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Abstract

This work belongs to the optimization of control methods for power con-
verters and electrical drives. Main contributions are as follows: an analytical
solution of both continuous and discrete optimum control for power convert-
ers and drives is given, focusing on computational efficiency and enhanced
performance; a new DC-link voltage balancing method using the deadbeat
control concept for three-level neutral point clamped converters is proposed,
which is suitable for the control applications using space vector modulation;
a simple and effective neutral-point voltage balancing technique is proposed
within the model predictive control framework for three-level neutral point
clamped converters, which decouples the neutral point voltage balance con-
trol and targets current tracking; a fixed gain filter is proposed to estimate
the position, velocity, and acceleration in angular motion, with computational
efficiency and less tuning effort.

Index Terms—Optimum control, predictive control, fixed gain filter, current
control, power converters, electrical drives.
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Zusammenfassung

Diese Arbeit befasst sich mit der Optimierung von Regelungsverfahren für
Stromrichter und elektrische Antriebe. Die wesentlichen Beiträge der Disser-
tation sind folgende: Eine analytische Betrachtung von kontinuierlichen als
auch diskreten optimalen Regelungen für Stromrichter und Antriebe; dabei
wird trotz deutlich reduzierter Rechenleistung ein verbessertes Regelungsergeb-
nis erzielt. Ein neues Konzept zur Regelung der Zwischenkreismittelpunk-
tspannung für Dreipunkt-NPC-Umrichter wird auf Basis eines Deadbeat-
Algorithmus vorgeschlagen; dieser Ansatz ist für Regelungen mit Raumzeige-
modulation (PWM) geeignet. Weiterhin wird eine einfache und trotzdem
wirkungsvolle Regelung der Zwischenkreismittelpunktspannung nach dem
Konzept der modelprädiktiven Regelung vorgeschlagen. Dieser Ansatz er-
möglicht die Entkopplung von Mittelpunktspannung und Statorströmen.
Ein Filter mit konstanten Parametern wird vorgeschlagen, um die Posi-
tion, die Geschwindigkeit und die Beschleunigung der Rotationsbewegung
abzuschätzen. Dieser Ansatz benötigt weniger Rechenleistung und verringert
somit den Verarbeitungsaufwand.

Index Terms— Optimale Steuerung, prädiktive Regelung, Filter mit kon-
stanter parameter, Aktuelle Kontrolle, Stromrichter, Elektrische Antriebs.
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Chapter 1

Introduction

This chapter gives an introduction to the research area studied in this thesis. Section 1.1
explains the main problems existing in industry that has motivated the research. In
Section 1.2, the main contributions of this thesis are listed and briefly explained. Finally,
Section 1.3 contains an outline of this thesis.

1.1 Research motivation

Industry 4.0 is considered as the next industrial revolution since its first presentation
at the Hannover Messe (HM), 2014. A key part of industry 4.0 is the ability to convert
the electrical energy to mechanical movements where the motion control of industrial
electromechanics systems plays an important role. However, the increasing complexity of
the design makes it difficult for applying in industry. Thus, the requirements of simple,
economical, robustness, and efficient control system have created great enthusiasm to pave
the path towards an optimal refined industry.

The components of motion control of industrial electromechanics systems may be split
into four parts: the electrical drive, the converter, the real-time system, and motion
sensor. Note that, both electrical drive and industry 4.0 require angular motion sensors
for collecting essential position, velocity, and acceleration data. For electrical drives, the
primary concern is the inner loop design of the controller. More precisely, it is the current
tracking problem. For converters, the issue is about how to effectively incorporate the
characteristic of the converter into the control algorithm. For real-time systems, a low
complexity control algorithm is required. For the motion sensor, a simple and effective
filter is required to get the feedback signal for the control algorithm.

Thus, the work presented in this thesis deals with the refinements of control algorithm
in these four aspects according to the standard industrial requirements. Only in this way
it can be incorporated successfully into a product that is acceptable to customers in the
industry and translated into a valuable work.

In the following subsections, the motivations of this work are detailed.
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1.1.1 Computational burden

Due to the flexibility, cost, programmability, and adaptability, the micro-controller unit
(MCU) is popular to implement various types of controllers. In general, the tasks executed
in the MCU are based on interrupt handling to achieve a real-time process. The interrupt
service routine (ISR) is executed each control period. Therefore, the MCU must provide
the computational capability to finish the ISR before next control period. In other words,
due to the limited computational resource, the computation time for solving the control
problem should not exceed the sampling interval. However, the MCU selected in the
industry is limited due to the cost. In such case, we have to decrease the complexity of
the control algorithm in the developments of controller. As an example, considering the
case where model predictive control (MPC) is employed, the optimization problems are
usually solved by the enumeration of the possible vectors. This leads to computational
difficulties as numbers of the vectors increase, in particular for multilevel power converters.
Hence it is important to obtain a control law with minimal complexity.

In this work, the complexity of the control system is reduced by explicitly computing
(compared with using a numerical solver), taking into account only the feasible vectors
(decreasing the enumeration directly), decoupling the control objects (decrease the enu-
meration indirectly), and translating variable calculation into constant calculation. All
these methods are detailed in this work. Therefore, a common character of the presented
methods in this work is the reduction of complexity.

1.1.2 Control algorithm

In control theory, the usual control problem is to find an adequate controller so that the
output of the plant follows a desired control signal (reference), which may be a fixed or
changing value. Generally, there are four means to evaluate the tracking performance in
the conventional controller (e.g. proportional–integral–derivative (PID) controller) design.

• The tracking error.

• The rising time.

• The overshoot.

• The settling time.

The controller should be designed to minimize rising time and settling time while keeping
an acceptable overshoot and tracking error. Following this guide, the trade-off between the
four terms creates great challenges on the control system design. Besides, the controller
should be designed under some constraints. Moreover, it is difficult to involve the four
evaluate functions in the online calculation.

To solve these problems, the model predictive control has been introduced as a highly
successful control method in the process industries. The main reason for this success is
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the inherent ability to handle constraints and evaluate the control performance simul-
taneously. It selects an optimal vector, which is kept for a complete control interval,
from a finite control set. This leads to higher control variable ripples than the classical
modulator based techniques under a similar sampling interval. Increasing the control fre-
quency would be helpful for reducing the ripples. However, this is not compliant with
the requirements of industry. Thus, how to reduce the control variable ripples within
reasonable efforts is one of the problems that should be solved. This thesis will solve
the problem and form a discrete solution of optimum control which adopts half explicitly
computing and half enumeration process.

Additionally, for the algorithms using modulator, linear quadratic regulator (LQR)
control has been introduced as one of solutions that can be used for minimizing the control
objectives. Although the control law is an explicit equation, the explicit equation depends
on a Riccati equation which is normally very difficult to get the explicit solution. Besides,
constraints are not involved in the control law. Thus, how to get an explicit solution
operating on the constraints is eager to be solved. This thesis will form a continuous
solution of optimum control that solves the problem entirely.

1.1.3 Converters

A general problem in the converter is the voltage unbalance of the direct current (DC)-
link capacitors. For the two-level converter, the voltages of the DC-link capacitors can be
balanced by two voltage-sharing resistors. However, the three-level neutral point clamped
(NPC) converters are particularly affected by the neutral-point current. Therefore, only
adopting passive voltage-sharing resistors is not enough to balance the voltages.

To avoid increasing the hardware cost, software-based methods to overcome the neutral-
point unbalance are usually adopted. They can be mainly classified as carrier-based
techniques, which in essence are adjusting the time of the redundant vectors. In this
strategy, a proportional-integral (PI) controller is usually employed to generate the duty
for redundant voltage vectors. Although the results show that the PI-based strategy is
capable of keeping the neutral-point voltage stable, the performance is highly dependent
on the PI gain which is hard to be selected. To overcome this problem, this work proposes
a deadbeat-based method for decreasing the tuning efforts.

Another control scheme is using direct model predictive control (DMPC), which com-
bines the cost function with weighting factors for voltage balance and the cost function for
current tracking together as a new cost function. The drawback of this method is obvious:
it has an assumption that the weighting factor for the voltage balance is properly selected.
However, one cannot assure this condition in most working cases. In fact, in many cases
it may not be possible at all, the component of voltage balance and the component of
current tracking are closely coupled. On the other hand, when this method is used, it
is difficult to ensure one of the control objects to be well achieved while keeping a good
performance of another. this work proposes a decoupled solution to solve the problem
while reducing the enumeration complexity.
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1.1.4 Observer and filter

A good state observer or filter will improve the system robustness. The Kalman filter
(KF) is an optimal observer for linear systems and Gaussian distributions. It does the best
(the feedback gain for the innovations is recalculated at each step) within its capability
to minimize the expected value of the square of the error between the actual system state
and the estimated one. However, it has repeatedly been noted, that one of the difficulties
is its computational burden.

The Luenberger observer (LO) requires less computational time due to the fixed feed-
back gain. The primary challenge in the applications is that the feedback gain design is
heavily dependent on the accuracy of the mathematical model of the plant.

This work proposes a fixed gain filter which combines the advantages of KF and LO.
In the case of study, position, velocity, and acceleration estimates are obtained from a
position measurement only.

1.2 Contributions

The main theoretical contributions of this thesis are on the explicit form of optimum
control for both continuous and discrete solution.

In this work, the conventional MPC problem is extended to the frame of optimum control
with the explicit solution of the proposed problem. Therefore, it is possible to avoid the
complicated calculation of Riccati equation or decrease the complete enumeration of all
possible case into an acceptable complexity.

More specifically, within this work the following aspects have been achieved:

• By using a so-called fixed gain filter, excellent dynamics and accuracy of the posi-
tion, velocity and acceleration estimation in the electrical drives can be achieved.
More importantly, there is only one parameter used to tune the performance of the
proposed observer, which makes it very easy to put into practice.

• A general optimum control for power converters and drives is proposed. both contin-
uous and discrete solutions are derived and unified in the frame of optimum control.
The continuous solution utilizes the averaged continuous-time model of the system
and is capable of dealing with multiple system constraints, showing good perfor-
mance with fewer calculation efforts. This method is similar as the well-known
deadbeat controller. The advantage is that it is capable of dealing with multiple
system constraints while the discrete solution takes the finite set of the power con-
verter switching vectors into consideration and the state transition of the system can
be predicted with a chosen vector. Both methods require fewer calculation efforts
compared to the well-known finite control set model predictive control (FCS-MPC)
method, which makes it very suitable for practical realization.
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• A new DC-link voltage balancing method using the deadbeat control (DBC) con-
cept for three-level NPC converters is proposed and experimentally verified. The
DC-link balancing control algorithm is designed and incorporated into a space vec-
tor modulation (SVM) method, which allows adjusting the neutral point current
continuously.

• A decoupled neutral point voltage balancing method for FCS-MPC is also proposed.

1.3 Outline

The outline of this thesis is as follows.

In Chapter 2, the necessary mathematical background for the remaining parts of the
thesis is reviewed.

The basic theoretical frame is presented in Chapter 3. In this chapter, both continuous
and discrete optimum solution are discussed. The explicit formulation for optimum control
is also given. The performance of the proposed controller is compared with other state of
the art methods.

In Chapter 4, a detailed application for control of the three level converter is presented.
Both SVM based DC-link voltage balance control and DC-link voltage balance control
under MPC scheme are demonstrated and analyzed.

In Chapter 5, the necessary observers used in this thesis are presented. Among them,
the fixed gain Kalman filter is derived, and the stability is proven.

The thesis finishes with some concluding remarks and thoughts on future work in Chap-
ter 6.
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Chapter 2

Background and preliminaries

This chapter introduces the background and mathematical preliminaries. Firstly, the
symbols and abbreviations used in this work are discussed. Then, the mathematical
models of power electronics and drives are recalled. These models include:

• two-level converter,

• three-level neutral point clamped (NPC) converter,

• permanent magnet synchronous motor (PMSM),

• and alternating current induction motor (ACIM).

Moreover, the basic methods to convert an analog system into a digital system are pre-
sented in this chapter. Finally, the classical control schemes of electrical drives are revis-
ited and discussed. These include:

• speed control scheme of indirect field oriented control (IFOC),

• speed control scheme of direct field oriented control (DFOC),

• direct torque flux control (DTFC),

• DTFC with modulator,

• and model predictive control (MPC).

2.1 Nomenclature

In this thesis, the mathematical notation generally follows the guidelines of international
organization for standardization (ISO). Thus, matrices are denoted by a bold capital
letter; Vectors (column) are indicated by boldface lowercase letters. Scalars and scalar
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valued functions are then denoted by non-bolded italic font letters. Some examples are
listed in Table 2.1. The identity matrix and null matrix are written as I, 0, respectively.
However, the dimensions of I and 0 are not stated unless self-evident is impossible. The
superscript > denotes the transpose of a matrix. Thus, the transpose of a matrix A is
denoted by A> and the inverse of a matrix A is A−1.

The notions of positive-definite and positive-semidefinite (or nonnegative- definite) ma-
trices are employed in the derivation of optimum control. For such matrices, A > B
(A ≥ B) means that A−B is positive-definite (positive-semidefinite).

Table 2.1: General principle of symbols

Item Format Example

Scalars Italic font letters x
Vectors Bold lowercase letters x
Matrices Bold capitals X
References Star superscript x∗

The meaning of symbols is usually defined and explained locally. However, a general
meaning of symbols is listed in Appendix A.2. .

In addition to that, international system of units (SI) is used unless units are mentioned
explicitly in a few places.

2.2 Mathematical basics

2.2.1 Coordinate transformation

The coordinate transformation theory is a public knowledge, so the detailed explana-
tion is not going to be discussed. The conversion from the three-phase coordinate system
(abc frame) to an equivalent two-phase orthogonal system (αβ frame) is called Clark
transformation (Tabc) [1]. The geometric interpretation can be found in Figure 2.1. Gen-
erally, the conversion from αβ frame to the rotational coordinate (dq frame) is called Park
transformation (Tαβ) [2, 3]. The geometric interpretation can be found in Figure 2.2.

The vector v can be expressed in abc frame by

v = va · ej0 + vb · ej
2π
3 + vc · ej

4π
3 . (2.1)

The vector v can also be expressed in αβ frame by

v = vα · ej0 + vβ · ej
π
2 = vα + j · vβ. (2.2)
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According to Equation (2.1) and (2.2), the Tabc in a balanced system can be derived
from

[
vα

vβ

]
= Tabc ·



va

vb

vc


 =

2

3

[
1 −1

2
−1

2

0
√
3
2
−
√
3
2

]

va

vb

vc


 . (2.3)

The inverse Clark transformation (T−1abc) can be derived from1



va

vb

vc


 = T−1abc ·

[
vα

vβ

]
=




1 0

−1
2

√
3
2

−1
2
−
√
3
2



[
vα

vβ

]
. (2.4)

In the same way, the vector v can also be expressed in dq frame by

v = vd · ejθ + vq · ej(θ+
π
2 ) = vα + j · vβ (2.5)

Thus, the Tαβ is described by the following equation:
[
vd

vq

]
= Tαβ ·

[
vα

vβ

]
=

[
cos (θ) sin (θ)

− sin (θ) cos (θ)

][
vα

vβ

]
, (2.6)

where θ is the angle between the d-axis and α-axis. The inverse Park transformation
(T−1αβ) can be written as

[
vα

vβ

]
= T−1αβ ·

[
vd

vq

]
=

[
cos (θ) − sin (θ)

sin (θ) cos (θ)

][
vd

vq

]
. (2.7)

Note that all the transformations above are magnitude invariant. This kind of trans-
formation is useful in the normalized systems which will be discussed in Section 2.2.3.

2.2.2 Discretization of analog systems

Many controllers are developed in the continuous-time domain, and they can provide
continuous processing of the feedback signal. They are therefore used for high bandwidth
control systems. Many analytical tools have also been developed for many years which
make it easy to design an analog controller. However, the analog controllers are usually
implemented by hardware. Thus, the analog controllers suffer easily from the component
aging and temperature drifts. On the contrary, digital controllers have many advantages.
They are not easily influenced by component aging and temperature drift while providing
stable performance. Hence, the final controllers should be implemented in digital form.
The methods converting existing continuous-time/analog signal to discrete-time/digital
signal or from s-domain to z-domain are listed in this section.

1This case is derived by adding a third parameter in the framework of the theory of the symmetrical
components.
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a

b

c

α

β

vvβ

vα

va

vb

vc

Figure 2.1: Clark transformation.

α

β

d

q

v

θ

vβ

vα

vq

vd

Figure 2.2: Park transformation.

2.2.2.1 Zero-order hold

The most commonly used technique is Zero-order hold (ZOH) which assumes that the
controlled object is actuated by a ZOH (e.g. digital-to-analog converter (DAC)). The
ZOH describes the effect of converting a discrete-time signal to a continuous-time signal
in such a manner that holding each sample value for one sample interval. The conversion
from s-domain to z-domain can be described by the following equation:

G (z) = Z
(

1− e−sTs
s

G(s)

)
=
(
1− z−1

)
Z
(
G (s)

s

)
, (2.8)

where Ts is the sampling period, G(s) is the transfer function in s-domain.
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Another way is found by substituting

s =
z − 1

Tsz
. (2.9)

2.2.2.2 Pole–zero matching method

This method is also called the matched Z-transform method or the pole–zero mapping.
In this technique, all poles and zeros of the s-plane are directly mapped to z-plane with
the equation:

z = esTs . (2.10)

This method applies only to single-input and single-output (SISO) systems. Especially,
when poles or zeros are located at the origin in s-plane, additional poles or zeros should
be added at z = −1 in z-plane. The continuous and discretized systems have matching
direct current (DC) gains at the critical frequency by choosing an arbitrary gain constant.

2.2.2.3 Bi-linear transform

The bi-linear transform (also known as Tustin or trapezoidal approximation) uses the
relationship

s =
2 z − 2

Ts (z + 1)
. (2.11)

to transform a s-domain function to z-domain which yields the best frequency-domain
match between the continuous-time and discretized systems.

2.2.3 Normalization values

In former times, most micro-controller units (MCUs) are fixed-point arithmetic proces-
sors. So, only a finite amount of word length (i.e. 4, 8, 16 or 32 bit) can be used to
represent the physical signals or some parameters. Therefore, the signals and parameters
have to be scaled according to the word length of the processor. In this process, quantiza-
tion noise due to the small scale factor may cause instability of the system. Additionally,
if large scale factors are chosen, overflow of registers may occur during the calculation.

Working with poorly scaled models can cause a severe loss of accuracy and puzzling
results. To minimize the effects caused by word length, choosing a proper scale factor
is critical. The scale factor should support the full range of the physical signals and
system parameters. The process of selecting appropriate scale factor is called as normal-
ization. For a fixed point arithmetic processor, normalization is essential to achieve the
requirements of accuracy.



12 CHAPTER 2. BACKGROUND AND PRELIMINARIES

One of the ways to avoid normalization is using floating-point number due to the large
dynamic range which is enough for most control systems. Meanwhile, using floating-point
number can release the burden of identifying the dynamic range of the system. Moreover,
the development cost is more significant than the expense of a floating-point arithmetic
processor. Therefore, it seems that it is not necessary anymore to use normalized values
for the implementation of control algorithms. However, using normalization values (per
unit value) has the following advantages:

• A similar apparatus (motors, transformers, generators) will have similar per-unit
impedance and losses expressed on their rating, regardless of their absolute size.

• Per-unit data can be checked rapidly for gross errors.

• Both hand and automatic calculations are simplified.

• It improves numerical stability of automatic calculation methods.

which motivate us still using normalization in a floating-point arithmetic processor.

In this thesis, firstly, the normalized power (Pbase), normalized phase current (Ibase) ,
and normalized phase voltage(Vbase) for the three phase system are defined as follows:

Vbase =

√
2Vrated√

3
, (2.12)

Ibase =
√

2Irated, (2.13)
Pbase = Prated, (2.14)
Fbase = Frated, (2.15)

where Vrated, Irated, Prated, and Frated are the rated voltage of the line-line voltage, rated
current, rated power, and rated frequency, respectively, which can be found on the name-
plate of a motor or other apparatus. Then, the following per-unit system formulas for
electrical systems are derived:

Rbase =
Ubase
Ibase

, (2.16)

ωbase = 2πFbase, (2.17)
θbase = 2π, (2.18)

ωmbase =
ωbase
p

, (2.19)

Lbase =
Rbase

ωbase
, (2.20)

ψbase =
Ubase
ωbase

, (2.21)

Tbase =
Pbase
ωbase
p
2

=
p

2
× Pbase
ωbase

, (2.22)
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H =
1
2
Jω2

m

Pbase
, (2.23)

Jbase =
PbaseH
ωmbase

2

, (2.24)

Bbase =
Tbase
ωmbase

, (2.25)

where Rbase, ωbase, θbase, ωmbase, Lbase, ψbase, Tbase, Jbase, and Bbase are the base value of
resistance, electrical angle velocity, mechanical angle velocity, inductance, flux, torque,
inertia, and friction, respectively. All used physical quantities are given in SI units.

2.3 Converters

2.3.1 Two-level inverter

The topology of a two-level voltage source power converter is shown in Figure 2.3. There
are three legs which are denoted by a, b, c. Each leg has two switches (the upper switch
of the leg x in two level inverter (x ∈ {a, b, c}) (Sx), the lower switch of the leg x in two
level inverter (x ∈ {a, b, c}) (S̄x)) and two diodes. Sx and S̄x are complementary in ideal
states. For describing the behavior of the ideal switches, the switch function of the leg x
(x ∈ {a, b, c}) (sx) is defined as

sx =

{
1 ⇐⇒ Sx = 1 ∧ S̄x = 0

−1 ⇐⇒ Sx = 0 ∧ S̄x = 1
. (2.26)

Without considering the dead time of the switches, the universal set of the switching
state vector (sa, sb, sc)

> for two level converter (U2) has 8 possibilities which is shown
in Figure 2.4, where U2={(0, 0, 0)>, (0, 0, 1)>, (0, 1, 0)>, (0, 1, 1)>, (1, 0, 0)>, (1, 0, 1)>,
(1, 1, 0)>, (1, 1, 1)>}. The converter switching state is denoted by uj ∈ U2 (j ∈ {0, 1...7}).
Additionally, the direction of the phase current of the leg x (x ∈ {a, b, c}) (ix) is defined

from the converter to load.

Therefore, the pole voltage of phase a (vao), the pole voltage of phase b (vbo), and the
pole voltage of phase c (vco) can be defined by the switch function and given as follows:

vao =
vdc
2
sa,

vbo =
vdc
2
sb,

vco =
vdc
2
sc.

(2.27)

To solve the voltage of phase a to neutral point (van), the voltage of phase b to neutral
point (vbn), and the voltage of phase c to neutral point (vcn), consider the following
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equations:

vao = van + vno,

vbo = vbn + vno,

vco = vcn + vno.

(2.28)

Due to the absence of a neutral connection in the load, the phase current of the leg a
(ia), the phase current of the leg b (ib), and the phase current of the leg c (ic) respect

ia + ib + ic = 0. (2.29)

For an arbitrary balanced load, van, vbn, and vcn are constrained by

van + vbn + vcn = 0. (2.30)

By combining Equation (2.28) and (2.30), the voltage between O and N is solved as

vno =
1

3
(vao + vbo + vco) . (2.31)

Thus, van, vbn, and vcn can be modeled as



van

vbn

vcn


 =

1

3




2 −1 −1

−1 2 −1

−1 −1 2






vao

vbo

vco


 =

vdc
6




2 −1 −1

−1 2 −1

−1 −1 2






sa

sb

sc


 . (2.32)

0.5Vdc

0.5Vdc

O

Sa

S̄a

DC+

DC-

va

Sb

S̄b

vb

Sc

S̄c

vc

N

Figure 2.3: Two-level power converter.

α

β

u0(000)u7(111) u1(100)

u2(110)u3(010)

u4(011)

u5(001) u6(101)

Figure 2.4: Permissible voltage vectors.
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Figure 2.5: Topology of the Three phase Three-level NPC.

2.3.2 Three-level neutral point clamped inverter

Figure 2.5 shows a simple three level NPC converter. As can be seen from Figure 2.5 ,
there are three legs in the three level NPC converter. Each leg has six devices which are
the jth switch of the upper leg x in three level inverter (Sxj), the jth switch of the lower
leg x in three level inverter (S̄xj), and two diodes, where x ∈ [a, b, c], j ∈ [0, 1].

To avoid the possible short circuit, the switches Sxj and S̄xj are complementary. To
avoid the inner switches suffering from high voltage, the outer two switches are not allowed
to be in on state at the same time. Therefore, three different phase voltage outputs exist
(hence, it is called three-level). Table 4.1 lists the pole voltage of phase x (x ∈ {a, b, c})
(vxo) under different switch states, accordingly, the switch function of the leg x (x ∈
{a, b, c}) for the three-level NPC is defined as

sx =





1 ≡ P ⇐⇒ (Sx1 = 1 ∧ S̄x1 = 0 ∧ Sx0 = 1 ∧ S̄x0 = 0)

0 ≡ O ⇐⇒ (Sx1 = 0 ∧ S̄x1 = 1 ∧ Sx0 = 1 ∧ S̄x0 = 0)

−1 ≡ N ⇐⇒ (Sx1 = 0 ∧ S̄x1 = 1 ∧ Sx0 = 0 ∧ S̄x0 = 1)

(2.33)

to mathematically describe the switching behavior of such converters.

Thus, the universal set of the switching state vector (sa, sb, sc)
> for three level converter

(U3) has 27 possibilities which is shown in Figure 2.6. U3 can be further divided into four
categories:

1. the set of zero vector for three level converter (U3
z ), where U3

z = {(−1,−1,−1)>,
(0, 0, 0)>, (1, 1, 1)>},

2. the set of small vector for three level converter (U3
s ), where U3

s = {(0,−1,−1)>,
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Figure 2.6: Vectors of the NPC.

