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Abstract

The accurate tracking of surgical instruments in medical image sequences is a key component of
various computer-assisted interventions. Determining the instrument position and monitoring
its movements enables for example surgical gesture recognition, visual servoing of medical
robots and interventional workflow analysis. Moreover, real-time tracking paves the way
for intelligent decision support during the intervention: crucial information such as the
identification of a potentially dangerous situation could be displayed close to the surgeon’s
visual attention area, which is usually close to the tip of the surgical tool. A further value of
tracking lies in the alignment of an additional intra-operative modality to the tool movement
and hence the possibility to observe in-depth instrument-tissue interaction. Such deployment
can significantly reduce the burden on the surgeon and have a positive impact on the surgical
outcome.

It is therefore not surprising that instrument tracking has been an important topic of research in
the last decade. However, despite great advances, accurate and robust tracking of instruments
in the intra-operative setting has not yet been resolved to a satisfactory extent. One of the
main difficulties arises from the fact that the image data in such a setting captures only a
very restricted field of view of the highly dynamic environment. Especially the non-static
directional light source complicates the task by creating shadows, uneven illumination and
specular reflections in the images. At the same time, a tracking algorithm for such a setting
must be robust, accurate and real-time-capable. This combination of requirements and
constraints poses a particularly challenging Computer Vision problem.

Prior work in this field has mainly relied on explicit modelling and just started to explore the
potential of data-driven approaches. This dissertation follows the idea of learning from data
and introduces several approaches that leverage machine learning techniques to overcome the
aforementioned challenges. In the feed-forward pipeline, a two-step approach with specialized
Random Forests (RF) is introduced: An intensity-based RF template tracker first limits the
image search space before a gradient-based RF determines the instruments’ 2D pose. Building
on this dual RF, a robust pipeline is developed by adapting the offline model to online
information and by “closing the loop” between the tracking and 2D pose estimation. Finally,
a deep learning-based approach in the end-to-end pipeline is presented that simultaneously
determines the segmentation and 2D pose of the instrument with a fully convolutional neural
network. By reformulating the pose estimation task as a heatmap regression, the two objectives
can leverage their spatial dependency and facilitate simultaneous learning. All presented
methods achieve real-time performance and are evaluated in a cross-validation setup on
in-vivo image sequences, demonstrating their applicability to various scenarios. The results
demonstrate that machine learning-based instrument tracking has remarkable advantages
with respect to the state of the art in terms of accuracy, robustness and generalization.

v





Zusammenfassung

Das präzise Tracking von chirurgischen Instrumenten in medizinischen Bildsequenzen stellt
einen wesentlichen Bestandteil für eine Vielzahl computergestützter Eingriffe dar. So er-
möglicht die Bestimmung der Instrumentenposition sowie die kontinuierliche Verfolgung
ihrer Bewegungen beispielsweise eine chirurgische Gestenerkennung, Visuelles Servoing von
Medizinrobotern und eine interventionelle Workflow-Analyse. Darüber hinaus ebnet das
Echtzeit-Tracking den Weg für intelligente Entscheidungshilfen während des Eingriffs: wich-
tige Informationen wie die Identifikation einer potenziell gefährlichen Situation könnten in
unmittelbarer Nähe des Aufmerksamkeitszentrums des Chirurgen angezeigt werden, das sich
in der Regel dicht bei der Spitze des chirurgischen Instruments befindet. Ein weiterer Nutzen
liegt in der möglichen Visualisierung einer tieferliegenden Instrumenten-Gewebe-Interaktion
durch die Ausrichtung einer zusätzlichen intra-operativen Bildmodalität auf die Werkzeugbe-
wegung. Auf diese Weise kann der Arbeitsaufwand für den Chirurgen deutlich reduziert und
das Operationsergebnis positiv beeinflusst werden.

Es ist daher nicht verwunderlich, dass das präzise und robuste Tracking von chirurgischen
Instrumenten seit einigen Jahren ein wichtiges Forschungsthema ist. Trotz großer Fortschritte
ist diese Problemstellung im intra-operativen Bereich jedoch noch nicht zufriedenstellend
gelöst. Eine der Hauptschwierigkeiten besteht darin, dass die Bilddaten in einer solchen
hochdynamischen Umgebung lediglich ein sehr eingeschränktes Sichtfeld erfassen. Besonders
die nicht-statische, gerichtete Lichtquelle erschwert die Aufgabe, da sie Schatten, ungleichmä-
ßige Ausleuchtung und spiegelnde Reflexionen in den Bildern erzeugt. Gleichzeitig muss ein
Tracking-Algorithmus für intraoperative Anwendungen stabil, exakt und echtzeitfähig sein. Die-
se Kombination von Einschränkungen und Anforderungen stellt ein besonders anspruchsvolles
Problem im Bereich Computer Vision dar.

Bisherige Publikationen zu dieser Thematik beruhen hauptsächlich auf expliziter Modellierung
und haben gerade erst begonnen, das Potenzial datengetriebener Ansätze zu erforschen. In
dieser Dissertation wird der Ansatz untersucht, die oben genannten Herausforderungen mithil-
fe maschineller Lerntechniken zu meistern. Die vorgestellte Feed-Forward-Pipeline verwendet
einen zweistufigen Ansatz mit spezialisierten Random Forests (RF): Ein intensitätsbasierter
RF-Template-Tracker begrenzt zunächst den Bildsuchraum, woraufhin ein gradientenbasierter
RF die 2D-Pose des Instrumentes bestimmt. Aufbauend auf diesem dualen RF wird eine robuste
Pipeline entwickelt, indem das Offline-Modell eine Anpassung an Online-Informationen erfährt
und sich somit 2D-Posenbestimmung und Tracking zusammenfügen. Schließlich wird mit der
End-to-End-Pipeline ein deep learning-basierter Ansatz vorgestellt, welcher gleichzeitig sowohl
die Segmentierung als auch die 2D Instrumentenpose mithilfe eines Fully Convolutional
Neural Network ermittelt. Durch die Neuformulierung der Lagebestimmung des Instruments
als Heatmap-Regression wird es beiden Zielen ermöglicht, ihre räumliche Abhängigkeit zu
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nutzen und das gleichzeitige Lernen zu erleichtern. Alle vorgestellten Methoden erreichen
Echtzeit-Performance und werden in einem Cross-Validierungs-Setup auf in-vivo Bildsequen-
zen evaluiert, um ihre Anwendbarkeit auf verschiedene Szenarien zu demonstrieren. Die
Ergebnisse verdeutlichen, dass ein solches auf maschinellem Lernen beruhendes Instrumen-
tentracking bemerkenswerte Vorteile gegenüber modernsten Methoden in Bezug auf Präzision,
Robustheit und Generalisierung aufweist.
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Introduction and Background





1Introduction

1.1 Motivation and Main Objective

Image-guided interventions have become an integral part of modern clinical practice and
can look back on a history of more than 25 years [12]. Over time, the possibilities and
resources, yet also responsibilities of a surgeon have changed enormously [13]: in the past, a
physician was considered a generalist who should be able to treat a wide range of diseases and
only limited equipment was available for surgery. As a consequence, surgical interventions
were usually open and invasive. With the introduction of antiseptics and anesthesia in the
nineteenth century, surgical procedures on patients became more feasible. However, surgeons
mainly relied on knowledge gained from medical books and their own clinical experience. The
dissemination of advances in treatment was delayed due to the slow communication channels
of the time and mainly took place during personal meetings of experts. With the transition
into the present, advanced instrumentation and imaging modalities have emerged which allow
less invasive interventions. In particular the development of surgical microscopes [14, 15, 16]
and endoscopes [17, 18] as well as the availability of multi modal medical imaging [19, 20]
and robot-assisted systems [21, 22] has enabled novel surgical treatments and revolutionized
the clinical workflow. The surgeon can now base decisions and actions on a broad spectrum of
devices and patient-specific information. However, this is not always an advantage: with the
increase of concurrently available information, it becomes more and more difficult to extract
and focus on the relevant information [23]. One of the major challenges nowadays consists in
making the best use of the available data, as well as finding a balance between obtainable
information and external constraints such as time, risk and cost. A further key requirement
for surgeons is the mastering of novel cognitive tasks during interventions - such as mentally
mapping the different information sources while maintaining the required handling precision
of the intervention. So instead of being a generalist, today’s physician is rather an expert in a
specific medical field whose workflows require a high degree of multitasking and abstraction
ability. In this context, the development of computer-based systems has been driven forward
with the aim of supporting the physician to perform his tasks more safely, accurately and
efficiently [13, 24].

With advances in computer science, medicine and physics, there is a growing number of
complementary technologies which provide insights into the patient’s anatomy and physiology.
The aforementioned trend towards increasing availability of patient-specific information is
likely to continue. Therefore, a consortium of leading researchers in the interdisciplinary link
between medicine and computer science believe that the surgery of the future “will be based
on automatic holistic processing of all the available data to facilitate, optimize and objectify
care delivery” [25]. They envision surgical data science at the core of this progress, i.e. the
extraction of valuable information from medical data to support and enhance interventional
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Fig. 1.1. Motivation. Advances in computer science, medicine and physics have led to a paradigm shift over the
last decades: in the past, interventions were performed in an open surgery setup and the surgeon had to
rely on his pre-operative knowledge. The development towards less invasive interventions and more
patient-specific data provided by novel imaging modalities has enabled new surgical treatments but
has led to increasing complexity for the surgeon. Today, the surgeon can base decisions and actions
on a broad spectrum of patient-specific information and observes the surgical manipulations of the
anatomical tissue indirectly. One of the main challenges is to mentally map the different information
sources. Computer vision and surgical data science [25] allows to fuse this data to contextually useful
information and augment the capabilities of the surgeon with computer-assisted surgical systems [26].

care. This new field of research is just beginning to emerge and has by no means reached its
full potential yet.

One of the key components in this context is the visual tracking of surgical instruments in
image data acquired during the intervention, which constitutes a particularly difficult and yet
unsolved Computer Vision problem. The main objective of this dissertation is to explore novel
approaches for robust, real-time and accurate tracking of a surgical instrument that can
overcome the challenges and fulfil the requirements of medical interventions. To this
end, we leverage the concept of learning from data and build on state-of-the-art machine
learning techniques to overcome the difficulties posed by the peculiarities of interventional
images. We believe that real-time instrument tracking bears great potential for improving
clinical outcomes by enabling advanced surgical training as well as context-aware assistance
and objective decision making during interventions. Machine learning has already led to
tremendous progress in solving general Computer Vision problems on natural images. My aim
is to transfer and tailor such techniques to the realm of instrument tracking in order to benefit
the surgeon and hence ultimately also the patient.

6 Chapter 1 Introduction



1.2 Structure of this Dissertation
In the following, a brief outline of the remaining chapters of this dissertation is presented.

Chapter 2: Background. Instrument tracking can be used in a variety of medical applications,
but is particularly advantageous if the operation is observed indirectly and recorded digitally.
This chapter introduces the characteristics and challenges of the such medical interventions
(Section 2.1). Furthermore, I will discuss how Computer Vision methods in general (Sec-
tion 2.2) and instrument tracking in particular (Section 2.3) can assist the surgeon during
these interventions.

Chapter 3: Surgical Instrument Tracking. This chapter contains the considerations and
essentials on visual tracking, object representation and machine learning tools that build the
backbone of the presented contributions. Moreover, I will explain how surgical instrument
tracking methods can be evaluated and what are the particular challenges in contrast to
general object tracking.

Chapter 4: Related Work. Surgical instrument tracking has been a very active field of
research in the last years. This chapter will give an overview of recent approaches under the
aspect of object representation.

Chapter 5: Contributions. This chapter briefly summarizes the main ideas, the advantages
and the disadvantages of the proposed methods for real-time surgical instrument tracking.
The original publications can be found in the Appendix A.

Chapter 6: Summary and Findings. The third part of this thesis outlines a summary and
findings of our contributions.

Chapter 7: Limitations and Discussion. In the final chapter, the limitations of the proposed
approaches will be explained and the possible future directions for bringing surgical instrument
tracking into clinical practice will be discussed.

Appendix. Attached in appendix A are the original publications that contributed to this
cumulative dissertation. Additionally, abstracts of contributions which are not covered by this
thesis are listed in appendix B.

This is a publication-based dissertation and substantial parts are quoted from the respective
publications [1, 2, 3, 4, 5, 6, 7, 8, 10]. Throughout this thesis, I will use the first-person plural
form to highlight that many research efforts would not have been possible without such an
amazing team. My personal contributions are stated for every publication in Appendix A.

1.2 Structure of this Dissertation 7





2Background

Advances in computational science have revolutionised the medical field in the last decades.
Starting from image reconstruction technologies that allow a high resolution view into the
patient anatomy, over automatic fusion of anatomical and functional image information all
the way through intra-operative navigation to the targeted anatomy. A clinician nowadays
has access to a very broad spectrum of available information for decision support and taking
action. For interventional purposes, however, there is a trade-off between the amount of
information and the surgeon’s ability to process it in real-time. It is therefore not surprising
that computer assistance has become an essential part of modern medical practice to, for
example, reduce the data to contextually useful information.

This chapter will present an overview of the medical fields that are addressed in this thesis, as
well as how Computer Vision methods in general and instrument tracking in particular can
support the surgeon during these interventions.

2.1 Medical Field of Application

In this thesis, the main focus is on interventions in which the surgeon observes the surgical site
without having a direct view onto the manipulated tissue. This mainly occurs in the following
scenarios: First, due to the development towards applying less and less invasive approaches,
the surgical point of access becomes smaller and does not allow an unobstructed view into
the patient’s body. The second case for an indirect monitoring is given when the manipulated
anatomical structure itself is too small to observe with the naked eye. Instead, the surgical site
is captured, magnified and visualised. The clinician manipulates the structures with special
surgical instruments while observing his/her actions on the display. This kind of surgical setup
poses several challenges, including:

Hand-eye coordination. The surgeon’s gaze is not pointing towards his own hands anymore,
but to a display. Consequently, his viewing direction is not necessarily consistent with his
operating hand movements. While the surgical site may be recorded top down, the actual
movements are in a different coordinate system. A horizontal movement in the real world
may be observed as a tilted movement on the display, or a slight movement of µm or mm may
be visualised as several cm on the display, depending on the magnification. Translating the
visual input into the intended hand movement requires advanced coordination skills from the
surgeon. Furthermore, the surgeon may have to physically control several devices at the same
time, which complicates the coordination further.
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Restricted movement and dexterity. The surgical working space within the patient’s body
is usually very small and only allows limited movements in terms of amplitude, degrees of
freedom and operating space. In contrast to open surgery, where the surgeons can manipulate
and feel the anatomy using their hands, there is no direct control or touch of tissue in this kind
of surgery. All manipulations are performed with surgical instruments that are inserted into
the cavity via trocars. Consequently, the instruments are restricted by at least one fixed point,
which reduces the degrees of freedom and therefore the possible manipulation movements.
Furthermore, tissue at risk such as important vessels and nerves might have to be avoided,
which further limits possible approaches towards the targeted tissue. Although advanced
surgical instruments with improved freedom of movement exist, they are not necessarily
straightforward in terms of handling and operation.

Limited vision and perception. The surgeon relies on the information that is visualised
on the mono or stereo 2D display. One of the main challenges here is that the clinician
has to decide between a zoomed-in and a global view. As a consequence, while focusing
on an anatomical structure, the global perception of the surgical site may be lost. Another
main complication is that the visualisation is often affected by blur, occlusions or noise. The
view of the manipulated tissue can for example be obstructed by the surgical instrument
itself, detached tissue or blood, and the focus may have to be constantly adjusted to gain a
clear view of the target. It is important to notice that direct perception of the manipulated
tissue is not possible since the surgeon has to fully rely on the visual feedback on the screen
and indirect haptic feedback via the utilised instruments. Furthermore, the depth perception
is impaired due the high magnification and possibly also a monoscopic view of the surgical site.

As a consequence, the intervention is quite complex for the surgeon and requires years of
training. However, the surgical view is in any case captured for visualization and can therefore
be used without great effort for computer assistance during the procedure [27].

Two important surgical interventions of this field that share aforementioned characteristics are
Vitreoretinal Surgery (Section 2.1.1) and Endoscopic Surgery (Section 2.1.2). The following
section will describe their surgical setup, major components and particular challenges.

2.1.1 Vitreoretinal Surgery

In everyday life, we normally take our capability to see for granted. The visual acuity often
only gradually decreases and many people notice it at an advanced age. In fact, however,
the eye is a fragile organ and the various diseases or pathologies associated with the eye can
range from benign to life-threatening [28].

From an anatomical point of view, the eye is a spherical body with a diameter of about 2.5 cm.
Light enters from the frontal part of the eye and passes through a multitude of anatomical
structures before it hits the retina. Important functional structures include the cornea, which
protects the inner part of the eye, and the pupil, which regulates the amount of light that
reach the eye lens. The eye cavity itself is filled with a transparent and gel-like liquid called
vitreous humour that allows the light rays to pass through. The retina is located at the back of

10 Chapter 2 Background
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Fig. 2.1. Surgical Setup of Vitreoretinal Surgery. Left: In the general setup, the surgeon is seated at the head of
the patient and observes his surgical movements through a microscope. The foot pedal allows to modify
parameters of the microscope or position the microscope-integrated Optical Coherence Tomography. In
the depicted experimental setup, a plastic head with a pig eye was used. Middle: Trocars are anchored
into the sclera to provide a stable access to the eye cavity. A handheld, fibre-optic light source and a
surgical instrument are inserted. Right: The image depicts the view captured by the microscope. The
patient’s pupil is dilated by medication and the eye is held open with a clamp to provide best possible
access. An infusion cannula ensures constant intraocular pressure.

the eye and consists of multi-layered, specialised nerve tissue that converts the incident light
into nerve impulses. The area in the central posterior region of the retina, through which the
visual axis runs, is called macula. The cause of many significant visual impairments can be
found in this anatomical area.

For example, if scar-like tissue is formed in front of the macula, the retinal layers contract
and the patient’s vision is severely impaired. Due to these properties, the disease is called
macular pucker or epiretinal membranes (ERMs) [29]. ERMs have been associated with a vast
number of ocular conditions and diseases [30], and cannot be corrected with glasses. With a
prevalence of between around 4% and 29% [31, 32, 33], ERMs are one of the most common
conditions currently treated by retina specialists. In order to improve the patient’s vision, the
membranes have to be removed from the retinal surface. This is a frequent and demanding
Vitreoretinal Surgery called Membranectomy or epiretinal-membrane peeling [30]. Similar to
the general setup of these kind of surgeries, it is performed by an ophthalmic surgeon, who
manipulates anatomical structures within the cavity of the eye using an operating microscope
and microsurgical instruments. Figure 2.1 depicts a schematic setup of a Vitreoretinal Surgery.
The patient is placed on a table while his to-be operated eye is dilated by medication and
held open with a clamp to ensure best possible access. Through small incisions, three trocars
are anchored into the outer wall of the eye (sclera) to provide a stable access to the eye
cavity. One port is used for the infusion cannula, which allows a constant intraocular pressure
by pumping balanced saline solution (BSS) to replace the removed vitreous humour. The
two remaining opposite trocars are for the instruments that the surgeon actively operates: a
handheld, fibre-optic light source for illuminating the retinal surface from within the cavity
and surgical instruments to manipulate the anatomical structures, such as intraocular forceps,
diamond-dusted instruments or intraocular scissors.
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En-face microscope view OCT view

Fig. 2.2. Surgeon’s view during Vitreoretinal Surgery. The intervention is observed through a microscope,
which provides two different image sources that can be displayed next to each other, here exemplarily
with porcine eyes. The surgeon has to mentally map the two image modalities. Left: the RGB en-face
microscope image captures the direct view through the pupil of the eye. Distances to the retina are
difficult to infer and the handheld light source imposes challenging illumination conditions. Right: the
OCT image provides a cross-sectional view and therefore depth information. The image capture range is
limited, as indicated by the coloured lines. The metallic instrument is opaque and occludes subjacent
structures.

