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Abstract. The Blue Nile Basin is confronted by land degra-
dation problems, insufficient agricultural production, and a
limited number of developed energy sources. Hydrological
models provide useful tools to better understand such com-
plex systems and improve water resources and land man-
agement practices. In this study, SWAT was used to model
the hydrological processes in the upper Blue Nile Basin.
Comparisons between a Climate Forecast System Reanal-
ysis (CFSR) and a conventional ground weather dataset
were done under two sub-basin discretization levels (30 and
87 sub-basins) to create an integrated dataset to improve the
spatial and temporal limitations of both datasets. A SWAT
error index (SEI) was also proposed to compare the reli-
ability of the models under different discretization levels
and weather datasets. This index offers an assessment of
the model quality based on precipitation and evapotranspira-
tion. SEI demonstrates to be a reliable additional and useful
method to measure the level of error of SWAT. The results
showed the discrepancies of using different weather datasets
with different sub-basin discretization levels. Datasets under
30 sub-basins achieved Nash–Sutcliffe coefficient (NS) val-
ues of −0.51, 0.74, and 0.84; p factors of 0.53, 0.66,
and 0.70; and r factors of 1.11, 0.83, and 0.67 for the CFSR,
ground, and integrated datasets, respectively. Meanwhile,
models under 87 sub-basins achieved NS values of −1.54,
0.43, and 0.80; p factors of 0.36, 0.67, and 0.77; r factors

of 0.93, 0.68, and 0.54 for the CFSR, ground, and integrated
datasets, respectively. Based on the obtained statistical re-
sults, the integrated dataset provides a better model of the
upper Blue Nile Basin.

1 Introduction

Water resources in the upper Blue Nile Basin are not be-
ing managed adequately; land use changes, fast population
growth, land erosion, and deforestation are some of the
causes currently affecting the watershed. Therefore, in order
to improve and provide better land use management prac-
tices and mitigate the alarming erosion problems researchers
need to understand the hydrological conditions of the basin.
Physically based, distributed models have provided a very
efficient alternative for watershed researchers for analyzing
the impact of land management practices on soil degradation,
agriculture, water allocation, and chemical yields (Setegn et
al., 2008). Due to its versatility and applicability to complex
watersheds, researchers have identified the Soil and Water
Assessment Tool (SWAT) as one of the most intricate, con-
sistent, and computationally efficient models (Neitsch et al.,
2009; Gassman et al., 2007). Recent studies prove that SWAT
has received international and interdisciplinary acceptance
for modeling large and small watersheds (Malunjkar et al.,
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2015; Me et al., 2015; Rafiei Emam et al., 2016; Wang et
al., 2017). SWAT provides a wide range of parameters to
work with, allowing users to analyze several hydrological
processes. It also has the advantage to have been developed
to analyze the interaction of several hydrological parameters
and the impact of land management practices specifically for
large and complex basins; thus, it is a good model to be ap-
plied in the upper Blue Nile Basin. However, due to the lack
of a unifying theory to accurately model the interaction of the
hydrological processes, complex hydrological models suffer
from overparameterization and high predictive uncertainty
(Sivapalan, 2006). Therefore, it is difficult to simulate the
complex interactions of hydrological processes and weather
conditions of watersheds without uncertainties.

Among all the input parameters, the meteorological data
have the most significant impact on the water balance of a
watershed. However, a common problem to set up hydrolog-
ical models of the upper Blue Nile Basin is related to data
limitations. In developing countries, the distribution of mete-
orological stations is irregular and dispersed (Worqlul et al.,
2014). Other weather data problems are related to measur-
ing gauges; many weather data parameters contain missing
data periods, and in several cases erroneous measurements
are also possible. Thus, many models are often set up based
on limited and incomplete data, which may lead to less re-
liable models. This lack of hydrological and climatic data
has impeded in-depth studies of the hydrology of the up-
per Blue Nile Basin (Tekleab et al., 2011). Several previ-
ous studies have modeled the entirety and also small catch-
ments of the Nile Basin, providing good and meaningful re-
sults (Tibebe and Bewket, 2011; Setegn et al., 2008, 2010;
Swallow et al., 2009; Mulungu and Munishi, 2007). How-
ever, most of the hydrological models are built for the Lake
Tana basin and its sub-basins: Gumara, Ribb, Gilgel Abay,
and Koga (Chebud and Melesse, 2009; Setegn et al., 2008,
2010a, b; Wale, 2008). Dessie et al. (2015) and Kebede et
al. (2006) performed a very detailed daily water balance anal-
ysis and annual water budget for the Lake Tana basin where
the runoff and outflows of ungauged catchments were esti-
mated. Uhlenbrook et al. (2010) performed an analysis of
the hydrological processes and responses of Gilgel Abay and
Koga catchments by applying the HBV model. Other stud-
ies have modeled the entire upper Blue Nile Basin; for in-
stance, Abera et al. (2017) performed a water budget anal-
ysis in the upper Blue Nile Basin where precipitation, out-
flow, and evapotranspiration analyses were done. Betrie et
al. (2011) and Easton et al. (2010) also modeled and cali-
brated the upper Blue Nile Basin using discharge data to es-
timate sediment yield and erodible areas of the basin; values
of the calibrated parameters for flow and sediment were also
shown. Dessie et al. (2014) also performed a runoff and sed-
iment yield analysis in the upper Blue Nile Basin, although
the main analysis was done at the Lake Tana region. Tekleab
et al. (2011) also modeled the upper Blue Nile Basin, where
an interesting water balance analysis was done and monthly

streamflow for several subcatchments was modeled. How-
ever, most of the studies at large scale in the upper Blue Nile
Basin do not provide detailed values for the each of the wa-
ter balance components of the basin. Another important issue
when setting up SWAT models concerns the right number of
sub-basins, because the number of meteorological stations to
be used by SWAT will depend on the number of sub-basins.
For instance, if two stations are located within one sub-basin,
SWAT will choose the station nearest to the center of the sub-
basin; the other station will be disregarded. However, if more
sub-basins are created in a model, and these two stations lie
in different sub-basins, then both stations will be considered
by SWAT, which provides different water balance results.