Table 2.2: Switch function and pole voltages of a three-level NPC inverter leg x

vxo sx state Sx1 S̄x1 Sx0 S̄x0

vc1 1 P 1 0 1 0
0 0 O 0 1 1 0
vc0 −1 N 0 1 0 1

(−1, 0,−1)>, (−1, 0, 0)>, (0, 0,−1)>, (−1,−1, 0)>, (0,−1, 0)>, (1, 0, 0)>, (0, 1, 0)>,
(0, 1, 1)>, (1, 1, 0)>, (0, 0, 1)>, (1, 0, 1)>},

3. the set of medium vector for three level converter (U3
m), where U3

z = {(−1,−1,−1)>,
(0, 0, 0)>, (1, 1, 1)>},

4. the set of big vector for three level converter (U3
b ), where U3

b = {(1,−1,−1)>,
(1, 1,−1)>, (−1, 1,−1)>, (−1, 1, 1)>, (−1,−1, 1)>, (1,−1, 1)>},

The relationship between these four sets and U3 is U3 = U3
z ∪ U3

s ∪ U3
m ∪ U3

b .

Furthermore, these sets have the following characters:

1. U3
z is redundant, however, it does not cause a neutral point current.

2. U3
s has redundant pairs which is controllable to the neutral point current compared

with U3
m.
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3. U3
s and U3

m will contribute to the neutral point current production (to be explained
in Section 4.1).

4. U3
b is not redundant and it does not cause a neutral point current.

As is shown in Figure 2.6, U3
s and U3

z are redundant. Besides, U3
s can be further divided

into two categories: the set of small vector containing P state (U3
sp) and the set of small

vector containing N state (U3
sn). In the same way, U3

z are further divided into the set of
zero vector containing P state (U3

zp), the set of zero vector containing O state (U3
zo), and

the set of zero vector containing N state (U3
zn).

By using the voltage between O and N in three-level NPC converter (vc0) and the voltage
between P and O in three-level NPC converter (vc1), the pole voltages is described in
Table 2.2. Then, vxo can be rewritten by the following equation

vxo =
1

2
(vc1 + vc0) sx +

1

2
(vc1 − vc0) |sx| . (2.34)

Thus, by combining equations (2.34), (2.30), (2.28), (2.31), van, vbn, and vcn can be
obtained as



van

vbn

vcn


 =

vc1
6




2 −1 −1

−1 2 −1

−1 −1 2






sa+ |sa|
sb+ |sb|
sc+ |sc|




+
vc0
6




2 −1 −1

−1 2 −1

−1 −1 2






sa − |sa|
sb − |sb|
sc − |sc|


 . (2.35)

This model will be used for estimating the candidate voltage in the model predictive
control.

2.4 Induction motor

The induction motors are by far the most popular motor used in industrial drives
due to their good characteristics (i.e. They are rugged, reliable and economical). The
mathematical model of induction motor has been well explained in the past literature [1,4].
For better understanding and analyzing the relationship of flux, current, and torque, a
detailed mathematical model of the induction motor is revisited in this section.

2.4.1 Complex representation of induction motor

An induction machine can be described using a set of complex equations in arbitrary
rotating reference frame as:

vs = Rsis + sψs + jωψs, (2.36a)
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vr = Rrir + sψr + j (ω − ωr)ψr, (2.36b)
ψs = Lsis + Lmir, (2.36c)
ψr = Lrir + Lmis, (2.36d)

where vs is the stator voltage, vr is the rotor voltage, Rs is the stator resistance, Rr is
the rotor resistance, Ls is the stator inductance, Lr is the rotor inductance, Lm is the
mutual inductance, is is the stator current, ir is the rotor current, ψs is the stator flux,
ψr is the rotor flux, s denotes the differential operator to the vector of variables.

The rotor voltage vector vr is equal to zero due to the short-circuit of the rotor winding
when a squirrel-cage motor is applied. ω is the rotating speed of the reference frame. ωr
is the rotor speed. When a αβ frame is used, ω is zero.

2.4.2 State space representation in dq frame

By rearranging Equation 2.36 and after some further calculations, the state space model
of an induction motor can be described as follows:
[

dis
dt
dψr
dt

]
=

[
−RsLr2+RrLm2

σLsLr2
− jω LmRr

σLsL2
r
− j Lmωr

σLsLr
LmRr
Lr

−Rr
Lr
− j (ω − ωr)

][
is

ψr

]
+

[
1
σLs

0

]
vs, (2.37)

where σ = 1− L2
m

LsLr
.

2.4.3 State space representation in αβ frame

Since the reference frame is αβ frame, the rotating speed of the reference frame is zero
which is ω = 0. By substituting ω = 0 to Equation (2.37), the state space model of an
induction motor can be easily obtained as follows:

[
dis
dt
dψr
dt

]
=

[
−L2

mRr+L
2
rRs

σLsL2
r

LmRr
σLsL2

r
− j Lmωr

σLsLr
LmRr
Lr

−Rr
Lr

+ jωr

][
is

ψr

]
+

[
1
σLs

0

]
vs, (2.38)

where σ = 1− L2
m

LsLr
.

2.4.4 Mechanical model

Finally, the electric torque produced by the induction machine can be expressed in
terms of the stator current and stator flux:

Te =
3

2
p=(ψs × is), (2.39)

where p is the pole pair number, Te denotes the electromagnetic torque.
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The mechanical dynamic equation is given by

J
dωm
dt

+Bωm = Te − Tl, (2.40)

where Tl is the load torque, J presents the inertia, B is the friction coefficient. ωm is the
mechanical rotor speed and it is related to the electric rotor speed ω:

ωm =
ω

p
, (2.41)

where p is the number of pole pairs.

Due to the using of the encoder, the exact position of the rotor (θm) can be obtained
easily. The relationship between rotor position and rotor speed is described as:

dθm
dt

= ωm. (2.42)

So far, both the electrical model and mechanical model of the induction motor are pre-
sented.

2.5 Permanent magnet synchronous motor

The principles of operation of induction machines have been simply described in Sec-
tion 2.4. The rotor windings of an induction machine are short-circuited. A certain
amount of slip is required to balance the induced rotor current and the applied load. The
construction of stator windings and stator magnetic circuit of the PMSM is rather similar
to that of the induction machine. However, the rotor is built by a permanent magnet.
The flux generated by the permanent magnet aligns with the rotor.

If the rotor reference frame is aligned with the permanent flux, an ideal model of PMSM
in synchronous reference frame dq is classically modeled by the following equations:

vsd = Rsisd + dψsd
dt
− ωψsq,

vsq = Rsisq + dψsq
dt

+ ωψsd,

ψsd = Ldisd + ψr,

ψsq = Lqisq,

(2.43)

where isd and isq are the d-axis and q-axis stator currents, Rs and Ls are the stator-phase
resistance and inductance, respectively, ωr is the rotor electrical speed, vd and vq are the
stator voltages in the dq reference frame, and ψ is the flux established by the permanent
magnets of the rotor.

The torque equation is

Te =
3

2
p [ψrisq + (Ld − Lq) isdisq] . (2.44)
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Equations (2.43) can be described as state-space model

ẋ = Ax+ Bu+ W, (2.45)

where x =
[
isd isq

]>, u =
[
vsd vsq

]>, A, B, C, W are

A =

[
−Rs
Ld

ωr

−ωr −Rs
Lq

]
B =

[
1
Ld

0

0 1
Lq

]
(2.46)

C =

[
1 0

0 1

]
W =

[
0

−ωr
Ld
ψr

]
. (2.47)

2.6 Classical control techniques

2.6.1 Field oriented control

The field oriented control for alternating current (AC) motor drives are usually re-
ferred to the rotor oriented control which makes it possible to allow the decoupled control
between the electromagnetic torque and the rotor flux. Thus, the AC motor can be con-
trolled like a dc motor that can control the torque and flux independently. Due to the
benefits (i.e. flux and torque current are still decoupled during transient and static con-
ditions) of decoupled control, the field-oriented control is one of the most widely used
control schemes in the industrial field.

To achieve the decoupled control, the direction of the flux must be known. Two kinds
of field oriented control schemes were developed to get the flux direction. The first one
named indirect vector control was proposed by K.Hasse in 1968 [5] by using the slip
relation to instead the flux estimation. The second one named direct vector control was
applied by F. Blaschke in 1971 [6] by using flux sensors or flux observer.

2.6.1.1 Indirect field oriented control

The nature of the so-called IFOC is that the rotating speed of the reference frame is
identical to the rotor flux angular speed ω when using a model of the induction machine in
dq frame described in Equation (2.37). Thus, in fact, this method is not really rotor flux
oriented. However, the reference frame will finally converge to the rotor flux angle due to
the dynamics of the induction motor and the control scheme. The condition for aligning
the rotor flux to the d-axis of the dq rotating reference frame is to make the imaginary
part of the rotor flux be equal to zero. i.e. ψrq = 0 and dψrq

dt
= 0. By substituting the two

conditions to Equation (2.37), the following equations can be obtained:

ωs = ω − ωr =
LmRr

Lrψrd
isq, (2.48)

ψrd =
Lm

Lr
Rr
s+ 1

isd, (2.49)
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Figure 2.7: Speed control scheme of IFOC.

where ωs is the slip speed which is the angular speed of the induced current in the rotor.
The rotor speed (ωr) can get from the encoder. Thus, the angular speed (ω) of the dq
frame can be obtained by adding the slip speed and rotor speed. It is, therefore, the angle
of the dq frame are getting from the integral of ω.

A speed control scheme of IFOC is shown in Figure 2.7.

The position of the dq frame is determined by the integration of the sum of slip and rotor
speed. On the dq frame, a torque current control loop and a flux current loop is applied
to give the voltage command. Additionally, the speed loop is used for determining the
torque current reference while the flux loop is used for giving the flux current command.

2.6.1.2 Direct field oriented control

Another method for obtaining the rotor flux is based on the direct measurement or rotor
flux observer. Thus, it is called DFOC when using such kind of technologies to get the
rotor flux. The cascaded speed control scheme of DFOC is shown in Figure 2.8. Unlike
the IFOC, the position of the dq frame is obtained directly from the flux observer. From
the literature, many kinds of methods can be used as the flux observer, such as Kalman
filter (KF) [7–9], Luenberger observer (LO) [10,11], sliding mode observer (SMO) [12–14],
and adaptive flux observer [15].
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Figure 2.8: Speed control scheme of direct field oriented control.

2.6.2 Direct torque flux control

Another commonly used control scheme for AC drives is the direct torque control (DTC).
It was presented by Isao Takahashi and Toshihiko Noguchi in an IEEJ paper in September
1984 [16] and in an IEEE paper published in 1986 [17]. Additionally, it was also patented
by Manfred Depenbrock in October 1984 [18] and later published in [19].

Different from the field oriented control (FOC) which requires the rotor flux observer,
the DTC requires stator flux observer. Thus, the dq frame and park transformation are
not involved in DTC. All the calculations are done in the αβ frame. To achieve very fast
control response, the torque and flux are controlled by hysteresis controllers which define
the switch control signals directly.

Due to its simplicity and very fast torque and flux control response, it is also widely
used in the applications that requiring high performance.

A speed control scheme of DTC is shown in Figure 2.9.

The effectiveness of DTC, in particular, the fast control dynamics, have been illustrated
by many research efforts. However, every control method has its advantages and disadvan-
tages. Due to the hysteresis controller, switching frequency is unfixed, big noise/vibrations
and big current ripples are observed, which are regarded as some of their drawbacks. For
most cases, control techniques with fast control dynamics but fixed switching frequency
are highly desirable.

Therefore, DTC with modulator [20, 21] was developed to compute the required aver-
age voltage vector and generates responding vector combination during each switching
period. Thus, it is a good alternative candidate who achieves better control dynamics,
less tuning efforts (in comparison with the conventional FOC) and more importantly fixed
switching frequency. Therefore, less noise/vibrations and smaller control variable ripples
are seen compared to the hysteresis based DTC. A speed control scheme of space vector
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modulation (SVM)-based DTC is shown in Figure 2.10.

2.6.3 Model predictive control

The MPC research originated in the early 1960’s with the work of Propoi [22], however,
after that, much of the applications came from the process control in industry. A big leap
in the area of power electronics and electrical drives was started in the 1980’s [23], [24],
due to the fast development of microprocessors. Now, finite control set model predictive
control (FCS-MPC) gains plenty of applications in power drives field which requires no
space vector pulse width modulation (SVPWM) technology. Moreover, MPC is consid-
ered as an effective solution where control constraints and non-linearities [25–27] can be
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included easily into the control law.

By including the non-linearities and constraints of the system, it is possible to choose
an optimal solution from permissible switching states through minimizing a predefined
cost function (i.e., the performance index). In MPC, the actuating variables are selected
as the one that is minimizing the designed cost function in every sampling instant. A
speed control scheme of the model predictive current control and model predictive torque
control for induction motor is shown in Figure 2.11 and Figure 2.12 .
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Chapter 3

Optimum control

In this chapter, a general optimum control for power converters and drives is proposed.
The proposed optimum control will select an optimum voltage vector from the whole
hexagonal plane, leading to the best control performance fulfilling a predefined perfor-
mance index. With the proposed concept, two sub-solutions, i.e., both continuous and
discrete solutions are derived and unified in the frame of optimum control. The contin-
uous solution utilizes the averaged continuous-time model of the system and is capable
of dealing with multiple system constraints, showing good performance with fewer cal-
culation efforts, which is similar to the well-known deadbeat controller, but is capable
of dealing with multiple system constraints. While the discrete solution takes the finite
set of the power converter switching vectors into consideration and the state transition
of the system can be predicted with a chosen vector. The second solution directly selects
the switching position(s), which achieves better steady state performances meanwhile
maintains a fast control dynamics as the well-known finite control set model predictive
control (FCS-MPC) method, Both methods require fewer calculation efforts compared to
the well-known FCS-MPC method, which makes it very suitable for practical realizations.
Finally, as a case of study, the proposed concept is tested at a current controlled 3 kW
surface mounted permanent magnet synchronous motor (SPMSM) drive under different
scenarios. Experimental results validate the effectiveness of both solutions.

3.1 Motivation

Power converters play a key role in the electrical energy conversion system, in particular
as the energy demands keep increasing. Utilization of switching mode power converters
has been seen in many applications, such as motor drives [28,29], active power filters [30],
energy management system [31], renewable energy applications [32,33], etc.. The perfor-
mances of the power converter system highly depend on the design of the control methods,
which motivates the research of effective control strategies. Based on the recent reports,
the mostly used control strategies, which have been proved to be very useful and attrac-
tive, can be divided into two categories, i.e., the linear and nonlinear controller based
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methods [34,35].

One of the most well-known linear control methods is the proportional-integral (PI) con-
troller, which outputs a continuous reference and then decoded by a pulse width modula-
tion (PWM) [36]. Besides, the deadbeat control (DBC) and state feedback control [37,38]
are also popular solutions. General similarity of these methods is that a PWM is re-
quired. With a PWM, advantages of constant switching frequency, well-defined harmonic
spectrum, optimum switching pattern, etc., can be achieved. Also, the compensation of
current error is separated from the voltage modulation which allows for an independent
design process for both the controller and modulator. However, system performances
greatly rely on the fine tuning of the parameters, which can be very tedious. Constraints
and multiple control objectives are difficult to be included. Meanwhile, most of the linear
controllers are designed assuming the system is situated in linear area. Many additional
constraints and nonlinear characters in the real power electronics and drive systems, (e.g.,
the output voltage of the inverter has a hexagonal limitation due to the possible vectors
and the available direct current (DC)-link voltage, the power converter is, in essence, a
switched, discrete plant, etc.), were not taken into account. Therefore, few of the existed
linear controllers can provide an effective solution, in general, to deal with such kinds of
nonlinear problems.

The reported nonlinear control strategies aiming to treat such non-linearities including
hysteresis, sliding mode, direct model predictive control (DMPC) [39–42], etc. Recently,
DMPC has become a highly established research front. By including the non-linearities
and constraints of the system, it is possible to choose an optimal solution from permissi-
ble switching states through minimizing a predefined cost function (i.e., the performance
index). However, although DMPC has a talent for solving the above-mentioned nonlin-
ear problems, it selects an optimal vector from a finite control set which is kept for a
whole control interval. This leads to higher control variable ripples than modulator based
techniques under a similar sampling interval.

Thinking in a deeper view, the control of a power system and drives is, in essence, a
multiple objective optimization problems under system constraints. For such problems,
the optimal control is the most suitable philosophy. Therefore, this work tries to build a
bridge between the classical optimum control theory and power electronic drive control
issues, which make it possible to combine the capability of handling nonlinear problems in
predictive control and the advantages of using PWM in linear control. Instead of selecting
one optimum vector from the basic vectors as the conventional DMPC, the proposed
optimum control will select an optimum vector in the hexagonal plane composed of the
original vectors. Considering whether the solution is continuous or not, the proposed
concept will result in two control variants. The first will lead to a continuous solution
and use a modulator to decode the switching positions for the drive, and it is named
as continuous optimum control (COC) in the following sections. The second solution
takes the finite set of the power converter switching vectors into consideration, which
is named as discontinuous optimum control (DOC) in the following. Additionally, the
relation between COC and deadbeat-like predictive control is clarified. Meanwhile, the
relationship between the DOC and conventional DMPC is investigated as well.
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As a case of study, a SPMSM drive system with current control as the primary tar-
gets, using both the proposed COC and DOC solutions is verified. Performances are
experimentally validated and theoretically interpreted.

3.2 Optimization formulation and solution

The primary purpose of this section is to formulate the general optimum control problem
without constraints and give its solution.

3.2.1 Linear system dynamics

From the modern control theory, a linear system can be described by a set of first-order
differential equations , which may be expressed in the form of state space model

ẋ = A(t)x+ B(t)u(t),

y = C(t)x,
(3.1)

where x is a n-vector, representing the system states; u is a m-vector (m ≤ n) which
represents the inputs of the system; y is a p-vector (p ≤ n) denoting the system outputs;
A(t), B(t) and C(t) are respectively system transition matrices n × n, input matrices
n ×m, output matrices p × n. If the coefficients of A(t), B(t) and C(t) are constants,
the system (3.1) is regarded as time invariant or stationary.

The solution of (3.1) can be described in terms of a matrix function Φ (t, τ) that has
the following properties

Φ̇ (t, τ) = A (t) Φ (t, τ) ,

Φ (τ, τ) = I,
(3.2)

where I is the identity matrix. This matrix function Φ (t, τ) is referred to as the state
transition matrix which is an unique solution to equation (3.2). In general, the transition
matrix has no explicit form, unless the following commutativity property is satisfied

A (t)

∫ t

t0

A (τ)dτ =

∫ t

t0

A (τ)dτA (t) . (3.3)

Then the transition matrix can be and only be written by

Φ (t, t0) = e
∫ t
t0

A(τ)dτA(t)
. (3.4)

It is easy to verify that the solution of system (3.1) is

x (t) = Φ (t, t0)x0 +

∫ t

t0

Φ (t, τ) [B (τ)u (τ)] dτ , (3.5)

where x0 = x (t0).
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3.2.2 Principle problem

Define the principle problem as follows: Consider the system (3.1), given the measurable
values y, an optimization problem is seeking an optimal control input variable u such that

V = min J (x,u, t) , (3.6)

where J (x,u, t) is performance index (or cost functional) which is usually defined as

J = Jf + Je + Ju, (3.7)

where Jf represents final error which is defined as

Jf =
1

2
e> (tf ) Le (tf ) , (3.8)

where tf is the final time of the optimization window, L is a positive definite symmetric
matrix (i.e., L> = L > 0). e is defined as the error vector satisfies e = y∗ − y, and y∗
is the ideal output or desired output, Je represents the tracking error, i.e., the difference
between the desired states and real ones. It is defined as

Je =
1

2

∫ tf

t0

e>Qedt, (3.9)

where Q is a positive semi-definite symmetric matrix (i.e., Q> = Q ≥ 0). Ju represents
the energy cost. The desired final state will be attained with minimum effort. It is defined
as

Ju =
1

2

∫ tf

t0

u>Rudt, (3.10)

where R is a positive semi-definite symmetric matrix (i.e, R> = R ≥ 0).

3.2.3 Solution of the principle problem

According to the Pontryagin’s Maximum Principle [43], the optimum control law can
be derived as

u∗ = −R−1B>P(t)x, (3.11)

where P(t) is given by solving the continuous time Riccati differential equation:

Ṗ(t) = −P(t)A−A>P(t) + P(t)BR−1B>P(t)−Q, (3.12)

where P(t) is time-variant. For a finite horizon problem, P(t) satisfies P(tf ) = L.

This solution is one of the modern control system design techniques that called linear
quadratic regulator (LQR).

In a very few special cases, the solution to the problem 3.12 can be solved analytically,
Unfortunately, in almost all cases, problems that can be solved analytically have no real
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physical meaning. So, usually, the problem has to be solved by an iterative algorithm.
This will dramatically increase the calculation time.

Usually, the Riccati equation can be solved offline. However, what we are targeting to,
are:

1. To include the system parameter variation into the optimal control law, due to the
matter of fact, parameters involved in the controller are highly time-varying, and
the variations of the parameters will affect the control performances. Therefore,
an online parameter estimation solution shall be ultimately included in the con-
trol methods, which requires (definitely) online calculations of the required system
matrices;

2. To control multiple machines with big ranges of parameter values, are one of our
targets and if of great necessity in reality. For instance, in a rubber-tired cranes
used for moving integrated container, multiple motors are used for both horizon-
tal/vertical and other movements. However, these motors share the same drive due
to cost. Thus, the drive should have the capability to control motors with entirely
different parameters.

Based on the above consideration, solving the Riccati equations offline (e.g., via matrix
laboratory (MATLAB), etc.) is not proper. Therefore, the control law should be solved
online (i.e., through the real-time controller). However, real-time systems used for the
motor control have only a few hundred megahertz (MHz) clock frequency (e.g., in our
system, the clock frequency is 168 MHz). Meanwhile, taking the optimization problem of
multiple objectives under multiple system constraints into account, the traditional control
law (3.11) is computationally not possible.

To cope with this, we newly developed the control law with simplified solutions in
Section 3.3 and Section 3.4. The intermediate expression ((3.18), (3.21), (3.23)) in the
derivation of our simplified solutions can be directly used to calculate the partial derivative
of J , which saves computational time.

3.3 Continuous-control solution of optimum control

Using modulation techniques like PWM, the inverter can be approximated as a linear
system. Therefore, the control variable u can be an arbitrary vector in the hexagonal
plane composed of the eight basic vectors. This section will discuss the situation when
control variable is continuous. Certainly, the solution without constraints can be solved
by the existing continuous-time LQR or discrete-time LQR [44]. Taking the aspects
mentioned in section 3.2.3 into consideration, we newly developed a simplified solution
with constraints, which are detailed as follows.
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3.3.1 Solution of the state transition

To reuse the existing modulation algorithm, the average model of the u should be used.
The optimization window will be selected as Ts, which is the switching period. At the
initial time t0 = 0, the state variable is x0. If a constant input (usually, for a power
converter this assumption holds) u is employed on system (3.1), according to equation
(3.5), the state transition equation from initial time to time t is

x (t) = eAtx0 +

∫ t

0

eA(t−τ)Budτ. (3.13)

Within a small interval [0, T ], thus eAt ≈ I + At ,
∫ t
0
eA(t−τ)dτ ≈ It, Equation (3.13) is

simplified as
x (t) = (I + At)x0 + But. (3.14)

So, the error vector can be calculated as

e (t) = C (x∗ − x) = C [x∗ − (I + At)x0 −But] . (3.15)

3.3.2 Solution of continuous optimum control

By defining two matrices as follows:

Jf0 = Cx∗ −C(I + ATs)x0,

Jf1 = −CBTs,
(3.16)

Equation (3.8) can be rewritten to:

Jf =
1

2
(Jf1u+ Jf0)

>L (Jf1u+ Jf0) . (3.17)

Taking partial derivative of Jf with respect to u gives:

∂Jf
∂u

= J>f1L (Jf1u+ Jf0) . (3.18)

By introducing three matrices as follows:

Je0 = Cx∗ −Cx0,

Je1 = −CAx0,

Je2 = −CB,

(3.19)

Then, with the introduced (3.19), Je can be rewritten to:

1

2

∫ Ts

0

(Je0 + Je1t+ Je2ut)
>Q (Je0 + Je1t+ Je2ut)dt. (3.20)

Taking partial derivative of Je with respect to u gives:

∂Je
∂u

=
1

2
J>e2QJe0T

2
s +

T 3
s

3
J>e2Q (Je1 + Je2u) . (3.21)
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Additionally, because of control variable u is constant in the optimize window, Ju has the
following simple form

Ju =
1

2
u>RuTs. (3.22)

Taking partial derivative of Ju with respect to u gives:

∂Ju
∂u

= RuTs. (3.23)

Therefore, the three parts of performance index are all functions with respect to u. Ac-
cording to extremal principle, J achieves extremal when

∂J

∂u
=
∂Jf
∂u

+
∂Je
∂u

+
∂Ju
∂u

= 0. (3.24)

The sufficient condition for minimization J is that J is convex. Thereby, J should satisfy

∂2J

∂u2
= J>f1LJf1 +

1

2
J>e2QJe2T

2
s + R > 0. (3.25)

Since L is a positive definite symmetric matrix, Q and R are positive semi-definite sym-
metric matrix. Equation (3.25) indeed holds, the solution of continuous optimum control
is thereby obtained from equation (3.24):

u = −M−1N, (3.26)

where M and N are expressed as

M = J>f1LJf1 +
1

3
J>e2QJe2T

3
s + RTs, (3.27)

N = J>f1LJf0 +
1

3
J>e2QJe1T

3
s +

1

2
J>e2QJe0Ts. (3.28)

So far the continuous solution without constraints is presented.

3.3.3 Continuous optimum control within constraints

In a real system, the control variables usually have some constraints. Taking the two-
level converter for example, the output voltage is subjected to constraints on its magni-
tude. The output voltage vector can not exceed the hexagon. This will lead to that the
obtained final states are restricted.

Generally, defining the constraints as

ϕ (u) = 0, (3.29)

where ϕ is a q-vector functions explicitly depends on u. It describes the constraints for
the control variable u. In order to solve the extremal of J , a co-vector function Lagrange
multipliers is introduced as

λ = [λ1 λ2 ... λq] , (3.30)



32 CHAPTER 3. OPTIMUM CONTROL

A Hamiltonian function is defined by

H = J + λϕ. (3.31)

A necessary condition for J to be an extremal is

∂H

∂u
=
∂H

∂λ
= ϕ = 0. (3.32)

After solving the equation set (3.32), the solution for optimum control within constraints
can be obtained.

