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Zusammenfassung 

Alkoholkonsum kann die Gesundheit des Einzelnen schädigen und erhebliche sozio-

ökonomische Schäden verursachen. Klinische Tests zur genauen Bestimmung des 

Alkoholkonsums als auch Biomarker für die frühzeitige Erkennung alkoholbedingter 

Erkrankungen sind jedoch limitiert und die zugrundeliegenden biochemischen 

Mechanismen noch weitgehend unbekannt. Seit den 1980er Jahren haben nur 

wenige Tierstudien den Zusammenhang zwischen Alkohol und der metabolischen 

Veränderungen untersucht. Das Ziel dieser Arbeit war es, das Wissen im Bereich der 

Alkohol-Biomarker-Discovery zu erweitern um neue Erkenntnisse über Alkohol 

induzierte metabolische Veränderungen beim Menschen zu gewinnen und daraus 

neue potentielle klinische Alkoholbiomarkerkandidaten abzuleiten. Da Alkoholkon-

sum eine Vielzahl von Organen, biologischen Prozessen und Signalwegen beein-

flusst, ist ein holistischer Biomarker-Discovery-Ansatz, der näher am Phänotyp ist 

und einen globalen und direkten Einblick in die Entwicklung und das Fortschreiten 

von Alkohol induzierter Toxizität gibt, dringend erforderlich. Im Rahmen einer ersten 

Targeted Metabolomics Alkohol Studie, wurde die neue Hochdurchsatz-Tandem-

Massenspektrometrie-Plattform in einer großen europäischen Bevölkerungsgruppe 

eingesetzt um metabolische Effekte von Alkoholkonsum auf den menschlichen 

Organismus zu untersuchen. Die Studie identifizierte Alkohol assoziierte Metaboliten 

und ihre potenziell zugrunde liegenden Mechanismen. Die Studie überbrückt die 

Wissenslücke von Alkohol und seiner Auswirkungen auf das Metabolom und stellt 

eine zusätzliche Verbindung her im Verständnis der schrittweisen Entwicklung vom 

chronischen moderaten-bis-hohen Alkoholkonsum bis hin zu seinen potentiellen 

klinischen Endpunkten.  
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Abstract 

Alcohol consumption can harm the health of individuals and cause significant socio-

economic damage. However, clinical tests for the accurate assessment of alcohol 

consumption and biomarkers for the early detection of alcohol-related diseases are 

limited and the underlying biochemical mechanisms are still not fully understood. 

Since the 1980s, only few animal studies have investigated the association between 

alcohol and metabolic changes. The aim of this work was therefore to expand the 

knowledge in the field of alcohol biomarker discovery to gain new insights into 

alcohol-induced metabolic changes in humans and possibly to derive new clinical 

alcohol biomarker candidates. Since alcohol consumption affects a variety of organs, 

biological processes and signaling pathways, a holistic biomarker discovery 

approach that is closer to the phenotype and that provides a global and direct insight 

into the evolution and progression of alcohol-induced toxicity is urgently needed. As 

part of a first Targeted Metabolomics alcohol study, the new high-throughput tandem 

mass spectrometry platform was deployed in a large European population to study 

the metabolic effects of alcohol consumption on the human organism. The study 

identified alcohol-associated metabolites and their potentially underlying 

mechanisms. The study bridges the knowledge gap of alcohol and its effects on the 

metabolome and provides an additional link in understanding the gradual evolution 

from chronic moderate-to-high alcohol consumption to its potential clinical endpoints. 
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1. Introduction 

1.1 Origins of alcohol consumption  

1.1.1 Evolutionary aspects 

How did alcohol come into being? - according to the American Biologist Robert 

Dudley (Dudley 2014) alcohol consumption did not suddenly fall from the sky, but has 

evolved over millions of years. About 2.5 million years ago until about 10 000 years 

ago, our phylogenetic ancestors have consumed alcohol eating ripe fruits. The locali-

zation of those fruits has been associated with high-energy foods and provided an 

evolutionary benefit to our ancestors. This type of alcohol consumption has shaped 

the behavior of primates, who with time have adjusted to the intake of low ethanol 

concentrations. The theory of evolutionary origin of alcohol consumption is supported 

by the heritability as well as the biogeographic distribution of alcohol dehydrogenase, 

the most important enzyme for alcohol degradation in humans (Dudley 2014). 

1.1.2 Historical development of alcohol consumption in society 

Drinking of alcohol (e.g. wine and beer) is known since in approx. 5.000 BC the in-

habitants of Mesopotamia have invented the manufacturing of alcoholic beverages. 

Later, during the Middle Ages, discovery and development of alcohol distillation 

made it possible to produce alcoholic beverages with an ethanol concentration of up 

to 80 volume percent. During the course of history, alcohol had different functions 

and consequences across different cultures. Whereas in the Middle Ages the func-

tion of alcohol was mainly food (i.e. beer), stimulant, facilitation of social contacts, 

sacral substance, narcotic and medication, the focus of alcohol in the Industrialization 

period shifted with time from functions to consequences such as an addictive sub-

stance, cause of social problems and physical damage (Feuerlein 1994) 
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1.2 Alcohol consumption – a health issue today 

Today, alcohol still plays an important role in everyday life. Notably, it is an 

extraordinary substance, as unlike other substances (i.e. tobacco) it is psychoactive, 

addictive and at the same time it can be consumed without legal sanctions except for 

a few restrictive exceptions ((AWMF) 2016). Alcohol follows the pharmacological 

leitmotif “Dosis sola venenum facit” (i.e. only the dose makes the poison). In small 

quantities, alcohol can have a number of positive effects. However, this is not 

intended to obscure the fact that acute intoxication can occur in the case of increased 

alcohol consumption, and multiple organ damage can occur in the case of chronic 

intake of larger amounts of alcohol  (Ashley, Rehm et al. 2000), (World Health 

Organization 2014).There is hardly an organ that cannot be harmed by alcohol 

(Figure 1). Alcohol consumption has been identified as a component cause for more 

than 200 diseases, injuries and other health conditions with ICD-10 codes  (World 

Health Organization 2014), (Shield, Parry et al. 2013). The individual organs, 

however, are often affected with varying frequency and individual severity with 

comparable alcohol consumption. The underlying mechanisms are still largely 

unexplained. Therefore, research on the effect of alcohol on human body and 

especially the early detection of alcohol-induced somatic and mental health 

conditions in asymptomatic individuals is of great importance 
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Figure 1. Main short-term and long-term effects of alcohol 
consumption . Modified according to https://www.unitypoint.org and 
https://www.help4addiction.co.uk/effects -alcohol-body/. 

 

 

https://www.unitypoint.org/
https://www.help4addiction.co.uk/effects-alcohol-body/
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1.3 Need for new biomarkers in alcohol diagnostics and 

treatment  

1.3.1 Socio-economic consequences of alcohol-related disorders 

Alcohol-induced disorders are common, frequently underdiagnosed (as patients may 

not disclose alcohol consumption or underreport alcohol consumption) and expensive 

at total costs (Moore, Bone et al. 1989). The estimated costs of alcohol-related 

disorders are at 180 billion USD in the US, 125 billion Euros in Europe and 24,4 

billion Euros in Germany (dhs 2009). Costs are caused by loss of production due to 

illness, accident and death, treatment costs and damage to property. The global cost 

for the sole treatment of alcohol-related diseases cannot be easily fully estimated. 

However, as an example, according to 2009 figures in the UK, the National Health 

Service (NHS) spends an estimated 3 billion British Pounds per year treating alcohol-

related illness (Gika and Wilson 2014). 

1.3.2 Current diagnostic shortcomings 

Traditional biomarkers are not alcohol specific  

In the sense of an early diagnosis and therapy of alcohol-related disorders, 

questionnaires such as CAGE (Ewing 1984) or the Alcohol Use Disorder 

Identification Test (AUDIT) (Saunders, Aasland et al. 1993) as well as biomarkers 

can be used. Alcohol biomarkers are physiological indicators of alcohol exposure 

(SAMHSA 2012). Indirect biomarkers suggest heavy alcohol consumption by 

detecting the endogenous toxic effects that alcohol may have had on organ systems 

or body chemistry (Litten, Bradley et al. 2010). However, the current indirect 

traditional biomarkers used in clinical routine, such carbohydrate deficient transferrin 

(CDT), gamma-glutamyl-transferase (GGT) or mean corpuscular volume (MCV), 

have limitations as they are not alcohol-specific and are influenced by other 
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substances and by non-alcohol-related disorders (Conigrave, Degenhardt et al. 2002, 

Allen, Marques et al. 2008), (Hannuksela, Liisanantti et al. 2007), (Helander 2003), 

(Laposata 1999), (Niemela 2007) (Torrente, Freeman et al. 2012). 

Most biomarkers exhibit a narrow window of alcohol detectability  

In dealing with alcohol-related human toxicity and disease, there is a need for a 

range of different types of biomarkers. For example, because of the relatively short 

PK half-life of ethanol, markers are needed that indicate long-term exposure to help 

monitor therapy and rehabilitation (NIH 2006). Currently only the MCV and FAEE 

(fatty acyl ethyl esters) can remain reliably measurable for a long time in the body 

after drinking is stopped (Figure 2). 

Direct ethanol metabolites provide no information on progression of toxicity 

In addition to indirect biomarkers, direct ethanol metabolites are increasingly being 

observed in the last decade. They are termed “direct” because they are analytes of 

alcohol breakdown. When alcohol is consumed, the biggest portion is metabolized by 

the oxidative processes in the liver, but a small amount is also broken down non-oxi- 

datively, creating analytes that can be measured in blood or urine. At present, the 

following direct ethanol metabolites are used ethyl glucuronide (EtG), ethylsulfate 

(EtS), fatty acid ethyl ester (FAEE), phosphatidylethanol (PEth) (Foti and Fisher 

2005), (Helander and Beck 2004), (Kaphalia, Cai et al. 2004),(Varga, Hansson et al. 

1998) These are not biomarkers in themselves, but metabolites of the toxin, and 

while useful in demonstrating/quantifying alcohol exposure, do not necessarily, by 

themselves, provide information on the mechanisms of toxicity.  
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Figure 2.Current traditional alcohol biomarkers are limited . One of the diagnostic 
shortcomings today is that most current biomarkers exhibit a narrow window of alcohol 
detectabil ity. Y-axis:estimated point in time biomarker remains reliably measurable in 
the body after drinking is stopped, x-axis : level of lowest alcohol consumption required 
to induce biomarker changes compared to reference range; exact definit ions of low, 
moderate and high alcohol consumption varies across publications. Schematic modif ied 
according to http://pubs.niaaa.nih.gov/publications/arh341/56-63.htm...........................  

 

Exposure to alcohol affects a variety of organs, biochemical and signaling pathways, 

and biological process. Thus, conventional deductive biology, which provides only a 

fragmented view of a complex picture, is arguably not up to the challenge of 

understanding the metabolic changes of long-term alcohol exposure. Biomarkers that 

give insights into the development and progression of toxicity are required, which 

might be best served using a holistic “systems biology” approach (Gika and Wilson 

2014). The comprehension of such biological complexity is best achieved via 

exploratory/and or holistic approaches, known in the modern biology as “Omics” 

sciences (Micheel 2012). 

http://pubs.niaaa.nih.gov/publications/arh341/56-63.htm
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1.4 Metabolomics - the new approach in biomarker discovery  

1.4.1 The next generation “Omics” 

Since the 1990s, biomarker research was mainly focused on the areas of Genomics, 

Transcriptomics and Proteomics. However, during the last couple of years the full 

complexity of molecular biology has been realized and the complex interactions 

between genetic make-up and especially environmental factors have now been 

recognized. It is now accepted that understanding of these interactions is impossible 

at only genetic, transcriptomic and proteomic level. Metabolomics is a rather recent 

concept in biomarker research that aims to quantify all metabolites in a biological 

system (Fiehn 2002). Metabolomics is based on a holistic approach for the 

characterization of metabolites present in biological samples (i.e. endogenous 

metabolites). Focus of analysis is endogenous metabolites with a molecular mass of 

80 – 1,200 Da (Hocher and Adamski 2017). Unless the other “Omics” approaches as 

Genomics, Transcriptomics or Proteomics, Metabolomics applications measure 

metabolites to provide a direct assessment of human health and its influences i.e. 

environmental factors like nutrition, lifestyle, smoking, exercise and  medication. Due 

to its close proximity to the phenotype, metabolic biomarkers are identifiable with real 

biological endpoints of a biological system. Numerous publications have already 

shown successful applications of metabolomics in biomarker discovery (Xu, 

Holzapfel et al. 2013),(Mittelstrass, Ried et al. 2011, Wang-Sattler, Yu et al. 2012, 

Floegel, Wientzek et al. 2014, Vouk, Ribic-Pucelj et al. 2016). Metabolomics studies 

are divided into two different types : targeted and non-targeted approaches : non-

targeted metabolomics is used for a global metabolite analysis, that is, 

comprehensive analysis of all the measurable analytes in a sample (including analyte 

identification of unknown signals) (Griffiths, Koal et al. 2010), whereas in a targeted 
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metabolomics strategy, predefined metabolite-specific signals are often used to 

determine precisely and accurately relative abundancies and concentrations of 

limited number of metabolites.Targeted metabolomics approach is typically applied in 

hypothesis-driven studies with focus on prediction of metabolic differences of known 

metabolites between cohorts of populations and for understanding of the underlying 

regulatory mechanism of metabolic pathways (Fiehn 2007) . 

1.4.2 Mass-spectrometry as an enabling high-throughput technology  

Mass spectrometry is the key technology for metabolomics. Mass spectrometry is an 

analytical technique to determine the mass-to-charge ratio (m/z) of particles (Nair 

and Clarke 2017) (Figure 3). The underlying platforms consist of different instrument 

configurations (Figure 4). It is a rapidly developing technology for both qualitative 

and quantitative analyses of proteins and peptides (Popp, Malmstrom et al. 2015) 

oligonucleotides (Wolk, Kaleta et al. 2012), drug metabolites (Desrosiers, 

Scheidweiler et al. 2015), steroids (Haller, Prehn et al. 2010), volatile organic 

compounds (VOC) (Jaremek and Hiltawsky 2012) and endogenous metabolites as 

acyl carnitines or amino acids (Millington, Kodo et al. 1990). As of today, the 

pressure is on for high-throughput approaches to accelerate the generation, 

identification and optimization of biomolecules. As traditional methods of analysis 

become antiquated, new analytical strategies and techniques are necessary to meet 

sample throughput requirements and man power constraints. Recent advancements 

in tandem mass spectrometry have made tremendous impact on the identification of 

components in Newborn screening applications (Chace, DiPerna et al. 1999), 

Therapeutic Drug Monitoring (TDM) (McShane, Bunch et al. 2016) and Drugs of 

Abuse (DoA) (Eichhorst, Etter et al. 2009) directly from human fluid. In this respect, 

many clinical laboratories in both academia and industry are taking advantages of 
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mass spectrometry developments. 