Therefore, the first objective of this study has been the
comparison of different weather datasets at large scale and
under different sub-basin discretization levels. Two mod-
els were created using different subcatchment discretiza-
tion (30 and 87 sub-basins), hereafter named SWAT30 and
SWAT87, respectively (Fig. 3). The time frame of the mod-
els was from 1990 to 2004, using a 4-year warm-up pe-
riod (1990–1993), a 6-year calibration period (1994–1999),
and a 5-year validation period (2000–2004). This compari-
son provided a better understanding of the effects of differ-
ent sub-basin discretization levels on the total water balance
of a watershed. It also helped to identify the temporal and
spatial constraints of both datasets. Roth and Lemann (2016)
performed a comparison between CFSR and conventional
data in small catchments in the Ethiopian highlands, where
they showed that the CFSR data provided unreliable results.
However, Roth and Lemann (2016) made it clear that the
CFSR data were tested only in very small catchments rang-
ing from 112 to 477 ha and not at large scale, also suggest-
ing that CFSR data should be carefully checked and com-
pared with conventionally measured data of similar climatic
stations. Furthermore, this study proposes an integration of
CFSR and conventional weather data to be used at large
scale in the upper Blue Nile Basin with an area of approx-
imately 199 812 km2. Additionally, the CFSR stations used
in the study were compared with conventionally measured
data. Based on the obtained statistical results, the integration
of these two datasets provides better models and a better rep-
resentation of the magnitudes and distribution of the different
weather variables in the upper Blue Nile Basin.

After a hydrological model has been set up, a critical point
to determine its quality is the water balance. Therefore, in
addition to graphical assessments, other statistical indicators
as the Nash–Sutcliffe coefficient (NS), percent bias (PBIAS),
and ratio of the root mean square error (RMSE) to the stan-
dard deviation of measured data were proposed by Moriasi
et al. (2007). Based on these commonly used statistical indi-
cators, most of the SWAT models provide very good results
for discharge values at the outlet of a basin (van Griensven
et al., 2012). However, the evaluation of the models based on
both evapotranspiration and water balance is not discussed
in detail, and the evapotranspiration behavior of a catchment
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Figure 1. Official sub-basin distribution of the upper Blue Nile Basin.

is usually not presented. Several published documents could
even report unrealistic parameter values (van Griensven et
al., 2012). Therefore, the second objective of this study has
been to propose an index, the SWAT error index (SEI), to
quantify the level of error of a hydrological model. The SEI
uses flexible weighting values for the relative root mean
square error (rRMSE) obtained from measured flow dis-
charge data and satellite evapotranspiration data. SEI proved
to be a useful additional method to develop models that can
provide a better representation of the water balance of a wa-
tershed.

2 Materials and methods

2.1 Study site

The upper Blue Nile Basin, also known as Abay Basin, is
located in the northwestern highlands of Ethiopia, approx-
imately between latitude 7◦40′ and 12◦51′ N, and longitude
34◦25′ and 39◦49′ E, with elevations raging between 483 and
4248 m a.s.l. The total area of the upper Blue Nile Basin is
approximately 199 812 km2, including two sub-basins shared
with the Republic of the Sudan in the northern region. The
climate in the upper Blue Nile Basin fluctuates from humid to
semi-arid and it is mainly dominated by latitude and altitude,
with average temperatures ranging from 13 ◦C in the south-
eastern to 26 ◦C in the southwestern regions. The lowest rain-
fall data detected during the current research period (1990–
2004) correspond to the eastern region for the sub-basins
of Beshilo, North Gojjam, South Gojjam, Welaka, Jemma,
Muger, Guder, and Fincha, where the precipitation drops be-

low 1000 mm yr−1 (Figs. 1 and 4); meanwhile, the highest
precipitation ranges belong to the western region (Didessa,
Wenbera, Anger, Dabus, and Beles), with precipitation above
1900 mm yr−1 (Figs. 1 and 4). The topographic disparity and
variations in altitude of the upper Blue Nile Basin have a
great impact on the weather, soil, and vegetation conditions.
Consequently, rainy seasons are very variable in this water-
shed; for instance, the total discharge peaks at the El Diem
gauging station can reach 7000 m3 s−1 and dry seasons can
go as low as 100 m3 s−1 (Figs. 7 and 8). Soils in the upper
Blue Nile Basin are mainly dominated by 10 types (Fig. 2):
Eutric Nitosols, Eutric Cambisols, Humic Fluvisols, Cam-
bic Arenosols, Chromic Vertisols, Dystric Cambisols, Eutric
Fluvisols, Eutric Regosols, Orthic Acrisols, and Pellic Verti-
sols (FAO, 2015).

2.2 Datasets

A Shuttle Radar Topographic Mission digital elevation
model (SRTM DEM) from the Consultative Group on Inter-
national Agricultural Research – Consortium for Spatial In-
formation (CGIAR-CSI) was used to set up the model. This
DEM has a resolution of 90 m and was used to perform an au-
tomatic watershed delineation of the upper Blue Nile Basin,
where the flow direction, flow accumulation, and stream net-
work were automatically determined by SWAT.

The second input dataset was a land use map, which was
obtained from the GIS portal of the International Livestock
Research Institute (ILRI) and corresponds to the year 2004
(http://data.ilri.org/geoportal/catalog/main/home.page).

The soil map used for these models was developed
by the Food and Agriculture Organization of the United
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Figure 2. FAO/UNESCO soil map of the upper Blue Nile Basin.

Figure 3. Weather and hydrometric gauging stations in the upper Blue Nile Basin under two discretization levels of 30 and 87 sub-basins
(SWAT30 and SWAT87).

Nations (FAO-UNESCO). This world soil map was prepared
by FAO and UNESCO at 1 : 5 000 000 scale (http://www.
fao.org/soils-portal/soil-survey/soil-maps-and-databases/
faounesco-soil-map-of-the-world/en/). The information
provided by this map was used in combination with the Har-
monized World Soil Database v1.2, a database that combines
existing regional and national soil information (http://www.

fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/).

The last input dataset was the meteorological information.
Two weather datasets from different sources were used to
set up the models. The first weather dataset was collected
from the National Meteorology Agency of Ethiopia (NMA).
The data used for these models correspond to 42 stations dis-
tributed in the upper Blue Nile Basin (Fig. 3). However, only
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Figure 4. Spatial annual rainfall variation in the upper Blue Nile Basin using two different data sources: the CFSR dataset (a) and the ground
dataset (b).