3.3.4 Relationship between COC and DBC

The deadbeat-like predictive control technique is usually proposed as a SVM-based
model predictive control method. As an alternate method of conventional predictive
control, it can employ a moderately voltage vector to eliminate the high current ripple
existing in the conventional direct model predictive control.

With deadbeat predictive control, the desired control variable which allows the output to
reach the reference output after one calculation period is computed using the model (3.14).
If Je and Ju are ignored (Q = R = 0), the solution of the continuous optimum control
without constraints is identical to the solution of deadbeat control. The detailed theoret-
ical proof can be found in [45]. So dead-beat control is still an optimal control problem.
The performance index (cost function) for dead-beat control is quadratic and only the
final state is considered. However, one cannot get the solution with constraints from the
original concept of deadbeat control. From this point, the optimum control provides a
more practical method for control systems with constraints.

3.4 Discrete-control solution of optimum control

Considering about the real situation of power electronics, e.g. a two-level inverter, has
only eight possible output vectors. That means traversing all the possible control variables
to get the minimum performance index can be an efficient way. This section will discuss
the situation when control variable is discrete/finite. The optimization window will be
selected as Tc which is the control interval.

3.4.1 Single vector optimum

In such case, the control variable u will always be a constant. The duration time of u to
system (3.1) is Tc. With the condition tf = Tc, the performance index J is computed when
the control variable u is employed separately (for a power converter, u is a finite space.
In a two-level inverter, only eight vectors can be used for output). After the computation,
the performance index with minimum value can be found. Thus the responding control
variable u is the discrete-control solution with single vector.
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Specially, when neglecting the energy performance part (Ju) and the whole process
tracking error part (Je), the performance index will have the same form with the original
predictive control which is well known in literature [39,40].

3.4.2 Two vectors optimum

The optimization window will also be selected as control interval Tc. However, we will
employ two vectors in the optimization window. For a simplistic demonstration of this
solution, a zero vector and another vector are selected in one optimization window [46].
Using vectors u0, u1 for example, the order of two vectors is shown in Figure 3.1 when
using sawtooth carrier based modulator. The duration time is respectively t0, t1. So, the
Ju part of the performance index has the following form

Ju =
1

2

∫ t1

0

u>1 Ru1dt. (3.33)

After taking the partial derivative of Ju, we can obtain

∂Ju
∂m

=
1

2

(
u>1 Ru1

)
Tc. (3.34)

For the purpose of reusing carrier based modulation to generate PWM signals, the
during time t0, t1 are expressed by modulation index m (0 ≤ m ≤ 1) and sample time Tc.
The initial state at the beginning of u1 is x0 that can be measured. The state transition
in the optimum window is calculated as (3.35) according equation (3.14).

x(t) =

{
(I + At)x0 + Bu1t 0 ≤ t ≤ mTc

(I + A (t−mTc))x(mTc) mTc < t ≤ Tc
. (3.35)

Therefore, the final error performance Jf has the following form

Jf =
1

2
(x∗ − xf )>C>LC (x∗ − xf ) . (3.36)

In order to avoid the complex calculation about discussing the distribution of solutions
of a cubic equation, some simplicity should be considered.

1. Je is ignored.

2. For a discrete solution of optimum control, the calculation interval Tc is very small.
Thus, T 2

c ≈ 0 holds.

Based on the above simplicity, xf can be revised as:

xf = x0 + ATcx0 + Bu1Tcm. (3.37)
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Taking partial derivative of Jf with respect to m gives

∂Jf
∂m

= u>1 B>C>LC (x∗ − xf ) . (3.38)

Thereby, the solution of two-vector optimum control is obtained from ∂Jf
∂m

+ ∂Ju
∂m

= 0, as

m = P−1O, (3.39)

where

P = u>1 B>C>LCBu1Tc, (3.40)

O = u>1 B>C>LC (x∗ − x0 −ATcx0) +
1

2
u>1 Ru1Tc. (3.41)

Optimization Window(Tc)
u1(100) u0(000)

t1 = mTc t0 = (1−m)Tcx0 x1 xf

Sa

Sb

Sc

Figure 3.1: Vector pattern during time.

3.4.3 Multiple vectors optimum

It should be noted that in two control intervals the selected two non-zero vectors and
zero vector in aforementioned method can form an equivalent vector which will cover the
whole hexagonal plane [47]. According to the principle of dynamic programming (also
known as dynamic optimization), for the optimization problem of multiple vectors can be
broken down into two or more optimization processes of two vectors optimization problem.
Thus, it is still a problem about optimization of two vectors.

So far the DOC solutions are thoroughly discussed. In the following, current control
of an SPMSM drive system using the proposed COC and DOC solutions will be demon-
strated as a case of study.

3.5 Optimum current control for SPMSM

3.5.1 Unconstrained solution with COC

Because the state variable and control variable for SPMSM are given in dq reference
frame, its also more straightforward to apply the optimum control in dq reference frame.
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By comparing the permanent magnet synchronous motor (PMSM) state-equation
form (2.45) with the predefined system (3.1), it is apparent that an extra constant
structure W is added to the normal state-equation. So, Jf0, Je1 should be revised as

Jf0 = −CBTs −WTs, (3.42)
Je1 = −CAx0 −W. (3.43)

The optimum control strategy can be performed in the following steps:

1. At the beginning of the current sampling-calculation period, measuring the stator
currents ia, ib, ic and rotor position θr, and transform the stator current to system
state x0 = [ id iq ]>;

2. According to the speed controller and flux controller, The future reference current
value can be obtained; The future reference current is considered as final state which
is denoted as x∗ = [ Id Iq ]>;

3. Select one positive definite symmetric matrix L and two semi-positive definite sym-
metric matrix Q, R;

4. Now, the optimum control variable can be obtained by substituting x0, x∗, L, R,
Q, A, B, C into the equations that are needed in equation (3.26);

5. Apply the obtained optimum control variable u through inverse park transformation
and space-vector modulation;

6. Go to step 1 and do the next iterator;

In such case, with L = diag
[
L1 L2

]
, R = diag

[
R1 R2

]
, Q = diag

[
Q1 Q2

]
,

the solution is

vd =
Nd1 +Nd2

Dd

, vq =
Nq1 +Nq2 +Nq3

Dq

, (3.44)

where Nd1, Nd2, Nq1, Nq2, Nq3, Ddq are collected as follows:

Nd1 = 6L1 (RsTsid − Lsid − LsTsiqωr), (3.45)
Nd2 = Q1

(
2RsTs

2id − 3LsTsid − 2LsTs
2iqωr

)
, (3.46)

Nq1 = Q2Ts
2 (2Rsiq + 2ωrψ + 2Lsidωr), (3.47)

Nq2 = 6L2 (IqLs − Lsiq +RsTsiq + Tsωrψ + LsTsidωr), (3.48)
Nq3 = 3LsQ2Ts (Iq − iq), (3.49)
Dd = 6R1Ls

2 + 2Q1Ts
2 + 6L1Ts, (3.50)

Dq = 6Ls
2R2 + 6L2Ts + 2Q2Ts

2. (3.51)

vd,q is then assigned to a space vector modulation (SVM) after transferred into αβ frame,
invoking the Park transformation.
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3.5.2 Constrained solution

From the solution of optimum control, it can be seen that when the rotor speed goes
up or there is a big current demand, the voltage can easily exceed the maximum voltage
output of the inverter. So, the aforementioned optimum control can not be guaranteed in
such case, and the response of the system will deteriorate. Therefore, the problem is how
to ensure the optimum control of current with a restricted magnitude voltage output.

To formulate the problem, the output voltage is constrained with the following con-
straint, as

u>u = v2d + v2q ≤ r2, (3.52)

where r is the radius of the voltage limit circle. Thus, the co-function can be defined as

ϕ(u) = u>u− r2 = v2d + v2q − r2. (3.53)

The Hamiltonian function is further rewritten as

H = J + λϕ(u) = J + λ(v2d + v2q − r2). (3.54)

The necessary conditions for J to be an extremal are
∂H

∂vd
=
∂J

∂vd
+ 2λvd = 0,

∂H

∂vq
=
∂J

∂vq
+ 2λvq = 0,

ϕ(u) = v2d + v2q − r2 = 0.

(3.55)

After solving the equation set (3.55), vd and vq are now obtained in the following compact
form:

vd =
(Nd1 +Nd2)Ts

DdTs + 12λLs
2 ,

vq =
(Nq1 +Nq2 +Nq3)Ts

DqTs + 12λLs
2 .

(3.56)

For simplicity, assuming the condition R1 = R2, Q1 = Q2, L1 = L2, λ is expressed as:

λ =
Ts

√
(Nd1 +Nd2)

2 + (Nq1 +Nq2 +Nq3)
2

12Ls
2r

− DqTs

12Ls
2 . (3.57)

Substituting equation (3.57) to (3.56), Equation (3.56) can be rewritten as

vd =
(Nd1 +Nd2) r√

(Nd1 +Nd2)
2 + (Nq1 +Nq2 +Nq3)

2
,

vq =
(Nq1 +Nq2 +Nq3) r√

(Nd1 +Nd2)
2 + (Nq1 +Nq2 +Nq3)

2
.

(3.58)
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Figure 3.2: Structure of the test-bench for experimental verification.

Compared with the unconstrained solution (3.44), we can conclude that in case of exceed-
ing the limit of voltage magnitude, the voltage vector should be kept in the same direction
as the unlimited condition. However, one cannot guarantee this with the original field
oriented control (FOC) concept.

3.5.3 Two vectors optimum solution

The main purpose of this method is to reduce the current ripple with a reasonable time
calculation cost. Due to the fact that the candidate vectors have three pairs of vectors
with opposite directions, the exploration of the optimization process can be significantly
reduced by adopting only three candidate vectors (u1,u2,u3) that have different direc-
tions.

The exploration algorithm is listed in Algorithm 1:

3.6 Experimental results and analysis

To assess the performance of the proposed control methods, various experimental sce-
narios are tested. In the following, we first introduce the hardware setup and the con-
figuration. Then, both transient and steady state control performances of the proposed
control system are assessed and compared with that of the well-known FOC and DMPC
methods. Meanwhile, the robustness of the proposed control system is also carried out
and then compared with that of the FOC and DMPC under the same condition.

3.6.1 Experimental setup

All the control schemes in this work are implemented on the same test bench shown in
Figure B.1. For more details, please refer to Appendix B.
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1 Function Calculation()
2 Collect the stator currents id, iq and the future reference current Id, Iq;
3 Calculate the modulation indexes m1,m2,m3 for the three candidate vectors

(u ∈ {u1,u2,u3}) using equation (3.39);
4 if mj > 1 then
5 mj = 1;
6 end
7 else if mj < −1 then
8 mj = −1;
9 end

10 Calculate three performance indexes with m1,m2,m3 with the corresponding
vectors;

11 Find the minimum performance index and the corresponding ux and mx ;
12 if mx ≥ 0 then
13 apply the vector mxux;
14 end
15 else if mx < 0 then
16 apply the opposite vector |mx|ux+3;
17 end

Algorithm 1: Algorithm of two vectors optimum solution.

Table 3.1: System Configuration and Parameters.

Symbol Parameter Value

Rs Stator Resistance 0.95 Ω
Ld = Lq = L d-axis Inductance 9.6 mH
ψ Flux 0.26 Wb
Ts = Tc = T Control interval for COC and DOC 83.3 µs
ωbr Base value of rotor speed 314 rad s−1

ib Base value of current 8.9 A
vb Base value of voltage 311 V
td Dead time 8 µs
P Number of pole Pairs 3
L1, L2 Final value matrix parameter 1
Q1, Q2 Tracking error matrix parameter 0.1
R1, R2 Energy cost matrix parameter 0.1

An overview control scheme for the proposed control methods is depicted in Figure 3.2.
It should be noted that the control frequency for both methods is 12 kHz to achieve a fair
comparison1, the switching frequency for COC and FOC is 6 kHz.

1In this work, the comparison is carried out under the same control frequency, rather than the same
switching frequency so to ease the implementation and assure a fair comparison.
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Figure 3.3: Transient phase performance evaluation in torque mode.

3.6.2 Assessment of control dynamics and steady-state perfor-
mance

Fast inner loop control dynamics and steady-state performance are very desirable for
a drive system. To test this, the scenarios are set as follows: the system is set to run
in “torque control mode” (i.e., the torque command is directly set to the inner control
loop of all the four control schemes under consideration (i.e., the COC, DOC, FOC, and
DMPC), without using the outer speed control loops, to omit its bandwidth effect), while
the load-side machine is at the “speed control mode”. A rated torque current command
is set to the control methods under consideration. Note that, the parameters used in PI
controller for FOC are optimized individually according to [48] so as to ensure a high
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Figure 3.4: Transient phase performance evaluation in torque mode.

bandwidth of the current loop. The basic parameters used in other control schemes are
listed in Table 3.1. At such configuration, the stator currents (in both abc- and dq-frames)
and current tracking errors are recorded, and the results are in Figure 3.3. As can be
seen: The current ripples of the FOC and COC are significantly lower than that of the
DMPC and DOC due to the existence of a modulator. The current ripples of the DOC are
less than that of the DMPC due to the employing of two vectors in the control interval.
Similar results are obtained when the motor rotates without load. In steady states, FOC
has nearly zero error between the reference and feedback. On the contrary, the COC has
static errors.

To directly depict the transient phase performances during the test, the torque current
and its reference are zoomed-in in Figure 3.4. As is observed, (less than) 1ms is required
to finish a rated torque change tracking, for all the methods2. The dynamic response of
the four methods is nearly identical. However, COC and FOC show a slight overshoot in
comparison with the DOC and DMPC solutions. Note that, for all solutions, the torque
current starts to follow its reference after one control cycle, which is, the delay effect of
the operating voltage.

3.6.3 Assessment of disturbance rejection capabilities

Good rejection capabilities to abruptly changing load disturbances are one of the key
requirements for a drive system. To examine the disturbance rejection capabilities, testing
scenarios are identically set for both the proposed solutions and the classical FOC and
DMPC methods, as follows: the system operates under “speed control mode” (i.e., the
constant speed command is set to both methods with the same outer speed control loop
configurations), the rated load is abruptly dismounted3 at around 0.06 s (See Figure 3.5) at
a given speed command. This generates a “step-like” load torque disturbance (to test the

2The transient time can be calculated roughly using Equation (2.43).
3The method that generates a rated torque step using another inverter which works on torque mode

is not reasonable. Because the generated torque step highly depends on the performance of the inverter.
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harshest situation). Figure 3.5a to 3.5d show the performances with FOC, COC, DMPC,
DOC solutions, respectively, where the stator current (ia,b,c), excitation and torque current
(id,q), tracking error of excitation and torque current (ierrd,q ) and rotor speed (ωr) responses
are shown. As can be seen, both the FOC and COC have much smaller ripples while a
second order phenomenon is seen during the transient phase. The largest ripple is seen
with the DMPC solution.

3.6.4 Assessment of parameter robustness

As fully model-based solutions, the proposed concept requires all the system parame-
ters. To investigate the influences of parameter variations to the system performances,
i.e., parameter robustness, the parameter sensitivity of both the proposed solutions are
verified. In this section, three experimental testing scenarios are carried out to examine
their performances under variations of motor inductance. All tests were carried out with
a rated load torque change applied to the SPMSM. To investigate the influence of dq-axis
inductance variations, the controller employs various inductance values (L̂d, L̂q) which are
set to 80%, 100%, and 120% of the nominal motor values (real parameters) respectively4.
At such configurations, the motor speed and the tracking error of the dq-axis currents
(ierrd , ierrq ) are shown for all methods at 20% of the nominal speed, with an abruptly
changed load (between 0 and 100% of its rated value). As can be seen from Figure 3.6,
all methods work well during the test, i.e., all are robust within such parameter changing
range, and nearly identical performances of the speed response (overshoot and the setting
time) are seen with all methods during these three tests. However, quite small transient
tracking error for both the dq-axis currents are seen with the DOC solution, while the
tracking biases are relatively big with the COC method under these tests, which can be
explained by that, the dynamics of the DOC is much faster and also robust to parameter
variations during transient phases. The FOC and DMPC solutions were (almost) not
affected (no obvious biases are seen) by these parameter variations, demonstrating the
highest robustness.

3.6.5 Assessment of performance under constraint

For certain cases, e.g., e-cars, the capabilities of the controller to reject the influences
of the DC-link voltage changes (mainly reductions) are very important. In this section,
this capability of all the afore-mentioned schemes is tested. The experimental scenarios
are as follows:

• The DC-link voltage is set as 420 V (the nominal value is 540 V). Thus, the DC-link
voltage is not enough when the motor runs at high speed (above 0.77 p.u.);

On the contrary, dismounting from rated value abruptly to zero loads through the PWM lock of the load
side inverter is reasonable.

4This testing range is chosen due to that, our measurements show, the estimated values of the system
is in (0.8, 1.2) times of the actual values.
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Figure 3.5: Transient phase performance evaluation in speed mode (at 0.2 of its nominal
speed).
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• There is no field-weaken algorithm, i.e., no other aspects may influence the results
when DC-link voltage is lower;

• The speed reference is set to 0.9 p.u..

With the above configuration, a rated load is applied to the equipment under test (EUT).
The results are shown in Figure 3.7. As can be seen, at the condition of that, the
DC-link voltage is not enough to output the desired output voltages, good speed tracking
performances are achieved with FOC and DMPC, and then is DOC. However, the current
waveform and quality of using COC out-performs all the other solutions.
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Figure 3.6: Parameter sensitivity investigation results.

3.6.6 Assessment of computation burden

As is already mentioned in Section 3.2.3, small computational time is one of the ad-
vantages of the proposed control schemes. To assess the computational time, the time
duration required for calculating the algorithm of each method in one sampling/control
cycle is determined by instrumentation trace macro (ITM) cell which is integrated into
Cortex™-M4 processor. The timestamps are recorded at the entrance of the function and
recorded again at the exit of the function. The elapsed time is obtained from the differ-
ence of the two timestamps. Detailed results are collected in the first row of Table 3.2.
The DMPC takes the longest time, 22.1 µs, to execute, while the COC takes the shortest
time, only 10.3 µs. The results confirm that COC can achieve better overall performance
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Figure 3.7: Working under low voltage limit.

with similar control complexity and computational burden, which is practical for real-time
implementation.

To ease an overall assessment of the experimental output, the performances (including,
execution time, switching frequency, steady and transient status performances, distur-
bance rejection capabilities, and the robustness to parameter variations) of each method
are summarized in Table 3.2.

Table 3.2: Overall assessment results of afore-discussed control schemes.

Methods FOC COC DMPC DOC

Execution time 12.3 µs 10.3 µs 22.1 µs 19.1 µs
Switching frequency constant constant variable variable
Steady performances good good bad moderate
Dynamics5 fast fast fast fast
Disturbance rejection moderate moderate moderate moderate
Robustness strong moderate moderate moderate

5This test result is obtained based on that, all schemes are assessed at the same control interval. When
assessing with similar switching frequency, then the conclusion can be different.
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3.7 Summary

Optimal control has been investigated theoretically since many years. However, its ap-
plications in power electronics and electric drives have rarely been reported. In this work,
both the continuous and discrete solutions of the optimal control concept were proposed
and experimentally validated. As a case of study, current control problems of a two-level
power converter fed surface mounted permanent magnet synchronous motor drives are
evaluated with both the proposed continuous and discrete solutions using optimal con-
trol concept. The experimental results showed outstanding performances of the proposed
methods, which indicates that the optimal control is another effective strategy for the con-
trol of power electronics and drives. Although both the classical proportional-integral and
standard non-linear controls (e.g., hysteresis, sliding mode control, etc.) are also capable
of controlling an electronic drive system, the introduced method based on the optimal
control concept can optimize multiple objectives with multiple system constraints of the
similar drive system.

Note that, the proposed concept is not limited to the current control of surface mounted
permanent magnet synchronous motor drives. It can be applied to all model based control
problems with or without constraints (e.g., grid-connected renewable energy systems or
alternating current-drives with multilevel power converters). Future work will focus on
extending the proposed scheme to more advanced topologies. The author believes that,
with the demanding of effective and practical control methods, the presented optimum
control concepts will represent a new powerful and interesting perspective for the area of
control of power electronics and drives.
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Chapter 4

Voltage balance of NPC

This chapter presents two neutral-point voltage balance control strategies for three-level
neutral point clamped (NPC) converter. For the space vector pulse width modulation
(SVPWM)-based control scheme, the deadbeat control concept for neutral-point voltage
balancing is detailed in Section 4.2. In the case of using model predictive control (MPC)
algorithm, the decoupled method is presented in Section 4.3.

4.1 Neutral Point Current

In most applications, there are two direct current (DC) capacitors connected in series
between P and N . However, the DC-link is usually powered by one DC voltage source in
most cases, such as powered by a three-phase diode bridge rectifier. The current equation
of the capacitors is icj = C

dvcj
dt

. By applying Kirchoff’s current law (KCL) at the neutral
point O

io = ic1 − ic0 = C
d

dt
(vc1 − vc0) (4.1)

where vc1 is the voltage between DC-link plus (P ) and neutral point (O), vc0 is the voltage
between neutral point (O) and DC-link minus (N), ic0 is the current flowing through C0,
ic1 is the current flowing through C1, io is the neutral point current.

As can be seen form Equation (4.1), the voltage drift is totally caused by the io. Once the
io is known, the voltage drift of the two capacitors can be controlled precisely. Fortunately,
the neutral point current io can also be expressed as a function of the switches state and
the phase current. Considering the dead time of the switches, the typical switches state
timing of each leg can be seen in Figure 4.1. There are five different switches states.

From Table 4.1, the neutral point current caused by one phase(iox) can be expressed as:

iox =




Sx1S̄x0Sx0S̄x1GE (−ix) +

Sx1S̄x0Sx0S̄x1+

Sx1S̄x0Sx0S̄x1GE (ix)


 ix (4.2)
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Figure 4.1: Switch state timing signals of each phase.

Sx1 Sx0 S̄x1 S̄x0 ix vxo iox

0 0 1 1 −vc0 0
0 0 1 0 ≥ 0 −vc0 0
0 0 1 0 < 0 0 ix
0 1 1 0 0 ix
0 1 0 0 ≥ 0 0 ix
0 1 0 0 < 0 vc1 0
1 1 0 0 vc1 0

Table 4.1: switch states of a leg

where Sxj is the negation of Sxj, S̄xj is the negation of S̄xj, ix is the corresponding phase
current. The function GE (x) is defined as:

GE (x) =

{
1 x ≥ 0

0 x < 0
(4.3)

With the assumption that the output phase currents are not varying during one sample
time. According to Figure 4.1 and Equation (4.2), the averaged neutral-point current of
one leg in one switching period can be expressed as

1

Ts

∫ t+Ts

t

ioxdt =
1

Ts




TDGE (−ix) +

(TOx − TD) +

TDGE (ix)


 ix =

1

Ts
TOxix (4.4)

where TD is the dead time, TOx is the duration time in such state: Sx1 = 0 and Sx0 = 1
which is called O state.

So the average neutral-point current is :

io =
c∑

x=a

1

Ts
TOxix =

1

Ts
(TOaia + TObib + TOcic) (4.5)
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If the switching state has no change in one sampling time, the equation that describes the
logic which has O state can be drawn with 1−|sx| where sx is defined in Equation (2.33).
In such situation, the averaged neutral-point current is

io =
c∑

x=a

(1− |sx|) ix =
c∑

x=a

(− |sx|) ix = − (|sa| ia + |sb| ib + |sc| ic) (4.6)

4.2 DBC of neutral-point voltage balance for SVM

A new DC-link voltage balancing method using the deadbeat control concept for three
level NPC converters is proposed and experimentally verified in this chapter. Within this
chapter, a model of the instant neutral point current is firstly derived, which is relevant
to the real switch states and the output phase currents. Additionally, the average model
of the neutral point current is also obtained. This average model allows us to calculate
neutral point current within one sample interval. Based on a well-known model of the DC-
link voltage and the developed average neutral point current model, a deadbeat controller
dealing with the DC-link balancing control is designed and incorporated into a space vector
modulation (SVM), which allows adjusting the neutral point current continuously. The
novelty of the proposed method is that a good DC-link voltage balancing control can be
assured, at an any load condition and any output voltage of the converter, while the normal
functionality (phase voltage and current output) of a three level NPC converter remains,
which has been proofed with both simulation and experimental data. The experimental
data also shows that good dynamics of the DC-link voltage adjusting and low neutral
point voltage ripples can be achieved with such solution.

4.2.1 Motivation

In recent years, the demands of high power converters increase rapidly. Compared to
two level converters, the three level NPC converter, as shown in Figure 2.5 have been
drawing great interests in the industry field [29, 49]. Because of its increased voltage
levels, three level NPC converters can be used for high voltage and high power levels
applications. Also, a three level NPC converter is economically visible in high energy-cost
markets due to the substantial reductions in filter size/weight and cost (30%) [50]. Low
harmonic current distortion is another benefit [51,52].

Although three level NPC converter has been studied for several decades after its intro-
duction in 1981 [53]. There are still many issues requiring further research efforts. Among
them, the DC-link voltage balancing is eager to be solved with reasonable cost. When
the voltage of the two capacitors has a significant drift, the output voltage of the inverter
will be distorted. Furthermore, long time high voltage pressure may cause failure of the
capacitor and switches.

To the best of the authors’ knowledge, the following methods can be used to solve the
voltage balancing problem in the NPC power converters:
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1. One is to use two isolated transformers or equivalent circuits which provide energy
separately for the two capacitors [54, 55]. Usually, it is done through diode bridge
rectifiers. Apparently, this method requires extra hardware and will increase the
cost of the whole system.

