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Abstract

In this work, the suitability of the Lattice Boltzmann Method (LBM) for the simulation
of turbulent flows is systematically analyzed. So far, no analysis has pointed out, which
closure for the collision term is most suitable for the simulation of turbulent flows. With
respect to turbulence modeling in the Large-Eddy Simulation (LES) framework, it is of
essential interest to validate different collision models to obtain proper stability and ac-
curacy characteristics. A detailed analysis of turbulent flows in real and spectral space is
provided for three commonly used collision models. Namely the Bhatnagar-Gross-Krook
(BGK), the multi-relaxation time (MRT) and the regularized BGK (RLB) model are dis-
cussed and one of the main conclusions is, that the BGK scheme is the most suitable
closing approach regarding the simulation of homogeneous isotropic turbulence and wall-
bounded turbulent flows. It is demonstrated, that the MRT scheme does not achieve
mesh convergence in the incompressible limit for the investigated turbulent flows and it’s
applicability is limited to under resolved test cases only. The regularized BGK scheme
suffers from excessive numerical dissipation, which prohibits the application to LES, since
the subgrid-scale turbulence closure is dominated by numerical dissipation emerging from
he collision model.

On the basis of these findings, a novel subgrid-scale closure is derived based on a selec-
tive viscosity filter approach. As opposed to increasing the filter stencil to achieve high
accuracy, the filter strength is modified by considering the resolved turbulent scales. The
novel approach is compared to a explicit subgrid-scale closure employed by Navier-Stokes
equation based LES simulations. We find, that the explicit filter as well as the consis-
tent approach lead to superior results compared to a naive model. Beyond that, it is
demonstrated, how the new subgrid-closure overcomes the stability issues of common ex-
plicit eddy-viscosity closures by suppressing non-linear instabilities. Common turbulence
models in the Lattice Boltzmann framework take non-linear instabilities into account for
the estimation of a turbulent viscosity, which is circumvented completely by the new
approach. From a computational point of view, the selective filtering approach is very
efficient, since high-order stencils are avoided and the local criterion allows for high accu-
racy with low-order explicit filter stencils.

i



Zusammenfassung

In der vorliegenden Arbeit wird eine systematische Analyse für die Simulation von tur-
bulenten Strömungen mit der Lattice Boltzmann Methode vorgestellt. Bis zum jetzigen
Zeitpunkt wurde keine Analyse vorgestellt in der gezeigt wird, welche Lösung des Kol-
lisionsoperator für die Simulation von turbulenten Strömungen am besten geeignet ist.
Hinsichtlich der Modellierung von Turbulenz im Rahmen von Grobstruktursimulationen,
ist es essentiel verschiedene Lösungen unter Stabilitäts und Genauigkeitsaspekten zu vali-
dieren. Aus diesem Grund wird eine detaillierte Analyse präsentiert, welche darstellt wie
turbulente Strömungen im Real- und Spektralraum abgebildet werden. Als Basis dienen
hierzu drei häufig benutzte Modellierungsansätze welche unter dem BGK, dem MRT und
dem regularisierten BGK Ansatz bekannt sind. Der Rückschluss, dass das singulär relax-
ierte BGK Verfahren sich am besten für die Simulation von isotrop homogener Turbulenz
und turbulenten wandgebundenen Strömungen eignet, wird geschlossen. Als neue Erken-
ntnis wird gezeigt, dass für die untersuchten numerischen Testfälle keine Gitterkonvergenz
mit dem MRT Verfahren im Grenzfall der Inkompressibilität erreicht werden kann und
nur unteraufgelöste Testfälle zu zuverlässigen Ergebnissen führt. Das regularisierte BGK
Modell erzeugte bei den untersuchten Testfällen zuviel numerische Dissipation, was die
Anwendbarkeit im Rahmen der LES unterbindet, da zwischen der Dissipation aus dem
Feinskalen Modell und dem Kollisionsoperator nicht mehr unterschieden werden kann.

Auf Basis dieser Ergebnisse wird ein neues, auf einer expliziten Filterung beruhendes
Feinstruktur Modell vorgestellt. Um eine möglichst hohe Genauigkeit zu gewährleis-
ten wird mit dem neuen Ansatz die Filterstärke an die aufgelösten turbulenten Skalen
angepasst anstatt die Filterordnung zu erhöhen. Das Modell wird mit einer konsistenten
Wirbelviskositätshypothese für die Lattice Boltzmann Methode und einem Smagorinsky
Ansatz aus der Navier-Stokes Theorie verglichen. Im Detail wird gezeigt, wie das neue
LES Modell nicht-lineare Instabilitäten unterdrückt ohne dabei künstlich die Viskosität zu
erhöhen wie es bei den gängigen Turbulenz Modellen für LES basierte Simulationen mit
der Lattice Boltzmann Methode üblich ist. Durch die lokale Anpassung der Filterstärke
reichen "low-order stencil" um bei gleich bleibender Genauigkeit die Rechenzeit niedrig
zu halten und somit eine hohe Effizienz zu erreichen.
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CHAPTER 1

Introduction

The need to shorten the turn-around times for development processes has raised the de-
mand for efficient numerical algorithms in industrial fluid flow analysis. Experimental
studies are still an indispensable tool to develop and optimize aerodynamic concepts,
e.g., in aviation or automotive industry. Nevertheless, the extreme high costs, the insuffi-
cient reproducibility and the large validation time limits the process of fast and efficient
development across different industries based on pure experimental studies. Therefore,
Computational Fluid Dynamics (CFD) takes a huge part in the development process of
aerodynamic concepts nowadays. Especially with growing computational resources, CFD
is increasingly used for challenging tasks in aerodynamics, like full scale aircraft simula-
tions, the investigations of complex turbo machinery flow, thermal management processes
or aero-acoustic analysis in near- and far-field.

The flows in industrial applications are dominated by complex three dimensional turbulent
structures and therefore the numerical investigation and the subsequent optimization of
aerodynamic features depends crucially on the available numerical tools and their under-
lying loop-timing and accuracy. The applied turbulence models, the treatment of complex
moving geometries as well as the underlying numerical accuracy of the tool determine the
efficiency for aerodynamic design studies in any industry. Commonly these tools rely on
the Navier-Stokes equations (NSE), a macroscopic description of mass, momentum and
energy conversation. In this work an alternative approach is chosen and an open-source
CFD code based on the Lattice Boltzmann Method (LBM) is extended by a novel tur-
bulence model, which allows for the correct prediction of turbulent structures at high
Reynolds numbers. In order to gain deeper understanding of the interaction between
turbulence model and numerical scheme, a detailed analysis outlines the possibilities and
limitations of commonly applied Boltzmann models in order to represent turbulent flow
structures. Based on these findings, a single-relaxation-time scheme will be extended
by an adaptive filter approach in the Large-Eddy Simulation (LES) framework for the
LBM.
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1. Introduction

1.1. The Lattice Boltzmann Method as an
Alternative for Fluid Flow Simulations

Common CFD tools for the numerical investigation of fluid flows are based on the macro-
scopic transport equations for mass and momentum, namely the Navier-Stokes equations,
which read

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

(1.1a)

∂ui
∂xi

= 0 (1.1b)

for an incompressible fluid without body forces, constant viscosity and constant density,
which is assumed throughout this work. Commercial and academic CFD codes discretize
the incompressible NSE on a mesh on which Equations (1.1a)-(1.1b) are approximated nu-
merically by finite volumes (FVM), finite differences (FDM) oder finite elements (FEM)
methods. The equations are transformed into a set of algebraic equations and solved
numerically. Depending on the method and the applied numerical scheme, the computa-
tional effort differs significantly. For further details, the interested reader is referred to
Ferziger and Peric (2002) and Versteeg and Malalasekra (2007). It should be noted, that
for the incompressible NSE, the pressure has no thermodynamic properties and is function
of the velocity (and fluid properties) only. To keep the fluids volume conserved given by
Equation (1.1b), a pressure projection is necessary for the incompressible case. Pressure
correction steps, e.g., with fractional steps methods are executed each discrete physical
time step and based on the pressure correction method, 65 − 80% of the computational
time is necessary to maintain the velocity field solenoidal. Although spectral methods do
not need a pressure correction step for solving the incompressible NSE, they are limited
to rather simple geometries in order to avoid tremendous implementation efforts. FEM
methods using solenoidal basis functions do not require an additional pressure correction
step for the incompressible NSE as well, but require in depth analysis with respect to the
correct turbulent flow representation on unstructured grids. With respect to compressible
flows, conditionally stable explicit time-stepping leads time steps which are proportional
to the Mach number. This leads to tremendous computational times especially for rather
low Mach numbers. In order to cope more efficiently with low Mach numbers in a com-
pressible fluid flow solver, low-Mach approximations and weakly compressible formulations
of Equations (1.1a)-(1.1b) can be used, see also Versteeg and Malalasekra (2007). Thus,
efficient algorithms are a premise for the simulation of complex aerodynamic problems in
industrial aerodynamic applications.

For dilute gases, LBM is often presented as a very efficient and accurate alternative
to conventional CFD tools based on the NSE, see Chen and Doolen (1998); He and Luo
(1997); Guo et al. (2000); Waldrow (2000); Sukop and Thorne (2006); Guo and Shu (2013);
Succi (2001) and Hänel (2004) among others. In contrast to the NSE, LBM is based on a
mesoscopic description of the flow field in terms of discrete velocity distribution functions
f(xi, ξ, t), which describes the probability to find molecules at position xi at time t with
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1.2. Direct Turbulent Flow Simulation with the Lattice Boltzmann
Method

molecular velocity ξ. The continuous Boltzmann equation can be written as

∂f

∂t
+ ξ· ∇if + f · ∇ξ =

∫

V

∫

ξ

Q(f, f)dξdV. (1.2)

Equation (1.2) closes the gap between the description of fluid motion on a microscopic level
and the continuous description given by Equations (1.1a)-(1.1b). Non-linear interactions
of the fluid, like turbulent motion, as well as damping characteristics emerging from
the viscosity are described by the right hand side of equation 1.2, namely the collision
term. In the NSE the linear ν ∂

2ui
∂x2j

and non-linear terms uj ∂ui∂xj
are separated, which is a

major difference to the underlying equation of Lattice Boltzmann based methods. The
analytical form of the collision term is not suitable for numerical simulations since huge
computational effort is necessary to estimate it exactly. Therefore, different approaches to
simplify the right hand side of equation 1.2 have been developed. All approaches employed
in this work are based on a linearization of the collision term

∫

V

∫

ξ

Q(f, f)dξdV ≈ g(f, f eq) , (1.3)

with a functional g around an equilibrium f eq, which is only valid for small Mach numbers
and thus under the assumption of weak compressibility, which will be further outlined in
Chapter 2. Special emphasis will be given on the physics of different collision models,
namely the Bhatnagar-Gross-Krook (BGK) or single-relaxation time (SRT),see Chen and
Doolen (1998); Waldrow (2000), the multi-relaxation time (MRT), see d’Humiéres et al.
(2002); Yu et al. (2006) and Yu and Girimaji (2005), and the regularized lattice Boltzmann
(RLB) model, see Latt (2007); Latt and Chopard (2006) and Latt et al. (2008), will be
analyzed for simulation of turbulent flows. To the authors knowledge, no attention was
paid on the interaction between the applied collision model and the resolved turbulent
scales so far. Thus, a detailed analysis of the interaction between a collision model, the
resolution of the numerical setup and the Reynolds number Re will be given to understand
the predictability of turbulent flow structures with LBM.

1.2. Direct Turbulent Flow Simulation with the
Lattice Boltzmann Method

Although the LBM has been applied to a wide range of fluid-dynamics applications,
turbulence modeling in the LBM framework still requires considerable research and has
not reached the level of maturity as seen for Navier-Stokes-based methods, see, e.g., Ricot
et al. (2009, 2002) and Sagaut (2010). Recent advances have been made by Sagaut (2010)
and Malaspinas and Sagaut (2012, 2011). Malaspinas and Sagaut (2011) proposed an
approach which is based on the Approximate Deconvolution Method (ADM), see Stolz and
Adams (1999). The Boltzmann equations are filtered and subsequently deconvoluted by
a regular filter and inverse filter operation respectively, in order to reconstruct the proper
macroscopic equations for LES within the kinetic theory. The ADM as implemented
in Malaspinas and Sagaut (2011) is based on the simplest collision operator modeling,
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1. Introduction

namely the BGK approach. It is crucial to understand the properties in terms of stability
and accuracy of the pure BGK approach, when used for the simulation of turbulent flows
before methods like the ADM approach can be adapted directly to the BGK Boltzmann
equations. Moreover, these properties have to be taken into account when adapting
turbulence models to LBM schemes.

To the author’s knowledge, a comparison of the stability and accuracy properties of differ-
ent discrete LBM schemes without turbulence models when applied to three-dimensional
turbulent flows of varying Reynolds number has not been outlined so far. In this con-
text stability refers to the tendency of the LBM to diverge at high Reynolds number flow
simulations and accuracy describes the representation of turbulent scales compared to ref-
erence DNS data. As the Lattice Boltzmann algorithm corresponds to a finite difference
scheme with spatial accuracy O(∆x2) and a temporal accuracy O(∆t), see Succi (2001),
this work aims to investigate the underlying stability and accuracy features of different
discrete collision schemes for the LBM by carrying out resolved and under-resolved Direct
Numerical Simulations (DNS) of Homogeneous Isotropic Turbulence at varying Reynolds
numbers. Since no turbulence models will be employed, the observed dissipation can be
related to viscous effects and numerical dissipation of the respective collision operator.
For the type of flow considered in this work some of the recently presented LBM schemes
showed improved stability and accuracy properties, which were not considered, yet for
completion should be mentioned. Among others, the Karlin-Bösch-Chikatamarla (KBC)
model, see Karlin et al. (2014), uses an entropy collision operation, which lead to signifi-
cantly increased stability properties. This model was additionally enhanced by Dorschner
et al. (2016a) and Dorschner et al. (2016b). Geller et al. (2013) and Geier et al. (2015)
introduced another advanced LB model, which allowed for improved stability properties
for the simulation of turbulent flows. So far, no in-depth mesh convergence analysis was
outlined for these models. Since these models also do not make use of an explicit turbu-
lence closure, yet demonstrate excellent stability behavior at very high Reynolds numbers,
they are mistakingly referred as implicit LES closures.

1.3. Turbulence Modeling in the Lattice
Boltzmann Framework

As already mentioned, turbulence modeling in the LBM framework still has not reached
a level of maturity as seen for Navier-Stokes based methods, see Ricot et al. (2009, 2002)
and Sagaut (2010). The concept of turbulence modeling in the LBM framework is pri-
marily based on simple extrapolations of Large Eddy Simulation (LES) models as used
for simulations based on the filtered Navier-Stokes equations. These models employ an
effective relaxation rate that can be interpreted as an effective viscosity concept. Models
that use this technique were presented and applied to varying benchmarks in Hou et al.
(1996); Dong and Sagaut (2008); Dong et al. (2008); Filippova et al. (2002) and Yu et al.
(2005) among others. Recent improvements for LES based simulations in the LBM frame-
work were made by Sagaut (2010); Malaspinas and Sagaut (2012, 2011). They showed
that the concept of an effective relaxation rate adopted from the Navier-Stokes based LES
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1.4. Structure of this Work

does not necessarily lead to the correct macroscopic equations, that is, the filtered Navier-
Stokes equations. Consequently, the underlying equations for LES in the framework of
LBM do not resemble the filtered macroscopic equations. Recently, Sagaut (2010) and
Malaspinas and Sagaut (2011) presented a novel turbulence model for LES in the LBM
framework, which is based on the Approximate Deconvolution Model (ADM), see Stolz
and Adams (1999) and Stolz et al. (2001). ADM exploits the underesolved range of scales
in order to partially mimic energy transfer in the subfilter-range, see Adams (2011) and
Layton (2010). An implementation of the ADM algorithm in a DNS LBM code was
demonstrated in Malaspinas and Sagaut (2011), where the discrete Boltzmann equations
are filtered with an explicit filter stencil and subsequently deconvolved with a regularized
inverse filter operation in order to reconstruct the proper macroscopic equations for LES
within the kinetic theory.

Tam et al. (1993) introduced a set of stencils, known as selective viscosity filters, where
a constant filter intensity is related directly to the filter operation. This class of filters
was also the underlying ADM approach of Malaspinas and Sagaut (2011), which was
also successfully applied in previous work by Ricot et al. (2009) and Ricot et al. (2002).
Fauconnier et al. (2013) employed this class of filters for the simulation of Homogeneous
Isotropic Turbulence (HIT) in the context of Navier-Stokes equations based simulations
of fluid flows. They outlined that the accuracy of the numerical results strongly depends
on the artificial viscosity, which needs to be adapted according to the mesh resolution,
the order of the filter stencil and under consideration of stability issues. Similar results
were found in Malaspinas and Sagaut (2011) by computing a turbulent shear layer. Only
for very well resolved numerical test cases satisfying agreement with reference data was
achieved while showing a minor influence of the filters artificial viscosity. For rather
under resolved setups the development of turbulent structures strongly depends on the
filter stencil and the applied artificial viscosity constant. In conclusion, no general strategy
can be found in the literature for employing selective viscosity filters of Tam et al. (1993)
for the simulation of turbulent flows within the ADM theory for LBM. Depending on the
test case and under consideration of the resolution, the artificial viscosity as well as the
filter stencil have to be tuned with care.

Our goal is to improve the prediction of turbulent flows in the the LBM-LES framework
by extending an existing ADM approach to self-adapting filter stencils. By doing so, we
aim for less mesh-sensitivity for a given Reynolds number in order to derive a more general
framework for the simulation of turbulent flows with LBM. A connection between spatial
and temporal resolution and locally resolved scales has to be made and incorporated into
the self-adaptive filter.

1.4. Structure of this Work

This work is structured as followed: First, the LBM is introduced in Chapter 2 and
different lattice schemes are introduced. A detailed quantitative and qualitative analysis
of different lattice schemes with DNS-like setups will be presented in the first publication
attached in Section B.1 to demonstrate the applicability of lattice schemes for turbulent
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1. Introduction

flows, considering different mesh resolutions and Reynolds numbers from a stability and
accuracy point of view. The next part of this work is devoted to the development of
an accurate explicit low-pass filtering subgrid-scale approach in Section B.2, which is
consistent with the hydrodynamic limit of the filtered NSE in the LES-LBM framework.
The supportive work, which triggered the content of the main publication are attached in
C.1 and C.2. Final conclusions and an outlook for future research will be given in Chapter
4.
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CHAPTER 2

The Lattice Boltzmann Method

This chapter presents the mathematical background of the LBM. The Boltzmann equation
will be derived from the kinetic theory of gases and he origin of the Lattice Boltzmann
Method will derived in Section 2.1. Properties of the Boltzmann equation will be dis-
cussed in Section 2.2. In Section 2.2.3, the approximation of the Boltzmann equation in
terms a Hermite polynomial expansion will be presented and afterwards the reconstruc-
tion of the weakly compressible Navier-Stokes Equations (NSE) will be shown in Section
2.3. Different modeling approaches for the collision operator, see the right hand side of
Equation (1.2), will be introduced in Section 2.4.

2.1. Kinetic Theory of gases

Starting from a microscopic point of view, the motion of a fluid can be modeled by
particle motion. Considering a 1 cm3 large cube filled with air, which corresponds to
≈ 2.5 ∗ 1019 molecules, it is easy to understand that even with Newtonian mechanics the
simulation of a real flow problem becomes unrealistic in microscopic space. Even if the
degrees of freedom (DOF) are limited to 6, this problem is not reduced noticeably, see the
6−N theory in Hänel (2004). These many-particle systems are generally described by the
Newton-Hamilton equations emerging from classical mechanics. Due to the complexity of
these systems a single particle motion described by

dxi
dt

=
pi
mp

dpi
dt

= Fi

(2.1)

is not suitable. In Equations (2.1), xi is the position vector of the ith particle, pi the
momentum and Fi the force acting on the ith particle for i = 1..N . Considering the
aforementioned 6 − N DOF system, six functions of time, namely x and p, need to be
solved for every i = 1..N particle. The associated computational effort for solving an
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2. The Lattice Boltzmann Method

industrial engineering problem based on single particle motions becomes proportional to
the considered number of particles (neglection of interaction), which is impracticable.

Another level of describing fluid motions is not on a microscopic level, but rather
on a mesoscopic one. Here, the many particle system is described in terms of velocity
distribution functions in phase space. The aim is to provide an equation for the spatial
and temporal probability to find particles around xi + ∆xi, with velocity ranges ξ + ∆ξ
at time t. The superposition of the Euclidean space and the velocity space is known as
the phase space. The underlying equation, named after Liouville will be the starting
point to derive the Boltzmann equation. The initial idea is to decrease the particle count
i = 1..N drastically compared to the approach given in Equation (2.1). This leads to
the velocity distribution function fN(x1,p1, ...,xN ,pN , t) in phase space [x1,x1 + dx1]×
[p1,p1 +dp1]× ...× [pN ,pN +dpN ]× [pN ,pN +dpN ], which bridges classical and statistical
mechanics. All statistical information is captured by fN and according to Liouville, see
Schwabl (2006), fN evolves as:

∂fN
∂t
−

3N∑

j=1

(
∂HN

∂xj

∂fN
∂pj
− ∂HN

∂pj

∂fN
∂xj

)
= 0, (2.2)

where HN describes the Hamiltonian of the underlying dynamic system. By integrating
Equation (2.2) over a reduced density space, see Lammers (2004) and Illnera and Pul-
virentib (1987), the BBGKY hierarchy of equations named after the scientists Bogoljubov,
Born, Greenwood, Kirkwood and Yvon can be derived. This reduced density system Fs
can be written as

Fs(x1,p1, ...,xs,ps, t) ∝
∫
fN(x1,p1, ...,xN ,pN , t)dxs+1dps+1...dxNdpN . (2.3)

In Equation (2.3) the one-particle probability density function Fs depends on the two-
particle probability density function f1 = G(f1, f2) and so on. f1 = G(f1, f2) gives the
probability to find particles in two different phase spaces. Even estimating the reduced
density system numerically is, from a numerical point of view, too expensive and thus an
appropriate truncation for Fs must be found. Assuming only local, two body collisions
with uncorrelated velocities in diluted gases one can write Equation (2.3) as an integro-
differential equation

∂f

∂t
+ ξ· ∇if +

F

m
· ∇ξf =

∫

V

∫

ξ

Q(f, f
′
)dξdV =

∫
dξ1

∫
dσ(Ω)|ξ − ξ1|(f(ξ

′
)f(ξ

′

1)− f(ξ)f(ξ1))

(2.4)

known as the Boltzmann equation. Q(f, f
′
) is the non-linear collision operator, F are the

body forces andm are the particles mass. At this point the Boltzmann’sche Stoßzahlansatz
Succi (2001) was used, which is defined by

f(ξ
′
, ξ
′

1) = f(ξ
′
)f(ξ

′

1). (2.5)
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2.2. The Boltzmann BGK Approach

Equation (2.5) is fairly plausible for diluted gases and decorrelated collisions. In Equation
(2.4) ξ and ξ1 are the ingoing velocities within the differential collision cross section dσ(Ω),
by which the velocities are redistributed to ξ′ and ξ′1 for a two-body particle collision
model.

In order to perform fluid simulations by applying Equation (2.4) mass, momentum and
energy need to be conserved. Thus, for an incompressible formulation without presence
of thermal energy, five (ρ, ui and ekin) collision invariants need to be conserved by the
collision integral, see Cercignani (1988). The collision integral satisfies

∫
Q(f, f

′
)Ψk(ξ)dξ = 0 (2.6)

with k = 1..5. The collision invariants |Ψ〉 = (ρ, ξx, ξy, ξz, 1
2
ξ2) are related to the mass,

momentum and energy. In Section 2.2.1 an analytical solution for the collision integral
will be derived and the invariance of the collision operator will be demonstrated in Section
2.2.2.

2.2. The Boltzmann BGK Approach

In Section 2.1 the Boltzmann equation was derived. The underlying assumption, namely
low Mach numbers, diluted gases and uncorrelated collisions are applied in order to derive
the temporal evolution of the velocity density probability function f(x, ξ, t) as

(∂t + ξ · ∇x + g · ∇ξ) f(xi, ξ, t) = Q(f, f
′
) =∫

dξ1

∫
dσ(Ω)|ξ − ξ1|(f(ξ

′
)f(ξ

′

1)− f(ξ)f(ξ1)).
(2.7)

As stated before, the collision operator needs to be expressed appropriate in terms of
mass, momentum and energy conservation. Throughout this thesis an athermal flow is
considered and thus, the macroscopic moments of fluid motion, namely the density ρ, the
momentum ρu and the stress fieldQ can be reconstructed by taking the velocity moments
of the velocity density probability function f(xi, ξ, t).

ρ =

∫
dξf(xi, ξ, t), (2.8a)

ρu =

∫
dξξf(xi, ξ, t) (2.8b)

Q =

∫
dc ξξf(xi, ξ, t) (2.8c)

where c = ξ − u is the microscopic velocity of a particle in a reference mean flow with
velocity u. The most established way to represent the collision operator is the Bhatnagar-

9



2. The Lattice Boltzmann Method

Gross-Krook (BGK) model, see Bhatangar et al. (1954), where the velocity distribution
function is relaxed towards a local low Mach number truncated Maxwell-Boltzmann distri-
bution function f eq(xi, ξ, t). This approach is also known as single-relaxation time (SRT)
and in absence of an external body force this model reads

(∂t + ξ · ∇x) f(xi, ξ, t) = −1

τ
(f(xi, ξ, t)− f eq(xi, ξ, t)) (2.9)

The relaxation time τ is related to the physical viscosity as ν = c2
s(τ − 0.5)∆t. Here, cs is

the lattice speed of sound and ∆t the discrete time step. In the next Section, design and
properties of the equilibrium distribution function f eq(xi, ξ, t) are discussed. Properties
of the discrete BGK Boltzmann approach are shown in Section 2.4.

2.2.1. Derivation and Properties of the Maxwell
Distribution Function

The collision operator in the Boltzmann equation is crucial for the representation of the
dynamics of fluid flow. Linear as well as non-linear dynamics of fluid motion are modeled
by the collision term. This is a major difference compared to NSE based methods, where
viscous effects are represented by the diffusive term ν ∂

2ui
∂xj

and non-linear effects are taken
into account by the convective term uj

∂ui
∂xj

. The question: "How are non-linear effects
taken into account, using the linearization shown in Equation (2.9)? And how can non-
linear effects like those of turbulent fluid motion be represented by this linearization?
arises.

The linear relaxation towards a local equilibrium distribution function needs to fulfill
certain requirements, including mass, momentum and energy conservation. Using the
Maxwell distribution function as an approach to design the equilibrium distribution func-
tion, the positivity of the entropy s is fulfilled, which is shown in the next subsection.

Generally, the Maxwell distribution can be written as

f eq(xi, ξ, t) =
ρ(xi, t)

(2πkbT (xi, t))D/2
exp

{(
−(ξ − uref (xi, t))

2

2kbT (xi, t)

)}
, (2.10)

where kb is the Boltzmann constant, ρ(xi, t) is the density at point x and time t and
T (xi, t) is the temperature of the current thermodynamic state assumed to be constant
in an athermal flow. ρ is the local density and uref is the local reference velocity of the
fluid. Equation (2.10) gives the probability to find particles in thermodynamic equilibrium
with a momentum ρ(u − ξ) at an ambient temperature T . The reference state around
uref and T is called thermodynamic equilibrium. In order to understand the Maxwellian
distribution for the particle velocity better, Figure 2.1 shows the probability P (v) to find
particles with a velocity v at ambient temperature T = 298.15K for three different gases,
namely Air, Hydrogen and Helium. The probability P (v) shown in Figure 2.1 refers to a
Maxwellian distribution given by Equation (2.10).

10
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Figure 2.1.: Maxwell-Boltzmann distribution of different gases at T = 293, 15K.
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Figure 2.2.: Maxwell-Boltzmann distribution for dry air at different temperatures.

By varying the temperature for a given gas like air, see Figure 2.2, the probability is
distributed over a wider range of velocities for increasing temperature.

Following the work of Hänel (2004), the derivation of Equation (2.10) will be shown based
on the limiting case of a continuous flow at a Knudsen numberKn =

λf
Lref
→ 0. IfKn� 1

the flow can be called continuous, since the mean free molecule path λf is much smaller
than the reference length Lref . For Kn � 1 the underlying physics are considered as a
free particle flow. The right hand side of Equation (2.4), needs to be zero in order to fulfill
Kn→ 0 in order to have a continuous fluid in thermodynamic equilibrium. Thus,

∫

V

∫

ξ

Q(f, f)dξdV =

∫
dξ1

∫
dσ(Ω)|ξ − ξ1|(f(ξ

′
)f(ξ

′

1)−f(ξ)f(ξ1)) = 0

(2.11)

11



2. The Lattice Boltzmann Method

which leads to
f(ξ

′
)f(ξ

′

1)− f(ξ)f(ξ1) = 0. (2.12)

Equation (2.11) states, that during a collision process f(ξ)f(ξ1) particles are leaving
phase space ξ + ∆ξ, where the collision took place and an inverse collision described
by f(ξ

′
)f(ξ

′
1) is redistributing particles back from ξ

′
+ ∆ξ

′ in the original phase space.
This can be considered as conservation of mass, momentum and energy in phase space.
Equation (2.12) leads to

ln
(
f(ξ

′
)
)

+ ln
(
f(ξ

′

1)
)

= ln(f(ξ)) + ln(f(ξ1)) (2.13)

for Kn → 0, by assuming a local thermodynamic equilibrium. In order to proof that
Equation (2.12) leads to a correct solution of the Boltzmann equation, we rewrite the
terms of the aforementioned collision invariants as in Equation (2.12)

m+m1 =m
′
+m

′

1 (2.14a)

mξ +m1ξ1 =m
′
ξ
′
+m

′

1ξ
′

1 (2.14b)
m

2
ξ2 +

m1

2
ξ2

1 =
m
′

2
ξ
′2 +

m
′
1

2
ξ
′2
1 . (2.14c)

Comparing Equation (2.14a)-(2.14c) with Equation (2.13), we see that ln
(
f(ξ

′
)
)
is an

additive collision invariant and, thus, the microscopic properties do not change after the
collision, see Succi (2001).