During a membrane peeling procedure, the surgeon first removes the vitreous humour from
the eye during the so-called vitrectomy and then grasps and peels away the membrane from
the retinal surface [34]. To that end, a suitable starting point such as a fold in the membrane
has to be found which allows to grasp the membrane without injuring retinal structures by
accidental intrusion with the instrument. It has been shown that the additional peeling of the
internal limiting membrane (ILM) may result in reduced ERM recurrence [35]. The ILM is
the structural interface between the retina and the vitreous with a thickness of only 1.5µm in
the foveal area [36]. To avoid damaging the retinal tissue, the number of grasps should be
minimal and the membrane should be peeled in a circular movement parallel to the retinal
surface [37]. These maneuvers require an accuracy in the order of a few micrometers and
cannot be observed with the naked eye. Instead, a microscope is placed above the patient’s
eye, which magnifies the top-down view through the eye lens and visualizes the surgical scene
on a stereo ocular for the surgeon. Recently, an additional imaging modality was integrated
into the microscope that complements the microscope en-face view with cross-sectional images
(Figure 2.2): optical coherence tomography (OCT) [38]. It is a non-invasive imaging technique
with near-infrared light and is based on low coherence interferometry. This means that for
example sub-retinal structure information can be computed by measuring the magnitude and
echo-time delay of backscattered light. The main components are a light source, a beam
splitter, a reference mirror and a photo detector or spectrometer. Cross-sectional images, also
called B-Scans, are reconstructed by transversely scanning the incident optical beam and
measuring the echo time delay of the axial scans, also called A-Scans [39]. Originally, it was
designed for diagnostic purposes and was first commercially available to surgeons in the year
2014 [40]. Its benefit in current and future ophthalmic interventions has been clearly stated
by various surgeons and research groups [41, 42, 43].
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However, in the currently available devices the surgeons are presented with the information of
the two imaging modalities side-by-side and not combined, as depicted in Figure 2.2. Although
they depict the same anatomy, the surgeon has to identify the exact spatial correlations himself
by switching between the views. Another important complication is that the metallic surgical
instruments are opaque for the OCT due to the underlying physics and cast shadows on the
subjacent anatomical structures [44]. There have been advances in developing OCT-compatible
surgical instruments, but in current practice the technology is limited to a “stop and image”
approach [45]. For creating a cross-sectional view the surgeon usually interrupts the surgical
manipulation and removes the surgical instruments from the respective area to eliminate
the occlusions induced by the instrument. This, together with the fact that the spatial scan
range of the OCT is limited, implies that the visualization of real tissue-instrument interaction
with OCT is currently impossible: the surgeon would have to manually position the OCT scan
location with a foot pedal close to the instrument at a correct angle while maintaining the
required micro-precision in handling the instruments. In addition to aforementioned problems
and the challenges described in Section 2.1, the surgeon has no or only very weak tactile
feedback during the micron-scale manoeuvres [46]. The manipulated anatomical structures
are so delicate that the surgeon mainly has to rely on the provided visual feedback and his
experience. At the same time, the illumination of retinal structures is limited by the risk
of iatrogenic phototoxicity [47] and the high magnification leads to a challenging depth
perception. Since the surgical instruments are hand-held instruments, the surgeon must also
ensure highest handling accuracy and absolute control over unintentional movements such as
hand tremors while operating in a fairly rigid positioning for long periods of time. All this
together makes Vitreoretinal Surgery extremely difficult to master.

2.1.2 Endoscopic Surgery

Endoscopic surgery refers to minimally invasive surgical techniques performed with surgical
instruments and endoscopes. Depending on the targeted anatomy, the interventions are also
known under different names. For example: minimally invasive procedures in the pelvic
and abdominal area are called laparoscopic surgeries and operations within the thorax are
thoracoscopic surgeries. The technology has become increasingly popular in the last years
and has even completely replaced traditional and established techniques in many medical
applications [48]. Emerging around 1980, laparoscopy has been one of the first types of
endoscopic surgeries [49]. Nowadays, the minimally invasive approach is utilised for many
different diseases, including pancreatic cancer, abdominal aortic aneurysms, gallbladder
cancer, lung tumors, gynecological cancers, kidney disorders and prostate cancer.

In traditional open surgery, large incisions allow the surgeon to see and manipulate the target
tissue directly. Although this is probably the most intuitive and direct way of handling the
targeted tissue, it has many medical and cosmetic disadvantages due to the size of the required
incision and the contact of tissue with air. The community therefore developed less and
less invasive approaches that built the basis for current endoscopic surgery. By minimizing
the incisions and introducing ports to insert instruments into the patients body, the access
trauma and the blood loss was significantly reduced [50]. Furthermore, the minimally invasive
approach lowers the risk of infection and the size of visible scar tissue. As a result, the patient
suffers less pain and can be discharged from the hospital earlier. It also enables the use of
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Fig. 2.3. Endoscopic Surgery. (a) Example of minimally invasive surgery in the abdomen around 2006. The
surgeons observe their surgical actions on a display while manipulating surgical instruments. [Figure
under common licence, link]. (b) Schematic setup of endoscopic surgery. The cavity is inflated
with a sterile gas to create more space for the endoscope and the surgical instruments. [Figure by
Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2).
DOI:10.15347/wjm/2014.010. ISSN 2002-4436. link, Added and modified content]

previously unrealizable medical treatments and enlarges the potential patient group to older
people or infants.

The usual surgical setup for endoscopic surgery is as follows: The anaesthetised patient is
placed on an operating table in such a way that the surgical site is freely accessible. In some
surgeries the patient is additionally positioned in a horizontally inclined position so that the
soft tissue shifts out the target area. Trocars are anchored in the patient’s skin and allow
access to the surgical cavity. In order to increase the available workspace, the cavity is inflated
with a sterile gas. This procedure is also known as insufflation. The devices used to observe
and manipulate the tissue are inserted via the trocar tubes: one port is utilized for inserting
the endoscope, which includes a Charge-Coupled Device (CCD) and a light source, and the
other one is for the surgical manipulators. In conventional minimally invasive surgery, one
surgeon operates the surgical working instruments and the assistant orients the endoscopic
camera to the surgical site. Consequently, the surgeon usually has no direct control over the
visual information that is forwarded from the laparoscope to an often monocular display next
to the patient in the operation theatre. A typical endoscopic surgery setup is depicted in
Figure 2.3. Alternative technologies reduce the access trauma even further by using natural
openings like mouth, nostrils or vagina, as in the natural orifice transluminal endoscopic
surgery (NOTES) [51], or requiring only one incision, as in the single port surgery [52].
Robotic systems, such as the da Vinci (Intuitive Surgical, Sunnyvale, CA) aim at supporting
the surgeon via a master-slave concept. The manipulation of the instruments is remotely
controlled by the surgeons from a console (master) and mapped via computer software into
actual movements of the robotic arms (slave) that enter the patient’s body.

What these approaches have in common is the fact that the surgeon can only observe the
operation indirectly. As already mentioned in the introduction of this chapter ( 2.1), this
leads to problems such as difficult hand-eye coordination, reduced navigation ability and
limited perception. In contrast to Vitreoretinal Surgery, the surgeon does feel the applied
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forces when manipulating the targeted anatomy. However, this haptic feedback is only indirect
via the kinesthetic response of the surgical instruments and not as direct as in open surgery.
Furthermore, the trocars define the available surgical workspace in the common endoscopic
surgery, which may reduce the freedom of movement or result in an undesirable point of
view on the anatomy when they are badly placed. Another major complication is that the
surgeon is no longer able to see the entire anatomy as the endoscopic camera has a very
limited field of view. Consequently, the surgeon looses the global perception of the surgical
site and may for example not be able to see a bleeding in an area that is not captured by the
endoscopic camera. Critical anatomy such as major vessels may also be hidden behind visible
tissue and the view may further be impaired by surgical side effects such as smoke and blood
or the surgical instruments itself. Furthermore, the 3D information of the patient anatomy
is usually projected to a 2D display and the distance between lens and observed anatomy is
small. As a result, the visualization cannot reflect the 3D structure of the anatomy and the
depth perception is extremely challenging.

2.2 Computer Vision to Assist Surgeons

The enormous advances in Computer Vision (CV) research in recent years have led to a
variety of mature and robust CV algorithms. At the same time, the digitalization of medical
information has been pushed forward, so that today a lot of data is stored and processed
digitally. CV algorithms can exploit this image data and enhance or extract abstract information
to support the physician in his/her actions and decisions. In contrast to hardware-based
solutions, the costs of deploying, developing and distributing software-based solutions are
lower. Another major advantage is that CV solutions are mainly designed to support rather
than replace sophisticated surgical routines. Consequently, the surgeon and therefore also the
patient can benefit from improvements at an early stage.

The interventions addressed in this dissertation are already recorded in a video stream in
current clinical practice. It therefore seems to be a “natural direction” to leverage the power
of Computer Vision algorithms to overcome many challenges of these interventions [24].
The various possibilities range from low-level processing, such as noise filtering or contrast
enhancement before visualizing the image data, up to mid- or high-level processing, e.g. un-
derstanding the video content in terms of object segmentation or surgical action recognition.

Computer Vision-based solutions may assist the surgeon in all operation steps:
In the pre-operative phase a 3D reconstruction of the patient’s anatomy model can help to
accurately develop a patient-specific surgery plan. In the context of endoscopic surgery, this
facilitates for example the estimation of an optimal trajectory to approach the targeted tissue
without harming critical structures on the way such as nerves or major vessels. In Vitreoretinal
Surgery, this detailed trajectory planning is not as crucial, as the eye ball is filled with the
insensitive vitreous humour. However, a 2D segmentation of the anatomical layers [53, 54] in
the high quality diagnostic OCT scans may help to identify pathological or critical structures
that have to be addressed during the intervention. Creating a map of elevated epiretinal
membrane could help identify suitable grasping points for membrane peeling [55].
The major potential of Computer Vision-based assistance is probably during the intervention
itself (intra-operative). Early concepts mainly focused on providing pre-operative data during
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interventions, such as additional information acquired by a different modality or predeter-
mined models. An early work by Fleming et al. [56] registered preoperative OCT images to
inraoperative microscope images. At this time, the intraoperative OCT was not available. But
even with the new generation of surgical microscopes, the registration would be beneficial
because the image quality of preoperative OCT is usually superior and covers a broader spatial
area than the interaoperative version. In this way, annotated and processed pre-operative
data could also be made available to the surgeon during the intervention, such as the map of
elevated epiretinal membrane for safer membrane peeling. In endoscopic surgery, the visual
information from the endoscope can be enhanced by pre-operative data such as Computed
Tomography or Magnet Resonance Imaging [57]. In combination with augmented reality,
this would allow the surgeon to see through occluded anatomy and directly see the planned
cutting trajectories on the anatomy without mentally matching the different data sources. Also
the problem of the limited field-of-view can be addressed with Computer Vision algorithms,
both in Endoscopic Surgery [58] and Vitreoretinal Surgery [59]. The technique of video
mosaicking enlarges the field of view of the surgeon by combining the image information of
single frames into a global view. This gives surgeons a better global orientation and perception
of the surgical site. Other possible applications include multispectral illumination [60] and
image denoising [61] for improving the visualized image information. Newer concepts of
computer-assisted interventions focus on context-awareness and abstract understanding of
surgical procedures. This includes the automatic detection and classification of critical objects
such as vessels or organs, as well as the recognition of surgical gestures. Risk situations can
thereby be identified early and avoided. Another interesting direction is the 3D sensing from a
single or stereo optical image. Estimating a partial 3D model of the observed anatomy facili-
tates the depth perception for the surgeon [24]. Especially in combination with augmented
reality [62] this can be an intelligent, assistive system during the intervention.
In the post-operative phase, the hours of video footage of the surgeries are stored and analyzed.
Instead of working through the large amount of data by hand, Computer Vision can help
to classify and analyze the videos. For evaluating the surgical performance for example,
the surgical gestures can be identified and compared to the expected surgical performance.
Furthermore, surgical phases could be extracted that are useful for surgeon training.

Unfortunately, the application of Computer Vision algorithms is not straightforward. In
contrast to the usual in- or outdoor scenario that is investigated by traditional Computer
Vision algorithms, the surgical scene does not provide many reliable natural landmarks. In
particular, the fact that the illumination is a directional, hand-held light source renders many
methods inapplicable because they are based on the assumption of a constant light source.
This difficulty will be discussed in a later chapter (3.5).

2.3 Potential Impact of Instrument Tracking

One of the key components for many computer-assisted approaches mentioned in the previous
section is the real-time tracking of the utilized instrument. Examples of surgical instruments
are depicted in Figure 2.4. Since the surgeon controls the surgical tool himself and knows his
movements, the absolute position or the tracking information of the instrument is of course
not of direct interest to him. The real value of instrument tracking lies in interpreting the
instrument as an extension of the surgeon’s hand. Based on a good understanding of the
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Vitreoretinal Instrument Endoscopic Instrument

Fig. 2.4. Surgical instruments. The size and mechanical manipulation of surgical instruments differs consider-
ably. In many cases, however, the instrument can be modelled as an articulated object. For vitreoretinal
surgery, also the handheld light source is depicted.

physical relationship between the surgical instrument, the imaging sensors and the anatomy,
it would for example be conceivable to synthesize a haptic feedback for the surgeon. The
surgeon could virtually feel again the tissue through the surgical instrument. For this, however,
it is necessary to know the exact position of the instrument relative to the tissue, as well as
the tissue properties. In robotic systems, instrument tracking can even enable semi-automatic
or automatic motion guidance towards desired anatomical targets. Together with the robotic
compensation of hand tremor, this would have a major impact in the field of cell-based and
gene therapy in Vitreoretinal Surgery: as discussed by MacLaren et al. [63], one of the main
difficulties here is the safe positioning and delivery of drugs to the target area. But instrument
tracking can also be used for the opposite intention: a tracked instrument may ensure a
safety distance to a pre-defined vulnerable anatomical structure and thereby contribute to the
patient’s safety.

Understanding the instrument position and orientation can also serve as basis for high-level
assessment such as task recognition [64, 65] or surgical phase recognition [66, 67]. Suturing or
membrane peeling, for example, are characterised by a particular movement of the instrument.
Utilizing the trajectory of surgical gestures could simplify the recognition. The activity and
presence of instruments are already commonly used for surgical workflow analysis [66, 68, 69,
70]. Surgical gestures could also be beneficial here as the general, complication-free surgical
procedure is often predefined. Following the same line of argumentation, instrument tracking
can be employed for post-operative skill assessment [71, 72]. Since motion parameters of the
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instrument such as trajectory length and occurrence of movement are directly related to the
surgeon’s expert level [71], instrument tracking could serve as objective parameter to measure
or evaluate the performance, in terms of number of grasps or attempts for tissue cutting.

Instrument tracking could also pave the way for advanced augmented reality applications [62].
Since the shaft of the instrument is typically not of interest to the surgeon and already
obstructs the view on the scene, it could be used as a suitable region for a graphical overlay
of additional information. Another possibility is to visualize additional information close to
the instrument manipulator, which is usually close to the surgeon’s center of attention. The
geometric information inferred from the instrument orientation, on the other hand, could give
hints for creating perceptually correct visualization.

While the above-mentioned benefits apply to both Vitreoretinal and Endoscopic Surgery,
there are also operation-specific advantages. As mentioned in Section 2.1.1, the usage of the
intraoperative OCT in Vitreoretinal Surgery is currently limited to a “stop and image” approach.
Ehlers et al [45] clearly state that “automated tracking is needed to minimise surgeon demand
on OCT positioning during surgical manipulation.” By knowing the spatial location of the
instrument tips for example, the OCT scanning orientation and position can be automatically
optimized in a way that there are no occluding shadowing artefacts and instrument-tissue
interaction is visible in the cross-sectional view [8]. This would allow to understand the
surgeon’s interaction with tissue surfaces and even estimate the physical distance between
the surgical instrument and the retina [73]. In endoscopic surgery, instrument tracking can
for example guide the surgeon along an optimal path with minimal harm to sensitive tissue
such as nerves according to a pre-operatively planned trajectory. For this purpose, the current
position of the instrument as well as the visible anatomy must be registered to pre-operative
data. Another important application for endoscopic surgery lies in visual servoing of robotic
systems such as the daVinci: in a rigid setup, the instrument position can be estimated by the
forward kinematics of the robot. Due to tendon-based connections of the arms, however, this
projection is distorted and noisy. By tracking the instrument joints in the image directly, the
relation can be recovered.
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3Surgical Instrument Tracking

In order to achieve robust and accurate tracking of the surgical instrument, we will build on
techniques from Computer Vision and Machine Learning. Since this is a publication-based
dissertation, the chapter is not intended to give a comprehensive overview of existing methods,
but rather to provide background and context to the presented contributions. This includes
the basic concepts of visual tracking (Section 3.1), the possible representation of the tracked
instrument (Section 3.2) and how machine learning algorithms can employed in this context
(Section 3.3). Finally, I will explain how the performance of instrument tracking methods can
be evaluated (Section 3.4) and what the difficulties and requirements are (Section 3.5).

3.1 Visual Tracking

The aim of object tracking is to locate a predefined target over a period of time. In general,
there are several approaches for this task in the field of medical interventions, such as
electromagnetic tracking [75], which is based on magnetic fields and triangulation, and
acoustical tracking, which measures the time of flight of acoustic signals. Both techniques are
not optimal for the medical applications addressed in this dissertation (see Section 2.1), as
they may interfere with the devices used during the surgery and do not provide the required
accuracy. An alternative approach is mechanical tracking, using the mechanical links of a
surgical robot or a passive arm. If the tracked object is connected to the device and the
kinematic chain is known, the spatial position of the object can be derived. However, this
requires an exact calibration and is only applicable in surgeries with mechanical support (e.g.
robot-assisted surgeries).

We aim at the general applicability of instrument tracking in aforementioned surgeries without
the need of additional hardware and take advantage of the fact that the surgery is already
digitally captured. Visual tracking requires image sequences as input and can therefore be

Example Inputs (I)
Endoscopic SurgeryVitreoretinal Surgery

Example Object Representation (Y)

Reference Points HoG

Example Feature Representation (X)

Fig. 3.1. Elements of visual tracking. Based on an image sequence the aim of visual tracking is to determine
the instrument location for every frame. The tracked surgical tool is defined by an object representation
Y . Marker-less tracking methods do not introduce artificial markers, but detect the instrument by its
natural characteristics, which can represented by feature representation X. Endoscopic Surgery Images
are from the Endovis Challenge 2015 [74].
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integrated without great effort. It thereby allows measurements directly in the reference frame
of the observing camera (endoscope or microscope) and does not need complex extrinsic
calibrations for visualization applications, such as mentioned in Section 2.3. As defined by
Forsyth and Ponce [76], visual tracking is “the problem of generating an inference about
the motion of an object given a sequence of images”. Common application domains include
autonomous car driving, surveillance and sports. In our case, visual tracking corresponds to
locating the surgical instrument in a sequence of endoscopic or microscope images.

Visual tracking approaches can be roughly divided into temporal tracking and tracking by
detection: a temporal tracker associates information from previous frames with information
from the current frame and thereby simplifies the tracking problem to a location update;
a tracker based on detection only uses the information of the current frame to infer the
location of the object. Furthermore, algorithms can be distinguished as either marker-based
or marker-less. A visual marker can for example be an optical square marker or a predefined
distinctive pattern that is attached to the object. Since we do not want to modify the surgical
instrument, we focus on marker-less tracking methods. This means that we rely on the local,
natural features that can characterize the instrument. For a more detailed overview on the
general concepts, please refer to the survey by Yilmaz et al. [77].

Generally speaking, we aim at determining the instrument location, defined by an object
representation Y , for frame t given an image or a sequence of images:

Yt = f(Φ
(
{Is}t2s=t1

)
) = f(Xt), (3.1)

where f is a function that maps the observations Φ from a set of images {Is}t2s=t1 to the
object representation Y . In case of tracking by detection the set of images contains only the
current frame {Is}ts=t = It, while for a temporal tracker one or several previous frames are
considered, e.g. {Is}ts=t−2 = {It−2, It−1, It}. It should be noted that the choice of observation
representation (also called feature representation) Φ and the object representation Y are
highly application dependent. The feature representation consists of visual features for the
marker-less tracker, such as for example Scale-Invariant Feature Transforms (SIFT) [78],
Histogram of oriented Gradients [79] or the RGB value itself. Optimally, they are chosen
in such a way that they are unique and the instrument can be easily distinguished from the
background. The object representation is the final output of the tracker and can range from a
rough localization to a precise outline of the object, will be presented in the next section.

3.2 Object Representation
The typical surgical instrument is a metallic, quite rigid object that can be represented by its
2D shape and appearance in the image. The required level of detail of this representation
Y , however, is application dependent. Figure 3.2 depicts some examples that are inspired
from [77]. For applications that require only basic understanding of the instrument movement,
a centroid (Y ∈ R2) or a bounding box around the instrument is often sufficient. These
geometric representatives already indicate the presence of the instrument and allow to
calculate a rough trajectory. The bounding box would also simplify a subsequent classification
of the instrument and therefore surgical action recognition. However, if the pixels occupied by
the surgical instrument are for example intended as graphical overlay for augmented reality
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Fig. 3.2. 2D Object Representations. The surgical tool can be tracked in terms of different object representations.

applications, such a coarse localization is not sufficient. In this case, it is more helpful if the
image is divided into two disjoint sets: the 2D boundary of the instrument is called contour of
the object (Y ∈ Rn×2) and the region inside is the silhouette or segmentation (Y ∈ Rw×h×c,
where c denotes the number of labels and w,h denote the image width and height). In
this way, every pixel of the image can be assigned to either instrument or background. The
segmentation can also be used as intermediate representation and help to infer the 3D pose
of the instrument, if the CAD model of the instrument is known [80]. For analysing surgical
gestures however, the segmentation and the global instrument movement are not distinctive
representations. A grasping gesture for example is characterized by opening and closing
motion of the forceps. In this case, it is beneficial to define reference points (Y ∈ Rn×2) such
as the instrument tips as tracking objective. This also allows to interpret the instrument as an
articulated object with parts that are connected by the reference points and paves the way for
advanced applications including instrument-tissue interactions, as discussed in Section 2.3.

