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Abstract

Due to their low collisionality, the solar wind and the near-Earth space plasma
serve as a unique laboratory for studying plasma processes which are hardly
accessible in Earth-bound experiments. The absence of collisions allows plasma
particles to develop and maintain strongly non-thermal velocity distributions.
Such deviations from isotropic Maxwell-Boltzmann distributions provide a
source of free energy which may excite kinetic plasma instabilities. Space plas-
mas are subject to a rich variety of different kinetic instability mechanisms,
some of which are addressed in this thesis by means of linear and quasilinear
theory. We develop and employ numerical tools to study wave growth and
instability saturation and we compare our findings with outcomes of nonlin-
ear simulations and spacecraft measurements. The work presented here may
inform future studies on turbulent wave dissipation in space plasmas which is
a key to solving the solar wind heating problem.
A certain class of space plasma instabilities, being active in the solar wind
and playing a key role in regulating proton temperature anisotropies with
respect to the solar wind magnetic field direction, is the class of temperature-
anisotropy-driven instabilities which includes the parallel and oblique firehose
instability (T‖ > T⊥), the ion cyclotron instability and the mirror instability
(T‖ < T⊥). Traditionally, these temperature-anisotropy-driven instabilities are
studied using dispersion relation solvers based on anisotropic bi-Maxwellian
background distributions. However, kinetic instabilities are often sensitive
to the detailed velocity space structure of the plasma, requiring an accurate
modeling of the underlying velocity distribution. Space plasmas frequently
exhibit strongly non-thermal features such as beam populations and extended
suprathermal tails which are found to rather follow kappa distributions instead
of Maxwellians and modify the plasma’s dispersion properties.
We construct a linear solver which allows the computation of dispersion rela-
tions for eigenmodes with arbitrary propagation angles in anisotropic kappa-
distributed plasmas. Using this solver, we find that the presence of suprather-
mal tails can enhance the parallel firehose instability while suppressing the
oblique firehose growth. We discuss the implications of this finding for the
competition of both instabilities and the apparent dominance of the oblique
firehose in regulating temperature anisotropies in the solar wind.
Moving towards even more complexity, we develop a dispersion relation solver
which can also process gyrotropic velocity distributions with arbitrary shape.
Applying this solver to velocity distributions from hybrid-kinetic simulations,
we show that in an initially bi-Maxwellian setup with low β‖, the satura-
tion of the parallel firehose is mainly achieved by non-Maxwellian distribution
deformation caused by cyclotron-resonant diffusion and not by temperature
anisotropy reduction.
After demonstrating the applicability of the solver to simulation data, we also
present a first study based on spacecraft data. The presence of proton beam
populations in Earth’s ion foreshock plasma drives the ion-ion right-hand reso-
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nant instability which is sensitive to the velocity space structure of the beams.
Accounting for the measured beam shapes, we compute the instability’s growth
rate and compare it with the magnetic field amplitude growth determined from
a two-spacecraft analysis, finding reasonable agreement.
Finally, we couple the dispersion relation solver for arbitrary distributions to
the weak turbulence kinetic equation for parallel propagating modes. This
approach enables a self-consistent modeling of the parallel firehose saturation
by means of quasilinear theory while accounting for a deformation of the ini-
tially bi-Maxwellian distribution. Comparing to outcomes of hybrid-kinetic
simulations, we find good agreement for the predicted final temperature and
magnetic energy levels.
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Zusammenfassung

Da die Plasmen im erdnahen Weltraum und im Sonnenwind nahezu stoßfrei
sind, können sie für Untersuchungen von Plasmavorgängen herangezogen wer-
den, die in Experimenten auf der Erde nur schwer zugänglich sind. Die Abwe-
senheit von Stößen erlaubt es Plasmateilchen, nicht-thermische Geschwindigkeits-
verteilungen anzunehmen. Solche Abweichungen von thermischen Maxwell-
Boltzmann Verteilungen stellen freie Energie bereit, die das Auftreten von
Plasmainstabilitäten hervorrufen kann. Es gibt eine Vielzahl von kinetischen
Plasmainstabilitäten, die im Weltraum präsent sein können. Einige davon
werden in dieser Arbeit mithilfe linearer und quasilinearer Modellrechnun-
gen untersucht. Wir benutzen selbstentwickelte numerische Löser, um den
Anwachs der Instabilitäten und ihre Saturierung zu analysieren, und wir ver-
gleichen unsere Ergebnisse mit nichtlinearen Simulationen und Satellitenmes-
sungen. Damit soll zu einem besseren Verständnis der Turbulenz in Wel-
traumplasmen beigetragen werden, die wiederum der Schlüssel zum Verstehen
der Heizprozesse im Sonnenwind ist.
Eine bestimmte Klasse von Plasmainstabilitäten, die im Sonnenwind aktiv sind
und eine wichtige Rolle bei der Regulierung von Protonen-Temperatureanisotropien
parallel und senkrecht zum Magnetfeld des Sonnenwinds spielen, ist die Klasse
der Temperaturanisotropie-getriebenen Instabilitäten. Zu dieser gehören die
Parallel Firehose und die Oblique Firehose Instabilität (T‖ > T⊥), die Ionen-
Zyklotron Instabilität und die Mirror Instabilität (T⊥ > T‖). Diese Anisotropie-
getriebenen Instabilitäten werden traditionell mit Dispersionlösern untersucht,
die auf einer anisotropen bi-Maxwellschen Geschwindigkeitsverteilung beruhen.
Kinetische Instabilitäten hängen jedoch in der Regel empfindlich von der genauen
Geschwindigkeitsraumstruktur des Plasmas ab und erfordern daher eine möglichst
genaue Modellierung der zugrundeliegenden Geschwindigkeitsverteilung. Wel-
traumplasmen zeigen oft nicht-thermische Merkmale wie z.B. Teilchenstrahlen
und suprathermale Teilchenpopulationen, die eher Kappa-Verteilungen statt
Maxwellschen Verteilungen folgen und damit die Dispersion im Plasma beein-
flussen können.
Wir entwickeln einen linearen Löser, der uns Dispersionsrechnungen für Eigen-
moden mit beliebig orientiertem Wellenvektor in anisotropen kappa-verteilten
Plasmen ermöglicht. Durch Anwendung dieses Lösers können wir zeigen, dass
die Präsenz von suprathermalen Teilchenpopulationen die Parallel Firehose
Instabilität verstärken kann, während die Oblique Firehose unterdrückt wird.
Wir diskutieren die Bedeutung dieses Ergebnisses für das Zusammenspiel bei-
der Instabilitäten und für die scheinbare Dominanz der Oblique Firehose bei
der Regulierung der Temperaturanisotropien im Sonnenwind.
Um die Untersuchung noch komplexerer Verteilungsfunktionen zu ermöglichen,
entwickeln wir zudem einen Dispersionslöser, der beliebige gyrotrope Geschwindig-
keitsverteilungen verarbeiten kann. Wir wenden diesen Löser auf Geschwindigkeits-
verteilungen aus hybrid-kinetischen Simulationen an und zeigen für ein anfänglich
bi-Maxwellsches Szenario mit niedrigem β‖, dass die Saturierung der Paral-
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lel Firehose Instabilität vor allem durch eine nicht-Maxwellsche, zyklotron-
resonante Verformung der Verteilungsfunktion hervorgerufen wird und nicht
vorrangig durch die Reduktion der Temperaturanisotropie.
Nachdem wir die Anwendbarkeit des Lösers auf Simulationsdaten demon-
striert haben, präsentieren wir auch eine erste Anwendung auf Satelliten-
daten. Das Auftreten von Protonenstrahlpopulationen im Plasma vor der
Bugstoßwelle des Erdmagnetfelds, im sogenannten Ionen-Foreshock, ruft die
Ion-Ion Right-hand Resonant Instabilität hervor, deren Eigenschaften von der
genauen Geschwindigkeitsraumstruktur der Strahlpopulation abhängt. Unter
Berücksichtigung der genauen Form der Strahlpopulationen berechnen wir die
Anwachsraten der Instabilität und vergleichen sie mit dem Amplitudenanwachs
im Magnetfeld, der sich aus einer Zwei-Satelliten Analyse ergibt. Dabei finden
wir eine passable Übereinstimmung zwischen Theorie und Beobachtung.
Wir koppeln den Dispersionslöser für beliebige Verteilungen schließlich mit
der kinetischen Gleichung der schwachen Turbulenz für parallele Eigenmoden.
Dies erlaubt uns eine selbstkonsistente Modellierung der Saturierung der Paral-
lel Firehose Instabilität im Rahmen der quasilinearen Theorie unter Berücksichtigung
einer nicht-Maxwellschen Deformierung der anfänglich bi-Maxwellschen Geschwindig-
keitsverteilung. Vergleiche mit Ergebnissen von hybrid-kinetischen Simulatio-
nen zeigen gute Übereinstimmung für die vorhergesagten finalen Niveaus der
Temperaturkomponenten und der magnetischen Energie.
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Chapter 1

Introduction

Of all natural plasma environments in our Universe which range from stellar
to galactic and even cosmological scales, the solar wind is certainly the best
studied one. This continuous particle stream originates from the sun where it
gets ejected by coronal holes and fills the entire interplanetary space in our so-
lar system up to a distance of about 120 AU–180 AU [1]. Its radially outward
directed pressure forms a sun-dominated bubble in the interstellar medium
which, in its entirety, is referred to as the heliosphere.
The solar wind plasma is mainly made of freely moving protons and electrons,
and a small fraction of fully ionized α-particles with, on average, Nα/Ni ∼ 0.051

[2]. It also contains traces of other minor ions such as oxygen which may be
fully or partly ionized. Due to the solar wind’s low collisionality – the mean
free path of a particle near Earth orbit is about 1AU [3] – the different particle
species can have different temperatures which are also highly variable in space
and time. On average, the temperature of the solar wind protons is of the
order of Ti ∼ 105 K, but can range from 104 K to 106 K [4].
Unlike any other extraterrestrial plasma environment, the heliospheric plasma
can be probed directly via spacecraft measurements which give us unique
insights into the rich physics that governs this highly variable and complex
plasma system. Space probes allow us to observe plasma processes which are
hardly accessible in Earth-bound experiments since no artificial vacuum pro-
duces as low a density as is measured in the interplanetary space – on average
ni ∼ ne ∼ 5 cm−3 [5].
Since Eugene Parker proposed his first hydrodynamic model, correctly describ-
ing the overall dynamics of the solar wind [6], space plasma research, which
also addresses planetary magnetospheres and the solar atmosphere, has de-
veloped into an active and rich field of study with uncountable facets. While
much progress has been made in the past decades, there are still some funda-
mental challenges that need to be overcome. Parker, who also coined the term
solar wind, gave a first prediction for its average terminal velocity which was
later confirmed by observations to be vs ∼ 500 km/s [7]. However, the solar

1If not stated otherwise the subscript ’i’ (for ’ion’) denotes protons and not ions in general.
The subscript ’e’, which is also used later on, stands for electrons.
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2 1. Introduction

wind speed is highly variable, ranging from 300 km/s to 1400 km/s, where for
vs < 400 km/s we speak of the low-speed solar wind and vs > 600 km/s defines
the high-speed solar wind [2]. Understanding the detailed acceleration mecha-
nism is still an unsolved problem.
Simple solar wind models assume an adiabatic expansion of the medium which
is directed radially outward from the sun. However, in situ observations re-
vealed that the radial profile of the solar wind temperature exhibits a shallower
decrease than expected. An adiabatic model predicts T ∼ r−1.33 while observa-
tions yield T ∼ r−0.74 (for the fast solar wind) [8]. This suggests the existence
of heating processes which energize the solar wind particles. Again, the exact
nature of the underlying processes is still poorly understood, making the solar
wind heating problem another main challenge in space plasma physics.
In both solar wind heating and solar wind acceleration, a crucial role may be
assigned to turbulent dissipation (see, e.g., Refs. [9, 10, 11, 12, 13, 14] and
references therein), which is the consequence of a complex interplay of convec-
tive, thermal, and electromagnetic processes in which plasma waves serve as a
mediator.
Understanding turbulence is arguably one of the greatest challenges in modern
physics. Its qualitative nature seems to be clear: high-amplitude waves inter-
act nonlinearly and exchange energy with each other, feeding a cascade which
transports the energy from large to small spatial scales, where the energy gets
transferred to the particles by wave-particle interactions, and is finally dissi-
pated into heat. However, quantifying the underlying processes is cumbersome
due to the complexity of the inherently nonlinear equations and the statisti-
cal nature of the phenomenon. Predicting the contribution of turbulent wave
dissipation to the solar wind heating would require a thorough investigation
of four fundamental mechanisms: the excitation of plasma waves in the solar
wind medium, the nonlinear mutual interactions of the waves which drive the
energy cascade and transport the injected energy to the particle scales, the
linear and nonlinear wave-particle interactions which can transfer the energy
from the waves to the particles, and the interparticle collisions which ulti-
mately lead to randomization and irreversible plasma heating.
Although the main mathematical challenges lie in the theoretical treatment of
the nonlinear high-amplitude fluctuations, we found that even in the realm of
linear plasma physics, i.e. the physics of small-amplitude plasma waves, many
processes still remain poorly understood. It is mainly these linear processes
which inject the electromagnetic energy into the plasma by means of plasma
wave instabilities, feeding the turbulent cascade. In fluid turbulence, where
the energy injection scale and the dissipation scale are clearly separated by
the inertial range, a thorough knowledge of the specific mechanism that in-
jects the energy into the medium is not required to understand the dissipative
processes on the particle scales. Plasmas, on the other hand, can be subject to
so-called kinetic instabilities which resonate with the particles and may inject
energy on microscopic scales close to the dissipation scales. Thus, there is no
clear inertial range. Energy is injected and dissipated at similar scales which
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further complicates the treatment of the turbulent heating.
The activity of kinetic instabilities in the solar wind and the near-Earth space
plasma is the central topic of this publication-based thesis. There is a huge
variety of different instability mechanisms which may be present in collision-
less space plasmas. In this thesis we present linear and quasilinear studies of
several kinetic instabilities and focus on the effect of non-Maxwellian velocity
distributions on their dispersion properties.
The publications included can be found in Sec. 5, together with a motivation
of each research topic, a summary of the corresponding publication, and some
further discussions. The purpose of Secs. 2–4 is to introduce the reader to the
research field. As we already pointed out, this thesis mainly addresses issues
in space plasma physics and is therefore tailored with respect to studies of
the solar wind plasma. Sec. 2 presents basic quantities for characterizing and
classifying a plasma. We outline the role of single particle versus collective ef-
fects and introduce the concept of particle distribution functions. Sec. 3 gives
a concise overview of the different descriptions used for modeling plasmas and
elaborates further on kinetic plasma theory. Sec. 4 introduces the notion of
plasma waves and instabilities and presents the fundamental equations of lin-
ear and quasilinear kinetic theory while discussing a few examples of kinetic
instabilities which are of importance in the included publications. The dis-
cussion proceeds with Sec. 5, the publication section, which is the core of this
thesis. Finally, we conclude the thesis in Sec. 6 and give an outlook on possible
future projects that could build on the work presented here.
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Chapter 2

Plasma characterization

This chapter is meant to give a concise introduction to the notion of plasmas by
defining what a plasma is and by listing important quantities that can be used
to characterize a plasma. Since this thesis is focused on solar wind studies, we
estimate the characteristic plasma quantities for the typical solar parameters,
given in Sec. 1. To avoid confusion, all quantities in this chapter are given
in SI units, while in the following chapters, we switch to cgs units in order
to simplify the presented theoretical derivations. We also discuss the role of
collective effects in plasmas and introduce the concept of velocity distribution
functions which will be of central importance in the remainder of the thesis.
Most of the discussions in this chapter are based on Baumjohann and Treumann
[2], Bellan [15], and Bittencourt [16]. We refrain from giving explicit deriva-
tions for the listed equations but refer the reader to the quoted literature.

2.1 Plasma definition

Being used to life on Earth where the environment is dominated by matter in
the classic states – solids, fluids, and gases – plasmas appear to us as being a
rather exotic phenomenon in nature which we only encounter in the presence of
flames, lightnings, or the auroral glow. But really, it is not plasma, but rather
planet Earth which is an exotic place in the Universe. Including stars, the
interstellar medium, and even the intracluster medium between galaxies, most
of the baryonic matter in the Universe is in fact in the plasma state. In general,
the term plasma refers to any hot and ionized gas in which the freely moving
charged particles undergo collective interactions with externally applied and
self-generated electric and magnetic fields. Due to its unique nature and its
special properties which distinguish it from solids, fluids, and gases, the plasma
state is often regarded as a fourth state of matter. However, in contrast to the
thermodynamic phase transitions between the classic states of matter which for
a given pressure occur at a constant temperature, the transition from a neutral
gas to a fully-ionized plasma happens gradually when increasing the particles’
thermal energy. Ionization becomes important as soon as the thermal energy
exceeds the Coulomb binding energy between the electrons and the nuclei

5



6 2. Plasma characterization

which usually is of the order of a few electron volts. The ionization fraction
x of a plasma, i.e. the ratio of the number of ions and the total number of
neutral and ionized atoms, can be estimated using Saha’s equation, which for
the simple case of a pure hydrogen plasma reads

x2

1− x
=

1

ne

(

2πmekBT

h2

)3/2

exp

(

−13.6eV

kBT

)

. (2.1)

From Eq. (2.1), we infer that the ionization fraction increases with thermal
energy and decreases with the density. Since in this work we are mostly con-
cerned with the solar wind plasma, we now estimate the ionization fraction
of the solar wind at 1 AU. In the foregoing chapter, we found that the solar
wind consists of ∼ 95% protons, so Eq. (2.1) should hold as a good approxi-
mation. Using the average density and average proton temperature given in
Sec. 1, we find x ≈ 1, i.e. it is fair to assume that the solar wind plasma at
1 AU is fully ionized. Thus, in all of what follows, we will neglect any effects
due to the presence of neutral particles and only consider fully ionized plasmas.

2.2 Collective effects in plasmas

Due to the presence of freely moving charged particles, plasmas exhibit high
thermal and electrical conductivity. Thus, any local excess of positive or neg-
ative charges at any given point in the plasma will induce strong local cur-
rents that immediately balance the excess charge, making the plasma appear
macroscopically neutral as long as no external disturbances are applied. This
so-called quasineutrality is a fundamental property of plasmas and it is closely
related to the notion of Debye shielding. Due to the electrostatic interactions
between the charged particles, each ion in a plasma is surrounded by a cloud
of electrons which effectively shield the ions’ Coulomb fields. This modifies
the usual r−2-dependence of the Coulomb force and introduces an exponential
decay over a characteristic length scale

λD =

√

ǫ0kBT

nee2
(2.2)

which is also known as the Debye length. In order to ensure the collective
shielding effect, the physical dimension L of the considered system has to obey
L ≫ λD. Furthermore, the number of electrons within a Debye sphere, the
so-called plasma parameter

Λ =
4

3
πλ3

Dne (2.3)

has to be large, i.e. Λ ≫ 1. For the solar wind plasma, we find λD ∼ 10m and
Λ ∼ 1010. Thus, on length scales L ≫ 10m, we expect the solar wind particles
to interact collectively and exhibit plasma-like behavior.
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Another fundamental consequence of the collective electromagnetic interac-
tions of the plasma particles is the phenomenon of plasma oscillations. If in
an otherwise undisturbed plasma the electrons are collectively displaced from
their equilibrium position around the ions, the resulting charge separation will
produce a restoring Coulomb force which pulls the electrons back. Due to their
inertia, the electrons will overshoot and start to oscillate about the ions. The
ions are much heavier and can therefore be regarded as being mostly unaffected
by the electrons. The characteristic frequency of this electrostatic oscillation,
the plasma frequency, describes the time scale on which the electrons react to
disturbances in the plasma and is given by

ωpe =

√

neq2e
meǫ0

. (2.4)

The plasma frequency also represents a natural frequency limit for incident
electromagnetic waves in unmagnetized plasmas. If the frequency of the inci-
dent wave is smaller than the plasma frequency, the wave cannot propagate
through the plasma, but decays exponentially over a characteristic length scale
given by

de =
c

ωpe

, (2.5)

which is called the plasma skin depth. For average solar wind parameters at 1
AU, we find ωpe ∼ 1.3 · 105 rad/s and de ∼ 2 km.
In accordance to the foregoing electron-related quantities, we can also define
the ion plasma frequency,

ωpi =

√

niq2i
miǫ0

, (2.6)

and the ion inertial length,

di =
c

ωpi
, (2.7)

at which the ions decouple from the electron dynamics. For the solar wind
protons, we roughly estimate ωpi ∼ 3 · 103 rad/s and di ∼ 100 km.

2.3 Individual particle processes in plasmas

The quantities given in Sec. 2.2 are related to the collective nature of plasma
processes. Alternatively, we can also consider the collision frequency and the
mean free path as the natural time and length scales of individual particle pro-
cesses. While strong interactions between neutral atoms in conventional gases
only occur within their electronic shells, the long-range Coulomb interactions
in a plasma are active within the particles’ Debye spheres, complicating the
description of plasma particle collisions. The collision frequency is typically
defined as the inverse of the time which is required for collisions to deflect
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incident particles by an angle of 90◦. For collisions of electrons with ions, the
collision frequency can be approximated by

νei =
neq

2
i q

2
e√

2πm2
eǫ

2
0v

3
th,e

ln Λ, (2.8)

where vth,e =
√

2kBTe/me is the electron thermal velocity. The electron-ion
collision frequency is related to the electron-electron, ion-ion, and ion-electron
collision frequencies via

νei : νee : νii : νie (2.9)

1 :∼ 1 :∼
√

me

mi

:∼ me

mi

. (2.10)

Using the above equations, we can compare the characteristic time scales of
individual and collective plasma processes to find that

νei
ωpe

∼ ln Λ

Λ
. (2.11)

This indicates that collective effects dominate when Λ ≫ 1, which is in agree-
ment with our former findings and is fulfilled under typical solar wind condi-
tions.
A characteristic length scale related to the collisional processes is the electron
mean free path which can be defined by

λmfp,e =
vth,e
νei

. (2.12)

For the solar wind, we find the collision frequency νei ∼ 10−5 Hz and the
electron thermal speed vth,e ∼ 3000 km/s, yielding λmpf,e ∼ λmpf,i ∼ 108 km,
i.e. the collisional time scale is much larger than the characteristic time scales
of collective effects and the mean free path of ∼ 1AU is large enough such that
any local effects due to collisions are irrelevant. Thus, in the remainder of this
thesis, we will treat the solar wind medium as a purely collisionless plasma.
Also, since relativistic effects in a plasma only become relevant for v2th,e/c

2 &

0.05 [17], while in the solar wind v2th,e/c
2 ∼ 10−4, we neglect effects due to

special relativity.

2.4 Plasmas in magnetic fields

Another consequence of the presence of freely moving charged particles is the
plasma’s sensitivity to externally applied magnetic fields. Exposing the plasma
particles to a background magnetic field B, the Lorentz force FL = qv×B in-
troduces spatial anisotropy in the plasma. The motion of the particles parallel
to the magnetic field lines remains unaffected while in the plane perpendicular
to the field lines the particles are forced to undergo circular motion about the
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field lines, the so-called gyromotion. Balancing the resulting centrifugal force
with the Lorentz force, we find the radius of the gyro-orbit, the Larmor radius
or gyroradius, to be

rg,α =
mαv⊥
qαB

, (2.13)

for particle species α = e or i. Solving the equations of motion in the perpen-
dicular plane yields the frequency of the gyromotion, the Larmor frequency or
gyrofrequency

Ωα =
qαB

mα
. (2.14)

The typical electron and proton Larmor radii in the solar wind can be es-
timated, approximating v⊥ with the electron and ion thermal speed, to be
rg,e ∼ 1.5 km and rg,i ∼ 60 km. For the gyrofrequencies, we find Ωe ∼ 900 Hz
and Ωi ∼ 0.5 Hz.
The decoupling of the particle dynamics parallel and perpendicular to the
magnetic field due to the gyromotion suggests the introduction of a suitable
cylindrical coordinate system. Since the solar wind background magnetic field
undergoes only slow variations on large spatial scales, we can regard it as
locally homogeneous and stationary. Letting a homogeneous, stationary mag-
netic field B point in the z-direction, i.e. B = B ez, we can then introduce the
parallel velocity v‖, the perpendicular velocity v⊥, and the angle of gyration φ
(see Fig. 2.1), such that

vx = v⊥ cos(φ) (2.15)

vy = v⊥ sin(φ) (2.16)

vz = v‖. (2.17)

This field-aligned geometry will be used extensively throughout the thesis.
A dimensionless quantity related to the magnetic field strength which will be
of importance later in the thesis is the plasma beta

β =
2µ0nkBT

B2
. (2.18)

It describes the ratio between the particles’ kinetic pressure and the magnetic
pressure, and is therefore a measure for the relative strength of the background
magnetic field. In field-aligned geometry, we can split this quantity into a
parallel and perpendicular component

β‖ =
2µ0nkBT‖

B2
(2.19)

β⊥ =
2µ0nkBT⊥

B2
, (2.20)

where T‖ and T⊥ are the temperature components parallel and perpendicular
to the background magnetic field. For the solar wind, we typically have β ∼ 1
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Figure 2.1: Trajectory of a positively charged ion in a background magnetic field

B0. While the parallel motion of the ion is unaffected, the Lorentz force constrains

the particle to a circular orbit in the plane perpendicular to the field lines. The

resulting trajectory is a left-handed helix (a negative charge would gyrate in a right-

handed sense). The velocity coordinates of the particle may be expressed in terms

of cylindrical coordinates (v‖, v⊥, φ).

with a slight anisotropy in favor of the parallel component (see, e.g., Ref. [18]).
The plasma beta can also be expressed in terms of the ratio

β =
v2th
v2A

, (2.21)

where vA denotes the Alfvén speed, defined by

vA =
B√
µ0nm

. (2.22)

The Alfvén speed is a fundamental quantity in the context of wave propagation
in magnetized plasmas. It determines the speed at which magnetic signals can
be transported by plasma waves [2].

2.5 The velocity distribution function

A central concept in plasma characterization is the particle distribution f
which is a function of the six-dimensional phase space (x,v) and time t. At
any given time, each particle in a plasma occupies a certain position in phase
space characterized by its spatial location x and its velocity v, where x and
v are independent variables. The particles’ trajectories in phase space exactly
describe their evolution in time. Thus, the instantaneous configuration of a
large number of particles at any given time can be specified statistically by
the density of particles at each point (x,v) in phase space. This density is
represented by the particle distribution function f (x,v, t). More formally,
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the quantity f (x,v, t) dx dy dz dvx dvy dvz describes the number of particles in
the infinitesimal volume element dx dy dz at point x and the velocity space
element dvx dvy dvz at velocity v, at time t. Similarly, the distribution f can
also be understood as the probability to find a particle in a given phase space
element, justifying its interpretation as a probability density function. That
said, the time evolution of the statistical quantity f (x,v, t) does not follow
the trajectories of individual particles but instead it characterizes classes of
particles with the same (x,v).
The distribution function is a microscopic quantity and is not easily measured
in experiments. However, macroscopic quantities can be derived from it by
computing its velocity moments. Taking the zeroth-order velocity moment,
i.e. integrating the distribution over the full velocity space, we obtain the
particle number density,

n (x, t) =

∫

d3v f (x,v, t) . (2.23)

The first moment yields the local mean velocity vector of the plasma,

u (x, t) =
1

n

∫

d3v v f (x,v, t) . (2.24)

And from the second velocity moments, we can derive the 3×3 pressure tensor,

P (x, t) = m

∫

d3v (v − u) (v − u) f (x,v, t) , (2.25)

where (v − u) (v − u) is a dyadic product.
We are not interested in spatial variations of the distribution function, thus,
we assume homogeneity such that the instantaneous density is a constant in
space, i.e. n (x) = n0, and we rewrite the instantaneous distribution function
in terms of its velocity dependent part f (x,v) = n0F (v). The velocity dis-
tribution function F (v) is an important local property of a plasma and can
assume different forms depending on the particular plasma environment. In
the following, we list a few velocity distribution functions which are commonly
encountered in space plasmas and which will be important in the later chapters
of this thesis.

2.5.1 Maxwell-Boltzmann distributions

The most commonly encountered velocity distribution in plasma physics is the
Maxwell-Boltzmann distribution,

F (v) =
1

π3/2v3th
exp

(

− v2

v2th

)

, (2.26)

with vth being the thermal speed, i.e. vth =
√

2kBT/m.
All collisional systems that obey Boltzmann statistics converge to this veloc-
ity distribution function because in such systems, the Maxwellian distribution
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maximizes the entropy and is therefore the most likely distribution the parti-
cles can adopt. For a given particle species, the distribution is uniquely defined
by just one parameter, the temperature T .
A (locally) Maxwellian plasma is always microscopically stable since the Maxwellian
distribution represents a state of thermodynamic equilibrium where no free en-
ergy is available that could drive instabilities.
For plasmas with high collisionality, the Maxwellian distribution is well-established.
However, in systems where the collisional time scale is long compared to the
scales of interest, as is typically the case in the solar wind, significant devi-
ations from Maxwellian distributions are expected. Such deviations provide
a source of free energy in the plasma and may drive so-called velocity space
instabilities, some of which will be discussed in Sec. 4.

2.5.2 Anisotropic Maxwellian distributions

A common deviation from a Maxwellian velocity distribution which is fre-
quently observed in the solar wind is the anisotropic Maxwellian or bi-Maxwellian
velocity distribution. In field-aligned coordinates, the bi-Maxwellian distribu-
tion can be written as

F
(

v‖, v⊥
)

=
1

π3/2vth,‖v
2
th,⊥

exp

(

−
v2‖
v2th,‖

− v2⊥
v2th,⊥

)

, (2.27)

where vth,‖ and vth,⊥ denote the thermal velocities with respect to the field

direction, i.e. vth,‖ =
√

2kBT‖/m and vth,⊥ =
√

2kBT⊥/m. Due to the sym-
metry of the gyromotion in the perpendicular plane, the distribution does not
explicitly depend on the gyroangle and is therefore gyrotropic.
Bi-Maxwellian distributions naturally arise in collisionless plasmas that are
subject to a background magnetic field where the dynamics parallel and per-
pendicular to the field lines decouple. They describe plasmas where the parti-
cles are distributed in a Maxwellian way but have different temperatures with
respect to the magnetic field directions. A source of free energy is provided by
the anisotropy in the temperature components and may trigger temperature-
anisotropy-driven instabilities.

2.5.3 Beam distributions

If a beam of fast particles is injected into a plasma, a system with two particle
populations is created that drift relative to each other. The combined beam-
core plasma population can then be represented by a sum of two Maxwellian
distributions with a relative drift velocity vd. In space plasmas, such beam
distributions usually exhibit beam populations drifting along the magnetic
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field lines. Thus, we can write

F
(

v‖, v⊥
)

=
ηc

π3/2v3th,c
exp

(

−
v2‖ + v2⊥

v2th,c

)

+
ηb

π3/2v3th,b
exp

(

−
(

v‖ − vd
)2

+ v2⊥
v2th,b

)

,

(2.28)
assuming the core and the beam to be isotropic Maxwellians with thermal
velocities vth,c, vth,b and fractional densities ηc =

nc

nc+nb

, ηb = nb

nc+nb

.
Ion beams are frequently observed in the solar wind and in the near-Earth space
plasma. The Earth’s foreshock (see Sec. 5.4.1) is a particularly well-probed
environment where ion beam distributions have been studied extensively. The
observed ion beams were found to fall into three distinct classes [19]: the
reflected beam distribution which is narrowly collimated and well-described by
a drifting Maxwellian model, the non-Maxwellian kidney-shaped intermediate
distribution, and the nearly isotropic diffuse distribution (see Fig. 2.2). The
free energy in the drift motion between the ion core and the ion beam can
trigger ion beam instabilities which are briefly discussed in Sec. 4.4.

Figure 2.2: Ion beam distributions, measured by the Cluster spacecraft in the ion

foreshock region of Earth (see also Sec. 5.4.1). The different beam shapes suggest a

classification into three categories: the reflected, the intermediate, and the diffuse

beam distribution. The figure was taken and adapted from Parks et al. [20].

2.5.4 Kappa distributions

Collisionless space plasmas are often subject to nonthermal acceleration pro-
cesses which can trigger the formation of non-Maxwellian high-energy tails in
the plasmas’ velocity distribution. Such high-energy tails are frequently ob-
served in the solar wind and roughly follow power-laws. Traditionally, they
have been fitted with so-called kappa distributions which were introduced based
on empirical findings by Vasyliunas [21] and Olbert [22]. In its classic form,
the kappa distribution is expressed as

Fκ

(

v‖, v⊥
)

=
1

κ3/2π3/2θ3
Γ (κ+ 1)

Γ (κ− 1/2)

(

1 +
v2

κθ2

)−(κ+1)

, (2.29)
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where θ denotes the modified thermal velocity θ =
√

2κ−3
κ

kBT
m

and Γ(x) is the

gamma function.
Compared to the Maxwell-Boltzmann distribution, there is an additional free
parameter, 3/2 < κ ≤ ∞, which determines the extent of the distribution
tails. The lower κ, the more pronounced are the tails. Conversely, if κ becomes
large the kappa distribution converges to and, for κ → ∞, degenerates into
the Maxwellian distribution Eq. (2.26) (see Fig. 2.3). Kappa distributions

Figure 2.3: Kappa distributions for different kappa parameters, compared to the

corresponding Maxwellian distribution with equal temperature.

can therefore be understood as a power-law generalization of the Maxwell-
Boltzmann distribution which contains the Maxwellian as a limiting case.
For plasmas with T‖ 6= T⊥, another commonly used form is the anisotropic
kappa distribution, given by

Fκ

(

v‖, v⊥
)

=
1

κ3/2π3/2θ‖θ
2
⊥

Γ (κ + 1)

Γ (κ− 1/2)

(

1 +
v2‖
κθ2‖

+
v2⊥
κθ2⊥

)−(κ+1)

, (2.30)

with θ‖ =

√

2κ−3
κ

kBT‖

m
and θ⊥ =

√

2κ−3
κ

kBT⊥

m
. For κ → ∞, this converges to the

bi-Maxwellian distribution, Eq. (2.27).
For the solar wind, the kappa parameter is typically found to be 2.5 ≤ κ ≤ ∞
[23], with an anti-correlation between the solar wind bulk speed and κ.
First introduced as a mere fitting tool, kappa distributions have enjoyed a
growing interest in recent years because there appears to be a deeper physical
reason for the existence of such power-law distributions, connecting them to
collisionless and stationary-turbulent plasma systems. In non-equilibrium tur-
bulent systems with long-range correlations, the applicability of classic Gibbs-
Boltzmann statistics is not well established since it implies non-additivity and,
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thus, non-extensivity of the standard Gibbs-Boltzmann-Shannon (GBS) en-
tropy. In an equilibrium system with negligible short-range correlations, max-
imizing the GBS entropy yields the Maxwell-Boltzmann distribution as the
most probable velocity distribution of the system. A widely used generaliza-
tion of the GBS entropy to the non-extensive case, the Tsallis entropy, has
been proposed in Tsallis [24]. For a discrete set of probabilities {pi} of N
possible microscopic configurations, it is given by

Sq = − kB
1− q

(

1−
N
∑

i

pqi

)

(q ∈ R), (2.31)

where q is a measure for the non-extensivity of the system. For q = 1, the
Tsallis entropy degenerates into the standard GBS entropy,

S = −kB

N
∑

i

pi ln pi. (2.32)

For statistically independent subsystems A and B, the Tsallis entropy satisfies
pseudo-additivity,

Sq(A,B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (2.33)

while the GBS entropy is additive, i.e.

S(A,B) = S(A) + S(B). (2.34)

Thus, the Tsallis entropy is generally a non-extensive quantity, except for the
case q = 1, where it recovers the additivity of the GBS entropy. However, if A
and B are strongly correlated, the parameter q may be chosen such that the
Tsallis entropy becomes an extensive quantity. It can then be used in place of
the GBS entropy to describe the correlated system statistically.
It turns out that maximizing the Tsallis entropy yields quasi-equilibrium states
which are described by kappa-like power-law distributions instead of Maxwellians.
Using modified Tsallis statistics based on the so-called escort entropy, one can
even recover the exact shape of the kappa distributions given in Eq. (2.30) [25].
The non-extensivity parameter q is then related to kappa via κ = 1/(1 − q).
For q → 1, we get κ → ∞ which again yields the limiting case of a Maxwellian
distribution function.
The non-extensivity parameter q has to be determined from the microscopic
dynamics in the considered system in order to find the corresponding quasi-
equilibrium velocity distribution. As an example, the case of steady-state
Langmuir turbulence has been addressed in a series of papers [26, 27, 25]. On
the basis of plasma turbulence theory, the authors derived a kappa-like elec-
tron distribution for the time-asymptotic state in a three dimensional system,
predicting κ = 3.25.
Thus, we conclude that apart from being a fitting tool for observed solar wind
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velocity distributions, kappa distributions may also have a rigorous physical
foundation in that they are quasi-equilibrium states of strongly correlated sys-
tems of steady-state turbulence described by non-extensive thermodynamics.
Therefore, they are expected to be omnipresent in space plasmas.



Chapter 3

Plasma modeling

In Sec. 2.1, we defined plasmas as collections of charged particles that col-
lectively interact with self-generated and externally applied electromagnetic
fields, and we characterized the solar wind medium as a fully-ionized, virtually
collision-free, non-relativistic plasma which mainly consists of hydrogen. In
this thesis, we are concerned with plasma wave propagation in the solar wind.
Thus, our first goal is to find a suitable model that properly describes the
physics in such a medium.
This section reviews different approaches to describe plasma processes and
briefly discusses their applicability to the solar wind. After selecting kinetic
plasma theory to be the model of choice, we derive the Vlasov equation which
will be at the center of all our following considerations, and we demonstrate
how plasma fluid theories can be derived from kinetic plasma theory. The
discussions in this section closely follow the presentation in Baumjohann and
Treumann [2] and Brambilla [28].
To simplify the presentation, we will now switch from SI to cgs units.

3.1 Overview

3.1.1 Exact plasma description

As long as one is not concerned with exotic plasma states having high density
and comparably low temperature, such as plasmas in white dwarfs or atmo-
spheres of neutron stars [29], it is sufficient to treat plasmas in the context of
classic electromagnetic theory, neglecting any quantum effects.
In principle, a plasma system can be described exactly by solving the mi-
croscopic equations of motion for each particle in the plasma simultaneously,
accounting for the electromagnetic interactions of each particle with all other
particles and externally applied fields. One way to achieve this is to introduce
an exact particle density function for each particle species α,

Nα (x,v, t) =
∑

n

δ (x− xα
n(t)) δ (v − vα

n(t)) , (3.1)

17
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which contains the exact and instantaneous spatial position xα
n and velocity

vα
n of each particle n of species α, represented in phase space by the three-

dimensional Dirac-Delta functions

δ (x− xα
n(t)) = δ (x− xα

n(t)) δ (y − yαn(t)) δ (z − zαn(t)) (3.2)

δ (v − vα
n(t)) = δ

(

vx − vαx,n(t)
)

δ
(

vy − vαy,n(t)
)

δ
(

vz − vαz,n(t)
)

. (3.3)

The particles are subject to the microscopic magnetic and electric fields Bm

and Em which are created by the particles themselves and by external sources.
We can therefore write the equations of motion for each particle n of species
α as

dxα
n(t)

dt
= vα

n(t) (3.4)

dvα
n(t)

dt
=

qα
mα

(

Em (xα
n(t), t) +

1

c
vα
n(t)×Bm (xα

n(t), t)

)

. (3.5)

The electromagnetic fields obey Maxwell’s equations

∇×Bm =
1

c

∂Em

∂t
+

4π

c
jm (3.6)

∇× Em = −1

c

∂Bm

∂t
(3.7)

∇ ·Bm = 0 (3.8)

∇ · Em = 4πρm. (3.9)

Thus, they can be derived from the microscopic space charge density ρm and
the microscopic current density jm, which are obtained from the phase space
density Nα, via

ρm =
∑

α

qα

∫

d3v Nα (x,v, t) (3.10)

jm =
∑

α

qα

∫

d3v vNα (x,v, t) . (3.11)

Eqs. (3.1)–(3.11) form a closed and exact set of equations which self-consistently
describes the time evolution of a collection of charged particles and can be used
to model a plasma. However, since one is usually concerned with a rather large
collection of particles, this exact microscopic approach would require too many
computations and is far from being feasible, even with the computing power
of modern HPC systems. Thus, reduced models have to be used to facilitate
a simplified, but still meaningful description of such plasma systems.
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3.1.2 The single particle approach

The simplest approach that can be constructed is particle orbit theory which
examines how a single charged particle reacts when being exposed to pre-
scribed electric and magnetic fields. Such a single particle approach provides
interesting insights into some basic plasma features such as drift motions and
adiabatic invariants while completely ignoring collective effects, making it ap-
plicable only to very rarefied plasmas. In Sec. 2.2, we concluded that collective
effects are expected to play a major role in the solar wind, so particle orbit
theory does not suit our needs and shall not be covered here.

