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Abstract—With the emergence of Software-Defined Network-
ing (SDN) and Network Function Virtualization (NFV), the
problem of centralized routing through intermediate specified
nodes (for which several candidates can be defined) has become
an important issue. Indeed, an SDN controller routing flows
through Service Function Chains (SFCs) has to efficiently solve
this problem to achieve the online provisioning of routing requests
and the online placement of Virtual Network Functions (VNFs).
In this paper, we propose two algorithms for solving this problem.
First, we propose LARAC for specified nodes (LARAC-SN), a fast
and close to optimal algorithm for finding the constrained shortest
path (CSP) visiting an ordered set of specified nodes. Second,
we propose Mole in the Hole (MITH), a graph transformation
algorithm which can force any state-of-the-art routing algorithm
to visit an ordered set of specified nodes. While LARAC-SN is
bounded to the specific CSP problem and can only handle one
candidate per specified node, MITH can be used for any routing
problem and can deal with several candidates per specified node.
Through evaluations, we show that LARAC-SN is fast and close
to optimal (its optimality gap stays lower than 1.62% in average)
and that MITH has the potential of reaching optimality for any
problem, but at the cost of a higher runtime.

Keywords—routing, intermediate nodes, specified nodes, service
function chaining (SFC), function placement problem (FPP), net-
work function virtualization (NFV), LARAC, graph transformation

I. INTRODUCTION

As a fundamental graph theory problem, routing is a well-
known and important problem [1], [2]. Routing problems vary
depending on (i) the type of route that has to be found (e.g.,
a path, a tree), and on (ii) the properties that this route has to
satisfy (e.g., shortest, delay-constrained). For example, finding
the least-cost tree from a node to a set of nodes and finding a
path between two nodes whose length and cost are lower than
given thresholds are two different routing problems. Routing
problems already received a lot of attention in the literature [3].

A. Motivation: Routing through Service Function Chains

Routing problems can be extended by requiring the solution
to traverse a given set of n so-called specified nodes (denoted
by {N1, . . . , Nn}). We define such an extension as a specified
nodes extension (SNE) or as an ordered SNE (OSNE) if the
set of specified nodes has to be visited in a specific order. For
a given specified node Ni, a set of up to c so-called candidate
nodes (denoted by {Na

i , N
b
i , . . .}) can be given, one of them

at least having to be visited. If only one candidate is defined
for a given specified node Ni, we simply refer to it as Ni.

This type of routing problem is now gaining attention in the
context of Network Function Virtualization (NFV) [4]. In such
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Fig. 1: Illustration of the ordered specified nodes extension (OSNE) of the
unicast constrained shortest path (CSP) problem.

a scenario, routing requests can define a set of Virtual Network
Functions (VNFs) that have to be traversed (e.g., security
functions). This is referred to as Service Function Chaining
(SFC). Besides, as part of NFV, the Function Placement
Problem (FPP) [5] consists in finding the optimal locations
for hosting the VNFs. The routing of a request through an
SFC corresponds to the problem of routing through specified
nodes. The FPP corresponds to defining different candidate
nodes for each potential VNF location.

An example of this problem is depicted in Fig. 1. Let us
consider a constrained shortest path (CSP) [6] problem from
A to F that has to visit two ordered specified nodes N1 and N2

with a maximum constraint value of 15. N1 has two candidates
G and C and N2 only has one candidate E. For example, in
Fig. 1, if Na

1 and N b
1 correspond to two nodes at which a

firewall VNF can be deployed, and N2 to a node hosting
a deep packet inspection (DPI) VNF, the illustrated request
corresponds to routing a flow through an SFC consisting of a
firewall and a DPI and placing the firewall VNF at one out
of two possible locations (i.e., solving the FPP). In Fig. 1,
each edge is labeled with its cost and constraint metric values
separated by a slash. Without considering the specified nodes,
the optimal CSP (highlighted in red) is A-B-D-F with a
cost of 6. This path can be found by traditional optimal CSP
algorithms [7]. Considering the specified nodes, the optimal
CSP (shown in green) is A-B-C-E-F with a cost of 10.
While the definition of the OSNE of the CSP problem is
straightforward, traditional CSP algorithms [7] are not able to
solve this extension and alternative solutions are hence needed.