15 of these stations are capable of measuring all five param-
eters needed to set up SWAT: rainfall, temperature, relative
humidity, solar radiation, and wind speed. Moreover, few of
these 15 station have complete and continuous data avail-
able for the entire period under study (1990–2004). For in-
stance, the collected data for solar radiation were limited to
2 stations only, wind speed was available for 4 stations, only
maximum temperature was available for 4 stations, relative
humidity was available for 3 stations, and precipitation was
available for all 42 stations. Additionally, the quality of these
observed data is somehow questionable. Many meteorolog-
ical stations are more than 10 years old, and their constant
technical failure due to the lack of continuous expert mainte-
nance also questions the quality of the data. A large part of
the available ground data has been collected from old stations
that could have in many cases malfunctioning, defected, and
outdated devices. The second weather dataset was the Cli-
mate Forecast System Reanalysis (Fig. 3), a dataset that has
been produced by the National Centers for Environmental
Prediction (NCEP) (http://globalweather.tamu.edu/). CFSR
data bring several uncertainties due to their multiple spa-
tial and temporal interpolations (Dile and Srinivasan, 2014).
These data were generated using different assimilation tech-
niques that include satellite radiances, advanced coupled at-
mospheric, oceanic, and land surface modeling components.
The global atmospheric resolution of CFSR data is approxi-
mately 38 km. These atmospheric, oceanic, and land surface
output products are available at a 0.5◦× 0.5◦ latitude and
longitude resolution. Both weather datasets used for these
models correspond to the period 1990–2004.

For the analysis of the quality of the SWAT models,
monthly flow discharge data and evapotranspiration data
were used. The flow discharge data were obtained from the
Ministry of Water, Irrigation and Electricity of Ethiopia and
correspond to the gauging stations at Kessie and El Diem at
the main stream of the upper Blue Nile Basin (Fig. 3). For the

evapotranspiration analysis, data from the MOD16 Global
Terrestrial Evapotranspiration Project (http://www.ntsg.umt.
edu/project/mod16) were obtained. The global evapotran-
spiration data from MOD16 are regular 1 km2 land surface
datasets for the 109.03 million km2 of vegetated area in the
whole world at different time intervals (8 days, monthly, and
annual) from which monthly data generated specifically for
the Nile Basin were used.

2.3 Water balance and evapotranspiration processes in
SWAT

Water balance in watersheds is one of the most important
factors used to determine if a model is good enough for any
particular application. Hence, analyses of the processes in-
volved in the estimation of the water balance of a water-
shed (evapotranspiration, runoff, and groundwater) can pro-
vide more details about the hydrological behavior of a water-
shed and can be used to understand the interaction of main
hydrological processes (Zhang et al., 1999). For the input
data processing and hydrological estimation, SWAT uses two
levels of discretization: sub-basins and hydrologic response
units (HRUs). HRUs are contained in the sub-basins and
are defined based on the land use map, soil map, and slope
classes. HRUs allow the model to reflect differences in evap-
otranspiration and other hydrologic conditions for each crop
and soil type. The water balance in SWAT is calculated for
each HRU using the following formula (Neitsch et al., 2009):

SWt = SW0+

t∑
i=1

(
Rday−Qsurf−Ea−Wseep−Qgw

)
, (1)

where SWt is the final soil water content (mm), SW0 is the
initial soil water content on day i (mm),Rday is the amount of
rainfall on day i (mm), Qsurf is the amount of surface runoff
on day i (mm), Ea is the amount of evapotranspiration on
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day i (mm),Wseep is the amount of water entering the vadose
zone from the soil profile on day i (mm), and Qgw is the
amount of return flow on day i (mm).

SWAT can estimate the evapotranspiration using several
methods, from which the Hargreaves and Penman–Monteith
methods were compared in this study (Figs. 11 and 12). The
Hargreaves method calculates the potential evapotranspira-
tion using minimum and maximum daily temperatures as in-
put data (Hargreaves and Samani, 1982). This method was
chosen as a better option for the upper Blue Nile Basin due
to the data scarcity of the meteorological stations in the basin.
The Hargreaves equation can be used with the sole input of
temperature data, while the Penman–Monteith requires more
data, for instance, wind speed, solar radiation, and relative
humidity. The Hargreaves method has been recommended
for computing potential evaporation in cases when only the
maximum and minimum temperatures are available (Allen et
al., 1998). A study from Tekleab et al. (2011) was also able
to successfully use the Hargreaves equation to calculate the
potential evaporation in the upper Blue Nile Basin. Several
improvements were made to the original equation since 1975
(Hargreaves and Samani, 1982). The final form of the Harg-
reaves equation used in SWAT and published in 1985 (Harg-
reaves and Samani, 1985) is as follows (Neitsch et al., 2009):

λE0 = 0.0023 ·H0 · (Tmax− Tmin)
0.5
·
(
T av+ 17.8

)
, (2)

where λ is the latent heat of vaporization (MJ kg−1), E0 is
the potential evapotranspiration (mm day−1), H0 is the ex-
traterrestrial radiation (MJ m−2 day−1), Tmax and Tmin are the
maximum and minimum air temperature for a given day (◦C),
respectively, and Tav is the mean air temperature for a given
day.

Following the potential evapotranspiration, the actual
evapotranspiration must be calculated. Initially, SWAT cal-
culates the evaporated water intercepted by the canopy; then,
maximum transpiration and soil evaporation are calculated.
Evaporation from canopy is very significant in forested areas
and in several cases can be higher than transpiration. Transpi-
ration for the Hargreaves equation is calculated as (Neitsch
et al., 2009)

Et =
E′0 ·LAI

3.0
, (3)

where Et is the maximum transpiration on a given day
(mm H2O), E′0 is the potential evapotranspiration adjusted
for evaporation of free water in the canopy (mm H2O), and
LAI is the leaf area index.

Evaporation from the soil on a given day is calculated with
following equation (Neitsch et al., 2009):

Es = E
′

0 · covsol, (4)

where Es is the maximum soil evaporation on a given day
(mm H2O), E′0 is the potential evapotranspiration adjusted
for evaporation of free water in the canopy (mm H2O), and
covsol is the soil cover index.

2.4 Weather data processing and integration

If input data are used without the respective analyses, mod-
els will provide less reliable results. Also, even small errors
in temperature or precipitation can result in considerable in-
accuracies and impacts on the model results (Maraun et al.,
2010). Tekleab et al. (2011) and Uhlenbrook et al. (2010)
checked the data quality of streamflow data in the upper
Blue Nile Basin based on comparison graphs and addition-
ally a double mass analysis. In this study, the data quality
and consistency of the time series on monthly basis in terms
of magnitude and spatial distribution of the five input vari-
ables required by SWAT were also analyzed through com-
parison graphs (Figs. 4–6) to determine the deficiencies of
the two datasets (CFSR and ground datasets) and to form an
integrated dataset.

In the first case, the ground dataset was used without alter-
ations to create the SWAT models. This ground dataset ob-
tained from the NMA corresponds to 42 stations in the upper
Blue Nile Basin, where most of the meteorological stations
were located in the eastern part of the watershed (Fig. 3). Ad-
ditionally, the data obtained from these stations had several
months of missing data, leading to temporal uncertainties.