Thus, Equation (2.13) can be rewritten in terms of additive invariance

ln(f(ξ)) = A+Bui +
1

2
Cuiui ⇒ f(ξ) = exp(A) exp(Bui) exp

(
1

2
Cuiui

)
(2.15)

where A, B and C are constants, fitted to reconstruct density, momentum and energy
properly, leading to Equation (2.10).

The connection to the H-theorem, which states the positivity of the entropy for the
Boltzmann equation, will be shown in the next section based on the findings of the Maxwell
distribution function.

2.2.2. The H-theorem

The incorporation of the entropy in the Boltzmann equation, leading to the H-theorem,
will be outlined. The specific entropy s is a fundamental physical property of thermo-
dynamic systems and regarding the second law of thermodynamics, it satisfies s = 0 for
flows in thermodynamic equilibrium and positivity s > 0 for flows apart from equilibrium
state.

In order to represent the entropy in a closed thermodynamic flow system described by
the Boltzmann equation, we define the H value as a moment of the equilibrium velocity

12



2.2. The Boltzmann BGK Approach

distribution function as
H = −

∫

ξ

f eq(ξ) ln(f eq(ξ))dξ. (2.16)

The change of entropy in a thermodynamic closed system is defined as

T · dS = dE + pdV ≥ 0, (2.17)

where E is the energy and p the constant pressure. Following Hänel (2004), Equations
(2.16) and (2.17) correlate corresponding to

∂∆S

∂t
∝ ∂H

∂t
. (2.18)

If Equation (2.16) can be applied to a system with underlying Boltzmann dynamics,
Equation (2.18) would close the gap between the temporal growth of entropy and the
Boltzmann equation. Assuming a closed system, where all spatial derivatives vanish,
Equation (2.4) can be rewritten as

∂f(ξ)

∂t
=

∫
dξ1

∫
dσ(Ω)|ξ − ξ1|(f(ξ

′
)f(ξ

′

1)− f(ξ)f(ξ1)). (2.19)

From Equation (2.16) follows

∂H

∂t
= −

∫

ξ

f eq(ξ) ln(f eq(ξ))

∂t
dξ = −

∫

ξ

f eq(ξ)

∂t
(1 + ln(f eq(ξ)))dξ. (2.20)

By replacing the temporal derivative of f eq(ξ) in Equation (2.20) with f(ξ)
∂t

of Equation
(2.19), an expression for the algebraic sign of the temporal evolution of the H value can be
derived. After algebraic transformations taking the particle exchange between f(ξ)f(ξ1)
and f(ξ

′
)f(ξ

′
1) into consideration, we find

(f(ξ
′
)f(ξ

′

1)− f(ξ)f(ξ1)) ln

(
f(ξ)f(ξ1)

f(ξ′)f(ξ
′
1)

)
≥ 0 (2.21)

and therefore
∂H

∂t
≥ 0. (2.22)

If f(ξ
′
)f(ξ

′
1) − f(ξ)f(ξ1) < 0, it follows subsequently that ln

(
f(ξ)f(ξ1)

f(ξ′ )f(ξ
′
1)

)
< 0 is negative

and vice versa.

Thus, the entropy s can be expressed within the framework of the Boltzmann equation in
terms of an arbitrary velocity moment of the velocity distribution function. The temporal
evolution of the H-theorem corresponds to ∂H

∂t
≥ 0. Therefore the entropy is monotonically

increasing for systems described by the Boltzmann equation.
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2. The Lattice Boltzmann Method

2.2.3. Hermite Polynomial Expansion of the BGK
Boltzmann Equation and the Hydrodynamic Limit:
The lattice Boltzmann Method

In order to derive a numerical model for Equation (2.9), the macroscopic limit of the
BGK Boltzmann equation needs to converge to the NSE. To show that the Boltzmann
BGK approach stands up to the Navier-Stokes equations we use Grad’s approach, see
Grad (1949a) and Grad (1949b). The idea is to project the velocity distribution function
on a Hermite polynomial basis. As we see later, this is a very convenient approach, since
the moments of the Hermite polynomial expansion are equal to the velocity moments of
the Boltzmann equation. It will be shown, that a low order approximation of the BGK
Boltzmann equation in terms of the Hermite polynomial expansion leads to the correct
macroscopic equations of fluid motion. First, some basic properties of Hermite polynomi-
als will be discussed. Second, the Boltzmann BGK approach is projected onto a Hermite
basis and the key aspects of deriving the Navier-Stokes equations will be introduced.
Next, a numerical model based on the Hermite basis will be introduced, leading to a com-
plete numerical model for the simulation of fluid flows, known as the Lattice Boltzmann
BGK approach. The next section examines the exact derivation of the NSE applying the
Chapman Enskog multi-scale expansion to the lattice Boltzmann BGK method.

As already stated, the expansion coefficients of Hermite polynomials correspond exactly
to the velocity moments up to a desired order N . Therefore, a projection of the BGK
Boltzmann equation on a Hermite basis leads to the desired equation at the hydrodynamic
limit, see Chen and Doolen (1998).

Assuming a D dimensional space, Hermite polynomials are defined by the nth derivative
of a generic weight function, written as

ω(ξ) ∝ A exp
(
ξ2
)

(2.23)

where A = 1
(2π)D/2

. The Hermite polynomial of order n is defined in tensorial form as

Υ(ξ) =
(−1)n

ω(ξ)
∇nωξ, (2.24)

which implies a nth rank symmetric tensor of the nth order polynomial.

The first four polynomials n = 3 are written out explicitly in tensorial form, since they
are used for consistent turbulence modeling later. Introducing the Kronecker delta δ with
the properties δi=j = 1 and δi 6=j = 0 we define the Hermite polynomials Υ(n)(ξ) with
n = 0..3 as

Υ(0)(ξ) =1, (2.25a)

Υ(1)(ξ) =ξ, (2.25b)

Υ(2)(ξ) =ξξ − δ, (2.25c)

Υ(3)(ξ) =ξiξjξk − (ξiδjk + ξjδki + ξkδij). (2.25d)
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2.2. The Boltzmann BGK Approach

By applying Equation (2.24) we can project the Boltzmann equation on a Hermite basis
leading to

f(xi, ξ, t) = ω(ξ)
∞∑

n=0

1

n!
a(n)(xi, t)Υ

(n)(ξ). (2.26)

For the truncation of the series at N th order we define

f(xi, ξ, t) = ω(ξ)
N∑

n=0

1

n!
a(n)(xi, t)Υ

(n)(ξ), (2.27)

where the coefficients a(n)(xi, t) are defined as

a(n)(xi, t) =

∫
f(xi, ξ, t)Υ

(n)(ξ)dξ. (2.28)

In Equation (2.27), the product a(n)(xi, t) Υ(n)(ξ) can be interpreted as a full summation,
since both terms are nth rank tensors. The full summation will be denoted as a : a, which
can be rewritten as aijaji using the Einstein’sche Summenkonvention. Equation (2.28)
already implies the necessity of Hermite polynomials for designing a numerical scheme for
the Boltzmann BGK approach, since the moments in Equation (2.8c) correspond to the
coefficients of the Hermite basis. The Hermite coefficients are written as

a(0) =ρ, (2.29a)

a(1) =ρu, (2.29b)

a(2) =Π + ρ(uu− δ), (2.29c)

a(3) =

∫
ξξξf(xi, ξ, t)dξ + 3ua(2) − 2ρuuu. (2.29d)

Here, Θ is the kinetic temperature, which will be set to Θ = 1 for all simulations, since
an athermal Boltzmann scheme is used. The corresponding Hermite coefficients for the
equilibrium distribution function are defined as

a
(0)
0 =ρ, (2.30a)

a
(1)
0 =ρu, (2.30b)

a
(2)
0 =ρuu+ ρ(Θ− 1)δ, (2.30c)

a
(3)
0 =ρuiujuk − ρ(Θ− 1)2(uiδjk + ujδki + ukδij) . (2.30d)

So far, the conceptual design of the velocity distribution function based on Hermite bases
was shown. To derive the Euler equations, we use the Hermite truncated Boltzmann
equation. Inserting Equations (2.27), (2.29a)-(2.29d) and (2.30a)-(2.30d) in the BGK
approach, given by Equation (2.9), one obtains

∂

∂t
a(n) +∇x · a(n+1) + δ · ∇x · a(n−1)δ = −1

τ
(a(n) − a(n)

0 ). (2.31)

By assuming a thermodynamic equilibrium, Equation (2.31) leads to the Euler equation
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2. The Lattice Boltzmann Method

by replacing the velocity distribution function by its equilibrium projected Boltzmann
BGK equation

∂

∂t
a

(n)
0 +∇x · a(n+1)

0 + δ · ∇x · a(n−1)
0 δ = −1

τ
(a

(n)
0 − a(n)

0 ). (2.32)

For n = 0 the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (2.33)

is obtained and for n = 1 Equation (2.32) leads to the desired inviscid momentum equa-
tion

∂ρu

∂t
+∇ · (ρuu+ pδ) = 0 . (2.34)

In order to derive the NSE we allow small disturbances of the thermodynamic equilibrium
for the velocity distribution function

f(xi, ξ, t) = f eq(xi, ξ, t) + fneq(xi, ξ, t) . (2.35)

Using Equation (2.35) we write the Hermite truncated BGK Boltzmann equation at non-
equilibrium state as

∂

∂t
a

(n)
0 +∇x · a(n+1)

0 + δ · ∇x · a(n−1)
0 δ = −1

τ
a

(n)
1 (2.36)

with
a

(n)
1 (xi, t) =

∫
fneq(xi, ξ, t)Υ

(n)(ξ)dξ (2.37)

and

fneq(xi, ξ, t) =
N∑

n=0

1

n!
Υ(n)(ξ)a

(n)
1 (xi, t) . (2.38)

In Equation 2.36 τ is the relaxation time, which is related to the viscosity as ν = c2
s(τ −

1
2
). Assuming small disturbances from the local thermodynamic equilibrium in Equation

(2.36), leads for n = 1 to

∂ρu

∂t
+∇ · (ρuu+ pδ −Π) = 0 , (2.39)

see Bespalko (2011); Lammers (2004) and Peng (2014). A proper expression for a(n)
1 in

order to describe the momentum flux tensor Π needs to be derived now. It can be shown,
e.g., in Waldrow (2000), that in an athermal flow a(2)

1 is defined by

a
(2)
1 (xi, t) = −τρ(2∇u− 2/3(∇ · u)δ), (2.40)

which directly connects a(2)
1 to the strain-field and following Peng (2014), Π can subse-

quently be expressed as
Π = 2µS . (2.41)
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2.2. The Boltzmann BGK Approach

S is the strain-rate. In consideration with Equation (2.39), this leads to the NSE. Note,
that Equation (2.39) implies the second order truncated equilibrium distribution func-
tion

fneq(xi, ξ, t) = ω(ξ)

(
1 + ξ · u+

(ξ · u)2

2
− 1

2
u2

)
. (2.42)

Thus, a second order approximation of the velocity distribution function in terms of a
Hermite polynomial expansion leads to the NSE using the BGK Boltzmann approach.
At this point, only the derivation of the macroscopic equations has been shown, without
commenting on the actual accuracy of this approximation. Aspects regarding the accuracy
will be discussed later in Section 2.3.

Now, the numerical discretization of the velocity distribution function will be introduced,
based on the previous derivations. The numerical discretization of the BGK Boltzmann
equation leads to the LBM. An appropriate numerical model for Equation (2.9), is found
by defining a finite set of discrete lattice links at each numerical node. The definition of
discrete lattice links at each spatial node is based on the velocity distribution function,
which is defined in phase space. Thus, f(xi, ξ, t) is discretized in space, time and velocity
space. A pure space and time discretization would lead to a very expensive estimation
of the velocity moments. Furthermore, the phase space discretization is essential for the
evaluation of the velocity moments since a Gauß-Hermite quadrature allows the evalua-
tion of the macroscopic moments based on the Hermite truncated Boltzmann equation.
Therefore, a discrete set of finite velocities is defined in space, which is described by voxels.
On each voxel the discrete lattice links are defined and the Gauss-Hermite quadrature is
performed based on the Hermite projection of the Boltzmann BGK equation. Through-
out this work we use the discrete D3Q19 model, which implies 19 discrete velocities in
a three-dimensional space. Common velocity sets are the D3Q13, the D3Q15 and the
D3Q27 for three- dimensional problems, or the well-known D2Q5 and D2Q9 model for
two-dimensional flow problems. They all have different advantages and disadvantages,
which will not be discussed here but are analyzed in detail in Hänel (2004); Waldrow
(2000) or Geier (2006).

The discrete lattice for the D3Q19 model applied in this work is shown in figure 2.3.
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Figure 2.3.: Discrete D3Q19 lattice links.
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The numbering of the lattice links differs from the common way in literature, but is rather
efficient regarding the implementation of boundary conditions within OpenLB.

It has been shown, that the macroscopic moments of the velocity distribution functions
are identical to the weighting coefficients of the Hermite polynomials. Thus, a discrete
velocity field cα with α = 0...q − 1 is introduced, see Figure 2.3, where q is the number
of discrete lattice links. The Gauß-Hermite quadrature for the reconstruction of the
macroscopic moments is written as

∫

ξ

ω(ξ)f(xi, ξ, t) =

q−1∑

α=0

ωαf(xi, cα, t), (2.43)

where cα is the discrete lattice velocity of the corresponding model, α is the discrete
direction, q is the number of discrete lattice velocities and ωα are the weights of the
quadrature formula.

The macroscopic moments are consequently

ρ =

∫
dξf(xi, ξ, t) =

q−1∑

α=0

fα(xi, cα, t), (2.44a)

ρu =

∫
dξξf(xi, ξ, t) =

q−1∑

α=0

fα(xi, cα, t)cα, (2.44b)

Q =

∫
dξ ξξfneq(xi, ξ, t) =

q−1∑

α=0

fneqα (xi, cα, t)cαcα, (2.44c)

where ρ is the density, ρu the momentum and Q the stress.

Before the numerical procedure is explained, the lattice properties and the discretized
version of the velocity distribution function are summarized. Tabular 2.1 gives an overview

q 0 1 2 3 4 5 6 7 8
ωα 1/3 1/18 1/18 1/18 1/36 1/36 1/36 1/36 1/36

cx 0 −1 0 0 −1 −1 −1 −1 0
cy 0 0 −1 0 −1 1 0 0 −1
cz 0 0 0 −1 0 0 −1 1 −1

q 9 10 11 12 13 14 15 16 17 18
ωα 1/36 1/18 1/18 1/18 1/36 1/36 1/36 1/36 1/36 1/36

cx 0 1 0 0 1 1 1 1 0 0
cy −1 0 1 0 1 −1 0 0 1 1
cz 1 0 0 1 0 0 1 −1 1 −1

Table 2.1.: Discrete lattice directions and the corresponding weights for quadrature for-
mula.

of the discrete directions for the D3Q19 lattice links used in this work. Discretization

18



2.2. The Boltzmann BGK Approach

of Equation (2.9) onto a lattice with the demonstrated properties leads to the evolution
equation for the lattice BGK model:

fα(xi + cα∆t, cα, t+ ∆t)− fα(xi, cα, t)

∆t
= −1

τ
(fα(xi, cα, t)− f eqα (xi, cα, t)). (2.45)

Defining ∆t = 1, as well as, cx = cy = cz = ∆x
∆t

= 1 in lattice units on an equidistant grid,
the typical LBM algorithm consisting of the two elementary steps:

1. Collide: f̃α(xi, cα, t) = − 1
τ
(fα(xi, cα, t)− f eqα (xi, cα, t)).

2. Stream: fα(xi + cαt, cα, t+ ∆t)− fα(xi, cα, t) = f̃α(xi, cα, t).

can be introduced.

f eqα (xi, cα, t) is the discrete approximation of the low Mach number expanded Maxwell
distribution given in Equation (2.10). A Taylor series approximation for small Mach
numbers at a constant x leads to

f eqα (xi, cα, t) = ρωα

[
1 +

cαui
c2
s

+
1

2c4
s

(uiuj − c2
sδ)uiuj

]
. (2.46)

In Equation (2.46), cs = 1√
3
is the lattice speed of sound, leading to the Mach number

Ma = |c|
cs

defined in lattice space. To finalize the discussion, we close the gap between
Equation (2.46), Equation (2.10) and the Hermite quadrature, to show that the discrete
Maxwellian equation conserves mass, momentum and energy in the same way as its con-
tinuous definition. First, we rewrite Equation (2.10) with the discrete lattice velocity c,
using ideal gas formulations for the isothermal speed of sound cs =

√
RT and D = 3

f eq(xi, ξ, t) =
ρ(xi, t)

(2πRT (xi, t))3/2
exp

{(
−(ξ − uref )2

2RT (xi, t)

)}
=

ρ(xi, t)

(2πc2
s)

3/2
exp

{(
−(cα − uref )2

2c2
s

)}
.

(2.47)
Separating the exponential part of Equation (2.47), leads to different Mach number de-
pendencies

exp

{(
−(cα − uref )2

2c2
s

)}
= exp

{(
− c

2
α

2c2
s

)}

︸ ︷︷ ︸
O(1)

exp

{(
−uref,icα

c2
s

)}

︸ ︷︷ ︸
O(Ma)

exp

{(
−uref,iuref,i

2c2
s

)}

︸ ︷︷ ︸
O(Ma2)

.

(2.48)
Equation (2.48) is now expanded in terms of a Taylor series around small Mach numbers
leading to the equivalent of Equation (2.46)

f eq(xi, cα, t) =
ρ(xi, t)

(2πc2
s)

3/2
exp

{(
− c

2
α

2c2
s

)}
exp

{(
1 +

uicα
c2
s

+
uiui
2c2
s

+
uicαujcβ

2c4
s

)}
, (2.49)

where the first two terms on the right hand side are the underlying weighting coefficients
of ωα, see Table 2.1, of the Hermite quadrature. These weights satisfy

∑

α

ωα = 1,
∑

α

ωαciαcjα = c2
sδ (2.50)
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for f eqα (xi, cα, t). This section introduced the Hermite projection of the BGK Boltzmann
approach and its discretization on a lattice with discrete velocity links. It was shown, that
the discrete BGK Boltzmann approach conserves the macroscopic moments by using a
truncated Hermite polynomial expansion of the velocity distribution function up to order
2 for the weakly compressible limit of the NSE.

2.3. From the Kinetic Level to the
Navier-Stokes Equations: The Chapman
Enskog Expansion

In order to reconstruct the macroscopic equations of fluid motion, a Chapman Enskog
expansion is used, see Chen and Doolen (1998). The velocity distribution functions are
expanded with a multi-scale expansion factor ε, which is directly related to the Knudsen
number ε = Kn. For the discrete distribution functions, this expansion reads

fα = f (0)
α + εf (1)

α + ε2f (2)
α + ..., (2.51)

where f (0)
α corresponds to f eqα . For the time and space derivatives one obtains

∂

∂t
= ε

∂

∂t0
+ ε2

∂

∂t1
,

∂

∂xi
=

∂

∂x
(0)
i

+ ε
∂

∂x
(1)
i

, (2.52)

where the indices 0 and 1 indicate different scales of the corresponding unit. The starting
point is Equation (2.45), which is approximated by a second order Taylor series with
respect to cα and xi, leading to

∂fα
∂t

+
∂fα
∂xi

cα + 2
∂2fα
∂xi∂t

cα +
∂2fα
∂2t

+
∂2fα
∂xi∂xj

cαcα = −1

τ
fneqα . (2.53)

Taking Equations (2.53) and inserting Equations (2.52) and (2.51) one obtains a set of
equations, which separated by order εn, leads to

O(ε0) : − 1

τ
(fα − f eqα ) = 0 (2.54a)

O(ε1) :
∂f eqα
∂t0

+ δcα
∂f eqα

∂x
(1)
i

= −1

τ
fneqα (2.54b)

Multiplication of Equation (2.54a) and (2.54b) by cα leads with subsequent integration
to mass and momentum conservation up to order O(ε1). The continuity equation as well
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as the Euler momentum equations can be written as

∂ρ

∂t0
+∇(0)

i (ρui) = 0 (2.55a)

∂ρui
∂t0

+∇(0)
j Π

(0)
ij = 0 (2.55b)

with Π
(0)
ij =

∑
α cαcαf

eq
α = ρuiuj + pδ being the zeroth-order momentum flux tensor, see

Section 2.2.3.

This is similar to the procedure based on Grad’s approach. For O(ε2) one obtains

O(ε2) :
∂f eqα
∂t1

+

(
1− 1

2τ

)(
∂fneqα

∂t0
+
∂fneqα

∂x
(1)
i

δcα

)
= −1

τ
f (2)
α . (2.56)

Following the same procedure as for Equations (2.54a) and (2.54b), Equation (2.56) leads
to

∂ρ

∂t1
=0 (2.57a)

∂ρui
∂t1

+

(
1− 1

2τ

)
∇(0)
j Π

(1)
ij = 0. (2.57b)

In Equation (2.57b) Π
(1)
ij =

∑
α cαcαf

neq
α is the first order off-equilibrium momentum

flux tensor. An expression for this term is found by multiplying Equation (2.54b) by
cαcα = ciαcjα. The summation over all discrete links α, corresponding to a velocity space
integration, leads to

− 1

τ

∑

α

ciαcjαf
neq
α =

∑

α

ciαcjα∂f
eq
α

∂t0
+
∑

α

ciαcjαckα∂f
eq
α

∂x
(1)
k

. (2.58)

After some algebra, we obtain

Π
(1)
ij =

ρ

c2
s

(
∂uj

∂x
(1)
i

+
∂ui

∂x
(1)
j

)
+O(Ma3). (2.59)

Neglecting high-order terms on the Mach number and applying Equation (2.59) to Equa-
tion (2.57b) the hydrodynamic equation of fluid motion can be finally written as

∂ρui
∂t

+∇j

(
pδij +

∂ρui
∂xj

− ρ

c2
s

(
1

τ
− 1

2

)
∂ui
∂xj

)
= 0 . (2.60)

2.4. Modeling of the Collision Operator

LBM solves a set of kinetic equations in terms of discrete velocity distribution functions
fα(xi, cα, t) numerically. The discrete Boltzmann equation, see section 2.2.3, can be writ-

21



2. The Lattice Boltzmann Method

ten as

fα(xi, xi + cα∆t, t+ ∆t) = fα(xi, cα, t) + Ωα(fα(xi, cα, t), f
′

α(xi, cα, t)) (2.61)

where cα is the discrete velocity set of the applied lattice structure. The discrete collision
operator Ωα(fα(xi, cα, t), f

′
α(xi, cα, t)), represents non-linear and viscous effects, similar to

those of the NSE.

This work deals with high Reynolds number flows and it has been observed, that the
discretization of the right-hand side of Equation (2.61) influences the numerical stability,
as well as the statistics of the investigated turbulent flow. In order to derive a sufficient
accurate turbulence model for LES in the LBM framework, it is mandatory to understand
the pure LBM schemes in order to develop turbulence models that not only increase the
stability of LBM methods but also treat the energy transfer and the statistics of turbulent
flows correctly. Three different schemes are part of the investigation in Chapter 3, namely
the BGK, the MRT and the RLB.

So far, only the BGK approach for modeling the collision term has been introduced
shortly but the properties of this model have not been discussed yet. This will be done
in Section 2.4.1. In Section 2.4.2, the well-known MRT scheme will be introduced and
major characteristics will be discussed. Finally, the regularized BGK approach will be
introduced and the differences between the schemes will be outlined shortly.

Depending on the applied discrete scheme, the collision term is modeled in a different man-
ner. The reconstruction of macroscopic moments based on a Gauss-Hermite quadrature
of the velocity distribution function on a discrete lattice is the same for all models. The
first two moments of the velocity distribution functions are density ρ and the momentum
ρu, that is,

ρ =
∑

α

fα, ρu =
∑

α

cαfα. (2.62)

The momentum flux is the second-order off-equilibrium moment of the velocity distribu-
tion functions, defined as

Π =
∑

α

fneqα cαcα. (2.63)

There are several other approaches for modeling for the collision operator like the cascaded
Lattice Boltzmann scheme of Martin Geier, see Geier (2006) and Geller et al. (2013). This
approach applies central moments instead of uncentered moments and low-order velocity
moments are used in a cascaded process to estimate high-order velocity moments. An
essential part of the Boltzmann theory is to hold a positive definiteness of the entropy.
Explicit formulations of entropy are enhanced in the entropic LBM (ELBM), which can be
divided in two different approaches. The first one is based on the weighted discrete version
of the H-theorem, see Section 2.2.2, developed by Ansumali and Karlin, see, e.g., Ansumali
and Karlin (2002, 2000) and Chikaarla and Karlin (2013). The second approach is based
on a Tsallis entropy function, derived and demonstrated in Boghosian et al. (2001) and
Boghosian et al. (2003). Another possibility to design the collision operator is similar to
the BGK approach, known as the two relaxation time (TRT) model. As shown later, the
discrete velocity distribution functions can be related to macroscopic moments by a linear
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2.4. Modeling of the Collision Operator

transformation matrix. The TRT approach differs between odd order moments, which
are relaxed separately from the even order ones. This approach is outlined by Ginzburg
et al. (2008).

2.4.1. The Lattice BGK Approach Revised

The most common applied approach is called the BGK approach, see He and Luo (1997);
Guo et al. (2000); Guo and Shu (2013); Sukop and Thorne (2006), which models the
collision term as a linear relaxation towards a Maxwellian equilibrium. The BGK approach
was already introduced for the continuous Boltzmann equation in Section 2.2. The discrete
BGK Boltzmann approach is described by

Ωα(fα(xi, cα, t), f
′

α(xi, cα, t)) = fα(xi, xi + cα∆t, t+ ∆t)− fα(xi, cα, t) =

−1

τ
(fα(xi, cα, t)− f eqα (xi, cα, t)) ,

(2.64)

where f eqα (t,x) is a low Mach number truncated Maxwell-Boltzmann distribution, which
is adjusted in such a way, that Equation (2.63) is fulfilled and mass and momentum are
conserved. A widely used formulation for f eqα is

f eqα = ρωα

[
1 +

ciαui
c2
s

+
1

2c4
s

(uiuj − c2
sδij)uiuj

]
, (2.65)

which is the same as Equation (2.42). ωα are the weights to satisfy the exact Gauss-
Hermite quadrature of the lattice, cs is the lattice speed of sound and δij is the Kronecker
delta. Although the BGK approach has been applied to many flow problems, see Hänel
(2004); Waldrow (2000); Chen and Doolen (1998); Peng (2014); Krause et al. (2013);
Guo et al. (2000); Premnath et al. (2014) among others, it has been found to suffer from
non-linear instabilities at high Reynolds numbers, which have its origins in unphysical
velocity moments of fα. Among of others, Lallemand and Luo (2000) and Lammers et al.
(2006) showed, that the BGK model diverges for Mach numbers close to Ma ≈ 0.2 for
two- and three dimensional turbulent flows. In terms of a normalized wall distance in the
simulation of a turbulent channel flow, the stability threshold on a equidistant grid, is
described approximately by y+ = uτH

ν
≤ 2.5. This stability threshold is only correct for

simulations with a simple bounce-back rule for representing the solid walls.

2.4.2. The Multi Relaxation Time Scheme

To remedy the shortcomings of the BGK scheme, the Multi-Relaxation-Time (MRT)
scheme was developed by d’Humiéres et al. (2002), analyzed and optimized by Lallemand
and Luo (2000) and applied in Yu et al. (2006); Yu and Girimaji (2005); Premnath
et al. (2009); Geller et al. (2013); Du et al. (2006) amongst others. The main idea is to
transform the collision step into momentum space and to relax each moment separately in
order to reduce the non-linear instabilities arising from the temporal growth of unphysical
moments.
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2. The Lattice Boltzmann Method

In order to describe the motivation of the MRT model in more detail, we rewrite the
discrete BGK Boltzmann Equation (2.64) in a scattering matrix form by using a relaxation
time matrix Λ = diag(λ0, λ1, ..., λq−1), leading to

fα(xi, xi + cα∆t, t+ ∆t) = fα(xi, cα, t)−Λ (fα(xi, cα, t)− f eqα (xi, cα, t)) . (2.66)

In Equation (2.66), each velocity link can be relaxed separately by different diagonal
elements of Λ. For λ0 = λ1 = ... = λq−1 = 1

τ
the original BGK model is obtained.

So far, the collide and stream algorithm is performed in velocity space V. The unphys-
ical velocity moments lead to non-linear instabilities which can cause a blow-up of the
simulation, thus, the collision steps are defined in momentum space M in the MRT frame-
work by relaxing each moment separately, to avoid the unphysical velocity moments from
growing transiently. These moments are defined as polynomial expansions of fα based on
the discrete velocity cα, see Guo and Shu (2013), as

mα = Mfα . (2.67)

The transformation matrix M is given in Appendix D. M is constructed based on
the Gram-Schmidt orthogonalization, see Bouzidi et al. (2001), where the polynomials
cmαxc

n
αyc

l
αz with (m, n, l) ≥ 0 are applied based on the pairwise orthogonal basis vectors

ei. The basis vector ei is restricted by the discrete velocity model applied and, thus,
the moments obtained by Equation (2.67) can be interpreted physically. For the D3Q19
model, we can define the 19 discrete moments as

mα = (m0, ...,mq−1) =

(ρ, e, λ, jx, qx, jy, qy, jz, qz, Sxx, Szz, Sxy, Sxz, Syz, Q1, Q2, gx, gy, gz)
(2.68)

where e is the energy, λ is the energy flux squared, ji the momentum, qi the heat flux
and Sij the viscous momentum flux. Q1 and Q2, as well as, gi are not related to an
interpretable flow-physical moment in particular.