B. Contributions: LARAC-SN and MITH, Solutions for Rout-
ing through Ordered Service Function Chains

First, in Sec. III, we propose LARAC for specified nodes
(LARAC-SN), a heuristic for solving the ordered specified
nodes extension (OSNE) of the unicast constrained shortest
path (CSP) problem based on the state-of-the-art LARAC
heuristic [6], [8]. In our evaluations (Sec. V), its optimality
gap remains lower than 1.62% in average. However, LARAC-
SN can only handle one candidate per specified node (c = 1)
and is relevant only for unicast CSP problems.978-1-5386-4633-5/18/$31.00 c©2018 IEEE



Second, in Sec. IV, for problems different than the unicast
CSP problem and/or for problems considering several candi-
dates per specified node (c > 1), we propose Mole in the
Hole (MITH), a graph transformation algorithm that allows
any routing algorithm to be able to solve the OSNE of the
routing problem it is originally solving. The power of MITH
resides in the fact that it is algorithm-agnostic and can hence
be used by any routing algorithm.

For the specific case of the CSP problem with a single
candidate per specified node, we show in Sec. V that LARAC-
SN presents a much better runtime than algorithms extended
with MITH (at least around 10 times faster in our simulations).
However, while LARAC-SN is slightly sub-optimal, MITH
allows the optimal solution to be found.

II. RELATED WORK

Since the emergence of the SDN and NFV technologies,
a wide range of work has been addressing the problem of
routing flows through specified nodes. We classify the existing
approaches in six overlapping categories for which we list the
most representative examples and with respect to which we
highlight the contributions of the work in the present paper.

1) Unordered Specified Nodes: The original literature on
routing through specified nodes considered the problem of
routing through an unordered set of nodes [9]–[11]. That is, the
set of specified nodes can be visited in any order. Recent work
also studied this problem [12]–[15]. In this paper, we consider
that the order in which the nodes have to be visited is fixed.
Further, these proposals do not consider candidate nodes for
the specified nodes, which our MITH proposal does.

2) Offline Solutions: Several offline algorithms have been
proposed [16]–[19]. These algorithms tackle the problem glob-
ally, i.e., optimize the solution for a set of routing requests.
In this paper, we consider the online problem, i.e., we aim at
solving the problem independently for each routing request.

3) Solutions based on Integer Linear Programming: Some
proposals model the problem as an integer linear program
(ILP) and obtain a solution using an ILP solver [5], [14], [16],
[17]. In this paper, we avoid formulating the problem as an ILP.
Indeed, this often leads to high runtime and requires a new ILP
formulation for every different type of routing problem.

4) Special Purpose Algorithms: Several papers propose a
special-purpose algorithm for dealing with the SNE of spe-
cific problems [9]–[15], [18]–[21]. Our proposed LARAC-SN
algorithm falls into this category for the constrained shortest
path (CSP) problem. On the contrary, our MITH approach is
independent of the routing problem and can be used along with
any state-of-the-art routing algorithm.

5) Solutions based on Layering: A couple of solutions
duplicate the subject graph into different layers whose inter-
connections represent the different functions [17], [18], [22].
Our MITH algorithm belongs to this category. Existing pro-
posals based on layering however then run a special-purpose
algorithm for the specific problem the authors are dealing with.
In contrast, our proposed MITH algorithm runs any state-of-
the-art algorithm on the layered graph. As such, any routing
algorithm can use MITH to deal with the OSNE of an existing
problem, making our proposal more general.

6) Loop-free Solutions: Some proposals require the solu-
tion to be loop-free [12]–[16]. As other works [9], [21], we
do not define such a constraint and we consider that paths can
contain loops.

III. LARAC-SN: OSNE OF THE CSP PROBLEM

In this section, we consider the specific unicast constrained
shortest path (CSP) problem and its OSNE with a single
candidate per specified node (c = 1). We propose LARAC
for specified nodes (LARAC-SN), a heuristic for this problem.
After mathematically defining the shortest path (SP) and CSP
problems and their respective OSNEs (Sec. III-A), we first
consider the OSNE of the SP problem (Sec. III-B). Indeed,
our proposed LARAC-SN heuristic is based on this problem.
Then, we present the LARAC-SN heuristic in Sec. III-C.

A. Preliminary Definitions

The unicast constrained shortest path (CSP) problem (sim-
ply referred to as CSP problem in this section) requires two
metrics to be defined at each edge. The problem consists in
finding the route minimizing the first metric (the optimized
metric – often referred to as cost) while keeping the second
metric (the constraint metric – often referred to as delay) lower
than a given bound. Mathematically, consider routing to be
performed on a network graph G = {V,E}, where V is the set
of vertices (or nodes) and E is the set of directed edges (with
|E| denoting the number of edges in the graph). The vector
of costs of the edges is denoted by c, c ∈ R|E|

+ . Let d ∈ R+

denote the bound for the constraint metric. Let d, d ∈ R|E|
+ ,

denote the vector of the constraint values for the individual
edges. Let Psd, Psd ⊆ {0, 1}|E|, denote the set of paths from
the source node s to the destination node d (where a value of
1 for an edge means that the edge belongs to the path). For
additive metrics, the CSP problem can then be formulated as

zopt = min
x∈Psd

cTx (1)

s.t. dTx ≤ d. (2)

The unicast shortest path (SP) problem (simply referred to
as SP problem in this section), for its part, consists in finding
the route minimizing a single metric (Eqn. 1 only).