3.3 Learning from Data

There are numerous approaches to model a tracking function f that maps from image or
feature space to the object representation as defined in equation 3.1. An overview of estab-
lished methods is given in the survey by Yilmaz et al. [77]. In recent years, some of the most
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Fig. 3.3. Learning strategies. A Random Forest is an ensemble of independent decisions trees and addresses the
problem by partitioning the input space using a set of binary decisions. These splitting functions are
revisiting the input space and do not modify it. Consequently, Random Forest relies on a suitable choice
for feature representation. Deep Learning is designed to learn representations inherently by abstracting
image responses using a composition of nonlinear functions. Usually only the input layer has access to
the image while the subsequent layers receive the resulting activations.

successful methods have been based on machine learning: it allows to statistically estimate
complicated functions by building on knowledge from a set of observations. A machine learn-
ing system can thus learn from data and subsequently act as a predictive model, as opposed to
rule-based systems. Depending on the availability and use of ground truth data in these obser-
vations, we can distinguish between supervised, semi-supervised and unsupervised methods. In
the latter two cases only few or no data is labeled, respectively. In a supervised learning frame-
work, we can build on a training set {(Xd,Yd)}ndd=1 = {(X1,Y1), (X2,Y2), . . . , (Xnd ,Ynd)}
with available ground truth to find a prediction function f with

Y = f(X; w) ∀(X,Y) ∈ {(Xd,Yd)}ndd=1, (3.2)

where w are the function parameters which can be learned. The prediction function is
not perfect and can only be approximated, so that f(X; w) = Ŷ ≈ Y. To that end, the
function parameters are optimized during training using the labeled training set according
to a predefined objective function. In the testing phase, the trained function model can be
employed for predicting Y for unseen input samples X. In the following two subsections, I
will summarize two important machine learning methods on which our contributions here
are based. Both techniques can be represented by a graph, but differ fundamentally in
their learning strategy (Figure 3.3): Random Forest (Section 3.3.1) addresses the problem
by partitioning the input space using a set of binary decisions and solving the task in the
created subspaces. It therefore relies on the suitable choice for feature representation Φ.
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Deep Learning (Section 3.3.2) on the other hand is designed to learn suitable representations
inherently by abstracting image responses using a composition of nonlinear functions.

3.3.1 Random Forest

Finding a suitable function f for the full feature space X is a complex task. Instead of solving
it explicitly, the Random Forest approximates a solution by accumulating votes from “weak”
learners that divide the problems into smaller problems. In other words, a Random Forest
consists of an ensemble of t independent decisions trees F = {T1, · · · , Tt} which can predict a
discrete label (classification) or continuous values (regression) using a “divide” and “conquer”
strategy. Given a training set {(Xd,Yd)}ndd=1, each tree T of a forest F attempts to divide the
observations into partitions Pt by using a series of simple decisions in a hierarchical manner.
A tree is composed of nodes that can either be a branch with two children (i.e., left and right)
or a terminal node. The node at the top of a tree is called root, the nodes at a branch are
called decision nodes and the terminal nodes are called leaves. An observation X can traverse
the branches of the tree starting from the root. At each decision node i, it is sent either to the
left or right child by the learned splitting function fi, until it reaches a leaf.

During training, we split the data into two subsets at each node so that they pass down to its
children (Pl, Pr), based on a splitting criterion θ. The splitting criterion is a pool of random
tests and aims at finding the best split of the set at each step. In our contributions, we employ
the information gain as objective function for evaluating the best split, which is given by

g(θ) = H(Pn)−
∑

i∈{l,r}

|Pi(θ)|
|Pn|

H(Pi(θ)) , (3.3)

where Pn is the set of samples that reached the node n, |P | is the number of samples in the
set P and H(·) evaluates the randomness of P . For regression tasks, H(·) can be estimated by
standard deviation of the multi-variable Gaussian distribution. Starting from the root node,
the dataset is iteratively split into two subsets and passed down to the node’s children until
one of the following stopping criteria is true:

1. the maximum depth of tree is reached;

2. the number of samples that reached the node is insufficient to split; or,

3. the information gain of the best split is too small.

Then, the leaf stores the distribution of the parameters of Y that typically employ a normal
distribution with its mean and standard deviation. As a result of training, each branch of the
tree stores the parameters of the splitting function with respect to the input X while each leaf
stores a distribution of the output Y. To enforce the independence of the trees in the forest,
each random tree selects a random subset of elements in X or a random subset of the learning
dataset.

During testing, a new sample of X traverses the tree. At each branch, it moves to the left
or right child node depending on the learned splitting function, eventually ending up at
a leaf node which contains the prediction to be associated with such sample. Finally, the
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Fig. 3.4. Neural networks. Overview of different neural network components and feed-forward architectures.

results of the leaf nodes at different trees are aggregated in order to robustly obtain the final
prediction.

The desired function f of equation 3.1 is therefore the final vote from an ensemble of binary
decisions of the input space and the function parameters w are in this case defined by the
splitting criterions.

Further information on random forest can be found in the original work of [81].

3.3.2 Deep Learning

Deep Learning does not make use of hand-crafted features, but discovers features that are
relevant for tackling the problem at hand by approximating the mapping f with a composition
of learned, nonlinear functions. Instead of revisiting the original input X, the technique allows
for more abstract connections and representations through its hierarchical, compositional
architecture:

Ŷ = f(X; w) = f l ◦ f l−1 ◦ · · · ◦ f1(X). (3.4)
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The function f1 that receives the input values X is called the first or input layer of the network.
The final layer f l is the output layer and produces an approximation for Y. Since we only
specify the input and the desired output, i.e. do not have a direct influence on the mappings
in-between, the intermediate layers f2 · · · f l−1 are also called hidden layers.

The composition of these functions is called neural network, which were originally proposed
with

f iwi,bi(x) = σ(
n∑
k=1

wk · xk + bi) = σ(wTi · x+ bi), (3.5)

where σ(·) is the activation function, wi are the learned weights and bi is the bias. It represents
a fully-connected operation where all elements of x contribute to all elements of f iwi,bi(x).
Please note that x refers to the input of the function, e.g. x = X in case of f1 and x = f1(X)
in case of f2. The nonlinearity is achieved by activation function σ(·) and is crucial, since
the composition of the functions would otherwise result in a linear function that may not be
suitable to approximate non-linear problems.

If the network consists of only one particular function f1, it is called Perceptron. If the
networks consists of several layers f1 · · · f l it is referred to as multi-layer perceptrons (MLP).
Convolutional Neural Networks (CNNs) usually also comprise several layers, but act more
locally on the input signal by using of 2D convolution kernel instead of weighted sums:

f iwi,bi(x) = σ(wi ∗ x+ bi). (3.6)

This offers several advantages [82]: the filter is translation invariant and the same weights
w are repeatedly applied to cover the entire input signal (parameter sharing). Additionally,
the dimensionality of wi is lower than in in the fully connected case (equation 3.5) because
of local-only connectivity. Consequently the number of free parameters and therefore the
complexity of the network is reduced. In many CNN architectures, the convolutional layers
are followed by weight-less pooling layers that change the dimensionality of the signal. If all
learned layers are convolutional layers, the network is usually referred to as Fully Convolutional
Neural Network (FCN) [83].

In the last years there has been a trend towards deeper networks to achieve better results:
the AlexNet (2012) by Krizhevsky et al. consists of 8 layers, VGG (2014) by Simonyan et
al. [84] of 19 layers and ResNet (2016) by He et al.[85] comprises already 50 layers and
more. Unfortunately, creating deeper networks is not as straightforward as adding more layers,
due to problems such as vanishing gradients and degradation [85]. Skip connections and
residual blocks address this issue by allowing the information to flow through the networks
via shortcuts. Signals from an early layer skip over one or several intermediate layers and are
combined with one of the later layers, e.g. via summation [83] or concatenation [86]. A
residual block [85] allows an identity mapping for every few stacked layers , e.g:

resi = f iwi,bi ◦ f
i−1
wi−1,bi−1

(x) = σ(wi ∗ (σ(wi−1 ∗ x + bi−1)) + bi + x). (3.7)

This enables deeper architectures by allowing the network an option to just skip subnet-
works.
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During training, the input X of a training sample (X,Y) is fed through the network with
pre-initialized parameters and leads to a prediction Ŷ . The prediction error can be determined
by an objective function as:

L(Y, Ŷ ) =
n∑
i=1

δ(Yi, Ŷi) =
n∑
i=1

δ(Yi, f(Xi; w)), (3.8)

where δ(·) is a function that describes the distance of Ŷ to Y. A choice for δ is for example the
L2 norm. According to the measure, the network weights are updated via backpropagation, so
that the network output will be closer to the target output for the next sample.

During testing, a new unseen sample of X is fed forward through the network with learned
weights and the final layer produces the prediction.

Further information on deep learning can be found in the book of Goodfellow et al. [87].

3.4 Evaluation Metrics
The performance of an instrument tracker can be evaluated depending on the object repre-
sentation. In this section, a brief overview of the common evaluation metrics is presented for
tracking an instrument via reference points (Section 3.4.1) or segmentation (Section 3.4.2).
For machine learning-based approaches, the available dataset is usually split into independent,
preferably sequence- or surgery-wise subsets to ensure that the model is does not simply
memorize scenarios, but actually learns a generally applicable representation. During training,
the parameters are learned on the training set and the model is selected using the validation
set. The overall performance of the final model after the training process is evaluated on an
independent testing set. In medical applications, the amount of data is rather limited and the
validation set may be so small that it does not provide reliable results. Therefore it is very
common to perform a cross-validation.

3.4.1 Reference Point

The following metrics can be used to evaluate accuracy for the reference points:

Keypoint Threshold (KT) [88] (or Threshold Score) addresses the quality of an estimated
reference point location via a pixel distance measure. An estimated reference point location
j ∈ R2 is evaluated as correct if the Euclidean distance to the ground truth annotation ĵ ∈ R2

is lower than a fixed pixel threshold T ∈ R:

‖j − ĵ‖ < T .

Notably, it yields a separate evaluation for every reference point j ∈ J .

Keypoint Threshold Bounding Box (KBB) [7] addresses the quality of an estimated reference
point location via a pixel-distance measure that adapts to the pixel size of the instrument
manipulator. The metric is based on the observation that setting one threshold for different
image resolutions and instruments sizes makes the results of the KT metric unreliable when
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averaged over several images. Instead, the threshold is scaled according to a tightly cropped,
axis-aligned bounding box which contains all reference points of the instrument in the
respective frame. A reference point j is located correctly if

‖j − ĵ‖ < α ·max (h,w) ,

where ĵ is the ground truth annotation of the to-be-evaluated reference point, w and h are
the width and height of the bounding box around the instrument given by the ground truth,
and α ∈ R. It should be noted that this metric is only computable if the ground truth of all
reference points is given. However, the evaluation is also applicable if only one reference point
is estimated.

Strict Percentage of Correct Pose (strict PCP) [89] addresses the quality of the prediction
for a part of an articulated object. A prediction for a part connected by two reference points
j1, j2 ∈ R2 is evaluated as correct only if both the Euclidean distances of the predicted
reference points j1, j2 to its ground truths ĵ1, ĵ2 are lower than a threshold as a function of
the ratio α ∈ R times the ground truth length of the part, e.g. both of the following equations
have to be fulfilled:

‖j1 − ĵ1‖ < α · ‖ĵ1 − ĵ2‖,

‖j2 − ĵ2‖ < α · ‖ĵ1 − ĵ2‖ .

3.4.2 Segmentation

If the instrument is tracked in terms of segmentation, we can consider a binary labelling of
the image region Ω into two disjoint subsets Ωinstrument and Ωbackground. Let TP be the true
positives, FP the false positives, FN be the false negatives and FP be the false positives, as
exemplarily depicted in Figure 3.5 for the target class instrument. Then the the following
metrics can be used for evaluating the performance of the tracker:

Precision is the proportion of correctly labeled target class pixels to all pixels assigned to the
target class. It is defined as

Precision = TP

TP + FP
.

Recall is the proportion of correctly labeled target class pixels to all ground truth pixels of the
target class. It is defined as

Recall = TP

TP + FN
.

Specificity is the proportion of correctly labeled not-target class pixels to all ground truth
pixels of the not-target class. It is defined as

Specificity = TN

TN + FP
.

3.4 Evaluation Metrics 29



Original Image

Ground Truth Segmentation

TP true positives
FP false positives
FN false negatives
TN true negative

Evaluation of Segmentation ResultPrediction

Algorithm Comparison

Fig. 3.5. Segmentation Evaluation. For the evaluation of a binary image segmentation, the segmentation result
is compared to the ground truth segmentation. The resulting number of pixels for each category is used
for computing segmentation metrics such as recall or specificity.

Balanced Accuracy (BACC) is the arithmetic mean of recall and specificity. It is defined as

BACC = 1
2 ·
(

TP

TP + FN
+ TN

TN + FP

)
.

DICE coefficient (or F1 score) is the harmonic mean of recall and precision. It is defined as

DICE = 2TN
2TP + FP + FN

.

3.5 Requirements and Challenges

The tracking algorithms that are presented in this dissertation are intended to be employed
in medical interventions. This means in particular that the methods must be adapted to the
needs of the surgeons and the conditions of the surgical environment in order to provide
reliable assistance. There are particular requirements that have to be considered, including:

Computational Complexity. As outlined in Section 2.2 and 2.3, instrument tracking can
assist the surgeon pre-, intra- as well as post-operatively. During the intervention, it is
essential that the algorithm runs in real-time. Already a delay of a second would make the
tracker unsuitable for many applications, e.g. augmented reality or intra-operative guidance.
Additionally, the computational footprint of the algorithm should be low as the computational
resources in the operation theatre are limited. This is especially important if the instrument
tracking is employed as an input for another algorithm. For the assistance before or after
the surgery, these constraints are not as strict. Of course it is desirable for the physician or
another algorithm to receive the tracking results as soon as possible. However, this can be in
the range from seconds or even hours in case of reviewing for surgical training. Furthermore,
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Fig. 3.6. Examples of image peculiarities. The surgical image data poses various challenges for image tracking.
One of the main difficulties arises from the fact that the image data in such a setting captures only a very
restricted field of view of the highly dynamic environment. Especially the non-static directional light
source complicates the task by creating shadows, uneven illumination and specular reflections in the
images. Endoscopic Surgery Images are from the Endovis Challenge 2015 [74].

the equipment is not constrained by the sterile conditions within the operating room and can
be modified or extended.

Performance. The tracking algorithm has to meet the precision and accuracy requirements of
the application. An error of several pixels for tracking a reference point would not impact the
detection of a general instrument movement. But the same error would make it infeasible to
reposition the iOCT to the instrument tips. Furthermore, the tracker has to be robust to the
various peculiarities that can appear in the surgical images. The available labelled training
data in the addressed medical fields is limited and usually does not cover all the variations
that can occur during a surgery. Consequently, the tracker has to have a high generalization
capability to unseen situations, so that the surgeon can rely on its performance.

Workflow compatibility. The aim is to assist the physician during the operation and smoothen
the workflow. For this, the tracking algorithm has to be designed in a supportive and not a
distractive way, e.g. a surgeon clicking on the screen for the initialization of the tracker is not
acceptable. Consequently, the user-interaction has to be restricted to a minimum to modify
the surgery workflow as little as possible. It would be desirable if the tracking algorithm is
autonomous, including initialization at the beginning of the surgery and re-initialization in
case of tracking failure.

Fulfilling the aforementioned requirements already excludes several of the traditional Com-
puter Vision approaches [77]. The set of potential tracking solutions is further reduced by the
challenges posed by the characteristics of the surgical image data. As explained in Section 2.1,
the video only captures a restricted field of view of a highly dynamic environment with no
reliable static components. In Endoscopic surgery, the camera is handheld by an assistant
and does not retain a constant angle towards the surgical scene. The directional light source
that is fixed on the endoscopic camera creates specular reflections on the wet soft tissue and
the metallic surface of the instrument. The anatomical background is usually soft tissue and
has therefore a highly deformable appearance that changes with the angle or the instrument
manipulation. In Vitreoretinal Surgery, on the other hand, only small tissue deformations take
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place and the camera angle is relatively fixed by the microscope and the pupillary opening.
Although the movement of the patient’s eye is inhibited, the background is not completely
static. A complicating issue for instrument tracking in this surgery is that the illumination is
not fixed to the camera. It is a handheld endoilluminator that the surgeon actively uses for
estimating the depth of the observed scene. The instrument is between this light source and
the retina and therefore casts shadows that change with the respective angle. Another major
difficulty in this surgery is that the high magnification leads to an almost co-planar anatomy
and usually only a small part of the observed scene is focused. Consequently, major parts
of the image may show a severe blurring effect. For both types of surgeries, the instrument
is metallic and therefore a texture-less object that is difficult to describe with feature repre-
sentations Φ. The illumination variations, caused by either the moving camera or the light
source, complicate the tracking task even further by creating uneven and specular reflections
or violating the static light assumption of traditional Computer Vision approaches such as
optical flow. Additionally, challenges that arise for all visual tracking approaches have to be
taken into consideration, e.g. that the observed scene is only a 2D projection of the 3D world
and therefore inherently contains a loss of information.
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4Related Work

Instrument tracking for medical interventions has been an active field of research in recent
years and is still growing. This chapter provides an extract of published methods related to this
dissertation. It should be noted that this includes publications that inspired our contributions
as well as alternative approaches that were developed simultaneously to our work by other
authors.

There are various ways to categorize methods of this field as summarized by Bouget et al. [90],
e.g. feature representation, model learning strategy or use of prior knowledge. However,
it is difficult to state that an approach is the overall best method since the requirements
are highly application-dependent. Different object representations, for example, lead to a
different complexity of the tracking problem. For some applications, a bounding box around
the instrument tip may be sufficient, while for others a precise 2D pose estimation is necessary.
Methods that target the same instrument representation and follow the same validation
strategy on a dataset can be compared in terms of the metrics discussed in Section 3.4.
However, better results according to the metric may result in higher computational cost, which
would be a disadvantage if the visual tracking was intended as an input for a subsequent
algorithm.

Following the arguments in the introductory chapters, the methods will be differentiated
according to their instrument representation, i.e. their tracking objective. A chronological
overview of the mentioned publications is depicted in table 4.1.

Localization (coarse):
A coarse localization of the instrument such as a bounding box or a single reference point
can convey the general movement of the tool. In an early work, Reiter et al.(2010) [91]
present a temporal tracker that provides a box around a user-defined interest point based
on online learning. The tracker propagates information of previous frames to initiate a
coarse segmentation in the current frame using an online generated database of tracked
gradient-based features. This estimation is refined by current features that are integrated
via a likelihood map to address the issue of dynamically-changing environment. A year later,
Richa et al.(2011) [92] presented an alternative approach for regressing a bounding box that
is based on weighted mutual information of stereo images. In the first step, the instrument
tip position is approximated by a brute force search using the mutual color information of
the stereo image. In the subsequent step, a gradient-based tracking iteratively optimises this
estimation. One of the first data-driven approaches for coarse localization in terms of one
reference point was presented by Sznitman et al.(2012) [88]. They suggested to combine a
simple gradient-based tracking with a deformable detector. In the first step, the gradient-based
tracker provides a rough location of the instrument, so that the detector only has to consider a
reduced region for predicting the presence of an instrument. The detector itself is based on an
AdaBoost learning that uses deformable features and was extended with a Gaussian Pyramid
to address the multi-scale problem. The final instrument position is estimated by a spatial and
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score weighting of the detector responses. In a work by Li et al.(2014) [93] an online learning
approach was presented that combines temporal tracking and frame-to-frame detection of
a user-defined reference point. A median flow tracker provides a bounding box around the
tracked point to a three-stage detector. The detector is learned online and determines the
precise reference point location via a combination of variance filter, Random Forest for pixel
wise classification and 1-Nearest-Neighbour classifier. One of the latest methods regarding
coarse localization in terms of bounding boxes was published for detecting the use of specific
tools. Sarikaya et al.(2017) [94] proposed a Region Proposal Network (RPN) using the RGB
image and the optical flow as input. The estimated bounding boxes are fed in a subsequent
network for instrument classification.

Contour or Segmentation:
The extent of an instrument in the image can also be expressed by its contour or segmenta-
tion. One of the most common approaches consists of employing this representation as an
intermediate step for estimating its 3D world coordinates [80, 95, 96, 97, 98]. Pezzementi et
al.(2009) [95] estimated a binary segmentation for evaluating its consistency with a rendered
3D model of the instrument using color and texture features. A couple of years later, Baek et
al.(2012) [96] employed the likelihood of an instrument contour measured by edge distance
transform to evaluate its similarity of a projected 3D CAD model. The contour detection
was realized by a combined edge distance generation using a canny detection algorithm on
hue-saturation (H-S) color space and the intensity image. The particle filtering in the second
step allowed to estimate the full state of the forceps. Shortly after, Reiter et al.(2013) [97]
suggested a kinematic template matching method using gradient information of the instru-
ment. Their idea was to learn from virtual renderings to match the kinematically-generated
templates to the current image information. The template was hereby constructed by gra-
dient information of a LINE detector. Instead of using sparse contour information, Allan et
al.(2013) [98] suggested to employ Random Forest for supervised classification into binary
instrument/background classes for every pixel. As a feature representation they chose several
different colour spaces and structural descriptors. In a subsequent step they used this informa-
tion to initialize a minimisation algorithm for 5DOF pose estimation of a level set framework.
Reducing the parameter space, Zhou et al.(2014) [99] presented a temporal method based
on standard Kalman filter and extended Kalman filter that estimates the contour and center
line of the instrument. For every new frame, a Canny Edge filter provides candidate lines
that are filtered by the previous Kalman state of the center line. In an alternative approach,
Bouget et al.(2015) [100] detected the instrument contour via its local appearance and global
shape. In the first step, the method assigns each pixel either to instrument or background
based on the local appearance via a boosted decision forest. Subsequently, the global shape
of the instrument is enforced via a tool-specific shape template. In the same year, Allan et
al.(2015) [80] proposed to combine detection with temporal regularization. In their work,
they segmented the image into multiple classes with random forest using using color based
feature set of Hue, Saturation, Opponent 1 and Opponent 2. This semantic segmentation
can then be used for statistical region based 3D pose estimation and is refined based on
frame-to-frame tracking using the Lucas-Kanade method. However, also the improvement of
segmentation accuracy itself has been of interest in recent years, especially in combination
with deep learning. Garcia Peraza Herrera et al.(2016) [101] presented a FCN-based approach
for binary segmentation of surgical instruments in minimally invasive surgery. To achieve the
real-time requirement, they proposed to use the deep learning approach only for every couple
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of frames. A continuous tracking is realised by propagating the segmentation with optical
flow. In another work, Garcia Peraza Herrera et al.(2017) [102] reduced the computational
complexity by including a multi-scale constraint inside the network architecture, either by
cascaded aggregation of predictions or holistically nested architecture. Thereby, the number
of parameters is reduced and real-time performance is enabled without optical flow. An
alternative approach was presented by Pakhomov et al.(2017) [103] for multi-class instrument
segmentation using deep residual learning with dilated convolutions.