 

Figure 3.Mass spectrometry technology principle .Key element of mass spectrometry 
is the ionization of analytes and their subsequent separation according to their by 
mass-to-charge ratio (m/z).The mass spectrometer can be constructed in different 
ways, here the graphic depicts a tandem mass spectrometer; metabolites (displayed as 
colored bubbles) are extracted from the sample (e.g. using a chromatographic step) 
and then applied to ionization chamber. Ionized molecules are pr e-selected by m/z ratio 
in the first quadrupole Q1. In the second quadrupole (Q2) molecules released from Q1 
are fragmented and applied to third quadrupole (Q3).In Q3 fragments of molecules of 
interest are selected and quantif ied in the detector. Modified  according to (Hocher and 
Adamski 2017)  
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………………………………………………………

 
 
Figure 4.Common technologies and configurations of mass spectrometry 
instrumentation. The main components of a mass spectrometer are an Inlet system 
e.g. (LC, GC, direct probe etc.), Ion source (e.g.MALDI, APCI, ESI, CI, EI, etc.), Mass 
analyzer (TOF, Ion Trap, Quadrupole, Sector mass ana lyzer, etc.) and Detector (e.g. 
Micro Channel Plates, Electron Multiplier, etc.). Depending on the sample´s chemical 
and physical properties, different ionization techniques can be used. For example, for 
samples that are not thermolabile and relatively volati le, ionization such as Electron 
Impact and/or Chemical Ionization is typically used. For samples that are thermolabile 
such as peptides, proteins and other samples of biological interest, soft ionization 
techniques are to be considered. Schematic compiled according to mass spectrometry 
segmentation tutorial materials from (Iowa State University 2017) . 
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1.5 Current state of research - Studies on alcohol-related 

metabolic perturbations 

Studying the metabolic processes that lead to gradual development of disease 

provides an excellent way of discovering biomarkers of toxicity and for determining 

the extent of damage to the organism. Despite the importance of ethanol in causing 

human disease and the limitation of traditional alcohol biomarkers, relatively few 

original research studies using metabolomics platforms have been performed to date 

(Table 1). Those studies that have been undertaken have largely been in rodents  

except one study using human embryonic stem (hES) cells (Palmer, Poenitzsch et al. 

2012) and one study using 61 human males (Vazquez-Fresno, Llorach et al. 2012). 

The technique that has been most applied in metabolic studies on alcohol research in 

the case of ethanol is LC-MS, particularly in combination of UPLC with TOF followed 

by H1-NMR with a single study that employed GC-MS. Most of the published work on 

metabolomics for the study of alcohol related metabolic dysfunction relate to the 

analysis of urine or liver samples of rodents, followed by reports describing metabolic 

studies on brain, serum, plasma and pancreatic tissue. In most of studies in rodents, 

the alcohol was administered via oral gavage or in the animals drinking water. The 

literature reports studies on both acute and chronic alcohol consumption in rodents, 

with animal treated with ethanol after single dose or exposed for periods ranging from 

2 weeks to 6 months. Almost all these reports are supported by additional 

methodologies with clinical parameters measurements, histopathology data on liver 

tissues or proteomics analyses. In all studies a relatively small number of samples 

was studied, in some studies the number of samples was not defined. Also, a 

relatively small number <30 metabolites was measured. (Weiner, Coker et al. 1984, 

Bradford, O'Connell et al. 2008, Nicholas, Kim et al. 2008, Wang, Lv et al. 2008, 
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Masuo, Imai et al. 2009, Fernando, Kondraganti et al. 2010, Manna, Patterson et al. 

2010, Fernando, Bhopale et al. 2011, Li, Liu et al. 2011, Loftus, Barnes et al. 2011, 

Manna, Patterson et al. 2011, Gika, Ji et al. 2012, Palmer, Poenitzsch et al. 2012, 

Shi, Yao et al. 2012, Vazquez-Fresno, Llorach et al. 2012, Liu, Raghu et al. 2013, 

Yoseph, Breed et al. 2013, Fan, Cao et al. 2014) 

With the advent of the latest targeted high-throughput metabolomics technology by 

Biocrates (BIOCRATES Life Sciences AG, Innsbruck, Austria) and the availability to 

measure >300 known metabolites in one run, the research question arouse to 

investigate alcohol-induced metabolic profiles in a big European human population to 

derive new insights for alcohol research and potentially identify novel biomarkers of 

alcohol consumption.
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Reference 
Phenotype/ 

Disease state under 
study 

Outcome 
Metabolomics-
based method 

Sample   
 

(for metabolomics 
analysis) 

Technology  
Instrumentation 

configuration 

Candidate Biomarkers identified/ 
Significant metabolite changes  

 
(as described in the publication ) 

Weiner et al. 1984 
Relationship between 
alcohol consumption 
and  metabolic profiles 

Changes  in metabolism 
produced by alcohol 

Metabolic profiling urine MS GC/MS 
Threonic acid; Glucuronic; an 
undetermined acid (No. 55); 
pyroglutamic acid 

Nicholas et al. 2007 

Relationship between 
acute and chronic 
alcohol fed and 
metabolic levels 

Both acute and 
binge ethanol caused (i) 
decreased glucose, lactate, and 
alanine in liver and serum; (ii) 
increased acetate 
in liver and serum; and (iii) 
increased acetoacetate in 
serum. Binge-ethanol increased 
liver  -hydroxybutyrate 
and decreased betaine.  

Metabolomics 
liver tissue 

serum 
NMR 1H-NMR 

Acute and Binge alcohol 
consumption : 
Glucose, Lactate, Alanine ,Acetate, 
Acetoacetate 
 
Binge alcohol consumption : 
ß -hydroxybutyrate 
Betaine 

Bradford et al 2008 
Steatohepatitis 
Liver disease 

Changes in N-acetylglutamine 
and n-acetylglycine may be 
useful markers of alcohol 
consumption  

Metabolomic 
profiling 

urine 
liver  

NMR 
MS 

ESI/FTICR-MS 
NMR 

 N-acetylglutamine 
 n-acetylglycine 

Wang et al 2008 

Relationship between 
alcohol-induced 
hepatotoxicity  and 
metabolite levels 

Sphingomyelin signaling 
pathway is involved  in alcohol 
hepatotoxicity 

Metabolic profiling urine MS 
UPLC/ESI-
QTOF-MS 

ceramide (d18:1/25:0) 

Masuo et al 2009 
Relationship between 
Sake consumption and  
metabolic profiles 

Significant increases in valine, 
arginine/ 
ornithine, alanine, glutamine, 
and choline with decreases in 
isoleucine, N-acetyl aspartate, 
taurine, glutamate, and gamma 
aminobutyric acid in brain 

Metabolomics brain, liver tissue NMR 1H-NMR 

Valin 
 arginine/ ornithine, alanine, 
glutamine, and choline with 
decreases in isoleucine, N-acetyl 
aspartate, 
taurine, glutamate, and gamma 
aminobutyric acid in brain 

Fernando et al 2010 
Hepatic steanosis 
Alcoholic liver disease 
Fatty  Liver 

Potential method to detect 
early-stage-alcohol-induced 
fatty liver disease by analyzing 
plasma lipid profile 

Lipidomics 
plasma 

liver tissue 
NMR 

1H-NMR 
31P-NMR 

TG 
Phospholipids 

 
Table 1.Current studies on alcohol-induced metabolic perturbations. Shows the result of l iterature baseline analysis using PubMed.  
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Reference 
Phenotype/ 

Disease state under 
study 

Outcome 
Metabolomics-
based method 

Sample   
 

(for metabolomics 
analysis) 

Technology  
Instrumentation 

configuration 

Candidate Biomarkers identified/ 
Significant metabolite changes  

 
(as described in the publication ) 

Manna et al 2010 
Alcohol-induced Liver 
Disease (ALD) 

Demonstration  of metabolomics 
approach to identify early, 
noninvasive 
biomarkers of ALD 
pathogenesis 

metabolomics urine MS 
UPLC-

ESIQTOF- 
MS 

Ethyl-sulfate 
Ethyl-ß-D-glucuronide 
4-hydroxyphenylacetic acid 
4-hydroxyphenylacetic acid sulfate 
2-hydroxyphenylacetic acid 
adipic acid 
pimelic acid 
indole-3-lactic acid 

Fernando et al 2011 
Alcohol Liver Disease 
(ALD) 

n.a. Lipidomics 
plasma 

liver tissue 
NMR 

1H-NMR 
31P-NMR 

Phosphatidylcholine 
Lysophosphatidylcholine 
Phosphatidyserine 
Phosphatidylethanolamine 
Lyso-Phosphatidylethanolamine 

Li et al 2011 
Liver injury 
Hepatocellular 
carcinoma (HCC) 

LPC profiles 
in serum may be biomarkers for 
liver injury and hepatocelular 
carcinoma 

Metabolomics serum MS 
UPLC/Q-TOF 

MS 

Leucine; Phenylpyruvic acid; 
Phenylalanine 
Tryptophan; LPE (16:0); LPE (18:0) 
Lysophosphatidylcholines : 
LPC (16:0) 
LPC (18:0) 
LPC (20:1) 
LPC (22:6) 
Phosphatidylcholines : 
PC (16:0/18:3) 
PC (12:1/24:3) 
PC (16:0/20:4) 
PC (16:0/22:6) 
PC (16:0/22:6) 
PC (18:0/20:4) 
Sphingomyelins : 
SM (d18:0/16:1) 

 
Table 1 (continued). Current studies on alcohol- induced metabolic perturbations. Shows the result of l iterature baseline analysis using 
PubMed 
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Reference 
Phenotype/ 

Disease state under 
study 

Outcome 
Metabolomics-
based method 

Sample   
 

(for metabolomics 
analysis) 

Technology  
Instrumentation 

configuration 

Candidate Biomarkers identified/ 
Significant metabolite changes  

 
(as described in the publication ) 

Loftus et al 2011 Alcoholism 
Increased  metabolite levels in 
livers in rat and mouse by 
alcohol treatment. 

Metabolite 
profiling 

liver tissue MS LCMS-IT-TOF 

Fatty acyls  metabolites: 
octadecatrienoic acid 
eicosapentaenoic acid 
Fatty acid ethyl esters (FAEE)s : 
ethyl arachidonate 
ethyl docosahexaenoic acid 
ethyl linoleate 
ethyl oleate 
Phosphatidylethanol (PEth) 
homologues : 
PEth 18:0/18:2 
PEth 16:0/18:2 

Manna et al 2011 
Alcohol-induced Liver 
Disease (ALD) 

Indole-3-lactic Acid and  
Phenyllactic Acid are potential 
candidates for conserbved and 
pathology-specific for early 
stages of ALD 

metabolomics urine MS 
UPLC-

ESIQTOF- 
MS 

Indole-3-lactic Acid 
Phenyllactic Acid 

Gika et al 2012 

Relationship between 
chronic alcohol 
consumption and 
metabolic profiles 

A large number of metabolites 
were seen to differ between 
control and 
alcohol-treated animals, for both 
biofluids. 

Metabolic profiling plasma, urine MS UHPLC-TOF MS 

Octadecatrienoic acid 
Eicosapentaenoic acid 
Ethyl arachidonate 
Ethyl docosahexaenoic acid 
Ethyl linoleate 
Ethyl oleate 
Phosphatidylethanol (PEth) 
homologues (including PEth 
18:0/18:2 and PEth 16:0/18:2) 

Palmer et al 2012 

Relationship between 
ethanol exposure and 
metabolite levels  of 
human embryotic stem 
cells  

Ethanol exposure induces 
changes to metabolite profile of 
human embryoid bodies 

Metabolomics 
human embryonic 
stem (hES) cells 

MS ESI-QTOF-MS 

L-thyroxine 
5′-methylthioadenosine 
tryptophan metabolites 
L-kynurenine 
indoleacetaldehyde 

Shi et al 2012 
Relationship between 
Ethanol and Hepatic 
Steanosis 

Metabolomic analysis of urinary 
metabolites revealed time- and 
dose-dependent changes in 
the chemical composition of 
urine. 

Metabolomics urine MS ESI-QTOF-MS 

4-Hydroxyphenylacetic acid sulfate; 
Ethyl glucuronide (EtG); Ethyl 
sulfate (EtS) 
N-Acetylneuraminic acid 

 
Table 1 (continued). Current studies on alcohol- induced metabolic perturbations. Shows the result of l iterature baseline analysis using 
PubMed 
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Reference 
Phenotype/ 

Disease state under 
study 

Outcome 
Metabolomics-
based method 

Sample   
 

(for metabolomics 
analysis) 

Technology  
Instrumentation 

configuration 

Candidate Biomarkers identified/ 
Significant metabolite changes  

 
(as described in the publication ) 

Vazquez-Fresno et al 
2012 

Relationship between 
moderate wine 
consumption and 
metabolite levels 

Ability of metabolomics to obtain 
metabolomie picture includoing 
food metabolome and 
endogenous biomarkers of 
moderate wine intake 

Metabolomics urine NMR H-NMR 
Branched-chain amino acid (BCAA) 
3-methyl-oxovalerate 

Liu et al 2013 
Alcohol-induced Fatty 
Liver  Disease (AFLD) 

Increased  metabolite levels  
after alcohol administrations. 
Levels of metabolites recovered 
in ginger treatment group 

Metabolic profiling serum MS HPLC/QTOF-MS 

D-glucurono-6,3-lactone; glycerol-
3-phosphate; pyruvic acid; 
lithocholic acid; 2-pyrocatechuic 
acid; prostaglandin E1  

Yoseph et al 2013 
alcohol-induced 
mortality and morbidity 

Septic alcohol-fed mice had a 
significantly higher mortality 
than septic water-fed mice 

1H NMR 
metabolomics 

pancratic tissue NMR 1H NMR 

Acetate; Adenosine; Xanthine; 
Acetoacetate; 3-Hydroxybutyrate; 
Betaine 
Cytidine; Uracil; Fumarate; 
Creatine;Phosphate; 
Creatine;Choline 

Fan et al 2014 

Relationship between 
chronic alcohol 
consumption  and 
changes  in heart and 
serum metabolite 
profiles 

Low to moderate alcohol 
consumption increases HDL 
cholesterol 

Metabolomics 
serum 

heart tissue 
MS HPLC-TOF-MS HDL 

 
Table 1 (continued). Current studies on alcohol- induced metabolic perturbations. Shows the result of l iterature baseline analysis using 
PubMed 



24 

2. Objectives  

The overall objective of this thesis was to extend the knowledge in the research area 

of alcohol biomarker discovery. Here, the novel high-throughput mass spectrometry 

platform was used on a big European human population cohort to perform a 

metabolomics study and gain new insights on alcohol-induced metabolic changes in 

human and their potential underlying biochemical mechanism. Following aims were 

addressed: 

2.1 Identification of candidate alcohol biomarkers 

Perform an analysis of the given human population data and metabolomics data to 

identify and characterize alcohol—induced metabolic signatures and select alcohol-

related candidate biomarkers 

2.2 Biochemical and functional interpretation  

Identify potential underlying biochemical pathways of the alcohol-related metabolic 

candidate biomarker panel and elucidate potential underlying alcohol-related 

biochemical mechanisms.  

2.3 Clinical utility 

Investigate the utility of the mass-spectrometry-based setup in the context of 

biomarkers and technology for clinical diagnostics. Identify potential scenarios for the 

utility of metabolomics-based biomarkers. Go a step further beyond the “traditional” 

target discovery and data interpretation and discuss the capability of required key 

steps to bring the selected candidate biomarkers from bench-to-bedside.  
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3. Materials and Methods 

3.1 Baseline research and literature reviews  

For the literature review of alcohol-related metabolic perturbations PubMed 

(https://www.ncbi.nlm.nih.gov , (NCBI) 2010) was used to search available articles on 

studies related to metabolomics-related alcohol research between 1900 - 2015. 