For the second case, the SWAT models were set up using
the CFSR dataset, also without alterations. This dataset is
evenly distributed at 38 km resolution, with over 100 stations
available for the upper Blue Nile Basin, and is temporally
continuous.

However, after performing a quality check through a com-
parison of maps and graphs between the ground and CFSR
datasets (Figs. 4–6), it was noticed that not all the weather
variables from CFSR are reliable. The precipitation distribu-
tion appeared to be underestimated in the eastern region of
the upper Blue Nile Basin and overestimated in the western
region (Fig. 4). The map created from the ground stations
(Fig. 4b) showed a precipitation distribution in the western
region that was the result of SWAT using the precipitation
values from the nearest stations. Two stations in the eastern
part, Alem Ketema and Adet (Figs. 5a, b and 6a, b), showed
the underestimation of the CFSR rainfall at the eastern re-
gion, and Ayehu (Figs. 5c and 6c) showed the overestimation
of the CFSR rainfall in the western region. For this reason,
additional CFSR rainfall stations were not used in the inte-
grated dataset. However, the graphical and statistical com-
parisons of the few available stations for relative humidity,
temperature, and solar radiation showed an acceptable level
of agreement between the ground and CFSR datasets. The
seasonal behavior and magnitudes of the values for these
variables are similar; additionally, the 1 : 1 graphs showed
an acceptable degree of matching (Fig. 6). For instance, the
values for relative humidity for Debre Tabor and Aykel with
both datasets show very similar values (Figs. 5d, e and 6d, e).
The comparisons of maximum temperature for Aykel also
showed a good degree of matching (Figs. 5g and 6g), al-
though for Bahir Dar the results were not very good, showing
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Figure 5. Comparisons between the ground and CFSR weather datasets. Panels (a–c) are average monthly precipitation; (d–f) are average
monthly relative humidity; (g, h) are average monthly maximum temperatures; (i, j) are average monthly solar radiation; and (k, l) are
average monthly wind speed.
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Figure 6. Significance of matching between the ground and CFSR weather datasets. Panels (a–c) are average monthly precipitation; (d–
f) are average monthly relative humidity; (g, h) are average monthly maximum temperatures; (i, j) are average monthly solar radiation; and
(k, l) are average monthly wind speed.
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a slight underestimation (Figs. 5h and 6h). The solar radia-
tion comparison at Bahir Dar (Figs. 5i and 6i) also showed
a good agreement between both datasets, although results at
Debre Tabor (Figs. 5j and 6j) showed slightly different re-
sults. The exception was the wind speed data, which in both
cases at Adet and Ayehu (Figs. 5k, l and 6k, l) were overesti-
mated by the CFSR dataset.

Therefore, these two datasets were integrated to form a
third input dataset for SWAT with the objective of over-
coming their spatial and temporal limitations. Tekleab et
al. (2011) and Uhlenbrook et al. (2010) filled in missing
streamflow data of the upper Blue Nile Basin using regres-
sion analysis, which is also a good approach to fill in missing
meteorological values. However, in this study, the missing
values of the ground dataset refer to complete time series
of a specific station and variable. Thus, to create the inte-
grated dataset, the 42 rainfall stations of the ground dataset
were taken as the basis; this means that the locations of the
weather stations of the final integrated dataset correspond to
the locations of the 42 rainfall stations of the ground dataset.
From there, the missing variables (relative humidity, tem-
perature, and solar radiation values) of those 42 rainfall sta-
tions were completed by using the variables of their nearest
CFSR stations. The integrated dataset has 42 stations where
the data for each variable were combined as follows: the
precipitation is formed by 42 rainfall stations taken entirely
from the ground dataset; the relative humidity is formed by
3 stations from the ground dataset and 39 stations from the
CFSR dataset; the maximum temperature is formed by 4 sta-
tions from the ground dataset and 38 stations from the CFSR
dataset; the values for the minimum temperature were taken
totally from the CFSR dataset; the solar radiation was formed
by 2 stations from the ground dataset and 40 stations from the
CFSR dataset; no wind speed data were used in the models.
However, missing daily values within a variable were com-
pleted by the built-in SWAT weather generator. This inte-
grated dataset contained more data than the ground dataset
and also provided more reliable precipitation values and dis-
tribution than those provided by the CFSR dataset.

2.5 Parameterization for the calibration and validation
of the models

One of the major constrains of hydrological modeling is
the difficulty of the parameterization of different variables
(Hauhs and Lange, 2008). The correct combination of the
values of the parameters influencing the ground water,
runoff, and evapotranspiration processes is a key point in a
model calibration. The characterization of watersheds con-
sidering their most influential variables is a good approach to
determine the predictive capabilities of a model (McDonnell
et al., 2007). Initially, it is recommended to perform calibra-
tions for annual discharge values once acceptable results are
acquired; a calibration based on monthly values can be per-
formed to achieve more detailed results (Neitsch et al., 2009).

During a model calibration, a potential value can be assigned
for each parameter and for each HRU, which would generate
a large number of parameters. However, these values can also
be applied as a global modification to estimate parameters by
multiplying or adding values. Table 2 shows the parameter-
ization applied to the respective regions in the watershed to
calibrate streamflow at Kessie and El Diem, where r stands
for relative values and v for values to be replaced. The same
parameterization was applied to all the models with different
subcatchment delineations and data sources. Land coverage,
soil types, and slope have a great impact on the total water
balance, and a calibration with wrong parameters values will
only produce models with good statistical results but with
less realistic representation of the actual properties of the wa-
tershed. Therefore, the values of the parameters were modi-
fied within the ranges specified by the SWAT input/output
documentation 2012 (Arnold et al., 2012). For instance, the
available water content of the soils was calibrated in such a
way that it did not change the physical properties of the soils.
The curve number 2 (CN2) values were defined within dif-
ferent ranges based on the type of land cover.

2.6 Statistical indices and SWAT quality analyses

2.6.1 Calibration and validation with flow discharge

In the case of hydrological modeling, the limitation of the
data quality and capabilities of the model to represent the
complexity of the hydrological process often constitutes ob-
stacles. Therefore, models must be calibrated, and a statisti-
cal analysis is also required to determine how reliable the re-
sults of the model are prior to their applications (Bastidas et
al., 2002). Since sediment data for the upper Blue Nile Basin
are very limited, the calibration and validation of the mod-
els were done using flow discharge data only. The calibrated
stations were Kessie and El Diem at the mainstream of the
Blue Nile River (Fig. 3). For the automatic calibration, the
Sequential Uncertainty Fitting version 2 (SUFI-2) was used
to efficiently calculate the coefficient of determination (R2)
and NS as likelihood measures, trying to catch the seasonal
dynamics and magnitudes of the measured discharge data.