Articulated object:
Another approach is to interpret the instrument as an articulated object with several reference
points or parts. In case of a cylindric needle, the instrument can be parameterized as a line.
Sznitman et al.(2011) [104] suggested to describe the tool in this case via the entry point of
the instrument in the image, its angle to the image boundary and its length. The detection and
tracking of the instrument can then be modelled as a single sequential entropy minimization
problem, which they solve via Active Testing (AT). Reiter et al.(2012) [105] suggested to detect
several reference points on an instrument with a manipulator by learning the appearances of
natural landmarks with a multi-class classifier. The region of interest is first reduced to metallic
parts of the image via a Gaussian Mixture Model. In the second step, the remaining pixels are
classified with a Randomized Tree using the Region Covariance Descriptor. The final position
of the reference points is determined for every frame via stereo matching of the feature tracks
using normalized cross-correlation along the epipolar line and triangulation. However, this
approach was not realizable in real-time at this point. To reduce the computational cost,
Sznitman et al.(2014) [106] suggested to detect the instrument parts with an early stopping
scheme. The reference regions are identified by a multiclass ensemble of gradient boosted
regression trees. For every class, the early-stopping algorithm determines whether further
computation is needed based on a probabilistic model. The relationship between the reference
points on the instrument can also be represented by a Conditional Random Field, as presented
by Alsheakhali et al.(2016) [107]. More recently, it was suggested to leverage the power
of deep learning for the 2D pose estimation of the instrument. Kurmann [108] suggested
to modify an established CNN architecture (U-Net) to simultaneously recognize the present
instruments and regress their reference point positions. As in the original architecture, the
feature layers are arranged in a U-shape by down- and upsampling operations and linked via
skip connections. The instrument recognition classification-network separates from the lowest
layer of the network. For the regression of the 2D locations, the features are upsampled to
produce one 2D probability map per keypoint. In a single feed-forward pass both objectives are
learned simultaneously by combining the respective losses. An alternative deep learning-based
approach was presented by Du et al.(2018) [109]. They propose to combine a two-staged
convolutional network with a graph-based parsing algorithm. First, a detection network
segments the rough keypoint locations together with their associated connections. In the
second step, this information serves as a spatial regularization in the subsequent regression
network. The final prediction is obtained by eliminating outliers and bipartite matching.
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Tab. 4.1. Overview of related work. Relevant recent research is listed chronologically and categorized according
to their visual tracking algorithm, e.g. the object representation refers to the tracked object description
in the image, which may not correspond to the overall target (3D coordinates). The horizontal, dashed
line separates previous related work and publications that have been published simultaneously to the
work presented in this dissertation. It should be noted that the real-time requirement is application
and hardware dependent. Consequently, it should be interpreted as soft categorization (here: at least
10 fps). If a machine-learning algorithm was presented for the visual tracking, it can be distinguished
whether it has been tested in a cross-validation setting. Abbreviations: RM = Vitreoretinal Microsurgery
(Section 2.1.1), Endo = Endoscopic surgery (Section 2.1.2), n.s = not stated, n.a = not applicable, RF =
Random Forest, CNN = Convolutional Neural Network, FCN = Fully Convolutional Network, FCRN =
Fully Convolutional Residual Network.

Publication Surgery Object Represen-
tation

Tracking In-Vivo
Data

Real-
Time

ML-Approach Cross-
Val.

Pezzementi et al.(2009) [95] RM &
Endo

segmentation
(binary)

Detection × × histogram matching or
Gaussian mixture models

×

Reiter et al.(2010) [91] Endo segmentation
(binary)

Temporal X X no n.a.

Sznitman et al.(2011) [104] RM line parametriza-
tion

Temporal &
Detection

× X Active Testing ×

Richa et al.(2011) [92] RM bounding box Temporal X n.s. no n.a.

Reiter et al.(2012) [105] Endo reference points
(multiple)

Detection × × Randomized Trees ×

Baek et al.(2012) [96] RM &
Endo

contour Detection × X no n.a.

Sznitman et al.(2012) [88] RM &
Endo

reference point
(single)

Temporal &
Detection

X X AdaBoost X

Reiter et al.(2013) [97] Endo gradient tem-
plate

Detection X X template matching ×

Allan et al.(2013) [98] Endo segmentation
(binary)

Detection X × RF ×

Li et al.(2014) [93] RM &
Endo

reference point
(single)

Temporal &
Detection

X X online learning n.a.

Sznitman et al.(2014) [106] RM &
Endo

reference point
(multiple)

Detection X X RF ×

Zhou et al.(2014) [99] Endo line parametriza-
tion

Temporal X n.s. no n.a.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Bouget et al.(2015) [100] Endo contour Detection X X DF & SVM ×

Allan et al.(2015) [80] Endo segmentation
(multi)

Detection &
Temporal

X × RF ×

Garcia Peraza Herrera et
al.(2016) [101]

Endo segmentation
(binary)

Temporal &
Detection

X X FCN ×

Alsheakhali et al.(2016) [107] RM &
Endo

reference points
(multiple)

Detection X X Conditional Random
Field

×

Garcia Peraza Herrera et
al.(2017) [102]

Endo segmentation
(binary)

Temporal &
Detection

X X FCN ×

Sarikaya et al.(2017) [94] Endo bounding-box Temporal &
Detection

× X CNN X

Pakhomov et al.(2017) [103] Endo segmentation
(multi-class)

Detection × n.s. FCRN n.s.

Kurmann et al.(2017) [108] RM &
Endo

reference point
(multiple)

Detection X × CNN X

Du et al.(2018) [109] RM &
Endo

reference point
(multiple)

Detection X × FCN n.s.
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5Summary of Contributions

Despite recent advances, the vision-based tracking of surgical tools in in-vivo scenarios remains
challenging. The surgery-specific peculiarities such the high level of noise and the limited
field of view create an unusual Computer Vision problem, as discussed in Section 3.5. The
task is particularly difficult due to the hand-held directional light and the resulting difficulties,
such as reflections on the metal instrument and strong shadows. Prior to the contributions
discussed in this dissertation, most approaches relied on explicit modelling of the tracking
problem (see Chapter 4). To approximate the function

Yt = f(Φ
(
{Is}t2s=t1

)
) = f(Xt),

as defined in Chapter 3.1, we will build on machine learning approaches that have shown to
successfully address related problems in general Computer Vision. Instead of projecting a 3D
model or manually describing the instrument appearance, we will let the method learn from
available data and statistically approximate the function. In all our contributions, we model
the instrument as an articulated object with 2D reference points. For Vitreoretinal Surgery,
the instrument representation is defined as Y = (C,L,R)> ∈ R3×2, whereby C is the central
natural landmark of the instrument and L or R are left or right tip of the tool, respectively.
For endoscopic surgery, the tracked reference points are defined by the provided ground truth.
All presented methods achieve real-time performance and are evaluated in a cross-validation
setup.

In the following, a summary of the proposed Feed-Forward Pipeline (Section 5.1), Robust
Pipeline (Section 5.2) and End-to-End Pipeline (Section 5.3) will be presented. For more
details and results, please have a look at the original publications that are included in the
Appendix A.

Tab. 5.1. Overview of major contributions. Abbreviations: RM = Retinal Microsurgery (Section 2.1.1), Endo =
Endoscopic surgery (Section 2.1.2)

Publication Surgery Object Representation Tracking In-Vivo
Data

Real-
Time

ML-Approach Cross-
Val.

Rieke et al.(2015) [10] RM reference points (multi) Temporal &
Detection

X X RF (offline) X

Rieke et al.(2016) [7] RM &
Endo

reference points (multi) Temporal &
Detection

X X RF (offline) X

Rieke et al.(2016) [6] RM reference points (multi) Temporal &
Detection

X X RF (offline and online) X

Rieke and Laina et al.(2017) [3] RM &
Endo

reference points (multi) &
segmentation

Detection X X FCRN X
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?

Fig. 5.1. Need for template tracking. Mainly the region around the tracked instrument provides reliable clues
about the relative position to the 2D reference points.

5.1 Feed-Forward Pipeline

Given an image, the aim is to provide the 2D locations of the reference points that describe
the instrument movement. The gradient of an image has proven to be a key information [88,
96, 97, 99, 106] for this task. However, computing advanced, gradient-based feature represen-
tations Φ on the entire image space is computationally expensive and may be misleading. As
depicted in Figure 5.1, mainly the region around the tracked instrument provides reliable clues
about the precise position of the 2D reference points. Therefore, we suggest a Feed-Forward
Pipeline (Figure 5.2), in which we first reduce the search space by a template tracker before
we estimate the instruments’ 2D pose. For both steps, we build on the machine learning
technique of Random Forests (RF) (Chapter 3.3.1), which have shown to be reliable for noisy
data.

5.1.1 Surgical Tool Tracking and Pose Estimation in Retinal
Microsurgery (MICCAI 2015)

In this work [10], we propose a method that breaks down the difficulty into two tasks:
template tracking and 2D pose estimation. These two steps are combined into a Feed-Forward
pipeline in order to achieve the overall goal of localizing the instrument reference points for
every frame in real-time.

Temporal Tracking: The objective of the tracker is to determine the 2D translation vector δµ
that updates the location of the bounding box IB around the instrument tip for the current
frame It, given an image sequence {Ii}ti=0. In order to keep computational cost low for
this step, the tracker relies on the readily available image intensity information as feature
representation Φ. For this, ns sample points {xst}

ns
s=1 are randomly selected within the template,

such that it can be described using the intensity vector it = [It(xst )]
ns
s=1. For determining the

2D translation vector δµ we employ intensities in the current frame it = [It(xst−1)]nss=1 using
the location of sample points from the previous frame {xst−1}

ns
s=1. Differently from [110],

we propose to correlate multiple templates in order to compensate for the motion of the
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Fig. 5.2. Feed-Forward Pipeline. In this approach, we introduce a instrument tracking method based a dual
Random Forest with a feed-forward connection. A multi-template tracker determines the region of
interest around the instrument tip by relating the movement of the instrument to the induced changes on
the image intensities. Within this bounding box, a gradient-based pose estimation infers the instrument
reference points.

instrument tip as it opens and closes, as well as for the strong illumination changes and
photometric distortions that are typically present during the surgery. Consequently, we set the
input X = δi, the parameters Y = δµ and the function H(·) as the standard deviation for the
Random Forest. The leaves store the mean and standard deviation of the parameters that are
directed to that node.

2D Pose Estimation: Given a bounding box IB ⊂ It around the tool tip fed forward from the
tracking step, the objective of the pose estimation algorithm is to determine the 2D positions
of the reference points. As a feature representation Φ, and therefore as input space X, we
use the Histogram of Oriented Gradients (HOG) features of randomly selected image patches
within the template. The output space Y are the patch-associated offsets in the template
coordinate system. The binary split function θ divides the samples based on a threshold in one
dimension of X. The function H(·) is chosen to be the sum-of-squared-differences. During the
prediction, every tree provides a vote for the offset from the patch location to all 2D reference
point locations. In order to combine the votes and to find the most probable location of the
joint, a greedy dense-window algorithm is applied, as in [111], and back projected to the
image coordinate system. The final output of the pose estimation step are the 2D coordinates
of each reference point in Y.

At the time of publication, the proposed method outperformed state-of-the-art instrument
tracking approaches in the field of Vitreoretinal Surgery and was honoured with the Young
Scientist Award at the International Conference on Medical Image Computing and Computer
Assisted Intervention in 2015.

5.1.2 Real-Time Localization of Articulated Surgical Instruments in
Retinal Microsurgery (Med. Image Anal. 2016)

In this work [7], we extended and extensively evaluated the method [10] presented in
Section 5.1.1. Instead of using only the grayscale information, as in [10], the tracker employs
the RGB space, where the difference between the metallic instrument and the background
is more visible. The dataset of in-vivo Vitreoretinal Surgery sequences was extended to 18
videos, which allowed to evaluate the performance of the algorithm regarding generalization
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Fig. 5.3. Robust Pipeline. Building on the offline-learned dual RF of the feed-forward pipeline, we can develop a
robust pipeline by adapting the offline model to online information while tracking and by “closing the
loop” between the tracking and 2D pose estimation.

to different tool types and different background conditions. The results of the proposed
method on this novel dataset are compared to the one of an online tracker TLD [112] and the
offline learned FPBC [106]. Another main contribution is the introduction of a new metric
(KBB, Section 3.4) that accounts for the variations in instrument size and image resolutions.
Furthermore, we show that the proposed method is applicable to laparoscopic instrument
sequences.

5.2 Robust Pipeline

The Feed-Forward Pipeline (Section 5.1) allows to track the instrument reference points with
high accuracy in real-time on a CPU. However, both Random Forests are learned offline and
therefore rely on the information provided in the training dataset. Another disadvantage
is that the data is fed forward and therefore the pose estimation depends on the output of
the tracker. The main idea of the robust pipeline is twofold: first, the two RF can benefit
from each other’s strength during testing and thereby increase the accuracy and robustness
of the pipeline. By defining the template based on the reference points, we can fuse the
complementary color-based and gradient-based predictions in a synergical way. Secondly, we
suggest to adapt the RF online to incorporate the appearance changes learned by the trees
with real photometric distortions witnessed at test time.

5.2.1 Real-Time Online Adaption for Robust Instrument Tracking and
Pose Estimation (MICCAI 2016)

This work [6] advances the dual-Random Forest method presented in [10] to a robust pipeline
by adapting the offline model to online information while tracking and by “closing the
loop” between the tracking and 2D pose estimation. For the template tracking and 2D pose
estimation components, we use the RF-based approach as described in Section 5.1. The
template tracking employs the intensity information as feature representation. In addition,
we assume a piecewise constant velocity from consecutive frames, so that the input to the
forest is a feature vector concatenating the intensity values on the current location of the
template It(xp) with a velocity vector vt−1. The 2D pose estimation as described in Section 5.1
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employs gradient information and considers every frame as a still image, although the surgical
movement is usually continuous. Therefore differently from [10], we enforce a temporal-
spatial relationship for the predicted reference point locations via a Kalman filter [113] using
the 2D location in the frame coordinate system and their frame-to-frame velocity. Both feature
representations are valuable in the context of Vitreoretinal Surgery: the utilized tool is metallic,
and therefore many pixels on shaft and manipulator of the instrument share the same color.
Consequently, the gradient information tends to be a more unique representation if we want
to regress the location of a specific point on the instrument. However, if blur or motion
artefacts are present in the image this gradient information vanishes and it becomes difficult
to distinguish between the instrument and the background. In this case, the color information
can still provide valuable information.

Closed Loop via Integrator: By defining the tracked template as a similarity transform on
the reference points, the prediction of the gradient-based pose RF can directly be connected to
the prediction of the intensity-based template tracker RF. Depending on the certainty of the
separate Random Forests, we define the scale sF and the translation tF of the joint similarity
transform as the weighted average

sF = sT · σP + sP · σT
σT + σP

and tF = tT · σP + tP · σT
σT + σP

,

where σT and σP are the average standard deviation of the tracking prediction and pose
prediction, respectively, and the tF is set to be greater than or equal to the initial translation.
If σT is higher than a threshold τσ, the tracker transmits the previous location of the template,
which is subsequently corrected by the similarity transform of the predicted pose.

Online Adaptation: To address the issue of generalized modelling, we propose to perform
an online learning strategy in addition to the offline learning of the tracker. The main aim is
to stabilize the tracker by adapting its forest to the specific conditions at hand. Depending
on the confidence evaluated by the aforementioned Integrator, the current template sample
is forwarded to a separate thread. By imposing random synthetic transformations on the
bounding boxes that enclose the templates, we can build an online learning dataset with pairs
of feature and translation vectors. The resulting trees are incrementally added to the existing
forest, so that the prediction for the succeeding frames include both the generalized and
the environment-specific trees. The offline learning - online adaption leads to a substantial
improvement regarding the generalization to scenarios that are not captured in the training
dataset.

The performance of the proposed method is evaluated on two different in-vivo RM datasets
and demonstrates remarkable advantages with respect to the state of the art in terms of
robustness and generalization.

5.3 End-to-End Pipeline

For both the Feed-Forward (Section 5.1) and Robust Pipeline (Section 5.2) the feature rep-
resentation Φ was explicitly modelled via either color information or HOG features. In the
End-to-End Pipeline (Figure 5.4) we go one step further and allow the algorithm to learn a
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Fig. 5.4. End-to-End Pipeline. Instead of using explicit feature representations, we leverage deep learning
techniques to simultaneously regress segmentation and 2D pose of the instrument. The network
architecture is a fully convolutional neural network with skip and residual connections.

suitable feature representation by leveraging deep learning techniques. In other words, we
learn the direct mapping Y = f(It) instead of Y = f(Φ (It)).

The targeted instrument representation Y is based on the following observation: As outlined in
Section 4, two-step methods for reference point tracking can employ instrument segmentation
either as pre- or as post-processing step. This suggests that tracking of an instrument landmark
and its segmentation are not only dependent, but indeed inter-dependent. On the one hand,
the instrument reference point can only be within the instrument segmentation. On the other
hand, the reference points indicate the moving parts of the instrument and therefore the pixels
that are most difficult to classify. So instead of carrying out the objectives as two subsequent
pipeline stages, we propose to perform instrument segmentation and 2D pose estimation
simultaneously, in a unified deep learning approach.

5.3.1 Concurrent Segmentation and Localization for Tracking of
Surgical Instruments (MICCAI 2017)

Regressing the locations of the reference points corresponds to estimating a set of n 2D
coordinates (Yref ∈ Rn×2). A segmentation of the image with width w and height h into
c classes, however, is represented by YS ∈ Rw×h×c, and therefore lies in a solution space
with completely different dimensionality. In this work [3], we show that reformulating the
pose estimation task as a heatmap regression allows for representing semantic segmentation
and localization with equal dimensionality. As a consequence the objectives can leverage
their spatial dependency and facilitate simultaneous learning. Similar to established fully
convolutional (FCN) architectures, it consists of a compressing or encoding path and an
expanding or decoding path.

Network architecture:
Encoder: For the compressing part of the three proposed models, we employ ResNet-50 [85],
a state-of-the-art architecture that achieves top performance in several Computer Vision tasks,
such as classification and object detection. It is composed of successive residual blocks, as
described in Section 3.3.2, and is pre-trained on ImageNet. Although deeper versions of
ResNet exist, we use the 50-layer variant to allow real-time performance during testing.
Decoder: Predicting an absolute target location is arbitrary and ignores image context. Instead,
we regress a heatmap for each tracked landmark in the proposed model. It is created by apply-
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ing a Gaussian kernel to the reference point ground truth position and therefore represents a
confidence of being close to the actual location of the tracked point. By having the same size
as the segmentation, they can explicitly share weights over the entire network. The decoder
part of the network consists of stacked up-sampling layers with residual connections [114].
Connections: We further enhance the encoder-decoder architecture with long-range skip con-
nections that sum lower-level feature maps from the encoding into the decoding stage. Finally,
we enforce a strong dependency of the two tasks by only separating them at the very end. The
predicted segmentation scores are concatenated before the softmax operation to the last set of
feature maps as an auxiliary means for guiding the location heatmaps.

Training: Given an image X ∈ Rw×h×3, we denote a training sample as (X,YS , Yref ), where
Yref ∈ Rn×2 refers to the 2D coordinates of n tracked landmarks and YS ∈ Rw

2 ×
h
2×c represents

the semantic segmentation for c labels. The overall loss that combines both objectives can
then be defined by:

lCSL = lS(ỸS , YS) + lref (Ỹref , Yref ) (5.1)

with

lS(ỸS , YS) = − 1
wh

∑w
x=1

∑h
y=1

∑c
j=1 YS(x, y, j) log

(
eỸS(x,y,j)∑c

k=1
eỸS(x,y,k)

)
and (5.2)

lref (Ỹref , Yref ) = λH
n

∑n
i=1
∑w
x=1

∑h
y=1 ||

1√
2πσ2 e

−
||yi−(x,y)T ||22

2σ2 − ỹ∗x,y,i||22 (5.3)

Testing: The point of maximum confidence in each predicted heatmap ỹ∗i ∈ Rw
2 ×

h
2×n is used

as the location of the respective instrument reference point. Notably, a high variance in the
predicted map can indicate a missing or misdetected reference point.

