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Summary 
 

The loss of stable organic matter and structure in agricultural soil is termed soil degradation and 

leads to the loss of soil fertility. Conventional tillage with concomitant soil inversion and soil 

aggregate disruption is regarded as one of the key factors facilitating this process. The application of 

conservation or non-inversion tillage with a reduced depth has been shown to mitigate the loss of 

native soil organic matter to the atmosphere. Soil microorganisms are key players in the global 

carbon cycle because of their involvement in the degradation of bioavailable organic matter in soil. 

The majority of organic matter input to agricultural soil is in the form of dead plant material, of 

which the organic polymer cellulose is one of the major components. Indeed, soil microorganisms 

are well equipped with a diverse array of genes coding for cellulose-degrading enzymes. The aim of 

this research was to identify differences in the genetic potential to degrade cellulose of soils 

subjected to conventional or reduced tillage treatment. It was hypothesized that soil under reduced 

tillage would be enriched in and comprise a higher diversity of cellulase genes compared to soil 

under conventional tillage, thereby functioning as a biomarker for soil fertility. To this end, soil was 

sampled from two agricultural experiments in Western Europe applying both tillage treatments. 

These agricultural fields differed in farming management regimes and experiment duration; the 

twenty-year experiment was managed using conventional farming practices while the four-year 

experiment was based on an organic farming management-regime. From both fields the tilled 

surface horizon of soil under both tillage treatments was sampled. From the organic farming 

experimental field, samples were additionally taken from the soil layer beneath the tillage layer. 

DNA was extracted from these samples and the metagenomes were subsequently shotgun-

sequenced using high-throughput next-generation sequencing techniques.  

Metagenome analysis results showed that tillage intensity did not affect the genetic 

potential for endoglucanases or exoglucanases in the metagenome of either experiment. However, 

in the organic farming experiment, the surface soil horizon of plots with reduced tillage treatment 

was enriched mainly in β-glucosidase genes (including glycoside hydrolase (GH)1-genes), GH26-

genes and genes coding for carbohydrate binding modules (CBM2, CBM3 and CBM6) compared to 

that of plots with conventional tillage treatment. In contrast to results on DNA-level, measurements 

of enzyme activity in soil from the conventional farming experiment demonstrated a higher potential 

β-glucosidase- and exoglucanase-enzyme activity under reduced tillage compared to conventional 

tillage in the surface soil horizon. The effects of tillage intensity observed on the whole microbial 

community in both agricultural soil metagenomes indicated a secondary role for tillage in shaping 

the microbial community structure and a possibly higher importance of factors like crop residue 

incorporation, plant root development and time point of sampling after tillage treatment. In the soil 

metagenomes of both agricultural experiments, the most abundant cellulases were β-glucosidases 

(GH1 and GH3), cellulose phosphorylases (GH94) and genes from CBM-family 2. Endoglucanase 

genes belonging to GH5 and GH74 were most abundant, while exoglucanase genes were infrequent. 

Most cellulase genes were derived from members of the Actinobacteria (Actinomycetales) and 

Proteobacteria (e.g. Xanthomonodales, Rhizobiales and Myxococcales), but also of Bacteroidetes. 

Furthermore, based on cellulase gene sequences identified in the conventional farming 

metagenome, a primer set was developed for amplification of GH5-subfamily 2-cellulase genes from 

agricultural soil DNA. In-depth analysis of amplified GH5-subfamily 2-genes by high-throughput 
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sequencing revealed a high diversity of unexplored putative GH5-cellulase sequences and indications 

of cross-kingdom horizontal gene transfer.  

In light of these results it can be concluded that tillage intensity mainly affects genes coding 

for proteins involved in cellulose binding and the degradation of cellulose oligomers. Although 

cellulase gene diversity and the genetic potential for cellulose polymer degradation were not 

strongly affected by tillage intensity, enzyme activity measurements do indicate a tillage effect on 

transcriptional or translational level. Therefore, to elucidate effects of agricultural practices like 

tillage intensity on the role of soil microorganisms in the global carbon cycle, investigation of 

transcriptional and enzymatic responses by the cellulolytic soil microorganisms to different sources 

of organic compounds over the course of degradation is recommended as future focus of research. 
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Zusammenfassung 

 

Das Nachlassen der Bodenstruktur und die Verringerung von stabiler organischer Substanz in 

landwirtschaftlichen Böden wird als Bodendegradation bezeichnet und führt zum Verlust der 

Bodenfruchtbarkeit. Konventionelle oder wendende Bodenbearbeitung und damit einhergehender 

Zerstörung der Bodenaggregate wird als einer der Hauptfaktoren für diesen Prozess angesehen. Es 

hat sich gezeigt, dass die Anwendung konservierender oder nichtwendender Bodenbearbeitung mit 

reduzierter Tiefe den atmosphärischen Verlust von nativer organischer Substanz reduziert. 

Bodenmikroorganismen spielen eine Schlüsselrolle im globalen Kohlenstoffkreislauf, da sie am 

Abbau biologisch verfügbarer organischer Substanz im Boden beteiligt sind. Der Großteil der 

organischen Substanz, der dem landwirtschaftlichen Boden hinzugefügt wird, besteht aus nicht-

lebendem Pflanzenmaterial, von dem das organische Polymer Cellulose eine der Hauptkomponenten 

ist. In der Tat sind Bodenmikroorganismen bestens ausgestattet mit einer Vielfalt von Genen, die 

Cellulose-abbauende Enzyme kodieren.  

Ziel dieser Forschung war es, Unterschiede im genetischen Potential für den Abbau von 

Cellulose im Vergleich bestimmter Böden zu identifizieren, die einer konventionellen oder 

konservierenden Bodenbearbeitung unterzogen wurden. Es wurde die Hypothese aufgestellt, dass 

Boden unter konservierender Bodenbearbeitung eine Anreicherung und eine höhere Diversität an 

Cellulase-Genen aufweisen würde als Boden unter konventioneller Bodenbearbeitung und somit als 

Biomarker für Bodenfruchtbarkeit fungierte. Zu diesem Zweck wurden Bodenproben aus zwei 

landwirtschaftlichen Experimenten in Westeuropa entnommen, die beide 

Bodenbearbeitungstechniken anwendeten. Diese landwirtschaftlichen Experimenten unterschieden 

sich in den Bewirtschaftungssystem und der Versuchsdauer. Das zwanzigjährige Experiment wurde 

mit konventionellen Anbaumethoden durchgeführt, während das Vierjahresexperiment auf einem 

Managementsystem für ökologische Landwirtschaft basierte. Von beiden Feldern wurde der 

bearbeitete Oberflächenhorizont des Bodens unter beiden Bodenbearbeitungstechniken beprobt. 

Aus dem Versuchsfeld des ökologischen Landbaus wurden zusätzlich Proben aus der Bodenschicht 

unterhalb der Bodenbearbeitungsschicht entnommen. Die DNA wurde aus diesen Bodenproben 

extrahiert, und die Metagenome wurden anschließend Schrotschuss-sequenziert – unter 

Verwendung von Hochdurchsatz-Sequenzierungstechniken.  

Metagenomanalyseergebnisse zeigten, dass die Bodenbearbeitungsintensität das genetische 

Potenzial für Endoglucanasen oder Exoglucanasen im Metagenom beider Experimente nicht 

beeinflusste. Dennoch, im ökologischen Landbauexperiment war der Oberflächenbodenhorizont – 

beim Vergleich von konservierender zu konventioneller Bodenbearbeitung – mit β-Glucosidase-

Genen (einschließlich Glykosidhydrolase (GH) 1-Genen), GH26-Genen und Genen für Kohlenhydrat-

Bindungsmodule (CBM2, CBM3 und CBM6) angereichert. Im Gegensatz zu den Ergebnissen auf DNA-

Ebene zeigten Messungen der Enzymaktivität im Boden des konventionellen 

Landwirtschaftsexperiments eine höhere potentielle β-Glucosidase- und Exoglucanase-

Enzymaktivität bei reduzierter Bodenbearbeitung im Vergleich zur konventionellen 

Bodenbearbeitung an der Bodenoberfläche. Die beobachteten Auswirkungen der 

Bodenbearbeitungsintensität auf die gesamte mikrobielle Gemeinschaft in beiden 

landwirtschaftlichen Bodenmetagenomen zeigten eine sekundäre Rolle für Bodenbearbeitung bei 

der Gestaltung der mikrobiellen Gemeinschaftsstruktur und eine möglicherweise höhere Bedeutung 

von Faktoren wie Pflanzenrückstandsbildung, Pflanzenwurzelentwicklung und Zeitpunkt der 
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Probenahme nach Bodenbearbeitung. In den Bodenmetagenomen beider landwirtschaftlicher 

Experimente waren die am häufigsten vorkommenden Cellulasen β-Glucosidasen (GH1 und GH3), 

Cellulose-Phosphorylasen (GH94) und Gene aus der CBM-Familie 2. Endoglucanase-Gene, die zu GH5 

und GH74 gehören, waren am häufigsten vorhanden, während Exoglucanase-Gene selten waren. Die 

meisten Cellulase-Gene stammten von den Actinobacteria (Actinomycetales) und Proteobacteria 

(z.B. Xanthomonodales, Rhizobiales und Myxococcales), aber auch von Bacteroidetes. Basierend auf 

Cellulase-Gensequenzen, die im konventionellen Landwirtschafts-Metagenom identifiziert wurden, 

wurde außerdem ein Primer-Set zur Amplifikation von GH5-Subfamilie-2-Cellulase-Genen aus der 

landwirtschaftlichen Boden-DNA entwickelt. Eine detaillierte Analyse von amplifizierten GH5-

Subfamilie-2-Genen durch Hochdurchsatz-Sequenzierung ergab eine große Diversität von 

unerforschten vermutlichen GH5-Cellulase-Sequenzen und Hinweise auf Domän-überschreitenden 

horizontalen Gentransfer. 

Angesichts dieser Ergebnisse kann geschlussfolgert werden, dass die Bearbeitungsintensität 

hauptsächlich Gene beeinflusst, die für Proteine kodieren, die an der Cellulose-Bindung und dem 

Abbau von Cellulose-Oligomeren beteiligt sind. Obwohl die Cellulase-Gen-Diversität und das 

genetische Potenzial für den Abbau von Cellulosepolymeren nicht stark von der Intensität der 

Bodenbearbeitung beeinflusst wurden, deuten Messungen der Enzymaktivität auf einen 

Bodenbearbeitungs-Effekt auf der Transkriptions- oder Translations-Ebene hin. Um die 

Auswirkungen von landwirtschaftlichen Methoden wie der Bodenbearbeitungsintensität auf die 

Rolle von Bodenmikroorganismen im globalen Kohlenstoffkreislauf aufzuklären, wird daher die 

Untersuchung der transkriptionellen und enzymatischen Reaktionen der cellulolytischen 

Bodenmikroorganismen auf verschiedene Quellen organischer Verbindungen im Verlauf des Abbaus 

als zukünftiger Forschungsschwerpunkt empfohlen. 
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1 - Introduction 
 

Soil degradation 
Soil carbon stocks are more than twice as high as carbon amounts in the atmosphere (1, 2),  

amounting to around 2500 Gt of carbon in the top 2 m of soil (3). Of this carbon stock, around 0.8 Gt 

is estimated to be lost yearly (4), leading to the degradation of soil quality. Soil degradation is the 

loss of soil native fertility, characterized by loss of soil structure and stable organic matter and the 

concomitant loss of nutrients and nutrient-holding capacity. The start and intensification of 

agriculture has often been considered as one of the greatest causes of the increase in soil 

degradation (4, 5). Conversion to agricultural systems has been estimated to cause the depletion of 

at least 60% of the soil organic carbon pool (5, 6). Agricultural intensification in the western part of 

the world has led to increasing yield and energy efficiency but also to non-holistic and short-term 

nutrient and soil management strategies. Agricultural intensification is generally characterised by a 

low carbon or organic matter return to soil, because fertilization strategies are currently focussed on 

chemical nitrogen and phosphorous addition. Low soil organic matter content together with long 

periods of fallow induces high soil loss by erosion. In non-western areas, where farmers often cannot 

afford to use chemical or organic fertilizers, soil degradation is prevalent because of a general lack of 

nutrient return to soil (7).   

 

Several strategies exist to overcome soil degradation like growing cover crops and catch crops. In 

addition, soil degradation can be mitigated by directly increasing the return of organic matter to the 

soil. A well-known practice is crop residue retention on the soil surface or incorporation into the top 

soil layer. Carbon derived from crop residues functions as a substrate to the soil microbiome and is 

partly immobilized in the microbial biomass (8), partly lost as carbon dioxide, and partly ends up as 

stable soil organic matter. Substrates which are more difficult to degrade, e.g. cellulose, are 

incorporated into microbial biomass in higher amounts than easily-utilizable carbon sources, e.g. 

glucose (9). The part of crop residues which ends up as stable organic matter originates from 

degradation-recalcitrant molecules in the fresh substrate or from microbial biomass (10). 

Degradation-recalcitrant molecules of fresh organic matter are less bioavailable due to their 

structure or because of limiting soil conditions like low soil moisture (11, 12) or presence of micro-

aggregates (13)). Furthermore, reduction of tillage intensity has been proposed in order to mitigate 

the loss of native soil organic matter to the atmosphere. Tillage of soil is primarily done as seedbed 

preparation, as it loosens and dries the soil and therefore provides a suitable environment for crop 

roots to develop. Indeed, tillage has been shown to increase soil aeration and reduce soil 

compaction or soil bulk density in the tilled layer (14, 15) which leads to a lower soil volumetric 

water content (13). Furthermore, tillage is applied for weed control by disrupting the roots of 

growing vegetation and turning the soil to cut off its access to light. Finally, tillage leads to 

homogeneous nutrient distribution in the soil by mixing. However, a negative effect of intensive 

tillage which impacts the quality of the soil is the lower organic carbon content in the surface or 

tilled soil horizon and the lack of organic matter stratification compared to non-tilled soil, (16–20). 

Therefore, combining crop residue retention with no-tillage techniques has become the main 

recommendation to restore soil organic carbon stocks (17, 21). Although this method includes lower 
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costs by saving on fuel for tilling, it is not always popular because of lower yields (22, 23). Other 

alternatives to conventional tillage are tillage methods with reduced intensity and depth, for 

example chisel plough, rotary harrow and cultivator. Whereas conventional tillage is mostly done 

with a mouldboard plough to overturn the soil until a depth of 20-35 cm, reduced tillage methods 

are non-overturning tillage techniques with a shallower working depth  (14). Depending on the 

climate conditions and soil type, reduced tillage methods lead to higher carbon levels in the tilled 

layer than conventional tillage practices and they do not show the same strong negative impact on 

yield as no-tillage methods (18, 22, 24, 25).  

 

Degradation of cellulose by soil microorganisms 
Microorganisms play an important role in the degradation of native and fresh organic matter in soil. 

While the availability of native organic matter is governed mainly by edaphic factors, actual 

degradation of available organic matter is performed by the soil microbiota (26). The soil microbiota 

consists for a large part of micro-fauna, like insects, earthworms, termites, nematodes and other 

small animals, but the majority of the soil biomass consists of microorganisms, including protists, 

fungi, Archaea and bacteria. Hence, their usage of the organic material as carbon and energy source 

is a significant contribution to the soil carbon cycle. 

 

Organic matter enters the soil partly through living plants which provide the soil microbial 

community with root exudates (27). However, the bulk of organic matter entering the soil is in the 

form of dead plant biomass (28, 29). Plant biomass generally consists of a mixture of organic 

polymers like hemicellulose (xylan, mannan and xyloglucan), lignin, pectin and, most importantly, 

cellulose. It is one of the most abundant glycans on earth, representing a major element of plant 

biomass (30) and thus a considerable portion of the organic matter input to soil. Cellulose is a 

relatively simple compound, but quite inaccessible for breakdown as it consists of closely stacked 

fibres of β-1,4-linked glucose disaccharides called cellobiose. Cellulose fibres are stacked in highly 

ordered crystalline structures which are now and then interspersed by less well-ordered amorphous 

regions, where the cellulose fibres are not so closely packed together (reviewed by (31)). Because of 

this organization and the close proximity of many other plant carbohydrates, the bio-availability of 

cellulose is relatively low. Different enzymes exist which catalyse the cleavage of the cellulose-

polymer on different sites and using different mechanisms (summarized in (32)). Endoglucanases, 

exoglucanases and β-glucosidases act on cellulose through hydrolysis (Figure 1). Of these, 

endoglucanases (Enzyme Commission (EC) number: 3.2.1.4) cut internal sites on amorphous 

cellulose regions or on soluble forms of cellulose like carboxymethyl cellulose (CMC), by which new 

chain ends are produced for exoglucanases to bind to. Exoglucanases cleave the ends of crystalline 

cellulose chains to release cellobiose and are also called cellobiohydrolases or cellobiosidases. Of 

these, EC: 3.2.1.176 acts on the reducing end of the cellulose chain and EC: 3.2.1.91 on the non-

reducing end. Exoglucanases which cut the ends of cellooligomers (cellodextrins), releasing 

cellobiose or glucose, are called cellodextrinases (EC: 3.2.1.74). Finally, cellobiose is degraded to 

glucose monomers by β-glucosidases (EC: 3.2.1.21). Most endoglucanases and exoglucanases are 

excreted extracellular, whereas most β-glucosidases are located intracellular, after the uptake of 

cellobiose or chemical modifications thereof. Although most cellulases cleave the β-1,4-bonds by 

hydrolysis, cellulases using phosphorylation-mediated cellulose cleavage also exist (33). Cellodextrin 

phosphorylases (EC: 2.1.4.49) release glucose monomers from cellodextrin molecules. Cellobiose 
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phosphorylases (EC: 2.1.4.20) and cellobionic acid phosphorylases (EC: 2.4.1.321) degrade cellobiose 

(or a chemical modification of cellobiose) to different forms of glucose monomers (34, 35). 

Oxidoreductases, like cellobiose dehydrogenases (EC: 1.1.99.18) and lytic polysaccharide 

monooxygenases (LPMOs, recently given the EC: number 1.14.99.54) use an oxidative catalytic mode 

of action to modify cellobiose respectively cellulose chains (36). 

 

 

Many microorganisms have been physiologically characterized as cellulose degraders. These include 

various bacterial, fungal and metazoan taxa which have been regularly described in reviews (e.g. (32, 

37)). Bacterial orders with most cellulose degraders are the Clostridiales (phylum Firmicutes) and the 

actinomycetes (phylum Actinobacteria) (38). Other well-known cellulose-degrading bacterial genera 

from the Firmicutes are Bacillus and Caldicellulosiruptor, from the Bacteroidetes Cytophaga, 

Sporocytophaga and Bacteroides, Fibrobacter from Fibrobacteres and Pseudomonas, Myxococcus 

and Cellvibrio from the Proteobacteria (39–41). Among fungi, well-known degraders are 

Trichoderma, Penicillium, Aspergillus, Fusarium and  Chaetomium from Ascomycota, and 

Phanerochaete, Sclerotium, Volvariella and Gloeophyllum from the Basidiomycota and the anaerobic 

Neocallimastix (32, 42, 43). Finally, animals able to degrade cellulose are for example (parasitic) 

nematodes (44, 45), termites (46, 47), insects (48) and some (mostly symbiotic) protists (49, 50). 

New genera of cellulolytic bacteria are discovered every day by analysis of sequenced genomes, for 

example Actinospica, Microbispora and Hamadaea (Actinobacteria) and Cystobacter 

(Deltaproteobacteria) (51). Analysis of metagenomic datasets has additionally resulted in the 

identification of many potential degraders (52). 

Cellulase activity and gene expression by cellulolytic microorganisms is regulated by the 

amount and type of available substrate. In bacteria, pure cellulose has been demonstrated to induce 

Figure 1: Overview of binding- and cleaving-locations of different cellulase enzymes on the cellulose 
substrate. β-glucosidase (EC: 3.2.1.21), cellobiose phosphorylase (EC: 2.1.4.20), cellobionic acid phosphorylase 
(EC: 2.4.1.321) and cellobiose dehydrogenase (EC: 1.1.99.18) act on cellobiose, while cellodextrinase (EC: 
3.2.1.74) and cellobiose phosphorylase (EC: 2.1.4.49) act on cellulosic oligomers. The cellulose fiber is internally 
cleaved by endoglucanase (EC: 3.2.1.4, amorphous region) and LPMO, which can cleave the cellulose polymer 
both in the amorphous and the crystalline region. Cellulose chain ends can be cleaved by reducing-end 
exoglucanases (EC: 3.2.1.176) or by non-reducing-end exoglucanases (EC: 3.2.1.91).  
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cellulase enzyme activity whereas glucose and cellobiose inhibit it (53), while cellulase gene 

expression was shown to be enhanced during growth on cellulose but repressed by glucose in 

Thermobifida curvata (54). In fungi, cellulase gene expression is induced by cellulose while glucose 

inhibits it (55–58). Disaccharides like cellobiose, lactose and sophorose can also induce cellulase 

gene expression in some fungi (55). Conversely, monosaccharides like fructose and 2-deoxyglucose 

seem to generally repress cellulase gene expression, whereas glycerol, mannitol, sorbitol, and 

maltose did not affect expression (58). All in all, available data suggest that cellulose production 

occurs on basal levels without direct need for induction but is repressed by catabolites (37). 

 

Cellulase domain families and substrate specificity 
Much work has been put in attempts to predict cellulolytic ability of microbial groups by analysing 

the respective gene clusters. However, the variability in cellulase-coding gene sequences and even 

protein sequences leads to major difficulties in the prediction of function. A useful classification 

system has been developed by Henrissat et al., based on amino acid sequence similarities on a 

secondary structure-level (59). Cellulases display a modular structure, where one or more catalytic 

domains and often a cellulose binding module are present in the enzyme. These catalytic and 

binding domains of cellulases and other carbohydrate-active enzymes have been classified into 

different families. Currently, the CAZy database (Carbohydrate-active enzymes database, 

www.cazy.org, (60)) contains and updates a vast quantity of carbohydrate-active enzyme sequences 

classified into a module family. Different classes of catalytic and binding modules are recognized: 

Carbohydrate Binding Modules (CBM), Glycoside Hydrolases (GH, generally comprising enzymes with 

a hydrolytic activity (EC: 3.2.1.-) but also several with phosphotransferase activity (EC: 2.4.1.-)) and 

the Auxiliary Activities (AA)-class. The AA-class comprises enzymes related to lignocellulose 

conversion; mainly Lytic Polysaccharide Mono-oxygenases (LPMO’s) and dehydrogenases (61).  

 

Cellulase mode of action and substrate specificity  

Enzymes within one catalytic or binding domain family display similarities in amino acid sequence, 

secondary and tertiary structure (overall fold) and catalytic mechanism. Cellulolytic catalysis is 

mostly performed by two highly conserved amino acid residues: a general acid (proton donor) and a 

nucleophile/base (62), defining the catalytic mechanism. In addition, there are between-family 

similarities in 3D-structure and catalytic machinery, indicating that some families are more related 

than others (i.e. superfamilies (63)). Enzymes within one catalytic or binding domain family do not, 

however, necessarily perform the same enzymatic function or act on the same substrate. Many of 

these families contain enzymes which act on different carbohydrates, and only some contain 

enzymes acting on cellulose. Family GH5, for example, is harboured by enzymes catalysing twenty 

different enzymatic reactions, many of which are even bifunctional (www.cazy.org, (60)). For a 

summary of the information found on the CAZy database (October 2017), see Figure 2. In fact, there 

appear to be only two domain families containing enzymes acting on cellulose, with a single 

cellulolytic activity: GH45 and GH124. The substrate specificity and, therefore, enzymatic function is 

thought to depend on both the catalytic domain and the CBM. There are many indications that the 

substrate specificity of many cellulases is governed by the associated CBM in the protein (64). 

Generally, the function of the carbohydrate binding module is threefold (65); First, CBMs ensure 

close contact between the catalytic domain and the cellulose molecules. Second, they ensure the 

binding of the right cellulose substrate type, i.e. crystalline or amorphous cellulose, or cellodextrins. 
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In fact, at least some CBMs not only select for substrate type, but also for specific regions on the 

same substrate type, as was shown by Carrard et al. for CBMs 1 and 3 (66). Third, CBMs function by 

aiding in the disruption of the cellulose fibres. This CBM-mediated disruption (often CBM3a) is 

probably the feature defining whether or not some exoglucanases and even endoglucanases show a 

processive mode of action (67).  

 

Considering this, the importance of a CBM for cellulase efficiency appears significant and raises the 

question why some cellulases do not contain a CBM. It was postulated that cellulase enzymatic 

groups without a binding module can have several substrate specificities (42), or that they may play 

an important role in amorphous cellulose degradation where larger enzymes (i.e. with CBM) have no 

access (68). In any case, identification of a gene’s binding module should give insight into its 

substrate recognition characteristics, although the overall fold-classification into a CBM-family does 

not predict its function (65), much like the catalytic modules. Interestingly, the catalytic domain of a 

cellulase can also select for a specific substrate. As was discussed by Davies and Henrissat (62), 

details in the structural fold  of the catalytic module define the substrate specificity and mechanistic 

action of the enzyme. They explain that the substrate specificity of the catalytic module seems to 

depend on the 3D-topology of the active site, of which there are three types: a pocket, a groove and 

a tunnel. The pocket is designed to fit a saccharide non-reducing chain end, whereas the groove 

allows the binding of a random part of the polymer. Finally, the tunnel-topology is formed when a 

long loop covers the groove otherwise left open. It allows the protein to processively continue its 

Figure 2: Distribution of enzymatic functions (EC-number) involved in cellulose degradation among 
sequences classified in domain families found in the CAZy database. Shown is the percentage of sequences 
per domain family of which the cellulase function has been functionally characterized, as well as the 
percentage of multifunctional cellulase- and of non-cellulase-sequences (primary y-axis). In addition, the total 
number of (both functionally characterized and non-characterized) sequences and the number of functionally 
characterized sequences classified into the respective domain family is shown (secondary y-axis). Data was 
extracted from the CAZy database (www.cazy.org, (60) - October 2017). 
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cleavage along the polysaccharide chain, and it is found mostly in cellobiohydrolases but also in 

some endoglucanases (62). 

These details do seem to have quite an effect on substrate specificity, as was shown for 

GH3-β-glucosidases (69). While substrate specificity of the catalytic module seems indispensible for 

β-glucosidases as they generally do not possess a CBM (www.cazy.org, (60)), it has also been shown 

to be present in catalytic modules of endo- or exoglucanases. For GH48-family enzymes, a single 

residue has been identified defining its specificity for cellulose versus non-cellulosic substrates (70). 

In addition, Chen et al. (71) identified six active site-motifs which strongly influenced the substrate-

recognition promiscuity of GH5-cellulases. Furthermore, the importance of the size and amino acid 

density and composition of the active site for substrate-binding affinity was elucidated by Tian et al. 

(72). Exoglucanases tended to show longer active sites and higher binding energies, while β-

glucosidase-binding affinity was concentrated in a small active site. Moreover, they described the 

ligand-binding properties of the conserved residues in the active sites of several GH-families, 

elucidating causes of substrate affinities between cellulases, xylanases and β-glucosidases (72).  

 

Functional redundancy of cellulases 
Despite the difficulties in identification of cellulolytic function purely from gene sequences, many 

studies put effort in characterizing the cellulolytic trait-dispersion among not-physiologically 

characterized microorganisms. By analysing publically available complete bacterial genomes, 

Berlemont and Martiny showed that cellulase genes are present in the majority of bacterial genomes 

and in most microbial groups (73).  56% of the analysed bacterial genomes contained β-glucosidases 

and no endo- or exoglucanases, indicating that the opportunistic use of cellulose degradation 

products is widespread among bacteria (73). However, cellulose degraders, which possess both 

endo- or exoglucanases and β-glucosidases, were only present in 24% of the analysed bacterial 

genomes (73). In addition, they could show that potential cellulose degraders formed phylogenetic 

clusters at the maximum taxonomic level of genus (73, 74). All in all, this indicates that cellulose 

utilisation might be functionally redundant among heterotrophic and non-parasitic bacteria. 

Cellulose degradation is, however, more restricted to certain taxonomic assemblages, although 

these degrading communities also show a certain functional redundancy (52).  

 

Indeed, substrates containing different carbohydrate amounts or types select for a different 

degrading community composition, as was shown for fungi (75). In addition, substrate type was 

shown to influence the synergism among microorganisms (76). Considering that the plant cell wall 

consists of many different glycan polymers, microorganisms are therefore at an advantage when 

they can degrade many different types of carbohydrates. Indeed, adaptation of microorganisms to 

different carbon sources is characterized by the use of different carbohydrate-active enzymes. For 

example, differences in tree species affected the transcriptional diversity of the fungal 

lignocellulolytic genes GH7, GH11 & AA2 (77) and the leaf litter horizon in forest soil exhibits a higher 

diversity and proportion of cbhI-genes than the organic horizon, as shown by metatranscriptomics 

(78). Furthermore, wheat straw and tree leaf litter induce different patterns of degrading enzyme 

production, with wheat straw inducing higher cellulase production than leaves (79). Moreover, the 

composition of cellulosomes was shown to vary according to the substrate type (80, 81), also 

illustrating the adaptive abilities of microorganisms to the nutritional status of their environment.  
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The advantages of cellulase functional diversity, i.e. endoglucanases, exoglucanases and β-

glucosidases, for cellulose degradation are evident considering their synergistic activity. For 

example, LPMO’s can enhance the activity of endoglucanases and exoglucanases (82, 83). In 

addition, optimal cellulose degradation is often achieved using both endoglucanases and 

exoglucanases (84, 85); microorganisms containing both enzymes or dual enzymes are very efficient 

degraders (86). Nevertheless, bacterial genomes containing genes for both types of cellulases are 

not altogether common; Whereas predicted cellulolytic bacteria were shown to all harbour 

endoglucanase- and multiple β-glucosidase and/or cellobiose phosphorylase genes, not all possessed 

exoglucanases (39, 73). Moreover, exoglucanases show additional substrate specificity by exhibiting 

either reducing-end (EC: 3.2.1.176, GH7, GH9 and GH48) or non-reducing end activity (EC: 3.2.1.91, 

GH5, GH6 and GH9) and thus further induce synergy in degradation (87). In summary, this suggests 

that cellulose-degrading microbial consortia greatly enhance degradation efficiency when containing 

an exoglucanase-producing member. 

Understanding the role of cellulases which have the same substrate-specificity but belong to 

different domain families is, however, less straightforward. To date, much knowledge is lacking 

about the function of the diversity of enzymes with the same substrate specificity. Nevertheless, the 

importance of enzyme phylogenetic diversity for cellulose degradation is becoming increasingly 

clear. A high phylogenetic variability of cellulase genes may increase the chance of substrate 

recognition and degradation (43, 88). Indeed, combining two exoglucanases from different 

organisms but from the same cellulase domain family resulted in synergistic improvement of 

degradation rate compared to the performance of either single exoglucanase (89). The synergy of 

different cellulase domain families is especially well illustrated by the cellulase-gene repertoire of 

cellulosome-harbouring bacteria. For example, Raman et al. (80) showed that the abundance of 

GH5- or GH9-enzymes in the cellulosomes of Clostricium thermocellum increased when cellulose and 

crystalline cellulose, respectively, were present as carbon source. While these results indicate a 

specificity for a certain region on the cellulose chain, these two GH-families were in fact generally 

found in relatively high abundance among cellulosome-enzymes, regardless of substrate type, also 

suggesting a degree of functional redundancy within these domain families (80). In addition, 

whereas cellulosomes all harbour a single copy of the GH48-exoglucanase, they generally harbour 

multiple copies of the GH9-gene, of which the expressed proteins all show different functional 

properties (90). A reason for this synergy between cellulases from the same domain family may be 

differences in substrate-binding affinity or specificity for different regions on the same substrate. For 

instance, cellulose-binding CBMs of the same domain family were found to be specific for a different 

region on the cellulose chain (66). In addition, several GH9-endoglucanases from Clostridium 

cellulolyticum showed different catalytic activities and binding affinities to amorphous cellulose, 

despite them belonging to same GH-family and harbouring the same carbohydrate binding module 

(91). Besides putatively different substrate-binding affinities, steric characteristics of cellulase 

domains appear to influence their contribution to cellulose degradation efficiency, as was elucidated 

by experiments with designer-cellulosomes (92, 93).  

 

The adoption of cellulase-coding genes that harbour multiple different domain families might in fact 

be an adaptive strategy to adjust to the high diversity of carbohydrate molecules present in the 

environment and the high diversity of their steric conformations (43). Cellulase genes are optimally 

suited to readily evolve into performing a similar but different degradation reaction, as only a small 

number of residues in the active site seem to be important for substrate specificity and catalytic 
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action (69–72). This is reflected in the high protein sequence-variation found within cellulase domain 

families, indicating that single changes in amino acid residues should not have such strong effects on 

total protein fold, thereby maintaining the evolutionary recognizable family fold (63). At the same 

time, there is a chance that single residue changes elicit a change in the binding site topography (65) 

(71), leading to alteration of the substrate recognition, whereas the chance of altering the two 

conserved catalytic residues is very small, safeguarding the catalytic activity. Moreover, it has been 

postulated that certain protein families (e.g. GH5) exhibit inherent properties for multispecificity, i.e. 

their active/binding site topography is such that single residue changes can readily elicit additional 

substrate recognitions (71).  

Another possible strategy for adaptation is to share highly transferrable genes with other 

(related) microorganisms by horizontal gene transfer (HGT).  Indeed, the concept of a common gene 

pool which is shared between microorganisms has been proposed before as an ecologically relevant 

mechanism (for a review see Boon et al. (94)). As cellulase domain families are defined based on 

amino acid sequence similarity (59), it follows that proteins within one family are phylogenetically 

more related than proteins from different cellulase domain families. The fact that many cellulase 

domain families are found over a large range of microorganisms (e.g. GH5) and that different, non-

related, GH-families are observed among closely related microorganisms does indicate a high 

occurrence of HGT. This transfer does not have to be restricted to the complete cellulase gene 

(which harbours multiple domains), but might be domain-specific (partial HGT). Partial HGT is also 

suggested by the high variation in catalytic domain- and CBM-combinations (see Figure 2). 

Furthermore, Danchin et al. observed that the similarity between the CBMs of different proteins was 

higher than the similarity between the catalytic domains of the same proteins (95), also indicating a 

distinct evolutionary history for both domains. 

 

Aims and hypotheses of this thesis 
Thus, the exact contribution of soil microorganisms and their diversity to the degradation of 

cellulose and the soil carbon cycle is not clear yet. Therefore, the primary aim of this research was to 

explore the genetic potential for cellulose degradation in agricultural soil and how this is affected by 

different tillage treatments. More specifically, it was investigated if the effects of reduced tillage on 

soil carbon stock are mediated by a change in the microbial cellulose-degrading potential. Results 

were expected to elucidate possible biomarkers for soil fertility and suitability for crop production. 

The second aim was to assess the phylogenetic diversity of the GH5-coding gene in agricultural soil, 

to get insight into its evolutionary history. This would increase the understanding of the redundancy 

of the cellulose-degrading trait and help in the identification of strategies to manage soil fertility and 

counteract further soil degradation. 

 

To investigate the effect of different tillage intensities on the soil microbial potential to degrade 

cellulose, a metagenomic shotgun-sequencing approach was implemented. This method allows the 

capture of all the genetic information in the soil, avoiding cultivation- or marker gene-biases invoked 

by growing soil microorganisms on different media (96) or by amplifications. With shotgun-

metagenomics, genetic information from organisms of all domains of life can be obtained, allowing 

for a holistic assessment of the soil ecology. Soils from two field experiments located in the 

temperate climate region in Western Europe were used. To understand the lasting effects of tillage 

on the soil microbiome, first a long-term field experiment, on which reduced (RT) and conventional 
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tillage (CT) was applied for twenty subsequent years, was chosen for investigation. Samples were 

taken from the surface soil layer, up to the depth of the reduced tillage-working, to target the soil 

layer which is under influence of tillage. As new sequencing technologies with higher capacity 

became available, a second field experiment was chosen for analysis. Analysis of another field 

experiment would provide a more robust assessment of tillage effects on the soil microbiome, 

especially when sampling was performed in another season and at a different time point after tillage 

treatment. Stronger statistics and co-occurrence analyses would be able to be applied using the 

higher amount of data generated with the new sequencing technique. As the long-term field 

experiment was managed using conventional farming practices (hereafter designated as the 

conventional farming experiment), the second field experiment was chosen based on an organic 

farming management-regime (hereafter designated as the organic farming experiment). A higher 

contribution of especially fungi to the soil microbial community composition was expected to be 

found in the organic field experiment (97–99). To investigate the differences in the soil layer beneath 

the reduced-tillage depth, the soil of the organic field experiment was sampled both from the 

surface soil layer and the soil layer which was below the working depth of reduced tillage but within 

the working depth of conventional tillage (hereafter designated as the deeper soil layer or horizon). 

Because the soil layer below the reduced tillage-working depth can be considered a no-tillage zone, 

it was expected that differences between tillage treatments are more pronounced in the deeper soil 

layer than in the surface soil layer, which is the tilled horizon. Ultimately, the analysis of the soil of 

these two field experiments and the outstanding sequencing effort has yielded a great amount of 

sequence data which can be related to the recorded soil- and climatic metadata. The obtained 

metagenomes allowed for a robust assessment of the effects of tillage intensity on the soil genetic 

potential. Results from both metagenome studies are shown and discussed from both a general 

perspective and focussing on cellulase-encoding genes (from here on designated as cellulase genes). 

The main hypothesis was that soil under reduced tillage contains a higher diversity and relative 

abundance of cellulose-degrading microorganisms and cellulase genes than soil under conventional 

tillage, as a response to a higher organic carbon input and content.  

 

To be able to quantitatively assess the abundance of cellulase genes in soil under different tillage 

treatments, a cellulase gene-amplification assay was developed. The focus was placed on capturing 

the in situ cellulase diversity, independent from database sequence biases, which led to the choice 

of using a metagenome-read as a basis for primer design. A primer set was developed for GH5-family 

cellulase genes with the final goal of application in real-time quantitative PCRs. The GH5-family 

includes enzymes with twenty different catalytic functions, of which the endoglucanases, 

cellobiosidases and cellodextrinases comprise the ones with cellulolytic functions (CAZy database, 

www.cazy.org, (100)). It is one of the most abundant endoglucanase-families found in soil (101–

103). Furthermore, the GH5-endoglucanases are highly phylogenetically divergent, reflected by its 

broad distribution among the kingdoms of life, notably Archaea, bacteria, fungi and plants (CAZy 

database, www.cazy.org, (100)) and by its low sequence conservation, with only seven conserved 

residues (104). Therefore, a metagenome read from the conventional farming experiment, 

annotated with high reliability to this catalytic domain family, was chosen to capture cellulase 

sequences with a high phylogenetic variability. The results of the primer development process are 

reported here and recommendations for further development are given. The applied amplification 

and high-throughput-sequencing method has yielded a large amount of highly diverse partial GH5-

genes, which were used for phylogenetic analysis. Here, the diversity of a specific group of GH5-
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genes in agricultural soil and its phylogenetic range is presented. It was expected that the 

phylogenetic diversity of cellulase genes in soil exceeds the known diversity of cellulase-database 

sequences and that several indications of HGT would be identified, suggesting a high (possibly 

shared) genetic potential to adjust to the substrate-type presented as carbon source. The 

evolutionary implications of these results in an ecological context are discussed. 
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2 - Materials and Methods 
 

This chapter describes the materials and methods used to obtain the presented data. Contributions 

of others to the data generation is either explicitly stated in the corresponding section or mentioned 

in the section ‘Contributors to the data presented’. The majority of the conventional farming 

experiment-data has been published in 2015 in FEMS Microbiology Ecology (101). Here, an adjusted 

description of the materials and methods is given.  

Site description and soil sampling 
 
The conventional farming experiment 

The conventional farming experiment was part of an agricultural field experiment in Scheyern (ca. 

460m above sea level), 40km north of Munich (Germany), established in 1992 (24, 105). Soil 

sampling was done with help of Anne Schöler and Julien Ollivier, both working at the department of 

Environmental Genomics at the Helmholtz Zentrum München. Local precipitation and temperature 

were respectively 792.3 mm and 8.3 °C (average over 2000-2010). The soil is classified as a Luvisol, 

has a pH (CaCl2) of 6.3 and consists of 2.2% coarse sand, 17.0% fine sand, 55.4% silt and 25.4% clay 

(silty clay loam). A crop rotation including winter wheat-potato-winter wheat-maize was applied on 

this parcel. The experimental design is given in Figure 3, showing the layout of plots treated with two 

experimental factors: tillage intensity and nitrogen fertilization amount.  

 

 

 Three different levels of tillage intensity (reduced tillage (RT, tilled with rotary harrow with 8 cm 

working depth), medium tillage (MT, tilled with cultivator with 15 cm working depth) and 

conventional tillage (CT, tilled with mouldboard plough with 25 cm working depth) and three levels 

Figure 3: Experimental design of the conventional farming experiment. The sampling site consisted of 27 
square plots, each 12 m by 12 m, organized in a split-plot design. As main treatment, three different tillage 
intensities were applied (RT: 8-10 cm, MT: 15-17 cm and CT: 22-25 cm working depth). As sub-plot treatment, 
three concentrations of fertilizer were applied (LF: 65 kg N ha

-1
, MF: 105 kg N ha

-1
 and HF: 135 kg N ha

-1
) which 

respectively corresponded to 33% less than, same as, or 33% more than conventional fertilization practice. Soil 
was sampled from all plots and the soil metagenome was sequenced from the plots with a red border. 
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of fertilization amount (low fertilization (LF), medium fertilization (MF) and high fertilization (HF)) 

were applied to plots arranged according to a split-plot design, with tillage intensity as main plot and 

fertilization amount as sub-plot. Sampling was done in November 2012, one month after corn 

harvest, when the maize plant residues were incorporated into the soil by tillage and winter wheat 

was sown. At the time, soil temperature was 6.7 °C. A composite sample of five soil cores (0-10 cm, 

the surface soil layer) was taken of every plot with a soil auger of 5 cm diameter. The composite 

sample was sieved through a 3-mm sieve and subsequently mixed. A subset was immediately stored 

on dry ice and afterwards at -80 °C for subsequent DNA extraction. The leftover soil was kept at 4 °C 

for chemical and biological analysis. 

 

The organic farming experiment 

Soil was sampled from an agricultural field experiment, established at the Swiss federal agricultural 

research station Agroscope (ca. 410m above sea level), Reckenholz station near Zurich (Switzerland), 

called “Farming System and Tillage experiment (FAST)-II”. Sampling was done with help of Raphael 

Wittwer from the Agroscope Reckenholz research station. Ten-year-average precipitation and 

temperature are 976 mm respectively 10°C (2009-2015, (106)). The soil is a calcareous Cambisol with 

a pH (H2O) of 7.9 (0-16 cm), consisting of 43% sand, 33% silt and 24% clay (clay loam soil). The 

experimental design is given in Figure 4, showing the layout of plots treated with three experimental 

factors: farming system (organic or conventional), tillage intensity (reduced tillage under organic 

farming (RT, rotary harrow with 5 cm working depth), no-tillage under conventional farming (NT),  

intensive tillage under organic farming (CT, mouldboard plough with 20 cm working depth) and 

intensive tillage under conventional farming (PT, mouldboard plough with 20 cm working depth)) 

and cover crop (legume (L), non-legume (NL), a mixture (M) or none (NO)). These treatments were 

applied to plots in quadruplicates, arranged according to a split-plot design, with production system 

(farming system*tillage intensity) as main plot and cover crop as sub-plot.  This experiment has been 

established in 2010 and will continue until at least 2020. Additional details of previous crops, yields 

and soil characteristics can be found in a recent publication by Wittwer et al. (106). From this 

experiment, soil samples were taken of the plots with legume cover crop and no cover crop (blue-

squared plots in Figure 4) in August 2014, one week after harvest of winter wheat (wheat straw was 

removed from the field) and short stubble mulching. Five months before sampling, weed-control had 

taken place, consisting of shallow harrowing on the RT- and CT-plots and herbicide application on 

the NT- and PT-plots.  At the time, soil temperature was 22 °C. Of every plot a composite sample of 

six cores was taken of soil on a depth of 0-6 cm (the surface soil layer) and 10-16 cm (the deeper soil 

layer) under field level, yielding a total of 64 samples. Soil was taken using a soil auger of 2 cm 

diameter and the composite sample was mixed on field and stored immediately at 4°C. Afterwards, 

the soil was sieved with a 2-mm sieve and a subset was shot-frozen in liquid nitrogen and 

subsequently transported on dry ice and stored at -80°C before DNA extraction. The remaining soil 

was stored at 4°C, transported in cooling boxes and afterwards stored at -20°C for subsequent 

chemical and biological analysis. 

Soil chemical and biological analysis 
The pH of the soil samples was measured using a glass electrode (WTW Inolab® pH 720) submerged 

in a prepared soil solution. The solution was prepared by adding 25 mL of 0.01M CaCl2 or demi-H2O 

to 5.0 g of fresh soil, shaking the mixture overhead for 5 min and incubating it at room temperature 

for 20 h.  
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For microbial biomass measurement, the water extractable organic carbon (WEOC) was determined 

before and after chloroform fumigation according to Joergensen, 1996 (107). In short, triplicates of 

5.0 g of fresh soil in glass vials were incubated in chloroform gas for 24 h. To extract the WEOC, 5.0 g 

of fresh soil was mixed with 20 mL of 0.01M CaCl2, incubated in an overhead shaker for 40 min at 

room temperature, filtered using a pre-rinsed Whatman-filter, and stored at -20 °C until 

measurement with the Dimatoc 100 (DimatecAnalysentechnik GmbH, Germany). Soil humidity was 

Figure 4: Experimental design of the organic farming experiment. The sampling site consisted of 64 plots, 
each 15 m by 3 m, organized in a split-plot design. In the main plot, four different management systems were 
randomly applied; RT: organic farming with reduced tillage (5 cm working depth), CT: organic farming with 
plough tillage (20 cm working depth), NT: conventional farming without tillage and PT: conventional farming 
with plough tillage (20 cm working depth). As sub-plot treatment, four different cover crop treatments were 
applied; L: leguminous crops, NL: non-leguminous crops, M: mixture of legume and non-leguminous crops and 
NO: no cover crop (control). Soil was sampled from all plots with a blue and red border and the soil 
metagenome was sequenced from the plots with a red border. 
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measured by drying soil at 40°C for ca. 5 days or at 106°C for 36 h. Total carbon (TC) and nitrogen 

(TN) was determined grinding dry soil to a homogeneous powder by shaking it in a Tissue lyzer at 30 

Hz for 3-9 min together with steel balls. Duplicates of 20-25 mg of ground soil powder were 

subjected to elemental analysis using an Elementar Vario EL III instrument in combustion mode. 

Additionally, for calcareous soil (the organic farming experiment), 2.0-2.5 mg of ground soil powder 

treated with 10-20 µL of 2M HCl was analysed to correct for possible carbonate content.  

Enzymatic activity assays 
For the conventional farming experiment the potential activity of cellulase- and xylosidase-enzymes 

was measured. The soil stored at 4 °C was assessed for potential enzymatic activity one day after 

sampling. This was done by adding methylumbeliferone (MU)-complexed substrates to soil solutions 

(108). The three substrates used were MU-β-1,4-glucopyranoside (targeting β-glucosidase 

(EC:3.2.1.21)), MU-β-cellobiohydrofurane (targeting cellobiosidase (cellobiohydrolase, EC:3.2.1.91)) 

and MU-β-D-xylopyranoside (targeting β-D-xylosidase) (Sigma-Aldrich). First, pilot experiments were 

performed to determine the optimum substrate concentration (Copt) and incubation time (Topt) for 

degradation of each substrate: Copt was 800 µM of MU-β-cellobiohydrofurane and 500 µM of MU-β-

D-glucopyranoside and MU-β-D-xylopyranoside, Topt was 120 min for each substrate. Subsequently, a 

soil solution of each sample was incubated with each substrate for 120 min in triplicate in a black 96-

well plate with transparent underside. Subsequently, they measured for MU-fluorescence, using a 

spectrophotometer with excitation wavelength λ=365 nm and emission wavelength of λ=450 nm. 

The obtained fluorescence values were corrected for inhibition by soil particles (quenching) and 

background noise, as well as for soil-autofluorescence. Finally, they were converted to MU-

concentrations using a calibration line calculated from reference measurements on the same plate. 

The final fluorescence values in pmol MU were calculated per hour and per gram dry weight of soil. 

To compensate for microbial biomass, additional fluorescence values were calculated per μg 

microbial carbon, by dividing the fluorescence values per hour and gram soil with the microbial 

carbon-values per gram dry weight of soil.  

DNA-extraction, library preparation and sequencing 
For the conventional farming experiment (section 3) and the GH5-amplicon study (section 5), DNA 

was extracted of the soil samples taken from the RT/MF and CT/MF-treatment (6 samples). For the 

organic farming experiment (section 4), DNA was extracted of the soil samples taken from the 

RT/NO- and CT/NO-treatments and two soil depths, the surface soil layer and the deeper soil layer 

(16 samples, red-squared plots in Figure 4). DNA for the surface soil layer-samples of the organic 

farming experiment was extracted by Irina Tanuwidjaja, working at the department of 

Environmental Genomics at the Helmholtz Zentrum München. Around 300 mg of frozen soil was 

taken and DNA was extracted using the NucleoSpin Soil DNA-isolation kit ‘Genomic DNA from soil’ 

(Macherey– Nagel, Germany), buffer 1, according to the protocol of the manufacturer. For the 

organic farming experiment, a negative control was included for each extraction run (one for each 

soil depth). Extracted DNA was stored at -20°C until further processing. 

The 6 sample-library of the conventional farming experiment was prepared for shotgun 

sequencing according to the Roche protocol “Rapid Library Preparation Method Manual”, employing 

Roche Molecular Identifier (MID)-adapters as barcodes. The Roche protocol “emPCR Method 

Manual - Lib-L Large Volume (LV)” was followed for DNA-amplification in an emulsion PCR. Finally, 

the amplified libraries were sequenced on the Genome Sequencing (GS) FLX+ instrument, using a GS 
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FLX Titanium sequencing kit XL+. Pyrosequencing signals and images were processed by the supplied 

Roche software and the raw sequences have been deposited in the NCBI-Sequence Read Archive 

(SRA, BioProject ID: PRJNA235154). 