SUFI-2 is a sequential parameter estimation method that
operates within parameter uncertainty domains (Tanveer et
al., 2016). SUFI-2 performs several iterations, where each it-
eration provides better results than the previous iteration and
reduces the parameters ranges. In SUFI-2, the objective is to
capture most of the observed values within the 95PPU (95 %
prediction uncertainty) range at the same time that thinner
95PPU range is preferable. The 95PPU represents the uncer-
tainty in the model outputs. Therefore, the simulation starts
assuming large and physically meaningful parameter ranges,
so that the measured data fall within the 95PPU and contin-
uously decrease the ranges of the 95PPU and produce better
results. The final 95PPU is the 95 % of the observed data
captured within the final 95PPU band, which are defined by
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the final parameter intervals. Therefore, the best simulation
is the best iteration within the 95PPU, and considering that is
difficult to claim a specific parameter range for a certain wa-
tershed, any solution within the 95PPU should be an accept-
able solution. The fit of simulated results within the 95PPU
is quantified through the p factor and r factor. The p factor
is the percentage of observed data that fall within the 95PPU
and ranges from 0 to 1, while the r factor is the thickness of
the 95PPU band and ranges from 0 to infinity. The quality of
a calibration and the prediction uncertainty are judged based
on how close the p factor is to 1 and how close the r factor
is to 0 (Yang et al., 2007). A p factor of 1 and r factor of 0
represent the measured data. As the number of iterations in-
creases, SUFI-2 continues to reduce the 95PPU thickness and
produces smaller values for the p factor and r factor, trying
to find a better combination of the parameter values. The un-
certainty in SUFI-2 is expressed as a uniform distribution of
parameter ranges, and parameter uncertainties are considered
for any possible source in variables, for instance, model in-
puts, model structure, model parameters, and also measured
data (Abbaspour et al., 2015). The uncertainties in the out-
puts are expressed as the 95PPU. The uncertainty analysis
in SUFI-2 is based on the concept that a single parameter
value generates a single model response, while a parameter
range or propagation of the parameter uncertainty leads to
the 95PPU.

The coefficient of determination (R2) is a measure of how
well the regression line represents the data and gives a mea-
sure of the proportion of the fluctuation of a variable that is
predictable from another variable. The values for this coeffi-
cient denote the strength of the linear relation between Qm
andQs, representing the percentage of the data closest to the
line of best fit. The R2 objective function provided in SWAT-
CUP is as follows:

R2
=

[
n∑
i=1

(
Qm,i −Qm

)(
Qs,i −Qs

)]2

n∑
i=1

(
Qm,i −Qm

)2 n∑
i=1

(
Qs,i −Qs

)2 , (5)

where Q indicates discharge values, “m” and “s” stand for
observed and simulated values, respectively, and i is the
ith measured or simulated data.

NS is widely used as goodness-of-fit indicator that ex-
presses the potential predictive ability of a hydrological
model (Nash and Sutcliffe, 1970). The Nash–Sutcliffe ob-
jective function provided in SWAT-CUP is as follows:

NS= 1−

n∑
i=1
(Qm−Qs)

2
i

n∑
i=1

(
Qm,i −Qm

)2 , (6)

where Q indicates discharge values, “m” and “s” stand for
observed and simulated data, respectively, and the bar stands
for the average values.

2.6.2 Actual evapotranspiration analysis

In addition to the calibration and validation of the SWAT
models with flow discharge, comparisons with evapotranspi-
ration data could also provide more details to quantify the
reliability of hydrological models. Therefore, actual evapo-
transpiration data for the upper Blue Nile Basin were ob-
tained from the MODIS Global Terrestrial Evapotranspira-
tion Project (MOD16). These are global estimated data from
land surface by using satellite remote sensing data. These
data are intended to be used to calculate regional water bal-
ances; hence, they are a very important source of data for
watershed management and hydrological models analyses.
The original MOD16 evapotranspiration (ET) algorithm (Mu
et al., 2007) was based on the Penman–Monteith equation
(Monteith, 1965), while the current MOD16 ET has used the
improved evapotranspiration algorithm (Mu et al., 2011). In
this improved algorithm, the sum of the evaporation from the
wet canopy surface, transpiration from the dry canopy sur-
face, and evapotranspiration from the soil surface constitute
the total daily ET (Mu et al., 2011). The formulae for the total
daily ET(λE) and potential ET (λEPOT) are

λE = λEwet_C+ λEtrans+ λESOIL

λEPOT = λEwet_C+ λEPOT_trans+ λEwet_SOIL+ λESOILPOT , (7)

where λEwet_C is the evaporation from the wet canopy sur-
face, λEtrans is the transpiration from the dry canopy surface
(plant transpiration), λESOIL is the evaporation from the soil
surface, λEPOT_trans is the potential plant transpiration, and
λESOILPOT is the potential soil evapotranspiration.

Previous studies have already shown that the annual ET
values derived from the MOD16 algorithm are lower than
those provided by hydrological models, principally when us-
ing the Hargreaves method. For instance, Ruhoff et al. (2013)
detected an underestimation of 21 % in the evapotranspira-
tion provided by MOD16 in the Rio Grande Basin, Brazil,
where the underestimation was mainly caused by the mis-
classification of the land use. Sun et al. (2007) also iden-
tified certain disadvantages in the MOD16 evapotranspira-
tion. Nevertheless, in this study, the evapotranspiration es-
timations from SWAT were compared with satellite evapo-
transpiration data. This was done only as comparison and not
with the objective of calibrating the models, and also as a test
to understand the performance of the proposed SEI.

Evapotranspiration estimations shown as percentage of
the average annual precipitation are frequently given for the
upper Blue Nile Basin. However, these percentages would
yield totally different amounts depending on the average an-
nual precipitation provided by different weather data sources
and under different sub-basin discretization. Therefore, a
comparison of the actual evapotranspiration data provided
by MOD16 with the values calculated by SWAT under the
Hargreaves and Penman–Monteith equations was done to
show the level of discrepancy between datasets (Figs. 11,
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Table 1. Average annual water balance components in the upper
Blue Nile Basin based on different literature.

Cherie (2013)

Hydrologic Calibration Validation
parameters period period

1976–1982 1992–1995
(mm yr−1) (mm yr−1)

Precipitation 1338 1348
Evapotranspiration 962 960
Revap/shallow aquifer 59 58
Surface runoff 143 151
Return flow 70 38
Transmission losses 9 9

Mengistu and Sorteberg (2012)

Hydrologic Calibration Validation
parameters period period

1991–1996 1997–2000
(mm yr−1) (mm yr−1)

Precipitation 1422 1547
Evapotranspiration 820.9 816
Groundwater in the shallow aquifer 264.8 302
Surface runoff 314.4 410
Transmission losses 11 12
Groundwater recharge 286 327

12, and 14). MOD16 ET data are available only for the pe-
riod 2000–2010; hence, the comparison was done only for
5 years (2000–2004).