3.1.3 The macroscopic fluid approach

Another common approach for plasma modeling is a fluid approach which
combines hydrodynamics with electrodynamics, and neglects single particle
effects. Such a macroscopic ansatz exclusively accounts for collective plasma
behavior, making it a complementary model to particle orbit theory. There is
a variety of different plasma fluid theories with varying degrees of complexity
which will be briefly discussed in Sec. 3.3. However, among other restrictions,
fluid theories require the plasma to be collision-dominated. This implies that
the velocity distribution of the plasma particles locally adopts a Maxwell-
Boltzmann distribution, and that the considered length scales are large with
respect to the particles’ mean free path. In Sec. 2.3 we found that the solar
wind has rather low collisionality, allowing the particle velocity distribution
to substantially deviate from a thermalized Maxwellian, and the mean free
path of ∼ 1AU suggests applicability of the fluid description on very large
scales only. Despite their strong limitations, fluid models haven proven to be
surprisingly successful in the context of space plasma physics, even outside
their range of strict validity. However, the plasma waves and instabilities we
are about to consider act on time and length scales close to the ion kinetic
scales. This is another severe violation of the macroscopic fluid assumptions
and invalidates this ansatz for our studies.

3.1.4 The microscopic statistical approach

What we require for our needs is a plasma theory which includes both collec-
tive and single particle effects, allowing for a proper modeling on both large
and small length and time scales. Such a theory can be derived using a still
microscopic but statistical approach which, instead of describing single par-
ticle dynamics or macroscopic fluid quantities, models the evolution of the
plasma particle’s velocity distribution function in six-dimensional phase space.
This so-called kinetic plasma theory is the most advanced and complete of the
commonly used plasma models, and since it is the theory of choice for our
considerations, we dedicate Sec. 3.2 for reviewing the underlying assumptions
and deriving the Vlasov equation, which is the core of kinetic plasma theory.
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3.2 Kinetic plasma theory

As a starting point for our discussion of kinetic plasma theory, we first go back
to the exact microscopic plasma description represented by Eqs. (3.1)–(3.11).
If we assume that the number of particles in the plasma is conserved in phase
space, the total time derivative of the particle phase space density must vanish,
i.e.

dNα

dt
= 0. (3.12)

Since the particle position x and the particle velocity v depend on time, the
total time derivative can be rewritten as a convective derivative in the six-
dimensional phase space as

d

dt
=

∂

∂t
+

dx

dt
· ∂

∂x
+

dv

dt
· ∂

∂v
. (3.13)

Combining this with the equations of motion, Eqs. (3.4) and (3.5), we find
for each particle species α the evolution equation of the particle phase space
density to be

∂Nα

∂t
+ v · ∂Nα

∂x
+

qα
mα

(

Em +
v

c
×Bm

)

· ∂Nα

∂v
= 0. (3.14)

This is the so-called Klimontovich-Dupree equation which is still an exact
model for describing a system of interacting charged particles. However, since
it contains the complete information of every single particle in the system,
solving this equation for realistic systems is not feasible, and it is also not re-
warding since the microscopic information is not accessible by measurements
anyway.
To transition to a tractable and physically insightful formalism, we have to
find a way to average out unnecessary microscopic information by regarding
the plasma as a statistical set of a large number of particles, and exploiting the
fact that the collective interactions between the particles statistically correlate
their dynamics in time, space, and velocity.
Applying an ensemble average < · > to the microscopic quantities Nα, B

m,
and Em over an infinite number of realizations of the considered plasma sys-
tem, we can represent the quantities as sums of their statistical average and a
small random deviation from the average, i.e.

Nα = fα + δNα (3.15)

Bm = B+ δB (3.16)

Em = E+ δE, (3.17)

where the random fluctuations satisfy 〈δNα〉, 〈δB〉, 〈δE〉 = 0. The statistical
quantity fα is the velocity distribution function of the plasma which we intro-
duced in Sec. 2.5.
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Ensemble-averaging the Klimontovich-Dupree equation, Eq. (3.14), then yields

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(

E+
v

c
×B

)

· ∂fα
∂v

= − qα
mα

〈

(

δE+
v

c
× δB

)

· ∂δNα

∂v

〉

.

(3.18)
The left-hand side of this equation describes the behavior of the averaged
macroscopic quantities, while the right-hand side contains the microscopic
variations which describe effects due to particle discreteness such as collisions
and correlations. One can show that the collision term is smaller than the
macroscopic terms by the order of 1/Λ [30]. Thus, in our case we can neglect
this term and readily obtain the Vlasov equation or collisionless Boltzmann
equation

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(

E+
v

c
×B

)

· ∂fα
∂v

= 0, (3.19)

describing the kinetic evolution of particles of species α.
In combination with the ensemble-averaged Maxwell equations

∇×B =
1

c

∂E

∂t
+

4π

c
j (3.20)

∇× E = −1

c

∂B

∂t
(3.21)

∇ ·B = 0 (3.22)

∇ · E = 4πρ (3.23)

with

ρ =
∑

α

qα

∫

d3v fα (x,v, t) (3.24)

j =
∑

α

qα

∫

d3v vfα (x,v, t) . (3.25)

the Vlasov equation is typically used to model kinetic processes in collisionless
plasmas. The closed set of equations Eqs. (3.19)–(3.25), the Vlasov-Maxwell
system, will be the basis for all our following considerations.

3.3 Fluid theories

In Sec. 2.5, we showed that the particle distribution function f can be used to
derive macroscopic quantities such as the particle density n, the mean velocity
u, and the temperature T . This is achieved by assuming a suitable form of the
distribution function, usually a Maxwellian, and by taking the corresponding
velocity moments of the distribution. The Vlasov equation, Eq. (3.19), deter-
mines the time evolution of the distribution function. Thus, it can also be used
to find evolution equations for the macroscopic plasma quantities derived from
the distribution function. For this, we have to compute the velocity moments
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of the Vlasov equation which yields the plasma’s fluid equations.
Taking the zeroth order moment of the Vlasov equation and accounting for
the definitions Eqs. (2.23) and (2.24), we obtain the continuity equation

∂nα

∂t
+∇ · (nαuα) = 0 (3.26)

for plasma particles of species α. This is the same as the well-known continuity
equation from hydrodynamics and it describes the conservation of particle
density. One thing we note is that the conservation of the particle density,
which is the zeroth moment of f , requires knowledge of the mean fluid velocity,
which represents the first moment of f .
To determine the time evolution of the fluid velocity, we compute the first
velocity moment of the Vlasov equation. This yields the fluid equation of
motion

∂nαuα

∂t
+∇ · (nαuαuα) +

1

mα

∇ · Pα − qα
mα

nα

(

E+
uα

c
×B

)

= 0, (3.27)

which can be understood as the conservation equation for the momentum den-
sity nαmαuα. It differs from the one of hydrodynamics in that it includes
electromagnetic interactions.
Looking carefully at Eq. (3.27), we note that modeling the time evolution of
the mean fluid velocity, i.e. the first moment of f , requires knowledge of the
pressure tensor, i.e. the second moment of f . Thus, we find that the evolu-
tion equation of a macroscopic moment always contains a moment of the next
higher order, which requires the inclusion of the next order fluid equation. This
leads to an infinite chain of equations which at some point has to be truncated
using a suitable closure condition. A common way to achieve truncation is the
introduction of an equation of state which relates a higher order moment to
lower order moments. Simple plasma fluid models truncate the fluid hierarchy
after the momentum density conservation and relate the plasma pressure to
the particle density with a suitable equation of state.
If truncation would be avoided and all equations of the infinite hierarchy would
be included in the plasma modeling (in combination with Maxwell’s equations),
the description would be equivalent to modeling the Vlasov-Maxwell system of
equations given in Sec. 3.2. However, the truncation eliminates certain features
of the plasma behavior, making the kinetic plasma theory a more complete the-
ory than fluid models.
Depending on which fluid equations are included and how closure is achieved,
there is a whole zoo of fluid theories that can be constructed on this basis. Also,
instead of considering the fluid equations for each particle species separately
(multi-fluid theories), one can construct further simplified descriptions by com-
bining them to a one-fluid model. Such one-fluid theories are also referred to
as magnetohydrodynamic models and despite their limitations still enjoy a lot
of attention, in the space plasma community. However, since we require the
inclusion of kinetic effects and therefore rely on using the full Vlasov-Maxwell
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system of equations, we refrain from any further discussions on fluid theories
and refer the reader to the corresponding literature.
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Chapter 4

Kinetic theory of plasma waves

In the previous section, we found that kinetic theory is an appropriate model
for describing plasma processes in the solar wind and other collisionless space
plasma environments. We now introduce the concept of small-amplitude plasma
waves and instabilities and we use the Vlasov-Maxwell system of equations to
derive a formalism which allows us to compute linear eigenmodes in a ho-
mogeneous, collisionless plasma with a given velocity distribution function,
immersed in an ambient magnetic field. Such formalism also facilitates a sta-
bility analysis of a plasma. We discuss examples of velocity space instabilities
which are commonly observed in space plasmas and which are of relevance in
the publications included in this thesis. Finally, we use quasilinear theory to
derive the weak turbulence kinetic equation which may be used to study the
processes leading to a stabilization of the discussed instabilities.
The derivations of the linear kinetic equations, presented in Sec. 4.2, are based
on the discussions in Krall and Trivelpiece [31], Brambilla [28], and Swanson
[30]. The presentation of the quasilinear formalism in Sec. 4.5 is closely linked
to Davidson [32], Treumann and Baumjohann [33], and Swanson [30].

4.1 Plasma waves and instabilities

The complex underlying physics of collisionless plasmas, especially in the pres-
ence of an ambient magnetic field, allows the occurrence of a rich variety of
diverse wave phenomena. Such wave phenomena have to be distinguished from
the ’normal’ fluctuations in the electric and magnetic field that naturally arise
in a plasma due to the thermal motion of the plasma particles. For a fluc-
tuation to be considered a wave, it needs to fulfill two conditions: it has to
emerge as a solution of the plasma equations and its amplitude has to exceed
the thermal fluctuation level [2].
Waves obeying the governing equations of the considered plasma state are also
called eigenmodes of that state. Analyzing such eigenmodes of a plasma state
gives insight into important plasma properties such as stability and energy
transport. Plasma waves can be connected to several fluctuating quantities
but are always associated with a time- and space-varying electric field [31].

25
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Their propagation properties can be determined from the dielectric properties
of the plasma which depend on the particular plasma state.
If the amplitude of the considered mode is higher than the thermal fluctua-
tion level but still small compared to the equilibrium value of the fluctuating
quantity, perturbation theory can be applied to study the plasma wave. Then,
the wave can be decomposed into a superposition of plane waves and the un-
derlying plasma equations can be linearized. A mathematically rigorous way
of decomposing a spatially- and temporally-fluctuating quantity into the cor-
responding spectrum of plane waves is the Fourier-Laplace transformation.
It implies a Fourier transformation in the spatial coordinates and a Laplace
transformation in the time coordinate, i.e.

δÃ (k, ω) =

∞
∫

−∞

dx

∞
∫

0

dt δA (x, t) e−i(k·x−ωt). (4.1)

The variables ω and k denote the frequency of the wave and its wavenumber.
The corresponding back transformation is given by

δA (x, t) =
1

(2π)4

∞
∫

∞

dk

iσ̃+∞
∫

iσ̃−∞

dω δÃ (k, ω) ei(k·x−ωt). (4.2)

In the case that δA contains a term which is exponentially growing at a rate
γ̃, the Laplace transform is only defined for the domain where Im(ω) > γ̃,
otherwise the integral will diverge. Moreover, a convergence parameter σ̃ is
introduced in the back transformation which can be used to shift the integra-
tion contour in the complex plane. For convergence of the integral, it has to
be chosen according to σ̃ > γ̃.
Although the mathematical structure of the Fourier and the Laplace transfor-
mation is very similar, there is a subtle difference in their interpretation. The
Fourier transformation can be used when the domain on which the transforma-
tion is to be performed is infinitely large and without boundaries. This is the
case for the spatial domain of the homogeneous, uniform plasma we will con-
sider in the following. In contrast, the Laplace transformation is suitable when
initial conditions need to be imposed. It accounts for the temporal evolution
of a system in response to the initial conditions from the current time t = 0 up
to t = ∞. Thus, it introduces causality into the system and is therefore a more
rigorous approach than a corresponding temporal Fourier transformation. For
a more detailed discussion on this, see, e.g., Ref. [34].
For a plasma wave in a given medium, the frequency ω and the wavenumber
k are not independent variables but they are related to each other via a dis-
persion relation ω = ω (k). Finding dispersion relations is a major subject of
linear plasma theory. In Sec. 4.2, we will present how dispersion relations can
be computed in the context of kinetic theory.
Dispersion relations can be used to characterize and classify plasma waves.
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They readily yield a wave’s phase speed vph = ω
k
k

k
and its group velocity

vgr = ∂ω
∂k
. Moreover, they contain information on the stability of the cor-

responding eigenmode. The wave frequency is generally a complex quantity
ω = ωr+ iγ where the imaginary part determines whether the mode is damped
(γ < 0), stable (γ = 0), or growing (γ > 0). The normal mode analysis is there-
fore a useful approach to investigate the stability of a plasma state.
Instabilities can arise whenever the plasma is in a state where free energy is
available that can fuel the violent growth of eigenmodes in the system. Free
energy can be provided to the plasma macroscopically, e.g. by spatial gradients
in the equilibrium density, magnetic field configuration, or temperature. The
resulting instabilities are called configuration-space instabilities [31]. However,
since on our length and time scales of interest the solar wind can roughly be
regarded as locally homogeneous and stationary, we only consider microscopic
sources of free energy here, namely departures of the plasma velocity distri-
bution function from an isotropic Maxwellian. Plasma instabilities driven by
such non-thermal velocity distributions are also referred to as velocity-space
instabilities. In addition, plasma instabilities can further be classified as being
of electrostatic or electromagnetic nature. While electrostatic instabilities are
longitudinal (k × δE = 0) and cause the accumulation of charge, electromag-
netic instabilities have a transversely-fluctuating field component (k · E = 0)
and cause the accumulation of current density [35].
All instability mechanisms considered in this thesis are of electromagnetic na-
ture and strictly transverse.

4.2 Linear kinetic theory

Now, before we proceed by looking at specific types of instabilities, we will
first use the Vlasov-Maxwell system of equations to derive a general dispersion
relation for linear waves in collisionless plasmas with a static background mag-
netic field. We start by linearizing Eqs. (3.19)–(3.21) and (3.25), splitting each
quantity into a value describing an unperturbed, homogeneous, and stationary
equilibrium state, and a small perturbation, i.e.

fα (x,v, t) = F0,α (v) + δfα (x,v, t) (4.3)

E (x, t) = E0 + δE (x, t) (4.4)

B (x, t) = B0 + δB (x, t) (4.5)

j (x, t) = j0 + δj (x, t) , (4.6)

and neglecting all terms which are quadratic in the perturbations. In equilib-
rium, we do not expect a background electric field E0 or current j0, thus, we
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can write down the linearized Vlasov-Maxwell system as

− qα
mα

(

δE+
v

c
× (B0 + δB)

)

· ∂F0,α

∂v
=

∂δfα
∂t

+ v · ∂δfα
∂x

+ (4.7)

qα
mα

(v

c
×B0

)

· ∂δfα
∂v

∇× δE = −1

c

∂δB

∂t
(4.8)

∇× δB =
4π

c
δj +

1

c

∂δE

∂t
(4.9)

δj =
∑

α

qα

∫

d3v vδfα. (4.10)

4.2.1 General wave equation

Based on Maxwell’s linearized curl equations a general equation for wave prop-
agation in arbitrary dielectric media can be constructed as follows. First, we
expand the fields δE(x, t), δB(x, t), and the current δj(x, t) in Eqs. (4.8)–(4.9)
in plane waves, or equivalently we express them in terms of their Fourier-
Laplace transforms δẼ(k, ω), δB̃(k, ω), and δj̃(k, ω) according to Eq. (4.2).
Then, the time and spatial derivatives are readily obtained and we can write

k× δẼ(k, ω) =
ω

c
δB̃(k, ω) (4.11)

ik× δB̃(k, ω) =
4π

c
δj̃(k, ω)− i

ω

c
δẼ(k, ω). (4.12)

If a plasma is exposed to an electric field, a current will be induced. Thus, one
more ingredient we need is the functional relation between the Fourier-Laplace
transforms δj̃(k, ω) and δẼ(k, ω). The connection between the electric field
and the induced current is generally a very complicated nonlinear relation,
the constitutive relation, and depends on the plasma properties. However,
since we are concerned with small perturbations only, we may expect a linear
response of the plasma to the applied electric field perturbation. Thus, the
linear constitutive relation, which is also commonly know as the linear Ohm’s
law, can be written as

j(x, t) =

t
∫

−∞

dt′
∞
∫

−∞

dx′ σ(x− x′, t− t′) · δE(x′, t′), (4.13)

where σ is the linear conductivity tensor [28]. The constitutive relation is non-
local in space and time which is why we have to account for the temporal and
spatial history of the particles that contribute to the current. When rewriting
it in terms of the relative time and space variables, τ = t− t′ and ρ = x− x′,
i.e.

j(x, t) =

∞
∫

0

dτ

∞
∫

−∞

dρ σ(ρ, τ) · δE(x− ρ, t− τ), (4.14)
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the integral assumes the shape of a convolution, j(x, t) = (σ ∗ δE) (x, t).
For Eq. (4.12), we require knowledge of the Fourier-Laplace transform of the
current density. Thus, we apply the Fourier-Laplace transformation Eq. (4.1)
to Eq. (4.14) and by exploiting the convolution theorem F (f ∗ g) = F(f)·F(g)
where F denotes either Fourier or Laplace transformation, we find

δj̃(k, ω) = σ̃ (k, ω) · δẼ(k, ω). (4.15)

Combining equations Eqs. (4.8), (4.9), and (4.15), then gives the general wave
equation

(

c2k2

ω2

(

kk

k2
− 1

)

+ ǫ (k, ω)

)

δẼ(k, ω) = 0, (4.16)

where kk is the dyadic product of the wave vector with itself and we have
introduced the dielectric tensor

ǫ (k, ω) = 1+
4πi

ω
σ̃ (k, ω) . (4.17)

The wave equation only has nontrivial solutions if the determinant of the tensor
expression in the brackets in Eq. (4.16) vanishes. From this we can infer that
in a medium with a given dielectric tensor ǫ, a wave with linear dispersion
relation ω(k) has to obey

0 = det

(

c2k2

ω2

(

kk

k2
− 1

)

+ ǫ (k, ω)

)

, (4.18)

in order to be a linear eigenmode of the system. In vacuum, the dielectric
tensor reduces to the identity matrix and the term c2

ω2kk vanishes because of
∇·E = 0. Then, the dispersion relation is found to be simply ω = ck which is
the dispersion relation for electromagnetic waves in vacuum, i.e. light waves.
In a plasma medium, finding dispersion relations of the eigenmodes is much
more involved because the dielectric tensor components become complicated
functions of the plasma properties.

4.2.2 The dielectric tensor

Since we are concerned with kinetic theory, we wish to describe the plasma
in terms of its particle distribution function. The Vlasov equation determines
the time and spatial evolution of the distribution function, thus, the linearized
Vlasov-Maxwell system, Eqs. (4.7)–(4.10), is the appropriate starting point for
deriving the plasma’s dielectric tensor for linear wave propagation.
In Sec. 4.2.1, we derived the Fourier-Laplace transform of the constitutive
relation, δj̃ = σ̃ ·Ẽ, while from Eq. (4.10), we can infer that the Fourier-Laplace
transform of the perturbed current density is related to the Fourier-Laplace
transform of the perturbed particle distribution function via

δj̃(k, ω) =
∑

α

qα

∫

d3v vδf̃α(k, ω). (4.19)
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Thus, we need to find a functional relation that expresses δf̃α in terms of
δẼ such that we can simply read off σ̃ which, using Eq. (4.17), then yields
the dielectric tensor ǫ. This can be achieved by solving the linearized Vlasov
equation for δfα and coupling it to Maxwell’s linearized curl equations. In the
following, we outline the major steps of the derivation which uses the method
of characteristics. We closely follow the procedure presented in Brambilla [28].
First, we introduce field-aligned coordinates and we assume that the equilib-
rium particle distribution function, F0,α, is gyrotropic, i.e.

∂F0,α

∂φ
= 0, (4.20)

such that the term (v × B0) · ∂F0,α

∂v
vanishes. Then, we notice that the right

hand side of Eq. (4.7) can be identified with the total time derivative of δfα
along a particle’s phase space orbit and we can write

dδfα(x,v, t)

dt
= − qα

mα

(

δE(x, t) +
v

c
× δB(x, t)

)

· ∂F0,α(v‖, v⊥)

∂v
. (4.21)

This equation can formally be solved for δfα by an integration in time. A
subtle detail here is that in order to ensure causality, we have to account for
the history of the particles. Thus, we need to integrate over the past phase
space trajectories of the particles up to the current point in time, t, i.e.

δfα(x,v, t) = −
t
∫

−∞

dt′
qα
mα

(

δE(x′(t′), t′) +
v′(t′)

c
× δB(x′(t′), t′)

)

·∂F0,α(v‖, v⊥)

∂v′
,

(4.22)
where v′(t′ = t) = v and x′(t′ = t) = x. The past phase space trajectories of
the particles will be approximated by their unperturbed orbits which coincide
with the characteristic curves of the right hand side of Eq. (4.7).
For the field perturbations, we impose the condition

δE(x′, t′ → −∞), δB(x′, t′ → −∞) −→ 0, (4.23)

i.e. the perturbations are switched on adiabatically at some finite time in the
past. Expanding the perturbations in plane waves ∼ e−iωt, this condition be-
comes equivalent to using Fourier-Laplace transformation, requiring Im(ω) > 0
for convergence.
Our goal is to find an expression for the conductivity tensor in Fourier-Laplace
space. Thus, in Eq. (4.22) we replace the perturbed quantities by their cor-
responding Fourier-Laplace transforms and we apply Eq. (4.11) to express δB̃
in terms of δẼ. Rearranging the terms, we then find

δf̃α(k,v, ω) = − qα
mα

t
∫

−∞

dt′ e−i(k·(x−x′)−ω(t−t′)) ×

((

1− k · v′

ω

)

∂F0,α

∂v′
+

(

k

ω
· ∂F0,α

∂v′

)

v′

)

· δẼ. (4.24)
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Inserting this expression in Eq. (4.19) and comparing with Eq. (4.15), we iden-
tify the prefactor of δẼ with the conductivity tensor σ̃ which, using Eq. (4.17),
readily gives the dielectric tensor. The dielectric tensor components can then
be written as

ǫij(k, ω) = δij − i
∑

α

ωpα

ω

∞
∫

−∞

dv‖

∞
∫

0

dv⊥ v⊥

2π
∫

0

dφ vi

t
∫

−∞

dt′ e−i(k·(x−x
′)−ω(t−t′)) ×

((

1− k · v′

ω

)

∂F0,α

∂v′j
+

(

k

ω
· ∂F0,α

∂v′

)

v′j

)

, (4.25)

where δij denotes the Kronecker delta, and i, j = {x, y, z}.
We now proceed by evaluating the time and gyroangle integral in Eq. (4.25).
First, we require knowledge of the phase space orbits of the particles for all
times t′ < t. Since we know that the field perturbations vanish when t′ → −∞
and since in linear theory we are only concerned with small perturbations on a
steady background, we can regard the particle orbits for t′ < t as unperturbed,
i.e. we can describe them as orbits in the homogeneous and uniform background
magnetic field B0, following the equations of motion

dx′

dt′
= v′ (4.26)

dv′

dt′
=

qα
mα

(

v′

c
×B0

)

. (4.27)

We assume field-aligned geometry and we orient the x-axis such that the wave
vector lies in the x-z-plane, i.e. k = (k⊥, 0, k‖). The characteristic curves are
then described by

v′x = v⊥ cos (φ+ Ωα(t− t′)) (4.28)

v′y = v⊥ sin (φ+ Ωα(t− t′)) (4.29)

v′z = v‖ (4.30)

and

x′ = x+
v⊥
Ωα

(sin(φ)− sin(φ+ Ωα(t− t′))) (4.31)

y′ = y − v⊥
Ωα

(cos(φ)− cos(φ+ Ωα(t− t′))) (4.32)

z′ = z − v‖(t− t′). (4.33)

With these expressions and using the fact that F0,α is gyrotropic, the derivative
∂F0,α/∂v

′ reduces in field-aligned coordinates to

∂F0,α

∂v′x
= cos (φ+ Ωα(t− t′))

∂F0,α

∂v⊥
(4.34)

∂F0,α

∂v′y
= sin (φ+ Ωα(t− t′))

∂F0,α

∂v⊥
(4.35)

∂F0,α

∂v′z
=

∂F0,α

∂v‖
. (4.36)
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Inserting Eqs. (4.28)–(4.36) into Eq. (4.25), the integrals over time t and gy-
roangle φ can be carried out with the help of known Bessel function identities.
This finally yields

ǫij(k, ω) = δij − 2π
∑

α

ω2
pα

ω2

∞
∫

−∞

dv‖

∞
∫

0

dv⊥ v2⊥

∞
∑

n=−∞

ω

ω − nΩα − k‖v‖
Qα,n

ij ,

(4.37)
where

Qα,n
xx = −n2

ξ2⊥
J2
n(ξ⊥)

(

k‖v⊥

ω

∂F0,α

∂v‖
+

(

1− k‖v‖
ω

)

∂F0,α

∂v⊥

)

(4.38)

Qα,n
xy = −i

n

ξ⊥
Jn(ξ⊥)J

′
n(ξ⊥)

(

k‖v⊥

ω

∂F0,α

∂v‖
+

(

1− k‖v‖
ω

)

∂F0,α

∂v⊥

)

(4.39)

Qα,n
xz = − n

ξ⊥
J2
n(ξ⊥)

(

k‖v‖
ω

∂F0,α

∂v‖
+

v‖
v⊥

(

1− k‖v‖
ω

)

∂F0,α

∂v⊥

)

(4.40)

Qα,n
yy = −J ′2

n (ξ⊥)

(

k‖v⊥
ω

∂F0,α

∂v‖
+

(

1− k‖v‖
ω

)

∂F0,α

∂v⊥

)

(4.41)

Qα,n
yz = iJn(ξ⊥)J

′
n(ξ⊥)

(

k‖v‖
ω

∂F0,α

∂v‖
+

v‖
v⊥

(

1− k‖v‖
ω

)

∂F0,α

∂v⊥

)

(4.42)

Qα,n
zz = −J2

n(ξ⊥)

(

v‖
v⊥

(

1− nΩα

ω

)

∂F0,α

∂v‖
+

v2‖
v2⊥

nΩα

ω

∂F0,α

∂v⊥

)

, (4.43)

and, according to the Onsager symmetry relations,

ǫyx = −ǫxy (4.44)

ǫzx = ǫxz (4.45)

ǫzy = −ǫyz. (4.46)

The functions Jn(ξ⊥) and J ′
n(ξ⊥) denote the Bessel function of the first kind

and its derivative. Its argument is given by ξ⊥ = k⊥v⊥/Ωα.
In order to carry out the velocity integrations, an expression for the equilibrium
velocity distribution function has to be chosen first. One thing to note here is
that the parallel velocity integral has a singularity on the real axis when

ω − nΩα − k‖v‖ = 0. (4.47)

The dielectric tensor components were derived under the assumption that
Im(ω) > 0, thus, they have to be analytically continued to Im(ω) ≤ 0,
i.e. when performing the integration in v‖, the path of integration in the com-
plex v‖-plane has to be shifted below the resonance pole of the integrand
vres = (ω − nΩα)/k‖. The solution of the integral then consists of its Cauchy
principal value taken along the real axis and the contribution from the pole.
The procedure is demonstrated in Fig. 4.1.
The given expressions for the dielectric tensor components generally hold for
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Figure 4.1: The contour of the parallel velocity integration has to pass below the

pole at vres = (ω−nΩα)/k‖. For Im(ω) ≤ 0, the contour needs to be deformed and

the pole contribution has to be accounted for accordingly. The figure was taken and

adapted from Baumjohann and Treumann [2].

small-amplitude wave propagation in any collisionless plasma with gyrotropic
equilibrium distribution F0,α and can be inserted into the general wave equa-
tion Eq. (4.18) to find the eigenmodes of the system.
In the special case of purely parallel wave propagation, i.e. k⊥ = 0, electrostatic
waves with electric field vector polarized parallel to B0 and electromagnetic
waves with electric field vector (circularly) polarized perpendicular to B0 de-
couple from each other. Their respective dispersion relations then assume
greatly simplified shapes [31]. For the longitudinal, electrostatic dispersion
relation, we can write

0 = 1 + 2π
∑

α

ω2
pα

k‖

∞
∫

−∞

dv‖

∞
∫

0

dv⊥ v⊥
∂F0,α/∂v‖
ω − k‖v‖

. (4.48)

The dispersion relation for the transverse, electromagnetic modes is given by

0 = 1−
k2
‖c

2

ω2
+π
∑

α

ω2
pα

ω2

∞
∫

−∞

dv‖

∞
∫

0

dv⊥ v2⊥

(

ω − k‖v‖
)

∂F0,α/∂v⊥ + k‖v⊥∂F0,α/∂v‖

ω − k‖v‖ ∓ Ωα
,

(4.49)
where the upper (−) sign is for left-hand polarized modes, i.e. δẼx = iδẼy,
and the lower (+) sign is for right-hand polarized modes, i.e. δẼx = −iδẼy.
The estimation of the dispersion properties still requires the knowledge of the
velocity distribution function F0,α. Some velocity distribution functions which
are commonly used to study wave dispersion in space plasmas are given in
Sec. 2.5. In the following, we briefly elaborate on the dielectric tensor compo-
nents for the bi-Maxwellian, Eq. (2.27), and the anisotropic kappa distribution,
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Eq. (2.30), and we introduce the notion of the (modified) plasma dispersion
function.

The dielectric tensor for a bi-Maxwellian distribution

In the case of bi-Maxwellian velocity distributions, the perpendicular velocity
integration can be carried out analytically with the help of Bessel function
identities which yield the modified Bessel function In and its derivative I ′n.
The parallel velocity integration, on the other hand, has to be performed nu-
merically. A convenient way of rewriting the parallel integral is by introducing
the plasma dispersion function,

Z(ξα) =
1√
π

∞
∫

−∞

dx
e−x2

x− ξα
Im(ξα) > 0, (4.50)

which is the Hilbert transform of the Gaussian and which was first discussed by
Fried and Conte [36]. In the given form, the plasma dispersion function is only
defined for growing eigenmodes (γ > 0). If stable or damped modes (γ ≤ 0)
are to be considered as well, the integral has to be analytically continued to the
lower complex half-plane, as discussed above. The plasma dispersion function
then assumes the general form

Z(ξα) =
1√
π
P

∞
∫

−∞

dx
e−x2

x− ξα
+ iσ

√
πe−ξ2

α (4.51)

where

σ =



















0 for Im(ξα) > 0

1 for Im(ξα) = 0

2 for Im(ξα) < 0,

(4.52)

and P denotes the principal value of the integral.
The resulting expressions for the dielectric tensor components may be found
in any standard textbooks on kinetic plasma waves, e.g., Ref. [28].

The dielectric tensor for an anisotropic kappa distribution

For anisotropic kappa distributions, the parallel velocity integral can be brought
into the form

Z∗
κ(ξα) =

1√
π

1

κ3/2

Γ(κ+ 1)

Γ(κ− 1/2)

∞
∫

−∞

dx
(1 + x2/κ)−(κ+1)

x− ξα
Im(ξα) > 0, (4.53)

where Γ(x) denotes the gamma function.
Due to its similarities with the standard plasma dispersion function, Eq. (4.50),
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it is also called the modified plasma dispersion function and it was first dis-
cussed in Summers and Thorne [37]. Again, the expression holds for grow-
ing modes only. However, Summers and Thorne [37] showed that integrating
Eq. (4.53) using appropriate contours in the complex plane, this dispersion
function reduces to a closed sum over the pole contributions, given by

Z∗
κ(ξα) = −κ− 1/2

2κ3/2

κ!

(2κ)!

κ
∑

l=0

(κ+ l)!

l!
iκ−l

(

2

i+ ξα/
√
κ

)κ+1−l

. (4.54)

This form holds for all complex arguments ξα but requires κ to be an integer.
Mace and Hellberg [38] generalized this expression to non-integer κ, using its
relation to Gauss’ hypergeometric function.
Solving the perpendicular velocity integral becomes more involved than in the
bi-Maxwellian case since both components, v‖ and v⊥, cannot be treated sep-
arately. An analytical solution is therefore not possible but the perpendicular
integration has to be performed numerically.
Summers et al. [39] list the dielectric tensor components for anisotropic kappa
distributions in a compact form.

4.2.3 Wave-particle resonances

In the foregoing section, the dielectric tensor was derived in the context of
linear kinetic theory, which can be used to study wave dispersion and stability
of both macroscopic and microscopic eigenmodes. Macroscopic eigenmodes
do not depend on the particular shape of the underlying equilibrium velocity
distribution function but only on the gross properties of the plasma, namely
those quantities that can be derived by taking low-order velocity moments of
the distribution function. The properties of microscopic eigenmodes on the
other hand are sensitive to the detailed velocity space structure of the plasma.
They can undergo resonances with plasma particles of a certain parallel velocity
determined by the singularity Eq. (4.47) in the parallel velocity integration. In
the following, we briefly discuss the two main resonance mechanisms, namely
the Landau resonance and the cyclotron resonance.

Landau resonance

The classic example for a collisionless wave damping mechanism is Landau
resonance which affects particles that, in unmagnetized plasmas, satisfy the
resonance condition ω − k · v = 0, i.e. particles which comove with the wave’s
phase speed, vres = ω/k = vph [34]. When a particle moves at the same velocity
as a longitudinal wave, it is subject to a static electric field which, depending
on the phase of the wave, accelerates or decelerates the particle out of the
resonant regime. Particles with v . vres will, on average, gain energy from the
wave because particles that get accelerated by the wave’s electric field will stay
in the resonant velocity regime for longer than particles that see the opposite
phase of the field and get decelerated away from the resonant regime. For
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particles with v & vres, the contrary is true, i.e. on average they loose energy
to the wave.
If there were the same amount of particles with v . vres and v & vres, the en-
ergy gains and losses of the wave and particles would balance and no damping
or instability would occur. However, for a monotonically decreasing velocity
distribution function, such as a Maxwellian, there are always more particles
with v . vres, thus, the wave will always be damped away. On the other hand,
if the velocity distribution has a positive slope (e.g. a small bump), an insta-
bility can occur and the wave will grow at the expense of the particles’ kinetic
energy. As a result of the damping or instability, the distribution will flatten
around vres and the local slope converges to zero.
Landau resonance is often the main wave damping mechanism in thermal plas-
mas that are not exposed to a magnetic field. However, only electrostatic,
longitudinal waves may be subject to Landau damping. In magnetized plas-
mas, the resonance condition changes to ω−k‖v‖ = 0, i.e. the particle velocity
parallel to the ambient magnetic field has to match the wave’s phase velocity
in order to trigger Landau resonance (see Fig. 4.2 (left)).

Figure 4.2: Illustration of the Landau (left) and cyclotron (right) resonance mech-

anism for a parallel propagating mode in a magnetized plasma. Landau resonance

requires the presence of longitudinal waves and accelerates/decelerates particles in

the direction parallel to the background magnetic field. Cyclotron resonance affects

transverse waves and causes perpendicular acceleration. The figure was taken and

adapted from Narita [40].

Cyclotron resonance

The cyclotron resonance mechanism is made possible by the gyromotion of par-
ticles and therefore only occurs in plasmas with an ambient magnetic field. For
propagation parallel to the magnetic field, only transverse modes can be sub-
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ject to cyclotron resonance (see Fig. 4.2 (right)). It occurs when the particles
gyrate in phase with the transverse electric field such that the Doppler-shifted
frequency of the wave seen from the particles matches their gyrofrequency (see,
e.g., Refs. [41, 42]). An additional condition for cyclotron resonance concerns
the wave polarity and the polarity of the particle gyration. If they have same
polarity (i.e. an electron and a right-hand polarized wave or an ion and a left-
hand polarized wave), the resonance condition is vres = (ω − nΩα)/k‖ where
n > 0, and we speak of (normal) cyclotron resonance. If they have different
polarity (i.e. an electron and a left-hand polarized wave or an ion and a right-
hand polarized wave), the resonance condition changes to vres = (ω+nΩα)/k‖
and we speak of anomalous cyclotron resonance. In the second case, the parti-
cles need to move faster than the wave such that the apparent polarity of the
wave seen from the particle switches sign.
For the case of obliquely propagating modes, not only transverse waves but
also longitudinal waves may be affected by cyclotron resonance [41].
While Landau resonance causes velocity diffusion parallel to the background
magnetic field, cyclotron resonance diffuses the particle velocities in their pitch
angle α = tan−1(v‖/v⊥). It can be shown that when particles resonate with
a wave via cyclotron resonance, they roughly conserve their kinetic energy in
a coordinate frame comoving with the wave’s phase speed [43]. Thus, they
diffuse in (v‖, v⊥)-space along concentric circles with v2⊥ + (v‖ − vph)

2 = const.
Those circles are also referred to as single wave characteristics.

4.3 Proton temperature-anisotropy-driven in-

stabilities

One possible source of free energy which may trigger the growth of plasma
instabilities, is the temperature anisotropy of a plasma with respect to the
background magnetic field. The corresponding class of instabilities is also
referred to as temperature-anisotropy-driven instabilities. In this section, we
briefly review their properties and discuss their threshold conditions and their
role in regulating temperature anisotropies in the solar wind.

4.3.1 The parallel and oblique proton firehose instabil-

ity

For anisotropic protons with T‖ > T⊥, the parallel proton firehose instability
(PFHI) and the oblique proton firehose instability (OFHI) can be excited. De-
pending on the plasma properties, these instabilities can either be modeled
in terms of fluid theory or require a fully kinetic treatment. The mechanism
of the firehose instability was first introduced by means of macroscopic fluid
theory [44, 45]. One way to find an analytical threshold condition for this fluid
firehose is to start from the parallel kinetic dispersion relation for electromag-
netic modes, Eq. (4.49), and introduce a fluid approximation. Assuming an
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equilibrium velocity distribution with a macroscopic temperature anisotropy,
e.g. the bi-Maxwellian velocity distribution given in Eq. (2.27), we can carry
out the velocity integrations in Eq. (4.49) and obtain the parallel dispersion
relation for bi-Maxwellian plasmas,

0 = 1−
k2
‖c

2

ω2
+
∑

α

ω2
pα

ω2

(

β⊥α

β‖α
− 1 +

(

ω

k‖vth,‖α
+

(

β⊥α

β‖α
− 1

)

ξα

)

Z(ξα)

)

,

(4.55)
where we introduced ξα = (ω∓Ωα)/k‖vth,‖α and the plasma dispersion function
Z(ξα) which is given by Eq. (4.51). To impose the macroscopic fluid approx-
imation in Eq. (4.55) by assuming long wavelengths and low frequencies, we
expand the plasma dispersion function for |ξα| ≫ 1, i.e.

Z(ξα) = − 1

ξα
− 1

2ξ3α
− 3

4ξ5α
+O

(

ξ−7
α

)

, (4.56)

and we remove terms which are of fourth or higher order in the small param-
eters δ ∼ ω/Ωα and δ ∼ k‖vth,‖α/Ωα.
For a two-component plasma with anisotropic protons and isotropic electrons,
we can then derive the dispersion relation

ω(k‖) =
k‖vA√

2

√

2 + β⊥,i − β‖,i. (4.57)

Thus, a purely growing instability (ωr = 0) will result when there is a proton
temperature anisotropy with an excess in favor of the direction parallel to the
ambient magnetic field such that

β‖,i > β⊥,i + 2. (4.58)

The same result can be obtained using double adiabatic MHD, also known as
the Chew-Goldberger-Low (or CGL) model [46].
The threshold condition Eq. (4.58) holds for the case of parallel wave propa-
gation. The associated firehose instability mechanism is therefore also referred
to as the parallel firehose instability. It was shown in Gary et al. [47] that for
β‖,i < 25, the PFHI is strongly enhanced by anomalous cyclotron resonance.
Thus, for conditions relevant in the solar wind, the applied expansion of the
plasma dispersion function breaks down and a fully kinetic formalism has to
be used to estimate correct growth rates. The kinetic parallel firehose has been
discussed extensively in the past (see, e.g., Refs. [48, 49, 47]). The instability
is oscillatory, i.e. ωr 6= 0, and has maximum growth rate for an angle of prop-
agation θ = 0◦, but it can also grow for slightly oblique propagation angles.
The destabilized waves are connected to the whistler branch [50].
Yoon et al. [51] and Hellinger and Matsumoto [52] found that T‖ > T⊥ can
also trigger another instability mechanism, called Alfvén or oblique firehose
instability which destabilizes the Alfvén branch. The OFHI is also driven by
cyclotron resonance but in contrast to the (kinetic) PFHI it is non-oscillatory,
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i.e. ωr = 0, and exhibits maximum growth for highly oblique angles. Both
instabilities are excited under similar conditions and can grow simultaneously.
Subsequent to their growth stage which is driven by linear physics, the insta-
bilities exhaust their source of free energy, reducing the initial temperature
anisotropy by particle diffusion, until a marginally stable state is reached. For
low anisotropies, the anisotropy reduction triggered by the PFHI saturation is
well described by means of quasilinear theory as is demonstrated in Sec. 5.5.
The saturation of the oblique firehose instability is more complicated (see, e.g.,
Ref. [52]) and shall not be discussed in this thesis.