The 18 samples of the organic farming experiment (including negative controls) were all 

prepared for shotgun sequencing on the MiSeq® sequencing machine (Illumina) using the exact 

same procedure, but the samples of the surface soil layer were prepared by Anne Schöler. To obtain 

an average sequence length of 300 base pairs (bp), 60 µL sample-DNA was sheared with an E220 

Focused-ultrasonicator (Covaris® Inc., Woburn, Massachusetts, USA) for 80 s using the following 

settings: Peak Incident Power= 175W, Duty Factor = 10%, 200 cycles per burst, 7°C, water level 6 and 

with Intensifier. Afterwards, library preparation was performed according to the  “NEBNext® Ultra 

DNA Library Prep Kit for Illumina (for Metagenome)”-manual provided by Illumina, with the 

following adaptations: a library size selection of 400-500 bp was done, for PCR amplification 10 

cycles were used, the NEBNext High Fidelity 2x PCR Master Mix was used instead of the Q5-mix, 2.5 

µL (instead of 1 µL) of primers was used, and 20 µL (instead of 25 µL) of DNA input was used. The 

samples were indexed using 1:5 diluted NEBNext® Multiplex Oligos for Illumina (Dual Index) (for 

Metagenome), provided by Illumina. Finally, 4 nM DNA-aliquots of each sample were pooled and 

sequenced in two runs (one run for all samples of each depth layer). Sequencing was performed with 

the MiSeq® Reagent Kit v3 (600 cycles) for paired end- sequencing on a MiSeq® sequencing machine. 

GH5-primer design, amplification and sequencing 
For the development of the GH5-cellulase primer set, metagenome read H3PB9EL02JLGQQ (top 

BLASTx-hit: endoglucanase [Gynuella sunshinyii YC6258], max score: 70.5, total score:  70.5, query 

coverage: 97%, expect (e)-value: 4e-13, identity: 79%, accession: AJQ95033.1 (October 2013)) from 

the conventional farming experiment dataset was aligned to as many nucleotide sequences as 

possible of GH5-endoglucanases found in the CAZy database (www.cazy.org, (60)), in order to 

determine suitable primer-binding regions shared by all sequences. However, the amount of 

database sequences was reduced to only two which were suitable for primer-binding region 

identification: an endoglucanase (cel5B, ACE84076) from Cellvibrio japonicus strain Ueda107 and a 

bifunctional endoglucanase/cellobiohydrolase (celAB, ABS72374) from Teredinibacter turnerae strain 

T7901. For alignment of these templates and determination of suitable primer sequences, the 

Clustal Omega service on the EMBL-EBI-website (https://www.ebi.ac.uk/Tools/msa/clustalo/) with 

default parameters was used (109). Ultimately, a forward and reverse primer sequence with 

degeneracies of 8 respectively 96 were obtained. The primer sequences and the binding regions on 

the catalytic GH5-domain of ACE84076, as identified by a conserved domain database-search (110), 

are shown in Figure 31. To test primer specificity, an in-silico PCR was done with the De-MetaST-

software (111), allowing no mismatches and using the  metagenome from the conventional farming 

experiment and the National Center for Biotechnology Information (NCBI, 2013) nucleotide database 

as template sequences. A second in-silico PCR was done with the Genomatix software suite using the 

FastM and ModelInspector tool (112), allowing for 1 mismatch and using the Genbank bacterial and 

plant database as template sequences. Furthermore, PCR-conditions were optimized using 

temperature gradients and different PCR-mix components. In addition, primer specificity was 

confirmed by amplification of the GH5-cellulase gene of the obtained reference strain of C. japonicus 

(DSMZ, Braunschweig, Germany). Genomic DNA from C. japonicus was obtained by DNA-extraction 

from liquid culture (DSMZ carboxymethyl cellulose medium 1111, pH-adjusted to 7.0, Temperature: 

37 °C, 150 rpm) using a modified version of the DNA and RNA co-extraction protocol by Griffiths et 
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al. (113). Amplification was performed using a hot start (94 °C for 7 min), followed by forty cycles 

with a denaturation phase at 94 °C for 45 s, an annealing phase at 57°C for 45 s and an elongation 

phase at 68 °C for 30 s, while the final elongation was done at 68 °C for 7 min. The following 

reagents were used for one reaction volume of 50 µL: 0.5 µL Taq polymerase (5 units µL-1) (Qiagen, 

Germany), 5 µL PCR buffer (10x, without MgCl2 or MgSO4) (Qiagen, Germany), 5 µL dNTP-mix (2 mM) 

(Qiagen, Germany), 2 µL MgCl2 (50 mM), 1 µL of forward primer (10 µM) (Metabion, Martinsried, 

Germany), 1 µL of reverse primer (10 µM) (Metabion, Martinsried, Germany), 0.5 µL of template 

DNA (50 ng µL-1) and 35 µL of demineralised H2O. Amplification was confirmed by loading of 

products on a 2%-agarose gel. 

The 6 DNA samples from soil of the conventional farming experiment were pooled to sample 

the complete diversity of the soil and not have differences because of treatments. This pooled 

sample was used as template for the amplification of GH5-cellulase genes. To increase amplification 

specificity, the amplification of GH5-genes was performed in two consecutive PCR runs; a first 

amplification round using the target-specific primers (see Figure 31-B) and a second amplification 

using the same primers with an Illumina Nextera V2 adapter overhang attached (see Figure 31-C). 

The following reagents were used in the first PCR run (for one reaction volume of 25 µL): 12.5 µL 

NebNext Polymerase (2x) (New England Biolabs GmbH, Frankfurt, Germany), 0.75 µL of forward 

primer (10 µM) (Metabion, Martinsried, Germany), 0.75 µL of reverse primer (10 µM) (Metabion, 

Martinsried, Germany), 0.5 µL of 3% bovine serum albumin, 2 µL of template DNA (100 ng µL-1) and 

8.5 µL of demineralised H2O. The PCR run had a first denaturation phase at 98 °C for 5 min, then 

thirty cycles with a denaturation phase at 98 °C for 10 s, an annealing phase at 57°C for 30 s and an 

elongation phase at 68 °C for 30 s. The final elongation was done at 68 °C for 5 min. The products 

were excised from a 1%-agarose gel and purified using the NucleoSpin gel- and PCR-clean-up kit 

(Macherey-Nagel, Germany). 2 µL of the purified PCR products from the first PCR were used as 

template for the second PCR. The reagent mix and PCR conditions were identical to the first PCR, but 

instead of thirty cycles only ten cycles were run. The products were excised from a 1%-agarose gel 

and purified using the NucleoSpin gel- and PCR-clean-up kit (Macherey-Nagel, Germany). 

Afterwards, library preparation was performed according to the Illumina “16S Metagenomic 

Sequencing Library preparation” manual, starting from the Indexing PCR step onwards and using the 

NebNext 2x High Fidelity Master Mix instead of the Kappa HiFi Hotstart Ready Mix, which is the 

default mix mentioned in the manual. For sample indexing the Nextera® XT Index Kit Set C for 

Amplicons (Illumina) was used. Sequencing was performed with the MiSeq® Reagent Kit v3 (600 

cycles) for paired end- sequencing on a MiSeq® sequencing machine.  

Quantitative real-time PCR assay 
For quantification of bacterial and fungal abundances in the soil of both metagenome studies, the 

16S ribosomal RNA-genes (16S rRNA genes) and the fungal Internal Transcribed Spacer (ITS) regions 

were amplified during quantitative real-time PCR (qPCR). For the conventional farming experiment, 

the qPCR was carried out together with Anne Schöler. For 16S rRNA gene quantification, the 25 µL 

reaction mixtures comprised: 12.5 µL Power SYBR Green master mix (Life Technologies), 5 pmol of 

each primer (114), 0.5 µL 3% bovine serum albumin and 2 µL soil DNA template. For ITS rRNA gene 

quantification, the 25 µL reaction mixtures comprised: 12.5 µL Power SYBR Green master mix (Life 

Technologies), 10 pmol of each primer (115) and 2 µL soil DNA template. Standard curves were 

composed from the amplification of serial dilutions (101 to 107 gene copies mL-1) of a plasmid 

containing Fusarium oxysporum-DNA (the conventional farming experiment)/ Trichoderma reesei-
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DNA (the organic farming experiment) (for fungal qPCR) or Pseudomonas putida-DNA (for bacterial 

qPCR). The qPCR detection limit was defined at 10 gene copies mL-1. For each amplification assay, 

several dilutions of the soil DNA were employed to detect PCR inhibition by high DNA-

concentrations. All qPCR assays were carried out in 96-well plates.  PCR conditions were: 95˚C for 10 

minutes, then 40 cycles of 30 s at 94˚C, 30 s at 55˚C and 30 s at 72˚C for ITS rRNA gene 

quantification, or 40 cycles of 45 s at 95°C, 45 s at 58°C and 45 s at 72°C for 16S rRNA genes 

quantification. In the end, final elongation and melting curve analysis was performed for all samples 

by a final cycle of 15 s at 95˚C, 30 s at 60˚C and 15 s at 95˚C. The amplification efficiency was 

calculated from the formula Eff = [10(-1/slope) -1]*100. The efficiency of the qPCR on samples from the 

conventional farming experiment was for 16S rRNA genes: 102% and for the ITS rRNA gene: 87%, 

and on samples from the organic farming experiment for 16S rRNA genes: 94% and for the ITS rRNA 

gene: 92%. 

Analysis of metagenome data and prediction of cellulase genes 
Most of the bioinformatics analyses described were performed using the program GNU Parallel 

(116). For the analysis of the conventional farming experiment metagenome, the provided Roche 

SFF-Tools were used to separate the obtained reads according to the MID adapters. Read trimming 

was performed with DynamicTrim (117), as supplied by MG-RAST (118), with the following settings: 

minimum Phred score= 15, maximum number of bases below minimum Phred score=5, minimum 

read length=50. Any remaining adapter sequences and duplicate reads were removed using 

Biopieces (www.biopieces.org) and cd-hit (119), respectively. To assign taxonomy and function to 

the clean reads, they were compared to the NCBI (2013) non-redundant protein database and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology-database (June 2011) using Diamond 

(120) using a minimum score cut-off of 50. In addition, they were compared to the SILVA SSU-

database (September 2013) using BLASTn (e-value threshold= 10-4, (121, 122)). Evaluation of the top 

BLAST hits (i.e. up to 25 hits with lowest e-value) of each read for taxonomic and functional mapping 

was done using the MetaGenome ANalyzer (MEGAN, Version 5.2.3) software (http://ab.inf.uni-

tuebingen.de/software/megan5/ (123)), in the context of taxonomic hierarchy respectively KEGG-

pathways. The following settings applied in MEGAN: Min support=1, Min score=50, Top%=10, Min-

Complexity Filter= 0, LCA-percent=100. Further data analysis was performed in R (124) or MS Excel®. 

General taxonomic and functional annotation of this metagenome was performed by Anne Schöler.   

To find genes encoding cellulase domain families (GH-, AA- and CBM-genes), protein open-

reading frames (ORFs) were first predicted from the metagenome reads using FragGeneScan (125) 

and then translated to protein sequences. A set of CBMs and catalytic domain families which are 

found in endoglucanases, exoglucanases, β-glucosidases, cellodextrin phosphorylases and cellobiose 

dehydrogenases, were selected from the Carbohydrate Active Enzymes (CAZy)-database 

(www.cazy.org, (60)).  To identify these domain families in the metagenome sequences, they were 

scanned against a database of protein profile-Hidden Markov Models (HMMs) using hmmscan (126). 

This database had been assembled in the following manner; First, self-built HMMs were created for 

each of the selected domain families from alignments of sequences containing the target protein 

domain which were used as input for hmmbuild (which is contained within the HMMER version 3.0 

(March 2010), packaged together with hmmscan; http://hmmer.org/). The alignment files were 

generated using sequences from the CAZy database for each corresponding family. Then, these self-

built HMMs were tested for their sensitivity and specificity to detect cellulases by comparison with 

the available HMMs in the Protein family (Pfam)-A 26.0 database (127) and with those from the 
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Database for automated Carbohydrate-active enzyme Annotation (dbCAN, (128)). This was done by 

scanning the HMMs against a set of “positive” or “negative” cellulase sequences, which were 

compiled by downloading the protein sequences of all CAZy entries (January 2015) for GH-, CBM- 

and AA-families that contain cellulolytic proteins, from the NCBI-database. Of these, 1283 entries 

were labelled “positive”, having a matching EC number (EC: 3.2.1.4, EC: 3.2.1.74, EC: 3.2.1.176, EC: 

3.2.1.91, EC: 3.2.1.21, EC: 1.1.99.18, EC: 2.1.4.49, EC: 2.1.4.20 and EC: 2.4.1.321), whereas 1390 

entries were labelled “negative” as the EC number did not match. As no EC number was available for 

the functionally characterized proteins of domain families AA8 and AA9, descriptions which 

mentioned activity on cellulose were regarded as “positive”. Thus, after scanning these sets of 

cellulase and non-cellulase sequences with the self-built HMMs, those from the Pfam A-database 

and those from the dbCAN, the best-performing HMM for each domain family was selected for 

further analysis. The selection criteria included highest sensitivity (percentage of positive sequences 

annotated, see shaded cells in Table A1 in the appendix) and, if possible, lowest false-positive 

prediction. The selected HMMs were afterwards applied to scan the translated protein sequences 

from the metagenomes (hmmscan e-value threshold: 10-4) for cellulase domain families. To further 

limit the number of false-positive predictions, an additional quality control step was performed. All 

hmmscan-annotated sequences were BLASTed against the above-mentioned positive cellulase 

sequences-database using BLASTp (BLASTing e-value threshold= 10-5). Finally, these identified 

cellulases were taxonomically assigned by BLASTing their corresponding nucleotide sequences 

against the NCBI non-redundant protein database using Diamond (minscore=50) and mapping their 

taxonomy using MEGAN5 (parameters as described above). 

 

For the analysis of the organic farming experiment metagenome, the obtained paired reads 

remaining adaptor sequences were removed, reads were trimmed and merged using 

AdapterRemoval v2 (129), using the following settings: -q 15 -l 50. Afterwards, contaminant 

sequences (PhiX Illumina control sequence) were removed using DeconSeq version 0.4.3 (130). The 

high-quality merged reads (more than 95% of the read-pairs were merged) were used for 

downstream analysis. Further general taxonomic and functional annotation and mapping using 

MEGAN was done as described for the conventional farming experiment, but with updated NCBI 

(January 2015) and SILVA database (August 2015). Likewise, the cellulase domain family prediction 

using hmmscan and further filtering using BLASTp was done as described for the conventional 

farming experiment. Furthermore, an overview of the tillage effects observed on the microbial 

community members and the cellulase enzymatic groups or domain families in the metagenomic 

dataset was created by plotting them as connected nodes in Cytoscape 3.6.0 (131) using the Prefuce 

Force Directed Layout and subsequent manual adjustment of the layout. Most edge and node 

settings (e.g. colour and size) were customized according to tillage effects and designations as 

cellulose “degraders” or “utilisers”. 

To discover positive relationships between the relative abundances of annotated microbial 

families, a co-occurrence analysis was performed by David Endesfelder, working at the Scientific 

Computing department of the Helmholtz Zentrum München at the time of cooperation. In addition, 

the co-occurrence between microbial families and protein-coding genes was assessed. Different 

abundance cut-offs were applied; For the co-occurrence between microbial families, only those with 

a minimum abundance of 50 reads in at least 3 of the 16 samples were considered, whereas for the 

co-occurrence between microbial families and protein-coding genes an abundance cut-off for an 

observed connection was applied: only connections with a minimum occurrence of 5 times within 1 
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sample and in at least 5 samples were considered. Furthermore, only significant (P<0.05) 

correlations of abundances between any pair of microbial families or between a microbial family and 

a protein-coding gene, with a correlation coefficient of >0.6, was considered a co-occurrence. 

Correlation significance from Spearman’s rank correlation coefficients was estimated using the 

CCREPE (132) method, to eliminate possible spurious correlations caused by the compositional 

structure of the relative abundances. Setting an edge between pairs of co-occurring entities led to 

the formation of the corresponding co-occurrence network. Subsequently, clusters of co-occurring 

microbial families were defined from the network by grouping families with high intra-cluster and 

low inter-cluster connectivity. This was done using the Markov Dynamics clustering algorithm (133), 

executed in MATLAB®. In short, this algorithm identifies clusters of communities within a continuous 

range of the Markovtime-parameter. Then, the number of community clusters with the longest 

stable assignment over a range of Markov time points is chosen as the number of communities 

separated in the network. 

 

Statistical analysis of metagenome sequencing data 

To be able to compare the annotation counts of the metagenomic data samples, relative 

abundances per sample were calculated. To obtain the relative abundance of annotations, the 

number of annotated reads within one sample was divided by the initial number of clean reads of 

that sample and multiplied by 100,000. This resulted in relative abundances given in % of clean reads 

x10-3. Only taxa and functions with a minimum total abundance (summed up over all samples) of at 

least 0.01% of all metagenome reads (10x10-3 %) were considered relevant for discussion and are 

shown in the figures. An exception was made, however, for the annotation of cellulase genes and 

their taxonomic assignments. Statistical analyses were performed in R (124) or MS Excel®. To detect 

overall differences between the treatments, a principal component analysis was performed (R-

function prcomp) on the scaled and centred relative abundance-data of metagenomic reads 

annotated on order (the conventional farming experiment) or family (the organic farming 

experiment) level, after rarefying (using the Rarefy-function in the R-package vegan (134)) and log-

transformation. Furthermore, Shannon indices were calculated (using the diversity-function in the R-

package vegan (134)) from the relative abundances of metagenomic reads annotated on order (the 

conventional farming experiment) or family (the organic farming experiment) level, also after 

rarefying. Finally, the coverage of the total known taxonomical (NCBI-referenced) diversity was 

calculated by subsampling from the relative abundances of metagenomic reads annotated on order 

(the conventional farming experiment) or family (the organic farming experiment) level using the 

rarec-function in the R-package vegan (134). In addition, a database-independent coverage of the 

total sequence diversity was estimated by uploading clean reads in FastA-(the conventional farming 

experiment) or FastQ-(the organic farming experiment) files to the Nonpareil online tool 

(http://enve-omics.ce.gatech.edu/nonpareil/submit (135)) with the following parameters: Overlap: 

25%, Identity: 95%, Single-stranded - not checked, N as mismatch - checked, Random seed: 12, 

Query set size: 1000.  

Parametric statistics on soil characteristics between treatments were performed after 

testing for normal distribution of the (modelled) data using QQ-plots and Shapiro-Wilk tests (R-

functions qqnorm respectively shapiro.test). Differences in soil characteristics between treatments 

were determined by analysis of variance (ANOVA), taking into account the split-plot design of the 

conventional farming experiment (main-plot: tillage intensity, sub-plot: fertilization amount) and the 

split-split-plot relationship of the samples taken from the field of the organic farming experiment 
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(main-plot: production system, sub-plot: cover crop, sub-sub-plot: soil depth layer).The following R-

functions were used for the ANOVA-model calculations: aov-function, sp.plot-function of the R-

package agricolae and aovp-function of the R-package lmPerm (when model residuals were not 

normally distributed). To determine which levels of treatments were different, the post-hoc least-

significant-difference (LSD)-test was performed (LSD.test-function of the R-package agricolae). For 

metagenomic data of the conventional farming experiment, differences in relative abundances of 

taxonomic or functional assignments between CT and RT samples were determined by two-tailed 

paired t-test statistics. For metagenomic data of the organic farming experiment, differences 

between CT-, RT- and the depth-samples were determined by ANOVA, handling the data according 

to a split-plot design (main-plot: tillage treatment, sub-plot: depth layer). In addition, the LSD-test 

was performed after the ANOVA to determine which levels of treatments differed. Differences were 

regarded significant when the P-value was smaller than 0.05. In addition, a multiple-testing 

correction was performed in the following manner: first, the number of variables was calculated 

which would show a significant difference by chance (false-positives). Then, all variables showing 

significant differences were ordered based on P-value. All variables, starting from the variable with 

the highest P-value and continuing until the predicted number of false positives was reached, were 

considered falsely significant. The data and results of the statistical analysis (relative abundances per 

treatment, total relative abundance, P-values of the used statistical test) are summarized in Tables 

A3 and A6 in the appendix. Due to the low amount of predicted cellulases and their taxonomic 

assignments, no abundance cut-off was used to detect differences between treatments. However, 

only the taxonomic assignments of the most abundant cellulase genes were considered for 

calculation of differences between tillage treatments. 

Amplicon data analysis  
From the obtained reads the remaining adaptor sequences were removed using Biopieces 

(www.biopieces.org) and afterwards, the read pairs were merged using FLASH v1.2.11 (136). 

Merging was successful for more than 90% of the read pairs. For downstream analysis only the 

merged reads were used. The majority of the obtained merged reads had a relatively high 

sequencing quality (above phred-score 25) and was between 40 and 120 bp long (see Figure 5-A). 

They were further filtered for quality (minimum average quality of 35 in a sliding window of 45 

bases) and for a minimum length of 80 and a maximum length of 185 bp using Biopieces, to obtain 

clean reads of the expected amplicon length and with a consistent high quality (see Figure 5-B). 

Subsequently, the clean reads were translated to amino acid sequences using FragGeneScan (125) 

and were subjected to pairwise alignment with ssearch36 (137) and Markov Clustering (138), 

together with protein sequences from the CAZy database (see Table A2 in the appendix). These 

database sequences consisted of only functionally characterized cellulase (EC: 3.2.1.4, EC: 3.2.1.74, 

EC: 3.2.1.176, EC: 3.2.1.91 or EC: 3.2.1.21) and non-cellulase sequences (other functional 

classifications) of GH5. Furthermore, to improve the exclusion of false positives, cellulases and non-

cellulase sequences from four other GH families (GH48, GH7, GH74 and GH9) were additionally 

included. Markov Clustering was done using cut-offs which were based on benchmarking for 

successful separation of database sequences according to enzymatic function (cellulase vs. non-

cellulase functions). The applied cut-offs were further based on calculations of length difference 

between sequencing reads and database reads: e-value cut-off of 0.01, an ORF length difference-

value between 0.06 and 16.3, alignment coverage of 0.1 and an inflation value of 2. Reads that 
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clustered with GH5-cellulases from the database sequences were considered cellulase amplicon 

sequences and used for further analysis. Duplicate sequences were removed using cd-hit (119).  

Taxonomical assignment of the cellulase amplicon sequences was done by BLASTing the 

translated cellulase-sequences to the NCBI non-redundant protein database using BLASTp, 

contained within the BLASTall 2.2.26 package, using an e-value cut-off of 10-4. Mapping the BLAST 

hits to taxonomical groups was done with the MEtaGenome ANalyzer (MEGAN, Version 5.7.1) 

software (http://ab.inf.unituebingen.de/software/megan5/), using the following settings: Min 

support = 1, Min score = 50, Top% = 10, Min-Complexity Filter = 0, LCA-percent=100. A second 

mapping was performed with the same 

parameters, but with LCA-percent (lowest 

common ancestor-assignment cut-off (123)) 

set to 50.  

To group the cellulase amplicon 

sequences based on similarity, a second 

Markov Clustering was performed based on 

the pairwise similarities of the cellulase 

amplicon sequences and the GH5-cellulases 

from the database. Different cut-offs were 

tested to discover the most meaningful sub-

clustering. Finally, the subclustering with the 

following cut-offs was deemed most 

meaningful: e-value cut-off of 10-11, ORF 

length difference-value between 0.06 and 

16.3, alignment coverage of 0.1 and an 

inflation value of 2. The cellulase amplicon 

sequences clustered according to taxonomical 

assignment, together with GH5-cellulases 

from the database and on a high similarity 

level. Nevertheless, many cellulase amplicon 

sequences did not cluster with other 

database- or amplicon sequences, and these 

were left out of further analysis. For a detailed 

account of the subclustering result, see Table 

A10 in the appendix.  

 

Phylogenetic analysis of GH5 protein sequences 
 

GH5-database sequences 

Phylogenetic analysis of GH5-database sequences was done using only functionally characterized 

cellulase sequences (EC: 3.2.1.4, EC: 3.2.1.21, EC: 3.2.1.91 and EC: 3.2.1.74) from the manually 

curated database, as indicated in Table A2 in the appendix, extracted from the CAZy database 

(www.cazy.org,, (60)). In addition, two actinobacterial endoglucanase sequences (Micromonospora) 

from the NCBI-database were added because of their similarity to the amplified sequences. These 

protein sequences were searched for their conserved domains using the batch CD-search tool of the 

Figure 5: Mean phred-score (red) on each sequence 
position and amount of sequences (black) with the 
corresponding sequence length. (A) Raw reads, before 
sequence quality- and length-trimming, and (B) clean 
reads, after quality- and length-trimming. 
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NCBI (110) and subsequently trimmed using Biopieces to retrieve only the GH5-domain. Finally, all 

the sequences were aligned with MUSCLE, contained within the MEGA6 software (139), using a 

Neighbour-Joining clustering method and further default settings.  The resulting multiple sequence 

alignment (MSA) was used for the calculation of two reference-phylogenetic trees of the GH5-

database sequences. The first reference tree was calculated using the complete GH5-database 

sequences and the second reference tree using only the amplicon-region of the GH5-database 

sequences. To obtain the latter alignment of partial GH5-database sequences, the aligned complete 

GH5-database sequences were manually cut to leave only the amplification region, including the 

primer-binding sites. These two alignments were submitted to phylogenetic analysis. The MEGA6-

built-in model-selection tool was used to find the most suitable protein substitution model using the 

maximum likelihood (ML) method and further default parameters.  The subsequent phylogenetic 

ML-tree was estimated using the Whelan And Goldman (WAG) + Frequency (F)-substitution model 

(140). The initial tree for the heuristic search was obtained by applying the Neighbour-Joining 

method to a matrix of pairwise distances estimated using a JTT model. In addition, a discrete Gamma 

distribution was used to model evolutionary rate differences among sites (5 categories), and the 

degree of statistical branching support was obtained by a bootstrap procedure (100 replicates). Only 

those alignment positions were used for phylogenetic calculation, which were covered by 95% of the 

sequences. Thus, if fewer than 95% of the sequences contained alignment gaps, missing data or 

ambiguous residues at a certain position, this position was included in the calculation. After tree-

calculation, a GH5-cellulase sequence from Crenarchaeota was selected as outgroup to root the 

tree.  

 

GH5-amplicon sequences 

The “Add unaligned sequence(s) to an existing alignment”-page of the online MAFFT server (MAFFT 

version 7, http://mafft.cbrc.jp/alignment/server/add_sequences.html, (141)) was used to align the 

cellulase amplicon sequences to the database sequences. This was done in order to make sure that 

the alignment of the database sequences would not change. The alignment of partial GH5-database 

sequences was uploaded as the existing reference alignment and the unaligned cellulase amplicon 

sequences as the new sequences to align to the existing alignment. The alignment job was submitted 

with the following parameter settings: --inputorder, --anysymbol, --add new_sequences, --localpair, 

which uses the L-INS-1 alignment strategy. The output alignment was imported into MEGA6 (139) 

and submitted for phylogenetic analysis using the same model and settings as described for the 

GH5-reference trees.  

 

Top BLAST hits of GH5-amplicon sequences 

Several cellulase amplicon sequences which are phylogenetically closely related to a partial GH5-

database sequence (see section 5: results of phylogenetic analysis of amplified GH5-genes) were 

blasted against the NCBI non-redundant protein database using BLASTp. The top BLAST hits of these 

cellulase amplicon sequences were extracted to obtain additional complete GH5-sequences. These 

were aligned to the existing alignment of complete GH5-database sequences, in the same manner as 

described above by uploading them to the MAFFT server. The output alignment was imported into 

MEGA6 (139) and submitted for phylogenetic analysis using the same model and settings as 

described for the other GH5-reference trees. 
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3 - Results of the conventional farming experiment 
 

Here, the analyses of the conventional farming experiment samples are presented.  Most of this data 

has been published in 2015 in FEMS Microbiology Ecology (101). For the Ph.D. thesis, the figures and 

tables have been changed or adapted from the publication and additional data is presented. In 

short, the surface layer of the soil (0-10 cm) of a field experiment in Scheyern was analysed. The 

experiment included two treatment factors: three different levels of tillage intensity (reduced tillage 

(RT), medium tillage (MT) and conventional tillage (CT)) and three levels of fertilization amount (low 

fertilization (LF), medium fertilization (MF) and high fertilization (HF)), organized in a split-plot-

design in three blocks as replicates. For an overview of the experimental setup and more details on 

the treatments and methodology, see Figure 3 and section 2: Materials and Methods. Soil chemical 

and biological analyses were done on all treatments.  

Soil description 
The soil type and climatic conditions at the time of sampling are given in section 2: Materials and 

Methods. Results of ANOVA of tested soil characteristics are given in Table A3 in the appendix. As 

was shown before by Küstermann et al. (24), the soil under RT had a higher total soil carbon and 

nitrogen content (TC = 1.64 ± 0.12%, TN = 0.17 ± 0.01%) than the soil under CT (TC = 1.10 ± 0.13%, 

TN = 0.12 ± 0.01%, P = 0.004 and P = 0.004, respectively). MT was not different from either RT or CT 

treatment (TC = 1.37 ± 0.11%, TN = 0.15 ± 0.01%). Fertilization treatment did not affect total soil 

carbon or nitrogen content. Contrary to total nitrogen content, mineral dissolved nitrogen was not 

different between treatments. Nitrate was on average 3.2 µg g-1 dry weight soil and ammonium 0.6 

µg g-1 dry weight soil. However, dissolved organic carbon was affected by tillage treatment, with 

higher levels in soil under RT (7.5 ± 3.7 µg g-1 dry weight soil) than in soil under MT (2.0 ± 3.3 µg g-1 

dry weight soil) or CT (0.8 ± 5.0 µg g-1 dry weight soil, P = 0.013). In addition, gravimetric soil water 

content was significantly higher in the surface layer of soil under RT than under MT and under CT 

(respectively 22.8 ± 0.7, 21.9 ± 0.3 and 19.2 ± 0.7 %, P = 0.000).  

 

Similarly, soil under RT contained a significantly higher microbial biomass compared to soil under 

MT, which was again higher than the microbial biomass in soil under CT. Microbial biomass carbon 

was 0.30 ± 0.04 mg g−1 dry weight soil under RT, 0.21 ± 0.05 mg g−1 dry weight soil under MT and 

Figure 6: Microbial biomass carbon (Cmic, A) and nitrogen (Nmic, B) in soil under different tillage treatments. 
Shown is the amount of microbial biomass carbon or nitrogen detected in in the top 10 cm of soil under 
conventional tillage (CT), medium tillage (MT) or reduced tillage (RT) in mg per g dry weight soil. Significant 
differences between tillage treatments are indicated by different letters above the bars (P<0.05). 
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0.15 ± 0.02 mg g−1 dry weight soil under CT (P = 0.003, Figure 6-A). The same pattern in differences 

between RT, MT and CT was seen for microbial biomass nitrogen (0.038 ± 0.004, 0.030 ± 0.004 and 

0.020 ± 0.003 mg g−1 dry weight soil, respectively, P = 0.004, Figure 6-B). qPCR of ribosomal RNA-

genes also showed that under RT a higher amount of microbial rRNA-genes is present per gram dry 

weight soil than under CT (8.37 ± 0.49 × 1010 respectively 6.82 ± 0.19 × 1010 16S rRNA gene copies (P 

= 0.043) and 5.58 ± 1.03 × 108 respectively 3.40 ± 0.40 × 108 ITS rRNA gene copies (P = 0.028)). The 

ratio of bacterial 16S- to fungal ITS rRNA genes was, however, higher under CT than RT (202 ± 21 

respectively 155 ± 39, P=0.047). 

 

The potential activity of extracellular enzymes β-glucosidase, cellobiohydrolase and xylosidase per 

gram dry weight soil was also affected by tillage (see Figure 7). Potential cellobiohydrolase activity 

was lower in soil under more intense tillage with lowest activity under CT, intermediate activity 

Figure 7: Potential enzymatic activities in soil under different tillage treatments.  Shown is the amount of 
methylumbelliferone (MU) produced per h and per g soil, that has been released by the enzymatic degradation 
of MU-β-1,4-glucopyranoside (by β-glucosidase), MU-β-D-xylopyranoside (by xylosidase) and MU-β-
cellobiohydrofurane (by cellobiohydrolase). For cellobiohydrolase, also the amount of MU produced per h per 
g soil and per µg of microbial carbon (Cmic) is shown. Soil from the top 10 cm under conventional tillage (CT), 
medium tillage (MT) or reduced tillage (RT) treatment was measured. Significant differences between 
treatment means are indicated by different letters above the bars (P<0.05). 
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under MT and highest activity under RT treatment (6.44 ± 3.08, 17.39 ± 3.90 and 26.62 ± 6.88 nmol 

MU h−1 g−1 dry weight soil, respectively, P = 0.003). The same pattern was visible for potential 

xylosidase activity (297.15 ± 49.43, 375.00 ± 69.07 and 493.60 ± 76.04 nmol MU h−1 g−1 dry weight 

soil, under CT, MT and RT respectively, P = 0.001). The potential β-glucosidase activity, however, 

differed significantly (P = 0.015) only between soil under CT (266.17 ± 60.69 nmol MU h−1 g−1 dry 

weight soil) and RT (479.01 ± 113.55 nmol MU h−1 g−1 dry weight soil) with intermediate values for 

soil under MT treatment (370.93 ± 68.85 nmol MU h−1 g−1 dry weight soil). Potential xylosidase 

activity was additionally affected by fertilization treatment (P = 0.000), with highest values under the 

HF-treatment than under either MF- and LF-treatment (433.3 ± 116.8, 374.6 ± 97.8 and 357.9 ± 91.1 

nmol MU h−1 g−1 dry weight soil, respectively). After correcting the potential enzyme activities for the 

differences in soil microbial biomass between samples, no effect of tillage intensity was visible 

anymore for potential β-glucosidase or xylosidase activity. However, potential cellobiohydrolase 

activity per microgram of microbial carbon was lower under CT than under either MT or RT (42.3 ± 

18.5, 83.3 ± 16.9 and 88.6 ± 23.6 pmol MU h−1 g−1 dry weight soil μg-1 Cmic respectively, P = 0.014, 

Figure 7). Also, potential xylosidase activity per microgram of microbial biomass carbon was higher 

in soil under HF-treatment than under either MF- or LF-treatment (2,098.6 ± 410.7, 1,702.7 ± 216.1 

and 1,643.0 ± 443.4 pmol MU h−1 g−1 dry weight soil μg-1 Cmic respectively, P = 0.036). The overall 

average potential β-glucosidase activity per microgram of microbial carbon was 1,747.5 ± 550.9 

pmol MU h−1 g−1 dry weight soil.  

 

Microbial community structure 
 

Sequencing statistics 

Metagenome sequencing was performed on soil samples of RT and CT treatment with medium 

fertilization, from now on indicated with RT- and CT-treatment. Sequencing resulted in 0.7 Gbp  of 

raw sequencing data, leading to an average of 157,106 clean reads per sample with an average 

length of 410 bp (see Table A4 in appendix). To see how much of the soil genetic diversity was 

sequenced, the level of coverage was analysed using the Nonpareil-method and the taxonomic 

assignment method. The Nonpareil-method estimated that the metagenome covered around 2.8 % 

(sample average) of the soil genetic diversity, which was too low to fit a coverage prediction as a 

function of sequencing effort. The per-sample average coverage estimates by Nonpareil do not 

significantly differ between tillage treatments (P=0.71). However, when comparing to the known 

diversity of microorganisms in the public database NCBI, rarefaction plots of taxonomic assignments 

showed that enough coverage has been reached on order level to compare samples and describe 

most of the diversity (Figure 8-A). An overall analysis of the relative abundance of microorganisms 

identified on order level using a principal component analysis (Figure 8-B) shows that CT and RT do 

not show different communities characterizing tillage intensity. In accordance, no significant change 

in alpha-diversity (Shannon indices: CT, 1.70 ± 0.08; RT, 1.67 ± 0.03, Figure 8-C)) between the 

metagenomes was detected. 
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Taxonomic composition 

Taxonomic assignment of reads was done by 

comparing them to sequences in the SILVA 

database and NCBI protein database. 

Comparison to the SILVA database, using the 

0.12% of ribosomal sequences in the 

metagenome, revealed a dominance of Bacteria 

(86.15% of all annotated reads) followed by 

Eukaryota (13.39%, of which 2.8% fungi) and 

Archaea (0.45%). When comparing to the NCBI 

database, to which 59% of the reads could be 

assigned on kingdom level, the percentage of 

annotated reads that mapped to Bacteria was 

98.03%, and those assigned as Eukaryota was 

1.08%, of which 0.45% to fungi. To Archaea 

0.73% was assigned and to Viruses 0.05%. Figure 

9 shows the microbial phyla and orders to which 

most of the reads were assigned, given in 

percentage of all metagenome reads times 10-3. 

Proteobacteria and Actinobacteria were most 

abundant and together make up 26.4% of all 

reads. Further prevalent bacterial phyla were 

Bacteroidetes (3.4%), Acidobacteria (3.3%), 

Verrucomicrobia (1.7%), Gemmatimonadetes 

(1.4%), Planctomycetes (1.3%) and Chloroflexi 

(1.0%). At the order level, Actinomycetales, 

Rhizobiales, Myxococcales, Burkholderiales and 

Planctomycetales accounted for 13.6% of all 

annotated reads.  

 

Several microbial groups showed a different 

abundance as reaction to tillage treatment. An 

overview of the relative abundances of these 

microbial groups and the P-values of their 

responses to tillage treatment is given in Table 

A5 in the appendix. Here, the most abundant 

microbial groups reacting to tillage are 

mentioned. Members of the phylum Chloroflexi 

showed a higher abundance under CT than under 

RT (Figure 9-A) and this response was reflected 

on class level (Chloroflexia and Ktedonobacteria) 

and order level (Chloroflexales and 

Ktedonobacterales), although after P-value correction only the tillage effect on Chloroflexia 

remained significant. However, as the effect on members of this phylum is so consistent over 

different taxonomic levels, one might consider the phylum as a whole being potentially affected by 

Figure 8: Taxonomic diversity of the conventional 
farming experiment-samples under conventional 
tillage (CT) or reduced tillage (RT). (A) Rarefaction 
curve of the number of orders detected as a function 
of the number of annotated reads (randomly 
subsampled), determined by sequence comparison 
with the NCBI-non-redundant protein database. (B) 
Principal component analysis with 95% confidence 
range of the rarefied relative order abundances of all 
6 metagenome samples. (C) Box-plot of Shannon 
diversity index of rarefied relative order abundances. 
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tillage. In addition, members of the Armatimonadetes showed a higher abundance under CT than RT 

(Figure 9-A), reflected on order level as well (Fimbriimonas), although not significant after P-value 

correction. Likewise, the tillage effect observed for members of the Solibacterales (Acidobacteria), 

Stigonematales (Cyanobacteria) (higher abundance under CT than RT) and Betaproteobacteria 

(higher abundance under RT than CT), was not significant anymore after P-value correction. 

 

Functional analysis 

Functional annotation of the metagenome reads was done by comparing them to sequences in the 

KEGG-database. 35.2% of the reads had a significant similarity to a sequence in the KEGG-database. 

The thirty-five most abundant KEGG Level4-pathways are shown in Figure 10. Two-component 

system-enzymes, ABC transporters and enzymes involved in breaking down and synthesizing 

nucleotides were especially abundant. Together, they accounted for 5.12% of all reads. As was seen 

for microbial taxonomic assignments, tillage led to a higher abundance of several groups of protein-

coding genes under CT than under RT. An overview of the relative abundances of these protein-

coding genes and the P-values of their responses to tillage treatment is given in Table A5 in the 

appendix. Soils under CT contained significantly more genes involved in Xenobiotics biodegradation 

and metabolism (KEGG-Level3, P = 0.0145), Methane metabolism (P = 0.0124, Figure 10), Fatty acid 

metabolism (P = 0.0018, Figure 10) and Drug metabolism (P = 0.004). On the other hand, 

Figure 9: Taxonomic analysis of metagenomes of soil under conventional (CT) and reduced tillage (RT). 
Shown are the percentage of reads x10-3 of the thirty-five most abundant phyla (A) and orders (B), according 
to the NCBI non-redundant protein database. Stars indicate a significant difference in abundance between 
treatments (P<0.05); light blue: higher abundance under CT, light orange: higher abundance under RT. 
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Nonribosomal peptide structure-related genes were more abundant under RT than under CT (P = 

0.017). 

 

Cellulase enzymatic groups and taxonomic assignment 
Focusing on cellulose degradation, the annotations to cellulase enzymatic groups using KEGG-

orthologous groups were analysed (Figure 11-A). The number of reads annotated to β-glucosidases 

in the KEGG-database (EC: 3.2.1.21) was 270 (0.071 ± 0.008% of metagenome reads) under CT and 

Figure 10: Functional analysis of metagenomes of soil under conventional (CT) and reduced tillage (RT). 
Shown are the percentages of reads x10

-3
 of the thirty-five most abundant KEGG Level4-pathways. Stars 

indicate a significant difference in abundance between treatments (P<0.05); light blue: higher abundance 
under CT, light orange: higher abundance under RT. 
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410 reads (0.073 ± 0.003% of metagenome reads) under RT. A total of 123 reads (0.032 ± 0.004% of 

metagenome reads) for CT and 186 reads (0.033 ± 0.001% of metagenome reads) for RT were 

annotated to endoglucanase (EC: 3.2.1.4). Far fewer reads were annotated to cellobiohydrolases (EC: 

3.2.1.91: CT, 0.001 ± 0.0006%; and RT 0.002 ± 0.0018%) and cellobiose phosphorylase (EC: 2.4.1.20: 

CT 0.0019 ± 0.0014%; and RT 0.001 ± 0.0005%) and none to reducing-end-acting cellobiohydrolase 

(EC: 3.2.1.176), cellobiose dehydrogenase (EC: 1.1.99.18) or lytic polysaccharide monooxygenases 

(EC: 1.14.99.54). In the KEGG-database there were no orthologous groups representing 

cellodextrinase (EC: 3.2.1.74) or cellodextrin phosphorylase (EC: 2.4.1.49). No significant differences 

between tillage treatments were detected for these cellulases. 

 

 

Figure 11: (A) Abundance of cellulase enzymatic groups in metagenome of soil under conventional (CT) or 
reduced tillage (RT) in the surface soil layer. Shown is the percentage of reads x10

-3
 annotated to cellulase 

enzymatic functions as mean values for each tillage treatment. Furthermore, the taxonomic composition of 
reads annotated to cellulase enzymatic groups on phylum (B) and order (C) level is shown. The reads 
annotated to each cellulase enzymatic group were pooled over all samples and taxonomically assigned. Shown 
are the forty most abundant taxa, as percentage of reads annotated to the cellulase enzymatic group. The 
taxonomically unassigned reads are not shown but represented by the rest of the bar until 100%. In addition, 
the contribution of each microbial group to the cellulase degradation-potential is given behind the name of the 
microbial group as percentage of all reads annotated as cellulase enzymatic groups. 
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The taxonomic assignment of sequences annotated as cellulase enzymatic groups on phylum and 

order level (Figure 11-B and -C) shows that the potential to degrade cellulose using different 

enzymatic mechanisms is spread widely across different phyla and orders, especially for β-

glucosidases and endoglucanases. Fungi are represented in the β-glucosidase and endoglucanase 

genes belonging to Ascomycota, but make up only a small part of the cellulolytic microorganisms 

here (0.7% of cellulase reads). Cellobiohydrolase genes (EC: 3.2.1.91) were assigned to a less diverse 

group of microorganisms and especially to Actinomycetales (Actinobacteria). Unfortunately, none of 

the reads annotated as cellobiose phosphorylase could be taxonomically assigned on phylum level, 

although all were found to have bacterial origin. The majority of endoglucanases was assigned to 

Actinobacteria and Proteobacteria, which were the phyla to which also most β-glucosidase genes 

were assigned. However, β-glucosidase genes derived from Bacteoidetes were more abundant than 

those derived from Proteobacteria. No effect of tillage treatment was observed on taxonomically 

assigned genes encoding cellulase enzymatic groups.  

 

Annotation method of cellulase domain families 
As the KEGG-database unfortunately contains a limited number of orthologous groups designated as 

cellulase enzymatic groups, the translated metagenome sequences were scanned using HMMs to 

detect a higher variety of cellulase genes. This is a common method to annotate protein sequences 

from sequence libraries. Several catalytic domain- and CBM-families from the CAZy database 

(www.cazy.org, (60)) were selected as queries to search the translated metagenome sequences. 

Because most of the selected domain families contain a varying amount of enzymatic functions 

other than cellulases (i.e. endoglucanases, exoglucanases, β-glucosidases, cellodextrin 

phosphorylases and cellobiose dehydrogenases), the available corresponding HMMs are not always 

specific for cellulases. Therefore, for each domain family, HMMs from different sources were 

assessed for cellulase-specificity and the most specific and sensitive HMM was selected to scan the 

metagenome data (see Table A1 in the appendix for the results of the assessment).  

 

Using this method, 5,906 reads (0.63 % of metagenome reads) could be annotated to the selected 

domain families. However, as many of the selected HMMs remained relatively unspecific for 

cellulases, a second filtering step of the annotated reads was performed by BLASTing them against a 

Figure 12: Results of the filtering step of HMM-annotated reads in the metagenome of the conventional 
farming experiment to cellulase catalytic and binding domain families. Shown is the percentage of HMM-
annotated reads with a significant BLAST hit to a sequence in the positive cellulase sequences-database (bars). 
In addition, the absolute amount of reads annotated to cellulase catalytic and binding domain families before 
and after the filtering step is shown (lines). 
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database containing only confirmed cellulase sequences (see section 2: Materials and Methods). The 

result of this filtering step is shown in Figure 12, and highlights the low specificity achieved by 

identification of cellulases using HMMs. 

 

Cellulase domain families 
In total, 2,021 reads were annotated as cellulase catalytic (GH- and AA-) and binding (CBM-) domain 

families, which corresponds to 0.21% of the total amount of metagenome reads. These reads were 

annotated to 18 GHs, four AAs and 17 CBMs (Figure 13), which are all domain families known to 

harbour enzymes involved in cellulose degradation (see Figure 2). Most hits were found for GH1, 

GH3, GH94, AA8, CBM2 and CBM6. There were no differences between tillage treatments in total 

amount of annotated cellulases. In addition, no differences between CT and RT were encountered 

for the separate cellulase domain families, except for CBM11, which was more abundant in 

conventional tillage soil than in reduced tillage soil (P = 0.044). However, this cellulase domain family 

was not very abundant (<0.01% of metagenome reads) and after correcting for multiple testing this 

difference was not significant anymore. 

 

Taxonomic assignment of cellulase domain families 
The taxonomic affiliation of the sequences annotated to cellulase domain families is shown in Figure 

14 on phylum and order level, and reflects the overall abundance of phyla in the metagenome. A 

total of 18.6% of all cellulase reads mapped to the Proteobacteria, 11.2% to Actinobacteria and 

fewer to Bacteroidetes (8.6%), Cyanobacteria (2.2%), Gemmatimonadetes (2.2%), Verrucomicrobia 

(2.1%), Acidobacteria (1.7%), Firmicutes (1.5%) and Chloroflexi (1.53%). Compared to the relative 

abundance of Actinobacteria, Cyanobacteria, Firmicutes and Bacteroidetes among all metagenome 

reads (7.1, 0.7, 0.8 and 3.3% of the total reads, respectively), the cellulase genes derived from these 

phyla were relatively more abundant. 0.4% of the cellulase reads mapped to fungi (Ascomycota and 

Basidiomycota). Results on order level support the importance of the role which Actinobacteria 

(Actinomycetales), Proteobacteria (Rhizobiales, Burkholderiales, Xanthomonadales, Myxococcales), 

Figure 13: Abundance of cellulase domain families in metagenomes of soil under conventional (CT) or 
reduced tillage (RT). Shown is the percentage of reads x10-3 annotated to cellulase catalytic modules (AA and 
GH) and CBMs in both metagenomes. Annotation was done by scanning the reads with HMMs and subsequent 
BLASTing against a positive cellulase sequence database. 
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Bacteroidetes (Cytophagales, Sphingobacteriales) and Verrucomicrobia (Verrucomicrobiales) play in 

cellulose degradation.  

Whereas sequences in many different cellulase domain families, including the most 

abundant ones, were derived from Actinobacteria (Actinomycetales), Proteobacteria (Rhizobiales) 

and Bacteroidetes (Sphingobacteriales), some microbial groups appeared to harbour a higher 

abundance of cellulase genes from a specific cellulase domain family than from other domain 

families. These observations offer possibilities to recognize microbial specialization towards certain 

cellulase domain families. The microbial groups to which a higher abundance of assigned reads can 

be found in specific cellulase domain families compared to other cellulase domain families are listed 

in Table 1. A low abundance of cellulase sequences were found assigned to fungi; in domain families 

AA8, AA9, CBM6, GH1, GH3 and GH5 sequences were found which were derived from Ascomycota. 

In addition, GH5 contained a sequence derived from Basidiomycota and GH12 contained a sequence 

derived from Streptophyta.  

 

Table 1: Microbial taxonomic groups to which a higher abundance of sequences was assigned in the respective 

cellulase domain family than in other domain families. 