The resulting model is trained jointly as well as end-to-end for both tasks, relying only on
contextual information. It is important to notice that it is capable of reaching both objectives
efficiently without requiring any post-processing technique. At the time of publication, this
was the first approach employing deep learning for surgical instrument tracking by predicting
segmentation and localization simultaneously, and it is successful despite limited data. The
method was evaluated for both Vitreoretinal and Endoscopic surgery and outperformed
application-specific algorithms as well as other popular deep learning architectures.
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6Summary and Findings

This dissertation explored techniques for visual tracking of surgical instruments and introduced
novel approaches based on machine learning methods. In this chapter, I will summarize our
work and point out some of the most important findings.

The first part of this dissertation provides an introduction to the scientific problem and
motivates the need for instrument tracking. To that end, a detailed overview of the addressed
surgeries including the surgical setup, the characteristics and the major challenges was
provided. This allowed for an understanding for the respective difficulties and therefore the
need of assistance for the surgeon. The fact that the interventions are digitally recorded in
current clinical practice makes Computer Vision methods a natural direction for assisting the
surgeon during these complicate procedures. Finally, I outlined how Computer Vision can
support the surgeon in general and depicted in particular the potential impact of instrument
tracking in this context.

In the second part, I moved forward to visual tracking itself. The first chapter of this part
includes the essential techniques and considerations on which our contributions build upon. I
explained the concept of visual tracking and how the instrument can be represented for this
task. Furthermore, the fundamental principles for learning from data was provided, with
focus on Random Forest (RF) and Fully Convolutional Networks (FCN), as well as evaluation
methods for assessing the tracking performance regarding different object representations.
Finally, the requirements and challenges were outlined that arise from the application of the
developed method during the surgery as well as the distinctive image peculiarities which are
present in the respective surgical image sequences. The second chapter of this part provided
an overview of related work for visual instrument tracking, categorised according to the
instrument representation of choice. At the time of the first work presented in this dissertation,
various methods addressed the tracking problem either by explicit mathematical or rather low-
level statistical modelling. Only few approaches suggested a data-driven solution [88, 98, 106].
Building on the idea of statistically approximating the desired tracking function by learning
from data, we developed several machine-learning based approaches. In the first approach, we
suggested a Feed-Forward pipeline based on a dual RF. A temporal tracking algorithm employs
intensity values at random locations as features for the RF and regresses a bounding box
around the instrument manipulator. The subsequent 2D pose estimation detects the reference
points of the instrument by HOG features of random patches within this bounding box. The
method was extensively tested on both Vitreoretinal and Endoscopic surgery sequences and
outperformed state of the art in terms of reference point accuracy. The performance on
additional, not annotated in-vivo sequences was also qualitatively acceptable. We pushed
the method forward from the offline testing of surgical sequences on the computer to real
integration in the microscope of our industrial partner (Zeiss Meditec, Munich, Germany). As
an application we investigated the automatic positioning of the iOCT [8]. However, when
surgeons tested our method in an experimental setup with porcine eyes, the algorithm was
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not as robust as the evaluation on the annotated human eye dataset suggested. One of the
reasons is that the Random Forests of the method are trained offline and therefore completely
rely on the information available in the training dataset.
To address this issue, we suggested an online adaptation in the robust pipeline. In this approach
we still make use of the available offline information to build the aforementioned dual RF,
but enhance the tracking forest online by incrementally adding new trees that are trained on
the current conditions. Another main contribution of this work was the combination of two
different RF outputs in a synergic way via a closed loop. By defining the tracked template based
on the reference points, we can feed back the 2D pose information and correct the temporal
tracking based on the confidence of the RF. This cooperative prediction in combination with
online adaptation lead to significant improvement in tracking accuracy when evaluated on
two different in-vivo Vitreoretinal datasets. As both feed-forward and robust pipeline require
an initialization of the temporal tracker, we further improved the methods by developing a fast
bounding-box localization and failure detection algorithm [4] that transforms the pipelines
into a fully automatic framework. It should be noted that to this end only an approximate
template detection is needed. For the feed-forward pipeline, the requirement is that the
reference points are included. For the robust pipeline, the template will be corrected after
the first frame by the RF of the pose estimation. The resulting framework was integrated in
the Zeiss microscope and tested on porcine eyes. Compared to the feed-forward pipeline, the
tracking was more reliable and was also able to withstand unseen illumination scenarios. An
inherent limitation of these pipelines lies in the statistical abstraction capacity of the Random
Forest and the need of explicit feature representation.
Therefore, we moved forward to more advanced machine learning methods and suggested
an end-to-end pipeline which allows to immediate tracking results based on a RGB image. By
leveraging recent deep learning techniques, suitable cues are learned indirectly and render
an explicit feature representation redundant. We further suggested to take advantage of the
interdependency between the reference points and segmentation of the instrument. To this end,
we reformulate the 2D pose estimation as a heatmap regression. The resulting deep learning
architecture is a fully convolutional neural network with residual and skip connections that
simultaneously regresses segmentation and reference points of the instrument. We evaluate
the performance of both instrument representations on a Vitreoretinal and a Endoscopic
Surgery dataset. Throughout the experiments our approach outperforms aforementioned
pipelines as well as other state-of-the-art methods. It is important to note that this pipeline is
a pure detection approach and does not employ any temporal information. Furthermore, it
represents an end-to-end approach which takes the image as an input and does not require an
initialisation. Consequently, this fully automated framework could directly be integrated in
the image processing pipeline of the surgery. However, in contrast to the feed-forward and
robust pipeline, it requires a GPU to achieve real-time performance.

In conclusion, we demonstrated both quantitatively and qualitatively that we can accurately
track surgical instruments based on machine learning methods. Our experiments and evalua-
tions are performed on ex-vivo and in-vivo datasets, including a variety of different instruments
and illumination conditions. All presented pipelines have also been evaluated in a cross-
validation setting to illustrate the generalization power and run in real-time. Every approach
comes with its own advantages and disadvantages, as discussed in this chapter. Although
these methods can achieve excellent accuracy, there are several possible extensions and future
directions that will be discussed in the following chapter.
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7Future Work and Discussion

The topic of visual instrument tracking has been an active field of research for many groups in
the past years and will become even more important in the future. With the expected future
evolution of surgery [13], instrument tracking will be a key component for enabling active
decision-support and computer-based surgical assistance. In this dissertation, I have presented
several real-time approaches that build on state-of-the-art machine learning techniques and
offer a multitude of possible future extensions.

To address the problem of limited diversity in the training data, we proposed a technique to
actively adapt to the illumination conditions during the surgery. To this end, we changed the
offline-learned Random Forest by incrementally adding online-learned trees to incorporate the
experienced appearance changes. Although not a major limitation, one of the disadvantages
of this technique is that the model thereby becomes wider and more complex with time.
A natural direction would be to investigate the potential of effective convergence testing.
However, this extension is not straightforward: By dropping the trees of the ensemble that do
not contribute to the prediction, we could keep the model to a predefined size. At the same
time, this could lead to an overfitting to the current scenario. The early-stopping criteria for
efficient online learning would have to consider both aspects.

In the end-to-end pipeline, we present a deep learning-based approach for instrument tracking,
which is computationally more expensive to train. Due to the real-time requirement, the
learning process is static and relies on the quality of the training set. A future direction
for this method could be to transfer the idea of online-adaption and develop a dynamic
learning approach for the networks [115, 116, 117, 118]. The problem of the limited training
data set could also be addressed by pre-training on simulated and rendered instrument
configurations and adapting to real surgery sequences by fine-tuning the network on a few
samples. Another direction would be to investigate the potential of temporal information for
complexity reduction of the tracking problem [101]. Our end-to-end pipeline is a detection
algorithm and does not make use of the fact that we are actually processing image sequences
and not still images. Furthermore, the stochastic problem could be simplified by integrating
knowledge about the instrument. In the presented approaches, we do not explicitly use the
fact that the instrument is usually a rigid object. By integrating the kinematic constraints into
the pipeline, the search space could be limited. Another possibility consists of leveraging the
fact that modern surgical setups provide stereo image systems. If we can track the instrument
in both images and establish their correspondence, we could estimate its 3D pose or enhance
the depth perception for the surgeon.

A further issue to be mentioned is that the level of abstraction of deep neural networks leads
to an impressive accuracy and applicability in many fields, but comes with the disadvantage
that the learned features or the reasoning are not directly interpretable by humans. Indeed,
the deep learning-based methods appear to be a black box [119]. Several works aimed at
understanding and visualizing the intrinsics of convolutional networks [120, 121, 122, 123].

49



This understanding is in particular important for medical applications. Not only because
physicians want to have an influence on the outcome, especially regarding diagnosis: in
the context of medical applications an unexpected failure can lead to severe harm for the
“end-user”, i.e. the patient. In the case of instrument tracking, however, the situation is slightly
different. For the surgeon, the method should be a black box in the sense that it should not
require any interaction and the surgeon also does not need to understand why the instrument
position was estimated at this location. As outlined in Section 2.3, the tracking information
itself is not of direct interest to the surgeon and is rather employed as intermediate step for
assistance. The algorithms should run in the background without any input from the surgeon
that would interrupt the surgical workflow. One essential requirement, however, is that the
method is a reliable blackbox. Depending on the application, the surgeon has to be able to
trust the result of the tracking, e.g. if the iOCT is positioned according to the instrument
location during membrane peeling. Consequently, the tracking quality has to reach a point
where the method is robust to various scenarios or provide a backup-solution in case of failure.
For a machine learning approach it is difficult to analyze its limits and determine the failure
situations. Even if a proposed method follows the same evaluation strategy on the same
dataset as another method, we can not necessarily deduce that a better reported performance
corresponds to a better robustness in general. Recent works have shown that networks can be
fooled even with modification of only a single pixel while achieving similar accuracy on the
same datasets [124, 125, 126]. These so-called adversarial attacks are of course constructed
and may not occur in a real surgeries. But they help to understand the behaviour and limits of
neural networks.

Currently, the U.S. Food and Drug Administration (FDA) states that a machine learning-
based method can only be considered for medical applications, if an extensive testing has
statistically proven the repeatability of the results [127]. A cross-validation, as performed
in this dissertation for all experiments, is an essential part of such an evaluation. However,
it can only verify the performance of a method based on the information that is captured
by the dataset. Unfortunately, the current publicly available datasets are quite limited and
do not reflect the entire range of possible illumination scenarios, instruments, etc. To really
leverage the power of deep learning and to provide statistical proof of general performance,
an extensive, broad-ranging dataset is necessary. One major step into this direction was
achieved in the field of Endoscopic Surgery with the publication of the dataset associated
with the EndoVis Challenge 2015 [74] and 2017 [128]. In the field of Vitreoretinal Surgery, a
dataset of comparable size is currently not available. I believe that an introduction of such a
shared database would considerably push forward future research for instrument tracking in
Vitreoretinal Surgery. The published datasets, such as the three sequences provided by [88],
are unfortunately already quite saturated in terms of the tracking performance, which makes
it difficult to demonstrate significant performance improvements of novel approaches.

I hope that the considerations and approaches presented in this dissertation will inspire the
development of new methods and promote further research. However, transferring these
technologies into clinical practice is challenging. I believe that future advances, not only in
the field for instrument tracking, are most fruitful in active exchange and collaboration with
both industrial and clinical partners. Surgical data science [13] is only at the beginning and I
believe that our work has contributed to a promising direction.
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Abstract. Retinal Microsurgery (RM) is performed with small surgi-
cal tools which are observed through a microscope. Real-time estimation
of the tool’s pose enables the application of various computer-assisted
techniques such as augmented reality, with the potential of improving
the clinical outcome. However, most existing methods are prone to fail
in in-vivo sequences due to partial occlusions, illumination and appear-
ance changes of the tool. To overcome these problems, we propose an
algorithm for simultaneous tool tracking and pose estimation that is in-
spired by state-of-the-art computer vision techniques. Specifically, we
introduce a method based on regression forests to track the tool tip and
to recover the tool’s articulated pose. To demonstrate the performance
of our algorithm, we evaluate on a dataset which comprises four real
surgery sequences, and compare with the state-of-the-art methods on a
publicly available dataset.

1 Introduction

Retinal Microsurgery (RM) is a delicate medical operation which requires ex-
tremely high handling precision of the utilized surgical instruments. Usually, the
visual control for the surgeon is restricted to a limited 2D field of view through a
microscope. Problems such as lens distortions and the lack of depth information
or haptic feedback complicate the procedures further. Recent research aimed at
assisting the surgeon by introducing smart imaging such as the Optical Coher-
ence Tomography (OCT) [1], which visualizes subretinal structure information.
In the current workflow, these devices have to be manually positioned on the
region of interest, which is usually close to the tool tip. The ability of extract-
ing the position of the surgical tool tip in real-time allows to carry out this
positioning automatically. Other applications that require tool tracking include
surgical motion analysis and visual servoing. The estimation of the articulated
pose of the tool rather than its position alone allows us to measure the size of the
anatomical structures in the video sequence. Additionally, it paves the way for
advanced augmented reality applications which provide, for example, proximity



information of the tool tips to the retina. Despite recent advances, the vision
based tracking of the tool tip’s location in in-vivo is still challenging, mainly due
to lighting variation and variable instrument appearances. Moreover, tracking
has to be real-time capable in order to be employed during a surgical procedure.
These challenges have been addressed with different approaches, including color-
based [2] and geometry-based methods [3–5]. Other relevant works [6–8] focus
on a specific tool model (e.g. vitrectomy or closed forceps). The learning-based
approach from Sznitman et al. [9] introduces the combination of a tool detec-
tor, which relies on deformable feature learning, and a simple gradient tracker.
Li et al. [10] present an instrument tracking method based on online learning.
Both methods [9, 10] achieve accurate results for in-vivo RM sequences and their
implementation runs at video frame-rate. However, the tracking is restricted to
the center joint of the surgical forceps and does not localize the two tips of
the instrument, which are extremely important for the surgeon. In contrast, the
learning-based method published by Pezzementi et al. [11] yields the pose of the
surgical tool, but relies on a high amount of labeled data in order to capture the
appearance changes of the instrument.

This paper introduces an alternative visual tracking approach that goes be-
yond phantom data. It can handle incomplete and noisy data by building on
regression forests to yield the positions of the tool tips as well as the center
point of the forceps in in-vivo RM sequences in real-time. First, the tracking
algorithm finds a bounding box around the tool tip by estimating the relation
between the instrument motion and changes induced in the image intensities.
Successively, the pose estimation localizes the points of interest within this re-
gion by evaluating a learned mapping between image patches and the articulated
pose. To the best of our knowledge, modeling the localization of articulated sur-
gical forceps as simultaneous tracking and pose estimation, is a novel approach
in real in-vivo microscopic surgery. Throughout experimental results, we demon-
strate how the proposed method is able to withstand challenging environments
characterized by variable illumination and noise, as well as to yield the pose of
various forceps types in real-time. A comparison with the state of the art on a
public benchmark demonstrates further the performance of our method.

LF RF

CF

(a) Learning Dataset (b) Tool Tip Tracking (c) Pose Estimation

Fig. 1: Left: Learning set with various templates including open and closed for-
ceps. Right: Tracking in the frame and pose estimation within the reduced region.



2 Proposed Method

The overall goal is to localize the three joint points of the forceps for every
frame in real-time. As the image quality is poor in general, tracking the three
points independently is prone to fail. We propose a method that breaks down the
difficulty into two separate tasks. Our pipeline begins with a template tracking
algorithm (Sec. 2.2) that estimates a bounding box around the tool tip in the
current frame. In the second step, a pose estimation algorithm (Sec. 2.3) localizes
the three points of interest within this region. Both algorithms are based on
regression forests (Sec. 2.1). In case of tracking, the objective is to regress the
location of the bounding box, while during pose estimation the task is to regress
the points of interest. The typical input and output data of the entire algorithm
is shown in Fig. 1.

2.1 Regression Forest

From a generic input X and output Y, the regression forest is used to learn the
relation of X and Y such that, given the input X, the forest can predict the
output Y. Every tree of the forest is defined by a set of branches and leaves. At
each branch, a binary splitting function θ determines if a training sample of X
goes to the left Pl or right Pr subset of samples. During training the splitting
functions are selected in a way that maximizes the information gain g(θ) by
optimally splitting the training samples of the node. The information gain is
given as:

g(θ) = H(P )−
∑

i∈{l,r}

|Pi(θ)|
|P | H(Pi(θ)), (1)

where H(·) is the entropy. Splitting aims to divide the learning dataset into
smaller subsets through X while optimizing for Y by making the parameters of
the individual subsets more coherent. Based on the above rule, the tree grows
by iteratively applying the same splitting process and stops when the number
of samples |P| is less than a threshold, the best information gain is less than
a threshold or the maximum depth is reached. All final nodes are considered
as leaves and store the prediction, i.e. a statistical representation of all Y that
reached this node. The same scheme is followed for a number of trees in order to
build a forest. During prediction, the branches look at the splitting function to
navigate a sample of X towards the left or right child until it reaches a leaf that
gives the corresponding prediction. After taking the predictions from different
trees, an average prediction is computed as the final output.

2.2 Tracking

Given a sequence of images {It}nt
t=0 = {I0, I1, . . . , Int

}, the proposed tracking
approach learns from the initial image I0 — where we assume to be given a rect-
angular template around the tool tip — and then propagates the learned model
of the template in the following frames. In more detail, within such template,



ns sample points {xs0}ns
s=1 are randomly selected such that the template can be

described using the intensity vector i0 = [I0(xs0)]ns
s=1. The objective of frame-to-

frame tracking is to find the 2D translation vector δµ that updates the location
of the tool based on the intensities in the current frame it = [It(x

s
t−1)]ns

s=1 using
the location of sample points from the previous frame {xst−1}ns

s=1. The tracker [12]
learns the relation of the changes in the intensities δi = it − i0 and the transfor-
mation parameters δµ. To model the structure of the forest based on Sec. 2.1,
we set the input X = δi, the parameters Y = δµ and the function H(·) as the
standard deviation, while the leaves store the mean and standard deviation of
the parameters that arrive on that node. It is noteworthy to mention that since
i0 is constant and the branch only compares an index of the vector δi, we can
simplify the forests by learning the relation of i and δµ instead of δi and δµ.
This enables the tracker to directly look at the intensities i, without explicitly
taking into account the intensities of the template i0. This brings in an important
benefit, since it allows the tracker to alleviate from the restriction of tracking a
single template, and to use multiple templates within the same forests. There-
fore, differently from [12], we propose here to correlate multiple templates to
compensate for the motion of the tool tip as it opens and closes, as well as for
the strong illumination changes and photometric distortions that are typically
present in such working conditions. Nevertheless, the proposed approach is still
able to yield an efficiency of less than 2 ms per frame, using only one CPU core.
To compensate for a possible loss in tracking, we impose a confidence measure
using the average standard deviation of the predicted leaves from different trees
of the forest. During learning, a tree recursively splits the dataset into two sub-
sets such that the parameters in each subset have a lower standard deviation.
Henceforth, a confident prediction must have an average standard deviation less
than a threshold τσ. If the prediction is confident, the location of the template
is updated using δµ; otherwise, its previous location is propagated to the next
frame.

2.3 Pose Estimation

Given the bounding box IB ⊂ It around the tool tip from the tracking, the pose
estimation algorithm localizes three joints within this region. By considering the
surgical tool as an articulated object, we can transform the problem of localizing
the tool parts into a task that was successfully addressed in the area of human
pose estimation [13], which can predict the pose in very challenging scenarios
with occlusion and noisy data. In order to integrate this method in the tool pose
estimation, we define the set of joints as the tip of the left part of the fork (LF),
the tip of the right part of the fork (RF) and the connecting center part of the
fork (CF) (compare Fig. 1): Y = {LF,RF,CF} ⊂ R2×3. As the input space for
the tree, we set X to be the HOG features of randomly selected image patches
with associated joint offsets. The binary split function θ divides the samples
based on a threshold in one dimension of X. The function H(·) is chosen to be
the sum-of-squared-differences. As a result, the offsets of all instrument joints
y ∈ Y are stored in each leaf of each tree. During the prediction, image patches
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Fig. 2: Results for each sequence of the public dataset, when learned and tested
on separate sequences, in terms of Threshold Score, as performed in [10]. Top: a
qualitative example of detected bounding box and tool pose for each sequence.

are extracted from random pixel positions within the bounding box IB . In order
to combine the votes of the different trees and to find the most probable location
of the joint, a greedy dense-window algorithm is applied, as in [13]. The final
output of the pose estimation step are the 2D coordinates of each joint in Y.

3 Experiments and Results

The experimental validation of the proposed algorithm is carried out on two dif-
ferent Retina Microsurgery (RM) datasets: the first one, referred to as the public
dataset [9], is a fully annotated dataset of three different sequences of in-vivo
vitreoretinal surgery. It comprises 1171 images with a resolution of 640x480 pix-
els each. The main difficulty of this dataset consists in the presence of noise and
shadow as well as variable illumination conditions. The forceps type is the same
in all sequences. The second one, referred to as the appearance dataset, is a new
dataset comprising four real in-vivo RM surgeries with 200 manually annotated
consecutive images at 1920x1080 pixels of resolution each. This dataset is chal-
lenging since it includes different types of forceps, as well as different illumination
conditions and microscope zoom factors.