The formulation of the OSNE of the CSP problem with
one candidate per specified node is then straightforward. The
solution has further to belong to the set of paths that traverse
nodes N1, . . . , Nn. Let PN1,...,Nn

sd denote the intersection of
this set of paths and Psd. The OSNE of the CSP problem with
one candidate per specified node can then be formulated as

zopt = min
x∈PN1,...,Nn

sd

cTx (3)

s.t. dTx ≤ d. (4)

The OSNE extension of the SP problem with one candidate
per specified node then corresponds to Eqn. 3 only.

B. Solving the OSNE of the SP Problem

The adaptation of any SP algorithm to the OSNE of
the SP problem with one candidate per specified node is
straightforward. The solution corresponds to the concatenation



A
B

C

D

E

N2

F

G

N1

H

4

1

2

2 5

7

23

4
1

2 5

4

Fig. 2: Illustration of the OSNE of the SP problem with one candidate per
specified node. The solution of the SP problem is shown in red (A-B-D-F).
The solution of the OSNE of the SP problem corresponds to the concatenation
of the SPs (green (A-B-G), yellow (G-B-C-E), purple (E-F)) between the
successive pairs of specified nodes.

of the SPs between the successive pairs of specified nodes
(Fig. 2). We refer to such an algorithm as a shortest-path
specified nodes (SP-SN) algorithm, which can be implemented
using any SP algorithm (e.g., the Dijkstra algorithm [23]).

C. Description of LARAC-SN

The CSP problem has been thoroughly investigated in
the literature and a wide range of algorithms have been
proposed [3], [7]. However, unlike for the SP problem, the
adaptation of CSP algorithms for visiting a set of ordered
specified nodes is not straightforward. Indeed, because of the
constraint metric, the search cannot be split as for the SP
problem, as this would require to determine the distribution
of the constraint among the different segments, which is not
straightforward.

1) The State-of-the-Art LARAC Algorithm: The CSP prob-
lem being NP-complete [1], a wide range of heuristics have
been proposed [7]. Among these, the LARAC heuristic [6],
[8] generally achieves the best trade-off between runtime
and optimality gap [7]. The LARAC algorithm is based on
the Lagrange relaxation technique, which allows to solve a
constrained problem by removing some of the constraints and
by introducing them in the optimization objective [24]. For
example, the Lagrange relaxation of problem (1)–(2) is

L(λ) = min
x∈Psd

cTx+ λ(dTx− d). (5)

It can be shown that, if the original problem is feasible, then
there is an optimal solution to

zL = max
λ∈R+

L(λ), (6)

that is a feasible solution of the original problem. The idea of
the Lagrange relaxation technique is then to obtain a solution
to problem (1)–(2) by solving problem (6), which is potentially
easier. Solving problem (6) requires to solve the relaxed prob-
lem (5) several times in order to find the λ maximizing L(λ).
For the CSP problem, the relaxed problem corresponds to an
SP problem with a modified cost function c′i(λ) = ci + λdi.
This means that, for solving the CSP problem, the LARAC
algorithm subsequently runs several SP searches optimizing
the combined metric c′i(λ) with different λ values. The com-
putation of the λ values and the terminating condition can be
found in the original references of the LARAC algorithm [6],
[8]. The algorithm always finds a solution if one exists (i.e., it
is complete) but is, by the properties of the Lagrange relaxation
technique [24], not optimal.

2) Adaptation of the LARAC Algorithm: We propose to
also use the Lagrange relaxation technique for the OSNE of
the CSP problem with one candidate per specified node. The
Lagrange relaxation of problem (3)–(4) is

L(λ) = min
x∈PN1,...,Nn

sd

cTx+ λ(dTx− d), (7)

which corresponds to the OSNE of the SP problem with
the combined metric c′(λ). As such, the LARAC algorithm
can simply be adapted by running an SP-SN (see III-B)
algorithm at each iteration instead of a simple SP algorithm.
The computation of the λ values and the terminating condition
are identical to the original LARAC algorithm. We refer to this
algorithm as LARAC for specified nodes (LARAC-SN). By the
properties of the original LARAC algorithm, LARAC-SN is
complete but not optimal. By including the constraint metric
in the combined optimization metric c′(λ) of the SP-SN runs,
the LARAC-SN algorithm automatically distributes the usage
of the constraint metric budget along the different segments
between the different specified nodes.