Microbial taxonomic group  

Phylum level Order level Cellulase domain family 

   
Actinobacteria Solirubrobacterales AA8 and GH1 

Acidobacteria Acidobacteriales GH3 

 not identified GH74 

Bacteroidetes Bacteroidales  GH3 

 Cytophagales CBM44 

 Flavobacteriales GH74 

 Sphingobacteriales CBM44 

Chloroflexi Anaerolineales GH1 

 Chloroflexales GH3 

 Ktedonobacterales GH3 

 not identified GH74 

Cyanobacteria Chroococcales  CBM2 

 Oscillatoriales CBM2 

Gemmatimonadetes Gemmatimonadales GH3 

 not identified GH94 

Planctomycetes Planctomycetales CBM2 

Proteobacteria Burkholderiales AA3 and AA8 

 Enterobacteriales GH1 

 Methylococcales GH94 and GH26 

 Pseudomonadales GH5 

 Rhizobiales GH94 and AA8 

 Sphingomonadales GH3 

 Xanthomonadales CBM2 

Verrucomicrobia Opitutales GH51 

 Verrucomicrobiales GH9 
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Figure 14: Taxonomic assignment of cellulase domain family-reads on phylum and order level. The reads 
annotated to cellulase domain families were pooled over all samples and taxonomically assigned. Shown is the 
percentage of reads in the cellulase domain family annotated to the most abundant phyla or orders. The 
taxonomically unassigned reads are not shown but represented by the rest of the bar until 100%. In addition, 
the contribution of each taxonomic group to the cellulose degradation potential is given as percentage of all 
cellulase domain family-reads. 
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On the other hand, cellulase genes in some cellulase domain families were assigned in higher 

abundance to certain microbial taxa than to other taxa (Figure 14); the largest part of AA3-, AA8- and 

GH94-sequences was harboured by Rhizobiales (Alphaproteobacteria), while the majority of GH44-

genes were assigned to Myxococcales (Deltaproteobacteria). Furthermore, all GH6-genes were 

assigned to Actinobacteria (Actinomycetales), whereas the largest part of GH30- and CBM44-

sequences was derived from Bacteroidetes (CBM44: Sphingobacteriales, GH30: not resolved on 

order level). In addition, CBM3-genes were mostly assigned to Bacillales (Firmicutes), while the 

largest part of GH8-genes was assigned to Clostridiales (Firmicutes) and Flavobacteriales 

(Bacteroidetes). Furthermore, a considerably high abundance of GH51-genes was harboured by 

Opitutatales (Verrucomicrobia) and most GH9-genes to Verrucomicrobiales (Verrucomicrobia). For 

low-abundant cellulase domain families, it could be observed that sequences in AA9 were solely 

derived from Ascomycota (Sordariales), those in AA10 only to Actinobacteria and Proteobacteria, 

those in CBM10 exclusively to Gemmatimonadetes and those in CBM8 and GH45 solely to 

Proteobacteria. Furthermore, all sequences in CBM46 were harboured by Actinobacteria and 

Bacteroidetes and the majority of sequences in CBM5, GH12 and GH48 to Actinobacteria 

(Actinomycetales).  

 

Finally, the taxonomic affiliations of the sequences in the most abundant cellulase domain families 

(GH1, GH3, GH94, AA8, CBM2 and CBM6) are shown separately in Figure 15 on phylum level and in 

Figure 16 on order level. Due to high variation in the amount of assigned reads among replicates and 

treatments, not many treatment effects could be detected. However, some differences in 

abundances of cellulase genes assigned to microbial taxa between tillage treatments can be 

observed; GH3-genes derived from Chloroflexi were more abundant under RT than under CT, while 

AA8-genes harboured by Solirubrobacterales (Actinobacteria) were more abundant under CT than 

under RT.  
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Figure 15: Taxonomic analysis of the six most abundant cellulase domain families on phylum level under 
conventional (CT) or reduced (RT) tillage. The reads annotated to the cellulase domain families in each sample 
were taxonomically assigned and treatment averages were calculated. For each cellulase domain family, the 
percentage of metagenome reads x10

-3
 annotated to the ten most abundant phyla is shown. Stars indicate a 

significant difference in abundance between treatments (P<0.05); light blue: higher abundance under CT, light 
orange: higher abundance under RT 
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Figure 16: Taxonomic analysis of the six most abundant cellulase domain families on order level under 
conventional (CT) or reduced (RT) tillage. The reads annotated to the cellulase domain families in each sample 
were taxonomically assigned and treatment averages were calculated. For each cellulase domain family, the 
percentage of metagenome reads x10

-3
 annotated to the ten most abundant orders is shown. Stars indicate a 

significant difference in abundance between treatments (P<0.05); light blue: higher abundance under CT, light 
orange: higher abundance under RT. 
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4 - Results of the organic farming experiment 
 

Here, results are presented from the analysis of soil characteristics and metagenomic data of the 

surface soil layer (0-6 cm) and the deeper soil layer (10-16 cm) of a field experiment located at the 

Agroscope Reckenholz research institution. In this experiment, the effect of different farming 

systems and different cover crop treatments on yield and several plant parameters is investigated 

(106). The different farming systems consisted of “organic management x plough tillage” (designated 

here as conventional tillage, CT), “organic management x reduced tillage” (designated here as RT), 

“conventional management x plough tillage” (designated here as PT) and “conventional 

management x no-tillage” (designated here as NT). The different cover crop treatments are legumes 

(L), non-legumes (NL), mixture (M) and no cover crop (NO). Treatments were organized in a split-

plot-design with farming systems as main plot and cover crop treatment as subplot, in four replicate 

blocks. For investigation of the effect of tillage on the soil microbial community, soil was sampled 

from all farming system treatments on plots treated with legumes as cover crop (L) or without cover 

crop (NO) and from two soil depths (the surface soil layer and the deeper soil layer, as mentioned 

above). For an overview of the experimental setup and more details on the treatments and 

methodology, see Figure 4 and section 2: Materials and Methods. Soil chemical analysis was done on 

all soil samples.  

Soil description 
The results of the analysis of variance (split-split-plot) on soil parameters measured on the 64 

samples are given in Table A6 in the appendix (P-values and means). No effect of cover crop was 

detected for any of the soil parameters measured, except for soil dissolved organic carbon (see 

below). A general depth effect was seen for pH, ammonium, TC and TN. pH (H2O) was higher in the 

deeper soil layer than in the surface soil layer (7.91 ± 0.35 respectively 7.76 ± 0.37, P = 0.000), while 

a higher concentration of available ammonium (0.3 ± 0.2 respectively 0.1 ± 0.1 µg g-1 dry weight soil, 

P = 0.000), a higher amount of TC (1.77 ± 0.61 respectively 1.45 ± 0.31 %, P = 0.008) and a higher 

amount of TN (0.17 ± 0.04 respectively 0.15 ± 0.03 %, P = 0.006) was observed in the surface soil 

layer than in the deeper soil layer. Contrary to the results seen in the conventional farming 

experiment, no effect of farming practices (organic vs. conventional management or reduced vs. 

conventional tillage) was seen on soil TC, TN and ammonium content. However, farming system did 

have an effect on soil nitrate content, which was higher in the NT-system than in both CT- and PT-

systems, independent of soil depth (NT= 5.4 ± 4.0, CT= 2.4 ± 3.6 and PT= 3.6 ± 4.2 µg g-1 dry weight 

soil, P = 0.020). Nitrate content in the RT-system was not different from the other treatments (3.8 ± 

3.7 µg g-1 dry weight soil). The effect of farming system on soil gravimetric water content was 

significant but dependent on soil depth (P = 0.001); soil water content was higher in RT- and NT-

systems (19.7 ± 0.8 respectively 19.7 ± 1.3 %) than in CT- and PT-systems (18.4 ± 1.1 respectively 

18.3 ± 1.6 %), but only in the surface soil layer. In the deeper soil layer, soil water content was higher 

in the PT-system (19.7 ± 0.5 %) than in the RT-system (19.0 ± 0.6 %). Differences in water content 

between the surface soil layer and the deeper soil layer were seen for all farming systems, except for 

the NT-system, which had an overall high humidity. Dissolved organic carbon levels were different 

between farming systems, cover crop treatments and soil depth layers (P = 0.007). In the surface soil 

layer of treatments without cover crop, dissolved organic carbon levels were higher under CT than 

under RT and NT (respectively 205.0 ± 150.1, 29.7 ± 80.0 and 48.7 ± 115.8 µg g-1 dry weight soil), 

with intermediate and not significantly different values under PT (84.9 ± 146.6 µg g-1 dry weight soil). 
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However, these differences in dissolved organic carbon levels between farming systems were not 

observed in the surface soil layer of treatments with legume as cover crop. In the deeper soil layer of 

treatments without cover crop, dissolved organic carbon levels were higher under NT than under PT 

and CT (respectively 154.7 ± 177.7, -0.7 ± 32.1 and -13.7 ± 13.8 µg g-1 dry weight soil), with 

intermediate and not significantly different values under RT (61.6 ± 113.5 µg g-1 dry weight soil). 

Similar to observations in the surface soil layer, however, the differences in dissolved organic carbon 

levels between farming systems were not observed in the deeper soil layer of treatments with 

legume as cover crop.  

 

Soil microbial biomass, 

measured as microbial 

carbon (Cmic) and nitrogen 

(Nmic) was also affected by 

farming system and depth (P 

= 0.001 (Cmic) and P = 0.000 

(Nmic), see Figure 17). Cmic 

and Nmic were higher in the 

RT-system (C: 0.99 ± 0.19, N: 

0.14 ± 0.02 mg g-1 dry weight 

soil) than in all other three 

systems (C: 0.67 ± 0.19, N: 

0.10 ± 0.02 mg g-1 dry weight 

soil), but only in the surface 

soil layer. In the deeper soil 

layer, Cmic and Nmic were 

lower in the NT-system (C: 

0.45 ± 0.30, N: 0.08 ± 0.02 

mg g-1 dry weight soil) than 

in the CT-system (C: 0.66 ± 

0.14, N: 0.10 ± 0.03 mg g-1 

dry weight soil), but values 

in the RT- and PT-system did 

not significantly differ 

between farming systems (C: 

0.69 ± 0.18, N: 0.10 ± 0.01 

mg g-1 dry weight soil). 

Higher Cmic and Nmic levels in 

the surface soil layer than in 

the deeper soil layer were 

seen only for the RT- and 

NT-systems.  

 

 

Of all samples taken, only 16 were used for metagenome library generation (CT- and RT-systems 

from both depths and with four replicates). When analyzing the soil parameters of exclusively these 

Figure 17: Microbial organic carbon (A) and nitrogen (B) in soil under 
different tillage treatments and in different soil depths. Shown is the 
amount of microbial carbon or nitrogen in mg per g dry weight of soil, 
detected in the top 6 cm of soil under organic management and reduced 
tillage (RT0-6cm), organic management and conventional tillage (CT0-6cm), 
conventional management and no tillage (NT0-6cm) or conventional 
management and conventional tillage (PT0-6cm) and in the lower 10-16 cm 
of the soil (RT10-16cm, CT10-16cm, NT10-16cm respectively PT10-16cm). 
Significant differences between tillage treatments are indicated by different 
letters above the bars (P<0.05). 
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samples (split-plot), the same effects were observed for soil pH and soil ammonium content. 

However, no differences in soil TC and TN content were now observed between soil depth layers. 

While the soil nitrate content did not differ between soil depth layers of all samples, analysis of the 

samples of the CT- and RT-systems alone revealed higher nitrate content in the deeper soil layer 

than in the surface soil layer of soil under CT. Nevertheless, no difference in nitrate content was 

detected between soils under RT or CT. The difference in soil humidity between RT and CT was in 

accordance with the results observed for all 64 samples. Soil under RT was characterized by a higher 

soil water content than soil under CT, but only in the surface soil layer. Furthermore, soil water 

content was higher in the surface layer than in the deeper layer for soil under RT, whereas the 

opposite was true for soil under CT. In addition, for microbial carbon (Cmic) and nitrogen (Nmic), 

generally the same results were found. Cmic and Nmic were higher under RT than under CT, but only in 

the surface soil layer. However, in de deeper soil layer Nmic was found to be significantly lower under 

RT than under CT. Furthermore, soil under RT was found to contain higher amounts of Cmic and Nmic 

in the surface layer than in the deeper layer. For soil under CT, only Nmic, was found to be higher in 

the surface layer than in the deeper layer.  

Bacterial and fungal ribosomal RNA (rRNA)-gene abundances were measured for the soil 

sampled used for metagenome library generation. Ribosomal RNA-gene abundances were 

considerably higher in the surface soil layer (4.04 ± 0.52 x 1010 16S rRNA gene copies and 6.03 ± 1.95 

x 109 ITS copies) than in the deeper soil layer (1.59 ± 0.24 x 1010 16S rRNA gene (P=0.000001) and 

2.56 ± 1.27 x 109 ITS (P=0.00017) copies). No effect of tillage treatment was observed on either 

bacterial or fungal rRNA-gene abundances. Neither tillage nor depth had an effect on the average 

bacterial-fungal rRNA-gene ratio (7.30 ± 2.65 16S/ITS).  

 

Microbial community structure 
 

Sequencing statistics 

Metagenome sequencing was performed using DNA extracted from soil samples under RT and CT 

(organic management), from plots without cover crop treatment (NO) and from both depth layers. 

Sequencing resulted in 16.2 Gbp of raw sequencing data, leading to an average of 3,252,324 clean 

reads per sample (replicate) with an average length of 258 bp (see Table A7 in the appendix). To 

analyze the extent to which the soil genetic diversity had been sequenced, the level of coverage was 

calculated using both the Nonpareil-method and the taxonomic assignment method. The Nonpareil-

method estimated that the metagenome covers around 3.6 % (sample average) of the soil microbial 

diversity, which was too low to fit a coverage prediction as a function of sequencing effort. The per-

sample average coverage estimates by Nonpareil did not differ between tillage treatments (surface 

soil layer: P=0.99, deeper soil layer: P=0.81), but significantly differed between the soil samples of 

the surface layer (3.1%) and deeper layer (4.2%, two-tailed paired t-test P-value = 0.006). 

Rarefaction plots of taxonomically assigned reads, obtained by comparison to sequences of known 

micro-organisms in the public databases (NCBI), showed that enough coverage has been reached on 

family level to compare samples (Figure 18-A and B). Furthermore, overall analysis of the relative 

abundance of microorganisms identified on family level using a principal component analysis Figure 

18-C) showed that communities were rather different between soil depth layers than between 

tillage treatments. However, alpha-diversity analysis of family-level taxonomic assignments indicated 

that the metagenome of soil under RT was more diverse than soil under CT in the surface soil layer, 



4 - Results of the organic farming experiment 

44 
 

while the reverse was observed in the deeper soil layer (Shannon indices: RT0-6cm, 1.24 ± 0.03 (b); 

CT0-6cm, 1.17 ± 0.03 (c); RT10-16cm, 1.24 ± 0.03 (b); CT10-16cm, 1.29 ± 0.02 (a)), see Figure 18-D, 

Simpson indices: RT0-6cm, 0.33 ± 0.01 (ab); CT0-6cm, 0.31 ± 0.01 (c); RT10-16cm, 0.33 ± 0.01 (b); CT10-

16cm, 0.34 ± 0.01 (a)).  

 

Taxonomic composition 

Taxonomic assignment of reads was done by comparing them to sequences in the SILVA database 

and NCBI protein database. Comparison to the SILVA database, to which 0.05% of the metagenome 

reads could be mapped, revealed a dominance of Bacteria (88.4% of all reads assigned) followed by 

Eukaryota (8.4%, of which 1.5% fungi) and Archaea (3.2%). When comparing to the NCBI database, 

to which 58.5% of the clean reads could be annotated on kingdom level, the percentage of 

annotated reads mapped to Bacteria was 98.4% and to Eukaryota 0.5%, of which 0.2% was mapped 

Figure 18: Taxonomic diversity of the organic farming experiment-samples under conventional tillage (CT) or 
reduced tillage (RT) in the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil 
layer). (A) Rarefaction curve of the number of orders detected as a function of the number of annotated reads 
(randomly subsampled), determined by sequence comparison with the NCBI-non-redundant protein database. 
(B) Rarefaction curve of the number of families detected as a function of the number of annotated reads 
(randomly subsampled). (C) Principal component analysis with 95% confidence range of the rarefied relative 
family abundances of all 16 metagenome samples. (D) Box-plot of Shannon diversity index of rarefied relative 
family abundances. Different letters above the box-plots indicate significantly different means (P<0.05). 
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to fungi. To Archaea 1.1% of all annotated reads was annotated and to Viruses 0.03%. Figure 19-A 

shows the microbial phyla and families to which most of the reads were assigned. The Proteobacteria 

(19.8 % of all metagenome reads) and Actinobacteria (8.5 % of all metagenome reads) were most 

abundant. Further prevalent bacterial phyla were Bacteroidetes (1.5%), Acidobacteria (2.8%), 

Verrucomicrobia (1.5%), Gemmatimonadetes (0.8%), Planctomycetes (1.6%) and Chloroflexi (0.7%).  

The 35 most abundant microbial families (Figure 19-B) were the Planctomycetaceae, the 

Acidobacteriaceae and Solibacteraceae from the Acidobacteria, the Gemmatimonadaceae, the 

Mycobacteriaceae and other families from the Actinobacteria, the Bradyrhizobiaceae and other 

families from the Proteobacteria, two families from the Verrucomicrobia, Nitrospiraceae and the 

Nitrososphaeraceae from the Thaumarchaeota. Altogether, they accounted for 13.0% of all 

annotated reads. 

 

 

 

Figure 19: Taxonomic analysis of metagenomes of soil under conventional (CT) and reduced tillage (RT) in 
the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil layer). Shown are the 
percentage of reads x10

-3
 of the thirty-five most abundant phyla (A) and families (B), according to the NCBI 

non-redundant protein database. Stars indicate a significant difference in abundance between treatments 
(P<0.05); light blue: higher abundance under CT in the surface soil layer, light orange: higher abundance under 
RT in the surface soil layer, dark blue: higher abundance under CT in the deeper soil layer, dark orange: higher 
abundance under RT in the deeper soil layer, black: higher abundance in the deeper soil layer than the surface 
soil layer, white: higher abundance in the surface soil layer than the deeper soil layer. 



4 - Results of the organic farming experiment 

46 
 

Statistical analysis of the assessed microbial groups and protein-coding genes resulted in the 

detection of several significant differences between treatments. These results (relative abundances 

per treatment, total relative abundance and P-values of the used statistical test) are given in Table 

A8 in the appendix. All of the most abundant microbial phyla were affected by the treatments, 

except Bacteroidetes, Streptophyta and Chlamydiae.  Most phyla were affected by depth, showing a 

higher abundance in the deeper soil layer than in the surface soil layer. An effect of tillage however 

was observed on the abundance of Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes, 

Cyanobacteria, Ascomycota, Chlorobi and Ignavibacteria, depending on the soil layer (for effects, see 

Figure 19). Tillage effects were more pronounced on the lower taxonomic level. As was visible on 

phylum level, most of the highly abundant actinobacterial and proteobacterial families were affected 

by tillage with depth-dependence. Likewise, families from Acidobacteria, Planctomycetes, 

Verrucomicrobia, Gemmatimonadetes, Thaumarchaeota and Nitrospira were affected by depth, 

with the exception of the family Opitutaceae which was affected by tillage with depth-dependence. 

The microbial families affected by depth all showed a higher abundance in the deeper soil layer than 

in the surface soil layer, except for the Rhodobacteraceae (Proteobacteria). Families belonging to the 

Actinobacteria (Nocardioidaceae, Micromonosporaceae, Pseudonocardiaceae, Acidimicrobiaceae 

and Microbacteriaceae) and the Proteobacteria generally showed the same abundance pattern as on 

phylum level, with the highest abundance under RT in the surface soil layer and the lowest 

abundance in the deeper soil layer under RT.  

 

Functional analysis 

Functional annotation of the metagenome reads was done by comparing them to sequences in the 

KEGG-database. 22.37% of all reads was significantly similar to a sequence in the KEGG-database. Of 

these reads, more than half were mapped to general metabolism pathways of the KEGG database. 

Within metabolism, most reads were annotated to carbohydrate metabolism (pyruvate metabolism 

and glycolysis/gluconeogenesis), amino acid metabolism (arginine and proline metabolism, more to 

amino acid degradation than biosynthesis), and energy metabolism (carbon fixation pathways in 

prokaryotes, nitrogen metabolism and oxidative phosphorylation), see Figure 20. Other large groups 

of reads were annotated to genetic- and environmental information processing-pathways. Within 

genetic information processing, most reads were annotated to translation (aminoacyl-tRNA- and 

ribosome biosynthesis), folding, sorting and degradation (RNA degradation and protein export) and 

replication and repair (nucleotide excision repair and mismatch repair). Within environmental 

information processing, most reads were annotated to membrane transport (ABC transporters and 

bacterial secretion system) and signal transduction (two-component system). Figure 20 shows that a 

higher number of KEGG-pathways two which most of reads mapped were influenced by tillage with 

a depth-dependence than the number of microbial taxa, which showed stronger responses to soil 

depth. These KEGG-pathways generally showed a higher abundance under RT than under CT in the 

surface soil layer, whereas they were more abundant under CT than under RT in the deeper soil 

layer, with a few exceptions. While most pathways were more abundant in the deeper soil layer 

than in the surface soil layer, this effect was often not significant or was dependent on tillage 

treatment. However, a higher amount of reads in the deeper soil layer were annotated to methane 

metabolism and the pentose phosphate pathway than in the surface soil layer.  
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Figure 20: Functional analysis of metagenomes of soil under conventional (CT) and reduced tillage (RT) in the 
top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil layer). Shown are the 
percentages of reads x10

-3
 of the thirty-five most abundant KEGG Level4-pathways. Stars indicate a significant 

difference in abundance between treatments; light blue: higher abundance under CT in the surface soil layer, 
light orange: higher abundance under RT in the surface soil layer, dark blue: higher abundance under CT in the 
deeper soil layer, dark orange: higher abundance under RT in the deeper soil layer, black: higher abundance in 
the deeper soil layer than the surface soil layer, white: higher abundance in the surface soil layer than the 
deeper soil layer. 
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Figure 21: (A) Abundance of cellulase enzymatic groups in metagenomes of soil under conventional (CT) or 
reduced tillage (RT) in the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil 
layer). Shown is the percentage of reads x10-3 annotated to cellulase enzymatic functions for each treatment. 
Stars indicate a significant difference in abundance between treatments; light blue: higher abundance under 
CT in the surface soil layer, light orange: higher abundance under RT in the surface soil layer, dark blue: higher 
abundance under CT in the deeper soil layer, dark orange: higher abundance under RT in the deeper soil layer, 
black: higher abundance in the deeper soil layer than the surface soil layer, white: higher abundance in the 
surface soil layer than the deeper soil layer. Furthermore, the taxonomic composition of reads annotated to 
cellulase enzymatic groups on phylum (B) and family (C) level is shown. The reads annotated to each cellulase 
enzymatic group were pooled over all samples and taxonomically assigned. Shown are the forty most 
abundant taxa, as percentage of reads annotated to the cellulase enzymatic group. The taxonomically 
unassigned reads are not shown but represented by the rest of the bar until 100%. In addition, the 
contribution of each microbial group to the cellulase degradation potential is given behind the name of the 
microbial group as percentage of all reads annotated as cellulase enzymatic groups. 
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Cellulase enzymatic groups and taxonomic assignment 
The annotations to cellulase enzymatic groups using KEGG-Orthology groups were analysed by 

comparison of metagenomic reads to cellulase enzymatic groups (EC-numbers: 2.4.1.20 (cellobiose 

phosphorylase), 3.2.1.21 (β-glucosidase), 3.2.1.4 (endoglucanase), 3.2.1.74 (cellodextrinase), 

3.2.1.91 (cellobiohydrolase (non-reducing end)) and 1.1.99.18 (cellobiose dehydrogenase))) in the 

KEGG-database. This resulted in annotation of in total 42,160 reads (0.081% of all metagenome 

reads). Unfortunately, no reads were annotated to reducing-end-acting cellobiohydrolase (EC: 

3.2.1.176), cellobiose dehydrogenase (EC: 1.1.99.18) or cellobionic acid phosphorylase (EC: 

2.4.1.321). Furthermore, no orthologous groups representing cellodextrinase (EC: 3.2.1.74) or 

cellodextrin phosphorylase (EC: 2.4.1.49) existed in the KEGG-database at the time of analysis. 

Similar to results in the conventional farming metagenome, annotation to available cellulase 

enzymatic groups showed that the majority of cellulases in this soil were β-glucosidases (see Figure 

21). These showed a higher abundance under RT than under CT but only in the surface soil layer. The 

relative abundance of endoglucanases, however, was not affected by tillage but was generally higher 

in the deeper soil layer than the surface soil layer.  

 

Furthermore, the taxonomic affiliations of sequences annotated to cellulase enzymatic groups are 

shown in Figure 21. Fungi make up only a small part of the cellulolytic microorganisms here (0.23% 

of cellulase reads). They are represented by Ascomycota, Basidiomycota and Chitridiomycota 

harbouring β-glucosidases, Ascomycota and Glomeromycota harbouring endoglucanases and 

Neocallimastigomycota harbouring exoglucanases. Only a relatively small portion of the cellobiose 

phosphorylases could be taxonomically assigned on phylum level. As was seen in the metagenome 

of the conventional farming experiment, the potential to degrade cellulose using different 

mechanisms is widespread across different phyla and families. β-glucosidase genes were assigned to 

most microbial phyla and to many of these (Acidobacteria, Actinobacteria, Ascomycota, Chloroflexi, 

Deinococcus-Thermus, Dictyoglomi, Euryarchaeota, Firmicutes, Gemmatimonadetes, Ignavibacteria, 

Bacteroidetes, Proteobacteria, Streptophyta and Thermotogae) also endoglucanase genes were 

assigned. Sometimes, the number of endoglucanase sequences derived from a certain phylum was 

higher than the number of β-glucosidase genes derived from the same phylum (e.g. Cyanobacteria, 

Planctomycetes and Verrucomicrobia). In addition, certain microbial phyla or families dominated 

among the taxonomically assigned sequences in each enzymatic group, illustrating a connection 

between taxonomy and type of enzymatic activity; cellobiose phosphorylase (EC: 2.4.1.20) genes 

were mostly assigned to Paenibacillaceae and Ruminococcaceae (Firmicutes), Polyangiaceae 

(Deltaproteobacteria) and Micromonosporaceae (Actinobacteria). No tillage effect could be 

observed on the relative abundance of the cellobiose phosphorylase genes harboured by these 

microbial families. β-glucosidase genes were harboured by many microorganisms, but most were 

assigned to families from the Proteobacteria (e.g. Xanthomonodaceae and Bradyrhizobiaceae), 

Actinobacteria (Micromonosporaceae and Streptomycetaceae) and Acidobacteria 

(Acidobacteriaceae) (see Figures 21 and 22). β-glucosidase genes derived from Proteobacteria were 

more abundant under CT than under RT in the deeper soil layer, whereas those derived from 

Firmicutes were more abundant under RT than under CT in the surface soil layer (see Figure 22).  
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Figure 22: Taxonomic assignment of the reads annotated to the two most abundant cellulase enzymatic 
groups on phylum (A) and family (B) level under conventional (CT) or reduced (RT) tillage in the surface soil 
layer (0-6 cm) or the deeper soil layer (10-16 cm). The reads annotated to the cellulase functions in each 
sample were taxonomically assigned and treatment averages were calculated. For each function, the 
percentage of metagenome reads x10

-3
 annotated to the ten most abundant taxa is shown. Stars indicate a 

significant difference in abundance between treatments (P<0.05); light blue: higher abundance under CT in the 
surface soil layer, light orange: higher abundance under RT in the surface soil layer, dark blue: higher 
abundance under CT in the deeper soil layer, dark orange: higher abundance under RT in the deeper soil layer, 
black: higher abundance in the deeper soil layer than the surface soil layer, white: higher abundance in the 
surface soil layer than the deeper soil layer. 
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In addition, Figure 22 shows that, on the lower taxonomic level, the β-glucosidase genes harboured 

by Xanthomonadaceae tended towards a higher abundance under CT than under RT in the deeper 

soil layer (not significant after P-value correction). Furthermore, β-glucosidase genes harboured by 

the Sphingomonadaceae (Alphaproteobacteria) and Acidimicrobiaceae (Actinobacteria) tended 

towards a higher abundance under RT than under CT in the surface soil layer (not significant after P-

value correction). The majority of endoglucanase genes were assigned to Xanthomonadaceae 

(Gammaproteobacteria) and families from the Actinobacteria (Figures 21 and 22). However, the 

observed depth effect on the abundance of the endoglucanase genes was likely due to those genes 

derived from Cyanobacteria, Firmicutes and Gemmatimonadetes, which also showed a higher 

abundance in the deeper soil layer than in the surface soil layer (see Figure 22). Exoglucanase genes 

were assigned mostly to Micromonosporaceae and Streptomycetaceae (Actinobacteria). Whereas 

exoglucanase genes harboured by Planctomycetaceae were more abundant in the deeper soil layer 

than the surface soil layer, no tillage effect was observed on the abundance of the exoglucanase 

genes assigned to microbial taxa. 

Annotation method of cellulase domain families 
As discussed in the results of the conventional farming experiment, metagenome reads were 

additionally annotated to cellulase catalytic and binding domain families. This was done using 

benchmarked HMMs (see Table A1 in the appendix for the results of the benchmarking). Using this 

method, 225,849 reads (0.43 % of metagenome reads) could be annotated to the selected domain 

families. Afterwards, the HMM-annotated reads were additionally filtered by screening them against 

a database containing only cellulase sequences (see section 2: Materials and Methods). The result of 

this filtering step for the metagenome of the organic farming experiment is almost identical to that 

for the metagenome of the conventional farming experiment and is shown in Figure 23.  

 

Cellulase domain families 
A final amount of 73,694 reads (0.14 % of all metagenome reads) was annotated to cellulase 

catalytic and binding domain-families. Analysis of variance in the treatment means of read 

abundances annotated to cellulase domain families showed that (Figure 24) five cellulase domain 

families were more abundant under RT than under CT in the surface soil layer (CBM3, CBM4, CBM6, 

Figure 23: Results of the filtering step of HMM-annotated reads in the metagenome of the organic farming 
experiment to cellulase catalytic and binding domain families. Shown is the percentage of HMM-annotated 
reads with a significant BLAST hit to a sequence in the positive cellulase sequences-database (bars). In 
addition, the absolute amount of reads annotated to cellulase catalytic and binding domain families before and 
after the filtering step is shown. 
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GH1 and GH26). GH1 and GH26 contain essentially β-glucosidases respectively bifunctional 

endoglucanases (see Figure 2). The cellulase domain family AA8 was likewise more abundant under 

RT than under CT in the surface soil layer, but this effect was not significant after P-value correction. 

At the same time, CBM4 and CBM65 were more abundant under CT than under RT in the deeper soil 

layer. Furthermore, GH1-genes were also more abundant under CT than under RT in the deeper soil 

layer, but this effect was not significant after P-value correction. The total amount of reads 

annotated to all cellulase domain families was higher under RT than CT, but only in the surface soil 

layer, as was the total amount of reads annotated to all catalytic families (Auxiliary Activity- and 

Glycoside Hydrolase families). However, the total amount of reads annotated to the CBMs was only 

affected by soil depth (more abundant in the deeper soil layer than the surface soil layer) and not by 

tillage. In fact, 40% of the modules had a higher abundance in the deeper soil layer than the surface 

soil layer (see Figure 24). Among these were the most abundant CBMs (CBM2, CBM32 and CBM44) 

and catalytic modules (GH3 and GH94). 

 

Taxonomic assignment of cellulase domain families 
The taxonomic affiliation of the sequences annotated to cellulase domain families, shown in Figure 

25 on phylum and family level, reflects the overall abundance of phyla in the metagenome. 

However, the abundance of sequences harboured by Acidobacteria and Planctomycetes is slightly 

lower (1.7% vs. 2.8% respectively 0.6% vs. 1.6%) and the abundance of the Actinobacteria, 

Bacteroidetes and especially Cyanobacteria is higher (12.8% vs. 8.5%, 3.5% vs. 1.5% respectively 

1.7% vs. 0.6%) among the cellulase domain families than in the whole metagenome dataset. 0.18 % 

of the sequences annotated to cellulase domain families mapped to fungi (Ascomycota, 

Basidiomycota, Neocallimastigomycota and Glomeromycota).  

Figure 24: Abundance of cellulase domain families in metagenomes of soil under conventional (CT) or 
reduced tillage (RT) in the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil 
layer).  Shown is the percentage of reads x10

-3
 annotated to cellulase-catalytic domains (AA & GH) and CBMs 

for each treatment. Annotation was done by scanning the reads with HMMs and subsequent BLASTing against 
a positive cellulase sequence database. Stars indicate a significant difference in abundance between 
treatments; light blue: higher abundance under CT in the surface soil layer, light orange: higher abundance 
under RT in the surface soil layer, dark blue: higher abundance under CT in the deeper soil layer, dark orange: 
higher abundance under RT in the deeper soil layer, black: higher abundance in the deeper soil layer than the 
surface soil layer, white: higher abundance in the surface soil layer than the deeper soil layer. 
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Figure 25: Taxonomic assignment of cellulase domain family-reads on phylum and family level. The reads 
annotated to cellulase domain families were pooled over all samples and taxonomically assigned. Shown is the 
percentage of reads in the cellulase domain family annotated to the most abundant microbial phyla or families.  
The taxonomically unassigned reads are not shown but represented by the rest of the bar until 100%. In 
addition, the contribution of each taxonomic group to the cellulase degradation potential is given as 
percentage of all cellulase domain family-reads. 
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The predicted cellulase genes were mostly derived from the Xanthomonadaceae 

(Gammaproteobacteria) followed by the Micromonosporaceae (Actinobacteria), the Rhizobiaceae 

(Alphaproteobacteria), the Polyangiaceae (Deltaproteobacteria) and the Bradyrhizobiaceae 

(Alphaproteobacteria) (see Figure 25). Moreover, cellulase genes from each of the most abundant 

domain families were derived from these microbial families. In addition, although the potential to 

degrade cellulose is spread widely across the different phyla and families, some patterns can be 

observed connecting microbial groups with certain cellulase domain families. In Table 2 the 

microbial groups are listed to which a higher abundance of assigned reads can be found in specific 

cellulase domain families compared to other cellulase domain families. These observations might 

indicate possible specializations of these microbial groups regarding type of cellulases used in 

degradation. Affiliations to fungi were found in low abundance but in many domain families for 

Ascomycota (GH1, 3, 5, 6, 7, 9, 10, 12, 45, 46, 51 and 74, CBM1, 6 and 63 and AA3, 8 and 9) and 

Basidiomycota (GH1, 3, 5, 6, 7, 9, 10, 12, 44 and 51). However, genes harboured by Glomeromycota 

were only encountered in cellulase domain families CBM3 and GH1, while sequences assigned to 

Neocallimastigomycota were only found in GH6. 

 

Table 2: Microbial taxonomic groups to which a higher abundance of sequences was assigned in the respective 

cellulase domain family than in other domain families. 

Microbial taxonomic group  

Phylum level Family level Cellulase domain family 

   
Acidobacteria Acidobacteriaceae AA8 and GH3 

Actinobacteria (Actinomycetales) Frankiaceae GH1 

 Microbacteriaceae GH1 

 Mycobacteriaceae GH1 

 Nocardioidaceae GH1 

 Streptomycetaceae GH1 

Bacteroidetes Rhodothermaceae  CBM32 

 Chitinophagaceae CBM32 

Cyanobacteria Nostocaceae CBM2 

Euryarchaeota Halobacteriaceae CBM44 

Firmicutes Paenibacillaceae  GH26 

 Ruminococcaceae GH8 

Gemmatimonadetes Gemmatimonadaceae GH3 

 not identified GH94 

Ignavibacteriae Ignavibacteriaceae CBM32 

 Melioribacteraceae CBM32 

Planctomycetes Planctomycetaceae CBM2 

Proteobacteria Bradyrhizobiaceae GH1 

 Xanthomonadaceae  CBM2 

 Sinobacteraceae CBM2 

 Cystobacteraceae GH44 

 Rhizobiaceae GH94 

 Anaeromyxobacteraceae GH94 

Verrucomicrobia Opitutaceae GH51 

 Verrucomicrobia subdivision 3 GH9 
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Conversely, Figure 25 also shows that sequences in some cellulase domain families were more 

harboured by certain microbial groups than to others, also indicating a predictive relationship 

between type of cellulase domain family found and the respective degrading organisms; the majority 

of GH6-genes is assigned to Actinobacteria (Streptomycetaceae), while a considerably high 

abundance of GH94- (Anaeromyxobacteraceae & Rhizobiaceae), GH44- (Xanthomonadaceae), AA8- 

(Bradyrhizobiaceae), AA3- (Bradyrhizobiaceae),  CBM4- (Polyangiaceae) and CBM2- 

(Xanthomonadaceae) genes are derived from Proteobacteria (see also Figures 26 and 27). In 

addition, the majority of GH9- and GH51-genes are derived from Verrucomicrobia subdivision 3 

respectively Opitutaceae (Verrucomicrobia), while the majority of GH8- and GH26-genes is assigned 

to Ruminococcaceae respectively Paenibacillaceae (Firmicutes). Moreover, most CBM32-genes are 

taxonomically assigned to Melioribacteraceae (Ignavibacteria) and Rhodothermaceae 

(Bacteroidetes). For low-abundant cellulase domain families, it could be observed that sequences in 

CBM8 were mostly assigned to members of the Verrucomicrobia, while sequences in domain 

families AA10, CBM17, CBM3, CBM30, CBM46, CBM5, GH12 and GH48 are mostly harboured by 

Actinobacteria. Also, the majority of ORFs in CBM1, CBM10 and GH45 are assigned to 

Proteobacteria, while those in GH124 are, in contrast to many other domain families, not harboured 

by Proteobacteria, but instead to Firmicutes, Cyanobacteria and Parcubacteria. Genes from GH7 

were generally derived from Ascomycota, besides to Actinobacteria (Actinomycetales) and 

Basidiomycota, while genes in AA9 were exclusively assigned to members of the Ascomycota 

(Nectriaceae, Lasiosphaeriaceae, Sordariaceae, Chaetomiaceae and Pleosporaceae). Finally, 

sequences with a CBM49 are found in majority derived from Streptophyta. 

 

The taxonomic affiliation of sequences from the most abundant cellulase domain families (GH1, 

GH3, GH94, AA8, CBM2 and CBM6) is shown separately in Figure 26 on phylum level and in Figure 27 

on family level. Several treatment effects on the abundances of these taxonomic groups can be 

observed; microbial phyla to which genes from CBM2-, CBM6-, AA8-, GH3- and GH94 (Figure 26) are 

assigned are more abundant in the deeper soil layer than in the surface soil layer, reflecting the 

abundance-pattern of the corresponding cellulase domain families. In addition, tillage effects were 

observed for some microbial phyla; Actinobacteria to which sequences from GH1 were assigned 

showed a higher abundance under RT than under CT in the surface soil layer. The same trend was 

visible in the abundances of AA8-genes assigned to Proteobacteria, although this effect was not 

significant anymore after P-value correction. Furthermore, AA8- and GH1-genes assigned to 

Planctomycetes respectively Verrucomicrobia were more abundant under CT than under RT in the 

deeper soil layer. Interestingly, GH3- and GH94-cellulase genes harboured by Bacteroidetes showed 

a higher abundance under RT than under CT in both soil layers. No tillage effects were observed on 

family level however (Figure 27). CBM2-cellulase genes harboured by Nostocaceae, 

Plantomycetaceae, Sinobacteraceae and Xanthomonadaceae and GH94-genes assigned to 

Anaeromyxobacteraceae were more abundant in the deeper soil layer than the surface soil layer. 

The same trend was visible for the GH94-cellulase genes assigned to Rhizobiaceae. In addition, GH1-

cellulase genes derived from several microbial families (e.g. Microbacteriaceae, Nocardioidaceae 

and Polyangiaceae) showed a trend towards higher abundance under RT than under CT in the 

surface soil layer, while GH1-genes derived from Nocardioidaceae showed a trend towards higher 

abundance under CT than under RT in the deeper soil layer. Nevertheless, these effects were not 

significant anymore after P-value correction.  



4 - Results of the organic farming experiment 

56 
 

 

Figure 26: Taxonomic assignment of the six most abundant cellulase domain families on phylum level under 
conventional (CT) or reduced (RT) tillage in the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of 
soil (the deeper soil layer). Stars indicate a significant difference in abundance between treatments (P<0.05); 
light blue: higher abundance under CT in the surface soil layer, light orange: higher abundance under RT in the 
surface soil layer, dark blue: higher abundance under CT in the deeper soil layer, dark orange: higher 
abundance under RT in the deeper soil layer, black: higher abundance in the deeper soil layer than the surface 
soil layer, white: higher abundance in the surface soil layer than the deeper soil layer. 
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Figure 27: Taxonomic assignment of the six most abundant cellulase domain families on family level under 
conventional (CT) or reduced (RT) tillage in the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of 
soil (the deeper soil layer). Stars indicate a significant difference in abundance between treatments (P<0.05); 
light blue: higher abundance under CT in the surface soil layer, light orange: higher abundance under RT in the 
surface soil layer, dark blue: higher abundance under CT in the deeper soil layer, dark orange: higher 
abundance under RT in the deeper soil layer, black: higher abundance in the deeper soil layer than the surface 
soil layer, white: higher abundance in the surface soil layer than the deeper soil layer. 
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Co-occurring microbial communities 
Co-occurrence analysis of the microbial family abundances in each metagenome sample resulted in 

the identification of three communities of positively co-occurring families. Of the 917 families 

identified in the whole metagenome (consisting of 17.9% of all metagenome reads), 265 families 

(27%) could be assigned to a networking community. These 265 families in total made up 17.5% of 

all metagenome reads. 19 families were assigned to the smallest community (0.96% of all 

metagenome reads, red nodes in Figure 28-A), 80 families to the largest community (9.38% of all 

metagenome reads, green nodes in Figure 28-A) and 156 families to the intermediate community 

(7.20% of all metagenome reads, blue nodes in Figure 28-A).  

 

 

 

Figure 28: Positive co-occurrence network of three communities in soil metagenome and their response 
patterns to treatments. (A) Network depiction of the blue, green and red community of co-occurring families, 
where each sphere stands for one family. 10 families did not show any abundance co-occurrence with the 
other microbial families (white spheres). Multidimensional scaling of the abundances of the families within the 
green (B), blue (C) and red (D) community over all treatments: conventional (CT) or reduced (RT) tillage, in the 
top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil layer). 
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The blue and red communities consist of relatively lower abundant families, whereas the green 

community consists of families with high abundance. Some families of a community also co-occur 

with families of another community. For an overview of all families in each community, see Table A9 

in the appendix.  

 

Taxonomic characterisation of communities 

An overview of the taxonomic assignments of the communities on phylum level is shown in Figure 

29, as percentage of all community reads. The blue community is the most diverse, also on phylum 

level. The green community contains relatively less Viruses than the red and blue community, 

whereas the red community contains no microbial families of the Viridiplantae, as opposed to the 

blue and green community. The blue community, on the other hand, has more Archaea than the 

green and red communities. The blue community is characterized by, among other phyla, the 

Planctomycetes, Acidobacteria, Chloroflexi, Nitrospirae, Firmicutes and Thaumarchaeota. The green 

community can be characterized mainly by the Actinobacteria and Alphaproteobacteria, but also by 

a few low-abundant phyla like the Fibrobacteres and Chlorophyta. The red community is dominated 

by the Bacteroidetes (Sphingobacteriia, Cytophagia and Flavobacteriia) and is further characterized 

by the Cyanobacteria. The Gamma- and Deltaproteobacteria are present in all three communities.  

 

 

When analysing the abundances of the community-families using multidimensional scaling, specific 

treatment-response patterns per community can be observed (Figure 28-B, -C and -D). The microbial 

families from the green community are separated according to different abundance patterns among 

Figure 29: Taxonomic composition of network communities on phylum level. The percentage of reads 
annotated to the most abundant phyla in each community is shown per treatment: conventional (CT) or 
reduced (RT) tillage, in the top 6 cm of soil (the surface soil layer) or the top 10-16 cm of soil (the deeper soil 
layer). 
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samples of different tillage treatments and depth layers (Figure 28-B); they generally had a higher 

abundance under RT than under CT in the surface soil layer and a lower abundance under RT than CT 

in the deeper soil layer (see abundances of e.g. Actinobacteria and Alphaproteobacteria in Figure 

19). They mostly did not differ in abundance between depths under CT, but often show a depth-

effect under RT. Therefore, the abundances of these microbial families appeared to be affected by 

the action of soil tillage. Although the effect is less evident for the red community-families, tillage 

treatment also appeared to influence their abundances between soil samples. These microbial 

families often showed a lower abundance under the CT treatment in the surface soil layer (Figure 28-

D) than in all other treatment-depth combinations. Whereas this effect was not visible on the 

abundances of Bacteroidetes, a tillage effect in the surface soil layer was observed on the 

abundances of highly abundant families of the Ascomycota and Cyanobacteria belonging to this 

community (e.g. Trichocomaceae and Microchaetaceae). Conversely, the abundances of microbial 

families in the blue community were clearly dependent on soil depth (Figure 28-C), where most 

families showed a higher abundance in the deeper soil layer than in the surface soil layer. Indeed, 

microbial families from to the Planctomycetes, Acidobacteria and Thaumarchaeota show the same 

abundance response (see Figure 19).  

 

Cellulose degradation potential within communities 

The reads belonging to each community were further analysed for their cellulolytic properties. 8.5%, 

15.6% and 2.0% x10-3 of the metagenome reads were annotated to cellulase domain families in the 

blue, green respectively red community, showing that the majority of cellulase genes in the 

metagenome are harboured by microbial families of the green community. However, relative to the 

amount of reads belonging to each community, these abundances were 0.12%, 0.17% and 0.21% of 

all reads in the blue, green and red community, respectively. These results show that the microbial 

families in the red community are relatively more associated with cellulolytic functions than families 

in the other two communities. This can also be observed in Figure 30, where a summary of the 

relative abundance of cellulase domain families and cellulase enzymatic groups annotated to reads 

in each community is given. In this figure, the size of the groups of cellulase genes reflects the sum of 

their relative abundance within each community while their position reflects the contribution by 

each community to the sum. Most cellulase genes are found in all three communities, with some 

exceptions; the blue community is specifically characterized by the low-abundant GH124-family and 

by GH26, GH45 and CBM49. The green community, on the other hand, is characterized by the redox 

cellulase families AA3, AA9 and AA10, CBM8 and the hydrolase families GH1, GH6, GH12 and GH48. 

Of these, the GH1 domain family and GH1-genes with taxonomic affiliation to microbial families 

from the green community indeed often showed a higher abundance under RT than under CT in the 

surface soil layer (see Figure 24 and Figures 26 and 27). Interestingly, the abundant CBM32-family is 

not well represented in the green community. Conversely, the red community is more or less 

characterized by higher abundances of CBMs, especially CBM17 and CBM65, but also by CBM44, 

CBM32, CBM6 and CBM30. GH8 and GH9 are also relatively more abundant in the red community. 

Strikingly, several cellulase domain families (e.g. CBM8, GH48) or cellobiose phosphorylase 

(EC:2.4.1.20) are absent in this community. The cellulase domain families which are characteristic for 

the red community showed little response to tillage, but some were more abundant in the deeper 

soil layer than the surface soil layer (CBM6, CBM30, CBM32 and CBM44), and CBM65 shows higher 
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abundance under CT than under RT in the deeper soil layer, while CBM6 shows higher abundance 

under RT than under CT in the surface soil layer (Figure 24).  

 

 

 

Specialized cellulolytic microorganisms reacting to tillage 

The co-occurrence analysis further revealed that the Micromonosporaceae (Actinobacteria), which 

are more abundant under RT than CT in the surface soil layer (see Figure 19) and belong to the green 

community, co-occurred positively with two β-glucosidase genes (K05349 & K05350). Total 

abundances in the whole metagenome of both β-glucosidase genes showed the same response to 

treatment as the Micromonosporaceae. When analyzing the abundances of β-glucosidase genes 

harboured by microbial families of the green community, one of the genes (K05350) showed a 

higher abundance under RT than CT in the surface soil layer. Co-occurrence was also observed 

between the Opitutaceae (Verrucomicrobia) and a β-glucosidase-gene (K05349). Sequences assigned 

Figure 30: Contribution of each community to the abundance of cellulase domain families or cellulase 
enzymatic groups in the soil metagenome. Shown is the relative abundance of the cellulase domain families 
or enzymatic groups as percentage of community reads x10

-3
. The size of the sphere represents the sum of the 

relative abundances over all three communities and the location of the sphere in the plot marks the relative 
contribution of each community to this abundance. 
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to the Opitutaceae as well as to this β-glucosidase gene showed a higher abundance under RT than 

CT in the surface soil layer. The abundance of the β-glucosidase genes derived from microbial 

families of the green community, however, did not show this effect anymore. In addition, three 

microbial families from the blue community co-occurred with an endoglucanase-gene (K01179); 

Anaerolineaceae (Chloroflexi) showed a higher abundance under RT than CT in the deeper soil layer, 

whereas the Verrucomicrobia subdivision 3 (Verrucomicrobia) and Planctomycetaceae 

(Planctomycetes) showed a higher abundance in the deeper soil layer than in the surface soil layer. 

Likewise, the abundance of the endoglucanase gene was higher in the deeper soil layer than in the 

surface soil layer. However, the abundance of the endoglucanase gene sequences derived from 

microbial families of the blue community, however, did not show a response to either depth or 

tillage treatment. 
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5 - Results of phylogenetic analysis of amplified GH5-genes 
 

Here, the results of the amplification of putative GH5-cellulase genes from agricultural soil are given. 

Led by the goal of capturing the in-situ GH5-cellulase diversity, the primer design included a 

metagenome-read obtained from the conventional farming metagenome dataset. The primer set 

was developed for cellulase genes from GH5 subfamily 2 (GH5_2 cellulase genes). Results of the 

primer development process, the amplicon sequence analysis and GH5_2 cellulase gene 

phylogenetic analysis are shown.  

 

GH5-primer design and quality analysis 
In order to capture a high diversity of cellulase genes from soil, unbiased by database sequences, a 

metagenome read from the conventional farming experiment was used as basis for primer 

development. A metagenome read was selected which had been annotated with high reliability as 

an endoglucanase from Gynuella sunshinyii YC6258 (Genbank accession: AJQ95033.1). This 

endoglucanase was classified in the CAZy database as a GH5-cellulase in GH5-subfamily 2. The 

alignment of this metagenome read with two GH5-database sequences (likewise belonging to GH5-

subfamily 2) resulted in the selection of suitable regions for primer sequences. The two database 

sequences used for primer design were endoglucanases from Cellvibrio japonicus strain Ueda107 

and Teredinibacter turnerae strain T7901 (both Gammaproteobacteria, protein IDs ACE84076 

respectively ABS72374). The sequences of the degenerate primer pair and its binding regions on the 

catalytic GH5-domain of ACE84076, as well as the eight conserved residues of a GH5-catalytic 

domain (104, 142) are shown in Figure 31.  