As already mentioned before, the corresponding algorithm of the MRT model is based
on a collision step in momentum space M, while advection or streaming is performed in
velocity space V. The underlying algorithm can be summarized as

fα(xi, xi + cα∆t, t+ ∆t) = fα(xi, cα, t)−M−1Λ(mα(xi, cα, t)−meq
α (xi, cα, t)). (2.69)

The equilibrium functions of the MRT model are given in Appendix D, see Equations
(D.3a)-(D.3s). They are designed to increase the stability and reconstruct the NSE at the
same time. Similar to the Chapman-Enskog expansion for the BGK model, this multi-
scale separation can be performed for the MRT collision model as well. Based on the
work of Yu et al. (2006); Yu and Girimaji (2005); Lallemand and Luo (2000), we define
the relaxation time matrix as

Λ = diag(s0, s1, ..., sq−1) =

(0, λe, λε, 0, λqx , 0, λqy , 0, λqz , λν , λν , λν , λν , λν , λQ1 , λQ2 , λgx , λgy , λgz)
(2.70)

24



2.4. Modeling of the Collision Operator

The values given in Equation (2.70) are the result of a Neumann stability analysis, see
Lallemand and Luo (2000) or Lammers (2004), emerging from the linearized LBM. As a
result one receives the eigenvalues λα which lead to an increased stability for the MRT
based LBM. The optimized parameters are shown in Appendix D, see Equation (D.2).
The relaxation parameters λν are related to the viscosity as ν = c2

s

(
1
λν
− 1

2

)
∆t, which

corresponds to the lattice BGK model. Compared to the lattice BGK scheme, the algo-
rithm given in Equation (2.69) needs approximately 15% more computational time.

Yet, due to the inconsistent derivation of boundary conditions for stresses on domain
boundaries, where velocities or the pressure are prescribed, instabilities arise in the MRT
model for Reynolds numbers larger than approximately O(104) in three dimensional tur-
bulent flows, see Freitas et al. (2011). In order to suppress these exponentially growing
disturbances, Latt (2007) proposed a regularization of the classical BGK algorithm.

2.4.3. The Regularized BGK Approach

Apart from the stabilisation technique introduced in Section 2.4.2, another class of BGK
models exist, which was introduced by Latt and Chopard in Latt (2007); Latt and Chopard
(2006); Latt et al. (2008) along with Zhang et al. (2006). In order to increase the stability
of the lattice BGK approach, a regularisation is performed each time step with an ap-
proximation of the first order non-equilibrium part of the velocity distribution function

f(xi, ξ, t) = f eq(xi, ξ, t) + fneq(xi, ξ, t)⇒ f(xi, ξ, t) = f eq(xi, ξ, t) + f (1)(xi, ξ, t). (2.71)

In Equation (2.71), the first order non-equilibrium part f (1)(xi, ξ, t) can be written as

f (1)
α (xi, cα, t) = − τ

c2
s

ωαQα
∂ρuj
∂xi

, (2.72)

which is approximated by the corresponding fneqα (xi, cα, t) leading to

fneqα (xi, cα, t) = fα(xi, cα, t)− f eqα (xi, cα, t) ≈ f (1)
α (xi, cα, t). (2.73)

Similar to Equation (2.73), we can write the second-order moment as

Πneq
ij ≈

∑

α

f (1)(xi, ξ, t)cαcα = −τc2
s

(
∂ρuj
∂xi

+
∂ρui
∂xj

)
(2.74)

Combining Equation (2.73) and (2.74) leads to the first order Chapman-Enskog expanded
approximation of f (1)(xi, ξ, t)

f (1)
α (xi, cα, t) = − τ

2c4
s

ωαQαΠneq
ij (2.75)

The overall procedure in terms of regularisation of the common lattice BGK algorithm
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2. The Lattice Boltzmann Method

reads
fα(xi, xi + cα∆t, t+ ∆t) = fα(xi, cα, t) + (1− ω)f (1)

α (xi, cα, t), (2.76)

where ω = 1
τ
is the relaxation frequency. The algorithm is summarized as

• Compute macroscopic moments with Equation (2.44c)

• Compute the equilibrium distribution function f eqα (xi, cα, t) with Equation (2.46)

• Compute fneq(xi, ξ, t) and Πneq
ij according to Equation (2.71) and (2.74)

• Regularize the collision step with Equation (2.76)

This regularization technique removes all moments of order n > 2 in terms of the Hermite
polynomial representation of the velocity distribution function. Thus, Equation (2.72)
can be rewritten as

f (1)
α (xi, cα, t) = − 1

2c4
s

ωαΥ(2)
α : a

(2)
1 (2.77)

Following Latt (2007) and Malaspinas (2015) these higher-order moments are negligible at
the hydrodynamic limit, i.e., for the weakly compressible NSE. Recent advances have been
made by Malaspinas (2015) leading to a recursive formulation of the velocity moments,
which lead to an improved stability of the compressible LBM formulation.

The regularization of the collision step needs to be applied to the bulk flow as well as at the
boundaries. The main issue with respect to boundary conditions in the RLB framework
is the proper reconstruction of the unknown distribution functions propagating opposed
the domain boundaries. For the regularization the discrete velocity information, i.e., an
approximation of the non-equilibrium part f (1)

α in Equation (2.73), is required. Different
approaches to design f

(1)
α at the domain boundaries are proposed and analyzed in Latt

and Chopard (2006); Latt et al. (2008). In the present study a linear finite differencing
scheme for the approximation of the strain-rate is considered for all wall bounded flows.
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CHAPTER 3

Accomplishments

This chapter summarizes the main contributions of this thesis including a short literature
overview of the current state-of-the-art in research. Support is given by the author’s
publications that can be found in Appendix B.

3.1. DNS Analysis of Turbulent Flow
Benchmarks with the Lattice-Boltzmann
Method

The application of the LBM for turbulent flows is still part of intensive research, since the
original formulation of the underlying BGK Boltzmann equations allow only for simula-
tions at rather low Reynolds numbers. The appearance of spurious unphysical velocity
oscillations is inherently observable, see Succi (2001), and they propagate and grow ex-
ponentially in the flow field. More advanced collision models, like the multi-relaxation
time scheme of d’Humiéres et al. (2002) or the cumulent LBM from Geier et al. (2015)
are coping with these stability issues with huge success.
For high Reynolds number flow simulations in the framework of classical Boltzmann
schemes, Smagorinsky like subgrid-scale models, see e.g. Yu et al. (2006); Yu and Giri-
maji (2005); Premnath et al. (2009) were extrapolated from the continuous Navier-Stokes
framework into the kinetic theory without investigating the numerical interaction between
the turbulence model and the collision term closure of the discrete Boltzmann equation.
Without assessing the amount of numerical dissipation on the range of wavenumbers ob-
tained by the pure collision models, simple adaption of standard LES models can lead to
a wrongly predicted energy transfer and dissipation and, thus, the incorrect prediction of
turbulent flow structures.
In order to allow for high accuracy turbulence modeling in the LBM-LES framework, a
detailed analysis of the turbulent flow structures predicted by pure Boltzmann schemes is
necessary. These insights can help to advance classical subgrid-scale closures in the LBM
framework to obtain more physical motivated energy transfer, dependent on the applied
collision model.
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P. Nathen, D. Gaudlitz, M. J. Krause and N. A. Adams (2018)
On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes
for the Simulation of Turbulent Flows
Journal of Communications in Computational Physics, 23(3), 846-876

The first paper of this work (Nathen et al. (2018a)) attached in Appendix B.1 inves-
tigates the interaction of different Lattice-Boltzmann schemes with turbulent flows. The
Bhatnagar-Gross-Krook (BGK) or single-relaxation time (SRT) the multi-relaxation time
(MRT) and the regularized lattice Boltzmann (RLB) model were part of this investigation.
These schemes are applied to turbulent flow benchmarks, namely the Taylor-Green vor-
tex, representing transitional and decaying isotropic turbulence and the turbulent channel
flow, representing wall-bounded turbulent flows. Different Reynolds number and resolu-
tions are applied in order to investigate numerical effects coming from under-resolved and
well resolved flow setups.
For the Taylor-Green vortex, the Reynolds number is varied from Re = 800 to Re = 3000,
while the resolution is set to N = 64, 128, 256, 512. Integral turbulent scales were in-
vestigated in real and spectral space.
The half-width of the turbulent channel flow is resolved by N = 31, 91, 151 cells, while
the friction Reynolds number is varied from Reτ = 180 to Reτ = 590. To the authors
knowledge, for the first time an analysis of wall-bounded flows with Reynolds numbers
up to Reτ = 590 on an equidistant grid are performed employing LBM. In depth analysis
is conducted for the average velocity profiles, Reynolds stresses and the wall-normal tur-
bulent energy spectra.
The results obtained from direct computations of the Taylor-Green vortex as well as for
the turbulent channel flow showed similar results with respect to non-intuitive mesh con-
vergence behavior, which is described for the first time in such detail. The BGK showed
reliable mesh convergence behavior, while the MRT scheme predicted the flow fields only
well for under-resolved flow setups. Increasing the resolution at fixed Reynolds numbers
lead to diverging simulations for the cases investigated here. The conclusions drawn from
this investigation deliver useful insights for advanced turbulence modeling in the LBM
framework. By knowing how much energy is dissipated and spurious energy is created
on different wavenumber ranges, future turbulence models can be calibrated with more
diligence for different collision schemes.
My contribution to this work was the testing of the implementation of all necessary fea-
tures in order to conduct the simulations in the open-source LBM code OpenLB. I tested
and validated the boundary condition algorithms, performed the numerical simulations
including grid generation and mesh-convergence studies, conducted, tested and imple-
mented major parts of the post-processing and wrote all parts of the manuscript for the
publication.
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3.2. Selective Viscosity Filters for LES based
Lattice-Boltzmann Simulations

Turbulence models for LBM based LES, commonly used in the LBM community are sim-
ple extrapolations of common NSE based SGS models. The turbulent viscosity approach
known from Smagorinsky (1963) is related to a turbulent relaxation rate τeff = τmol+τnum.
Numerical simulations of a standard like Smagorinsky approach in the LBM framework
were shown in Yu et al. (2005, 2006); Weickert et al. (2010). These models do not neces-
sarily satisfy the hydrodynamic limit in terms of the filtered NSE equation, see Malaspinas
and Sagaut (2012, 2011); Sagaut (2010). Additionally, from Nathen et al. (2018a) it can
be concluded that different collision models predict turbulent flow structures differently
with the same turbulence model.
Based on these findings, more advanced turbulence models, namely the Approximate De-
convolution Method (ADM), see Stolz and Adams (1999); Stolz et al. (2001); Adams and
Stolz (2002), were adapted to the LBM framework by Sagaut (2010) and Malaspinas and
Sagaut (2011). This approach which is also consistent with the incompressible limit of
the filtered NSE, aims to reconstruct at least parts of the sub-filter energy by an inverse
filter operation. The original implementation of the ADM in the LBM framework by
Malaspinas and Sagaut (2011) is based on an explicit filter operation employing viscosity
filters with a constant filter strength. Fauconnier et al. (2013) already demonstrated, that
a straightforward application of constant filter strengths for any given filter stencil for
viscosity filters requires fine adjustment to the underlying test case, to aim for stability
and accuracy at the same time.
We developed a self-adapting filter, which decreases the need for filter strength adjust-
ment and delivers conditional stability with the required amount of numerical dissipation
in order to be consistent with turbulent theory. Similar ideas were introduced by Lèveque
et al. (2007) and Marié and Gloerfelt (2017).

P. Nathen, M. Haussmann, M. J. Krause and N. A. Adams (2018)
Adaptive Filtering for the Simulation of Turbulent Flows with Lattice Boltz-
mann Methods
Computers & Fluids, ??(?)ACCEPTED, IN PRESS, XXX-XXX

In the second main contribution of this work (Nathen et al. (2018b)) attached in B.2,
a selective filter is introduced. The dynamic filtering procedure exploits resolved scales
in order to adapt the filter strength according to the flow field. Adaptive filter strengths
are calculated by a phase averaged strain-rate, which is related to a resolved dissipation
time scale. By this procedure, filtering will be only applied in regions where the flow is
under-resolved. Filtering is canceled out in flow regions, where the turbulent flow struc-
tures are resolved properly.
The Taylor-Green vortex and the turbulent channel flow at very low resolutions and very
high Reynolds numbers serve as turbulent benchmarks. For the Taylor-Green vortex, the
Reynolds number is set to Re = 800, Re = 1600 and Re = 3000, while the length of th 2π
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periodic box is resolved equidistantly by N = 32, 64, 128 and 256 cells. Integral length
scales are calculated dynamically, to evaluate new time phases, over which the strain-rate
is averaged in order to update the filter strength accordingly.
Finally, the adaptive filter approach is applied to the turbulent channel flow at at varying
Reynolds numbers and resolutions: Reτ = 180, Reτ = 395 and Reτ = 590 are simulated
with N = 31, 71, 91 cells per channel half-width. Since the turbulent channel flow turbu-
lence statistics are homogeneous in stream-wise and span-wise directions after it reaches
it’s fully decorrelated state from initialization, no need for adaptive phases is given and
the averaging procedure simplifies to a standard procedure.
With respect to the decaying isotropic turbulence test case, the adaptive filtering pro-
cedure showed superior agreement with reference DNS data compared to the original
ADM implementation. Beyond that, more stable flow setups are established (Re = 3000,
Re = 1600 and N = 32), which would not be possible with the standard BGK scheme.
For the turbulent channel flow, it is shown that the Reynolds stresses as well as the mean
flow field are predicted accurately and only for very high Reynolds numbers (Reτ = 590)
and very low resolutions (N = 31) a significant discrepancy can be found. It is shown,
that a constant filter strength needs iterative calibration work in order to achieve the
same quality of results as an adaptive filter.
My contribution to this work was the development and the implementation of the adaptive
filter method in the open-source LBM code OpenLB. I tested and validated the algorithms,
performed the numerical simulations including grid generation, refinement studies, con-
ducted major parts of the post-processing and wrote all parts of the manuscript for the
publication.
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3.3. Arbitrary shaped boundary treatment for
turbulent Flow Simulation with the
Lattice-Boltzmann Method

The simulation of turbulent flows around complex shaped geometries is of essential interest
for industrial flow simulation. LBM exposed itself as an reliable framework for efficient
flow simulation for low Reynolds number flows around simple shaped geometries. The
industrial application of LBM requires intense work on how the predictability changes,
when the complexity is increased by means of high Reynolds numbers and complex shaped
geometries.
Since the original discrete lattice approach introduced in Section 2.2.3, only allows for
staircase approximations of a given geometry and, thus, tremendous amounts of cells are
required to represent complex shaped geometries properly, advanced techniques were in-
troduced by Bouzidi et al. (2002) and further analyzed by Lallemand and Luo (2003).
The underlying idea for methods like the Bouzidi scheme is an interpolation technique,
which takes the geometries shape into account in order to calculate the unknown velocity
distribution functions propagating into the flow field. Interpolation techniques employing
this method are quite robust and computationally inexpensive. For completion, it shall
be noted that methods similar to the immersed boundary methods for the Navier-Stokes
equations (Peskin (1972); Mittal and Iaccarino (2005); Clarke et al. (1986); Udaykumar
et al. (2001)) are existing for the LBM, see Feng and Michaelidis (2004, 2005); Inamoru
(2012); Shu and Wu (2009) among others.
The combination of complex boundary treatment and the prediction of turbulent flow
structures is still a major subject of research in the LBM community.

P. Nathen, D. Gaudlitz, J. Kratzke and M. J. Krause (2013).
An extension of the Lattice-Boltzmann Method for simulating turbulent flows
around rotating geometries of arbitrary shape.
21st AIAA Computational Fluid Dynamics Conference, June 24 - 27, 2013, San Diego,
CA, USA.

The first contribution of this work, see Nathen et al. (2013), deals with the simulation
of turbulent flow structures around static and moving bodies. A multi-relaxation time
(MRT) scheme is employed with Bouzidi’s interpolation technique in order to represent
solid walls of arbitrary geometries. For the additional high Reynolds number benchmarks
a Smagorinsky LES model is implemented. The implementation of the model is consistent
with the incompressible limit of the filtered Navier-Stokes equations. This work aims to
demonstrate capabilities of the LBM for simulation of turbulent flows around complex
shaped geometries with and without movement.
For two dimensional flows at low Reynolds numbers around static and solid bodies, the
test case of Breuer et al. (2000) serves as a reference. The reference length D of a square
cylinder is resolved by N = 40 cells, in a Lx = 50D long and Ly = 8D high domain.
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3. Accomplishments

An equidistant grid is employed and the Reynolds number based on the reference length
D is varied from Re = 50...300. At the inlet a laminar Poiseuille profile is imposed, at
the outlet a pressure outlet is given and the upper and lower walls were represented by a
bounce-back scheme. Very good agreement with reference drag values was achieved. Ad-
ditional successful validation for static bodies was done for an increased Reynolds number
at Re = 21400. Increasing the complexity by applying the method to two-dimensional
rotating cylinders, the trends were in accordance with the reference data of Kang et al.
(1999); Mittal and Kumar (2003); Nair et al. (1998) as well.
Employing LBM with a MRT scheme and Bouzidi wall treatment to three-dimensional
flows around rotating cylinders, only for relatively small Reynolds numbers (Re = 5000)
and fairly resolved simulation setups, a reliable flow field was predicted. Increasing the
resolution on an equidistant grid, the MRT setup lead to divergence. The conference
publication attached in C.1 was the initial trigger for the first main publication Nathen
et al. (2018a).
My contribution was the implementation, validation and testing of the Smagorinsky
model, the combined implementation of MRT and Bouzidi scheme and the conduction
of all validation simulations. All parts of the manuscript for publication were written by
me.
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3.4. Towards advanced LES filtering for Turbulent Flow Simulation in
the Lattice-Boltzmann Framework

3.4. Towards advanced LES filtering for
Turbulent Flow Simulation in the
Lattice-Boltzmann Framework

The initial motivation, framework and literature review is similar to the one presented in
Section 3.2.

P. Nathen, D. Gaudlitz, and N. A. Adams (2015).
Towards wall-adaption of turbulence models within the Lattice-Boltzmann
framework.
The 9th Symposium on Turbulence and Shear Flow Phenomena (TSFP-9), June 30 -
July 3, 2015, Melbourne, Melbourne, Australia.

The second conference paper, see Nathen et al. (2015) attached in C.2, is the initial work
on the adaptive filter presented in Nathen et al. (2018b). The constant filter strength
was replaced by an adaptive one, which triggers filtering only in regions, where the flow is
under-resolved while suppressing explicit filtering in well resolved flow regions. Compared
to the calculation of the filter strength σ(x, t) in Nathen et al. (2018b), a simple time
averaging procedure for the strain rate Sij(x) is applied. The time scale for normalization
is related to a turbulence time scale.
The Taylor-Green vortex and the turbulent channel flow at low and high resolutions and
high Reynolds numbers serve as turbulent benchmarks. For the Taylor-Green vortex, the
Reynolds number is set to Re = 3000, while the length of th 2π periodic box is resolved
equidistantly by N = 64 and N = 256 cells. Averaging of the local strain-rate for the
relaxation of the filter strength was started immediately.
The initial adaptive filter approach is also applied to the turbulent channel flow at varying
Reynolds numbers and grid resolutions: Reτ = 180 and Reτ = 395 are simulated with
N = 31 and N = 71 cells per channel half-width. Beyond that, the original ADM-LBM
approach is employed to the author’s knowledge for the first time with constant σ = 0.005
and σ = 0.001 to wall-bounded turbulence.
Compared to original ADM implementation, the adaptive filter approach lead to good
prediction of the reference data and improved stability properties. Due to the instant
starting and simple time averaging procedure the prediction of the dissipation rate is not
as good as shown in Nathen et al. (2018b), yet the results already showed the superior
properties of adaptive filtering.
My contribution to this work was the development and the implementation of the original
ADM and initial adaptive filter method in the open-source LBM code OpenLB. I tested
and validated the algorithms, performed the numerical simulations including grid gener-
ation, refinement studies, conducted all parts of the post-processing and wrote all parts
of the manuscript for the publication.
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CHAPTER 4

Conclusion

In this work a new methodology was presented for the simulation of turbulent flows with
the Lattice Boltzmann Method (LBM). Turbulent flow simulations with the LBM is com-
monly done without the in-depth analysis of the numerical dissipation coming from the
underlying collision modeling and the turbulence model itself. Since the collision opera-
tion inhabits both, the non-linear as well as the diffusive effects of fluid flows, the analysis
of the individual contribution of this operation to the development of turbulent flow struc-
tures is of great interest. This work was two-folded and started with the DNS analysis
of turbulent flow benchmarks within the LBM framework. First, the LBM without any
turbulence models was analyzed for the simulation of turbulent flows and it was found,
that the convergence behavior depends heavily on the applied collision operator. Based
on these findings, a new explicit filter model was derived, which is not considered as an
eddy viscosity model. This model lead to superior stability compared to the original
formulation of the ADM-LBM model and computational results showed great agreement
with the reference data.

For the first part, the Single- and Multi-Relaxation time (BGK and MRT) model as well
as the Regularized Lattice Boltzmann (RLB) scheme, were part of the discussion. All
collision models were applied for turbulent simulation benchmarks, namely Homogeneous
Isotropic Turbulence (HIT) and the Turbulent Channel Flow (TCF). All benchmarks were
investigated at different Reynolds numbers and resolutions. The flow field of HIT was
investigated in real and spectral space in terms of the integral dissipation rate, the energy
and dissipation spectra. For the TCF the mean velocity field as well as the Reynolds
stresses were compared to reference DNS data. For both benchmarks, correlating results
were found, which showed that the pure BGK scheme is the least dissipative one. The
BGK scheme suffers from non-linear numerical instabilities, which lead to diverging sim-
ulations if the Reynolds number is increased for underresolved setups. Convergence was
shown for increasing resolutions at fixed Reynolds numbers and thus mesh convergence
was achieved. The RLB scheme exhibits excessive numerical dissipation but remained in
all numerical setups stable, even if the numerical setup is strongly underresolved. For the
RLB scheme mesh convergence was also shown, although the computational effort has
to be increased in terms of the resolution compared to the BGK scheme for the same
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4. Conclusion

quality of results. The results obtained with the MRT scheme revealed different findings.
For underresolved numerical setups, the model showed good agreement with the refer-
ence DNS data. However increasing the resolution showed an amplification of high-order
moments, which lead to diverging simulations. In our test cases, these moments were am-
plified in the intermediate wavenumber range, leading to unphysical growing amplitudes
of the macroscopic flow moments for all wavenumber ranges. For DNS like setups at high
Reynolds numbers, no mesh convergence was achieved at the incompressible limit of the
Navier-Stokes equations, neither for HIT nor for turbulent channel flows. Thus, the BGK
was the model of choice for all analysis of turbulent flows.

The second part of this work was devoted to the development and validation of a novel
explicit subgrid-scale model for LBM based LES, which is consistent with the filtered
Navier-Stokes equations at the hydrodynamic limit. This model is based on the Ap-
proximate Deconvolution Method (ADM) and in contrast to standard approaches, using
convolution filters with a van Cittert iteration, a viscosity filter is applied. The novel
approach exploits resolved flow scales in order to adapt the filter strength locally. As a
trigger mechanism the phase averaged strain-rate is employed in order to detect wether
the flow field is well-resolved locally or not. In regions where the turbulent flow scales
are under-resolved, numerical dissipation is added. When the grid size is fine enough to
represent the smallest turbulent flow scales, the filtering effect is negligible. Although,
this model belongs to the category of explicit LES models, the adaptive ADM approach
differs fundamentally from explicit eddy viscosity closure models. It was shown that for
the Taylor-Green vortex and turbulent channel flow benchmarks, this implementation
leads to good results for marginally resolved flow setups and improved stability charac-
teristics of the standard BGK scheme are found. The originally proposed ADM showed
diverging simulations for underresolved setups and suffered from numerical inaccuracy for
wall bounded turbulent flows. Furthermore, it was confirmed that for high order explicit
filter stencils the filter strength has a minor influence on the results or stability issues.
Only for low order filter stencils the results are dominated by the filter strength. For
an efficient parallel implementation of the ADM-BGK approach, the filter stencil should
rather be of low order N < 4 and the filter strength should to be adapted as proposed
accordingly to reduce the computational cost.

For future work on turbulent flow simulation with the LBM, additional work has to
be done on the in-depth analysis of DNS simulations with standard LBM schemes on
more complex turbulent benchmark test cases, in order to improve advanced subgrid-
scale models like the adaptive ADM. This proposed approach is a promising alternative
to commonly used LES models for the LBM framework.
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1 Introduction

In the last three decades, the Lattice Boltzmann Method (LBM) became a promising
alternative to conventional methods, like solving the Navier-Stokes equations with Fi-
nite Volumes or Finite Elements. Flows through porous media, multi-phase and multi-
component flows with and without heat transfer as well as flows around complex ge-
ometries have been investigated by several authors, see, e.g. [1,7]. With LBM the compu-
tational domain is discretized by an equidistant mesh, on which a discrete set of velocity
distribution functions is solved numerically. This set of velocity distribution functions
corresponds to discrete lattice velocities, which are used to recover the macroscopic mo-
ments in terms of a Hermite Polynomial expansion. Although the LBM has been ap-
plied to a wide range of fluid-dynamics applications, turbulence modeling in the LBM
framework still requires considerable research and has not reached the level of matu-
rity as seen for Navier-Stokes-based methods, see references [37, 38] and [39]. Important
recent advances have been made by Sagaut et al., see Sagaut [39] and Malaspinas and
Sagaut [31, 32]. The approach proposed by Malaspinas and Sagaut [31] is based on the
Approximate Deconvolution Method (ADM) of Stolz and Adams [40]. The discrete Boltz-
mann equations are filtered and subsequently deconvoluted with a regularized inverse
filter operation in order to reconstruct the proper macroscopic equations for LES within
the kinetic theory. The ADM as implemented in [31] is based on the BGK collision ap-
proach, yet it can be extended for any other standard collision operator like the MRT and
the RLB approach. Due to the substantial differences of the different collision models, see
also Section 2, it is crucial to understand their properties in terms of stability and accu-
racy, when used for the simulation of turbulent flows. Moreover, these properties have
to be taken into account when adapting turbulence models to LBM schemes.

To the author’s knowledge, a comparison of the stability and accuracy of different
discrete LBM schemes without turbulence models when applied to three-dimensional
turbulent flows of varying Reynolds number and employing different mesh resolutions
has not been presented so far. For Navier-Stokes equation based methods it is common
practice to investigate the properties of the discretization scheme in terms of spatial and
temporal properties. The Lattice Boltzmann algorithm corresponds to a finite difference
scheme with spatial accuracy O(∆x2) and a temporal accuracy O(∆t). This work aims to
investigate the stability and accuracy of different discrete collision schemes for the LBM
by carrying out resolved and under-resolved Direct Numerical Simulations (DNS) of
Homogeneous Isotropic Turbulence at varying Reynolds numbers. Since no turbulence
models will be employed, the observed dissipation will be only due to viscous effects
and numerical dissipation of the selected collision scheme. For selected LBM schemes
we will provide insights on the accuracy and stability, which can be useful for the further
development of turbulence models in the LES-LBM framework. The effectiveness of tur-
bulence models strongly depends on the properties of the numerical scheme employed
to solve the basic flow equations. For the type of flow considered in this work some of the
recently presented LBM schemes can provide stable simulations of appropriate accuracy.
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The Karlin-Bösch-Chikatamarla (KBC) model, see Karlin et al. [21], uses an entropic for-
mulation, which increases stability significantly. This model was developed further by
Dorschner et al. [9, 10]. Geier [14] and Geier et al. [13] introduced another advanced LB
model, which showed excellent stability for the simulation of turbulent flows. However,
in this work we investigate the stability and accuracy of three widely used Lattice Boltz-
mann collision operators: the Bhatnagar, Gross and Krook (BGK), the Multi-Relaxation-
Time (MRT) and the Regularized Lattice Boltzmann scheme (RLB), when computing the
Taylor-Green vortex which represents a typical homogeneous isotropic turbulent flow.
For assessing details on numerical stability and accuracy for wall-bounded turbulent
flows, we employ these three models also for the turbulent channel flow as a benchmark
test case.

The paper is structured as follows: In Section 2 the LBM is introduced briefly, and
differences between the Single-Relaxation-Time scheme of Bhatnagar, Gross and Krook
(BGK), the Multi-Relaxation-Time (MRT) and the regularized Lattice Boltzmann scheme
(RLB) are explained. Simulations of HIT without turbulence models at different Reynolds
numbers, mesh resolutions and with different discrete lattice schemes are compared in
Section 3. The results of the three LBM schemes to the turbulent channel flow at Reτ=180,
Reτ=395 and Reτ=590 for varying resolutions are outlined in Section 4. Based on spectral
analyses of the flow field the lattice schemes are analyzed systematically. The interaction
between the discrete schemes and mesh resolutions are investigated and the limitations
of individual discrete schemes for the simulation of turbulent flows will be discussed.
Finally, conclusions are drawn in Section 5.

2 The Lattice Boltzmann Methods

With LBM, a set of kinetic equations in terms of discrete velocity distribution functions
fα(t,x) are solved numerically at time t and position x. The discrete Boltzmann equations
can be written as

fα(t+∆t,x+cα∆t)= fα(t,x)+Ωα, (2.1)

where Ωα is the collision operator, which represents non-linear and viscous effects and
cα with α=0,1,··· ,q−1 is a set of discrete lattice velocities. Depending on the particular
scheme (BGK, MRT or RLB), the collision term is modeled in different ways, see [1,3,7,8,
28,29]. Macroscopic moments are reconstructed with a Gauss-Hermite quadrature based
on the Hermite Polynomial expansion of fα on a discrete lattice. The first two moments
of the velocity distribution functions are the conserved moments, namely the density ρ
and the momentum ρu, which read

ρ=∑
α

fα, (2.2a)

ρu=∑
α

cα fα, (2.2b)
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while the momentum flux is the second-order off-equilibrium moment of the velocity
distribution functions

Π=∑
α

f
neq
α cαcα. (2.3)

In order to reconstruct the macroscopic equations of fluid motion, a Chapman Enskog
expansion is used, see references [2,27] among others. In Eq. (2.3) f

neq
α = fα− f

eq
α is the non-

equilibrium part of the velocity distribution function. The velocity distribution functions
are expanded with a simple multi-scale expansion factor, which is directly related to the
Knudsen number ǫ. For the discrete distribution functions this procedure can be written
as

fα = f
(0)
α +ǫ f

(1)
α +ǫ2 f

(2)
α +··· (2.4)

and is subsequently inserted into the discrete Lattice Boltzmann equation, which is Taylor-
expanded in space and time up to second order. The macroscopic equations are obtained
by taking the zeroth- and first-order velocity moments and a subsequent integration over
the velocity space.