IV. MOLE IN THE HOLE (MITH)

While LARAC-SN is an interesting solution for the OSNE
of the CSP problem with one candidate per specified node,
it presents several drawbacks: (i) it is not optimal (though
close to optimal – see Sec. V-B), (ii) it cannot deal with
several candidates per specified node and (iii) it is tailored to
the unicast CSP problem. In this section, we present Mole in
the Hole (MITH), our solution to overcome the limitations of
LARAC-SN. First, MITH allows to obtain an optimal solution
for the OSNE of any routing problem, overcoming limitations
(i) and (iii) of LARAC-SN. Second, MITH allows to deal with
any number of candidate nodes per specified node, thereby
overcoming limitation (ii) of LARAC-SN.

MITH is a graph transformation algorithm based on layer-
ing. The introduced layers correspond to copies of the original
graph for routing before, between and after the specified nodes.
The transformed graph enables state-of-the-art algorithms to
solve the OSNE of their original problem.

A. Graph Transformation

MITH defines a new graph consisting of several layers.
Each layer corresponds to an exact copy of the original graph,
including the metrics associated to the different edges. The
different layers are ordered and correspond to the routing
before, between and after the different specified nodes. That
is, if there are n specified nodes, n + 1 layers are defined.
Subsequent layers are interconnected by connecting pairs of
nodes corresponding to the same original node. An intercon-
necting edge corresponds to the visit of the original node
corresponding to the nodes used for the interconnection. That
is, the interconnections between the layers correspond to the
visit of the different specified nodes. For a specified node
with several candidates, the corresponding layers are simply
interconnected several times through the corresponding nodes.
The edge(s) created for interconnecting the layers can be
assigned metric values corresponding to the visit of this node.

The procedure is illustrated in Fig. 3. Let us consider a
request with two specified nodes (n = 2), the first one having
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Fig. 3: On the left, example graph for the illustration of the Mole in the Hole
(MITH) graph transformation algorithm. On the right, obtained transformed
graph for a request with two specified nodes, the first one having two
candidates (n1 and n3) and the second one having only one candidate (n4).

two candidates (Na
1 = n1 and N b

1 = n3) and the second one
having only a single candidate (N2 = n4). As there are two
specified nodes, three layers are defined. The first two layers
are interconnected via nodes n1 and n3, corresponding to the
two candidates of the first specified node (Na

1 and N b
1 ), and the

last two layers are interconnected via node n4, corresponding
to the single candidate of the second specified node (N2).

B. Request Transformation

The original request has to be mapped to the transformed
graph. From a graph point of view, any routing request without
specified intermediate nodes can be represented by a set of
source nodes and a set of destination nodes. As the source
nodes have to be visited before the first specified node, the
source nodes in the transformed graph correspond to the copy
of the source nodes of the original request in the first layer.
Similarly, as the destination nodes have to be visited after the
last specified node, the destination nodes in the transformed
graph correspond to the copy of the destination nodes of the
original request in the last layer.

C. Solution Transformation

Once the state-of-the-art algorithm returns a solution on
the transformed graph, the latter has to be mapped back to the
original graph. The solution in the original graph corresponds
to the concatenation of all the original edges corresponding to
the edges used in the different layers.

D. Limitations of MITH

While MITH presents itself as a general algorithm for
enabling routing through specified nodes for any routing
algorithm, it presents some limitations. First, if the original
graph includes local constraint metrics (e.g., finite bandwidth
usage capacity), the routing algorithm extended with MITH
could lose its completeness or optimality [25]. Second, node-
or edge-disjointness on the transformed graph does not ensure
node- or edge-disjointness on the original graph. Hence, MITH
does not support multipath routing. Third, as mentioned, MITH
can only deal with an ordered set of specified nodes.

V. EVALUATION

The goal of our evaluation is twofold. First, in Sec. V-A,
we give an insight on the impact of MITH on the performance
of state-of-the-art routing algorithms. Second, in Sec. V-B,
as LARAC-SN and MITH can both solve the OSNE of the
unicast CSP problem with one candidate per specified node, we
compare the performance of both algorithms for this specific
problem.
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Fig. 4: Runtime and optimality gap of CBF with MITH (CBF-MITH) and
LARAC with MITH (LARAC-MITH) for different numbers of specified nodes
and candidates per specified node.