 

Figure 31: Binding sites and sequences of the GH5_2-primers. (A) Binding sites of the forward and reverse 
GH5_2 primers (white bars above protein sequence) on the protein sequence of the Cellvibrio japonicus 
Ueda107 endoglucanase, which was used for primer design. The black bar beneath the protein sequence 
indicates the conserved domain as identified by conserved domain database-search (CDD) (110). Conserved 
GH5-catalytic domain residues as identified by Wang et al. (104) and their position relative to the first residue 
in the conserved domain are shown in red and bold font. (B) Forward and reverse primer pair sequences 
without and (C) with Nextera V2 Adapter sequences (in bold) attached. 
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As expected, in-silico PCR using the metagenome dataset of the conventional farming experiment as 

template and allowing no mismatches resulted in one 104 bp-long amplicon which was amplified 

from the metagenome read used as template for design. Similarly, in-silico PCR using the NCBI 

nucleotide database as template and allowing for no mismatches resulted in two 107 bp-long 

amplicons, amplified from the genes encoding the two endoglucanases used as template for primer 

design. In-silico PCR using the Genbank bacterial and plant database as template and allowing for 

one mismatch resulted in 26 amplifications; 1 amplicon with a length of 103 bp was amplified from a 

cellulase-coding region on the complete genome of Roseateles depolymerans, a 

Betaproteobacterium. The encoded cellulase with protein ID: ALV07998.1 is likewise annotated 

(based on sequence-similarity) as a GH5-cellulase from subfamily 2 (CAZy database). The other 25 

amplicons had a length of 106 bp and were amplified from endoglucanase-coding regions on gene 

sequences or complete genomes of different Teredinibacter turnerae or Cellvibrio japonicus strains. 

In addition to in-silico specificity analysis, the in-vitro specificity of the primer pair was assessed by 

amplification of the GH5_2 cellulase gene using genomic DNA from C. japonicus as template. 

Analysis of the amplification products on a 2%-agarose gel showed specific bands amplified from C. 

japonicus DNA (Figure A1 in the appendix). 

 

GH5-cellulase identification by amplicon sequencing 
To amplify GH5_2 cellulase genes from agricultural soil, the metagenomic DNA extracted from the 

six soil samples of the conventional farming experiment was pooled and used as template for 

amplification with the developed GH5_2 primer pair. Sequencing of the amplification products 

resulted in 305,217 forward and reverse reads. The steps in sequence analysis are described here 

and the amount of sequences left after each analysis step is summarized in Table 3. First, the 

obtained forward and reverse reads were merged, resulting in 303,480 (99.4%) merged reads with 

an average read length of 94 bp. After stringent read quality and length filtering (step 1, Table 3) 

91,887 clean reads remained. Thereafter, these nucleotide sequences were translated to protein 

sequences (step 2, Table 3) and then screened for cellulase function by pairwise alignment and 

subsequent clustering of related sequences. This resulted in the identification of 2,033 amplicon 

sequences (2.21% of ORFs) which clustered with functionally characterized database sequences 

classified as EC:3.2.1.4-cellulases (endoglucanases) from GH5-subfamily 2 (www.cazy.org, (60))(step 

3, Table 3). For an overview of the GH5-endoglucanase database sequences used in this analysis 

step, see Table A2 in the appendix. After identification of the amplicon sequences with predicted 

GH5_2 cellulase function, duplicate sequences were removed, which resulted in a final amount of 

743 unique protein sequences (step 4, Table 3). These unique sequences showed an average 

pairwise identity among each other of 71% on nucleotide level and 59% on amino acid level. They 

were subsequently analyzed for taxonomic affiliation and further subclustered using Markov 

Clustering in order to group sequences on a higher sequence identity level; subclustering of the 

amplified GH5_2 cellulase genes together with database sequences from GH5-subfamily 2 resulted 

in 101 clusters, of which amplicon sequences in subcluster 1 showed 74% average sequence identity, 

sequences in subcluster 2 showed 80% average sequence identity and sequences in the remaining 

subclusters >90%. Of all subclusters, 74 contained only 1 amplicon sequence which also did not 

represent a duplicate sequence (step 4, Table 3). Therefore, these sequences were omitted from 

further analysis (step 5, Table 3) to secure the use of valid amplicon sequences for phylogenetic 

analysis. For a detailed overview of the subclustering results, see Table A10 in the appendix.  
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Table 3: Number of GH5-amplicon sequences remaining after each analysis step and their mean sequence 
length (in base pairs for nucleotide sequences and in amino acids for protein sequences). 

  Sequences Length 

    
Step 1 Merged, high quality-nucleotide reads 91,887 105 

Step 2 Protein sequences after ORF-prediction 89,741 34 

Step 3 Cellulase-annotated protein sequences (by Markov Clustering) 2,033 33 

Step 4 Unique cellulase protein sequences after removal of duplicates 743 34 

Step 5 Protein sequences with 2 or more representatives at high similarity 669 34 

 

Taxonomic assignment 
All amplicon sequences identified as GH5_2 cellulase genes (after analysis step 4, Table 3) were 

compared to sequences in the NCBI database for taxonomic assignment. First, the usual but 

stringent method for taxonomic assignment was applied, requiring 100% of the top BLAST hits to 

agree on assignment to a specific taxonomic level. Then, a secondary taxonomic assignment method 

was applied, requiring only 50% of the top BLAST hits to agree on an assignment. Annotation 

percentages mentioned in this chapter are derived from the 50%-annotation method. Furthermore, 

the method used for GH5 cellulase gene identification in the amplicon dataset (pairwise alignment 

and Markov Clustering) was applied to identify GH5 cellulase genes in the metagenome of the 

conventional farming experiment, resulting in the prediction of in total 682 (68.7% x10-3 of all 

metagenome reads) GH5 cellulase genes in the agricultural soil metagenome. The taxonomic 

assignments of the GH5 cellulase genes identified in the amplicon dataset, metagenome dataset and 

of functionally characterized GH5 cellulase sequences from the CAZy database are shown here on 

phylum level in Figure 32.  

To a considerable portion of the GH5 cellulase genes identified in the amplicon and 

metagenome dataset the taxonomy could not be unambiguously assigned, especially if 100% of the 

BLAST hits were used for annotation. This indicates that a large extent of the GH5 cellulase genes in 

this environmental sample is as yet unexplored and unknown. The difference in results between a 

more (Figure 32, LCA-100) and less (Figure 32, LCA-50) stringent annotation also indicates that these 

partial gene sequences show little monophyletic sequence conservation, as high similarity to 

database sequences originating from different phyla can be obtained from the same amplicon 

sequence. Furthermore, the taxonomic diversity captured with the GH5_2 primers (i.e. cellulase 

genes with affiliation to six different phyla) is much lower than what is known from the database 

(Figure 32, CAZy: functionally characterized GH5 cellulases with a taxonomic origin in 17 different 

phyla) and what can be captured by metagenome sequencing (Figure 32, metagenome: GH5 

cellulase genes taxonomically assigned to 21 different phyla), probably mainly attributable to the 

fact that the primer pair was designed to target only GH5 cellulases from subfamily 2. Moreover, 

some metagenomic GH5 cellulase genes were harboured by microbial phyla (e.g. Cyanobacteria) 

which were not represented in the functionally characterized GH5 cellulase sequences of the CAZy 

database. It is worth noticing, however, that GH5 cellulase genes from these phyla may be present 

among the non-functionally characterized sequences in the public databases.   
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As the GH5_2 primers were designed using proteobacterial sequences (see Figure 31 and section 2: 

Materials and Methods), it is not surprising that the majority of the taxonomically-assigned amplicon 

sequences was annotated as Proteobacteria (57.5%). Of these, the majority (91%) was annotated to 

Saccharophagus, Teredinibacter, Dickeya and Vibrio, but also to eight other proteobacterial genera 

(Cystobacter, Sorangium, Pseudoalteromonas, Pantoea, Acinetobacter, Cellvibrio, Arenimonas and 

Rhodanobacter). GH5 cellulases from Firmicutes were highly abundant among the CAZy database 

sequences (39.8%) but strikingly few amplified GH5_2 cellulase genes (0.3%) and metagenomic GH5 

cellulase genes (0.6%) were harboured by Firmicutes. Most of the amplified GH5_2 cellulase genes 

which were derived from Firmicutes belonged to the Bacilli. In addition, some were assigned to 

Actinobacteria (5.4%) and more specifically to the Micromonospora (order Actinomycetales) and to a 

lesser extent to the genus Janibacter (order Actinomycetales). Furthermore, using less stringent 

annotation, several amplicon sequences were derived from Nematoda (8.8%), of which many could 

be assigned to the plant-parasitic genus Pratylenchus. Finally, one amplified GH5_2 cellulase gene 

showed significant similarity to database sequences from an uncultured protist. 

 

Subclustering of the unique amplicon sequences annotated as GH5_2 cellulase genes resulted in the 

identification of singletons; sequences which were not similar to other amplicon sequences (single 

sequence in a subcluster) and did not represent a duplicate were removed to ensure phylogenetic 

analysis of biologically relevant sequences (see analysis step 5, Table 3). Subclusters containing 

amplicon sequences with taxonomic assignment are shown in Table 4. Subcluster 1 contained 544 

amplicon sequences and all of the database sequences (111) included in the subclustering analysis. 

Most amplicon sequences in subcluster 1 were assigned to Proteobacteria and, using a less stringent 

annotation procedure (LCA-50), to Nematoda. The amplicon sequences in subcluster 2, on the other 

hand, were nearly exclusively assigned to Actinobacteria. These two subclusters were the largest 

Figure 32: Taxonomic assignment of GH5-cellulases in the amplicon dataset, the conventional farming 
metagenome dataset and the CAZy database on phylum level. The GH5-cellulase genes identified in the 
amplicon and metagenome dataset were taxonomically assigned using 100% (LCA-100) or 50% (LCA-50) of the 
top BLAST hits. Shown is the percentage of GH5 cellulase sequences annotated to the most abundant 
microbial phyla. 
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subclusters and contained most of the taxonomically assigned amplicon sequences. Interestingly, 

the two conserved amino acid residues located within the amplified region (residues H179 & Y181 

on the protein sequence with ID: ACE84076.1, see Figure 31), were only present in the amplicon 

sequences of subclusters 1, 2, 5 and 9.  

 

Table 4: Taxonomic assignment of unique amplicon sequences annotated as cellulase genes. Given are the 
number of sequences assigned and the total number of reads within subclusters 1, 2, 12 and 16, using 100% or 
50% of the top BLAST hits for the last common ancestor (LCA)-annotation method in MEGAN5.  

Subcluster 1 2 12 16 

Taxonomic assignment LCA-100 LCA-50 LCA-100 LCA-50 LCA-100 LCA-50 LCA-100 LCA-50 

         
Actinobacteria   26 37 1 1   

Proteobacteria 80 422      3 

Firmicutes  4  1     

Nematoda  64  1     

uncultured Protist 1 1       

unassigned 463 53 16 3 3 3 3  

Total 544 544 42 42 4 4 3 3 

 

Phylogenetic tree of GH5-sequences from CAZy database 
Two reference trees were calculated from the phylogenetic analysis of the functionally characterized 

GH5-cellulases from the CAZy database; the tree obtained from complete GH5-sequences is shown 

in Figure 33 and the tree obtained from partial (amplicon-region) GH5-sequences is shown in Figure 

34. As expected, the topology of the complete sequence-reference tree shows high consistency with 

previous subclassification of GH5-sequences by Aspeborg et al. (100), who analysed the phylogenetic 

distribution of both functionally and non-functionally characterized GH5-sequences in the CAZy 

database. Both the reference tree presented here (Figure 33) and the tree by Aspeborg et al. shows 

high phylogenetic diversity of GH5 sequences and very little conservation within phylogenetic 

groups. This polyphyletic distribution offers an explanation for the difficulty of accurate taxonomic 

assignment of the amplicon sequences, as was mentioned earlier. In the tree of Aspeborg et al., 

sequences in subfamilies 1, 2, 26, 8 and 53 are more related to each other, as well as sequences in 

subfamilies 4, 25, 37, 38 and 52. Additionally, subfamily 5-sequences are located in between these 

two groups and subfamily 22-sequences are grouped together with many other subfamilies without 

an endoglucanase function. In the tree shown here (Figure 33), these characteristics are also clearly 

present. The large clade of sequences consisting of only GH5-cellulases from subfamily 2 has high 

bootstrap support (89%) and will further be designated “clade 1”. This clade contains mainly 

bacterial and metazoan (nematode- and insect-) sequences, and does not contain any fungal 

sequences, with the exception of a sequence from the Neocallimastigomycota. Within clade 1, a 

separate clade of sequences (designated “clade 1.1”) is marked as the phylogenetic range to which 

the amplified GH5_2 cellulase genes belong. This clade also includes the database sequences used in 

primer design (see arrow in Figure 33) and is fairly well supported statistically by a bootstrap value of 

39%. 
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Figure 33  



5 - Results of phylogenetic analysis of amplified GH5-genes 

69 
 

Figure 33 (page 68): Maximum Likelihood-phylogenetic tree of complete GH5-database amino acid 

sequences obtained from the CAZy database (60). The analysis was performed using 308 complete domain 

sequences of functionally characterized GH5-cellulases and included 428 alignment positions. The percentage 

of trees in which the associated sequences clustered together is shown next to the branches and was 

determined by bootstrapping with 100 replicates. Only bootstrap values higher than 25% are shown. The tree 

is drawn to scale, with branch lengths measured in the number of modelled substitutions per site. The 

taxonomic affiliation on phylum level of each sequence or collapsed cluster of sequences is indicated in the 

sequence name and by a coloured marker. Collapsed branches consist of sequences from the same taxonomic 

group as indicated by the cluster name. GH5-subfamily classification is shown in red besides the tree (57, 97). 

Sequences belonging to clade 1 (GH5-subfamily 2) and clade 1.1 are outlined by a light- respectively dark-grey 

box. The location in the tree of the database sequences which were used for primer design is indicated by an 

arrow. 

 

In the tree calculated from partial GH5-database sequences (Figure 34), clade 1 is partly broken up, 

with several cellulase sequences from Firmicutes missing and including a few new sequences. Clade 

1.1 is almost completely intact, except for three sequences which are located separately within clade 

1. However, clade 1.1 has a slightly different topology here from that observed in the complete 

sequence-reference tree (Figure 33) and no bootstrap support. Thus, the analysis of phylogenetic 

tree-topology based on partial or complete cellulase sequences suggests that, although a rough 

indication of the phylogenetic relationships between sequences can be obtained using partial GH5-

sequences, these phylogenetic relationships should be confirmed using complete protein sequences.  

Phylogenetic tree of GH5-amplicon sequences 
The phylogenetic relationships between the amplified GH5_2 cellulase genes and the partial GH5-

database sequences are shown in Figure 35 and as a larger image in Figure A2 in the appendix. 

Database sequences are indicated with filled markers, whereas the amplicon sequences are marked 

with open markers. The tree shows that the amplified GH5_2 cellulase genes within a subcluster are 

more closely related to each other than to amplicon sequences from another subcluster (coloured 

bar beside the tree), corroborating the results of the subclustering analysis. Furthermore, the short 

branch lengths show that the amplicon sequences are highly related. Analysis of overall tree 

topology reveals that clade 1 is broken up by other database sequences which did not originally 

belong to clade 1, as was also observed in the partial-sequence reference tree without amplicon 

sequences (Figure 34). All amplicon sequences are related to database sequences of the original 

clade 1.1. However, clade 1.1 is not intact anymore.  

 

Amplicon sequences of subcluster 1 (red open circles and red bar in Figure 35) are generally 

distributed around gammaproteobacterial database sequences of clade 1.1. As most taxonomically-

assigned amplicon sequences of subcluster 1 are assigned to Gammaproteobacteria, this is not 

surprising. However, database sequences with other taxonomic origin seem to be related to these 

amplicon sequences as well. Several gammaproteobacterial amplicon sequences are found in close 

proximity to a GH5- database sequence from Cytophaga hutchinsonii (Figure 35-B). Furthermore, 

amplicon sequences assigned to Gammproteobacteria, Firmicutes and a protist, cluster around a 

GH5-database sequence from Spirotrichonympha, a protist genus (Figure 35-C). Finally, several 

amplicon sequences harboured by Gammaproteobacteria, are closely related to two database 

sequences from Vibrio and to one from Spirochaeta (Figure 35-D). This polyphyletic clustering offers 

a basis for hypothesis formulations regarding HGT-events.  
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Figure 34. 
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Figure 34 (page 70): Maximum Likelihood-phylogenetic tree of partial GH5-database amino acid sequences 

obtained from the CAZy database (60). The analysis was done using 308 partial (amplicon region) sequences 

of functionally characterized GH5-cellulases and included 85 alignment positions. The percentage of trees in 

which the associated sequences clustered together is shown next to the branches and was determined by 

bootstrapping with 100 replicates. Only bootstrap values higher than 25% are shown. The tree is drawn to 

scale, with branch lengths measured in the number of modelled substitutions per site. The taxonomic 

affiliation on phylum level of each sequence or collapsed cluster of sequences is indicated in the sequence-

name and by a coloured marker. Collapsed branches consist of sequences from the same taxonomic group as 

indicated by the cluster name. Sequences belonging to clade 1 (GH5-subfamily 2) and clade 1.1 are outlined by 

a light- respectively dark-grey box. The locations in the tree of the database sequences which were used for 

primer design are indicated by an arrow. 

 

However, very few branching events in this tree are well supported by the bootstrap analysis and 

the observed topologies must be verified using complete GH5-sequences (results shown below).  

Amplicon sequences of subcluster 2 (light green open circles and green bar in Figure 35) 

cluster with two partial database sequences from Micromonospora spp. These sequences were the 

top BLAST hits of an amplified GH5_2 cellulase gene harboured by Actinobacteria (subcluster 2) but 

are not functionally characterized. It is therefore not surprising that they show high similarity to the 

amplicon sequences of subcluster 2. These amplicon sequences are furthermore closely related to 

partial nematode cellulases. Strikingly, one amplified GH5_2 cellulase gene in subcluster 2 is 

assigned to nematodes (see Table 4). Moreover, nematode cellulase sequences are present several 

times among the top BLAST hits of the amplicon sequences of subcluster 2. In clade 1.1 of the partial 

GH5-database sequences (Figure 34) it can be observed that the Micromonospora-sequences are 

closely related to nematode sequences. However, these relationships are not well statistically 

supported by bootstrap analysis. 

Amplicon sequences of subclusters other than 1 or 2 (black open circles and black bar in 

Figure 35) do not cluster together with database sequences. They appear to be phylogenetically 

more distinct from the database sequences than the amplicon sequences from subcluster 1 or 2. 

This was also evident from the subclustering analysis, as they only clustered with the database 

sequence when the clustering e-value cut-off was higher than 10-11. 

 

Phylogenetic tree of top BLAST hits and complete database sequences 
To obtain additional insight in the phylogenetic relationships between the functionally characterized 

GH5-database sequences and the amplified GH5_2 cellulase genes which cluster together with 

database sequences (see Figure 35-B, C, D and E), several of these amplified GH5_2 cellulase genes 

were compared to the NCBI non-redundant protein database to obtain the full length-sequences of 

their top BLAST hits. These top BLAST hits were subsequently re-aligned to the existing alignment of 

functionally characterized GH5-database sequences. The resulting phylogenetic tree is shown in 

Figure 36 (only clade 1) and in Figure A3 in the appendix (full tree), where the top BLAST hit-

sequences are indicated with bold font.  

 

The top BLAST hits of the amplified GH5_2 cellulase genes surrounding Cytophaga (bold sequences 

with “surr. Cytophaga” in Figure 36) and Spirochaeta (bold sequences with “surr. Spirochaeta” in 

Figure 36) belong to several species of Gammaproteobacteria while one is from an uncultured 

8 Nematoda-annotated sequences 

3 Nematoda-annotated sequences 

53 Nematoda-annotated sequences 
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bacterium, and they cluster together with the functionally characterized database sequences of the 

Gammaproteobacteria in clade 1.1 with high bootstrap support. 

 

 

 

Figure 35. 
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Figure 35 (page 72): Maximum Likelihood-phylogenetic tree of cellulase-amplicon sequences and partial 

GH5-database amino acid sequences obtained from the CAZy database (60). The analysis was done using 669 

amplicon sequences and 308 partial (amplicon region) sequences of functionally characterized GH5-cellulases 

(total 977 sequences) and included 64 alignment positions. The percentage of trees in which the associated 

sequences clustered together is shown next to the branches and was determined by bootstrapping with 100 

replicates. Only bootstrap values higher than 25% are shown. The tree is drawn to scale, with branch lengths 

measured in the number of modelled substitutions per site. The taxonomic affiliation on phylum level of each 

sequence or collapsed cluster of sequences is indicated in the sequence name and by a coloured marker; a 

filled marker for database sequences and an open marker for amplicon sequences. Taxonomic affiliations 

indicated with “(2)” in the sequence name have been assigned using less stringent taxonomic assignment cut-

offs (LCA=50%). Collapsed branches consist of sequences from the same taxonomic group as indicated by the 

cluster name. Sequences belonging to clade 1 (GH5-subfamily 2) and clade 1.1 are outlined by a light- 

respectively dark-grey box. The locations in the tree of the database sequences which were used for primer 

design are indicated by an arrow. (A) Complete tree of database and amplicon sequences. Database sequences 

belonging to clade 1 (GH5-subfamily 2) and clade 1.1 are outlined by a light- respectively dark-grey box. The 

location of amplicon sequences in the tree is indicated by the bar on the left side of the tree, with the colour 

corresponding to the subcluster number. (B) Magnification of clade with amplicon sequences from subcluster 

1 and a database sequence from Cytophaga. (C) Magnification of clade with amplicon sequences from 

subcluster 1 and a database sequence from Spirotrichonympha. (D) Magnification of sequence clade with 

amplicons from subcluster 1 and database sequences from Spirochaeta and Cellvibrio. (E) Magnification of 

clade with amplicon sequences from subcluster 2 and database sequences from Nematoda, Cellvibrio and 

Micromonospora. 

 

When analysing the top BLAST hits of the amplicon sequences related to Spirotrichonympha (bold 

sequences with “surr. Spirotrichonympha” in Figure 36), a variable phylogenetic relationship with 

the functionally characterized database sequences is observed. First, the top BLAST hits of an 

amplified GH5_2 cellulase gene taxonomically derived from Gammaproteobacteria (amplicon 

sequence with number 297) were analyzed; two of the top BLAST hits belong to a different phylum 

(Firmicutes) than two other top BLAST hits, which belong to the Gammaproteobacteria. The latter 

top BLAST hits cluster accordingly with the functionally characterized complete sequences of the 

Gammaproteobacteria in clade 1.1, while the two top BLAST hits belonging to Firmicutes are 

phylogenetically more related to the functionally characterized Firmicutes sequences which are 

located in clade 1, but not in clade 1.1 (Figure 36). Then, the top BLAST hits of another amplified 

GH5_2 cellulase gene related to Spirotrichonympha (with number 281) but taxonomically harboured 

by Firmicutes, were analyzed; these two top BLAST hits were the same sequences as the two top 

BLAST hits of amplicon sequence number 297 (see above). Subsequently, the top BLAST hits were 

included of an amplified GH5_2 cellulase gene related to Spirotrichonympha (with number 581) but 

taxonomically harboured by an uncultured symbiotic protist. One of these top BLAST hits is, indeed, 

a putative GH5-sequence from an uncultured protist and is highly related to the functionally 

characterized Spirotrichonympha-sequence in clade 1.1 (Figure 36). The other top BLAST hit, 

however, belongs to a Gammaproteobacterium and is more related to the functionally characterized 

database sequences of Firmicutes in clade 1 than to those of Gammaproteobacteria in clade 1.1 

(Figure 36). Finally, the top BLAST hits of an amplified GH5_2 cellulase gene related to 

Spirotrichonympha but taxonomically derived from Gammaproteobacteria (with number 497) also 

showed divergent phylogenetic relationships; one top BLAST hit had an unknown taxonomic origin 

and was closely related to a functionally characterized database sequence of Firmicutes (not in clade 

1.1, see Figure 36). The other top BLAST hit belongs to Sphingomonas spp. and was closely related to 
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the functionally characterized database sequence of Cytophaga (Bacteroidetes), but with low 

bootstrap-support (see Figure 36).  

 

 

 

 

 

  

Figure 36: Clade 1 of the Maximum Likelihood-phylogenetic tree of 322 complete domain sequences of 
functionally characterized GH5-cellulases obtained from the CAZy database (60) and the protein sequences 
of top BLAST hits of selected amplicon sequences (indicated in bold). The names of the top BLAST hits 
include: protein ID, functional annotation, taxonomic origin and information on which amplicon sequence they 
were derived from (BLAST hit, amplicon sequence number, phylogenetic relationship in Figure 35). The analysis 
included 425 alignment positions. Here, only the topology of sequences of clade 1 is shown (see Figure A3 in 
the appendix for the complete tree). The percentage of trees in which the associated sequences clustered 
together is shown next to the branches and was determined by bootstrapping with 100 replicates. Only 
bootstrap values higher than 25% are shown. The tree is drawn to scale, with branch lengths measured in the 
number of modelled substitutions per site. The taxonomic affiliation on phylum level of each sequence or 
collapsed cluster of sequences is indicated by a colour-filled marker. Collapsed branches consist of sequences 
from the same taxonomic group as indicated by the cluster name. Sequences belonging to clade 1.1 are 
outlined by a dark-grey box. The locations in the tree of the database sequences which were used for primer 
design are indicated by an arrow. 
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6 - Discussion 
 

I - Assessment of the soil genetic diversity 
In this research project, different approaches were applied to study the genetic diversity in 

agricultural soil; shotgun metagenome sequencing was employed to obtain a holistic view of the 

entire microbial community and its potential for the degradation of cellulose, while amplification 

and sequencing of the GH5 gene from soil-derived DNA was implemented for in-depth assessment 

of diversity. Here, the advantages and drawbacks of shotgun metagenome sequencing are discussed 

first, after which different methods for cellulase gene identification are considered. Finally, the 

results of the GH5 gene amplification study are discussed. 

 

Potentials and drawbacks of shotgun metagenomic datasets  

The aim of this research was to explore the genetic potential for cellulose degradation in agricultural 

soil under different tillage treatments, for which next generation-shotgun sequencing of the soil 

metagenome was employed. Cultivation techniques introduce bias by selection of only the cultivable 

part (143) of the microbial community (for example the active degraders) while phylogenetic marker 

gene-amplification techniques do not provide functional information and likely introduce bias in the 

microbial community composition (e.g. (144)). Furthermore, metagenomic-DNA insert-libraries and 

screening methods are labour-intensive and show low gene-detection frequencies (145–147). 

Shotgun sequencing of the microbial community DNA circumvents the mentioned drawbacks and 

provides a wealth of sequencing- and metadata which generates comprehensive information about 

the genetic potential of the soil microbial community; the putative ecological roles of the most 

abundant members of the microbial community can thus be described on a taxonomic and 

functional level. Also, the presence of specific genes can be verified and metabolic pathways can be 

reconstructed (148). More importantly, links between taxonomy and function can be made using 

reads which can be mapped to genes of which the putative taxonomic origin can also be predicted. 

This can reveal new ecological patterns and provide a basis for hypothetical microbial relationships 

and functionalities (149). Finally, comparing metagenomes from different environments can provide 

powerful statistical indications of a biome-specific genetic potential in microbial communities. For 

example, Berlemont and Martiny (52) showed that, across ~2,000 metagenomes from different 

biomes, the potential for utilization of carbohydrates was discernible according to biome-type. 

However, there are several pitfalls which, when not considered sufficiently, can undermine the 

power of the answers given from metagenomic data analysis. Most of these pitfalls are related to 

conclusions based on predicted gene abundances annotated using public database sequences. It is 

important to note that these annotations cannot be used as an indication of absolute abundances, 

as the qualitative and quantitative success of annotation is compromised by several factors (148). 

 

First of all, the fraction of sequencing reads that can be taxonomically and functionally annotated is 

greatly limited by the available reference sequences in public databases (150). Databases such as the 

NCBI Genbank, -nucleotide and -protein databases contain many sequences originating from 

cultivation studies, from gene-isolation, gene-expression and biochemical characterization studies 

and increasingly from high-throughput sequencing studies of DNA from specific environments (151). 

The most reliable taxonomic and functional annotations originate from cultivation and biochemical 
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characterization studies, respectively. High amounts of reliable reference sequences are indeed 

available; the curated NCBI Reference Sequence (Refseq) database comprised ca. 18,000 species in 

2012, of which around 64% were microbial (152) and the SILVA database currently contains ca. 6 

million small-subunit ribosomal sequences (corresponding to ~700,000 estimated non-redundant 

sequences) (153). However, taken that only around 1% of bacteria in environmental samples are 

predicted to be cultivable (154) and that soils were estimated to contain millions of species (155), it 

is evident that significant knowledge on microbial diversity in natural samples is missing. Cultivation 

of fungi is associated with additional difficulties (156, 157) and they are therefore even less 

represented in the databases. The curated NCBI Refseq-database consists predominantly of bacterial 

or archaeal sequences (~59% of all accessions), whereas only ~7% of all accessions consist of fungal 

sequences (152). It is therefore not surprising that a significant portion of metagenome sequences 

cannot be taxonomically assigned, especially those with fungal origin. In the metagenomes analysed 

here, the percentage of reads which could be taxonomically assigned on kingdom level using the 

NCBI database was ca. 59%. Of these annotated sequences, 0.4-1.1% was assigned to eukaryotes 

and only 0.3-0.4% to fungi. Indeed, despite the estimated high abundance and diversity of fungi in 

soils (158), annotations of reads with fungal or eukaryotic origin are often very low in soil 

metagenomes (0.2-1.6% fungi (102, 159) and 0.9% eukaryotes of all sequences (160)). The NCBI 

database-bias is also illustrated by the higher numbers obtained when using ribosomal databases as 

reference (ca. 8-14% of all ribosomal sequences annotated as eukaryotes in the metagenomes 

studied here and in a forest metagenome (161)). The annotation success is generally higher for 

taxonomic than for functional annotations, as was observed here: 35% and 22% of all sequences in 

the conventional respectively organic farming metagenome could be functionally annotated. These 

numbers are not uncommon for soil metagenomes, as annotation percentages ranging from 13-69%  

of reads are often observed (160–164). The lower amount of functional annotations is probably due 

to the high amount and diversity of protein coding genes in microbial genomes; the knowledge that 

the average known bacterial genome consists of 5,000 protein coding regions and that the 

Escherichia coli pan-genome comprises over 60,000 unique and only ~3,000 core gene families (165), 

offers an indication of the predicted high gene diversity in nature. Although the gene-coding regions 

in microbial genomes are well predicted, the functional annotation of this variety of genes is not yet 

exhaustive. While the prokaryotic clusters of orthologous genes (COG)-database, which is based on 

comparisons of complete sequenced genomes, contained over 4,600 COGs in 2014 (166), today the 

KEGG database consists of ca. 25 million gene sequences retrieved mainly from the Genbank and 

Refseq databases and catalogued according to orthologous groups (~21,000) (167). However, only 

half to three-quarters of the prokaryotic genomes can be specifically functionally annotated using 

COGs (166). Indeed, even though these databases provide for a reliable functional annotation of a 

broader array of genomic or protein sequences (with KEGG also including eukaryotic sequences), 

they still do not seem to sufficiently cover the estimated existing diversity of protein coding genes.   

In addition, the reliability of sequences obtained from the DNA-extraction, library 

preparation and sequencing process can be influenced by several biases. DNA-extraction biases 

influence the amount and proportion of DNA extracted from soil (160), in a way that a certain 

selection of a part of the microbial community takes place, e.g. active community (168). 

Furthermore, sequencing library preparation is prone to selection of DNA sequences with higher 

stability (due to mechanical shearing of sequences and size selection) and leads to artificial 

amplification of sequences in an exponential manner during the applied PCR-runs. The Nextera-

library preparation from the Illumina platform has been noted to be biased towards GC-sequences 
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(169), especially with low template abundances and probably linked to PCR-amplification biases 

(170). Sequencing errors associated with the Illumina technology, e.g. substitution-type miscalls 

(171), inverted repeats or GGC-sequences (172), additionally influence the quality of obtained reads, 

depending on their taxonomic source. The 454-pyrosequencing platform, on the other hand, is 

associated with the introduction of insertions and deletions during sequencing of especially 

homopolymeric regions (173). DNA-extraction and library preparation biases do influence the 

reliability of obtained sequencing reads, but do not significantly influence the comparison of 

microbial communities from different environments, as was shown by Delmont et al. (160). 

Moreover, several of these biases can be accounted for during the process of read quality and 

filtering and the subsequent annotation cut-offs. Sequencing errors like erroneous base-calling are 

often reflected by the provided read quality information and low quality-regions or -reads can thus 

be removed during quality analysis and read filtering. Nevertheless, undetected sequencing errors 

can affect the annotation precision of metagenome reads. Codon degeneracy leads to a higher 

variability of nucleotide sequences than of the corresponding protein sequence. Therefore, 

comparison of nucleotide sequences to databases can lead to decreased homology scores, while 

protein sequence-comparisons allow for more robust comparisons to database sequences (174). 

Here, annotation was performed using predicted amino acid sequences derived from the 

metagenome reads. Nevertheless, sequencing errors like substitutions can lead to nonsynonymous 

changes to the DNA-sequences and insertion- or deletion-errors can introduce frameshifts in the 

protein-coding regions, thereby affecting gene-calling precision (175). Therefore, most gene-

predicting or translation algorithms account either for sequencing platform-specific errors by 

entrainment (e.g. FragGeneScan (125)) or for common DNA-sequencing errors by comparison of all 

six reading frames (e.g. BLASTx (121) and DIAMOND (120)). While the 454-pyrosequencing platform 

is more susceptible to insertion-deletion errors, the greater average read length obtained with this 

platform is advantageous for annotation success. A dataset with longer sequences will have higher 

annotation chances caused by higher probability of including a (partial) conserved protein domain 

and by the fact that alignment-algorithms take read length into account when calculating 

expectation values (e.g. the  BLAST-algorithm (121)). Read length-effects on annotation success 

might also be especially influential for annotation of eukaryotic sequences, as intronic sequences 

may occupy a large part of shorter reads.  

 

Furthermore, the choice of sequencing data analysis methods and conclusions thereon should be 

based on preliminary diversity- and coverage-exploration. The predictive value of results from 

annotated gene abundances is greatly influenced by the sequencing depth. The amount of DNA 

sequenced must be great enough to ensure coverage of most microbial groups and groups of 

protein-coding genes known in the databases in order to compare annotation abundances between 

samples. Coverage is generally assessed by sub-sampling from the available annotated reads and 

counting the annotations reached at the corresponding sequence amount (176). The reported 

taxonomic assignment-based rarefaction analyses here (see Figures 8 and 18) show that sufficient 

coverage was reached to describe the diversity at the corresponding taxonomic level and compare 

the annotations between samples (177). One of the first efforts to sequence an agricultural soil 

metagenome, showed that coverage of the majority of COG-categories was reached after generation 

of 100 Mbp of sequencing reads (178). In this study of comparable environmental samples, 

approximately 60 Mbp for the conventional farming experiment and 1,000 Mbp for the organic 

farming experiment, per sample, were sequenced, suggesting that a similar coverage of protein-
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coding genes was achieved. Nevertheless, Tringe et al. (178) estimated that a minimum of 2,000-fold 

amount of the already sequenced base pairs would be required to cover as much of the genetic 

diversity within their soil sample to obtain a draft genome of the most abundant genome. Indeed, 

when considering the average size of bacterial genomes (3-5 Mbp) and the genetic diversity 

observed even between closely related bacteria (165)), the above-mentioned sequencing depths are 

clearly not sufficient to cover the predicted genetic diversity in soil. Furthermore, these observations 

emphasize that, as discussed above, the descriptive power of taxonomically assigned sequences and 

especially available gene functions in the public databases is likewise rather limited. Therefore, 

coverage estimations based on comparisons to database sequences are increasingly controversial, as 

the annotation success depends on the genetic diversity in the sample and the extent to which it 

constitutes of (relatives of) cultured representatives in the databases; A high genetic diversity will 

decrease the chance of reliable taxonomic or gene-annotation, as a smaller part of the total diversity 

is likely to be represented in the public sequence databases. This drawback especially questions the 

validity of comparison of samples with a different genetic diversity. Therefore, estimation of the 

genetic diversity within a sample without comparison to database sequences is crucial for 

comparison of samples (176). The Nonpareil method (135) is one of the developed methods that 

estimate the genetic diversity within a metagenomic dataset without being biased by databases. This 

method estimates an average coverage based on the repeated calculation of the overlap between 

individual reads (redundancy) for different dataset sizes (135). In this study, the Nonpareil method 

was used as a proxy for genetic diversity and showed a low coverage for both metagenomes, 

indicating that much of the genetic diversity estimated to be present is not captured by the 

metagenomic datasets. Furthermore, this method showed for both metagenomes no difference in 

estimated overall genetic diversity between the samples of both tillage treatments. This means that, 

for this study, the relative abundances of annotated genes or microbial groups can be compared 

between tillage treatments. However, the Nonpareil-results also indicated that the soil samples from 

the organic farming experiment taken from two depths differed in coverage (surface soil horizon: 

3.1% of diversity covered, deeper soil horizon: 4.2% of diversity covered). As no differences in 

sequencing depth existed between samples of both soil horizons, these coverage estimates suggest 

that the soil samples taken from greater depth contain a lower genetic diversity. When assuming 

that, in the samples from both depth layers, a similar portion of the genetic diversity has a significant 

similarity to database sequences, the observed differences in genetic diversity are in accordance 

with the observation that the relative counts for many microbial groups and protein-coding genes 

were higher in the samples from the greater depth (see e.g. Figures 19 and 20). Although these 

relative counts may reflect the true relative abundance for some of the microbial groups, they are 

unlikely to do so for all. Therefore, comparisons of relative abundances of annotated genes or 

microbial groups between both depth layers should be regarded with great care and should not be 

used as sole basis for conclusions.  

 

Altogether, the factors discussed above limit not only the overall taxonomic and functional 

annotation of the metagenomes, but also the linkage between function and taxonomy which is 

made several times in this study. Consequently, a large part of the genetic information obtained 

here is regarded as unknown, but could actually be part of a known microbial group or group of 

protein-coding genes. Moreover, although with low probability considering the here achieved 

coverage statistics, chances exist that multiple assignments to protein-coding genes may in fact be 

multiple partial genes sequenced from a single original gene sequence (179). Therefore, it should be 
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stressed that the reported abundances here do not exclude an actual higher or lower abundance 

present in the metagenome. Furthermore, the soil metagenomes may exhibit additional groups of 

protein-coding genes or microbial groups to those reported here. 

 

Cellulase gene annotation methods 

By definition, cellulases are enzymes that catalyze the cleavage of cellulosic substrates, albeit with 

specificity for different regions on the cellulose polymer (e.g. crystalline or amorphous region). 

Nevertheless, cellulases show a considerable variability in protein fold and overall amino acid 

similarity (180), having led to their classification into different GH-families (59). However, most GH-

families comprise not only cellulases but also cellulase-homologs with biochemical activities other 

than cellulolytic (www.cazy.org, (60)). Thus, cellulase identification in genomic datasets based on 

amino acid sequence similarity (e.g. BLAST) is prone to result in the prediction of both cellulases and 

non-cellulases. Although the significance of subtle differences in catalytic site architecture for true 

cellulolytic activity are increasingly appreciated for several GH-families (e.g. GH48 (70), GH5 (71), 

GH12 (181) and GH61/AA9 (182)), an adequate understanding of the enzyme characteristics leading 

to functional specificity are absent for most GH-families. Moreover, computational identification of 

catalytic site-architectural differences requires knowledge of complete protein sequence and fold 

(70, 183), whereas many genomic datasets (e.g. shotgun-metagenome or amplicon) comprise partial 

gene sequences.  

In this study, profile-Hidden Markov Models (HMMs) were used instead to identify 

metagenome sequences putatively encoding cellulases. Domain-specific profile HMMs are 

commonly used to annotate cellulases from partial protein sequences by recognition of the protein 

domain architecture. HMMs are position-specific residue-scoring profiles built from alignments of 

multiple amino acid sequences with the same protein domain (126). These HMMs are more sensitive 

in detecting remote homologous sequences than local alignment tools, as the probability for 

multiple amino acid residues to be present at a certain position in the domain is taken into account 

(126). However, currently available HMMs from the Pfam database (184) or dbCAN (185) for 

detection of GH-family proteins are built from cellulase and non-cellulase protein sequences from 

the same GH-family and therefore often not specific for cellulases (183). Therefore, here a 

benchmarking effort was performed (see Table A1 in the appendix) for each GH-family containing 

cellulases, to identify the HMMs with highest cellulase-specificity from the Pfam database, the 

dbCAN or the self-built HMMs, generated from alignments of solely cellulase amino acid sequences. 

The benchmarking showed that, indeed, many self-built HMMs outperformed the HMMs obtained 

from public databases in recognizing specifically cellulase sequences, although still many non-

cellulase sequences were recognized by the best-performing HMMs (Table A1 in the appendix). 

Therefore, additional filtering to identify true cellulases was performed by amino acid sequence 

similarity search to CAZy-database sequences (using BLAST (121, 122), see Figures 12 and 23). Using 

this method 5,906 (0.63% of) reads from the conventional farming metagenome and 225,849 (0.43% 

of) reads from the organic farming metagenome could be annotated to the selected cellulase 

domain families before the extra filtering step and 2,021 (0.21% of) respectively 73,694 (0.14% of) 

reads after the filtering step. These results are comparable to other studies mining for carbohydrate-

active enzyme genes in metagenomes using HMMs for annotation; Hess et al. predicted 1.1% of a 

rumen shotgun metagenome to be carbohydrate-active enzyme genes (186). Metagenomic analysis 

of an enriched thermophilic cellulose-degrading sludge sample revealed approximately 0.9% of all 
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metagenome reads to consist of carbohydrate-degrading genes (187). A desert soil metagenome 

yielded ca. 0.5% of total sequence reads annotated as GHs (162) and a study of multiple soil 

metagenomes reported around 0.7% of combined reads to match carbohydrate active enzymes 

(159). However, these studies generally targeted all carbohydrate-active enzyme genes in the 

metagenomes, not only cellulase-containing domain families. Focussing on cellulolytic GH-families, 

Güllert et al. (188) could show an abundance of ca. 0.2-0.3% of sequenced reads from biogas 

fermenter, elephant faeces and cow rumen metagenomes to be cellulolytic genes. These results 

indicate that, using the applied method, a realistic amount of cellulase genes was captured in these 

metagenomes. Moreover, the applied methods (HMM and BLAST-search) are known to reliably 

annotate homologous protein sequences and to show low false-positive rates (174). In addition, 

Cardenas et al. show that sequence similarity search using BLAST with e-values of 10-4 and lower 

results in accurate prediction of CAZy-sequences (189). 

However, while the HMM-BLAST method may show low false-positive rates, it does not 

ensure the minimization of false-negatives (174). Therefore, another method was explored for 

annotation of GH5-cellulases, namely a combination of sequence similarity search (ssearch) and 

sequence clustering (using Markov Clustering, MCL). Ssearch is a more sensitive similarity search 

method than BLAST and FASTA, but requires more computational power and computation time 

when including many sequences (137). Using this method, protein sequences predicted from the 

sequencing reads were subjected to pairwise alignment together with database protein sequences, 

resulting in similarity scores between any two sequences. Subsequently, the protein sequences were 

grouped according to customized alignment score cut-offs, e.g. expect-value, overlap, percentage 

identity (MCL), (138)). Ultimately, when using optimized clustering cut-offs, clusters of related 

database sequences and related environmental sequences were obtained. These two methods were 

roughly compared for their sensitivity in annotating conventional farming metagenome-reads to 

GH5-domain family cellulases. This showed that the ssearch-MCL method yielded a higher amount 

(682) of annotated reads to GH5-family cellulases than the HMM-method (196 before and 78 after 

the filtering step). However, of the sequence reads annotated by the ssearch-MCL method ca. 30% 

could be taxonomically assigned on phylum level by comparison to the NCBI database (see Figure 

32), as compared to ca. 60% of reads annotated as cellulases by the HMM-BLAST method (see Figure 

14). Still, most GH5-cellulase reads annotated using both methods were assigned to the same 

microbial phyla: Proteobacteria, Actinobacteria and Bacteroidetes, although the ssearch-MCL 

method captured a higher abundance of GH5-cellulases from Cyanobacteria and a lower abundance 

of GH5-cellulases from Chloroflexi than the HMM-BLAST method. As both annotation methods are 

based on similarity to CAZy-database sequences, it is not completely clear what caused these 

differences in taxonomic assignment. Nevertheless, there are chances that the somewhat different 

characteristics of both methods (higher sensitivity of the ssearch-MCL method and lower specificity 

of the HMM-BLAST method for GH5-family cellulases, see above) resulted in the capture of a slightly 

different array of GH5-sequences from the environmental sample. Indeed, even though the possibly 

different sequences captured by both methods are related to the same reference sequences, they 

do not necessarily have to belong to the same microbial groups; phylogenetic analysis of GH5-family 

sequences from the CAZy-database shows low phylogenetic conservation among related sequences 

((100), Figure 33). Furthermore, the higher sensitivity of the ssearch-MCL method, which led to a 

higher amount of cellulase-annotated reads than by the HMM-BLAST method, may have resulted in 

the capture of many novel GH5-cellulase sequences which are not known in the database, 

accounting for the high proportion of taxonomically unassigned sequences. Indeed, the failure of 
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taxonomic assignment may either be due to non-significant similarity to sequences in the database 

or to significant similarity to sequences from different microbial phyla, leading to a failed agreement 

on phylum level-annotation (defined by the last-common-ancestor (LCA) parameter in MEGAN, see 

section 2: Materials and Methods).  

Whether the increased amount of reads annotated as GH5-cellulases by the ssearch-MCL 

method are indeed derived from highly diverse, novel GH5-cellulase sequences or in fact false 

positives remains to be determined. Nevertheless, application of the same method to a dataset of 

amplified gene sequences obtained from the same soil samples (from the conventional farming 

experiment) for the identification of GH5-subfamily 2 cellulase genes, suggests a relatively high 

accuracy of annotation; using the ssearch-MCL method, 743 unique amino acid sequences predicted 

from the amplified gene sequences were annotated as GH5-subfamily 2 (GH5_2) cellulases. In-depth 

analysis of these sequences showed high likelihood of successful identification of putative GH5-

cellulase sequences, as the majority of these (80%) contained the two conserved residues (see 

Figure 31 for conserved residues) which are involved in ligand binding in the active site of the 

cellulase (72). Furthermore, similar to the metagenome reads annotated as GH5-cellulases by the 

ssearch-MCL method, only a small proportion of the amplified GH5_2 cellulase genes could be 

taxonomically assigned (20%). To achieve a higher taxonomic assignment success, a less stringent 

taxonomic assignment cut-off was applied to the amplified GH5_2 cellulase genes. This led to an 

increase in the taxonomic assignment from 20% to 70% (Figure 32), illustrating the strong effect 

which ambiguous taxonomic origins of aligned database sequences can have on the taxonomic 

assignment. This increase in taxonomic assignments also led to the detection of increased 

phylogenetic diversity among the amplified GH5_2 cellulase genes (Figure 32). Indeed, taxonomic 

ambiguity of the amplified gene region ranged from differences in taxonomic origin at phylum level 

(e.g. similar to sequences from Proteobacteria and Firmicutes) to kingdom level, as some amplified 

gene sequences were similar to sequences from Actinobacteria but also to sequences from 

nematodes.   

 

Nevertheless, although the ssearch-MCL method seems promising for accurate prediction of 

cellulase sequences, it may not be preferable for large dataset-analysis due to the relatively high 

computation time. In addition, other promising methods exist which could be further developed 

(e.g. peptide pattern recognition, (182)) or are currently being explored (e.g. random forest-

mediated prediction, (190)). Nevertheless, great care must be taken with cellulolytic function-

predictions even when based on complete-gene sequences, as product-isolation studies have shown 

that predicted cellulase genes (based on sequence homology) do not appear to code for the 

designated function (e.g. (191)). This stresses the fact that, in order to conclusively annotate 

function to gene sequences, the putative functions have to be experimentally verified by for 

example isolation of organisms with the predicted gene or expression and production of the gene in 

a host organism (146). 

 

Phylogenetic diversity of GH5 cellulase genes in soil samples 

One of the aims of this research project was to assess the abundance of GH5-cellulase genes 

quantitatively by performing quantitative real-time PCR (qPCR). The GH5-encoding gene was chosen 

because it is one of the most abundant endoglucanase-related GH-families found in soil (101–103). 

In addition, it is harboured by a vast array of microorganisms from many different phyla (CAZy 
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database, (100)) in relatively high copy numbers (73), offering the potential of a diverse and holistic 

view of the microbial potential to degrade cellulose in soil. However, GH5-genes show a high 

sequence variability with only seven conserved residues dispersed over the length of the catalytic 

domain (104). Nevertheless, the identification of subfamilies within the GH5-family (100, 192) has 

facilitated the comparison of different members of the GH5-family within subfamilies. Here, a 

degenerate primer pair targeting an internal region of a gene coding for the conserved domain of a 

GH5-cellulase was developed. The primer-design was based on the alignment of a metagenome 

sequence from the soil of the conventional farming experiment, it being one of the metagenome 

sequences with highest alignment scores to database sequences from GH5. As the putative 

endoglucanase-encoding metagenome read and the two database sequences used for primer design 

were annotated as proteobacterial GH5-cellulases from subfamily 2, the primer pair was expected to 

target GH5-genes from subfamily 2. Indeed, in-silico primer-specificity analysis showed high 

specificity of the primer pair for proteobacterial GH5-cellulases from subfamily 2. However, the high 

phylogenetic diversity within the GH5-family, even within subfamilies (100), led to the expectation 

that the phylogenetic diversity of the sequences captured from the soil sample would exceed that of 

the sequences used for primer design. Moreover, the inclusion of a metagenome-derived read in the 

primer development process, thereby introducing additional diversity of GH5-coding sequences from 

the environment and, therefore, increased primer degeneracy, led to the expectation that the 

sequence diversity captured would exceed that of the functionally characterized database 

sequences from GH5-subfamily 2.  

Indeed, a high diversity of amplified sequences was obtained from the amplification of soil-

derived DNA using this primer pair. When comparing the in silico- and in vitro-amplification results, 

the results strongly suggest that the diversity of genes amplified by the employed primer pair is 

considerably higher in the studied agricultural soil than that known from the databases. However, 

sequencing data analysis also showed that the amplification yielded mostly unspecific sequences, 

which could neither be classified as GH5-cellulases from subfamily 2, nor as GH5-cellulases from 

another subfamily. Thus, although the target region of the primer pair was located within the 

conserved domain of GH5-cellulases from subfamily 2 (see Figure 31), the developed primer pair is 

not specific enough to ensure reliable quantification of GH5-cellulases in environmental samples. 