To close the evolution equation of the particle distribution function (2.1), the colli-
sion term needs to be modeled. One well-known approach is the linearization around
small perturbations of the thermodynamic equilibrium f

eq
α . This approach is called the

Bhatnagar-Gross-Krook (BGK) ansatz, see [15, 16, 18, 41], which represents the collision
term as a linear relaxation towards Maxwellian equilibrium

Ωα :=− 1

τ

(
fα(t,x)− f

eq
α (t,x)

)
. (2.5)

The relaxation time τ is related to the viscosity and f
eq
α is a low Mach number truncated

Maxwell-Boltzmann distribution, which is adjusted in such a way, that Eq. (2.3) is satis-
fied and mass and momentum are conserved. A widely used formulation for f

eq
α is given

by

f
eq
α =ρωα

[
1+

cαu

c2
s

+
1

2c4
s

(uu−c2
s δ)uu

]
. (2.6)

The constant weights ωα are obtained by a Gauss-Hermite quadrature on the lattice, cs

is the lattice speed of sound and δ is the Kronecker delta. Although, the BGK approach
has been applied successfully to a wide range of fluid mechanics, see [17, 43], it suffers
from instabilities at high Reynolds numbers, which originate from the evolution of mo-
ments of fα, which can not be attributed directly to physical quantities in fluid mechanics.
To remedy this shortcoming, a Multi-Relaxation-Time (MRT) scheme was developed by
D’Humiéres et al. [8]. The main idea is to transform the collision step into the momen-
tum space and to relax each moment separately in order to reduce instabilities arising
from the temporal growth of such unphysical moments. Thus, the single relaxation time
τ from the BGK model is replaced by a relaxation time matrix S, which relaxes each mo-
ment mα := M fα independently. The matrix M is a linear transformation matrix and the
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corresponding algorithm for the MRT scheme reads

fα(t+∆t,x+cα∆t)= fα(t,x)−M−1S(mα(t,x)−m
eq
α (t,x)). (2.7)

Our implementation is based on the original formulation of D’Humiéres et al. [8], where
the moments are defined as

mα=(ρ,e,ǫ, jx ,qx, jy,qy, jz,qz,3pxx,3πxx,pww,πww,pxy,pyz,pxz,mx,my,mz) (2.8)

and the diagonal relaxation time matrix is given by

S=diag(0,s1 ,s2,0,s4,0,s4,0,s4,s9,s10,s9,s10,s13,s13,s13,s16,s16,s16), (2.9)

where s1=1.19, s2=s10=1.4, s4=1.2, and s16=1.98. The coefficients s9 and s13 are related
to the viscosity ν as

ν=
1

3

(
1

s9
− 1

2

)
=

1

3

(
1

s13
− 1

2

)
. (2.10)

The MRT model has been found to increase the stability of the LBM method substan-
tially. Yet, Freitas et al. [11] have shown that inconsistent formulation of boundary condi-
tions for stresses on domain boundaries, where velocities are prescribed, can also cause
instabilities of the MRT model for Reynolds numbers larger than Re ≈ 5000 for three-
dimensional flows. More recently, Geier et al. [13] showed stability and accuracy prob-
lems for the MRT model at high Reynolds number flows.

In another attempt to suppress instabilities, Latt [28] proposed a regularization of the
aforementioned BGK algorithm, employing an approximation of the first-order multi-
scale expansion term

f
neq
α = fα− f

eq
α ≈ f

(1)
α =− ∆t

ωc2
s

ωαQα :∇ρu. (2.11)

Here, Qα is the first-order non equilibrium moment Qα=∑cαcα f
neq
α . The non-equilibrium

distribution function f
neq
α is used to approximate the first-order multiscale expansion

term in Eq. (2.4). This term is included in the BGK model, such that the regularized
BGK algorithm reads

fα(t+∆t,x+cα∆t)= fα(t,x)+(1−ω) f
(1)
α (t,x). (2.12)

This regularization operation is not only necessary within the flow field, but also at the
boundaries. The main issue with respect to boundary conditions in the RLB scheme is
the proper reconstruction of the unknown distribution functions propagating into the

flow domain. Different approaches to model f
(1)
α at domain boundaries are proposed

in [29, 30]. All simulations conducted in this work are performed with the open source
LBM software openLB, see [20, 23, 24].
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3 Homogeneous Isotropic Turbulence: The Taylor-Green Vortex

By computing the evolution of the well-known three-dimensional Taylor-Green vortex
[4], properties of the Lattice Boltzmann collision schemes outlined in Section 2, are inves-
tigated. The velocity and density field of a three-dimensional cubic domain of length 2π
has been initialized with

u0=
2√
3

sin

(
2

3
π

)
sin(x)cos(y)cos(z),

v0=
2√
3

sin

(
−2

3
π

)
cos(x)sin(y)cos(z),

w0=0,

ρ0=1.

(3.1)

Periodic boundary conditions are applied in all spatial directions. Reynolds numbers of
Re = 800, 1600, 3000 and resolutions of N = 64, 128, 256 and 512 mesh points for each
spatial direction were considered. The results were compared to DNS results of Brachet
[4]. For adapting the time step according to the resolution we applied diffusive scaling
in order to reconstruct the incompressible limit of the Navier-Stokes equations, see [34]
among others. The numerical setups in terms of the lattice velocity uL as well as the Mach
number Ma=uL/cs are listed in Table 1.

Table 1: Numeri
al setup for the Taylor-Green-Vortex at di�erent resolutions.

N uL Ma ∆x ∆t

64 0.1 0.1730 0.0981 0.00981

128 0.05 0.0865 0.0490 0.00245

256 0.025 0.0432 0.0245 0.000612

512 0.0125 0.0216 0.0122 0.000152

In the following, stability properties of the LBM schemes and their accuracy regarding
the prediction of the temporal evolution of the integral energy dissipation rate computed
from the resolved flow scales are discussed. In Fig. 1 the integral energy dissipation rate

ǫ= dE(t)
dt for Re=800 is shown.

For the coarsest resolution of N=64 the MRT as well as the RLB scheme underestimate
dissipation rates compared to the BGK scheme and the reference DNS data of Brachet [4].
When increasing the resolution to N=128, the evolution of the dissipation rate is slightly
better recovered by the MRT approach compared to the BGK scheme. Again dissipation
rates are always predicted lower by the RLB model compared to results of the BGK or
the MRT scheme. For a resolution of N = 256 only small differences between the three
considered LBM schemes can be found, and at the highest resolution of N=512 at Re=800
they are in very good agreement with the reference DNS data. For Re=1600, see Fig. 2,
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Figure 1: Temporal evolution of the dissipation rate of the Taylor-Green vortex predi
ted by the BGK, MRT

and RLB s
heme at Re=800 for the resolutions N=64, 128, 256 and 512 
ompared to DNS.

distinct differences between the schemes can be observed. When using the BGK scheme
at the coarsest resolution of N = 64 instabilities in the flow variables develop at t ≈ 5s,
which lead to diverging simulations. Employing methods for a pressure initialization
according to [6] did not improve the stability of the BGK scheme. It can be concluded, that
these instabilities of the BGK scheme result from a too coarse resolution of the developing
flow scales, which is similar to the characteristics of linear finite-difference schemes. In
[26] a similar behavior of the BGK scheme had been observed. At the coarsest resolution,
the MRT and the RLB scheme allow for stable simulations, however dissipation rates are
predicted significantly lower compared to DNS reference data.

At an increased resolution of N=128 the flow scales developing during the simulation
are sufficiently resolved for BGK scheme to remain stable and predict dissipation rates
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Figure 2: Temporal evolution of the dissipation rate of the Taylor-Green vortex predi
ted by the BGK, MRT

and RLB s
heme at Re=1600 for the resolutions N=64, 128, 256 and 512 
ompared to DNS.

with similar accuracy as with the MRT scheme. Again, the RLB scheme captures the
peak dissipation rate at t ≈9s but predicts its magnitude by approximately 38% too low
with respect to the DNS reference data, and by approximately 23% too low with respect
to the BGK and MRT results. When increasing the resolution further to N = 256 the
accuracy of the BGK and of the RLB scheme improves, whereas the MRT scheme exhibits
instabilities from t ≈ 7s onwards. In an attempt to stabilize the simulations a pressure
initialization according to [6] was carried out, which however did not alter the observed
behavior of the MRT scheme. At the highest resolution of N=512 the BGK and the RLB
scheme showed good agreement with reference DNS data and only after the peak of the
dissipation rate at t≈9s notable differences become visible. At N=512 the MRT scheme
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Figure 3: Temporal evolution of the dissipation rate of the Taylor-Green vortex predi
ted by the BGK, MRT

and RLB s
heme at Re=3000 for the resolutions N=64, 128, 256 and 512 
ompared to DNS.

exhibits instabilities at t ≈1.5s, which is significantly earlier compared to the simulation
at N=256, and the simulation diverges again.

The same tendencies found before for both lower Reynolds numbers, also prevail at
Re=3000, see Fig. 3. The RLB scheme again is stable for all resolutions considered, yet dis-
sipation rates are less accurate compared to successful simulations employing the BGK
or the MRT scheme. The MRT scheme allows for stable simulations only when using a
strongly under-resolved setup with N =64 mesh cells in each direction at this Reynolds
number of Re=3000. For the resolutions N=256, 512 the MRT simulations diverged and
by employing N=128 cells in each direction the solution converged towards an unphys-
ical state for t> 10s. Using the BGK scheme stable and reasonable accurate simulations
where performed for mesh resolutions of N=256 and N=512.
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The distinct differences between the schemes with respect to mesh resolution and
Reynolds number found so far are summarized as follows:

• The BGK scheme allows for stable simulations in case flow scales are sufficiently
resolved by the employed mesh. Yet, a criterion to quantify this Reynolds num-
ber dependent resolution requirement for turbulent flows has not been found so
far. For increasing mesh resolution an increasing accuracy and hence mesh con-
vergence can be obtained. If the turbulent flow scales are not sufficiently resolved,
non-linear instabilities were found to develop, which is in agreement with previous
observations, e.g., Luo and Lallemand [26].

• The MRT scheme shows good results regarding the integral energy dissipation rates
for under-resolved DNS setups. For increasing resolutions, accuracy improved for
the lowest Reynolds number of Re= 800 considered here. However, for increased
resolutions at higher Reynolds numbers of Re= 1600, 3000 non-linear instabilities
became apparent and simulations diverged. The latter finding seems to prevent the
MRT scheme to obtain mesh convergence when used in a DNS setting.

• The RLB scheme has been found to perform stable simulations at all Reynolds num-
bers and resolutions considered here. Yet it suffers from the largest numerical dis-
sipation compared to the other schemes.

For further analysis of the behavior of the LBM schemes, three-dimensional energy
spectra E(ξ,t)= 1

2 < û(ξ,t)û∗(ξ,t)> for all three Reynolds numbers, different spatial res-
olutions and at two instants in time, t = 6s and t = 8s, are considered in the following.
Here û(ξ,t) is the complex Fourier transform of the velocity field and û∗(ξ,t) is the com-
plex conjugate respectively [40]. In Fig. 4, energy spectra at Re= 800 for the resolutions
N=64, 128, 256 are shown. When employing the BGK scheme at the coarsest resolution
N=64 significantly large energy levels are present at the highest wave numbers for both
instants in time t= 6s and t= 8s. For this resolution, the spectra of the BGK scheme do
not show the expected strong decrease of energy in the dissipative range at the highest
wavenumbers, whereas the MRT as well as the RLB scheme exhibit this characteristic.
Therefore, the more accurate prediction of the energy dissipation rate of the BGK scheme
for N=64 compared to the MRT and RLB scheme, see Fig. 1, is due to this unphysical ef-
fect in the high wave number range. If the resolution is increased to N=128 and N=256,
this accumulation of energy at high wave numbers when using the BGK scheme is re-
duced, see Fig. 4. For N ≥ 256 all three LBM schemes show very similar energy spectra
and a short inertial as well as a dissipative range can be observed.

In Fig. 5 energy spectra are shown for Re=1600. For the BGK scheme again increased
energy levels at high wave numbers can be observed in case flow structures are not suf-
ficiently resolved by the computational mesh. This behavior leads to a diverging simula-
tion using a resolution of N=64 for t>6s, see Fig. 5. The spectrum shows a large accu-
mulation of energy in the highest dissipative wave numbers, which changes the slope of
E(ξ) in this region being even larger than the well known slope of −5/3 for the inertial
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Figure 4: Energy spe
tra of the Taylor-Green vortex for di�erent times and resolutions at Re=800 for the BGK,

MRT and RLB s
heme and a straight line of slope − 5
3 being 
hara
teristi
 for the inertial range of homogeneous

isotropi
 turbulen
e.
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Figure 5: Energy spe
tra of the Taylor-Green vortex for di�erent times and resolutions at Re=1600 for the BGK,

MRT and RLB s
heme and a straight line of slope − 5
3 being 
hara
teristi
 for the inertial range of homogeneous

isotropi
 turbulen
e.
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range. At t = 8s the simulation of the Taylor-Green vortex at Re = 1600 using the BGK
scheme and N=64 already diverged, so no graph is shown in the corresponding figure.
In case the resolution is increased to N=128 the BGK scheme still exhibits increased en-
ergy levels in the highest wave numbers, yet the simulations remain stable and integral
dissipation rates of acceptable accuracy where obtained. For resolutions N ≥256 spectra
of the BGK scheme feature distinct inertial and dissipative wave number ranges. Using
the MRT scheme for simulations at Re=1600 reasonable results were obtained for low res-
olutions. However for N≥256 the simulations diverged. The reason for this behavior can
bee seen in Fig. 5 at N=256, t=6s−8s: The MRT scheme exhibits unphysical large energy
levels in the highest wave number region, which subsequently lead to the development
of instabilities and a break-down of the method well before t=8s. This finding is similar
to that for the BGK scheme in under-resolved setups, whereas for the MRT scheme this
accumulation of energy occurs for well-resolved setups. For the RLB scheme an inertial
as well as a dissipative region can be observed in all spectra considered. However, the
onset of the dissipative range, i.e. the strong decrease of kinetic energy, takes place al-
ways at significantly lower wave numbers compared to the BGK and the MRT scheme.
This pronounced reduction of energy in the high wave number range allows for stable
simulations, but it is also the reason for the strong numerical dissipation which impairs
the accuracy of integral dissipation rates as seen in Figs. 1-3. The obtained energy spectra
for the highest Reynolds number of Re= 3000, see Fig. 6, confirm the previously found
behavior of the considered LBM schemes. The RLB scheme allows for stable simulations
at all resolutions considered, but exhibits high numerical viscosity and consequently low
mesh convergence rates. The BGK scheme requires resolutions of N ≥ 256 for converg-
ing simulations of the Taylor-Green vortex at Re= 3000. At N = 256 unphysical energy
levels at high wave numbers develop at later times t≥8s, however these effects can still
be tolerated by the scheme and do not lead to instabilities yet. For the MRT scheme the
opposite behavior is found again: Only for the very coarse resolution of N=64 of Taylor-
Green vortex at Re=3000 stable computations are obtained. Of course, the accuracy with
respect to dissipation rates is rather low as expected. For increased resolutions of N=128
and N=256 the simulations became unstable after t=8s and t=2s, respectively.

For further investigation of the observed instabilities of the BGK as well as the MRT
scheme at Re = 3000 and a spatial resolution of N = 256 the temporal evolution of sin-

gle modes of the dissipation spectra ǫ(ξ,t) = dE(ξ,t)
dt are considered, see Fig. 7. The ref-

erence data of Brachet [4] on the temporal evolution of the integral dissipation rate at
this Reynolds number shows two characteristic changes before reaching its peak value at
t ≈ 9s, see Fig. 3: At t ≈ 4s the growth rate of the dissipation rate increases and at t ≈ 6s
again a further increase of the slope of the dissipation-rate curve can be observed. When
considering the modes of the dissipation rate, Fig. 7, for both the BGK and the MRT
scheme the lower modes ξ=1,··· ,9 are smoothly increasing starting at t=0s until t≈6s,
hereafter only slight changes are notable. However the dissipation rate magnitudes of
higher modes ξ = 83,··· ,127 initially remain very low. At t ≈ 2s a strong growth of the
higher dissipation modes can be observed featuring a steep slope, which starts to flatten
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Figure 6: Energy spe
tra of the Taylor-Green vortex for di�erent times and resolutions at Re=3000 for the BGK,

MRT and RLB s
heme and a straight line of slope − 5
3 being 
hara
teristi
 for the inertial range of homogeneous

isotropi
 turbulen
e.

53



860 P. Nathen et al. / Commun. Comput. Phys., 23 (2018), pp. 846-876

Figure 7: Temporal development of dissipation modes of the Taylor-Green vortex for the BGK and MRT s
heme

at Re=3000 and N=256.

only after t ≈ 4s. At this instant in time, also the resulting first increase of the integral
dissipation rate in Fig. 3 can be identified. For the BGK scheme this growth of the higher
modes is accomplished rather smoothly without notable oscillations in the growth rates.
For the MRT scheme however, following the initial strong growth of the higher modes
a significant change of the growth rate can be observed for t ≥ 4.5s, where even nega-
tive slopes can be found. This leads to oscillations in the magnitude of the higher modes,
which subsequently are reduced in amplitude, but are still visible at later times, e.g. t≈6s.
At t ≈ 7s a further increase especially of the highest dissipation modes can be observed
for the BGK scheme, Fig. 7(a). This corresponds to second steepening of the slope of the
integral dissipation rate as seen in Fig. 3. Thereafter the magnitude of the highest dissi-
pation modes for the BGK scheme change only slightly with two exceptions: For ξ=120
a large increase by approximately one order of magnitude can be observed and for the
mode ξ = 127 an even larger decrease by three orders of magnitude can be identified at
t ≈ 8s. This is attributed to an instability of the BGK scheme in case flow structures are
not sufficiently resolved by the underlying mesh. The result of this instability can also
be seen in the energy spectrum for Re= 3000, N = 256, see Fig. 6, where for the instant
in time t=8s unphysical large energy levels at high wave numbers are present. Despite
these instabilities, the BGK scheme allowed for converging simulation using this setup.
This was not the case for the MRT scheme. In Fig. 7(b) a sudden increase of the three dis-
sipation modes ξ=113, 120 and 127 by approximately four orders of magnitude indicate
a large unphysical energy increase of these modes. Also the modes ξ=90, 97 and 104 are
found to grow continuously, which is unphysical and lead to an unstable simulation.

4 Wall Bounded Turbulence: The Turbulent Channel Flow

In this section the BGK, MRT and RLB schemes are tested for the turbulent channel flow
at three different Reynolds friction numbers (Reτ = 180, Reτ = 395 and Reτ = 590) for
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varying resolutions. Results shall outline if the conclusions drawn for the homogenous
isotropic turbulence test case, can be transferred to wall-bounded turbulence. In this
section, we do not provide detailed mesh-convergence studies, but rather show results
obtained by varying the resolution at fixed Reynolds numbers as done in the previous
section.

Our numerical test case is based on the work of Bespalko [2] who performed a de-
tailed grid convergence study for the turbulent channel flow by applying the BGK scheme.
The domain has the extensions of Lx=12H, Lz=4H and Ly=2H in streamwise, lateral and
wall-normal direction, respectively, with H being the channel half width. In streamwise
and lateral direction, periodic boundary conditions were applied. In order to represent
the upper and lower channel wall, an extended finite difference boundary condition, out-
lined by Latt et al. [30], is employed. Due to the abundance of populations propagating
from the wall into the bulk flow, all populations in the wall cells are reconstructed to con-
serve density ρ and momentum ρu and to calculate the stress tensor σij. The stress tensor
is obtained by relating it to the strain rate tensor, which is constructed by finite differ-
ences of the velocity in the neighboring cells. Latt et al. [30] showed that this boundary
condition yields numerical stability and accuracy of second order, which makes it suit-
able for the simulation of flows at high Reynolds numbers. In contrast to other boundary
conditions, representing solid no-slip walls, the wall nodes are fixed on the wall leading
to a constant cell size and wall distance ∆x=∆y=∆z.

Resolution is varied in a similar way as for the Taylor-Green vortex, leading to re-
solved and under-resolved test cases. Adjusting the friction Reynolds number is achieved
by applying diffusive scaling. The viscosity is changed according to the Reynolds num-
ber and the lattice velocity according to the resolution. To estimate the viscosity we use
the Dean correlation, see [33]

ReB =

(
8

0.073

)4/7

Re8/7
τ , (4.1)

which connects the bulk Reynolds number ReB to the friction Reynolds number Reτ. With
ReB =

uBLz
ν , we can rewrite Eq. (4.1) as

ν=
uBLz(

8
0.073

)4/7
Re8/7

τ

. (4.2)

Based on the work of Bespalko [2], we set uB=0.111 m
s . To account for the limited validity

of the Dean correlation at low Reynolds numbers, the viscosity for Reτ =180 is obtained
by a virtual log law which spans from the wall to the channel half height as described
in [2]

ν=
uBLz

2Reτ

(
1
κ ln(Reτ)+A

) . (4.3)

A full list of conducted simulations with the final physical state, lattice velocities uL,
resolution N and Mach number is given in Table 2.
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Table 2: Performed simulations for the Turbulent Channel Flow.

Model N ∆y+ Reτ,target Reτ,real uL Ma

BGK 31 ≈5.8 180 − 0.111 0.1902

BGK 91 2.065 180 188.81 0.0378 0.0654

MRT 31 ≈5.8 180 − 0.111 0.1902

MRT 91 1.87 180 177.32 0.0378 0.0654

RLB 31 ≈5.8 180 − 0.111 0.1902

RLB 91 − 180 55.97 0.0378 0.0654

BGK 91 4.031 395 389.97 0.0378 0.0654

BGK 151 2.615 395 394.865 0.0227 0.0394

MRT 91 3.705 395 363.02 0.0378 0.0654

MRT 151 2.383 395 359.75 0.0227 0.0394

BGK 91 ≈6.48 590 − 0.0378 0.0654

BGK 151 3.981 590 589.91 0.0227 0.0394

MRT 91 ≈6.48 590 − 0.0378 0.0654

MRT 151 ≈3.907 590 − 0.0227 0.0394

Since the variation of the resolution leads to different wall distances in terms of the
non-dimensional y+= uτ∆z

ν value, the evaluation of the skin friction velocity uτ is differ-

ent. For properly resolved setups, i.e. ∆y+ < 5, uτ can be calculated as uτ =
√

τw
ρ with

τw being the wall shear stress. Configurations with ∆y+ > 5 we use Eq. (4.1) for calcu-
lating uτ. The different resolutions with the corresponding target and calculated Reτ are
listed in Table 2 as well. Note that proper ∆y+ values for the MRT model at Reτ =590 are
not given since the simulations reproduced an unphysical state. This will be discussed
later in this section. The RLB model did not achieve a turbulent state at Reτ = 180 with
N=31 and N=91, leading to friction Reynolds numbers which indicate laminar flow, see
also [42].

The target mass flow is imposed by applying adaptive forcing according to the work
of Cabrit [5]. The volume force is computed as

g=
u2

τ

N
+(uB−〈ux〉)

uB

N
, (4.4)

where uB is the bulk velocity, 〈ux〉 the instantaneous space average of the streamwise
velocity component and g the resulting volume force. The force is included into the LBM
schemes by employing the approach of He et al. [19] for the BGK and RLB scheme. For
the MRT scheme we make use of the forcing approach of Ladd and Verberg [25].

A proper initialization of the velocity field and triggering of turbulence is needed
in order to reach the desired turbulent state. We employ a 1/7 power law i.e. u(z) =

uchar (z/H)
1
7 , which is superimposed with statistically random perturbations u′, v′ and
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w′ drawn from a normal distribution 1
σ
√

2π
e
− r−µ

2σ2 . Hereby r is a random number between

−1 and 1, µ=0 is the mean and σ the standard deviation, which was set to 5%.

Statistics are obtained for all schemes in the same way to have a consistent comparison
of the applied models. Averaging is performed spatially over horizontal planes in the
homogeneous directions and temporally after the flow was uncorrelated. Based on the
work of Moser [35] the flow is weakly correlated (≈0.08) at a streamwise distance of 2m.
This leads to a sampling time of ∆t=18.01s with uB=0.111 m

s . After a physical simulation
time of t=163.12s, we continue averaging over a time period of ∆t=8596s, i.e. 79.5 flow
through times for Reτ=180. For increasing Reτ, the correlation decreases, yet we kept the
sampling time constant and increased the flow through times according to the increase
of the turbulent time scale. By assuming the ratio of the large- and small-time turbulence
scale behaves as tL

tη
=

√
Reτ, see [36], the flow through times increased to 117.7 and 143.9

for Reτ =395 and Reτ =590 respectively.

4.1 Convergence analysis of the turbulent channel flow

Before mean statistics are shown, a visualization of the unsteady flow field is given and
the statistical convergence of the simulations is demonstrated. For increasing Reynolds
number the BGK approach consistently predicts an increasing number of small scale flow
structures, see Fig. 8. When the MRT scheme is employed, only for the lowest Reynolds
number Reτ = 180 a reasonable flow field can be obtained, see Fig. 9. For Reτ = 395 and
Reτ = 590, strong unphysical oscillations develop. The presence of side walls and the
viscous damping in these regions presumably prevents instability of the simulations, yet
the results are not physically meaningful.

The RLB scheme is not shown in this context, since we found it to re-laminarize for
N = 31 and N = 91 at Reτ = 180. Strong numerical dissipation, which already lead to
under predicted dissipation rates in the previous section, apparently damps the initial
disturbances, which in turn should trigger the flow to a turbulent state. Increasing the
resolution from N = 31 to N = 91 amplifies this effect, since the imposed fluctuations
are now distributed across a larger range of wavenumbers. Consequently, for an equal
amount of kinetic energy that is associated to the fluctuations, the relative kinetic energy
per wavenumber is decreased. Since we did not employ better initialization techniques or
restarted a RLB simulation from a converged BGK solution we omit further investigations
of the RLB model for Reτ =395 and Reτ =590. The convergence of the Reynolds friction
number Reτ =180 during the initial transition phase is depicted in Fig. 10 for N=91.

In Fig. 11 we demonstrate the symmetry for the streamwise Reynolds stresses u′u′

at Reτ = 180. For both, MRT as well as the BGK scheme, the differences in the peak
value is below 3%. Although one could argue that this value leads to poorly-converged
statistics, the symmetry across the channel height is satisfied to be more than 99.5% for
both schemes. Consequently we can assume that, (i) the flow statistics are practically
converged and (ii) since for all simulations outlined, the overall discrepancies in terms
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Figure 8: Instantaneous velo
ity magnitude in m/s on a xz-plane lo
ated at y= 0.5Ly predi
ted by the BGK


ollision model. Reτ =180, 395 and 590 from top to bottom.
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Figure 9: Instantaneous velo
ity magnitude in m/s on a xz-plane lo
ated at y= 0.5Ly predi
ted by the MRT


ollision model. Reτ =180, 395 and 590 from top to bottom.

of the peak value prediction between the different numerical schemes is higher than the
error in the statistics, the interpretation of the results is not affected by the averaging
procedure.
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Figure 10: Convergen
e of Reτ as a fun
tion of time for Reτ =180 and N=91.

Figure 11: Symmetry proof for the streamwise Reynolds stress at Reτ = 180 for N= 31 and N= 91 
ompared

to the DNS results of Kim et al. [22℄. For the referen
e DNS only data for the 
hannel half is provided.

4.2 Mean velocity statistics

In Fig. 12 the mean velocity profiles for Reτ =180 from DNS of Kim et al. [22] are shown
along with the under-resolved simulations using the BGK, MRT and RLB schemes. For
y+ <= 10 the reference DNS and the under-resolved simulations of the BGK and MRT
scheme are in fair agreement. In the logarithmic region an increased normalized velocity
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Figure 12: Mean velo
ity pro�les of turbulent 
hannel �ow at Reτ =180 and N=31 
ompared to the DNS of

Kim et al. [22℄.

Figure 13: Mean Reynolds stresses of turbulent 
hannel �ow at Reτ =180 and N=31 
ompared to the DNS of

Kim et al. [22℄.

u+= u
uτ

by ≈5% for the BGK simulation and by approximately 3% for the MRT simulation
can be found. The average velocity profile of the RLB scheme corresponds to a laminar
flow profile. The employed resolution is, compared to the Reynolds number applied,
at an intermediate level in the bulk (∆y+ ≈ 5.8). In Fig. 13 the corresponding Reynolds

stresses u
′
u

′ and u
′
v

′ for this setup are shown.
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Figure 14: Mean velo
ity pro�les of turbulent 
hannel �ow at Reτ =180 and N=91 
ompared to the DNS of

Kim et al. [22℄.

The u′u′ stresses are underestimated by both schemes, which is caused by the low
resolution applied. The BGK model has a slightly better agreement with the reference
data compared to the MRT model over the whole channel height. Although both LBM

models predict reduced magnitudes for u′u′ compared to the reference data, the wall
normal location of the peak value of this stress component was found correctly. The

mean u
′
v

′ stresses are predicted with good accuracy by the BGK and MRT scheme when
compared to the reference DNS.

For a resolved simulation at Reτ =180 the resolution was increased to N=91, which
corresponds to the setup of Bespalko [2] and gives a resolution of ∆y+≈2 within the bulk
and wall region. The simulations with the MRT and the BGK model run stable. For the
mean velocity profiles very good agreement of the BGK and MRT results with reference
DNS can be found. While the MRT model slightly underpredicts the velocities close to
the wall, an over estimation of the mean velocities is found in the bulk flow. On the other
hand the BGK scheme overpredicts the velocity field slightly in the wall-nearest region
whilst excellent agreement was found in the bulk region when compared to the DNS
data, see Fig. 14.

