electron density profile and the ionosphere layers along with the neutral density profile in the thermosphere

 $N_m^{F_2}, h_m^{F_2}, H^{F_2}, N_0^P, H^P \}$

 $V_{J_1,k_1}^2(\varphi) T_{J_2,k_2}^2(\lambda)$

4. Data Assimilation – electron density and physics-based model

- the neutral, the ion and the electron density
- density model derived before into the physics-based model
- electron density
- for given conditions of space weather.

Figure 4: Data assimilation approach using the electron density model and the physics-based TI model

Updated quantities

5. Summary of project goals

- the ionosphere and the plasmasphere
- the data from the global electron density model
- **3.** Correlation analysis to relate the thermospheric density to the electron density
- a function of the electron density

Acknowledgements

The underlying project "Development of an operational prototype for the determination of the thermospheric density on the basis of a thermosphere-ionosphere coupling model" with the acronym TIK (original German title "Entwicklung eines operationellen Prototyps zur Bestimmung der thermosphärischen Dichte auf Basis eines Thermosphären-Ionosphären Kopplungsmodells,) to this work is funded by the German Federal Ministry for Economic Affairs and Energy via the German Aerospace Center (DLR) under the research number: FKZ 50LZ1605

References

- splines, Deutsche Geodätische Kommission, Reihe C, 755, München

The initial state vector of the TI system, containing the parameters of interest, namely

Ensemble Kalman filtering will be used for assimilating the high precision electron

Development of a heuristic model of the thermospheric drag as a function of the

Development towards an **operational prototype** of the thermospheric density prediction

Development of a global spatio-temporal model to describe the electron density of

2. Development of a physical assimilation model to compute thermospheric densities using

4. Development of a **heuristic / empirical model** to describe the thermospheric density as

• Liang, Wenjing. PhD Dissertation, A regional physics-motivated electron density model of the ionosphere, 2017 • Limberger, M. 2015. Ionosphere modeling from GPS radio occultation and complementary data based on B-

• Vielberg, K., E. Forootan, J. Kusche, C. Kück, A. Löcher, and K. Börger (2018 – submitted). Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation. Annales Geophysicae.