2.6.3 SWAT error index

A common problem of hydrological models is the wrong
combination of the values of the calibrated parameters, which
can also lead to good graphical results, and consequently
good statistical values, but wrong water balance values. Con-
sequently, good R2 and NS values do not always denote the
reliability of a model. R2 and NS are common statistical
parameters used to evaluate and compare time series in hy-
drological models (Abbaspour, 2015; De Almeida Bressiani
et al., 2015; Dile and Srinivasan, 2014; Gebremicael et al.,
2013). Additionally, rainfall distribution, parameterization,
and evapotranspiration are also crucial points to be consid-
ered in any hydrological model. Therefore, in this study, after
good calibration and validation values for R2 and NS were
achieved, and after a comparison between the SWAT ET and
MOD16 ET values was done, an index (the SEI) to quantify
the model quality has been introduced. This index is intended
to be used only as an additional indicator to assess the relia-
bility of the SWAT model, where the rRMSE was chosen as
the fitting function.

Several reliable measured flow discharge datasets are
available for rivers, but that is not the case for evapotran-
spiration data. However, satellite evapotranspiration data are

available for most watersheds in the world. Furthermore, the
measured discharge dataset and the satellite estimated evapo-
transpiration dataset do not have the same level of reliability.
Therefore, SEI uses different weighting values (W1 and W2)
to define differences in the level of reliability of the datasets:
0.7 for flow discharge and 0.3 for evapotranspiration. The
proposed equation for SEI is as follows:

SEI=W1


(√

rac
n∑
i=1
(Qoi −Qsi )

2N

)
(Qo max −Qo min)

+W2




√

n∑
i=1

(EToi−ETsi )
2

N


(ETo max −ETo min)


. (8)

The first part of the equation corresponds to the rRMSE of
the values obtained from the discharge data, where Qoi is
the observed discharge data (m3 s−1), Qsi is the simulated
discharge data (m3 s−1), Qo max is the maximum value of
the observed discharge data, and Qo min is the minimum
value of the observed discharge dataset. The second part of
the formula corresponds to the rRMSE achieved from the
evapotranspiration data that were obtained from MOD16,
where EToi is the MOD16 evapotranspiration values, ETsi is
the SWAT-simulated evapotranspiration data, and ETo max
and ETo min are the maximum and minimum values of
the MOD16 evapotranspiration data, respectively. W1 and
W2 are the assigned weighted values for discharge and evap-
otranspiration, respectively.

SEI ranges from 0 to +∞, with 0 corresponding to the
ideal value. When the SEI value of the model is closer
to 0, the model will have a better match with the flow dis-
charge and the evapotranspiration data. Since SEI includes
the rRMSE values for discharge and evapotranspiration data,
a model with good SEI results represents a model with a good
agreement between these two hydrological processes, which
are two important processes influencing the water balance of
a watershed. By analyzing the SEI results, the quality of the
combination of the parameter used for the calibration could
also be evaluated and is less expectable to have a wrong pa-
rameterization. SEI was tested for two cases: the first one in
whole upper Blue Nile Basin and the second in the Ribb sub-
catchment in the Lake Tana region.

3 Results and discussions

3.1 Impact of different subcatchment discretization
levels and rain gauge combinations

After analyzing the different datasets under different dis-
cretization levels, it was detected that the input data and the
parameterization have a critical impact not only on the water
balance but also on the sub-basins’ distribution. The water
balance analysis was done for two calibrated stations, three
datasets, and two different sub-basin distributions. Water bal-
ance results for the upper Blue Nile Basin and also the values
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Figure 7. Calibration and validation of SWAT30 at El Diem. Calibration results achieved R2 and NS values of integrated data: 0.88, 0.84;
ground data: 0.86, 0.74; and CFSR data: 0.94, −0.51, respectively. Validation results achieved R2 and NS values of integrated data: 0.92,
0.91; ground data: 0.96, 0.45; and CFSR data: 0.92, −0.48, respectively.

Figure 8. Calibration and validation of SWAT87 at El Diem. Calibration results achieved R2 and NS values of integrated data: 0.92, 0.80;
ground data: 0.92, 0.43; and CFSR data: 0.96, −1.54, respectively. Validation results achieved R2 and NS of integrated data: 0.94, 0.91;
ground data: 0.95, 0.85; and CFSR data: 0.89, −0.05, respectively.

for the different hydrological processes and models are given
in Table 3; values for these hydrological processes from the
literature are also given in Table 1 (Cherie, 2013; Mengistu
and Sorteberg, 2012). The average annual precipitation in the
upper Blue Nile Basin differs between the literature (Table 1)
and also between dataset sources (Table 3). The uncertainty
of the rainfall in the upper Blue Nile Basin is also notice-
able when models with different sub-basin delineations are
compared and show different values (Table 3, Figs. 7 and 8
for El Diem; Figs. 9 and 10 for Kessie; with SWAT30 and
SWAT87, respectively). With the values provided in Table 2,
it was possible to obtain good statistical values for the cali-
brated models (Table 4).

Figures 7 and 8 show the magnitude and dynamics of the
measured and estimated monthly discharge flow at El Diem.
The integrated dataset provided good statistical values for R2

and NS (Table 4) under both discretization levels. The other
models using the ground and CFSR datasets also showed
good R2 results but very low NS values, with the exception
of SWAT87 with ground data (Table 4, Figs. 7 and 8). Al-
though R2 is always high in all the models, R2 is a coeffi-
cient that measures only the dynamics of a model, meaning
that the models behave with accuracy matching the season-
ality of the rainfalls and dry periods in the upper Blue Nile
Basin. However, NS is probably a more important factor to
be considered, as it can be used to quantitatively describe the
accuracy of model outputs. Calibrations and validations at
Kessie showed good statistical values for the models using
the ground and integrated datasets, achieving good R2 and
NS values (Table 4, Figs. 9 and 10).

SWAT30 under the CFSR dataset provides an average an-
nual precipitation of 1253 mm (Table 3), while SWAT87 av-
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Figure 9. Calibration and validation of SWAT30 at Kessie. Calibration results achieved R2 and NS values of integrated data: 0.74, 0.74;
ground data: 0.74, 0.72; and CFSR data: 0.87, 0.46, respectively. Validations results achieved R2 and NS values of integrated data: 0.76,
0.74; ground data: 0.78, 0.74; and CFSR data: 0.86, 0.49, respectively.