The performance of the algorithm on these datasets was evaluated by means
of two different metrics: the strict Percentage of Correct Parts (strict PCP) [14]
and the Threshold Score used by Sznitman et al. [9]. The Threshold Score re-
covers the pixel-wise aspect of the quality for the predicted localizations, i.e. a
prediction for the position of a joint is evaluated as correct if the pixel distance
to the ground truth is smaller than a threshold. The strict PCP score is a stan-
dard metric in human pose estimation and addresses the length of the connected
joints of the model. Considering two connected joints, a prediction is evaluated
as correct if the distances between the predicted localization and the ground
truth for the joints are both smaller than α ∈ R times the corresponding ground
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Fig. 3: Left: Strict PCP scores for testing on separate sequences of the public
dataset. The vertical line indicates the standard α value in human pose estima-
tion [14]. Right: Threshold Score comparison to other methods when tested on
full dataset. Results for referenced methods are given by [9].

truth length of the connection (in the field of human pose estimation, usually
α = 0.5 [14]). Our method is implemented in C++ and runs at 30 fps on an
off-the-shelf computer. For the tracker we used 500 sample points and 90 trees
for the public dataset and 100 trees for the appearance dataset. Based on the
results in [13], we have set the number of trees for the pose estimation to 15, the
HOG features bin size to 9 and the patch size resolution to 50x50 pixels.

3.1 Public Dataset Evaluation

We compare our method with the state-of-the-art methods DDVT [9], MI [7],
SCV [15] and ITOL [10]. Analogously to results presented on such works for
this dataset [9, 10], we evaluated the pixel-wise measure for the center joint
for thresholds between 15 and 40 pixels. First, we evaluated the algorithm for
every sequence separately by training the regression trees on the first half of the
sequence and testing on the second half. Our method outperforms the baseline
methods, reaching over 94% prediction rate in every sequence (Fig. 2). Even the
inclusion of all the first halves of the sequences in one training dataset results
in higher detection rates of our method than the state-of-the-art methods when
tested on the unseen halves (Fig. 3a). In terms of strict PCP score, it can be
observed that the length of the forceps parts, thus also the tool tip joints, are
predicted correctly even for α values below the standard measure. In contrast to
the other methods, our algorithm is able to reliably track the instrument over
the entire sequence without the need of reinitialisation.

Table 1: Strict PCP for Appearance Dataset for α = 0.5.
Set 1 Set 2 Set 3 Set 4

Left Part 69.70 93.94 94.47 46.46
Right Part 58.58 93.43 94.47 57.71



0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	   95	   100	  

Pe
rc
en

t	  D
et
ec
te
d	  

Thresholds	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	   95	   100	  

Pe
rc
en

t	  D
et
ec
te
d	  

Thresholds	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	   95	   100	  

Pe
rc
en

t	  D
et
ec
te
d	  

Thresholds	  

LF	   RF	   CF	  

Appearance	  Set	  1	  

Appearance	  Set	  2	  

Appearance	  Set	  3	  

Appearance	  Set	  4	  

Tes3ng	  Set	  Training	  Dataset	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	   95	   100	  

Pe
rc
en

t	  D
et
ec
te
d	  

Thresholds	  

Fig. 4: Results for the cross-validation experiment on the appearance dataset. The
first column shows examples of the respective training dataset and the second
shows one image from the testing set. The threshold score on the right indicates
the percentage of correctly predicted locations for the different joints.

3.2 Appearance Dataset Evaluation

Learning-based methods tend to fail on data which comprises image content that
is not seen in the training dataset. In this section we show that the proposed
method can generalize from different illumination conditions, zoom factors and
noise levels. In contrast to the public dataset, this dataset includes various for-
ceps types. The experiment was performed in a 4-fold leave-one-out fashion, i.e.
training the forests each time on three sequences and testing on the remaining
one. Since the average tool shaft diameter is 50 pixel for this dataset, we evalu-
ated the threshold measure for values between 40 and 100 pixels. The results are
summarized in Fig. 4. For every sequence, the tracker only had to be reinitialized
once. The strict PCP results for α = 0.5 are depicted in Table 1 with a mean
strict PCP score of 76% for both the left and right part of the forceps.

4 Conclusions

We presented a novel approach that simultaneously predicts location and pose
of surgical forceps in in-vivo RM sequences at 30 fps. This paper demonstrates
the algorithm’s capability to estimate the correct locations even in challenging
situations as well as to generalize to unseen tools. Moreover, our experimental
results indicate that our approach outperforms state-of-the-art methods.
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a b s t r a c t 
Real-time visual tracking of a surgical instrument holds great potential for improving the outcome of reti- 
nal microsurgery by enabling new possibilities for computer-aided techniques such as augmented reality 
and automatic assessment of instrument manipulation. Due to high magnification and illumination varia- 
tions, retinal microsurgery images usually entail a high level of noise and appearance changes. As a result, 
real-time tracking of the surgical instrument remains challenging in in-vivo sequences. To overcome these 
problems, we present a method that builds on random forests and addresses the task by modelling the 
instrument as an articulated object. A multi-template tracker reduces the region of interest to a rectan- 
gular area around the instrument tip by relating the movement of the instrument to the induced changes 
on the image intensities. Within this bounding box, a gradient-based pose estimation infers the location 
of the instrument parts from image features. In this way, the algorithm does not only provide the loca- 
tion of instrument, but also the positions of the tool tips in real-time. Various experiments on a novel 
dataset comprising 18 in-vivo retinal microsurgery sequences demonstrate the robustness and generaliz- 
ability of our method. The comparison on two publicly available datasets indicates that the algorithm can 
outperform current state-of-the art. 

© 2016 Published by Elsevier B.V. 
1. Introduction 

Retinal Microsurgery (RM) is a delicate surgical procedure, 
which requires high handling precision for the utilized instruments 
under limited visual feedback. In routine surgery such as mem- 
brane peeling, the surgeon has to manipulate anatomical features 
( layers ) which are less than 10 \ mu m thick. One of the main dif- 
ficulties is caused by the fact that the surgeon can only observe 
the procedure in an indirect way through a microscope. The inter- 
pretation of the perceived depth then becomes quite challenging 
and the high magnification leads to lens distortions such that, in 
most cases, only a portion of the observed scene is focused. Fur- 
thermore, the haptic feedback is weak. All these problems limit 
the possibilities for the surgeon to identify or grasp surgical tar- 
gets and consequently may increase operating time and the risk 
for retinal damage. 

∗ Corresponding author. 
E-mail address: nicola.rieke@tum.de (N. Rieke). 

Recently, new microscopes introduced on the market provide 
additional intraoperative imaging information to the surgeon, by 
visualizing subretinal structure information via Optical Coherence 
Tomography (OCT). OCT imaging has become widespread in oph- 
thalmology over the past 20 years because of its ability to visualize 
ocular structures at high resolution ( Gabriele et al., 2011 ). Its new 
intraoperative version (iOCT) has opened up new research fields 
and paved the way to new applications ( Ehlers et al., 2014 ), thanks 
to the fact that depth information within the tissue can be ob- 
tained in real-time during the procedure. In the current workflow, 
these devices have to be manually positioned on the region of in- 
terest which further increases the complexity of the device han- 
dling for the surgeons, who already have to manipulate the surgi- 
cal tools, the manual light source and the microscope. 

Recent works have been aiming at introducing specific com- 
puter vision algorithms in order to overcome the current techni- 
cal limitations and support the surgeon in a direct or indirect way. 
For instance, the visual data acquired from the microscope can be 
processed for stitching different frames together, in order to cre- 
ate a wider field of view of the retina, e.g., by Cattin et al. (2006) ; 
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Fig. 1. Pipeline: The figure illustrates an overview of the algorithm. Given a frame of a video sequence at time t, the temporal tracker determines the region of interest 
around the tool tip. It takes the bounding box from the previous frame and iteratively refines its location. Thereafter, the bounding box is used as input to the pose estimation 
to find the positions of the three joints – left joint (LF), right joint (RF), central joint (CF). 
or, for providing landmarks on the retina, but also simultaneously 
tracking surgical tool and its shadow as presented by Yigitsoy et al. 
(2015) . Within this field, the capability of robustly tracking the sur- 
gical instrument at each frame represents a key component for var- 
ious applications. 

There are different applications that can benefit from efficient 
and robust tool tracking such as the one proposed in this paper. 
First, the algorithm allows tracking the position of the tools and 
estimate its trajectory, in order to compare the movements of an 
expert physician to a non-expert for training and for assessing the 
quality of the surgeries, as introduced by Blum et al. (2007) . Sec- 
ondly, the pose estimation of the articulated object is a particularly 
crucial step for further applications as automatic grasp-counting. 
Note that the number of grasps is fundamental in retinal surgery 
( Pavlidis et al., 2015 ) and should be minimized because the tissue 
can be easily damaged. Third, we consider also the usability of the 
microscope. Since the physician has to operate with both ocular 
and food pedal to navigate the microscope options, smoothing the 
workload can lead to quicker and better surgical result, as specific 
movements of the tool can be linked with the (de-)activation or 
modification of functionalities such as zooming, lighting or iOCT 
automatic positioning ( Rieke et al., 2016 ). Moreover, the position 
of the tool is also the missing link to advanced augmented re- 
ality applications, such as providing the surgeon with additional 
information regarding the proximity of the tool tip to the retina. 
In Roodaki et al. (2015) , the distance of the instrument from the 
retina can be calculated with the help of a tool tracker, and can vi- 
sually inform the operator in case of risk of retina damage. Impor- 
tantly, for the integration into the surgical workflow, it is necessary 
that the tracking algorithm achieves real-time efficiency. 
1.1. Benefit of the instrument pose in addition to the instrument 
position 

The position of the instrument in real-time is a valuable infor- 
mation during RM. However, the surgeon’s center of attention is 
usually close to the surgical tool tips, which are more challeng- 
ing to detect due to its opening and closing movement. Provid- 
ing the position of the instrument’s tips in real-time rather than 
the position of the central joint (e.g., as done in the work of Li 
et al., 2014 or Sznitman et al., 2012 ) can pave the way for ad- 
vanced computer-aided support. One example is the positioning of 
the intraoperative OCT (iOCT) during membrane peeling. Usually, 
the surgeon needs the distance and depth information of the layers 
of the retina at the point where the tool tips grasp the membrane. 
In the current workflow, the iOCT position has to be adjusted man- 
ually, which is time consuming and also increases the complexity 
of handling the various instruments during a procedure. The ability 
of extracting the location of the surgical tool tips allows carrying 
out the positioning of the iOCT in an automatic way ( Rieke et al., 

2016 ). Furthermore, additional information such as proximity in- 
formation of the tool tips to the retina can be visualized close to 
the instrument tips, so that the surgeon does not have to switch 
between different visualization modalities. By knowing the pixel 
distance of the tool tips to the joint point of the forceps in an 
image, the physical distance can be inferred and characteristics of 
anatomical structures can be measured directly in the visual data. 
The location of the instrument parts relative to each other can 
also provide important information about the state of the surgical 
workflow. All these aims are not achievable by measuring only the 
location of the center joint of the forceps. 
1.2. Contributions 

Despite the importance of estimating the location of the tool 
tips, most existing methods recover only the center joint of the 
instrument and are tested on synthetic data or only on a small 
dataset of RM sequences. In this work, we go beyond phantom data 
and propose a method for real-time tracking and pose estimation 
of surgical instruments in in-vivo microsurgery images, which es- 
timates not only the position of the forceps central joint, but also 
the position of the instrument tips. Preliminary results of this work 
appeared in Rieke et al. (2015) . The algorithm is inspired by state- 
of-the-art computer vision approaches and handles the aforemen- 
tioned difficulties by modelling the problem as two different tasks: 
tracking and pose estimation (see Fig. 1 ). First, the tracking algo- 
rithm reduces the considered image information to a rectangular 
region containing the tool tip. In the second step, the pose esti- 
mation algorithm estimates the location of the instrument parts 
inside the bounding box. Both algorithms employ random forest in 
order to cope with noisy and incomplete data which result from 
the various appearance and illumination changes, but rely on dif- 
ferent image information. By combining these two different algo- 
rithms, we use both color and gradient information for predicting 
the positions of the instrument parts. 

In contrast to the work of Rieke et al. (2015) where only the 
grayscale information was used, the tracker in this work is now 
based on the entire RGB space. Another main contribution is the 
introduction of a novel, extended dataset of in-vivo RM sequences, 
which allows us to perform various detailed experiments evaluat- 
ing the performance of the proposed algorithm regarding gener- 
alization to different tool types and different background condi- 
tions. These experiments could not be carried out extensively with 
the original dataset presented in Rieke et al. (2015) , as it included 
only one sequence per tool type. In addition, we compared the 
performance of our method on this novel dataset to two meth- 
ods: the online tracker TLD and the offline learned FPBC for retinal 
microsurgery by Sznitman et al. (2014) . Due to the variations in 
instrument size in our new dataset, the performance of the algo- 
rithm is no longer comparable across sequences via the standard 
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performance measure which is based on pixel distances. There- 
fore, we also introduce a new metric for evaluating the prediction 
for the forceps joint which takes into account the variation of in- 
strument shapes and different image resolutions. Furthermore, an 
additional contribution is the extension of the annotations on a 
public available laparoscopic dataset to pose information. Thereby, 
we can compare our algorithm to state-of-the-art methods on two 
published dataset – the RM sequence dataset and the laparoscopic 
instrument sequence. 
2. Related work 

Despite recent advances, the vision-based tracking of in-vivo se- 
quences remains challenging – the strong illumination changes and 
the noise level of the images are the most prominent difficulties 
while the various appearances changes of the surgical instrument 
complicate the task further. 

Prior work addressing these challenges has considered the use 
of geometric models such as ( Baek et al., 2012 ) proposed an ap- 
proach to track the forceps by generating a database of the pro- 
jected contours of a 3D CAD model of the robotic forceps. The 
likelihood to the projected contour of the microscopic image is 
measured and finally the full state of the forceps is estimated via 
particle filtering. They evaluate this approach and demonstrate its 
robustness and efficiency on synthetic data of a simulated surgi- 
cal environment. Reiter et al. (2012) presented a tracking method, 
which relies on the appearance of natural landmarks. They trained 
an efficient multi-class classifier and as the location of the natu- 
ral landmarks are known in the tool’s CAD model, they are used 
to compute the final pose. The algorithm was tested on five endo- 
scopic sequences. Color-based approaches were presented by Allan 
et al. (2013, 2015) for the related field of laparoscopic tool track- 
ing. Other relevant work (e.g. Richa et al., 2011 ) presents results 
on both phantom and in-vivo data, using a two stage procedure: 
brute-force search of the tool tip in the surroundings of the in- 
strument coordinates in the previous frame; and, weighted mutual 
information to optimize the initial guess. 

Most recent works build on learning based approaches like 
( Chen et al., 2013 ) who use natural features of surgical instru- 
ments for tracking and adopt a spiking neural network to recog- 
nize the instrument tip in laparoscopic surgeries. ( Li et al., 2014 ) 
proposed an online learning approach for tool tracking in RM. The 
system starts with a manual initialization and gradually builds 
the database for tracking by adding new positive and negative 
tool samples, which are collected by a filtering process. The algo- 
rithm provides an accurate bounding box around the forceps’ cen- 
tral point, but does not localize the two tips of the instrument. 
In Pezzementi et al. (2009) , a phantom is employed, using a half- 
sphere, painted to resemble the retinal surface. This learning-based 
method is based on creating a model by hand-segmenting the in- 
strument, where experiments have shown that usually one or two 
frames are sufficient. Rigid tool tracking is performed over two 
steps: first via appearance modelling, which computes a pixel-wise 
probability of class membership (foreground/background), then fil- 
tering, which estimates the current tool configuration. The pro- 
posed method of Sznitman et al. (2011) utilizes a parametrization 
of the surgical tool considering the following three criteria: the lo- 
cation of the insertion point, the angle between image boundary 
and tool, and the tool length. Afterwards, tracking is considered 
as a Bayesian filtering estimation problem. To compute the nec- 
essary posterior distribution, they use a strategy based on active 
testing (ATF). Their dataset consists in two sequences on a reti- 
nal phantom using a needle. In their most recent work, ( Sznitman 
et al., 2014 ) proposed a robust and efficient algorithm which uses a 
multi-class classifier based on boosted regression trees. Each class 
represents a different part of the instrument (e.g. center, insertion 

point, shaft) or background. In order to provide both accuracy and 
good frame rate, an early stopping method was also implemented 
using a probabilistic model, which evaluates the reliability of cur- 
rent classification, and stops in case no more computation is nec- 
essary. 

Many different works have been proposed in the RM field, but 
most of them are constrained and cannot uphold to real-world ap- 
plications. For instance, some methods ( Baek et al., 2012; Sznitman 
et al., 2011; Pezzementi et al., 2009 ) are only evaluated on syn- 
thetic data. In others, the (CAD-) model of the surgical instrument 
was given ( Reiter et al., 2012 ). But this is not possible in RM be- 
cause the tool are often changed and 50+ models are available on 
the market. Moreover, in Pezzementi et al. (2009) , the instrument 
needs to be hand segmented in the first frame, and we fear this 
approach can increase surgery time. The works of Sznitman et al. 
(2011) ; 2014 ) use the insertion point as parameter to define the 
tool. However, in many cases when evaluating on our novel dataset 
(see Section 5.2 ), the point is not well-defined and their perfor- 
mance showed it to be the most challenging identifiable point of 
all classes. Allan et al. (2015) utilize the optical flow technique, 
which did not provide reliable results on the novel dataset due 
to the strong illumination changes in RM. Moreover, most of the 
works are not focusing on the exact coordinates of the tool tips 
(e.g. Richa et al., 2011; Sznitman et al., 2012; Li et al., 2014; Sznit- 
man et al., 2014 ), which is a crucial step as discussed in Section 1.1 . 
3. Method 

In this section, we present details of the proposed algorithm. 
The overall goal is the location of the instrument parts for ev- 
ery frame of an in-vivo RM sequence in real-time. As previously 
mentioned, due to the challenging nuisances normally present on 
the images, the independent tracking of the tool parts proves to 
be difficult. Furthermore, appearance changes of the instrument 
and strong illuminations variations result in incomplete and noisy 
data. Random forests (see Section 3.1 ) have shown to be able to 
handle these problems and even generalize to unseen situations. 
Therefore, we propose an algorithm relying on random forests, but 
tackling the task by means of two separate steps, so to focus the 
algorithms in exploiting different available information that are es- 
sential to solve the distinct problems in tracking and pose estima- 
tion. The overall pipeline is as follows (see Fig. 2 ): we assume, as 
input, an RGB-valued image I : ! ⊂ R 2 → R 3 , p → I(p) along with 
the initial localization of the tool. For every new frame I t , the track- 
ing algorithm (see Section 3.2 ) estimates the transformation that 
updates the location of a bounding box I B ⊂ I t containing the en- 
tire instrument tip. As a RGB-based frame-to-frame tracker, it ex- 
ploits spatio-temporal information of the template in the previous 
frame and relies on the contrast between the instrument and the 
retina. The pose estimation (see Section 3.3 ) then regresses the lo- 
cations of the points of interest within this region I B , which define 
the articulated pose of the instrument. In contrast to the tracker, it 
employs gradient information and is completely independent from 
the results of previous frames. The specific details of our algorithm 
will be given in the following sections. 
3.1. Random forest 

A crucial part of our method is the random forest, which is a 
machine learning method used in the tracking and in the pose es- 
timation stage of our algorithm. Considering an input X and output 
Y , the random forest is used to learn the relation of X and Y such 
that, given the input X , the forest can predict the output Y . A forest 
itself consists of an ensemble of decision trees which can output a 
class (classification) or real numbers (regression) as in our case. In 
particular, random forests are used to correct the tendency of trees 
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Fig. 2. Information processing: The figure illustrates the information processing of the algorithm. The algorithm relies on random forest and addresses the problem in two 
stages: tracking and pose estimation. The tracking random forest employs RGB intensity information whereas the pose estimation forest uses HOG features for estimating 
the locations of the joints. 
to overfit the training set. Moreover, while predictions of a single 
tree are highly sensitive to noise in the training set, the average 
of many trees is not, under the hypothesis that they are indepen- 
dent. Each classifier at each node of the tree represents a “weak 
learner”, while the ensemble of all such weak classifiers make the 
forest more confident to predict Y . Further information on random 
forest can be found in the original work of Breiman (2001) . 

A tree is composed of nodes that can either be a branch 
which has two children (i.e., left and right) or a leaf which is 
the terminal node. Training a tree requires a learning dataset 
P = { (X d , Y d ) } n d d=1 = { (X 1 , Y 1 ) , (X 2 , Y 2 ) , . . . , (X n d , Y n d ) } with the in- 
put X d and its corresponding ground truth observation Y d . Dur- 
ing training at each node, we split the data into two subsets to 
be passed down to its children ( P l , P r ), based on a splitting crite- 
rion θ . The splitting criterion is a pool of random tests and has the 
goal, at each step, to find the best split of the set. In our work, we 
employ the information gain for evaluating the best split, which is 
given as 
g(θ ) = H(P n ) − ∑ 

i ∈{ l,r} 
| P i (θ ) | 
| P n | H(P i (θ )) , (1) 

where P n is the set of samples that reached the node n , | P | is the 
number of samples in the set P and H ( · ) evaluates the random- 
ness of P . Since we consider regression forest, H ( · ) can be esti- 
mated by standard deviation of the multi-variable Gaussian distri- 
bution. Starting from the root node, the dataset is iteratively split 
into two subsets and passed down to the node’s children until one 
of the following stopping criteria is true: 
1. the maximum depth of tree is reached; 
2. the number of samples that reached the node is insufficient to 

split; or, 
3. the information gain of the best split is too small. 