4.3.2 The EMIC and mirror instability

An excess of perpendicular temperature, T⊥ > T‖, can trigger the electromag-
netic ion cyclotron (EMIC) and the mirror instability. Similar to the PFHI,
the EMIC mode is oscillatory and exhibits strongest growth for parallel prop-
agation. The mirror instability is the counterpart of the OFHI and shows
strongest growth for highly oblique angles while being non-oscillatory. The
EMIC and the mirror instability are not subject of this thesis, thus, we refrain
from further discussions here but refer the interested reader to the relevant
literature – see, e.g., Refs. [53, 54, 55, 56].

4.3.3 Proton temperature anisotropies in the solar wind

In Sec. 2.3, we found that the solar wind medium exhibits very low collision-
ality. Thus, departures from isotropic Maxwellian velocity distributions such
as temperature anisotropies can easily be developed and maintained. Due to
the expansion of the solar wind medium, the particle density n and the radial
magnetic field Br drop approximately with ∼ r−2 where r denotes the radial
distance from the sun. If we further assume that the expansion is adiabatic,
the CGL model [46] predicts

T‖B
2

n2
= const and

T⊥

B
= const. (4.59)

From this, we can easily infer that the beta parameters change radially as
β‖ ∼ r2 and β⊥ ∼ const. Thus, the outward motion of the solar wind medium
is accompanied by a growing temperature anisotropy in favor of the parallel
beta component, i.e. β⊥/β‖ ∼ r−2. The plasma is therefore constantly driven
into the firehose-unstable regime and we expect that both PFHI and OFHI
may be active in the solar wind.
In a series of papers, various research groups studied histograms of proton
temperature anisotropy data measured by the ACE [57, 58] and WIND [59]
spacecraft in the solar wind [60, 61, 62, 63]. In Fig. 4.3, we exemplarily show
a temperature anisotropy histogram produced by Bale et al. [63]. For this
histogram, solar wind proton velocity distributions measured by the WIND
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Figure 4.3: Temperature anisotropy histogram of solar wind protons measured

by the WIND spacecraft. This histogram was taken from Bale et al. [63] and

was overlaid with the fluid and the kinetic parallel and oblique firehose instability

thresholds derived by Hellinger et al. [62].

spacecraft were fitted with bi-Maxwellians. Data that yielded only poor bi-
Maxwellian fits due to the presence of beams or high energy tails was discarded.
The remaining data is plotted with respect to their fitted temperature com-
ponents. Fig. 4.3 clearly shows that the solar wind protons can indeed adopt
strong anisotropies in favor of the parallel temperature but also in favor of the
perpendicular component which can arise due to shock compression. However,
we also observe that, especially for higher β‖, the solar wind cannot develop
arbitrarily high anisotropies but there are sharp boundaries constraining the
anisotropies to a rhombic shaped parameter space.
The processes constraining the anisotropies on the left-hand side of the data
distribution have not been identified yet. Schlickeiser and Skoda [64] proposed
that for T⊥,i/T‖,i > 1, the left-hand polarized Alfvén proton cyclotron branch
is excited which may play a role in shaping the boundary in this regime.
The boundaries on the right-hand side are understood to be signatures of
temperature-anisotropy-driven instabilities that are active in the solar wind.
As discussed above, the main instability mechanisms for T⊥,i/T‖,i > 1 are the
EMIC and the mirror instability whereas for T⊥,i/T‖,i < 1, we expect the PFHI
and OFHI to constrain the anisotropies.
Since the observed anisotropy boundaries are expected to be set by the insta-
bility conditions of the various instability mechanisms, plotting theoretically-
derived thresholds over the anisotropy histogram is a common technique to
gain further insight into the underlying processes. In Fig. 4.3, we plotted the
threshold of the fluid firehose, given in Eq. (4.58), as a solid line. For very
high β‖,i, this threshold matches the anisotropy boundary in the histogram,
however, for β‖,i < 20, there is a noticeable offset. This is expected since
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the fluid approximation breaks down for lower β‖,i [51, 47]. The dashed and
the dashed-dotted lines show the PFHI and the OFHI thresholds taken from
Hellinger et al. [62] where they were computed with a fully kinetic dispersion
relation solver. The threshold of the OFHI appears to fit the boundary rea-
sonably well as long as β‖,i > 2. A puzzling results is however that the thresh-
old of the PFHI lies below the OFHI threshold, i.e. it is excited for weaker
anisotropies, but apparently it does not constrain the measured temperature
anisotropies. A similar discrepancy is observed for the opposite temperature
anisotropy where the EMIC is more easily excited than the mirror instability
but the anisotropy boundary rather follows the mirror threshold (not shown
here – see, e.g., Refs. [60, 62]). The reason for the failure of the parallel
propagating instabilities in constraining the anisotropies has been discussed in
various papers (see, e.g., Refs. [65, 66]) and still remains controversial.
One important detail to note here is that the PFHI and the OFHI threshold
plotted in Fig. 4.3 do not constitute a hard instability limit such as the fluid
threshold which holds for γ = 0, but they allow for a small, finite amplitude
γmax = 10−3Ωi. This maximum growth rate is an empirical finding and so far it
lacks a solid physical justification. When reducing γmax to smaller values, the
thresholds would move to weaker anisotropies, yielding an increasing disagree-
ment with the observational data (see, e.g., Fig. 1 in Astfalk and Jenko [67]).
One way of understanding the necessity of a finite γmax may involve the fact
that there is a competition between the solar wind expansion that causes grow-
ing anisotropies and the firehose instability which causes anisotropy reduction.
The interplay of both competing processes may lead to an ever present small
growth of the firehose of the order of γmax = 10−3 Ωi which may explain why
the OFHI threshold with the corresponding γmax fits the data best. However,
as long as γmax cannot be derived directly from the underlying physical pro-
cesses, it will constitute a free parameter which introduces unwanted freedom
into the analysis.
Another caveat is that the thresholds plotted in Fig. 4.3 do not account for the
influence of electron and minor ion temperature anisotropies which may also
be present in the solar wind and which can strengthen or weaken the instabili-
ties (see, e.g., Refs. [68, 69, 70]). This adds further ambiguity to the threshold
analysis which prevents an accurate fitting of the data and calls this technique
into question. However, qualitative conclusions may still be drawn from such
an analysis. Especially, it may help to shed light on the interplay of the PFHI
and the OFHI as we further discuss in Sec. 5.2.3.
The most realistic way of modeling the competition between the PFHI and
the OFHI in an expanding environment such as the solar wind is the ap-
plication of expanding box simulations [71]. Matteini et al. [72] studied the
PFHI with 1D3V hybrid-kinetic expanding box simulations and found that
the marginal stability paths in the temperature anisotropy diagram roughly
follow the anisotropy boundaries reported in Kasper et al. [61]. Hellinger
and Trávńıček [73] extended the analysis to 2D3V setups such that the OFHI
could be excited as well. They inferred that the temperature anisotropies were
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rather constrained by the OFHI since it causes more violent reduction of the
anisotropies. However, due to the high numerical demand of such simulations,
the assumed expansion rates were higher than the real solar wind expansion
rate. Thus, the results have to be treated cautiously. We further elaborate on
this in Sec. 5.5.3.

4.4 Ion beam instabilities

In Sec. 2.5.3, we found that space plasmas can exhibit ion beams which are
traveling along the background magnetic field. Such ion beams constitute a
source of free energy and may drive electromagnetic ion beam instabilities. At
least four different types of ion beam instabilities have been reported which
vary in strength depending on the beam’s density, the relative drift velocity
between the ion beam and the ion core, and the temperature and temperature
anisotropy of the beam [74, 75]. We discuss here only one of the four types,
namely the so-called ion-ion right-hand resonant instability which is of rele-
vance in the ion foreshock of Earth, as we report in Sec. 5.4.
This instability has similarities with the PFHI in that it exhibits maximum
growth for parallel propagation, it also relies on anomalous cyclotron reso-
nance, and it destabilizes the whistler branch. Assuming a sufficiently cold
but fast beam, i.e. vd ≫ vth,b and vd ≫ vA, with Maxwellian shape we can
– in the limit of weak growth – find an analytic expression for the expected
maximum growth rate [33], namely

γmax = 3

√

nb

2nc

Ωi. (4.60)

The saturation of the instability is strongly driven by cyclotron-resonant dif-
fusion (see Sec. 4.2.3). Once the field amplitudes have grown large enough,
the beam deforms into a crescent, kidney-like shape and may ultimately de-
velop into a diffuse, isotropic distribution (see also Fig. 2.2). This explains the
occurrence of the different beam shapes observed in the foreshock [76].

4.5 The quasilinear model

Quasilinear theory is the simplest possible model to describe the processes
leading to the saturation of the firehose instability growth [77, 78, 32, 48]. In
this section, we embed quasilinear theory into the framework of weak turbu-
lence theories and revisit its basic assumptions. We derive the weak turbulence
kinetic equation which determines how a broad spectrum of waves alters the
particle velocity distribution via linear wave-particle interactions. We narrow
this quasilinear analysis to electromagnetic modes with strictly parallel prop-
agation angles to prepare the reader for the discussion in Sec. 5.5 where the
quasilinear formalism is used to study the saturation of the PFHI.
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4.5.1 Weak turbulence

In Sec. 4.1, we discussed the concept of plasma waves and instabilities and in
Sec. 4.2 we used linear kinetic theory to find eigenmodes of a plasma. Later,
we found that we can compute growth rates and instability conditions of the
parallel and oblique firehose instability within the linear framework. A crucial
assumption for the validity of linear theory is that the amplitude of the de-
scribed field fluctuations needs to be small compared to the equilibrium fields
in the system. However, if an instability is present, this assumption eventually
gets violated since the fluctuation amplitudes ultimately grow large enough
such that the linearization breaks down. For high-enough amplitudes, the
eigenmodes start to strongly interact with the particles and with each other,
introducing nonlinear coupling effects. Also, the equilibrium quantities which
were assumed to be static may begin to change in time. Eventually, the non-
linear processes will cause a saturation of the wave growth and stabilize the
system. Subsequently, the system may transition to a turbulent state and the
injected wave energy gets dissipated by the particles.
In general, nonlinear plasma theory is hardly accessible by analytical means
and studying the wave-wave and wave-particle interactions requires the use
of large scale simulations on HPC systems. However, using certain approxi-
mations the nonlinear description can be simplified, allowing limited insight
into the underlying processes. One particularly successful and well-developed
approximation is the theory of weak turbulence (see, e.g., Refs. [79, 80, 81]). It
relies on the assumption that, although finite, the wave amplitudes in the sys-
tem are still small enough such that the energy stored in the electromagnetic
fluctuations is much lower than the mean kinetic energy of the particles. Fur-
thermore, it assumes that a broad spectrum of waves is present and sufficient
phase mixing can occur. The phases of the eigenmodes can then be taken to be
randomly distributed and the wave amplitudes are statistically independent.
This is also known as the random phase approximation.
Being a natural generalization to the presented linear kinetic theory, weak
turbulence kinetic theory is equally based on a perturbative expansion of the
fluctuating quantities. The distribution function and the wave amplitudes are
expanded according to

fα =

∞
∑

n=0

fn,α, E =

∞
∑

n=0

En, B =

∞
∑

n=0

Bn, (4.61)

where the n-th term is of order ǫn with ǫ being a small quantity.
In general, weak turbulence theory is separated into three types of interactions:
quasilinear wave-particle interactions, nonlinear wave-wave interactions, and
nonlinear wave-particle interactions [30]. Here, we only consider interactions
of the first type. The weak turbulence theory of quasilinear wave-particle
interactions, also known as quasilinear theory (QLT), is constructed by keeping
only the zero and first order terms in the expansions Eqs. (4.61).
In the following, we derive the weak turbulence kinetic equation based on
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QLT for a system that is subject to a spectrum of parallel propagating waves.
This can then be applied to describe how in an initially unstable system the
equilibrium particle velocity distribution is changed by the presence of a broad
wave spectrum self-consistently excited by the present instability.

4.5.2 Kinetic quasilinear theory

Similar to the derivation of linear kinetic theory presented in Sec. 4.2, we
start from the Vlasov-Maxwell system, Eqs. (3.19)–(3.25) and introduce the
expansions Eqs. (4.61). For each expansion, we only keep terms of zero and first
order. Each fluctuating quantity A then consists of a spatially homogeneous
equilibrium part A0, which may be slowly varying in time, and a spatially
and temporally oscillating first order perturbation A1 = δA. When taking the
average < · > over space and short time scales, we then have 〈A〉 = A0 and
〈δA〉 = 0.
In Vlasov’s equation, Eq. (3.19), we allow the equilibrium velocity distribution
F0,α to change in time and, since this change is assumed to be slow compared
to the time scale of the oscillating perturbations, we can remove the fast time
scale by taking the average < · > of the perturbed Vlasov equation. All terms
which are of first order in the perturbation are then averaged out, yielding

∂F0,α

∂t
= − qα

mα

〈

(

δE+
v

c
× δB

)

· ∂δfα
∂v

〉

. (4.62)

Now, we clearly see why in linear theory the equilibrium distribution could be
regarded as stationary in time. Temporal changes in the zero order velocity
distribution require the inclusion of second-order effects, namely nonlinear
field-particle correlations.
Eliminating δB using Faraday’s law, Eq. (3.21), and replacing the fluctuating
quantities with their corresponding spatial Fourier transforms, we can write

∂F0,α(v, t)
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×
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〉

.

Note that the dispersion relation is time-dependent here since it relies on the
instantaneous shape of the equilibrium velocity distribution. For sufficiently
slow variations of F0,α, the time dependence of the fluctuating quantities can

then be assumed to be of the form ∼ exp

(

−i
t
∫

0

dt′ ω(k, t′)

)

[32].

We proceed by introducing the same coordinate system as in Sec. 4.2 and
restrict the discussion to transverse electromagnetic modes that propagate in
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strictly parallel direction. Eq. (4.63) then simplifies to
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, (4.64)

with δẼ± denoting the wave fields in rotating components, i.e.

δẼ± =
1√
2
(δẼx ± iδẼy), (4.65)

where + is for left-hand and − is for right-hand circularly polarized modes
(given that ωr > 0).
In order to construct a quasilinear model, we now need to find an expression
that relates δf̃α linearly to the field perturbations δẼ±. Inserting this into
Eq. (4.64), then gives the time variation of F0,α due to second-order effects.
To find such an expression, we first subtract Eq. (4.62) from the perturbed
Vlasov equation and, this time, neglect all second-order terms, which yields
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. (4.66)

The procedure of deriving an expression for δf̃α from Eq. (4.66) is very similar
to the formalism presented in Sec. 4.2.2. Thus, we refrain from repeating the
derivation here but readily give the result as

δf̃α(k‖,v, t) = − iqα
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∑
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(4.67)
Finally, we can insert Eq. (4.67) into Eq. (4.64) and carry out the averag-
ing < · >. For the averaging, we assume that orthogonal components are

uncorrelated, i.e.
〈

δẼxδẼy

〉

= 0, and we impose axisymmetric excitation,

i.e.
〈

δẼ2
x

〉

=
〈

δẼ2
y

〉

. By virtue of the random phase approximation which im-

plies that the phases of eigenmodes with different wave number are statistically
independent, we can then infer the relations

〈

δẼ±(k‖, t)δẼ∓(k
′
‖, t)
〉

=
1

2
δẼ2

⊥(k‖, t) · δ(k‖ + k′
‖) (4.68)

〈

δẼ±(k‖, t)δẼ±(k
′
‖, t)
〉

= 0, (4.69)

where
δẼ2

⊥ =
〈

δẼ2
x

〉

+
〈

δẼ2
y

〉

. (4.70)
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We thus find

∂F0,α(v, t)

∂t
=

i

4

q2α
m2

α

∞
∫

−∞

dk‖

∞
∫

−∞

dk′
‖ e

i(k‖+k′
‖
)zδ(k‖ + k′

‖)

×
∑

−,+

(
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‖v⊥

ω(k′
‖, t)

∂

∂v‖
+

(

1−
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‖v‖

ω(k′
‖, t)

)

1

v⊥

∂

∂v⊥
v⊥

)

(4.71)

× δẼ2
⊥

ω(k‖, t)− k‖v‖ ∓ Ωα

((

1− k‖v‖
ω(k‖, t)

)

∂

∂v⊥
+

k‖v⊥
ω(k‖, t)

∂

∂v‖

)

F0,α.

Exploiting the sampling property of the Dirac delta function, we can carry
out the k′

‖-integral which replaces k′
‖ with −k‖. Due to symmetry relations,

we can write ω(−k‖, t) = −ω∗(k‖, t) where ∗ denotes complex conjugation.
This finally yields the weak turbulence kinetic equation for parallel propagating
electromagnetic modes [32],

∂F0,α(v, t)

∂t
=

i

4

q2α
m2

α

∞
∫

−∞

dk‖
∑

−,+

(

k‖v⊥

ω∗(k‖, t)

∂

∂v‖
+

(

1− k‖v‖
ω∗(k‖, t)

)

1

v⊥

∂

∂v⊥
v⊥

)

× δẼ2
⊥(k‖, t)

ω(k‖, t)− k‖v‖ ∓ Ωα
(4.72)

×
((

1− k‖v‖
ω(k‖, t)

)

∂

∂v⊥
+

k‖v⊥

ω(k‖, t)

∂

∂v‖

)

F0,α,

which describes the (slow) temporal change of the velocity distribution function
caused by linear wave-particle interactions in the presence of a broad spectrum
of left-handed (+) and right-handed (−) transverse eigenmodes with dispersion
relation ω(k‖, t) and amplitude δẼ⊥(k‖, t).
The wave energy evolves in time according to

∂δẼ2
⊥(k‖, t)

∂t
= 2γ(k‖, t)δẼ

2
⊥(k‖, t). (4.73)

Please note that similar to the parallel velocity integration in Eq. (4.25), the
wave number integration in Eq. (4.72) is to be understood as a principal value
integral since ω(k‖, t)−k‖v‖∓Ωα = 0 introduces singularities in the integration
interval. Again, Eq. (4.72) is only defined for γ > 0. For stable or damped
modes, the expression has to be analytically continued to the lower complex
half-plane.
If one is interested in the evolution of macroscopic quantities only, the kinetic
equation, Eq. (4.72), may be reduced by deriving its second velocity moments.
This yields the so-called moment-kinetic quasilinear equations, i.e. the evolu-
tion equations for the parallel and the perpendicular temperature component
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(see, e.g., Ref. [82]),

dT‖,α

dt
= Re



−imαΩ
2
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∞
∫
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dk‖
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(
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ω ∓
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− 1

)

Ωα (4.74)
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δẼ2

⊥

B2
0

((

T⊥,α

T‖,α
− 1

)

ω∗ − T⊥,α

T‖,α
ω (4.75)

+

( |ω|2
k‖vth,‖α

+ ξα

((

T⊥,α

T‖,α

− 1

)

ω∗ − T⊥,α

T‖,α

ω ±
(

T⊥,α

T‖,α

− 1

)

Ωα

))

Z(ξα)

)



 ,

with ξα = (ω ∓ Ωα)/k‖vth,‖α and the plasma dispersion function Z(ξα) given
in Eq. (4.51). Note that for deriving Eqs. (4.74) and (4.75), we replaced F0,α

by a bi-Maxwellian background distribution, Eq. (2.27).
The moment-kinetic equations may be used as a starting point for constructing
a macroscopic quasilinear fluid model by introducing a large argument expan-
sion in the plasma dispersion function. A classic application of macroscopic
QLT is the quasilinear stabilization of the fluid firehose (see, e.g., Refs. [78, 32]).
The application of the moment-kinetic quasilinear model and the full parallel
weak turbulence kinetic equation to the kinetic parallel firehose instability is
discussed in Sec. 5.5.
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Chapter 5

Publication section

In this section, we present those parts of the PhD project which were published
or are currently under review in peer-reviewed journals. A list of the included
publications is given below. For each publication, we briefly motivate the pre-
sented discussion, summarize the content of the publication, and highlight the
contribution of the author of this thesis. Subsequent to each publication, we
further comment on some key points of the study.

First author contributions published in peer-reviewed journals:

• Astfalk, P., T. Görler, and F. Jenko (2015), DSHARK: A dispersion
relation solver for obliquely propagating waves in bi-kappa-distributed
plasmas, J. Geophys. Res. Space Physics, 120, 7107-7120

• Astfalk, P., and F. Jenko (2016), Parallel and oblique firehose instabil-
ity thresholds for bi-kappa distributed protons, J. Geophys. Res. Space
Physics, 121, 2842-2852

• Astfalk, P., and F. Jenko (2017), LEOPARD: A grid-based dispersion re-
lation solver for arbitrary gyrotropic distributions, J. Geophys. Res. Space
Physics, 122, 89-101

Co-author contribution in peer-reviewed journal:

• Dorfman, S., H. Hietala, P. Astfalk, and V. Angelopoulos (2017), Growth
rate measurement of ULF waves in the ion foreshock, Geophys. Res. Lett.,
44, 2120-2128

First author contribution under review in peer-reviewed journals:

• Astfalk, P., and F. Jenko (2018), On the quasilinear saturation of the par-
allel proton firehose instability using a full-f approach, J. Geophys. Res. Space
Physics
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5.1 DSHARK: A dispersion relation solver for

obliquely propagating waves in bi-kappa-

distributed plasmas

5.1.1 Background

In space plasma environments which are subject to nonthermal acceleration
processes, suprathermal particle populations are produced which cannot be
captured by bi-Maxwellian model distributions but rather follow power-laws
and eventually alter the plasma’s dispersion properties. As we discussed in
Sec. 2.5.4, such power-law distributions may be fitted with kappa distribu-
tions. While studying parallel propagating modes in kappa-distributed plas-
mas is rather straightforward, a numerical investigation on general oblique
wave propagation has largely been inhibited due to the higher numerical de-
mand. To our knowledge, Xue et al. [83] is the only study where a setup
with finite propagation angle has been addressed. The new DSHARK solver
is intended to enable systematic studies of obliquely propagating kinetic in-
stabilities (such as the OFHI) in suprathermal plasmas. The paper presented
here discusses the theoretical background of the solver, its numerical imple-
mentation, and the application to various test cases. Finally, the solver is used
to examine a few exemplary OFHI setups. In the following, we summarize the
key points of the discussion.
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5.1.2 Summary

The DSHARK solver is an eigenvalue solver based on the linearized Vlasov-
Maxwell system of equations, allowing for the computation of dispersion prop-
erties in plasmas with either bi-kappa or bi-Maxwellian distributed species.
Computing the dielectric tensor for a given set of velocity distributions and a
given complex frequency and wave number is the core task of the solver. The
main challenge here is the computation of the velocity integrals in the parallel
and perpendicular direction.
For a bi-Maxwellian distribution, the perpendicular velocity integration is car-
ried out analytically while the parallel integration is expressed in terms of the
plasma dispersion function which, for γ > 0, is approximated with the help of
Padé’s method [84].
For the parallel integration in the case of kappa distributions, the modified
plasma dispersion function is implemented in the closed summation form given
in Summers and Thorne [37] which allows to study growing as well as damped
or stable modes, but restricts the code to integer κ. Solving the perpendicular
velocity integral requires the utilization of a sophisticated numerical integra-
tion scheme. We found the double exponential quadrature algorithm which
was provided to us by Takuya Ooura to be a suitable and sufficiently fast
method.
By performing the infinite but usually quickly converging summation over the
Bessel index n and by adding up the contributions of each particle species α,
we finally obtain the numerically derived components of the full dielectric ten-
sor. We are left with the task of finding the roots of the general equation for
wave dispersion in dielectric media, i.e. solving the corresponding eigenvalue
problem for the given dielectric tensor. For this, we employ the Muller method
which allows the efficient iteration of complex roots of general nonlinear equa-
tions and completes the numerical scheme of the presented code.
To validate the correct implementation of the DSHARK solver, we test the
code’s ability to compute accurate eigenmodes for both parallel and oblique
propagation in different setups. For the case of parallel propagation, we aim
to reproduce results from previous studies of the EMIC and parallel firehose
instability setups presented in Lazar and Poedts [85] and Lazar et al. [86].
In both studies, Lazar et al. use the linear kinetic equation for strictly paral-
lel propagating electromagnetic modes, assuming anisotropic kappa distribu-
tions and/or bi-Maxwellians for a two-component ion-electron plasma. In all
cases, we find very good agreement between the results of the DSHARK solver
and the findings of Lazar et al.. For obliquely propagating eigenmodes, we
benchmark the solver against the outcomes of fully nonlinear 1D3V hybrid-
kinetic simulations. We utilize the Hybrid Vlasov Maxwell code [87, 88] and,
again, we find excellent agreement, confirming the correct implementation of
the DSHARK solver also for obliquely propagating eigenmodes.
In the end, we apply the code to two OFHI setups – one with low and one with
high initial anisotropy. While for the parallel propagating instabilities EMIC
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and PFHI the strength of the anisotropy determines whether the instability is
enhanced or weakened by the presence of suprathermal populations, the OFHI
always gets suppressed when going from bi-Maxwellian to anisotropic kappa
distributions.

Contribution of the thesis author: Implementation of the DSHARK solver
(in Fortran-90) and running the test cases as well as the first applications to
oblique firehose-unstable setups.
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DSHARK: A dispersion relation solver for obliquely propagating
waves in bi-kappa-distributed plasmas

Patrick Astfalk1, Tobias Görler1, and Frank Jenko2

1Max-Planck-Institut für Plasmaphysik, Garching, Germany, 2Department of Physics and Astronomy, University of
California, Los Angeles, California, USA

Abstract Satellite measurements suggest that space plasmas often exhibit bi-kappa particle distributions
with high-energy tails instead of simple Maxwellians. The presence of suprathermal particles significantly
alters the plasmas’ dispersion properties compared to purely Maxwellian scenarios. In the past, wave
propagation in magnetized, bi-kappa plasmas was almost exclusively addressed for parallel propagating
modes only. To enable a systematic study of both parallel and oblique wave propagation, the new kinetic
dispersion relation solver Dispersion Solver for Homogeneous Plasmas with Anisotropic Kappa Distributions
(DSHARK) was developed and is presented in this work. DSHARK is an iterative root-finding algorithm which
is based on Summers et al. (1994) who derived the dielectric tensor for plasmas with bi-kappa-distributed
particles. After a brief discussion of kappa distributions, we present the kinetic theory and the numerical
methods implemented in DSHARK and verify the code by considering several test cases. Then, we apply
DSHARK to the oblique firehose instability to initiate a more extensive work which will be addressed in the
future. A systematic investigation of the dispersion properties of bi-kappa-distributed plasmas is expected
to lead to a deeper understanding of wave propagation and instability growth in the solar wind.

1. Introduction

Due to the omnipresence of plasmas in the universe, a proper knowledge of the underlying physics is
crucial for the correct modeling of many astrophysical systems. A valid description of plasma waves is of major
importance here, since the propagation of waves is a ubiquitous property of plasmas and it is connected to
the rise of plasma instabilities, particle heating, and turbulence.

The dispersion characteristics of plasma waves crucially depend on the properties of the plasma, such as
the presence of background magnetic fields and the shape of the particle velocity distribution function. In
sufficiently collisional plasmas, deviations from thermal equilibrium quickly thermalize and the velocity distri-
bution function remains close to a Maxwell-Boltzmann distribution. In this case, wave propagation can often
be described by a simple fluid model. However, in dilute space plasmas, which lack collisions, deviations of
the velocity distribution from a simple Maxwellian are developed and retained easily. In this case, a kinetic
model is favored which often requires a numerical treatment.

In magnetized plasmas, the kinetics of the particles parallel and perpendicular to the background magnetic
field decouple, and anisotropic velocity distributions can form which give rise to kinetic instabilities. If the
anisotropic distribution follows a bi-Maxwellian,

F𝛼 = 1
𝜋3∕2

1
v∥𝛼v2

⟂𝛼

exp

(
−

v2
∥

v2
∥𝛼

−
v2
⟂

v2
⟂𝛼

)
, (1)

where v∥, v⟂ are the particle velocities parallel and perpendicular to the background magnetic field; m𝛼 is the

mass of the particle species 𝛼; v∥𝛼 =
√

2
T∥𝛼
m𝛼

, v⟂𝛼 =
√

2 T⟂𝛼
m𝛼

are the thermal speeds parallel and perpendic-

ular to the magnetic field; and T𝛼∥, T𝛼⟂ denote the associated temperatures; the dispersion properties in the
considered medium can be derived numerically by Maxwellian dispersion relation solvers such as WHAMP
[Roennmark, 1982] or PDRK [Xie and Xiao, 2014].

However, real space plasmas are often subject to nonthermal acceleration processes which lead to the forma-
tion of non-Maxwellian high-energy velocity tails. These tails rather follow power laws instead of exponentials.

RESEARCH ARTICLE
10.1002/2015JA021507

Special Section:
Origins and Properties of
Kappa Distributions

Key Points:
• The new dispersion solver DSHARK

is presented
• DSHARK determines oblique wave

propagation in bi-kappa-distributed
plasmas

• DSHARK is applied to the oblique
firehose instability

Correspondence to:
P. Astfalk,
patrick.astfalk@ipp.mpg.de

Citation:
Astfalk, P., T. Görler, and F. Jenko
(2015), DSHARK: A dispersion relation
solver for obliquely propagat-
ing waves in bi-kappa-distributed
plasmas, J. Geophys. Res.
Space Physics, 120, 7107–7120,
doi:10.1002/2015JA021507.

Received 28 MAY 2015

Accepted 11 AUG 2015

Accepted article online 14 AUG 2015

Published online 21 SEP 2015

©2015. American Geophysical Union.
All Rights Reserved.

ASTFALK ET AL. DSHARK - WAVES IN BI-KAPPA PLASMAS 7107

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2015JA021507
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%292169-9402/specialsection/KAPPA1


Journal of Geophysical Research: Space Physics 10.1002/2015JA021507

Such suprathermal tails were found for the ion and electron distribution in solar flares [Achterberg and
Norman, 1980]; in the solar corona [Ko et al., 1996]; in the solar wind [Gloeckler et al., 1992; Maksimovic et al.,
1997]; in planetary magnetospheres such as for the Earth [Paschalidis et al., 1994], Jupiter [Leubner, 1982],
and Saturn [Krimigis et al., 1983]; in the plasma torus of Io [Meyer-Vernet et al., 1995]; farther out in the helio-
sphere toward the termination shock [Decker et al., 2005], and even in the distribution of galactic cosmic rays
[Jones and Ellison, 1991]. They can be fitted by so-called kappa distributions which were introduced empir-
ically by Vasyliunas [1968] and Olbert [1968] to fit electron velocity distributions measured in the Earth’s
magnetosphere.

Kappa distributions form a group of general power law distributions containing the Maxwell-Boltzmann
distribution as a limiting case. Their traditional form is given by

F𝜅𝛼 = 1
𝜋3∕2𝜅3∕2

1
𝜃∥𝛼𝜃

2
⟂𝛼

Γ(𝜅 + 1)
Γ(𝜅 − 1∕2)

(
1 +

v2
∥

𝜅𝜃2
∥𝛼

+
v2
⟂

𝜅𝜃2
⟂𝛼

)−(𝜅+1)

, (2)

with the gamma function Γ(x) and the modified thermal speeds 𝜃∥𝛼 =
√

2𝜅−3
𝜅

T∥𝛼
m𝛼

and 𝜃⟂𝛼 =
√

2𝜅−3
𝜅

T⟂𝛼
m𝛼

[Summers et al., 1994]. Observations generally suggest positive kappas with 1.5 < 𝜅 ≤ ∞. The Maxwellian
distribution is recovered in the limit 𝜅 → ∞.

Note that modified versions of the traditional kappa distribution are also in use, such as the product bi-kappa
distribution [Abraham-Shrauner and Feldman, 1977; Summers and Thorne, 1991]. However, these will not be
covered in this paper.

Since their first introduction, kappa distributions have been successfully applied to extensive observational
data obtained from space plasma measurements. The vast amount of observational evidence suggests
that kappa distributions are not a rare phenomenon but rather omnipresent in space plasmas with low
collisionality.

Despite the frequent appearance of suprathermal velocity tails, the mechanisms leading to their formation
are still not fully understood. However, there exists a variety of possible explanations, mostly associated with
nonlinear wave-particle interaction such as enhanced velocity space diffusion in suprathermal radiation fields
[Hasegawa et al., 1985], energization of particles due to nonlinear Landau damping of large-amplitude waves
[Miller, 1991; Leubner, 2000] or stochastic acceleration in compressional turbulence [Fisk and Gloeckler, 2006].
Recently, Yoon [2012] self-consistently derived the steady state electron distribution function in three-
dimensional Langmuir turbulence and found a non-Maxwellian energetic tail component following a kappa-
like distribution with 𝜅 = 3.25 which is in rough agreement with measurements of the quiet time solar wind.

A more fundamental approach based on the Tsallis entropy attempts to explain the formation of kappa
distributions from basic statistical physics. The applicability of standard Gibbs-Boltzmann statistics to sys-
tems which are subject to long-range forces, such as plasmas, has been questioned for a long time. In 1988,
Constantino Tsallis proposed a generalization of the Gibbs-Boltzmann entropy which found successful appli-
cation in a wide range of fields including geology, medicine, meteorology, finance, and plasma physics [Tsallis,
1988; Pavlos et al., 2012]. Silva et al. [2002] and Leubner [2002] showed that Tsallis statistics can be used to derive
equilibrium distribution functions which closely resemble the traditional kappa distributions introduced
in 1968.

Treumann [1999] constructed a Boltzmann-like collision term accounting for correlations present in a system
and derived the corresponding equilibrium distribution function from kinetic theory. Remarkably, this differ-
ent ansatz yielded the same type of kappa-like distribution as it was obtained from Tsallis statistics by Leubner
[2002]. This suggests that both kappa distributions and Tsallis entropy are not merely fitting tools but might
be indeed the consequence of fundamental physics.

In recent years, it was studied how a change from near-Maxwellian distributions to the more general kappa
distributions affects the dispersion properties of wave propagation in space plasmas [see, for example, Lazar
et al., 2011; Leubner and Schupfer, 2000]. However, as was noticed by Gaelzer and Ziebell [2014], the inves-
tigations were largely restricted to purely parallel or perpendicular propagation, whereas general oblique
propagation has rarely been considered so far. To the authors’ knowledge, only Xue et al. [1996] properly
applied kappa distributions to a case of obliquely propagating modes, namely, ion cyclotron waves in the
Earth’s magnetosphere.
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To enable an extensive and systematic study of the dispersion properties of waves propagating with an arbi-
trary angle in magnetized plasmas with suprathermal velocity tails, the fast and practical Dispersion Solver for
Homogeneous Plasmas with Anisotropic Kappa Distributions (DSHARK) was constructed. A description of the
physics implemented in DSHARK is provided in section 2. The employed numerical methods are explained
in section 3. Section 4 presents some benchmarks and a first application of DSHARK to the oblique firehose
instability. A summary is given in section 5.

2. Theoretical Background

For a fully kinetic description of collisionless plasmas, the Vlasov equation is employed which determines the
time evolution of the six-dimensional particle distribution function, f (x, v, t). In fluid plasma models, however,
the information about the velocity space is removed by assuming a particular velocity distribution—usually
a Maxwellian—and deriving the hierarchy of fluid equations by taking the velocity moments of the Vlasov
equation. Due to the loss of complexity in the fluid picture, the physics included in a kinetic description is
more diverse allowing for a larger variety of possible wave phenomena. Especially waves which undergo res-
onances with the plasma particles, such as Landau and cyclotron resonance, can only be treated properly
within the context of kinetic theory. For the sake of generality, the focus is therefore laid on a fully kinetic
plasma description.

From Maxwell’s equations, the general dispersion relation for wave propagation in plasmas,

can be derived, where 𝜖 is the dielectric tensor of the considered medium and c is the speed of light in vacuum.

The dielectric tensor determines the response of the plasma to small wave-like perturbations and generally
depends on the plasma properties. For collisionless plasmas, it can be derived from the linearized Vlasov
equation [see, for example, Brambilla, 1998].

To enable an analytic treatment, approximations have to be applied which simplify the dielectric tensor com-
ponents. Some common approximations are the cold plasma limit, pure electrostatics, small Larmor radius
approximation, or the restriction to low frequencies. However, to get the full picture, 𝜖 must be considered in
its most general form. This requires a numerical treatment. Thus, for finding the roots, 𝜔(k), of equation (2) a
numerical dispersion relation solver must be applied.

The DSHARK solver, which is presented in this paper, is based on the work done by Summers et al. [1994] who
derived the dielectric tensor components for a hot, homogeneous, and collisionless plasma which is immersed
in a static magnetic field, B0 = B0ez , and which exhibits high-energy velocity tails following the empirically
introduced kappa distribution, equation (2).

For Maxwellian plasmas, the calculation of the dielectric tensor requires the determination of the plasma
dispersion function

Z(𝜉) = 1√
𝜋 ∫

∞

−∞

e−s2

s − 𝜉
ds, (4)

which was defined by Fried and Conte [1961]. The equivalent for kappa-distributed plasmas was found by
Summers and Thorne [1991] who introduced the corresponding modified dispersion function

Z∗
𝜅
(𝜉) = 1

𝜋1∕2𝜅3∕2

Γ(𝜅 + 1)
Γ(𝜅 − 1∕2) ∫

∞

−∞

ds
(s − 𝜉)(1 + s2∕𝜅)𝜅+1

. (5)

Furthermore, it has been shown in above reference that this can be rewritten in the simple closed form

Z∗
𝜅
(𝜉) = −

𝜅 − 1∕2

2𝜅3∕2

𝜅!
(2𝜅)!

𝜅∑
l=0

(𝜅 + l)!
l!

i𝜅−l

(
2

(𝜉∕
√
𝜅) + i

)𝜅+1−l

. (6)

Note that the former equation is restricted to the case Im(𝜉)> 0, whereas the latter applies for all 𝜉 ∈C. One
can show that Z∗

𝜅
converges to the standard plasma dispersion function, equation (4), in the limit 𝜅 → ∞.
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Summers et al. [1994] restricted the parameter 𝜅 to integer values only. Later, this was generalized by Mace
and Hellberg [1995] who also discussed noninteger 𝜅.

The presented code solves the dispersion relation, equation (2), using the dielectric tensor given in Summers
et al. [1994] and allowing for wave propagation with an arbitrary angle 𝜃 with respect to the background
magnetic field. Furthermore, an arbitrary number of particle species 𝛼 can be included, where every species is
defined by its mass, charge, kappa, and parallel and perpendicular plasma beta. In accordance with Summers
et al. [1994], the code is restricted to integer 𝜅, only.

The dielectric tensor for bi-Maxwellian plasmas is implemented as well, thus DSHARK can also be used to study
dispersion properties in the bi-Maxwellian limit. The expressions for the bi-Maxwellian dielectric tensor used
in the code were derived on the basis of Brambilla [1998]. For the computation of the corresponding tensor
components, the evaluation of the standard plasma dispersion function Z, given in equation (4), is required. A
common approximation of Z is the Padé method which was first applied to the plasma dispersion function by
Martin and Gonzalez [1979] and later used in bi-Maxwellian dispersion solvers such as WHAMP and PDRK. For
DSHARK, an eight-pole Padé approximant was used to determine Z. More information on this can be found
in Appendix D.

The explicit inclusion of the bi-Maxwellian limit also allows an efficient investigation of hybrid scenarios where
one species follows a bi-kappa distribution and another species is Maxwellian.

The dimensionless expressions of the dielectric tensor components used in the code are given in Appendix A
and B for both the bi-kappa distribution and the bi-Maxwellian case. The dispersion relation is implemented
in the dimensionless form

0 =
(
𝜖xx − k̃2

∥

) (
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𝜖zz − k̃2

⟂

)
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)
−
(
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) (
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yz
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∥
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xy

(
𝜖zz − k̃2

⟂

)
, (7)

with 𝜖 = 𝜖
v2

A

c2 𝜔̃
2 and 𝜔̃ = 𝜔

Ωi
where Ωi denotes the ion gyro frequency and vA is the Alfvén velocity, vA =

B0∕
√

4𝜋nimi . The wave numbers parallel and perpendicular to the background magnetic field, k̃∥ and k̃⟂, are
normalized to the ion inertial length, i.e., k̃ = kdi .

If desired, all quantities can be easily normalized to the scales of other involved particle species, instead.
However, for the following discussions we keep the given normalization with respect to ions.

3. Numerics

DSHARK is an iterative root-finding algorithm which solves the nonlinear equation (6). Since the frequencies
𝜔̃ are, in general, expected to be complex valued, the algorithm is required to be able to iterate complex roots.
Therefore, Muller’s method was implemented which can not only solve complex, nonlinear equations but is
also a numerically robust and sufficiently fast procedure (for a description of Muller’s method, see, for example,
Gerald and Wheatley [2003]). As a stopping criterium for the Muller iteration, a limit is set to the relative error
of two successively iterated roots, 𝜖rf = | (𝜔̃n − 𝜔̃n−1

)
∕𝜔̃n−1|. For the test cases presented in section 4, this

limit was chosen to be 𝜖rf = 10−3. This criterium can be easily adapted by the code user.

The calculation of the tensor components given in Appendix A implies the determination of some improper
integrals. For this, an exponential quadrature method was applied. The algorithm implemented in DSHARK
was thankfully provided by Takuya Ooura and is based on Takahasi and Mori [1974]. The method offers the
possibility to set a limit to the relative error of the integral evaluation. This error was chosen to be 𝜖int = 10−12

for all calculations carried out in this work.