2. The second method is using an extra current source to inject current in the neutral
point.

3. The other method is based on pulse width modulation(PWM) strategy [56,57]. This
approach requires modification for the switching pattern. Thus, the modulation
algorithm is more sophisticated compared to the general SVPWM. This method
provides an economical way to solve the unbalance issue in the NPC. However, the
existing balance methods based on PWM have the following shortcomings:

(a) Lacking a strategy that adjusts the neutral point voltage continuously.

(b) Can not work well in fully ranged operation point with the same parameter.

(c) Big ripple of the neutral point voltage.

Therefore, a new DC-link voltage balancing method using the deadbeat control con-
cept for three level NPC converters is proposed and experimentally verified. Based on a
well-known model of the DC-link voltage and the developed average neutral-point current
model, a deadbeat controller dealing with the DC-link balancing control is designed and
incorporated into a SVM method, which allows adjusting the neutral-point current con-
tinuously. The novelty of the proposed method is that a good DC-link voltage balancing
control can be assured, at an any load condition and any output voltage of the converter,
while the normal functionality (phase voltage and current output) of a three level NPC
converter remains, which has been proofed with both simulation and experimental data.
The experimental data also shows that good dynamics of the DC-link voltage adjusting
and low neutral point voltage ripples can be achieved with such solution.

4.2.2 Space vector based modulation of the three-level NPC

The space vector based modulation methods of three-level NPC are well explained
in [51,57,58]. To solve the unbalance issue, an efficient way is to control the neutral point
current. So, in this section, a special SVPWM which can generate the demanded neutral
point current is proposed.

Figure 2.6 shows a space vector diagram for the three-level NPC converter. There are 19
possible space vectors, which corresponds to a total of 27 switching states which are also
shown in the figure. The calculation for the triangles are similar, so only the operation in
triangle 1 of the first sector(see Figure 4.2) is analyzed.

Additionally, there are many approaches to design the switch sequence. The present
work shows only the general design of SVPWM sequences which is possible to get sym-
metrical waveforms. The design for switch sequence is detailed in Section 4.2.2.2.
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4.2.2.1 Voltage second balance

OOO
PPP

NNN POO
ONN

PNN

PON

PPN

PPO
OON

1

2

3

4

V1

V2

V3

Figure 4.2: Vectors in Sector I.

Based on voltage second balance, the reference voltage(V ∗) can be expressed by the
adjacent three vectors(V1, V2, V3).

TsV
∗ = V1T1 + V2T2 + V3T3 (4.7)

where T1, T2, T3 are the duration times of the V1, V2 and V3 respectively. Ts is the
sample period. So the time balance is given by

Ts = T1 + T2 + T3 (4.8)

Figure 4.2 also illustrates the basic relationship of V1 and V2 in the αβ plane.

V2 =
(

cos
π

3
+ j sin

π

3

)
× V1 (4.9)

V1 =
1

2
(4.10)

Rewritten (4.7) in the αβ plane, we obtain

(Vα + jVβ)Ts = V1T1 + V2T2 (4.11)

1

2
(cos 0 + j sin 0)T1 +

1

2
(cos 60 + j sin 60)× T2 = (α + βj)× Ts (4.12)
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In order to use the per unit system, select the circle as the base value 1 so,
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4.2.2.2 switch timing of IGBT

The determination of switching sequence is done as conventional two-level SVPWM
method which is based on the following consideration:

• Each of the phases is switched at least once in each sampling interval.

• Only one switch is allowed to switch during the state transition.

• The final switch state of the current sample and the initial state of next sample are
same.

Figure 4.3 shows the demanded switch timing of the IGBTS. This figure will be helpful
in calculating the duty cycle of each switch.

NNN ONN OON OOO POO PPO PPP PPO POO OOO OON ONN NNN

Sa1

Sa0

Sb1

Sb0

Sc1

Sc0

Figure 4.3: IGBT switch timing in triangle 1 of Sector I.

So the duty of each insulated gate bipolar transistor (IGBT) is

ma1 =
TPOO + TPPO + TPPP

Ts

ma0 = 1− TNNN
Ts

mb1 =
TPPO + TPPP

Ts

mb0 = 1− TNNN + TONN
Ts

mc1 =
TPPP
Ts

mc0 = 1− TNNN + TONN + TOON
Ts

(4.15)
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From Figure 4.2 we can get

TONN + TPOO = T1

TPPO + TOON = T2

TNNN + TPPP + TOOO = T3

(4.16)

In order to provide more flexibility, the time distribution of zero vectors is using index
µ and γ which satisfy:

TPPP = γT3

TOOO = µT3
(4.17)

So that if the dwelling time of zero vector is calculated, the switching sequence can be
determined according to the indexes µ and γ. As the voltage vector PPP , OOO and
NNN are all zero vectors, changing the dwelling times of the two vectors has no influence
to the desired voltage vector if the following conditions hold.

0 ≤ γ ≤ 1

0 ≤ µ ≤ 1

0 ≤ 1− µ− γ ≤ 1

(4.18)

Due to the vectors ONN , POO, OON and PPO are related to the voltage balance,
the distribution of these vectors is discussed in Section 4.2.2.3.

4.2.2.3 Rearranging time distribution of the redundant voltage vectors

From Equation (4.5), the averaged neutral point currents is −TPOO
Ts

ia when vector POO
is applied. Meanwhile, the averaged neutral point currents is TONN

Ts
ia when vector ONN

is applied. Additionally, to quantitative analyze the relationship between neutral point
current and dwelling time of the redundant vector, a coefficient λ is introduced which is
defined as follows:

λ =

{
TPOO

TPOO+TONN
= TPOO

T1
ia ≤ 0

TONN
TPOO+TONN

= TONN
T1

ia > 0
(4.19)

So 0 ≤ λ ≤ 1, and it will increase more voltage of C1 as λ becomes bigger. When applying
vector V2, from Equation (4.5), the averaged neutral point current is TPPO

Ts
ic when using

vector PPO. Meanwhile, the averaged neutral point currents is −TOON
Ts

ic when using
vector OON . In the same way, in order to make it increase more voltage of C1 as λ
becomes bigger, λ is defined as follows in such case:

λ =

{
TPPO

TPPO+TOON
= TPPO

T2
ic ≤ 0

TOON
TPPO+TOON

= TOON
T2

ic > 0
(4.20)
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When the reference voltage vector is located in other triangles or triangles in other sectors,
λ can be defined using similar means. Considering one condition ia > 0, ic > 0 in sector I
triangle 1 and with all the redundant vectors used, the averaged neutral point current is
expressed as:

io =
1

Ts

(
(TONN − TPOO) ia+

(TPPO − TOON) ic

)
=

1

Ts
((2λ−1)T1ia + (1− 2λ)T2ic) (4.21)

So the duty of each IGBT in sector I triangle 1 is1:

ma1 = (λ− 1)
(
β −
√

3α
)

+ 2 β λ− γ
(
β +
√

3α− 1
)

ma0 = (−γ − µ)
(
β +
√

3α− 1
)

+
(
β +
√

3α
)

mb1 = 2 β λ− γ
(
β +
√

3α− 1
)

mb0 = (−γ − µ)
(
β +
√

3α− 1
)

+ λ
(
β −
√

3α
)

+
(
β +
√

3α
)

mc1 = −γ
(
β +
√

3α− 1
)

mc0 = (−γ − µ)
(
β +
√

3α− 1
)

+ λ
(
β −
√

3α
)

+
(
β +
√

3α + 2 β (λ− 1)
)

(4.22)

With a series of Equation (4.21), adjusting the neutral point current continuously can
be achieved by changing λ. Once the neutral point current is controlled, the neutral
point voltage drift can be controlled. Certainly, the control capability of the neutral point
current is related to the modulation index and the output current which can’t be modified
freely.

4.2.3 Conventional deadbeat controller design

For a control system, the settling time is one of the most important characteristics.
Deadbeat controller aims to reach the stable state after a minimum number of sampling
periods, which equal to the order of the system to be controlled. Therefore, if there is a
demanding of quick setting time, the deadbeat controller is probably used.

For an nth-order linear system, the minimum number of sampling periods will be at
most equal to n. That is to say, it is possible to reduce the final error to zero by applying
an appropriate control input. It turns out that the minimum number of sampling periods
setting time can be possible without the limitation of the control input. This is, in fact,
meaningless in practice. For example, for nth-order system, in a real world, to achieving
minimum number step settling time, the control signal may exceed the possibilities of the
usual actuator. So we have to find a solution which would make the control signal under-
excitation with the cost of increasing the settling time while the tracking performance can
take care of as well.

1All the equations are listed in Appendix C.
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R(s)

−
+

E(z)

C(z) 1−e−sT

s
G(s)

Y (s)

Measurements

G(z) = Z( 1−e−sT

s G(s))

Figure 4.4: Digital control system.

Figure 4.4 depicts a general digital control system, where G(s) is the transfer function
of the plant, G(z) is the transfer function of the plant in discrete domain, C(z) is the
transfer function of the digital controller, R(z) is reference input , E(z) is tracking error,
Y (z) is the system output. In this figure, there is a zero order hold circuit used for data
reconstruction. The formulation problem can be stated in the following behavior.

Find a digitial controller C(z) such that the output of the system G(s) equals to the
reference input R(z) after a certain time (nTs).

The closed loop transfer function is therefore

N(z) =
Y (z)

R (z)
=

C(z)G(z)

1 + C(z)G(z)
(4.23)

For designing the dead-beat controller with fastest setting time, the transfer function
of the closed loop between the output signal and the input signal should be equal to the
order of the system. Specially, for one order system, the condition is N(z) = z−1 provide
the system is stable which means the poles of the system should not have poles outside
or in the vicinity of the unit circle in the z-plane. Hence the transfer function of digital
controller can be calculated as

C(z) =
z−1

G(z) (1− z−1) (4.24)

However, in a real world, to achieving this one step settling time, the control signal would
exceed the possibilities of a usual actuator. Thus, one has to find a solution which would
make the control signal under-excitation with the cost of increasing the settling time. One
method is divide the reference signal into more sub-levels and reach the desired reference
in more steps. That is in For example choosing the transfer function of the closed loop as

N(z) =
n∑

j=1

wjz
−j (4.25)

which satisfy N(1) = 1, so that the design will not affect the final value. wj are weighting
factors which are used for each error sequence. The weighting factors wj should satisfy
n−1∑
j=0

wj = 1 and wj ∈ [0; 1]. In such case, the practical realization of the control law is
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given by

C(z) =

n∑
j=1

wjz
−j

G(z)

(
1−

n∑
j=1

wjz−j

) (4.26)

vc1

−
+ C(z) λ = f(T1, T2, iabc, i

∗
o)

Switching
Sequence

Voltage
Second
balance

vc0
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T2

T3

vsα

vsβ

Figure 4.5: Control scheme of proposed method.

4.2.4 Case application: Deadbeat controller for neutral-Point
voltage balance

Transferring equations (4.1) into Laplace (frequency) domain, yields the transfer func-
tion of voltage drift is:

G (s) =
vc1 − vc0

io
=

1

sC
(4.27)

Applying equation(4.26), the deadbeat controller for the voltage drift is designed as

C(z) =
z−1

Z (G (s)) (1− z−1) (4.28)

The proposed control scheme is shown in Figure 4.5. The neutral point current com-
mand io is the output of the deadbeat controller. From Equation (4.21), λ can be solved.
Then the duration time of the redundant vectors is determined.

4.2.5 Simulation Results

The three-level space vector modulator with the neutral point balance algorithm was
simulated in Matlab. Figures 4.6-4.7 show the performance of the proposed control
strategy under different modulation index. In the simulation, the output line-line volt-
age of phase A (va), the filtered output line-line voltage (vaf ), two modulation signals
(maj,mbj,mcj), two capacitor voltages(vcj), filtered neutral point current (iof ), the exter-
nal current (iex) applied between node O and N and the control variable (λ) are shown.
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Figure 4.6: Waveforms of the simulation result with modulation index 0.3 and 0.5.

The units of voltage and current are per unit. The base value of voltage is 537 V. The base
value of current is 16 A. The value of the DC-link capacitance is 1100 µF. The carriers
frequency is 5 kHz. The filters for the line-line voltage and neutral point current are both
second order low pass filters with 1 kHz natural frequency. The load for the converter is
wye–connected RL, with R =15 Ω ,L =15 mH .

The whole simulation process is divided into five phases:

1. 0 s to 0.01 s: the steady state without neutral point voltage balance algorithm ap-
plied.

2. 0.01 s to 0.02 s: neutral point voltage balance algorithm is applied to verify the
effectiveness of voltage drift control without obvious high neutral point current
disturbance.
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Figure 4.7: Simulation Results with modulation index 1/
√

3 and 0.75

3. 0.02 s to 0.03 s: neutral point voltage balance algorithm is not used. Together with
phases 1-2, it shows the performance in a steady state.

4. 0.03 s to 0.04 s: A high external current source is applied between node O and node
N without balance algorithm.

5. 0.04 s to 0.08 s: A strong external current source is used between node O and node
N with balance algorithm.

As can be seen from the vabf curves of Figures 4.6-4.7, there is no obvious distortion
of output line-line voltage when the balance algorithm applied or not. The balancing
processes are shown in phase 5 of the two figures in which the initial voltages of the
two capacitors is unbalanced very much. The voltage becomes equal quickly with the
control variable λ = 1. Also, the neutral point voltage drift is suppressed significantly in
phase 2 of Figure 4.7 when the strategy is carried out. It is noticeable that the neutral
point voltage drift seems to become bigger in phase 2 than phase 1 of Figure 4.6. This is
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because the neutral current in one sample period is varying while the algorithm has the
assumption that the output phase currents are not changing.

The waveforms of λ show the fast dynamics of the controller. After the balance al-
gorithm applied, λ goes to 1 immediately which demonstrates the deadbeat behavior.
Meanwhile, the neutral point current behaves the same with λ except a little bit phase
delay due to the second order filter. Also, there is no overshoot or adjusting the time in
the response curve of neutral point current.

4.2.6 Experimental Results

The proposed algorithm was coded in C++ and implemented in a drive system which
drives a permanent magnet synchronous motor (PMSM). The drive is controlled using
vector control. Vdc is a six-pulse rectifier. Compared to the simulation configuration,
it’s difficult to inject current between neutral point O and N for a real system. So
the experimental process is designed to make the neutral-point voltage drift tracking a
reference. Because of the neutral-point is related to the modulation index and the output
current, the performance under different modulation index has been investigated through
simulation. So in this section, two kinds of an experiment are designed under no load or
half load which has the similar modulation index. The modulation index is around 0.5 at
no load and 0.6 at half load.

The system configuration parameters and PMSM parameters used in the experimental
verification are listed in Table 4.2.

The test results under no load are shown in Figure 4.8b. It can be seen from the curve of
λ that the proposed algorithm provides a fast response to the neutral-point voltage drift
reference. Due to the small phase current, the contribution to the neutral point current is
also very small even under the condition λ = 1. So it will cost a long time for the neutral-
point voltage drift tracking the reference. In this set-up, λ vibrates from 0 to 1 severely
in the steady state. This is due to the less contribution of the phase current. Little
voltage unbalance can cause big variation of λ to generate same neutral point current.
Figure 4.8a shows the test results at half load. Compared with the adjusting time(0.2 s) at
no load, the DC-link voltage balance is achieved within 0.03 s. The experimental results
show that the controller can track desired capacitor voltages quickly. Additionally, there
is no 300 Hz ripple voltage caused by a six-pulse rectifier.

4.2.7 Summary

The modified space vector pulse width modulation with the proposed algorithm in this
section is straightforward and is still based on two carrier waveforms. This method ensures
the entirely using standard pulse width modulation of three-level inverters. Therefore,
its very easy to be implemented with no more extra efforts. The modulation algorithm
neither increases the switching frequencies of the devices nor influences the output voltage.
Based on the proposed solution, an efficient deadbeat controller which is used to control
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Figure 4.8: Experiment Results. From up to down: three phase currents (ia,ib,ic);
DC-link voltage(vc0,vc1); DC-link voltage drift reference(vrefc ); Corresponding adjusting
coefficient(λ) all in per-unit values.

Symbols Parameter Value

C0 DC-link capacitor 0 1462.5 µF
C1 DC-link capacitor 1 1462.5 µF
fs Switch Frequency 4000 Hz
ωbr Base value of rotor speed 314 rad s−1

ib Base value of current 8.9 A
vb Base value of DC-link voltage 539 V
td Dead time 8 µs
Fe PMSM rated frequency 150 Hz
Ie PMSM rated current(rms) 6.3 A

Table 4.2: System Configuration and Parameters

the neutral point voltage is proposed. This controller just uses the output phase current
to determine how the modulation works. There is no parameter to tune like traditional
proportional-integral controller in the full operating range. As a conclusion, the strategy
proposed can be implemented without extra sensors and will help to extend the using of
the neutral point clamped converter.

Future work will focus on the experimental investigation/comparison of the proposed
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solution with the already existing methods, and the improvement of its steady state errors
inherent with the model based deadbeat control nature.

4.3 Decoupled neutral-point voltage balance for MPC

In this section, we propose a simple and effective neutral-point voltage balance tech-
nique within the MPC framework for three-level NPC converters. The novelty lies in that,
unlike the conventional MPC methods, for which an extra weighting factor is required to
adjust the tradeoff between the neutral point voltage balance and targeting current track-
ing, the proposed solution decouples these two objects and improves the performance of
current tracking, without using any weighting factor(s). Additionally, the switching states
to assess decrease from 27 to 19, the prediction for the DC-link voltage is not necessary.
Both have considerably reduced the calculation efforts. The effectiveness of the proposed
method is validated by both simulation and experimental data. Compared to the conven-
tional MPC method, the proposed method has evidently enhanced control performances,
such as faster DC-link voltage control dynamic, low total harmonic distortion (THD)
in both the phase current and voltage, and better neutral voltage balancing capabili-
ties, which have been confirmed by the experimental data obtained at a lab-constructed
prototype.

This section is organized as follows: Section 4.3.1 introduce the background and moti-
vation for this topic; Following, in Section 4.3.2, the conventional MPC method is briefly
introduced. In Section 4.3.3, the proposed method is introduced and developed in detail.
Section 4.3.4 and Section 4.3.5 presents the simulation results and the experiment results,
which validate the effectiveness and enhancements of the proposed solution. Finally, con-
clusions are drawn in Section 4.3.6.

4.3.1 Motivation

In the former sections, a neutral-point voltage balance method based on SVPWM tech-
nology was proposed and verified. So, this method can be used in all the traditional
occasions where SVPWM is employed. However, Predictive control applied to power
converters has gained very much attention, since its introduction in the 1980s [23, 24].
Due to the fast development of microprocessors, recently, finite control set model predic-
tive control (FCS-MPC) has been employed in plenty of applications in the power drives
field, which does not require modulator. Moreover, MPC is considered as an effective
solution where multiple control constraints and non-linearities [25, 59] have to be dealt
with. A common used method in the literature (e.g., [60–63]) to deal with three level
NPC converter control with neutral point balancing, is to combine the cost function with
weighting factor for voltage balance and the cost function for current tracking (same as
for the conventional two-level current control case) together as a new cost function. The
drawback of this method is obvious: it has an assumption that the weighting factor for
the voltage balance is properly selected. However, one cannot assure this condition in
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most working cases. In fact, the component of voltage balance and the component of
current tracking are closely coupled. It is difficult to ensure one of the control objects to
be well achieved while keeping a good performance of another when using such method.
Although in reference [64] the authors have proposed some guidelines regarding how to
obtain appropriate weighting factors for getting better performances, the tuning process
is still an open issue for the systems having different kinds of control objectives with
different units. In reference [65], the authors proposed a modified solution that allows
the unbalance voltage in the capacitors within a band: when the predicted value for the
unbalance voltage is within the band, the cost function is selected as the conventional one
(cost function without covering the DC-link voltage balancing), whilst when the unbalance
voltage is out of the band, the cost function becomes a function of the unbalanced volt-
age and other control objectives, where the voltage balancing control is highly weighted.
However, for a three level NPC converter, to achieve a similar current quality as the con-
ventional linear controller with modulator, the control the interval of FCS-MPC should
be much shorter. The FCS-MPC algorithm requires 27 times calculation in one sampling
period for the state prediction and cost function for a three level NPC converter, which
requires a much more powerful micro-controller than what is used in the conventional
linear controllers. The calculation time optimizing remained untouched in the method
proposed in reference [65]. Meanwhile, the cost function has no corrections to achieve
current tracking when the unbalanced voltage is out of the band. Therefore the control
performance of the currents gets deteriorated during this case. Additionally, how to deal
with the voltage balance when the phase current is very small (at such case, the neutral
point current is very small, which may lead to the failure of the neutral point voltage
balance) is untraceable.

Inspired by the above analysis, an improved FCS-MPC method with decoupled DC-link
voltage balancing control is proposed to solve the mentioned problems. In the proposed
solution, an average neutral point current model is derived, which is used to decouple the
control target of neutral point voltage control form the conventional approaches. Thereby,
a reduced set of candidate vectors is considered to reduce the computational burden, with-
out affecting the control performances. As a case study, a three level NPC converter fed
induction motor drive system, with the phase current control, for the induction motor,
and voltage balancing control, for the three level NPC converter, being the control objec-
tives, is considered to demonstrate the proposed improved predictive control solution with
decoupled neutral-point voltage balancing. The major contributions of this work include:
with the proposed solution,

1. current tracking and voltage balance are controlled independently, which greatly
decrease the influence of the existing coupling effects;

2. the candidate switching vectors decrease from 27 to 19, which effectively reduces the
computational burden; prediction for the DC-link voltage is not necessary, which
further saves the calculation time;

3. weighting factors are not required, which eases the tuning efforts;
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4. the maximum balancing capability of the system is extended, with the proposed
increasing flux current.

4.3.2 Conventional FCS-MPC controller

In the classical current control using FCS-MPC for three level NPC converter, the con-
trol objectives of FCS-MPC for current control of three level NPC converter fed induction
motor include

1. Regulation of iα and iβ, and

2. DC-link capacitor voltage balancing control.

These objectives are achieved by the following cost function

J (k + 1) =
[
i∗s (k)− îs (k + 2)

] [
i∗s (k)− îs (k + 2)

]

+ λ
[
V̂c0 (k + 2)− V̂c1 (k + 2)

]2
, (4.29)

where λ is the weighting factor, allowing us to determine which part is more important.
The control algorithm for FCS-MPC can be designed either in the αβ frame or the dq
frame. For saving the computational time, the algorithm is implemented in the αβ frame.
The discrete-time equations (sampling time Ts) at time k + 1 and k + 2 can be easily
obtained by applying the Euler-forward transformation from Equation (2.37), which are

îs (k + 1) =

(
1− L2

mRr + L2
rRs

σLsL2
r

Ts

)
is (k)

+

(
LmRr

σLsL2
r

− j Lmωr
σLsLr

)
Tsψr (k)

+
Ts
σLs

vs (k) , (4.30)

ψ̂r (k + 1) =

(
1− Rr

Lr
Ts + jωrTs

)
ψr (k)

+
LmRr

Lr
Tsis (k) , (4.31)

îs (k + 2) =

(
1− L2

mRr + L2
rRs

σLsL2
r

Ts

)
îs (k + 1)

+

(
LmRr

σLsL2
r

− j Lmωr
σLsLr

)
Tsψ̂r (k + 1)

+
Ts
σLs

vs (k + 1) , (4.32)

where îs (k) is the real current at time k which can be measured by the current sensor,
ψr (k) can be estimated using Equation (2.49). vs (k) is the voltage applied at time k
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which is also the calculation results at time k − 1. vs (k + 1) is the candidate voltage in
αβ frame, which can be obtained by invoking Clark transformation to the line-to-neutral
voltages estimated using Equation (2.35). The switch vectors in Equation (2.35) belong
to U3.

The difference voltage of the two capacitors can be obtained, taking Equation (4.1) and
4.6 into account. The voltage difference at time k + 1 and k + 2 are given by

∆V̂ (k + 1) =∆V (k)− Ts
C

c∑

x=a

|sx (k)| ix (k), (4.33)

∆V̂ (k + 2) =∆̂V (k + 1)

− Ts
C

c∑

x=a

|sx (k + 1)| îx (k + 1). (4.34)

4.3.3 Proposed decoupled FCS-MPC controller

Unlike the traditional FCS-MPC, the primary control objective of the decoupled
FCS-MPC is selected as the current control, which is to ensure the higher level pri-
ority for current performance. The cost function is defined as

J (k + 1) =
[
i∗s (k)− îs (k + 2)

] [
i∗s (k)− îs (k + 2)

]
. (4.35)

Instead of combining the cost function of voltage balance to the current control together,
the voltage balance control objective is to ensure that the difference of the two voltages is
within a symmetrical bounds defined by the references (usually set to zero). Two bounds
are defined to achieve the tradeoff between the voltage balance and the current tracking
performance. The first bound (δ1) is defined to distinguish whether the voltage difference
is big enough to influence the current tracking performance. The second bound (δ2) is
defined to distinguish whether the phase current is big enough to adjust the voltage differ-
ence that can influence the current tracking performance. Thus, the following constraints
are defined:

∣∣∣V̂c0 (k + 2)− V̂c1 (k + 2)
∣∣∣ ≤ δ1

∣∣∣V̂c0 (k + 2)− V̂c1 (k + 2)
∣∣∣ ≤ δ2,

(4.36)

where δ1 ≤ δ2.

The two control objectives must be tuned according to a strategy to achieve the optimal
current tracking performance. In this work, the strategy is designed as follows:

1. When the voltage difference is within the first bound, the candidate vectors are
selected from the 19 effective vectors which are the set of zero vector containing P
state (U3

zp), the set of small vector containing P state (U3
sp), the set of medium vector
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for three level converter (U3
m), and the set of big vector for three level converter (U3

b ).
In such case, the current tracking performance can be guaranteed to the greatest
extent possible.

2. When the voltage difference is out of the first bound and within the second bound,
the voltage difference is big enough to influence the current performance. Thus,
the candidate vectors are selected from the 12 effective vectors that can provide
contribution to the neutral point current, which are U3

sp and U3
m. So that, the

voltage difference can be decreased quickly.

3. When the voltage difference is out of the second bound, the voltage difference ex-
ceeds the capability of the adjustment with the small phase current. Thus, only
selecting candidate vectors from U3

sp and U3
m is not enough. Under such situation,

the current reference should be increased. The method used in this work is increas-
ing the flux reference for the induction motor.