Several factors might have contributed to the occurrence of mismatches during PCR: First, the high 

primer degeneracy (especially of the reverse primer) may have led to unspecific hybridization 

because of the broad melting temperature range inherent to degenerate primer sets (see review by 

Kalle et al. (193)). Second, mismatches in the 3’ region of the reverse primer may have occurred due 

to the high amount of guanine (G)-residues in this region, considering that G-residue (purine) 

mismatches are more stable than cytosine (C)-residue (pyrimidine) mismatches (194). Third, the 

chances for unspecific binding might have been increased additionally by low abundance of the 

target sequence relative to the amount of DNA in the sample (193). This notion is supported by the 

observation of a single product in the single-template PCR using the GH5-gene from pure genomic 

DNA from C. japonicus as template (see Figure A1 in the appendix). Indeed, previous studies have 

reported successful development of primers for the amplification of GH5-genes from environmental 

samples (77, 195, 196), which likely contained a higher abundance of template sequences. For 

example, Pereyra et al. (195) analyzed the DNA from an anaerobic lignocellulose reactor, which in all 

likelihood was enriched with anaerobic cellulolytic microorganisms. Their degenerate primers were 

in fact designed based on cellulase reference sequences from anaerobic cellulose degraders 

belonging to three different microbial phyla. Moreover, these reference sequences all belonged to 
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GH5-subfamily 4, which contains mostly cellulases from anaerobic and rumen-dwelling organisms 

(100), indicating a more specialized environment enriched in target sequences. In addition, Nautiyal 

et al. (197) and Barbi et al. (77) reported successful development of primers for the amplification of 

transcripts of fungal GH5-cellulase genes obtained from chickpea roots respectively forest soil. When 

transcribing cellulase genes in response to available substrate presence, fungi are known to produce 

a multifold of transcripts with respect to the amount of cellulase encoding genes harboured (198, 

199). Thus, when assuming induction of expression in the environmental samples of Nautiyal et al. 

and Barbi et al., their transcriptome samples might also be considered enriched in template. 

Moreover, the transcript libraries employed by Barbi et al. contained predominantly mRNA due to 

their use of a poly(A)+ eukaryotic RNA-specific reverse transcriptase (77). Besides, their primers 

were developed based on fungal protein sequences from GH5-subfamily 5, which, as is shown by 

their own analysis as well, is a relatively conserved subfamily containing mostly fungal sequences 

(77, 100). Another study focussed on GH5-cellulase gene amplification from marine DNA-samples 

(196), which are known to be less diverse than soil samples (176, 178). In addition, they used 

primers which were developed based on multiple purely metagenomic sequences annotated as 

GH5-cellulases derived from a similar environment (marine samples) (196), indicating environment-

specific targeting. Thus, these studies suggest that the template-primer ratio is a significant factor 

influencing the success of GH5-cellulase gene amplification, besides primer specificity. Nevertheless, 

in all of these studies, verification of primer-specificity was performed by sequencing of a limited 

number of cloned PCR-products. While in the study of Barbi et al. (77) the amplification products of 

other primers (for amplification of e.g. GH11-encoding transcripts) were analysed using high-

throughput sequencing, the GH5-subfamily 5-amplification products were only analysed by cloning 

and sequencing of a subset of clones using Sanger technology. Moreover, they could show that 

primers (for amplification of GH11 and AA2-transcripts) proven specific for pure culture-DNA 

resulted in a considerable fraction of sequences harbouring a stop codon among the sequences 

analysed using high-throughput sequencing (77). Thus, as no high-throughput sequencing of the 

GH5-cellulase gene- or transcript-amplification products and, therefore, no exhaustive specificity-

check of all PCR-products had been applied in the studies discussed above, it cannot be excluded 

that, in these studies, also non-specific products have been amplified from the environmental 

(c)DNA.  

 

Nonetheless, a significant amount of the amplified sequences in this study could be predicted to 

encode GH5-cellulases from subfamily 2 (GH5_2 cellulases). The range of taxonomic affiliations of 

these sequences was, as expected, broader than that predicted by the in-silico primer-specificity 

analysis. Having targeted GH5-cellulases from subfamily 2, the amplified GH5 cellulase genes in this 

study were accordingly predicted to belong to mostly Proteobacteria but also to Actinobacteria, 

Firmicutes and Nematoda (Figure 32). This was not unexpected, as phylogenetic analysis of 

(functionally characterized) GH5-cellulases from the CAZy database (Figure 33 and (100)) showed 

that there is little conservation of GH5-cellulase sequences found within the same microbial phyla, 

or, vice versa, that similar GH5-cellulase sequences can belong to many different microbial phyla, 

even within the same GH5-subfamily. However, the low amount of amplified GH5_2 cellulase genes 

derived from Firmicutes is surprising, as the database sequences from GH5-subfamily 2 contain 

many sequences from Firmicutes (Figure 33). This observation may indicate that the employed 

primer pair exhibits amplification bias in favour of proteobacterial GH5-cellulases and against GH5-

cellulases from Firmicutes. Nevertheless, from the metagenomic GH5-cellulase genes identified from 
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the same soil and using the same identification method likewise few were harboured by Firmicutes 

(Figure 32). Therefore, it seems more likely that relatively few GH5-cellulase-harbouring Firmicutes 

are present in this soil. Conversely, the GH5-cellulase genes harboured by microbial phyla which are 

detected in the shotgun metagenome but are not by amplification (e.g. GH5-cellulases from 

Cyanobacteria, see Figure 32), probably belong to other GH5-subfamilies. This is supported by the 

observation that GH5-cellulases from for example Cyanobacteria have to date been reported to 

belong to GH5-subfamilies 1 or 55 but none to subfamily 2 in the CAZy-database (www.cazy.org, 

(60)).  

In addition, the results of this study show that the phylogenetic diversity of genes coding for 

GH5_2 cellulases in the studied soil is higher than that of functionally validated GH5_2 cellulase 

sequences in the CAZy-database (see Figure 35). Moreover, the amplification approach yielded a 

higher quantity of detected GH5_2 cellulase genes than the metagenomics approach, emphasizing 

the benefit of the amplification technique for diversity analysis. Furthermore, the results here show 

that the amplified GH5_2 cellulase sequences from this soil are generally closer related to each 

other than to database sequences. The same observation was made by Barbi et al. (77), who studied 

the phylogenetic diversity of fungal transcripts encoding AA2- and GH11-enzymes in forest soil by 

high-throughput sequencing, and by de Menezes et al. (200), who analyzed the actinobacterial 

GH48-gene diversity and quantity in pasture and woodland soil samples. These results all emphasize 

the lack of (functionally characterized) protein sequences in the databases.  In addition, the 

phylogenetic analyses here show that the amplified GH5-region, which includes two conserved 

amino acid residues, is similar between sequences harboured by many different phyla and does not 

show a monophyletic topology (Figure 35). This non-monophyletic clustering of GH5-cellulases was 

already apparent from the reference trees with partial (Figure 34) and complete (Figure 33) 

database sequences, as was also shown by e.g. Aspeborg et al. (100). However, the predicted 

taxonomic affiliations of the amplified GH5_2 cellulase genes from agricultural soil indicate an even 

more pronounced polyphyletic nature of the GH5_2 cellulase sequences. Moreover, these 

phylogenetic patterns and the additional observed ambiguity in taxonomic assignments provide 

indications of possible HGT events. It should be noted, however, that the predicted taxonomic 

affiliations of the amplified cellulases here rely on database-homology analyses only, which is error-

prone especially with sequences of short length. This method can overestimate HGT events and any 

indications of HGT should be verified by whole genome-analyses (201). In addition, phylogenetic tree 

analysis is a valid method to identify possible HGT events, but they are most reliable when using 

complete gene sequences containing the complete open reading frame (202), especially when 

assuming that HGT mostly occurs with complete genes or domains. Therefore, the observed 

indications of HGT in this study were further analyzed using complete protein sequences from the 

NCBI non-redundant protein database which showed highest similarity to the amplified GH5_2 

cellulase sequences in question. This indeed resulted in some cases in the recognition of false HGT-

indications, but in other cases led to additional interesting phylogenetic insights. For example, 

reference sequences of Nematoda (Heteroderinae) and amplified GH5_2 cellulase sequences 

derived from Actinobacteria show homology both in the phylogenetic tree based on partial GH5-

sequences and in the tree based on complete GH5-sequences; while the amplified GH5_2 cellulase 

sequences in question are predicted to be derived from Actinobacteria (using an annotation pipeline 

based on all top 25 BLAST hits), their closest relative among functionally characterized partial 

database sequences is a GH5-cellulase from Nematoda (Heteroderinae) (Figure 35-E). Strikingly, the 

two top BLAST hits of these amplified GH5_2 cellulase sequences, which originate from cultivated 
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members of the Actinobacteria (Micromonospora spp., (203)), are also more similar to the reference 

sequences isolated from Nematoda (e.g. (45, 204)) and from cultured isolates of Cytophaga 

hutchinsonii (205) than to reference sequences from Actinobacteria (Figure 36). Interestingly, the 

amplified GH5_2 cellulase sequences exhibit ambiguous taxonomic assignments, as the top 25 BLAST 

hits of several of these amplicon sequences contained sequences originating from nematodes. Since 

Micromonospora have been identified as plant-endophytes (206) and Heteroderinae are known 

plant-parasites (207), they share the same plant-associated environment and show high potential to 

be in close proximity of each other. Therefore, it is not unimaginable that cellulase genes from these 

Actinobacteria may have been transferred to nematodes. Indeed, transfer of genes encoding plant 

cell wall-degrading enzymes from bacteria to nematodes has been suggested before (208). 

Interestingly, many GH5-cellulases in nematodes are found in combination with a CBM2-domain 

(204) and the closest homologues of these nematode-CBM2-domains were actinobacterial CBM2-

domains (95, 204). However, transfer of the GH5-catalytic domain from bacteria to nematodes was 

also proposed by Danchin et al. (95), who identified a GH5-domain from C. hutchinsonii as the 

closest bacterial homologue. These results, together with the topology of the complete domain-

phylogenetic trees shown here (Figures 33 and 36), suggest that both the catalytic and cellulose 

binding domain in the GH5-cellulase gene of nematodes may have been acquired from 

Actinobacteria or Bacteroidetes. Although separate acquisition of both domains by horizontal 

transfer and domain shuffling is theoretically possible and has been shown for bacterial genes with 

GH5- and CBM2-domains (obtained from actinomycetes (209)), research by Kyndt et al. (204) has 

not found support for separate acquisition or shuffling events of domains in the GH5-cellulase gene 

of nematodes. Nevertheless, the cellulase sequences from Micromonospora spp. (top BLAST hits of 

the amplified GH5_2 cellulase sequences harboured by Actinobacteria) also show high similarity to a 

database sequence without functional annotation from cultured Sphingomonas spp. (210) (Figure 

36). Despite the lack of strong statistical support of the tree topology and the fact that this 

proteobacterial sequence is not functionally characterized, this observation suggests that GH5-

cellulases from Proteobacteria (Sphingomonas) may also be possible sources of the GH5-cellulases 

transferred to nematodes. Accordingly, most of the amplified GH5_2 cellulase genes which are 

assigned to nematodes in this study are closely related to those assigned to Proteobacteria (see 

Table 4). Moreover, phylogenetic tree analysis by Kyndt et al. identified a GH5 catalytic domain from 

Cellvibrio japonicus as the closest homologue to the GH5 cellulases from nematodes (204). Finally, 

intracellular proteobacterial parasites (Wolbachia spp.) have been shown to be a source for HGT to 

nematodes (211), further supporting the possibility of proteobacterial GH5 gene transfer to 

nematodes.  

Further indicative of HGT events are the amplified GH5_2 cellulase genes showing high 

similarity to the partial GH5-database sequence of the protist Spirotrichonympha (see Figure 35-C). 

These amplified sequences are predicted to be harboured by Gammproteobacteria, but also to 

Firmicutes and to a protist. The top BLAST hits of those assigned to Gammaproteobacteria and 

Firmicutes do not, however, show similarity to the complete GH5-cellulase sequence of the protist 

Spirotrichonympha, (Figure 36). Instead, they show high similarity to GH5-database sequences from 

cultured members of the Gammaproteobacteria (e.g. Dickeya dadantii (212)), Firmicutes (e.g. 

Bacillus spp. (213)) and Bacteroidetes (C. hutchinsonii, as discussed above (205)). This indicates that 

the close relationship between the partial reference sequence of Spirotrichonympha and the 

amplified GH5_2 cellulases derived from Gammaproteobacteria and Firmicutes was attributable to 

similarities in the amplified region only (Figure 35-B respectively -D) and not to complete-domain 
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similarities (Figure 36). Nevertheless, both the topology of the reference sequence tree (Figure 33) 

and the taxonomic ambiguity observed in the top BLAST hits of the amplicon sequences suggest 

possible evolutionary relationships between GH5 cellulases from Gammaproteobacteria, Firmicutes, 

Bacteroidetes and protists. Corroborating this, Danchin et al. (95) identified several GH5 cellulases 

from Bacteroidetes (Bacteroides and Flavobacterium spp.) to be the closest relatives to the same 

protist-GH5 sequence as was investigated here. Furthermore, based on phylogenetic analysis of GH5 

genes obtained from symbiotic protist cDNA-libraries, Todaka et al. postulate HGT of GH5 genes 

from bacteria to protists, with the closest homologue being a GH5 gene from a 

Gammaproteobacterium (214). These genes may have originated from ectosymbiotic Bacteroidetes 

(215) or from intranuclear proteobacterial (216) residents of these protists.  

 

Thus, phylogenetic analysis of amplified GH5_2 cellulase sequences from agricultural soil has 

provided additional incentive to further investigate the evolutionary origins of GH5-cellulases or the 

GH5-catalytic domain among eukaryotes (protists and nematodes) and bacteria (especially 

Actinobacteria, Proteobacteria and Bacteroidetes). Whether or not the indications of GH5-HGT 

events are specific for this soil remains to be explored. However, as the proposed transfers of GH5-

cellulases from bacteria to nematodes or protists are thought to be ancient (95, 214), there is no 

indication that the observed putative phylogenetic patterns of GH5 cellulase genes in this soil are of 

a recent or local nature. Nevertheless, based on the results presented here it can be postulated that 

the investigated soil contains many cellulase sequences which may provide insight into the cellulase 

evolutionary history.  

 

 

  



6 - Discussion 

87 
 

II - Influence of tillage on microbial cellulose degraders 
This project focussed on the influence of tillage intensity on the microorganisms involved in the 

degradation of cellulose in soil. It was expected that soil under reduced tillage comprises a higher 

diversity and relative abundance of cellulose-degrading microorganisms than soil under conventional 

tillage, as a response to higher organic carbon input and content in the surface soil horizon under 

reduced tillage. To investigate this, soil was sampled of two field experiments which applied tillage 

treatments of different intensity: reduced or shallow non-inversion tillage and conventional or deep 

inversion tillage in either conventional or organic farming practice. The field experiment under 

conventional farming practices had been performed for an extended period of time (20 years) and 

the experiment under organic farming practices for a shorter period (4 years) of time. Here, the 

results of the analysis of the obtained shotgun-metagenomes of each field experiment are discussed.  

 

Responses of the soil microbiome to tillage in the conventional farming experiment 

 

Long-term tillage effects 

In the long-term field experiment on a silty clay loam soil, different tillage intensities had been 

applied under conventional farming management for twenty years, allowing the investigation of the 

long-term effects of tillage on the soil carbon status and the soil microbial community. The surface 

soil horizon under reduced tillage was found to contain a higher amount of organic carbon and 

nitrogen than under conventional tillage and observations from other studies of tillage effects in silt 

loam soils in North-western Europe could thus be confirmed (217, 218), in a meta-analysis (219) as 

well from previous measurements on the same experimental site (24). Presumably, the long-term 

addition of fresh organic matter from crop residues in this soil layer resulted in higher amounts 

added in the surface soil horizon under reduced tillage than under conventional tillage (14). 

Depending on the soil type, organic matter at several stages of decomposition stabilizes in soil 

aggregates and binds to clay particles (29, 220, 221). The higher content of stable organic matter in 

soil induces favourable conditions for microbial growth, e.g. higher moisture content (222), as was 

also observed here, and higher availability of nutrients. In agreement with these processes, dissolved 

organic carbon levels were higher in the surface soil layer under reduced tillage than under 

conventional tillage in this study, although no differences in soil mineral nitrogen levels were 

observed here between tillage treatments. This favourable environment for microbial growth with 

high soil organic carbon levels therefore leads to higher amounts of microbial biomass (223) under 

reduced tillage than under conventional tillage, as was shown in numerous studies (217, 218, 224–

226). Accordingly, higher amounts of microbial biomass carbon and nitrogen (Figure 6) and higher 

abundances of 16S- and ITS-rRNA genes were measured in this experiment in soil under reduced 

tillage than in soil under conventional tillage. As the number of ITS- or 16S-rRNA genes per ng DNA 

did not differ between the tillage treatments in this study (data not shown), these results indeed 

show that a higher bacterial and fungal abundance was present in the soil under reduced tillage than 

under conventional tillage. Moreover, the ratio of 16S- to ITS rRNA genes was higher in soil under 

conventional tillage, indicating enrichment for bacteria or suppression of fungi under conventional 

tillage compared to under reduced tillage. These results support the theory that the increased soil 

disturbance caused by more intense tillage (i.e. inversion in the conventional tillage treatment 

versus non-inversion in the reduced tillage treatment) leads to a reduction in fungal abundance, 
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possibly by disrupting their hyphal networks. Indeed, conventional tillage systems have been shown 

to have a negative effect on fungal abundances (227) and hyphal length (228).  

 A higher carbon availability also leads to a higher metabolic activity of the soil microbial 

community (229–231). This relationship is illustrated by the measurement of higher xylose- and 

cellobiose-metabolism in the organic soil horizon than in the mineral soil horizon in a forest soil 

(102). Furthermore, the observed linear relationship between polysaccharide hydrolysing activities 

and plant organic matter availability measured in lake sediments (232) also supports the idea of 

increased cellulolytic activity in soil with higher organic carbon contents. Indeed, higher potential 

activities of the extracellular enzymes xylosidase, β-glucosidase and cellobiohydrolase were found 

here in the surface soil under reduced tillage than under conventional tillage (Figure 7). Moreover, a 

higher potential cellobiohydrolase activity per unit microbial biomass was observed here under 

reduced tillage compared to conventional tillage, suggesting that the microbial community under 

reduced tillage was more specialized in degradation of large carbohydrates like cellulose than the 

microbial community under conventional tillage in this soil. Therefore, it was expected that those 

microorganisms involved in degradation of cellulosic (and cellulose-related) compounds were 

enriched in soil under reduced tillage relative to soil under conventional tillage and that this 

enrichment would be visible in a relatively higher genetic potential to degrade cellulose. However, 

no clear differences in relative abundances of genes involved in cellulose degradation between 

tillage treatments were observed (Figures 11 and 13). In fact, a high overall phylogenetic and 

functional diversity of cellulase-genes was observed in the metagenome of this soil, irrespective of 

tillage treatment. This indicates that the microbial potential for cellulose degradation is not strongly 

influenced by the investigated tillage treatments, even after twenty years of application. Although 

no other studies have specifically investigated the influence of different tillage intensities on the soil 

carbohydrate-active genetic potential, differences in carbohydrate degradation potentials between 

soils with different organic matter or nutrient contents have been observed. For example, a shotgun-

metagenome study showed that the organic soil horizon in a forest soil contained relatively more 

glycoside hydrolase-genes than the mineral soil horizon (102). In another deep-sequencing shotgun-

metagenomic study, Cardenas et al. (189) showed that cellulose-active oxidoreductase and glycoside 

hydrolase genes were more abundant in forest soil layer with a higher amount of organic carbon and 

other nutrient content. The fact that these studies achieved a higher sequencing depth than this 

study may indicate that not enough genetic diversity was covered here to detect differences 

between tillage treatments. Nevertheless, both studies mentioned were performed on relatively 

undisturbed forest soils, whereas the soil investigated here has been under recent influence of 

agricultural management practices.  

 

Short-term tillage effects overruling long-term effects  

In this long-term field experiment, after about twenty years, the short-term effects of soil 

disturbance by tillage and fresh organic matter incorporation may have been more important for the 

microbial community structure than the long-term tillage effects. Tillage itself leads to a priming 

effect of the microbial community by increasing oxygen availability and by the release of stable soil 

organic matter through destruction of soil aggregates (233). In combination with fresh organic 

matter incorporation (234), tillage leads to a sudden increase of bio-available old and fresh organic 

matter. This induces an increase in microbial activity which can last weeks or months in bulk soil 

(235). As soil sampling for this study was done around five weeks after tillage and maize straw 

incorporation, short-term effects of tillage and residue incorporation can be expected to a similar 
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extent under both tillage treatments. Therefore, the observed low degree of differences in microbial 

community composition between soils under the investigated tillage intensities is not altogether 

surprising. 

Nevertheless, some differences in relative abundances of microbial groups and protein-

coding genes between tillage treatments were observed in this experiment (Figures 19 and 20). 

Most of these microbial groups and protein-coding genes cannot be clearly related to cellulose 

degradation and are therefore apparently not as influenced by the recent incorporation of fresh 

cellulose but by more subtle differences in substrate availability affected by tillage treatment. These 

subtle differences are probably caused by the stage of fresh organic matter decomposition in the soil 

surface under each tillage treatment, influencing the succession of microorganisms with different 

life-history strategies. For example, it has been postulated that, during such pulse events of 

increased fresh substrate availability and microbial activity, r-strategists increase in abundance 

rapidly, whereas K-strategists remain in low abundance (236). Chen et al. (237) showed that, indeed, 

the initial degradation of fresh organic matter likely occurs by r-strategists. However, after depletion 

of the fresh organic substrate or nitrogen, the K-strategists obtain a competitive advantage, being 

better able to degrade more recalcitrant native soil organic matter (237). Furthermore, conventional 

tillage has been shown to favour K-strategists, also designated as slow-growers, whereas reduced or 

non-inversion tillage favours r-strategists, or fast-growers (238), indicating that tillage intensity can 

influence the successional stage of the soil microbial community. This tillage effect might be 

explained by an earlier exhaustion of plant residue-derived carbon in the surface soil under 

conventional tillage, because of lower initial amount of incorporated carbon than under reduced 

tillage. In surface soil under conventional tillage, therefore, the soil circumstances provide a 

competitive advantage for the K-strategists (239), degrading more recalcitrant organic compounds, 

at an earlier time point after residue incorporation than under reduced tillage. Thus, while at the 

time of sampling the r-strategists may have grown in abundance to a similar extent in soil under 

both tillage treatments, the K-strategists would have started to regain growth advantages under 

conventional tillage. Indeed, the microbial groups observed to be relatively more abundant under 

conventional tillage than reduced tillage in this metagenome (members of the Chloroflexi, 

Armatimonadetes, Crenarchaeota and Solibacteres (Acidobacteria)) have been associated with K-

strategist characteristics, like slow growth rates or adaptations to relatively nutrient-poor 

environments; For example, microorganisms of the phylum Armatimonadetes were shown to be 

enriched in the mineral layer of a forest soil as compared to the organic layer (103). Moreover, the 

tillage effect observed on Armatimonadetes in this study could be traced back to genus level, where 

the Fimbriimonas showed the observed higher relative abundance under conventional tillage than 

reduced tillage. A member of this genus, Fimbriimonas ginsengisoli, was indeed shown to grow only 

in low-nutrient media (240). Furthermore, members of the phylum Acidobacteria and Chloroflexi 

were found to be enriched among very slow-growing soil bacteria (241) and to have relatively small 

cell sizes (96). Chloroflexi and Crenarchaeota, among other microbial groups, were found to be 

dominant in savannah soils with 38-times lower carbon and nitrogen content than grassland soils 

(242). Moreover, negative correlations between relative abundance of members of Chloroflexi and 

Acidobacteria and increasing soil phosphate or nitrogen contents (243) or increased nitrogen inputs 

(244) were found. In addition, the relative abundance of Acidobacteria and Armatimonadetes 

decreased along a pedogenic gradient from less- to well-developed soils, correlating with soil quality 

parameters like organic carbon and water-stable aggregates (245).  
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Also the observed tillage effects on protein-coding genes may be explained by the 

differences in stage of fresh organic matter decomposition under both tillage treatments. For 

example, genes coding for enzymes involved in fatty acid metabolism (especially long-chain-acyl-CoA 

dehydrogenase, ferredoxin-NAD+ reductase and cytochrome P450/NADPH-cytochrome P450 

reductase (data not shown)) and methane metabolism (especially carbon mono-oxide 

dehydrogenases, catalase-peroxidases and serine- and coenzyme-biosynthesis (data not shown)) 

showed a higher relative abundance under conventional than reduced tillage. These genes mainly 

code for proteins involved in redox-enzyme reactions and reactive oxygen-stress. Dehydrogenases, 

cytochromes and ferredoxin are involved in energy production or modification of steroids, fatty 

acids, polyketides and some aromatic compounds (246, 247). As native soil organic matter has 

higher levels of amides, lipids and organic acids than fresh organic matter (248, 249), the observed 

increase in redox enzymes under conventional tillage may be related to a higher degradation of 

native soil organic matter relative to fresh plant residues. In addition, a higher relative abundance of 

genes coding for enzymes involved in xenobiotics degradation and metabolism (e.g. styrene-, 

toluene-, (amino)benzoate- and drug-degradation pathways) was observed here in soil under 

conventional tillage than under reduced tillage. Similar results were found by Degrune et al., who 

observed a higher abundance of putative herbicide-degrading Sphingomonas bacteria in soil under 

conventional tillage as opposed to reduced tillage (250). Indeed, herbicides had been applied several 

times (Glyphosate, Bromoterb, Gardogold and Motivell) during growth of the maize plants on all 

plots of the experimental field studied here (personal communication (Georg Gerl, field records)). It 

is therefore not surprising that the microbial community in this soil exhibits many genes coding for 

xenobiotics- or drug-degrading enzymes. Following the same reasoning as above, the higher relative 

abundance of these genes in soil under conventional tillage is also likely due to a higher degradation 

activity of recalcitrant native soil organic matter or remnants of herbicides, due to an earlier 

limitation of easily accessible carbon.  

 

Enzyme activities explained by transcriptional differences 

The higher potential extracellular enzyme activity observed in this study under reduced tillage 

(Figure 7) might also be a result of the short-term effects of the applied tillage treatments. At the 

time of sampling, only a few weeks after the harvest of corn, the maize plant residues had been 

recently incorporated into the top 25 cm of soil in the conventionally tilled plots and into the top 8 

cm of soil in the reduced tillage plots. As the soil under reduced tillage had been supplied with 

higher levels of fresh organic matter than the soil under conventional tillage (14), a higher amount of 

substrate might have led to a differential (post-) transcriptional regulation of enzyme production in 

the soil under reduced tillage compared to conventional tillage. This higher transcriptional or 

translational response could explain a higher availability of cellobiohydrolases. In forest soils it was 

shown that very low-abundant fungi can transcribe a high amount of cellobiohydrolase-sequences 

(78), suggesting a highly regulated transcriptional response of soil microorganisms to available 

substrate. Indeed, microbial cellulase production was shown to be strongly induced by the presence 

of cellulose or its degradation products (53, 55, 251).  

Still, it would be expected that the observed higher levels of potential cellobiohydrolase 

activity leads to a higher relative abundance of the cellulose degraders because of competitive 

advantage in nutrient acquisition. One reason this is not observed in the metagenome-results might 

be the broad phylogenetic dispersion of the cellulose-degradation trait. Cellulose degradation has 

been differentiated into two discernible traits by Berlemont and Martiny (73); the “real” cellulose 
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degraders, which are bacteria able to produce “real” cellulases (endoglucanases and exoglucanases), 

and the cellulose utilisers, which are able to only utilise the degradation products (producing for 

example β-glucosidases). Although not a high proportion of the bacteria they investigated were 

cellulose degraders (ca. 24%, (73)), the cellulose-degradation trait is a broad trait which is shared 

among many different microorganisms (73, 74, 100), as is also evident from the CAZy database 

(www.cazy.org, (60)). This is also highlighted here, where the exoglucanases and especially 

endoglucanases are harboured by a large diversity of microorganisms (Figures 11 and 14). Whereas 

these microorganisms share the cellulose-degradation trait, they are likely very different regarding 

other functional traits influencing their competitiveness. For instance, based on their results, Chen et 

al. hypothesized that cellulose degradation-capability is not specific for r- or K-strategists (237). 

Besides the presumed functional redundancy of the cellulolytic trait, the in situ activity of 

cellobiohydrolase may be diminished by the presence of other recalcitrant plant cell wall-polymers 

present in the maize straw (252), which can decrease the access of cellulases to their substrate. This 

may reduce the growth advantage of cellulolytic microorganisms. Adding to the fact that 

extracellular enzyme action leaves room for non-cellulose degraders to utilise the released cellulose-

oligomers offers a possible explanation why organisms harbouring genes encoding real cellulases do 

not show a competitive growth-advantage compared to the cellulose utilisers. Instead, all 

microorganisms with the ability to utilise cellulose- and other plant polymer-degradation products 

seem to be profiting from the increased availability of degradable organic compounds. Therefore, no 

strong changes in genetic potential to degrade cellulose are observed in the microbial communities.  

Whereas the total amount of metagenome reads derived from the phylum Chloroflexi was 

higher in soil under conventional tillage relative to reduced tillage, the number of GH3-genes 

harboured by Chloroflexi was relatively higher in soil under reduced tillage compared to 

conventional tillage. This suggests that the members of Chloroflexi which harbour genes for cellulose 

utilization exhibit a different response to tillage than the majority of the Chloroflexi-members. In this 

study, GH3-genes were assigned to four Chloroflexi-genera; Anaerolinea, Chloroflexus, Roseiflexus 

and Ktedonobacter (data not shown). Only those harboured by Chloroflexus showed a higher relative 

abundance under reduced tillage than under conventional tillage. Conversely, the total amount of 

reads derived from Chloroflexus genus was not affected by tillage, whereas the total amount of 

reads derived from Roseiflexus, Oscillochloris and Ktedonobacter was found to be relatively higher 

under conventional tillage compared to reduced tillage. Thus, these observations suggest that 

Chloroflexus spp. harbouring GH3-genes are in advantage in soil under reduced tillage compared to 

soil under conventional tillage and that they show a different ecological response than most other 

genera of the Chloroflexi. This finding is not completely surprising as the phylum Chloroflexi contains 

many bacteria with different metabolic attributes (253). However, it is not clear if the observed 

ecological differences between genera is attributable their ability to utilise cellulose. After all, other 

genera of the Chloroflexi were also found to harbour GH3-genes in this metagenome. Rather, the 

response to tillage may be dependent on the cellulose-degrading capabilities of microorganisms on a 

species- or individual level. This is supported by the results of Berlemont and Martiny (73, 74), who 

found that potential cellulose degraders and utilisers formed phylogenetic clusters at the species 

respectively genus level. 
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Responses of the soil microbiome to tillage in the organic farming experiment 

In this field experiment conducted on clay loam soil, different tillage intensities had been applied for 

four years under organic farming management. In these four years before sampling, residues of two 

cover crops and two main crops (maize and beans) had been incorporated into the soil, but the 

residues of two winter wheat-crops had been removed (106). Due to the short time period in which 

the different tillage treatments had been applied and the absence of wheat straw incorporation, no 

significant differences in soil organic carbon levels were observed between tillage treatments or 

between the two investigated soil depths. Indeed, recently it was shown that in the same field 

experiment differences in total soil carbon content between tillage intensities were visible after two 

more years of experiment duration (254). In addition, D’Haene et al. (218) show that an effect of 

reduced tillage on the soil organic carbon levels in the surface soil horizon only becomes visible after 

a longer period of different tillage application and is related to the amount of crop residues used as 

carbon-input. For example, after six years of different tillage treatments in a silt loam soil in Belgium 

(255) no differences is soil carbon stock were observed. However, nine years of differential tillage 

treatment in a sandy loam soil in Ireland led to significant differences in soil carbon stocks in the top 

30cm of soil (18). Nevertheless, in a loamy sand soil in Denmark, no differences in organic carbon 

stock were observed in the surface soil layer between conventional and reduced tillage even after 

ten years of treatment (15), indicating the importance of soil texture to tillage impact on soil carbon 

stocks. Furthermore, the fact that this field had been farmed under organic management since 2002 

(106) may also explain the lack of tillage-effect on soil organic carbon contents, as organic farming is 

known to improve soil organic carbon levels compared to conventional farming; to illustrate, the 

Figure 37: Percentage of CBM-containing functionally characterized sequences in the CAZy database with 
a nother domain on the same protein sequence, either a cellulase-relevant GH- or AA-domain or 
another/unknown domain (primary y-axis).  This is shown per CBM-family for all functionally characterized 
sequences with that CBM-domain (All) or only for those of which a cellulase function has been 
characterized (Cellulase). In addition, the number of available functionally characterized sequences is given 
within each bar (secondary y-axis). Data was extracted from the CAZy database (www.cazy.org, (60), 
October 2017). 
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farming system-combinations “organic farming+conventional tillage” and “conventional 

farming+reduced tillage” have been shown to lead to the same increase in soil organic carbon levels 

as compared to “conventional farming+conventional tillage” (256). This effect of organic 

management on soil carbon content is possibly masking the effect of reducing tillage intensity in this 

experiment, at least after four years of treatment.  

Whereas no significant tillage effect on soil organic matter content was observed here, the 

soil microbial biomass carbon and nitrogen were higher under reduced tillage than under 

conventional tillage in the surface soil horizon (Figure 17). This is surprising, as soil organic carbon 

and microbial biomass levels have been found to correlate (257). Nevertheless, as total organic 

carbon levels did show a trend towards higher levels under reduced tillage than under conventional 

tillage in the surface soil horizon, this correlation can be endorsed with the data presented here. 

Moreover, also in the soil horizon below the reduced tillage-working depth (10-16 cm), the soil 

organic carbon levels paralleled the microbial biomass carbon content, which showed no differences 

between tillage treatments in this soil horizon. The latter observation is consistent with results 

obtained in other studies (218, 224, 258), where likewise no differences in soil microbial biomass 

between tillage treatments were found in the soil horizon beneath the reduced tillage-working 

depth, in soils with varying texture (respectively silt loam, fine-sandy loam and sandy loam/loamy 

sand). Here, in the surface soil horizon, it appears that microbial biomass levels show an earlier 

response to differences in tillage intensity than soil organic carbon levels, as is also suggested by 

D’Haene et al. (218). The observed increased microbial biomass under reduced tillage in the surface 

soil horizon can, however, not be directly explained by differences in fresh plant residue additions 

between tillage treatments, as sampling at this site occurred five months after tillage, performed 

during spring weed management (personal communication), and ten months after plant residue 

incorporation from the former crop. 

 

Influence of the rhizosphere on soil microbial community composition 

Alternatively, the observed microbial biomass response to tillage intensity may be explained by 

differences in rhizosphere organic carbon content between tillage treatments. At the time of 

sampling, winter wheat had been harvested 1 week before with the removal of all above-ground 

plant biomass and without tillage, but leaving the wheat plant roots intact in the soil. As the total 

organic carbon content presented here was measured from soil samples which cannot be clearly 

designated as either bulk or rhizosphere soil, only a non-significant tillage effect could be observed. 

The combined sampling of bulk and rhizosphere soil has probably led to the mixing of 

heterogeneous soil compartments with regard to organic matter content. The differentiation 

between bulk and rhizosphere soil is of importance as tillage appears to impact the rhizosphere 

environment more than the bulk soil environment in terms of soil organic carbon and microbial 

biomass; in a study of the top 10 cm of a nine year-long field experiment, Yang et al. (259) did not 

find differences in bulk soil organic carbon content between different tillage treatments, but they 

did show higher organic carbon contents in wheat rhizosphere soil under no-tillage than under 

conventional tillage. In accordance, rhizosphere soil under reduced tillage has been shown to 

contain higher bacterial numbers compared to that under conventional tillage (225). Moreover, 

rhizosphere soil under no-tillage was shown to lead to higher root colonization with rhizosphere 

bacteria as compared to conventional tillage (260). In addition to this, increasing evidence suggests 

that the surface soil horizon under reduced tillage contains a higher density of roots than under 

conventional tillage, as winter wheat adapts its root distribution according to soil compaction under 
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the tillage horizon; For example, in a calcareous clay loam soil in Slovenia, reduced tillage with 6 cm-

working depth led to a higher soil penetration resistance in the top 6-30 cm of soil compared to 

conventional tillage with 25 cm-working depth (261). In a silt loam soil in Belgium, winter wheat-root 

density has been shown to be higher under reduced tillage in the surface soil horizon (0-10 cm) but 

lower in the deeper soil horizon (20-30 cm) compared to conventional tillage (262). Other studies in 

a sandy loam (263) and silty clay loam  (264) soil, investigating winter wheat root distribution at the 

ripening respectively anthesis stage of development, have shown a similar root length density in the 

surface soil horizon (0-10 cm) between reduced and conventional tillage treatments, but a lower 

root length density under reduced tillage in the deeper soil horizon (10-25 cm). Taken together, it 

may be assumed that, here, in a similar soil (clay loam) and at a similar stage of winter wheat 

development (shortly after grain filling and harvest), the soil contains a higher root density and, 

therefore, higher amount of rhizosphere-organic carbon content under reduced tillage than under 

conventional tillage in the surface soil horizon. This pattern is reversed in the deeper soil horizon, 

where the winter wheat roots would have grown denser under conventional tillage than under 

reduced tillage. Thus, the wheat rhizosphere has presumably selected a diverse soil microbial 

community capable of degrading various organic molecules derived from rhizodeposition, which 

includes extracellular polysaccharides, dead plant root cells and various root exudates, e.g. 

phytosiderophores, phenolic compounds, hydroxamic acids and short-chain fatty acids (see reviews 

by Dennis et al. (265) and Bertin et al. (266)).  

Here, the majority of the most abundant microbial community-members were indeed found 

to be enriched under reduced tillage in the surface soil horizon or under conventional tillage in the 

deeper soil horizon, or both (see Figure 19). This tillage-responsive community consisted mainly of 

highly abundant microbial families including many rhizosphere-associated and plant-symbiotic 

bacteria from the Actinobacteria and Alphaproteobacteria. Microbial families from these classes of 

bacteria had indeed been found enriched in the wheat rhizosphere compared to bulk soil in a 16S 

rRNA gene amplicon study (267). In addition, Micromonospora are known plant-endophytes with 

plant growth-promoting abilities (206). Microbacteriaceae and Streptomycetaceae were found more 

abundantly in the organic soil layer than the mineral soil layer of a forest soil (103). Actinobacteria 

are known to produce varying sorts of antibiotics (268), providing pathogen control mechanisms for 

the plant. In addition, Actinomycetes are known to be able to degrade various recalcitrant or 

polymeric organic compounds, like pesticides (269) but also cellulose (270), illustrating their 

probable role in the degradation of dead plant root cells or root exudates. Members of the 

Alphaproteobacteria are also well-known nitrogen-fixing plant root endophytes (271) and are 

considered efficient utilisers of a broad range of organic carbon (272). Further microbial groups in 

this metagenome showing the aforementioned responses to tillage were families from the Beta-, 

Gamma- and Deltaproteobacteria; the Oxalobacteraceae and Comamonadaceae 

(Betaproteobacteria), the Xanthomonadaceae (Gammaproteobacteria), the Polyangiaceae, 

Cystobacteraceae, Labilitrichaceae and Myxococcaceae (Deltaproteobacteria). Members of the 

Burkholderiales (Betaproteobacteria) were found strongly enriched among wheat-rhizosphere 

bacteria and capable of phosphate solubilisation and siderophore production (273). They are 

furthermore well known from their role in nitrification, carrying out the first step as ammonia-

oxidizers (274) and to be the major users of plant exudates (275). Pseudomonadaceae and 

Xanthomonadaceae are known as dominant members of the rhizosphere (273, 276, 277) and as 

plant-growth- promoters  (271), biocontrol agents (Lysobacter) (278) but also phytopathogens (279). 

Members from the Myxobacteria are especially known for their competitive lifestyle producing 
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bioactive compounds and as bacterial predators (280) and may therefore function in the protection 

of the plant against phytopathogens. Finally, some other microbial families with a higher relative 

abundance under reduced tillage in the surface soil horizon or a higher relative abundance under 

conventional tillage in the deeper soil horizon were found which can be associated with the plant 

rhizosphere. Among them were a family of the phylum Verrucomicrobia (Opitutaceae), two families 

of the Bacteroidetes (Bacteroidaceae and Prevotellaceae), the Microchaetaceae (Cyanobacteria) and 

several important fungal groups like the Nectriaceae, Herpotrichiellaceae and Aspergillaceae 

(Ascomycota). Ascomycota (for example, members of the order Hypocreales) are known to be rapid 

rhizodeposition degraders (275). The role of Opitutaceae in the rhizosphere is not yet clear, but they 

have been found to be enriched in the rhizosphere of several plants, for example wheat (281), rice 

(282) and maize (283), and are shown to be highly cellulolytic (103) or to contain a high genetic 

potential for cellulose degradation (51). Moreover, they have been found to be more abundant in 

soil under reduced tillage than conventional tillage (281), corroborating the abundance patterns 

observed here in this experiment. Bacteroidetes are predominantly found in soils rich in organic 

matter and have been shown to be potent cellulose degraders (103). Moreover, Bacteroidetes and 

Cyanobacteria have been identified as rhizosphere bacteria of maize plants (276) and sugar beet 

(277). A summary of the tillage effects on microbial groups found in this metagenome can be 

observed in the overview Figure 38. 

 

Rhizosphere-associated catabolic activities 

Thus, many differences in the microbial community composition between soils under reduced or 

conventional tillage can be related to their association with the wheat rhizosphere. Protein-coding 

genes predominantly assigned to the rhizosphere-associated microbial community described above 

are related to nutrient acquisition and uptake, (recalcitrant) organic compound degradation and 

bacterial warfare; for example, genes involved in membrane transport (ABC-transporters) are more 

abundant among members of the rhizosphere-associated microbial community than among the rest 

of the microbial community members (data not shown). The same is true for genes involved in 

carbohydrate metabolism (butanoate, propanoate and glyoxylate metabolism), amino acid 

metabolism, xenobiotics metabolism ((amino)benzoate, bisphenol and polycyclic aromatic 

hydrocarbon degradation), metabolism of terpenoids and polyketides (limonene, pinene and 

geraniol degradation) and biosynthesis of secondary metabolites (novobiocin and tropane, 

piperidine and pyridine alkaloid biosynthesis) (data not shown). Most of these groups of protein-

coding genes are also relatively more abundant under reduced tillage than under conventional 

tillage in the surface soil horizon and the other way around in the deeper soil horizon (see Figure 

20). These observations clearly indicate that the microbial community in the soil compartments with 

a higher influence of the wheat rhizosphere is putatively more involved in degradation of various 

organic compounds and competition among each other compared to the microbial community in 

soil compartments with lower wheat root density. Indeed, in the rhizosphere soil of Brachypodium 

distachyon, a plant used as a model for wheat, higher relative abundances of genes involved in 

amino acid metabolism and xenobiotics biodegradation and metabolism were observed compared 

to bulk soil (284). Similar observations were made by Yang et al., where the higher organic carbon 

content in mature wheat-rhizosphere soil compared to bulk soil coincided with higher catabolic 

activities in the rhizosphere soil than in the bulk soil (259). Moreover, they could show that, in the 

surface soil horizon, no-tillage led to a higher polymer degradation-activity of the soil microbial 

community compared to conventional tillage in both rhizosphere and bulk soil, and to a higher 
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amino acid- and carboxylic acid-degradation activity in rhizosphere soil (259). Furthermore, Turner et 

al. identified a higher abundance of cellulolytic and methylotrophic bacteria in the active community 

of the wheat rhizosphere compared to bulk soil (285).  

Accordingly, the total amount of annotated cellulase-specific catalytic or binding domain 

families was relatively higher under reduced tillage than under conventional tillage in the surface soil 

horizon. In addition, several groups of cellulase-related genes specifically showed a tillage response; 

the highly abundant β-glucosidase genes (e.g. GH1) and several less abundant endo- or 

exoglucanase-related genes (e.g. CBM3, CBM4, CBM6 and GH26) were relatively more abundant 

under reduced tillage in the surface soil horizon. In addition, genes coding for endo- or 

exoglucanase-related carbohydrate binding modules (CBM4 and CBM65) were relatively more 

abundant under conventional tillage in the deeper soil horizon (see Figure 24). Similar trends were 

observed for the AA8-genes in the surface soil horizon and for the GH1-genes in the deeper soil 

horizon. These findings indicate a higher use of cellulosic compounds, especially cellulose-

degradation products, under reduced tillage in the surface soil horizon and under conventional 

tillage in the soil horizon below reduced tillage-working depth. A summary of the tillage effects on 

cellulase genes found in this metagenome can be observed in the overview Figure 38. 

 

 

 

 

 

 

 

Figure 38 (page 97): Overview of connections between and tillage effects on taxonomic groups (outer circles 

of nodes) and cellulase genes (circular groups of nodes located in the inner part of the circles) in the top 0-6 

cm (A) or top 10-16 cm (B) soil of the organic farming experiment. Each taxonomic group (on different 

taxonomic resolution: from phylum to family level) and cellulase domain family or cellulase enzymatic group is 

represented by a node. Nodes of taxonomic groups belonging to the same phylum are connected. 

Furthermore, nodes of cellulase genes are connected to nodes representing the ten most abundant or tillage-

affected microbial families harbouring that gene. These nodes are themselves connected to the corresponding 

nodes of microbial families within the outer circle of nodes. Gray nodes are not affected by tillage; yellow 

nodes are relatively more abundant under reduced tillage; blue nodes are relatively more abundant under 

conventional tillage in the corresponding soil horizon. Node border colour: red border indicates a significant 

tillage effect (P<0.05), whereas no red border indicates a tillage effect with lower significance (P<0.10) or not 

significant (gray nodes). The edges between nodes are green if the lower taxonomic group was found to 

harbour one or more cellulase genes for cellulose degradation (“degraders”, harbouring e.g. endoglucanases) 

and red if the lower taxonomic group was found to harbour only cellulase genes for utilization of cellulose-

degradation products (“utilisers”, harbouring e.g. β-glucosidases). The node size corresponds to the relative 

abundances in the metagenome (% of metagenome reads x 10
-3

) but in case of relative abundances <0.05 % x 

10
-3

, the square root of the relative abundances was used for visualization purposes. The phylum names of the 

connected taxonomic group-nodes are given or indicated with a number: 1) Nitrospira, 2) Chlorobi, 3) 

Spirochaetes, 4) Cyanobacteria, 5) Gemmatimonadetes, 6) Ignavibacteriae, 7) Thaumarchaeota, 8) 

Thermotogae, 9) Verrucomicrobia, 10) Acidobacteria, 11) Armatimonadetes, 12) Fibrobacteres, 13) 

Chlamydiae, 14) Deinococcus-Thermus, 15) Planctomycetes. The cellulase gene nodes are grouped according 

to cellulase enzymatic function: 16) β-glucosidase-, AA3- and AA8-genes, 17) cellobiose phosphorylase- and 

GH94-genes, 18) exoglucanase genes, 19) CBM genes, 20) endoglucanase-, AA9- and AA10 genes. 



6 - Discussion 

97 
 

 
Figure 38. 
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Diversity of cellulolytic microorganisms affected by tillage treatment 

The majority of the cellulase-encoding genes are also taxonomically harboured by the rhizosphere-

associated microbial groups described above (see Figures 21 and 25). Sometimes, a large fraction of 

these genes are harboured by microorganisms showing a response to tillage (see Figures 22, 26 and 

27), possibly identifying microbial members responsible for the tillage effects observed on the 

cellulase-coding genes. For example, several microbial groups to which β-glucosidase- or GH1-genes 

are assigned show a trend towards a higher abundance under reduced tillage in the surface soil 

horizon. These include mostly members of the Actinobacteria (the Microbacteriaceae 

(Microbacterium), the Nocardioidaceae (Nocardioides), the Thermomonosporaceae (Actinomadura 

atramentaria), the Intrasporangiaceae and the Micromonosporaceae) but also of the 

Alphaproteobacteria (Sphingomonadaceae (Novosphingobium) and Hyphomicrobiaceae (Devosia)), 

Deltaproteobacteria (Polyangiaceae (Sorangium cellulosum)), Verrucomicrobia (Opitutaceae) and 

Firmicutes (Bacillaceae). In addition, the Xanthomonadaceae (Xanthomonas), the 

Hyphomicrobiaceae and the Opitutaceae harbouring β-glucosidase-genes showed a trend towards 

higher relative abundance under conventional tillage in the deeper soil horizon. 

Interestingly, the majority of the actinobacterial and alphaproteobacterial families to which 

β-glucosidase-genes are assigned and which show a response to tillage, are not known as cellulose 

degraders (i.e. harbouring endoglucanase genes (73)) and are also not found abundantly among the 

microbial families to which endoglucanase genes are assigned. Instead, actinobacterial families to 

which endoglucanase-related genes were assigned included low-abundant Cellulomonadaceae 

(Cellulomonas) to which endoglucanase-, CBM2- and CBM3-genes were assigned, 

Micromonosporaceae to which CBM3- and CBM44-genes were assigned, Solirubrobacteraceae to 

which CBM44-genes were assigned and Streptomycetaceae to which GH26-genes were assigned. 