The integrals to be calculated contain the modified dispersion function Z∗
𝜅+1 which is determined using the

summation formula equation (6). Since the summation in equation (6) goes from l = 0 up to l = 𝜅, the cal-
culation is slowed down if higher kappa values are considered. And since the determination of the integrals
containing the modified dispersion function is the most time-consuming task of the algorithm, the chosen
kappa value has a crucial influence on the overall performance, reducing the efficiency of the program linearly
with kappa. However, for very high kappa values the considered scenario converges to the Maxwellian case.
So, if the kappa parameter exceeds a certain default limit, DSHARK automatically switches to a bi-Maxwellian
scenario which can be solved more efficiently.
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Apart from the chosen kappa values and the considered number of particle species, the performance of
DSHARK also crucially depends on the quality of the initial guess of the complex frequency which initiates the
iterative Muller method. When the user is not interested in the frequency at a single wave number only, but
instead for a whole range of wave numbers, DSHARK automatically applies a quadratic polynomial fit to find
proper initial guesses, after the solutions for three subsequent wave numbers are found. This is very effective
as long as the interval between subsequent wave numbers is not too large.

For the determination of the dielectric tensor components given in Appendix A, infinite summations over
Bessel functions have to be evaluated. Luckily, significant contribution comes from the lowest-order Bessel
functions only. Therefore, the sum can normally be restricted to the terms with indices n = −4, ..., 4.

More terms might have to be included, if the argument of the Bessel functions becomes too large which is
the case, e.g., for high k̃⟂. However, this can be checked and adapted easily, if necessary.

For a brief overview of the underlying program structure of DSHARK and some further details, see Appendix C.

4. Test Cases

DSHARK determines the dispersion relation for linear waves in hot, collisionless, and homogeneous plas-
mas. Unlike standard dispersion relation solvers, such as WHAMP, DSHARK is not restricted to plasmas with
bi-Maxwellian velocity distributions but it can be used to derive the dispersion relation for plasmas with more
general bi-kappa distributions.

Parallel propagating modes in kappa-distributed plasmas have been discussed frequently, whereas oblique
propagation has rarely been considered so far. To validate the ability of DSHARK to properly derive the dis-
persion properties of modes propagating in both parallel and oblique direction, several test cases were
considered. A summary of the results is given below.

4.1. Parallel Propagation
Parallel propagating modes in kappa-distributed plasmas have been addressed, e.g., in Leubner and Schupfer
[2000], Lazar et al. [2011], and Lazar and Poedts [2014].

By assuming k⟂ = 0, a greatly simplified dispersion relation can be constructed from linear kinetic theory.
Starting from the well-known general dispersion relation for parallel propagating modes with right-hand (+)
and left-hand (−) circular polarization,

0 = 1 −
k2
∥c2
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+ 𝜋

∑
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)2
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0
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𝜕v⟂

+ k∥v⟂
𝜕f𝛼
𝜕v∥

𝜔 − k∥v∥ ± Ω𝛼

, (8)

where 𝜔p𝛼 denotes the plasma frequency of the particle species 𝛼 [see, for example, Brambilla, 1998], one can
derive the corresponding model for kappa-distributed plasmas by assuming f𝛼 = F𝜅𝛼 and using equation (2).

Following this ansatz, Lazar et al. [2011] constructed the dispersion relation
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+
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[
𝜔

k∥𝜃∥𝛼
Z0
𝜅

(
𝜔 + Ω𝛼

k∥𝜃∥𝛼

)(
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− 1

)(
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k∥𝜃∥𝛼
Z0
𝜅

(
𝜔 + Ω𝛼

k∥𝜃∥𝛼

))]
, (9)

for right-hand polarized waves by introducing a modified dispersion function Z0
k . This dispersion function has

the form

Z0
𝜅
(𝜉) = 1√

𝜋𝜅

Γ(𝜅)
Γ(𝜅 − 1∕2)

∞

∫
−∞

ds
(s − 𝜉) (1 + s2∕𝜅)𝜅

(10)

and is therefore slightly different but closely related to the standard modified dispersion function Z∗
𝜅

, given
by equation (5).

Lazar et al. [2011] investigated the parallel propagating firehose instability in a two-component plasma, con-
sisting of anisotropic electrons and anisotropic ions, for various beta parameters and kappa values. The
firehose instability arises in magnetized plasmas where the parallel pressure component sufficiently exceeds
the pressure perpendicular to the background magnetic field. Using the ideal MHD equations, a simple disper-
sion relation can be derived, describing the firehose instability as a fluid instability. However, the dispersion
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Figure 1. Real frequencies and growth rates of the proton and electron firehose instability derived from equation (9) by
Lazar et al. [2011] for 𝛽∥i = 2.0, 𝛽⟂i = 0.8, 𝛽∥e = 4.0, 𝛽⟂e = 2.0, and different 𝜅 scenarios, compared to the predictions of
DSHARK. The solid and dashed curves show the findings of Lazar et al. [2011]. The crosses are the corresponding
solutions of DSHARK. Blue is for 𝜅i = 8, 𝜅e = 8, and red is for 𝜅i = 5, 𝜅e = 4.

properties of the firehose instability are crucially altered by resonance effects. Thus, to capture the whole
picture a kinetic model, such as equation (9), has to be used.

Lazar et al. [2011] solved equation (9) to determine the expected growth rates and frequencies for different
firehose-unstable setups. To benchmark DSHARK, the same scenarios were tested with the code and it was
found that the predictions of DSHARK nicely match the results of Lazar et al. [2011]. Two selected cases are
shown in Figure 1.

Another case of parallel propagating modes in kappa-distributed plasmas was studied in Lazar and Poedts
[2014], using the equivalent of equation (9) for left-hand polarized waves. In this work, ion cyclotron modes
were investigated which are rendered unstable by an excess of perpendicular pressure and which are also
kinetic in nature. Again, good agreement was found between the findings of Lazar and Poedts [2014] and
the predictions of DSHARK. For illustration, the case of anisotropic ions with 𝛽∥i=1.0, 𝛽⟂i=4.0 and isotropic
electrons is shown in Figure 2 for 𝜅i =2 and the Maxwellian distribution, respectively.

Figure 2. Real frequencies and growth rates of the electromagnetic ion cyclotron instability derived by Lazar and Poedts
[2014] for 𝛽∥i = 1.0, 𝛽⟂i = 4.0, isotropic Maxwellian electrons, and different 𝜅i scenarios, compared to the predictions of
DSHARK. The solid and dashed curves show the findings of Lazar and Poedts [2014]. The crosses are the corresponding
solutions of DSHARK. Red is for 𝜅i = ∞, 𝜅e = ∞, and blue is for 𝜅i = 2, 𝜅e = ∞.
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Figure 3. Growth rates observed in HVM simulations of oblique firehose-unstable setups with propagation angle
𝜃 = 45°, anisotropic ions with 𝛽∥i = 4.0, 𝛽⟂i = 1.956, and isotropic Maxwellian electrons with 𝛽e = 𝛽i for different 𝜅i
scenarios, compared to the predictions of DSHARK. The solid curves show the observed growth rates. The crosses are
the corresponding solutions of DSHARK.

We conclude that DSHARK gives correct predictions for the dispersion properties of parallel propagating
modes.

4.2. Oblique Propagation
In kinetic theory, the description of obliquely propagating modes is much more involved than purely parallel
propagation since allowing for k⟂ ≠ 0 gives rise to many additional terms in the general kinetic dispersion
relation.

To check the ability of DSHARK to deal with finite propagation angles, numerical simulations of firehose-
unstable systems were carried out, using the hybrid Vlasov-Maxwell code (HVM) presented in Mangeney
et al. [2002] and Valentini et al. [2007]. The observed growth rates were then compared to the predictions of
DSHARK. In HVM, ions are treated as kinetic particles, whereas electrons are considered as a massless fluid.

As a first test case of oblique propagation, a magnetized plasma with an initially anisotropic bi-Maxwellian ion
distribution function was simulated where the ion plasma betas were set to 𝛽∥i = 4.0 and 𝛽⟂i = 1.956, and the
electrons were assumed to be isotropic with 𝛽e = 2.637. Due to the initial excess of parallel ion pressure the
oblique firehose instability is driven in this scenario. The oblique firehose instability is kinetic in nature and
purely growing [Hellinger and Matsumoto, 2000].

The simulation setup was chosen to be one-dimensional in position and three-dimensional in velocity space,
and the spatial grid was tilted with respect to the background magnetic field by 𝜃 = 45°. The oblique firehose
instability was excited by random noise perturbations in the initial magnetic field amplitudes.

The observed growth rates for the unstable modes were obtained from spectral analysis and are shown as
crosses in Figure (3, black). As can be seen in Figure 3 (black), good agreement was found between the growth
rates observed in the HVM simulation and the predictions by DSHARK.

As a next step, the same setup was also tested for two low-kappa scenarios. Instead of a bi-Maxwellian, HVM
was initiated with ion bi-kappa distributions with 𝜅i = 4 and 𝜅i = 8, respectively. Again, good agreement was
found between the observed growth rates and the predictions of DSHARK (see Figure 3, red and blue).

The slight offset between the curves at higher wave number k is supposed to stem from the fact that the
HVM code was used in the Hall-MHD limit. Since the electrons are treated as a fluid in this approximation,
deviations from the fully kinetic case might arise at small length scales. However, this will be subject of future
investigations.

We conclude that DSHARK properly solves the general dispersion relation also for waves with finite propaga-
tion angles 𝜃 ≠ 0°.
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Figure 4. Growth rates of the parallel firehose instability derived from equation (9) by Lazar et al. [2011] for anisotropic
ions with 𝛽∥i = 4.0 and (top) high anisotropy 𝛽⟂i∕𝛽∥i = 0.25 and (bottom) low anisotropy 𝛽⟂i∕𝛽∥i = 0.8 for different 𝜅i
scenarios, compared to the predictions of DSHARK. The electrons are isotropic and Maxwellian with 𝛽e = 8. The solid
curves show the findings of Lazar et al. [2011]. The crosses are the corresponding solutions of DSHARK.

4.3. The Oblique Firehose Instability in Bi-kappa Plasmas

To the authors’ knowledge, the effect of suprathermal particles on the dispersion properties of the oblique

firehose instability has not been considered so far. Therefore, a more detailed investigation was started.

Lazar et al. [2011] and Lazar and Poedts [2014] studied how the presence of suprathermal particles changes

the growth rate of the parallel firehose instability and the growth rate of the electromagnetic ion cyclotron

instability. In both cases, it was discovered that for high anisotropies the growth is enhanced with increasing

kappa, reaching a maximum for the Maxwellian case, 𝜅 → ∞, while for low anisotropies increasing growth

rates were observed for decreasing kappa. This is illustrated in Figure 4 for a parallel firehose setup which was

investigated in Lazar et al. [2011] and in Figure 5 for an ion cyclotron-unstable setup which was investigated

in Lazar and Poedts [2014]. Both scenarios were successfully recovered by DSHARK.

Figure 5. Growth rates of the electromagnetic ion cyclotron instability derived by Lazar and Poedts [2014] for
anisotropic ions with 𝛽∥i = 1.0 and (top) high anisotropy 𝛽⟂i∕𝛽∥i = 4.0 and (bottom) low anisotropy 𝛽⟂i∕𝛽∥i = 1.5 for
different 𝜅i scenarios, compared to the predictions of DSHARK. The electrons are isotropic and Maxwellian. The solid
curves show the findings of Lazar and Poedts [2014]. The crosses are the corresponding solutions of DSHARK.
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Figure 6. Growth rates of firehose-unstable modes with propagation angle 𝜃 = 45° predicted by DSHARK for different 𝜅i
setups with anisotropic ions with 𝛽∥i = 3.0 and (top) high anisotropy 𝛽∥i∕𝛽⟂i = 6 and (bottom) low anisotropy
𝛽∥i∕𝛽⟂i = 2.2. The electrons are isotropic and Maxwellian with 𝛽e = 𝛽i .

First, investigations of the oblique firehose instability suggest a different behavior. For firehose-unstable
modes with propagation angle 𝜃 = 45°, the Maxwellian scenario always dominates over low-kappa setups for
both, high and low anisotropies. This is shown in Figure 6 for a low-beta scenario. In oblique firehose-unstable
setups, the presence of suprathermal particles always seems to lead to a reduction of the maximum growth
rate. This suggests that a decrease of kappa raises the instability threshold to higher-temperature anisotropies.
However, a systematic and extensive analysis of this will be presented in a separate paper.

5. Summary

Satellite measurements in the solar wind suggest that particle velocity distributions in collisionless plasmas
tend to develop suprathermal tails. The resulting distributions exhibit power law slopes which can be fitted
by so-called kappa distributions [Vasyliunas, 1968; Olbert, 1968]. The presence of suprathermal particles can
significantly change the dispersion properties of plasma waves with respect to the Maxwellian case. In the
past, this was studied for wave vectors which are aligned with the background magnetic field, while the
general case of obliquely propagating modes was rarely addressed.

In this paper, the newly developed dispersion relation solver DSHARK was presented which is based on
Summers et al. [1994] and which allows the systematic investigation of wave propagation with arbitrary prop-
agation angle in the presence of an arbitrary number of bi-kappa-distributed particle species. The underlying
physics and algorithms were discussed and several test cases were presented. In comparison with former work
[Lazar et al., 2011; Lazar and Poedts, 2014] and with hybrid simulations it was shown that DSHARK properly
derives the correct dispersion relations for both parallel and obliquely propagating modes.

After this successful validation, DSHARK can now be applied to systematically study how the presence of
high-energy particles changes, e.g., the growth rates and instability thresholds of kinetic instabilities with
k∥, k⟂ ≠0 such as the oblique firehose or the mirror instability. Such investigations will be addressed in an
upcoming paper and might lead to a better understanding of the pressure anisotropies observed in the
solar wind.

Appendix A: Dimensionless Components of the Dielectric Tensor for Bi-kappa
Plasmas

Summers et al. [1994] derived the dielectric tensor for a hot collisionless plasma which is immersed in a static
background magnetic field B0 = B0ez and which contains suprathermal particles following a kappa distribu-
tion of the form given in equation (2). Introducing the dimensionless quantities 𝜔̃=𝜔∕Ωi, k̃ =kdi, 𝜇𝛼=mi∕m𝛼

and q̃𝛼 = q𝛼∕qi, the tensor components can be written in the form given below, where Jn(x) and J
′

n(x) denote
the Bessel function of the first kind and its derivative.
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The diagonal elements of the dielectric tensor are then given by
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The off-diagonal elements can be expressed as
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2𝜅𝛼 + 2

2𝜅𝛼 − 3

𝜔̃ − nq̃𝛼𝜇𝛼

k̃∥
√
𝛽∥𝛼𝜇𝛼s

)
,

𝜖yz = − i
∑
𝛼

c2

v2
A

4
𝜔̃2

q̃2
𝛼

𝜅𝛼 − 1∕2√
𝛽⟂𝛼

√
𝛽∥𝛼 k̃2

∥

(𝜅𝛼 + 1)3∕2

2𝜅𝛼 − 3

∞∑
n=−∞

(
𝛽⟂𝛼

𝛽∥𝛼
𝜔 − n𝜇𝛼 q̃𝛼

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

))
(𝜔 − n𝜇𝛼 q̃𝛼)

× ∫
∞

1
ds

√
s − 1

Jn

(
k̃⟂
q̃𝛼

√
(2𝜅𝛼−3)𝛽⟂𝛼

2𝜇𝛼
(s − 1)

)
J′n

(
k̃⟂
q̃𝛼

√
(2𝜅𝛼−3)𝛽⟂𝛼

2𝜇𝛼
(s − 1)

)
s𝜅𝛼+2

Z∗
𝜅+1

(√
2𝜅𝛼 + 2

2𝜅𝛼 − 3

𝜔̃ − nq̃𝛼𝜇𝛼

k̃∥
√
𝛽∥𝛼𝜇𝛼s

)
,

and one can find the useful symmetry relations 𝜖yx = −𝜖xy , 𝜖zx = 𝜖xz , and 𝜖zy = −𝜖yz .

Appendix B: Dimensionless Components of the Dielectric Tensor for Bi-Maxwellian
Plasmas

On the basis of Brambilla [1998], the dielectric tensor was derived for a hot collisionless plasma which is sub-
ject to a static background magnetic field B0 = B0ez and which exhibits a bi-Maxwellian particle velocity
distribution function of the form given in equation (1). The same normalizations are used as in Appendix A.
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In(x) and I′n(x) denote the modified Bessel function of the first kind and its derivative, and the abbreviation

𝜆𝛼 = 𝛽⟂𝛼 k̃2
⟂

2𝜇𝛼 q̃2
𝛼

is used.

The diagonal elements of the bi-Maxwellian dielectric tensor are then given by

𝜖xx =1 +
∑
𝛼

c2

v2
A

1
𝜔̃2

𝜇𝛼 q̃2
𝛼

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
+
∑
𝛼

c2

v2
A

1
𝜔̃2

√
𝜇𝛼 q̃2

𝛼

1√
𝛽∥𝛼 k̃∥

∞∑
n=−∞

n2In

(
𝜆𝛼
)

× e−𝜆𝛼

𝜆𝛼

(
𝛽⟂𝛼

𝛽∥𝛼
𝜔̃ −

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
n𝜇𝛼 q̃𝛼

)
Z

(
𝜔̃ − n𝜇𝛼 q̃𝛼√
𝜇𝛼

√
𝛽∥𝛼 k̃∥

)
,

𝜖yy =1 +
∑
𝛼

c2

v2
A

1
𝜔̃2

𝜇𝛼 q̃2
𝛼

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
+
∑
𝛼

c2

v2
A

1
𝜔̃2

√
𝜇𝛼 q̃2

𝛼

1√
𝛽∥𝛼 k̃∥

∞∑
n=−∞

(
n2

In

(
𝜆𝛼
)

𝜆𝛼

−2𝜆𝛼
(

I′n
(
𝜆𝛼
)
− In

(
𝜆𝛼
)))

e−𝜆𝛼
(
𝛽⟂𝛼

𝛽∥𝛼
𝜔̃ −

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
n𝜇𝛼 q̃𝛼

)
Z

(
𝜔̃ − n𝜇𝛼 q̃𝛼√
𝜇𝛼

√
𝛽∥𝛼 k̃∥

)
,

𝜖zz =1 −
∑
𝛼

c2

v2
A

1
𝜔̃2

q̃2
𝛼

1

𝛽⟂𝛼 k̃2
∥

∞∑
n=−∞

In

(
𝜆𝛼
)

e−𝜆𝛼
(
𝛽⟂𝛼

𝛽∥𝛼
𝜔̃ −

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
n𝜇𝛼 q̃𝛼

)

×
(
𝜔̃ − n𝜇𝛼 q̃𝛼

)
Z′

(
𝜔̃ − n𝜇𝛼 q̃𝛼√
𝜇𝛼

√
𝛽∥𝛼 k̃∥

)
.

The off-diagonal elements can be expressed as

𝜖xy =i
∑
𝛼

c2

v2
A

1
𝜔̃2

𝜇𝛼 q̃2
𝛼

∞∑
n=−∞

n
(

I′n
(
𝜆𝛼
)
− In

(
𝜆𝛼
))

e−𝜆𝛼
(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
+ i

∑
𝛼

c2

v2
A

1
𝜔̃2

√
𝜇𝛼 q̃2

𝛼

1√
𝛽∥𝛼 k̃∥

e−𝜆𝛼

×
∞∑

n=−∞
n
(

I′n
(
𝜆𝛼
)
− In

(
𝜆𝛼
))(𝛽⟂𝛼

𝛽∥𝛼
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(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
n𝜇𝛼 q̃𝛼

)
Z

(
𝜔̃ − n𝜇𝛼 q̃𝛼√
𝜇𝛼

√
𝛽∥𝛼 k̃∥

)

𝜖xz = −
∑
𝛼

c2

v2
A

1
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𝜇𝛼 q̃3
𝛼

1

𝛽⟂𝛼 k̃⟂

1

k̃∥

∞∑
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nIn

(
𝜆𝛼
)

e−𝜆𝛼
(
𝛽⟂𝛼

𝛽∥𝛼
𝜔̃ −

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
n𝜇𝛼 q̃𝛼

)
Z′

(
𝜔̃ − n𝜇𝛼 q̃𝛼√
𝜇𝛼

√
𝛽∥𝛼 k̃∥

)

𝜖yz =
i
2

∑
𝛼

c2

v2
A

1
𝜔̃2

q̃𝛼

k̃⟂
k̃∥

∞∑
n=−∞

(
I′n
(
𝜆𝛼
)
− In

(
𝜆𝛼
))

e−𝜆𝛼
(
𝛽⟂𝛼

𝛽∥𝛼
𝜔̃ −

(
𝛽⟂𝛼

𝛽∥𝛼
− 1

)
n𝜇𝛼 q̃𝛼

)
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(
𝜔̃ − n𝜇𝛼 q̃𝛼√
𝜇𝛼

√
𝛽∥𝛼 k̃∥

)

and one finds the same symmetry relations as in Appendix A, namely, 𝜖yx = −𝜖xy , 𝜖zx = 𝜖xz , and 𝜖zy = −𝜖yz .

Appendix C: Algorithm of DSHARK

This section is intended to give a brief overview of the underlying program structure of the Fortran 90 code
DSHARK which is schematically shown in Figure C1.

The core of DSHARK is an iterative root-finding algorithm enclosed by a loop over the considered wave num-
ber interval. Before the loop is started, all necessary parameters are read from an input file by the routine
read_data(). The input provides the iterative root-finding algorithm with the initial guesses 𝜔ini for the first
three wave numbers ki, i = 0, 1, 2. For all subsequent wave numbers, the initial guesses are determined by
the routine polyfit() which uses quadratic polynomials to fit the previous solutions.

Starting from the supplied initial guess and the given wave number k, the routine muller() iterates a complex
root𝜔(k) of equation (2) using the Muller method. Thus, for every iteration the right-hand side of equation (2)
has to be evaluated which requires the determination of the dielectric tensor components. This is done by
the routine disp_det(). All necessary integrations are carried out with the subroutine integrator() which uses a
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Figure C1. Sketch of the program structure of DSHARK.

double exponential quadrature method provided by Takuya Ooura. The evaluation of the plasma dispersion
function and the modified plasma dispersion function is done by separate functions Z_func() and Zk_func().

After the loop successfully cycles through the wave number interval, all roots are printed to an output file.

Appendix D: Padé Approximation of the Plasma Dispersion Function

The standard plasma dispersion function Z defined by Fried and Conte [1961] can be approximated using a
modified Padé method [Martin and Gonzalez, 1979]. In accordance to other dispersion solvers such as WHAMP
and PDRK, DSHARK adopted an eight-pole approximant,

Z(𝜉) ≈
8∑

j=1

bj

𝜉 − cj
, (D1)

with complex coefficients bj , cj , given in Table D1.
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Table D1. Coefficients of the Eight-Pole Padé Approximation for the Plasma Dispersion Function Z, Given in Equation (D1)a

j bj cj

1 −0.017340124574718 − 0.04630639291680i 2.237687789201900 − 1.625940856173727i

2 −0.739916992322501 + 0.83951799780998i 1.465234126106004 − 1.789620129162444i

3 5.840628642184073 + 0.95360090576437i 0.839253981723264 − 1.891995045765206i

4 −5.583371525286853 − 11.20854319126599i 0.273936222628556 − 1.941786875844713i

b5,6,7,8 = b∗1,2,3,4 c5,6,7,8 = −c∗1,2,3,4
aThe coefficients were taken from Xie and Xiao [2014].
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5.1.3 Further remarks

Before presenting the results of a first study based on the DSHARK solver in
Sec. 5.2, a few words on the limitations of the code and some recent modifica-
tions are in order.
The distribution implemented in DSHARK is the anisotropic kappa distri-
bution with kappa-independent temperature given in Eq. (2.30). While this
model is a useful and appropriate generalization of the bi-Maxwellian velocity
distribution, it is not the only kappa-type distribution used in the community.
Other commonly used kappa models are the product bi-kappa distribution
[89, 90], the Lorentzian loss-cone distribution [91, 92, 93], relativistic kappa dis-
tributions [94, 95, 96], and the regularized kappa distribution [97]. All these
alternative kappa models are not covered in the DSHARK solver. Further-
more, there is a controversy whether the temperature in the kappa distribu-
tions should be defined as a kappa-dependent or a kappa-independent quantity
(see the discussion in Lazar et al. [98]). The latter definition, which is used in
DSHARK, is also referred to as the Kappa-A model and the former is called
Kappa-B. While for low kappa index, Kappa-A shows an enhanced tail and
an enhanced core population compared to the corresponding bi-Maxwellian
limit with equal temperature (see also Fig. 2.3), Kappa-B enhances the tail
at the expense of the core population, assuming higher temperature compared
to its bi-Maxwellian counterpart. For both models, there exist physical sys-
tems where the use of one or the other model can be justified. Although
the DSHARK solver employs the Kappa-A model, its results can easily be
converted to Kappa-B, as is demonstrated in Shaaban et al. [99] where the
DSHARK solver is applied to mirror-unstable setups, testing both models.
However, care must be taken how the results are interpreted in light of the
chosen temperature definition and which model is suitable for the considered
system.
In general, the anisotropic kappa distribution, Eq. (2.30), is defined for all real
valued kappa indices with 3/2 < κ ≤ ∞. However, the current implementation
of the modified plasma dispersion function only allows for integer kappa values
in DSHARK. This is a limitation which may be lifted in the near future with
the help of Mace and Hellberg [38] who describe an alternative closed form of
the modified plasma dispersion function which allows for non-integer kappas
too.
Another limitation of the original code version presented in Astfalk et al. [100]
is the restriction to growing modes in the bi-Maxwellian scenario which is due
to the implemented Padé approximation. This limitation has later been re-
laxed by exploiting the close connection of the plasma dispersion function to
the complex error function. The error function can be computed efficiently
with numerical methods based on continued fraction formula [101]. Since the
inclusion of damped and stable mode analysis in the bi-Maxwellian scenario
was made necessary for the studies in Told et al. [102] and Told et al. [103], we
included a routine based on Zhang and Jin [104] for the computation of the
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complex error function which extends the validity of the implemented plasma
dispersion function Z(ξα) to Im(ξα) ≤ 0.



5.2 PFHI and OFHI thresholds for bi-kappa distributed protons 57

5.2 Parallel and oblique firehose instability thresh-

olds for bi-kappa distributed protons

5.2.1 Background

In the solar wind, strong anisotropies with T‖ > T⊥ can arise which drive the
PFHI and the OFHI. Both instabilities can be excited simultaneously and may
be present at the same time, interacting with each other. Their interplay in
realistic environments is still not fully understood as is discussed in Sec. 4.3.3.
Both instability mechanisms are kinetic in nature and therefore exhibit sen-
sitivity to the shape of the underlying velocity distribution function. Thus,
when changing from a bi-Maxwellian background velocity distribution to – in
the space plasma context – more realistic anisotropic kappa distributions, we
would expect modifications in their dispersion properties which may also mod-
ify the interplay between them.
Studies on the firehose instability in kappa-distributed plasmas have already
been carried out in the past but were restricted to the PFHI only [105, 106, 86].
The implementation of the DSHARK solver now allows us to also investigate
how the dispersion properties of the OFHI are affected by the presence of
suprathermal particles. Here, we analyze the response of the proton PFHI and
the proton OFHI to kappa distributions and compare their instability thresh-
olds for varying kappa indices. Find below a summary of the results presented
in the paper.
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5.2.2 Summary

In a series of papers, Lazar and Poedts [105], Lazar et al. [106, 86] find that
the growth rates of the PFHI strongly depend on the kappa index. Lazar
et al. [86] shows that the instability threshold of the proton PFHI moves to
stronger anistropies when lowering the kappa index, indicating a suppression
of the instability in the presence of suprathermal tails. However, the analyt-
ically derived threshold is based on a Taylor expansion which we find to be
flawed, yielding a wrong result and justifying a reconsideration of the PFHI.
We compare the fluid firehose with the kinetic parallel firehose, which is
strongly enhanced by anomalous cyclotron resonance, and we numerically de-
rive the kinetic PFHI thresholds for a bi-Maxwellian background plasma, al-
lowing for different maximum growth rates. The location of the threshold is
found to strongly depend on the chosen maximum growth rate and for decreas-
ing γmax, it extends to much lower parallel proton beta and weaker temperature
anisotropies than the fluid threshold. We re-derive the fluid instability thresh-
old assuming an anisotropic kappa distribution and correcting the error in the
analysis of Lazar et al. [86]. In contrast to Lazar et al. [86], we find the fluid
firehose threshold to be independent of kappa and of the same form as in the
bi-Maxwellian scenario.
We proceed by employing the DSHARK solver to derive the kinetic PFHI
thresholds for different kappa indices and we observe that only for high tem-
perature anisotropy the presence of suprathermal populations suppresses the
instability growth while for low anisotropy it gets enhanced. We infer that
the threshold for γmax = 10−1Ωi moves to stronger anisotropies when lowering
the kappa index whereas for γmax = 10−2 Ωi and γmax = 10−3 Ωi it is shifted
to weaker anisotropies. Since in the fluid approximation, bi-Maxwellian and
anisotropic kappa distributions yield the same threshold condition, we con-
clude that the observed change in the dispersion properties is a purely kinetic
effect related to the cyclotron-resonant nature of the instability. We argue that
the destabilizing effect of the high energy tails is due to an increased pitch an-
gle anisotropy.
Finally, we present the OFHI thresholds for two exemplary propagation angles,
different γmax, and varying kappa indices. The thresholds for γmax = 10−2 Ωi

and γmax = 10−3 Ωi are observed to be very close to each other. In agree-
ment with the results of Astfalk et al. [100], we find that for both γmax and all
propagation angles the OFHI always gets weakly suppressed in the presence
of suprathermal populations. Thus, for decreasing kappa index the thresh-
olds move to slightly stronger anisotropies. Again, we attribute this to the
cyclotron resonant nature of the instability.
We conclude that for the growth time scales which seem to be of interest in
the solar wind, namely γmax between 10−3Ωi and 10−2Ωi [62], both instability
mechanisms respond differently to decreasing kappa indices. While the PFHI
gets strongly enhanced, the OFHI is slightly suppressed. We suggest that this
different response may be used to identify which of both mechanisms is con-
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straining the observed temperature anisotropies in the solar wind.

Contribution of the thesis author: Theoretical derivation of the fluid
threshold for kappa distributions and the cyclotron-resonant growth rate ap-
proximation. Computation and analytical fitting of the presented PFHI and
OFHI thresholds.
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Abstract The parallel and the oblique firehose instability are generally accepted as the leading
mechanisms shaping the boundaries of the protons’ pressure anisotropies observed in the solar wind for
p∥ > p⟂. However, it is still an open question which instability dominates this process. Only recently, first
attempts were made to study the linear growth of the parallel firehose assuming more realistic bi-kappa
velocity distributions instead of traditionally used bi-Maxwellians. We apply a newly developed, fully kinetic
dispersion solver to numerically derive the instability thresholds for both firehose instabilities. In contrast
to former findings, we observe that the presence of suprathermal populations yields a growth amplification
which lowers the instability threshold of the parallel firehose. This is due to enhanced cyclotron resonance.
For the first time, we also look at the oblique firehose threshold and find a contrary picture. Here the
presence of suprathermal particles leads to an increase of the instability threshold. The enhancement of the
parallel firehose and the suppression of the oblique firehose are expected to be of relevance in the solar
wind and may alter the competition between both instabilities. Based on our findings, we propose a method
how solar wind data could be used to identify the instability mechanism dominating this competition and
shaping the observed anisotropy boundary.

1. Introduction

Since Parker [1958] formulated a first model to explain the gross features of the solar wind, a lot of progress
has been made in improving our understanding of this complex and diverse plasma system. However, many
properties of the solar wind are still rather poorly understood, making this an intriguing field of ongoing
research. In contrast to other astrophysical plasmas, the solar wind allows direct access by spacecraft measure-
ments. Hence, it is a good test bed to validate models which can hardly be examined in earthbound plasma
experiments.

A special condition given in the solar wind, which is difficult to reproduce in experiments, is its low collision-
ality. The typical mean free path of solar wind particles close to the Earth orbit is of the order of 1 AU [see,
e.g., Meyer-Vernet, 2012]. The absence of collisions enables the formation and preservation of anisotropies
in the pressure components parallel and perpendicular to the background magnetic field. Such anisotropies
provide a source of free energy giving rise to kinetic plasma instabilities which feed on the free energy and
eventually lead to a reduction of the initial pressure anisotropy.

Using Chew-Goldberger-Low theory [Chew et al., 1956], it is easy to show that assuming adiabaticity, a spher-
ically expanding, collisionsless plasma such as the solar wind rapidly develops an excess of parallel pressure.
The resulting anisotropy gives rise to the firehose instability. An unlimited growth of the anisotropy is then
prevented since the firehose instability will keep the plasma close to a state of marginal stability which is deter-
mined by the firehose instability threshold. Space observations revealed that the proton pressure anisotropies
encountered in the solar wind are indeed confined to a clearly constrained parameter space which is most
likely shaped by the presence of kinetic instabilities [Kasper et al., 2002; Hellinger et al., 2006; Bale et al., 2009].
In the realm p∥ > p⟂ and 𝛽∥ ≥ 1, the constraint is believed to be either due to the parallel propagating
firehose instability (k⟂ = 0) or the oblique firehose instability (k⟂ ≠ 0). Both instablities can be present simul-
taneously and show comparable growth rates over a wide range of parameters [Hellinger and Matsumoto,
2000]. This poses the question which of both instabilities is the dominant one limiting the observed pressure
anisotropies. Recent investigations with hybrid expanding box simulations showed that the saturation mech-
anism of the parallel firehose instability might be too weak to keep an expanding plasma at marginal stability
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[Hellinger and Trávníček, 2008]. Instead, it is the saturation of the oblique firehose which ultimately prevents
the pressure anisotropy from unlimited growth. However, this finding might not apply to the real solar wind
since, due to numerical limitations, the simulations assumed unrealistically fast expansion. Slower expansion
might favor the parallel firehose, instead [Hellinger and Trávníček, 2008]. This is also supported in a more recent
work by Yoon and Seough [2014]. By combining a kinetic-fluid model of the solar wind with quasi-linear insta-
bility theory in a one-dimensional setup, Yoon and Seough [2014] found that the parallel firehose stops the
adiabatic growth of the pressure anisotropy before it crosses the threshold of the oblique firehose instability.

Although the saturation mechanisms of both instabilities are nonlinear in nature, the corresponding linear
instabilty thresholds are expected to play an important role since they determine the state of marginal stabil-
ity. However, plotting numerically derived linear thresholds over the pressure anisotropies measured in the
solar wind gives only rough agreement between data and theory, which is not completely satisfying neither
for the parallel firehose nor for the oblique firehose [see, e.g., Hellinger et al., 2006]. There can be several rea-
sons for this discrepancy. Since the expansion of the solar wind is constantly driving the firehose instability,
a simple linear treatment excluding all nonlinearities arising from high magnetic field amplitudes might lack
important effects. Usually, the linear approach is also combined with the assumption of homogeneity which
is questionable in the presence of turbulent fluctuations[Hellinger et al., 2015]. In this case, expanding box
models should rather be applied in order to fully capture the nonlinear saturation of kinetic instabilities and
their interplay with turbulence.

And even if exclusively linear effects determine the observed anisotropy boundaries, there are still many chal-
lenges which complicate an accurate fitting of theoretical thresholds. For further discussion on this matter,
see section 4.

A major limitation which narrows a realistic description of solar wind properties is the frequenctly used
restriction to bi-Maxwellian particle velocity distributions of the form

f𝛼 = 1
𝜋3∕2

1
v∥𝛼

1
v2
⟂𝛼

exp

(
−

v2
∥

v2
∥𝛼

−
v2
⟂

v2
⟂𝛼

)
, (1)

where v∥ and v⟂ are the particle velocities parallel and perpendicular to the background magnetic field. The
thermal velocities of the particle species 𝛼 are defined by v∥𝛼 =

√
2T∥𝛼∕m𝛼 and v⟂𝛼 =

√
2T⟂𝛼∕m𝛼 where T𝛼

and m𝛼 are the particles’ temperature and mass. Due to the lack of collisions in the solar wind medium, there
is no solid fundament for this assumption, and, as is revealed by space observations, proton velocity distri-
butions indeed exhibit nonthermal features such as beams and suprathermal particle populations following
power laws instead of Maxwellians.

For the sake of a less cumbersome theoretical treatment, solar wind data which deviate too strongly from a
bi-Maxwellian model are often discarded, as is the case, e.g., for the proton anisotropy analysis presented in
Kasper et al. [2002], Hellinger et al. [2006], and Bale et al. [2009]. Allowing departures from the bi-Maxwellian
assumption increases the amount of accessible data giving further insight into the complexity of solar wind
processes away from thermal equilibrium, but the theoretical analysis requires more sophisticated numerical
tools.

In 1968, Olbert and Vasilyunas found that commonly observed suprathermal populations can often be fitted
by kappa distributions [Olbert, 1968; Vasyliunas, 1968]. Nonthermal high-energy tails are directly measured
throughout the solar wind [Gloeckler et al., 1992], from the solar corona [Ko et al., 1996] to the termination
shock [Decker et al., 2005], as well as in planetary magnetospheres [Paschalidis et al., 1994; Krimigis et al., 1983;
Leubner, 1982]. For anisotropic plasmas, the kappa distribution can be written in the form

f𝜅𝛼 = 1
𝜋3∕2

1
𝜅3∕2

1
𝜃∥𝛼𝜃

2
⟂𝛼

Γ(𝜅 + 1)
Γ(𝜅 − 1∕2)

(
1 +

v2
∥

𝜅𝜃2
∥𝛼

+
v2
⟂

𝜅𝜃2
⟂𝛼

)−(𝜅+1)

(2)

with 3∕2 ≤ 𝜅 ≤ ∞ and with the modified thermal velocities 𝜃∥𝛼 =
√

2𝜅−3
𝜅

T∥𝛼
m𝛼

, 𝜃⟂𝛼 =
√

2𝜅−3
𝜅

T⟂𝛼
m𝛼

. Γ(x) denotes

the gamma function. For 𝜅 −→ ∞, this distribution degenerates to the bi-Maxwellian, while for decreasing
𝜅 it assumes more and more distinct high-energy tails. Due to their frequent appearance in space plasmas,
kappa distributions enjoy growing interest in the space plasma community [Pierrard and Lazar, 2010]. The
origin of the observed high-energy tails is still in the focus of current research. They appear in association
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with high-amplitude plasma waves and turbulence [Hasegawa et al., 1985; Leubner, 2000; Yoon, 2012] and,
remarkably, 𝜅-like power law distributions can be derived as quasi-equilibrium solutions in the frame of Tsallis
statistics which presents a possible generalization of Gibbs-Boltzmann statistics to systems with long-range
forces [Tsallis, 1988; Leubner, 2002; Silva et al., 2002].

It turned out that the presence of suprathermal tails in a plasma can significantly change the dispersion prop-
erties of kinetic instabilities [see, e.g., Xue et al., 1996; Leubner and Schupfer, 2000; Lazar et al., 2011]. Even
slight departures from a bi-Maxwellian can alter the instabilities’ growth rates and hence the corresponding
thresholds, if resonant populations are affected.

In this paper, we revisit the thresholds of the parallel and the oblique firehose instability, and we demonstrate
that especially for low 𝛽∥ the linear thresholds in kappa-distributed plasmas show obvious deviations from
bi-Maxwellian setups. We also discuss how this could be exploited to identify the instability mechanism which
is responsible for the anisotropy boundary observed in the solar wind in the regime T⟂∕T∥ < 1.

For the numerical calculations, we make use of the recently published fully kinetic dispersion relation solver
DSHARK [Astfalk et al., 2015], and we compare our findings to former results obtained by Lazar et al. [2011].

The remainder of this paper is organized as follows. First, we discuss linear kinetic theory of small-amplitude
waves in bi-Maxwellian and bi-kappa plasmas. In section 3, we focus on the linear instability thresholds of
the parallel and oblique firehose, and we analyze the effect of suprathermal populations on their dispersion
properties. And finally, in section 4, we summarize and discuss our results.

2. Linear Theory

The firehose instability was first derived in the context of kinetic magnetohydrodynamics [see, e.g.,
Rosenbluth, 1956]. However, despite the traditional consideration as a fluid instability the firehose is generally
of resonant character and requires a fully kinetic treatment [Gary et al., 1998]. A careful inspection reveals that
especially for low beta, 𝛽∥ ≲ 1, this is of paramount importance since a fluid approximation yields a dramatic
underestimation of the expected growth rates.