After the selection of the effective vector, the rest is to decide which redundant vector
should be applied. There are two kinds of redundant vectors; the first one is the zero
vector that can be used to adjust the switching frequency: If the last switching states in
two of the three phase are same, then the switching states are selected as that one. The
second one is the small vectors that will be used for balancing the voltage. According
to Equation (4.6), the rule for selecting U3

sp or the set of small vector containing N state
(U3

sn) is listed in Table 4.3.

To further explain the whole process and ease its realization, the main steps of the
proposed solution is summarized in Algorithm 2.

4.3.4 Simulation verification

It will be damaging dangerous to provide a huge unbalance in the available hardware
testbench. However, an effective balancing control capability of a predictive control so-
lution during very small phase current is very desirable. Therefore, in this section, the
maximum balancing capability of the proposed solution under small phase current situa-
tions is tested in simulation using matrix laboratory (MATLAB)/Simulink in this work,
for the sake of safety concerns. All the other tests and performance comparisons are
carried out experimentally.

The simulation scenario is constructed to verify the effectiveness of the DC-link voltage
balancing ability under a small phase current. Since the control plant is induction motor
which means the phase current should be maintained in the range of 25%∼50% of the
nominal current to provide the excitation current. Thus, it is hard to make the phase
current in a low amplitude for the normal work condition.

In this work, the condition is satisfied in the process of excitation for the induction
motor, with a zero speed command. Since the flux is the integration of the voltage

2The symbol “6” indicates that, the relevant case has no influences to the output switching vector.
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1 Function Initial ()
2 Sabc = U3

zo ∪ U3
sp ∪ U3

m ∪ U3
b ;

3 Sabcmid = U3
sp ∪ U3

m;
4 Function Subfunc(Sin)

input : The candidate set Sin
output: The selected voltage output Sout

5 Jmin = inf ;
6 for n = 1 : sizeof(Sin) do
7 Estimate the line-to-neutral voltage vxn
8 using Equation (2.35) with candidate vector Sin
9 vs = Tabc · vxn

10 Estimate îs (k + 2) using Equation (4.32)
11 Calc cost J using Equation (4.35)
12 if J < Jmin then
13 Jmin = J ;
14 vs (k + 1) = vs;
15 Sabc = Sin[n];

16 end
17 end
18 Function Calculation()

output: The selected voltage output Sout
19 Estimate îs (k + 1) using Equation (4.30)
20 Estimate ψ̂s (k + 1) using Equation (4.31)
21 V err

dc (k) = Vc1 (k)− Vc0 (k)
22 if V err

dc (k) > δ2 then
23 Increase flux current reference;
24 Sout=Subfunc(Sabcmid);
25 else
26 if V err

dc (k − 1) > δ1 then
27 Sout=Subfunc(Sabcmid);
28 else
29 Sout=Subfunc(Sabc);
30 end
31 end
32 Apply rules defined in Table 4.3;

Algorithm 2: Algorithm of the proposed improved predictive control solution with
decoupled neutral-point voltage balancing.
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Table 4.3: Rules for selecting redundant vectors.

U3
sp ∆̂V (k + 1) ia ib ic vector output

POO
≥ 0

≥ 0 6
2

6 POO
< 0 6 6 ONN

< 0
≥ 0 6 6 ONN
< 0 6 6 POO

PPO
≥ 0

6 6 ≥ 0 OON
6 6 < 0 PPO

< 0
6 6 ≥ 0 PPO
6 6 < 0 OON

OPO
≥ 0

6 ≥ 0 6 OPO
6 < 0 6 NON

< 0
6 ≥ 0 6 NON
6 < 0 6 OPO

OPP
≥ 0

≥ 0 6 6 NOO
< 0 6 6 OPP

< 0
≥ 0 6 6 OPP
< 0 6 6 NOO

OOP
≥ 0

6 6 ≥ 0 OOP
6 6 < 0 NNO

< 0
6 6 ≥ 0 NNO
6 6 < 0 OOP

POP
≥ 0

6 ≥ 0 6 ONO
6 < 0 6 POP

< 0
6 ≥ 0 6 POP
6 < 0 6 ONO

applied to the winding, if a PI controller is used to control the flux, there should be a
process that the current is small enough leading to the failure of the DC-link voltage
balancing when no extra method is adopted. From Figure 4.9, the process is obvious in
the post-excitation (within [0.02, 0.06] s).

The simulation parameters are listed in Table 4.5. The simulation scenario is set and
analyzed as follows:

1. For t ∈ [0, 0.1] s, a PI based excitation process is applied with a maximum current
limitation at 1.5 pu. Meanwhile, the two balancing resistances are set as R0 = 60Ω
and R1 = 100Ω. Due to this unbalance, the neutral-point current is about 0.25
p.u. This setup was designed to provide a strong unbalance of the neutral point.
As expected, the voltage difference diverges when the phase current is not enough
to provide a proper neutral current in the original FCS-MPC. However, in the
proposed FCS-MPC, the voltage difference is limited in a boundary which is set as
δ1 = 0.01pu. This is caused by the increasing flux current in the algorithm.
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Figure 4.9: Performance comparison at excitation time and zero speed. For each figure,
from up to down are: the phase currents of the stator (ia, ib, ic), voltages of the two
capacitor (Vc1, Vc0), neutral current filtered (iof ) by a second order filter (cutoff frequency
is 50Hz), respectively, all are per-unit values.

2. For t ∈ [0.1, 0.3] s: The motor is accelerating up in consequence with a bigger
current generated to test the balancing ability under a big current state. As can be
seen, both the two methods achieve nearly the same response. Thus, the decoupled
scheme has no obvious difference with the conventional method in case of the current
is big enough.

4.3.5 Experimental verification

4.3.5.1 Experimental setup

All the control schemes in this work are implemented on the same test bench shown in
Figure B.1. For more details, please refer to Appendix B.

The detailed configuration of the controller is collected in Table 4.5. In the following
sections, based on the test-bench afore-described, different testing are carried out experi-
mentally, including the DC-link voltage control dynamics, the THD of the phase currents
and the phase voltages, and the computational burdens (in terms of the calculation time)
of both the classical and the proposed solutions.

4.3.5.2 DC-link voltage control dynamic performance test

Compared to the simulation configuration, it’s difficult to make an unbalanced neutral
point voltage for a real system. Thus, the experimental process is designed to make the
neutral-point voltage drift tracking a reference. The process is shown in Figure 4.10.
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(a) Proposed solution.
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(b) Conventional solution (λ = 0.007).
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(c) Conventional solution (λ = 0.07).

Figure 4.10: Performance of neutral-point voltage balance. The left side is a converge
process, and the right side is a diverge process. For each figure, from up to down are:
the phase currents of the stator (ia, ib, ic), the phase voltages of the stator (van, vbn,
vcn), voltages of the two capacitors (Vc1, Vc0), DC-link voltage drift reference (∆V ∗c ) and
feedback (∆Vc), respectively, all are per-unit values.

Two processes are designed, the left side is the converging process. At instant t = 0.1 s,
the reference of the voltage drift is set to 10% of the nominal DC-link voltage. We see
that the DC-link voltage drift achieve its reference after about 0.3 s with the proposed
method. However, with the conventional method (see Figure 4.10b and Figure 4.10c), the
time is around 0.5 s. So, in this case, the proposed method outperforms the conventional
one. Similar results can also be seen in the diverge process (right side of the figure).
Additionally, the static error of the DC-link voltage drift tracking exist in the conventional
MPC method when the weighing factor is small (see Figure 4.10b). Note that as the
weighting factor becomes bigger, the dynamic performance of the conventional MPC may
become better with the cost of high THD of current (see Figure 4.10b and Figure 4.10c).

4.3.5.3 Steady state quality assessment: THDs

The THD of a signal V is computed according to

THD =

√√√√
n∑

i=2

V2
i

/
V1, (4.37)
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where Vi is the root-mean square value of the i-th harmonic of the signal and V1 is the
fundamental component. Vi are obtained with discrete Fourier transform (DFT), at the
identical setting. In this work, n is selected as the maximum order of the harmonic3.

Comparison of experimental THD results, for the proposed and conventional strategies,
for the phase current and voltage THD(s) is given in Figure 4.11 and Figure 4.12, re-
spectively. During these experiments, the capacitor voltages of the converter were always
balanced which is not present in the figure.

Current THD analysis4, Illustrated in Figure 4.11, shows that in general, somewhat
higher current THD of the conventional method than the proposed method. This is
caused by the weighting factor in the conventional method, which cannot ensure the
controller concentrated on the current tracking. Contrary to the conventional method,
the proposed method selects the current tracking as the control object, which is in reality
decoupled with the neutral point voltage balance, making it better.

Figure 4.12 shows the detailed experimental results of the output phase voltage when
50% of the nominal current is applied. The phase voltage during the experiments pre-
sented a THD of about 139.67% with the conventional MPC method, and the THD of
phase voltage with the proposed method is 131.69%. This illustrates that the proposed
method is also better in decreasing the phase output voltage THDs.

4.3.5.4 Assessment of computation burden: calculation time

As is already mentioned in Section 4.3.1, small computational time is one of the advan-
tages of the proposed control schemes. To assess the computational time, the time dura-
tion required for calculating the algorithm of each method in one sampling/control cycle
is determined by instrumentation trace macro (ITM) cell which is integrated into Cortex-
M4 processor. The timestamps and central processing unit (CPU) ticks are recorded at
the entrance of the function and recorded again at the exit of the function. The elapsed
time is obtained from the difference of the two timestamps. Detailed results are collected
in the first row of Table 4.4.

4.3.5.5 An overall assessment: summarized results and evaluations

To ease an overall assessment of the experimental output, the performances (includ-
ing, execution time, current THD, voltage THD and DC-link voltage control dynamic
performance) of each method are summarized in Table 4.4.

3For example, if the sample rate is 8000Hz and the fundamental frequency is 48Hz, then n is selected
as int

(
8000
2×48

)
= 83.

4All the THD analysis were tested under a 537V DC-link voltage and 0.5pu current. Meanwhile, the
control interval is 125 µs, That is why a little bit high current THDs were seen.
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0.00 0.10 0.20 0.30 0.40 0.50

−0.500

0.000

0.500

ia

[s]

0 10 20 30 40 50 60 70 80 90 100
0.000

0.005

0.010

0.015

0.020

Fundamental Freq.=5.065Hz

Fundamental Mag.=0.470 p.u. THD
9.84%

(b) Conventional solution (λ = 0.007).
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Figure 4.11: Phase current spectrum and THDs.
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(a) Proposed solution.
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Figure 4.12: Phase voltage spectrum and THDs.
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Table 4.4: Overall assessment results.

Conventional Proposed

Execution time 68.0 µs 38.9 µs
CPU ticks 11431 6541
Balancing ability Weak Strong
Current THD 9.84% 8.18%
Voltage THD 139.67% 131.69%
Dynamic Slow Fast

Table 4.5: System parameters and configuration.

Symbol Parameter Value

C0 the DC-link capacitor 0 1462.5 µF
C1 the DC-link capacitor 1 1462.5 µF
Rs Stator Resistance 1.509 Ω
Rr Rotor Resistance 1.235 Ω
Lm Mutual Inductance 232.5 mH
Ls Stator Inductance 239.5 mH
Lr Rotor Inductance 239.5 mH
ib Base value of current 8.1 A
vb Base value of phase voltage 311 V
V b
dc Base value of DC-link voltage 537 V
td Dead time 8 µs
Ts Control interval 125 µs

4.3.6 Summary

In this work, an improved predictive control solution with decoupled neutral-point volt-
age balancing for three-level neutral point clamped converter systems has been proposed
and verified. With the proposed method, the current tracking and the neutral point bal-
ancing requirement can be controlled independently, which provides extra advantages in
computational efforts, current total harmonic distortion, voltage total harmonic distortion
and direct current-link voltage control dynamic performance.

As a case of study, current control problems of induction motor drives are evaluated
with both the proposed and conventional solutions. The experimental results confirmed
that better performances had been achieved with the proposed methods. Considerably
enhanced neutral point voltage balancing control is obtained, with reduced current har-
monic distortions at fast control dynamics of direct current-link voltage drift tracking.
This validates that the proposed method is an effective strategy for the control of neutral
point voltage within the model predictive control framework for three-level neutral point
clamped converters. Note that, the proposed solution, in particular, the same concept
for the average current modeling, can be extended into all neutral point clamped based
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converter topologies.
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Chapter 5

Observers and filters

The former chapters present the controllers for the system. Some of the controllers are
based on the state variables. If all the state variables can be measured by physical sensors,
the feedback of the controller can be easily accessed.

If, however, some of the state variables can not be measured by physical sensors, or it is
not practical to measure all of them, or the physical sensors are too expensive to measure
all of the state variables, the implementation of the controller is hard to complete. In
such case, either the control method has to be discarded, or an alternative state vector
must be found. A feasible solution is to introduce an observer which would reconstruct
the state variables with the help of existing measurable variables and system model.

In this chapter, the observers used in the design of the controller are summarized.
Then a method for designing speed observer is proposed. In more details, the proposed
method can greatly decrease the parameters of the observer and optimize the observer
characteristics to some extent.

5.1 Luenberger observer

The Luenberger observer (LO) was well explained in the early papers of Luenberger [66–
68]. For a well understanding of LO, it is useful to recall the basic concepts.

Consider a linear system described by

ẋ = A(t)x+ B(t)u(t),

y = C(t)x
(5.1)

where the symbols are well explained in equation 3.1.

The LO is designed as

ˆ̇x = Ax̂+ Bu+ L (y − ŷ)

ŷ = Cx̂
(5.2)
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where L is an observer gain that places the eigenvalues of matrix A−LC within the unit
circle to make sure the stability of the system.

the discrete domain equations can be written as

x̂ (k + 1) = Fx̂ (k) + Gu (k) + LC (x (k)− x̂ (k)) (5.3)

where

F = eATs

G =
(
eATs − I

)
A−1B

(5.4)

.

The structure of LO is depicted in Fig. 5.1.

u = F (x̂)
ẋ = Ax+Bu

y = Cx

L

˙̂x = Ax̂+Bu+ L(y − ŷ)
ŷ = Cx̂

u

y

−
ŷ

x̂

Figure 5.1: Luenberger Observer.

5.2 Kalman filter

5.2.1 Introduction

The performance of the LO greatly depends on the exact system parameters and the
exact measurement of the output. However, in a real physical system, none of these
conditions can be granted. Additionally, there is no universal theory for determining the
best observer gain terms, and the gains are usually adjusted by experiment. Although
the gain of the LO can be calculated by some methods like pole placement while certain
performance can also be met, we do not know whether the gain is optimal in most case.

So, a method that can optimize the gain is desired. Kalman filter (KF) was first
introduced by [69], which provides an alternative method that can optimize the feed
back gain based on the presence of process noise and measurement errors. It provides
an optimal method to get the state variable based on the filtering of the noises existed
in measurement and the system. The drift of the system parameters can be regarded as
noise.

In this section, a short introduction of the theory for KF will be presented.
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Suppose the discrete plant model is described as

xk+1 = Fxk + Guk + Γwk (5.5)

where x and u are the state variable and system input; F is the state transition matrix;
G is the control-input matrix; Γ is the process noise transition matrix. The measurement
model is given by

yk+1 = Hxk + Dvk (5.6)

where y is the measurement output; H is the observation matrix which maps the state
variable into observed variable; D is the observation noise transition matrix.

The process noise wk and measurement noise vk are white Gaussian random sequences
having zero mean. Thus, the equations

E {wk} = 0, E {vk} = 0 (5.7)

hold, where E {} denotes the expected value. Since both the two sequences are random
variables without dependency on each other, that is

E
{
wiw

>
j

}
= 0, E

{
viv

>
j

}
= 0 (5.8)

where i 6= j and the covariances are defined by

E
{
wkw

>
k

}
= σ2

w, E
{
vkv

>
k

}
= σ2

v . (5.9)

1 Function Initial ()
2 x̂0 = 0;
3 P0 = diag;
4 k = 1;
5 Function Calculation()

input : uk−1,yk
output: x̂k

6 Prediction:
7 x̂−k = Fx̂k−1 + Guk−1;
8 P−k = FPk−1F> + Γσ2

wΓ>;
9 Correction:

10 Kk = P−k H>
(
HP−k H> + Dσ2

vD
>)−1;

11 x̂k = (I−KkH) x̂−k + Kkyk;
12 Pk = (I−KkH) P−k ;
13 k = k + 1;

Algorithm 3: Recursive algorithm for the KF.

The structure of the KF is the same as that of the LO in Fig.5.1. As a case study, An
angular motion system is introduced in the following sections.
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5.2.2 case study: angular motion system

Position control and speed control are the most common function in modern electric
drives. The sensors mounted to the shaft have different principles(e.g., optical encoder,
sinusoidal encoders, magnetic devices, and resolvers). However, most of the sensors can
directly or indirectly output the position of the motor with a digital format. So, to
control the position and speed precisely and smoothly, the method of estimating speed
and position should be investigated.

Since the position error of the encoder can be considered as Gaussian white noise, this
coincides with the nature of KF. Additionally, the KF reduces the usage of external
timers or captures used in the conventional M/T method [70]. So, KF is widely used
to estimate the motor speed and position. As a result, the estimations of them in all
the control schemes in this thesis are implemented with KF. There are many Kalman
observers forms with different system state variables. Most of them require the model
of the control plant (e.g., [71] proposes a self-adaption KF to estimate the position and
speed with the information of the control plant).

In this section, a KF using the mathematical relationship between position, speed, and
acceleration is designed to estimate the position and speed.

The description of a rotating motion system is as follows:

For a continuous second-order KF (KF2) model in an angular motion system, the re-
lation regarding the position θ, and angular velocity ω can be described by ẋ = A (t)x,
where x =

[
θ ω

]>,

A (t) =

[
0 1

0 0

]
. (5.10)

For a continuous third-order KF (KF3) model, the relation regarding the position θ,
angular velocity ω, and acceleration a can be described by ẋ = A (t)x, where x =[
θ ω a

]>,

A (t) =




0 1 0

0 0 1

0 0 0


 . (5.11)

It is easy to verify that (3.3) holds. Thus, the transition matrix can be expressed using
the form of (3.4).

For a KF2 model, the position and velocity act as the state variables for x (k) = [θk ωk]
>.

The transition matrices of the system model are described as follows:

F =

[
1 Ts

0 1

]
,H =

[
1

0

]
,Γ =

[
T 2
s

2

Ts

]
. (5.12)



5.3. FIXED GAIN FILTER FOR ANGULAR MOTION SYSTEM 81

For KF3 model, x (k) = [θk ωk ak]
>, in which ak denotes the acceleration state. The

corresponding transition matrices can be deduced as

F =




1 Ts
T 2
s

2

0 1 Ts

0 0 1


 ,H =




1

0

0


 ,Γ =




T 2
s

2

Ts

1


 . (5.13)

Note that the input vector of the system is zero, which accounts for the input matrix
G = 0 for both of the KF2 and KF3. And the observation noise transition matrix is
D = 1, which means the grid phase angle is the unique observation state.

Based on these coefficient matrices and some properly set initial values, the states can
be estimated using the KF algorithm, which is listed in Algorithm 3.

5.3 Fixed gain filter for angular motion system

It is evident that there are many matrix operations in the Algorithm 3, which is difficult
to implement in real time. Although the computational capability of modern processors
increased greatly, it is still meaningful to investigate an algorithm that can provide good
performance with low computational cost.

In this section, we propose a simple and effective fixed gain filter to estimate the po-
sition, velocity, and acceleration in angular motion. The novelty lies in that, unlike the
conventional KF or extended Kalman filter (EKF), for which an online tuning process
of the feedback gain matrix is required, the proposed solution employs an optimal fixed
feedback gain matrix, which is obtained through a simple offline calculation. This signif-
icantly reduces the computational burden. Additionally, the proposed filter has only one
tunable parameter, which greatly eases the required tuning efforts. Meanwhile, the tun-
able parameter is theoretically calculated and refined to a certain small range to further
simplify the tuning process. Both the fixed gain and the certain small range considerably
make it easy to put into practice in all the position feedback applications in industries.
Compared to the results of the conventional methods, the proposed method has evidently
enhanced control performances and advantages, such as faster tracking, easier tuning,
error suppressing, and lower program complexity which are confirmed by simulation and
experimental data.

5.3.1 Motivation

Position and velocity are the most common feedback signals in angular motion systems,
such as the electrical drives. The performances of these systems are decisively influenced
by the accuracy/dynamic of the signals of position and/or velocity [72–74]. For a high-
performance motion or drive control, the acceleration signal is required as well, in the
feed-forward control, which can be used to ease the adjusting range of the controller so
to suppress the disturbance influences and to improve the system control dynamics and



82 CHAPTER 5. OBSERVERS AND FILTERS

robustness, etc. As a common solution, different sensors (e.g. magnetic devices, resolvers
and optical encoders) are mounted on the motor shaft to directly obtain a quantized
position signal. However, the instantaneous velocity and acceleration are not obtained
directly. Therefore, additional state observers performing the estimation algorithm are
required to obtain the velocity and the acceleration, with good accuracy and dynamics [75,
76].

Generally, conventional velocity estimate methods in angular motion fall into three cat-
egories: finite-difference (i.e., the so-called M-method), inverse-time (T-method), and the
combination of M- and T-methods (M/T-method) [77]. The basic concept of M-method is
to count the number of pulses during a fixed time interval, and the velocity is estimated by
dividing the number of pulses by the duration. Due to the limited resolution of the sensors
and the existence of the measurement noise, the number of pulses in a fixed time interval
may vary abruptly, especially in low-velocity situations, which imposes the requirement
of a digital filter to smooth the signal. However, an inevitable delay, caused by the filter,
is seen. The T-method which measures the time between two consecutive position pulses,
is usually adopted to provide more accuracy. The velocity is then calculated by dividing
the angle (related to the two successive position pulses) by the time interval. (At least)
two consecutive pulses provide a chance to update a valid velocity state. Due to the lim-
ited measurement/sampling frequency, the accuracy cannot be ensured in high-velocity
cases. To avoid such problems, a combination of M- and T-methods is used in practice.
More specifically, M-method is used in the high velocity range, while T-method, in the
low velocity range. However, determining the switching point is problematic when the
two methods change each other to a new operating situation. Furthermore, discontinuous
points in the velocity estimation may highly disturb the controller. Another drawback
of the M/T-method is that the update period is variable. Therefore, using conventional
methods is difficult to guarantee a precise velocity estimation. Due to the existence of
quantized errors, the estimate of acceleration based on the conventional differential veloc-
ity method is even worse.

Many research activities are reported to obtain good estimates of position, angular ve-
locity, and acceleration. E.g., in reference [78], the authors proposed a double integrator
method to estimate velocity and acceleration based on the assumption that the position
signal from the encoder is accurate. However, it only works effectively in low-velocity and
low-acceleration regions. In reference [79], a combination of an encoder and an accelerom-
eter were used to improve the estimate of velocity, but at the cost of extra hardware,
which increases the cost and system complexity. To the same end, the KF [69] has been
extensively explored to estimate the motor position and velocity in both academic and
in industrial applications [80–82]. However, the KF usually requires a relatively accurate
model of the control plants [71,83] and their parameters (e.g., the inertia and friction fac-
tor.). The realization steps involve complex matrix calculations, which impose the very
high computational power of the digital controller. The tuning process, which needs the
knowledge of process noise wk and measurement noise vk, requires much expertise and is
quite tedious.

Motivated by the above analysis, in this work, we propose a simple and effective fixed
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gain filter (FGF) to solve the afore-mentioned problems. The proposed solution is derived
from the conventional KF with an optimal fixed gain matrix, and the optimal fixed gain
matrix can be expressed by one parameter ranging from 0 to 1. Thereby, the range of
the parameter is further refined through the analysis of stability. The effectiveness and
accuracy of the proposed filter are validated by comparing to the conventional methods.
The major contributions of this work include: with the proposed FGF,

1. a good solution to overcome the shortcomings in traditional methods (M method,
T method, M/T method, and KF) is provided;

2. it realizes a high accuracy tracking of position, angular velocity, and angular accel-
eration with a short execution time;

3. compared to the KF, the computational burden is greatly reduced, while the ad-
vantages of the KF remain;

4. only one factor s (the tuning parameter) is required to adjust the performance of
the filter and the range of s is refined to 3 − 2

√
2 < s < 1 through the stability

analysis, both of which greatly ease the tuning efforts.

5. the effectiveness and the dynamic performance for tracking position, velocity, and
acceleration are either similar to those of the KF or often better due to the optimal
fixed gain.

As a result, this practical and effective method is excellent to be utilized in the angular
motion.

This work is organized as follows: in Section 5.3.2, the gain of FGF is developed in detail.
Section 5.3.4 presents the simulation results of position, velocity, and acceleration with
different estimate methods as a proof of concept. In Section 5.3.5, the experiment results
are illustrated to confirm the effectiveness of the proposed solution. Finally, conclusions
are drawn in Section 5.3.6.

5.3.2 Gain of the FGF

The original FGF was proposed for radar tracing problems with two or three internal
states, which are position, velocity and acceleration. For the grid synchronization prob-
lem, there are only two internal states, the grid phase angle θ and the grid frequency f .
Note that, although the acceleration signal has no practical significance for the grid sys-
tem, it serves the purpose when grid frequency variation occurs. Thus, the mathematical
relationships among the three considered states for both the radar and the grid applica-
tions are identical. Consequently, it is possible to apply the insight into the structure of
one problem to the other problem based on the system analogy.

In order to quickly determine the feedback gains and reduce the complexity of the
algorithm, the filter gains are designed to be constants, and their expressions can be
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obtained from the steady state KF algorithm [84]. To achieve the steady state conditions
for a KF, the noise signals wk and vk must exhibit statistical stationary behavior and the
sampling data rate must be a constant; otherwise the proposed filter provides a suboptimal
estimate.