We perform both evaluations on the example of the unicast
CSP problem. We use the topologies of the Topology Zoo [26]
which are connected, have between 10 and 100 vertices and
less than 200 edges. The delay di of an edge is defined as the
propagation delay and its cost ci is defined as 1+1/di. This en-
sures that least-cost and least-delay paths are not identical. For
each combination of topology, number of specified nodes and
number of candidate nodes per specified node, we generate 100
random sets of candidate nodes. For each of these, we generate
100 random unicast requests (random source and destination)
with a delay bound randomly uniformly distributed between
the minimum (delay of the least-delay path) and maximum
possible values (delay of the least-cost path). This setup leads,
for each scenario, to 10.000 requests per combination of
topology and number of specified and candidate nodes. The
evaluations were ran on an Ubuntu 16.04 PC equipped with
an Intel Core i7-4790 CPU @ 3.60GHz.

A. Influence of MITH on the Performance of Algorithms

We observe the runtime and optimality gap of Constrained
Bellman-Ford (CBF) [27], an optimal CSP algorithm, and
LARAC [6], [8], a CSP heuristic, for different numbers of
specified nodes (from 0, i.e., without MITH, to 5) and for
different numbers of candidate nodes per specified node (from
1 to 5). The results are shown in Fig. 4. Each point is
represented by the average runtime or optimality gap observed
for the 10.000 runs performed for this point.

1) Runtime: We observe that the impact of MITH on
the runtime of the algorithms increases with the number of
specified nodes. However, surprisingly, the runtime of the
algorithms decreases with the number of candidate nodes. This
is due to the fact that, because of the randomness of our
evaluation, adding candidates potentially allows the algorithms
to reach the last layer with shorter paths (i.e., faster).

2) Optimality Gap: In terms of optimality gap, with CBF
as optimal benchmark, we observe that increasing the number
of specified nodes and the number of candidate nodes per
specified node both increase the optimality gap of LARAC.

B. LARAC-SN vs LARAC with MITH

Fig. 5 shows the runtime and optimality gap of LARAC-
SN and LARAC and CBF extended with MITH for different
numbers of specified nodes (from 0 to 8). Each point in the
graph corresponds to the average of the values observed for
the 10.000 runs corresponding to this point.

1) Runtime: As expected, since increasing the number of
specified nodes increases the size of the graph on which path
finding is performed, the runtime of CBF and LARAC with
MITH increases exponentially with the number of specified
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nodes. As already observed by previous studies [7], LARAC
scales better than CBF. We observe that LARAC-SN presents a
much better runtime behavior. Indeed, the runtime of LARAC-
SN is around 10% of the runtime of LARAC with MITH.

2) Optimality Gap: At the cost of its high runtime, CBF
with MITH is optimal. On the contrary, LARAC-SN and
LARAC with MITH are both sub-optimal but their optimality
gap stays lower than 1.62% in average. They both exhibit the
exact same optimality gap behavior. Interestingly, while the
optimality gap increases with the number of specified nodes,
the increase seems to saturate.

VI. CONCLUSIONS

The problem of routing through intermediate specified
nodes has become more and more an important issue. Indeed,
the problem finds applications in new emerging fields such
as Software-Defined Networking (SDN), Network Function
Virtualization (NFV) and Service Function Chaining (SFC).
In this paper, we propose two solutions for this problem.
First, we propose LARAC for specified nodes (LARAC-SN), an
extension of the state-of-the-art LARAC constrained shortest
path (CSP) algorithm which allows to find a CSP visiting
specified intermediate nodes. While sub-optimal, we show that
LARAC-SN exhibits a small optimality gap at a low runtime
cost. Second, we propose Mole in the Hole (MITH), a graph
transformation algorithm forcing any state-of-the-art algorithm
to visit an ordered set of specified nodes. MITH further allows
to define a set of candidate nodes per specified node such that
the state-of-the-art routing algorithm used automatically selects
the best candidate. We show that MITH has the potential
of finding the optimal solution to any problem, however at
the cost of an increased runtime. We further show that the
performance of both LARAC-SN and MITH degrades as the
number of specified nodes increases. As LARAC-SN shows
a very good trade-off between optimality gap and runtime,
future work should consider the extension of LARAC-SN
to deal with several candidates per specified node. Further,
MITH generates graphs with a specific layered structure. The
thorough evaluation of the performance of state-of-the-art
algorithms on MITH-like graphs is also an interesting research
direction.
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