The CBM- and endoglucanase-genes derived from these actinobacterial families showed a higher 

relative abundance under reduced tillage in the surface soil horizon or a higher relative abundance 

under conventional tillage in the deeper soil horizon. Notably, most of these actinobacterial families 

are not the same as the tillage-responsive Actinobacteria to which β-glucosidase genes were 

assigned. In addition, some (the Solirubrobacteraceae and the Streptomycetaceae) do not show a 

response to tillage when considering their annotation in the whole metagenome (see Figure 19). The 

greatest portion of CBM3-genes was derived from Micromonosporaceae, indicating that this 

microbial family may be responsible for the observed tillage effect on the abundance of CBM3-

genes. However, of the other endoglucanase-related genes mentioned (CBM2, CBM3, CBM44 and 

GH26), the part assigned to Actinobacteria and showing a tillage response was rather low. These 

results illustrate that the members of the Actinobacteria did not contribute much to observed tillage 

effects on endoglucanase-related genes. Furthermore, most of the Actinobacteria which contributed 

to the observed tillage effect on β-glucosidase-genes probably do not contain endoglucanases, 

indicating that the majority of the rhizosphere-selected (and, thus, tillage-responsive) Actinobacteria 

are not particularly involved in long-chain cellulose-degradation but rather in the degradation of 

cellulose oligomers or chemical modifications thereof. Nevertheless, exoglucanase genes (including 

GH6- and GH48-genes) harboured by Actinobacteria did show a trend towards relatively higher 

abundance under reduced tillage in the surface soil horizon, but this observation could not be 

determined on lower taxonomic levels of the Actinobacteria. Moreover, Actinobacteria to which the 

exoglucanase genes were assigned constituted the majority of the exoglucanase genes, and included 

Micromonosporaceae, Streptomycetaceae, Mycobacteriaceae and Cellulomonadaceae (see Figures 

21 and 25). Furthermore, the total amount of reads assigned to both the Micromonosporaceae and 
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Cellulomonadaceae in the whole metagenome (see Figure 19) was higher under reduced tillage in 

the surface soil horizon. Taken together, it appears that the actinobacterial families 

Micromonosporaceae and Cellulomonadaceae might in fact play a role in cellulose degradation in 

the rhizosphere environment.  

Several β-glucosidase genes were harboured by families of the Delta- and 

Gammaproteobacteria, also showing a response to tillage intensity. Of these, the Polyangiaceae 

(Deltaproteobacteria) and Xanthomonadaceae (Gammaproteobacteria) were additionally found 

abundantly among the microbial families to which endoglucanase genes and genes with CBM-motifs 

were assigned. Moreover, CBM-genes derived from Deltaproteobacteria reacted to tillage; CBM4- 

and CBM6-genes assigned to Polyangiaceae (Sorangium cellulosum) showed a trend towards higher 

relative abundances under reduced tillage in the surface soil horizon, while CBM65-genes assigned 

to Cystobacteraceae (Cystobacter fuscus) and endoglucanase genes assigned to Labilitrichaceae 

(Labilithrix luteola) tended towards higher relative abundances under conventional tillage in the 

deeper soil horizon. In addition, these microbial families were among the most abundant ones to 

which CBM4- and CBM65-genes were assigned, indicating that they were primarily responsible for 

the observed tillage effect on the relative abundances of these genes (see Figure 24). Polyangiaceae 

(especially from the genus Sorangium) were found enriched in the rhizosphere soil of B. distachyon 

(284). In addition, Sorangium spp. are capable cellulose degraders (286) and were found to be more 

abundant in wheat rhizosphere and bulk soil (0-7.5 cm) under conservation tillage compared to 

conventional tillage (281). In addition to members of the Polyangiaceae (287), also the 

myxobacterium Sandaracinus amylolyticus has been shown to harbour cellulase genes (288) and 

others may follow, as the myxobacteria have yet to be thoroughly investigated (287). Thus, our 

results suggest that the three families of the Deltaproteobacteria are involved in cellulose 

degradation in the rhizosphere environment of this soil. Nevertheless, in this study, no tillage effect 

could be detected on endoglucanase genes assigned to Polyangiaceae (e.g. GH5-genes). Likewise, 

most of the endo- or exoglucanase genes derived from other members of the Proteobacteria did not 

show an effect of tillage, despite them being among the most abundant microbial groups harbouring 

endoglucanase genes, e.g. Cystobacteraceae harbouring GH5-modules (see Figure 27).  

Finally, some other microbial groups (Opitutaceae, Firmicutes) to which β-glucosidase genes 

were assigned in this study and which showed a tillage response, were found among the microbial 

families to which endoglucanase genes and genes with CBM-motifs were assigned. In fact, CBM6-

genes assigned to Opitutaceae (Opitutus terrae) were relatively more abundant under conventional 

tillage in the deeper soil layer, while GH9-genes assigned to Firmicutes showed a higher abundance 

under reduced tillage in the surface soil horizon, although not significant after P-value correction. 

Similar to Sorangium spp., Opitutus spp. were found to be more abundant in wheat rhizosphere 

under conservation tillage compared to conventional tillage (281) and to be highly cellulolytic (103). 

Their potential role as important polysaccharide degraders was also highlighted by a study showing a 

significant enrichment of genes coding for glycoside hydrolases in their genomes (289). Also 

members of the Firmicutes (Bacillus spp. and Clostridia) are known to be potent cellulose degraders  

(290, 291). The Opitutaceae and members of the Firmicutes (most likely the Bacillaceae) may 

therefore also be involved in the cellulose degradation activity in the rhizosphere at this site. A 

summary of the connections found between microbial groups and cellulase genes in this 

metagenome can be observed in the overview Figure 38. 
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Role of endoglucanase- and CBM-harbouring microorganisms in rhizosphere soil 

Thus, while several microbial families to which endo- or exoglucanase genes are assigned show a 

weak tillage effect, the majority does not appear to be affected by tillage. This is also evident from 

the total annotations to the endo- or exoglucanase domain families (see most GH-families in Figure 

24) and cellulase enzymatic groups (Figure 21); no clear indications are found of increased endo- or 

exoglucanase gene abundances under reduced tillage in the surface soil horizon or under 

conventional tillage in the deeper soil horizon. Moreover, while the total amount of metagenome 

reads assigned to certain microbial groups are affected by tillage (e.g. annotations to 

Xanthomonadaceae or Cystobacteraceae, see Figure 19), the amount of cellulase reads assigned to 

the same microbial groups do not show a tillage effect (e.g. endoglucanase genes assigned to 

Xanthomonadaceae, see Figure 22, or GH5-genes harboured by Cystobacteraceae). These results 

indicate that the cellulolytic capability of these endo- or exoglucanase-harbouring microorganisms 

may not be the selective trait explaining their abundance patterns as rhizosphere-dwellers. The 

exceptions may be the Micromonosporaceae, Cellulomonadaceae, members of the 

Deltaproteobacteria, Opitutaceae and members of the Bacillaceae. Similar results have been 

reported by Berlemont et al. (12), who found that bacterial sensitivity to drought was the actual trait 

driving the observed cellulolytic potential in soil. Altogether, these results on DNA-level appear to 

suggest that no extensive degradation of cellulosic compounds leading to competitive advantage of 

cellulose degraders had taken place in the time before sampling. This despite the recent wheat 

plant-harvest, which is expected to remove plant-derived protection against root degradation by the 

plant immune system (292). In a study on degradation rate of different winter wheat plant 

components by soil microorganisms, only 28% of wheat root dry matter was decomposed in the 2.5 

months after the start of incubation (compared to 65% of wheat stubble, (293)). This low initial root-

degradation rate coincided with a low amount (0.1 million cfu) of cellulose degrading 

microorganisms measured on the root surface 7.5 months after the start of incubation and a much 

higher amount (6.8 million cfu) after 19.5 months of incubation, around the time where the majority 

of the roots (>50%) was decomposed (293). These measurements support the idea that the 

degradation of winter wheat roots had not started in a significant intensity in this soil at the time of 

sampling. Also the released amounts of cellulose available from plant root-cell walls in 

rhizodeposition (265) were apparently not high enough to provide a selective advantage for those 

microorganisms able to not only utilise but also degrade cellulosic compounds. However, as 

discussed in the previous chapter, cellulose degradation might have taken place through higher 

abundance of cellulase gene transcripts and enzymes which were not measured in this study. 

Nevertheless, if this was the case, it did not lead to a detectable enrichment of cellulose degrading 

microorganisms. Alternatively, the absence of a visible response in the endo- or exoglucanase gene 

abundances may arise from a lack of coverage of the soil genetic diversity combined with the low 

phylogenetic depth of this trait (73). Although a considerable amount of soil-derived DNA has been 

sequenced in this study (16.2 Gbp), coverage analysis indicated that much of the genetic information 

in the soil had not been sequenced. As endoglucanase- and especially exoglucanase-genes occur in 

much fewer copies than β-glucosidase genes in bacterial genomes (73), it is possible that many 

endo- and exoglucanase genes were not detected in this metagenome, despite the great sequencing 

effort performed. Moreover, the achieved coverage did not allow for a reliable analysis of the 

microbial community at a taxonomic level lower than the family-level. Therefore, cellulolytic 

microorganisms on low taxonomic level which are not affected by tillage (possibly because they are 

not associated with the rhizosphere) can confound the effects observed on the cellulase genes 
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harboured by the tillage-responsive microbial community. Finally, tillage effects on endo- and 

exoglucanase gene abundances may have been confounded by the heterogeneity in the soil 

samples, which were not separated according to rhizosphere or bulk soil. 

Interestingly, in the soil metagenome studied here, several CBM-families show a response to 

tillage intensity (Figure 24). As CBMs are generally part of endo- or exoglucanase proteins and not of 

β-glucosidases (www.cazy.org, (65) and see Figure 37), it is surprising that they show a tillage 

response whereas most GH-families do not. The GH-domain family which shows a tillage response 

and includes endoglucanase sequences (GH26) is found in combination with CBM11 only (see Figure 

37), which is a CBM-family not affected by tillage in this study. As the KEGG-annotated 

endoglucanases or exoglucanases also do not show a reaction to tillage (Figure 21), the annotated 

tillage-responsive CBMs might be part of yet unknown cellulases or of cellulose-binding proteins 

with functions other than cellulose degradation. For example, proteins containing only a CBM-

module (CBM2) in the cyst nematode Heterodera schachtii have been found to play a role in plant 

cell wall degradation by interacting with the plant’s own pectin-methylesterase (294). In this soil, 

however, no CBM2-genes harboured by nematodes have been found. Nevertheless, cellulose 

binding proteins (CBPs) or independent CBMs can also occur in bacteria (295), possibly explaining 

the lack of coherence between observed tillage-effects on CBM- and GH-domains. Another protein 

with cellulose binding- but not cellulolytic capabilities is the cellulosome-scaffoldin. When 

considering that CBM3 is one of only two known cellulosome scaffoldin-CBMs (90) and that the 

composition of the cellulosome can change according to the encountered substrate (80, 81), a 

possible explanation might be that, here, the tillage-affected cellulosome-scaffoldins contain 

different compositions of GH-enzymes which then do not appear affected by tillage. However, the 

relative abundance of CBM3-genes assigned to anaerobes (mostly Ruminococcaceae) is low and not 

affected by tillage, indicating that the tillage effect observed on the relative abundance of CBM3-

genes is not caused by different abundances of cellulosome-harbouring bacteria. Another 

hypothetical explanation might be the observed role of CBM-like components in sensing the 

extracellular plant residue degradation status (discussed in (90)). Some cellulosomal genes have 

been shown to be transcriptionally regulated by sigma factors which contain such CBM-like 

components (296, 297) and similar sigma factor-gene pairs are also found in non-cellulosomal 

bacteria (Bacteroides thetaiotaomicron, (298)). Thus, in this study, microorganisms to which the 

CBM-genes affected by tillage (CBM3, CBM4, CBM6 and CBM65) were assigned might be indeed 

involved in sensing the nutritional status of their environment, providing a competitive advantage in 

the rhizosphere environment. 

 

Comparison of metagenome-analysis results from both field experiments  

 

Description of each field experiment 

This project aimed to investigate the influence of different tillage intensities on the cellulolytic 

potential of the soil microbial community, by means of shotgun-metagenome-analysis of soils from 

two different agricultural experiments located in Western Europe. By including datasets from two 

agricultural experiments, generated using different sequencing platforms and differing in soil type, 

farming practice and experiment duration, a robust assessment of tillage intensity effects on the soil 

microbiome was possible. These two agricultural experiments both applied either conventional soil 

tillage with a working depth of 20-25 cm using a mouldboard plough or reduced non-inversion tillage 
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with a working depth of 5-8 cm using a rotary harrow. From both experiments the surface soil layer 

(up to the reduced tillage-working depth) was sampled. From the organic farming experiment, 

additionally the soil layer beneath the reduced tillage-working depth was sampled to obtain a 

complete view of the soil conditions under both tillage treatments. However, for comparison of both 

experiments, only the results of the surface soil layer will be compared. The experiments mainly 

differed in experiment duration and farming practice, where one experiment was managed using 

conventional farming practices including chemical fertilizer, fungicide- and herbicide-use since 

twenty years (as described by (24)) and the other experiment was managed using organic farming 

practices with cattle slurry as fertilizer and weed management by tillage since four years (as 

described by (106)). These differences in farming practices (especially of fungicide use) are clearly 

reflected in the abundances of soil fungi in both experiments. Abundances of fungal ribosomal 

sequences were considerably lower in the soil of the conventional farming experiment (ca. 4.5 × 108 

ITS rRNA gene copies per gram soil) than in the soil of the organic farming experiment (ca. 6.0 x 109 

ITS rRNA gene copies per gram soil). This was expected from the known positive effects of organic 

farming practices on fungal abundances (97, 99). Mean annual precipitation and temperature values 

are similar for the two sites, although both were slightly higher for the organic farming experiment. 

The conventional farming experiment was performed on a silty clay loam (Luvisol, pH=6.3) and the 

organic farming experiment on a clay loam (calcareous Cambisol, pH=7.9) with a similar clay-

percentage (25%) but with lower content of silt and higher of sand than that of the conventional 

farming experiment. Total soil organic carbon and nitrogen levels were slightly higher for the organic 

farming experiment (1.8% respectively 0.17%) than for the conventional farming experiment (1.4% 

respectively 0.15%). While dissolved organic nitrogen levels did not differ between sites, dissolved 

organic carbon levels were much higher in the soil of the organic farming experiment (on average 

118 μg g-1 dry weight soil) than in the soil of the conventional farming experiment (on average 5 μg 

g-1 dry weight soil). This is presumably caused by the use of cattle slurry for fertilization in the 

organic farming experiment versus chemical fertilizer-use in the conventional farming experiment, 

as cattle slurry contains high amounts of bio-available carbon and was shown to significantly 

increase water-extractable organic carbon in grassland soil (299). Fertilization had taken place 

around five months before sampling in the conventional farming experiment and four months 

before sampling in the organic farming experiment. Sampling of the conventional farming 

experimental plots was done in mid November (soil temperature of 7°C), ca. five weeks after corn 

harvest and soil tillage with maize plant residue incorporation. In contrast, sampling of the organic 

farming experimental plots was performed in the beginning of August (soil temperature of 22°C), ca. 

five months after tillage for weed control and one week after winter wheat harvest without plant 

residue incorporation. The differences in soil temperature are probably a main cause of the higher 

microbial biomass measured in the soil of the organic farming experiment (0.8 mg Cmic g-1 soil on 

average) than in the soil of the conventional farming experiment (0.22 mg Cmic g
-1 soil on average). In 

addition, time after harvesting may also have influenced the microbial biomass-differences, as it has 

been shown that soil microbial biomass is highest in soil during the grain filling stage of wheat 

growth, with a sharp decrease shortly after harvest and removal of above-ground plant biomass 

(300). 

 

Similarities between the agricultural experiments 

Despite the differences in soil properties between the two agricultural experiments, increasing 

tillage intensity had a negative effect on the microbial biomass in the surface soil horizon of both 
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experiments. This coincided with lower soil water content under conventional tillage in both 

experiments, corroborating results showing the negative effects of tillage on soil humidity and 

microbial biomass levels (217, 218, 224–226). Furthermore, a striking similarity in microbial 

community structure was observed between the metagenomes of both agricultural experiments. In 

both metagenomes, Proteobacteria were most abundant, followed by Actinobacteria. Although 

preceded by Bacteroidetes in the conventional farming experiment, Acidobacteria were most 

abundant after Actinobacteria. Planctomycetes, Verrucomicrobia, Gemmatimonadetes and 

Chloroflexi were among the top eight most abundant bacterial phyla in both metagenomes. 

Furthermore, the Actinomycetales and Rhizobiales were highly abundant in both soils. In agricultural 

soil, varying community compositions are found in 16S-pyrosequencing studies; Portillo et al. 

reported a dominance of Firmicutes and Actinobacteria followed by Proteobacteria in an agricultural 

soil in Michigan, USA (V4-region, annotated to the Greengenes-database) (96), while Acidobacteria 

and Verrucomicrobia were most abundant in agricultural soils of Argentina (V4-region, annotated to 

the Greengenes-database) (301) and Proteobacteria, Acidobacteria and Bacteroidetes in an 

agricultural soil in Belgium (V1-V3-region, annotated to the SILVA-database) (255). Shotgun 

metagenome studies (annotated using all reads) tend to show a more constant microbial community 

structure in agricultural soils; in an agricultural soil in Brazil, the most abundant microbial groups 

were Proteobacteria, Actinobacteria and Acidobacteria (shotgun-pyrosequencing, annotated to the 

NCBI-NR-database) (302). In addition, Delmont et al. identified Proteobacteria as the most abundant 

phylum followed by Actinobacteria and Acidobacteria in a grassland soil in Europe (shotgun-

pyrosequencing, annotated to the SEED-database) (160). In forest soil, however, the most abundant 

microbial groups were Proteobacteria and Acidobacteria, followed by Actinobacteria (shotgun-

pyrosequencing, annotated to the SEED-database) (102).  

Furthermore, relative abundances of enzyme-coding genes are very similar between the two 

investigated metagenomes. In both metagenomes, genes coding for enzymes involved in 

carbohydrate-, amino acid- and energy-metabolism were most abundant, followed by signal 

transduction and membrane transport. On pathway-level, genes coding for two-component systems 

and ABC transporters or for enzymes involved in breaking down and synthesizing nucleotides were 

most abundant. Similar results were obtained in other studies of agricultural soils; in a farm soil in 

the USA, genes coding for two-component system, proteasome and inositol-phosphate metabolism 

were among the most abundant (short-insert metagenome library, annotated to the KEGG-

database) (178). In an agricultural soil in Argentina, genes involved in energy production and 

conversion, amino acid transport and metabolism and protein posttranslational processes were 

most abundant (shotgun-pyrosequencing, annotated to the COG-database) (301). Furthermore, in 

an agricultural soil in Brazil (shotgun-pyrosequencing, annotated to the SEED-database), genes 

annotated to the functional categories of clustering-based subsystems, carbohydrates and amino 

acids and derivatives were most abundant (303).  

In addition, the functional diversity of cellulase genes was similar between the two 

metagenomes studied here (see Figures 11 and 21 and Figures 13 and 24); the abundance of β-

glucosidase- and endoglucanase-coding genes was higher than exoglucanase-coding genes. 

Furthermore, GH1, GH3 and CBM2 were the most abundant cellulase domain families in both 

metagenomes. In addition, in both soils a high abundance of cellulose phophorylase- (GH94) and 

cellulose oxidoreductase- (AA8) coding genes were detected. Similar results have been found 

previously in a forest soil metagenome (304), a desert soil metagenome (162) and in an agricultural 

soil metagenome focussing on all carbohydrate active enzymes (178). However, no study is known at 
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present where cellulase genes have specifically been investigated in agricultural soil metagenomes. 

The phylogenetic diversity of cellulase-gene harbouring microorganisms found here in both soil 

metagenomes emphasizes the important role that Actinomycetes, Gamma- and Deltaproteobacteria 

and Bacteroidetes play in cellulose degradation, whereas Firmicutes show a much lower 

contribution to the observed cellulase gene abundances. Also Rhizobiales (Alphaproteobacteria) and 

Burkholderiales (Betaproteobacteria) show a high contribution to the cellulase gene abundances. In 

addition to the well known cellulase gene harbouring microorganisms, other less-well characterized 

phyla have come forward in this analysis as cellulolytic, for example Chloroflexi, Cyanobacteria 

(Chroococcales), Planctomycetes (Planctomycetales), Chlorobi and Verrucomicrobia (subdivision 3 

and Opitutales).  

Thus, the results obtained here and in other studies suggest that, within similar 

environments (e.g. agricultural soil), dominant microbial groups and functions are also similarly 

abundant. Indeed, comparison of metagenomic libraries from different environmental samples (i.e. 

soil-, whale fall-, sea- and acid mine drainage-samples) by Tringe et al. revealed that each 

environment could be functionally profiled, showing an environment-specific functional fingerprint 

(178).  A similar study, comparing 30 metagenomes of different types of soil (i.e. forest, grassland, 

tundra, semiarid and desert), showed that within-biome metagenomes show high correlation of 

functional profiles and that a biome-specific microbial community structure was clearly 

differentiable (159). This study by Noronha et al. further showed that the biome-specific functional 

profiles were indicative for the respective environmental conditions (159). As soils with a similar 

land-use type (e.g. agricultural soils) may also be subjected to different environmental conditions, 

caused by differences in e.g. soil type and structure or climate, it is not self-evident that the 

agricultural soils investigated here show high similarity in terms of taxonomic and functional 

microbial community composition. For example, the difference in sampling time points over the 

yearly season between both agricultural experiments has clearly affected the soil temperature (i.e. 

7°C in the soil of the conventional farming experiment and 22°C in the soil of the organic farming 

experiment). Nevertheless, the metagenome results suggest that the described differences between 

experiments in soil properties and sampling time point (season) do not greatly influence the 

microbial community composition. Accordingly, Delmont et al. showed that the impact of sampling 

of a grassland soil in different seasons led to metagenomic-functional dissimilarity comparable to or 

only slightly higher than that of a replicated metagenome sequencing run (160), indicating that 

season does not strongly influence microbial community composition. Similar results were obtained 

by Orellana et al., who showed that metagenomes showed greater differences between depths or 

locations than between sampling-seasons (305).  

 

Explanation of differences in tillage effects 

While many similarities exist between the two agricultural experiments, the effects of tillage on soil 

carbon levels and relative abundances of microbial groups or genes in the metagenomes differ 

between the experiments. These differences in tillage effects are mainly caused by differences in soil 

properties, experiment duration and time between tillage and sampling between the two sites. As 

was expected from previous observations (24) and from other tillage experiments (217–219), the 

surface soil horizon of the conventional farming experiment showed a higher organic carbon content 

under reduced tillage than under conventional tillage. However, tillage intensity had not affected the 

total soil organic carbon content of the organic farming experiment. As discussed in the previous 
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chapter, this is presumably due to the short time of application of the tillage treatments and the 

organic management of the soil under both tillage treatments.  

Whereas in the conventional farming experiment the long-term effect of tillage on the soil 

carbon content was visible, few effects of tillage were visible in the soil microbial community 

composition. Conversely, many subtle tillage effects on relative abundances of soil microorganisms 

were detected in the metagenome of the organic farming experiment. Although the higher number 

of replicates and greater sequencing depth may also have facilitated the detection of subtle 

differences in the metagenome of the organic farming experiment, the apparent paradox in tillage-

responses of soil organic carbon content and microbial community composition in both experiments 

can probably be related to different indirect factors influencing both measurements. While 

experiment duration is a likely factor influencing tillage effects on soil carbon content, the tillage 

effect on the soil microbial community is most likely influenced by different duration of time which 

had past in each experiment between tillage and sampling and to whether or not crop residues had 

been incorporated with tillage; whereas the soil of the conventional farming experiment was 

sampled one month after tillage and incorporation of crop residues, the soil of the organic farming 

experiment was sampled one week after harvest without crop residue-incorporation and five 

months after tillage. As discussed above (see section discussing responses of the soil microbiome to 

tillage in the conventional farming experiment), the absence of the expected tillage effects on the 

soil microbial community of the conventional tillage experiment are probably related to the overall 

activating effect of soil tillage and plant residue incorporation on the soil microbial community. This 

has presumably introduced an overall r-strategist-dominated microbial population under both tillage 

treatments, leading to few differences in relative abundances of microbial groups and no significant 

differences in alpha-diversity between both tillage treatments. The higher relative abundance of 

Bacteroidetes in the metagenome of the conventional farming experiment (3.4%) compared to the 

organic farming experiment (1.5%) further supports this. Bacteroidetes are viewed as clear r-

strategists (306) and are frequently found in organic soil horizons with high content of easily 

accessible carbon substrates (102, 103). Similar observations have been made in a sandy soil, where 

the abundance of r-strategist-microannelids was much higher a few weeks after tillage than five 

months after tillage (307). The short period of time which had passed since tillage application in the 

conventional farming experiment may also explain the visible effects of tillage on the absolute 

abundance of fungi in the surface soil horizon. The recent soil disturbance in this experiment led to a 

higher abundance of fungi under reduced tillage than under conventional tillage. As in the organic 

farming experiment several months had passed since tillage, no effect of different tillage intensity on 

fungal ribosomal gene abundances was detected at the time of sampling. Furthermore, the fact that 

a higher amount of fresh plant residues was present in the soil of the conventional farming 

experiment compared to the soil of the organic farming experiment may also explain the relatively 

higher abundance of cellulase-genes in the metagenome of the conventional (0.11% as cellulase 

enzymatic groups and 0.63% as cellulase domain families) versus organic farming experiment (0.08% 

as cellulase enzymatic groups and 0.43% as cellulase domain families). Higher abundances of 

carbohydrate-active genes have been observed in environments with more (fresh) organic matter 

e.g. in soil versus freshwater (162) and in the organic horizon versus mineral horizon of forest soil 

(102, 189). Alternatively, the use of cattle slurry as fertilizer in the organic farming experiment may 

have decreased the relative amount of cellulase-genes in the soil, as organic fertilization has been 

shown to decrease endoglucanase activities compared to soil without organic fertilization (308). 
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Likewise, the encountered tillage effects in the metagenome of the conventional farming 

experiment were most likely related to an earlier succession under conventional tillage of r-

strategists by K-strategists than under reduced tillage. The K-strategists are thought to have regained 

a growth-advantage after earlier depletion of fresh organic matter under conventional tillage in the 

surface soil horizon than under reduced tillage. This was reflected in the relatively higher abundance 

of microbial groups with K-strategist-characteristics in soil under conventional versus reduced tillage, 

like members of the Chloroflexi and Armatimonadetes. Similarly, the higher relative abundance of 

genes in functional categories related to the degradation of recalcitrant organic substances in soil 

under conventional versus reduced tillage, also indicated a higher abundance of K-strategists more 

adapted to degrade compounds which are rather present in the native soil organic matter pool 

(aromatic and phenolic compounds and organic acids) than in fresh organic plant material. 

Accordingly, no differences were found in cellulase gene abundances or cellulase-harbouring 

microbial groups between tillage intensities. Thus, whereas the short-term effects of tillage were 

visible in the metagenome of the conventional farming experiment, no recent soil disturbances had 

taken place under either tillage treatment in the organic farming experiment. Therefore, no short-

term tillage-induced priming effects on the soil microbial community were expected to be seen in 

this field experiment. Consequently, in the organic farming experiment the effects of tillage intensity 

on the microbial community at a more developed stage could be analysed. This stage of 

development could be related to the tillage effects on plant root development, favouring especially 

rhizosphere-associated microorganisms in the surface soil under reduced tillage and in the deeper 

soil horizon under conventional tillage. This rhizosphere-associated microbial community consisted 

mainly of Actinobacteria and Alphaproteobacteria, but also of several families from the Beta-, 

Gamma- and Deltaproteobacteria. Indeed, recently it was shown that the soil and root microbiome 

of the wheat plants in this field experiment differed strongly and that the root microbiome tended 

to comprise more Actinobacteria and Alphaproteobacteria than the soil microbiome (309). 

Furthermore, in this study, groups of protein-coding genes related to nutrient acquisition and uptake 

and organic compound degradation were found to be more abundant under reduced tillage 

compared to conventional tillage in the surface soil horizon, whereas this effect was reversed in the 

deeper soil horizon. These include β-glucosidase genes and CBM-genes putatively involved in sensing 

the carbohydrate-content of the environment. These results indicate a higher competition among 

microorganisms, especially for the acquisition of various organic compounds which presumably are 

enriched in the rhizosphere environment. However, no differential relative abundances of endo- or 

exoglucanase genes between soils under different tillage treatments were found, suggesting that 

decomposition of root tissue had not yet led to enrichment of microbial degraders at the time of 

sampling. In addition, a higher relative abundance of Ascomycota was found under reduced tillage 

compared to conventional tillage in the surface soil horizon of the organic farming experiment. As 

Ascomycota are known to be rhizosphere-dwelling organisms (284) and several members of this 

phylum are mycorrhizal fungi (310), this observation further supports the theory that, in the surface 

soil under reduced tillage, a rhizosphere-associated community is predominantly selected. While the 

same abundance pattern for Ascomycota could be observed in the metagenome of the conventional 

farming experiment, the tillage effect was not significant at this site (P=0.13). Besides the proposed 

rhizosphere-effect, however, the low absolute abundance of fungi in the soil of the conventional 

farming experiment possibly reduced the ability to detect tillage effects on their relative 

abundances. 
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7 - Conclusions and final remarks 
 

The role of soil microorganisms in the degradation of cellulose and the soil carbon cycle can be 

investigated by analysing the genetic potential of microbial communities in the soil. As more intense 

(conventional) tillage practices have been shown to cause a decrease in soil carbon content in the 

surface soil horizon compared to less intense (reduced) tillage (18, 22, 24, 25), it was expected that 

cellulose degrading microorganisms would be enriched in the surface horizon of soil under reduced 

tillage as compared to soil under conventional tillage. Shotgun metagenomes were generated from 

soil of two agricultural experiments, subject to similar climatic conditions, which applied both tillage 

treatments. The results demonstrated that tillage effects on microbial taxa and functions, including 

cellulases, are small and that the overall microbial community composition of both metagenomes 

strongly resembled each other. Thus, despite differences in soil characteristics and farming practices, 

the investigated agricultural soils show a stable microbial community whose composition is not 

strongly influenced by differences in tillage intensity. 

Specifically, metagenome analysis results showed that tillage intensity did not affect the 

genetic potential for cellulases or the proportion of cellulolytic microorganisms in the soil of the 

conventional farming experiment. In the soil of the organic farming experiment, however, tillage 

intensity affected the genetic potential for several groups of cellulase-related enzymes. In particular, 

β-glucosidase and CBM-genes which were harboured by rhizosphere-associated microorganisms 

were enriched in the surface soil horizon under reduced tillage compared to soil under conventional 

tillage. However, tillage intensity did not show pronounced effect on the genetic potential for endo- 

or exoglucanases or on the proportion of the most important microorganisms harbouring genes 

coding for these enzymes. Thus, considering the results of both metagenomes, it can be concluded 

that cellulose degradation potential in the microbial community is not greatly influenced by tillage 

treatment. The metagenome results therefore do not clearly elucidate the role of cellulose 

degraders in the observed (24, 217–219) organic matter sequestration-capacity of reduced tillage 

compared to conventional tillage in the surface soil horizon. Nevertheless, enzyme activity 

measurements in the soil of the conventional farming experiment showed a higher potential endo- 

or exoglucanase enzymatic activity in soil under reduced tillage compared to conventional tillage, 

implying that tillage intensity might have a greater effect on cellulose degradation on a 

transcriptional or translation level. Moreover, the observed higher microbial biomass in soil under 

reduced tillage points out that a higher absolute abundance of cellulose degrading microorganisms is 

present in soil under reduced tillage treatment. Finally, the metagenome analysis data presented 

here propose some putative mechanisms for carbon sequestration through the reduction of tillage 

intensity; in the conventional farming experiment, the assumed lower concentration of incorporated 

plant residues in the surface soil horizon under conventional tillage presumably led to an earlier and 

possibly increased degradation of native soil organic matter (priming effect (311)) compared to soil 

under reduced tillage. Besides, deeper incorporation of fresh plant residues under conventional 

tillage may lead to a priming effect in more soil horizons than the shallow incorporation under 

reduced tillage, possibly leading to a higher total depletion of native soil organic matter in the 

complete soil profile. In the organic farming experiment, the observed higher genetic potential for β-

glucosidases in surface soil horizon under reduced tillage indicates a higher carbon cycling activity 

and perhaps sequestration under reduced tillage compared to conventional tillage. Higher potential 

activity of β-glucosidases in soil has been identified as an indicator of carbon sequestration potential 

in soil (312, 313), although the exact mechanisms remain to be identified.  
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Both the analysis of soil shotgun metagenomes and the amplified GH5-subfamily 2 genes 

from agricultural soil showed that the genetic potential for cellulose degradation and utilization was 

associated with a broad array of different microorganisms, illustrating the great diversity of 

potentially cellulolytic microorganisms. In addition, the more in-depth analysis of amplified 

endoglucanase genes from the GH5-subfamily 2 demonstrated an extraordinary phylogenetic 

diversity of these genes in agricultural soil, exceeding the diversity of functionally characterized 

sequences in the public databases. Furthermore, the observed ambiguity in taxonomic assignments 

of the amplified GH5-subfamily 2 cellulase genes pointed out that many novel cellulolytic 

microorganisms remain uncovered, which represent suitable candidates for investigation of the 

redundancy of GH5 genes and the evolutionary principles that govern the cellulose-degradation 

trait. 

When considering the genetic potential of the soil microbial community as a whole, it was 

observed that effects of tillage intensity were more distinct in the metagenome of the organic 

farming experiment than in that of the conventional farming experiment. In the conventional 

farming experiment, few effects of different tillage intensities were found on microbial taxa or 

general protein-coding genes. Instead, the microbial community of the conventional farming 

experiment rather reflects the recent crop residue incorporation which occurred a few weeks before 

sampling. The results suggest that, in this experimental field, an earlier depletion of readily available 

organic matter in the soil under conventional tillage led to an increase in microorganisms exhibiting 

a K-strategic lifestyle than in the soil under reduced tillage. This earlier depletion of organic matter 

was probably caused by a lower concentration of crop residues incorporated into the surface 

horizon of soil under conventional tillage than in that under reduced tillage. In the organic farming 

experiment, one week after wheat harvest and five months after the last tillage-event, the soil 

microbial community showed a multitude of differences in genetic potential between tillage 

treatments. Also for this experiment, the metagenome analysis results suggest that tillage intensity 

plays a secondary role in shaping the microbial community composition. In other words, rather than 

being direct results of the action of tillage, the differences in microbial community composition 

observed are presumably caused by other factors which are influenced by tillage treatment and are 

dependent on the time past since the last tillage activity. While for the conventional farming 

experiment the primary factor appeared to be the concentration of fresh organic matter, for the 

organic farming experiment a high influence was attributed to the wheat plant rhizosphere 

conditions. However, tillage may have induced changes in characteristics of these factors on the long 

or short term, thereby indirectly influencing the microbial community composition. Total soil organic 

matter content was expected to influence the soil genetic potential for cellulose degradation, but 

the results presented here suggest that availability of fresh organic matter is a more important 

driver of soil microbes. In the conventional farming experiment this organic matter availability was 

likely altered by the addition of fresh plant residues, while in the organic farming experiment fresh 

organic matter was probably available through rhizodeposition.  
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In this study, the genetic potential in agricultural soil and the influence of tillage intensity on the 

relative abundance of cellulolytic microorganisms was explored. However, the role of the impressive 

diversity of cellulase genes in soil in organic matter degradation and the carbon cycle remains to be 

defined. Agricultural management practices shaping the cellulolytic microbial community in soil and 

thereby improving soil fertility and agricultural sustainability are therefore key identification targets 

for future research. Experimental field setups testing the effects of type of fertilization (e.g. organic 

versus chemical), weed management (e.g. herbicide use versus mechanical techniques), cropping 

systems (e.g. using crops with different rooting strategies), crop residue management (e.g. 

incorporation, surface-application or removal) and their interactions will be instrumental for 

investigating the most effective management practices in field situations. However, the influence of 

climate conditions and soil structure should be taken into account additionally to achieve realistic 

estimations of global effects. Of particular research interest are factors improving soil carbon 

sequestration capacity while maintaining crop productivity. In this context, a balance needs to be 

found between stimulation of fresh organic matter degradation for nutrient cycling and 

minimization of native organic matter degradation by priming. Different crop residue management 

techniques may be applicable to different types of residues; for example, residues of different crops 

were demonstrated to lead to different carbon dioxide emissions from soil (314). Different types of 

organic matter will likely induce particular expression patterns at different degradation stages, which 

can elucidate the function of different sets of cellulases. For instance, Güllert et al. found that higher 

expression of certain types of endoglucanase genes in elephant faeces- than in biogas fermentor-

community was related to a higher carbohydrate degradation efficiency (188). Measuring treatment 

effects on the cellulolytic microorganisms in environmental samples has proven to be challenging on 

the DNA-level. Therefore, more focus should be set on transcriptional or enzymatic responses by the 

soil microbial community. As these responses can easily change over time in a non-controlled 

natural environment, measurements over different time sequences are essential to understand their 

dynamics. In parallel to the microbiological assessment, relevant environmental metadata should be 

collected on the same spatial and temporal scale, as this information is pivotal in understanding the 

microbial ecology. Finally, carbon fluxes between different pools (e.g. atmosphere, native soil 

organic matter and added organic matter) should be meticulously recorded and quantified. Of 

particular interest will be the contribution of microbial-derived organic matter to the total carbon 

pool over time. Stable-isotope probing can greatly facilitate this quantification process and 

additionally reliably identify the microorganisms involved in the organic matter degradation process 

(see for example (103)). The thus obtained quantitative carbon fluxes will aid in development of 

carbon cycle-models which include responses the soil microbial community. Combined, results of 

cellulolytic microbial community responses and carbon fluxes to agricultural management practices 

and environmental changes can provide a conceptual framework for prediction of soil ecosystem 

functioning in response to designed agricultural management strategies. 
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Table A1 
 

Table A1: Benchmarking results of HMMs obtained either from the Pfam-A database (Pfam), the DataBase for 

automated Carbohydrate-active enzyme Annotation (dbCAN (110)) or self-built HMMs based on cellulase-

database sequences. Benchmarking was done using “positive” (pos)- and “negative” (neg)-sequence 

databases, which consisted of functionally characterized sequences of cellulases respectively non-cellulases 

extracted from the CAZy-database (http://www.cazy.org/, (60)). Given here are the percentages of neg- or 

pos-database sequences annotated by the HMMs. The HMMs chosen for analysis of the metagenomes are 

shaded. 

Source of HMM Pfam dbCAN Personally built 

CAZy-family neg pos neg pos neg pos 

       
CBM1 2.37 0.08 2.09 0.00 4.60 1.56 

CBM2 1.87 0.08 4.32 0.08 3.02 4.75 

CBM3 0.14 0.00 0.07 0.08 0.72 11.38 

CBM4  3.96 0.00 3.09 0.08 2.81 1.17 

CBM5  1.08 0.00 6.62 0.00 1.22 3.74 

CBM6 3.45 0.31 3.31 0.31 2.01 0.70 

CBM8   0.00 0.00 0.94 0.47 

CBM10 0.22 0.00 0.14 0.00 0.50 0.39 

CBM11 0.07 0.31 0.00 0.31 0.00 0.39 

CBM17  0.00 0.86 0.00 0.55 0.00 0.70 

CBM28   0.00 0.39 0.14 0.31 

CBM30     0.14 0.16 

CBM32 4.39 0.00 3.96 0.00 0.29 0.62 

CBM44   0.07 0.00 0.14 0.08 

CBM46   0.00 0.16 0.50 0.55 

CBM49     0.00 0.31 

CBM63     0.07 0.23 

CBM65   0.00 0.08 0.79 3.27 

AA3 0.00 1.09 0.00 0.00 0.00 0.94 

AA8   0.07 1.09 0.07 0.16 

AA9 0.43 0.94 0.43 0.94 0.43 0.94 

AA10 0.58 0.47 0.58 0.47 0.58 0.47 

GH1  11.51 17.85 11.51 17.85 12.01 17.85 

GH3 6.62 13.48 6.83 13.72 7.12 13.80 

GH5 13.81 24.47 13.96 23.85 9.42 18.78 

GH6 0.07 5.46 0.07 5.46 0.29 5.38 

GH7 0.00 6.39 0.00 6.39 0.00 6.39 

GH8 2.01 2.34 2.01 2.34 2.01 2.34 

GH9 1.08 12.94 1.08 12.94 1.08 12.24 

GH10 23.09 0.31 23.17 0.31 23.31 0.70 

GH12 0.79 3.90 0.79 3.90 1.15 3.51 
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GH26 3.53 0.23 3.88 0.23 3.67 0.39 

GH30 2.59 0.08 3.24 0.08 2.81 0.08 

GH44 0.22 0.86 0.29 1.01 0.22 0.78 

GH45 0.00 3.66 0.00 3.74 0.00 3.90 

GH48 0.07 1.09 0.07 1.09 1.01 0.62 

GH51   5.11 0.31 3.24 0.23 

GH74   1.01 0.16 1.01 0.16 

GH94   0.65 1.40 0.65 1.40 

GH124   0.00 0.08 0.29 0.08 

 

Table A2 
 

Table A2: Protein IDs of sequences used as reference sequences during pair-wise alignments and Markov 

Clustering with GH5-amplicon sequences. These protein sequences have enzymatic functions which have been 

functionally characterized (CAZy database, http://www.cazy.org/ (60)) and include cellulolytic enzymes (with 

EC: 3.2.1.4, EC: 3.2.1.91, EC: 3.2.1.176, EC: 3.2.1.74, EC: 3.2.1.21) and non-cellulolytic enzymes. GH5-protein 

sequences which were used as input for multiple sequence alignment and phylogenetic tree-calculation are 

shaded.   

GH- 
family Protein ID EC-number Protein ID 

EC-
number Protein ID 

EC-
number Protein ID 

EC-
number 

         
48 AAA73866 3.2.1.175 BAC22065 3.2.1.176 ABD64772 3.2.1.176 ACM60955 3.2.1.176 

 AAA23226 3.2.1.176 CAB06786 3.2.1.176 ABN53296 3.2.1.176 AEE47513 3.2.1.176 

 AAA50257 3.2.1.176 AAD39947 3.2.1.176 ABX43721 3.2.1.176 AAA72860 3.2.1.4 

 AAB00822 3.2.1.176 AAC38571 3.2.1.176 ACH05303 3.2.1.176 AAA91086 3.2.1.4 

 AAB41452 3.2.1.176 CAD32945 3.2.1.176 ACH05304 3.2.1.176 ABN51312 3.2.1.4 

 CAA93280 3.2.1.176 AAZ55992 3.2.1.176 ACL75108 3.2.1.176 BAE94320 3.2.1.14 

  
74 CAF02212 3.2.1.150 CAD58415 3.2.1.151 BAE44527 3.2.1.151 ACE14921 3.2.1.4 

 CAF02249 3.2.1.150 BAC69567 3.2.1.151 ABH71452 3.2.1.151 ACS09151 3.2.1.4 

 EAA64249 3.2.1.150 BAC70285 3.2.1.151 ABJ18610 3.2.1.151 AGL49229 3.2.1.4 

 CAA20642 3.2.1.150 AAP57752 3.2.1.151 BAF95189 3.2.1.151 AHD17931 3.2.1.4 

 AAK77227 3.2.1.151 CAE51306 3.2.1.151 BAA29031 3.2.1.4   

 NP_630626 3.2.1.151 BAD11543 3.2.1.151 AAD35393 3.2.1.4   

 CAA35159 3.2.1.151 AAZ55647 3.2.1.151 NP_228117 3.2.1.4   

  
7 CAA38274 3.2.1.176 CAB06786 3.2.1.176 EAW16381 3.2.1.176 AAG09047 3.2.1.4 

 CAA41780 3.2.1.176 CAC85737 3.2.1.176 XP_0012582
78 

3.2.1.176 BAB64553 3.2.1.4 

 AAB46373 3.2.1.176 AAL83303 3.2.1.176 ABN13116 3.2.1.176 BAB64554 3.2.1.4 

 CAA37878 3.2.1.176 AAL89553 3.2.1.176 CAK44068 3.2.1.176 BAB64555 3.2.1.4 

 CAA80253 3.2.1.176 AAL33603 3.2.1.176 CAK39699 3.2.1.176 BAB64556 3.2.1.4 

 CAA77789 3.2.1.176 AAM54070 3.2.1.176 ABS82449 3.2.1.176 BAB64557 3.2.1.4 

 CAA77795 3.2.1.176 AAN19007 3.2.1.176 CAM98445 3.2.1.176 BAB64558 3.2.1.4 

 CAA82761 3.2.1.176 CAD56667 3.2.1.176 CAM98446 3.2.1.176 BAB64559 3.2.1.4 

 CAA82762 3.2.1.176 EAA33262 3.2.1.176 CAM98448 3.2.1.176 BAB64560 3.2.1.4 

 CAA49596 3.2.1.176 CAD79780 3.2.1.176 CAM98447 3.2.1.176 BAB64561 3.2.1.4 

 AAA19802 3.2.1.176 CAD79781 3.2.1.176 ACF93800 3.2.1.176 BAB64562 3.2.1.4 
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 AAC49089 3.2.1.176 CAD79782 3.2.1.176 ACH15004 3.2.1.176 AAM54071 3.2.1.4 

 BAA09785 3.2.1.176 CAD79785 3.2.1.176 ACH15013 3.2.1.176 BAC07551 3.2.1.4 

 CAA68840 3.2.1.176 AAP60302 3.2.1.176 CAR96030 3.2.1.176 BAC07552 3.2.1.4 

 BAA25183 3.2.1.176 AAP66263 3.2.1.176 ACV95805 3.2.1.176 AAQ21382 3.2.1.4 

 CAA80252 3.2.1.176 AAP66264 3.2.1.176 ADB85438 3.2.1.176 AAQ24882 3.2.1.4 

 BAA36215 3.2.1.176 AAQ38146 3.2.1.176 ADX60067 3.2.1.176 AAR60514 3.2.1.4 

 AAD11942 3.2.1.176 AAQ76092 3.2.1.176 AEO67172 3.2.1.176 EAA63386 3.2.1.4 

 BAA74517 3.2.1.176 AAR60512 3.2.1.176 CDF76454 3.2.1.176 AAX28897 3.2.1.4 

 BAA76363 3.2.1.176 AAR79028 3.2.1.176 AGY80096 3.2.1.176 BAE66197 3.2.1.4 

 BAA76364 3.2.1.176 EAA66593 3.2.1.176 CAA43059 3.2.1.4 ABE22093 3.2.1.4 

 AAD31545 3.2.1.176 CAH10320 3.2.1.176 AAA34212 3.2.1.4 ABM90986 3.2.1.4 

 AAD41096 3.2.1.176 AAT99321 3.2.1.176 AAA65586 3.2.1.4 BAF57296 3.2.1.4 

 AAF04491 3.2.1.176 AAU96164 3.2.1.176 BAA09786 3.2.1.4 ABY56790 3.2.1.4 

 AAF04492 3.2.1.176 AAV65115 3.2.1.176 BAA22589 3.2.1.4 CAR96034 3.2.1.4 

 AAF36391 3.2.1.176 AAW64926 3.2.1.176 AAE25068 3.2.1.4 CAR96035 3.2.1.4 

 AAE25072 3.2.1.176 EAL73676 3.2.1.176 AAE25069 3.2.1.4 ACT53749 3.2.1.4 

 CAC07539 3.2.1.176 AAX84833 3.2.1.176 AAE25070 3.2.1.4 AEB00821 3.2.1.4 

 AAL16941 3.2.1.176 AAY89412 3.2.1.176 AAE25071 3.2.1.4 AEO58196 3.2.1.4 

  
9 ACM60955 3.2.1.176_4 AAF06107 3.2.1.4 CAI94607 3.2.1.4 ACL75113 3.2.1.4 

 AAF93781 3.2.1.176_4 AAF06109 3.2.1.4 AAY48792 3.2.1.4 ACL75114 3.2.1.4 

 NP_230264 3.2.1.21 AAF15367 3.2.1.4 AAN04496 3.2.1.4 ACL75116 3.2.1.4 

 CAA28255 3.2.1.21 CAB63115 3.2.1.4 AAU20853 3.2.1.4 ACL75131 3.2.1.4 

 CAA31082 3.2.1.4 AAF19168 3.2.1.4 AAZ55662 3.2.1.4 ACL76568 3.2.1.4 

 AAA23086 3.2.1.4 CAB76932 3.2.1.4 AAZ56209 3.2.1.4 BAH57006 3.2.1.4 

 AAA23088 3.2.1.4 CAB76935 3.2.1.4 BAE20171 3.2.1.4 ACR23658 3.2.1.4 

 AAA20892 3.2.1.4 AAF06111 3.2.1.4 AAZ93631 3.2.1.4 ACS45173 3.2.1.4 

 AAA24894 3.2.1.4 AAF80584 3.2.1.4 ABA07706 3.2.1.4 ACV59481 3.2.1.4 

 AAA24895 3.2.1.4 AAF80585 3.2.1.4 ABA07707 3.2.1.4 CBC93706 3.2.1.4 

 AAA52077 3.2.1.4 BAA98160 3.2.1.4 ABA07708 3.2.1.4 CBC93714 3.2.1.4 

 CAA39010 3.2.1.4 AAG45157 3.2.1.4 ABB51609 3.2.1.4 CBC93722 3.2.1.4 

 AAA68129 3.2.1.4 AAG45158 3.2.1.4 ABB51610 3.2.1.4 CBC93725 3.2.1.4 

 AAC06387 3.2.1.4 AAG45160 3.2.1.4 ABB51611 3.2.1.4 ACX73672 3.2.1.4 

 AAA02563 3.2.1.4 AAG49558 3.2.1.4 ABD24274 3.2.1.4 ACX75451 3.2.1.4 

 AAA69908 3.2.1.4 AAG52329 3.2.1.4 ABD24275 3.2.1.4 ACX75452 3.2.1.4 

 AAA69909 3.2.1.4 AAG59608 3.2.1.4 ABD24278 3.2.1.4 ACY24809 3.2.1.4 

 AAA91086 3.2.1.4 AAK12339 3.2.1.4 CAK32152 3.2.1.4 ACY24880 3.2.1.4 

 AAA73868 3.2.1.4 CAC34051 3.2.1.4 ABG76967 3.2.1.4 EFA05721 3.2.1.4 

 CAA39264 3.2.1.4 BAB33148 3.2.1.4 ABG76972 3.2.1.4 ADB12483 3.2.1.4 

 CAA40993 3.2.1.4 BAB39482 3.2.1.4 BAF00867 3.2.1.4 ADB82903 3.2.1.4 

 CAA43035 3.2.1.4 BAB39483 3.2.1.4 ABH93356 3.2.1.4 ADD61951 3.2.1.4 

 CAA46570 3.2.1.4 BAB40693 3.2.1.4 BAF38757 3.2.1.4 ADL24960 3.2.1.4 

 AAC44386 3.2.1.4 BAB40694 3.2.1.4 ABM68635 3.2.1.4 ADL25229 3.2.1.4 

 AAA96135 3.2.1.4 BAB40695 3.2.1.4 ABN51281 3.2.1.4 ADL26362 3.2.1.4 

 AAA80495 3.2.1.4 BAB40696 3.2.1.4 ABN51650 3.2.1.4 ADL52438 3.2.1.4 

 AAB60304 3.2.1.4 BAB40697 3.2.1.4 ABN51779 3.2.1.4 ADL52515 3.2.1.4 

 BAA06877 3.2.1.4 AAK59818 3.2.1.4 ABN51814 3.2.1.4 ADV16268 3.2.1.4 
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 AAC41523 3.2.1.4 AAK78892 3.2.1.4 ABN51860 3.2.1.4 ADV16269 3.2.1.4 