Fig. 15 shows that the u′u′ and u′v′ stresses predicted by the BGK scheme are in good
agreement with the reference DNS data. Differences in the amplitude of the stresses in
the bulk region can be related to the higher predicted Reτ,real, see Table 2. For the MRT

scheme, the peak value and the magnitude of the u′u′ stress are in very good agreement

with the reference data. For the u
′
v

′ stress minor deviations from the reference DNS are
visible for both the MRT and BGK scheme. Since this resolution is nearly the same as
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Figure 15: Mean Reynolds stresses for turbulent 
hannel �ow at Reτ =180 and N=91 
ompared to the DNS

of Kim et al. [22℄.

in the numerical setup applied by Wang et al. [44], who found excellent agreement for
the Reynolds stresses by applying the MRT scheme at Reτ =180, we assume that for this
low Reynolds number both the different forcing approach as well as the straight velocity
boundary condition have a negative influence on the accurate prediction of the stresses
in vicinity of the wall in our case.

By increasing the friction Reynolds number up to Reτ = 395 with N = 91, again the
BGK model shows good agreement with the reference data of Moser et al. [35] for both
the velocity field and the Reynolds stresses, see Figs. 16 and 17. Discrepancy of the peaks

predicted by the BGK scheme are ≈7.9% and ≈11.2% for the u
′
u

′ and u
′
v

′ stresses respec-
tively. The MRT model underpredicts the mean flow field in vicinity of the wall y+<40,
while the bulk region was overpredicted. Regarding the Reynolds stresses, see Fig. 17,

one can see that the u
′
u

′ as well as the u
′
v

′ stresses are grossly and irregularly overpre-
dicted by the MRT scheme for the same amount of physical time averages. For Reτ =395
and N=91 the MRT model converged to a state exhibiting unphysical oscillations. A sim-
ilar behavior was found when increasing the resolution to N = 151, see Figs. 18 and 19.

The difference of the u
′
u

′ and u
′
v

′ stresses predicted by the BGK scheme are only ≈6.8%
and ≈ 9.1% respectively compared to the reference DNS data. For the MRT scheme, the
mean velocity profile is under predicted in the wall-nearest region, while the mean ve-
locity exceeds the DNS data in the bulk region by ≈ 6%. The stresses are similar as for
N=91, yet even for the same physical time of averaging, more fluctuations are observed.

In Fig. 20 the velocity field predicted by the BGK scheme for Reτ =590 and N=91 is
illustrated. Although the resolution is quite coarse at this Reynolds number (y+ ≈6.48),
the simulation covers the fully turbulent state, see also Fig. 8. The agreement of the
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Figure 16: Mean velo
ity pro�les of turbulent 
hannel �ow at Reτ =395 and N=91 
ompared to the DNS of

Moser et al. [35℄.

Figure 17: Mean Reynolds stresses of turbulent 
hannel �ow at Reτ =395 and N=91 
ompared to the DNS of

Moser et al. [35℄.

mean velocity field with the reference DNS data is found to be excellent, see Fig. 20,
while the stresses are under-predicted by almost 20% over the whole channel height, see

Fig. 21. Beyond that, the location of the stress maximum is shifted for the u
′
u

′ and u
′
v

′

stresses, which is most probably caused by the very low resolution of ∆y+ ≈ 6.48. The

63



870 P. Nathen et al. / Commun. Comput. Phys., 23 (2018), pp. 846-876

Figure 18: Mean velo
ity pro�les of turbulent 
hannel �ow at Reτ =395 and N=151 
ompared to the DNS of

Moser et al. [35℄.

Figure 19: Mean Reynolds stresses of turbulent 
hannel �ow at Reτ =395 and N=151 
ompared to the DNS

of Moser et al. [35℄.

MRT model assumed an unphysical state for the resolution N=91, which is evident from
unphysical spurious oscillations, that propagate throughout the whole channel, see also
Figs. 9 and 21. For this setup, even the general quality of the evolution of the stresses
is not in accordance with the DNS data. The quality of the results does not change by
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Figure 20: Mean velo
ity pro�les of turbulent 
hannel �ow at Reτ =590 and N=91 
ompared to the DNS of

Moser et al. [35℄.

Figure 21: Mean Reynolds stresses of turbulent 
hannel �ow at Reτ =590 and N=91 
ompared to the DNS of

Moser et al. [35℄.

increasing the resolution to N=151, see Figs. 22 and 23, except that the uncertainty of the
stresses predicted by the BGK scheme decreased to ≈10%.

Recently, Gehrke et al. [12] presented similar results when computing the turbulent
channel flow. Although the boundary conditions were not identical, the MRT model
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Figure 22: Mean velo
ity pro�les of turbulent 
hannel �ow at Reτ =590 and N=151 
ompared to the DNS of

Moser et al. [35℄.

Figure 23: Mean Reynolds stresses of turbulent 
hannel �ow at Reτ =590 and N=151 
ompared to the DNS

of Moser et al. [35℄.

produced similar spurious noise in their simulations and the BGK model was able to
reproduce the reference data with increased accuracy. The independency of the boundary
conditions indicate, that the problems of the MRT model are intrinsic when calculating
turbulent flows directly on different mesh levels.
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4.3 Spectral analysis

We analyze the wall-normal energy distribution in spectral space. Fig. 24 shows the nor-
malized energy for the BGK and MRT scheme at all investigated Reynolds numbers and
N = 91. Similarly to the energy spectra depicted in Section 3, the MRT model shows an
unphysical increase of energy in the high-frequency range for Reτ = 395 and Reτ = 590.
Since the energy is normalized, it is visible, that a high amount of energy is shifted from
the low wavenumber range towards the high wavenumber range for Reτ =395, which is
even more apparent for Reτ = 590. These high wavenumber fluctuations of the velocity
represent the unphysical flow state shown in Fig. 9.

Figure 24: Wall normal spe
tra of the normalized energy of the BGK and MRT s
heme for all investigated

Reynolds numbers and N=91.

5 Conclusions

In this paper, the accuracy and stability of three popular lattice schemes, the BGK, MRT
and RLB approach, when employed for simulations of turbulent flows were investigated.
Homogeneous isotropic turbulence was considered by computing the Taylor-Green vor-
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tex. Different resolutions and Reynolds numbers were considered. As it was found ear-
lier by several authors, the BGK scheme [7] suffers from numerical instabilities for in-
creasing Reynolds numbers at fixed resolutions. The reasons are unphysical moments,
which are amplified exponentially in time for under-resolved setups. Nevertheless, when
increasing the resolution, mesh convergence and accurate results were obtained. Due to
the low dissipation found for the BGK model at medium and well resolved setups, the
adaption of advanced turbulence models, such as ADM, seems to be promising for this
type of collision operator. To circumvent the instabilities of the BGK scheme at low res-
olutions, the MRT scheme [8] was derived. In our investigation this expected feature of
the MRT scheme was confirmed, but only in under-resolved test cases. Increasing the
resolution towards DNS lead to unstable simulations, and no mesh convergence could
be achieved with the MRT-LBM for of homogeneous turbulence considered in this work.
The RLB scheme allowed for stable simulations at all resolutions and Reynolds numbers
considered for the Taylor-Green vortex and mesh convergence was achieved. The RLB
suffers from large numerical dissipation, which grossly decreases accuracy.

By computing turbulent channel flows at Reτ =180, Reτ =395 and Reτ =590 for vary-
ing resolutions, some features found for the Taylor-Green vortex could be confirmed. For
the rather low Reynolds number of Reτ =180, very good agreement was found for both
the BGK and MRT scheme, while the MRT scheme showed even better agreement with
the reference data. By increasing the Reynolds number to Reτ = 395 and Reτ = 590, no
mesh convergence for the MRT model was found. While the BGK model lead to rea-
sonable and good results, the MRT model showed the appearance of spurious velocity
oscillations in the bulk. For an increasing Reynolds number these oscillations were also
found in the vicinity of the wall. Although the MRT model did not became unstable,
the simulations reproduced an unphysical state. The RLB model was only applied for
the lowest Reynolds number at Reτ = 180 and it was found, that the flow field resulted
in a laminar state, which was confirmed by the velocity profile and the temporal evolu-
tion of the Reτ. Additional work has to be performed on the validation of the forcing
approach to reach the target turbulence state. Since the mean velocity profile is maybe
affected by the development of spurious oscillations, mode coupling between such spu-
rious fluctuations and forcing oscillations may occur. Different initialization techniques
and Reynolds numbers should be applied by computing the turbulent channel flow with
the RLB scheme to test the general application of this model for wall-bounded turbulent
flows.

For the MRT model it is believed, that the high order moments are responsible for the
absence of mesh convergence at high Reynolds numbers employing a resolved numeri-
cal setup with diffusive scaling, see Sections 3 and 4. It was shown, that the MRT model
produces an unphysical amount of energy in the high frequency space. Due to the de-
veloping strong oscillations, the classical energy transfer of a turbulent flow is disturbed.
The results obtained in this work can be useful for further development of turbulence
models and underline the suitability of the BGK scheme as an efficient and accurate DNS
tool for turbulent fluid flows.
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a b s t r a c t 

This paper presents an extension of a Large Eddy Simulation based approach in the framework of Lattice 

Boltzmann Methods. An extended filter technique is introduced based on selective viscosity filters. In con- 

trast to previous approaches we omit adjusting parameters, a technique frequently used in literature to 

achieve good fit with turbulence benchmarks. Such parameters have to be adapted manually for different 

Reynolds numbers and grid resolutions. The new filter approach is based on a time dependent coupling 

between resolved scales and a phase averaged strain-rate. We demonstrate that our method is able to 

recover turbulent statistics of the Taylor–Green vortex benchmark, representing Homogeneous Isotropic 

Turbulence for varying mesh resolutions and Reynolds numbers. Beyond that, we show the applicabil- 

ity to wall-bounded turbulence represented by the turbulent channel flow at friction Reynolds numbers 

Re τ = 180 , Re τ = 395 and Re τ = 590 . A spectral viscosity analysis is performed in order to demonstrate 

the methods ability to adapt the numerical dissipation according to the mesh resolution. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last three decades, Lattice Boltzmann Methods (LBM) 

have become a promising alternative for the simulation of fluid 

flows [1–3] . The kinetic nature of LBM allows their application 

even for complex flow physics like fluid-structure interaction or 

multi-phase and -component flows, see [4–7] . 

Although LBM have been applied to a wide range of fluid dy- 

namic applications, turbulence modeling in the LBM framework 

still requires considerable work and has not reached a level of 

maturity as seen for Navier–Stokes based methods, see [8–10] . 

The concept of turbulence modeling in the LBM framework is pri- 

marily based on simple extrapolations of Large Eddy Simulation 

(LES) models as used for simulations based on the filtered Navier–

Stokes equations. These models make use of an effective relaxation 

rate which corresponds to an effective viscosity concept in mo- 

ment space. Corresponding models were presented and applied to 

different benchmarks in [11–15] among others. Important recent 

advances have been made by Sagaut et al., see [10,16,17] . They 

showed that the concept of an effective relaxation rate adopted 

from the Navier–Stokes based LES does not necessarily lead to the 

∗ Corresponding author. 

E-mail addresses: patrick.nathen@aer.mw.tum.de , patrick@lilium.com (P. Na- 

then), mathias.krause@kit.edu (M.J. Krause). 

correct macroscopic equations. Consequently, the underlying equa- 

tions for LES in the framework of LBM do not resemble the fil- 

tered macroscopic equations. A recently presented approach pro- 

posed by Sagaut [10] and Malaspinas and Sagaut [17] is based on 

the Approximate Deconvolution Method (ADM) of Stolz, see Stolz 

and Adams [18] and Stolz et al. [19] . ADM exploits a range of scales 

in order to partially mimic the Subgrid-Scale (SGS) energy transfer 

in the subfilter-range, see [20,21] . An implementation of the ADM 

algorithm in a DNS LBM code was demonstrated in [17] , where 

the discrete Boltzmann equations are filtered with an explicit fil- 

ter stencil and subsequently deconvolved with a regularized in- 

verse filter operation in order to reconstruct the proper macro- 

scopic equations for LES within the kinetic theory. 

Tam et al. [22] proposed a selective viscosity filter stencil where 

the filter intensity is modified with an artificial viscosity. This class 

of filters was also the underlying ADM approach of Malaspinas and 

Sagaut [17] , which was also successfully validated by Ricot et al. 

[8,9] . Fauconnier et al. [23] employed this class of filters for the 

simulation of Homogeneous Isotropic Turbulence (HIT) and they 

showed that the accuracy of the numerical results strongly de- 

pends on the artificial viscosity, which needs to be adapted ac- 

cording to the mesh resolution and the consideration of stability 

issues. Similar results were found in [17] by computing a turbulent 

shear layer. Only for very well resolved numerical test cases satis- 

fying agreement with reference data was achieved while showing 

https://doi.org/10.1016/j.compfluid.2018.03.042 
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a minor influence of the filters artificial viscosity. For rather under 

resolved setups the development of turbulent structures strongly 

depends on the filter stencil and the applied artificial viscosity. In 

conclusion, no general strategy can be found in the literature for 

employing selective viscosity filters of Tam et al. [22] for the simu- 

lation of turbulent flows within the ADM theory for LBM. Depend- 

ing on the test case and under consideration of the resolution, the 

artificial viscosity as well as the filter stencil have to be tuned with 

care. 

Our goal is to improve the prediction of turbulent flows in the 

LBM-LES framework by extending an existing ADM approach to 

self-adapting filter stencils. By doing so, we aim for less mesh- 

sensitivity for a given Reynolds number in order to derive a more 

general framework for the simulation of turbulent flows with LBM. 

A connection between spatial and temporal resolution and locally 

resolved scales is to be enabled which features the desired proper- 

ties of the filter to be self-adaptive. 

This paper is structured as follows: After a short introduction 

of the basic theory of LBM in Section 2.1 , the main aspects for 

ADM in the LBM framework are given in Section 2.2 . In Section 2.3 , 

we propose a novel filtering approach which dynamically adapts to 

mesh size and Reynolds number of the flow. This replaces a fixed 

artificial viscosity and thus enables higher flexibility between fil- 

ter stencil and applied mesh resolution. Validation of the approach 

is conducted for the Taylor–Green vortex (TGV) benchmark, repre- 

senting HIT in Section 3.1 . In order to assess numerical dissipation, 

we perform a spectral decomposition of the flow field in terms of 

the wavenumber dependent spectral dissipation and spectral vis- 

cosity, similar to [24–26] . To the authors knowledge, no prior anal- 

ysis of the spectral distribution of the numerical viscosity has been 

performed in the LBM framework. In Section 2.4 this spectral space 

analysis for LBM will be shortly introduced and the numerical val- 

idation will be depicted in Section 3 . Additional validation data 

is provided for wall-bounded turbulence in Section 3.3 by inves- 

tigating the turbulent channel flow at Re τ = 180 , Re τ = 390 and 

Re τ = 590 . 

2. Theoretical background 

2.1. Lattice Boltzmann methods 

With LBM the computational domain is discretized by an 

equidistant mesh on which a discrete set of velocity distribution 

functions f α is solved numerically for any given instance of time 

t and spatial position x . This set of velocity distribution functions 

corresponds to discrete lattice velocities c α , which are used to re- 

cover the macroscopic moments in terms of a Hermite polynomial 

expansion. The discrete Boltzmann equations can be written as 

f α(t + �t, x + c α�t) = f α(t, x ) + �α( f α) , (1) 

where �α( f α) is the non-linear discrete collision operator which 

also accounts for viscous effects, c α with α = 0 , 1 . . . , q − 1 is a set 

of discrete lattice velocities associated to q discrete lattice links 

and �t is the discrete time step. Macroscopic moments are recon- 

structed with a Gauss–Hermite quadrature based on the Hermite 

polynomial expansion of f α on a discrete lattice. The first two mo- 

ments of the velocity distribution functions are the conserved mo- 

ments, namely the density ρ and the momentum ρu , which read 

ρ = 

∑ 

α

f α , (2a) 

ρu = 

∑ 

α

c α f α, (2b) 

while the momentum flux is the second-order off-equilibrium mo- 

ment of the velocity distribution functions 

�neq = 

∑ 

α

f neq 
α c αc α. (3) 

To close Eq. (1) , the collision term needs to be modeled. De- 

pending on the particular closing approach, the collision term is 

modeled in different ways, see [1–3,27–29] . Linearization around 

small perturbations of the thermodynamic equilibrium f 
eq 
α leads 

to the Bhatnagar–Gross–Krook (BGK) closure, see [30–33] . The col- 

lision term is handled as a linear relaxation towards Maxwellian 

equilibrium 

�α( f α) = − 1 

τ

(
f α(t, x ) − f eq 

α (t, x ) 
)

. (4) 

The relaxation time τ is related to the viscosity ν = c 2 s 

(
τ − 1 

2 

)
�t

and f 
eq 
α is a low Mach number truncated Maxwell–Boltzmann dis- 

tribution, which is adjusted in such a way that Eq. (3) is satisfied 

and both mass and momentum are conserved. A widely used for- 

mulation for f 
eq 
α is given by 

f eq 
α = ρω α

[
1 + 

c αu 

c 2 s 

+ 

1 

2 c 4 s 

( u u − c 2 s δ) u u 

]
. (5) 

The weights ω α are obtained by a Gauss–Hermite quadrature with 

the discrete lattice links, c s = 1 / 
√ 

3 is the lattice speed of sound 

which is valid for the D 3 Q 19 lattice used in this work and δ is 

the Kronecker delta. The BGK approach is a very well understood 

closure for the Lattice Boltzmann equation and is being frequently 

used in the literature, see Wolf-Galdrow [34] among others. 

2.2. Approximate deconvolution method for LBM 

The ADM was first introduced by Stolz and Adams [18] and 

Stolz et al. [19] , and adapted for LBM by Sagaut [10] and 

Malaspinas and Sagaut [17] . Starting point is the discrete Boltz- 

mann equation (1) with the single relaxation time approach given 

by Eq. (4) . By applying a filter kernel G to Eq. (1) we can write the 

discrete filtered LBM equation as 

D ̄f α

Dt 
− �α( f̄ α) = G ∗ �α( f α) = �α( f α) − �α( f̄ α) = R α , (6) 

where f̄ α = G ∗ f α is the filtered counterpart to the velocity distri- 

bution function and R α is the Subgrid-Scale (SGS) collision term, 

which has to be modeled. The term R α represents the difference 

between exact filtered collision and collision evaluated with the 

filtered veloctiy distribution functions f̄ α . In the ADM-LBM frame- 

work, the solution of the inverse filtered solution of f̄ α is of in- 

terest which is achieved by an regularized inverse filter operation 

given by 

Q ∗ (G ∗ f α) = 

̂ f α , (7) 

with the inverse filter properties 

Q ∗ G = I + O(h 

l ) . (8) 

In Eq. (8) I is the identity and h corresponds to the grid resolution, 

see also Stolz and Adams [18] and Malaspinas and Sagaut [17] . The 

order of deconvolution is determined by l > 0. Following Mathew 

et al. [35] , R α on the right hands side of Eq. (10) can be rewritten 

as 

R α = R α, 1 + R α, 2 = �α( ̂  f α) − �α( f α) + �α( f α) − �α( ̂  f α) . (9) 

Term R α, 2 = �α( f α) − �α( ̂  f α) of Eq. (9) has to be modeled. The 

derivation of the SGS collision term will not be shown here since 

it was derived in detail in the work of Malaspinas and Sagaut 
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Table 1 

Weighting coefficients for the selective viscosity filters 

up to order M = 4 . 

M d 0 d 1 d 2 d 3 d 4 

1 1/2 −1 / 4 – – –

2 6/16 −4 / 16 1/16 – –

3 5/16 −15 / 64 3/32 −1 / 64 –

4 35/128 −7 / 32 7/64 −1 / 32 1/256 

[17] and Sagaut [10] . The final result for the full ADM-LBM equa- 

tion is given by 

G ∗
(

D ̂

 f α

Dt 
+ 

1 

τ

(̂ f α − f eq 
α ( ̂  f ) 

))
= 

1 

τ
G ∗ R α,SGS , (10) 

with 

R α,SGS = �̂ f α − ω α

(
�̂ ρ + 

c α · �̂ j 

c 2 s 

+ 

1 

2 c 4 s 

H 

(2) : 

(
−�̂ ρ̂ ρ2 ̂

 j ̂  j + 

1 ̂ ρ

(
�̂ j ̂  j + ̂

 j �̂ j 
)))

, (11) 

where � = (I − Q ∗ G) , H 

(2) is the Hermite base of second order 

and j = ρu is the momentum. 

Following Mathew et al. [35] and Malaspinas and Sagaut [17] , 

we neglect the term R α, 2 as well, leading to the simplified version 

of the full ADM-LBM Eq. (10) as 

G ∗
(

D ̂

 f α

Dt 
+ 

1 

τ

(̂ f α − f eq 
α ( ̂  f ) 

))
= 0 . (12) 

The simplified ADM approach in Eq. (12) can be implemented in 

any DNS like LBM code. 

2.3. The extension of viscosity filters for the ADM-LBM approach 

The original implementation of the ADM-LBM in [17] is based 

on an explicit filtering step with viscosity filters. By employing the 

simplified Eq. (12) the algorithm for any ADM-LBM implementa- 

tion reads: 

1. Standard BGK collision of the populations ̂ f α . 

2. Stream of the relaxed populations to the neighboring cells ̂ f α( x + �t c , t + �t) = ̂

 f 
p 
α( x , t) . 

3. Explicit filter operation. 

The sup-script in 

̂ f 
p 
α( x , t) indicates the post-collision state of 

the velocity distribution function. The explicit viscosity filter was 

originally proposed by Tam et al. [22] and analyzed in detail for 

the LBM framework by Ricot et al. [8,9] and Malaspinas and Sagaut 

[16] . The explicit filter step reads 

Q ∗ G ∗ ̂ f α( x , t) = 

̂ f α( x , t) − σ
D ∑ 

j=1 

M ∑ 

m = −M 

d m ̂

 f α( x + m e j , t) . (13) 

Here, d m 

are the filter weights, e the Cartesian basis vectors in D 

dimensions and M the filter stencil size. Our focus is on the artifi- 

cial viscosity σ . In previous publications, see [8,9,17,23] , the selec- 

tion of σ is not straight forward. Depending on the grid resolution 

and the applied filter stencil, the results varied significantly. For 

sake of clarity, the weights d m 

are shown in Table 1 for M = 1 .. 4 . 

The underlying assumption for neglecting the right hands side 

of Eq. (10) and the derivation of Eq. (11) is 

| ̂  f α − f α| � 1 , (14) 

which refers to a resolved simulation where the filter width has 

the size of the scales in the dissipation range. This filter width 

Fig. 1. Transfer functions of the filters used by Malaspinas and Sagaut [17] for ADM 

with M = 1 , 2 , 3 , 4 and an additional high-order viscosity filter M = 7 from [22] . The 

wavenumber is normalized with the Nyquist wavenumber ξN . 

scale is of order | ̂  f α − f α| = O(h l ) f, see also Eq. (8) . Since l de- 

termines the order of reconstruction, the connection between grid 

resolution, order of reconstruction and the validity of O(h l ) f � 1 

is now visible. Since the ADM-BGK approach is a LES based model, 

the aim is to account for resolved large scales and model the unre- 

solved scales. This leads to the assumption that the filter construc- 

tion has to be performed carefully, in order to reduce eventually 

excessive amounts of numerical dissipation when the flow setup is 

under resolved and keeping the assumption of Eq. (14) valid. 

In Fig. 1 the transfer functions for typical viscosity filters in- 

troduced by Tam et al. [22] are shown for orders up to M = 7 . 

For low orders the transfer function strongly decreases for low ra- 

tios of ξ / ξN . It is thus questionable whether the assumption given 

by Eq. (14) is still valid for such filter stencils when applied to 

marginally resolved flow setups. 

In order to decrease the sensitivity of the filters, we introduce a 

method which dynamically shifts a constant filter stencil towards 

wavenumber ratios ξ / ξN where the resolution is not high enough 

to accurately capture the correct energy transfer. Our starting point 

is the assumption of a variable artificial viscosity in space and time 

σ ( x , t ), which should be approaching zero in regions where the 

flow structures are resolved, i.e. , | ̂  f α − f α| � 1 holds and dynami- 

cally adapted in regions where this assumption is not fulfilled suf- 

ficiently. In LBM a spatially fully resolved flow consequently leads 

to good temporal accuracy. Spatial and temporal resolution are 

connected to the Mach number. A well resolved flow in the context 

of diffusive scaling is characterized by a low Mach number, leading 

to the incompressible limit of LBM in terms of the incompressible 

Navier–Stokes equations. In this case, the temporal and spatial res- 

olution are connected to each other by �t ∝ �x 2 , see [36] among 

others. A reasonable measure for this connection is the strain-rate 

tensor 

S i j = −�i j 

ω 

2 ρc 2 s 

. (15) 

�ij was already defined by Eq. (3) , being the second order mo- 

ment of non-equilibrium distributions, which represents the stress 

tensor. Our approach is to measure differences from a temporal 

developing strain-rate representing unsteady turbulent flow struc- 

tures by a simple relaxation. Temporal developing turbulent struc- 

tures (e.g. decaying turbulence) require a dynamic adaption of re- 

laxation. Using the local resolved strain-rate and relax it towards 

a phase averaged strain-rate is a reasonable approach. The filter 
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strength is computed as 

σ ( x , t) = (| S i j ( x , t) − 〈 S i j ( x , ̃  t ) 〉| ) 
( 

2�t 2 

| �i j | 
(

1 
ρc 2 s 

)) 1 / 2 

(16) 

where 〈 S i j ( x , ̃  t ) 〉 is the phase averaged resolved strain-rate and �t 

the physical time step. The second term of Eq. (16) represents a 

normalization with a dissipation time scale. Different normaliza- 

tion techniques with different time scales were applied. Yet all of 

them showed equivalent results without significant difference. Our 

choice is based on the robustness and the local estimation without 

using finite differences. A similar idea was already demonstrated to 

be sufficiently accurate in terms of the shear-improved Smagorin- 

sky for fully developed turbulent channel flows by Leveque et al. 

[37] . The classical Smagorinsky eddy-viscosity approach is decom- 

posed into two parts. One part accounts for the non-linear energy 

cascade of HIT and the other part is responsible for mean shear 

flows associated with anisotropy. The resolved strain-rate is re- 

laxed towards an average strain-rate and, thus, the fluctuating part 

of the strain-rate is significant at scales of filter size �x . In flow 

regions, where the fluctuating part of the strain-rate is larger than 

the average strain-rate, the turbulent flow can be considered ho- 

mogeneous and the energy transfer from large to smalls scales is 

adapted accordingly. Similar to our approach, Eq. (16) leads to an 

equivalent SGS energy budget in terms of a turbulent kinetic en- 

ergy drain from resolved-scales to SGS as 

ε ∝ (| S| 3 i j ( x , t) − | S| i j ( x , t) 〈| S| 2 i j ( x , ̃  t ) 〉 )�2 
x , (17) 

see also Leveque et al. [37] . 

2.4. Spectral viscosity analysis 

This section shortly describes the underlying theory of the 

spectral analysis used in Section 3.2 . In order to evaluate and quan- 

tify the numerical viscosity which is associated to the adapted 

filter strength, we analyze the macroscopic equation in spectral 

space. 

In a 2 π-periodic box, which is discretized by N equally spread 

cells we define the Fourier transformed velocity field as 

˜ u ( ξ, t) = 

{
˜ u ( ξ, t) , ξ < N/ 2 − 1 

0 , otherwise 
(18) 

with ξ = { ξx , ξy , ξz } being the wavenumber vector and ξ = | ξ| < 

N/ 2 − 1 is the cut-off wavenumber. By defining the complex con- 

jugate of the spectral velocity as ˜ u 

∗
, we can define the three- 

dimensional kinetic energy spectra with the deconvolved spectral 

velocity ̂  ˜ u as 

̂ e ( ξ, t) = 

1 

2 ̂

 ˜ u ̂

 ˜ u 

∗
. (19) 

Accordingly one can derive the spectral viscous dissipation, see 

[38] , as 

̂ ε( ξ, t) = 2 νξ
2 ̂ e ( ξ, t) . (20) 

Transformation of the Navier–Stokes equations into spectral space 

and subsequent multiplication with the complex transformation 

leads to the spectral energy transport equation 

∂ ̂  e ( ξ, t) 

∂t 
= ̂

 T ( ξ, t) − ̂ ε( ξ, t) , (21) 

with 

̂ T ( ξ, t) being the non-linear transfer term defined by ̂ T ( ξ, t) = ̂

 ˜ u 

∗
( ξ, t) · P ( ξ, t) : 

∑ 

ξ
′ 

̂ ˜ u ( ξ
′ 
, t) ̂  ˜ u ( ξ − ξ

′ 
, t) (22) 

and the 3 rd -rank tensor P ( ξ, t ) is given as 

P ( ξ, t) = ξδ − ξξξ| ξ| −2 . (23) 

We now follow the approach of Domaradzki et al. [26] , Schran- 

ner et al. [24] and Hickel et al. [25] , who described the assessment 

of the numerical dissipation associated to a spectral numerical vis- 

cosity. For an arbitrary discretization scheme of the Navier–Stokes 

equations, for instance the LBM scheme, Eqs. (19) –(21) can be eval- 

uated exactly. The computation of the energy decay in Eq. (21) is 

associated to the numerical discretization error. Thus, calculation 

of the macroscopic moments by LBM, mapping them in spectral 

space and calculating the energy decay leads to an accurate pre- 

diction of the numerical dissipation. Following [26] , the derivative 

on the l.h.s. of Eq. (21) can be approximated by 

∂ ̂  e ( ξ, t) 

∂t 
≈ ̂ e ( ξ, t) −̂ e ( ξ, t − �t) 

�t 
, (24) 

leading to numerical dissipation spectra with Eq. (21) 

−2 νnum 

ξ
2 ̂ e ( ξ, t) = −̂ εnum 

( ξ, t) 

= 

̂ e ( ξ, t) −̂ e ( ξ, t − �t) 

�t 
− ̂ T ( ξ, t) 

+ 2 νξ
2 ̂ e ( ξ, t) , (25) 

where νnum 

is the numerical viscosity. Assuming that the numer- 

ical dissipation inherent to the BGK Boltzmann scheme is very 

low, see also [1–3] , the obtained numerical viscosity will originate 

from the adaptive ADM step only. The numerical implementation 

is based on the algorithm proposed in [25] . Since the calculation 

of the energy decay in Eq. (24) is a first-order finite difference ap- 

proximation at time t n −1 / 2 the energy spectra and transfer spectra 

are approximated accordingly as 

̂ e ( ξ, t n −1 / 2 ) ≈
̂ e ( ξ, t) + ̂

 e ( ξ, t − �t) 

2 

, (26) 

and 

̂ T ( ξ, t n −1 / 2 ) ≈
̂ T ( ξ, t) + ̂

 T ( ξ, t − �t) 

2 

. (27) 

Inserting the interpolated values at times t n −1 / 2 into Eq. (25) we 

finally obtain 

νnum 

( ξ, t) = 

1 

2 ξ
2 ̂ e ( ξ, t t n −1 / 2 

) 

(̂ T ( ξ, t t n −1 / 2 
) − ∂ ̂  e ( ξ, t) 

∂t 

∣∣∣
t n −1 / 2 

)
− ν

(28) 

Eq. (28) will be evaluated for HIT in Section 3.1 . 