Then, the leaf stores the distribution of the parameters of Y that 
typically employ a normal distribution with its mean and standard 
deviation. As a result of learning, each branch of the tree stores 
the parameters of the splitting function with respect to the input X 
while each leaf stores a distribution of the output Y . To enfoce the 
independence of the trees in the forest, each random tree selects a 
random subset of elements in X or a random subset of the learning 
dataset. 

During testing , a new sample of X traverses the tree. At each 
branch, it moves to the left or right child node depending on the 
splitting function, eventually ending up at a leaf node which con- 
tains the prediction to be associated with such sample. Finally, the 
results of the leaf nodes at different trees are aggregated in order 
to robustly obtain the final prediction. 

3.2. Tracker 
In this work, a template is defined as a rectangular region that 

encloses the three keypoints at the tip of the tool which are used 
for the pose estimation. The region is axis-aligned to the shaft and 
the tool tip is on the upper third of the bounding box. In this way, 
the rectangular region is large enough such that all the keypoints 
are visible for the pose estimation. In practice, the tracker is ini- 
tialized by enclosing a bounding box around the tool on the first 
frame of a given video sequence. The objective then is to propa- 
gate the transformation parameters from one frame to the next in 
order to keep track of the region of interest. 

Mathematically, a template is described by the RGB intensity 
values at n s sample points, written as { x s } n s s =1 , which are 2D points 
that are randomly selected within the rectangular region. Thus, 
given a sequence of images { I t } n t t=0 , the tracker determines the 
transformation T t of the sample points and, in effect, locates the 
rectangular region such that the tool tip is enclosed in the bound- 
ing box. Based on this, the tracker uses the random forest to learn 
the relation of the RGB intensity vector at the sample point lo- 
cations of the previous frame X = [ I t (T t−1 · x s )] n s s =1 and the corre- 
sponding translation vector Y = δµ that aligns the bounding box 
at the position of the tool tip through 
T t = T t−1 T (δµ) . (2) 

The algorithm is inspired by the work of Tan and Ilic (2014) . 
Similar to them, our tracker runs at less than 2 ms per frame with 
a single CPU core. The fast tracking time with a very small compu- 
tational cost is the primary advantage of this tracker. 

In general, the cost function of most template tracking algo- 
rithms (e.g. Baker and Matthews, 2004; Jurie and Dhome, 2002; 
Holzer et al., 2012; Tan and Ilic, 2014 ) follow the pixel-wise differ- 
ence 
E(x s ) = ∥ I t (T t−1 · x s ) −I t 0 (x s ) ∥ ∀ x s , (3) 
derived from image registration where I t 0 (x s ) is the given tem- 
plate. Based on Tan and Ilic (2014) , they converted Eq. 3 as the 
feature vector X = [ I t (T t−1 · x s ) −I t 0 (x s )] n s s =1 of a random forest. In 
tracking, each node of the tree thresholds one element of X to de- 
termine whether to traverse to the left or right child until a leaf is 
reached. Due to the given I t 0 (x s ) , both the cost function and fea- 
ture vector illustrate the limitation of these methods to track a sin- 
gle template. However, we observed that, when using pixel-wise 
splitting, I t 0 (x s ) is always constant for each element of the fea- 
ture vector. Thus, we can incorporate I t 0 (x s ) as part of the thresh- 
old and simplify the feature vector as X = [ I t (T t−1 · x s )] n s s =1 . In this 
formulation, the tracker learns and tracks based on the intensity 
values instead of the intensity difference. As a consequence, we can 
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Fig. 3. Considered ground truth in instrument dataset: Due to the variation of instrument shapes, the ground truth has to be set in more detail in order to be well-defined. 
(a) shows examples for the considered ground truth. The tool tips ( LF and RF ) are set as the points on the tip which are closest to the microscope and would touch in case 
of a closed forceps. The center joint ( CF ) is the point connecting the two parts of the forceps. In (b), the annotation is not selected as the top visible part the tool tip points 
but on the part which is closer to the retina. 
take a step further to alleviate the limitation of learning only one 
template and learn based on the intensity values of multiple tem- 
plates. Therefore, in contrast to other template tracking algorithms 
where they learn and track an individual template, we generalize 
our algorithm to utilize multiple correlated templates to handle 
the visual changes due to the articulated deformation of the tool 
and different instrument structures, and to be robust against var- 
ious environmental factors such as illumination changes and pho- 
tometric distortions that are common in such working conditions 
as shown in Fig. 3 . 
Learning. Considering that the algorithm is a temporal tracker, it 
predicts the update parameters that refines the location of the tool 
from the previous frame to the current frame through Eq. 2 . The 
forest then learns to predict the movement from an erroneous po- 
sition of the tool to its ground truth. To create the learning dataset 
of the forest, we enforce this movement by randomly transforming 
the template from its ground truth location. Given n i templates to 
learn and the individual ground truth transformation T i of the i th 
template, we impose n r random transformations on the i th tem- 
plate by transforming the sample points by T i T −1 

r for all { T r } n r r=1 
where T r = T (δµr ) . The objective of introducing T −1 

r is to mimic 
the transformation from the previous frame such that a transfor- 
mation of T r updates the position of the template from an erro- 
neous location T i T −1 

r to its ground truth location as (T i T −1 
r ) T r = T i . 

As a consequence, each random transformation generates 
a combination of samples and labels written as ( X r , Y r ) 
= ([ I i (T i T −1 

r · x s )] n s s =1 , δµr ) , which are accumulated as the set 
P = { (X d , Y d ) } n i ·n r d=1 that are used to learn one forest per transfor- 
mation parameter. Our goal in learning is to divide the learning 
dataset P , as the tree gets deeper, into subsets with similar trans- 
formation parameters such that, in tracking, the subset is located 
and uses the mean of the parameters as the prediction. 

When learning a tree, each node splits the the learning dataset 
into two subsets which are inherited by the left and right child. 
Given the subset of the learning dataset P n that arrived on the 
node n , an index β of the vector X r is selected to threshold the 
values across the dataset. In order to find the best split, multiple 
indices and thresholds are tested and the selection of the best pair 
is measured based on the information gain in Eq. 1 where 
H(P ) = 1 

| P | 
√ ∑ 

Y d ∈ P ∥ Y d −δµ̄(P ) ∥ 2 (4) 
is the standard deviation of the transformation parameter and 
δµ̄(P ) = 1 

| P | ∑ 
Y d ∈ P Y d (5) 

is the mean vector of all parameters in P . This implies that the 
result of the split is two subsets with a more homogeneous trans- 
formation parameter. 

With the splitting of P enforced in each node, the tree contin- 
uously grows until one of the stopping criteria in Section 3.1 is 
satisfied. Consequently, the node is considered as a leaf and stores 
the mean and standard deviation of the parameters based on the 
subset of the learning dataset that arrives on the node, which is 
similar to Eqs. 4 and 5 . Here, the mean from Eq. 5 is the predicted 
transformation parameter in tracking while the standard deviation 
from Eq. 4 acts as a weight that measures the homogeneity of the 
parameters within the subset. 
Tracking. When evaluating the trees in tracking, X is computed us- 
ing the transformation from the previous frame. Through the split- 
ting function at the nodes of a tree, X manoeuvres from the root 
node to a leaf where the mean and standard deviation of the pre- 
dicted parameter is stored. Considering the possibility that, when 
learning the tree, some subsets of the learning dataset does not 
converge to a homogeneous transformation parameters, only the 
15% of the best predictions multiple trees of the forest with the 
lowest standard deviation are aggregated in finding the parame- 
ters. Using Eq. 5 , the best predictions are aggregated by computing 
the average parameter δµ̄. Thereafter, the predictions constructs 
T (δµ̄) and updates the transformation with Eq. 2 from t −1 to t . 
Notably, the forest is used iteratively to refine the previous esti- 
mate. 

Since the standard deviation measures the confidence of the 
predictions, we deem tracking successful (i.e., the tracker con- 
verges to a confident solution) if the average standard deviation 
in the final iteration is less than a threshold; otherwise, we avoid 
updating the transformation parameters and utilize the previous 
location of the tool for the succeeding frames. 
3.3. Pose estimation 

The final task of the presented method is the localization of the 
instrument parts in every frame, which similarly to the tracking 
stage, also has to be carried out in real-time. The main idea be- 
hind our approach is to interpret the surgical tool as an articulated 
object and to employ parametric models similar to those success- 
fully proposed in the field of human pose estimation (as can be 
seen in ( Belagiannis et al., 2014 ). Specifically, by defining the set of 
joints as the left tip of the instrument (LF), the right tip of the in- 
strument (RF) and the center joint (CF) connecting these two parts, 
we can integrate this methodology in our approach. Since we in- 
vestigate the performance of the algorithm on different instrument 
shapes, we have to emphasize that the points on the tips are de- 
fined as the inner-most and top visible point of the part, which 
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Fig. 4. Overview random forests: The input X for Tracker are the intensity values of the current frame I t at the sampling positions x s from previous frame I t−1 . The binary 
split function θ divides the samples by thresholding on one dimension of X . The output Y is the 2D translation of the template I B . Finally, the results are accumulated by 
taking the mean of the predictions with the smallest standard deviation from the forest of a parameter. For the Pose Estimation , the input X consists of the HoG features 
extracted at randomly selected points within the bounding box q ∈ I B and the binary test θ is performed on one dimension of the HoG feature. The output Y is the offset of 
the joints of the instrument. The final estimation is aggregated by a greedy dense-window algorithm. 

Fig. 5. Instrument dataset representative frames: Different types of instruments are present in our dataset. They show different shapes, for example Tool 1 and Tool 4 
are bulky, the first being more rounded close to the center joint. Tool 2 and Tool 3 are smaller, with Tool 3 showing a extremely thin attachment to the shaft. In addition, 
different illuminations, reflections, blur and colouring can be observed. 
tend to touch each other in case of a closed forceps (see Fig. 3 ), in 
order to have a well-defined ground truth. 

The goal is now to infer the location of the instrument parts 
from the extracted image features. In contrast to part-based meth- 
ods, the holistic approach aims at predicting the joints at one step. 
Instead of considering the image information of the entire frame, 
the tracker simplifies the problem by limiting the region of in- 
terest to a bounding box I B ⊂ I t , and therefore drastically reduces 
the computational cost. This is an important observation since in 
this second step of the pipeline, we make use of the computa- 
tionally more expensive gradient information, which tends to be 

highly reliable in these kind of challenging scenarios. More pre- 
cisely, we employ Histogram of Oriented Gradients (HoG) features 
( Dalal and Triggs, 2005 ), which have shown their robustness in 
fields such as object detection ( Felzenszwalb et al., 2010 ), image 
retrieval ( Eitz et al., 2011 ) and classification ( Nilsback and Zisser- 
man, 2008 ). Here, a key aspect is that the tracked template as 
defined in Section 3.2 yields a bounding box around the tool tip 
which is aligned with the direction of the tool shaft at the time 
of the initialization. During the tracking, only the translation pa- 
rameters are updated and I B is not necessarily aligned with the 
instrument shaft any more. However, the insertion point of the 
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Table 1 
Overview of the novel dataset introduced in this work. Representatives of the Tool Types are shown in Fig. 5 . Example frames of every sequence are displayed in Figs. 8, 9, 
10, 11 . For determination the average RGB color, all pixels in the range (0,0,0) to (10,10,10) were excluded from the computation. Significant scaling is present, if the ratio 
of minimum size to maximum size of instrument tip is higher than 0.5. Translation is considered as significant, if the overall translation distance of the central joint is 
higher than 10 0 0 pixels. 

Sequence Resolution (pixel) Tool type # open-close Average RGB 
color # frames Average ( h, w ) 

for KBB (pixel) Lightsource in 
focused area Significant 

Scaling Significant 
Translation 

1 1920 × 1080 Tool 1 2 [103, 59, 35] 200 (53 ,70) ! ! ! 
2 1920 × 1080 Tool 1 3 [74, 50, 70] 200 (83 ,43) ! ! ! 
3 1920 × 1080 Tool 1 2 [68, 57, 55] 200 (67 ,82) × × ! 
4 1920 × 1080 Tool 1 4 [84, 68, 66] 200 (100 ,115) ! × ! 
5 1920 × 1080 Tool 2 2 [91, 41, 31] 200 (98 ,178) ! ! ! 
6 1920 × 1080 Tool 2 2 [71, 55, 31] 200 (131 ,79) ! ! ! 
7 1920 × 1080 Tool 2 3 [26, 29, 37] 200 (87 ,33) ! ! ×
8 1920 × 1080 Tool 2 3 [32, 45, 61] 200 (126 ,69) × ! ! 
9 1920 × 1080 Tool 3 2 [65, 48, 34] 200 (226 ,74) × × ! 

10 1920 × 1080 Tool 3 2 [52, 53, 30] 200 (94 ,31) × × ×
11 1920 × 1080 Tool 3 2 [4 9, 4 8, 27] 200 (121 ,60) ! × ! 
12 1920 × 1080 Tool 3 1 [100, 68, 67] 200 (173 ,109) ! × ! 
13 1920 × 1080 Tool 3 3 [60, 44, 36] 200 (104 ,91) ! ! ! 
14 1920 × 1080 Tool 4 2 [133, 77, 55] 200 (104 ,173) ! ! ! 
15 1920 × 1080 Tool 4 1 [83, 50, 30] 200 (77 ,141) ! ! ! 
16 1920 × 1080 Tool 4 3 [123, 62, 46] 200 (76 ,98) ! ! ! 
17 1920 × 1080 Tool 4 2 [96, 57, 74] 200 (93 ,61) ! ! ! 
18 1920 × 1080 Tool 4 1 [115, 73, 54] 200 (93 ,130) ! × ! 

Fig. 6. Parameter evaluation for the tracker: The experiment was evaluated on every sequence of the Instrument Dataset (IDS). The depicted results show the success rate 
of the tracker and the timings associated with them. With 100 trees, we evaluate the number of iterations required to achieve convergence in (a) with its corresponding 
tracking time in (b). In addition, we compare the success rate when learning an increasing number of templates (i.e., 100 for sequential, 40 0-50 0 for instrument-dependent 
and 1800 for the generalized tracker). 
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Fig. 7. Parameter evaluation for pose estimation: The experiment was evaluated on one sequence each of the Instrument Dataset (IDS) and Public Dataset (PDS). The 
depicted results are the strict PCP scores for the alpha value of α = 0 . 15 . It should be considered that in human pose estimation, a common choice is α = 0 . 5 . Therefore, the 
low α value in our case constrains that only very precise predictions are accepted. 
instrument to the eye is fixed by trocars during a procedure and 
consequently the orientation of the tool shaft remains in a limited 
range. Therefore, we consider the set of templates as defined in 
Section 3.2 together with the ground truth annotation of the joints 
as base learning dataset and augment the data by applying n ran- 
dom similarity transformations with parameters in the range of ±
0.3 for the scale, ± 30 pixel for the translation in x and y direction 
and ± 30 degrees for the rotation from the ground truth homog- 
raphy. All images are rescaled to a fixed pixel size. This yields an 
extended dataset which improves the robustness of the pose esti- 
mation and tackles the problem that HoG features are not rotation 
invariant. 

Within the bounding box I B , the HoG features are computed on 
image patches around randomly selected points and are employed 
as an input X for the trees. The binary split function θ divides the 
input sample regarding a threshold on one dimension of the HoG 
feature. 

The function H ( · ) is based on the Sum-of-Squared-Distances 
(SSD) 
H(P ) = ∑ 

i ∈ I 
∑ 

j ∥ o i, j −µ j ∥ 2 
2 , (6) 

where I denotes the image patch, the 2D vector o i, j contains the 
offset of the joint j ∈ J from the image patch center and µj is the 
mean for each joint offset. The leaves store the corresponding off- 
sets o j = Y ⊂ R 2 of all instrument joints j ∈ J = { LF , RF , CF } ⊂ R 2 . In 
order to find the most probable outcome, the votes of the sepa- 
rate trees are accumulated by a greedy dense-window algorithm, 
similar to the work of Belagiannis et al. (2014) . For this purpose, 
the 2D predictions for every joint j ∈ J are discretized on a fixed 

grid, whereas the grid cells contain the number of votes that lie 
within it. To aggregate its votes, an integral matrix is created for 
every cell and all the cells form an integral image. Then, the final 
estimation corresponds to the region with the maximum number 
of points, which is found by sliding a window over the integral 
image. 

In this way, a direct mapping between the extracted HoG fea- 
tures and the location of the instrument joints is modelled. Due 
to the characteristics of the random forest, this relation can also 
be inferred for unseen instrument poses or varying lighting condi- 
tions. An overview of the random forests is visualized in Fig. 4 . 
4. Material 
4.1. Description of the datasets. 

The experimental validation of the proposed algorithm is car- 
ried out on two different RM datasets: a new dataset, in the 
following called Instrument Dataset and the dataset published 
by Sznitman et al. (2012) , in the following referred to as Public 
Dataset . For comparison, the performance of the algorithm was also 
evaluated on a published laparoscopic instrument sequence. 

Instrument dataset: This consists of 18 sequences of in-vivo 
retinal surgery and is an extended version of the appearance 
dataset presented in the work of Rieke et al. (2015) , which only 
contained 4 of the 18 sequences. The images are acquired by a 
Carl-Zeiss Lumera 700 ® operating microscope with a resolution 
of 1920 × 1080 pixels at 25 fps progressive scans with 24-bit 
RGB color format. For each sequence, we selected 200 subsequent 
frames in which the instrument is always visible and at least one 
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Fig. 8. Part I of the sequential evaluation of instrument dataset: Results for sequences 1 to 5. Left column: Example of the sequence. Middle column: strict PCP score for 
the left and the right fork. Right column: KBB score for evaluating the prediction of the keypoints. 
movement of opening and closing is present. Each frame was an- 
notated manually, following the definition of the ground truth 
given in Section 3.3 . In comparison to the sequences in Rieke 
et al. (2015) , the dataset was considerably extended and allows 
us to perform instrument dependent experiments. Furthermore, 
additional lightning variations and microscope zoom factors are 
present, increasing the complexity of learning. In total, four dif- 
ferent types of instrument can be observed as depicted in Fig. 5 . 
Therefore, depending on the type of tool present in the sequences, 
we divided the dataset in four smaller subsets, containing respec- 
tively 4, 4, 5 and 5 videos. An overview of characteristics of the 
sequences of the novel dataset can be found in Table 1 . 

Public dataset 1 : This is a fully annotated dataset of three dif- 
ferent sequences of in-vivo vitreoretinal surgeries. It comprises of 
1171 images with a resolution of 640 × 480 pixels with respec- 
tively 402, 222 and 547 frames for the first, second and third se- 
quence. The main challenge of this dataset is variations of lighting 
as well as the presence of noise and shadows. Notably, the same 
instrument is utilized in all sequences. The key component of this 
dataset is the dominant blue and green colouring of the sequences, 
on which the dependence of an algorithm regarding its color re- 
liance can be evaluated. 

1 https://sites.google.com/site/sznitr/code- and- datasets 
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Fig. 9. Part II of the sequential evaluation of instrument dataset: Results for sequences 6 to 10. Left column: Example of the sequence. Middle column: strict PCP score 
for the left and the right fork. Right column: KBB score for evaluating the prediction of the keypoints. 

Laparoscopic sequence 1 : This is an annotated and publicly 
available laparoscopic instrument sequence. It consists of 10 0 0 
frames and shows two surgical instruments. The location of the 
central joint is labelled for every visible instrument. We focus on 
the more challenging instrument (in previous works referred to as 
Tool 1 Li et al., 2014 ) and extend the provided labels by manu- 
ally annotating the location of the tool tips. For pose estimation, 
the main difficulties are the partial occlusions when the instru- 
ment enters the tissue and the presence of smoke. Furthermore, 
the sequence is recorded with large variations regarding the dis- 
tance between the instrument and the camera. 

4.2. Description of the metrics 
The performance of our method was evaluated by means of 

four different metrics which are presented in this section, includ- 
ing standard metrics and a newly proposed metric addressing the 
variation of the scales of the instruments and image resolutions in 
the Instrument Dataset. 

Strict percentage of correct pose (strict PCP): This addresses 
the quality of the prediction for a part of an articulated object and 
is a standard metric in human pose estimation ( Pickering et al., 
2009 ). A prediction for a part connected by two joints j 1 , j 2 ∈ R 2 
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Fig. 10. Part III of the sequential evaluation of instrument dataset: Results for sequences 11 to 15. Left column: Example of the sequence. Middle column: strict PCP score 
for the left and the right fork. Right column: KBB score for evaluating the prediction of the keypoints. 
is evaluated as correct only if both the euclidean distances of the 
predicted joints j 1 , j 2 to its ground truths ˆ j 1 , ˆ j 2 are lower than a 
threshold as a function of the ratio α ∈ R times the ground truth 
length of the part, e.g. both of the following equations have to be 
fulfilled: 
∥ j 1 − ˆ j 1 ∥ < α · ∥ ̂  j 1 − ˆ j 2 ∥ 
∥ j 2 − ˆ j 2 ∥ < α · ∥ ̂  j 1 − ˆ j 2 ∥ . 
For human pose estimation, the threshold value is usually set to 
α = 0 . 5 (compare Pickering et al., 2009 ). 