To derive the dispersion relation of waves in a magnetized, homogeneous, and collisionless plasma, the
Vlasov-Maxwell system of equations is employed. Linearizing the equations and using Fourier transforma-
tions, the dielectric tensor 𝜖 can be derived which describes the plasma’s linear response to small-amplitude
perturbations. Solving the general dispersion equation for wave propagation in plasmas,

0 = det
(

c2k2

𝜔2

(
k ⊗ k

k2
− 1

)
+ 𝜖

)
, (3)

then gives the dispersion relation 𝜔(k). In general, this formalism can be applied to plasmas with arbitrary
distribution functions. For Maxwellian plasmas, it is helpful to introduce the plasma dispersion function

Z(𝜉) = 1√
𝜋 ∫

∞

−∞

exp
(
−s2

)
s − 𝜉

ds (4)

defined by Fried and Conte [1961]. The components of the dielectric tensor for a bi-Maxwellian medium can
then be written as given, e.g., in Brambilla [1998]. Assuming bi-kappa distributed particles a modified plasma
dispersion function

Z∗
𝜅
(𝜉) = 1√

𝜋

1
𝜅3∕2

Γ(𝜅 + 1)
Γ(𝜅 − 1∕2) ∫

∞

−∞

ds
(s − 𝜉)(1 + s2∕𝜅)𝜅+1

(5)

was introduced by Summers and Thorne [1991], and expressions for the components of the corresponding
dielectric tensor were derived in Summers et al. [1994].

For purely parallel propagating modes (k⟂ = 0), it is easy to show that the dispersion relation greatly simplifies
to the parallel kinetic equation

0 = 1 −
k2
∥c2

𝜔2
+ 𝜋

∑
𝛼

(
𝜔p𝛼

𝜔

)2
∞

∫
−∞

dv∥

∞

∫
0

dv⟂v2
⟂

(𝜔 − k∥v∥)
𝜕f𝛼
𝜕v⟂

+ k∥v⟂
𝜕f𝛼
𝜕v∥

𝜔 − k∥v∥ ± Ω𝛼

. (6)
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Figure 1. Instability thresholds of the resonant parallel firehose for different maximum growth rates, 𝛾̃max = 𝛾∕Ωi ,
compared to the fluid threshold. The electrons are isotropic and Maxwellian with 𝛽e = 1.

For a bi-Maxwellian plasma with f𝛼 given by equation (1), this can be rewritten as

0 = 1 −
c2k2

∥

𝜔2
+
∑
𝛼

𝜔2
p𝛼

𝜔2

(
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− 1 +
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)
Z
(
𝜉𝛼
))

, (7)

where 𝜉𝛼 = 𝜔∓Ω𝛼

k∥v∥𝛼
.

For a bi-kappa plasma, we get

0 = 1 −
c2k2
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𝜔2
+
∑
𝛼

𝜔2
p𝛼
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(
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× (8)

2𝜅 − 2
2𝜅 − 3

√
𝜅 − 1
𝜅

Z∗
𝜅−1

(√
𝜅 − 1
𝜅

𝜉𝛼

))
, (9)

with 𝜉𝛼 = 𝜔∓Ω𝛼

k∥𝜃∥𝛼
.

The lower (upper) sign in 𝜉𝛼 is for right- (left-) handed circularly polarized waves. For the parallel firehose
instability, right-hand polarization is considered.

Figure 2. Instability thresholds of the resonant parallel firehose for different 𝜅 indices and maximum growth rates,
𝛾∕Ωi = 10−3 (solid lines), 𝛾∕Ωi = 10−2 (dashed lines), and 𝛾∕Ωi = 10−1 (dotted lines),compared to the corresponding
bi-Maxwellian scenarios (𝜅 = ∞). The electrons are isotropic and Maxwellian with 𝛽e = 1.
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Figure 3. (left) Growth rates of the parallel firehose instability in a low-anisotropy setup with 𝛽∥i = 2.0 and 𝛽⟂i∕𝛽∥i = 0.6,
and the (right) corresponding distribution functions with highlighted resonant regimes. The electrons are isotropic and
Maxwellian with 𝛽e = 1. Velocities are normalized with respect to the Alfvén velocity, vA = B0∕

√
4𝜋nimi .

3. The Firehose Instability

In the existing literature, the thresholds of the parallel and the oblique firehose instability are frequently dis-
cussed and compared to solar wind data [see, e.g., Kasper et al., 2002; Hellinger et al., 2006; Bale et al., 2009].
However, the analysis is mostly restricted to the core protons which are fitted by bi-Maxwellian velocity dis-
tributions. Data which deviate too strongly from the bi-Maxwellian model, e.g., due to the presence of beams
or nonthermal high-energy tails, are often discarded. Using bi-kappa distributions in both data analysis and
theory may enable a more complete understanding of the solar wind dynamics.

The dispersion properties of the parallel proton firehose in bi-kappa setups were investigated in Lazar and
Poedts [2009] and Lazar et al. [2011]. The implications for the instability threshold were also briefly discussed.
However, the threshold was only considered in the fluid approximation, and an erroneous conclusion was
drawn from a flawed Taylor expansion in Lazar et al. [2011]. Thus, a reconsideration of the parallel firehose
threshold is in order. A more recent paper, Viñas et al. [2015], also describes the parallel firehose in bi-kappa
distributed plasmas, but the discussion is restricted to anisotropic electrons, only. We want to focus on the
proton firehose, instead.

To our knowledge, the oblique firehose instability has never been investigated in bi-kappa setups. The rea-
son for this might be the increased numerical effort. However, this challenge can be overcome by using the
newly developed dispersion relation solver DSHARK which is based on the findings of Summers et al. [1994].

Figure 4. (left) Growth rates of the parallel firehose instability in a high-anisotropy setup with 𝛽∥i = 2.0 and
𝛽⟂i∕𝛽∥i = 0.03, and the (right) corresponding distribution functions with highlighted resonant regimes. The electrons are
isotropic and Maxwellian with 𝛽e = 1.Velocities are normalized with respect to the Alfvén velocity, vA = B0∕

√
4𝜋nimi .
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Figure 5. Thresholds of the oblique firehose instability for propagation angles 𝜃=45∘(solid lines) and 𝜃=70∘(dashed lines)
for 𝛾̃max = 10−3 and 𝛾̃max = 10−2, assuming different 𝜅 indices. The electrons are isotropic and Maxwellian with 𝛽e = 1.

In this work, we present and discuss the numerically derived thresholds for the parallel and the oblique pro-
ton firehose instability in bi-kappa distributed plasmas. Throughout the paper, the electrons are assumed to
be isotropic and Maxwellian with 𝛽e = 1.

3.1. The Parallel Firehose Instability
The parallel firehose instability shows positive growth rates for propagation angles |𝜃| ≲20∘. However, the
maximum growth rate is always found at𝜃=0∘, so the dispersion relation of the dominant mode can be derived
by applying the parallel kinetic equation, equation (7), for a bi-Maxwellian or, equation (9), for a bi-kappa
plasma, respectively. By using the large argument expansion, ||𝜉𝛼|| ≫ 1, in the plasma dispersion function,

Z(𝜉𝛼) = − 1
𝜉𝛼

− 1
2𝜉3

𝛼

− 3
4𝜉5

𝛼

+  (
𝜉7
𝛼

)
, (10)

and keeping all terms up to order (𝛿3) in equation (7), where 𝛿 ∼ 𝜔

Ω𝛼

∼ kv∥𝛼
Ω𝛼

, we recover the dispersion
relation of the fluid firehose instability,

𝛾(k) =
k∥vA√

2

√
𝛽∥ − 𝛽⟂ − 2, (11)

which can also be obtained from kinetic MHD. We see that in the fluid approximation the parallel firehose is
purely growing, and there is an analytic instability threshold given by

𝛽∥ >𝛽⟂ + 2. (12)

However, equation (11) is mathematically ill posed since 𝛾 ∼ k implies the possibility of infinite growth rates.
This problem can be removed by keeping higher-order terms in the expansion [Davidson and Völk, 1968;
Yoon, 1995].

Solving equation (7) directly with a numerical solver gives the dispersion relation for the fully kinetic parallel
firehose which is different from the purely fluid-like firehose instability in two aspects. The kinetic firehose is
oscillatory, 𝜔r ≠ 0, and especially for low 𝛽∥, its growth rate is significantly enhanced by anomalous cyclotron
resonance which becomes important for ||𝜉𝛼|| ∼ 1. For a detailed study of the resonant nature of the parallel

Table 1. Fit Parameters for the 𝛾̃max = 10−3 Threshold of the Parallel Firehose Instability With 𝜃=0∘, in the Range
0.1 < 𝛽∥ < 50.0

𝜃=0∘ a b 𝛽0

Maxwell −0.487 0.537 0.560

𝜅 = 12 −0.438 0.475 0.503

𝜅 = 8 −0.429 0.486 0.423

𝜅 = 6 −0.417 0.498 0.350

𝜅 = 4 −0.387 0.518 0.226

𝜅 = 2 −0.274 0.536 0.042
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Table 2. Fit Parameters for the 𝛾̃max = 10−2 Threshold of the Parallel Firehose Instability With 𝜃=0∘ , in the Range
0.1 < 𝛽∥ < 50.0

𝜃=0∘ a b 𝛽0

Maxwell −0.701 0.623 0.599

𝜅 = 12 −0.656 0.596 0.567

𝜅 = 8 −0.623 0.579 0.569

𝜅 = 6 −0.625 0.585 0.501

𝜅 = 4 −0.625 0.593 0.379

𝜅 = 2 −0.632 0.589 0.139

firehose, see Gary et al. [1998] and Matteini et al. [2006]. Naturally, the growth enhancement also has an impact
on the corresponding instability threshold.

In Figure 1, we plot the fluid threshold together with numerically derived thresholds allowing for different
maximum growth rates, down to 𝛾max∕Ωi = 10−13 (compare with Figure 1 in Matteini et al. [2006]). Apparently,
the cyclotron resonance destabilizes the plasma also in regions where the fluid mechanism does not drive
the instability. We also note that especially for low 𝛽∥, the location of the threshold crucially depends on the
chosen maximum growth rate. When comparing thresholds to solar wind data, the best agreement is usually
found for maximum growth rates between 𝛾̃max = 10−1 and 𝛾̃max = 10−3 [Hellinger et al., 2006], where 𝛾 is
normalized to the proton gyrofrequency, i.e., 𝛾̃ = 𝛾∕Ωi. This is rather empirical, and there is still a lack of
a physical justification for the relevance of these timescales (we will further comment on this in section 4).
However, for the following considerations, we will continue using 𝛾̃max =10−1...−3 as reference thresholds since
these are the limits often used in the literature.

Lazar et al. [2011] came to the conclusion that a decreasing 𝜅 index leads to an increase of the parallel fire-
hose threshold to higher pressure anisotropies. Hence, the plasma is expected to become more stable in
the presence of suprathermal particle populations. This conclusion was based on the large argument expan-
sion of the modified plasma dispersion function in the parallel kinetic equation. As we saw earlier, the fluid
approximation gives a rather inaccurate model for the instability threshold of the parallel firehose for low
𝛽∥. Furthermore, we found that Lazar et al. [2011] missed one term in the applied large argument expansion.
Redoing the calculation with equation (9) and keeping all terms up to order (𝛿3), we recover the same fluid
threshold, equation (12), as for the bi-Maxwellian case. Hence, the fluid mechanism of the parallel firehose
instability is not sensitive to the presence of suprathermal particles but solely depends on the overall pres-
sure anisotropy. This result can also be obtained by looking at the force balance of a perturbed magnetic field
line in an anisotropic, perfectly conducting plasma. A particle flowing along a bend in the field line will feel
the centrigual force FC = mv2

∥∕R where R denotes the curvature radius of the bend. This is opposed by the
force acting on the particle’s magnetic moment, F𝜇 = ‖∇(𝜇 ⋅ B)‖ = mv2

⟂∕2R, and the magnetic tension force
which we approximate as FB = B2

0∕4𝜋R [see, e.g., Treumann and Baumjohann, 1997] (We assume a perfectly
conducting plasma here). Hence, the system becomes firehose unstable when the centrifugal force exceeds
the sum of the other two forces. We add up the contribution of all particles by integrating over the particle
velocity distribution f . The instability condition then reads

∫ d3v
mv2

∥

R
f >∫ d3v

mv2
⟂

2R
f + ∫ d3v

B2
0

4𝜋R
f . (13)

Table 3. Fit Parameters for the 𝛾̃max = 10−1 Threshold of the Parallel Firehose Instability With 𝜃=0∘ , in the range
1.0 < 𝛽∥ < 30.0

𝜃=0∘ a b 𝛽0

Maxwell −0.872 0.495 1.233

𝜅 = 12 −0.899 0.502 1.213

𝜅 = 8 −0.937 0.509 1.097

𝜅 = 6 −0.947 0.505 1.088

𝜅 = 4 −0.977 0.496 1.068

𝜅 = 2 −1.230 0.464 1.206
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Table 4. Fit Parameters for the 𝛾̃max = 10−3 Threshold of the Oblique Firehose Instability With 𝜃= 45∘, in the Range
1.0 < 𝛽∥ < 50.0

𝜃=45∘ a b 𝛽0

Maxwell −1.371 0.996 −0.083

𝜅 = 12 −1.444 0.995 −0.070

𝜅 = 8 −1.484 0.994 −0.061

𝜅 = 6 −1.525 0.993 −0.052

𝜅 = 4 −1.613 0.990 −0.026

For a bi-Maxwellian distribution, given by equation (1), we immediately recover the fluid threshold,
equation (12). For a bi-kappa distribution, equation (2), we get

2𝜅
2𝜅 − 3

m𝜃2
∥

2
>

2𝜅
2𝜅 − 3

m𝜃2
⟂

2
+

B2
0

4𝜋
. (14)

Using the definitions for 𝜃∥ and 𝜃⟂, this turns into the well-known fluid threshold, equation (12).

In Figure 2, we present the thresholds of the resonant parallel firehose for different bi-kappa setups which
were derived with the fully kinetic dispersion relation solver DSHARK. For maximum growth rates 𝛾̃max = 10−2

and 𝛾̃max = 10−3, we clearly see a lowering of the threshold to smaller anisotropies which is very distinctive
for 𝛽∥ ≲ 1. So instead of stabilizing the plasma, high-energy tails enhance the instability in this regime. For a
maximum growth rate 𝛾̃max = 10−1, the picture is reversed. Here the presence of high-energy tails pushes the
thresholds to higher anisotropies, making the plasma more stable. For high anisotropies, the bi-Maxwellian
setup obviously dominates over corresponding bi-kappa scenarios, while this is vice versa for low anisotropies.
This was also found by Lazar et al. [2011]. For reference purposes, we fitted analytical curves of the form given
in Hellinger et al. [2006] to the numerically derived thresholds. The corresponding fit parameters can be found
in Appendix A (see Tables 1, 2 and 3).

Since the fluid mechanism of the instability does not depend on 𝜅, we conclude that the sensitivity of the
threshold to the𝜅 index, which we observe for low𝛽∥, is related to the cyclotron-resonant nature of the parallel
firehose instability. In order to get some insight into the cyclotron resonance mechanism, we solve the parallel
kinetic equation, equation (6), following the usual Landau procedure [see, e.g., Gurnett and Bhattacharjee,
2005]. Applying a low growth rate expansion, 𝛾 ≪ 𝜔r , which is a reasonable approximation along the 𝛾̃max =
10−3 threshold, we can find the resonant growth rate

𝛾res =
1

𝜕ℜ(D(k∥, 𝜔))∕𝜕𝜔
∑
𝛼

𝜔2
p𝛼

𝜔2
r

𝜋G𝛼(v∥)
|||||v∥=vres

, (15)

where

G𝛼(v∥) = −2𝜋𝜔
k∥ ∫

∞

0
dv⟂v⟂f𝛼 − 𝜋 ∫

∞

0
dv⟂v2

⟂

(
v∥

𝜕f𝛼
𝜕v⟂

− v⟂
𝜕f𝛼
𝜕v∥

)
. (16)

The term in the second integral can also be written in terms of the pitch angle 𝜃 as
(

v∥
𝜕f𝛼
𝜕v⟂

− v⟂
𝜕f𝛼
𝜕v∥

)
= 𝜕f

𝜕𝜃
.

Equations (15) and (16) show that in the low-growth approximation the efficiency of cyclotron resonance

Table 5. Fit Parameters for the 𝛾̃max = 10−2 Threshold of the Oblique Firehose Instability With 𝜃=45∘, in the Range
1.0 < 𝛽∥ < 50.0

𝜃=45∘ a b 𝛽0

Maxwell −1.371 0.980 −0.049

𝜅 = 12 −1.440 0.979 −0.034

𝜅 = 8 −1.477 0.978 −0.024

𝜅 = 6 −1.514 0.976 −0.012

𝜅 = 4 −1.594 0.973 0.017
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depends on the total number of resonant particles (first term in equation (16)) and the pitch angle anisotropy
at the resonance velocity, vres =

𝜔+Ω𝛼

k∥
(second term in equation (16)).

We found that in low-anisotropy setups, such as the one shown in Figure 3, the resonance velocities related
to the unstable wave number range are far from the core of the velocity distribution. The resonant particles
are located in the tails where kappa distributions are generally more populated than Maxwellians. The first
term in equation (16), which depends on the number of resonant particles, is always negative [Gurnett and
Bhattacharjee, 2005]; hence, it causes a damping of the waves. However, for low-anisotropy setups, we see an
enhancement of the parallel firehose instability in the presence of suprathermal populations. We conclude
that the destabilizing effect of the pitch angle anisotropy must be dominant here and even overcome the
damping term.

For high-anisotropy setups, such as the one shown in Figure 4, the resonance velocities in the unstable wave
number range generally move closer to the core of the distribution. Why this leads to a dominance of the
Maxwellian setup remains an open question which must be addressed in the future.

3.2. The Oblique Firehose Instability
The oblique firehose instability was first discussed in Yoon et al. [1993] and Hellinger and Matsumoto [2000] as
a kinetic instability which can occur for T∥ > T⟂ simultaneously with the parallel firehose. However, in contrast
to the parallel firehose instability, the oblique firehose is nonoscillatory and has maximum growth at strongly
oblique angles. Its growth rates can be comparable to or even dominate over the parallel firehose instability.

Hellinger et al. [2006] presented the thresholds of the oblique firehose instability in a bi-Maxwellian setup. It
was found that along the 𝛾̃max = 10−3 threshold, the parallel firehose linearly dominates in the low-𝛽∥ regime,
while for 𝛽∥ ≳ 7 the oblique firehose takes over [see also Matteini et al., 2006, Figure 1]. Along the 𝛾̃max = 10−2

threshold, the oblique firehose instability starts to dominate around 𝛽∥ ∼ 5.

Relaxing the bi-Maxwellian assumption and allowing for bi-kappa distributed ions, we observe that—similar
to the parallel firehose—the threshold of the oblique firehose instability is sensitive to the presence of
high-energy tails. This is not unexpected since the oblique firehose also undergoes cyclotron resonance
[Hellinger and Trávníček, 2008]. However, its behavior differs from what we found for the parallel firehose. Here
the presence of suprathermal ion populations leads to a stabilization of the plasma. At least for the illustrated
maximum growth rates, the threshold is always shifted to higher anisotropies, regardless of the propagation
angle. Exemplary thresholds are shown in Figure 5. For reference, we fitted analytical curves to the thresholds
and present the fit parameters in Appendix A (see Tables 4 and 5).

Since a finite propagation angle with respect to the background magnetic field gives rise to more complex
physics, the origin of the observed behavior is not evident and requires a more rigorous study of the cyclotron
mechanism for obliquely propagating waves. However, this is beyond of the scope of this paper.

4. Conclusion

In this paper, we investigated the thresholds of the parallel and the oblique firehose instability in plas-
mas with bi-kappa distributed ions. Since measurements of solar wind ion distributions often show pro-
nounced high-energy tails, bi-kappa distributions were found to be a useful extension to traditionally used
bi-Maxwellians.

In contrast to former work, Lazar et al. [2011], we found that the resonant parallel firehose instability is
enhanced by the presence of suprathermal ion populations in low anisotropy setups with 𝛾̃max ≲ 0.01. We sug-
gest that this is due to the increased pitch angle anisotropy at the corresponding resonant velocities, causing
stronger cyclotron resonance.

In addition, we found that the oblique firehose instability threshold is also sensitive to the presence of
suprathermal particles. However, in contrast to the parallel firehose instability, the threshold is always shifted
to higher anisotropies, regardless of the propagation angle. Again, this is supposed to be due to the cyclotron
resonant nature of the instability. However, due to the increased complexity imposed by k⟂ ≠ 0, the detailed
nature of the resonance mechanism is not obvious and calls for further investigation.

We conclude that in plasmas with suprathermal ion populations the parallel firehose instability is enhanced
while, at the same time, the plasma is stabilized with respect to the oblique firehose. The differences between
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the thresholds in bi-Maxwellian and bi-kappa distributed plasmas were found to be significant under typi-
cal solar wind conditions; thus, this effect is supposed to be of relevance in the solar wind and may alter the
competition between the parallel and the oblique firehose instability. The influence of high-energy popula-
tions is most important for low 𝛽∥ ≲ 1. However, also for higher 𝛽∥ it can be crucial since it extends the linear
dominance of the parallel firehose instability over the oblique firehose to higher 𝛽∥.

Even slight deviations from a bi-Maxwellian were found to lead to significant shifts of the thresholds. This adds
another degree of freedom in fitting instability thresholds to the pressure anisotropy boundaries observed in
the solar wind. Further ambiguity can arise, if electron anisotropies and heavy ion species are included as well
[see, e.g., Michno et al., 2014; Hellinger and Trávníček, 2006]. So as long as there is no reliable argument for a
meaningful limiting maximum growth rate, which properly reflects the competition between the drive and
the suppression of the firehose instabilities, we cannot hope for an accurate and physically correct description
of the observed solar wind anisotropy constraints. Also, there is no argument for the assumption that the
threshold is set by the same maximum growth rate over the whole range of parallel beta. This complicates
the matter further.

In addition, there is still uncertainty concerning the presumed dominance of the oblique firehose instability in
the solar wind. We propose that the different responses of the parallel and the oblique firehose to the presence
of high-energy tails can be used to solve this outstanding problem. With a suitably large and well-resolved set
of solar wind data, it should be feasible to produce proton anisotropy diagrams for different kappa indices, say
one for low kappa, where there are large high-energy tails present in the measured distributions, and one for
very high kappa where the observed distributions are close to bi-Maxwellian. The location of the anisotropy
boundary for T⟂∕T∥ < 1 could then give a clue about the leading instability mechanism shaping the boundary
in the solar wind. If the boundary lies at lower anisotropies for lower kappa indices, the parallel firehose most
likely limits the anisotropies. If the boundary is moving to higher anisotropies, this would confirm the expected
dominance of the oblique firehose ins tability.

The most promising way to make further theoretical progress on this matter is the application of expand-
ing box simulations. They can naturally model the competition between the parallel and the oblique firehose
instability under realistic solar wind conditions. Furthermore, as was found by Matteini et al. [2006], they
self-consistently give rise to the development of high-energy tail distributions which, as we have shown in
this paper, will alter the linear growth rates and the thresholds of the firehose instabilities. We therefore hope
that our findings will help to understand the outcomes of past and future expanding box simulations and
complete our knowledge of anisotropy driven instabilities in the solar wind.

Appendix A: Fitting Analytical Curves to the Instability Thresholds

Hellinger et al. [2006] suggested that firehose instability thresholds may be fitted by an analytic relation of
the form

T⟂
T∥

= 1 + a(
𝛽∥ − 𝛽0

)b
. (A1)

Tables 1 to 5 list the corresponding fit parameters (a, b, 𝛽0) for various thresholds of the parallel and oblique
firehose assuming different 𝜅 indices and propagation angles 𝜃.
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5.2.3 Further remarks

In Sec. 4.3.3, we discussed temperature anisotropy histograms produced from
solar wind spacecraft data and we elaborated on the threshold fitting tech-
nique which is commonly used to study the effect of plasma instabilities on
the macroscopic temperature anisotropy of the plasma particles. As an exam-
ple, we showed the proton temperature anisotropy histogram produced by Bale
et al. [63] which we overplotted with PFHI and OFHI thresholds. The OFHI
threshold with γmax = 10−3 is usually found to fit the observed anisotropy
boundary for T‖ > T⊥ and β‖ > 2 rather well. The data in the histogram is
based on bi-Maxwellian fits of the proton velocity distributions measured by
WIND. Thus, also the plotted thresholds are based on bi-Maxwellian back-
ground distributions. Now that we have found the instability thresholds of the
PFHI and OFHI for kappa-distributed plasmas, we suggest in the conclusion of
Astfalk and Jenko [67] that the above analysis may be extended to anisotropic
kappa distributions. Let us discuss this idea in more detail here.
Instead of fitting the measured velocity distributions with bi-Maxwellians,
kappa distributions may be used as a more general fit model. This would,
on the one hand, increase the amount of available distribution data, since in
the standard analysis all data which is not well fitted by bi-Maxwellians is
discarded (see, e.g., Ref. [61] uses only 32% of the data). On the other hand,
it may shed some light on the interplay of the PFHI and the OFHI in the solar
wind. The data could be sorted with respect to its corresponding kappa indices
such that separate histograms may be plotted – one for low-kappa and one for
high-kappa data. For sufficiently high kappa, we would expect to recover the
usual result while the low-kappa histogram may reveal some interesting new
insights. In Astfalk and Jenko [67], we found that in the low-kappa scenario
the PFHI is stronger than in the bi-Maxwellian limit, exhibiting lower thresh-
olds, while at the same time the OFHI is slightly suppressed. If – despite
its inhibition – the OFHI were still the dominant mechanism in constraining
the observed proton temperature anisotropies for both low and high kappa in-
dices, both scenarios should yield data histograms with similar location of the
boundaries. In the low-kappa histogram, the boundary may lie at somewhat
larger anisotropies due to the slight suppression of the OFHI but this effect is
expected to be rather weak and may not be noticeable. If, however, the PFHI
should be the responsible mechanism for shaping the temperature anisotropy
constraints in the solar wind, or if its enhancement due to the suprathermal
populations in the low-kappa scenario should shift the dominance from the
OFHI to the PFHI, the histograms for high and low kappa should exhibit
some obvious differences. In that case, we would expect that the boundary
moves to weaker anisotropies since the PFHI gets more easily excited for low
kappa.
Of course, as we discussed in Sec. 4.3.3, an accurate match of the theoret-
ical instability thresholds with the data cannot be expected since there are
too many free parameters involved. However, in the suggested analysis only a
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qualitative comparison of the boundary locations is required and may already
yield important insights.
The prospects and the feasibility of the proposed analysis are currently un-
der discussion. Possible problems concern the low velocity resolution of the
spacecraft measurements, which may inhibit a good distribution fitting, and
too-strong deviations from ideal suprathermal kappa tails may alter the reso-
nant nature of both instabilities. Also there may be a potential lack of data
points with sufficiently low kappa. For producing a meaningful anisotropy his-
togram, a high number of suitable data points is required. Finally, also the
implication of the Kappa-A and Kappa-B controversy discussed in Sec. 5.1.3
has to be considered. However, since the analysis is based on a mere fitting
procedure and the physical interpretation of the fit distribution is of secondary
interest, the choice of the model should be irrelevant as long as the threshold
computations and the data analysis are consistently carried out with the same
definition of the temperature.
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5.3 LEOPARD: A grid-based dispersion rela-

tion solver for arbitrary gyrotropic distri-

butions

5.3.1 Background

By extending linear kinetic dispersion analysis from bi-Maxwellian velocity
distributions to anisotropic kappa distributions, we have made a step towards
more realistic space plasma modeling. However, velocity distributions mea-
sured in the solar wind exhibit a greater variety and complexity than could
be covered by these or other commonly used simple parametric models (see
Fig. 5.1). For computing correct dispersion relations even small deviations

Figure 5.1: Proton velocity distributions measured in the solar wind by the Helios

solar probes. The distributions exhibit complex features such as strong anisotropies

(elongated contours), beams, and irregular non-elliptical shapes. This figure was

taken and adapted from Marsch [4].

from the chosen parametric model may have profound effect since in the case
of resonant instabilities small alterations in the resonant particle populations
can completely change the growth rates in the system. To lift any restriction
due to prescribed model distributions, we therefore constructed a new kinetic
dispersion relation solver which is able to process arbitrary velocity distribu-
tions. The presented LEOPARD solver allows to compute eigenmodes with
arbitrary propagation angles and an arbitrary number of particle species where
each species is described either by a bi-Maxwellian, an anisotropic kappa dis-
tribution, or an arbitrary gyrotropic velocity distribution.
Astfalk and Jenko [107] discusses the implementation of the solver and its first
validation with exemplary parametric model distributions. After validation,
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the code is applied to distribution functions produced in hybrid-kinetic simu-
lations, yielding insight into the growth saturation of the PFHI. A summary
of the paper is given in the following.
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5.3.2 Summary

We list the dielectric tensor components for a general gyrotropic velocity dis-
tribution function, which need to be computed when constructing a dispersion
relation solver for arbitrary velocity distributions. We emphasize that gy-
rotropy is the only constraint the considered velocity distribution has to obey
to be suitable for the presented dispersion analysis. The LEOPARD solver is
grid-based, thus, the distribution has to be provided to the code as a data set
sampled on an equidistant v‖ × v⊥ grid. The velocity integrations required for
the computation of the dielectric tensor therefore need to be performed on the
given grid. We find natural cubic spline interpolation to be a useful method
here because it allows a piecewise analytical evaluation of the integrals. The
parallel integration becomes particularly simple. However, care must be taken
to correctly account for the analytical continuation of the integral. The evalu-
ation of the perpendicular integrals is more involved. They are computed with
the help of generalized hypergeometric functions [108] which can be efficiently
determined using continued fraction formula. After achieving a reliable and
fast integration in both velocity directions which readily gives the dielectric
tensor components, the construction of the new solver is complete since its
remaining structure is equivalent to the DSHARK solver presented in Astfalk
et al. [100].
We proceed by benchmarking the LEOPARD solver with dispersion relations
of parallel and oblique firehose-unstable setups based on bi-Maxwellian and
kappa distributions which are compared to solutions of the DSHARK solver.
The accuracy of the results depends on the velocity resolution of the distri-
bution function provided to the code. Exact agreement is achieved for high-
enough resolution while low resolution results in spline overshoots which lead
to wrong growth rate estimates. An advantage of the implemented scheme is
that the quality of the spline interpolation can be easily checked by eye.
After the successful validation, we apply the LEOPARD solver to velocity dis-
tributions obtained from 1D3V hybrid-kinetic simulations carried out with the
HVM code [87, 88]. We simulate an exemplary low-β‖ PFHI setup and, using
local gyro-averaged velocity distributions from the simulations, we compute
the instantaneous dispersion relation at each time step. With this procedure,
we demonstrate that the growth suppression during the saturation phase of the
PFHI in the given low-β‖ setup is not primarily due to temperature anisotropy
reduction but is achieved by strong non-Maxwellian deformation of the veloc-
ity distribution. This deformation is due to cyclotron-resonant diffusion as we
show by overplotting distribution snapshots with the single wave characteris-
tics of the initially most unstable mode.
Finally, we comment on the applicability of the LEOPARD solver to spacecraft
measurements and suggest potential problems due to low velocity resolution of
the data. In the end, we discuss how our findings concerning the PFHI satura-
tion may explain the outcomes of the quasilinear studies by Seough and Yoon
[82], Seough et al. [109]. Seough et al. [109] reported only limited applicability
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of the applied moment-kinetic scheme for low-β‖ setups which we attribute to
the important role of non-Maxwellian distribution deformation.

Contribution of the thesis author: Implementation of the LEOPARD
solver and derivation of the necessary equations. Running the validation se-
tups. Running the hybrid-kinetic simulations, processing the produced velocity
distributions, and feeding them into the LEOPARD solver to study the PFHI
saturation.
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Abstract Particle velocity distributions measured in collisionless space plasmas often show strong
deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in
space plasma environments such as the solar wind or Earth’s magnetosphere is still mainly carried out using
dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic
analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic
Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires
prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we
discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks.
Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid
simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the
deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation
solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while
LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies
on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role
of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a
first application of that kind.

1. Introduction

The rise of spacecraft measurements has given us the possibility to directly probe natural plasma environ-
ments such as Earth’s magnetosphere and the solar wind, enabling a thorough examination of existing plasma
models and their inherent assumptions in both linear and nonlinear regimes.

A typical problem of linear plasma physics, the propagation of small-amplitude waves in magnetized plasma
is a rich and diverse field of study which has attracted a lot of attention in the past and is still a hot topic in
modern plasma science. Special interest is dedicated to the stability of plasma waves. Whenever the velocity
distribution of a plasma deviates from a thermal Maxwell-Boltzmann distribution there is free energy in the
system which is accessed by linear eigenmodes and can lead to an exponential growth of wave amplitudes.
This wave growth is not only of interest with respect to linear processes, but it is also crucial for the onset of
nonlinear effects and turbulence in plasma media.

Stability analysis had been restricted to analytic magnetohydrodynamics and multifluid models until numer-
ical tools enabled the investigation of more generally applicable models. These numerical tools reached
their peak of generalization with fully kinetic hot plasma dispersion relation solvers such as WHAMP
[Roennmark, 1982]. Being more realistic than simple fluid solvers, such kinetic eigenvalue solvers are still
limited by the necessity of a prescribed model velocity distribution function. Bi-Maxwellian, loss cone, and
kappa distributions—to name only a few—have proven to be useful approximations to real-world distri-
butions [Baumjohann and Treumann, 1996; Dory et al., 1965; Pierrard and Lazar, 2010]. However, spacecraft
measurements have triggered a growing awareness that low collisionality in natural plasma environments
can lead to strong deviations from these idealized model distributions [Marsch, 2006]. Since the wave
dispersion in a plasma sometimes crucially depends on the presence of resonant particle populations
which constitute only a tiny fraction of the overall distribution, minor changes in the resonant regime
can cause a major impact on the wave dynamics by stabilizing (destabilizing) otherwise unstable (stable)
eigenmodes.
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A better understanding of the stability of linear waves can also trigger a deeper insight into subsequent non-
linear processes like wave-particle or wave-wave interactions. In turn, wave-particle interactions react back
on the distribution function and modify the linear dispersion properties in the plasma. For example, the
saturation of linear kinetic instabilities often goes hand in hand with a deformation of the particle velocity
distribution [Seough et al., 2014, 2015]. This feedback loop between wave dispersion and resonant plasma
heating is currently only accessible with numerically demanding kinetic simulations. The deformation of the
distribution function invalidates existing standard dispersion relation solvers and makes a thorough linear
stability analysis hardly possible. The problem at this point is not the lack of a rigorous theoretical framework,
but it is merely the lack of a proper eigenvalue solver which inhibits a general investigation of realistic veloc-
ity distribution effects on linear wave propagation so far. In this paper, we aim to fill this gap by presenting
the newly developed dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmas with
Arbitrary Rotationally-symmetric Distributions) which allows for any gyrotropic distribution function sampled
on a two-dimensional velocity grid (v∥, v⟂) and arbitrary wave propagation angles.

In section 2, we describe the theoretical and numerical foundations of the code. Section 3 presents four
benchmark setups with parametric model distributions, an application of the code to simulation data, and an
application to data obtained by spacecraft measurements. In section 4, we conclude with a discussion of the
results and potential future applications of the code.

2. The Code

Although it is clear from observations that collisionless space plasmas such as the solar wind can easily
develop and maintain strong deviations from idealized model distributions, there is—to the best of our
knowledge—still no efficient numerical tool which allows for a general examination of linear wave propaga-
tion subject to realistic particle velocity distribution functions. Dum et al. [1980] represents a first step in this
direction. They approximated measured distributions by an expansion in spherical harmonics to determine
realistic wave growth. However, the analysis is rather cumbersome and restricted to parallel wave propaga-
tion only. More recently, there was a series of publications which present efficient algorithms to compute the
Hilbert transform for arbitrary distributions using linear splines or B-splines of arbitrary degree [Brambilla and
Bilato, 2009; Micchelli et al., 2013; Bilato et al., 2014]. Again, the presented methods only allow for an efficient
computation of parallel wave propagation.

In the following, we present an approach which also allows for the analysis of obliquely propagating waves
and we comment on the numerical implementation of this method in the newly developed LEOPARD code.

2.1. Linear Kinetic Theory
Starting from Maxwell’s equations, we can derive the general dispersion equation for electromagnetic waves
in a dielectric medium to be

0 = det

(
c2k2

𝜔2

(
k ⊗ k

k2
− 1

)
+ 𝜖

)
, (1)

where c is the speed of light in vacuo, 𝜔 is the wave frequency, k is the wave vector, and 𝜖 is the dielectric
tensor of the considered medium [see, e.g., Brambilla, 1998].

The dielectric tensor can be obtained by linearizing the Vlasov-Maxwell system of equations which, in gen-
eral, describes the time evolution of a collisionless, multispecies plasma with distribution function f subject
to electric and magnetic fields. The determination of the dielectric tensor components is a standard text-
book problem and can be found, e.g, in Brambilla [1998]. Usually, part of the derivation is the assumption of
gyrotropy, i.e.,

𝜕f
(

v∥, v⟂, 𝜙
)

𝜕𝜙
= 0, (2)

where v∥ and v⟂ are the particle velocities parallel and perpendicular to the background magnetic field, and
𝜙 is the gyroangle. Additionally, a further specification of the distribution is usually employed. Commonly,
f is chosen to be a Maxwellian or bi-Maxwellian distribution function. Here we also adopt the restriction
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to gyrotropic distributions but we refrain from specifying the distribution any further. The corresponding
expressions for the tensor components are then given by
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𝜕ṽ⟂

)
,

𝜔̃2
v2

A

c2
𝜖yz = −2𝜋i

∑
𝛼

∞∑
n=−∞

𝜇𝛼 q̃2
𝛼
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where the velocity components ṽ∥ = v∥∕vA and ṽ⟂ = v⟂∕vA are normalized to the Alfvén velocity vA = B0∕√
4𝜋nimi, the wave frequency 𝜔̃ = 𝜔∕Ωi is normalized to the ion gyrofrequency Ωi = qiB0∕(mic), the wave

number components k̃∥ = k∥di and k̃⟂ = k⟂di are normalized to the ion inertial length di = vA∕Ωi , the particle
species’ mass 𝜇𝛼 = mi∕m𝛼 and charge q̃𝛼 = q𝛼∕qi is normalized to the ion mass and ion charge, the density
ñ𝛼 = n𝛼∕ni is normalized to the ion density, and f̃𝛼 = f𝛼v3

A is the normalized velocity distribution function of
the particle species.

Instead of describing f̃𝛼 in a functional form, we rather take the distribution sampled on a two-dimensional
grid (ṽ∥, ṽ⟂) to compute the dielectric tensor elements. This lifts any restrictions imposed by idealized model
distributions and allows us to examine the influence of any arbitrary gyrotropic distribution function on linear
wave propagation. Naturally, this makes the computation of 𝜖 more cumbersome but—as we will see in the
next section—the numerical demand is still tractable, even for well-resolved distribution data grids.
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2.2. Numerics
As with most of the existing kinetic dispersion relation solvers, LEOPARD is essentially a root-finding algorithm
which employs Muller’s method to determine the solutions 𝜔(k̃) of equation (1). The underlying code struc-
ture is very similar to the DSHARK code which is described in Astfalk et al. [2015]. The most challenging part of
the numerical scheme—and therefore the only part of interest here—is the determination of the dielectric
tensor components. From equation (3) it becomes apparent that each component consists of a double sum∑
𝛼

∞∑
n=−∞

over the particle species 𝛼 and the Bessel index n, and a double integral over the velocity components,
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c2ṽ⟂

)
or Jn

(
c2ṽ⟂

)
J
′

n

(
c2ṽ⟂
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where l and m are integers, c1 is a complex-valued constant, c2 is a real-valued constant, and F is a real-valued
function of the velocity components.

The distribution function f̃𝛼 is provided to the code as a two-dimensional data grid. This implies that the inte-
gral must be evaluated on the grid which can be achieved by using standard numerical integration methods.
However, apart from being very demanding, this would also give rise to various sources of errors such as the
highly oscillating integrand in equation (9). An alternative approach is to interpolate F

(
ṽ∥, ṽ⟂

)
on the velocity

grid using a suitable interpolation scheme which allows for solving the integrals analytically. An interpola-
tion method which suits our needs is the cubic spline interpolation which approximates grid-based functions
piecewisely using third-order polynomials connecting the data points in a smooth and continuous fashion
(see Appendix A). Cubic spline interpolations are easy to implement; they give good fits for F

(
ṽ∥, ṽ⟂

)
, as long

as the velocity resolution is high enough, and they transform the integrals equation (8) and equation (9) in a
favorable way. Replacing F

(
ṽ∥, ṽ⟂

)
with the corresponding spline interpolation, equation (A1), the integrals

equation (8) and equation (9) become piecewise analytically solvable. Determining the integral equation (8)
then becomes trivial. Equation (9) is more challenging but still can be solved analytically using hypergeo-
metric functions (see Appendix B). After solving the integrals, we are left with a sum of analytic expressions
evaluated at the velocity grid points.

Since we have to compute a double integral, the spline interpolation has to be employed two times. First, for
the distribution function f̃𝛼 , say, in the parallel direction so that the integral with respect to ṽ∥ can be solved.
Subsequently, the coefficients of the parallel spline interpolation have to be spline-interpolated again with
respect to the perpendicular direction to solve the ṽ⟂ integral. Which spline interpolation comes first depends
on whether f̃𝛼 is subject to 𝜕∕𝜕ṽ∥ or 𝜕∕𝜕ṽ⟂ in equation (9). The chosen interpolation makes sure that the
corresponding derivative can be solved analytically as well.