3. Numerical validation 

3.1. Taylor–Green vortex 

The extended filter approach is tested for HIT represented 

by the three-dimensional Taylor–Green vortex benchmark accord- 

ing to [39] . The Reynolds number is set to Re = 800 , Re = 1600 

and Re = 30 0 0 at varying resolutions. The 2 π-periodic box is dis- 

cretized equidistantly by N = 32 , N = 64 , N = 128 and N = 256 in 

each direction to account for under- and well-resolved flow se- 

tups. A second- ( M = 2 ) and third-order ( M = 3 ) stencil is used for 

Eq. (13) in this investigation. In this section, the integral dissipation 

rate ε = ν
∂ u ′ 

i 
∂ x k 

∂ u ′ 
i 

∂ x k 
is assessed by means of the effective, the molec- 

ular and the numerical dissipation. Diffusive scaling is employed, 

leading to the flow setups depicted in Table 2 . 

Phase averaging of 〈 S i j ( x , ̃  t ) 〉 is done in such way that it au- 

tomatically adapts to the investigated turbulent flow structures. 

By doing so we achieve the correct energy drain from the iner- 

tial range to the SGS range by means of σ ( x , t ). For decaying tur- 

bulence, the turbulent flow structures differ over time and space. 

A proper approach is to adapt the averaging phase to the eddy- 

turnover time. This time scale describes the dynamic behavior of 
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Table 2 

Numerical setup for the Taylor–Green vortex at dif- 

ferent resolutions N . 

N u L Ma �x �t 

32 0.2 0.346 0.196 0.03926 

64 0.1 0.1730 0.0981 0.00981 

128 0.05 0.0865 0.0490 0.00245 

256 0.025 0.0432 0.0245 0.0 0 0612 

turbulent scales in time and depends on the characteristic turbu- 

lence length scale l and the dissipation rate ε. From dimensional 

analysis it can be derived that 

˜ t ed d y ∝ 

(
l 2 

ε

) 1 
3 

, (29) 

where ε is the turbulent kinetic energy dissipation expressed in 

spectral space by Eq. (20) , which is evaluated in real space by 

ε(t) = 

2 ν

V 

∫ 
V 

(
∂u 

′ 
i 

∂x j 

∂u 

′ 
i 

∂x j 

)
dV, (30) 

using 8 th order finite differences, see [38] . Here, u ′ 
i 

is the i th 

component of the velocity fluctuation. The period over which the 

strain-rate in Eq. (16) is averaged, is evaluated as 

�˜ t ed d y (t n ) ∝ 

(
l 2 (t n ) 

ε(t n ) 

) 1 
3 

, (31) 

where t n is the discrete time step. After time t n + �˜ t ed d y (t n ) the 

period is evaluated new and the initial value for averaging is ap- 

proximated as 
ε(t n )+ ε(t n −�˜ t ed d y (t n )) 

2 . This is valid for low time steps 

and later time instances, since the dissipation is increasing and 

�˜ t ed d y is decreasing. The length scale l at an instance of time t n 

is calculated as 

l(t n ) = 

∑ N/ 2 −1 
0 

ξ
−1 ̂ e ( ξ, t n ) d ξ∑ N/ 2 −1 

0 
̂ e ( ξ, t n ) d ξ

, (32) 

see also [38,40–42] . 

For Re = 800 and N > 32 the results are only in fair agreement 

with the reference data of Brachtet et al. [39] , see Fig. 2 . For N = 64 

the transition to turbulence was predicted too early by both the 

2 nd and 3 rd order filter stencil. The development of the molec- 

ular dissipation rate is predicted too flat for both cases, which 

is probably caused by the low resolution applied. The numerical 

dissipation increases during the initial transition phase at t ≈ 4 s 

and remains on a nearly constant plateau until it increases again 

at t ≈ 8 s, where also the maximum effective dissipation rate is 

achieved. The numerical dissipation shows a peak of maximum 

dissipation rate which corresponds to the reference DNS data. For 

increasing resolution N = 128 and 256 the run of the molecular 

dissipation rate is in acceptable agreement with the reference data. 

For N = 128 the total amount of dissipation is a bit smaller com- 

pared with N = 256 , leading with the under-predicted molecular 

dissipation to a slight discrepancy between reference data and nu- 

merical results. Again, the overall agreement with the second or- 

der stencil is less accurate compared to the third order stencil. 

For N = 256 the results of the effective dissipation rate are in very 

good agreement with DNS data for both stencil sizes. The influ- 

ence of the filter seems to be negligible, which corresponds to a 

well resolved setup. 

Similar results are found for Re = 1600 , see Fig. 3 . For N = 32 

the under resolved simulation leads to an unphysical amount of 

numerical dissipation, probably caused by the high Mach num- 

ber, see Table 2 . High Mach numbers correlate to a high non- 

equilibrium part of the velocity distribution function, which vice 

versa leads to high predicted strain-rates, see Eq. (15) , and finally 

to high dissipation rates. Comparing the results for Re = 1600 to 

those of Re = 800 one can see, that for N = 64 the early state tran- 

sition is predicted too early again. The discrepancy between the 

second and third order stencil indicates a first dependency be- 

tween applied resolution and Reynolds number in order to achieve 

reliable results. For Re = 800 and N = 64 this discrepancy in the 

dissipation rate was smaller, while for Re = 1600 and N = 128 the 

differences are of comparable magnitude. Only for Re = 1600 and 

N = 256 a good accordance between second and third order sten- 

cil can be found. This indicates, that the lower the resolution is 

the higher the discrepancy between the 2 nd and 3 rd stencils are. 

The third order stencil shows a general better agreement with the 

reference data for all resolutions applied. 

The discrepancy found between the two different stencils is also 

evident for Re = 30 0 0 , see Fig. 4 . Although all simulations con- 

verged and remained stable, the correct initial transitional phase 

is only captured by the simulations with N = 128 and N = 256 , 

yet only the simulation with N = 256 predict the correct temporal 

evolution of the maximum of the dissipation rate. For Re = 30 0 0 

all simulations show a non-negligible difference between the sten- 

cils, which varies from ≈ 52% to ≈ 23% for the peak value of the 

dissipation rate for N = 64 to N = 256 respectively. Throughout, it 

is visible that for increasing Reynolds numbers at same resolution 

the numerical dissipation increases, yet the different filter stencils 

lead to varying ranges. With respect to the results obtained for the 

lower Reynolds numbers, the adaption of the filter strength for the 

simulation of turbulent flows can lead to a very good agreement 

with the reference data. This holds for both filter stencils as long 

as a certain ratio of �x 
η is not exceeded, where η describes the Kol- 

mogorov length scale which successively decreases with increasing 

Reynolds number. 

In Fig. 5 , the temporal evolution of the volume averaged filter 

strength σ V ( t ) is depicted for all simulations of HIT. Clearly visible, 

σ V ( t ) is varying for different resolutions at fixed Reynolds num- 

bers over two orders of magnitude. For constant resolutions and 

Reynolds numbers the values for σ V still vary e.g. for Re = 1600 

and N = 64 from σV 
min 

(t) = 0 . 0 0 0945367 to σV 
max (t) = 0 . 0132248 

for the third order stencil. While for N = 32 , the averaged σ V ( t ) 

is of order of magnitude of 10 −1 , we find σ V ( t ) decreasing on av- 

erage to 10 −4 for N = 256 . The strongly varying range for the artifi- 

cial viscosity σ V ( t ) underlines the findings of Fauconnier et al. [23] , 

who demonstrated that the filter strength has to be adapted care- 

fully depending on resolution and Reynolds number applied for 

HIT. Similar results were found by Malaspinas and Sagaut [17] for 

the computation of a turbulent shear layer. In their work, a care- 

ful adaption of a constant σ leads to more reasonable results for 

same filter stencil orders. Setting the artificial viscosity too high 

yields to spatially wrong predicted shear-layer thicknesses. Beyond 

that, the differences between the magnitude of the filter strengths 

for the third and second order stencils decreases by increasing the 

resolution, as one can see in more detail on the right side of Fig. 5 . 

Conversely, for high Reynolds numbers and marginally resolved se- 

tups like Re = 1600 with N = 128 and Re = 30 0 0 with N = 256 , 

the differences between different filter stencils is originating from 

the filter itself. It is assumed that filter independency for a given 

Reynolds number can be reached only by keeping the resolution 

over a certain threshold in order to obtain reliable results. 

In order to illustrate the difference to a constant filter strength, 

Fig. 6 shows the temporal development of the molecular, effective 

and numerical dissipation rates obtained for the Taylor–Green vor- 

tex at Re = 30 0 0 and constant σ values ranging from σ = 0 . 001 to 

σ = 0 . 005 . The resolution is varied from N = 128 to N = 256 and 

diffusive scaling is made according to Table 2 . For N = 128 dur- 

ing the initial phase up to t ≈ 6 s the flow field remains stable and 
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Fig. 2. Temporal evolution of the dissipation rate of the Taylor–Green vortex at Re = 800 predicted by the selective ADM-BGK scheme at varying resolutions. Red: O(2) 

. Blue: O(3) . The solid line corresponds to the effective dissipation rate, the dashed one to the molecular part and the dotted one to the numerical dissipation 

respectively. The solid black line represents the reference DNS data of Brachet et al. [39] . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

the dissipation rate follows the DNS reference in good quality. Af- 

ter t ≈ 6s and for σ = 0 . 001 the dissipation rate increases expo- 

nentially caused by unstable simulation setup. Increasing the fil- 

ter strength to σ = 0 . 005 leads to a stable flow field until t ≈ 9.2 s 

until the flow field diverged again. Comparing these results with 

the dissipation rates obtained by adaptive filtering and N = 128 , 

see Fig. 4 , it is visible see that the numerical dissipation predicted 

by the novel ADM approach is higher which leads to better sta- 

bility properties. Increasing the resolution to N = 256 , all setups 

remained stable and show qualitatively good agreement with the 

reference DNS. The maximum value of the molecular dissipation 

rate peak is predicted very good in time, yet only for σ = 0 . 005 

and a filter stencil of order O(2) , a higher discrepancy from the 

reference solution is found. In general it is visible that the results 

differ over a broad range for N = 128 , which underlines the non 

straight-forwards application of a constant σ for viscosity filter 

based ADM approaches in the BGK-LBM framework. This discrep- 

ancy is smaller by increasing the resolution, which was found in a 

similar way for the adaptive ADM approach. Additionally, the tem- 

poral position as well as the maximum value of the effective dis- 

sipation is predicted in better accordance with the reference so- 

lution compared to the solutions with constant filter values. The 

findings for constant filter strengths are in accordance with the re- 

sults of the adaptive ADM approach as long as the resolution and 

σ values are high enough to suppress divergence of the flow field. 

For higher values of σ the increased numerical dissipation leads 

to lower predicted molecular dissipation rates and the higher fil- 

ter stencil leads to better agreement with the reference data. The 

adaptive ADM approach showed stable results for Re = 30 0 0 and 

N = 128 , leading to a good representation of the reference DNS re- 

sults, see Fig. 4 . Beyond that, the adaptive approach allowed for a 

stable simulation without adapting σ iteratively in order to keep 

the simulation stable. For N = 256 it is visible, that the molecular 

part of the dissipation rate is slightly better predicted by the adap- 

tive ADM approach, see also Fig. 4 , which is most probably caused 

by the lower input of dissipation during the initial transition phase 

up to t = 4 s . This leads to a higher resolved energy budget in later 

stages of the flow and, thus, to a better predicted flow field com- 

pared to the reference DNS of Brachet et al. [39] . 

3.2. Analysis of the spectral viscosity for the LBM 

In order to investigate the dissipative properties of the scheme 

proposed in Section 2.3 in more detail, we use the spectral analy- 

sis introduced in Section 2.4 . The underlying algorithm allows for 

a detailed analysis of numerical viscosities in spectral space. This 

methodology is applied in Domaradzki et al. [26] , Schranner et al. 
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Fig. 3. Temporal evolution of the dissipation rate of the Taylor–Green vortex at Re = 1600 predicted by the selective ADM-BGK scheme at varying resolutions. Red: 

O (2) . Blue: O (3) . The solid line corresponds to the effective dissipation rate, the dashed one to the molecular part and the dotted one to the numerical 

dissipation respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

[24] and Hickel et al. [25] to investigate the numerical viscosity of 

different finite volume schemes. Since our approach is based on an 

explicit filtering step and dependent on the actual Reynolds num- 

ber and resolution applied, we assume varying results for differ- 

ent test cases. Thus, the comparability of the results is limited to 

those obtained by the BGK based ADM model. Since the BGK based 

LBM model can be interpreted as a finite difference scheme with 

second order spatial accuracy, we compare our results to those of 

pure finite difference schemes, see [25] . As a reference for HIT we 

take the Eddy-Damped Quasi Normal Markovian (EDQNM) analy- 

sis [42] into account, which describes the evolution of SGS viscos- 

ity for turbulence with a Kolmogorov range ̂  e (ξ ) = C k ̂  ε3 / 2 ξ−5 / 3 . Re- 

sults from Chollet [43] to Chollet and Lesieur [44] show that the 

expression 

ν+ 
Chol l et 

(ξ/ξc ) = 0 . 441 C −3 / 2 

k 
(1 + 34 . 467 e −3 . 03 ξc /ξ ) (33) 

is a proper fit to the exact solution. Since the artificial diffusivity 

is adapted dynamically, the numerical dissipation and the numer- 

ical viscosity of the scheme are time dependent. The results pre- 

sented below show time averaged results after the start of the ini- 

tial transition phase ( t > 4s) until t = 10 s by evaluating Eq. (28) ev- 

ery �t = 0 . 025 s . All simulations have been repeated ten times 

in order to cope with a statistically correlated Taylor–Green vor- 

tex. For the analysis presented here, we only considered the lowest 

and highest Reynolds number, i.e. Re = 800 and Re = 30 0 0 , respec- 

tively. 

Fig. 7 shows the numerical results obtained from the spectral 

analysis of the numerical viscosity. The numerical viscosity is nor- 

malized equivalent to [25] as ν+ 
num 

= νnum 

√ 

ξc ̂ e c 
with ξ c being the 

cut-off wavenumber and ̂

 e c the energy of the cut-off wavenumber. 

The results are consistent with the findings for the dissipation rate 

in Section 3.1 , see Figs. 2 and 4 . For Re = 800 and N > 64 the ob- 

tained dissipation rates are in good agreement with the reference 

DNS for both filter stencils, see Fig. 2 . In a similar way the numeri- 

cal viscosity is only slightly varying for the second and third order 

stencil. By increasing the Reynolds number to Re = 30 0 0 for a fixed 

resolution, the discrepancy between the different filter stencils is 

visible for the numerical viscosity. The third order stencil exhibits 

a higher numerical viscosity between 0.4 < ξ / ξ c < 1, leading to a 

higher numerical dissipation, see also Section 3.1 . For N = 256 this 

discrepancy is decreased and numerical dissipation is created for 

ξ / ξ c > 0.6. 

3.3. Turbulent channel flow 

In this section the BGK based ADM approach with selective 

viscosity estimation is employed for the simulation of the tur- 

bulent channel flow at three different friction Reynolds numbers 
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Fig. 4. Temporal evolution of the dissipation rate of the Taylor–Green vortex at Re = 30 0 0 predicted by the selective ADM-BGK scheme at varying resolutions. Red: O(2) 

. Blue: O(3) . The solid line corresponds to the effective dissipation rate, the dashed one to the molecular part and the dotted one to the numerical dissipation 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

( Re τ = 180 , Re τ = 395 and Re τ = 590 ) and varying resolutions. Re- 

sults shall outline if similar findings as for the HIT test case are ob- 

served for wall-bounded turbulence. The results in this section aim 

not to demonstrate a detailed mesh convergence analysis for the 

model, but rather aim at elucidating the applicability of the model 

in vicinity of a wall. Based on the findings in the previous section 

we only consider the third order stencil, since the compromise be- 

tween adaption of σ and numerical dissipation are assumed to be 

less sensitive compared to the second order stencil. 

Our numerical test case is based on the work of Malaspinas and 

Sagaut [45] , Lammers et al. [46] and Premnatha et al. [47] who 

obtained detailed statistics for the turbulent channel flow by ap- 

plying the BGK and Mulit-Relaxation-Time (MRT) scheme with and 

without Smagorinsky SGS turbulence model. The domain has the 

extensions of L x = 2 πH, L z = 2 πH and L y = 2 H in streamwise, lat- 

eral and wall-normal direction respectively, with H being the chan- 

nel half width. In streamwise and lateral direction periodic bound- 

ary conditions were applied. In order to represent the upper and 

lower channel wall, a full-way bounce back scheme representing 

solid no-slip walls is applied for Re τ = 395 and Re τ = 590 . Thus, 

the wall nodes are fixed on the wall leading to a constant cell 

size and wall distance �x = �y = �z. For Re τ = 180 we employ 

a half-way bounce back scheme in order to evaluate the accuracy 

of a well resolved boundary layer and to investigate the sensitivity 

of a symmetric stencil in vicinity of the wall. Applying a full-way 

bounce back to Re τ = 180 leads to undistinguishable results which 

is caused by the small values of σ ( x , t ), see also later discussion in 

this section. 

Resolution is varied in a similar way as for the Taylor–Green 

vortex, leading to resolved and under resolved test cases. Adjust- 

ing the friction Reynolds number is achieved by applying diffusive 

scaling. The viscosity is changed according to the Reynolds number 

and the lattice velocity according to the resolution. To estimate the 

viscosity we use the Dean correlation, see [45] 

Re B = 

(
8 

0 . 073 

)4 / 7 

Re 8 / 7 τ , (34) 

which connects the bulk Reynolds number Re B to the friction 

Reynolds number Re τ . With Re B = 

u B L z 
ν , we can rewrite Eq. (34) as 

ν = 

u B L z (
8 

0 . 073 

)4 / 7 
Re 8 / 7 τ

. (35) 

Based on the work of Bespalko [48] we set u B = 0 . 111 m 

s . To account 

for the limited validity of the Dean correlation at low Reynolds 

numbers, the viscosity for Re τ = 180 is obtained by a virtual log 

law which spans from the wall to the channel half height as de- 
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Fig. 5. Temporal evolution of the adaptive filter strength σ ( t ) for Re = 800 , Re = 1600 and Re = 30 0 0 at different resolutions for the Taylor–Green vortex. The solid line 

corresponds to the second order stencil while the dashed line represents the third order stencil. N = 32 3 ; N = 64 3 ; N = 128 3 ; N = 256 3 . Left: 

General overview; Right: Zoom in. 

Table 3 

Performed simulations for the turbulent channel 

flow. 

N �y + Re τ , target u L Ma 

31 ≈ 2.9 180 0.111 0.1902 

71 ≈ 1.26 180 0.0484 0.0830 

91 ≈ 0.98 180 0.0378 0.0654 

31 ≈ 12.74 395 0.111 0.1902 

71 ≈ 5.56 395 0.0484 0.0830 

91 ≈ 4.34 395 0.0378 0.0654 

31 ≈ 19.03 590 0.111 0.1902 

71 ≈ 8.30 590 0.0484 0.0830 

91 ≈ 6.48 590 0.0378 0.0654 

scribed in [48] 

ν = 

u B L z 

2 Re τ
(

1 
κ ln (Re τ ) + A 

) . (36) 

A full list of conducted simulations with the final physical state, 

lattice velocities u L , resolution N and Mach number is given in 

Table 3 . 

�y + is used to measure the non-dimensional distance between 

two adjacent cells in the bulk flow. 

The target mass flow is imposed by applying adaptive forcing 

according to the work of Cabrit [49] . The volume force is computed 

as 

f = 

u 

2 
τ

N 

+ (u B − 〈 u x 〉 ) u B 

L z / 2 

, (37) 

where u B is the bulk velocity, < u x > the instantaneous space aver- 

age of the streamwise velocity component and f the resulting vol- 

ume force. The force is included into the LBM schemes by employ- 

ing the approach of He et al. [50] for the BGK. 

A proper initialization of the velocity field and triggering of tur- 

bulence is needed in order to reach the desired turbulent state. 

Employing a 1/7 power law, i.e. u (z) = u char ( z/H ) 
1 
7 , with superim- 

posed statistically random velocity fluctuations drawn from a nor- 

mal distribution 

1 

ψ 

√ 

2 π
e 
− r−μ

2 σ2 lead to very long transition times. Set- 

ting the standard deviation ψ to an initial value of 5% lead only for 

Re τ = 395 and Re τ = 590 to a proper transition of the initial flow 

state. Thus, for Re τ = 180 we applied the forcing approach of Wang 

et al. [51] , who used a phase shifted divergence-free forcing field 

during the initial period of time. 

For all Reynolds numbers statistics are obtained in the same 

way to guarantee a consistent comparison. Averaging is performed 

spatially over horizontal planes in the homogeneous directions and 

temporally after the flow is uncorrelated. Following Moser et al. 

[52] , the flow is weakly correlated ( ≈ 0.08) at a streamwise dis- 

tance of 2 m. This leads to a sampling time of �t = 18 . 01 s with 

u B = 0 . 111 m 

s . For Re τ = 180 we start averaging after t > 150 s a time 

period of �T = 5205 s , i.e. 92 flow through times in total. The 
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Fig. 6. Temporal evolution of the dissipation rates of the Taylor–Green vortex at Re = 30 0 0 predicted by the ADM-BGK scheme. σ = 0 . 001 is represented by the blue lines 

; σ = 0 . 005 is represented by the red lines compared to DNS . The solid line corresponds to the effective dissipation rate, the dashed one to the molecular 

part and the dotted one to the numerical dissipation respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

flow-through time is the time a particle needs to pass the geome- 

try in mean-flow direction. In order to obtain converged statistics 

for the higher Reynolds numbers, the averaging times are adjusted 

accordingly. A reasonable assumption for higher Re τ is a decreased 

correlation, nevertheless we keep the sampling time constant and 

increase the flow through times according to the increase of the 

turbulent time scale. The ratio between the large- and small-time 

turbulence scale can be written as 
t L 
t η

= 

√ 

u τ H 
ν , see Pope [38] . Thus, 

the flow through times increase to 136 and 166 for Re τ = 395 and 

Re τ = 590 respectively. 

For the turbulent channel flow the adaption of the artificial vis- 

cosity σ is done without phase averaging, since in quasi steady 

flows phase averaging reduces to local time averaging as soon as 

a quasi steady flow state is achieved. Since the turbulent channel 

flow refers to ergodic systems, spatial and local temporal averag- 

ing lead to the same statistics in homogeneous directions. Addi- 

tionally, any temporal growth of unphysical moments is assumed 

to be suppressed, since non-physical strain are only appear locally 

and propagate in all spatial directions. 

In order to adapt the filter strength for the turbulent chan- 

nel flow accordingly, the averaging procedure starts after the flow 

field converged to a quasi steady state. Since we have varying res- 

olutions, we track converged flow fields for all simulations in the 

same way. An autocorrelation function defined by 

ζ = 

〈 u x ( x , t) u x ( x , t + τ ) 〉 
〈 u x ( x , t) u x ( x , t) 〉 (38) 

is used in order to investigate the convergence of the flow. 

Fig. 8 depicts the mean velocity field for Re τ = 180 for resolu- 

tions N = 31 , N = 71 and N = 91 . The velocity field is normalized 

as u + = 

u mean 
u τ

, with u τ = 

√ 

τw 
ρ and τw 

being the wall-shear stress. 

The wall normal distance is defined by y + = 

u τ y 
ν . Although the gen- 

eral quality of the results is in fair agreement with the reference 

DNS of Kim et al. [53] , for all resolutions an over-estimation of 

the velocity field of approx. 3.6% was found, although for N = 71 

and N = 91 the first cells are placed in the viscous sub-layer, see 

also Table 3 . In order to verify how well the flow is resolved, 

energy spectra in wall normal direction are shown in Fig. 9 . For 

higher wavenumbers and N = 31 the flow appears to be slightly 

under-resolved, which is presumably caused by the lower reso- 

lution. For N = 71 and N = 91 the spectra show marginal differ- 

ences and, thus, the flow field can be assumed to be equivalently 

well resolved. Since the macroscopic velocity field is slightly over- 

predicted by approx. 3.6% , the applied forcing approach may have 

an influence on the results. Malaspinas and Sagaut [45] applied the 
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Fig. 7. Spectral distribution of the numerical viscosity for the Taylor–Green vortex for varying Reynolds numbers and resolutions. EDQNM theory ; 2 nd order fintite 

differences ; 2 nd order ADM stencil ; 3 rd order ADM stencil . 

Fig. 8. Mean velocity profiles of turbulent channel flow at Re τ = 180 predicted by 

the selective filtered ADM-LES model. 

forcing approach of Cabrit [49] only for very high Reynolds num- 

bers Re τ > 590 and found great accordance of the bulk flow fea- 

tures with reference data. Future work may have to be done in 

order to evaluate the applicability of our forcing approach to lower 

Reynolds numbers. 

The Reynolds stresses u ′ u ′ and u ′ v ′ are shown in Fig. 10 . While 

the local position of the mean u ′ u ′ stresses is predicted accu- 

rately by all three resolutions, for N = 91 a slight over-prediction 

of the peak value is found. This discrepancy is found to be appar- 

ent over the whole channel width. For N = 31 and N = 71 the over- 

all agreement with the reference DNS data is acceptable, although 

an under-prediction of the peak stress value is found. For the u ′ v ′ 

Fig. 9. Normalized wall-normal energy spectra of the velocity field for Re τ = 180 

and varying resolutions. 

stresses all three resolutions show fair agreement with the refer- 

ence data of Kim et al. [53] 
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Fig. 10. Mean Reynolds stress profiles of turbulent channel flow at Re τ = 180 pre- 

dicted by the selective filtered ADM-LES model. 

Fig. 11. Mean velocity profiles of turbulent channel flow at Re τ = 395 predicted by 

the selective filtered ADM-LES model. 

In Fig. 11 , the mean veloctiy fields for Re τ = 395 are shown. 

While for N = 71 and N = 91 the overall agreement with the refer- 

ence data of Moser et al. [52] is found to be very good, for N = 31 

an under estimation of the flow field is found for y + < 80 while 

for higher y + values the velocity is over-predicted. This could indi- 

cate higher Reynolds numbers, than those which are targeted. For 

N = 91 the velocity field was predicted accurately in vicinity of the 

wall, while for 10 < y + < 40 a small overshot is visible compared 

to the excellent agreement with N = 71 . 

The results obtained for the Reynolds stresses shown in Fig. 12 

outline inaccurate results of u ′ u ′ and u ′ v ′ for N = 31 compared to 

the reference data of Moser et al. [52] . The location of the maxi- 

mum value of the stream- and cross-wise stresses are in fair agree- 

ment with the reference data, while the amplitude is not captured 

correctly. Apparently the low resolution and the high Reynolds 

number lead to a similar effect as for the Taylor–Green vortex test 

case discussed in Section 3.1 . The high discrepancy between reso- 

lution and Reynolds number leads to strong non-linear amplifica- 

tions of the non-equilibirum part of f α which triggers high σ val- 

ues, see Eqs. (15) and (16) . The results is presumably higher pre- 

dicted dissipation leading to under-predicted velocity fields in the 

wall-nearest cells. This would also underline the assumption of an 

under-predicted overall Reynolds number leading to a velocity field 

as depicted in Fig. 11 . For the higher resolutions the maximum val- 

ues obtained for the stresses are in fair agreement with the refer- 

Fig. 12. Mean Reynolds stress profiles of turbulent channel flow at Re τ = 395 pre- 

dicted by the selective filtered ADM-LES model. 

Fig. 13. Mean velocity profiles of turbulent channel flow at Re τ = 590 predicted by 

the selective filtered ADM-LES model. 

ence DNS data, yet an overall under-prediction of approximately 

9.6% and 5.9% for N = 71 and N = 91 are visible. 

Fig. 13 reveals the obtained velocity field for Re τ = 590 for all 

investigated resolutions. For N = 31 the simulation converged to- 

wards a flow field dominated by strong unphysical oscillations in 

the bulk region, characterized by an over-predicted velocity field in 

the bulk region while the near-wall flow field is under-predicted. 

For that reason, no reliable results are shown for the stresses in 

Fig. 14 . For N = 71 a similar trend as for Re τ = 395 and Re τ = 

590 with N = 31 is visible. The near-wall region shows an under- 

prediction of the velocity field while the bulk region is predicted 

in very good agreement with the reference data of Moser et al. 

[52] . In the same way as for Re τ = 395 , the u ′ u ′ stresses are in fair 

agreement with respect to the location of the local maximum as 

well as with the shape along the channel height. Nevertheless, due 

to the low resolution applied, the average discrepancy compared to 

the reference data is almost 23% and the peak position for the u ′ v ′ 
stresses is predicted too close to the wall. Again, by increasing the 

resolution to N = 91 the overall agreement with the reference data 

is very good as already found for Re τ = 180 and Re τ = 395 , yet the 

stresses are both marginally under-predicted. 