PubMed search terms were “metabolomics" AND "alcohol", “ethanol”, "metabolic 

profiling”, “metabolic” in Title/Abstract. Sources were selected through manual 

scanning of the Title/Abstracts for biomarker studies. Altogether 35 relevant sources 

could be identified and further analysed. For the final literature review 18 original 

research studies were included. 

3.2 Metabolomics study design  

For the targeted metabolomics setup a case-control study was conducted to compare 

differences of metabolite concentrations between different alcohol consumption 

groups. 

3.3 Study populations 

3.3.1 KORA F4 discovery data set  

Cooperative Health Research in the Region of Augsburg (KORA) is a population-

based research platform with subsequent follow-up studies in the fields of 

epidemiology and health care research (Holle, Happich et al. 2005, Lowel, Doring et 

al. 2005, Wichmann, Gieger et al. 2005). The KORA F4 study is the follow-up of 

KORA-Survey 4 (S4, 1999/2001) conducted in 2006/2008. 3080 individuals 

participated in the follow-up study. For 3061 individuals, metabolic data was 

available(Wang-Sattler, Yu et al. 2012, Yu, Zhai et al. 2012). From 3061 individuals, 

1144 males and 946 females aged 32-81 were selected for further analysis after 
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application of the following exclusion criteria: Non-fasting at examination, diabetic, 

alcohol abstainer, missing data or outliers (i.e. extreme low or high values) in 

metabolite concentration data (Figure 5) (see also section 3.6.1 for outlier detection 

calculation and section 3.6.2 missing values). Study participants were categorized 

according to daily alcohol intake as light drinkers (LD) (females <20g/day and males 

<40g/day) and moderate-to-heavy drinkers (MHD) (females ≥ 20g/day and males ≥ 

40g/day).    

 

Figure 5.Selection process of study participants . Flowchart displays selection steps 
of data sets used for the subsequent analyses. (**) Data set used in the main 
investigation of alcohol-induced metabolic changes. Drinkers encompass LD and MHD. 
(*) Data set used for sub-analyses 
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3.3.2 KORA F3 replication data set 

The KORA F3 study is a follow-up of the KORA-Survey 3 (S3, examined 1994/95), 

conducted in 2004/05. The KORA F3 cohort is a ten years follow-up survey of the 

KORA S3 survey. 2974 individuals participated in the follow-up. From 2974 

individuals, 377 individuals had metabolic data available 154 males and 107 females 

aged 55-84 were selected for further analysis after the application of KORA F4 

exclusion criteria. KORA F4 and KORA F3 are two independent cohorts and do not 

contain common participants and were conducted at different time points(Mittelstrass, 

Ried et al. 2011, Yu, Kastenmuller et al. 2011) 

3.3.3 TwinsUK replication data set 

The UK Adult Twin Registry (TwinsUK) is a UK-wide twin registry sample of 11 000 

adults founded in 1993 with the aim to explore the genetic epidemiology of common 

adult diseases(Moayyeri, Hammond et al. 2012).  629 individuals aged 23-73 were 

selected for analysis after the application of KORA F4 exclusion criteria. For 277 

probands HDL data was available. 

3.3.4 Data collection 

In KORA studies, the information on socio-demographic variables, smoking habits, 

physical activity, medication use, alcohol consumption was gathered by trained 

medical staff during a standardized interview (Ruckert, Heier et al. 2011) 

3.3.5 Assessment of alcohol consumption  

Assessment of alcohol intake (in grams per day) was based on weekday and 

weekend consumption of beer, wine and spirits and study participants provided 

information on their smoking behavior (never, past, current). Furthermore, 

participants underwent an extensive standardized medical examination including the 
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collection of blood samples. All measurement procedures were described in detail 

elsewhere (Ruckert, Heier et al. 2011). 

3.3.6 Ethics Statement 

Written informed consent has been given by each KORA and TwinsUK participant. 

The KORA studies, including the protocols for subject recruitment and assessment 

and the informed consent for participants, were reviewed and approved by the local 

ethical committee (Bayerische Landesärztekammer). For the TwinsUK study, ethics 

approval was received from the St Thomas´ Hospital Ethics Committee. 

3.4 Blood sampling 

KORA blood samples for metabolic analysis were collected together with medical 

examinations as described in (Illig, Gieger et al. 2010, Jourdan, Petersen et al. 2012). 

KORA F4 blood samples were drawn into serum tubes in the morning between 8:00 

and 10:30am after overnight fasting. Tubes were gently inverted twice, followed by 30 

minutes resting at room temperature to obtain complete coagulation. For serum 

collection, centrifugation of blood was performed for 10 min (2 750 g, 15 °C). Serum 

was frozen at -80 °C until execution of metabolic analyses. TwinsUK blood samples 

were taken after at least 6 hours of overnight fasting. The samples were immediately 

inverted three times, followed by 40 min resting at 4°C to obtain complete 

coagulation. The samples were then centrifuged for 10 min at 2 000g. Serum was 

removed from the centrifuged brown-topped tubes as the top, yellow, translucent 

layer of liquid. Four aliquots of 1.5 ml were placed into skirted micro centrifuge tubes 

and then stored in a -45 °C freezer until sampling.  
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3.5 Metabolite measurements 

Metabolomic analysis was performed on 3061 subjects from the KORA F4 study, 377 

subjects from the KORA F3 study and 629 TwinsUK study. The targeted 

metabolomic approach was based on ESI-FIA-MS/MS measurements by 

AbsoluteIDQTM p150 assay (BIOCRATES Life Sciences AG, Innsbruck, Austria). 

The method of AbsoluteIDQTM p150 assay has been proven to be in conformance 

with FDA-Guidline "Guidance for Industry - Bioanalytical Method Validation (May 

2001”)(Health, Human et al. 2001) ,which implies proof of reproducibility within a 

given error range. The assay procedures of the AbsoluteIDQTM p150 kit as well as 

the metabolite nomenclature have been described in detail previously (Illig, Gieger et 

al. 2010, Römisch-Margl, Prehn et al. 2011, Wang-Sattler, Yu et al. 2012). Data 

evaluation for quantification of metabolite concentrations and quality assessment is 

performed with the MetIQ™ software package, which is an integral part of the 

AbsoluteIDQ™ kit. Internal standards serve as reference for the calculation of 

metabolite concentrations. To ensure data quality, each metabolite had to meet the 

three criteria described previously(Mittelstrass, Ried et al. 2011): (1) average value of 

the coefficient of variance (CV) for the metabolite in the three QCs should be smaller 

than 25%; (2) 90% of all measured sample concentrations for the metabolite should 

be above the limit of detection (LOD); and (3) the correlation coefficient between two 

duplicate measurements of the metabolite in 144 re-measured samples should be 

above 0.5. In total, 131 metabolites passed the three quality controls, and the final 

metabolomics dataset contained the sum of hexoses (H1), 14 amino acids, 24 

acylcarnitines, 13 sphingomyelins, 34 diacylphosphatidylcholines, 37 acyl-alkyl-

phosphatidylcholines, and 8 lysophosphatidylcholines.  
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3.6 Data pre-processing 

Data pre-processing is essential for data analysis and interpretation of large 

metabolomics data sets. Metabolomics experiments generate a wide variety of data 

(for example concentrations of metabolites) for each individual sample. These data 

have to be streamlined and simplified for further bio statistical analyses. The first 

main goal is to check if the data is valid and present them in a meaningful way 

(Hocher and Adamski 2017). Data pre-processing and following statistical data 

analyses were performed with the open source software R (version 3.3.1). 

3.6.1 Outlier detection  

To identify outliers in the metabolomics data, concentrations obtained for the 131 

metabolites were first scaled to zero mean and unity standard deviation and were 

projected onto the unit sphere, and Mahalanobis distances for each individual were 

then calculated using the robust principal components algorithm (Filzmoser, Maronna 

et al. 2008). Calculations were done separately for males and females. For each 

group, the mean Mahalanobis distance plus three times variance were defined as the 

cut-off. This algorithm utilizes simple properties of principal components to identify 

outliers in the transformed space, leading to significant computational advantages for 

high dimensional data (Filzmoser, Maronna et al. 2008). This approach requires 

considerably less computational time than existing methods for outlier detection, and 

is suitable for use on very large data sets (Filzmoser, Maronna et al. 2008). 

3.6.2 Missing value imputation 

Missing values in metabolomics data sets can originate from both technical and 

biological reasons and can lead to reduction of statistical power and can introduce 

bias in epidemiological studies. Here, the missing values were imputed using the R 

package ‘‘mice’’(van Buuren and Groothuis-Oudshoorn 2012). The R package “mice” 
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imputes incomplete multivariate data by chained equations. The approach of 

multivariate imputation by chained equations was chosen because it handles missing 

values in more than one variable and takes into consideration correlations between 

metabolites or observations. 

3.6.3 Data normalization  

The normalization procedure aims to reduce the impact of very large feature values 

(that typically occur in metabolomics experiments with many different metabolites). 

and to make all features (i.e. metabolite concentrations) more comparable or 

normally distributed. Here, the metabolite concentrations were normalized by log-

transformation for all subsequent analysis steps.  

3.6.4 Data distribution check 

When comparing experimental data sets (for example control versus patient group) 

the sets must display enough diversity in the data for each parameter studied. 

Shapiro-Wilk test (Royston 1982) normality test was applied on single metabolites to 

check for normal distribution of metabolites in the study population in order to choose 

proper follow-up tests. Mann-Whitney test (Bauer 1972) was applied for the 

comparison of two variables not satisfying normal distribution. Fisher’s exact test 

(Agresti 2002) was applied for comparing binomial proportions.  

3.7 Statistical data analysis 

3.7.1 Logistics regression analysis 

The logistic regression model predicts the probabilities of a sample being a member 

of either of two groups for a set of metabolite concentrations. The response variable 

of each sample for the logistic regression model, is binary, corresponding to the two 

groups (i.e. Abstainer, moderate-to-heavy (MHD), drinker or low-drinker (LD)). 
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Logistic regression  (Hastie and Pregibon 1992) (adjusted for age, BMI, smoking, 

HDL and triglycerides) was applied on each of the 131 metabolites to investigate  the 

association between the metabolite concentration and the alcohol consumption 

groups of Abstainer, LD and MHD respectively. To handle false discovery from 

multiple comparisons, the cut-off point for significance was calculated according to 

the Bonferroni correction. P-values were corrected according to the Bonferroni 

correction, at a level of 3.8E-4 (for a total use of 131 metabolites at the 5% level). 

Odds ratios (ORs) for single metabolites were calculated between two groups. The 

concentration of each metabolite was scaled to have a mean of zero and an s.d. (i.e. 

standard deviation) of one; thus, all reported, OR values correspond to the change 

per s.d. of metabolite concentration. Various factors were added to the logistic 

regression analysis as covariates to identify the best model. 

3.7.2 Random forest selection  

To further select candidate biomarkers, two additional methods were applied (Wang-

Sattler, Yu et al. 2012, Yu, Zhai et al. 2012): the random forest selection (Breiman 

2001) and the stepwise selection, which assess the metabolites as a group. Between 

two groups, the random forest was first used to select the metabolites among the 30 

highest ranking variables of importance score, allowing the best separation of the 

individuals from different groups. Age, BMI, smoking, HDL and triglycerides were also 

included in this method with all the metabolites 

3.7.3 Stepwise selection  

The metabolites were further selected using stepwise selection on the logistic 

regression model (Figure 6).Metabolites with significantly different concentrations 

between the compared groups in logistic regression, and which were also selected 

using random forest, were used in this model along with all the co-variates. Both 
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Random forest and stepwise selection can be seen as complementary to each other. 

 

Figure 6.Selection path of key metabolites 

 

3.7.4 Akaike´s Information Criterion (AIC) 

Akaike’s Information Criterion (AIC) was used to evaluate the performance of these 

subsets of metabolites used in the models. The model with minimal AIC was chosen. 

3.7.5 Correlation analysis 

A correlation exists between two variables when one of them is related to the other. 

Pearson´s correlation coefficient (r) measures the strength of the linear relationship 

between the paired x- and y-quantitative values in a sample if both x and y follows a 

normal distribution. For scenarios where the distribution is not normal, Spearman 

correlation (rho) can be calculated instead (www.statisticssolutions.com).For the 

correlation analysis between metabolite concentrations and laboratory parameters 

(HDL and triglycerides) the Spearman correlation was chosen. 

3.7.6 Area under the receiver-operating characteristic (AUROC) 

The area under the receiver-operating-characteristic curves (AUROC) was used to 

evaluate the logistic regression models. The area under the receiver operating curve 

is a measure of classification model performance (i.e. AUROC close to 1 indicates a 
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successful classification model). 

3.7.7 Clustering and Heat maps 

Heat maps were used to illustrate the trends of metabolite concentrations with 

increasing alcohol consumption. Heat map is a visualization technique which 

converts numerical table into a corresponding 2D color map to provide an intuitive 

overview of the data values. Heat map are often used with hierarchical clustering to 

reorganize the rows/columns of the data with dendograms plotted to the 

corresponding side. Alcohol consumption data was split into alcohol consumption 

categories increasing by 5g/day. A matrix of mean metabolite concentrations was 

calculated for each alcohol consumption category for significant male/female-specific 

metabolites from logistic regression. In the same procedure step hierarchical 

clustering with Euclidean distance was applied on the metabolite concentration matrix 

to generate a hierarchical dendogram clustering metabolites with similar mean 

metabolite concentrations. 

3.7.8 Meta-analysis 

For the meta-analysis of the combined KORA F4 and KORA F3 studies a fixed effect 

model was used. 

3.7.9 Smoother plots 

Smoother plots were drawn for each metabolite of the set of metabolites with the R 

function ‘qplot’ (package ‘ggplot2’) using the options geom=smooth, method=loess, 

span=0.5 producing smoother plots with locally weighted regression (locally weighted 

scatterplot smoothing (loess)) applying a smoothing span of 0.5, which results in 

medium smoothing. loess computes outlier robust locally weighted regression fitted 

values by fitting local polynomials using the weights and results in the loess curve as 
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shown in our smoother plots. For better visualization the plots were truncated to 

observations between first and 99th percentile. 

3.8 Metabolite biochemical and functional Interpretation 

3.8.1 Metabolite biochemical interpretation 

Biochemical interpretation of metabolomics data means in the context of the PhD 

project the description and characterization of the alcohol-related metabolites found 

by statistics in a biological context. The Biocrates p150 kit generally includes a 

product manual listing metabolite aliases/names as (e.g. PC aa C32:1), however in 

the product manual not all metabolite names have a respective unique identifier and 

are up-to-date from the metabolomics database as HMBD and KEGG etc. For 

example, Biocrates uses same KEGG ID for two different metabolites (i.e. 

SM(OH)C16:1 and SM(OH)C22:2). This is why a more comprehensive manual query 

for unique identifiers for each metabolite was conducted using a bigger range of 

metabolomics sources in PubChem (Kim, Thiessen et al. 2016) MetaboAnalyst 2.0 

(Xia, Mandal et al. 2012), NCBI (Jenuth 2000) HMDB 3.0 (Wishart, Jewison et al. 

2013). 