A strength of the presented method is that the quality of the result solely depends on the quality of the
cubic spline interpolation which can be easily checked by plotting the interpolated data. This allows for a
quick and intuitive error analysis which is hardly possible in any sophisticated numerical integration schemes.
Furthermore, the algorithm is relatively fast. The time needed for a cubic spline interpolation on a reason-
ably sized grid is negligible. The most time-consuming part of the computation is the determination of the
hypergeometric functions.

The LEOPARD code can process an arbitrary number of particle species. In principle, for each species the code
has to be provided with a separate distribution data set. However, to increase efficiency, LEOPARD was coupled
to a standard bi-Maxwellian solver using the same implementation as the DSHARK code [Astfalk et al., 2015].
So if the user aims to investigate a setup which includes also bi-Maxwellian species, LEOPARD can switch to
the more efficient standard algorithm for these species instead of reading the distribution from data.

3. Test Cases

The setup of the LEOPARD code allows for processing arbitrary gyrotropic distribution functions enabling
a linear dispersion analysis beyond frequently used model distributions. That said, the distribution has to
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be provided to the code as a data set. The required data may be obtained from spacecraft measurements,
parametrized model distributions, or kinetic simulations. In this section, we exemplarily show how LEOPARD
is applied to data sets from either of the three mentioned sources. We start with a benchmark of bi-Maxwellian
and anisotropic kappa scenarios. Then, we examine the saturation stage of the parallel fire hose insta-
bility based on hybrid simulation data. And finally, we discuss the application of the LEOPARD code to
spacecraft data.

3.1. Parametric Distributions
Parametric models allow us to deduce idealized distribution functions from observations which repre-
sent average plasma states and facilitate systematic studies of plasma properties under specific conditions
described by certain parameter sets. Arguably the most important and widely used parametric model in space
plasma physics is the anisotropic bi-Maxwellian distribution

f = 1
𝜋3∕2

1
v∥th

1
v2
⟂th

exp

(
−

v2
∥

v2
∥th

−
v2
⟂

v2
⟂th

)
, (10)

with the thermal velocities defined by v∥th =
√

2T∥∕m and v⟂th =
√

2T⟂∕m containing the temperatures
parallel and perpendicular to the magnetic field, T∥ and T⟂, as the two free parameters of the model. Another
type of distribution function that enjoys growing interest for the modeling of solar wind and magnetospheric
plasmas [Pierrard and Lazar, 2010] is the anisotropic kappa distribution,

f𝜅 = 1
𝜋3∕2

1
𝜅3∕2

1
𝜃∥𝜃

2
⟂

Γ(𝜅 + 1)
Γ(𝜅 − 1∕2)

(
1 +

v2
∥

𝜅𝜃2
∥

+
v2
⟂

𝜅𝜃2
⟂

)−(𝜅+1)

, (11)

which contains the additional parameter 𝜅 satisfying 3∕2 ≤ 𝜅 ≤ ∞. The expressions 𝜃∥ =
√

2𝜅−3
𝜅

T∥
m

and

𝜃⟂ =
√

2𝜅−3
𝜅

T⟂
m

denote the modified thermal velocities, and Γ(x) is the gamma function. This power law-type
distribution can be understood as an extension of the exponential bi-Maxwellian model which is recovered
in the limit 𝜅 → ∞.

For both types of distributions there already exist specific dispersion relation solvers, such as DSHARK, which
are usually faster and more efficient in computing dispersion curves than the code presented in this paper.
However, they can serve as a good test bed for benchmarking the LEOPARD code. Therefore, we pick four
exemplary scenarios which shall be investigated with LEOPARD, and we benchmark the code’s results against
the DSHARK code.

Different from the dispersion relation solver presented, e.g., in Dum et al. [1980], LEOPARD can not only treat
parallel propagating modes, but in addition it also allows for 𝜃 ≠ 0∘. And since we see the main application
of the code in studying instabilities in space plasmas, we decided to benchmark a parallel fire hose-unstable
setup with 𝜃 = 0∘ and an oblique fire hose-unstable setup with finite propagation angle 𝜃 = 45∘. Both
setups are tested for a bi-Maxwellian model with anisotropic ions described by 𝛽∥i = 4 and 𝛽⟂i = 2 and an
anisotropic ion kappa distribution with 𝛽∥i = 4, 𝛽⟂i = 2, and 𝜅i = 4, where the beta parameters are defined by
𝛽∥i = 8𝜋niT∥i∕B2

0 and 𝛽⟂i = 8𝜋niT⟂i∕B2
0. The electrons are assumed to be isotropic and Maxwellian with 𝛽e = 1.

To simplify the analysis, the electrons are treated with a standard Maxwellian solver (see end of section 2.2),
so that the code has to be provided with a distribution data set for the ions only.

The parallel as well as the oblique fire hose instability are both resonant in nature and therefore also serve as
a good test to demonstrate the ability of the code to accurately solve for kinetic effects.

Figures 1 and 2 show the results of the benchmark where LEOPARD was tested for different velocity
resolutions. Since the oblique fire hose instability is nonpropagating; only the growth rates are shown for
𝜃 = 45∘, whereas both real frequencies and growth rates are displayed for the parallel fire hose instability.
We also provide a cut of the employed distribution function at ṽ⟂ = 0, overlaid with the cubic spline inter-
polations for the corresponding velocity resolutions. The outer parts of the spline-interpolated distributions
are apparently subject to unphysical oscillations introduced by the boundary conditions of the cubic splines.
The higher the velocity resolution, the less severe are the spline overshoots, and the better are the results.
In fact, for resolutions Δṽ∥ = 0.494 and Δṽ∥ = 0.976 the dispersion curves agree almost perfectly well with
the predictions of DSHARK. However, for the lowest resolution, Δṽ∥=1.397, the spline overshoots intrude into
the inner parts of the distribution function where the resonant particle populations are located which drive
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Figure 1. Results of the bi-Maxwellian fire hose benchmark. (top row) The real frequencies (left) and the growth rates
(right) of the parallel fire hose instability (PFHI) determined by DSHARK for a bi-Maxwellian setup with 𝛽∥i = 4 and
𝛽⟂i = 2 and by LEOPARD for corresponding model distributions with different velocity resolutions. (bottom row) The
growth rates of the oblique fire hose instability (OFHI) for the same setups but 𝜃 = 45∘ and a cut of the bi-Maxwellian
distribution at ṽ⟂ = 0 overlaid with the spline interpolations for the different velocity resolutions used in LEOPARD.

the fire hose instabilities. This leads to obvious deviations in the growth rates. The real frequencies on the
other hand are only slightly changed since they depend rather on the overall characteristics of the distribution
function and are therefore less vulnerable to the spline overshoots.

So if the velocity resolution of the distribution function is not too coarse, the spline interpolation will provide a
good approximation and the LEOPARD code will accurately reproduce the dispersion curves for both parallel
and obliquely propagating modes.

3.2. Application to Simulation Data
Using parametric distribution functions, we are still restricted to idealized models which are of limited applica-
bility in real-world scenarios. The next step to more authenticity is to consider distribution functions obtained
from grid-based kinetic simulations. In principle, such simulations already allow for investigating dispersion
properties for arbitrary distribution functions. However, a linear eigenvalue solver such as LEOPARD can per-
form this task in a much more efficient and accurate way. Since LEOPARD allows for directly correlating an
increase or decrease of the observed magnetic field amplitude with the local shape of the simulated distri-
bution, it can help to identify stabilizing or destabilizing features of the distribution and, e.g., also allows for
tracking how resonant particle heating changes the dispersion properties in a plasma and causes saturation
of kinetic instabilities. As an exemplary study, we present a numerical analysis of the saturation stage of the
bi-Maxwellian fire hose-unstable setup described in section 3.1. We carried out hybrid simulations with the
semi-Lagrangian Hybrid Vlasov Maxwell code (HVM), presented in Mangeney et al. [2002] and Valentini et al.
[2007]. The simulation setup is one-dimensional in position space and three-dimensional in velocity space.
The spatial grid is chosen to be aligned with the background magnetic field. The initial distribution function
of the ions is given by a bi-Maxwellian with 𝛽∥i = 4.0 and 𝛽⟂i = 2.0, and the isotropic (fluid) electrons have
𝛽e = 1.0, in agreement with section 3.1. The instability is excited by introducing random noise perturbations
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Figure 2. Results of the fire hose benchmark with an anisotropic kappa distribution. (top row) The real frequencies (left)
and the growth rates (right) of the parallel fire hose instability (PFHI) determined by DSHARK for a kappa distribution
with 𝛽∥i =4, 𝛽⟂i =2 and 𝜅i =4 and by LEOPARD for corresponding model distributions with different velocity resolutions.
(bottom row) The growth rates of the oblique fire hose instability (OFHI) for the same setups but 𝜃 = 45∘ and a cut of
the kappa distribution at ṽ⟂ = 0 overlaid with the spline interpolations for the different velocity resolutions used in
LEOPARD.

to the initial magnetic field amplitudes. For the analysis, we picked out a single point on the spatial grid and

studied the time evolution of the local ion distribution function and the magnetic field amplitudes at that

point. As we can see in Figure 3, the initial temperature anisotropy in the ion distribution drives an exponential

growth of the magnetic field amplitudes which fades around tΩi = 200 where the instability saturates.

Figure 3. Time evolution of the local magnetic field amplitude By for a parallel fire hose-unstable setup simulated with
the hybrid code HVM, starting from a bi-Maxwellian ion distribution.
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Figure 4. (left) Time evolution of the local ion beta parameters 𝛽∥i , 𝛽⟂i and (right) time evolution of the local maximum
growth rate in the simulated system which was determined with a bi-Maxwellian solver, based on the local ion beta
parameters, and with the LEOPARD code, based on the local ion distribution function.

The further analysis is split into two parts. First, we compute the second-order velocity moments of the ion
distribution to derive the time evolution of the temperature anisotropy at the given point on the grid. The
obtained 𝛽∥i(t) and 𝛽⟂i(t) are shown in Figure 4 (left). Based on the computed anisotropies, we then employ
a bi-Maxwellian dispersion relation solver to get the corresponding fire hose growth rates (again, we used
the DSHARK code here; see dashed lines in Figure 4 (right)). In the second step, we drop the restriction
imposed by a bi-Maxwellian model. Instead, we gyroaverage the local distribution and directly feed it into
the LEOPARD code to get more realistic predictions of the linear dispersion properties during the satura-
tion stage. Comparing the results of both procedures in Figure 4 reveals obvious discrepancies which can
be understood by examining Figures 5–7. The pitch angle diffusion of the resonant particles caused by the

Figure 5. (top) Local ion velocity distribution function (filled contours) and corresponding bi-Maxwellian model based
on the local beta parameters (dashed contours) in the early stage of growth. (bottom) The fire hose growth based on a
bi-Maxwellian solver and LEOPARD.
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Figure 6. (top) Local ion velocity distribution function (filled contours) and corresponding bi-Maxwellian model based
on the local beta parameters (dashed contours) in the late saturation stage. (bottom) The fire hose growth based
on a bi-Maxwellian solver and LEOPARD.

high-amplitude parallel fire hose fluctuations introduces non-Maxwellian features in the distribution function
(see Figure 6). The particles get scattered to higher v⟂, and the tails in the parallel velocity direction become
strongly depopulated for v⟂ = 0. The bi-Maxwellian solver cannot account for these deformations and system-
atically overpredicts the growth rates in the system. In fact, according to the predictions of the DSHARK code,
the system would still be highly unstable even after the magnetic field amplitudes in the simulation clearly
saturated. The maximum growth rate oscillates in phase with the temperature anisotropy around values as
high as 𝛾max∕Ωi > 0.04. Of course, one could attribute this obvious mismatch to the fact that in the saturation
stage the high field amplitudes invalidate the linear approach and nonlinear effects might obscure the stabil-
ity analysis. However, in contrast to the bi-Maxwellian solver the growth rates based on LEOPARD meet our
expectations very well. While the magnetic field amplitudes saturate around tΩi = 200, it predicts a strong
reduction of the growth rates to 𝛾max∕Ωi ∼ 10−3. Around tΩi = 230, 𝛾max goes slightly up again which seems
to be related to the fact that the local macroscopic temperature anisotropy is temporarily increasing again.
After that, however, LEOPARD predicts decreasing 𝛾max again, and the fire hose branch eventually becomes
stable around tΩi = 240, while the bi-Maxwellian solver still shows strong instability.

Figure 7 provides further qualitative insight into this premature saturation of the parallel fire hose insta-
bility. It shows the ion velocity distribution during the stage of growth (Figure 7, top) and after saturation
(Figure 7, bottom) with overplotted single-wave characteristics of the most unstable mode. Particles which
are in cyclotron resonance with a single wave roughly conserve their kinetic energy in the frame comoving
with the wave [see, e.g., Kennel and Engelmann, 1966], i.e., they obey

v2
⟂ +

(
v∥ −

𝜔k

k∥

)2

≈ const. (12)

The single-wave characteristics plotted in Figure 7 show the contours of the conserved energy in the comov-
ing frame of the most unstable mode. Gradients in the phase space density along these contours provide a
source of free energy. Thus, pitch angle scattering induced by the growing wave amplitude is expected to lead
to a diffusion of the particles along the contours in the direction of decreasing phase space density which sta-
bilizes the plasma [see, e.g., Lyons and Williams, 1984]. Comparing Figure 7 (top and bottom), we indeed see
that after saturation the ion velocity distribution is smoothed out along the single-wave characteristics which
eventually leads to the suppression of the fire hose growth.
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Figure 7. Local ion velocity distribution function (filled contours) in (top) the early stage of growth and in (bottom) the
late saturation stage with overplotted single-wave characteristics determined by equation (12).

This observation confirms that for the given setup the saturation of the parallel fire hose instability is not
primarily governed by the reduction of the macroscopic pressure anisotropy but it is rather due to resonant
pitch angle scattering. Furthermore, it shows that a linear stability analysis can still produce useful results even
in the presence of high fluctuation amplitudes as long as the distribution function is correctly described.

For further discussion on how these results comply with former investigations of the parallel fire hose
saturation, see section 4.

3.3. Application to Space Measurements
After discussing the application of the LEOPARD code to parametric distributions and simulation data, we
now conclude by shortly outlining what we consider the main purpose of the code in future studies, namely,
the application to distribution data obtained from spacecraft measurements. Since measurements of space
plasma distribution functions are usually performed in a three-dimensional cartesian velocity space, a proper
transformation to field-aligned coordinates and a subsequent averaging over the gyroangle is required before
the data can be processed by the code. Due to gyrophase bunching, space plasmas can generate a significant
agyrotropy [see, e.g., Eastman et al., 1981; Gary et al., 1986], which alters the dispersion properties. While per-
forming the gyroaveraging, it is therefore important to ensure that the gyrotropy assumption inherent to the
code is still tolerably satisfied. This—of course—also applies to distribution data from kinetic simulations of
collisionless plasmas discussed above.

In Dum et al. [1980], wave growth was determined based on distribution data from the Helios 1 and 2 space-
craft. At this point, we refrain from demonstrating the application of LEOPARD to a specific data set but we
merely refer to an upcoming paper where the LEOPARD code is applied to measurements of the ARTEMIS
spacecraft, THEMIS 1 and 2. In this upcoming work, it will be shown that the wave growth of ion beam instabil-
ities can crucially depend on the actual shape of the ion beam in velocity space. This reveals the limitations of

ASTFALK AND JENKO LEOPARD—A GRID-BASED DISPERSION SOLVER 98



Journal of Geophysical Research: Space Physics 10.1002/2016JA023522

conventionally used drift bi-Maxwellian dispersion solvers and justifies the need for an arbitrary distribution
dispersion solver in the space plasma community.

The performance of the LEOPARD code crucially depends on the quality of the applied cubic spline inter-
polation which furthermore relies on the velocity resolution of the provided data. For parametric model
distributions and simulation data, the resolution is solely limited by the numerical demand and can generally
be chosen high enough to ensure a robust analysis with LEOPARD. Spacecraft measurements, on the other
hand, are limited by the resolution of their instrumentation which might not yet meet the requirements for
a reliable cubic spline interpolation in all cases. Checking the spline interpolation for unphysical overshoots
provides an intuitive way to locate errors stemming from such poor data resolution.

4. Discussion and Outlook

In this paper, we presented a newly developed dispersion relation solver for arbitrary gyrotropic distribution
functions which—to the authors’ knowledge—is the first kinetic eigenvalue solver of that kind, allowing for
arbitrary propagation angles and an arbitrary number of particle species. The required distribution function is
provided to the code as a data set sampled on a (ṽ∥, ṽ⟂) grid. Applying a cubic spline interpolation to the data
then allows for analytically solving the velocity integrals which appear in the standard dispersion formalism.

In section 3, we successfully benchmarked the code with a bi-Maxwellian and an anisotropic kappa model
distribution. Subsequently, we investigated the saturation stage of the parallel fire hose instability by exam-
ining data produced with the hybrid code HVM, and we clearly demonstrated that for the chosen setup the
saturation of the parallel fire hose instability is mainly achieved by the pitch angle scattering of resonant par-
ticles and not primarily by the reduction of the pressure anisotropy. This investigation can be understood as
a follow-up on the discussions in, e.g., Gary et al. [1998], Matteini et al. [2006], Seough et al. [2015], and Astfalk
and Jenko [2016] concerning the resonant nature of the parallel fire hose instability and the effect of the defor-
mation of the distribution function on its saturation. Seough et al. [2015] presented a thorough study, utilizing
Particle-in-cell simulations to investigate the saturation of the parallel fire hose instability for different 𝛽∥i and
𝛽⟂i and comparing the simulation results to the predictions of quasilinear theory. It was found that especially
for lower plasma 𝛽 , there was an obvious discrepancy between simulation and theory. This was attributed
to either the presence of nonlinear wave-wave interactions or the non-Maxwellian deformation of the distri-
bution due to pitch angle scattering which the chosen approach did not account for—Seough et al. [2015]
assumed that the distribution’s bi-Maxwellian shape is preserved throughout the saturation process. Based on
the results of our short investigation, we suggest that the deviation of the distribution from a bi-Maxwellian
shape may very well be the major cause of the premature instability saturation observed in the lower 𝛽 setups
of Seough et al. [2015]. The pitch angle scattering of the resonant particles clearly inhibits further growth, while
the quasilinear theory based on a bi-Maxwellian model would still predict further instability. A more thorough
analysis of this and similar problems is left for the future.

Finally, we briefly discussed the application of LEOPARD to direct measurements of spacecraft in natural
plasma environments. A first systematic study of this kind is postponed to an upcoming paper where the
code will be applied to THEMIS measurements. In section 3.3, we mentioned that the limited resolution of
spacecraft data can be a severe issue for the performance of the LEOPARD code. However, the improved
instrumentation of upcoming space missions such as Solar Orbiter and THOR will enable a more and more
accurate linear dispersion analysis. In both simulation and real-world applications, LEOPARD will allow for
directly linking observed growth (or damping) in magnetic field amplitudes with features in the local distri-
bution functions with unprecedented accuracy. It is our hope that this will further deepen the knowledge of
linear wave physics in both basic theory and natural plasma environments such as the solar wind or planetary
magnetospheres.

Appendix A: Cubic Spline Interpolation

The cubic spline interpolation for a given set of n data points (x1, y1),… , (xn, yn) can generally be written as

S(x) =
n−1∑
i=1

Si(x) =
n−1∑
i=1

ai × (x − xi)3 + bi × (x − xi)2 + ci × (x − xi) + di, (A1)

where xi ≤ x ≤ xi+1 and 1 ≤ i ≤ n − 1.
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The parameters ai , bi, ci , and di are the spline coefficients which have to be determined. Several types of spline
interpolation schemes satisfying different boundary conditions can be found in the literature [see, e.g., De Boor
et al., 1978; McKinley and Levine, 1998]. In most of our cases, natural splines (also known as free splines) have
proven to be the best choice. The corresponding spline coefficients can be determined using the following
conditions:

(I) Si(xi) = yi for 1 ≤ i ≤ n − 1
(II) Si(xi+1) = yi+1 for 1 ≤ i ≤ n − 1

(III) S
′

i−1(xi) = S
′

i (xi) for 2 ≤ i ≤ n − 1
(IV) S

′′

i−1(xi) = S
′′

i (xi) for 2 ≤ i ≤ n − 1
(V) S

′′

1 (x1) = 0 and S
′′

n−1(xn) = 0.

The conditions (I) and (II) ensure the continuity of the splines at each grid point. Conditions (III) and (IV) further-
more ensure the continuity of the first and second derivatives at the grid points to guarantee the smoothness
of the splines. And condition (V) is the boundary condition for natural splines. These conditions create a com-
plete set of equations which uniquely determines the coefficients of the spline interpolation. This system of
equations takes the form of a tridiagonal matrix and can be solved using the Thomas algorithm.

The spline interpolation method implemented in the LEOPARD code was thankfully provided by
Prof. Alexander Godunov, Associate Professor of physics at Old Dominion University, Norfolk, VA, USA.

Appendix B: Hypergeometric Function

The generalized hypergeometric function can be written as

pFq

(
a1,… , ap; b1,… , bq; z

)
=

∞∑
n=0
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(
ak

)
n
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(
bk

)
n

× zn

n!
, (B1)

where
(

xk

)
n
= Γ(xk + n)∕Γ(xk) denotes the Pochhammer symbol [see, e.g., Slater, 1966].

The hypergeometric functions 1F2 and 2F3 appear in the code when solving the v⟂ integral, equation (9), after
the cubic spline interpolation, equation (A1), was applied to the grid-based quantity F

(
ṽ∥, ṽ⟂

)
. Exemplarily,

the solution of, e.g., Im =∫ dṽ⟂ṽm−1
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For numerical reasons, the hypergeometric functions are not directly computed with equation (B1) but with
the continued fraction formula
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5.3.3 Further remarks

In the given paper, we address the existing literature on former attempts of
constructing a linear kinetic dispersion relation solver based on arbitrary ve-
locity distributions. We found that efficient methods were only reported in the
case of parallel propagating modes. However, it was brought to our attention
that Matsuda and Smith [110] presented a dispersion relation solver which also
seems to work well for obliquely propagating modes.
A dispersion analysis based on arbitrary velocity distributions enables a wide
range of possible applications in collisionless space plasma environments. We
can think of three different sources of distribution data which may be used
with the new dispersion relation solver LEOPARD: data, which is taken di-
rectly from spacecraft measurements, data from kinetic simulations, and distri-
butions based on complex parametric models. In Astfalk and Jenko [107], we
demonstrated how the LEOPARD code can be applied to simulation data and
– as part of the code validation – we also showed how parametric models may
be processed. In Sec. 5.4, we present a first application to spacecraft data and
in Sec. 5.5, we demonstrate how the LEOPARD solver can be embedded in a
quasilinear scheme to study the slow time evolution of a distribution function
in the presence of an unstable mode spectrum.
The main limitation of the LEOPARD solver is its restriction to gyrotropic ve-
locity distributions. Without the gyrotropy assumption, the linear kinetic dis-
persion analysis cannot be turned into an eigenvalue problem. Thus, dispersion
relations based on agyrotropic distributions may only be obtained from more
cumbersome linear Vlasov-Maxwell simulations. In space plasmas, the velocity
distributions are often found to satisfy gyrotropy reasonably well. However,
there are processes which can induce strong agyrotropy such as magnetic recon-
nection [111] and gyrophase bunching due to electromagnetic instabilities [112].
Systematic studies on the effect of agyrotropy on the dispersion properties in
a plasma have not been performed so far and may constitute an interesting
new field of research towards more realistic linear modeling of space plasmas.
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5.4 Growth rate measurement of ULF waves

in the ion foreshock

5.4.1 Background

The Earth’s bow shock is a collisionless, fast magnetosonic shock which is
created by the interaction of Earth’s magnetosphere with the incoming solar
wind. The quasiparallel region of the shock, i.e. the part where the shock
surface normal is roughly aligned with the interplanetary magnetic field, is ac-
companied by an extended foreshock region located upstream from the shock.
The foreshock is magnetically connected to the bow shock and subject to strong
wave activity. Fermi acceleration may energize particles of the incoming solar
wind and reflect them from the bow shock back into the solar wind. Thus,
the foreshock region consists of incoming solar wind particles and populations
of reflected particles which appear as counterstreaming beams in measured
particle velocity distributions. Two foreshock regions may be distinguished:
the electron foreshock which mainly exhibits strong populations of reflected
electrons, and the ion foreshock which is dominated by reflected ions. For a
schematic sketch of the bow shock and foreshock region see Fig. 5.2.
In the ion foreshock, ion beam instabilities, triggered by the free energy of

Figure 5.2: Illustration of the bow shock and foreshock region of Earth. The ion

foreshock develops upstream of the quasiparallel bow shock. The electron foreshock

is connected to the bow shock region where the solar wind magnetic field is strongly

oblique with respect to the shock normal. Downstream the ion foreshock, strong

wave activity is observed which alters the shock structure. The figure was taken

and adapted from Eastwood et al. [113].

the ion beam distributions, are believed to be the main source for ultra low



70 5. Publication section

frequency (ULF-) waves, or, more precisely 30-s waves, i.e. ULF waves with
periods of ∼ 30sec, which are extensively observed in the foreshock region (see,
e.g., Refs. [114, 115]). The solar wind convects the excited ULF-waves towards
the bow shock where they strongly alter the structure of the shock and play a
key role in particle acceleration processes [116, 117].
In collaboration with Seth Dorfman, Heli Hietala, and Vassilis Angelopoulos,
we used data from the ARTEMIS spacecraft to study the excitation of ULF
waves in the ion foreshock. As part of this study, we processed measured
ion distribution functions with the LEOPARD solver to correlate the detected
ULF wave activity with dispersion relations predicted from the observed ion
beam distributions. The results of the study are presented in Dorfman et al.
[118] which we summarize in the following. The contributions of the thesis
author are highlighted subsequently.
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5.4.2 Summary

Based on ARTEMIS spacecraft data, measurements from the ion foreshock of
Earth are reported where ion distribution data is provided by the ion Electro-
static Analyzer [119] and the Solid State Telescope [120], and electromagnetic
fluctuations are measured with the ARTEMIS Flux Gate Magnetometer [121].
The observations are supplemented with data from the ACE, WIND, and Clus-
ter spacecraft which are used to characterize the properties of the pristine solar
wind at the time of measurement.
The event of interest, detected on March 2 in 2014, is a burst of relatively
monochromatic ULF waves in the presence of an ion beam distribution of in-
termediate type, i.e. with a crescent-shaped beam [19]. Around 19:16, the
ion beam appears and at 19:21 it is followed by a clear signal of ULF waves
with growing amplitudes. The ion beam is expected to trigger the ion-ion
right-hand resonant instability which causes the excitation of ULF waves via
anomalous cyclotron resonance [75].
The position and the spatial separation of the ARTEMIS spacecraft P1 and P2
allows to estimate how fast the amplitudes of the ULF waves grow while the
solar wind convects the plasma from P1 to P2 and further downstream towards
the bow shock. The two-spacecraft analysis yields an average local growth of
γ ∼ 0.035 Ωi during the period 19:21-19:23. Similar to former studies, the
waves are found to be slightly oblique. Although strongest growth is expected
for parallel propagation, the ion-ion right-hand resonant instability simulta-
neously excites waves with oblique angles too which may lead to an apparent
dominance of oblique wave activity [122]. In agreement with linear theory, the
waves are found to be right-hand polarized and to have phase speeds around
the Alfvén speed in the solar wind reference frame. After the growth of the
right-hand waves saturates, also left-hand waves appear which may be due to
a parametric instability triggered by the high amplitudes of the right-hand
waves.
The measured ion distribution functions are transformed into locally field-
aligned coordinates and a gyro-averaging is performed to prepare them for
processing with the LEOPARD solver. The velocity resolution of the ion Elec-
trostatic Analyzer is too low to properly resolve the ion core, thus, the core
is replaced by an appropriate Maxwellian model which is then combined with
the measured ion beam. Based on the processed distribution functions, in-
stantaneous frequency and growth rate spectra are computed with the LEOP-
ARD solver for different points in time during the observed event. While
the predicted frequencies of the fastest growing ULF mode matches the ob-
servation well, the predicted growth rate appears to be somewhat too large,
i.e. γmax ∼ 0.08 Ωi. However, because of the surprisingly quick evolution of
the dispersion properties due to rapid changes in the velocity distribution, an
accurate comparison with the growth rate estimates from the measured field
amplitudes is inhibited. Also, the inaccuracy of the core density measurements
introduces some uncertainty in the growth rate predictions. This problem may
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be lifted when more accurate foreshock data from the Magnetospheric Multi-
scale (MMS) mission is available.

Contribution of the thesis author: Pre-processing of measured velocity
distributions for preparation for dispersion analysis. Computing and analyzing
dispersion relations with the LEOPARD solver.
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Abstract We report the first satellite measurement of the ultralow frequency (ULF) wave growth rate
in the upstream region of the Earth’s bow shock. We employ the two identical ARTEMIS spacecraft orbiting
the Moon to characterize crescent-shaped reflected ion beams and relatively monochromatic ULF waves.
The event presented here features spacecraft separation of ∼2.5 Earth radii (0.9 ± 0.1 wavelengths)
in the solar wind flow direction along a nearly radial interplanetary magnetic field. The ULF wave growth
rate is estimated and found to fall within dispersion solver predictions during the initial growth time.
Observed frequencies and wave numbers are also within the predicted range. Other ULF wave properties
such as the phase speed, obliquity, and polarization are consistent with expectations from resonant beam
instability theory and prior satellite measurements. These results will inform future missions near bow
and interplanetary shocks as well as future nonlinear studies related to turbulence and dissipation in
the heliosphere.

1. Introduction

Waves generated by accelerated particles are important throughout our heliosphere [e.g., Lee et al., 2012].
These particles often gain their energy at shocks via Fermi acceleration [e.g., Jones and Ellison, 1991]. At the
Earth’s bow shock, this mechanism accelerates ion beams back into the solar wind where they can then gen-
erate ultralow frequency (ULF, 1 mHz to 1 Hz) waves at a fraction of the ion cyclotron frequency [e.g., Burgess
et al., 2012]. These waves are a key component of the diffusive shock acceleration mechanism [Berezhko and
Ellison, 1999]. They also influence the shock structure, lead to coherent structures in the magnetosheath, and
are a possible source of the ULF waves that play a key role in magnetospheric dynamics [e.g., Wilkinson, 2003;
Eastwood et al., 2005a; Omidi et al., 2010].

ULF waves are generated in the upstream region of the Earth’s bow shock when an ion beam is accelerated
from the shock front back into the solar wind. The interaction of the reflected ions with the background solar
wind population may generate the waves via one of the several instability mechanisms. As the beam is initially
collimated, the ion-ion right-hand resonant instability and/or the ion-ion right-hand nonresonant instability
will be active, depending on beam density [Gary et al., 1981, 1984]. Because the phase speed of the waves
generated is much less than the solar wind speed, the waves are then convected by the solar wind back toward
the Earth. As the beam loses energy to the waves, beam particles diffuse along curved paths in velocity space;
an initially well-collimated beam will evolve into a crescent and then diffuse distribution [Gendrin, 1968]. This
decreases the overall growth rate of the instabilities. For diffuse beams, waves may also be generated via an
ion-ion left-hand resonant instability [Gary, 1993].

Despite this theoretical understanding of the linear picture, there is at present no definitive observational
confirmation of the growth rate in the source region. This is important not only for the local physics but also
for understanding the global context involving the nonlinear stage of the waves. Large-amplitude waves con-
vected back toward the shock front may scatter subsequently generated ion beams, modifying the observed
distribution [Paschmann et al., 1981; Wang and Lin, 2003]; the waves may also develop into macroscopic
entities (foreshock cavitons and short large-amplitude magnetic structures) that affect the shock and mag-
netosphere [Schwartz et al., 1992; Blanco-Cano et al., 2011]. These large-amplitude waves are also subject to
nonlinear interactions [Wang and Lin, 2006; Wang et al., 2015], including daughter wave production via para-
metric instabilities [Spangler et al., 1997; Narita et al., 2007]. These various nonlinear phenomena may be key
to resolving the nature of turbulence and dissipation in our heliosphere.
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Many prior satellite studies have been conducted to observe the properties of ULF waves within ≲30 Earth
radii (RE) distance. Ions moving upstream from the bow shock and associated ULF waves were first observed
by the Vela satellite in the 1960s [Asbridge et al., 1968; Greenstadt et al., 1968]. Measurements from the
two-spacecraft ISEE mission recorded the first detailed measurements of ion beam and wave properties,
including phase speed and polarization [Gosling et al., 1978; Hoppe and Russell, 1983]. Sinusoidal waves were
observed in conjugation with intermediate crescent-shaped distributions, while more complex steepened
structures with multiple frequency peaks appear in concert with diffuse ion beams [Hoppe and Russell, 1983].
More recently, data from the four-spacecraft Cluster mission found the waves to be fast magnetosonic waves
[Eastwood et al., 2002] that propagate obliquely to the background magnetic field [Eastwood et al., 2005b]
with a distribution of phase speeds centered around the Alfvén speed and resonance condition [Eastwood
et al., 2005c; Narita et al., 2004]. Many observed wave properties have also been seen in global hybrid particle
in cell simulations of the foreshock [Blanco-Cano et al., 2006, 2009; Strumik et al., 2015]. A recent comparison
between near-Earth ULF waves at X < 40 RE and a global hybrid Vlasov code found that the code reproduces
the wave properties during a single event in all reported aspects [Palmroth et al., 2015].

These prior studies at 30RE have not measured the ULF wave growth rate, likely due to the proximity of these
measurements to the bow shock and the typical spacecraft separation. A shift in the interplanetary magnetic
field (IMF) direction will result in a change in direction of the foreshock-generated ion beam. If the observing
spacecraft is too close to the Earth, the regions affected by the new and old beams are likely to intersect; this
means that waves generated during the previous IMF orientation will interfere with newly generated waves,
impeding a clear measurement of the linear growth phase. Furthermore, the typical spacecraft separation in
many of these studies is an order of magnitude less than the ⪆ RE wavelength of the ULF waves. While ISEE
studies include cases with separation up to 1RE =6371 km [Le and Russell, 1990], typical separations of 200 to
2000 km for ISEE [Hoppe and Russell, 1983] and 600 km for Cluster [Eastwood et al., 2002, 2005c] are too close
for ULF wave growth measurements.

For this reason, the present study makes use of the two Acceleration, Reconnection, Turbulence, and Electro-
dynamics of the Moon’s Interaction with the Sun (ARTEMIS) spacecraft separated by ⪆ 1 RE and orbiting the
moon∼60 RE from Earth [Angelopoulos, 2011]. When the IMF direction changes such that the foreshock beam
reaches ARTEMIS, it is likely that there will be no waves left over from a previous IMF orientation, enabling
the first clean measurement of the ULF wave growth rate in the upstream region. Using the fluxgate mag-
netometer and electrostatic analyzer instruments aboard the two ARTEMIS spacecraft, crescent-shaped ion
beams and relatively monochromatic ULF waves are characterized. The event presented here features space-
craft separation in the solar wind flow direction along a nearly radial interplanetary magnetic field. The ULF
wave growth rate is estimated and found to fall within dispersion solver predictions during the initial growth
time. Observed frequencies and wave numbers are also within the predicted range. Other ULF wave prop-
erties such as the phase speed, obliquity, and polarization are consistent with expectations from resonant
beam instability theory and prior satellite measurements. Additional features that may be signatures of the
nonlinear stages of wave evolution are currently under investigation.

2. Data, Methods, and Event Overview

Data from ARTEMIS and other spacecraft plus a new dispersion solver tool are used in the present study.
In particular, we use data from the ARTEMIS Fluxgate Magnetometer (FGM) [Auster et al., 2009] to determine
growth rate and wave properties as well as background IMF conditions. Distribution function data from
the ARTEMIS electrostatic analyzer (ESA) [McFadden et al., 2008a, 2008b] and Solid State Telescope (SST)
[Angelopoulos, 2009] is used to determine beam distribution and background plasma properties. Our pristine
solar wind measurements are supplemented by ACE and Wind at ∼220 RE and Cluster at ∼20 RE. To compare
measured growth rates to theoretical predictions, the new state-of-the-art LEOPARD (Linear Electromag-
netic Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) solver is employed with
gyroaveraged ARTEMIS ion distributions [Astfalk and Jenko, 2017].

The geometry of our event is shown in Figure 1 (left). The IMF is nearly radial, as indicated by the green mag-
netic field lines measured at each spacecraft. The two ARTEMIS spacecraft P1 and P2 are shown, separated by
∼2.5RE in x and 0.55±0.05RE in the perpendicular direction (including y (shown) and z (not shown)). The latter
distance is well within the ∼1RE estimate over which Le and Russell [1990] determined that ULF waves remain
correlated perpendicular to the solar wind flow in ISEE measurements as well as the ∼3RE over which Archer
et al. [2005] found that the waves remain planar in the perpendicular direction in Cluster data. We therefore
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Figure 1. Event geometry. (left) Position of the ARTEMIS spacecraft P1 and P2 in the XY plane in geocentric solar ecliptic
(GSE) coordinates [Kivelson and Russell, 1995]. The Earth and bow shock are on the left; in the upper right is a small box
indicating the position of the moon and the two orbiting ARTEMIS spacecraft. Magnetic field orientation measured at
each spacecraft is indicated by green lines, and the measured solar wind direction is given by a gray arrow. Both are
averaged over the time period in the figure title. (right) Cartoon showing two wave packets, wA and wB , that convect
and grow. Positions of the upstream and downstream spacecraft are indicated.

expect that the solar wind, which is in the−x direction, will convect waves from the upstream spacecraft (P1) to
the downstream spacecraft (P2) along the nearly radial magnetic field. Based on data from the ACE and Wind
spacecraft located far upstream at∼220RE, we estimate the pristine solar wind x speed to be 365±5 km/s, the
proton temperature as 6.5 ± 2.5 eV, and the ion density as 4.2 ± 0.7/cm3.

A cartoon of how these ULF waves are expected to convect and grow under radial IMF conditions is shown in
Figure 1 (right). At time t0, ULF wave packet wA is generated at the upstream (us) spacecraft by an ion beam
traveling away from Earth. As time advances, the plasma parcel containing wA (represented by a 3-D box) is
convected downstream by the solar wind (vsw) and passes the location of the downstream (ds) spacecraft at t1.
Meanwhile, wA continues to gain energy from the ion beam and grows in amplitude. In the solar wind rest
frame, wA is moving at a phase speed vph ∼vAlfvén ≪vsw in the same direction as the beam; therefore, wA moves
to the right within the plasma parcel. Similar behavior is seen for a second wave wB. Resonant beam instability
theory predicts that the waves will be intrinsically right-hand polarized in the solar wind frame [Gary, 1993], but
because of the backward convection by the solar wind, the waves will have apparent left-hand polarization in
the spacecraft rest frame. To compare observations of wA on the upstream and downstream spacecraft, data
from the upstream spacecraft must be shifted forward by the appropriate amount; this is done in section 4.

Figure 2 displays data observed by the two ARTEMIS spacecraft during the event showcased in Figure 1.
Shortly after a jump in IMF Bz (red curve in Figure 2d) at about 19:13 UT, an ion beam is observed starting at
19:16 UT (Figures 2a, 2c, and 2f) followed by the onset of ULF waves at 19:21 UT (Figure 2d). At the three times
indicated by the vertical dashed lines, the ion distribution functions in Figures 2g–2i show both the solar wind
core distribution and the ion beam. Note that the ion electrostatic analyzer (ESA) instrument [McFadden et al.,
2008a, 2008b] which recorded this data does not have sufficient resolution to resolve the core temperature;
furthermore, the extension on the left side of the core represents solar wind alpha particles assumed to be
protons by ESA. These distributions are processed by subtracting the one-count level and then averaging
over gyroangle in each energy bin. This processing method is chosen so that these distributions may be fed
directly into LEOPARD and the results compared to the ULF wave growth rate measured from the time traces
in Figure 2.

3. Theory: Resonant Ion-Ion Beam Instabilities

The ULF waves are produced via a Doppler shifted anomalous cyclotron resonance. Ions gyrate in a left-hand
sense and therefore require a left-hand polarized electric field at a frequency that matches their gyromotion
in order to undergo resonance. Therefore, in the rest frame of the beam ions, the waves must be left-hand
polarized with frequency nΩi, where n is an integer. However, this condition can be satisfied for waves with
both left- and right-handed “intrinsic polarization,” defined as the polarization in the solar wind rest frame.
The Doppler shift between the beam and solar wind frames is described by the equation [Gary, 1993]

𝜔 − k∥vbeam = ±Ωi (1)
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Figure 2. Event summary plot. Plotted against time for each spacecraft (1 = P1; 2 = P2) are (a) combined energy flux spectrum from the electrostatic analyzer
(ESA) and Solid State Telescope (SST). (b) Ion density from reduced ion distribution functions. (c) Beam density including particles greater than 50 eV within 120∘
of GSE x. (d) Magnetic field from the fluxgate magnetometer (FGM). (e) Bulk ion velocity from onboard moments. (f ) Beam velocity with the beam defined as in
Figure 2c. The time between the two solid vertical lines is the time of interest for wave data used in subsequent figures. (g–i) Distribution function plots taken at
the times indicated by the three vertical dashed lines in Figures 2a–2f and averaged over gyroangle. Thirty second intervals are used centered at the times
shown. (j) A model distribution with example diffusion paths; arrows indicate the direction for the loss of energy to waves.