In Fig. 15 the plane averaged values for σ ( x , t ) are illustrated. 

For Re τ = 180 the distribution of σ in vincinity of the wall is nearly 

zero, which underlines, the higher wall resolution for this Reynolds 

number. Increasing the Reynolds number, it is visible that only 

Please cite this article as: P. Nathen et al., Adaptive filtering for the simulation of turbulent flows with lattice Boltzmann methods, 

Computers and Fluids (2018), https://doi.org/10.1016/j.compfluid.2018.03.042 

83



P. Nathen et al. / Computers and Fluids 0 0 0 (2018) 1–14 13 

ARTICLE IN PRESS 

JID: CAF [m5G; March 20, 2018;14:1 ] 

Fig. 14. Mean Reynolds stress profiles of turbulent channel flow at Re τ = 590 pre- 

dicted by the selective filtered ADM-LES model. 

Fig. 15. Plane averaged values for the artificial viscosity σ ( x , t ) for varying Reynolds 

numbers and resolutions. 

resolutions higher than N = 31 lead to artificial viscosity values 

around zero. For N = 31 and Re τ = 395 values for σ are not zero. 

This assumption leads to higher dissipation in this region which 

can also cause the under predicted velocity field, see also Fig. 11 . 

Another reason for higher values of σ for rather small resolutions 

and high Reynolds numbers is the use of symmetric filter sten- 

cils in vicinity of the wall. It is assumed that unsymmetric filter 

stencils can lead to improved results when the first cell is in the 

buffer layer than in the wall nearest region for high Reynolds num- 

ber flows. For Re τ = 590 , the results are consistent with the pre- 

vious findings. Interestingly, all results follow to a certain degree 

the general development of the production of the turbulent kinetic 

energy in the boundary layer, see also [38,52,53] . 

4. Conclusion 

This paper introduced an extended filter approach for the ADM- 

BGK equations, which is based on a connection between temporal 

resolved scales and applied grid resolution. The quality of the re- 

sults obtained by the classical ADM-BGK approach depends on a 

sensitive choice of a constant artificial viscosity σ . By adapting the 

artificial viscosity according to locally resolved flow scales with a 

phase averaged strain-rate relaxation, the sensitivity of our pro- 

posed model is strongly decreased, enabling a more general appli- 

cation of the ADM-BGK model independent of Reynolds and Mach 

number. The transfer function of a given viscosity filter can be 

partly adapted dynamically in regions where the resolution is not 

sufficiently high and, thus, a numerical model is necessary to ac- 

count for a correct energy transfer. 

We tested the selective ADM approach for HIT at varying 

Reynolds numbers, resolutions and filter stencil sizes. It was found 

to be stable and independent of applied Reynolds numbers, how- 

ever the results were only in fair agreement with the reference 

DNS data for resolutions, where the large, energy containing scales 

are resolved properly and thus the self-adapting stencil lead to 

| ̂  f α − f α| � 1 being valid. With increasing Reynolds numbers at 

fixed resolutions, an increased discrepancy was found for a sec- 

ond and third order filter stencil. This discrepancy is assumed to 

be caused by the higher predicted σ ( x , t ) by the third order sten- 

cil. This higher predicted σ ( x , t ) is probably caused by the lower 

inherent filter dissipation, which similarly was found by Faucon- 

nier et al. [23] . Additional work was carried out on the spectral 

analysis of the numerical viscosity in order to investigate dissipa- 

tion in spectral space. The introduced procedure can only assess 

the total numerical dissipation coming from the filter stencil and 

the calculated σ ( x , t ) value. It was found that the model adapts 

dynamically to resolution and Reynolds number. 

Finally, the new approach was tested for wall-bounded turbu- 

lence represented by the turbulent channel flows at Re τ = 180 , 

Re τ = 395 and Re τ = 590 each case resolved by N = 31 , N = 71 and 

N = 91 cells per channel half-width. The general agreement with 

reference DNS was very good and similar results as found for the 

Taylor–Green vortex test case were found. Increasing the Reynolds 

number for fixed resolutions lead to satisfying results as long as 

a certain threshold is not exceeded. This finding was observed 

slightly for Re τ = 395 and Re τ = 590 with N = 31 and N = 71 re- 

spectively. As expected, for Re τ = 590 and N = 31 strong unphysi- 

cal oscillations were apparent in the flow field, caused by the low 

resolution applied. 

The extended ADM-BGK version is a promising alternative for 

the simulation of turbulent flows in the framework of LES based 

LBM simulations. The adaptivity of the stencil lead to improved 

prediction of turbulent scales for marginally and well-resolved 

flow fields. A lower mesh-sensitivity was found for the investigated 

Reynolds numbers of freely decaying turbulence and wall-bounded 

turbulence. Future improvement has to be done, in order to quan- 

tify the dissipation coming from the pure filter stencil, in order to 

adapt the numerical dissipation more accurately. 
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An extension of the Lattice-Boltzmann Method for

simulating turbulent flows around rotating geometries

of arbitrary shape

P. Nathen, D. Gaudlitz

Institute of Aerodynamics and Fluid Mechanics TU München, Munich, Germany

J. Kratzke and M. J. Krause

Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany

A Multi-Relaxation-Time Lattice-Boltzmann Method (MRT-LBM) is proposed for sim-
ulating unsteady three-dimensional turbulent flows. Turbulence modeling is performed
with a state-of-the-art Large-Eddy-Simulation (LES) approach based on a explicit sub-
grid-scale model within the LBM framework. Additionally, a computational technique for
treating rotating geometries is presented, which is based on an interpolation technique for
the boundary fluid-cell interface.

A two dimensional double shear layer and a three-dimensional Taylor-Green vortex will
be testcases for the MRT scheme. Beyond this, the MRT scheme including the turbulence
model will be validated with a two dimensional flow around a square cylinder at low and
high Reynolds numbers. Results of the vorticity field and the global Strouhal number of the
detaching flow will be shown for the square cylinder. The laminar flow around a rotating
cylinder is simulated with an interpolation based technique and results of the drag and lift
coefficient will be shown and compared to reference cases. Finally, the three-dimensional
flow at high Reynolds numbers around a rotating cylinder will be presented, which includes
both techniques for turbulence modeling and complex boundary treatment.

Nomenclature

cs Speed of sound
Cs Smagorinsky constant
e Discrete velocities
f Distribution functions for the D3Q19 model
m Transformed momentum vector
M Transformation matrix
n Number of cells
N Resolution of the reference length
S Relaxation time matrix
α Degrees of freedom
∆ Physical discretization parameter
ε Dissipation rate
ν Kinematic viscosity
Π Shear rate norm
ρ Density
τ Relaxation time
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Superscripts:

0 Initial value
b Boundary velocity
c Post-collision pre-propagation state
eq Equilibrium

Subscripts:

0 Reference value
i Extensions in x-/ y-/ z-direction
eff Effective value
L Left direction
mol Molecular value
sgs Subgrid-scale value
t Temporal discretization
turb Turbulent value
x Spatial discretization
α Degrees of freedom

I. Introduction

Complex turbulent flows as they occur around rotating wheels at high Reynolds numbers, are challenging
in two different ways. On one hand, tremendous experimental efforts are necessary to capture the unsteady
pressure and velocity fields. On the other hand, a fully resolved CFD simulation is feasible only if appropriate
numerical models for turbulence as well as for rotating geometries are employed. Increasing computational
ressources allow for increasingly detailed simulations e.g. the detailed simulation of rotating geometries. The
majority of the established CFD tools are based on the Navier-Stokes Equations (NSE). However, in the past
decades alternative CFD tools were developed, which are based on Lagrangian particle formulations. A very
promising method of these formulations is the Lattice-Boltzmann Method (LBM), an ensemble-averaged
version of the Lattice-Gas Cellular Automata (LGCA).

In recent years the LBM proved to be an efficient method for simulating external and internal aerodynamics,
see [1] and [2]. Its linear algorithm and straightforward implementation enabled its use for a multitude of
problems in fluid dynamics. The method originates from the continuous Boltzmann Equation (BE) and is
based on its explicit discretization in time and velocity space, which leads to the Lattice-Boltzman Equation
(LBE). The LBE is strictly non-linear due to the collision term. The simplest version of the LBM is based on
a single-relaxation-time (SRT) collision operation proposed by Bhatnagar, Gross and Krook (BGK) [3]. Due
to its simplicity, the approximation of the collision operation with a SRT approach causes instabilities at high
Reynolds-number flows. The reason for this behavior is the fixed ratio of shear and bulk viscosity and the
inherent oscillations of the non-conserved flow variables [4]. Hence, a Multi-Relaxation-Time (MRT) scheme
was originally proposed by D’Humières et al. [4] and later investigated by Dellar, Du and Chen [5]- [6]. Using
the MRT approach, the authors showed increased stability for a lid-driven cavity flow and for a double shear
layer testcase at high Reynolds numbers while maintaining the efficiency of the original method.

Almost all technical relevant flows exhibit turbulent flow structures. Additional modeling of these struc-
tures is necessary to consider their influence on the mean flow field. Adopted from the classical turbulence
modeling for the NSE, a similar approach is employed in the LBM theory, which is based on eddy-viscosity
schemes, see [7]- [10]. These eddy-viscosity models are based on an additional time scale, called turbulent
collision time, which contributes to the effective collision time. The underlying equations for the eddy vis-
cosity in LBM simulations are usually solved using a Finite Difference (FD) scheme which leads to higher
computational efforts. A more intrinsic approach is based on a Subgrid-Scale (SGS) model which was suc-
cessfully validated for many LES simulations with a conventional NSE approach. Without loss of efficiency
a LBM-SGS model was proposed and tested by several authors [11]- [15].
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In order to analyze problems of industrial relevance, turbulent flows in combination with curved, possibly
rotating geometries have to be adequately represented by the LBM. Since the lattices are quadratic, the
resolution of the investigated geometry has to be either very high, which would still lead to a staircase
approximation, or the outline of the lattices has to be adjusted appropriatly. In literature the most common
methods to represent complex geometries are based on body fitted grids [16]- [18], Immersed Boundary
Methods (IBM) [19]- [23] or inter- extrapolation methods [24]- [29]. For treating rotating geometries we
focus on an interpolation method proposed by Bouzidi et al. [30] which was reviewed and validated by Kao
and Yang [31].

The paper is structured as follows: In section II an introduction to all three important building blocks for
simulations of complex turbulent flows, namely: Multi-Relaxation-Time LBM, LES based SGS method for
LBM and the interpolation technique for curved geometries, will be given. In section III validation testcases
for the MRT scheme, as well as for the MRT scheme including turbulence modeling will be shown. In section
IV the validation work as well as a test case for the combination of the techniques for further investigations of
complex turbulent flows around moving geometries of arbitrary shapes will be presented. Finally, in section
V the conclusions will be drawn.

II. Method

In this section details on techniques for the MRT theory, turbulence modeling and complex boundary
treatment will be given. All three techniques were implemented separately in the framework of the open
source LBM code OpenLB.

II.A. Multi-Relaxation-Time LBM

The following methods are shown for the D3Q19 discrete LBM scheme. The governing equation for the
LBM on a square lattice reads

fα (xi + eαδt, t+ δt)− fα (xi, t) = −1

τ
(fα (xi, t)− feqα (xi, t)) (1)

with the single relaxation time (SRT) τ determined by the BGK approach. The discrete velocities eα in the
D3Q19 are given with

ceα =





(0, 0, 0) , for α = 0

(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, , for α = 1..6

(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c, , for α = 7..18

(2)

where c = δx/δt is the discrete particle velocity. For simplification we shall use δx = δt = 1 from now.
feqα (xi+, t) are the nine equilibrium distribution functions, which are based on a discrete expansion of a
Maxwell distribution. They are defined as

feqα (xi, t) =





ρ0 − (1− ω0) pc2s
+ ω0, , for α = 0

ωαρ
[
1 + e cαiuic2 + 9

2
(cαiui)

2

c4 − 3
2
uiui
c2

]
, for α = 1..18.

(3)

The weights are ω0 = 1/3, ω1−6 = 1/18, ω7−18 = 1/36 and cs = c/
√

3 is the speed of sound. The
macroscopic variables can be reconstructed by the appropriate moments of the distribution functions. Mass
and momentum are conserved by

ρ0 =
18∑

α=0

feqα (xi, t) =
18∑

α=0

fα (xi, t) (4)

and

ρ0ui =
18∑

α=0

feqα (xi, t) eiα =
18∑

α=0

fα (xi, t) eiα. (5)

The algorithm consists of two elementary steps: a collision and an advection step which is shown for the MRT
scheme in the following. The MRT-LBM is based on a linear transformation of the distribution functions
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fα from velocity space into momentum space mα = Mαβfβ . With a SRT scheme at high Reynolds numbers
(relaxation time approaching τ = 1

2 ) the non-conserved macroscopic variables, emerging from the remaining
degrees of freedom, are not decaying but develop oscillations which lead to irreversible and exponentially
growing instabilities. The main difference of the MRT- to the SRT-scheme is that the constant collision time
is replaced by a collision time matrix. Regarding equation (1) the discrete LBE becomes

fα (xi + eαδt, t+ δt)− fα (xi, t) = −Sαβ
(
fβ (xi, t)− feqβ (xi, t)

)
(6)

The SRT scheme is directly reconstructed for a velocity space relaxation time matrix Sαi = 1
τ Iαi, where

Iαi is the unity matrix. The two steps, collision and advection, are done in two different spaces. After
transformation of fα into momentum space the collision step is performed with subsequent advection in
velocity space. The transformation, collision, re-transformation and advection can be summed up with

fα (xi + eαδt, t+ δt)− fα (xi, t) = −M−1
αγ Ŝγβ

(
mβ (xi, t)−meq

β (xi, t)
)

(7)

with Ŝαβ ≡ diag (s0, s1, ...sQ−1) being the collision matrix and

mα = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, pww, pxy, pyz, pzx,mxyz) . (8)

being the momentum vector. The equilibrium moments in equation (7) are given with

eeq = −ρ+
1

ρ0
jiji, (9)

εeq = −ρ, (10)

qeqx = −7

3
jx, qeqy = −7

3
jy, qeqz = −7

3
jz, (11)

peqxx =
1

3ρ0

[
2j2
x −

(
j2
y + j2

z

)]
, pww

eq =
1

ρ0

[
j2
y − j2

z

]
, (12)

peqxy =
1

ρ0
jxjy, peqyz =

1

ρ0
jyjz, peqxz =

1

ρ0
jxjz, (13)

meq
xyz = 0. (14)

In the MRT D3Q19 model the physical viscosity is only applied to the moments m9, m11, m13, m14 and m15

and thus the relaxation times read

S = diag (0, 1.19, 1.4, 0, 1.2, 0, 1.2, 0, 1.2, ν, 1.4, ν, 1.4, ν, ν, ν, 1.98, 1.98, 1.98) . (15)

The relaxation times for the conserved moments ρ0 and ji are set to zero. The transformation matrix Mαβ

consisting of orthogonal vectors is given in Appendix A. An extensive description of the MRT-LBM can be
found e.g. in D’Humières et al. [4].

II.B. LES-LBM Approach

As already mentioned, turbulence modeling is performed with an explicit SGS model based on the original
Smagorinsky approach [11]- [15]. The main idea is a superposition of the molecular kinematic viscosity ν
and a turbulent viscosity νturb related to the filter length scale or lattice size ∆x

νturb = (Cs∆x)
2

Π̄, (16)

where Cs = 0.1 is the Smagorinsky constant and Π̄ =
√

ΠijΠji the second-order moment of the non-
equilibrium term of the distribution functions, hence the shear rate norm. A major advantage of this
formulation is the direct evaluation of the shear rate from the distribution functions instead of using a FDM
formulation as used in other implementations of the LBM method. The effective viscosity becomes

νeff = νturb + νmol (17)

4 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 P

at
ri

ck
 N

at
he

n 
on

 M
ar

ch
 2

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
25

73
 

91



where νturb describes the turbulent viscosity.
Since the molecular viscosity within the LBM framework is expressed by

νmol = (τmol − 0.5)
1

3
(18)

the effective collision time
τeff = τmol + τturb (19)

can be used to express the effective viscosity in the LBM theory. The turbulent collision time in equation
[19] is obtained by

τturb = 0.5

(√
τ2
mol +

(
(Cs∆x)

2 ∆t

cs
4
√

2τeff Π̄

)
− τmol

)
(20)

according to Yu et al. [14].

II.C. Modeling geometries of complex shape

An interpolation technique proposed by Bouzidi et al. [30] is used to represent domain boundaries of arbitrary
shape. The main issue of using interpolation techniques in LBM to represent arbitrary surfaces is to evaluate
the post-propagation state of fluid nodes next to a solid wall within the discrete time step. This is necessary
since post-collision information from nodes within the boundary are needed. This problem is illustrated in
figure 1. To reconstruct the information at fluid node A, a linear interpolation technique is proposed,

A 

A 

E 

E 

F 

F 

B 

B 

L R 

D 

D 

Wall 

Wall 

a) 

b) 

q < 1/2 

q ≥ 1/2 

Figure 1: Fluid node state reconstruction based on the distance of the solid boundary to fluid nodes, from [30];
a) normalized distance q less than 1

2 ; b) normalized distance q higher than 1
2 .

fi′ (ri,L, t+ 1) =

{
2qf ci (ri,L, t) + (1− 2q) f ci (ri,L − ci, t) , for q < 1/2
1
2qf

c
i (ri,L, t) + 2q−1

2q f ci (ri, t) , for q ≥ 1/2,
(21)

where fi′ (ri,L, t+ 1) is the post-collision and post-propagation state and the right-hand side of equation (21)
is the post-collision and pre-propagation step. The factor q = xB−xA

∆lattice
in equation (21) describes the ratio of

the distance between the wall and the nearest fluid cell to the lattice size. This technique is a combination
of the well known bounce-back scheme and an interpolation which is second-order accurate.
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The proposed linear interpolation technique by Bouzidi is implemented in the open source LBM code OpenLB
by Kratzke and Krause [37] and will be coupled with the introduced MRT-LBM approach and the LES
Smagorinsky model.

II.D. Modeling of moving boundaries

In the section II.C, the solid boundary treatment for non-moving boundaries was introduced. The interpo-
lation technique can be extended for moving boundaries by adding a simple expression proposed by [30]. In
case of an linear interpolation the right-hand side of equation [21] is modified with

fi′ (ri,L, t+ 1) =

{
2qf ci (ri,L, t) + (1− 2q) f ci (ri,L − ci, t) + δfi′ , for q < 1/2
1
2qf

c
i (ri,L, t) + 2q−1

2q f ci (ri, t) + δfi′ , for q ≥ 1/2
(22)

where

δfi′ =

{
2ωαeαiu

b
i , for q < 1/2

1
qωαeαiu

b
i , for q ≥ 1/2.

(23)

With this simple extension the distribution functions for complex moving boundaries in vicinity of the wall
can be reconstructed.

III. Results of the validation test cases

All simulations are performed with the open source LBM code OpenLB. So far the MRT scheme and
the interpolation scheme by Bouzidi for complex boundary treatment were implemented separately. The
proposed LES approach was coupled with the MRT scheme and validated using generic flow cases such as
the double-shear layer and the Taylor-Green vortex.

III.A. Results for the MRT scheme

A common validation test case for CFD codes is the temporal development of the dissipation rate of a three-
dimensional Taylor-Green vortex [33]. The investigation of the dissipation rate of the kinetic energy ε is a
standard benchmark to determine the code’s properties and its ability to resolve turbulent scales of motion.
In a three-dimensional, 2π−periodic box a two-dimensional velocity field

u0
i =




2√
3
sin
(

2
3π
)
sin (x) cos (y) cos (z)

2√
3
sin
(
− 2

3π
)
cos (x) sin (y) cos (z)

0


 (24)

is initialized. When integrating in time a three-dimensional vortex field is generated. The mean dissipa-
tion rate is obtained by

ε =
1

Re

1

nxnynz

∑

nxnynz

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

+

(
∂v

∂z

)2

+

(
∂w

∂x

)2

+

(
∂w

∂y

)2

+

(
∂w

∂z

)2
]

+ εsgs

(25)

where nx, ny and nz represents the spatial resolution and εsgs = (Cs ∗∆x)
2

Π̄3 is the subgrid dissipation
provided by the explicit LES model.

In figure 2 the development of the dissipation rate ε is shown for different solver settings. As clearly
recognizable all three LBM approaches do not differ in their prediciton of the time-dependent dissipation
rate. Thus the MRT and the SRT scheme predict the same flow characteristics as has been expected for this
test case. The MRT scheme with enabled turbulence model shows the same results as without turbulence
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t [s]

 ε
  [

m
2 /s

3 ]

0 2 4 6 8 10
0

0.005

0.01

0.015

DNS
MRT with SGS
MRT
SRT

Figure 2: Dissipation rate for a Taylor-Green vortex as predicted by the SRT, MRT and MRT-LES approach
compared to DNS data of Brachet et al. at [33], Re = 200.

modeling since all scales are resolved which leads to the conclusion, that the SGS models does not interfere
in the simulation and produces no or very little artificial dissipation for a resolved flow setup. The Reynolds
number was set to Re = 200 for all cases and the spatial resolution for the SRT, MRT, MRT-SGS was 1283

cells. The DNS was performed with a spectral scheme employing 2563 cells.
The MRT scheme detailed above was investigated by Dellar [5] and applied to a two-dimensional double

shear layer with an initial velocity field

u0
x =

{
tanh (80 ∗ (y − 1/4)) , for y ≤ 1/2

tanh (80 ∗ (3/4− y)) , for y > 1/2
(26)

and
u0
y = 0.05 ∗ sin (2π (x+ 1/4)) (27)

in a double periodic box of the size 2π and a spatial resolution of nx = ny = 128 voxels. Dellar observed
an increased stability with the MRT scheme for a Reynolds number of Re = 10, 000 compared to the
SRT technique. With OpenLB the same observations were made, even for higher Reynolds numbers up to
Re ≈ 105 − 106. While with the SRT approach strong oscillations and diverging simulations at Reynolds
numbers of this range were found, the applied MRT scheme showed a smooth shear layer without any
oscillations.

III.B. Validation of the MRT-LES model combined with solid boundary treatment: Flow
around a 2D square cylinder

In order to validate the implementation of the solid boundary treament the two-dimensional-dimensional
flows around a square cylinder were investigated at different Reynolds numbers covering laminar as well as
turbulent flow regimes.

The results obtained for the laminar flow setup were compared to those of Breuer et al. [38]. Breuer et al.
showed results of the averaged drag coefficient in a channel with the height of Ly = 8D, where D is the length
of the cylinder investigated. The domain length was Lx = 50D and different numerical approaches were
applied. At the inlet a laminar velocity profile was imposed while at the outlet the pressure was prescribed.
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Upper and lower walls were handled as bounce-back walls.
In the present investigation the drag coefficient was obtained via a momentum-exchange method, which is
an intrinsic way of evaluating the forces on solid boundaries within LBM. For moving boundaries, one has
to keep in mind, that due to the non-galilean invariance of the momentum-exchange method, this term has
to be modified by second-order terms, see [44].

In figure 3 the results obtained with OpenLB are compared to those of Breuer et al. who employed a
Finite Volume Method (FVM) and LBM approach. The results with OpenLB were obtained using the MRT
scheme combined with the complex boundary treatment introduced above. The spatial resolution of the
square cylinder was for all three numerical simulations similar. While both LBM approches represented the
square cylinder with 40 voxels in length and height the FVM simulation represented the obstacle with 42
cells.

Figure 3: Drag coefficient of a square cylinder as function of Reynolds number.

Results obtained with OpenLB match the reference data of Breuer et al. using the FVM better than a
standard LB method at all Reynolds numbers considered. This confirms the significantly improved accuracy
of the solid boundary treatment introduced by Bouzidi et al. [30].

The turbulent flow around a two-dimensional square cylinder at a Reynolds number of Re = 21, 400 was
investigated experimentally by Lyn, Rodi and numerically by Murakami and Mochida [34]- [35]. The investi-
gated setup was the reference for the numerical simulations of Wienken [39] and Bouris and Bergeles [41] who
performed three-dimensional simulations. The data obtained in these investigations were taken as reference
for the two-dimensional numerical studies with OpenLB.

The boundary conditions for the simulations with OpenLB were set as follows: At the inlet a uniform
velocity profile with u = 1m/s was imposed. The top and the bottom walls were set to a free-slip boundary
condition and at the outlet the pressure was prescribed in combination with a convection boundary condition
based on Yang [40].

The reference length was set to the diameter of the square D = 1 and the channel width was set to
14D. The length of the domain was set to 48D and the obstacle was positioned 12D from the inlet. The
obstacle was represented using the two-dimensional interpolation technique. Two different mesh resolutions
were investigated and compared to experimental [34] and numerical results [39, 41]. The coarse simulation
consists of 100 voxels per reference length and the finer simulation of 200 voxels, respectively. This results in
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a non-dimensional wall distance of ∆x

D = 0.000625 and ∆x

D = 0.0003125, respectively. Comparing the mesh

of Bouris [41], who used in his finest simulation an ratio of ∆x

D = 0.00125 for the two-dimensional simulation

and ∆x

D = 0.0004 for the three-dimensional one, the resolution in the current investigation is considered
suitable to capture major flow characteristics. Wienken on the other hand used in his studies a cell size of
∆x = D

20 , which is comparably coarse.

Figure 4: Unsteady vortex field in the wake of the square cylinder for Re = 21, 400 and a spatial resolution
of ∆x

D = 0.000625.

For Re = 21, 400 the unsteady vortex field predicted by OpenLB is shown in figure 4. The obtained drag
coefficients and Strouhal numbers are presented in table 1.

Case Drag Sr

OpenLB(N = 100) 1.472 0.124

OpenLB(N = 200) 1.590 0.129

Experiment [34] 2.1 0.132

Wienken [39] 2.28 0.128

Bouris [41] 2.28 0.134

Table 1: Drag coefficients and Strouhal numbers for the flow around the 2D square cylinder at Re = 21, 400.

For the Reynolds number of Re = 21, 400 the Strouhal number predicted by the experiments was Sr =
0.132. The simulation with the coarse resolution underestimates the Strouhal number by approximately 6%
and the computation with the higher resolution underestimates the Strouhal number only by 3%. While
the obtained Strouhal number agrees well with the reference data, the predicted drag is not yet sufficiently
accurate.

This might result from potential deficiencies within the momentum-exchange computation for determining
te drag coefficient, as well as potential shortcomings of the SGS turbulence modeling for wall-bounded flows.
Both issues are currently under investigation.

Since the drag was not predicted sufficiently, the velocity in free-stream direction along the centerline
was compared with experimental and numerical results of Lyn and Murakami [34, 35], see figure 5. As
can be recognized, the mean velocity field predicted by OpenLB is in significantly better agreement with
the experimental data than results of the RANS and RSE computations. OpenLB underestimates the
recirculation zone in the wake of the obstacle, which leads to a decreased average drag value. Consequently,
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Figure 5: Comparison of the time-averaged streamwise velocity at the centerline for a 2D square cylinder as
predicted by OpenLB, RANS, Reynolds-Stress-Equation (RSE) and Experiments at Re = 21, 400.

further investigation of the drag evaluation with the momentum exchange has to be considered.

IV. Rotating geometries

Based on the results of Kang et al. [42] the implementation of rotating geometries in OpenLB has been
validated for the flow setup of a rotating cylinder at a Reynolds number of Re = 100 and a rotational speed
of α = ΘD

2U∞
= 1. Here, Θ is defined as the angular velocity of the cylinder.

Additionally the results obtained by Mittal and Kumar [43] for the flow around a rotating cylinder at a
Reynolds number of Re = 200 are taken as reference. For both test cases a two-dimensional flow was
considered.
Kang et al. performed their simulations employing a body fitted rotationally symmetric grid. In the present
LBM simulation the two-dimensional cylinder was placed in a rectangular domain. The height of the domain
was Ly = 16D, where D is the diameter of the cylinder. The length was chosen to be Lx = 50D. This
setup gives a blockage ratio of the cylinder to the width of the domain of br = D

Ly
= 1

16 in order to avoid

effects occuring from pressure drops due to suction between domain boundary and solid boundary. A uniform
block profile was imposed at the inlet, the upper and lower boundary were modeled with a free slip-boundary
condition and at the outlet the pressure was prescribed. Four different spatial resolutions were investigated to
determine grid independence for the LBM simulation with rotating solid boundaries. The cylinder diameter
D was resolved by N = 20, 37.5, 50 and 100 voxels, respectively.

In table 2 the results obtained are compared to the reference simulation by Kang et al. The lift coefficient
is in good agreement with the reference data. However, the drag has been overestimated by approximately
20% compared to the data of Kang et al. Also when using the corrected momentum-exchange method of
Lorenz et al. [44] the results could not be improved substantially.
Similar results were found for the laminar testcase proposed by Mittal et al. [43]. A rotating cylinder at a
Reynolds number of Re = 200 and α = 1 is considered and the same domain size as for the test case of
Kang et al. were applied. The results for the drag and lift coefficient obtained with OpenLB are shown in
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table 3. Again, the lift has been determined with reasonable accuracy of 5%, while for the drag coefficient
the numerical results obtained with OpenLB deviate by 16% from the reference data. A comparison of the
flows around rotating cylinders at Re = 100 and Re = 200 predicted by OpenLB are shown in figure 6.

(a) Re = 100 (b) Re = 200

Figure 6: Vorticity predicted by OpenLB for both investigated Reynolds numbers around a rotating cylinder
with α = 1.

In view of the results shown in table 2 and 3 and the presented results above the following can be
concluded: First, the drag was not predicted sufficiently accurate for turbulent flow setups and second,
for laminar flow cases the predicted drag and lift coefficient is not sufficiently reproduced only in the case
of rotating boundaries. This leads to the assumption, that the implemented momentum-exchange method
exhibit deficiencies for these cases and need further investigations.