The proposed optimal steady-state filter could be expressed as

x̂k = x̂−k + K
(
yk −Hx̂−k

)
, (5.14)

where x̂−k = Fx̂k−1, and K is the constant gain matrix of the filter. x̂k denotes the esti-
mated state variable from the FGF, and x̂−k denotes the predicted state. It is reasonable
to regard the error covariances P−k and Pk−1 as constants, which is a sufficient condition
and can be deduced from the expressions of the K and P−k in the KF iteration formula.
In other words, P−k and Pk−1 converge to a steady state,

P−k = P−k−1,Pk = Pk−1. (5.15)

If we substitute Pk−1 into P−k and rearrange the expression of K in the KF algorithm, the
underlying solutions to the new prediction function and correction function are achieved
by (5.16) and (5.17):

P−k = FPk−1F
> + Γσ2

wΓ>, (5.16)

K = P−k H>
(
HP−k H> + Dσ2

vD
>)−1. (5.17)

For the second-order FGF (FGF2) and third-order FGF (FGF3), the fixed gain matrices
can be separately written as

K =
[
α β

Ts

]>
, (5.18)

K =
[
α β

Ts

2γ
T 2
s

]>
. (5.19)

Note that, for the FGF2, which is a special case of the FGF3, nothing is different except
setting γ as zero. Thus, the FGF3 is taken as an example in all the following analyses.

If we use the gains that are obtained from the steady state KF algorithm for the models
given above, it turns out that α, β, (and γ) can actually be solved in an analytic form, and
the solution can be expressed in one parameter. The so-called target maneuvering index,
which is the ratio of the motion to the observation uncertainties, is defined as λ = T 2

s σw
σv

.

For the above new prediction function and correction functions, α, β, (and γ) are dimen-
sionless constants, and all the parameters in the operator expressions (Equations (5.16)
and (5.17)) are now defined. Accordingly, solving (5.16) and (5.17) for the FGF yields
the following relations:

λ =
2 γ√
1− α, (5.20)
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Figure 5.2: The relationship between the feedback gains of the FGF and s.

γ =
β2

4α
, (5.21)

β =

(
4− 4

√
1− α− 2α

4
√

1− α− 2α + 4

)
. (5.22)

As evident in (5.20)-(5.22), all the feedback gains of the FGF is relative to λ. Once this
parameter is evaluated, the optimal steady state gain parameters α, β, (and γ), as well
as the resulting performance, are specified in advance.

However, the exact value of λ cannot be determined on account of the complexity of the
actual system. Therefore, the feedback gains can be optimized only by the designation of
the value of λ that corresponds to the desired system performance.

Since λ > 0, the range of α can be drawn as 0 ≤ α < 1. In order to further simplify the
calculation process, s is defined as

√
1− α, which is called the regulation coefficient. α, β,

and γ can be characterized by s, and then the feedback gains can be explicitly expressed
in terms of the function of s as

α = 1− s2, (5.23)

β =

[
β0

β1

]
=

[
2(s− 1)2

2(s+ 1)2

]
, (5.24)

γ =

[
γ0

γ1

]
=

[
(1−s)3
s+1

(s+1)3

1−s

]
. (5.25)

The relationship between the feedback gains and s is depicted in Fig. 5.2. As can
be seen, α, β0, and γ0 have the same monotonicity. Meanwhile, β1 and γ1 can also be
excluded by the stability analysis, since the conjugate pair of complex roots lies outside
the unit circle. Thus, α, β0, and γ0 are the real solutions for the FGF3; whereas, α and
β0 are the real solutions for the FGF2.

Since λ is characterized by s, the relationship between the two parameters for FGF2 and
FGF3 can be deduced respectively as (5.26) and (5.27), which is also illustrated in Fig. 5.3.
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Figure 5.3: The relationship between λ and s for FGF2 and FGF3.

Since λ exhibits a drastic change in the vicinity of s = 0, the logarithmic relationship is
introduced.

s =
λ

4
−
√
λ
√

λ
4

+ 2

2
+ 1, (5.26)

s =
σ

6
− λ

6
+
λ (λ− 18)

6σ
+ 1, (5.27)

where

σ =
3

√
27λ2 − 108λ− λ3 + 3

√
3λ
√

432− λ2. (5.28)

In Fig. 5.3, a monotone decreasing relationship can be observed between s and λ within
the domain of definition for either the FGF2 or the FGF3. Hence, the feedback gains of
the FGF can be considered to present a one-to-one mapping with λ. The feedback gains
can be optimized by a proper design of s.

The algorithm only requires three equations with multiplication and additions, which
greatly simplify the calculation process compared to the traditional KF. Therefore, it is
very efficient in terms of computation and application with a DSP controller.

The scheme of the FGF for position, velocity, and acceleration estimation is shown in
Figure 5.4.

5.3.3 Stability analysis

The fixed gain with respect to s in Section 5.3.2 gives a solution under which the con-
vergence rate, command tracking, disturbance rejection, and noise immunity achieved in
an optimal state due to the characteristic deriving from KF. In this section, the suf-
ficient conditions that make the FGF, described in Section 5.3.2, absolutely stable are
determined. Based on the theorem of discrete system control, the asymptotic stability re-
quirement for a discrete system is that all eigenvalues (roots of the characteristic equation)
must lie strictly inside the unit circle [85,86].
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Figure 5.4: The scheme of FGF for position, velocity, and acceleration estimation.

Based on the theorem of discrete system control, the asymptotic stability requirement
is that all eigenvalues (roots of the characteristic equation) must lie strictly inside the
unit circle [86].

The state difference equation of the FGF can be obtained from (5.14), which can be
written as

x̂k = (F−KHF) x̂k−1 + KHxk−1. (5.29)

Thus, the state matrix characteristic equation of the FGF is obtained by

|zI− (F−KHF)| = 0. (5.30)

After substituting (5.18) into (5.30), we get the characteristic equation of the FGF2 as

z2+
(
s2 − 4s+ 1

)
z + s2 = 0. (5.31)

By substituting (5.19) into (5.30), the characteristic equation of the FGF3 can be ob-
tained as

z3 − 7s− 1

s+ 1
z2 − s2 (s− 7)

s+ 1
z − s2 = 0. (5.32)

Assuming the roots of the characteristic equation are given by p0, p1, and p2. Then, the
homogeneous response of the system is able to be represented in terms of three poles.

y (k) = C0p
k
0 + C1p

k
1 + C2p

k
2 (5.33)

where C0, C1, and C2 are coefficients. The locations of the poles in the z-plane, therefore,
determine the homogeneous response as follows:

1. A real pole inside the unit circle (|p| < 1) defines an exponentially decaying com-
ponent (Cpk) in the homogeneous response. The rate is determined by the pole
location. More specifically, the closer the pole to the unit circle, the longer the tran-
sient response time is. Conversely, as the distance between the poles and the origin
decreases, the transient response becomes faster but noise amplification increases.
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1 Function Initial ()
2 θ̂0 = 0;
3 ω̂0 = 0;
4 k = 1;
5 Function Calculation()

input : θk
output: θ̂k, ω̂k, âk

6 Get encoder position: θk;
7 Predict current position:
8 θ̂−k = θ̂k−1 + ω̂k−1Ts + âk−1

T 2
s

2
;

9 Calculate error:
10 θerr = θk − θ̂−k ;
11 if θerr > 0.5 then
12 θerr = θerr − 1;
13 else if θerr < −0.5 then
14 θerr = θerr + 1;
15 else
16 θerr = θerr;
17 end
18 âk = âk−1 + γ

T 2
s
θerr;

19 ω̂k = ω̂k−1 + âk−1Ts + β
Ts
θerr;

20 θ̂k = θ̂k−1 + ω̂k−1Ts + âk−1
T 2
s

2
+ αθerr;

21 θ̂k=mod(θ̂k,1);
22 k = k + 1;

Algorithm 4: Algorithm of position and speed estimator using FGF

2. A complex conjugate pole pair (p = ρe±jθ) inside the unit circle generate a response
that is decaying sinusoid in the form of Aρk sin (kθ + ϕ), where A and ϕ are deter-
mined by initial conditions. The rate of decaying is specified by ρ which satisfies
ρ < 1. The oscillation frequency is determined by θ.

3. A system with one or more poles lying on the unit circle has non-decaying oscillatory
components in the homogeneous response. It is defined to be marginally stable.

4. If any real pole or a pair of conjugate poles are located on the outside of the unit
circle, there are divergent response components, causing the system to be unstable.

5. A pole in the unit circle defines a component that is constant in amplitude and
defined by the initial conditions.

6. A real pole outside the unit circle (|p| > 1) corresponds to an exponentially increas-
ing component Cpk in the homogeneous response, thus defining the system to be
unstable.
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Figure 5.5: Root locus of discrete FGF2.

7. A complex conjugate pole pair on the unit circle (p = e±jθ) generates an oscillatory
component of the form A sin (kθ + ϕ). A and ϕ are determined by initial conditions.

8. A complex pole pair outside the unit circle generates an exponentially increasing
oscillatory component.

Fig. 5.5 (a) shows the locus of the roots of (5.31) as s increased from 0 to 1. For s = 0,
p0 starts at the origin and p1 starts at the point (−1, 0 i). With the increasing of s, the
two branches of the root locus meet at the negative real axis

(
s = 3− 2

√
2
)
, move out in

the complex plane, cross the imaginary axis (s = 2−
√

3), and finally end up at the point
(1, 0 i) (s = 1).

According to the stability criterion, the range of s can be discussed for the following
three aspects.

1) There are two intersections between the root locus and the z-domain unit circle, which
indicates a non-decaying oscillatory response of the system, i.e., marginally stable.
Therefore, s = 0 and s = 1, which correspond to the two intersections, are excluded
from the stable region. The range of s is now narrowed to (0, 1). The root trajectory
falls inside the stable region, and in such case, the natural response of the system
decays to zero as time increases to infinity.

2) The coordinate of poles at the breakaway point is (2
√

2 − 3, 0 i), corresponding to
s = 3 − 2

√
2. When s ≤ 3 − 2

√
2, the poles are both negative real poles, and

when s > 3 − 2
√

2, they are a pair of complex conjugate poles. Since the negative
real poles cause the alternate sign of the response components, which will induce an
unsatisfactory performance and poor robustness of the system, they are discarded as
well. Thus, the range of s is refined to 3− 2

√
2 < s < 1.
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Figure 5.6: Root locus of discrete FGF3.

3) If the period of the sinusoid response contains 4 discrete steps, the sequence of the
sinusoid signal should be [0, 1, 0, -1], which is the worst kind of sinusoid signal. In
order to achieve a more precise response, the sinusoid response period should contain
more than 4 discrete steps, which implies that 4θ < 2π. The conjugate poles should
be therefore, selected with positive real parts. The coordinate of the critical point
between the root trajectory and the imaginary part is (0, (2−

√
3)i), which corresponds

to s = 2−
√

3. Consequently, the range of s is further refined to 2−
√

3 < s < 1.

After all the above three points are considered, the locus of the roots with 2−
√

3 < s < 1
can be depicted as in Fig. 5.5(b). In this case, only a series of conjugate poles are left to
consider.

According to the stability criterion of the system, the range of the feedback gains of
FGF3 can be analyzed exactly the same way as that of FGF2. Therefore, the original root
locus shown in Fig. 5.6 (a) is shrunk to Fig. 5.6 (b), and the corresponding range of s is
narrowed to be 3− 2

√
2 < s < 1. Indeed, the poles of FGF3 consist of a real positive pole

and a pair of conjugate poles.

Actually, for the pole location of the FGF, the closer the pole to the unit circle, the
longer is the transient response time. Conversely, the greater distance to the unit circle
means a faster transient response yet more severe noise. Therefore, the value of s, as a
tradeoff between the noise reduction and maneuver-following capability, can be achieved
by the desired system performance design within the stability range.

5.3.4 Simulation Assessment

In the ideal condition, the position input of the estimator is the real position signal
which is generated by integrating velocity over time. Such tests are valuable in verifying
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Table 5.1: System parameters and configuration for the KF and FGF

Symbols Parameter Value

θbase base value of position 2π rad
ωbase base value of velocity 100π rad s−1

abase base value of acceleration 10 00π rad s−2

Ts sampling time 100 µs
n encoder bits 12
s tuning parameter 0.9217
α filter parameter 0.1505
β filter parameter 0.0123
γ filter parameter 2.5e-4
Dσ2

vD
> covariance of measurement noise 1

Γσ2
wΓ> covariance of process noise diag[0.01, 1e5, 2e9]

whether the parameters of the filter are optimal when it is implemented practically.

To simulate the practical case, an encoder simulator is added to convert the real position
signal into signal with the quantized error. For a n-bit encoder, the encoder simulator is
modeled in such a way:

θ̄ =
int
(
2n × mod

(
θ
2π
, 1
))

2n
(5.34)

where θ is the real position, θ̄ is the position with quantized error.

A comparison of the new proposed FGF to other methods is necessary to demonstrate
its performance. In this section, numerical simulations are performed in matrix laboratory
(MATLAB)/Simulink with the proposed algorithm. The parameters used for simulation
are listed in Table 5.1. All the positions, velocities, and accelerations acquired by the
simulation and the experiment are normalized using the base values.

5.3.4.1 Performance for tracking a step velocity

This section describes the performances of the conventional M method, KF, and FGF
for tracking a step velocity, which in comparison to the ramp and parabolic velocities is
the worst case. Figure 5.7 shows the step responses under both ideal conditions and with
noise. In this work, all the ideal conditions mean that the signal is noise-free and without
any quantization error. Since the input position signal has no quantization error under
ideal conditions, the position θ̂M

k and velocity ω̂M
k are the same as the ideal position θk

and velocity ωk. For both ideal and noisy conditions, the FGF can track the velocity
ω̂FGF
k with overshoots slightly larger than ω̂KF

k of KF at sharp step edges. Meanwhile, the
FGF tracks the acceleration âFGF

k with a faster response than âKF
k of KF, whereas the M

method is unable to track the acceleration1. Since the ideal infinite acceleration appearing
1The acceleration is an impulse.
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âKF
k
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Figure 5.7: The step response of M method, KF, and FGF. θk is the real position. θ̂M
k ,

θ̂KF
k , and θ̂FGF

k are the estimated positions with the M method, KF, and FGF, respectively.
ωk is the real angular velocity. ω̂M

k , ω̂KF
k , and ω̂FGF

k are the estimated angular velocities
with the M method, KF and FGF, respectively. ak is the real acceleration. âM

k , âKF
k , and

âFGF
k are the estimated accelerations with the M method, KF, and FGF, respectively.

at the sharp step edge cannot be illustrated, it is set to zero in Figure 5.7. This sharp
step edge rarely appears in practice, and the simulation is mere to indicate that the FGF
can track sharp step edges similar to the KF.

5.3.4.2 Performances for tracking a ramp velocity and a parabolic velocity
under ideal condition

Ramp and parabolic velocities are the common situations in the normal running status
of electric drives. Figure 5.8 gives the comparison of the conventional M method, KF, and
FGF for tracking ramp and parabolic velocities under ideal condition. Compared to the
actual acceleration ak , âKF

k and âFGF
k have slower responses. And the response rate of âKF

k

is higher than the âFGF
k . Figure 5.9 shows the error for tracking under ideal conditions the

position, velocity, and acceleration for both ramp and parabolic velocities. The errors are
calculated by subtracting measured values from real ones. All three methods can precisely
estimate the position, velocity, and acceleration for different error levels. The abrupt
change of velocity leads to a relatively large error of velocity, position, and acceleration
tracking for both FGF and KF, especially for the FGF. Nevertheless, in the whole range
of velocity, they have a better velocity estimation than the M method.
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Figure 5.8: Performance for tracking ramp and parabolic velocities under ideal condition.

5.3.4.3 Performances for tracking a ramp velocity and a parabolic velocity
with quantized errors

The position signals in electrical drives always have quantized errors that impact the
estimate results. The comparison of the conventional M method, KF, and FGF tracking
with quantized errors is shown in Figure 5.10. The M method uses a second-order low pass
filter (the cut-off frequency is set to 500Hz) to smooth the quantization error. As shown
in Figure 5.11, the KF and FGF can successfully calculate the position, velocity, and
acceleration, while the M method can only estimate the position θ̂M

k and velocity ω̂M
k , but

not the acceleration âM
k . Compared to θ̂KF

k and θ̂FGF
k , even with a low pass filter, θ̂M

k has
the largest deviation for position and velocity estimations. Among them, the FGF has the
smallest error and gives the fastest response, since it comprises only one factor, making
it easy to acquire the optimum estimate. The KF can also provide the same performance
as the FGF when the parameters are optimized. However, as the KF involves several
factors, it is very difficult to find the optimal combination. What need reminds is, the
parameters of KF are tuned with a lot of effort and the chosen parameters are the ones
making the KF have the optimal performance within the entire tuning process.

The simulation numerically demonstrates that the FGF can track step, ramp and
parabolic velocities under both ideal and noisy condition. In the case of tracking un-
der ideal condition, the errors of position and acceleration are, ErrFGF > ErrKF > ErrM,
and the errors of velocity are, ErrM > ErrFGF > ErrKF. The tracking responses rates
are, RM > RFGF > RKF. In the case of tracking with quantized errors, the errors of
position, velocity, and acceleration are, ErrM > ErrKF > ErrFGF. However, it is difficult



94 CHAPTER 5. OBSERVERS AND FILTERS

−0.0004

−0.0002

0.0000

0.0002

0.0004

θ̂Merr

θ̂KF
err

θ̂FGF
err

−0.0100

0.0000

0.0100

ω̂M
err

ω̂KF
err

ω̂FGF
err

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−1.0000

0.0000

1.0000

âM
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Figure 5.9: Errors for tracking a ramp velocity and a parabolic velocity under ideal
condition.θM

err, θKF
err , and θFGF

err are the estimated errors of positions with M method, KF,
and FGF. ωM

err, ωKF
err , and ωFGF

err are the estimated errors of angular velocities with the M
method, KF, and FGF. aM

err, aKF
err, and aFGF

err are the estimated errors of accelerations with
the M method, KF, and FGF.

to compare their tracking responses rates.

5.3.5 Experimental Assessment

In this section, a speed control drive system for the induction motor is used to fully
evaluate the proposed FGF and the other mentioned methods. The drive is controlled
using the vector control. The speed feedback has, therefore, a great influence on the
control performance. The parameters of the respective filters used in the experiment
are selected as the same way as in the simulation. Thus, only the special information
is discussed here. One comment is that the encoder used in the testing is KUBLER
T5.2400.1222.1024. It usually provides a resolution of 1024. Because quadrature signals
generated by the incremental encoder are combined with an exclusive or (XOR) gate, and
the output of the XOR gate is then connected to a counter to record the position, the
encoder can provide a resolution of 4096.

5.3.5.1 Programming complexity evaluation

To evaluate the performance of KF and FGF, the first concern is whether they are
easy to realize in programming. The algorithms are implemented in C language running
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Figure 5.10: Performance for tracking ramp and parabolic velocities with quantized errors.

on STM32F417IGTx, a 168 MHz, advanced reduced instruction set computing machine
(ARM) processor. To better evaluate the performance and make it easy to compare
to different system setups, all the variables are expressed by normalized values. In the
case of using floating-point numbers, both algorithms are easy to implement due to the
large dynamic range. In the case of using fixed-point numbers, although the same scale
factors for the variables (θ, ω, a) can be selected for both algorithms, they have different
complexity. Since the covariance matrix P of the KF is unknown and has a wide dynamic
range, the scale factors for each element of the matrix P, which consists of six different
elements2, should be selected carefully, and all results having operations with P must be
scaled to the respective format based on the scale factors of the operators. Therefore, it is
very difficult to design a proper program to satisfy the accuracy requirements of the KF
using fixed point (FXP) numbers (KF-FXP). However, the implementation of the FGF
using fixed-point numbers (FGF-FXP) is much easier to fulfill, because the parameters
(α, β, γ) only depend on one factor s and can be calculated offline. Thus, we do not
have to pay much attention to choosing a proper scale factor for the fixed-point numbers.
The factor is selected according to its range3. This is also one of the motivations why we
choose the normalized value to replace the physical value.

Based on the formerly presented description, from the most positive to the most negative
degree, the complexity of the implementation is divided into three stages, namely, positive
(1), neutral (0) and negative (-1), as shown in Table 5.2. The KF using fixed-point

2Since P is symmetric, the 3× 3 matrix has only six unique terms.
3In our implementation, the scale factors for α, β

Ts
, and 2γ

T 2
s
are selected as 229, 219, and 26, respectively.
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Figure 5.11: Errors for tracking ramp and parabolic velocities with quantized errors.

Table 5.2: Execution time for the KF and FGF

Methods CPU ticks Execution time Complexity

KF-FXP 1105 6.6 µs -1
KF-FP-FPU 320 1.9 µs 1
KF-FP-FPUE 1631 9.7 µs 1
FGF-FXP 187 1.1 µs 0
FGF-FP-FPU 121 0.7 µs 1
FGF-FP-FPUE 894 5.3 µs 1

numbers is the most complex to program.

The second evaluation is the computational time. Table 5.2 shows the computational
time of different KFs and FGFs. The KF using floating point (FP) number (KF-FP) with
a floating point unit emulator (FPUE) takes the longest time, 9.7µs, to execute, while
the FGF using floating point number (FGF-FP) with a floating point unit (FPU) takes
the shortest time, only 0.7µs. Compared to KF-FXP, KF-FP with an FPUE (KF-FP-
FPUE), and KF-FP with an FPU (KF-FP-FPU), the execution time of FGF-FP with
an FPU (FGF-FP-FPU) is reduced by 89.4%, 92.8%, and 63%, respectively, and for the
FGF-FXP the reductions are 83.3%, 88.7%, and 42.1%, respectively.

In summary, considering the complexity of programming and calculation time, the FGF-
FP is recommended when the micro-controller has an FPU, and the FGF-FXP is recom-
mended when the micro-controller has no FPU. It should be noted that this conclusion
can also be drawn for other processors.
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5.3.5.2 Performances evaluation

Since the step velocity cannot be obtained in practice, in the experiment only the ramp
and parabolic velocities are tracked. The experiment results with the M method, KF, and
FGF tracking ramp and parabolic velocities are shown in Figure 5.12 and Figure 5.14.
The three methods successfully track the positions θ̂M

k , θ̂KF
k , θ̂FGF

k and velocities ω̂M
k , ω̂KF

k ,
ω̂FGF
k . The accelerations âKF

k , âFGF
k and torque current iq have the same tendency, meaning

that the KF and FGF can correctly track the acceleration, while the M method fails to
track it. It can be seen that the acceleration tracking performance of the KF and FGF
are similar.

Figure 5.13 and 5.15 show the zoomed in positions and velocities from the red frames
and blue frames in Figure 5.12 and 5.14. The position θ̂M

k acquired with the M method
is a step signal with a resolution ratio of 1/(214), which is also the maximum error of the
estimated position with the M method. As shown at the left side of Figure 5.13 and 5.15,
where the velocities are around 0 pu, the KF, and the FGF can decrease the estimated
error of position, just as the simulation in Figure 5.11. At the right side of Figure 5.13
and 5.15, the velocities are around 0.36 pu and 0.42 pu, the difference between θ̂KF

k , θ̂FGF
k ,

and θ̂M
k is inconspicuous. For both sides of the figures, the velocity ω̂M

k has a much more
serious ripple and time delay than the velocities ωKF

err and ωFGF
err . The serious ripple and

time delay results in a decreased bandwidth in closed loop systems, which will influence
the performance. The velocity ω̂M

k is smaller than the velocity ω̂KF
k and ω̂FGF

k , because the
M method acquires a smaller velocity when the electrical drive is speeding up, as shown
in Figure 5.11. Besides, it can be noticed that the velocity ωFGF

err has a lower ripple than
the velocity ωKF

err . It confirms the former analysis that the FGF is easier to get the optimal
Kalman gain because the fixed gain involves only one factor s.
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Figure 5.13: Zoomed in experimental comparison for tracking position and velocity from
Figure 5.12. The left side and the right side are from the red frame and blue frame of
Figure 5.12, respectively.

In general, the experimental results have a good agreement with the simulation results
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Figure 5.12: Experimental comparison for tracking position, velocity, and acceleration
with ramp velocity. iq is the torque current. ia, ib, and ic are the three-phase current.

with quantized errors (see Figure 5.14). It demonstrates that the simulation model has a
high fidelity compared to the real physical hardware. The FGF has a good performance
in the entire range of velocity and improves greatly the accuracy of position estimate.
Additionally, the FGF decreases the ripple of velocity estimate and can successfully esti-
mate the acceleration, while the M method fails. The performances of FGF for tracking
positions, velocities, and accelerations are quite similar as the KF or often better because
the FGF is a special form of the KF. The experimental results confirm that the proposed
FGF can be utilized to precisely estimate the position, velocity, and acceleration in elec-
trical drives as an alternative of the KF. Meanwhile, as illustrated in Table 5.2, the FGF
provides a great saving of calculation time comparing to the KF.

5.3.6 Summary

In this section, an optimal fixed gain filter has been proposed for more precise estimation
of position, velocity, and acceleration in angular motion.

As the research has demonstrated and with proven results, it is no wonder that the
optimal fixed gain filter is conceptually very simple yet powerful, since it considers the
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Figure 5.14: Experimental comparison for tracking position, velocity, and acceleration
with parabolic velocity.
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Figure 5.15: Zoomed in experimental comparison for tracking position and velocity from
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Figure 5.14, respectively.
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motion nature of the tracking objects. The performances and effectiveness of the proposed
optimal fixed gain filter for estimating position, velocity, and acceleration in the angular
motion are either similar to those of the Kalman filter or often better because the proposed
optimal fixed gain filter is a special form of the Kalman filter and it is much easier to
obtain the optimal gain.

Although the fixed gain filter for angular motion estimation was evaluated through
the application of encoder in electrical drives, it can be used for all position feedback
applications in industries as diverse as sensor-less control, grid synchronous, and motion
control, etc. The authors believe that the development of alternating current drives,
the changes and evolution of the renewable energy systems, and new more demanding
standards will drive the applications of the proposed optimal fixed gain filter.

5.4 Relationship of FGF and Luenberger observer

Since the feedback matrices of FGF and LO are all constant, the differences between
the use of the FGF and the use of the LO should be clarified.