We consider here only waves propagating parallel or antiparallel to the background magnetic field and only

the fundamental resonance (n = 1). The frequency in the solar wind frame, 𝜔, is taken to be positive (waves

propagate forward in time), while the sign of k∥ represents the wave propagation direction. For the cases most

relevant to the ion foreshock, the wave phase speed 𝜔∕k∥ is much less than the beam speed vbeam. The plus

sign option on the right-hand side of equation (1) represents cyclotron resonance, and the negative sign

option represents anomalous cyclotron resonance.

Cyclotron resonance occurs when an intrinsically left-hand-polarized wave is Doppler shifted to resonate with

ions in the beam frame. In foreshock-relevant cases with 𝜔∕k∥≪vbeam, this requires the wave and beam to

travel in opposite directions (k∥vbeam <0) in the solar wind frame so that the beam does not overtake the wave.
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Anomalous cyclotron resonance occurs when an intrinsically right-hand-polarized wave is overtaken by a
beam traveling in the same direction (k∥vbeam > 0) in the solar wind frame; the wave is then seen as left-handed
in the beam frame due to the Doppler shift.

For waves to grow on resonance, they must gain energy from particles. In the frame moving with the wave,
time derivatives vanish; therefore, Faraday’s law predicts no electromagnetic electric field in this frame. Since
a wave with magnetic field alone cannot change particle energy, particle diffusion paths in velocity space
must conserve energy in the frame comoving with the wave. This means that in the solar wind frame, these
paths take the form of a circle centered at 𝜔∕k∥, as shown in Figure 2j [Kennel and Petschek, 1966; Gendrin,
1968]. Because the distribution function shown in the figure is peaked around v∥ =vbeam, only diffusion paths
centered at a positive wave parallel phase speed in the solar wind frame will result in beam particles moving
down a gradient in velocity space to lose energy to the wave. Therefore, only anomalous cyclotron resonance
is predicted for the beam distribution in Figure 2j. This produces intrinsically right-hand circularly polarized
waves and is known as the ion-ion right-hand resonant instability. While a nonresonant instability is also pos-
sible if the beam speed is large enough [Gary et al., 1981, 1984], this process is not predicted for the event in
Figure 2.

4. Results
4.1. Growth Rate and Obliquity
The growth rate of the observed ULF waves is successfully measured in Figure 3. A wave observed on the
upstream (us) spacecraft is observed about 45 s later on the downstream (ds) spacecraft. Therefore, to align
the waves in Figure 3a, the red time axis for upstream spacecraft data is shifted forward 45 s with respect to the
blue time axis for downstream data. From the wave field amplitude displayed in Figure 3b, we clearly identify
the time the wave is growing and indicate this growth with a dashed line. This gives a growth rate estimate of
0.0079/s; however, the ion distributions that generate the waves (Figures 2g–2i) evolve quickly compared to
this growth time. Therefore, this estimate represents different waves as they pass by the spacecraft. A more
accurate measure of the growth rate requires the simultaneous two-spacecraft measurement displayed in
Figure 3c. The ratio of downstream to upstream amplitudes shown represents the growth of a single wave as
it is convected by the solar wind from the upstream to the downstream spacecraft. Within the gray shaded
region at the center of the growth period, a 1.57 amplitude ratio leads to an estimated growth rate of 0.010/s.
Using a magnetic field magnitude of 3 nT, the normalized growth rate is estimated to be 𝛾∕Ωi ∼0.035.

The waves are measured to be oblique in Figure 3d using standard minimum variance techniques and error
analysis [Sonnerup and Scheible, 1998; Mazelle et al., 2003]. This is consistent with Strumik et al. [2015]: even
though parallel waves have the highest growth rates, a larger solid angle k space is available for oblique waves
to grow. Furthermore, from 19:23 UT to 19:29 UT, the waves become more oblique as their amplitude increases,
consistent with work that suggests that changes in the beam properties are responsible [Palmroth et al., 2015].
Oblique waves may also be generated by beam ring distributions, but unlike the waves observed in Figure 2,
such waves are highly compressive [Blanco-Cano et al., 2006].

4.2. Phase Speed and Polarization
The measured phase speed and polarization of the ULF waves is broadly consistent with activity of the ion-ion
right-hand resonant instability. Waves produced by this instability will have intrinsic right-hand polarization
but will appear left-hand circularly polarized in the spacecraft frame where the beam overtakes the waves.
Consistent with this, most of the wave power observed in Figures 3e–3h is left-hand circularly polarized.
Two main peaks are observed at 0.0167 and 0.0198 Hz. Within the initial growth time (vertical gray shaded
region), Figure 3h shows that only apparent left-hand modes grow as they convect from the upstream to the
downstream spacecraft. At the same time, Figure 3i shows that the apparent left-hand wave phase speed is
∼330 km/s in the spacecraft frame which is slower than the solar wind speed of 365 ± 5 km/s by about an
Alfvén speed (vA ∼32 km/s), within the range of phase speeds expected for the instability. These numbers
imply that the spacecraft separation of ∼2.5 RE corresponds to 0.9 ± 0.1 wavelengths, confirming that there
is sufficient room for the ULF waves to grow as they convect between the two spacecraft.

Since the calculated phase speed in the solar wind frame is about one tenth of the spacecraft frame value, the
observed wave frequencies will be about 10 times lower when shifted to the solar wind frame; the two peaks
observed will occur at∼0.040fci and∼0.045fci in this intrinsic frame. At these low values of f∕fci we expect the
phase and group speeds to be nearly identical [Cramer, 2011]; consistent with this, both the wave envelope
and phases align for the time-shifted data in Figures 3a, 3f, and 3g.
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Figure 3. Growth rate measurement of ULF waves and phase velocity and polarization measurements. Downstream
spacecraft (ARTEMIS P2) in blue and upstream spacecraft (ARTEMIS P1) in red. Note that the time axes used for the two
spacecraft (bottom) are offset from each other by 45 s. Time traces are filtered between 0.007 and 0.05 Hz. (a) Filtered
z component of the fluctuating magnetic field signal. (b) Amplitude of the fluctuating magnetic field in the same
frequency range. The two field components perpendicular to the minimum variance direction are used. (c) Ratio of
amplitude between the downstream and upstream spacecraft. Amplitude is as defined in Figure 3b and averaged over
143 s time intervals, the length of the gray shaded region. (d) Obliquity calculated from minimum variance analysis
averaged over the same time intervals. (e) Magnetic field spectrum perpendicular to the minimum variance direction
averaged over the two spacecraft. Fluctuations are decomposed into apparent left-hand (black dashed) and right-hand
(orange solid) circularly polarized components in the spacecraft frame. The entire time window shown in the other
panels is used. (f, g) The components perpendicular to the minimum variance direction are decomposed into apparent
left-hand and right-hand components. The m direction associated with the intermediate eigenvalue in minimum
variance coordinates is shown for both spacecraft. (h) Power in apparent left-hand and right-hand modes averaged
over 143 s intervals. (i) Phase speed measurement in the spacecraft frame for apparent left-hand (black circles) and
right-hand (orange stars) components averaged over the same 143 s intervals. Phase speed is determined by dividing
the spacecraft distance in x by the time delay between signals. The dashed black line is the phase speed measured
at each time assuming a delay of 45 s between spacecraft; the slope is due to the spacecraft moving closer together.

Figure 3 also shows significant power in waves that have apparent right-hand polarization (“right-hand
waves”), the origin of which is still under investigation. Unlike the waves with apparent left-hand polar-
ization (“left-hand waves”), Figure 3h shows that the right-hand waves retain the same amplitude as they
convect between the two spacecraft. This suggests that the right-hand waves do not grow in the observa-
tion region but could instead be produced further upstream and then convected to the observation region
by the solar wind. However, they are unlikely to be background solar wind fluctuations: since the right-hand
wave amplitude increases starting at 19:24 UT, just as the left-hand waves reach an amplitude plateau in
time, it seems plausible that the production of right-hand waves could be related to an amplitude thresh-
old in left-hand wave power. Comparing Figures 3f and 3g, bursts of right-hand waves tend to appear just
after bursts of left-hand waves. Furthermore, as the left-hand waves reach maximum amplitude at 19:28 UT
in Figure 3h, the right-hand waves overtake the solar wind by about an Alfvén speed in Figure 3i. At the same
time in Figure 3g, the red trace leads the blue trace, confirming the observed change in phase speed. This
means that these waves at 19:28 UT propagate toward Earth in the solar wind frame and are therefore both
apparently and intrinsically right-hand polarized. Because the beam is moving away from Earth in this frame,
k∥vbeam <0. As discussed in section 3, this means that anomalous cyclotron resonance is not possible and these
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Figure 4. Wave properties based on distribution functions measured
at the upstream spacecraft. (a) Phase speed and (b) growth rate
in the solar wind frame are plotted against the real part of the
frequency in the spacecraft frame for six times during the event.
Thirty second intervals are used centered at the times shown. The
finite width of each curve is due to the uncertainty in background
solar wind density 4.5 ± 1.0/cm3. Vertical dashed lines are the
frequencies of the two peaks measured in Figure 3e.

waves with apparent right-hand polariza-
tion observed at 19:28 UT are not due to
the ion-ion right-hand resonant instability.
An intriguing alternative source for these
waves is a parametric instability of the
beam-produced waves in the solar wind
frame; this could produce backward prop-
agating ULF waves with the same intrinsic
right-hand polarization.

5. Discussion: Comparison With
Theory

Wave growth rates predicted from the mea-
sured distributions are in line with space-
craft measurements. This may be seen by
plugging the distributions at the top right
of Figure 2 into the LEOPARD solver. This
is done using actual ARTEMIS beam distri-
butions with a model Maxwellian core; the
core density and temperature are selected
by using Wind, ACE, and Cluster to com-
plement low-resolution ARTEMIS data. The
resulting phase speeds and growth rates
are shown in Figure 4. The finite width of
each curve is due to uncertainty in the core
density, 4.5 ± 1.0/cm3; the results are com-

paratively insensitive to core temperature. Notice that the dominant frequencies observed in the spacecraft
frame in Figure 3e (indicated by the vertical dashed lines in Figure 4) fall amid the peaks in the calculated
growth rate curves in Figure 4b. Furthermore, our growth rate estimate of 𝛾∕Ωi ∼ 0.035 at 19:21:30 UT is the
location where the 19:22:30 UT growth rate curve crosses the vertical dashed line. Because the growth rate
curves evolve surprisingly quickly (over a timescale of 60 s), but the ARTEMIS wave growth estimate in
Figure 3c is averaged over 143 s, we can conclude that our estimate is within range, but it is difficult to be
more precise. Even though the growth rate curve at 19:22:30 UT peaks to the right of the dashed frequencies,
because the growth of these frequencies was favored at an earlier time, they likely continue to grow even
after the ion distribution function changes.

Figure 4 implies that the dynamic nature of the foreshock may play a key role in the observed ULF wave
properties. Consider a wave generated at a fixed spacecraft frame frequency (x axis) in Figure 4a. As time
advances, the phase speed (y axis) at the frequency of one of the vertical dashed lines will decrease, following
the two black arrows. This trend is consistent with Figure 3i which shows a similar decrease in the wave phase
speed of the left-hand component in the initial growth period. (Note that zero phase speed in the solar wind
frame in Figure 4a corresponds to the ULF waves traveling at the solar wind speed in the spacecraft frame in
Figure 3i.)

6. Conclusions

In this letter, we have reported the first satellite measurement of the ULF wave growth rate in the upstream
region. Using the fluxgate magnetometer and electrostatic analyzer instruments aboard the two ARTEMIS
spacecraft, crescent-shaped ion beams and relatively monochromatic ULF waves are characterized. The event
presented here features spacecraft separation of ∼2.5 RE (0.9± 0.1 wavelengths) in the solar wind flow direc-
tion along a nearly radial interplanetary magnetic field. The ULF wave growth rate is estimated as 𝛾∕Ωi ∼0.035
and found to fall within dispersion solver predictions during the initial growth time. Observed frequencies
and wave numbers are also within the predicted range. Other ULF wave properties such as the phase speed,
obliquity, and polarization are consistent with expectations from theory and prior satellite measurements.
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These results shed insight into the linear properties of ULF waves that will be useful in other contexts. For
example, ULF waves are observed at various planetary bow shocks [Hoppe and Russell, 1982] as well as inter-
planetary shocks [Kajdič et al., 2012; Blanco-Cano et al., 2016]; while these observations typically feature only
a single spacecraft, the theory-observation comparison presented in the present paper suggests that disper-
sion solver results could provide a reasonable estimate of ULF wave growth for missions with well-resolved
ion distributions. Such an estimate may be useful for the Magnetospheric Multiscale (MMS) mission as well
as the upcoming Solar Probe Plus and Solar Orbiter missions. In winter 2017–2018 MMS will sweep across
the dayside at ∼25 RE, and ULF waves are expected to be frequently observed. Furthermore, our results can
inform simulations of particle acceleration at shocks in the heliosphere and beyond.

The present measurements of the linear wave properties will also enable future studies of the nonlinear
evolution. Right-hand wave power observed during the event studied is a prime candidate for future studies
of parametric processes. The surprisingly fast evolution of the ion distribution merits further investigation that
could quasi-linearly explain the two frequency peaks observed. Additional events characterized by diffuse ion
beams are also under investigation. These investigations will help us understand prior nonlinear observations
[Schwartz et al., 1992; Spangler et al., 1997; Blanco-Cano et al., 2011; Wang et al., 2015], providing the building
blocks for future studies of turbulence and dissipation in the heliosphere, a focus of both the Turbulence
Heating ObserveR (THOR) mission in development and the extended MMS mission.
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Blanco-Cano, X., P. Kajdič, E. Aguilar-Rodríguez, C. T. Russell, L. K. Jian, and J. G. Luhmann (2016), Interplanetary shocks and foreshocks

observed by stereo during 2007–2010, J. Geophys. Res. Space Physics, 121, 992–1008, doi:10.1002/2015JA021645.
Burgess, D., E. Möbius, and M. Scholer (2012), Ion acceleration at the Earth’s bow shock, Space Sci. Rev., 173(1), 5–47,

doi:10.1007/s11214-012-9901-5.
Cramer, N. F. (2011), The Physics of Alfvén Waves, Wiley-VCH, Berlin.
Eastwood, J. P., A. Balogh, M. W. Dunlop, T. S. Horbury, and I. Dandouras (2002), Cluster observations of fast magnetosonic waves in the

terrestrial foreshock, Geophys. Res. Lett., 29(22), 2046, doi:10.1029/2002GL015582.
Eastwood, J. P., E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, and R. A. Treumann (2005a), The foreshock, Space Sci. Rev., 118(1),

41–94, doi:10.1007/s11214-005-3824-3.
Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2005b), Quasi-monochromatic ULF foreshock waves as observed by the

four-spacecraft Cluster mission: 2. Oblique propagation, J. Geophys. Res., 110, A11220, doi:10.1029/2004JA010618.
Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2005c), Quasi-monochromatic ULF foreshock waves as observed by the

four-spacecraft Cluster mission: 1. Statistical properties, J. Geophys. Res., 110, A11219, doi:10.1029/2004JA010617.
Gary, S. (1993), Theory of Space Plasma Microinstabilities, Cambridge Univ. Press, Cambridge, U. K.
Gary, S. P., J. T. Gosling, and D. W. Forslund (1981), The electromagnetic ion beam instability upstream of the Earth’s bow shock, J. Geophys.

Res., 86(A8), 6691–6696, doi:10.1029/JA086iA08p06691.
Gary, S. P., C. W. Smith, M. A. Lee, M. L. Goldstein, and D. W. Forslund (1984), Electromagnetic ion beam instabilities, Phys. Fluids, 27(7),

1852–1862, doi:10.1063/1.864797.
Gendrin, R. (1968), Pitch angle diffusion of low energy protons due to gyroresonant interaction with hydromagnetic waves, J. Atmos. Terr.

Phys., 30(7), 1313–1330, doi:10.1016/S0021-9169(68)91158-6.
Gosling, J. T., J. R. Asbridge, S. J. Bame, G. Paschmann, and N. Sckopke (1978), Observations of two distinct populations of bow shock ions in

the upstream solar wind, Geophys. Res. Lett., 5(11), 957–960, doi:10.1029/GL005i011p00957.
Greenstadt, E. W., I. M. Green, G. T. Inouye, A. J. Hundhausen, S. J. Bame, and I. B. Strong (1968), Correlated magnetic field and plasma

observations of the Earth’s bow shock, J. Geophys. Res., 73(1), 51–60, doi:10.1029/JA073i001p00051.
Hoppe, M. M., and C. T. Russell (1982), Particle acceleration at planetary bow shock waves, Nature, 295(5844), 41–42, doi:10.1038/295041a0.
Hoppe, M. M., and C. T. Russell (1983), Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: ISEE 1 and

2 observations, J. Geophys. Res., 88(A3), 2021–2027, doi:10.1029/JA088iA03p02021.
Jones, F. C., and D. C. Ellison (1991), The plasma physics of shock acceleration, Space Sci. Rev., 58(1), 259–346, doi:10.1007/BF01206003.

Acknowledgments
ARTEMIS data used in this work were
obtained from the ARTEMIS website
http://themis.ssl.berkeley.edu;
ACE/Wind data were obtained from
http://cdaweb.sci.gsfc.nasa.gov/. The
THEMIS/ARTEMIS project is funded
through NASA grant NAS5-02099.
S. Dorfman was supported by a NASA
Jack Eddy Postdoctoral Fellowship
and acknowledges fruitful discussions
with Xin An and Marty Lee. H. Hietala
acknowledges fruitful discussions
within the international team Jets
Downstream of Collisionless Shocks
at the International Space Science
Institute (ISSI) in Bern.

DORFMAN ET AL. GROWTH RATE MEASUREMENT OF ULF WAVES 2127

http://dx.doi.org/10.1007/978-0-387-89820-9_2
http://dx.doi.org/10.1007/s11214-010-9687-2
http://dx.doi.org/10.1029/2004JA010791
http://dx.doi.org/10.1029/JA073i017p05777
http://dx.doi.org/10.1002/2016JA023522
http://dx.doi.org/10.1007/978-0-387-89820-9_11
http://dx.doi.org/10.1029/2005JA011421
http://dx.doi.org/10.1029/2008JA013406
http://dx.doi.org/10.1029/2010JA016413
http://dx.doi.org/10.1002/2015JA021645
http://dx.doi.org/10.1007/s11214-012-9901-5
http://dx.doi.org/10.1029/2002GL015582
http://dx.doi.org/10.1007/s11214-005-3824-3
http://dx.doi.org/10.1029/2004JA010618
http://dx.doi.org/10.1029/2004JA010617
http://dx.doi.org/10.1029/JA086iA08p06691
http://dx.doi.org/10.1063/1.864797
http://dx.doi.org/10.1016/S0021-9169(68)91158-6
http://dx.doi.org/10.1029/GL005i011p00957
http://dx.doi.org/10.1029/JA073i001p00051
http://dx.doi.org/10.1038/295041a0
http://dx.doi.org/10.1029/JA088iA03p02021
http://dx.doi.org/10.1007/BF01206003
http://themis.ssl.berkeley.edu
http://cdaweb.sci.gsfc.nasa.gov/


Geophysical Research Letters 10.1002/2017GL072692
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5.4.3 Further remarks

Dorfman et al. [118] presents the first application of the new LEOPARD solver
to distribution functions obtained from spacecraft measurements. The study
generally proves the feasibility of such a procedure. However, it also reveals
some limitations which are mainly associated with the poor resolution of the
spacecraft data. In the following, we further discuss some of the key problems.
Prior to feeding the velocity distributions into the solver, some smoothing and
interpolation of the data had to be performed. This was necessary to ensure
a good quality of the cubic spline interpolation used in the LEOPARD solver.
Due to the rather coarse energy binning, the ion core could not be resolved
properly such that it had to be replaced by a Maxwellian model. Since no
reliable estimate on the parallel and perpendicular temperature of the core
could be made (also because the detected alpha particles could not be clearly
separated from the proton population), we used an isotropic Maxwellian with
the same fixed temperature in each setup. In the given setups, the ion-ion
right-hand resonant instability was found to be rather insensitive to the core
temperature, therefore the choice of this temperature did not have a crucial
impact on the dispersion properties. However, temperature anisotropies or
other non-Maxwellian deformations of the core can alter the dispersion prop-
erties and we cannot account for this here.
Furthermore, we did not use measured electron velocity distributions but we
described the electrons by an isotropic, drifting Maxwellian with βe = 1 and
we chose the electron drift velocity such that the combined system of ion beam,
ion core, and electrons is current-free. The results were found to be insensi-
tive to the electron temperature, however, when allowing for the presence of
a small current, we observed noticeable changes in the dispersion properties.
Current density measurements are not included in our study but may have to
be accounted for in the future, or instead, the measured velocity distribution
of the electrons may be fed directly into the LEOPARD solver.
Finally, the LEOPARD solver allows for gyrotropic velocity distributions only.
The measured distributions were found to satisfy gyrotropy rather well. How-
ever, there have not been any systematic studies on agyrotropy effects on linear
dispersion relations so far and we cannot exclude that even weak deviations
from gyrotropy noticeably change the dispersion properties. Therefore, we
note that the growth rate predictions of the LEOPARD solver presented in
Dorfman et al. [118] have to be treated cautiously although we expect them
to be more reliable then a corresponding Maxwellian dispersion analysis. In
fact, when comparing the growth rate estimates from real beam shapes with
the ones of the corresponding Maxwellian model, we find that the Maxwellian
analysis overpredicts the growth rates even more, yielding ∼ 20% stronger in-
stability than in Dorfman et al. [118]. A similar result is found when using
the analytical growth rate formula in Sec. 4.4, namely γmax = 3

√

nb/2nc Ωi.
For the given event, we have nb/nc ∼ 0.002, yielding γmax ∼ 0.1 Ωi. This
confirms our expectations since a crescent-shaped beam has weaker pitch an-
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gle anisotropy compared to a Maxwellian beam which weakens the anomalous
cyclotron resonance driving the ion-ion right-hand resonant instability.
We conclude that accounting for the real shape of the measured ion beams
using the LEOPARD solver is a step towards more realistic local instability
growth prediction for ULF wave excitation in the ion foreshock, but higher ve-
locity resolution of the spacecraft data and a better knowledge of agyrotropy
effects on dispersion properties are required before solid estimates can be ex-
pected.
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5.5 On the quasilinear saturation of the paral-

lel proton firehose instability using a full-f

approach

5.5.1 Background

In Sec. 4.5.2, we derived the parallel weak turbulence kinetic equation and the
moment-kinetic quasilinear scheme which may be used to model the stabiliza-
tion of temperature-anisotropy-driven instabilities. Seough et al. [109] applied
the moment-kinetic equations to study the quasilinear saturation of the ki-
netic proton parallel firehose instability, i.e. they refrained from considering
the evolution of the full proton velocity distribution but evolved the proton
temperature components in time while assuming that the velocity distribution
preserves a bi-Maxwellian shape. Testing different PFHI setups and compar-
ing to outcomes of nonlinear kinetic PIC simulations, Seough et al. [109] find
good agreement for the saturation levels of the temperature components and
the magnetic energy, as long as the initial β‖,i is large (∼ 10). However, when
decreasing β‖,i they observe a growing offset between the moment-kinetic pre-
dictions and the kinetic simulations.
Referring to the findings of Astfalk and Jenko [107], we expect that the ob-
served disagreement for low β‖,i is due to the strong non-Maxwellian distri-
bution deformation caused by the cyclotron-resonant diffusion which strongly
dominates the growth suppression during the PFHI saturation for low β‖,i. The
deformation invalidates the assumption of a preserved bi-Maxwellian shape and
asks for the inclusion of the full distribution shape. By coupling the LEOP-
ARD solver to the parallel weak turbulence kinetic equation, we can lift this
limitation. This allows us to generally study the applicability of the quasi-
linear approximation to the saturation stage of parallel propagating kinetic
instabilities such as the PFHI, the EMIC instability, or the ion-ion right-hand
resonant instability.
In the paper presented here, a full-f quasilinear approach is applied to various
parallel firehose-unstable setups in different parameter regimes. The results of
the study are summarized in the following. Please note that this work is still
under review at the Journal of Geophysical Research.
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5.5.2 Summary

Based on the parallel weak turbulence kinetic equation (see, e.g., Ref. [32])
which describes how a broad spectrum of waves linearly interacts incoherently
with a system of plasma particles, causing slow changes in their velocity dis-
tribution, we construct a quasilinear solver which advances the full velocity
distribution function in time while co-evolving the present spectrum of (un-
stable) modes. We employ an explicit Euler method where at each time step
the velocity distribution, which is sampled on a (v‖,v⊥)-grid, is fed into the
LEOPARD solver to compute the frequency and growth rate spectra of the
modes. The spectra are then plugged into the evolution equations for the
magnetic energy and the velocity distribution. After updating the magnetic
energy spectrum, the wave number integral in the evolution equation of the
velocity distribution can be carried out. For this, the frequency, the growth
rate, and the magnetic energy spectrum are interpolated with cubic splines
which allow for a piecewise analytical evaluation of the integral. Furthermore,
we compute the required velocity derivatives of the distribution function using
a local exponential fit function. After updating the velocity distribution func-
tion in time, it can then be fed back into the dispersion relation solver, closing
the numerical scheme.
For a first validation, the constructed solver, named QLEO, is slightly modified
to allow a benchmarking with outcomes of a moment-kinetic analysis based
on Seough and Yoon [82], Seough et al. [109]. After successful validation,
we compare results of the full-f quasilinear analysis with outcomes of hybrid-
kinetic simulations with HVM [87, 88], and the moment-kinetic approach for
six different PFHI setups with varying anisotropies and varying initial β‖,i. For
low-enough anisotropies, we find excellent agreement between the HVM and
the QLEO results concerning the temperature anisotropy reduction and the
magnetic energy saturation levels, even for low β‖,i where the moment-kinetic
approach fails. For the highest anisotropy setup, there is a noticeable offset
between the saturation levels. However, an exact comparison is difficult due
to the presence of strong particle trapping in the hybrid-kinetic runs.
We show how the velocity distributions in the QLEO runs are deformed due
to (anomalous) cyclotron-resonant scattering and we match the distribution
contours with the single wave characteristics of the fastest growing mode. Fi-
nally, we compare dispersion curves of the moment-kinetic analysis, the full-f
quasilinear approach, and the hybrid-kinetic simulations at different points in
time. In the late stage of the QLEO runs, we find the formation of a plateau
of weak growth rates which is absent in the moment-kinetic case since it is at-
tributed to the distribution’s cyclotron-resonant deformation. The evolution
of the dispersion relations in the hybrid-kinetic simulations appears to be more
complex and generally shows quicker growth suppression.
We conclude that the quasilinear approximation yields good predictions for the
temperature anisotropy reduction and magnetic energy saturation in parallel
firehose-unstable setups as long as the initial temperature anisotropy is not
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too large. We argue that in the presented high anisotropy setup, the quasilin-
ear approximation may be violated since the temporal changes in the velocity
distribution no longer happen on sufficiently slow time scales.

Contribution of the thesis author: Implementation of the full-f quasi-
linear solver and the moment-kinetic solver. Running the validation setups.
Running the hybrid-kinetic simulations to investigate the applicability of the
full-f quasilinear scheme. Studying distribution functions produced by the
different methods and feeding them into the LEOPARD solver to compare
dispersion relations.
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Abstract A classic example for the application of quasi-linear theory to electromagnetic
wave-particle interactions, the saturation of the parallel proton firehose instability, is usually considered
in the long-wavelength approximation although for 𝛽∥,p ≲ 25 this instability is dominated by
anomalous cyclotron resonance, which invalidates a macroscopic treatment (Gary et al., 1998,
https://doi.org/10.1029/98JA01174). To relax the long-wavelength approximation, Seough et al. (2015,
https://doi.org/10.1063/1.4905230) solved the microscopic weak turbulence kinetic equation to model
the temperature anisotropy reduction of the firehose also in the resonant regime. However, the employed
moment-kinetic approach assumes the preservation of the initially bi-Maxwellian shape of the underlying
proton velocity distribution throughout the saturation process, leading to poor results for low 𝛽∥,p. In
this work, we lift the limitations of the moment-kinetic approach and we demonstrate that allowing for
distribution deformation due to anomalous cyclotron-resonant scattering greatly improves the predic-
tions of the kinetic quasi-linear model except for cases of very strong firehose growth. We conclude that
quasi-linear theory can be a valid model for studying the parallel firehose saturation even in the strongly
cyclotron-resonant regime as long as the initial temperature anisotropy is not too large.

1. Introduction

Due to its low collisionality, the solar wind medium can easily develop and maintain significant temperature
anisotropies, providing a source of free energy, which may drive various kinetic instabilities. From spacecraft
measurements, it has long been known that the temperature anisotropies observed in the solar wind are
clearly constrained to a certain parameter space whose bounds are identified as signatures of active instabil-
ities (Bale et al., 2009; Gary et al., 2001; Kasper et al., 2002). As soon as the anisotropy of the plasma locally
exceeds a certain threshold, an instability is excited, which will act to isotropize the plasma, hence preventing
the temperature from becoming even more anisotropic and keeping the plasma at a marginally stable state.

For anisotropies T⟂,p > T∥,p, the proposed instability mechanisms are the electromagnetic ion cyclotron (EMIC)
instability, which is propagating parallel to the background magnetic field with finite frequency, and the mir-
ror instability, which is purely growing and has k⟂ ≠ 0 (see, e.g., Gary & Lee, 1994; Sagdeev & Shafranov,
1961; Southwood & Kivelson, 1993, and references therein). The opposite anisotropy, T∥,p > T⟂,p, can drive
the parallel proton firehose instability (PFHI), which has finite frequency, and the oblique firehose (OFHI),
which—similar to the mirror instability—is nonpropagating and only grows for 𝜃 > 0∘ (see, e.g., Gary et al.,
1998; Hellinger & Matsumoto, 2000; Quest & Shapiro, 1996, and references therein).

Marginal stability conditions of these instabilities have been derived from linear kinetic theory and have been
used to fit the bounds of the observed proton temperature anisotropies in the solar wind (Hellinger et al.,
2006). For 𝛽∥,p ≫ 1, a good match is found with the firehose and the mirror thresholds in the fluid approxima-
tion. The agreement with the fluid threshold even improves when also accounting for electron and minor ion
temperature anisotropies (Chen et al., 2016). However, for 𝛽∥,p ∼ (1), the observed anisotropy bounds in the
T∥,p > T⟂,p regime do not match the linear predictions for the two firehose modes. Moreover, for 𝛽∥,p ≳ 2 the
anisotropy boundary roughly follows the oblique firehose threshold although the PFHI is more easily excited
when 𝛽∥,p < 10. Similarly, in the T⟂,p > T∥,p regime, the anisotropies seem to follow the mirror instability
threshold although the EMIC instability should be active at significantly lower anisotropies.

Understanding the apparent failure of the parallel propagating instabilities, EMIC and PFHI, to constrain pro-
ton temperature anisotropies in the solar wind, poses a challenge, which still requires further investigation.
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Several solutions have been suggested to resolve this issue, such as the inclusion of electron temperature
anisotropies (Michno et al., 2014; Shaaban et al., 2017) or minor ion anisotropies (Matteini et al., 2012). Yoon
et al. (2014) give a concise review of possible explanations and put forth another approach imposing a
time-varying background magnetic field.

Isenberg et al. (2013) follow yet another path and argue that bi-Maxwellian distributions can never be stable
with respect to cyclotron-resonant interactions. Thus, using bi-Maxwellian thresholds for the EMIC instability,
which is strongly driven by cyclotron resonance, is misleading. Instead, the stable state is set by vanishing
ion cyclotron-resonant particle scattering, yielding a threshold that lies well above the mirror threshold, thus
explaining the discrepancy in the solar wind data.

In line with the findings of Isenberg et al. (2013) for the EMIC instability, Astfalk and Jenko (2017) showed that
in the low-𝛽∥,p regime, the saturation of the parallel proton firehose growth is mainly driven by anomalous
cyclotron-resonant diffusion and not by macroscopic temperature anisotropy reduction. Hence, the argument
of Isenberg et al. (2013) applies to the PFHI as well, which may explain why the PFHI apparently does not
constrain the proton temperature anisotropy in the low-𝛽∥,p regime in the solar wind. The purpose of this work
is to further verify this claim and to shed more light on the temperature anisotropy reduction during the PFHI
saturation.

In kinetic theory, the saturation and simultaneous temperature anisotropy reduction of the PFHI is usually
modeled by means of quasi-linear theory (QLT). The quasi-linear firehose saturation in the long-wavelength
limit is a standard textbook problem and has been explored extensively in the past (Davidson, 1972; Davidson
& Völk, 1968; Shapiro & Shevchenko, 1964; Yoon, 1995). A macroscopic treatment may give good estimates for
the final temperature and energy saturation levels in the case of high 𝛽∥,p. However, in the regime 𝛽∥,p ≲ 25,
where the dynamics is dominated by cyclotron resonance (Gary et al., 1998), it is not applicable. To lift the
restrictions of the long-wavelength approximation, Seough and Yoon (2012) and Seough et al. (2015) fol-
lowed a more general approach, termed moment-kinetic theory where the microscopic weak turbulence
kinetic equation is employed to self-consistently evolve the temperature anisotropy of a firehose-unstable
system in time while coevolving the wave spectra generated by the instability. A comparison with fully kinetic
particle-in-cell simulations revealed that for 𝛽∥,p = 10 the approach produces good agreement with the
observed saturation levels, while for 𝛽∥,p ∼ (1) there is still a clear offset. Seough et al. (2015) proposed two
possible explanations for this discrepancy:

1. QLT does not include nonlinear wave-wave interactions. However, Quest and Shapiro (1996) found that
strong wave-wave interactions can be present during the PFHI growth suppression, which redistribute the
energy in the wave spectrum and interfere with the quasi-linear saturation.

2. The chosen moment-based approach does not allow for a non-Maxwellian deformation of the initially
bi-Maxwellian particle velocity distribution. It assumes that the distribution preserves its bi-Maxwellian
shape throughout the saturation process, while only its macroscopic temperature components T∥,p, T⟂,p
can change.

In light of the fact that Seough et al. (2015) report significant dumbbell-like deformation of the velocity dis-
tribution in particle-in-cell simulations which, in line with the findings of Matteini et al. (2006), gets more
pronounced for decreasing 𝛽∥,p, and accounting for the results of Astfalk and Jenko (2017) that anomalous
cyclotron-resonant diffusion can play a crucial role in the growth suppression, we conclude that the latter of
the two explanations asks for a careful inspection. To address this point, we embedded Linear Electromagnetic
Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions (LEOPARD), a linear kinetic disper-
sion relation solver for arbitrary gyrotropic distributions (Astfalk & Jenko, 2017), in the kinetic quasi-linear
framework, which allows us to relax the assumption of bi-Maxwellian preservation in the moment-kinetic
approach. This new full-f approach enables the inclusion of effects due to distribution deformation caused by
linear wave-particle interactions. We use this method to revisit the applicability of kinetic QLT to the saturation
of the PFHI by examining the growth suppression in six exemplary PFHI setups.

The presented work is structured as follows. In section 2, we list the equations used in the quasi-linear
approach and briefly discuss their implementation in the new quasi-linear solver Quasi-Linear Electromag-
netic Oscillations (QLEO). In section 3.1, we benchmark the QLEO code with results from a quasi-linear
moment-kinetic treatment. And in section 3.2, we compare the outcomes of our full-f quasi-linear approach
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with the results of a moment-kinetic analysis and with 1D3V hybrid-kinetic simulations. Section 4 concludes
the discussion.

2. Kinetic Quasi-linear Theory and Its Implementation

Collisionless magnetized plasmas are able to carry a rich variety of kinetic eigenmodes that can be charac-
terized by their corresponding kinetic dispersion relation 𝜔(k). As long as the field amplitudes of the kinetic
modes are small compared to the background fields, they are well described in the framework of linear kinetic
theory. Linear dispersion relations provide information not only on the real frequency spectrum of the modes
but also on their linear stability. If the plasma is not in thermal equilibrium, but a source of free energy is
present, eigenmodes of the system eventually tap this source and their frequency acquires a positive imagi-
nary part that is identified as the temporal growth rate 𝛾(k) of the mode—an instability occurs. However, it is
obvious that the resulting exponential growth of the mode cannot proceed indefinitely. As soon as the ampli-
tudes reach a certain magnitude, the assumptions of linear theory get invalidated and nonlinear physics may
take over. Usually, the instability is self-destructive, that is, it exhausts the energy source that feeds it. So, the
transition from the linear stage of growth to the nonlinear regime goes hand in hand with the saturation of the
linearly unstable mode. The nonlinear regime is then dominated by nonlinear wave-particle and wave-wave
interactions, which pave the way for strong particle energization and the onset of turbulence.

The complexity of nonlinear kinetic physics hardly allows a thorough investigation of the underlying pro-
cesses. However, to get insight into the saturation mechanism, a perturbative expansion can be used—the
weak turbulence kinetic theory of wave-particle interactions, which applies when the energy in the spectrum
of excited modes is small compared to the total energy in the plasma. Accounting only for the zero- and
first-order in the expansion, the so-called quasi-linear model can be constructed, which has been success-
fully applied to numerous microscopic and macroscopic instabilities. The underlying assumption of QLT can
be found in many standard textbooks on kinetic plasma physics and shall not be discussed in depth here. We
only note that this approach enables us to describe how the particle velocity distribution reacts to the ini-
tially unstable mode spectrum due to linear wave-particle interactions, ultimately leading to a stabilization
of the parallel firehose-unstable system. Under the assumption of slow temporal changes, the time evolution
of the distribution function can then be described by the parallel weak turbulence kinetic equation (see, e.g.,
Davidson, 1972) which, in normalized units, reads (for the protons):
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The meaning of the quantities and the used normalizations and can be found in Appendix A. The sum
∑

+,−
runs over right-hand (+) and left-hand (−) polarized modes and ∗ denotes complex conjugation. Please note
that the wave number integral is to be understood as a principal value integral, since there are singularities in
the integration interval. Moreover, equation (1) holds for growing modes only, that is, Im(𝜔̃) = 𝛾̃k > 0, and has
to be analytically continued accordingly when including damped modes with 𝛾̃k ≤ 0, that is, contributions
from the poles have to be added in the usual way, following Landau’s prescription (see, e.g., Landau, 1946).

The PFHI exhibits the fastest growth for parallel propagation but also grows for 𝜃 ≠ 0. However, equation (1) is
restricted to parallel propagation; thus, effects due to higher dimensionality will not be included here. Solving
equation (1) requires knowledge of the temporal changes of the wave energy spectrum 𝛿B̃2

k . It can be evolved
in time according to

𝜕𝛿B̃2
k

𝜕t̃
= 2𝛾̃k𝛿B̃2

k . (2)

The new quasi-linear solver QLEO solves this closed set of equations numerically, using an explicit Euler
method where the velocity distribution is sampled on a two-dimensional velocity grid, ṽ∥ × ṽ⟂. The real fre-
quency 𝜔̃k and the temporal growth rate 𝛾̃k , required in equations (1) and (2), are constantly updated by
feeding the distribution function into the dispersion relation solver LEOPARD at each time step.
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For the evaluation of the wave number integral in equation (1), we refrained from performing a direct numer-
ical integration. Instead, we implemented a more efficient method that can be briefly summarized as follows:
At each time step, the frequency spectrum 𝜔̃k , the growth rate spectrum 𝛾̃k , and the magnetic energy spec-
trum 𝛿B̃2

k are interpolated with natural cubic splines over the whole wave number range. This turns the integral
into a piecewise rational function and allows a piecewise analytical evaluation of the integral. A pitfall here
is that the denominator of the integrand, which turns into a cubic function of k̃∥, can have zeros within the
considered wave number interval. This introduces poles that have to be accounted for accordingly and may
require analytic continuation. After evaluating the integral for each piece of the integration interval, its prin-
cipal values and the contributions from the poles are simply added up. The integration is performed on an
equidistant, adaptive grid that is adjusted at each time step to cover all unstable modes, ranging from the
unstable mode with lowest k̃∥ to the unstable mode with highest k̃∥.

The derivatives of the velocity distribution showing up in equation (1) are computed by employing a local
exponential fit function, which is more suitable than applying conventional central difference methods and
gives better stability of the code. To ensure symmetry, we always include back- and forward-propagating
modes when evaluating the weak turbulence kinetic equation, picking out the right polarity for each case. The
PFHI, which destabilizes the whistler branch, is driven by anomalous cyclotron resonance; hence, it requires
the presence of right-hand polarized whistler modes.

3. Application of the Quasi-linear Full-f Approach
3.1. Validation With Moment-Kinetic Approach
In a series of papers, Seough and Yoon (2012) and Seough et al. (2014, 2015) applied kinetic QLT to study the
saturation of the PFHI and the EMIC instability. One major assumption used in these studies was the preser-
vation of the velocity distribution’s bi-Maxwellian shape throughout the saturation process. This allowed for
a moment-kinetic approach where only the macroscopic quantities 𝛽∥ and 𝛽⟂, with 𝛽 = 8πnkBT∕B2

0, are
advanced in time instead of evolving the full velocity distribution. The corresponding evolution equation for
each beta component can be derived from the weak turbulence kinetic equation, equation (1), by replacing
f̃p with a bi-Maxwellian, that is,

f̃p = 1√
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where 𝜉± = 𝜔̃±1√
𝛽∥,p k̃∥

and Z denotes the plasma dispersion function (Fried & Conte, 1961).