As part of additional validations the flow around a rotating cylinder with α = 2 at a Reynolds number
of Re = 3, 800 will be presented. Comparison between the results obtained with OpenLB and the reference

Case Drag Lift

OpenLB(N = 20) 1.3630 −2.9801

OpenLB(N = 37.5) 1.3130 −2.6930

OpenLB(N = 50) 1.302 −2.7101

OpenLB(N = 100) 1.334 −2.8501

Kang et al. [42] 1.1040 −2.4881

OpenLB(N = 50)Corrected 1.362 −2.7410

Table 2: Drag and lift coefficients for a rotating cylinder at Re = 100 and α = 1.

Computation Drag Lift

OpenLB(N = 20) 1.295 −2.720

OpenLB(N = 37.5) 1.227 −2.462

OpenLB(N = 50) 1.218 −2.420

OpenLB(N = 100) 1.303 −2.643

Mittal et al. 1.080 −2.424

OpenLB(N = 20)Corrected 1.286 −2.729

OpenLB(N = 37.5)Corrected 1.228 −2.667

OpenLB(N = 50)Corrected 1.256 −2.649

Table 3: Drag and lift coefficients for a rotating cylinder at Re = 200 and α = 1.
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case of Nair et al. [45], will be given. The two-dimensional numerical reference test case is based on the
previous investigation of Mittal et al. [46] who performed an analysis of the temporal evolution of the drag
and lift coefficient.

The domain size based on the cylinder diameter D was Lx = 50D in streamwise direction and Ly = 16D
in latereal direction, respectively. At the inlet a uniform block profile was imposed, the lower and upper wall
were modeled with an free slip boundary condition and at the outlet a convection boundary condition was
given. Due to the higher Reynolds number and the doubled angular velocity of the obstacle, the resolution
of the cylinder diameter was increased to N = 200. The streamlines do agree well with the numerical
experiment of Nair et al., see figure 7. The streamlines are shown for the same physical simulation time
t = 5.5s

Differences regarding the position of the detached vortex result from differences in the simulation initial-
ization: Nair et al [45] prescribed constant inflow velocities at start of the simulation, whereas for OpenLB
inlet velocity has been ramped up to the desired value. This causes already convective transport although
the simulation has not reached the desired inflow conditions yet.

The averaged lift coefficient, shown in table 4, is in reasonable agreement with the reference data. The
drag was overestimated by 21%, while the lift was underestimated by 8%.

Computation Drag Lift

OpenLB(N = 200) 0.760 −4.721

Nair et al. 0.625 −5.111

Table 4: Drag and lift coefficients of the flow around a rotating cylinder at Re = 3, 800 for α = 2.

(a) Streamlines predicted by OpenLB

(b) Streamlines predicted by Nair et al.

Figure 7: Visualization of the streamlines at t = 5.5.

IV.A. Three-dimensional test case: Turbulent flow around a three-dimensional rotating cylin-
der

Finally, a rotating three-dimensional cylinder was simulated at a Reynolds number of Re = 5, 000 based on
its diamter D. The angular velocity of the counterclockwise rotating cylinder was chosen in such way that
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α = 1. The lateral extension of the cylinder was Ly = D
3 .

The size of the computational domain was 10D in streamwise, 4D in transversal and 5D in lateral direction
respectively. The rotating obstacle was resolved with 70 voxels, which leads on a equidistant mesh to 68mio.
voxels. At the inlet a uniform velocity profile was imposed. The lower, upper, left and right boundary were
modeled as free slip condition while at the outlet the pressure was prescribed and a convection boundary
condition was given. The simulation was performed on the SuperMUC cluster of the Leibniz-Rechenzentrum
in Munich. The simulation took 15h on 1024 cores for the simulation of 300, 000 timesteps.

In figure 8 a part of the computational domain is shown and as recognizable the flow structures in the
wake are turbulent. two-dimensional flows at this Reynolds number do not provide such regimes but due to
the small thickness of the cylinder affect a strong mixing behind the rotating cylinder occurs as around real
wheels.

Figure 8: Instantaneous streamwise velocity snapshot in the wake of the rotating wheel at Re = 5, 000.

To underline this turbulent mixing figure 9 shows the instantaneous isosurfaces of the normalized lateral
velocity component. In the wake of the obstacle a mixing between the downstream detaching vortices is
visible. Since turbulent structures around a rotating cylinder were simulated at a Reynolds number of
Re = 5, 000 without any numerical instabilities occuring, OpenLB showed its applicability for such complex
flow setups.

V. Conclusions and outlook

In this paper the systematic evolution of the open source LBM code OpenLB as a numerical tool for the
simulation of turbulent flows around moving boundaries of arbitrary shape was presented.

First, the implemented MRT method was valdiated for two- and three-dimensional test cases, such as
the double-shear layer and the Taylor-Green vortex. The results obtained were in excellent agreement with
the reference data for laminar setups. Beyond this a remarkable increase in stability was found for pseudo-
turbulence in two-dimensional double-shear layer flows using the MRT scheme.

Afterwards the explicit SGS model was coupled with the MRT method and applied to the Taylor-Green
vortex and compared with reference data. For the low Reynolds number case no contribution of the SGS
model was found to the dissipation rate. The SGS model was then tested for the turbulent flow around a
two-dimensional square cylinder at a Reynolds number of Re = 21, 400. Although the drag was not predicted
accuratly the estimated flow field in the wake of the body was in very good agreement with experimental
data. The improved prediction of the drag using the momentum-exchange method will be part of the future
work.

After implementing the interpolation scheme proposed by Bouzidi [30] and merging it with the MRT-LES
scheme, the two-dimensional laminar and turbulent flow around rotating cylinders has been simulated. In
the laminar case the predicted drag was not sufficiently accurate, while the lift was estimated reasonable.
The same results were found for the turbulent test case proposed by Nair and Mittal [45,46].

Finally the three-dimensional flow around a rotating cylinder was simulated. A very satisfactoring nu-
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Figure 9: Instantaneous isosurfaces of the normalized lateral velocity magnitude, with v = −0.1 (blue) and
v = 0.1 (red).

merical stability of the method has been found. Also characteristic flow structures in the wake of rotating
geometries, e.g. wheels of passenger cars, can be identified in the obtained flow field.

Future work will be focussed on the correct estimation of drag and lift coefficients for rotating and for
turbulent flows and on advanced turbulence modeling, thus near-wall flows can be predicted more correctly.
Beyond this, grid refinement techniques will be implemented to enhance efficiency and to allow for a more
detailed analysis of flows with practical relevance.

Appendix

The transformation matrix from velocity to momentum space is given with

M =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8

12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0

0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0

0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1

0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1

0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1

0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2

0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2

0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0

0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1

0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1




(28)
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C. Selected conference papers

C.2. Wall adaption for turbulence models in
the LBM framework
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THE LATTICE BOLTZMANN FRAMEWORK
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Boltzmannstr. 15, 85748 Garching bei München, Germany

ABSTRACT
This paper presents the development towards wall

adaptive explicit filters for the simulation of turbulent wall
bounded flows in the framework of the lattice Boltzmann
method (LBM). First, we show the effect of different colli-
sion models on the characteristics of turbulent flow simula-
tions by employing the Taylor-Green vortex as a numerical
testcase. Second, an extension of the approximate decon-
volution method (ADM), see Malaspinas & Sagaut (2012),
Malaspinas & Sagaut (2011) and Sagaut (2010) for the sim-
ulation of wall-bounded turbulent flows is presented. A
temporal dissipation relaxation is applied for explicit filter-
ing, in order to suppress filtering in regions, where the flow
is resolved and to adapt filtering in underresolved regions
in such way, that the energy drain in the scales is physically
motivated and consistent with the kinetic theory of turbu-
lence. We apply the extended ADM for the simulation of
a turbulent channel flow at Reτ = 180 and Reτ = 395 to
demonstrate, that the ADM method of Malaspinas & Sagaut
(2011) with selective viscosity filters is strictly dissipative
for low-order filters. Hence, especially for wall-bounded
flows the application of the proposed adaptive relaxation of
the filter can be beneficial.

The lattice-Boltzmann method
LBM solves a set of kinetic equations in terms of dis-

crete velocity distribution functions fα (t,xxx) numerically.
The discrete Boltzmann equations can be written as

fα (t +∆t,xxx+ cccα ∆t) = fα (t,xxx)+Ωα ( fα (t,xxx)) (1)

where Ωα ( fα (t,xxx)) is the collision operator, which repre-
sents non-linear and viscous effects of the Navier Stokes
equations and cccα is the discrete velocity set of the lattice
applied. Macroscopic moments are reconstructed with a
Gauss-Hermite quadrature based on the Hermite Polyno-
mial expansion on a discrete lattice. The first two moments

1daniel.gaudlitz@aer.mw.tum.de
2nikolaus.adams@tum.de

of the velocity distribution functions are the conserved mo-
ments ρ and the momentum ρuuu, which read

ρ = ∑
α

fα , ρuuu = ∑
α

cccα fα (2)

while the momentum flux is the second-order off-
equilibrium moment of the velocity distribution functions

ΠΠΠ = ∑
α

f neq
α cccα cccα (3)

In order to reconstruct the macroscopic equations of
fluid motion, a Chapman Enskog expansion is used. The
interested reader can refer to Chen & Doolen (1998) among
others.

To close equation (1) the collision term needs to be
modeled. One well-known approach is the linearization
around small perturbations of the thermodynamic equilib-
rium. This approach is called the Bhatnagar-Gross-Krook
(BGK) ansatz, see He & Luo (1997); Guo et al. (2000);
Guo & Shu (2013) or Sukop & Thorne (2006) among oth-
ers, which represents the collision term as a linear relaxation
towards a maxwellian equilibrium

Ωα ( fα (t,xxx)) = fα (t +∆t,xxx+ cccα ∆t)− fα (t,xxx)

=−1
τ
(

fα (t,xxx)− f eq
α (t,xxx)

)
.

(4)

f eq
α (t,xxx) is a low Mach number truncated Maxwell-

Boltzmann distribution, which is adjusted in such a way,
that equation (3) is fulfilled and mass and momentum are
conserved. A widely used formulation for f eq

α is given by

f eq
α = ρωα

[
1+

cccα uuu
c2

s
+

1
2c4

s
(uuuuuu− c2

s δδδ )uuuuuu
]
. (5)

ωα are the weights to satisfy the exact Gauss-Hermite
quadrature of the lattice, cs is the lattice speed of sound and

1
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δδδ is the Kronecker delta. Although, the BGK approach has
been applied to many flow problems, see Hänel (2004) and
Waldrow (2000), it has been found to suffer from instabil-
ities at high Reynolds numbers, which have its origins in
unphysical moments of fα . To remedy this shortcoming,
the Multi-Relaxation-Time (MRT) scheme was developed
by D’Humiéres et al. (2002). The main idea is to trans-
form the collision step into the momentum space and to re-
lax each moment separately in order to reduce the instabil-
ities arising from the temporal growth of these unphysical
moments. Thus, the single relaxation time from the BGK
model is replaced by a relaxation time matrix SSS, which re-
laxes each moment mα = MMM fα independently. The matrix
MMM is a linear transformation matrix and the corresponding
algorithm for the MRT scheme reads

fα (t +∆t,xxx+ cccα ∆t)− fα (t,xxx)

=−MMM−1SSS(mα (t,xxx)−meq
α (t,xxx))

(6)

The MRT model increases the stability of the LBM method
substantially. Yet, e.g. due to inconsistent derivation of
boundary conditions for stresses on domain boundaries,
where velocities are prescribed, instabilities arise in the
MRT model for Reynolds numbers larger than approx. 5000
for three dimensional flows, see Freitas et al. (2011). In or-
der to suppress these exponentially growing disturbances,
Latt (see Latt & Chopard (2006) and Latt (2007)) proposed
a regularization of the classical BGK algorithm, employ-
ing an approximation of the first-order multiscale expansion
term

f neq
α = fα − f eq

α ≈ f (1)α =− ∆t
ωc2

s
ωα QQQα ∂iρuuu. (7)

Here, QQQα is the first-order non equilibrium moment QQQα =

∑cccccc f neq
α . The non-equilibrium distribution function f neq

α
is used to approximate the first-order multiscale expansion
term. This term is included in the BGK model, thus the
regularized BGK algorithm reads

fα (t +∆t,xxx+ cccα ∆t) = fα (t,xxx)+(1−ω) f (1)α (t,xxx) (8)

This regularization operation is not only necessary for the
flow field, but also for the boundaries. The main issue with
respect to boundary conditions in the RLB is the proper re-
construction of the unknown distribution functions propa-
gating into the flow domain. Since for the regularization
the discrete velocity information is needed, a proper ap-
proximation of the non-equilibrium part f (1)α in equation
(7) is required. Different approaches to model f (1)α at do-
main boundaries are proposed in Latt (2007) and Latt et al.
(2008). In the present investigation the interpolated bound-
ary approximation of the strain rate is considered for wall-
bounded flows only.

The approximate deconvolution method
(ADM) for LBM

The turbulence model investigated in this paper, which
is adapted for wall-bounded flows, is the approximate de-
convolution method (ADM) of Stolz & Adams (1999),

Adams & Stolz (2002) and Stolz et al. (2001). The concept
of ADM is a generalization of the scale-similarity model
for Large-Eddy simulation based subgrid-scale models. The
consecutive steps of explicit filtering and subsequent decon-
volution of the macroscopic equations for fluid motions was
adopted by Sagaut (2010) and Malaspinas & Sagaut (2011)
in the LBM framework using a selective viscosity filter, see
Tam et al. (1993). Applying a homogeneous low-pass filter
kernel G on equation (1) one receives

D fα (t,xxx)
Dt

= Ωα ( fα (t,xxx)) (9)

which is equal to

D fα (t,xxx)
Dt

−Ωα ( f α (t,xxx))

= G∗Ωα ( fα (t,xxx))−Ωα ( f α (t,xxx)) = σsgs

(10)

where σsgs is the subgrid stress term emerging from the
discrepancy between exact convolution and computabale
terms. In general two approaches are followed at this point,
which can be easily shown by re-writing the right-hand side
of equation (10) as

[
G∗Ωα ( f̂α (t,xxx))−Ωα ( f α (t,xxx))

]

+
[
G∗Ωα ( fα (t,xxx))−Ωα ( f̂α (t,xxx))

]

= σsgs = σ1
sgs +σ2

sgs

(11)

where σ1
sgs is the known term and σ2

sgs is the unknown term
which needs to be modeled and f̂α (t,xxx)) is the approximate
deconvolution of the distribution function. At this point ei-
ther the term σ2

sgs is modeled as demonstrated in Sagaut
(2010) and Malaspinas & Sagaut (2011), or the simplified
version of Stolz, Adams and additionally Mathew Mathew
et al. (2003), is applied where the exact distribution function
is replaced by it’s approximate inverse G ∗Ωα ( fα (t,xxx)) ≈
G ∗Ωα ( f̂α (t,xxx)). This simplification is valid for f̂α ≈ f α
and has a tremendious effect on the required filter proper-
ties, since the discretization scheme in LBM is fixed and
thus the ADM-LES approach itself is decoupled from the
filter operation in the LBM framework. In earlier work,
see Pruett & Adams (2000), the authors showed that indeed
the underlying LES model cannot be chosen independently
from the applied filter. Thus, if the filter operation is decou-
pled from our discretization scheme and the subgrid-scale
model, the filter procedure can be adjsuted in such way to
act only on the scales intended. Using the simplified proce-
dure, equation (11) reduces to

D fα (t,xxx)
Dt

−Ωα ( f α (t,xxx))

= G∗Ωα ( f̂α (t,xxx))−Ωα ( f α (t,xxx)) = σ1
sgs.

(12)

The simplified approach given in equation (12) is the un-
derlying approach in the current investigation. An inverse
filter operation is performed with a deconvolution operator
φ̂ = G−1 ∗φ = Q∗φ . The quality of an inverse filter opera-
tion is described with the transfer function Ĝ(ξ ) in spectral
space, where ξ is the wavenumber. In the work of Stolz
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& Adams (1999), Adams & Stolz (2002) and Stolz et al.
(2001), a Padé filter was applied and the deconvoluted so-
lution is obtained by the Van Cittert iterative method. The
authors showed, that a high-order deconvolution can be pro-
vided up to the cut-off wavenumber of the applied filter.
Sagaut (2010) and Malaspinas & Sagaut (2011) used a class
of selective viscosity filters up to order N = 4. In Tam et al.
(1993), the stencil properties were derived and compared to
each other. These filters damp high-wavenumber parts of
an arbitrary signal, employing a damping approach, which
reads

f̂ out
α (t,xxx) = f in

α (t,xxx)−σ
j

∑
n=− j

dn f in
α (t,xxx+ ein) (13)

where the filter strength σ is related to an artifical viscosity
and dn is the weighting coefficient. In figure 1
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Figure 1: Transfer functions of the filters used by
Malaspinas & Sagaut (2011) for the ADM N = 1..4
and an additional high-order viscosity filter N = 7
from Tam et al. (1993). The wavenumber is normal-
ized with the Nyquist wavenumber ξN

the filters used for ADM by Malaspinas & Sagaut
(2011) are shown in terms of the transfer function. It is vis-
ible, that even for the highest orders of the viscosity filters,
the damping is quite strong. Hence, the underlying assump-
tion f̂α ≈ f α for applying an explicit filter shown in fig-
ure 1 in the framework of the simplified procedure is ques-
tionable. A very high filter stencil is necessary in order to
be consistent with the underlying assumptions made in this
context. This is not desirable for the LBM, since it’s algo-
rithm is executed locally and any non-local operation drains
the computational efficiency dramatically. Especially, if one
considers an inverse convolution of each discrete lattice ve-
locity would render the LBM algorithm inappropriate for
flow problems.

From a computational point of view, we focus on the
deconvolution of the macroscopic moments and aim to
modify the strength of the filter σ as a function of space and
time σ(xxx, t) instead of leaving it constant. Thus, we cannot
increase the order, and subsequently the steepness of the
transferfunction, but the scales on which the filter operation
will be applied. Therefore we aim to develop a selective

viscosity filter, where the filter strength is adjusted in such
way, that even low filter orders operate on large wavenum-
ber only scales and thus f̂α ≈ f α is satisfied. With this
approach, filtering is adopted to the mesh resolution auto-
matically in terms of the resolved scales.

Our approach is based on the idea of the shear-
improved Smagorinsky model of Lèveque et al. (2007).
This model is based on the idea, that resolved turbulent
scales in terms of the resolved strain-rate relax towards an
average strain-rate and thus the fluctuating part of the strain-
rate is significant at scales of filter size ∆x. In flow regions,
where the fluctuating part of the strain-rate is larger than the
average strain rate, the turbulent flow can be considered as
homogeneous and the standard Smagorinsky model is re-
constructed. This approach was adopted earlier by Jafari &
Rahnama (2011) for the MRT-based lattice Boltzmann, but
the application was only limited to low Reynolds numbers.
Also as shown by Malaspinas & Sagaut (2012), the modi-
fication of the effective relaxation rate does not inevitably
lead to the filtered equations of fluid motions, namely the
filtered Navier-Stokes equations. We apply a relaxation of
the filter strength in terms of the temporal averaged resolved
strain-rate. Without loss of generalization, a temporal aver-
aging procedure is used since in statistically steady flows,
like the converged turbulent channel flow, the efficiency in-
creases (local operation), the spatial averaged statistics are
reconstructed as well (ergodic system) and it is also suitable
for the application to complex flows, with arbitrary flow
seperations. The filter strength is computed as

σ(t,xxx) =
(|S|i j(t,xxx)−

〈
|S|i j(xxx)

〉
)∆t

(ρ + 〈δρ〉)
ν
2

(
ω
c2

s

)2
(14)

where
〈
|S|i j

〉
is the time averaged resolved strain-rate and

∆t the physical time step. Averaging is perfomed as soon as
the flows achieves a statistically steady state in terms of an
autocorrelation function.

η =
〈ux(xxx, t)ux(xxx, t + τ)〉
〈ux(xxx, t)ux(xxx, t)〉

(15)

For flows with strong unsteady effects as they appear in
external aerodynamics, a phase-averging procedure is the
straight forward extension of this adaptive explicit filter-
ing step. Despite the fact, that a time correlation needs to
be estimated, the computational costs are very low com-
pared with other approaches like the dynamic Smagorinsky
model. Although we have a non-local filter approach, which
reduces the computational efficiency, this approach is con-
sistent with the macroscopic limit of the filtered equations
of fluid motion. The filter-subgrid-scale model coupling
and no loss of generalization in terms of Reynolds number
and mesh requirements is present.

Beyond this, any amplification of unphysical moments
are suppressed, since non-physical strain rates are only lo-
cally apparent and damped by our temporal adapted explicit
filtering step. It is worth to mention, that the amplifica-
tion of unphysical moments in terms of the strain-rate lead
to an overpredicted eddy-viscosity for standard approaches
in the LBM framework since the strain-rate and thus the
non-equilibrium part of the velocity distribution function
is directly linked to the turbulent relaxation time. This is
a promising step towards BGK based simulation for high
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Reynolds number flows where the stabilization is consistent
with a physically motivated energy drain.

Analysis of the discrete lattice schemes for
the simulation of turbulent flows

In order to investigate the properties of the differ-
ent collision models, we employ the well-known Taylor-
Green vortex and analyze the intergral dissipation rate.
It will be outlined, why the BGK collision model is our
model of choice. Prior analysis showed, that the BGK and
MRT model have a oppositioned behavior: While the BGK
scheme tends to be unstable if the Reynolds number is in-
creased at a fixed mesh resolution, the MRT scheme showed
no mesh convergence at a fixed mach number if the mesh
resolution is increased at a fixed Reynolds number. This is
exemplified for the Reynolds number Re = 3000 and two
different mesh resolutions, N = 64 and N = 256, in figure
2.
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Figure 2: Temporal evolution of the dissipation rate of
the Taylor-Green vortex predicted by the BGK, MRT
and RLB scheme at Re= 3000 for the resolutions N =
64 and 256.

While the BGK scheme diverged for the lowest res-
olution which corresponds to the findings of others, see
Lallemand & Luo (2000) and He & Luo (1997), the MRT

scheme showed no convergence if the mesh resolution was
increased to N = 256.

Beyond this, it was found that the RLB collision model
is unconditionally stable at all resolutions and Reynolds
numbers, but it suffers from a rather strong additional nu-
merical viscosity. In order to represent the same range of
turbulent scales for a given Reynolds number with the RLB
scheme, additional computational effort has to be taken into
account in terms of an increased resolution.

Based on these investigations, the BGK collision
model was chosen for all further investigations, since
mesh convergence was proven and the instabilities at high
Reynolds numbers and low resolutions can be damped by
our new model.

The turbulent channel flow
The aim of this work is to provide an extension of the

ADM in the framework of the LBM. The model should
adapt automatically the filtering strength to the local re-
solved scales. In regions where turbulence is resolved,
filtering is suppressed by an energy drain balance, while
in regions where the flow is underresolved, explicit filter-
ing is adapted in such way, that the energy drain caused
by filtering corresponds to a physically motivated viscosity
model. The test case chosen is based on the work of Be-
spalko (2011). The domain had the extensions of Lx = 12H,
Ly = 4H and Lz = 2H for the streamwise, lateral and wall
normal direction respectively, where H is the channel half
width. In streamwise and lateral direction, periodic bound-
ary conditions were applied. Constant forcing in stream-
wise direction was applied as in Bespalko (2011). At the
bottom and the top of the domain a halfway bounce-back
rule, combined with a non-linear finite-difference regular-
ization was applied, see Latt et al. (2008). In order to inves-
tigate the general sensitivity of the ADM for wall-bounded
flows, we first apply the ADM with different filter sten-
cils (2nd and 3rd order) and filter strengths (σ = 0.001 and
σ = 0.005) to the turbulent channel flow at Reτ = 180. This
is the smallest Reynolds numbers for turbulent scales in a
turbulent channel flow. DNS reference data is taken from
Kim et al. (1987) and Moser et al. (1999). In figure 3 the
influence of the pure filtering on the turbulent velocity field
is shown.
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Figure 3: Mean velocity profiles of turbulent channel
flow at Reτ = 180. Comparison of reference DNS
of Kim et al. (1987) to the underresolved simulations
with the BGK-based ADM model.
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As it is clearly recognizable, the influence of the or-
der of the filter is inferior to the applied filter strength, since
the difference in the predicted velocity profiles by the BGK-
based ADM is rather small for the lower filter strength com-
pared with the DNS data. For the higher filter strength
both filters underpredict velocity field, especially in the log-
region of the flow. In previous investigations, it has been
shown that the BGK model without any turbulence model
has a good agreement with the DNS data for y+ < 30, but
in the bulk regions the average flow field was overpredicted.
In the current study, the influence of explicit filtering leads
a ”shift-down” of the average velocity field, which indicates
the necessity of selective filtering. This ”shift-down” is
also marginally influenced by the constant forcing as shown
later.

The proposed model should filter mainly in the bulk re-
gion, while the wall-nearest region should be unaffected by
the filtering procedure. The Reynolds numbers Reτ = 185
and Reτ = 395 were investigated with the adaptive ADM,
at two resolutions N = 31 and N = 71.
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Figure 4: Mean velocity profiles of turbulent channel
flow at Reτ = 180. Comparison of reference DNS
of Kim et al. (1987) to the underresolved simulations
with the BGK-based adaptive ADM model.

In figure 4 the averaged velocity profiles for Reτ = 180,
predicted by the adaptive ADM model is presented and
compared to the DNS of Kim et al. (1987). The setup with
N = 31 cells per half-width is underresolved since ∆y+ ≈ 6.
Due to the applied bounce-back rule, the first fluid node is at
∆y+ ≈ 3. Nevertheless, the log-law region of the flow was
predicted very well and only in vicinity of the wall the ve-
locity was slightly overpredicted. Increasing the resolution
to N = 71 cells did not influence the results significantly.
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Figure 5: Mean velocity profiles of turbulent channel
flow at Reτ = 395. Comparison of reference DNS of
Moser et al. (1999) to the underresolved simulations
with the BGK-based adaptive ADM model.

In figure 5 the results for Reτ = 395 when employing
the adaptive ADM are shown, for two resolutions of the
channel half-width N = 31 and N = 71, which corresponds
to a normalized resolution of ∆y+ ≈ 12.8 and ∆y+ ≈ 5.6 re-
spectively. It is visible, that for the lower resolution N = 31
the velocity is generally underpredicted compared to the
reference DNS data, while the results for the higher reso-
lution are in good agreement with the DNS for y+ < 30.
Although for N = 71 the log-law region is slightly under-
predicted as well, the adaptive nature of the filtering can be
recognized. While the wall nearest region is unaffected by
filtering, the scales in the bulk flow are underpredicted and
thus, the filter step has an influence on the flow field in the
log-law. The bulk flow is underpredicted by both resolu-
tions in the same order of magnitude and it appears, that the
constant forcing approach used here is not suitable for the
adaptive ADM. Since adaptive filtering is only performed in
the log-law region, the damping causes an underprediction
of the velocity field, using a constant driving force for the
turbulent channel flow. This was also shown for constant
filter strengths, see figure 3.

Conclusion
In this paper the lattice Boltzmann method (LBM) was

applied to predict turbulent fluid flows. Different colli-
sion models were investigated and the single relaxation time
scheme was found to be the least dissipative collision model
while allowing grid convergence at increasing resolutions.
Beyond this it was shown, that the classical approximate
deconvolution method (ADM) approach is not suitable for
the simulation of wall-bounded flows. This is because the
filter strength is chosen quite arbitrary as in Ricot et al.
(2009) and Ricot et al. (2002), and the selective viscosity
damping stencils are very dissipative on their own. Thus,
a selective filtering approach was presented based on the
scales resolved. This approach connects mesh resolution
and Reynolds number in terms of a physically motivated
energy drain. Although the method is quite dissipative
for marginally resolved setups (N = 31) at lower Reynolds
numbers (Reτ = 180 and Reτ = 395), it shows promising
results for LES like setups (N = 71). Further work is done
on dynamic forcing, in order to keep the mass flow constant
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and not the absolute volume force. The proposed model is a
consistent turbulence model in the framework of the hydro-
dynamic limit of the filtered Navier-Stokes equations. The
explicit filtering step can be extended for complex geome-
tries since a local temporal average is taken into account for
the scales resolved.
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APPENDIX D

Implementation of the MRT model

The linear transformation matrix M from velocity space V to momentum space M is
given by

M =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8
12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1
0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1
0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1
0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2
0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2
0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0
0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1
0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1




(D.1)

The relaxation time parameters of Λ are given in equation D.2

Λ = (0, 1.19, 1.4, 0, 1.2, 0, 1.2, 0, 1.2, λν , λν , λν , λν , λν , 1.4, 1.4, 1.98., 1.98, 1.98) (D.2)

In Equation (D.2), λν is related to the viscosity. The moment equilibrium functions are
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D. Implementation of the MRT model

given in Equations (D.3a)-(D.3s) as

meq
0 =ρ = m0 (D.3a)

meq
1 =eeq = 11m0 − 19

(
m2

3 +m2
5 +m2

3

m0

)
(D.3b)

meq
2 =λeq = −475

63

(
m0 +

m2
3 +m2

5 +m2
3

m0

)
(D.3c)

meq
3 =jx = m3 (D.3d)

meq
4 =qeqx =

2

3
m3 (D.3e)

meq
5 =jy = m5 (D.3f)

meq
6 =qeqy =

2

3
m5 (D.3g)

meq
7 =jz = m7 (D.3h)

meq
8 =qeqz =

2

3
m7 (D.3i)

meq
9 =Seqxx =

2m2
3 − (m2

5 +m2
7)

m0

(D.3j)

meq
10 =Seqzz =

m2
5 −m2

7

m0

(D.3k)

meq
11 =Seqxy =

m3m5

m0

(D.3l)

meq
12 =Seqxz =

m3m7

m0

(D.3m)

meq
13 =Seqyz =

m5m7

m0

(D.3n)

meq
14 =Qeq

1 = −ωQ
−2m2

3 +m2
5 +m2

7

m0

(D.3o)

meq
15 =Qeq

1 = ωQ
m2

5 −m2
7

m0

(D.3p)

meq
16 =heqx = 0 (D.3q)

meq
17 =heqy = 0 (D.3r)

meq
18 =heqz = 0 (D.3s)

with ωQ = 0.
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