3.8.2 Metabolic Pathway and Functional Enrichment analysis 

Metabolic pathway analysis was performed using MetaboAnalyst 2.0 (Xia, Mandal et 

al. 2012). The metabolic pathway analysis module in MetaboAnalyst 2.0 combines 

results from pathway enrichment analysis with the pathway topology analysis to help 

identify the most relevant pathways involved in the conditions or phenotype studied 

(i.e. affected by moderate-to heavy alcohol consumption). It uses metabolic pathways 

from the KEGG (Ogata, Goto et al. 1999) library.  



36 

3.8.3 Literature research on alcohol-related metabolites and associated 

disease states and phenotypes 

For the identified alcohol-related 10/5 key metabolites in males/females a systematic 

manual literature analysis was conducted in PubMed for reported associations 

between the metabolites and other disease states and phenotypes. 

4. Results 

4.1 Baseline characteristics of the discovery and replication 

data sets (KORAF4, KORAF3 and TwinsUK)  

4.1.1 Drinkers 

The main investigation of alcohol-induced metabolic alterations was focused on the 

drinkers group. The drinkers group made approximately 74%/ 70%/74% of the total 

population in KORAF4/KORAF3/TwinsUK. A strictly sex-separated analysis was 

conducted based on prior results from KORA F4, which showed strong metabolomic 

differences between men and women (Mittelstrass, Ried et al. 2011). There were 

more male drinkers than female drinker across KORA F4 and KORA F3 studies. For 

both sexes, the probands were classified into two groups according to average daily 

alcohol consumption of low drinkers (LD) and moderate-to-heavy drinkers (MHD) 

based on the common measures of the WHO International Guide for monitoring 

alcohol consumption and related harm (WHO 2000) and compared MHD with LD 

(Table 2). Across KORA F4 and KORA F3 studies and across both sexes there were 

more low drinkers than moderate-to-heavy drinkers. In general, age and BMI were 

comparable between MHD and LD. A significantly lower age could be observed in 

MHD of KORA F3 males and TwinsUK participants (p-value 1.3E-02 and 1.6E-02, 

respectively). BMI was significantly increased in MHD in male KORA F4 participants 

(p-value 3.3E-03). The proportion of smokers was significantly higher in MHD in 
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KORA F4 male and TwinsUK female populations (p-values 1.0E-04 and 1.3E-02, 

respectively). In all three studies, there was a significant increase in HDL in MHD 

compared to LD (p-values 7.1E-12 – 1.3E-02). Except in KORA F3, the mean HDL 

was increased but p-value was not significant. Significant increase of mean 

triglyceride concentration could be observed in KORA F4 male MHD only (p-value 

3.4E-02). 

4.1.2 Abstainers  

The Abstainer group was included in the sub-analyses. Altogether the abstainer 

group was approximately 26%/30%/26% of the total KORA F4/KORAF3/TwinsUK 

population (Table 3). There were more female abstainers compared to male 

abstainers in KORA F4 and KORA F3. Data was not available on the granularity level 

to investigate abstainer subgroups (i.e. duration of alcohol abstinence). …………….



38 

 
 
 
 
 

 
Table 2.Drinkers - study population characteristics of KORA F4 discovery, KORA F3 and TwinsUK  replication data sets.  
Drinking status defined as

 a
alcohol consumption < 40g/day in males, < 20 g/day in females,  

b
alcohol consumption ≥ 40g/day in males, 

≥ 20 g/day in females; Abbreviations: BMI=body mass index; HDL= high density l ipoprotein, SD=standard deviation, LD=light drinkers, 
MHD=moderate-to-heavy drinkers, 

c
629 participants were available for  replication analysis, for 277 participants HDL -C and 

triglyceride data was available, 
d
Mann-Whitney test (two-sided), 

e
Fisher´s exact test (two-sided), signif icance level α= 0.05. Signif icant 

p-values are in bold.  
 

 
Discovery KORA F4 

(n=2090) 
Replication KORA F3 

(n=261) 
Replication TwinsUK (n=277) 

 men (n=1144) women (n=946) men (n=154) women (n=107) women (n=277)
 c
 

 LD
a
 MHD

b
 P-value LD MHD P-value LD MHD P-value LD MHD P-value LD MHD P-value 

participants 
n(%)

 859(75) 285(25) -- 712(75) 234(25) -- 106(69) 48(31) -- 84(78) 23(22) -- 250 (90) 27(10) -- 

age(years) 
mean±SD

 56.2±13.7 57.1±11.6 2.8E-01
d
 54.5±13.2 55.7±11.5 1.8E-01

d
 67.9±7.6 64.5±6.8 1.3E-02

d
 65.5±7.4 64.6±7.7 5.3E-01

d
 48.4±10.2 43.5±9.0 1.6E-02

d
 

BMI
 
(kg/m

2
)
 

mean±SD 
27.6±3.8 28.4±4.2 3.4E-03

d
 26.6±4.9 26.3±4.7 3.6E-01

d
 28.1±3.1 29.1±3.6 1.2E-01

d
 27.6±3.7 27.5±4.0 9.5E-01

d
 25.1±4.6 24.7±4.1 8.1E-01

d
 

smoker 
n(%)

 153(18) 66(23) 1.0E-04
e
 103(14) 44(19) 1.2E-01

e
 8(7) 8(17) 9.5E-02

e
 4(5) 3(13) 1.7E-01

e
 67(27) 14(52) 1.3E-02

e
 

HDL(mg/dl) 
mean±SD 

49.9±11.3 55.8±13.5 7.1E-12
d
 62.7±13.6 66.0±15.0 4.4E-03

d
 49.2±13.2 59.3±15.3 1.5E-04

d
 65.7±16.7 71.10±16.2 1.4E-01

d
 58.9±14.5 66.2±13.9 1.3E-02

d
 

triglyceride  
(mg/dl) 

mean±SD 
134.5±82.0 154.0±104.9 3.4E-02

e
 103.9±71.4 100.9±53.6 9.7E-01

e
 188.0±106.7 192.3±130.2 9.6E-01

e
 156.2±74.1 146.4±85.0 3.0E-01

e
 99.6±47.3 94.1±71.4 1.1E-01

d
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Table 3.Abstainers - study population characteristics of KORA F4 discovery, KORA F3 and TwinsUK 
replication data sets.  Defined as alcohol consumption = 0g/day (males and females);  Abbreviations:  BMI= body 
mass index; HDL= high density l ipoprotein; SD= standard deviation  

 

 
Discovery KORA F4 

(n=728) 
Replication KORA F3 

(n= 109) 
Replication TwinsUK (n=99) 

 men (n=233) women (n=495) men (n=37) women (n=72) women (n=99) 

participants 
n(%)

 233 (32) 495 (68) 37 (33.94) 72 (66.055) 99 (100%) 

age(years) 
mean±SD

 53.7 ± 14.0 54.5 ±13.2 65.4 ± 5.8 66.4 ± 7.7 51.3 ± 9.5 

BMI
 
(kg/m

2
)
 

mean±SD 
27.7 ± 4.6 27.7 ± 5.4 28.0 ± 3.8 29.9 ± 4.8 25.89 ± 5.0 

smoker 
n(%)

 61 (26.180) 86 (17.37) 6 (16.21622) 14 (19.444) 28 (28.2823) 

HDL(mg/dl) 
mean±SD 

45.8 ± 11.1 58.4 ± 14.1 48.4 ± 10.3 59.6 ± 16.9 53.1 ± 13.2 

triglyceride  
(mg/dl) 

mean±SD 
141.5 ± 134.2 105.4 ± 55.3 189.7 ± 142.0  173.5 ± 107.3 138.8 ± 108.7 
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4.2 Global metabolic differences between Abstainers, Low-

drinkers and Moderate-to-heavy drinkers 

Logistic regression analysis (adjusted for age, BMI, smoking, HDL and triglycerides) 

identified 40 significant metabolites in males and 18 metabolites in females that 

significantly differed (p-value < 3.8E-4) in concentration between only MHD and LD 

in the KORA F4 study. No significant metabolic changes were found between LD 

and Abstainers (Figure 7) (Figure 8), see (Table 4) (Table 5) for detailed p-values 

and.direction). ………………………..

 

Figure 7.Global analysis in males shows significant metabolic changes only 
between moderate-to-heavy drinkers (MHD) and low-drinkers (LD).  Boxplot 
representation of 40 signif icant metabolites identif ied in KORA F4 by logistic 
regression. Displayed are mean absolute metabolite concentrations of all three alcohol 
consumption groups (Abstainer, LD and MHD). Signif icant changes between two groups 
are marked with an asterix (*).  
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Figure 7(continued). Global analysis in males shows significant metabolic 
changes only between moderate-to-heavy drinkers (MHD) and low-drinkers (LD).  
Boxplot representation of 40 signif icant metabolites identif ied in KORA F4 by logistic 
regression. Displayed are mean absolute metabolite concentrations of all three alcohol 
consumption groups (Abstainer, LD and MHD). Signif icant changes between two groups 
are marked with an asterix (*).  
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Figure 7 (continued). Global analysis in males shows significant metabolic 
changes only between moderate-to-heavy drinkers (MHD) and low-drinkers (LD).  
Boxplot representation of 40 signif icant metabolites identif ied in KORA F4 by logistic 
regression. Displayed are mean absolute metabolite concentrations of all three alcohol 
consumption groups (Abstainer, LD and MHD). Signif icant changes between two groups 
are marked with an asterix (*).  
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 Abstainer LD MHD LD vs Abstainer MHD vs LD 

Metabolite Mean ± SD (µM) Mean ± SD (µM) Mean ± SD (µM) 
Odds ratio 
(95% CI) 

P-value 
Odds ratio 
(95% CI) 

P-value 

C16:1 0.0362 ± 0.0104 0.0372±0.0109 0.0419±0.0128 0.99 9.33E-01 1.34 1.43E-04 

PC aa C30:0 4.23±1.34 4.35±1.29 5.06±1.55 1.01 9.39E-01 1.37 4.19E-05 

PC aa C32:0 14.40±3.20 14.67±2.82 16.44±3.59 1.04 8.26E-01 1.40 3.21E-05 

PC aa C32:1 17.06±7.75 19.27±9.16 31.04±16.87 1.29 2.64E-01 2.34 1.15E-18 

PC aa C32:3 0.4411±0.1054 0.4343±0.0918 0.4242±0.0955 1.16 3.75E-01 0.68 3.20E-06 

PC aa C34:1 223.33±49.97 232.38±48.19 276.21±67.34 1.08 6.74E-01 1.96 9.25E-13 

PC aa C34:4 1.88±0.64 2.08±0.72 2.49±0.83 1.67 1.05E-02 1.41 1.80E-05 

PC aa C36:1 51.15±14.11 51.35±11.89 59.70±16.38 0.80 1.80E-01 1.48 6.63E-06 

PC aa C36:4 199.44±46.24 215.33±49.60 245.90±54.86 1.61 1.62E-02 1.49 2.10E-06 

PC aa C36:5 24.35±11.46 28.69±12.93 36.59±17.55 2.08 5.75E-03 1.46 3.98E-07 

PC aa C38:0 3.12±0.84 3.23±0.91 3.03±0.81 1.00 9.94E-01 0.68 4.48E-06 

PC aa C38:5 56.14±12.69 60.34±14.04 69.93±18.12 1.73 1.36E-02 1.55 2.10E-07 

PC aa C40:4 3.98±1.17 4.04±1.17 4.85±1.59 1.30 1.55E-01 1.57 1.25E-07 

PC aa C40:5 11.02±2.99 11.21±3.00 13.00±4.16 1.37 1.10E-01 1.45 1.86E-05 

PC aa C42:0 0.56±0.16 0.57±0.18 0.52±0.15 0.89 5.24E-01 0.67 5.34E-06 

PC aa C42:1 0.28±0.08 0.29±0.08 0.27±0.08 1.05 7.59E-01 0.73 2.18E-04 

PC ae C30:2 0.65±0.15 0.15±0.04 0.14±0.04 1.08 6.65E-01 0.73 7.56E-05 

PC ae C34:2 12.07±3.06 12.01±3.08 11.13±2.83 0.86 3.77E-01 0.56 6.04E-11 

PC ae C34:3 7.73±2.31 7.93±2.28 7.73±2.22 1.17 4.18E-01 0.65 2.95E-06 

PC ae C36:1 7.85±1.87 7.85±1.65 7.69±1.77 0.87 4.43E-01 0.73 9.89E-05 

 

Table 4.Result of logistic regression model analysis in KORA F4 in males  Odds 
ratios (OR) and p-values in two pairwise comparisons of alcohol consumption groups.  
Shows 40 signif icant metabolites in males that were found signif icantly different in 
concentration between MHD and LD in the KORA F4 discovery sample. Odds ratios 
(OR) reflect the pairwise comparison of metabolite concentrations between LD and 
Abstainers, MHD and LD. Out of the init ial set of 131 metabolites, only 40 signif icant 
metabolites are shown. Signif icant P-values are highlighted in bold. No signif icant 
differences were found comparing LD with Abstainers  
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 Abstainer LD MHD LD vs Abstainer MHD vs LD 

Metabolite Mean ± SD (µM) Mean ± SD (µM) Mean ± SD (µM) 
Odds ratio 
(95%  CI) 

P-value 
Odds ratio 
(95%  CI) 

P-value 

PC ae C36:2 14.67±3.65 14.12±3.31 12.44±3.05 0.80 2.06E-01 0.46 1.97E-17 

PC ae C36:3 8.25±1.95 8.20±1.97 7.96±1.85 0.83 2.66E-01 0.67 2.53E-06 

PC ae C38:2 2.04±0.55 2.02±0.45 1.97±0.44 0.88 4.61E-01 0.68 3.04E-06 

PC ae C38:3 4.10±0.95 4.04±0.84 3.82±0.86 0.92 6.47E-01 0.65 5.10E-08 

PC ae C38:4 15.52±3.28 15.29±3.09 14.65±2.92 0.86 3.38E-01 0.71 1.61E-05 

PC ae C40:3 1.06±0.26 1.05±0.21 1.02±0.22 0.89 5.34E-01 0.71 1.85E-05 

PC ae C40:4 2.53±0.52 2.49±0.50 2.39±0.45 0.77 1.31E-01 0.72 6.98E-05 

PC ae C40:6 4.83±1.14 4.89±1.18 4.42±1.08 0.99 9.56E-01 0.58 4.30E-10 

PC ae C42:4 0.99±0.24 0.96±0.24 0.91±0.22 0.63 8.56E-03 0.69 2.09E-05 

PC ae C44:6 1.32±0.36 1.33±0.38 1.25±0.35 0.83 3.02E-01 0.73 2.60E-04 

lysoPC a C16:1 2.62±0.76 2.80±0.87 3.72±1.48 1.50 6.00E-02 1.99 8.63E-16 

lysoPC a C17:0 1.77±0.50 1.73±0.50 1.48±0.49 1.04 8.15E-01 0.58 5.49E-10 

lysoPC a C18:1 19.32±4.87 20.03±5.46 22.73±7.38 0.96 8.33E-01 1.44 1.67E-05 

SM(OH)C14:1 5.95±1.58 5.62±1.32 4.95±1.33 0.75 1.14E-01 0.56 1.47E-11 

SM(OH)C16:1 3.27±0.79 3.06±0.68 2.68±0.73 0.67 2.44E-02 0.56 6.85E-12 

SM(OH)C22:1 12.93±2.85 12.56±2.52 11.41±2.85 0.90 5.39E-01 0.62 3.45E-09 

SM (OH) C22:2 10.55±2.36 10.15±2.13 9.10±2.31 0.83 3.05E-01 0.53 4.07E-13 

SM C16:1 14.89±2.75 14.55±2.45 14.35±2.62 0.87 4.12E-01 0.70 1.43E-05 

SM C18:1 10.50±2.24 10.07±2.02 9.65±2.17 0.80 1.29E-01 0.68 1.40E-06 

SM C20:2 0.35±0.09 0.33±0.09 0.29±0.10 1.00 9.82E-01 0.66 1.51E-07 

 