A self-consistent moment-kinetic solver can be constructed from equations in (4) by coupling them to
equation (2) and using a bi-Maxwellian-based kinetic dispersion relation solver to update 𝜔k and 𝛾k at each
time step. We used an explicit Euler method to solve equation (2) and equations in (4), and for the dispersion
relation we made use of the linear Vlasov solver DSHARK (Astfalk et al., 2015). To perform a first validation of our
full-f quasi-linear kinetic solver QLEO, we benchmarked it against results from this moment-kinetic scheme.
This was achieved as follows: At each time step, QLEO computes the distribution increment Δf̃p of the distri-
bution f̃p according to equation (1). But instead of advancing f̃p by directly adding Δf̃p, as would be required
in the full-f approach, we compute the corresponding Δ𝛽∥,p and Δ𝛽⟂,p by taking the second velocity moment
of Δf̃p. Then, we update 𝛽∥,p and 𝛽⟂,p by adding Δ𝛽∥,p and Δ𝛽⟂,p, and we reset f̃p with a new bi-Maxwellian,
adopting the updated 𝛽∥,p and 𝛽⟂,p.

For the benchmark, we chose an exemplary proton firehose-unstable setup starting from a bi-Maxwellian
distribution with 𝛽∥,p = 4.0 and T⟂,p∕T∥,p = 0.5, sampled on a parallel velocity interval ṽ∥ = [−12.0, 12.0]
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Figure 1. Results of the QLEO validation with a moment-kinetic quasi-linear solver for 𝛽∥,0 = 4.0 and T⟂,0∕T∥,0 = 0.5.
The figures show the time evolution of the temperature anisotropy (left) and the total magnetic energy (right) as
obtained by the moment-kinetic solver and by QLEO for different parallel velocity resolutions.

and a perpendicular velocity interval ṽ⟂ = [0.0, 12.0]. We expect the electrons to not contribute much to the
saturation of the PFHI; thus, we keep them isotropic with 𝛽e = 1. Furthermore, we assume that the Alfvén
speed is much lower than the speed of light, that is, vA∕c ≪ 1.

For the resolution in time, wave number space, and perpendicular velocity, numerical convergence is easily
achieved, while the resolution in the parallel velocity component turns out to be the main bottleneck for
the numerical performance. Figure 1 shows the result of the moment-kinetic analysis for the given setups
together with the outcomes of the QLEO run for different resolutions in ṽ∥. We plot the time evolution of the
beta components and the total magnetic energy, which is computed via

𝛿B̃2
tot = ∫ dk̃ 𝛿B̃2

k . (5)

As expected the moment-kinetic run shows an exponential increase of the magnetic field amplitude during
the initial phase of firehose growth, followed by a saturation of the amplitudes, which goes hand in hand with
a reduction of the initial temperature anisotropy. In the QLEO run, a high ṽ∥ resolution is crucial to achieve
good agreement with the moment-kinetic saturation curve, which seems to be connected with the presence
of the poles occuring in equation (1) for ṽ∥ = (𝜔̃ + 1)∕k̃∥. While 64 points in ṽ⟂ direction are sufficient, we
have to use 8,186 points in ṽ∥ direction to find a satisfactory match with the outcomes of the moment-kinetic
analysis over the whole simulated time interval. For lower resolutions, QLEO produces good agreement only
up to a certain time whereafter it exhibits irregular behavior.

Several other setups were tested as well, yielding similar results, that is, good agreement for high ṽ∥ resolution
and partly irregular behavior for lower ṽ∥ resolution. Thus, we conclude that QLEO can successfully reproduce
results of the moment-kinetic approach, and we note that there is a correlation between the resolution in ṽ∥
and the maximum time up to which the code gives reliable results.

3.2. Comparison With Moment-Kinetic Analysis and Hybrid-Kinetic Simulations
After the successful validation of QLEO with the outcomes of a moment-kinetic analysis, we now pro-
ceed by relaxing the bi-Maxwellian assumption and allowing the velocity distribution to deform during

Table 1
QLEO Velocity Distribution Parameters for the Six Setups Used in the Full-f Analysis and the
Corresponding Initial Maximum Growth Rates

𝛽∥,p T⟂,p∕T∥,p n∥ n⟂ ṽ∥ ṽ⟂ 𝛾̃max

I 15.0 0.847 255 64 [−24.0, 24.0] [0.0, 22.0] 0.041

II 10.0 0.794 255 128 [−20.0, 20.0] [0.0, 18.0] 0.041

III 4.0 0.588 255 64 [−12.0, 12.0] [0.0, 12.0] 0.039

IV 4.0 0.630 255 64 [−12.0, 12.0] [0.0, 12.0] 0.021

V 4.0 0.500 255 64 [−12.0, 12.0] [0.0, 12.0] 0.085

VI 4.0 0.425 255 64 [−12.0, 12.0] [0.0, 8.0] 0.120

ASTFALK AND JENKO 5



Journal of Geophysical Research: Space Physics 10.1029/2017JA025143

Figure 2. Results of the QLEO runs for setup (I) with initial parallel beta 𝛽∥,0 = 15.0 and anisotropy T⟂,0∕T∥,0 = 0.847,
compared to the outcomes of a moment-kinetic analysis and hybrid-kinetic simulations with HVM. The figures show the
time evolution of the temperature anisotropy (left) and the total magnetic energy (right). HVM = hybrid Vlasov-Maxwell.

the quasi-linear saturation process. For comparison, we employ the hybrid-kinetic Vlasov code hybrid
Vlasov-Maxwell (HVM), which simulates the fully nonlinear dynamics of kinetic ions while the electrons are
treated as a massless charge-neutralizing fluid. HVM has been developed by Valentini et al. (2007) and is based
on Mangeney et al. (2002). In the considered PFHI setups, electron-kinetic effects are expected to be insignifi-
cant; thus, the hybrid-kinetic scheme appears to be an appropriate choice. However, since the expected length
and time scales are close to ion inertial scales, the Hall term is included in the Ohm’s law that governs the fluid
electrons, that is, HVM is used in its Hall magnetohydrodynamics limit (Equation 9 in Valentini et al., 2007). In
HVM, we use a one-dimensional spatial grid with periodic boundary conditions, which is aligned with a back-
ground magnetic field in order to allow for parallel wave propagation. The velocity space is three-dimensional,
and the simulation is initialized with bi-Maxwellian velocity distributions with selected initial 𝛽∥ and 𝛽⟂.

The QLEO runs were performed for six different one-dimensional firehose-unstable setups. We studied three
cases, (I)–(III), with similar growth rates, 𝛾̃max ≈ 0.04, to check applicability for various 𝛽∥,p. And in the setups
(III)–(VI), we compared four cases with fixed 𝛽∥,p = 4.0 to study the effect of varying initial anisotropies. Due to
numerical constraints, we were restricted to using a comparably low number of grid points in parallel velocity
space. In most cases, we found n∥ = 255 and n⟂ = 64 to be a reasonable trade-off between computing time
and reliability of the results. A summary of the setups and the used parameters can be found in Table 1.

In Figures 2–7, we compare the QLEO results for setups (I)–(VI) with the corresponding moment-kinetic
analysis and the 1D3V HVM simulations.

Figure 3. Results of the QLEO runs for setup (II) with initial parallel beta 𝛽∥,0 = 10.0 and anisotropy T⟂,0∕T∥,0 = 0.794,
compared to the outcomes of a moment-kinetic analysis and hybrid-kinetic simulations with HVM. The figures show the
time evolution of the temperature anisotropy (left) and the total magnetic energy (right). HVM = hybrid Vlasov-Maxwell.
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Figure 4. Results of the QLEO runs for setup (III) with initial parallel beta 𝛽∥,0 = 4.0 and anisotropy T⟂,0∕T∥,0 = 0.588,
compared to the outcomes of a moment-kinetic analysis and hybrid-kinetic simulations with HVM. The figures show the
time evolution of the temperature anisotropy (left) and the total magnetic energy (right). HVM = hybrid Vlasov-Maxwell.

The beta components for the QLEO runs and in the HVM simulations are obtained by numerically computing
the second velocity moment of the distribution function at each time step. Similar to the QLEO runs in section
3.1 where we observed a sudden transition from regular to irregular behavior at a certain time, which was
correlated with the number of grid points in ṽ∥, we again encountered difficulties in theΔf̃p estimation, which
were clearly related to the low ṽ∥ resolution. Thus, we only show the QLEO curves up to a maximum time
within which they appear to be reliable.

In the high-anisotropy setups (V) and (VI), shown in Figures 6 and 7, an accurate comparison with the HVM
simulation results is difficult due to the strong oscillatory behavior of the beta components and the magnetic
energy, indicating significant particle trapping which is not accounted for in the quasi-linear approach. How-
ever, to guide the eye we inserted the average beta components and magnetic energy levels in the saturation
stage as dashed lines.

In agreement with Seough et al. (2015), we find that the moment-kinetic analysis yields good agreement with
the outcomes of hybrid-kinetic simulations for higher 𝛽∥,p while it overpredicts the anisotropy reduction and
the saturation energy levels for lower 𝛽∥,p. Especially the setups (III)–(VI) with 𝛽∥,p = 4.0, shown in Figures 4–7,
exhibit clear offsets between the simulation outcomes and the moment kinetic computations. In compari-
son, the full-f approach appears to give good results for both low and high 𝛽∥,p. In all scenarios, it yields a
less-pronounced temperature anisotropy reduction than the moment-kinetic approach and, except for the
high growth rate setup (VI), shown in Figure 7, gives good overall agreement with the final saturation levels
in both the beta components and the magnetic field amplitude, even for setup (V), shown in Figure 6, where
noticeable particle trapping is present. Comparing setups (III)–(VI), shown in Figures 4–7, we also note that

Figure 5. Results of the QLEO runs for setup (IV) with initial parallel beta 𝛽∥,0 = 4.0 and anisotropy T⟂,0∕T∥,0 = 0.630,
compared to the outcomes of a moment-kinetic analysis and hybrid-kinetic simulations with HVM. The figures show the
time evolution of the temperature anisotropy (left) and the total magnetic energy (right). HVM = hybrid Vlasov-Maxwell.
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Figure 6. Results of the QLEO runs for setup (V) with initial parallel beta 𝛽∥,0 = 4.0 and anisotropy T⟂,0∕T∥,0 = 0.500,
compared to the outcomes of a moment-kinetic analysis and hybrid-kinetic simulations with HVM. The figures show the
time evolution of the temperature anisotropy (left) and the total magnetic energy (right). The dashed lines mark the
estimated average of the final anisotropy and magnetic energy levels of the HVM simulation. HVM = hybrid
Vlasov-Maxwell.

the agreement with the simulation outcomes seems to correlate with the strength of the initial anisotropy.

We observe better agreement for weaker firehose growth where almost no pressure anisotropy reduction is
present, while for higher initial anisotropies (setup [V] and setup [VI]), the hybrid-kinetic simulations exhibit

increasingly stronger reduction of the parallel component than the quasi-linear model. Possible explanations
for this discrepancy will be discussed in section 4.

The reason why the full-f approach gives less pronounced temperature anisotropy reduction than the

moment-kinetic approach can be inferred from Figures 8 and 9, which show exemplary snapshots of the

velocity distribution taken from the QLEO runs for the high-𝛽∥ setup (I) and the low-𝛽∥ setup (V). In both
scenarios, the initially bi-Maxwellian distribution (dashed contours) is deformed by cyclotron-resonant dif-

fusion. In setup (I), which has 𝛽∥ = 15.0, the deformation is more pronounced than in setup (V), which has
𝛽∥ = 4.0. This may explain why in setup (I) the moment-kinetic approach agrees better with QLEO and HVM

than in setup (V). Qualitatively, the distribution deformation can be understood as follows: When undergoing
cyclotron-resonant interaction with a wave, the particles conserve their energy in a reference frame comoving

with the wave’s phase speed (see, e.g., Kennel & Engelmann, 1966). In the limit of weak growth or damping,

Figure 7. Results of the QLEO runs for setup (VI) with initial parallel beta 𝛽∥,0 = 4.0 and anisotropy T⟂,0∕T∥,0 = 0.425,
compared to the outcomes of a moment-kinetic analysis and hybrid-kinetic simulations with HVM. The figures show the
time evolution of the temperature anisotropy (left) and the total magnetic energy (right). The dashed lines mark the
estimated average of the final anisotropy and magnetic energy levels of the HVM simulation. HVM = hybrid
Vlasov-Maxwell.
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Figure 8. Snapshots of the velocity distribution from the QLEO run of setup (I) with 𝛽∥,0 = 15.0 and T⟂,0∕T∥,0 = 0.847 at
different points in time (filled contours). The dashed lines show the contours of a reference bi-Maxwellian distribution
with 𝛽∥,p and 𝛽⟂,p at the given point in time. The solid contours mark the single wave characteristics of the fastest
growing mode in the system, according to equation (6).

this condition yields the conservation equation

ṽ2
⟂ +

(
ṽ∥ −

𝜔̃k

k̃∥

)2

≈ const. (6)

The solid lines in Figures 8 and 9 illustrate the contours obeying the conservation equation for the dominant
mode in the system, that is, the mode that initially exhibits the strongest growth. These contours are also
referred to as single wave characteristics. Since the fastest growing mode dominates the cyclotron-resonant
diffusion in the system, the particles are expected to mainly diffuse along these contours. They tend to erase
gradients along the single wave characteristics, which explains why the resonant parts of the velocity dis-
tribution in Figures 8 and 9 align with the corresponding contours. And since in Figure 8 the single wave
characteristics roughly follow the bi-Maxwellian contours only weakly non-Maxwellian deformation occurs,
which justifies a good applicability of the moment-kinetic approach. A clear signature of cyclotron-resonant
diffusion is also observed in the hybrid Vlasov-Maxwell simulations, as has already been demonstrated for
setup (V) in Astfalk and Jenko (2017).

The complex non-Maxwellian shape of the velocity distributions at later times also yields more complex dis-
persion curves. In Figures 10 and 11, we compare dispersion curves from the quasi-linear full-f approach, the
moment-kinetic approach, and the HVM simulation for setup (V). Please note that due to too low resolution
the HVM dispersion curves in Figure 11 are not obtained from direct Fourier analysis of the fluctuation spec-
tra but instead they are produced by feeding gyro-averaged velocity distributions from the HVM simulations
into the dispersion relation solver LEOPARD.

From the red curves in Figure 10, we infer that during the firehose saturation in the QLEO run the unstable
wave number range is slowly extending toward higher and higher k̃∥. At the same time, the low-k̃∥ modes
get stabilized. Furthermore, while the velocity distribution aligns with the single wave characteristics of the
most unstable mode, a strong suppression sets in around this mode, which first leads to a flattening of the
growth peak and later causes the formation of a plateau and a two-growth-peak structure. Meanwhile, the
real frequencies stay mostly unaffected, which is expected since they do not depend on the detailed structure
but only on the gross properties of the velocity distribution.

Figure 9. Snapshots of the velocity distribution from the QLEO run of setup (V) with 𝛽∥,0 = 4.0 and T⟂,0∕T∥,0 = 0.5 at
different points in time (filled contours). The dashed lines show the contours of a reference bi-Maxwellian distribution
with 𝛽∥,p and 𝛽⟂,p at the given point in time. The solid contours mark the single wave characteristics of the fastest
growing mode in the system, according to equation (6).
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Figure 10. Dispersion relations taken from the QLEO runs of setup (V) at different points in time, compared to the
corresponding moment kinetic results.

Similar to the full-f analysis, the moment-kinetic run (blue curves in Figure 10) also exhibits a stabilization of
the low-k̃∥ modes. For both approaches, the growth rates of these modes evolve in the same way, it is only later
that they start to deviate. For modes with k̃∥ ≲ 0.2, we expect high parallel resonance velocities ṽres ≳ 6.0.
In Figure 9, we notice that at such high parallel velocities there is only weak deviation from a bi-Maxwellian
distribution, thus explaining the similar early evolution of the modes. For high-k̃∥ modes, which resonate
with particles at lower parallel velocities, stronger deviations between the two approaches are expected and
observed. For the moment kinetic analysis, we do not see an extension of the unstable wave number range
to higher k̃∥ but a shrinking to smaller k̃∥. Also, there is no formation of a low-growth-rate plateau, which, in
the full-f analysis, was apparently caused by the strong cyclotron-resonant diffusion.

The evolution of the dispersion properties based on velocity distributions extracted from the hybrid-kinetic
simulation and depicted in Figure 11 shows similarities with the foregoing but also some obvious discrepan-
cies. During the firehose saturation in the HVM run, the unstable wave number range again stretches out to
higher k̃∥ while the growth at low k̃∥ gets suppressed. Also, we observe the development of a two-growth-peak
structure. However, the growth suppression happens more quickly, reducing the growth rates faster than in
the quasi-linear full-f scenario. Also, we do not see the formation of a low-growth-rate plateau. Instead, the
structure of the dispersion curve assumes a more complex shape in the later stage. Around t̃ = 70.0 and
k̃∥ ≈ 0.4, the unstable branch splits into two, yielding a branch with a low-k̃∥ growth peak and one with a
high-k̃∥ growth peak, which exhibits a somewhat lower frequency than the corresponding branches at earlier
times. Later, the growth peak at high k̃∥ gets strongly damped away and only the low-k̃∥ branch still shows
weak instability that eventually disappears for t̃ ≳ 80.0, while at the same time the QLEO runs still exhibit
significant growth. The implications of the observed discrepancies are briefly discussed in section 4.

Figure 11. Dispersion relations based on the gyro-averaged velocity distributions taken from the HVM runs of setup (V)
at different points in time. HVM = hybrid Vlasov-Maxwell.
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Figure 12. Time evolution of the magnetic energy spectrum (left) and the contribution of low- and high-k modes
(right), observed in the HVM simulations of the high-anisotropy setup (VI). The wave number k̃lim separates the initially
unstable (low-k) from the initially stable (high-k) part of the spectrum.

Finally, to examine the validity of our numerical scheme, we analyzed the conservation properties for our
different setups. The closed system, equations (1) and (2), obeys an energy conservation law in the form of

d
dt

(
𝛽⟂,p + 0.5𝛽∥,p + 𝛿B2

tot

)
= 0. (7)

In setups (I)–(V), we find that the total energy in the systems is well conserved within a limit of <0.5% while
in setup (VI) the energy increases by ∼6%.

4. Discussion and Conclusion
It has long been known that despite its traditional reputation of being a macroscopic fluid-like instability, the
PFHI often requires a fully kinetic treatment. While for 𝛽∥,p ≫ 1, the fluid approximation may be applicable,
the regime 𝛽∥,p ≲ 25, which is especially relevant for the solar wind, asks for a careful inclusion of particle
resonance effects.

As long as we are only concerned with the linear dispersion properties of a firehose-unstable system, the step
from a macroscopic to a microscopic picture is an easy one since existing numerical dispersion relation solvers
can be employed to overcome the nonanalytic nature of kinetic theory. However, if the growth saturation of
the firehose instability is to be studied in the framework of QLT, a fully kinetic treatment is challenging, which
is why standard textbooks and classic monographs consider the quasi-linear firehose saturation in the fluid
limit only.

Seough et al. (2015) went beyond the traditional fluid ansatz by numerically solving the self-consistent set
of kinetic quasi-linear equations for various firehose-unstable systems. However, their investigations were
restricted to a moment-kinetic approach where the bi-Maxwellian shape of the distribution is preserved
throughout the saturation process. This limitation, which was necessary to simplify the numerical treatment,
obscured to which extent the PFHI saturation can be understood in the limits of QLT or whether other non-
linear effects have to be taken into account too. We lifted this limitation by allowing for a non-Maxwellian
deformation of the velocity distribution.

We applied the moment-kinetic and a full-f approach to six firehose-unstable setups and compared the
predicted temperature anisotropy reduction and magnetic energy saturation levels to outcomes of fully
nonlinear hybrid-kinetic simulations. While the moment-kinetic analysis showed an increasing offset for
decreasing 𝛽∥,p, the QLEO code produced good agreement also in the low-𝛽∥,p regime as long as the initial
anisotropy was not too high.

However, when comparing the temporal changes in the dispersion properties of the quasi-linear full-f
runs and the HVM simulations for the intermediate-growth setup (V), we found that in the fully nonlinear
hybrid-kinetic model the firehose growth was suppressed faster than in the QLEO runs. Although not reported
here, we found a similar discrepancy also for the lowest anisotropy scenario, setup (IV). This suggests that QLT
does not fully cover the microscopic physics that governs the firehose growth suppression even for cases that
show otherwise excellent agreement for the saturation levels of the macroscopic beta components and the
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magnetic energy between QLEO and the hybrid-kinetic simulations. The good agreement may be explained
by the fact that the initially most unstable mode strongly dominates the cyclotron-resonant diffusion and the
subsequent changes in the dispersion properties during the saturation process only slightly modulate the
shaping of the velocity distribution.

In contrast to the setups (I)–(V), the pressure anisotropy reduction in the high-anisotropy case, setup (VI), with
initial maximum growth rate 𝛾̃max = 0.12, showed noticeable disagreement between the QLEO results and
the hybrid-kinetic simulations. We found that the total energy in this setup is not as well conserved as in the
other cases, which points to a failure of the numerical scheme. However, we suggest that the problem may
also be due to a failure of the QLT model itself. As a weak turbulence theory, the model applies only when the
amplitude of the electromagnetic fluctuations in the system is small compared to the thermal energy of the
plasma. In the considered setup, the ratio 𝛿B2

k∕Etherm reached a level of ∼2%, which does not seem to strongly
violate the assumption. However, nonlinear wave-wave coupling may be triggered by the modes with highest
amplitudes, disrupting the quasi-linear approximation. Looking at the time evolution of the magnetic energy
spectrum taken from the HVM simulations of setup (VI), shown in Figure 12 (left), we see that after the modes
in the unstable wave number range have grown to high-enough amplitudes, nonlinear wave-wave coupling
leads to the formation of sidebands at higher wave numbers that are (odd) harmonics of the initially unstable
wave number range. In Figure 12 (right), we compare the magnetic energy in the initially unstable wave num-
ber range with the energy content in modes with higher wave numbers. We observe a strong growth in the
high-k energy, which is connected with the appearing sidebands. However, the growth saturates well below
the energy level of the low-k modes, which may suggest that this effect only slightly modulates the dynam-
ics in the system. However, studying the relative importance of nonlinear wave-wave coupling is beyond the
scope of this work but may be addressed systematically in a future project.

Another limitation of QLT is that of slow temporal changes in the distribution function, that is,

𝛿 ≈ 1
f0

df0

dt
∕𝛾max ≪ 1. (8)

For setup (VI), we estimated 𝛿 ≈ 10%, which appears to be a more severe violation than the foregoing. For the
setups (I)–(IV), we find 𝛿 ≈ 0.1%, for the setup (V) we have 𝛿 ≈ 1%. Also, setup (VI) showed significant particle
trapping that further violates the quasi-linear approximation. Thus, the high-anisotropy setup (VI) may indeed
be outside the range of validity of QLT. We conclude that kinetic QLT is a valid approach for modeling the
temperature anisotropy reduction only if the initial firehose instability growth is not too strong.

Finally, our findings also confirm the results of Astfalk and Jenko (2017), namely, that for 𝛽∥,p ≈ (1), strong
cyclotron-resonant scattering is a main driver for the firehose stabilization, which is why the moment-kinetic
approach fails in this regime since it cannot properly account for the distribution deformation due to the
resonant diffusion. At the same time, the reduction of the macroscopic temperature anisotropy is relatively
weak, which indicates that in the solar wind the PFHI may not be the dominant player in constraining the
anisotropy when 2 ≲ 𝛽∥,p ≲ 10. However, being restricted to a one-dimensional analysis, we can gain only
limited insight into the challenging problem of temperature anisotropy regulation in the solar wind. In a
two-dimensional setup, PFHI modes with different propagation angles can grow simultaneously, which yields
more complex diffusion dynamics. The presence of obliquely propagating waves is expected to enhance the
diffusion (Karimabadi et al., 1992), causing a stronger anisotropy reduction (Gary et al., 1998). This is further
complicated by the fact that the OFHI may be excited as well which Hellinger and Trávníček (2008) found to be
a very efficient mechanism for temperature anisotropy reduction. The competition between the PFHI and the
OFHI has been studied in Hellinger and Matsumoto (2001) with two-dimensional hybrid-kinetic simulations.
In this work, the nonlinear evolution of the OFHI was observed to behave in a rather non-quasi-linear man-
ner, as was also found in Hellinger and Matsumoto (2000). Thus, even a two-dimensional generalization of the
presented quasi-linear full-f approach may be of very limited applicability in such more realistic scenarios.

Similarly, the competition between the EMIC instability and the mirror instability, which is driven by the oppo-
site temperature anisotropy, T⟂,p > T∥,p, may be out of reach for such a scheme. However, due to the apparent
similarities between the PFHI and the EMIC instability the presented quasi-linear scheme promises to give
interesting insights into the EMIC instability saturation in a purely parallel setup. This may be addressed in a
follow-up project.
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Appendix A: Meaning of the Quantities and Used Normalizations

The velocity components parallel and perpendicular to the background magnetic field B0, that is, v∥ and v⟂, are
normalized according to ṽ = v∕vA with the Alfvén velocity vA = B0∕

√
4πnpmp, where np is the proton number

density and mp is the proton mass. For the (complex) frequency we use 𝜔̃ = (𝜔k + i𝛾k)∕Ωp with the proton
gyrofrequency Ωp = eB0∕mpc, where e denotes the proton’s charge. The time is also normalized with respect
to the proton gyrofrequency, that is, t̃ = tΩp. The parallel wave number is given in units of the proton inertial
length dp = vA∕Ωp such that k̃∥ = k∥dp. For the magnetic energy in each mode, we write 𝛿B̃2

k = 𝛿B2
k∕B2

0dp. The
velocity distribution is normalized with respect to f̃p = fpv3

A∕np.
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5.5.3 Further remarks

Using a full-f approach, we demonstrated that the quasilinear approximation
presented in Sec. 4.5.2 is suitable for modeling the temperature anisotropy
reduction subsequent to the PFHI growth in setups with low-enough initial
anisotropies. As we discussed in Sec. 4.3.3, the solar wind – the prime target for
our firehose instability studies – is constantly driving the proton temperature
anisotropy into the firehose-unstable regime such that a dynamical equilibrium
develops between the excitation of the firehose due to anisotropy increase and
the suppression due to resonant wave-particle scattering and anisotropy reduc-
tion. For a fully nonlinear treatment, hybrid-kinetic expanding box simulations
have been applied to study this problem [72, 73, 123]. However, studies of this
type are numerically very demanding and no expanding box simulations have
been reported so far which address the firehose instability for realistic expan-
sion rates. Also, since a hybrid-kinetic scheme is usually applied, no electron
kinetic effects are included, although they may alter the firehose growth [124].
Being a reduced model, a quasilinear scheme does not capture the full physics
in the system, but extending the QLEO solver to mimic the effect of an expand-
ing medium can still be insightful and rewarding since it allows the inclusion of
kinetic electron effects. Also, in dynamical equilibrium, we expect comparably
low firehose growth which may justify the use of QLT. That said, the presented
quasilinear scheme is (so far) only valid for parallel propagating modes which
limits its applicability to strictly parallel propagating PFHI. This limitation
may be lifted in the near future.
Since the QLEO code does not model the processes in position space but solely
addresses the time evolution of the distribution function in velocity space, the
effect of the medium expansion has to be accounted for in the velocity space
only. Also, we expect that the perpendicular direction is not affected by the
expansion since β‖ ∼ r2 and β⊥ ∼ const (see Sec. 4.3.3).
Matteini et al. [72] performed 1D3V hybrid-kinetic expanding box simulations
of a parallel firehose-unstable setup. The results of this study may be used for
a first test of the proposed expanding quasilinear scheme. If they can be re-
produced, the study, which is based on very fast expansion, may be extended
to realistic expansion rates and possible effects due to distribution changes
in the electrons may be investigated. An interesting observation reported in
Matteini et al. [72] is that in the late stage of the expanding box simulations,
the ion velocity distributions developed suprathermal tails. If a similar effect
is observed for the velocity distributions in the expanding QLEO runs, more
systematic studies on this can be attempted to explore this mechanism which
may contribute to the creation of kappa distributions in the solar wind. This
may draw a connection to the results of Astfalk and Jenko [67] and expand
our understanding of the interplay between the activity of kinetic instabilities
and the shaping of the ion velocity distributions.
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Chapter 6

Conclusion and Outlook

The solar wind is subject to various kinetic, proton-related instabilities which
can inject electromagnetic energy into the plasma at length scales close to the
proton kinetic scales, contributing to the turbulent heating of the solar wind
medium [9, 14]. The excited plasma waves either get dissipated by resonant
interactions with the protons or – mediated by nonlinear wave-wave coupling
– they cascade further down to smaller scales where they eventually get dissi-
pated by the electrons.
The free energy triggering kinetic instabilities is provided by a deviation of the
particle velocity distribution from an isotropic Maxwellian. Such deviations
may occur in the solar wind due to the expanding motion of the medium, which
causes perpendicular cooling, or due to particle acceleration caused by wave-
particle interactions and magnetic reconnection. The stability of the plasma
with respect to kinetic wave growth is mainly determined by the velocity space
structure of the particle populations that may be in resonance with eigenmodes
of the plasma. Two fundamental growth or damping mechanisms in collision-
less plasmas are the Landau and the cyclotron resonance which rely on the
local distribution slope and its pitch angle anisotropy. Thus, kinetic instabili-
ties exhibit a strong sensitivity to the shape of the velocity distribution. In this
thesis, we studied various (anomalous) cyclotron-resonant kinetic instabilities
– the PFHI, the OFHI, and the ion-ion right-hand resonant instability (see,
e.g., Refs. [48, 52, 75]) – and we explored the effect of non-Maxwellian velocity
distributions on the instability growth.
A certain type of velocity distributions which is often encountered in space
plasmas is the anisotropic kappa distribution [125]. To enable studies on ki-
netic eigenmodes in kappa-distributed plasmas with general oblique propaga-
tion angle, we constructed and validated the new dispersion relation solver
DSHARK in Astfalk et al. [100]. We used the solver to investigate the effect of
high-energy proton tails on the PFHI and the OFHI growth and we compared
the outcomes to the corresponding bi-Maxwellian scenarios. For the case of
the PFHI, such investigations have been performed before. However, we cor-
rected a flawed result of the existing studies and we extended the analysis to
the OFHI. We discussed proton temperature anisotropies observed in the solar
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wind and how they are constrained either by the OFHI or by the PFHI. In the
presence of kappa distributions, we found an enhancement of the PFHI and a
slight suppression of the OFHI which may have an effect on the competition of
both instabilities in the solar wind and may help to identify which mechanism
dominates in constraining the proton temperature anisotropies. We proposed
to redo the solar wind data analysis presented in, e.g., Refs. [62, 63] with
anisotropic kappa distributions instead of bi-Maxwellians to study the effect
of suprathermal populations on the activity of the instabilities and examine
the theoretical predictions.
Although kappa distributions generally constitute a more realistic model for
fitting solar wind proton distributions than bi-Maxwellians, particle velocity
distributions measured in space exhibit more complexity than could be cov-
ered by these models. Thus, we constructed the new LEOPARD solver in
Astfalk and Jenko [107] which allows for a dispersion analysis based on ar-
bitrary gyrotropic velocity distributions. With this solver, we can process
realistic distributions from kinetic simulations, spacecraft measurements, and
complex parametric models. In Astfalk and Jenko [107], we showed how the
LEOPARD solver can be applied to data taken from hybrid-kinetic simulations
of a parallel firehose-unstable setup. We found that for low β‖, the saturation
of the instability is not primarily driven by temperature anisotropy reduction
but by cyclotron-resonant diffusion, resulting in a strong deformation of the
initially bi-Maxwellian velocity distribution. This may explain why the PFHI
apparently does not constrain the proton temperature anisotropies measured
in the solar wind although it gets active at weaker anisotropies than the OFHI
which is more efficient in reducing temperature anisotropies.
In Dorfman et al. [118], we demonstrated a first application of the LEOPARD
solver to spacecraft data. We processed velocity distributions which were mea-
sured by the ARTEMIS spacecraft to study the ion-ion right-hand resonant
instability which is active in the foreshock of Earth. We found that account-
ing for the real shape of the observed intermediate-type ion beams [19], the
LEOPARD solver predicts weaker growth than a corresponding Maxwellian
beam model. However, when correlating the measured ion beams with the
local growth of the magnetic field amplitude in the observed ULF waves, we
still noticed an overprediction in the theoretically derived growth rates. This
may be attributed to the presence of weak agyrotropy in the used distribution
function. Although we did not find a perfect match between theory and obser-
vation, this study still serves as a successful proof of concept and more studies
of this type will follow.
Finally, as a follow-up to our investigations of the PFHI saturation in Astfalk
and Jenko [107], we embedded the LEOPARD solver in a quasilinear scheme
(see, e.g., Ref. [32]) to study how a given velocity distribution self-consistently
evolves in time in the presence of a broad spectrum of unstable modes undergo-
ing linear wave-particle interactions. We used this new full-f quasilinear scheme
to look at the PFHI saturation in setups with different initial β‖ for varying
initial anisotropies. Comparing the results to outcomes of hybrid-kinetic sim-
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ulations, we found that the full-f quasilinear scheme is a suitable model for
describing the temperature anisotropy reduction and magnetic energy growth
during the PFHI saturation for low-enough initial anisotropy. This analysis
can be understood as a generalization of the moment kinetic quasilinear ap-
proach presented in Seough and Yoon [82] to velocity distributions that can
adopt an arbitrary gyrotropic shape during the saturation process. It further
demonstrated the significance of non-Maxwellian distribution deformation in
low-β‖ setups and the minor role of temperature anisotropy reduction in the
parallel firehose growth suppression.
The investigation was restricted to parallel propagating modes, but the PFHI
also grows for slightly oblique angles and allowing for the excitation of obliquely
propagating waves can lead to stronger anisotropy reduction [126, 47]. Thus,
the presented quasilinear scheme requires an extension to oblique angles to
cover effects due to higher dimensionality. Hellinger and Matsumoto [52, 127]
found that the OFHI does not saturate in a quasilinear manner. Thus, we
do not expect that an oblique full-f quasilinear scheme could capture the
anisotropy reduction due to the OFHI. It is therefore not possible to realisti-
cally model the competition of both instabilities in the quasilinear framework.
In this thesis, we have only considered static setups, but in order to undergo
thorough investigations of the PFHI and the OFHI in the solar wind, the ex-
pansion of the medium has to be accounted for since it constantly drives the
temperature anisotropy into the firehose-unstable regime. Usually, this is stud-
ied in numerically demanding hybrid-kinetic expanding box simulations (see,
e.g., Refs. [72, 73]). We suggest that in the case of the PFHI such a study may
also be attempted within a quasilinear framework, using the presented full-f
scheme. For this, the effect of the expansion on the velocity distribution has
to be mimicked. Once the effect of an expanding setup is successfully imple-
mented, the fully-kinetic electron dynamics can be accounted for which is not
included in current expanding box simulations but may influence the growth
of the proton PFHI.
So far, the quasilinear full-f scheme has only been applied to the PFHI but,
of course, applications to other parallel propagating electromagnetic modes
may be thought of as well such as the EMIC or the ion-ion right-hand reso-
nant instability. Also the effect of anisotropic initial distributions other than
bi-Maxwellians, such as the anisotropic kappa distribution, may readily be
studied for temperature-anisotropy-driven instabilities.
A limitation which concerns all the solvers presented in this thesis (and linear
dispersion relation solvers in general), is the restriction to gyrotropic velocity
distributions. Agyrotropic distributions are frequently observed in the solar
wind in association with magnetic reconnection or as a result of gyrophase
bunching caused by electromagnetic instabilities. To our knowledge, the effect
of agyrotropy on plasma wave dispersion has not yet been studied system-
atically and may constitute a next step towards more realistic linear plasma
modeling.
Also, we have not yet considered any electron effects on the presented instabil-
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ity mechanisms. Although the electrons are not expected to resonate with the
waves themselves when, e.g., the proton PFHI is active, they can still have an
effect on the frequency of the excited eigenmode and thus on its phase speed
which modifies the resonance condition for the protons, changing the expected
growth rates. In the solar wind, electron distributions usually exhibit strongly
non-Maxwellian features. They are commonly observed to consist of three dis-
tinct populations – the core, the halo, and the strahl ([128], see Fig. 6.1). The

Figure 6.1: Illustration of the three distinct populations – core, halo, and strahl

– which are commonly assumed to model electron velocity distributions measured

in the solar wind. The figure was taken from Stverák et al. [128].

electron strahl, a field-aligned beam-like feature, dominates the electron heat
flux in the solar wind and may render the plasma unstable. Horaites et al.
[129] constructed a parametric model to fit observed core-halo-strahl electron
distributions. To systematically study strahl-related electron instabilities, we
are currently performing a parameter scan, feeding the parametric model into
the LEOPARD solver to estimate the corresponding growth rates and frequen-
cies. This may provide insight into the observed scattering of strahl electrons
into the electron halo and it also allows us to realistically model electron ef-
fects when studying proton-related kinetic instabilities. Since the strahl can
be an important source of heating [130], it may also add to our understanding
of solar wind heating processes.
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The solar wind and Earth’s magnetosphere are complex systems which are
governed by diverse and highly variable plasma processes that take place on
macroscopic as well as microscopic scales. In contrast to collisional fluids, a col-
lisionless plasma can exhibit strong resonant particle effects acting on kinetic
scales which cannot be neglected when addressing the global behavior of the
system. In times where our modern society gets more and more dependent on
a growing infrastructure of spaceborne satellites and where human space travel
may soon reach out for destinations beyond the protective shield of Earth’s
magnetic field, threats due to harmful space weather conditions become in-
creasingly relevant. It is also for a better prediction of such threats and for the
implementation of appropriate safety measures that progress has to be made
towards more realistic plasma modeling, including kinetic plasma instabilities.
We hope that with the work and the numerical tools presented in this thesis,
we can contribute to a better understanding of linear and quasilinear kinetic
processes in space plasmas. A more thorough knowledge of kinetic instabilities
active in the solar wind may inform studies on turbulent wave dissipation and
particle acceleration mechanisms, and may also provide new insights into the
solar wind heating problem.
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[130] S. Stverák, P. M. Trávńıček, and P. Hellinger. Electron energetics in
the expanding solar wind via Helios observations. Journal of Geo-
physical Research (Space Physics), 120:8177–8193, October 2015. doi:
10.1002/2015JA021368.



List of Figures

2.1 Particle Gyration in an ambient magnetic field . . . . . . . . . . 10
2.2 Ion beam distributions in Earth’s foreshock . . . . . . . . . . . . 13
2.3 Kappa distributions . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Contour integration according to Landau’s prescription . . . . . 33
4.2 Landau and cyclotron resonance . . . . . . . . . . . . . . . . . . 36
4.3 Temperature anisotropy histogram of solar wind protons . . . . 40

5.1 Proton velocity distributions in the solar wind . . . . . . . . . . 63
5.2 Illustration of the bow shock and foreshock region of Earth . . . 69

6.1 Electron distribution with core, halo, and strahl . . . . . . . . . 84

99



100 LIST OF FIGURES



Acknowledgement

Many people have contributed to the success of this thesis and I take great
pleasure in expressing my deepest gratitude here.

First and foremost, I would like to thank Prof. Frank Jenko for being such
an enthusiastic and supportive mentor and advisor during the last couple of
years. Despite tight schedules and other responsibilities, he has been there
in times of need with encouraging guidance, giving me the freedom to follow
my interests and always finding ways when formalities threw some stones into
our paths. He brought me into touch with numerous colleagues from our in-
ternational community encouraging rewarding collaborations and gave me the
possibility to travel to numerous conferences and schools which enriched my
experience and allowed me to present and discuss my work with fellow PhD
students as well as senior scientists. And above all, I am very grateful that I
was given the chance to join Frank on the adventure of living in Los Angeles
and working at UCLA. This time in California will certainly always be among
the best years of my life.

Furthermore, I am grateful to Prof. Emanuele Poli for being the second as-
sessor of this thesis. I also appreciate his readiness to jump in as official
advisor before Frank could take over again after his return to IPP.

It was a great pleasure to work at IPP and UCLA, also because of the friendly
working environment which would not have been possible without a bunch of
awesome colleagues. Every PhD project goes through ups and downs, strikes
and gutters, but the Dude abides because he has comrades who will catch him if
he falls. I like to thank all my current and former colleagues who were the best
company a PhD student could hope for during the bright and even more during
the shadowy moments of the daily struggle with rebellious codes, enigmatic
literature, or a campus on lockdown. For our exciting trips through the US,
our movie nights, our dinner rounds with crickets and maggots, Trivia nights in
Barney’s with Dos Equis and Blue Moon, our endless political discussions, our
Comedy Store visits, Lunch rounds, bar hops, etc., I thank Daniel ’Slo Dan’
Groselj, Paul Crandall, Maurice Maurer, Karen Pommois, Robert ’Bobby’ Br-
zozowski, Alessandro di Siena, Karl Stimmel, Daniel Told, Felix Gaisbauer,
Katharina Giers, Cole ’Coco’ Stephens, Francisco Matos, Andres Cathey, Tom
Neiser, Alejandro Banon Navarro, Martin Weidl, Tobias Görler, Qingjiang
Pan, Felipe Nathan de Oliveira, Francois Orain, Alex Lessig, Stephan Glöggler,
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