First, from the name of these two techniques, one is called filter, another is called
observer. Thus, the use of the names is different, which determines the interpretation
of the two techniques. The FGF is used to smooth the measurable states and estimate
the unmeasurable states, which means we know the measurable states at time kTs (xmk )
and the output of FGF is the estimated measurable states at time kTs (x̂mk ) and the
estimated unmeasurable states at time kTs (x̂uk). However, the LO is mainly used to
estimate/observe the estimated unmeasurable states at time (k + 1)Ts (x̂uk+1) based on
x̂mk .

Second, the definition of the error vector of the states is different. The FGF is derived
from KF, and the error vector of the states is defined as xmk subtracts the predicted
measurable states at time kTs (x̂m−k ) based on the estimated measurable states at time
(k − 1)Ts (x̂mk−1). Thus, a prediction is required in the implementation of FGF. On the
contrary, the prediction is not necessary for the LO due to its definition of the error vector
which is defined as the measurable states at time (k−1)Ts (xmk−1) subtracts x̂mk−1. Finally,
the stable range is different. From the second analysis and the observer equation (5.3),
the characteristic equation of the LO can be written as

|zI− (F− LC)| = 0. (5.35)

If the feedback gain is selected as the same with FGF, then substitute (5.19) into (5.35),
the characteristic equation is

z3 −
(
s2 + 2

)
z2 +

3s3 + 3s2 − 4s+ 4

s+ 1
z − 4s3 − 4s2 + s+ 1

s+ 1
= 0. (5.36)

Figure 5.16a shows the locus of the roots of (5.36) as s is increased from 0 to 1. Ob-
viously, not all the roots locate in the unit circle. The two intersections between the
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Figure 5.16: Root locus of discrete Luenberger versus s. The x axis and the y axis are
the real part and the imaginary part of the roots.

conjugate root locus and the unit circle locate at p2 = pl and p3 = p̄1 when s = sl where
pl = 0.8213− 0.5705i, and sl = 0.54186853101262522643832776965338.

With this in mind, the stable range is narrowed when the optimal gain is applied in the
scheme of LO. This means that LO does not depend on the newest current measurements,
which might lead to performance degradation.
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Chapter 6

Conclusions and future work

6.1 Summary

This dissertation presents several optimizations for power converters and electrical
drives. Two aspects are primary involved to achieve these optimization objectives. One
is the theoretical issues. The main theoretical issues in control of power converters and
electrical drives seem to be

• The tradeoff between the control performance and the cost to achieve it;

• How to evaluate the control performance.

In practice, this usually leads to the standard linear quadratic regulator (LQR) or model
predictive control (MPC). However, this dissertation solves such problem in a unified
framework which is optimum control. The other one is the practical issue, which mainly
contains the simplification of the control algorithms with comparable or enhanced perfor-
mance, because the most important requirements for putting control algorithms into an
industry are good robustness, low sampling rates, less tuning efforts, and the desire to keep
hardware expenses to a minimum. As this work has demonstrated with proven results,
both of the two aspects have been demonstrated and were proven. More specifically:

Chapter 3 analyzed the theoretical issues in the conventional LQR and MPC and gave
an analytical solution for the control problems.

In Chapter 4, two direct current (DC)-link voltage balance methods were proposed for
the three-level neutral point clamped (NPC) converters. The method using the dead-
beat control concept is suit for the control algorithm when an space vector pulse width
modulation (SVPWM) is employed. In the case of using MPC algorithm, the decoupled
method is expected to provide enhanced performance.

In Chapter 5, an optimal fixed gain filter for angular motion estimation has been pro-
posed. It should be noted that this method is an optimal steady state filter, where the
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optimal constant feedback gain can be calculated offline. Thus, it minimizes the require-
ments of resource while meeting the demands of the industry.

6.2 Outlook

There are several possibilities to extend and to modify the work in this thesis. Among
the fields touched in this thesis, one may consider the following:

• too much simplification has been done in the proposed optimum control to avoid the
discussion of a cubic equation. Future contributions in this area would be getting
the exact analytical solution for the optimum control since the exact solution of a
cubic equation is solvable.

• the deadbeat control concept for DC-link voltage balance within one pattern of pulse
width modulation (PWM) arrangement has been proposed in Chapter 4. Thus, ex-
tending this concept to different patterns of PWM arrangement would be important,
since different applications demand different PWM patterns.

• the fixed gain filter for angular motion system has been presented in Chapter 5.
More importantly, there are many interesting extensions and applications within
the subject of fixed gain filter. For instance, one could use this filter in the sensor-
less control to replace the phase-locked loop (PLL). This would separate the tuning
process of PLL from the tuning process of the whole sensor-less control because the
parameter of the fixed gain filter can be optimally obtained offline. Additionally, it
would be very beneficial to replace the LO by this kind of filter through the similar
derivation. The author expects an universal derivation for the fixed gain filter would
be seen in the future.
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Appendix A

Nomenclature and Abbreviations

A.1 Abbreviations

AC alternating current

ACIM alternating current induction motor

ADC analog-to-digital converter

ARM advanced reduced instruction set computing machine

CEO chief executive officer

COC continuous optimum control

CPU central processing unit

CSC China scholarship council

DAC digital-to-analog converter

DBC deadbeat control

DC direct current

DFOC direct field oriented control

DFT discrete Fourier transform

DMPC direct model predictive control

DOC discontinuous optimum control

DTC direct torque control

DTFC direct torque flux control
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EAL Institute for Electrical Drive Systems and Power Electronics

EKF extended Kalman filter

EMI electromagnetic interference

EUT equipment under test

FCS-MPC finite control set model predictive control

FGF fixed gain filter

FGF2 second-order FGF

FGF3 third-order FGF

FOC field oriented control

FP floating point

FPGA field programmable gate array

FPU floating point unit

FPUE floating point unit emulator

FXP fixed point

HM Hannover Messe

IFOC indirect field oriented control

IGBT insulated gate bipolar transistor

ISO international organization for standardization

ISR interrupt service routine

ITM instrumentation trace macro

KCL Kirchoff’s current law

KF Kalman filter

KF2 second-order KF

KF3 third-order KF

LO Luenberger observer

LQR linear quadratic regulator

MATLAB matrix laboratory
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MCU micro-controller unit

MHz megahertz

MPC model predictive control

NPC neutral point clamped

PC personal computer

PI proportional-integral

PID proportional–integral–derivative

PLL phase-locked loop

PMSM permanent magnet synchronous motor

PWM pulse width modulation

SI international system of units

SISO single-input and single-output

SMC sliding mode control

SMO sliding mode observer

SPMSM surface mounted permanent magnet synchronous motor

SVM space vector modulation

SVPWM space vector pulse width modulation

THD total harmonic distortion

TUM Technische Universität München

USB universal serial bus

VHDL very high speed integrated circuit (VHSIC) hardware description language

VHSIC very high speed integrated circuit

XOR exclusive or

ZOH Zero-order hold
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A.2 Nomenclatures

A.2.1 Variables

Tabc Clark transformation

T−1abc inverse Clark transformation

T−1αβ inverse Park transformation

Tαβ Park transformation

sx the switch function of the leg x (x ∈ {a, b, c})

Sx the upper switch of the leg x in two level inverter (x ∈ {a, b, c})

S̄x the lower switch of the leg x in two level inverter (x ∈ {a, b, c})

Sxj the jth switch of the upper leg x in three level inverter

S̄xj the jth switch of the lower leg x in three level inverter

ix the phase current of the leg x (x ∈ {a, b, c})

U2 the universal set of the switching state vector (sa, sb, sc)
> for two level converter

U3 the universal set of the switching state vector (sa, sb, sc)
> for three level converter

U3
z the set of zero vector for three level converter

U3
zp the set of zero vector containing P state

U3
zo the set of zero vector containing O state

U3
zn the set of zero vector containing N state

U3
s the set of small vector for three level converter

U3
sp the set of small vector containing P state

U3
sn the set of small vector containing N state

U3
m the set of medium vector for three level converter

U3
b the set of big vector for three level converter

vxo the pole voltage of phase x (x ∈ {a, b, c})

vc0 the voltage between O and N in three-level NPC converter

vc1 the voltage between P and O in three-level NPC converter
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van the voltage of phase a to neutral point

vbn the voltage of phase b to neutral point

vcn the voltage of phase c to neutral point

vao the pole voltage of phase a

vbo the pole voltage of phase b

vco the pole voltage of phase c

ia the phase current of the leg a

ib the phase current of the leg b

ic the phase current of the leg c

x̂m−k the predicted measurable states at time kTs

x̂uk+1 the estimated unmeasurable states at time (k + 1)Ts

x̂mk−1 the estimated measurable states at time (k − 1)Ts

x̂uk the estimated unmeasurable states at time kTs

x̂mk the estimated measurable states at time kTs

xmk the measurable states at time kTs

xmk−1 the measurable states at time (k − 1)Ts

A.2.2 Operations with logic variables

∧ and
∨ or
¬ not
⇐⇒ if and only if
≡ is defined as

A.2.3 Operations with complex numbers

<(c) the real part of c
=(c) the imaginary part of c
c̄ the complex conjugate of c
× cross multiply
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A.2.4 Set operations and relations

∪ union
∩ intersection
∈ element of
3 contains as an element
∀ for all
⊆ subset
⊂ proper subset
⊇ superset
⊃ proper superset
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Appendix B

Testbench

All the control schemes in this work are implemented on the same test bench shown in
Figure B.1, where the left side are the electric control unit and power converter; while
the right side is the motor under control and the loading machine, which are mechani-
cally coupled together. Besides, the testbench driving the motor under control and the
converter driving the loading machine share the same DC-link, which avoids the wasting
of energy. If necessary, excessive energy is dissipated in the braking resistor to avoid
over-voltage fault in the DC-link.

Note that, the power converter is a three-level NPC converter, which could also be used
as two-level converter when the gate signals of the upper insulated gate bipolar transistor
(IGBT)s are same.

B.1 Real-time system

The real-time computer system is composed by a micro-controller unit (MCU) and an
field programmable gate array (FPGA).

The MCU is STM32F417IGTx which offers the performance of the Cortex™-M4 core
(with FPU) running at 168 MHz. The STM32F417IGTx are designed for industrial ap-
plications where the high level of integration and performance, embedded memories, and
rich peripheral set inside packages are required. Almost all the real-time control algo-
rithms used in this work are implemented in this MCU with C/C++ language, which
are triggered by an external interrupt generated by the triangle wave generation unit in
the FPGA. One highlight of this system is that it can also send the real-time state (e.g.
phase current, encoder angle, encode speed, etc.) to personal computer (PC) and receive
the command data (e.g. given speed, start, stop, etc.) from a PC through an universal
serial bus (USB) cable.

The FPGA is Cyclone IV-EP4CE10E144 with 10,320 logic elements, 23 Embedded
18×18 multipliers, and 414K bits embedded memory. The crystal frequency for the FPGA
is 8 MHz. However, by utilizing the PLL, the main operating frequency is multiplied to
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A
B

C

D

E

Figure B.1: Setup of the testbench system. A: real-time system with MCU and FPGA,
B: an autotransformer (used when reducing the DC-link voltage), C: heat/sink and power
converter, D: PMSM; E: ACIM.

96 MHz for a high precision PWM signal generation. In this work, the VHSIC hardware
description language (VHDL) codes used for PWM signal generation, state machine, and
fiber optical communication were self-written without using the MATLAB code generation
technology. By doing so, the performance and the resource usage can achieve an optimal
state.

The real-time computer system is isolated with the inverter by optical fiber for the
inverter gating signals and information exchange in order to reduce sensitivity of electro-
magnetic interference (EMI).

B.2 Gate driver board

The main function of the gate driver board consists:

• receive the IGBT gating signals and transmit to the inverter,

• current measurement,
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B A

C

Figure B.2: Real-time system. A: MCU, B: FPGA, C: eight pairs of optical interfaces.

• dead time generation,

• over current protection,

• over voltage protection,

• optical fiber communication.

To achieve this purpose, the gate driver board is designed with an FPGA and an analog-to-
digital converter (ADC). The drive board is connected to the real-time computer system
through eight pairs of optics fiber which allows to receive the IGBT gating signals and
information exchange. The dead time generation unit is handled by an Actel ProASIC3
A3PN250, which ensures the correct timing of gate driving signals, especially in the
power-on state.
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A B C

Figure B.3: Gate driver board. A: ADC, B: FPGA, C: optical interface,

B.3 Three-level inverter

The three-level inverter consists of three phase legs. In every leg, two IGBT modules
from Infineon and two diodes are used. Both the IGBT modules and the diodes are
mounted on the heat sink. The IGBT modules are rated for 100 A, 1700 V. Hence, an
output voltage of 1100 V and an output current of 50 A could be generated. The complete
DC-link capacitance is 1700 µF.

B.4 DC source

The DC-link is powered by two three phase six-pulse rectifiers connected in series. In
this connection, each six-pulse rectifier generates one half of the DC-link voltage. One
of the rectifiers is powered by the autotransformer via a 50 Hz isolation phase shifting
transformer, the other rectifier is connected to the autotransformer directly. By doing so,
the two rectifiers achieve the theoretical reduction in harmonics. The autotransformer is
then connected to the 50 Hz grid.
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B.5 Induction machine

Technical data of the asynchronous machine used in the experiments is shown in Ta-
ble B.1.

Table B.1: Parameters for the induction machine.

Symbol Parameter Value

Rs Stator Resistance 1.509 Ω
Rr Rotor Resistance 1.235 Ω
Lm Mutual Inductance 232.5 mH
Ls Stator Inductance 239.5 mH
Lr Rotor Inductance 239.5 mH
fbase Synchronous frequency 50 Hz
Ne Nominal speed 2830 rpm
Ie Nominal current 5.73 A
p Number of pole pairs 1

B.6 Permanent magnet synchronous motor

Technical data of the PMSM used in the experiments is shown in Table B.2.

Table B.2: Parameters for the PMSM.

Symbol Parameter Value

Rs Stator Resistance 0.95 Ω
Ld d-axis Inductance 9.6 mH
Lq q-axis Inductance 9.6 mH
ψ Flux 0.26 Wb
Ne Nominal speed 3000 rpm
Ie Nominal current 6.3 A
Ve Nominal voltage 380 V
p Number of pole Pairs 3
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Appendix C

Three level NPC SVPWM

C.1 Calculation of triangle 1

C.1.1 Sector I

C.1.1.1 Results of the calculation when ia > 0 and ic > 0

ma1 = (γ − 1)
(
β −
√

3α
)

+ 2 β γ − λ
(
β +
√

3α− 1
)

(C.1)

ma0 = (−λ− µ)
(
β +
√

3α− 1
)

+
(
β +
√

3α
)

(C.2)

mb1 = 2 β γ − λ
(
β +
√

3α− 1
)

(C.3)

mb0 = (−λ− µ)
(
β +
√

3α− 1
)

+ γ
(
β −
√

3α
)

+
(
β +
√

3α
)

(C.4)

mc1 = −λ
(
β +
√

3α− 1
)

(C.5)

mc0 = (−λ− µ)
(
β +
√

3α− 1
)

+ γ
(
β −
√

3α
)

+
(
β +
√

3α + 2 β (γ − 1)
)

(C.6)

C.1.1.2 Results of the calculation when ia > 0 and ic < 0

ma1 = (γ − 1)
(
β −
√

3α
)
− 2 β (γ − 1)− λ

(
β +
√

3α− 1
)

(C.7)

ma0 = (−λ− µ)
(
β +
√

3α− 1
)

+
(
β +
√

3α
)

(C.8)

mb1 = −2 β (γ − 1)− λ
(
β +
√

3α− 1
)

(C.9)

mb0 = (−λ− µ)
(
β +
√

3α− 1
)

+ γ
(
β −
√

3α
)

+
(
β +
√

3α
)

(C.10)
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mc1 = −λ
(
β +
√

3α− 1
)

(C.11)

mc0 = (−λ− µ)
(
β +
√

3α− 1
)

+ γ
(
β −
√

3α
)

+
(
β +
√

3α− 2 β γ
)

(C.12)

C.1.1.3 Results of the calculation when ia < 0 and ic < 0

ma1 = −2 β (γ − 1)− γ
(
β −
√

3α
)
− λ

(
β +
√

3α− 1
)

(C.13)

ma0 = (−λ− µ)
(
β +
√

3α− 1
)

+
(
β +
√

3α
)

(C.14)

mb1 = −2 β (γ − 1)− λ
(
β +
√

3α− 1
)

(C.15)

mb0 = (−λ− µ)
(
β +
√

3α− 1
)

+ (1− γ)
(
β −
√

3α
)

+
(
β +
√

3α
)

(C.16)

mc1 = −λ
(
β +
√

3α− 1
)

(C.17)

mc0 = 2 β − 3 β γ − (λ+ µ)
(
β +
√

3α− 1
)

+
√

3α γ (C.18)

C.1.1.4 Results of the calculation when ia < 0 and ic > 0

ma1 = β γ − λ
(
β +
√

3α− 1
)

+
√

3α γ (C.19)

ma0 = (−λ− µ)
(
β +
√

3α− 1
)

+
(
β +
√

3α
)

(C.20)

mb1 = 2 β γ − λ
(
β +
√

3α− 1
)

(C.21)

mb0 = (−λ− µ)
(
β +
√

3α− 1
)

+ (1− γ)
(
β −
√

3α
)

+
(
β +
√

3α
)

(C.22)

mc1 = −λ
(
β +
√

3α− 1
)

(C.23)

mc0 = λ+ µ+ β γ − β λ− β µ+
√

3α γ −
√

3αλ−
√

3αµ (C.24)

C.1.2 Sector II

C.1.2.1 Results of the calculation when ic > 0 and ib > 0

ma1 = γ
(
β +
√

3α
)
− λ (2 β − 1) (C.25)

ma0 = 2 β − γ
(
β −
√

3α
)

+ (−λ− µ) (2 β − 1) (C.26)

mb1 = β + λ−
√

3α− 2 β λ+ 2
√

3α γ (C.27)
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mb0 = 2 β − (2 β − 1) (λ+ µ) (C.28)
mc1 = −λ (2 β − 1) (C.29)

mc0 = β + λ+ µ−
√

3α− 2 β λ− 2 β µ+ 2
√

3α γ (C.30)

C.1.2.2 Results of the calculation when ic > 0 and ib < 0

ma1 = γ
(
β +
√

3α
)
− λ (2 β − 1) (C.31)

ma0 = (−λ− µ) (2 β − 1) + (γ − 1)
(
β −
√

3α
)

+ 2 β (C.32)

mb1 = λ+ 2 β γ − 2 β λ (C.33)
mb0 = 2 β − (2 β − 1) (λ+ µ) (C.34)
mc1 = −λ (2 β − 1) (C.35)
mc0 = λ+ µ+ 2 β γ − 2 β λ− 2 β µ (C.36)

C.1.2.3 Results of the calculation when ic < 0 and ib < 0

ma1 = − (γ − 1)
(
β +
√

3α
)
− λ (2 β − 1) (C.37)

ma0 = (−λ− µ) (2 β − 1) + (γ − 1)
(
β −
√

3α
)

+ 2 β (C.38)

mb1 = β + λ+
√

3α− 2 β λ− 2
√

3α γ (C.39)
mb0 = 2 β − (2 β − 1) (λ+ µ) (C.40)
mc1 = −λ (2 β − 1) (C.41)

mc0 = β + λ+ µ+
√

3α− 2 β λ− 2 β µ− 2
√

3α γ (C.42)

C.1.2.4 Results of the calculation when ic < 0 and ib > 0

ma1 = − (γ − 1)
(
β +
√

3α
)
− λ (2 β − 1) (C.43)

ma0 = 2 β − γ
(
β −
√

3α
)

+ (−λ− µ) (2 β − 1) (C.44)

mb1 = 2 β + λ− 2 β γ − 2 β λ (C.45)
mb0 = 2 β − (2 β − 1) (λ+ µ) (C.46)
mc1 = −λ (2 β − 1) (C.47)
mc0 = 2 β + λ+ µ− 2 β γ − 2 β λ− 2 β µ (C.48)
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C.1.3 Sector III

C.1.3.1 Results of the calculation when ib > 0 and ia > 0

ma1 = λ
(√

3α− β + 1
)

(C.49)

ma0 = 2 β − 3 β γ + (λ+ µ)
(√

3α− β + 1
)
−
√

3α γ (C.50)

mb1 = λ
(√

3α− β + 1
)
−
(

2 β (γ − 1) + γ
(
β +
√

3α
))

(C.51)

mb0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α
)

(C.52)

mc1 = λ
(√

3α− β + 1
)
− γ

(
β +
√

3α
)

(C.53)

mc0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α− 2 β γ
)

(C.54)

C.1.3.2 Results of the calculation when ib > 0 and ia < 0

ma1 = λ
(√

3α− β + 1
)

(C.55)

ma0 = (λ+ µ)
(√

3α− β + 1
)
− (γ − 1)

(
β −
√

3α
)

(C.56)

mb1 = λ
(√

3α− β + 1
)

+
(

(γ − 1)
(
β +
√

3α
)
− 2 β (γ − 1)

)
(C.57)

mb0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α
)

(C.58)

mc1 = (γ − 1)
(
β +
√

3α
)

+ λ
(√

3α− β + 1
)

(C.59)

mc0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α− 2 β γ
)

(C.60)

C.1.3.3 Results of the calculation when ib < 0 and ia < 0

ma1 = λ
(√

3α− β + 1
)

(C.61)

ma0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α + 2 β (γ − 1) + γ
(
β +
√

3α
))

(C.62)

mb1 = λ
(√

3α− β + 1
)

+
(

(γ − 1)
(
β +
√

3α
)

+ 2 β γ
)

(C.63)

mb0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α
)

(C.64)

mc1 = (γ − 1)
(
β +
√

3α
)

+ λ
(√

3α− β + 1
)

(C.65)
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mc0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α + 2 β (γ − 1)
)

(C.66)

C.1.3.4 Results of the calculation when ib < 0 and ia > 0

ma1 = λ
(√

3α− β + 1
)

(C.67)

ma0 = λ+ µ+ β γ − β λ− β µ−
√

3α γ +
√

3αλ+
√

3αµ (C.68)

mb1 = λ
(√

3α− β + 1
)

+ γ
(
β −
√

3α
)

(C.69)

mb0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α
)

(C.70)

mc1 = λ
(√

3α− β + 1
)
− γ

(
β +
√

3α
)

(C.71)

mc0 = (λ+ µ)
(√

3α− β + 1
)

+
(
β −
√

3α + 2 β (γ − 1)
)

(C.72)

C.1.4 Sector IV

C.1.4.1 Results of the calculation when ia > 0 and ic > 0

ma1 = λ
(
β +
√

3α + 1
)

(C.73)

ma0 = 3 β γ − 2 β + (λ+ µ)
(
β +
√

3α + 1
)
−
√

3α γ (C.74)

mb1 = γ
(
β −
√

3α
)

+ λ
(
β +
√

3α + 1
)

(C.75)

mb0 = (λ+ µ)
(
β +
√

3α + 1
)

+
(

2 β γ −
√

3α− β
)

(C.76)

mc1 = λ
(
β +
√

3α + 1
)

+ γ
(
β −
√

3α
)

+ 2 β (γ − 1) (C.77)

mc0 = (λ+ µ)
(
β +
√

3α + 1
)
−
(
β +
√

3α
)

(C.78)

C.1.4.2 Results of the calculation when ia > 0 and ic < 0

ma1 = λ
(
β +
√

3α + 1
)

(C.79)

ma0 = λ+ µ− β γ + β λ+ β µ−
√

3α γ +
√

3αλ+
√

3αµ (C.80)

mb1 = γ
(
β −
√

3α
)

+ λ
(
β +
√

3α + 1
)

(C.81)

mb0 = (λ+ µ)
(
β +
√

3α + 1
)
−
(
β +
√

3α + 2 β (γ − 1)
)

(C.82)
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mc1 = λ
(
β +
√

3α + 1
)
− β γ −

√
3α γ (C.83)

mc0 = (λ+ µ)
(
β +
√

3α + 1
)
−
(
β +
√

3α
)

(C.84)

C.1.4.3 Results of the calculation when ia < 0 and ic < 0

ma1 = λ
(
β +
√

3α + 1
)

(C.85)

ma0 = (λ+ µ)
(
β +
√

3α + 1
)

+ (−γ)
(
β −
√

3α
)
−
(
β +
√

3α + 2 β (γ − 1)
)

(C.86)

mb1 = (1− γ)
(
β −
√

3α
)

+ λ
(
β +
√

3α + 1
)

(C.87)

mb0 = (λ+ µ)
(
β +
√

3α + 1
)
−
(
β +
√

3α + 2 β (γ − 1)
)

(C.88)

mc1 = λ
(
β +
√

3α + 1
)

+ (1− γ)
(
β −
√

3α
)
− 2 β γ (C.89)

mc0 = (λ+ µ)
(
β +
√

3α + 1
)
−
(
β +
√

3α
)

(C.90)

C.1.4.4 Results of the calculation when ia < 0 and ic > 0

ma1 = λ
(
β +
√

3α + 1
)

(C.91)

ma0 = (λ+ µ)
(
β +
√

3α + 1
)

+ (−γ)
(
β −
√

3α
)

+
(

2 β γ −
√

3α− β
)

(C.92)

mb1 = (1− γ)
(
β −
√

3α
)

+ λ
(
β +
√

3α + 1
)

(C.93)

mb0 = (λ+ µ)
(
β +
√

3α + 1
)

+
(

2 β γ −
√

3α− β
)

(C.94)

mc1 = (1− γ)
(
β −
√

3α
)

+ 2 β (γ − 1) + λ
(
β +
√

3α + 1
)

(C.95)

mc0 = (λ+ µ)
(
β +
√

3α + 1
)
−
(
β +
√

3α
)

(C.96)

C.1.5 Sector V

C.1.5.1 Results of the calculation when ic > 0 and ib > 0

ma1 = λ (2 β + 1)− γ
(
β −
√

3α
)

(C.97)

ma0 = −2 β + γ
(
β +
√

3α
)