Table 4 (continued). Result of logistic regression model analysis in KORA F4 in 
males. Odds ratios (OR) and p-values in two pairwise comparisons of alcohol 
consumption groups.  Shows 40 signif icant metabolites in males that were found 
signif icantly different in concentration between MHD and LD in the KORA F4 discovery 
sample. Odds ratios (OR) ref lect the pairwise comparison of m etabolite concentrations 
between LD and Abstainers, MHD and LD. Out of the init ial set of 131 metabolites, only 
40 signif icant metabolites are shown. Signif icant P-values are highlighted in bold. No 
signif icant differences were found comparing LD with Abstainers 
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Figure 8. Global analysis in females shows significant metabolic change only 
between moderate-to-heavy drinkers (MHD) and low drinkers (LD). Boxplot 
representation of 18 signif icant metabolites identif ied in in KORA F4 females by logistic 
regression. Displayed are mean absolute metabolite concentrations of all three alcohol 
consumption groups (Abstainer, LD and MHD). Signif icant changes between two groups 
are marked with an asterix (*).   
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Figure 8 (continued). Global analysis in females shows significant metabolic 
changes only between moderate-to-heavy drinkers (MHD) and low drinkers (LD ).  
Boxplot representation of 18 signif icant metabolites identif ied in in KORA F4 females 
by logistic regression. Displayed are mean absolute metabolite concentrations of all 
three alcohol consumption groups (Abstainer, LD and MHD). Signif icant changes 
between two groups are marked with an asterix (*).  
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 Abstainer LD MHD LD vs Abstainer MHD vs LD 

Metabolite Mean ± SD (µM) Mean ± SD (µM) Mean ± SD (µM) 
Odds ratio 
(95% CI) 

P-value 
Odds ratio 
(95% CI) 

P-value 

PC aa C32:1 20.94±8.81 22.03±9.78 26.83±13.65 1.43 1.02E-01 1.56 2.54E-07 

PC aa C32:3 0.5347± 0.1216 0.5275±0.1163 0.5084±0.1129 0.95 7.80E-01 0.72 2.56E-04 

PC aa C34:1 233.62±47.30 241.12±52.86 259.38±56.36 1.28 2.32E-01 1.42 1.02E-04 

PC ae C30:2 0.1694±0.0391 0.1703±0.0420 0.1594±0.0361 1.25 1.98E-01 0.70 4.04E-05 

PC ae C36:2 16.77±3.80 16.67±3.77 15.61±3.58 0.90 5.38E-01 0.62 1.51E-07 

PC ae C38:3 4.75±1.07 4.67±0.97 15.61±3.58 0.82 2.73E-01 0.68 6.62E-06 

PC ae C38:4 16.45±3.39 16.30±3.09 15.50±3.08 0.72 6.58E-02 0.70 1.99E-05 

PC ae C40:3 1.24±0.25 1.25±0.24 1.21±0.26 0.88 4.93E-01 0.73 2.69E-04 

PC ae C40:4 2.74±0.55 2.74±0.51 2.62±0.51 0.76 1.13E-01 0.72 9.06E-05 

PC ae C40:6 5.36±1.31 5.42±1.26 5.02±1.23 1.21 3.32E-01 0.63 2.36E-07 

PC ae C42:4 1.08±0.25 1.09±0.26 1.04±0.25 0.85 3.40E-01 0.71 1.54E-04 

lysoPC a C16:1 2.72±0.77 2.82±0.88 3.15±1.01 1.59 1.99E-02 1.36 4.67E-05 

lysoPC a C17:0 1.76±0.50 1.76±0.50 1.63±0.49 1.21 2.68E-01 0.73 2.76E-04 

SM(OH) C14:1 6.95±1.65 6.72±1.52 6.22±1.62 0.88 4.78E-01 0.62 8.98E-08 

SM(OH)C16:1 3.79±0.88 3.65±0.81 3.36±0.87 0.83 2.94E-01 0.62 4.69E-08 

SM(OH)C22:1 14.58±3.05 14.31±2.87 13.72±2.92 0.85 3.29E-01 0.74 3.20E-04 

SM(OH)C22:2 12.91±2.70 12.72±2.64 11.97±2.67 0.83 3.44E-01 0.63 3.39E-07 

SM C20:2 0.4476±0.1189 0.43±0.11 0.40±0.13 0.90 5.84E-01 0.72 9.71E-05 

 
Table 5.Result of logistic regression model analysis in KORA F4 females. Odds 
ratios (OR) and p-values in two pairwise comparisons of alcohol consumption 
groups.  Shows 18 signif icant metabolites in females that were found signif icantly 
different in concentration between MHD and LD in the KORA F4 discovery sample. 
Odds ratios (OR) reflect the pairwise comparison of metabolite concentrations between 
LD and Abstainers, MHD and LD. Out of the init ial set of 131 metabolites, only 18 
signif icant metabolites are shown. Signif icant P-values are highlighted in bold . No 
signif icant differences were found comparing LD with Abstainers.  
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4.3 Cluster analysis of significant global metabolic changes in 

Low-Drinkers and Moderate-to-Heavy drinkers 

To illustrate the trend of metabolite levels with increasing alcohol consumption, heat 

maps were drawn based on normalized mean metabolite residuals for each of the 

40/18 male/female metabolites. Hierarchical clustering with Euclidean distance was 

used in order to find similar metabolite groups. The final clusterogram (display of 

dendogram and heat map) resulted in two main clusters C1 and C2 both in males 

and females (Figure 9). C1 consists of metabolites that increase in concentration 

with increasing alcohol consumption (high in MHD and low in LD). In contrast, C2 

consist of metabolites that decrease in concentration with increasing alcohol 

consumption (low in MHD and high in LD). Diacylphosphatidylcholines (PC aa 

Cx:y)s, ether lipids (PC ae Cx:y)s, lysophosphatidylcholines (lysoPC a Cx:y)s, and 

sphingomyelins (SM)s occurred in both males and females. Only the acylcarnitine 

C16:1 occurred in males. All PC ae Cx:ys and SMs were decreased in MHD in males 

and females. PC aa Cx:ys were increased in MHD compared to LD in males and 

females (except PC aa C32:3 which was decreased in MHD in females. All lysoPC a 

Cx:ys were increased in MHD in males and females (except lysoPC a C17:0).  For 

the completeness of analysis, the Abstainer group was also added to the cluster 

analysis. For the abstainer group, the same consistent clusters could be observed.
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Figure 9. Alcohol-specific metabolite clusters and key metabolites. 
Clusterograms show metabolite concentrations in relation to alcohol consumption 
in l ight drinkers (LD) and moderate-to-heavy drinkers (MHD) of (a) 40 signif icant 
metabolites in males and (b) 18 signif icant metabolites females. The separate 
two-column clusterogram on the left shows the result of an additional sub -
analysis for the abstainer group, displaying the effect of l ipid - lowering 
medication (i.e. statins, f ibrates, herbal-based lipid-lowering agents) on 
metabolite concentrations. Relative concentration of metabolites is represented 
by x-fold standard deviation from overall mean concentrations from groups of 
alcohol consumption of 5g per day. Horizontal axis displays alcohol 
concentration in g per day, while the vertical axis represents hierarchical 
clustering. Most specif ic 10/5 key metabolites separating MHD from LD in 
males/females are highlighted in blue/pink….......................  
 
 
 

4.4 Identification of alcohol–related key metabolites  

4.4.1 Metabolite selection 

Metabolomics data set is highly dimensional, with a broad number of features (peaks) 

ranging from few hundreds to few thousands. They represent a snapshot of global 

biochemical profiles of individual organisms. Most of these features are expected 

within normal variations, and only a few may be significantly associated with the 

condition or phenotype of interest. The identification of those “key” features is the first 
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step toward finding useful biomarkers or explaining the underlying biological process. 

The logistic regression analysis was based on each single metabolite, and some of 

these 40/18 male/female metabolites are expected to correlate with each other. To 

find more specific and independent metabolites that best separate MHD from LD as 

potential biomarkers for alcohol consumption, a further analysis applying random 

forest and stepwise selection method was used. Thus, ten metabolites in males (PC 

aa C32:1, PC aa C36:1, PC aa C36:5, PC aa C40:4, PC ae C40:6, lysoPC a C17:0, 

lysoPC a 18:1, SM (OH) C22:1, SM (OH) C22:2, SM (OH) C16:1) and five 

metabolites in females (PC aa C34:1, PC ae C30:2, PC ae C40:4, lysoPC a C16:1, 

lysoPC a 17:0) were further selected (in Figure 9: key metabolites are highlighted in 

pink for women and blue for men).  

4.4.2 Model evaluation 

To evaluate the model (i.e. combination of the ten/five male/female specific metab-

olites with covariates, in order to investigate how good does the logistic regression 

model adjusted for age, BMI, smoking, HDL and triglycerides distinguish between 

MHD and LD, area under the receiver-operating characteristic (AUROC or AUC) was 

calculated. The ROC curve analysis is generally considered the standard method for 

a performance assessment and is needed when developing new biomarkers and 

translating those biomarkers into clinical practice. The AUROC (or AUC) can be 

interpreted as the probability of how good the given logistic regression model will 

correctly classify i.e. (LD or MHD) a randomly chosen participant based on the 

alcohol-specific metabolite markers. The perfect model/classifier reaches an 

AUC=0.9-1.0, AUC=0.8-0.9 is “good”, AUC=0.7-0.8 is “fair”, AUC=0.6-0.7 is “poor”; 

AUC=0.5-0.6 is “poor”. In the current study the AUC value in males was 0.812 and in 

females 0.679 indicating that the alcohol-specific metabolite profile of ten/five 
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markers in men/females is a good-to-fair predictor for chronic moderate-to-heavy 

alcohol consumption in males/females (Figure 10). 

 

Figure 10.Alcohol-specific key metabolite panel gives a good-to-fair prediction for 
alcohol consumption .Graphics shows receiver operating characteristic (ROC) curves for 
the set of most signif icant key 10/5 metabolites in males (blue curve)(i.e. PC aa C32:1, 
PC aa C36:1, PC aa C36:5, PC aa C40:4, PC ae C40:6, lysoPC a C17:0, lysoPC a 
18:1,SM(OH)C22:2, SM(OH)C22:1, SM(OH)C16:1) and females (pink curve) (i.e. PC aa 
C34:1, PC ae C30:2, PC ae C40:4, lysoPC a C16:1, lysoPC a 17:0). ROC curve displayed 
as dotted line/crossed line represent metabolite marker prof ile performance in 
males/females.The area under the ROC curve (AUC) was calculated for the combined 
metabolite panel adjusted for age, body mass index, smoking status, high -density 
l ipoproteins and tr iglycerides.…………………………………………………………… 
 
 

4.5 Replication analysis in two independent cohorts 

Replication analysis of the most significant ten alcohol-related metabolites in males 

and five metabolites in females found in KORA F4 discovery sample was performed 

in two independent KORA F3 and TwinsUK cohorts. In males, three out of ten 

metabolites (i.e. PC aa C32:1, PC aa C36:1, SM (OH) C16:1) could be replicated in 

KORA F3 (Table 6). In females, two out of five metabolites could be replicated 

(Table 7). One metabolite in KORA F3 (i.e. PC ae C30:2) and one metabolite (i.e. PC 

aa C34:1) in TwinsUK. In the TwinsUK population, only females were available for 
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replication analysis. 629 TwinsUK participants met the inclusion criteria and were 

eligible for the replication analysis, however only for 277 participants HDL and 

triglyceride data was available for the same time point. In TwinsUK the replication 

analysis was performed using 277 and 629 study participants. In the first replication 

analysis on 277 participants, logistic regression adjusted for age, BMI and smoking, 

HDL and triglyceride resulted in no significant p-values. Once the sample size was 

increased to 629 and the logistic regression model adjusted for age, BMI and 

smoking, was used, the metabolite PC aa C34:1 could be replicated. Additionally, 

data was pooled from the KORA F4 discovery and KORA F3 replication samples and 

a meta-analysis with a fixed effect model conducted in order to investigate the 

combined effect of alcohol on metabolite concentrations. In the meta-analysis the 

replication succeeded for all ten metabolites in men and five metabolites in women. 

This indicates that due to the small sample size in TwinsUK and KORA F3 cohorts 

the previous replication could not be achieved for all metabolites. Nevertheless, the 

trends of metabolite concentrations (as stated by the comparison of means of 

metabolite concentrations between MHD and LD in Table 6 and Table 7) for all ten 

and five metabolites are consistent with the trends in the discovery across all studies 

For example, the metabolite lysoPC a C18:1 was not replicated in KORA F3 and 

TwinsUK, still the mean metabolite concentration is higher in MHD compared to LD 

throughout the KORA F4, KORA F3 and TwinsUK studies.……………………..
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 Discovery KORA F4 (n=1144) Replication KORA F3 (n=154) 

Meta-analysis Discovery + Replication 

fixed effects (n=1298) 

Metabolite 

LD
e
 

mean±SD 
(µM)

 a
 

MHD
f 

mean±SD 
(µM)

 a
 

P-value
b,c

 
LD mean±SD 

(µM)
 a

 

MHD 

mean±SD 
(µM)

 a
 

P-value
b,d

 

LD 

mean±SD 
(µM)

 a
 

MHD 

mean±SD (µM)
 a

 

P-value
b,d

 

PC aa C32:1 19.3±9.2 31.0±16.9 1.1E-18 20.7±9.7 35.0±16.5 7.3E-05 19.4±9.2 31.6±16.8 8.6E-23 

PC aa C36:5 28.7±12.9 36.6±17.6 3.9E-07 31.8±19.8 44.0±278 4.9E-02 29.0±13.9 37.7±19.5 5.6E-08 

PC aa C40:4 4.0±1.2 4.9±1.6 1.2E-07 3.7±1.0 4.7±1.5 1.6E-02 4.0±1.2 4.8±1.6 2.8E-09 

PC aa C36:1 51.4±11.9 59.7±16.4 6.6E-06 53.0±11.2 66.6±15.9 9.9E-04 51.5±11.8 60.7±16.5 9.9E-09 

lysoPC a C17:0 1.7±0.5 1.5±0.5 5.4E-10 1.6±0.4 1.3±0.4 3.4E-02 1.7±0.5 1.5±0.5 4.1E-11 

lysoPC a C18:1 20.0±5.5 22.7±7.4 1.6E-05 18.5±4.9 20.9±5.0 1.3E-01 19.9±5.4 22.5±7.1 3.9E-06 

PC ae C40:6 4.9±1.2 4.4±1.1 4.3E-10 5.4± 1.3 5.0±1.1 3.5E-02 4.9±1.2 4.5±1.1 1.5E-10 