Figure 10. Calibration and validation of SWAT87 at Kessie. Calibration results achieved R2 and NS values of integrated data: 0.77, 0.72;
ground data: 0.77, 0.72; and CFSR data: 0.77, 0.37, respectively. Validations results achieved R2 and NS values of integrated data: 0.78,
0.78; ground data: 0.80, 0.76; and CFSR data: 0.74, 0.37, respectively.

erage annual precipitation increases to 1481 mm. This rain-
fall increase provided by the CFSR dataset is caused by the
number of sub-basins, SWAT87 considered more stations
than SWAT30. However, both average annual precipitation
values compared to the other two datasets and to the litera-
ture (Table 1) are still within acceptable ranges for the up-
per Blue Nile Basin, and it is not the main factor affect-
ing the water balance, but its distribution in the watershed
(Fig. 4). Figures 9 and 10 showed how CFSR data underes-
timate the precipitation in the eastern part of the basin (at
Kessie) compared to those provided by the ground and inte-
grated datasets. Figures 9 and 10 also showed the effect of the
number of sub-basins on the simulated discharge flow. The
flow discharge provided by the CFSR data is slightly higher
in SWAT87 compare to SWAT30, although in both cases
this dataset continues to underestimate the flow discharge

at Kessie. As the precipitation in the watershed changes in
magnitude and distribution, the parameterization for the cali-
bration of the models will be different. Therefore, in order to
meet good R2 and NS for the model with an incorrect precip-
itation distribution (in this case, the CFSR data), the values
of the parameters needed to be modified to unrealistic values.

3.2 Average annual evapotranspiration and the impact
of different data sources and potential
evapotranspiration methods

The evapotranspiration has been another critical factor sub-
ject to analysis in this study. Depending on the weather
dataset, the evapotranspiration values in the upper Blue
Nile Basin varied from 729 mm yr−1 in SWAT30 with the
CFSR dataset up to 932 mm yr−1 in SWAT30 with the in-
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Figure 11. Average monthly evapotranspiration analysis using SWAT87 and the Hargreaves method, with R2 and NS values of the integrated
dataset: 0.63, −2.32; ground dataset: 0.60, −1.32; and CFSR dataset: 0.63, −1.20, respectively, compared to the MOD16 data.

Figure 12. Average monthly evapotranspiration analysis using SWAT87 and the Penman–Monteith method, with R2 and NS values of the
integrated dataset: 0.36, −0.02; ground dataset: 0.34, −0.10; and CFSR dataset: 0.74, 0.03, respectively, compared to the MOD16 data.

tegrated dataset. SWAT models using the ground and inte-
grated datasets and the Hargreaves equation showed accept-
able discharge values and trends compared to those of mea-
sured discharge data (Figs. 7 and 8). However, the mod-
els overestimated the evapotranspiration values compared to
those provided by MOD16 (Fig. 11). Nevertheless, when us-
ing the Penman–Monteith method, the SWAT models us-
ing the ground and integrated datasets provided more simi-
lar evapotranspiration values, and better R2 and NS values
compared to the values given by the MOD16 evapotranspira-
tion data (Fig. 12). The best match with the evapotranspira-
tion values provided by MOD16 is obtained using the CFSR
dataset; this model provided low evapotranspiration values
(Fig. 12) and consequently overestimated the flow discharges
(Figs. 7 and 8). For the second test done in the Ribb subcatch-
ment, the evapotranspiration rates provided by the ground
and CFSR datasets were much better, having relatively good

statistical values compared to those obtained at large scale in
the upper Blue Nile Basin (Figs. 13 and 14).

3.3 SEI evaluation

In the first case, SEI results for the El Diem station (Table 5)
showed that the behavior and capability of SEI to quantify
the level of error of a model through an evaluation of both
flow discharge and evapotranspiration estimations is good.
For instance, values in Table 5 showed that the lower the
value of the discharge data is, the more the value for evap-
otranspiration tends to increase. This is because the flow dis-
charge data are being matched; however, the evapotranspi-
ration increases and tends to overestimate those values pro-
vided by MOD16 ET. If MOD16 ET had a good represen-
tation of the evapotranspiration data of a watershed, then the
rRMSE values for both discharge and evapotranspiration val-
ues should be closer to 0, which could provide better SEI val-
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Figure 13. Flow discharge in the Ribb subcatchment. Calibration with outflow data achieved R2 and NS values of the CFSR dataset: 0.81,
0.75; and ground dataset: 0.85, 0.83, respectively.

Figure 14. Average monthly evapotranspiration in the Ribb subcatchment. Statistical results achieved R2 and NS values of the CFSR dataset:
0.78, 0.47; and ground dataset: 0.59, 0.24, respectively, compared to the MOD16 data.

ues (in the second test done at Ribb subcatchment). However,
SEI showed that the models using the integrated datasets are
more reliable than the other two datasets, achieving SEI val-
ues of 0.29 and 0.27 for SWAT30 and SWAT87, respectively.
It also demonstrated that the CFSR dataset is less accurate,
with an SEI value of 0.4 for both SWAT30 and SWAT87.
In the second test done at the Ribb subcatchment, the cal-
ibration with flow discharge data provided good statistical
results, where the CFSR dataset achieved R2 and NS val-
ues of 0.81 and 0.75, respectively, and the ground dataset
achieved R2 and NS values of 0.85 and 0.83, respectively
(Fig. 13 and Table 6). Unlike the SEI test performed for
the entire upper Blue Nile Basin, the statistical results ob-
tained from the comparison of the evapotranspiration data
in the Ribb subcatchment are significantly better. The CFSR
dataset achieved R2 and NS values of 0.78 and 0.47, respec-
tively, while the ground dataset achieved R2 and NS values
of 0.59 and 0.24, respectively (Fig. 14 and Table 6). SEI

showed better values than those obtained from the first test
done in the whole Blue Nile Basin. The CFSR dataset pro-
vided better R2 and NS values than the ground dataset for the
evapotranspiration analysis; however, the ground dataset per-
formed better during the calibration with outflow data (Ta-
ble 6). The SEI value for both datasets was 0.16, a much
better value that those obtained in the first test (Table 5).
This second test provides a better understanding of how SEI
works; it also proved how using reliable evapotranspiration
data can improve the SEI values.

4 Conclusions

The CFSR dataset and a conventional observed ground
dataset were analyzed in terms of statistical results, water
balance, and precipitation distribution in the upper Blue Nile
Basin. After detecting their limitations and disadvantages, an
integration of both datasets was proposed with the purpose of
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Table 2. Parameterization of the SWAT models using the SUFI-2 algorithm for the period 1990–2004. BSN means applied to the entire basin.