 AAC44385 3.2.1.4 AAK82545 3.2.1.4 ABN52060 3.2.1.4 ADV16270 3.2.1.4 

 CAA65597 3.2.1.4 NP_171779 3.2.1.4 ABN54011 3.2.1.4 ADX05755 3.2.1.4 

 CAA65600 3.2.1.4 NP_177228 3.2.1.4 BAF62178 3.2.1.4 ADY68794 3.2.1.4 

 BAA12070 3.2.1.4 NP_199783 3.2.1.4 AAW62376 3.2.1.4 ADY68795 3.2.1.4 

 AAB42155 3.2.1.4 NP_347552 3.2.1.4 ABU45498 3.2.1.4 AED95850 3.2.1.4 

 AAB46824 3.2.1.4 AAL30452 3.2.1.4 ABV32557 3.2.1.4 AEE27471 3.2.1.4 

 AAB46826 3.2.1.4 AAL30453 3.2.1.4 ABX43720 3.2.1.4 AEE35103 3.2.1.4 

 AAB46828 3.2.1.4 AAL30454 3.2.1.4 ABX76047 3.2.1.4 AEE44171 3.2.1.4 

 AAC49704 3.2.1.4 BAB79196 3.2.1.4 ACA04897 3.2.1.4 AEE45671 3.2.1.4 

 CAA72133 3.2.1.4 AAL67092 3.2.1.4 ACE85757 3.2.1.4 AEH04391 3.2.1.4 

 CAA67156 3.2.1.4 BAB86305 3.2.1.4 ACI45756 3.2.1.4 AEL88496 3.2.1.4 

 CAA67157 3.2.1.4 AAM41665 3.2.1.4 ACJ68032 3.2.1.4 AEW10553 3.2.1.4 

 BAA24918 3.2.1.4 NP_637741 3.2.1.4 CAW94451 3.2.1.4 BAM14716 3.2.1.4 

 AAC16418 3.2.1.4 AAM63370 3.2.1.4 CAW94460 3.2.1.4 AGI61069 3.2.1.4 

 BAA28815 3.2.1.4 CAD54726 3.2.1.4 CAW94470 3.2.1.4 AGS32241 3.2.1.4 

 BAA31326 3.2.1.4 CAD54727 3.2.1.4 CAW94474 3.2.1.4 AGT17861 3.2.1.4 

 AAC33467 3.2.1.4 CAD54728 3.2.1.4 CAX07297 3.2.1.4 AHL27899 3.2.1.4 

 AAC35344 3.2.1.4 CAD54729 3.2.1.4 CAX07301 3.2.1.4 AHL27900 3.2.1.4 

 AAC62241 3.2.1.4 CAD54730 3.2.1.4 CAX07305 3.2.1.4 AID55374 3.2.1.4 

 BAA33708 3.2.1.4 AAN72232 3.2.1.4 CAX07307 3.2.1.4 ABY60376 3.2.1.74 

 BAA33709 3.2.1.4 AAO30718 3.2.1.4 CAW91525 3.2.1.4 ACX75620 3.2.1.74 

 AAC64045 3.2.1.4 BAC67186 3.2.1.4 CAW91534 3.2.1.4 ADL26040 3.2.1.74 

 BAA34050 3.2.1.4 BAC67187 3.2.1.4 CAW91543 3.2.1.4 CAA56918 3.2.1.91 

 CAA11301 3.2.1.4 AAO61672 3.2.1.4 CAW91547 3.2.1.4 CAA06693 3.2.1.91 

 BAA34120 3.2.1.4 AAP83128 3.2.1.4 CAX00889 3.2.1.4 AAR87745 3.2.1.91 

 AAC78293 3.2.1.4 AAQ08018 3.2.1.4 CAX00898 3.2.1.4 ABN51651 3.2.1.91 

 AAC83240 3.2.1.4 AAQ68347 3.2.1.4 CAX00907 3.2.1.4 ABN51859 3.2.1.151 

 AAD01959 3.2.1.4 CAD44274 3.2.1.4 CAX00911 3.2.1.4 ACL76949 3.2.1.151 

 AAD08699 3.2.1.4 AAQ91573 3.2.1.4 CAX06019 3.2.1.4 CAG18943 3.2.1.165 

 BAA74961 3.2.1.4 CAE51308 3.2.1.4 CAX06023 3.2.1.4 ADH59533 3.2.1.6 

 BAA74962 3.2.1.4 BAD01504 3.2.1.4 CAX06027 3.2.1.4 BAA10447 3.2.1.73 

 AAC38572 3.2.1.4 AAR29083 3.2.1.4 CAX06029 3.2.1.4 BAF51695 3.2.1.73 

 CAB38941 3.2.1.4 AAS87601 3.2.1.4 CAW92415 3.2.1.4 ADQ41951 3.2.1.73 

 BAA76619 3.2.1.4 AAT66046 3.2.1.4 CAW92424 3.2.1.4 BAK51232 3.2.1.73 

 BAA77239 3.2.1.4 CAD61242 3.2.1.4 CAW92432 3.2.1.4 AGF52739 3.2.1.73 

 AAD38027 3.2.1.4 BAD66681 3.2.1.4 CAW92437 3.2.1.4   

 AAF02887 3.2.1.4 CAF22221 3.2.1.4 ACL74618 3.2.1.4   

 CAA86077 3.2.1.4 BAD95336 3.2.1.4 ACL75110 3.2.1.4   

  
5 CAA86209 3.2.1.21 NP_638867 3.2.1.4 ACU30064 3.2.1.4 ACP74152 3.2.1.58 

 CAA47429 3.2.1.21 AAL33639 3.2.1.4 ACW22975 3.2.1.4 AHH92832 3.2.1.58 

 CAA31936 3.2.1.4 CAD42489 3.2.1.4 ACW22976 3.2.1.4 EGC02962 3.2.1.73 

 CAA27266 3.2.1.4 AAN03645 3.2.1.4 ACW33392 3.2.1.4 EGC04285 3.2.1.73 

 CAA49187 3.2.1.4 AAN03646 3.2.1.4 ACX74504 3.2.1.4 CAA55788 3.2.1.75 

 CAA68604 3.2.1.4 AAN03647 3.2.1.4 ACX75120 3.2.1.4 CAA55789 3.2.1.75 

 CAA38692 3.2.1.4 AAN03648 3.2.1.4 ACX75816 3.2.1.4 CAA21163 3.2.1.75 
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 CAA38693 3.2.1.4 AAL88714 3.2.1.4 ACX75950 3.2.1.4 CAB50968 3.2.1.75 

 P25472 3.2.1.4 CAD82873 3.2.1.4 ACY24829 3.2.1.4 AAL84696 3.2.1.75 

 AAA22299 3.2.1.4 AAP04424 3.2.1.4 ACY24859 3.2.1.4 NP_596224 3.2.1.75 

 AAA22301 3.2.1.4 AAP51020 3.2.1.4 BAI66446 3.2.1.4 NP_596461 3.2.1.75 

 AAA22304 3.2.1.4 AAP56348 3.2.1.4 ADB80108 3.2.1.4 AAN04103 3.2.1.75 

 AAA22305 3.2.1.4 CAB13696 3.2.1.4 ADC54852 3.2.1.4 EAA59985 3.2.1.75 

 AAA22306 3.2.1.4 AAP88024 3.2.1.4 ADD61853 3.2.1.4 AAT97707 3.2.1.75 

 AAA22307 3.2.1.4 AAQ21383 3.2.1.4 ADD61911 3.2.1.4 ABF50867 3.2.1.75 

 AAA22408 3.2.1.4 AAQ24883 3.2.1.4 ADD71777 3.2.1.4 ABK27195 3.2.1.75 

 AAA22496 3.2.1.4 AAQ31832 3.2.1.4 ADD73709 3.2.1.4 ABK27199 3.2.1.75 

 AAA22631 3.2.1.4 AAQ31833 3.2.1.4 ADE83057 3.2.1.4 ABV71387 3.2.1.75 

 AAA22909 3.2.1.4 AAO63626 3.2.1.4 ADH51728 3.2.1.4 ACM42428 3.2.1.75 

 AAA20893 3.2.1.4 BAD01163 3.2.1.4 EFI96731 3.2.1.4 AAA34208 3.2.1.78 

 AAA23089 3.2.1.4 BAD01164 3.2.1.4 ADJ93836 3.2.1.4 AAA67426 3.2.1.78 

 AAC37035 3.2.1.4 CAE81955 3.2.1.4 ADK66823 3.2.1.4 CAA90423 3.2.1.78 

 AAA23220 3.2.1.4 AAR29981 3.2.1.4 ADL25000 3.2.1.4 BAA25188 3.2.1.78 

 AAA23221 3.2.1.4 AAR60515 3.2.1.4 ADL25356 3.2.1.4 BAA25878 3.2.1.78 

 AAA51444 3.2.1.4 CAF02232 3.2.1.4 ADL26743 3.2.1.4 AAC71692 3.2.1.78 

 AAA23230 3.2.1.4 EAA62395 3.2.1.4 ADL27061 3.2.1.4 CAA06924 3.2.1.78 

 AAA24893 3.2.1.4 EAA65878 3.2.1.4 ADM12805 3.2.1.4 AAD09354 3.2.1.78 

 AAA61980 3.2.1.4 CAF05574 3.2.1.4 ADM89627 3.2.1.4 AAA26710 3.2.1.78 

 AAA26467 3.2.1.4 AAS58467 3.2.1.4 ADM99099 3.2.1.4 AAD36302 3.2.1.78 

 AAA26469 3.2.1.4 CAD61244 3.2.1.4 ADN02392 3.2.1.4 CAB56854 3.2.1.78 

 AAA27612 3.2.1.4 AAU40977 3.2.1.4 ADP05286 3.2.1.4 CAB56856 3.2.1.78 

 AAA34213 3.2.1.4 AAU27988 3.2.1.4 ADR64663 3.2.1.4 AAF22274 3.2.1.78 

 BAA00045 3.2.1.4 AAC02964 3.2.1.4 ADU21608 3.2.1.4 CAB76904 3.2.1.78 

 BAA00859 3.2.1.4 AAV25061 3.2.1.4 ADU28719 3.2.1.4 AAF06110 3.2.1.78 

 BAA00793 3.2.1.4 BAD67544 3.2.1.4 ADU28720 3.2.1.4 AAG00883 3.2.1.78 

 BAA14354 3.2.1.4 BAD72778 3.2.1.4 ADU31612 3.2.1.4 CAC08208 3.2.1.78 

 BAA03070 3.2.1.4 CAE82178 3.2.1.4 ADU86901 3.2.1.4 CAC08442 3.2.1.78 

 AAB19708 3.2.1.4 CAH69214 3.2.1.4 ADU86902 3.2.1.4 AAG45159 3.2.1.78 

 AAC60541 3.2.1.4 AAX18655 3.2.1.4 ADX05684 3.2.1.4 AAL01213 3.2.1.78 

 AAA73189 3.2.1.4 BAD90558 3.2.1.4 ADX05688 3.2.1.4 NP_229032 3.2.1.78 

 BAA32286 3.2.1.4 AAY03292 3.2.1.4 ADX05696 3.2.1.4 CAC81056 3.2.1.78 

 CAA53592 3.2.1.4 CAJ00038 3.2.1.4 ADX05697 3.2.1.4 AAK53459 3.2.1.78 

 CAA83238 3.2.1.4 CAJ00039 3.2.1.4 ADX05703 3.2.1.4 AAL91241 3.2.1.78 

 CAA83942 3.2.1.4 AAZ22322 3.2.1.4 ADX05705 3.2.1.4 AAM41068 3.2.1.78 

 CAA55823 3.2.1.4 AAZ54939 3.2.1.4 ADX05717 3.2.1.4 NP_637144 3.2.1.78 

 CAA53631 3.2.1.4 AAZ56745 3.2.1.4 ADX05718 3.2.1.4 AAM56792 3.2.1.78 

 CAA82317 3.2.1.4 CAJ28076 3.2.1.4 ADX05725 3.2.1.4 AAM56796 3.2.1.78 

 AAA91966 3.2.1.4 CAJ28077 3.2.1.4 ADX05729 3.2.1.4 AAN27517 3.2.1.78 

 AAC37033 3.2.1.4 ABA42184 3.2.1.4 ADX05732 3.2.1.4 AAN27518 3.2.1.78 

 AAB03889 3.2.1.4 ABA42185 3.2.1.4 ADX05734 3.2.1.4 AAN34823 3.2.1.78 

 CAA60493 3.2.1.4 ABA64553 3.2.1.4 ADX05739 3.2.1.4 AAN72165 3.2.1.78 

 AAC43478 3.2.1.4 BAE46390 3.2.1.4 ADX05742 3.2.1.4 AAO31759 3.2.1.78 

 CAA01934 3.2.1.4 ABB51612 3.2.1.4 ADX05751 3.2.1.4 AAO31760 3.2.1.78 
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 CAA01935 3.2.1.4 CAJ19151 3.2.1.4 ADX05760 3.2.1.4 AAO31761 3.2.1.78 

 CAA61740 3.2.1.4 ABB92850 3.2.1.4 ADX78144 3.2.1.4 CAC51690 3.2.1.78 

 AAA75477 3.2.1.4 ABC30636 3.2.1.4 ADX78145 3.2.1.4 NP_171733 3.2.1.78 

 AAB38548 3.2.1.4 ABD80834 3.2.1.4 ADZ44606 3.2.1.4 AAQ31837 3.2.1.78 

 BAA12676 3.2.1.4 ABD81750 3.2.1.4 AEB00655 3.2.1.4 AAQ79152 3.2.1.78 

 BAA12744 3.2.1.4 ABD81754 3.2.1.4 AEB53062 3.2.1.4 AAQ79153 3.2.1.78 

 CAA97610 3.2.1.4 ABD81896 3.2.1.4 AEE46054 3.2.1.4 AAM26920 3.2.1.78 

 CAB01405 3.2.1.4 ABD82186 3.2.1.4 AEG76944 3.2.1.4 EAA58449 3.2.1.78 

 AAD04193 3.2.1.4 ABD82494 3.2.1.4 AEJ76923 3.2.1.4 EAA63265 3.2.1.78 

 AAB40891 3.2.1.4 ABD82496 3.2.1.4 AEM23896 3.2.1.4 EAA63326 3.2.1.78 

 CAB06784 3.2.1.4 ABE22094 3.2.1.4 AEM23898 3.2.1.4 AAT06599 3.2.1.78 

 CAB05881 3.2.1.4 ABE60666 3.2.1.4 AEM45646 3.2.1.4 AAT39478 3.2.1.78 

 AAB51451 3.2.1.4 ABE60714 3.2.1.4 AEO53769 3.2.1.4 AAB87859 3.2.1.78 

 CAA73113 3.2.1.4 ABF50848 3.2.1.4 AEQ58914 3.2.1.4 CAH68693 3.2.1.78 

 AAC97596 3.2.1.4 ABF50872 3.2.1.4 AEV59725 3.2.1.4 AAX01860 3.2.1.78 

 AAC49731 3.2.1.4 BAA12826 3.2.1.4 AEV59734 3.2.1.4 AAX87002 3.2.1.78 

 AAB61461 3.2.1.4 ABG46712 3.2.1.4 AEV59736 3.2.1.4 AAX87003 3.2.1.78 

 AAC48327 3.2.1.4 ABG58383 3.2.1.4 AFC68970 3.2.1.4 EAL85463 3.2.1.78 

 AAC48326 3.2.1.4 ABG59366 3.2.1.4 AFG25592 3.2.1.4 BAD99527 3.2.1.78 

 AAB69347 3.2.1.4 ABG78039 3.2.1.4 AFJ05146 3.2.1.4 AAZ54938 3.2.1.78 

 AAB69348 3.2.1.4 ABH71811 3.2.1.4 AFJ44728 3.2.1.4 ABB88954 3.2.1.78 

 AAC48325 3.2.1.4 ABH84883 3.2.1.4 BAM21527 3.2.1.4 ABC13790 3.2.1.78 

 AAC48341 3.2.1.4 ABI94085 3.2.1.4 AFN89566 3.2.1.4 ABC13791 3.2.1.78 

 AAC02536 3.2.1.4 ABI94086 3.2.1.4 AFX88666 3.2.1.4 ABC59553 3.2.1.78 

 AAC05164 3.2.1.4 ABK52387 3.2.1.4 AFX88668 3.2.1.4 BAE78456 3.2.1.78 

 AAC06196 3.2.1.4 CAL94853 3.2.1.4 AFX88671 3.2.1.4 ABC87082 3.2.1.78 

 AAC06197 3.2.1.4 ABN51772 3.2.1.4 AFX88673 3.2.1.4 ABF50861 3.2.1.78 

 AAC08587 3.2.1.4 ABN54070 3.2.1.4 AFY97404 3.2.1.4 ABF50863 3.2.1.78 

 AAC09379 3.2.1.4 CAK45103 3.2.1.4 AGH53362 3.2.1.4 ABF50878 3.2.1.78 

 AAC15707 3.2.1.4 ABP66297 3.2.1.4 AGL50932 3.2.1.4 ABG79370 3.2.1.78 

 AAC15708 3.2.1.4 ABP66692 3.2.1.4 AHA42547 3.2.1.4 ABG88068 3.2.1.78 

 AAC19169 3.2.1.4 AAU23613 3.2.1.4 AHF23845 3.2.1.4 ABJ41262 3.2.1.78 

 BAA29030 3.2.1.4 CAM98473 3.2.1.4 AHF24998 3.2.1.4 ABJ41263 3.2.1.78 

 BAA30271 3.2.1.4 ABS61403 3.2.1.4 AID57617 3.2.1.4 ABJ41266 3.2.1.78 

 BAA31712 3.2.1.4 ABU45500 3.2.1.4 AIY93123 3.2.1.4 ABJ41267 3.2.1.78 

 AAC33848 3.2.1.4 ABV08875 3.2.1.4 CAA43597 3.2.1.74 ABJ41268 3.2.1.78 

 AAC33860 3.2.1.4 ABV08876 3.2.1.4 CAA36207 3.2.1.74 XP_0012627
44 

3.2.1.78 

 CAA76775 3.2.1.4 ABV45393 3.2.1.4 AAA50210 3.2.1.74 ABN52056 3.2.1.78 

 AAC63094 3.2.1.4 CAP07661 3.2.1.4 ABE60715 3.2.1.74 CAK96471 3.2.1.78 

 CAA03653 3.2.1.4 BAF87299 3.2.1.4 ACE82870 3.2.1.74 ABQ47550 3.2.1.78 

 CAA03658 3.2.1.4 ABX41541 3.2.1.4 ACX75179 3.2.1.74 AAG00315 3.2.1.78 

 AAC63988 3.2.1.4 ABX42426 3.2.1.4 ADL26975 3.2.1.74 ABV68808 3.2.1.78 

 AAC63989 3.2.1.4 ABX76045 3.2.1.4 CAB76938 3.2.1.91 CAP71606 3.2.1.78 

 CAA11965 3.2.1.4 ABX76046 3.2.1.4 AFR99035 3.2.1.104 ACE82655 3.2.1.78 

 BAA36216 3.2.1.4 ABX76048 3.2.1.4 AAB67050 3.2.1.123 ACE84673 3.2.1.78 

 BAA74515 3.2.1.4 ABX76050 3.2.1.4 BAB16369 3.2.1.123 ACE84941 3.2.1.78 
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 BAA76394 3.2.1.4 ABY28340 3.2.1.4 BAB16370 3.2.1.123 ACH56965 3.2.1.78 

 CAB42449 3.2.1.4 ABY52965 3.2.1.4 BAB17317 3.2.1.123 ACH58410 3.2.1.78 

 CAB42450 3.2.1.4 ABZ29259 3.2.1.4 BAD20464 3.2.1.123 ACH58411 3.2.1.78 

 AAD39739 3.2.1.4 CAQ03244 3.2.1.4 BAF56440 3.2.1.123 ACJ06979 3.2.1.78 

 AAD43818 3.2.1.4 ACA61149 3.2.1.4 BAC65342 3.2.1.132 CAT81455 3.2.1.78 

 CAB49854 3.2.1.4 ACA61152 3.2.1.4 BAG70961 3.2.1.149 ACL75115 3.2.1.78 

 BAA82592 3.2.1.4 ACA61168 3.2.1.4 AAR65335 3.2.1.151 ACM94273 3.2.1.78 

 AAD45868 3.2.1.4 ACB06750 3.2.1.4 AAR65336 3.2.1.151 BAG69482 3.2.1.78 

 CAB58698 3.2.1.4 ACD36972 3.2.1.4 BAE44526 3.2.1.151 ACU52526 3.2.1.78 

 CAB59143 3.2.1.4 ACE06751 3.2.1.4 ACZ54907 3.2.1.151 ACU52527 3.2.1.78 

 CAB59144 3.2.1.4 ACE10214 3.2.1.4 BAF42338 3.2.1.164 BAI52931 3.2.1.78 

 CAB59165 3.2.1.4 ACE14923 3.2.1.4 CAK38078 3.2.1.164 ADF28533 3.2.1.78 

 AAF18152 3.2.1.4 ACE14924 3.2.1.4 AAS19695 3.2.1.25 ADK91085 3.2.1.78 

 AAF00074 3.2.1.4 ACE14925 3.2.1.4 AEH51033 3.2.1.25 ADL52514 3.2.1.78 

 BAA90480 3.2.1.4 ACE84076 3.2.1.4 CAJ75961 3.2.1.45 ADL52789 3.2.1.78 

 BAA92146 3.2.1.4 ACH63253 3.2.1.4 BAL46040 3.2.1.45 ADN93457 3.2.1.78 

 BAA92430 3.2.1.4 ACH67609 3.2.1.4 BAL46041 3.2.1.45 ADO14134 3.2.1.78 

 CAB92326 3.2.1.4 ACH69873 3.2.1.4 EIE79467 3.2.1.45 BAJ60954 3.2.1.78 

 CAA44467 3.2.1.4 AAD48494 3.2.1.4 AFR92751 3.2.1.45 ADW82104 3.2.1.78 

 AAF83628 3.2.1.4 ACI15227 3.2.1.4 AHV83755 3.2.1.45 BAK05001 3.2.1.78 

 AAF85505 3.2.1.4 ACI18520 3.2.1.4 AAB24895 3.2.1.58 ADZ99027 3.2.1.78 

 BAB04322 3.2.1.4 ACI63223 3.2.1.4 CAA41952 3.2.1.58 ADZ99301 3.2.1.78 

 CAC18529 3.2.1.4 CAR96693 3.2.1.4 CAA39908 3.2.1.58 AEE27414 3.2.1.78 

 BAB19360 3.2.1.4 ACJ12786 3.2.1.4 CAA86950 3.2.1.58 AEE43708 3.2.1.78 

 AAG44364 3.2.1.4 ACJ12787 3.2.1.4 CAA63536 3.2.1.58 BAK26781 3.2.1.78 

 AAG45162 3.2.1.4 ACJ12788 3.2.1.4 CAA92719 3.2.1.58 AEP84473 3.2.1.78 

 AAG50051 3.2.1.4 ACJ12789 3.2.1.4 CAA86948 3.2.1.58 AEV40667 3.2.1.78 

 AAG59832 3.2.1.4 ACJ12790 3.2.1.4 CAA86949 3.2.1.58 AEV41143 3.2.1.78 

 CAC27410 3.2.1.4 ACJ12791 3.2.1.4 CAA86951 3.2.1.58 AEY76082 3.2.1.78 

 AAK16222 3.2.1.4 ACJ12792 3.2.1.4 CAA86952 3.2.1.58 AFC38441 3.2.1.78 

 AAK21881 3.2.1.4 ACJ60856 3.2.1.4 CAA94100 3.2.1.58 AFJ59924 3.2.1.78 

 AAK21882 3.2.1.4 CAT02251 3.2.1.4 CAA99399 3.2.1.58 AFJ68087 3.2.1.78 

 AAK39540 3.2.1.4 ACJ71329 3.2.1.4 CAA21969 3.2.1.58 BAM62868 3.2.1.78 

 AAE59925 3.2.1.4 ACK38261 3.2.1.4 CAA11018 3.2.1.58 AFX59322 3.2.1.78 

 AAE59927 3.2.1.4 ACK41955 3.2.1.4 NP_010547 3.2.1.58 AGA35556 3.2.1.78 

 AAE60102 3.2.1.4 CAT16607 3.2.1.4 AAF65310 3.2.1.58 AGC24277 3.2.1.78 

 AAK60011 3.2.1.4 CAT16610 3.2.1.4 CAC07551 3.2.1.58 AGG69666 3.2.1.78 

 NP_126623 3.2.1.4 CAL91975 3.2.1.4 AAM08614 3.2.1.58 AGG69667 3.2.1.78 

 NP_143072 3.2.1.4 CAV28462 3.2.1.4 AAM08821 3.2.1.58 AGH62580 3.2.1.78 

 BAB62295 3.2.1.4 ACL75118 3.2.1.4 AAM21469 3.2.1.58 AGL50158 3.2.1.78 

 BAB62317 3.2.1.4 ACL75216 3.2.1.4 AAP53379 3.2.1.58 AGV01048 3.2.1.78 

 BAB62319 3.2.1.4 ACL75458 3.2.1.4 CAD97460 3.2.1.58 AGW24296 3.2.1.78 

 AAK94871 3.2.1.4 ACL76673 3.2.1.4 EAA62113 3.2.1.58 AGU71466 3.2.1.78 

 AAK85303 3.2.1.4 ACM59720 3.2.1.4 AAV05307 3.2.1.58 AHB89702 3.2.1.78 

 AAL16412 3.2.1.4 ACM60954 3.2.1.4 BAD97445 3.2.1.58 AHB89703 3.2.1.78 

 CAD17313 3.2.1.4 ACN43345 3.2.1.4 BAD97446 3.2.1.58 AHD18866 3.2.1.78 
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 AAE84292 3.2.1.4 ACN62172 3.2.1.4 AAY28969 3.2.1.58 BAP19029 3.2.1.78 

 AAB61462 3.2.1.4 ACO55737 3.2.1.4 BAE58099 3.2.1.58 CDP31001 3.2.1.78 

 AAL83749 3.2.1.4 ACR23656 3.2.1.4 ABF50886 3.2.1.58 EDV05070 3.2.1.8 

 BAB86867 3.2.1.4 ACR23659 3.2.1.4 BAF26372 3.2.1.58 EEC54456 3.2.1.8 

 AAM23649 3.2.1.4 ACR59602 3.2.1.4 CAK43212 3.2.1.58 ADI70667 3.2.1.8 

 AAK21883 3.2.1.4 ACR82487 3.2.1.4 EDU47467 3.2.1.58 ADI70668 3.2.1.8 

 AAM42791 3.2.1.4 ACR87895 3.2.1.4 BAG89316 3.2.1.58   

 AAM42791.
1 

3.2.1.4 CAZ67882 3.2.1.4 CAY69081 3.2.1.58   

 

Table A3 
 

Table A3: Shown are the mean values of measured soil characteristics of the long-term tillage experiment for 

soil under conventional (CT), medium (MT) or reduced (RT) tillage (T) and under high (HF), medium (MF) and 

low (LF) fertilization (F), when appropriate. Furthermore, P-values for differences between tillage- or 

fertilization-treatment means are included, calculated using split-plot ANOVA. Different letters (in Italics) 

behind the mean values indicate a significant different mean. Values given per gram soil are calculated based 

on soil dry weight. 

 Means P-values 

 Grand T F T F TxF 

       
pH 6.285   0.444 0.593 0.763 

Temperature 6.689   0.341 0.325 0.837 

Gravimetric water content (%)  RT : 22.8 a 

MT:  21.9 b 

CT: 19.2 c 

 0.000 0.106 0.055 

C content (%)  RT:  1.64  a 

MT: 1.37 ab 

CT: 1.10  b 

 0.022 0.776 0.505 

N content (%)  RT:  0.17  a 

MT: 0.15 ab 

CT: 0.12  b 

 0.019 0.584 0.740 

Cmic (mg g
-1

 soil)  RT: 0.303 a 

MT: 0.213 b 

CT: 0.152 c 

 0.003 0.396 0.207 

Nmic (mg g
-1

 soil)  RT: 0.038 a 

MT: 0.030 b 

CT: 0.020 c 

 0.004 0.264 0.202 

DOC (µg g
-1

 soil)  RT: 7.516 a 

MT: 1.953 b 

CT: 0.805 b 

 0.013 0.857 0.571 

TDN (µg g
-1

 soil)  RT: 4.794 a 

MT: 2.090 b 

CT: 2.134 b 

 0.056 0.581 0.591 

Nitrate (µg g
-1

 soil) 3.20   0.184 0.742 0.335 

Ammonium (µg g
-1

 soil) 0.60   0.439 0.376 0.648 

Xylosidase (pmol MU hour
-1

 g
-1

 

soil) 

 RT: 493,596 a 

MT: 374,997 b 

HF: 433,252 a 

MF: 374,645 b 

0.001 0.000 0.424 
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CT: 297,153 c LF: 357,849 b 

Cellobiohydrolase (pmol MU 

hour
-1

 g
-1

 soil) 

 RT: 26,620 a 

MT: 17,395 b 

CT: 6,437 c 

 0.003 0.673 0.914 

β-glucosidase (pmol MU hour
-1

   

g
-1

 soil) 

 RT: 479,006 a 

MT: 370,931 ab 

CT: 266,171  b 

 0.015 0.145 0.717 

Xylosidase (pmol MU hour
-1

 g
-1

 

soil μg
-1

 Cmic) 

  HF: 2,099 a 

MF: 1,703 b 

LF: 1,643 b 

0.197 0.036 0.445 

Cellobiohydrolase (pmol MU 

hour
-1

 g
-1

 soil μg
-1

 Cmic) 

 RT: 88.6  a 

MT: 83.3  a 

CT: 42.3  b 

 0.014 0.149 0.308 

β-glucosidase (pmol MU hour
-1

   

g
-1

 soil μg
-1

 Cmic) 

1,747   0.694 0.179 0.349 

 

Table A4 
 

Table A4: Statistics of the metagenome sequencing of the long-term tillage experiment, shown per replicate 

of conventional (CT) and reduced (RT) tillage in the top 10 cm of soil. 

Raw reads CT CT CT RT RT RT 

Number of reads 130,726 129,916 184,890 226,876 226,771 199,436 

Average length (bps) 638 641 640 633 626 630 

Clean reads CT CT CT RT RT RT 

Number of reads 112,985 112,585 159,373 193,285 193,988 170,423 

Average length (bps) 412 413 421 408 405 403 

 

Table A5 
 

Table A5: Microbial groups or protein-coding genes affected by tillage treatment. Shown are averages (AVG), 

standard deviations (SD) and the total sum (Total) of relative abundances of reads (in % of all metagenome 

reads x 10
-3

) annotated to microbial groups or protein-coding genes for the metagenomes of soil under 

conventional (CT) or reduced (RT) tillage from the long-term tillage experiment. Only the microbial groups or 

protein-coding genes that significantly differ between tillage treatments (paired t-test P-value <0.05) and of 

which the total relative abundance is higher than 0.01% of all metagenome reads are shown. An exception has 

been made for the cellulase-annotations and the taxonomic annotations of the cellulolytic enzymes and of the 

six most-abundant cellulase domain families (AA8, GH1, GH3, GH94, CBM2 and CBM6), which are less 

abundant than 0.01% of all metagenome reads. The shaded P-values are those which are not valid anymore 

after P-value correction (see section 2: Materials and Methods). If a microbial group or protein-coding gene is 

not abundant enough and neither has a valid P-value, it is not shown.  

Microbial groups or protein-coding genes 

CT 

(AVG) 

CT 

(SD) 

RT 

(AVG) 

RT 

(SD) Total
 

paired t-

test P-value 

     
 

 Phylum       

Chloroflexi 1210.2 158.4 927.8 130.5 1037.8 0.009 

Armatimonadetes 109.3 17.1 95.6 16.0 101.2 0.006 
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Crenarchaeota 23.4 4.5 16.7 4.3 19.5 0.042 

Class       

Deltaproteobacteria 2966.4 222.3 3291.8 305.6 3154.5 0.027 

Solibacteres 1120.1 52.4 1059.7 67.3 1083.4 0.048 

Chloroflexia 416.2 47.3 314.6 44.2 355.8 0.012 

Ktedonobacteria 106.9 3.7 77.0 7.1 89.5 0.041 

Fimbriimonadia 66.0 11.3 53.4 11.2 58.3 0.045 

Stigonematales 26.7 1.4 19.2 1.0 22.2 0.027 

Order       

Solibacterales 1120.1 52.4 1059.7 67.3 1083.4 0.048 

Chloroflexales 318.1 26.2 247.8 33.7 276.8 0.023 

Ktedonobacterales 106.9 3.7 77.0 7.1 89.5 0.041 

Fimbriimonadales 66.0 11.3 53.4 11.2 58.3 0.045 

Stigonematales 26.7 1.4 19.2 1.0 22.2 0.027 

KEGG Level 3-pathways       

Carbohydrate Metabolism 4604.2 15.0 4438.3 55.7 4521.3 0.049 

Xenobiotics Biodegradation and Metabolism 1659.3 4.6 1531.7 22.4 1595.5 0.015 

KEGG Level 4-pathways       

Glyoxylate and dicarboxylate metabolism 671.9 27.6 642.6 17.0 657.3 0.042 

Valine, leucine and isoleucine degradation 625.0 23.8 572.1 26.5 598.6 0.030 

Nitrogen metabolism 1039.8 19.6 994.1 26.5 1017.0 0.042 

Methane metabolism 781.9 29.1 734.3 19.4 758.1 0.021 

Fatty acid metabolism 547.8 18.3 492.4 16.7 520.1 0.002 

Selenocompound metabolism 303.1 11.4 315.6 8.9 309.4 0.029 

beta-Alanine metabolism 300.4 24.3 270.0 14.7 285.2 0.032 

Toluene degradation 177.2 11.5 153.8 17.4 165.5 0.024 

Drug metabolism - other enzymes 134.6 1.5 117.9 2.6 126.3 0.004 

Styrene degradation 108.5 5.8 91.1 4.6 99.8 0.022 

Ethylbenzene degradation 72.9 7.2 58.0 5.3 65.5 0.046 

Arachidonic acid metabolism 66.7 1.7 58.2 2.1 62.4 0.044 

Nonribosomal peptide structures 34.1 4.8 38.9 4.8 36.5 0.017 

Cellulase domain family AA8       

Solirubrobacterales 0.8 0.1 0.3 0.3 0.5 0.034 

Cellulase domain family GH3       

Chloroflexi 1.0 0.9 1.6 1.0 1.4 0.027 

 

Table A6 
 

Table A6: Shown are the mean values of measured soil characteristics of the organic tillage experiment for soil 

under different farming systems (F, organic farming with plough tillage (CT), organic farming with reduced 

tillage (RT), conventional farming with plough tillage (PT) and conventional farming under no-tillage (NT)), 

under different cover crop treatments (CC, legume (L) or no cover crop (NO)) and in two different depths (D, in 

the top 0-6 cm (Layer 0) and 10-16 cm (Layer 1) from the soil surface), when appropriate. Furthermore, P-

values for factor effects are included, calculated using split-split-plot ANOVA. Different letters (in Italics) 

behind the mean values indicate a significant different mean. Values given per gram soil are calculated based 
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on soil dry weight. 

 Means P-values 

  F CC D FxCC FxD DxCC FxCCxD 

         
pH Layer 1: 7.912 a 

Layer 0: 7.762 b 

0.258 0.831 0.000 0.131 0.105 0.810 0.683 

Gravimetric water 

content (%) 

RT0: 19.7 a 

PT1: 19.7 a 

NT0: 19.7 ab 

NT1: 19.3 ab 

CT1: 19,2 ab 

RT1: 19.0 bc 

CT0: 18.4 c 

PT0: 18.3 c 

0.358 0.188 0.115 0.512 0.001 0.747 0.299 

C content (%) Layer 0: 1.77 a 

Layer 1: 1.45 b 

0.766 0.177 0.008 0.065 0.630 0.164 0.186 

N content (%) Layer 0: 0.17 a 

Layer 1: 0.15 b 

0.229 0.377 0.006 0.781 0.529 0.118 0.702 

Cmic (mg g
-1

 soil) RT0: 0.988 a 

NT0: 0.767 b 

PT1: 0.754 b 

CT1: 0.665 b 

CT0: 0.663 b 

RT1: 0.629 bc 

PT0: 0.585 bc 

NT1: 0.448 c 

0.331 0.259 0.013 0.875 0.001 0.777 0.818 

Nmic (mg g
-1

 soil) RT0: 0.144 a 

NT0: 0.103 b 

CT0: 0.103 bc 

CT1: 0.097 bc 

PT0: 0.094 bc 

PT1: 0.091 bcd 

RT1: 0.091 cd 

NT1: 0.080 d 

0.161 0.246 0.000 0.068 0.000 0.838 0.228 

DOC (µg g
-1

 soil) CT1_L: 208.84 a 

CT0_NO: 205.01 a 

NT1_ NO: 154.7  ab 

NT0_L: 120.31 abc 

RT0_L: 115.60 abc 

RT1_L: 107.13 abc 

PT0_ NO: 84.93 abc 

PT1_L: 62.88 abc 

RT1_ NO: 61.59 abc 

NT1_L: 59.83 abc 

PT0_L: 59.82 abc 

NT0_ NO: 48.70 bc 

CT0_L: 31.65 bc 

RT0_ NO: 29.70 bc 

PT1_ NO: -0.66 c 

0.621 0.274 0.798 0.654 0.820 0.204 0.007 
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CT1_ NO: -13.66 c 

TDN (µg g
-1

 soil) 4.735 0.492 0.519 0.636 0.533 0.779 0.867 0.392 

Nitrate (µg g
-1

 soil) NT: 5.40 a 

RT: 3.81 ab 

PT: 3.61 b 

CT: 2.43 b 

0.020 0.378 0.454 0.354 0.926 0.659 0.171 

Ammonium (µg g
-1

 

soil) 

Layer 0: 0.28 a 

Layer 1: 0.10 b 

0.773 0.588 0.000 0.444 0.630 0.887 0.188 

 

Table A7 
 

Table A7: Statistics of the metagenome sequencing of the organic tillage experiment, shown per replicate of 

conventional (CT) and reduced (RT) tillage in the top 0-6 cm and 10-16 cm from the soil surface. NC= negative 

sequencing control. 

Sample CT 0-

6cm 

CT 0-

6cm 

CT 0-

6cm 

CT 0-

6cm 

RT 0-

6cm 

RT 0-

6cm 

RT 0-

6cm 

RT 0-

6cm 

NC 0-

6cm 

number of 

raw reads 

3.789 x 

10
6
 

2.530 x 

10
6
 

3.265 x 

10
6
 

3.559 x 

10
6
 

2.606 x 

10
6
 

3.234 x 

10
6
 

3.671 x 

10
6
 

3.502 x 

10
6
 

382 

Average 

length (bps) 

300 300 300 300 300 300 300 300 300 

number of 

clean reads 

3.694 x 

10
6
 

2.483 x 

10
6
 

3.239 x 

10
6
 

3.490 x 

10
6
 

2.553 x 

10
6
 

3.145 x 

10
6
 

3.626 x 

10
6
 

3.398 x 

10
6
 

161 

Average 

length (bps) 

230 214 206 216 216 232 235 242 215 

Sample CT 10-

16cm 

CT 10-

16cm 

CT 10-

16cm 

CT 10-

16cm 

RT 10-

16cm 

RT 10-

16cm 

RT 10-

16cm 

RT 10-

16cm 

NC 10-

16cm 

number of 

raw reads 

3.533 x 

10
6
 

3.431 x 

10
6
 

3.302 x 

10
6
 

3.932 x 

10
6
 

3.548 x 

10
6
 

3.387 x 

10
6
 

3.114 x 

10
6
 

3.477 x 

10
6
 

634 

Average 

length (bps) 

300 300 300 300 300 300 300 300 300 

number of 

clean reads 

3.389 x 

10
6
 

3.286 x 

10
6
 

3.100 x 

10
6
 

3.732 x 

10
6
 

3.392 x 

10
6
 

3.233 x 

10
6
 

2.931 x 

10
6
 

3.344 x 

10
6
 

447 

Average 

length (bps) 

287 291 305 297 276 300 298 280 273 

 

Table A8 
 

Table A8: Microbial groups or protein-coding genes affected by tillage treatment. Shown are averages (AVG),  

standard deviations (SD) and the total sum (Total) of relative abundances of reads (in % of all metagenome 

reads x 10
-3

) annotated to microbial groups or protein-coding genes for the metagenomes of the top 0-6 cm or 

top 10-16 cm soil under conventional (CT) or reduced (RT) tillage from the organic tillage experiment. Only the 

microbial groups or protein-coding genes that significantly differ (ANOVA P-value <0.05) between tillage 

treatments (Effect=T) or soil depths (Effect=D) or both (Effect=I) and of which the total relative abundance is 

higher than 0.01% of all metagenome reads. An exception has been made for the cellulase-annotations and 

the taxonomic assignments of the cellulolytic enzymes and of the six most-abundant cellulase domain families 

(AA8, GH1, GH3, GH94, CBM2 and CBM6), which are less abundant than 0.01% of all metagenome reads. The 
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shaded P-values are those which are not valid anymore after P-value correction (see section 2: Materials and 

Methods). If a microbial group or protein-coding gene is not abundant enough and neither has a valid P-value, 

it is not shown. 

 AVG 

0-6 cm 

AVG 

10-16 cm 

SD 

0-6 cm 

SD 

10-16 cm 

 

P-

value 

 

  CT RT CT RT CT RT CT RT Total Effect 

            
Phylum            

Acidobacteria 2282.4 2235.6 3184.4 3397.1 332.7 221.8 213.8 266.3 2784.4 0.000 D 

Armatimonadete

s 

50.9 49.2 74.3 71.9 4.4 8.4 4.8 7.4 62.0 0.000 D 

Basidiomycota 8.2 10.5 10.7 16.3 3.0 1.1 2.3 1.3 11.4 0.007 D 

Chordata 11.3 11.5 14.8 17.4 3.8 0.8 0.6 0.8 13.7 0.002 D 

Crenarchaeota  32.7 33.0 53.9 58.6 6.1 7.6 6.4 2.0 44.6 0.001 D 

Deinococcus-

Thermus 

79.1 78.6 98.1 98.6 1.6 2.0 1.8 3.4 88.9 0.000 D 

Euryarchaeota 106.2 103.3 137.9 143.4 4.9 3.0 5.5 2.9 123.1 0.000 D 

Gemmatimonad

etes 

687.5 668.0 984.7 996.2 50.8 142.5 66.3 102.2 838.6 0.000 D 

Microgenomates 26.4 26.0 40.3 44.2 3.7 1.9 1.4 1.2 34.3 0.000 D 

Nitrospirae 300.7 288.1 437.1 440.4 33.7 12.0 31.6 14.4 368.0 0.000 D 

Parcubacteria 58.0 57.3 86.1 95.3 7.3 1.3 5.5 3.1 74.4 0.000 D 

Planctomycetes 1501.9 1492.1 1783.7 1777.1 94.3 85.3 127.2 62.3 1640.3 0.000 D 

Spirochaetes 43.9 43.1 59.8 59.7 1.9 1.9 2.6 2.0 51.8 0.000 D 

Thaumarchaeota 336.8 330.2 510.5 537.0 68.3 72.7 34.9 18.2 428.9 0.001 D 

Verrucomicrobia 1233.2 1403.2 1554.0 1628.5 201.9 103.4 182.9 114.3 1459.1 0.001 D 

Actinobacteria 8905.8 9731.6 8147.6 7384.3 399.6 535.0 540.7 740.0 8542.0 0.004 I 

Ascomycota 61.3 77.7 71.2 61.5 10.6 7.3 11.4 9.9 67.8 0.016 I 

Chlamydiae 12.0 11.4 14.7 17.3 1.6 0.8 1.1 1.7 13.8 0.046 I 

Chlorobi 19.7 18.6 25.4 28.3 1.3 0.5 1.3 1.5 23.0 0.007 I 

Chloroflexi 559.1 543.2 744.5 808.9 12.1 61.4 11.7 46.7 666.7 0.002 I 

Cyanobacteria 596.8 539.2 661.7 677.3 26.1 7.0 21.4 18.5 620.1 0.009 I 

Firmicutes 593.5 583.3 718.3 747.4 25.0 8.2 10.4 13.3 661.6 0.017 I 

Ignavibacteriae 16.2 15.8 23.9 27.6 2.2 1.5 2.3 1.7 21.0 0.003 I 

Proteobacteria 18499.3 19877.8 21035.5 19575.9 265.9 897.4 453.2 414.3 19770.0 0.001 I 