SM(OH) C16:1 3.1±0.7 2.7±0.7 6.8E-12 2.7±0.7 2.4±0.6 2.0E-03 3.0±0.7 2.6±0.7 1.2E-13 

SM(OH) C22:1 12.6±2.5 11.4±2.9 3.4E-09 10.0±2.5 9.3±2.1 1.2E-02 12.3±2.6 11.1±2.9 4.4E-10 

SM(OH) C22:2 10.2±2.1 9.1±2.3 4.0E-13 8.1±2.1 7.7±1.7 2.3E-02 9.9±2.2 8.9±2.3 1.3E-13 

 
Table 6.Result of logistic regression analysis of alcohol -specific key metabolites in males. Abbreviations:  SD= standard 
deviation; LD= light drinkers; MHD= moderate-to-heavy drinkers

,   a
 mean and standard deviation of the metabolite concentration 

from serum, 
b 

logistic regression analysis adjusted for age, BMI, smoking, HDL, triglycer ides 
,  c  

signif icance level < 0.00038 
(Bonferroni corrected) , 

d
 signif icance level<0.005 males (Bonferroni corrected), 

,  e  
alcohol consumption < 40g/day males, < 

20g/day females,
 f
 alcohol consumption ≥ 40g/day males, ≥ 20 g/day females

,  
Signif icant P-values are represented in bold.
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 Discovery KORA F4 (n=946) Replication KORA F3 (n=107) 

Meta-analysis Discovery + 
Replication 

fixed effect (n=1053)
g
 

Replication TwinsUK (n=277) 

Metabolite 

LD
e 

mean±SD 
(µM)

 a 

MHD
f 

mean±SD 
(µM)

 a 
P-value

b,c
 

LD 

 mean±SD 
(µM)

a
 

MHD 

mean±SD 
(µM)

a
 

P-
value

b,d
 

LD 

mean±SD 
(µM)

a
  

MHD 

mean±SD 
(µM)

a
  

P-
value

b,d
 

LD 

mean±SD 
(µM)

a
  

MHD 

mean±SD 
(µM)

a
  

P-
value

b,d
 

PC aa C34:1 241.1±52.9 259.4±56.3 1.0E-04 274.8±72.8 308.5±73.6 5.8E-02 244.6±56.2 263.7±59.6 6.6E-05 311.5±98.8 350.4±121.0 9.4E-03 
h
 

lysoPC a C16:1 2.8±0.9 3.1±1.0 4.7E-05 2.5±1.0 3.04±0.9 5.2E-02 2.7±0.8 3.1±1.0 6.2E-06 4.21±1.5 4.24±1.7 7.3E-01 

lysoPC a C17:0 1.8±0.5 1.6±0.5 2.8E-04 1.6±0.5 1.4±0.4 2.3E-02 1.7± 0.5 1.6±0.4 7.7E-05 2.3± 0.9 2.2±0.7 5.6E-01 

PC ae C30:2 0.17±0.04 0.16±0.04 4.0E-05 0.17±0.03 0.15±0.04 2.5E-03 0.16± 0.04 0.15±0.03 4.2E-06 0.2± 0.1 0.2±0.1 7.8E-01 

PC ae C40:6 5.4±1.3 5.0±1.2 2.4E-07 6.1±1.5 5.4±1.4 2.2E-02 5.4±1.3 5.0±1.2 1.7E-08 7.5±2.7 7.4±2.7 9.9E-01 

 
Table 7.Result of logistic regression analysis of alcohol-specific key metabolites in females.  Abbreviations:SD, standard 
deviation;LD=light drinkers; MHD=moderate-to-heavy drinkers,

a
mean and standard deviation of the metabolite concentrati on from 

serum, 
b 

logistic regression analysis adjusted for age, BMI, smoking, HDL, tr iglycerides,
c  

signif icance level < 0.00038 (Bonferroni 
corrected), 

d
 signif icance level< 0.01 females (Bonferroni corrected),

e 
alcohol consumption < 40g/day males, < 20g/day females,

 f
 

alcohol consumption ≥ 40g/day  males, ≥ 20 g/day females, 
g 

meta-analysis consist of KORA F4 discovery , KORA F3 and 
TwinsUK  replication data sets, 

h 
logistic regression analysis adjusted for age, BMI, smoking with n=629 study participants. 

Signif icant P-values are represented in bold. ………………………………………………………………………………………………………..
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4.6 Characterization of the relationship between alcohol 

consumption and key metabolite concentrations 

The previous global analysis using heat maps and cluster analysis revealed 

consistent clusters and trends in metabolite concentrations with increasing alcohol 

consumption for the set of 40/18 significant metabolites in males/females (Figure 9). 

A more detailed analysis of the trends and concentrations changes for the 10/5 key 

metabolites in males/females was conducted, especially to display detailed (“zoom in 

perspective”) fluctuations in metabolite concentrations with alcohol consumption. An 

analysis using smoother plots was used to provide deeper insights into those 

fluctuations. Smoother plots were drawn for the 10/5 key metabolites identified. As 

already displayed in the heat map representation, some metabolites showed 

increasing and some decreasing trend with increasing alcohol consumption. 

However, at low alcohol consumption (i.e. 0-40g/day/ 0-20g/day alcohol consumption 

in males/females) smoother plots displayed several major fluctuations of metabolite 

concentrations whereas in the moderate-to-high alcohol consumption range (i.e. 

threshold of >40g/day/>20g/day for males/females) (Figure11) (Figure12) smoother 

plots displayed a more linear association of metabolite concentration with alcohol 

consumption. Overall the results show a non-linear relationship between alcohol 

consumption and metabolite concentrations in (threshold effects)
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Figure 11.Non-linear relationship between alcohol consumption and metabolite concentrations in males . Smoother plots of 10 
key metabolites in males (KORA F4). The plots show concentration trends of the 10 identif ied markers across age in males with  age 
on the x-axis and concentration on the y-axis, respectively.  
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Figure 12.Non-linear relationship between alcohol consumption and metabolite concentrations in females.  Smoother plots of 5 
key metabolites markers in females. The plots show concentration trends of the 5 identif ied markers across age in KORA F4 mal es 
with age on the x-axis and concentration on they-axis, respectively. ……………………………………………… 
…..………………………………………………………………………………………………………………….



58 

4.7 Correlation of key metabolites and laboratory parameters 

(HDL and triglycerides) 

HDL and triglycerides were previously used as covariates for adjusting in the logistic 

regression model. In order to investigate more closely the dependencies regarding 

the increasing/decreasing direction of  HDL, triglycerides  with increasing/decreasing 

metabolite concentrations and derive potential biochemical mechanisms of alcohol-

induced metabolic profiles a correlation analysis between HDL, triglyceride and the 

10/5 key alcohol-related metabolites in males/females was performed. In females, 

four out of the five key metabolites (i.e. PC aa C 34:1, lysoPC a 16:1, PC ae C 32:0, 

PC ae C40:4) were positively correlated with HDL and no correlation with HDL was 

observed for lysoPC a 17:0. Two out of five metabolites (i.e. PC aa C34:1, lysoPC a 

16:1) were positively correlated with triglycerides, and two metabolites (i.e. lysoPC a 

C17:0, PC ae C40:4) were negatively correlated with triglycerides. No correlation 

with triglycerides was observed for PC ae C30:2 (Figure13a). In males, eight out of 

ten metabolites (i.e. PC aa C32:1, PC aa C36:1, PC aa C36:5, lysoPC a 17:0, 

lysoPC a C18:1, PC ae C40:6, SM(OH) C16:1, SM(OH) C22:1, SM(OH) C22:2) were 

positively correlated with HDL. No correlation was observed for PC aa C40:4. Four 

out of ten metabolites (i.e. PC aa C32:1, PC aa C36:1, PC aa C36:5, PC aa C40:4) 

were positively correlated with triglycerides, and six metabolites (i.e. lysoPC a C17:0, 

lysoPC a C18:1, PC ae C40:6, SM(OH) C16:1, SM(OH) C22:1, SM(OH) C22:2) were 

negatively correlated with triglycerides (Figure13b). 
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Figure 13.Correlation between 10/5 key metabolites in males/females and laboratory parameters HDL  and triglycerides 
Plot shows output of correlation analysis (a) between HDL, tr iglycerides and each the 10 most signif icant metabolites in males and (b)  
HDL, tr iglycerides and 5 most signif icant metabolites in females previously identif ied b y step-wise selection and random forest 
analysis. Correlation was performed according to Spearman. In the plots, each cell represents a correlation coefficient (Spearman´s 
rho). The correlation coefficients are represented by colored bubbles. Red color displays negative correlation, blue color di splays 
posit ive correlation. No entry means no signif icant  correlation observed. Rho = 1 corresponds to perfect posit ive correlation, rho= -1 
corresponds to perfect negative correlation, rho=0 corresponds to no correlation  
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4.8 Alcohol consumption effects on metabolic pathways 

In order to investigate which metabolic pathways are affected by alcohol 

consumption,  metabolic pathway mapping of the five key alcohol-specific 

metabolites in females (i.e. PCaaC34:1, lysoPC a C16:1, lysoPC a C17:0, PC ae 

C30:2, PC ae C30:2, PC ae C40:6 ) and ten key metabolites in males (i.e. PC aa 

C32:1, PC aa C36:5, PC aa C40:4, PC aa C36:1, lysoPC a C17:0,  lysoPC a 

C18:1,PC ae C40:6, SM(OH) C16:1, SM(OH) C22:1, SM(OH) C22:2) was performed 

against available human KEGG pathways. Over-representation analysis was 

performed to test if a group of compounds is represented more than expected by 

chance within the user uploaded compound list. In the context of pathway analysis, 

this means that we are testing, if compounds involved in a particular pathway are 

enriched compared by random hits. The pathway analysis showed that moderate-to-

heavy alcohol consumption has the biggest impact on the Glycerophospholipid 

metabolism, Ether lipid metabolism and Sphingolipid metabolism. The results from 

the pathway analysis are presented graphically (Figure 14) as well as in a detailed 

table (Table 8) 
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Figure 14. Summary of pathway analysis: Moderate-to-heavy alcohol consumption has the 
biggest impact on the Glycerophospholipid metabolism, Ether lipid metabolism and 
Sphingolipid metabolism. Schematic is adapted from the automatically generated 
Metaboanalyst 2.0 results report. The pathway analysis consists of enrichment and impact of 
alcohol-related metabolites in Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) for 

(a) males and (b) females. The enrichment scores -log (p) are shown on y-axis, which was 

calculated as the negative logarithm of the P-value from an enrichment test-axis represents the 

Pathway Impact, scored between 0 and 1, which indicates the pathway importance of the 

metabolites. 
 

 

 
Table 8. Detailed results from Pathway analysis.Table is adapted from the automatically 
generated Metaboanalyst 2.0 results report. Shows the enrichment and impact scores of 

alcohol-related metabolites in KEGG pathways. The -log (p) was considered as the enrichment 

score. Impact, scored between 0 and 1, indicates the pathway topological importance of the 

metabolites. In particular, the parameter Total is the total number of compounds in the pathway; 

the parameter Hits is the actually number of metabolites with significant variations in the 

pathway; the Raw p is the original p-value calculated from the enrichment analysis; the false 

discovery rate FDR are calculated by the p values adjusted using Benjamin-Hochberg method. 

b) 

a) 
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4.9 Alcohol-related metabolites and associated disease states & 

phenotypes 

A systematic PubMed literature review of targeted metabolomics publications 

identified that the alcohol-related metabolites are also associated with other 

phenotypes and diseases states (Table 9). Ten out of 13 metabolites were also 

reported in other studies. Three metabolites were exclusively found to be associated 

with moderate-to-heavy alcohol consumption in the current alcohol study (i.e. lysoPC 

a C16:1, SM(OH) C16:1, SM(OH) 22:1). Four out of 13 alcohol-related metabolites 

also occur in smokers (Xu, Holzapfel et al. 2013) and are associated with Diabetes 

risk (i.e. PC aa C 32:1,  PC aa C36:1, PC ae 40:6, PC aa C40:4) (Floegel, Stefan et 

al. 2013). PC aa C 35:6 is also associated with Huntington's disease (HD) 

(Mastrokolias, Pool et al. 2016),  lyso PC a C18:1 with obesity (Wahl, Yu et al. 

2012), PC aa 40:4 and SM(OH) 22:2 with Ovarian endometriosis (Vouk, Hevir et al. 

2012) and PC ae C30:2 with Prostate cancer (Schmidt, Fensom et al. 2017). 

……………………………………………………
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References 

PC aa C36:5  ↑*      ↓  
(Jaremek, Yu et al. 2013) 
(Mastrokolias, Pool et al. 2016) 

lysoPC a C16:1    ↑**        (Jaremek, Yu et al. 2013) 

SM (OH) C16:1  ↓*        (Jaremek, Yu et al. 2013) 

SM (OH) C22:1  ↓*        (Jaremek, Yu et al. 2013) 

PC aa C34:1   ↑** ↑*       
(Jaremek, Yu et al. 2013) 
(Xu, Holzapfel et al. 2013) 

PC aa C32:1  ↑*  ↑**   ↑    
(Jaremek, Yu et al. 2013) 
(Xu, Holzapfel et al. 2013) 
(Floegel, Stefan et al. 2013) 

PC aa C36:1  ↑* 
↑*  

 ↑** 
  ↑    

(Jaremek, Yu et al. 2013) 
(Xu, Holzapfel et al. 2013) 
(Floegel, Stefan et al. 2013) 

PC ae C40:6  
↓* 

 ↓** 
↓*   ↓    

(Jaremek, Yu et al. 2013) 
(Xu, Holzapfel et al. 2013) 
(Floegel, Stefan et al. 2013) 

PC aa C40:4  ↑* ↑*    ↓**   
(Jaremek, Yu et al. 2013) 
(Xu, Holzapfel et al. 2013) 
(Vouk, Hevir et al. 2012) 

lysoPC a C17:0  
↓* 

 ↓** 
 ↓  ↓    

(Jaremek, Yu et al. 2013) 
(Wittenbecher, Muhlenbruch et 
al. 2015) 
 

lysoPC a C18:0 ↑* ↑*   ↓     
(Jaremek, Yu et al. 2013) 
(Mittelstrass, Ried et al. 2011) 
(Wahl, Yu et al. 2012) 

PC ae C30:2 ↑** ↓**       ↑ 
(Jaremek, Yu et al. 2013) 
(Mittelstrass, Ried et al. 2011) 
(Schmidt, Fensom et al. 2017) 

SM (OH) C22:2 ↑** ↓* ↓**    ↑**   
(Jaremek, Yu et al. 2013) 
(Mittelstrass, Ried et al. 2011) 
(Xu, Holzapfel et al. 2013) 
(Vouk, Hevir et al. 2012) 

 

Table 9.Alcohol-related key metabolites are also associated with other 
phenotypes and diseases states.  Table columns describe the phenotype under 
investigation as e.g. gender, smoking and alcohol consumption ( i.e. current 
metabolomics study); (**) indicates separate analyses performed only on the female 
population; (*) analyses only on male population, (↓) indicates a decrease of 
metabolite concentration; (↑) indicates an increase in metabolite concentration 
reported in the study.  
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5. Discussion 

In the following chapter the study design, data quality, metabolic panel, underlying 

potential metabolic pathways and association with medical conditions as well as the 

relevance of biomarkers and the given mass spectrometry setup for alcohol clinical 

diagnostics are discussed. 