Parameter Description Type of Threshold Fitted Ranges of fitted

change Min Max value absolute values for
the Blue Nile Basin

calibration

CN2 Curve number for r −0.1 0.1 −0.05 60-87
moisture condition 2

SOL_AWC Available water r −2 2 1.7 0.095–0.49
capacity of the soil

ESCO Soil evaporation v 0.01 1 0.01 0.01
compensation factor
HRU

EPCO Plant uptake v 0.01 1 0.01 1
compensation factor
HRU

ESCO Soil evaporation v 0.01 1 0.01 0.01
compensation factor
BSN

EPCO Plant uptake v 0.01 1 0.01 1
compensation factor
BSN

CANMX Maximum canopy v 0 100 100 57
storage

RCHRG_DP Deep aquifer v 0.01 1 0.01 0.01
percolation fraction

Table 3. Water balance analysis in the upper Blue Nile Basin (1990–2004).

Water balance in the Blue Nile Basin (all values in mm yr−1)

Hydrological SWAT30 SWAT87

component CFSR Ground Integrated CFSR Ground Integrated
data data data data data data

Precipitation 1253 1301 1270 1481 1209 1243
Evapotranspiration 729 887 932 848 798 860
Revap/shal. aquifer 27 31 31 27 27 28
Surface runoff 172 167 114 228 166 125
Return flow 274 107 139 307 136 147
Lateral flow 40 50 50 80 73 74
Perc. to deep aquifer 313 199 175 349 168 181
Rechg. deep aquifer 16 10 9 17 8 9

overcoming their uncertainties and limitations. This data in-
tegration method was effectively used in the upper Blue Nile
Basin to create a better SWAT model and can also be applied
in other watersheds where observed data are limited and in-
complete. However, data analyses and tests should always
be performed before performing an integration for other wa-
tersheds. Despite its limitations, the CFSR dataset continues

to be an important source that can be very useful in regions
where conventional measured data are not available.

A comparison of the three datasets under different dis-
cretization levels was also performed. This comparison was
important for obtaining a better understanding of how crucial
the sub-basin discretization process is during a SWAT model
setup. The comparisons showed that the three input datasets,
under models with a different number of sub-basins, yield
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Table 4. Statistical results for the calibrations and validations with outflow data at the El Diem and Kessie gauging stations. Bold values
mean “models with low performance”.

Sub-basins CFSR dataset Ground dataset Integrated dataset

30 87 30 87 30 87

El Diem

Calibration R2 0.94 0.96 0.86 0.92 0.88 0.92
NS –0.51 –1.54 0.74 0.43 0.84 0.80
p factor 0.53 0.36 0.66 0.67 0.70 0.77
r factor 1.11 0.93 0.83 0.68 0.67 0.54

Validation R2 0.92 0.89 0.96 0.95 0.92 0.94
NS –0.48 –0.05 0.45 0.85 0.91 0.91

Kessie

Calibration R2 0.87 0.77 0.74 0.77 0.74 0.77
NS 0.46 0.37 0.72 0.72 0.74 0.72
p factor 0.49 0.57 0.60 0.63 0.60 0.63
r factor 0.61 0.71 0.72 0.59 0.72 0.59

Validation R2 0.86 0.74 0.78 0.80 0.76 0.78
NS 0.49 0.37 0.74 0.76 0.74 0.78

Table 5. SEI results for the upper Blue Nile Basin.

Process Weighting CFSR dataset Ground dataset Integrated dataset

rRMSE Weighted rRMSE Weighted rRMSE Weighted
rRMSE rRMSE rRMSE

SWAT30

Water discharge 0.7 0.33 0.231 0.17 0.119 0.098 0.068
Evapotranspiration 0.3 0.58 0.174 0.70 0.21 0.75 0.225

SWAT error index 0.4 0.33 0.29

SWAT87

Water discharge 0.7 0.37 0.259 0.17 0.119 0.1 0.07
Evapotranspiration 0.3 0.46 0.138 0.58 0.174 0.66 0.198

SWAT error index 0.4 0.29 0.27

Table 6. Statistical results for the Ribb subcatchment in the Lake Tana region of the upper Blue Nile Basin.

Statistical results for the Ribb subcatchment

Process Weighting CFSR dataset Ground dataset

R2 NS rRMSE Weighted R2 NS rRMSE Weighted
rRMSE rRMSE

Water discharge 0.7 0.81 0.75 0.13 0.091 0.85 0.83 0.11 0.077
Evapotranspiration 0.3 0.78 0.47 0.23 0.069 0.59 0.24 0.28 0.084

SWAT error index 0.16 0.16

different results. The number of sub-basins in a SWAT model
will affect the magnitude of the flow discharge and hence the
total water balance of a watershed.

The comparison of the results of SWAT30 demonstrates
that the values for the total annual average precipitation at
El Diem are similar for the three datasets. Nevertheless, only
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the model using the CFSR dataset was not able to achieve
good water balance results under similar parameterization.
The quality of the CFSR rainfall data is not reliable for the
upper Blue Nile Basin, although this case cannot be general-
ized for other watersheds in the world. However, this dataset
needs to be equally verified in other watersheds before it is
used. For the second case, the three datasets were analyzed
in more detail using SWAT87, and although an exact number
of the correct precipitation amounts in the upper Blue Nile
Basin cannot be given, CFSR data showed an overestima-
tion of the rainfall and also a wrong precipitation distribution
compared to the other datasets. Additionally, the model un-
der 87 sub-basins was the model that provided more details
in terms of the number of HRUs and also achieved better
statistical values. Therefore, this study proposes that 87 is a
suitable number of sub-basins for the upper Blue Nile Basin.
SWAT87 is more suitable to perform several types of hydro-
logical analyses and propose watershed management prac-
tices in the Blue Nile Basin.

Furthermore, the SEI has proved to be a useful additional
tool to express the level of error of SWAT models. This index
used the weighted rRMSE of the discharge and evapotranspi-
ration data. SEI was tested in two locations, being the second
case done at the Ribb subcatchment more accurate. Neverthe-
less, further tests and improvements should be done to this in-
dex. SEI also showed that the integrated dataset successfully
achieved better and more reliable results than the ground and
CFSR datasets. The integrated dataset improved the results
of the model, obtaining better R2, NS, and SEI values.

Although further improvements must be made to the meth-
ods proposed in this study, the integration of datasets, the
sub-basin delineation, and the application of the SEI are im-
portant approaches that can be applied in other watersheds
and can significantly help to develop better hydrological
models.
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