Family            

Acidobacteriace

ae 

688.6 684.8 943.8 1011.6 57.9 69.6 52.7 111.8 834.7 0.000 D 

Holophagaceae 18.9 19.3 27.8 29.4 1.5 1.4 2.0 2.1 23.9 0.000 D 

Rubrobacteracea

e 

83.7 78.5 76.8 66.4 15.3 15.2 13.2 4.1 76.3 0.021 D 

Patulibacteracea

e 

36.6 36.0 34.2 32.1 4.3 1.6 2.4 1.6 34.8 0.023 D 

Nitriliruptoracea

e 

22.2 21.9 25.7 23.9 1.4 2.5 2.8 2.2 23.4 0.016 D 

Hyphomicrobiac

eae 

148.0 145.4 172.3 161.9 7.3 9.8 3.0 14.7 157.2 0.000 D 

Rhodobacterace

ae 

158.8 156.3 149.8 131.9 15.9 24.7 18.5 11.1 148.8 0.005 D 
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Methylocystacea

e 

25.3 26.4 27.9 27.8 1.0 1.1 0.3 1.4 26.9 0.003 D 

Burkholderiacea

e 

242.5 257.7 288.4 278.8 6.6 12.0 15.8 5.1 267.1 0.001 D 

Nitrosomonadac

eae 

79.0 77.4 89.5 90.8 7.1 3.8 7.6 10.6 84.0 0.042 D 

Chromobacteria

ceae 

17.5 18.4 21.4 20.9 1.0 1.3 1.1 1.0 19.6 0.001 D 

Methylophilacea

e 

12.1 13.1 15.9 14.7 1.6 1.0 0.9 1.9 13.9 0.003 D 

Methylococcace

ae 

74.6 75.1 97.9 99.3 2.7 3.9 2.6 4.6 86.9 0.000 D 

Chromatiaceae 49.4 49.5 63.6 62.8 1.5 1.2 4.5 2.3 56.4 0.000 D 

Alteromonadace

ae 

36.1 37.3 48.5 49.0 1.0 2.7 2.9 2.3 42.9 0.000 D 

Thiotrichaceae 28.1 27.9 36.8 36.2 1.0 2.0 1.3 1.8 32.4 0.000 D 

Competibacterac

eae 

18.8 19.3 24.1 24.6 1.7 1.3 1.3 2.5 21.7 0.001 D 

Vibrionaceae 17.4 18.2 21.7 22.8 0.9 1.2 1.0 1.4 20.1 0.001 D 

Legionellaceae 14.1 14.7 18.5 19.7 0.5 1.0 0.7 1.8 16.8 0.000 D 

Halomonadacea

e 

10.8 10.8 12.8 12.1 0.2 0.5 0.9 0.9 11.6 0.003 D 

Kofleriaceae 139.5 137.2 202.0 182.1 16.3 19.4 13.9 5.7 166.1 0.000 D 

Anaeromyxobact

eraceae 

81.7 82.5 106.1 100.5 4.4 17.3 10.8 5.3 93.0 0.001 D 

Geobacteraceae 62.7 65.5 91.9 98.3 3.2 12.2 9.8 17.9 79.8 0.000 D 

Desulfobacterac

eae 

62.1 61.1 84.1 89.6 2.9 4.6 3.4 6.2 74.4 0.000 D 

Desulfovibrionac

eae 

35.2 35.6 44.9 47.1 1.5 1.2 2.6 0.8 40.8 0.000 D 

Desulfobulbacea

e 

16.3 14.9 21.4 21.9 0.8 1.4 0.9 0.7 18.6 0.000 D 

Syntrophobacter

aceae 

13.2 14.0 20.1 22.0 0.8 0.8 1.0 1.5 17.4 0.000 D 

Vulgatibacterace

ae 

13.1 13.6 18.1 17.7 0.6 0.9 0.7 0.6 15.7 0.000 D 

Pelobacteraceae 9.0 10.0 12.6 13.6 1.0 2.0 1.6 2.7 11.3 0.000 D 

Chthonomonada

ceae 

14.8 14.4 21.0 22.0 1.7 1.3 2.2 1.2 18.2 0.000 D 

Flammeovirgace

ae 

26.6 31.1 35.9 33.7 2.9 4.7 2.6 1.4 31.9 0.013 D 

Rhodothermace

ae 

23.7 23.3 34.0 35.3 1.0 1.1 1.0 1.7 29.1 0.000 D 

Cyclobacteriacea

e 

23.5 25.7 30.5 29.4 2.6 2.5 1.5 1.3 27.3 0.000 D 

Prolixibacterace

ae 

9.0 9.4 11.7 12.6 0.7 0.8 0.4 0.6 10.7 0.000 D 

Roseiflexaceae 53.6 53.8 68.5 71.6 7.4 5.6 7.9 6.5 62.2 0.000 D 

Caldilineaceae 54.1 53.8 64.9 65.3 0.9 5.5 4.7 3.2 59.5 0.000 D 

Sphaerobacterac

eae 

53.8 53.0 65.8 65.2 2.5 4.7 2.5 4.7 59.5 0.000 D 

Ktedonobactera

ceae 

39.4 38.5 49.0 51.2 2.5 1.2 2.4 1.9 44.7 0.000 D 
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Herpetosiphona

ceae 

22.9 22.9 31.9 29.4 1.8 0.6 4.1 1.8 26.9 0.000 D 

Chloroflexaceae 20.8 20.8 27.4 29.1 1.5 1.0 1.4 1.2 24.6 0.000 D 

Oscillochloridace

ae 

10.6 10.9 13.8 14.8 0.8 0.6 1.7 0.6 12.6 0.000 D 

Thermogemmati

sporaceae 

8.8 8.4 11.1 11.7 0.8 0.6 1.3 0.3 10.1 0.000 D 

Thermaceae 36.9 36.3 46.1 47.9 1.7 1.4 2.1 0.9 41.9 0.000 D 

Deinococcaceae 30.1 30.5 37.1 36.1 1.7 1.3 0.2 0.8 33.6 0.000 D 

Halobacteriacea

e 

29.1 27.9 37.7 38.2 1.2 1.8 1.6 1.1 33.3 0.000 D 

Methanosarcina

ceae 

21.1 19.7 25.7 27.0 1.2 1.1 1.2 1.2 23.4 0.000 D 

Paenibacillaceae 66.8 65.2 81.9 82.4 1.7 1.5 1.3 1.7 74.2 0.000 D 

Peptococcaceae 35.5 35.9 44.4 45.2 1.6 1.0 1.5 1.5 40.2 0.000 D 

Clostridiaceae 20.0 20.6 24.1 26.4 1.1 1.0 1.6 2.0 22.8 0.000 D 

Ruminococcacea

e 

11.2 11.0 14.2 14.1 0.3 1.1 1.2 1.8 12.6 0.001 D 

Thermoanaerob

acteraceae 

10.7 10.3 13.4 14.1 0.6 0.5 1.1 1.1 12.1 0.000 D 

Alicyclobacillace

ae 

10.2 10.2 11.6 12.6 0.5 0.4 0.8 1.2 11.2 0.001 D 

Gemmatimonad

aceae 

177.9 179.0 239.9 233.3 17.4 16.1 21.6 8.0 208.5 0.000 D 

Nitrospiraceae 300.6 288.0 437.0 440.2 14.5 31.6 12.1 33.8 367.9 0.000 D 

Planctomycetace

ae 

1383.8 1373.0 1610.8 1603.8 59.5 127.3 79.0 87.4 1494.1 0.000 D 

Candidatus 

Brocadiaceae 

33.4 32.1 47.9 51.2 2.0 2.3 1.4 2.9 41.3 0.000 D 

Phycisphaeracea

e 

26.5 29.0 42.6 38.8 0.7 2.1 3.3 2.3 34.3 0.000 D 

Leptospiraceae 25.4 25.3 35.4 34.7 1.6 1.8 0.9 1.0 30.3 0.000 D 

Spirochaetaceae 17.2 16.4 22.8 23.3 0.3 1.0 1.3 0.8 20.0 0.000 D 

Nitrososphaerac

eae 

217.6 211.9 330.9 346.7 11.1 22.2 50.1 45.8 277.0 0.001 D 

Verrucomicrobia 

subdivision 3 

357.0 377.5 525.3 621.9 51.4 76.4 53.6 98.8 472.9 0.000 D 

Solibacteraceae 329.2 323.8 438.9 470.6 41.8 41.9 38.5 56.8 391.9 0.034 I 

Mycobacteriace

ae 

769.3 841.6 636.5 596.9 41.0 36.4 23.9 22.7 709.9 0.016 I 

Nocardioidaceae 359.0 420.3 269.6 232.2 42.9 45.2 18.5 30.2 320.7 0.008 I 

Solirubrobactera

ceae 

314.0 353.6 285.0 265.4 37.4 11.3 13.9 10.7 305.0 0.016 I 

Micromonospor

aceae 

263.6 303.9 291.6 274.4 7.1 33.1 21.3 19.2 283.3 0.012 I 

Pseudonocardiac

eae 

238.9 256.4 228.0 206.7 20.4 9.4 14.6 13.8 232.8 0.002 I 

Acidimicrobiacea

e 

187.7 219.1 166.4 135.8 22.4 33.5 18.2 21.5 176.8 0.001 I 

Microbacteriace

ae 

149.1 199.3 117.7 85.8 24.3 34.3 28.0 14.2 137.1 0.002 I 

Propionibacteria

ceae 

129.9 151.8 128.2 114.8 14.7 17.5 20.6 10.9 131.1 0.008 I 
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Geodermatophil

aceae 

145.0 142.9 125.9 97.4 18.2 11.3 16.9 4.7 127.7 0.038 I 

Nocardiaceae 114.9 128.8 110.0 104.4 6.4 6.7 7.7 2.8 114.5 0.015 I 

Intrasporangiace

ae 

113.2 141.8 93.6 81.3 9.0 16.4 8.0 6.2 107.3 0.004 I 

Micrococcaceae 127.1 135.5 84.2 70.4 7.7 4.4 2.9 5.0 104.0 0.005 I 

Frankiaceae 85.5 90.2 85.9 79.4 8.5 3.3 3.6 5.9 85.5 0.027 I 

Cellulomonadac

eae 

42.9 60.9 38.8 29.3 4.6 8.4 8.6 4.4 42.9 0.002 I 

Nakamurellacea

e 

34.5 58.8 26.7 23.1 2.3 2.9 1.9 2.6 35.6 0.000 I 

Sphingomonada

ceae 

612.4 677.5 636.1 514.1 52.9 25.9 38.8 11.1 611.2 0.000 I 

Rhodospirillacea

e 

300.0 308.9 312.4 253.6 75.8 29.9 91.2 15.1 292.5 0.003 I 

Methylobacteria

ceae 

271.1 311.3 246.5 209.2 23.2 27.4 36.3 7.6 258.6 0.003 I 

Phyllobacteriace

ae 

226.7 241.5 224.8 207.7 18.1 37.7 19.4 19.0 224.8 0.036 I 

Rhizobiaceae 174.4 189.7 183.4 167.2 7.0 8.2 10.6 4.4 178.9 0.007 I 

Caulobacteracea

e 

99.9 115.4 105.9 83.2 6.5 24.2 5.0 4.5 101.5 0.018 I 

Acetobacteracea

e 

74.8 79.4 66.9 62.3 6.1 4.7 7.0 2.8 70.7 0.020 I 

Erythrobacterac

eae 

36.7 44.8 37.9 30.0 6.6 5.3 5.5 2.8 37.3 0.003 I 

Hyphomonadace

ae 

20.9 21.7 27.0 24.8 1.0 1.1 0.9 0.8 23.7 0.001 I 

Comamonadace

ae 

360.1 437.6 381.9 300.7 25.0 57.3 16.4 15.8 370.3 0.000 I 

Oxalobacteracea

e 

96.8 111.4 111.8 102.9 4.1 9.7 2.2 3.1 105.9 0.001 I 

Rhodocyclaceae 74.3 83.1 96.8 97.4 3.1 7.5 5.9 3.4 88.0 0.030 I 

Alcaligenaceae 56.2 60.9 65.9 61.7 1.0 1.7 3.4 0.8 61.2 0.007 I 

Xanthomonadac

eae 

396.5 445.9 416.4 326.4 29.1 58.4 38.5 11.3 396.7 0.003 I 

Pseudomonadac

eae 

132.2 157.6 154.4 147.0 12.7 13.4 13.0 10.0 148.0 0.027 I 

Ectothiorhodosp

iraceae 

33.9 36.6 46.2 42.7 2.2 1.9 3.9 1.9 39.9 0.011 I 

Polyangiaceae 434.3 474.6 529.1 473.6 19.1 50.5 21.8 38.9 479.8 0.006 I 

Cystobacteracea

e 

198.0 216.8 228.0 199.3 14.5 13.9 11.5 8.9 211.5 0.001 I 

Labilitrichaceae 157.1 176.4 188.8 152.5 11.3 18.7 6.2 13.1 169.1 0.000 I 

Sandaracinaceae 88.2 100.5 113.7 100.3 4.3 8.1 7.7 6.2 100.9 0.009 I 

Myxococcaceae 85.2 92.9 105.3 96.7 3.7 5.4 6.9 5.0 95.2 0.005 I 

Syntrophaceae 25.7 23.5 35.3 38.9 2.1 2.1 1.6 2.3 30.9 0.003 I 

Nannocystaceae 18.5 21.1 24.9 22.5 0.7 1.5 2.3 0.9 21.8 0.003 I 

Bdellovibrionace

ae 

15.6 17.6 17.0 13.9 0.5 1.4 2.3 0.4 16.0 0.012 I 

Saprospiraceae 22.9 28.0 29.8 29.1 2.8 4.7 1.4 2.0 27.5 0.044 I 

Chlorobiaceae 19.6 18.6 25.4 28.2 1.5 1.3 0.5 1.3 23.0 0.007 I 
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Anaerolineaceae 84.6 76.3 126.5 162.3 14.0 6.3 25.4 9.9 113.1 0.001 I 

Ardenticatenace

ae 

15.9 15.3 21.3 23.6 0.9 0.2 1.3 0.5 19.1 0.001 I 

Microchaetacea

e 

45.9 58.6 61.6 53.4 5.5 9.2 4.9 1.2 54.9 0.012 I 

Nostocaceae 32.6 24.6 25.0 24.4 6.1 2.7 1.8 0.9 26.6 0.023 I 

Scytonematacea

e 

16.3 14.9 20.0 20.9 1.2 1.1 0.8 1.8 18.1 0.029 I 

Bacillaceae 64.8 62.6 75.2 79.9 2.2 1.8 1.9 3.4 70.7 0.025 I 

Veillonellaceae 12.0 11.2 13.3 14.8 1.2 0.8 0.6 0.9 12.8 0.007 I 

Clostridiales 

Family XVII. 

Incertae Sedis 

10.4 9.5 11.8 12.5 0.7 0.2 0.5 0.3 11.1 0.020 I 

Ignavibacteriace

ae 

8.2 7.8 12.0 13.8 0.8 1.0 1.2 1.0 10.5 0.004 I 

Verrucomicrobia

ceae 

182.6 214.7 201.4 188.4 11.9 18.2 23.1 18.3 197.0 0.040 I 

Opitutaceae 152.1 178.3 162.6 146.3 16.0 20.5 10.2 14.6 159.9 0.009 I 

Level 4-

pathways 

           

Pyruvate 

metabolism 

794.7 828.7 855.8 826.1 25.4 9.4 20.0 11.1 827.2 0.009 I 

Glycolysis / 

Gluconeogenesis 

753.5 786.0 831.7 808.2 18.6 4.6 12.8 6.2 795.7 0.003 I 

Amino sugar and 

nucleotide sugar 

metabolism 

586.1 616.5 684.8 671.0 11.8 12.3 9.7 7.4 640.6 0.012 I 

Butanoate 

metabolism 

666.0 696.2 738.6 704.9 18.9 6.7 15.6 5.3 702.3 0.001 I 

Starch and 

sucrose 

metabolism 

581.6 621.8 668.5 645.3 9.3 5.7 17.1 8.0 629.9 0.002 I 

Propanoate 

metabolism 

668.7 695.6 727.5 705.6 14.7 8.4 10.4 6.6 700.2 0.003 I 

Glyoxylate and 

dicarboxylate 

metabolism 

653.5 680.2 713.8 688.2 16.2 6.5 10.7 8.5 684.6 0.004 I 

Citrate cycle 

(TCA cycle) 

612.2 635.0 664.9 642.7 13.4 4.2 10.1 10.9 639.3 0.003 I 

Pentose 

phosphate 

pathway 

461.9 473.7 522.5 518.9 13.6 8.7 2.4 10.6 494.9 0.000 D 

Fructose and 

mannose 

metabolism 

335.6 351.7 392.9 378.6 9.7 7.6 8.6 6.9 365.4 0.011 I 

Galactose 

metabolism 

258.0 273.2 308.8 301.1 6.8 7.2 2.8 6.8 285.8 0.009 I 

Pentose and 

glucuronate 

interconversions 

253.0 271.6 285.2 274.7 7.4 7.8 10.1 3.2 271.5 0.010 I 

C5-Branched 

dibasic acid 

metabolism 

160.0 162.6 177.9 169.6 3.3 2.1 2.2 1.8 167.7 0.005 I 

Ascorbate and 142.1 149.8 156.9 153.3 3.9 3.7 2.4 1.9 150.8 0.020 I 
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aldarate 

metabolism 

Inositol 

phosphate 

metabolism 

110.3 115.9 124.6 117.4 3.5 0.4 3.3 2.9 117.2 0.001 I 

Arginine and 

proline 

metabolism 

713.7 741.6 801.0 773.3 14.3 10.5 12.7 10.5 758.4 0.004 I 

Glycine. serine 

and threonine 

metabolism 

600.0 622.4 674.2 635.8 18.8 11.0 9.6 9.8 634.1 0.014 I 

Alanine. 

aspartate and 

glutamate 

metabolism 

656.0 682.6 723.2 705.9 9.8 8.6 4.7 3.7 692.7 0.002 I 

Valine. leucine 

and isoleucine 

degradation 

592.8 619.4 632.7 606.8 19.7 11.0 13.8 14.5 613.7 0.008 I 

Cysteine and 

methionine 

metabolism 

450.0 469.4 517.6 499.8 8.9 6.0 7.0 6.0 484.9 0.004 I 

Tyrosine 

metabolism 

415.2 441.4 487.9 461.8 12.3 3.9 10.6 3.6 452.4 0.001 I 

Phenylalanine 

metabolism 

415.1 437.2 479.9 450.0 12.8 8.9 11.8 5.9 446.3 0.004 I 

Histidine 

metabolism 

371.9 391.6 426.1 403.0 14.4 8.7 10.2 5.2 398.8 0.020 I 

Tryptophan 

metabolism 

382.2 400.3 420.2 400.5 11.0 10.5 5.1 2.2 401.3 0.010 I 

Phenylalanine. 

tyrosine and 

tryptophan 

biosynthesis 

332.6 347.3 383.1 364.2 11.2 5.8 10.4 2.6 357.3 0.015 I 

Valine. leucine 

and isoleucine 

biosynthesis 

300.2 310.3 331.6 317.6 4.2 5.6 6.6 2.5 315.0 0.009 I 

Lysine 

degradation 

300.0 314.8 326.8 311.9 7.1 9.4 6.1 5.3 313.7 0.006 I 

Lysine 

biosynthesis 

209.8 221.7 240.2 225.9 4.7 8.3 4.5 0.9 224.7 0.005 I 

Nitrogen 

metabolism 

932.2 980.9 1081.7 1065.6 17.8 14.0 12.4 17.3 1016.5 0.015 I 

Oxidative 

phosphorylation 

779.8 823.6 911.5 896.9 19.0 10.0 12.4 9.9 854.2 0.013 I 

Carbon fixation 

pathways in 

prokaryotes 

773.8 797.9 839.2 819.8 16.5 8.5 11.9 7.2 808.6 0.011 I 

Methane 

metabolism 

732.4 752.3 809.2 783.9 26.1 5.3 14.4 9.1 770.6 0.001 D 

Carbon fixation 

in 

photosynthetic 

organisms 

291.8 301.2 313.1 304.5 8.3 3.8 7.0 4.8 302.9 0.024 I 

Sulfur 

metabolism 

159.8 168.2 174.1 169.0 4.3 2.4 2.2 0.4 168.0 0.007 I 
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Photosynthesis 100.6 104.9 115.6 113.1 3.6 1.9 2.2 1.6 108.7 0.021 I 

Purine 

metabolism 

1241.6 1297.5 1427.2 1379.5 20.6 19.3 29.6 7.7 1338.2 0.004 I 

Pyrimidine 

metabolism 

840.1 875.1 945.9 916.8 17.6 15.9 9.8 10.5 895.6 0.006 I 

Fatty acid 

metabolism 

511.2 535.5 554.1 528.7 16.2 9.2 11.3 7.0 533.0 0.003 I 

Fatty acid 

biosynthesis 

267.9 277.7 308.6 298.4 5.1 8.6 6.6 1.4 288.6 0.023 I 

Glycerophosphol

ipid metabolism 

176.3 188.5 215.6 205.9 5.5 5.2 3.6 4.0 197.1 0.004 I 

Glycerolipid 

metabolism 

163.6 173.1 179.3 171.6 4.7 4.0 2.4 2.4 172.1 0.003 I 

Biosynthesis of 

unsaturated 

fatty acids 

151.1 156.4 178.5 174.3 4.7 8.2 7.5 0.4 165.5 0.001 D 

Sphingolipid 

metabolism 

132.2 137.4 150.4 149.2 5.4 3.7 6.3 3.1 142.6 0.000 D 

Steroid hormone 

biosynthesis 

106.3 108.4 119.1 117.5 3.7 3.2 5.1 2.2 113.0 0.000 D 

Synthesis and 

degradation of 

ketone bodies 

98.4 103.9 102.5 98.1 3.3 2.8 4.3 2.6 100.8 0.015 I 

Linoleic acid 

metabolism 

77.5 83.8 93.6 87.8 2.3 2.7 2.4 2.1 85.9 0.001 I 

Arachidonic acid 

metabolism 

55.3 57.1 64.9 63.0 2.7 1.4 1.9 1.7 60.2 0.001 D 

Ether lipid 

metabolism 

15.6 16.3 18.8 18.4 1.1 1.8 1.3 1.5 17.4 0.000 D 

Aminobenzoate 

degradation 

308.6 327.1 369.5 352.8 11.0 8.3 5.2 4.5 340.3 0.003 I 

Benzoate 

degradation 

310.3 327.0 361.0 342.9 10.2 8.8 5.4 0.9 336.0 0.003 I 

Chloroalkane 

and 

chloroalkene 

degradation 

297.0 316.4 349.1 338.2 7.9 7.7 3.5 5.3 325.8 0.001 I 

Bisphenol 

degradation 

152.1 165.8 180.8 171.4 5.5 3.5 4.8 3.3 167.9 0.001 I 

Toluene 

degradation 

152.6 158.3 174.6 170.5 4.4 3.9 2.9 1.5 164.3 0.030 I 

Polycyclic 

aromatic 

hydrocarbon 

degradation 

129.6 140.9 160.0 152.2 5.1 2.4 3.5 3.0 146.0 0.001 I 

Metabolism of 

xenobiotics by 

cytochrome 

P450 

121.6 131.3 142.6 135.7 6.6 2.5 6.1 1.9 133.1 0.003 I 

Nitrotoluene 

degradation 

126.9 121.7 137.6 138.1 7.3 3.3 3.6 2.0 131.4 0.000 D 

Drug 

metabolism - 

cytochrome 

P450 

117.2 126.8 137.4 129.6 6.2 1.7 4.5 2.1 128.0 0.003 I 
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Naphthalene 

degradation 

114.7 125.0 131.5 125.1 5.9 1.2 3.4 2.8 124.3 0.003 I 

Drug 

metabolism - 

other enzymes 

112.2 119.5 127.0 123.7 3.7 2.3 4.5 2.6 120.7 0.019 I 

Chlorocyclohexa

ne and 

chlorobenzene 

degradation 

102.9 108.7 120.7 116.9 3.2 3.3 2.2 2.0 112.5 0.014 I 

Caprolactam 

degradation 

102.7 109.1 115.2 109.7 4.3 2.4 2.2 1.9 109.4 0.010 I 

Styrene 

degradation 

97.9 100.6 111.1 105.0 1.9 3.8 3.2 1.9 103.9 0.009 I 

Ethylbenzene 

degradation 

54.3 59.5 64.2 59.7 2.2 3.1 2.1 0.7 59.5 0.007 I 

Fluorobenzoate 

degradation 

49.2 49.2 58.0 56.5 2.0 2.2 1.8 1.0 53.3 0.000 D 

Dioxin 

degradation 

41.9 44.6 50.5 46.8 1.9 1.5 0.9 1.4 46.1 0.007 I 

Xylene 

degradation 

36.5 38.3 42.3 39.6 1.1 1.6 1.0 0.6 39.3 0.006 I 

Atrazine 

degradation 

31.5 34.5 32.8 30.6 1.3 0.9 1.6 1.4 32.4 0.008 I 

Steroid 

degradation 

26.1 27.8 32.1 30.7 2.1 1.1 1.2 0.4 29.3 0.002 D 

Two-component 

system 

1272.6 1358.5 1587.5 1555.9 48.1 48.0 10.4 50.2 1446.9 0.010 I 

PI3K-Akt 

signaling 

pathway 

31.1 35.1 37.9 36.0 1.1 1.7 2.5 1.1 35.1 0.007 I 

Phosphatidylinos

itol signaling 

system 

24.2 25.1 28.6 27.1 1.2 1.3 1.0 0.9 26.3 0.032 I 

MAPK signaling 

pathway - yeast 

11.3 12.1 14.7 14.1 0.5 1.3 0.4 0.8 13.1 0.001 D 

ABC transporters 1192.5 1258.6 1351.4 1312.1 30.3 7.9 38.1 5.5 1280.4 0.008 I 

Bacterial 

secretion system 

266.8 289.9 330.6 319.8 10.9 6.2 10.0 6.1 302.3 0.018 I 

Phosphotransfer

ase system (PTS) 

38.2 40.6 42.9 41.4 0.7 1.9 0.8 1.4 40.9 0.018 I 

Aminoacyl-tRNA 

biosynthesis 

648.1 669.5 726.7 706.1 9.9 6.7 9.3 15.9 688.4 0.014 I 

Ribosome 357.3 372.7 407.1 394.9 5.9 8.3 9.8 7.8 383.5 0.043 I 

RNA transport 21.0 22.4 29.0 28.9 0.7 1.5 1.3 2.0 25.4 0.000 D 

Ribosome 

biogenesis in 

eukaryotes 

15.6 17.1 18.2 16.6 0.6 1.6 0.4 1.0 16.9 0.045 I 

RNA polymerase 166.3 171.5 183.3 181.1 3.1 0.8 5.1 3.1 175.6 0.001 D 

Peroxisome 196.2 208.5 222.0 210.3 3.9 3.1 3.5 1.6 209.5 0.001 I 

Lysosome 43.7 48.3 56.6 55.8 2.1 1.7 1.2 1.8 51.2 0.019 I 

Mismatch repair 376.9 398.5 436.6 420.1 12.7 8.0 6.8 5.7 408.7 0.012 I 

Nucleotide 

excision repair 

416.7 435.9 466.4 449.3 10.9 7.0 8.3 6.0 442.6 0.013 I 
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Homologous 

recombination 

304.1 324.0 346.3 329.0 9.4 6.0 5.3 3.9 326.4 0.001 I 

Base excision 

repair 

278.4 289.8 318.1 307.1 13.0 7.1 5.6 3.9 299.0 0.047 I 

DNA replication 254.3 268.8 290.0 277.4 5.7 3.8 4.7 5.3 272.9 0.004 I 

Non-

homologous 

end-joining 

114.7 119.3 133.6 129.2 4.5 3.0 4.4 2.6 124.4 0.001 D 

Limonene and 

pinene 

degradation 

208.9 227.7 234.3 221.6 7.4 7.6 5.1 4.3 223.4 0.005 I 

Terpenoid 

backbone 

biosynthesis 

196.3 204.1 214.1 205.6 5.5 6.6 4.7 2.2 205.2 0.023 I 

Geraniol 

degradation 

176.4 191.5 194.2 181.1 7.5 5.5 3.9 5.6 186.1 0.003 I 

Polyketide sugar 

unit biosynthesis 

78.7 81.2 89.0 88.6 1.3 1.3 1.5 3.3 84.4 0.000 D 

Biosynthesis of 

ansamycins 

55.8 56.5 58.4 58.3 1.6 1.0 1.7 1.5 57.3 0.032 D 

Tetracycline 

biosynthesis 

49.9 50.2 56.5 56.7 1.8 1.4 2.0 1.1 53.4 0.000 D 

Biosynthesis of 

vancomycin 

group antibiotics 

39.6 40.4 44.4 43.2 1.1 0.9 1.0 2.0 41.9 0.004 D 

Nonribosomal 

peptide 

structures 

22.8 23.3 28.1 30.2 1.5 1.6 0.8 1.8 26.2 0.000 D 

Biosynthesis of 

siderophore 

group 

nonribosomal 

peptides 

22.7 23.3 26.3 25.0 1.0 1.0 1.6 1.4 24.4 0.003 D 

Carotenoid 

biosynthesis 

19.3 20.2 22.2 20.8 0.8 1.8 1.4 0.6 20.7 0.037 D 

Sesquiterpenoid 

and triterpenoid 

biosynthesis 

11.0 11.2 12.5 13.5 0.4 0.4 0.7 0.4 12.1 0.000 D 

Selenocompoun

d metabolism 

302.6 307.5 339.2 329.4 7.9 2.9 4.0 2.4 320.1 0.019 I 

beta-Alanine 

metabolism 

287.1 301.5 313.1 301.4 9.2 5.9 5.4 4.3 301.1 0.004 I 

Glutathione 

metabolism 

269.6 287.6 309.0 294.6 8.2 4.2 9.2 2.2 290.6 0.008 I 

Taurine and 

hypotaurine 

metabolism 

142.1 149.1 155.5 149.0 4.2 1.0 4.4 2.8 149.1 0.006 I 

Cyanoamino acid 

metabolism 

134.4 142.1 152.5 145.4 5.0 4.8 3.3 2.8 143.9 0.005 I 

D-Glutamine and 

D-glutamate 

metabolism 

59.9 63.7 70.9 68.2 1.9 2.0 1.7 1.0 65.8 0.027 I 

D-Alanine 

metabolism 

41.4 44.1 51.6 49.0 1.3 2.9 1.0 1.6 46.6 0.027 I 
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Phosphonate 

and phosphinate 

metabolism 

28.8 30.5 33.7 32.3 1.4 1.5 0.9 1.4 31.4 0.003 D 

Porphyrin and 

chlorophyll 

metabolism 

268.8 277.6 306.9 296.0 7.7 6.7 7.0 2.5 287.8 0.035 I 

One carbon pool 

by folate 

217.0 223.5 238.7 229.6 7.5 2.8 4.2 5.6 227.6 0.018 I 

Nicotinate and 

nicotinamide 

metabolism 

178.2 183.9 205.5 191.6 6.5 4.5 4.0 4.4 190.1 0.001 I 

Ubiquinone and 

other terpenoid-

quinone 

biosynthesis 

123.5 130.6 149.0 143.9 3.4 4.4 3.6 2.5 137.0 0.010 I 

Folate 

biosynthesis 

120.3 123.7 141.5 138.1 4.9 2.8 3.0 3.7 131.2 0.000 D 

Thiamine 

metabolism 

99.5 100.8 117.1 113.1 2.9 3.5 2.6 2.8 107.9 0.005 I 

Vitamin B6 

metabolism 

80.4 82.5 88.8 84.3 3.1 3.5 0.8 2.3 84.2 0.033 I 

Biotin 

metabolism 

65.1 67.8 82.0 77.8 2.2 3.4 0.7 1.9 73.4 0.025 I 

Retinol 

metabolism 

67.9 72.4 75.8 72.7 3.6 0.7 3.4 1.8 72.4 0.004 I 

Peptidoglycan 

biosynthesis 

279.0 294.7 335.5 314.2 9.6 9.3 4.2 3.1 306.6 0.002 I 

Lipopolysacchari

de biosynthesis 

104.2 110.8 137.6 132.3 6.3 10.0 4.8 4.4 121.7 0.000 D 

Other glycan 

degradation 

51.9 56.6 61.4 61.9 3.5 5.6 2.0 4.7 58.1 0.025 I 

N-Glycan 

biosynthesis 

34.6 36.7 46.4 47.4 1.5 2.4 1.0 1.7 41.4 0.000 D 

Glycosaminoglyc

an degradation 

25.1 28.3 33.2 33.4 1.1 0.9 0.2 1.4 30.0 0.017 I 

Glycosphingolipi

d biosynthesis - 

globo series 

16.9 19.4 19.7 20.6 0.9 1.5 0.3 1.0 19.2 0.015 I 

RNA degradation 360.4 375.7 409.3 397.4 5.8 3.4 8.3 3.4 386.0 0.005 I 

Protein export 199.5 212.5 239.3 232.6 8.8 2.4 7.6 3.0 221.3 0.000 D 

Sulfur relay 

system 

107.5 109.1 127.4 121.2 2.2 1.7 1.9 3.3 116.5 0.036 I 

Protein 

processing in 

endoplasmic 

reticulum 

35.6 38.1 45.7 45.0 1.1 0.8 3.7 2.4 41.2 0.001 D 

Plant-pathogen I 80.9 84.9 88.4 85.1 0.7 2.8 2.8 1.5 84.9 0.028 I 

Bacterial 

chemotaxis 

175.3 192.8 217.2 209.9 8.1 11.0 6.9 11.5 199.3 0.019 I 

Flagellar 

assembly 

71.4 80.5 83.7 77.2 3.4 5.0 4.2 3.4 78.4 0.007 I 

Cell cycle - 

Caulobacter 

284.7 297.5 336.3 329.8 8.5 3.1 5.0 2.6 312.6 0.030 I 

Meiosis - yeast 149.9 156.9 204.5 203.2 8.0 8.4 4.5 6.4 179.3 0.000 D 



Appendix 

132 
 

Apoptosis 10.9 11.0 13.6 12.8 0.4 0.9 0.5 0.6 12.1 0.000 D 

Tropane. 

piperidine and 

pyridine alkaloid 

biosynthesis 

175.7 185.5 207.6 195.7 4.7 2.9 7.0 2.2 191.4 0.002 I 

Streptomycin 

biosynthesis 

154.1 159.6 177.7 174.3 2.3 1.8 2.5 4.3 166.6 0.028 I 

Novobiocin 

biosynthesis 

144.7 151.4 172.9 162.7 4.8 1.8 5.9 2.1 158.2 0.003 I 

Phenylpropanoid 

biosynthesis 

75.2 81.7 80.2 75.4 1.8 3.1 3.1 3.1 78.2 0.002 I 

Isoquinoline 

alkaloid 

biosynthesis 

53.8 55.7 64.0 62.7 1.4 1.3 1.4 1.3 59.2 0.012 I 

Penicillin and 

cephalosporin 

biosynthesis 

44.7 48.8 62.4 59.5 2.5 3.0 0.3 2.5 54.0 0.007 I 

Stilbenoid. 

diarylheptanoid 

and gingerol 

biosynthesis 

46.8 51.1 54.3 51.5 1.8 0.7 1.8 0.3 51.0 0.000 I 

beta-Lactam 

resistance 

22.3 24.9 32.5 31.6 2.1 2.4 1.3 2.0 27.9 0.000 D 

Butirosin and 

neomycin 

biosynthesis 

14.3 14.7 17.5 16.3 0.7 0.8 0.7 0.6 15.7 0.000 D 

Cellulase 

functions 

           

EC321.21 49.3 55.2 54.6 51.4 1.9 3.8 1.7 2.7 52.7 0.003 I 

EC321.4 21.2 23.6 29.8 29.9 1.7 1.8 1.3 1.9 26.2 0.000 D 

Cellulase 

function 

EC321.21 

           

Anaerolineaceae 0.2 0.2 0.3 0.3 0.0 0.1 0.1 0.1 4.1 0.000 D 

            Actinobacteria 11.0 12.6 10.4 8.9 1.4 1.1 0.9 0.4 10.7 0.034 I 

Acidobacteria 1.6 1.4 2.4 2.5 0.4 0.4 0.4 0.4 2.0 0.000 D 

Firmicutes 0.4 0.6 0.6 0.6 0.1 0.1 0.1 0.1 0.6 0.001 I 

Gemmatimonad

etes 

0.5 0.5 0.7 0.8 0.2 0.1 0.1 0.2 0.6 0.002 D 

Proteobacteria 7.6 8.3 8.7 7.1 0.3 0.7 0.9 0.7 7.9 0.003 I 

Cellulase 

function 

EC321.4 

           

Cyanobacteria 0.4 0.4 0.9 0.8 0.1 0.2 0.1 0.1 0.6 0.000 D 

Firmicutes 0.4 0.4 0.7 0.6 0.1 0.1 0.1 0.1 0.5 0.009 D 

Gemmatimonad

etes 

0.3 0.2 0.5 0.5 0.2 0.1 0.1 0.1 0.4 0.020 D 

Cellulase 

function 

EC321.91 

           

Planctomycetace

ae 

0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.018 D 
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Cellulase 

domain families 

           

CBM2 18.7 19.7 26.3 26.8 1.1 1.6 0.7 2.1 23.0 0.000 D 

CBM3 1.0 1.6 1.4 1.3 0.2 0.1 0.2 0.2 1.3 0.021 I 

CBM4  1.7 2.3 2.3 1.9 0.2 0.2 0.2 0.3 2.0 0.001 I 

CBM6 3.5 4.1 5.6 5.4 0.4 0.7 0.2 0.9 4.7 0.016 I 

CBM30 1.4 1.5 2.7 2.4 0.1 0.2 0.4 0.4 2.0 0.000 D 

CBM32 3.7 4.1 7.8 8.7 0.5 0.9 0.3 1.4 6.1 0.000 D 

CBM44 4.8 5.3 7.4 6.9 0.3 0.6 0.3 0.6 6.1 0.000 D 

CBM65 0.3 0.3 0.5 0.2 0.0 0.1 0.1 0.1 0.3 0.005 I 

AA3 2.1 2.4 3.6 3.4 0.4 0.1 0.4 0.3 2.9 0.000 D 

AA8 7.9 9.4 11.5 10.5 0.7 0.6 1.2 0.6 9.8 0.031 I 

GH1 13.6 15.8 14.6 13.9 1.1 0.5 0.5 0.3 14.5 0.001 I 

GH3 16.7 18.1 20.7 19.7 1.3 1.2 0.8 1.1 18.9 0.003 D 

GH5 3.2 3.3 4.4 4.2 0.4 0.5 0.3 0.8 3.8 0.003 D 

GH6 1.2 1.5 1.5 1.1 0.2 0.2 0.3 0.2 1.3 0.026 I 

GH9 1.2 1.4 2.0 2.0 0.2 0.1 0.1 0.3 1.6 0.000 D 

GH26 2.3 2.9 4.3 3.9 0.2 0.5 0.4 0.5 3.4 0.021 I 

GH44 2.5 3.0 3.2 3.3 0.3 0.3 0.4 0.5 3.0 0.009 D 

GH51 1.7 1.9 3.1 3.1 0.3 0.4 0.3 0.3 2.5 0.000 D 

GH74 1.8 2.2 3.6 3.6 0.4 0.5 0.2 0.6 2.8 0.000 D 

GH94 14.9 16.8 23.4 23.6 1.6 2.4 1.1 1.7 19.8 0.000 D 

Cellulase 

domain family 

AA8 

           

Acidobacteria 0.1 0.2 0.3 0.4 0.0 0.1 0.1 0.0 0.3 0.003 D 

Planctomycetes 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.030 I 

Cellulase 

domain family 

GH1 

           

Actinobacteria 3.1 4.1 3.3 2.7 0.6 0.7 0.2 0.1 3.3 0.007 I 

Verrucomicrobia 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.017 I 

Parcubacteria 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.007 I 

Cellulase 

domain family 

GH3 

           

Streptosporangi

aceae 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.010 D 

            Bacteroidetes 0.7 1.2 0.9 1.1 0.2 0.3 0.2 0.2 1.0 0.030 T 

Verrucomicrobia 0.1 0.1 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.023 D 

Chloroflexi 0.1 0.2 0.2 0.3 0.0 0.1 0.1 0.1 0.2 0.027 D 

Acidobacteria 0.5 0.6 1.3 1.2 0.2 0.2 0.3 0.4 0.9 0.000 D 

Gemmatimonad

etes 

0.3 0.3 0.4 0.5 0.1 0.0 0.1 0.1 0.4 0.012 D 

Cellulase 

domain family 

GH94 

           

Anaeromyxobact 0.3 0.4 0.8 0.7 0.1 0.1 0.1 0.2 0.6 0.001 D 
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eraceae 

            Bacteroidetes 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.038 T 

Proteobacteria 5.5 6.4 9.6 9.1 0.5 0.8 0.6 0.9 7.7 0.000 D 

Cellulase 

domain family 

CBM2 

           

Verrucomicrobia 

subdivision 3 

0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.016 D 

Nostocaceae 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.013 D 

Planctomycetace

ae 

0.2 0.2 0.4 0.4 0.1 0.1 0.1 0.0 0.3 0.012 D 

Desulfobacterac

eae 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.012 D 

Sinobacteraceae 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.1 0.1 0.007 D 

Xanthomonadac

eae 

1.2 1.2 1.5 1.6 0.2 0.3 0.2 0.2 1.4 0.010 D 

            Bacteroidetes 0.1 0.1 0.3 0.2 0.0 0.1 0.0 0.1 0.2 0.011 D 

Verrucomicrobia 0.0 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.1 0.008 D 

Cyanobacteria 1.4 1.6 2.4 2.2 0.2 0.2 0.2 0.4 1.9 0.000 D 

Planctomycetes 0.2 0.2 0.4 0.4 0.1 0.1 0.1 0.0 0.3 0.012 D 

Proteobacteria 2.9 3.3 4.0 4.0 0.1 0.6 0.3 0.4 3.6 0.001 D 

Euryarchaeota 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.020 I 

Cellulase 

domain family 

CBM6 

           

Bacteroidetes 0.2 0.3 0.4 0.4 0.1 0.1 0.1 0.0 0.4 0.035 D 

Acidobacteria 0.2 0.1 0.4 0.3 0.1 0.1 0.1 0.1 0.3 0.007 D 

 

Table A9 
 

Table A9: Listed are the microbial families belonging to each co-occurrence community in the metagenome of 

the organic tillage experiment: 156 in the blue community, 80 in the green community and 19 in the red 

community. Of the 265 families with abundance high enough to include in the analysis (see Materials and 

Methods), 10 families did not positively correlate with other families.  

Blue community Green community Red community 

Aquificaceae Acidimicrobiaceae Bacteroidaceae 

Hydrogenothermaceae Actinomycetaceae Marinilabiliaceae 

Desulfurobacteriaceae Actinopolysporaceae Prevotellaceae 

Chthonomonadaceae Catenulisporaceae Cytophagaceae 

Rhodothermaceae Corynebacteriaceae Cryomorphaceae 

Porphyromonadaceae Gordoniaceae Flavobacteriaceae 

Prolixibacteraceae Mycobacteriaceae Chitinophagaceae 

Cyclobacteriaceae Nocardiaceae Saprospiraceae 

Flammeovirgaceae Acidothermaceae Sphingobacteriaceae 

Chlorobiaceae Cryptosporangiaceae Microchaetaceae 

Ignavibacteriaceae Frankiaceae Lactobacillaceae 

Melioribacteraceae Geodermatophilaceae Kiloniellaceae 

Chlamydiaceae Nakamurellaceae Sandaracinaceae 
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Criblamydiaceae Sporichthyaceae Enterobacteriaceae 

Parachlamydiaceae Glycomycetaceae Moraxellaceae 

Lentisphaeraceae Jiangellaceae Herpotrichiellaceae 

Puniceicoccaceae Kineosporiaceae Aspergillaceae 

Methylacidiphilaceae Beutenbergiaceae Saprolegniaceae 

Verrucomicrobia subdivision 3 Bogoriellaceae Siphoviridae 

Anaerolineaceae Brevibacteriaceae 

Ardenticatenaceae Cellulomonadaceae 

Caldilineaceae Demequinaceae 

Chloroflexaceae Dermabacteraceae 

Oscillochloridaceae Dermacoccaceae 

Roseiflexaceae Dermatophilaceae 

Herpetosiphonaceae Intrasporangiaceae 

Dehalococcoidaceae Microbacteriaceae 

Ktedonobacteraceae Micrococcaceae 

Thermogemmatisporaceae Promicromonosporaceae 

Sphaerobacteraceae Micromonosporaceae 

Thermomicrobiaceae Nocardioidaceae 

Rivulariaceae Propionibacteriaceae 

Scytonemataceae Pseudonocardiaceae 

Prochlorococcaceae Streptomycetaceae 

Deferribacteraceae Nocardiopsaceae 

Deinococcaceae Streptosporangiaceae 

Trueperaceae Thermomonosporaceae 

Thermaceae Bifidobacteriaceae 

Dictyoglomaceae Candidatus Actinomarinaceae 

Acidobacteriaceae Coriobacteriaceae 

Holophagaceae Nitriliruptoraceae 

Solibacteraceae Rubrobacteraceae 

Alicyclobacillaceae Conexibacteraceae 

Bacillaceae Patulibacteraceae 

Paenibacillaceae Solirubrobacteraceae 

Planococcaceae Opitutaceae 

Thermoactinomycetaceae Verrucomicrobiaceae 

Clostridiaceae Nostocaceae 

Clostridiales Family XVII. Incertae Sedis Fibrobacteraceae 

Eubacteriaceae Staphylococcaceae 

Heliobacteriaceae Symbiobacteriaceae 

Lachnospiraceae Caulobacteraceae 

Peptococcaceae Aurantimonadaceae 

Ruminococcaceae Bradyrhizobiaceae 

Syntrophomonadaceae Brucellaceae 

Halanaerobiaceae Hyphomicrobiaceae 

Halobacteroidaceae Methylobacteriaceae 

Thermoanaerobacteraceae Phyllobacteriaceae 

Thermoanaerobacterales Family III. Incertae Sedis Rhizobiaceae 

Veillonellaceae Rhodobiaceae 

Fusobacteriaceae Xanthobacteraceae 

Gemmatimonadaceae Rhodobacteraceae 

Nitrospinaceae Acetobacteraceae 

Nitrospiraceae Rhodospirillaceae 

Phycisphaeraceae Erythrobacteraceae 

Candidatus Brocadiaceae Sphingomonadaceae 

Planctomycetaceae Comamonadaceae 
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Kordiimonadaceae Oxalobacteraceae 

Magnetococcaceae Neisseriaceae 

Parvularculaceae Bdellovibrionaceae 

Beijerinckiaceae Labilitrichaceae 

Methylocystaceae Polyangiaceae 

Hyphomonadaceae Aeromonadaceae 

Alcaligenaceae Pseudomonadaceae 

Burkholderiaceae Xanthomonadaceae 

Sutterellaceae Oxytrichidae 

Ferrovaceae Pleosporaceae 

Gallionellaceae Nectriaceae 

Hydrogenophilaceae Chlorellaceae 

Methylophilaceae Amaranthaceae 

Chromobacteriaceae  

Nitrosomonadaceae  

Rhodocyclaceae  

Sulfuricellaceae  

Bacteriovoracaceae  

Desulfarculaceae  

Desulfobacteraceae  

Desulfobulbaceae  

Desulfohalobiaceae  

Desulfomicrobiaceae  

Desulfonatronumaceae 

Desulfovibrionaceae  

Desulfurellaceae  

Desulfuromonadaceae 

Geobacteraceae  

Pelobacteraceae  

Anaeromyxobacteraceae 

Myxococcaceae  

Vulgatibacteraceae  

Kofleriaceae  

Nannocystaceae  

Syntrophaceae  

Syntrophobacteraceae 

Syntrophorhabdaceae 

Campylobacteraceae  

Helicobacteraceae  

Acidithiobacillaceae  

Thermithiobacillaceae 

Alteromonadaceae  

Colwelliaceae  

Ferrimonadaceae  

Idiomarinaceae  

Pseudoalteromonadaceae 

Psychromonadaceae  

Shewanellaceae  

Chromatiaceae  

Ectothiorhodospiraceae 

Coxiellaceae  

Legionellaceae  

Methylococcaceae  

Methylothermaceae  
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Alcanivoracaceae  

Hahellaceae  

Halomonadaceae  

Oceanospirillaceae  

Pasteurellaceae  

Salinisphaeraceae  

Piscirickettsiaceae  

Thiotrichaceae  

Competibacteraceae  

Vibrionaceae  

Algiphilaceae  

Sinobacteraceae  

Mariprofundaceae  

Leptospiraceae  

Spirochaetaceae  

Synergistaceae  

Thermodesulfobacteriaceae 

Thermotogaceae  

Sulfolobaceae  

Thermoproteaceae  

Archaeoglobaceae  

Halobacteriaceae  

Methanobacteriaceae 

Methanocellaceae  

Methanomicrobiaceae 

Methanoregulaceae  

Candidatus Methanoperedenaceae 

Methanosaetaceae  

Methanosarcinaceae  

Thermococcaceae  

Nitrosopumilaceae  

Nitrososphaeraceae  

Glomeraceae  

Euphorbiaceae  

Podoviridae  

 

Table A10 
 

Table A10: Number of GH5-cellulase amplicon sequences separated into subclusters using subclustering-cut-

off expect-value of 10
-11

 and three different inflation values. Shown are only the subclusters containing 

taxonomically assigned amplicon sequences. Taxonomic assignments are shown using stringent (LCA-100) and 

less stringent (LCA-50) lowest common ancestor (LCA (123))-assignment cut-offs. Separation of sequences 

based on taxonomic assignments was most successful using inflation value 2.  

  Inflation value 1.5 Inflation value 2 Inflation value 3 

Subcluster 
number 

Taxonomic  
assignment LCA-100 LCA-50 LCA-100 LCA-50 LCA-100 LCA-50 

 
       

1 Actinobacteria 26 37     

 
Proteobacteria 80 422 80 422 80 422 

 
uncultured protist 1 1 1 1 1 1 

 
Firmicutes  5  4  4 
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Nematoda  65  64  64 

 unassigned 479 56 463 53 462 52 

2 Actinobacteria   26 37   

 
Firmicutes    1   

 
Nematoda    1   

 unassigned 10 10 16 3   

3 Actinobacteria     26 37 

 
Firmicutes      1 

 
Nematoda      1 

 unassigned 8 8 10 10 17 4 

11 Actinobacteria 1 1     

 unassigned 3 3     

12 Actinobacteria   1 1   

 unassigned   3 3   

13 Actinobacteria     1 1 

 unassigned     3 3 

15 Proteobacteria  3     

16 Proteobacteria    3   

17 Proteobacteria      3 

37 Proteobacteria 1 1     

38 Proteobacteria   1 1   

39 Proteobacteria     1 1 

54 Actinobacteria 1 1     

55 Actinobacteria 1 1 1 1   

56 Actinobacteria   1 1 1 1 

57 Actinobacteria     1 1 

68 Firmicutes 1 1     

69 Firmicutes   1 1   

70 Firmicutes     1 1 

78 Basidiomycota  1     

79 Basidiomycota    1   

80 Basidiomycota      1 

86 Proteobacteria 1 1     

87 Proteobacteria   1 1   

88 Proteobacteria     1 1 
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Figure A1 
 

Figure A1: Amplified products recovered from genomic DNA from C. japonicas in triplicate (lane R1-

3), showing an expected band of products of ~105 bp length. Lane 4 shows the included control 

amplification reaction without added template DNA (neg) and lane 5 shows the 1-kbp DNA ladder 

functioning as marker.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2 
 

Figure A2 (next three pages): Maximum Likelihood-phylogenetic tree of cellulase-amplicon 

sequences and partial GH5-database amino acid sequences obtained from the CAZy database (60). 

The analysis was done using 669 amplicon sequences and 308 partial (amplicon region) sequences of 

experimentally validated GH5-cellulases (total 977 sequences) and included 64 alignment positions. 

The percentage of trees in which the associated sequences clustered together is shown next to the 

branches and was determined with 100 bootstrap replicates. Only bootstrap values higher than 25% 

are shown. The tree is drawn to scale, with branch lengths measured in the number of substitutions 

per site. The taxonomic affiliation on phylum level of each sequence or collapsed cluster of 

sequences is indicated in the sequence-name and by a coloured marker; a filled marker for database 

sequences and an open marker for amplicon sequences. Taxonomic affiliations indicated with “(2)” 

in the sequence-name have been assigned using less stringent taxonomic annotation cut-offs 

(LCA=50%). Collapsed branches consist of sequences from the same taxonomic affiliation as 

indicated by the name of the collapsed cluster. The locations of the database sequences used for 

primer design are indicated by arrows. Database sequences belonging to clade 1, which are classified 

as GH5-subfamily 2, and clade 1.1 are outlined by a light- respectively dark-grey box. The location of 

amplicon sequences in the tree is indicated by the bar on the left side of the tree, with the colour 

corresponding to the subcluster number. An overview of the complete tree of database and 

amplicon sequences is given in the Overview-figure, whereas part A and part B show a larger 

version of the upper respectively lower half of the tree. 
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Figure A2 
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Figure A2 
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Figure A2 
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Figure A3 
 

Figure A3 (next page): Maximum Likelihood-phylogenetic tree of 322 complete domain sequences 

of experimentally validated GH5-cellulases obtained from the CAZy database (60) and the protein 

sequences of top BLAST hits of selected amplicon sequences (indicated in bold). The analysis 

included 425 alignment positions. The percentage of trees in which the associated sequences 

clustered together is shown next to the branches and was determined with 100 bootstrap replicates. 

Only bootstrap values higher than 25% are shown. The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site. The taxonomic affiliation on phylum level of each 

sequence or collapsed cluster of sequences is indicated by a colour- filled marker. Collapsed 

branches consist of sequences from the same taxonomic affiliation as indicated by the name of the 

collapsed cluster. Sequences belonging to clade 1.1 are outlined by a dark-grey box. The location of 

the database sequences used for primer design is indicated by an arrow. 
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Figure A3  
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AA auxiliary activity 
ANOVA analysis of variance 
BLAST(p) Basic Local Alignment Search Tool (protein) 
bp base pairs 
CAZy Carbohydrate-Active enZYmes 
CBM carbohydrate binding module 
CBP cellulose binding protein 
cfu colony-forming units 
CMC carboxymethyl cellulose 
Cmic microbial biomass carbon 
CT conventional tillage 
dbCAN Database for automated Carbohydrate-active enzyme Annotation 
DNA deoxyribonucleic acid 
DOC dissolved organic carbon 
EC Enzyme Commission 
e-value expectation value 
FAST-experiment Farming System and Tillage experiment 
GH glycoside hydrolase 
HF high fertilization 
HGT horizontal gene transfer 
HMM Hidden Markov Model 
ITS Internal Transcribed Spacer  
KEGG Kyoto Encyclopedia of Genes and Genomes 
L legume cover crop 
LF low fertilization 
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LSD least significant difference 
M mixture of cover crops 
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MID Molecular Identifier 
MSA multiple sequence alignment 
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NCBI National Center for Biotechnology Information 
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ORF open reading frame 
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Pfam (database) Protein family (database) 
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qPCR quantitative real-time PCR  
Refseq database Reference Sequences database 
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RT reduced tillage 
TC total carbon 
TN total nitrogen 
WEOC water extractable organic carbon 
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