5.1 Metabolomics study 

5.1.1 Study design 

The underling work is based on a population-based case-control study design with 

three independent and not related populations from Germany and UK. Advantage of 

the study design is the large size of discovery sample enabling a high statistical 

power. Limitations occur in the replication of the results due to small replication data 

sets. Still, the results can be considered as successfully replicated. 

5.1.2 Data quality 

Alcohol consumption was measured by a questionnaire that investigates the intake 

throughout the proband´s life. Alcohol intake was characterized in g/per day and was 

calculated by averaging the intake of beer, wine and liquor, reported elsewhere 

(Ruckert, Heier et al. 2011). An error in estimating alcohol consumption is 

unavoidable using such a method of investigation due to the variability in averaging 

alcohol intake for long consumption periods. In our study, this potential bias can be 

considered reasonably negligible, since, characterized by a steady daily use allowed 

us to obtain realistic data on alcohol intake.  

5.1.3 Study populations (Alcohol consumption groups) 

For Drinkers no information was available on the duration of alcohol consumption of 
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drinkers (i.e. long life-drinkers or recent drinkers). For Abstainers data was not 

available to the level of granularity to study potential metabolic differences between 

different abstainer groups. An interesting aspect that could not be covered in this 

study but relevant for further investigations would be the comparison of metabolic 

profiles between recent abstainers and long-term abstainers and life-time abstainers. 

5.1.4 Methodology to identify significant metabolites 

In this study a hypothesis-driven approach was used to investigate significant 

metabolite differences between predefined alcohol consumption groups. A 

comparison of absolute metabolite concentrations  between  Abstainers, Low-

Drinkers (LD) and Moderate-to-Heavy Drinkers (MHD) was not performed as a first 

step of this candidate biomarker discovery due additional factors for alcohol that 

need to be taken into consideration that’s why a test, as for example, Kruskal-Wallis 

to identify significant metabolites based only on the information of metabolite 

concentrations as the single point of difference not taking into consideration other 

factors as lifestyle was not chosen. An analysis using non-hypothesis- driven 

methods on the set of 131 metabolomics data using e.g. Volcano plots or self-

organizing maps (SOM), Partial-Least Square Methods (PLS-DA) did not lead to 

results (data not displayed) i.e. no patterns or clusters could be derived. Data was 

not available to investigate correlations regarding other alcohol-related and relevant 

confounders as inflammation markers as CRP, traditional alcohol-related 

biomarkers/liver biomarkers e.g. GGT or genetic data to perform gene expression, or 

SNP data to study genotype effects on metabolite concentrations.  

5.1.5 Metabolic Pathway analysis 

Metabolite names and descriptions are often not harmonized across different 
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databases. An example is KEGG: the granularity of KEGG pathways is suboptimal. 

Different metabolites have the same KEGG ID e.g. SM (OH) C16:1; SM (OH) C22:1; 

SM (OH) C22:2. KEGG does not necessarily makes the distinction between different 

chain length of e.g. Sphingomyelins. Different metabolite subtypes are interpreted as 

same. Additional and laborious analyses needed to be performed using publication 

desktop research and other platforms as e.g. HMDB. Urgently a standardization is 

needed of metabolomics database platforms.  

5.2 Alcohol-related metabolites  

5.2.1 Metabolomic candidate biomarker panel and its potential alcohol-

related underlying biochemical mechanisms 

In the current study a targeted metabolomics approach was used that identified, as 

well as partly replicated alcohol-related metabolites in German and UK human 

studies. The results suggest that alcohol affects mostly the sphingolipid, 

glycerophospholipid and ether lipid metabolism. A schematic overview of the 

observed alcohol-specific metabolic differences and the potential underlying 

mechanisms is depicted in (Figure 15) and are discussed below. 
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Figure 15.Potential alcohol-induced biochemical mechanisms.  Schematic overview 
of metabolite concentration differences in MHD compared to LD in males and females. 
Ten/five metabolites that best discriminate MHD from LD in males/fema les are shown.  
Pink and blue boxes represent male- and female-specif ic alcohol-related metabolites 
identif ied in this study. Combined pink -blue boxes represent metabolites identif ied both 
in males and females. Bold black arrows represent observed higher or  lower of 
metabolite concentration in MHD compared with LD in the discovery. Replicated 
metabolites are marked by a star (*). Thin black arrows represent the higher or lower of 
alcohol-related analytes in MHD reported in earlier publications. Red boxes rep resent 
alcohol-related enzymes and red arrows represent the effect on the respective enzyme 
activity or concentration reported in previous publications in MHD.males/females are 
shown. 

 

Sphingomyelins 

The underlying mechanism for lower sphingomyelin concentrations (SM(OH)C16:1, 

SM(OH)C22:1, SM(OH)C22:1) in MHD compared with LD could be attributed to 

(ASM) acid sphingomyelinase activity. ASM catalyzes the hydrolysis of 

sphingomyelins by cleaving the phosphodiester bond of sphingomyelins generating 

ceramide and phosphorylcholine (Liu, Wang et al. 2000, Jenkins, Canals et al. 2009) 

which is again reassembled to phosphatidylcholine(Li, Hailemariam et al. 2007). 
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Enzymatic dysfunction of ASM results in Niemann-Pick disease A (NPD-A, OMIM 

257200) and B (NPD-B, OMIM 607616) a lipid storage disease characterized by 

accumulation of sphingomyelins within the endo-lysosomal compartment(Jenkins, 

Canals et al. 2009). Interestingly, this mechanism is reciprocal when alcohol is 

administered. Several studies investigating cellular response to alcohol in-vitro and 

in-vivo have provided evidence that alcohol stimulates the ASM activity leading to 

accumulation of ceramide and decrease of sphingomyelins (Deaciuc, Nikolova-

Karakashian et al. 2000, Liu, Wang et al. 2000, Pascual, Valles et al. 2003, Saito, 

Saito et al. 2005, Viktorov and Yurkiv 2008). A recent in-vivo study on patients with 

alcohol dependence reported alcohol-induced release of phosphorylcholine from 

sphingomyelins in peripheral blood cells confirming alcohol-induced activation of 

ASM(Reichel, Greiner et al. 2010). 

Diacylphosphtidylcholines 

There is a direct correlation between diacylphosphatidylcholine (PC) concentrations 

and phosphatidylethanol (PEth). PEth is a clinical biomarker of the past 1-2 weeks of 

moderate-to-heavy alcohol consumption(Stewart, Reuben et al. 2009). PEth is a 

unique phospholipid that is synthesized only in the presence of ethanol and is 

directly formed from PCs by the enzyme phospholipase D (PLD)(Gustavsson and 

Alling 1987, Kobayashi and Kanfer 1987, Mueller, Fleming et al. 1988) that catalyzes 

the exchange of ethanol for choline in PCs(Mueller, Fleming et al. 1988). Different 

PEth molecular species have a common phosphoethanol head group onto which two 

fatty acid moieties derived from PCs are attached. A study by Helander et 

al.(Helander and Zheng 2009) has shown that PEth-16:0/18:1 (34:1) was the most 

predominant molecular species accounting for 37% of all PEth species. A recent 

study by Nalesso et al.(Nalesso, Viel et al. 2011) compared the occurrence of 
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different PEth species between heavy drinkers and social drinkers (defined as daily 

alcohol intake 60-300g/day and 0-20g/day respectively). Interestingly, PEth 

16:0/18:1 (34:1), PEth 18:0/18:1 (36:1) and PEth 16:0/16:1 (C32:1) were most 

abundant in heavy drinkers. This may be consistent with our findings in which PC aa 

C34:1 in female, PC aa C36:1 and PC aa 32:1 in male had higher concentration 

MHD compared to LD. We hypothesize that concentrations of specific PC species 

can be used as surrogate biomarkers for PEth to distinguish MHD from LD. 

However, PEth measurements are out of scope of this study. Dedicated and parallel 

measurements of PC aa C34:1 and PEth (34:1) would be required in order to 

investigate whether PC aa C 34:1 can be a substitute PEth (34:1). 

Lysophosphatidylcholines 

Lysophosphatidylcholines (lysoPCs) are derived from PCs(Croset, Brossard et al. 

2000) and have been reported to have cytotoxic effects(Weltzien 1979). They 

accumulate in alcohol-related conditions as in atherosclerosis(Matsumoto, 

Kobayashi et al. 2007) or ischaemia(Wang, Wang et al. 2001).LysoPCs originate 

from several metabolic pathways, as part of the production is attributed to the 

transesterification of PCs and free cholesterol catalysed by the enzyme lecithin-

cholesterol acyltransferase (LCAT), where LCAT hydrolyses the sn-2 acyl group and 

subsequently transfers and esterifies the fatty acid to free cholesterol(Holleboom, 

Kuivenhoven et al. 2010). A study by Goto et al.(Goto, Sasai et al. 2003), 

investigating clinical alcoholics, reported an increase of LCAT concentration in 

individuals with alcohol intake of >30g/day. Another metabolic pathway generating 

LysoPC species is attributed to the enzyme phospholipase A2 (PLA2), which 

catalyzes the hydrolysis of an ester bond at the sn-2 position of 1,2-sn-

diacylglyceroIs yielding lysoPCs and free fatty acids(Caro and Cederbaum 2006) 
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which are esterified into fatty acid ethyl esters (FAEE) that have been reported as 

alcohol marker to distinguish social from heavy drinkers or alcohol-dependent 

individuals (Salem, Refaai et al. 2001, Wurst, Alexson et al. 2004). Fatty acids with 

uneven number of carbons (i.e. C15:0 and C17:0) are produced by bacterial flora of 

human intestine(Hopkins, Sharp et al. 2001). It is known that alcohol acts as a 

disinfectant which kills bacteria. Thus, a possible explanation for the lower 

concentrations of lysoPC17:0 in MHD could be that alcohol consumption leads to the 

disruption of the respective intestinal bacterial microflora in the gut which thus 

influences lysoPC a C17:0 levels in human blood. On the other hand, the fatty acid 

C17:0 is also found in the bacterial flora of ruminants(Wu and Palmquist 1991, 

Smedman, Gustafsson et al. 1999).A study by Wolk et al.(Wolk, Vessby et al. 1998)  

revealed that portions of the fatty acids C15:0 and C17:0 in adipose tissue reflected 

milk fat consumption in women. An earlier study(Ruf, Nagel et al. 2005)  

investigating associations of reported alcohol intake with dietary habits in probands 

from the EPIC cohort found that alcohol consumers had a lower intake of dairy 

products than abstainers. This is consistent with another French cohort of the EPIC 

study(Kesse, Clavel-Chapelon et al. 2001)  which found that high alcohol intake was 

associated with lower consumption of dairy products in both genders compared to 

moderate alcohol consumption. Thus, another plausible explanation to the lower 

concentrations of lysoPC17:0 in MHD in our study could be based on lower intake of 

dairy products. Based on the above findings and explanations, lysoPC a C17:0 

might also be a dietary biomarker associated with distinguished dietary behavior of 

MHD compared to LD rather than a biomarker for alcohol-induced toxic or 

inflammatory mechanisms. 
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Ether lipids 

Ether lipids (e.g. PC ae C30:2 and PC ae C40:6) play a role as precursor of platelet-

activating factor (PAF)(Snyder 1995, Nagan and Zoeller 2001). PAF is an important 

mediator in hemostasis and it plays an important role in platelet aggregation (i.e. 

thrombotic effects). A number of studies indicate that ethanol directly affects 

hemostasis via a number of mechanisms, including platelet aggregation and 

activation(Mikhailidis, Jenkins et al. 1986, Hillbom and Neiman 1988, Dimmitt, Rakic 

et al. 1998, Salem and Laposata 2005). This mechanism is still not fully understood, 

however based on our results, it can be hypothesized that reduced PAF levels in 

response to moderate-to-heavy alcohol consumption might form a bottleneck in the 

process of platelet activation leading to poor platelet aggregation and to alcohol-

related hemorrhagic events. This is supported by studies from the United States and 

Sweden showing that the baseline incidence of acute upper gastrointestinal bleeding 

increased by 3-fold as alcohol consumption increased from 1 drink or fewer to more 

than 20 drinks per week(Kaufman, Kelly et al. 1999). 

5.2.2 Alcohol-related metabolites and their association with medical 

conditions  

Diabetes 

In the underlying study metabolites PC aa C32:1, PC aa C36:1, PC ae 40:6, and 

lysoPC a C17:0 were found elevated in moderate to-heavy drinkers. A prospective 

study by Floegel et al. (Floegel, Stefan et al. 2013) investigating the association 

between PC aa C32:1, PC aa C36:1, PC ae 40:6 and risk for Type 2 Diabetes found 

that those metabolites significantly improved T2D prediction compared with 

established risk factors and they were further linked to insulin sensitivity and 

secretion. According to Floegel et al. the study results indicate that PC aa 32:1, PC 
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aa 36:1, PC ae 40:6, are associated with early on with higher risk of T2D. Another 

study by Wittenbecher et al. (Wittenbecher, Muhlenbruch et al. 2015) investigated 

blood metabolites that possibly relate red meat consumption to the occurrence of 

Type 2 Diabetes. The study reported decreased concentrations for lysoPC a C17:0 

and identified it as associated with red meat consumption and diabetes risk. The 

association with red meat consumption would also confirm the hypothesis raised in 

this study (see chapter 5.2.1) that lysoPC a C17:0 could be a candidate biomarker of 

dietary behavior of moderate-to-heavy drinkers compared to low-drinkers rather than 

a biomarker for alcohol-induced toxic or inflammatory mechanisms. 

Ovarian endometriosis 

In the underlying alcohol study PC aa 40:4 was identified as elevated in moderate-

to-heavy male drinkers and SM (OH) C22:2 was identified as decreased in 

moderate-to-heavy drinkers. Interestingly two studies by Vouk et al. (Vouk, Hevir et 

al. 2012, Vouk, Ribic-Pucelj et al. 2016) report the opposite effects for the ovarian 

endometriosis condition in females. The studies support the importance of 

phosphatidylcholine and sphingomyelin metabolites in the pathophysiology of 

endometriosis, however it is not clear how alcohol contributes into the condition of 

endometriosis as alcohol consumption was not part of the investigation. 

Prostate cancer 

In the underlying study PC ae C30:2 was decreased in female moderate-to-heavy 

drinkers. An opposite effect was reported in males for Prostate cancer (Schmidt, 

Fensom et al. 2017). Schmidt et al. investigated the prospective association 

between plasma metabolite concentrations and risk of prostate cancer overall, and 

by time to diagnosis and tumor characteristics, and risk of death from prostate 

cancer. Among several other metabolites PC ae C30:2 was associated with prostate 
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cancer and was inversely related to advanced stage of disease. As Schmidt et al. 

adjusted for alcohol consumption it can be hypothesized that PC ae C30:2 is also a 

real and independent proxy of prostate cancer. 

Huntington's disease 

In the underlying study PC aa C36:5 was identified as elevated in moderate-to-

heavy male drinkers. Another study by Mastrokolias et al. (Mastrokolias, Pool et al. 

2016) investigated metabolic changes in patients with Huntington´s disease (HD) to 

identify disease related changes. Among several other metabolites in the study PC 

aa C36:5 exhibited significant association with disease severity supporting the notion 

that Phosphatidylcholine metabolism is also deregulated in HD. 