+ (λ+ µ) (2 β + 1) (C.98)

mb1 = λ (2 β + 1) (C.99)
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mb0 = λ− β + µ−
√

3α + 2 β λ+ 2 β µ+ 2
√

3α γ (C.100)

mc1 = λ− β −
√

3α + 2 β λ+ 2
√

3α γ (C.101)
mc0 = (λ+ µ) (2 β + 1)− 2 β (C.102)

C.1.5.2 Results of the calculation when ic > 0 and ib < 0

ma1 = (γ − 1)
(
β −
√

3α
)

+ λ (2 β + 1) (C.103)

ma0 = −2 β + γ
(
β +
√

3α
)

+ (λ+ µ) (2 β + 1) (C.104)

mb1 = λ (2 β + 1) (C.105)
mb0 = λ− 2 β + µ+ 2 β γ + 2 β λ+ 2 β µ (C.106)
mc1 = λ− 2 β + 2 β γ + 2 β λ (C.107)
mc0 = (λ+ µ) (2 β + 1)− 2 β (C.108)

C.1.5.3 Results of the calculation when ic < 0 and ib < 0

ma1 = (γ − 1)
(
β −
√

3α
)

+ λ (2 β + 1) (C.109)

ma0 = (λ+ µ) (2 β + 1) + (1− γ)
(
β +
√

3α
)
− 2 β (C.110)

mb1 = λ (2 β + 1) (C.111)

mb0 = λ− β + µ+
√

3α + 2 β λ+ 2 β µ− 2
√

3α γ (C.112)

mc1 = λ− β +
√

3α + 2 β λ− 2
√

3α γ (C.113)
mc0 = (λ+ µ) (2 β + 1)− 2 β (C.114)

C.1.5.4 Results of the calculation when ic < 0 and ib > 0

ma1 = λ (2 β + 1)− γ
(
β −
√

3α
)

(C.115)

ma0 = (λ+ µ) (2 β + 1) + (1− γ)
(
β +
√

3α
)
− 2 β (C.116)

mb1 = λ (2 β + 1) (C.117)
mb0 = λ+ µ− 2 β γ + 2 β λ+ 2 β µ (C.118)
mc1 = λ− 2 β γ + 2 β λ (C.119)
mc0 = (λ+ µ) (2 β + 1)− 2 β (C.120)



124 APPENDIX C. THREE LEVEL NPC SVPWM

C.1.6 Sector VI

C.1.6.1 Results of the calculation when ib > 0 and ia > 0

ma1 = (1− γ)
(
β +
√

3α
)

+ λ
(
β −
√

3α + 1
)
− 2 β γ (C.121)

ma0 = (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.122)

mb1 = λ
(
β −
√

3α + 1
)

(C.123)

mb0 = (−γ)
(
β +
√

3α
)

+ (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β − 2 β (γ − 1)
)

(C.124)

mc1 = λ
(
β −
√

3α + 1
)
− 2 β γ (C.125)

mc0 = (−γ)
(
β +
√

3α
)

+ (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.126)

C.1.6.2 Results of the calculation when ib > 0 and ia < 0

ma1 = λ
(
β −
√

3α + 1
)
− β γ +

√
3α γ (C.127)

ma0 = (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.128)

mb1 = λ
(
β −
√

3α + 1
)

(C.129)

mb0 = λ+ µ− β γ + β λ+ β µ+
√

3α γ −
√

3αλ−
√

3αµ (C.130)

mc1 = λ
(
β −
√

3α + 1
)
− 2 β γ (C.131)

mc0 = (γ − 1)
(
β +
√

3α
)

+ (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.132)

C.1.6.3 Results of the calculation when ib < 0 and ia < 0

ma1 = γ
(
β +
√

3α
)

+ λ
(
β −
√

3α + 1
)

+ 2 β (γ − 1) (C.133)

ma0 = (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.134)

mb1 = λ
(
β −
√

3α + 1
)

(C.135)

mb0 = 3 β γ − 2 β + (λ+ µ)
(
β −
√

3α + 1
)

+
√

3α γ (C.136)

mc1 = λ
(
β −
√

3α + 1
)

+ 2 β (γ − 1) (C.137)
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mc0 = (γ − 1)
(
β +
√

3α
)

+ (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.138)

C.1.6.4 Results of the calculation when ib < 0 and ia > 0

ma1 = (1− γ)
(
β +
√

3α
)

+ 2 β (γ − 1) + λ
(
β −
√

3α + 1
)

(C.139)

ma0 = (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.140)

mb1 = λ
(
β −
√

3α + 1
)

(C.141)

mb0 = (−γ)
(
β +
√

3α
)

+ (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β + 2 β γ
)

(C.142)

mc1 = λ
(
β −
√

3α + 1
)

+ 2 β (γ − 1) (C.143)

mc0 = (−γ)
(
β +
√

3α
)

+ (λ+ µ)
(
β −
√

3α + 1
)

+
(√

3α− β
)

(C.144)

C.2 Calculation of triangle 2

C.2.1 Sector I

C.2.1.1 Results of the calculation when ia > 0

ma1 = γ
(
β +
√

3α− 2
)

+ 1 (C.145)

ma0 = 1 (C.146)
mb1 = 0 (C.147)

mb0 = β −
√

3α + γ
(
β +
√

3α− 2
)

+ 2 (C.148)

mc1 = 0 (C.149)

mc0 = (γ − 1)
(
β +
√

3α− 2
)

(C.150)

C.2.1.2 Results of the calculation when ia < 0

ma1 = 1− (γ − 1)
(
β +
√

3α− 2
)

(C.151)

ma0 = 1 (C.152)
mb1 = 0 (C.153)
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mb0 = 2 β + 2 γ − β γ −
√

3α γ (C.154)
mc1 = 0 (C.155)

mc0 = −γ
(
β +
√

3α− 2
)

(C.156)

C.2.2 Sector II

C.2.2.1 Results of the calculation when ic > 0

ma1 = β +
√

3α− 2 γ (β − 1)− 1 (C.157)
ma0 = 1 (C.158)
mb1 = 1− 2 (β − 1) (γ − 1) (C.159)
mb0 = 1 (C.160)
mc1 = 0 (C.161)
mc0 = −2 γ (β − 1) (C.162)

C.2.2.2 Results of the calculation when ic < 0

ma1 = β +
√

3α + 2 (β − 1) (γ − 1)− 1 (C.163)
ma0 = 1 (C.164)
mb1 = 2 γ (β − 1) + 1 (C.165)
mb0 = 1 (C.166)
mc1 = 0 (C.167)
mc0 = 2 (β − 1) (γ − 1) (C.168)

C.2.3 Sector III

C.2.3.1 Results of the calculation when ib > 0

ma1 = 0 (C.169)

ma0 = − (γ − 1)
(√

3α− β + 2
)

(C.170)

mb1 = −γ
(√

3α− β + 2
)

+ 1 (C.171)

mb0 = 1 (C.172)
mc1 = 0 (C.173)
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mc0 = −2 β − γ
(√

3α− β + 2
)

+ 2 (C.174)

C.2.3.2 Results of the calculation when ib < 0

ma1 = 0 (C.175)

ma0 = γ
(√

3α− β + 2
)

(C.176)

mb1 = (γ − 1)
(√

3α− β + 2
)

+ 1 (C.177)

mb0 = 1 (C.178)
mc1 = 0 (C.179)

mc0 = −2 β + (γ − 1)
(√

3α− β + 2
)

+ 2 (C.180)

C.2.4 Sector IV

C.2.4.1 Results of the calculation when ia > 0

ma1 = 0 (C.181)

ma0 = γ
(
β +
√

3α + 2
)

(C.182)

mb1 = β −
√

3α + γ
(
β +
√

3α + 2
)
− 1 (C.183)

mb0 = 1 (C.184)

mc1 = (γ − 1)
(
β +
√

3α + 2
)

+ 1 (C.185)

mc0 = 1 (C.186)

C.2.4.2 Results of the calculation when ia < 0

ma1 = 0 (C.187)

ma0 = − (γ − 1)
(
β +
√

3α + 2
)

(C.188)

mb1 = 2 β − γ
(
β +
√

3α + 2
)

+ 1 (C.189)

mb0 = 1 (C.190)

mc1 = 1− γ
(
β +
√

3α + 2
)

(C.191)

mc0 = 1 (C.192)
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C.2.5 Sector V

C.2.5.1 Results of the calculation when ic > 0

ma1 = 0 (C.193)

ma0 = β +
√

3α− 2 γ (β + 1) + 2 (C.194)
mb1 = 0 (C.195)
mb0 = −2 (β + 1) (γ − 1) (C.196)
mc1 = 1− 2 γ (β + 1) (C.197)
mc0 = 1 (C.198)

C.2.5.2 Results of the calculation when ic < 0

ma1 = 0 (C.199)

ma0 = β +
√

3α + 2 (β + 1) (γ − 1) + 2 (C.200)
mb1 = 0 (C.201)
mb0 = 2 γ (β + 1) (C.202)
mc1 = 2 (β + 1) (γ − 1) + 1 (C.203)
mc0 = 1 (C.204)

C.2.6 Sector VI

C.2.6.1 Results of the calculation when ib > 0

ma1 = (γ − 1)
(
β −
√

3α + 2
)

+ 1 (C.205)

ma0 = 1 (C.206)
mb1 = 0 (C.207)

mb0 = γ
(
β −
√

3α + 2
)

(C.208)

mc1 = γ
(
β −
√

3α + 2
)
− 2 β − 1 (C.209)

mc0 = 1 (C.210)
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C.2.6.2 Results of the calculation when ib < 0

ma1 = 1− γ
(
β −
√

3α + 2
)

(C.211)

ma0 = 1 (C.212)
mb1 = 0 (C.213)

mb0 = − (γ − 1)
(
β −
√

3α + 2
)

(C.214)

mc1 = −2 β − (γ − 1)
(
β −
√

3α + 2
)
− 1 (C.215)

mc0 = 1 (C.216)

C.3 Calculation of triangle 3

C.3.1 Sector I

C.3.1.1 Results of the calculation when ia > 0 and ic > 0

ma1 = (γ − 1)
(
β −
√

3α + 1
)

+ γ (2 β − 1) + 1 (C.217)

ma0 = 1 (C.218)

mb1 = γ
(
β −
√

3α + 1
)

(C.219)

mb0 = γ (2 β − 1) + 1 (C.220)
mc1 = 0 (C.221)

mc0 = (2 β − 1) (γ − 1) + γ
(
β −
√

3α + 1
)

(C.222)

C.3.1.2 Results of the calculation when ia > 0 and ic < 0

ma1 = β γ − 2 γ +
√

3α γ + 1 (C.223)
ma0 = 1 (C.224)

mb1 = − (γ − 1)
(
β −
√

3α + 1
)

(C.225)

mb0 = γ (2 β − 1) + 1 (C.226)
mc1 = 0 (C.227)

mc0 = (γ − 1)
(
β +
√

3α− 2
)

(C.228)



130 APPENDIX C. THREE LEVEL NPC SVPWM

C.3.1.3 Results of the calculation when ia < 0 and ic < 0

ma1 = 2 β − 3 β γ +
√

3α γ (C.229)
ma0 = 1 (C.230)

mb1 = − (γ − 1)
(
β −
√

3α + 1
)

(C.231)

mb0 = 1− (2 β − 1) (γ − 1) (C.232)
mc1 = 0 (C.233)

mc0 = − (γ − 1)
(
β −
√

3α + 1
)
− γ (2 β − 1) (C.234)

C.3.1.4 Results of the calculation when ia < 0 and ic > 0

ma1 = (γ − 1)
(
β −
√

3α + 1
)
− (2 β − 1) (γ − 1) + 1 (C.235)

ma0 = 1 (C.236)

mb1 = γ
(
β −
√

3α + 1
)

(C.237)

mb0 = 1− (2 β − 1) (γ − 1) (C.238)
mc1 = 0 (C.239)

mc0 = −γ
(
β +
√

3α− 2
)

(C.240)

C.3.2 Sector II

C.3.2.1 Results of the calculation when ic > 0 and ib > 0

ma1 = γ
(√

3α− β + 1
)

(C.241)

ma0 = γ
(
β +
√

3α− 1
)

+ 1 (C.242)

mb1 = β −
√

3α + 2
√

3α γ (C.243)
mb0 = 1 (C.244)
mc1 = 0 (C.245)

mc0 = 2
√

3α γ −
√

3α− β + 1 (C.246)
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C.3.2.2 Results of the calculation when ic > 0 and ib < 0

ma1 = γ
(√

3α− β + 1
)

(C.247)

ma0 = 1− (γ − 1)
(
β +
√

3α− 1
)

(C.248)

mb1 = 2 β + 2 γ − 2 β γ − 1 (C.249)
mb0 = 1 (C.250)
mc1 = 0 (C.251)
mc0 = −2 γ (β − 1) (C.252)

C.3.2.3 Results of the calculation when ic < 0 and ib < 0

ma1 = − (γ − 1)
(√

3α− β + 1
)

(C.253)

ma0 = 1− (γ − 1)
(
β +
√

3α− 1
)

(C.254)

mb1 = β +
√

3α− 2
√

3α γ (C.255)
mb0 = 1 (C.256)
mc1 = 0 (C.257)

mc0 =
√

3α− β − 2
√

3α γ + 1 (C.258)

C.3.2.4 Results of the calculation when ic < 0 and ib > 0

ma1 = − (γ − 1)
(√

3α− β + 1
)

(C.259)

ma0 = γ
(
β +
√

3α− 1
)

+ 1 (C.260)

mb1 = 2 β γ − 2 γ + 1 (C.261)
mb0 = 1 (C.262)
mc1 = 0 (C.263)
mc0 = 2 (β − 1) (γ − 1) (C.264)

C.3.3 Sector III

C.3.3.1 Results of the calculation when ib > 0 and ia > 0

ma1 = 0 (C.265)
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ma0 = − (γ − 1)
(
β +
√

3α + 1
)
− γ (2 β − 1) (C.266)

mb1 = 2 β − 3 β γ −
√

3α γ (C.267)
mb0 = 1 (C.268)
mc1 = −γ (2 β − 1) (C.269)

mc0 = 1− γ
(
β +
√

3α + 1
)

(C.270)

C.3.3.2 Results of the calculation when ib > 0 and ia < 0

ma1 = 0 (C.271)

ma0 = − (γ − 1)
(√

3α− β + 2
)

(C.272)

mb1 = β γ − 2 γ −
√

3α γ + 1 (C.273)
mb0 = 1 (C.274)
mc1 = (2 β − 1) (γ − 1) (C.275)

mc0 = 1− γ
(
β +
√

3α + 1
)

(C.276)

C.3.3.3 Results of the calculation when ib < 0 and ia < 0

ma1 = 0 (C.277)

ma0 = (2 β − 1) (γ − 1) + γ
(
β +
√

3α + 1
)

(C.278)

mb1 = (γ − 1)
(
β +
√

3α + 1
)

+ γ (2 β − 1) + 1 (C.279)

mb0 = 1 (C.280)
mc1 = (2 β − 1) (γ − 1) (C.281)

mc0 = (γ − 1)
(
β +
√

3α + 1
)

+ 1 (C.282)

C.3.3.4 Results of the calculation when ib < 0 and ia > 0

ma1 = 0 (C.283)

ma0 = γ
(√

3α− β + 2
)

(C.284)

mb1 = (γ − 1)
(
β +
√

3α + 1
)
− (2 β − 1) (γ − 1) + 1 (C.285)

mb0 = 1 (C.286)
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mc1 = −γ (2 β − 1) (C.287)

mc0 = (γ − 1)
(
β +
√

3α + 1
)

+ 1 (C.288)

C.3.4 Sector IV

C.3.4.1 Results of the calculation when ia > 0 and ic > 0

ma1 = 0 (C.289)

ma0 = γ (2 β + 1)− (γ − 1)
(√

3α− β + 1
)

(C.290)

mb1 = γ (2 β + 1) (C.291)

mb0 = −γ
(√

3α− β + 1
)

+ 1 (C.292)

mc1 = 3 β γ − 2 β −
√

3α γ (C.293)
mc0 = 1 (C.294)

C.3.4.2 Results of the calculation when ia > 0 and ic < 0

ma1 = 0 (C.295)

ma0 = γ
(
β +
√

3α + 2
)

(C.296)

mb1 = γ (2 β + 1) (C.297)

mb0 = (γ − 1)
(√

3α− β + 1
)

+ 1 (C.298)

mc1 = (γ − 1) (2 β + 1) +
(

(γ − 1)
(√

3α− β + 1
)

+ 1
)

(C.299)

mc0 = 1 (C.300)

C.3.4.3 Results of the calculation when ia < 0 and ic < 0

ma1 = 0 (C.301)

ma0 = γ
(√

3α− β + 1
)

+ (1− γ) (2 β + 1) (C.302)

mb1 = (1− γ) (2 β + 1) (C.303)

mb0 = (γ − 1)
(√

3α− β + 1
)

+ 1 (C.304)

mc1 = (−γ) (2 β + 1) +
(

(γ − 1)
(√

3α− β + 1
)

+ 1
)

(C.305)
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mc0 = 1 (C.306)

C.3.4.4 Results of the calculation when ia < 0 and ic > 0

ma1 = 0 (C.307)

ma0 = − (γ − 1)
(
β +
√

3α + 2
)

(C.308)

mb1 = (1− γ) (2 β + 1) (C.309)

mb0 = −γ
(√

3α− β + 1
)

+ 1 (C.310)

mc1 = 1− β γ −
√

3α γ − 2 γ (C.311)
mc0 = 1 (C.312)

C.3.5 Sector V

C.3.5.1 Results of the calculation when ic > 0 and ib > 0

ma1 = γ
(
β +
√

3α + 1
)

(C.313)

ma0 = 1− γ
(
β −
√

3α + 1
)

(C.314)

mb1 = 0 (C.315)

mb0 = β −
√

3α + 2
√

3α γ + 1 (C.316)

mc1 = 2
√

3α γ −
√

3α− β (C.317)
mc0 = 1 (C.318)

C.3.5.2 Results of the calculation when ic > 0 and ib < 0

ma1 = − (γ − 1)
(
β +
√

3α + 1
)

(C.319)

ma0 = 1− γ
(
β −
√

3α + 1
)

(C.320)

mb1 = 0 (C.321)
mb0 = −2 (β + 1) (γ − 1) (C.322)
mc1 = 1− 2 β γ − 2 γ (C.323)
mc0 = 1 (C.324)
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C.3.5.3 Results of the calculation when ic < 0 and ib < 0

ma1 = − (γ − 1)
(
β +
√

3α + 1
)

(C.325)

ma0 = (γ − 1)
(
β −
√

3α + 1
)

+ 1 (C.326)

mb1 = 0 (C.327)

mb0 = β +
√

3α− 2
√

3α γ + 1 (C.328)

mc1 =
√

3α− β − 2
√

3α γ (C.329)
mc0 = 1 (C.330)

C.3.5.4 Results of the calculation when ic < 0 and ib > 0

ma1 = γ
(
β +
√

3α + 1
)

(C.331)

ma0 = (γ − 1)
(
β −
√

3α + 1
)

+ 1 (C.332)

mb1 = 0 (C.333)
mb0 = 2 γ (β + 1) (C.334)
mc1 = 2 γ − 2 β + 2 β γ − 1 (C.335)
mc0 = 1 (C.336)

C.3.6 Sector VI

C.3.6.1 Results of the calculation when ib > 0 and ia > 0

ma1 = (−γ) (2 β + 1) +
(

1− (γ − 1)
(
β +
√

3α− 1
))

(C.337)

ma0 = 1 (C.338)
mb1 = 0 (C.339)

mb0 = (1− γ) (2 β + 1)− γ
(
β +
√

3α− 1
)

(C.340)

mc1 = −γ
(
β +
√

3α− 1
)

(C.341)

mc0 = 1− γ (2 β + 1) (C.342)
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C.3.6.2 Results of the calculation when ib > 0 and ia < 0

ma1 = (γ − 1) (2 β + 1) +
(

1− (γ − 1)
(
β +
√

3α− 1
))

(C.343)

ma0 = 1 (C.344)
mb1 = 0 (C.345)

mb0 = γ
(
β −
√

3α + 2
)

(C.346)

mc1 = −γ
(
β +
√

3α− 1
)

(C.347)

mc0 = (2 β + 1) (γ − 1) + 1 (C.348)

C.3.6.3 Results of the calculation when ib < 0 and ia < 0

ma1 = 3 β γ − 2 β +
√

3α γ (C.349)
ma0 = 1 (C.350)
mb1 = 0 (C.351)

mb0 = (γ − 1)
(
β +
√

3α− 1
)

+ γ (2 β + 1) (C.352)

mc1 = (γ − 1)
(
β +
√

3α− 1
)

(C.353)

mc0 = (2 β + 1) (γ − 1) + 1 (C.354)

C.3.6.4 Results of the calculation when ib < 0 and ia > 0

ma1 =
√

3α γ − β γ − 2 γ + 1 (C.355)
ma0 = 1 (C.356)
mb1 = 0 (C.357)

mb0 = − (γ − 1)
(
β −
√

3α + 2
)

(C.358)

mc1 = (γ − 1)
(
β +
√

3α− 1
)

(C.359)

mc0 = 1− γ (2 β + 1) (C.360)
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C.4 Calculation of triangle 4

C.4.1 Sector I

C.4.1.1 Results of the calculation when ic > 0

ma1 = 1− (γ − 1)
(
β +
√

3α− 2
)

(C.361)

ma0 = 1 (C.362)

mb1 = 2 β − γ
(
β +
√

3α− 2
)
− 1 (C.363)

mb0 = 1 (C.364)
mc1 = 0 (C.365)

mc0 = −γ
(
β +
√

3α− 2
)

(C.366)

C.4.1.2 Results of the calculation when ic < 0

ma1 = γ
(
β +
√

3α− 2
)

+ 1 (C.367)

ma0 = 1 (C.368)

mb1 = 2 β + (γ − 1)
(
β +
√

3α− 2
)
− 1 (C.369)

mb0 = 1 (C.370)
mc1 = 0 (C.371)

mc0 = (γ − 1)
(
β +
√

3α− 2
)

(C.372)

C.4.2 Sector II

C.4.2.1 Results of the calculation when ib > 0

ma1 = 0 (C.373)

ma0 = β +
√

3α + 2 (β − 1) (γ − 1) (C.374)
mb1 = 2 γ (β − 1) + 1 (C.375)
mb0 = 1 (C.376)
mc1 = 0 (C.377)
mc0 = 2 (β − 1) (γ − 1) (C.378)
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C.4.2.2 Results of the calculation when ib < 0

ma1 = 0 (C.379)

ma0 = β +
√

3α− 2 γ (β − 1) (C.380)
mb1 = 1− 2 (β − 1) (γ − 1) (C.381)
mb0 = 1 (C.382)
mc1 = 0 (C.383)
mc0 = −2 γ (β − 1) (C.384)

C.4.3 Sector III

C.4.3.1 Results of the calculation when ia > 0

ma1 = 0 (C.385)

ma0 = γ
(√

3α− β + 2
)

(C.386)

mb1 = (γ − 1)
(√

3α− β + 2
)

+ 1 (C.387)

mb0 = 1 (C.388)

mc1 = −β + γ
(√

3α− β + 2
)
−
√

3α− 1 (C.389)

mc0 = 1 (C.390)

C.4.3.2 Results of the calculation when ia < 0

ma1 = 0 (C.391)

ma0 = − (γ − 1)
(√

3α− β + 2
)

(C.392)

mb1 = −γ
(√

3α− β + 2
)

+ 1 (C.393)

mb0 = 1 (C.394)

mc1 = 1− γ
(√

3α− β + 2
)
− 2 β (C.395)

mc0 = 1 (C.396)
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C.4.4 Sector IV

C.4.4.1 Results of the calculation when ic > 0

ma1 = 0 (C.397)

ma0 = − (γ − 1)
(
β +
√

3α + 2
)

(C.398)

mb1 = 0 (C.399)

mb0 = 2 β − γ
(
β +
√

3α + 2
)

+ 2 (C.400)

mc1 = 1− γ
(
β +
√

3α + 2
)

(C.401)

mc0 = 1 (C.402)

C.4.4.2 Results of the calculation when ic < 0

ma1 = 0 (C.403)

ma0 = γ
(
β +
√

3α + 2
)

(C.404)

mb1 = 0 (C.405)

mb0 = β −
√

3α + γ
(
β +
√

3α + 2
)

(C.406)

mc1 = (γ − 1)
(
β +
√

3α + 2
)

+ 1 (C.407)

mc0 = 1 (C.408)

C.4.5 Sector V

C.4.5.1 Results of the calculation when ib > 0

ma1 =
√

3α− β + 2 γ (β + 1)− 1 (C.409)
ma0 = 1 (C.410)
mb1 = 0 (C.411)
mb0 = 2 γ (β + 1) (C.412)
mc1 = 2 (β + 1) (γ − 1) + 1 (C.413)
mc0 = 1 (C.414)
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C.4.5.2 Results of the calculation when ib < 0

ma1 =
√

3α− β − 2 (β + 1) (γ − 1)− 1 (C.415)
ma0 = 1 (C.416)
mb1 = 0 (C.417)
mb0 = −2 (β + 1) (γ − 1) (C.418)
mc1 = 1− 2 γ (β + 1) (C.419)
mc0 = 1 (C.420)

C.4.6 Sector VI

C.4.6.1 Results of the calculation when ia > 0

ma1 = 1− γ
(
β −
√

3α + 2
)

(C.421)

ma0 = 1 (C.422)
mb1 = 0 (C.423)

mb0 = − (γ − 1)
(
β −
√

3α + 2
)

(C.424)

mc1 = 0 (C.425)

mc0 = −2 β − (γ − 1)
(
β −
√

3α + 2
)

(C.426)

C.4.6.2 Results of the calculation when ia < 0

ma1 = (γ − 1)
(
β −
√

3α + 2
)

+ 1 (C.427)

ma0 = 1 (C.428)
mb1 = 0 (C.429)

mb0 = γ
(
β −
√

3α + 2
)

(C.430)

mc1 = 0 (C.431)

mc0 = γ
(
β −
√

3α + 2
)
− 2 β (C.432)
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