5.3 Clinical utility of metabolic candidate biomarkers  

5.3.1 Test scenarios in alcohol-related investigations 

Depending on the diagnostic goal there are currently different test 

approaches.Alcohol intake a qualitative test that would categorize individuals into 

non-drinking, not abusive, and heavy drinking groups. The test would allow the 

identification of subjects with ongoing heavy drinking behaviors and could be applied 

in a hospital setting as a fast, multiparametric test for screening purposes (Freeman 

and Vrana (2010)), or as a differential diagnosis for non-alcohol induced liver 

damage or in monitoring of alcohol-withdrawal (National Institute for Health and Care 

Excellence 2011).Drinking patterns : a test of alcohol intake patterns that include 

periods of intoxication as even though total alcohol intake is the same over a week 

there is a difference between  two  drinks per day vs seven drinks per day in the 

same weekend (Freeman and Vrana (2010)). Alcohol-induced organ damage – a 

test that would identify early pre-symptomatic stages of disease development, would 

enable earlier and more effective treatment (Freeman and Vrana (2010)). By 



74 

detecting the onset  and extent of organ damage, such diagnostics test could also 

provide an interventional “wake-up call” by the physician/therapist to heavy drinkers, 

and therefore enhance the biomarkers’ treatment utility through altering patients’ 

drinking behavior (Freeman and Vrana (2010)). 

The underlying metabolomics study identified potential biomarkers that differentiate 

between low-drinkers and moderate-to-heavy-drinkers (i.e. Biomarker of alcohol 

intake) and to the current knowledge and outcomes of this study, the candidate 

biomarkers would be most qualified for the scenario to identify individuals with a 

chronic abusive drinking behavior. Based on the current research outcomes from 

other studies investigating the relationship between metabolites with medical 

conditions in (see chapters 4.9 and 5.2.2), those candidate biomarkers cannot be 

explicitly allocated to one particular pathophysiology leading to a particular organ 

damage, however the underlying results indicate that the alcohol-related biomarkers 

share a common biochemical pathway with Diabetes, Prostate Cancer, Huntington´s 

disease and Ovarian endometriosis.  

5.3.2 Potential application areas 

As stated in chapter 1.2.1, because patients may not disclose alcohol consumption 

or may underreport alcohol consumption, it is important to conduct alcohol 

biomarkers testing. Metabolomic alcohol biomarkers could be used in primary care 

(i.e. screening for alcohol abuse or potential relapse). Although a primary care 

physician currently does not routinely test for specific alcohol biomarkers in all 

patients, alcohol-specific metabolic changes during a routine laboratory investigation 

could alert a clinician regarding a potential chronic heavy drinking behavior. Kapoor 

et al. reported that when adding alcohol biomarker to a patient´s self-report of 
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alcohol consumption in the primary care setting could result in significant savings of 

healthcare costs (Kapoor, Kraemer et al. 2009). Another potential clinical setting 

would be the hospital (emergency) setting (i.e. screening for alcohol abuse or 

alcohol-related organ damage, alcohol-related disorder at admission). Gerke et al. 

reported that 20,9% of hospital inpatients were admitted due to alcohol-related 

disorders (Gerke, Hapke et al. 1997). Another study by Baune et al. investigated, 

which proportion of hospital admissions, which had been subject to inpatients with 

more than 11 emergency hospital admissions in the last 6 months in the region of 

Dortmund, were directly attributable to alcohol consumption. In total, 3% of all 

hospital inpatient admissions were caused alone by alcohol withdrawal syndrome 

and the average inpatient stay for these patients was 10 days (Baune, Mikolajczyk et 

al. 2005). An alcohol screening test for all patients at hospital admission could  

enable an early clinical decision making and shorten the follow-up diagnostics and 

improve therapy. 

5.3.3 Mass spectrometry in the clinical lab 

Mass spectrometry is superior to existing laboratory analysis methods (e.g. 

immunoassays) with respect to sensitivity, specificity and assay development time 

(Vogeser and Seger 2008). Mass spectrometry determines the mass-to-charge ratio 

(m/z) of particles allowing its accurate identification. It is an extremely sensitive 

technique and is very well suited for detecting small and large molecules at low 

concentrations (i.e. ng/ml). It can simultaneously measure hundreds of components 

present in complex biological media in a single assay. The biggest advantage is that 

there is no need for labeled reagents, thus, offering prospects of reduced time 

involved for assay development, simplified protocols, and lower cost of development.  
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Modern clinical laboratories use diverse techniques and instrumentation that vary in 

reliability and specificity. Since the introduction of mass spectrometry in clinical 

laboratories, it proved to be one of the most specific analytical techniques available 

for clinical diagnostics (Jannetto and Fitzgerald 2016). Mass spectrometry has 

proved as a successful technology in clinical Newborn Screening, Therapeutic Drug 

Monitoring (TDM) (e.g. antidepressants), Drugs of Abuse (DoA) (e.g. Methadone, 

Blood alcohol levels), Microbiology (i.e. Pathogen Identification) and Nucleic acid 

testing  (i.e.SNP genotyping) applications and continues  to expand in in almost 

every area of laboratory medicine (Chace, DiPerna et al. 1999, Pusch, Wurmbach et 

al. 2002, Eichhorst, Etter et al. 2009, Wieser, Schneider et al. 2012, Desrosiers, 

Scheidweiler et al. 2015, McShane, Bunch et al. 2016) (Figure 16), (Figure 17).  

……………………………………………….
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Figure 16.Mass spectrometry is used in almost all areas of laboratory medicine.  Depicts the currently common applications in 
clinical laboratory. Schematic compiled and modified according to mass spectrometry industry market reports from SELECTBIO Mass 
Spectrometry for Clinical Diagnostics Market Report (2013), www.absciex.com, Laborjournal 1-2/2010 Geräte für Proteomics, 
www.directindistry,com  

http://www.absciex.com/
http://www.directindistry,com/
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Figure 17.Mass spectrometry methods cover a wide spectrum of different analytes used in laboratory diagnostics.  
Shows common methods specif ications depending on the biomolecule class under investigation  Schematic compiled and modified 
according to mass spectrometry industry market reports from SELECTBIO Mass Spectrometry for Clinical Diagnostics Market Repor t 
(2013), www.absciex.com, Laborjournal 1-2/2010 Geräte für Proteomics, www.directindistry,com.

http://www.absciex.com/
http://www.directindistry,com/
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5.3.3.1 From bench-to-bedside - key factors to consider for transition into 

clinical practice  

Generally, stakeholders from the diagnostic industry, laboratory clinicians, primary 

care physicians, and health insurers will examine new methods/candidate 

biomarkers regarding their actual diagnostic test performance but also regarding the 

therapeutic consequences of the additional information they provide. When 

developing a new method, the overall test performance is essential for the routine 

clinical practice to deliver lab results on time, on budget in a quality. Despite the 

benefits of mass spec technology for the clinical laboratory some key  additional 

aspects need to be considered e.g. : Automation in pre-analytics : at present mass 

spectrometry automation is rather limited in the clinical laboratory (in comparison to 

immunoassays or clinical chemistry analyzers) mainly due to the fact that the 

handling characteristics of mass spectrometry applications in the pre-

analytics/sample preparation are still very far from the standards realized in routine 

clinical chemistry analyzers. Whereas common routine analyzer is fully automated, 

mass spectrometry applications still require significant hands-on-time due to the 

sample preparation (Figure 18). Turn-around Time (TAT): of current mass spec 

applications for  e.g. Newborn screening, DoA and TDM vary between minutes to 

hours (Figure 19). More concisely, a potential mass spectrometry-based method for 

screening of abusive drinking behavior at hospital admission for all patients or at 

emergency setting would typically require a short TAT. Cost per analysis: cost per 

mass spec analysis varies from 0.1€ to 2€ and is lower that for Clinical 

chemistry/Immunoassay (CC/IA) methods which is (0.10€ - 7€). Sample throughput: 

for currently available mass spectrometry-based DoA /TDM tests is rather slow with 

10 to 20 samples/hour compared to CC/IA methods with 1000 to 2000 samples/hour. 



80 

Maintenance/Consumables: High consumables usage, high degree of waste, open 

well-reagent stability, typical few weeks in CC/IA and extremely low usage of 

consumables, open-well reagent stability (~ 1 year) in mass spectrometry 

applications.  Robustness: in mass spectrometry applications the daily measurement 

series up to 24h duration with short simple maintenance interventions possible 

whereas e.g. in CC/IA robustness is limited (Vogeser 2003, Vogeser and Seger 

2008, Vogeser and Kirchhoff 2011, Vogeser and Seger 2012). 

…....................................................................
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Figure 18.Mass spectrometry applications still require significant hands-on-time due to manual sample preparation. Displayed 
is an example laboratory workflow comparing an immunoassay with a mass spectrometry assay for Testosterone. (a)  fully automated 
immunoassay is performed on a single instrument, starting with sample preparation, analysis and ending with automated waste 
disposal at a short turn-around-time i.e. “plug and play” (b) manual and time-consuming sample preparation dominates the mass 
spectrometry analysis. Beside the mass spec instrument additional lab instruments are required to perform an analysis. Schematic 
created and modified according to ADVIA Centaur CP/XP product manual (2010); Kushnir et al. Performance Characteristics of a Novel 
Tandem Mass Spectrometry Assay for Serum Testosterone (2006), Application note API 4000, ABSciex (2007)  
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Figure 19.Current clinical laboratory processes with mass spectrometry still have 
a relatively long Turn-around-Time (TAT). Displayed are use cases of common 
laboratory workflows used in German clinical laboratories today. For each diagram the 
mass spec configuration is displayed (i.e. LC/MS/MS) and the Turn -around-time (TAT) 
for key analysis steps. Also, the overall TAT from sample-to-assay result is displayed. 
(a) Newborn Screening (b) and (c) Drugs of Abuse (DoA) and (d) Therapeutic Drug 
Monitoring (TDM). Schematics created and modified according to procedure descriptions at 
Labor Wisplinghoff,Köln (2012),Labor Limbach Karlsruhe (2012), SOPs für ABSciex 
and Varian Systems (2012), AB Sciex, SOPs for API 3200 LC/MS/MS System (2015)  
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5.3.4 What´s next? - alcohol metabolomics study in the context of the 

biomarker development workflow  

The conventional pipeline for biomarker development involves a discovery phase, 

followed by biomarker verification, validation, qualification and clinical application 

(Kitteringham, Jenkins et al. 2009). The focus of the underlying metabolomics study 

was to investigate the capability of targeted metabolomics to find metabolite 

differences of alcohol consumption groups, identify candidate biomarkers and 

identify potential application areas. This metabolomics study addresses the first 

phase of a biomarker development workflow (Figure 20) (Figure 21). In the 

underlying study a panel of candidate biomarkers could be identified and partly 

replicated. However, additional research is needed for the biomarker panel to be 

qualified for further steps. As a next step the verification of the biomarker panel 

would be needed to continue knowledge building, for example by conducting 

additional prospective studies on alcohol consumption including additional alcohol-

related traditional laboratory parameters, as GGT, CDT etc. and potentially by 

measuring direct ethanol metabolites as EtG, PEth, FAAEs. An additional study 

combining GWAS and metabolomics data could provide  access to the biochemical 

context of genetic variations, in particular when enzyme coding genes are concerned 

associations between genetic variants that associate with changes in the 

homeostasis of key lipids, carbohydrates, or amino acids are not only expected to 

display much larger effect sizes due to their direct involvement in metabolite 

conversion modification, but should also provide access to the biochemical context 

of such variations, in particular when enzyme coding genes are concerned. This may 

lead to a novel approach to personalized health care based on a combination of 

genotyping and metabolic characterization (Gieger, Geistlinger et al. 2008). An 
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important aspect of the knowledge building is also the early definition of potential 

purpose of the candidate biomarkers. This means the early identification of the 

underlying intended use of the putative biomarkers and assay. 

……………………………………………………………..
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Figure 20.Laboratory diagnostic biomarker development workflow. Stages of a conventional biomarker development 
starting with the biomarker discovery phase and ending with the application of the biomarkers in the clinical setting. The 
current alcohol metabolomics study is part of the Biomarker Discovery phase.  Schematic modified according to 
(Kitteringham, Jenkins et al. 2009) .  
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Figure 21.Key steps in alcohol biomarker discovery with metabolomics.  Describes detailed key steps within the Biomarker 
Discovery Biomarker discovery phase with mass-spectrometry-based metabolomics. Schematic modified according to (Suhre and 
Gieger 2012) and http://www.caprion.com/en/services/new-fit-for-purpose-assays.php. ………………………………………………………

http://www.caprion.com/en/services/new-fit-for-purpose-assays.php
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6. Conclusion and Perspectives 

6.1 Metabolomics study of alcohol intake 

The metabolomics study provides new insights into the impact of alcohol 

consumption on human metabolism. The results suggest that metabolomic profiles 

based on Diacylphosphatidylcholines, Lysophosphatidylcholines, Ether lipids and 

Sphingolipids form a new class of biomarkers for alcohol consumption. This may be 

of great value for the clinical assessment of alcohol intake, alcohol-specific disease 

detection and drug-therapy monitoring. The combined research outcomes from the 

current study with outcomes from other studies indicates that the identified metabolic 

biomarkers could also be surrogate markers for Diabetes, Huntington´s disease, 

Ovarian endometriosis and Prostate cancer. However, further research is needed to 

elucidate the exact underlying mechanisms. A prospective study follow-up in large 

sample would help validate the predictive potential of these results.  

6.2 Value of mass spectrometry for laboratory diagnostics 

Due to the multi-parametric analysis capability, absolute quantification, low cost per 

analysis,high sensitivity,  high robustness, low consumable usage, and the prototype  

tests making it easy for the transition from research into clinical setting, mass 

spectrometry is very well suited for clinical diagnostics applications and screening 

applications. 

6.3 Perspectives in alcohol metabolomics-based research  

In clinical diagnostics, multi-parameter analyses are of utmost importance for the 

elucidation of disease mechanisms. However, at present it is still difficult to speculate 

about the potential of metabolomics-based diagnostic approaches to actually 

improve patient´s care in the future. When dedicated to diagnostic medicine, 
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metabolomic research might address areas where available diagnostic strategies 

have obvious shortcomings (see chapter 1.3). However, in an individually diagnostic 

work-up, it must be systematically questioned where pre-symptomatic diagnosis 

procedures (i.e. in alcohol-related organ damage) might be indeed helpful for the 

patient. If no treatment is available for a specific illness pre-symptomatic diagnosis 

might substantially compromise the quality of life. 

6.4 Contribution of the underlying work to alcohol research 

As to the current knowledge this is the first metabolomic population-based study 

investigating alcohol-induced metabolic changes in humans. The study bridges the 

knowledge gap of alcohol and its effects on the metabolic setup. The study identified 

alcohol-related metabolites and its potential underlying mechanisms which form an 

additional link/step in understanding the path between chronic moderate-to-heavy 

alcohol consumption and its clinical endpoints (Figure 22). …………………………
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Figure 22.Alcohol metabolomics study bridges the knowledge gap between 
alcohol consumption and alcohol-related clinical endpoints. Orange box depicts 
alcohol-specif ic 10/5 key metabolites for males/females identif ied in the underlying 
study. The metabolites form a novel class of alcohol -related candidate biomarkers in 
the context of the development of alcohol -related clinical endpoints……………
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