Keypoint Threshold (KT): This was employed by Sznitman 
et al. (2012) and addresses the quality of the keypoint predictions 
as a pixel-wise measure. Estimated joint locations j ∈ R 2 are eval- 
uated as correct if the euclidean distance to the ground truth an- 
notation ˆ j ∈ R 2 is lower than a fixed pixel threshold T ∈ R : 
∥ j −ˆ j ∥ < T . (7) 
Therefore, it yields a separate evaluation for every keypoint j ∈ J . 

Keypoint threshold bounding box (KBB): The KT metric indi- 
rectly assumes that the frames have the same resolution and show 
the same type of instrument. However, the selection of a reason- 
able threshold is difficult for different zoom factors and instru- 
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Fig. 11. Part IV of the sequential evaluation of instrument dataset: Results for sequences 16 to 18. Left column: Example of the sequence. Middle column: strict PCP score 
for the left and the right fork. Right column: KBB score for evaluating the prediction of the keypoints. 
ments, leading to the problem that sequences are not directly com- 
parable. Inspired by the metric introduced by Yang and Ramanan 
(2013) in the field of human pose estimation, we propose a novel 
metric for retinal microsurgery which addresses this problem. In- 
stead of using a fixed pixel threshold, the accepted distance de- 
pends on the size of the instrument tip. In this way, a higher reso- 
lution of sequences and a change in the distance of the instrument 
from the retina does not automatically lead to a higher error for 
the keypoint evaluation. For this, we consider a tightly cropped, 
axis-aligned bounding box which contains all ground truth joints 
of the instrument in the respective frame. We define a joint j to be 
located correctly if 
∥ j −ˆ j ∥ < α · max ( h, w ) , (8) 
where ˆ j is the ground truth annotation of the joint, w and h are 
the width and height of the bounding box around the instrument 
given by the ground truth, and α ∈ R . It should be noted that this 
metric is only computable if the ground truth of all joints is given. 
However, the evaluation of a keypoint is pose-independent and 
also applicable if only the joint point CF is estimated. 

Success rate of the tracker: The tracker is evaluated by induc- 
ing random translation to the template to simulate the displace- 
ment of the bounding box from the previous frame to the cur- 
rent frame. Apart from the standard frame-to-frame tracking that 
is used to find the bounding box for the pose estimation, we also 
introduce this synthetic evaluation to numerically determine the 
range of translation error, which the tracker can handle. In this 
case, the maximum translation error is parameterized with respect 
to the percentage of the template’s width. Here, a successfully 
tracked template is determined by asserting that all three joints 
must be within the bounding box, which is defined to be relatively 
tight around the tool tip. After applying the synthetic evaluation 

across multiple images, it follows that the success rate is defined 
as the percentage of successfully tracked templates over the total 
number of tests. 
5. Experiments and results 

In this section, we present the results of the experiments 
that are performed on the three different dataset presented in 
Section 4.1 and evaluated in terms of the metrics described in 
Section 4.2 . First, the influence of the parameters for both the 
tracker and pose estimation is investigated ( Section 5.1 ). We grad- 
ually evaluate the generalizability of our algorithm to unseen con- 
ditions in Section 5.2 . The performance of the proposed method 
is compared to state-of-the-art methods on RM sequences in 
Section 5.3 and on a laparoscopic sequence in Section 5.4 . The 
method is implemented in C++ and runs at 30 fps on an off-the- 
shelf computer. 
5.1. Parameters experiments 

For both the tracker and the pose estimation, several parame- 
ters have to be set during training. For this purpose, we evaluated 
the performance of the two algorithms independently as described 
in the following. 

Parameter for tracker: Considering that the tracker is an it- 
erative method, we evaluate its performance with respect to the 
number of iterations required to achieve convergence. After using 
the standard parameters of 100 trees with a maximum depth of 
20, Fig. 6 (a) illustrates the convergence rate of the tracker with re- 
spect to the success rate as the average translation error increases. 
Here, we show that the tracker performs equally well between 11 
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Fig. 12. Comparison sequentual evaluation of instrument dataset to TLD and Sznitman et al. (2014) : The results of our method on the sequential evaluation of the 
instrument dataset is compared to the performance the TLD tracker from Kalal et al. (2012) and the tool tracker of Sznitman et al. (2014) . The graphs show the scores for 
the estimation of the central joint (CF) by means of the pixel threshold metric KT . 
and 12 iterations. With 11 iterations, the tracker runs at approxi- 
mately 1.8 ms with one CPU core, see Fig. 6 (b). In addition, Fig. 6 (c) 
shows the performance of the tracker as the number of templates 
increases in learning the random forest. Notably, there is no signif- 
icant decline in performance as the number of learned templates 
increases from 100 in the sequential evaluation to 40 0-50 0 in the 
instrument-dependent evaluation to 1800 in the generalized eval- 
uation. 

Parameters for pose estimation: We evaluate the performance 
of the pose estimation on one sequence of the Public Dataset and 
one sequence of the Instrument Dataset by varying the respective 
parameters. Based on the results depicted in the Fig. 7 , we decided 
to use 15 trees with a maximum depth of 50 for the pose estima- 

tion in the following experiments. The depth of the trees are con- 
siderably high due to the high variation in terms of lighting condi- 
tions, appearance and motion of the surgical instrument. A patch 
size resolution of 50 pixels per dimension has proven to yield good 
results. For all the following experiments, a HoG features bin size 
of 9 is used and the resolution of the dense-window grid is set to 
100 × 100 pixels. 
5.2. Evaluations on the instrument dataset 

With the introduction of this new dataset, we have the possibil- 
ity of performing more detailed experiments regarding the ability 
of the algorithm to generalize for unseen conditions. 
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Fig. 13. Results for instrument dependent evaluation of instrument dataset: First stage of generalization. The experiment is performed separately for every subset of the 
Instrument Dataset by training on all the first halves of the respective sequences and evaluating on the remaining ones of the subset. The score in the right column shows 
the KBB score for all keypoints. 

First, we perform a sequence-wise experiment on the dataset. 
The forests are trained on the first 100 frames of a sequence and 
evaluated on the remaining ones. As depicted in Figs. 8 to 11 , the 
algorithm can reliably predict the joint positions for various blur 
levels and illumination changes reaching over 86% score for a strict 
PCP with α = 0 . 5 in every sequence. The estimation of the joint 
positions seems to be more challenging in case of bulky instru- 
ment (compare Seq. 14, 15 and 18 – Tool 4). A reason for the com- 
paratively worse result in Seq. 15 is also the higher amount of re- 
flection and blur. 

The performance of our method is exemplarily compared to the 
online learning algorithm TLD ( Kalal et al., 2012 ) and to the offline 
method Fast Part-Based Classification (FPBC) 2 for RM sequences in- 

2 https://sites.google.com/site/sznitr/code- and- datasets 

troduced by Sznitman et al. (2014) by comparing the estimation 
for the central joint (CF) by means of KT . TLD stands for tracking, 
learning and detection, whereas the tracker follows the object of 
interest in subsequent frames, the detector estimates the appear- 
ance changes and corrects the tracker and the learning step calcu- 
lates the errors of the detector and updates it. The authors claim 
that TDL is successful for challenging videos and can handle fre- 
quent tracking failures. We initialized the bounding box around 
the central point using the ground truth annotation. As depicted 
in Fig. 12 , our algorithm outperforms the baseline online tracker in 
every sequence. 

The Fast Part-Based Classification (FPBC) algorithm represents 
an offline state-of-the-art tool tracking method for medical appli- 
cations, which consists of the following steps: a multiclass classi- 
fier (Gradient Boosting) accelerated by an early-stopping scheme 
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Fig. 14. Result for complete evaluation of the instrument dataset: The method was trainined on all the first 100 frames of the Instrument Dataset and evaluated on the 
second 100 frames. In (a), the strict PCP score for the instrument parts is visualized for different alpha values. (b) and (c) show the keypoint evaluation, whereas the former 
is the tool size dependent evaluation and the latter is the threshold metric. 
(EDE) assigns each pixel to a class. Afterwards, a response map 
is generated and RANSAC is considered to obtain inliers. Finally, a 
weighted averaging estimates the pose of the instrument. For sake 
of completeness, it is important to mention that the following rou- 
tine were implemented by ourselves: the patch extraction, where 
the original annotation were used as center of the r × r patch. For 
the background class, an algorithm was implemented to randomly 
select patches, which did not include the tool but the retina or the 
black background. For the Instrument Dataset, we downsampled 
the original images by a factor of 3 to increase evaluation speed 
(final image size 640 × 360) and considered four classes (back- 
ground, insertion point, tool center and the tool shaft), whereas 
the tool center was defined as the middle point between insertion 
point and tool shaft. Patches were selected of size 48 × 48 pixel 
in order to include the instrument in all possible zoom factors of 
the different videos. We used the first 75 frames for training, the 
following 25 for the EDE early stopping criteria and finally the last 
100 to test the procedure. The tree depth was set to 2, number of 
boosting iterations T = 200 , RANSAC with 500 iterations, number 
of stopping criteria evaluation to δ = 10 and the entropy threshold 
is set to γ = 10 −3 . For details about the parameters, we refer the 
reader to the original paper by Sznitman et al. (2014) . A graphical 
comparison can be seen in Fig. 12 . It is noticeable that overall, our 
algorithm shows more stable performance results than FPBC. In the 
Seq. 10 and 12, the algorithm FPBC is confused by the presence of 

various vascular structures and high amount of black background, 
whereas the proposed method still produces reliable results. 

In the next step, an instrument dependent experiment was per- 
formed on each subset of the Instrument Dataset. Within each sub- 
set, the shape of the instrument is similar. This allows us to inves- 
tigate whether the method can generalize regarding changes in il- 
lumination and background. For this purpose, we include the first 
100 frames of all the sequences of a subset in the training dataset 
and test on the remaining ones. Due to the differences in tool tip 
resolution, we now employ the newly introduced metric KBB for 
the performance evaluation. The results are summarized in Fig. 13 . 
As already indicated by the sequential experiment, the localization 
is more challenging for the bulky tools (i.e., Tool 1 and Tool 4). 
However, the extension of the dataset to more sequences seems to 
increase the capture range and performance of the algorithm. 

The next level is the generalization for various tool shapes. In 
the complete experiment, all the first halves of the 18 sequences 
are included in the training set. In this way, we can evaluate 
whether the algorithm can generalize not only for background, il- 
lumination changes and blurriness levels, but also for instrument 
shapes. Due to the more challenging scenario, we used 30 trees 
for the pose estimation. The results are visualized in Fig. 14 . Al- 
though this experiment includes a high complexity for the learning 
algorithms, we reach a strict PCP score of 93.7% for the left instru- 
ment part and 95.54% for the right instrument part with respect 
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Fig. 15. Results for the cross validation of instrument dataset: The trees are trained on all sequences of three tool types and evaluated on all sequences on the remaining 
tool type. The score in the right column shows the KBB score for all keypoints. 
to α = 0 . 5 . Regarding the keypoint scores, 83.7% for the LF, 90.4% 
for the RF and 80.5% for the CF of the predictions are evaluated as 
correct by means of the metric KBB with α = 0 . 2 . The metric KT in- 
dicates a worse performance because pixel thresholds are directly 
compared across sequences although the size of the instrument tip 
in pixel varies significantly. 

The most challenging experiment is the leave-one-out validation 
on the subsets: the forests are trained on all sequences of three 
tool types and are tested on all sequences of the unseen tool type. 
The difficulty of this setting lies in the generalization to both an 
unknown geometry and unseen sequences. As depicted in Fig. 15 , 
the proposed algorithm can build on the vast dataset and achieves 
at least 86.7% for the LF, 80.7% for the RF and 67.8% for the CF suc- 
cess rate by means of the KBB metric with α = 0 . 2 in all four cross 
validations. Regarding the PCP score with α = 0 . 5 , the method pre- 
dicts the instrument parts correctly in at least 88.2% for the left 
instrument part and 89.5% for the right instrument part. 
5.3. Evaluation on the public dataset 

On the Public Dataset, the performance of the proposed method 
is compared to state-of-the-art methods including the data-driven 
visual tracking (DDVT) by Sznitman et al. (2012) , the visual track- 
ing (MI) by Richa et al. (2011) , a gradient-based image registration 
(SCV) by Pickering et al. (2009) and an online-learning approach 
(ITOL) by Li et al. (2014) . In order to be consistent, the estimation 

of the position of the center joint (CF) is compared and the exper- 
iments are performed analogously to other works. The sequential 
evaluation was performed by training the random forests on the 
first half of a sequence and test on the remaining half ( Fig. 16 ). 
In the complete experiment, the forest were trained on all the first 
halves of the three sequences and tested on the remaining halves 
( Fig. 17 ). Both experiments indicate that the proposed method out- 
performs the state-of-the-art methods. 
5.4. Evaluation on the laparoscopy sequence 

Analogously to works presented on this dataset ( Sznitman et al., 
2012; Li et al., 2014 ), we used the first 500 frames of the sequence 
as training dataset. For comparison, the performance was evalu- 
ated on the remaining frames by means of the pixel-wise mea- 
sure KT for the center joint CF for thresholds between 15 and 40 
pixels. Although two instruments are shown in the sequence, we 
perform the experiment only for Tool 1, which is more interesting 
for pose estimation due to grasping operations and various move- 
ments. Tool 2 remains relatively static and closed. As depicted in 
Fig. 18 , the proposed method performs similar to the baseline al- 
gorithm DDVT ( Sznitman et al., 2012 ) in terms of prediction of the 
keypoint CF. In contrast to the other methods, our algorithm did 
not need to be reinitialized and was able to track all three joints 
of the articulated instrument for the entire sequence. 
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Fig. 16. Results for sequential evaluation of public dataset: For every sequence separately, the forests are trained on the first half and tested on the remaining half. The 
result for the central joint (CF) is compared analogously to the cited works by means of threshold distance in pixel ( KT ). The compared methods are ITOL and DT presented 
in the work by Li et al. (2014) , DDVT by Sznitman et al. (2012) and MI by Richa et al. (2011) . 

Fig. 17. Results for public dataset: In (a), the strict PCP scores for learning and testing on the separate sequences is visualized. The vertical pink line represents the standard 
value for alpha in human pose estimation. (b) depicts the KT score for the estimation of the central joint (CF) when training the forest on all halves of the sequences and 
evaluating on the second halves. The compared methods are DDVT by Sznitman et al. (2012) , SCV by Pickering et al. (2009) , MI by Richa et al. (2011) and SSD. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
6. Discussion and concluding remarks 

In this paper, we presented a robust framework for tracking a 
surgical instrument in in-vivo RM sequences. In contrast to other 
methods, which focus on estimating just the center joint of a for- 
ceps, we recover the tool’s articulated pose in real-time. To with- 

stand noisy and incomplete data, we have proposed to base both 
parts of the algorithm on random forest, which has shown to be 
a fast, flexible and robust machine learning tool for a variety of 
tasks. 

The advantage of separating the problem into two tasks is two- 
fold. On the one hand, the algorithm can make use of both color 
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Fig. 18. Results for laparoscopy sequence: In (a), a qualitative example of the estimation is visualized. Figure (b) depicts the KT metric for the central joint (CF) in 
comparison to the methods DDVT by Sznitman et al. (2012) , DT and ITOL by Li et al. (2014) . In (c), results for all joints by means of the metric KBB are shown. 

Fig. 19. Failure cases for laparoscopy sequence: in some cases, the proposed method has problems with the localization of the keypoints. In (a) the position of the CF and 
RF are predicted correctly, but the left tool tip (LF) is distant to the ground truth, which results in an incorrect pose. In (b), the significant scale change of the size of the 
instrument leads to totally shifted localizations. In (c) the tool tips are inserted into tissue. Consequently, the geometric relation between the tool tips and the center joint 
is changed. 
as well as gradient information. On the other hand, the computa- 
tionally more expensive step of extracting gradient information is 
reduced to a smaller region of interest (i.e., for the sake of pose 
estimation only), thus making our algorithm particularly efficient. 
Please note that even if the prominent color of the background 
changes sensibly, the contrast between the metallic appearance of 
the instrument and the retina remains a valuable and easily ac- 
cessible cue. With less than 2 ms of computation time using one 
CPU core, the color-based temporal tracker takes advantage of the 
contrast to efficiently localize the position of the instrument tip. 
However, color information tends to be less reliable for precise es- 
timation in RM sequences, due to typically strong illumination and 
appearance changes. For this reason, we employed gradient infor- 
mation for pose estimation in the second step. Differently from the 
approach by Sznitman et al. (2014) , we do not use gradient infor- 
mation from patches within the entire frame, but limit this com- 
putationally expensive step to the region of interest provided by 
the tracker. Another important difference is that the tracker relies 
on temporal information available from previous frames of the se- 
quence, while the pose estimation stage only exploits the informa- 
tion available from the current frame. 

The performance of the proposed methods was evaluated on 
three different datasets by means of four different metrics. The re- 
sults show that our method can not only handle unseen changes 
within a sequence, but also generalize for various illumination and 
instrument appearance changes. In particular, the complete eval- 
uation of the Instrument Dataset was one of the most challeng- 
ing experiment including 18 sequences of four different instrument 
shapes. Our algorithm yielded a strict PCP score ( α = 0 . 5 ) of more 
than 95% for both the left and right parts of the forceps, and 84.1% 
for the LF , 90.8% for the RF and 83.2% for the CF in terms of KBB 
with α = 0 . 2 . In contrast to the KT metric, the newly introduced 
KBB metric takes into account the variations in instrument appear- 

ance size and image pixel resolution and thereby allows the per- 
formance evaluation across sequences. In the experiments on the 
laparoscopic instrument sequence, the pose estimation revealed 
difficulties regarding large scale changes of the instrument size 
( Fig. 19 ). This could be caused by the fact that the HoG features 
are extracted with a fixed patch size and can be tackled by extend- 
ing the tracker so that it estimates the full rigid transformation up- 
date for the template. However, looking at Fig. 18 , the performance 
of the proposed method is still comparable to state-of-the-art 
methods. 

The proposed method is designed for one single instrument. 
However, the simultaneous tracking of several tools can easily be 
realized by initializing a separate thread of the algorithm for every 
instrument. An important observation is that our method is not 
confused by the presence of another tool in the image frame. In 
RM sequences, usually only one forceps is utilized. In contrast to 
the Public dataset, most parts of the sequences within the novel In- 
strument dataset include the intra-ocular light in the focused area. 
Being a metallic and rigid device, it is similar in appearance to the 
tracked forceps, and as such could be considered as a second tool. 
In some sequences (e.g. Seq. 5 and Seq. 15, see Figs. 9 and 10 ), the 
light source is very close to the tool tip. Even in this challenging 
situation, the proposed algorithm is not misled by this additional 
nuisance. Also in the laparoscopy dataset, the presence of a second 
forceps does not deteriorate the performance. 

One limitation of our method is the lack of a recovery proce- 
dure in case of tracking failures. The pose estimation relies on the 
output of the tracker, which is the bounding box containing the 
tool. This region of interest does not necessarily have to be pre- 
cise because the final prediction is produced by the pose estima- 
tion. However, if the instrument is not captured by the bounding 
box the pose estimation would also fail at inferring the instrument 
joints. Nevertheless, in all our experiments, this case did not occur 
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and therefore the tracker did not have to be re-initialized with the 
ground truth, if the tool was present in the frame and showed a 
continuous movement. A detector would further increase the ro- 
bustness of our method and make it more suitable for the clinical 
practice. 

An interesting future direction is represented by the use of 
the inferred pose as an additional input for the tracker, within a 
closed-loop framework where the pose estimation stage also pro- 
vides feedback for the tracker. This brings the challenge of syn- 
ergically combining the predictions from two forests to achieve a 
better performance. 
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Abstract. We propose a novel method for instrument tracking in Reti-
nal Microsurgery (RM) which is apt to withstand the challenges of RM
visual sequences in terms of varying illumination conditions and blur.
At the same time, the method is general enough to deal with di↵erent
background and tool appearances. The proposed approach relies on two
random forests to, respectively, track the surgery tool and estimate its
2D pose. Robustness to photometric distortions and blur is provided by a
specific online refinement stage of the o✏ine trained forest, which makes
our method also capable of generalizing to unseen backgrounds and tools.
In addition, a peculiar framework for merging together the predictions of
tracking and pose is employed to improve the overall accuracy. Remark-
able advantages in terms of accuracy over the state-of-the-art are shown
on two benchmarks.

1 Introduction and Related Work

Retinal Microsurgery (RM) is a challenging task wherein a surgeon has to handle
anatomical structures at micron-scale dimension while observing targets through
a stereo-microscope. Novel imaging modalities such as interoperative Optical
Coherence Tomography (iOCT) [1] aid the physician in this delicate task by
providing anatomical sub-retinal information, but lead to an increased workload
due to the required manual positioning to the region of interest (ROI). Recent
research has aimed at introducing advanced computer vision and augmented re-
ality techniques within RM to increase safety during surgical maneuvers and to
simplify the surgical workflow. A key step for most of these methods is repre-
sented by an accurate and real-time localization of the instrument tips, which
allows to automatically position the iOCT according to it. This further enables
to calculate the distance of the instrument tip to the retina and to provide a
real-time feedback to the physician. In addition, the trajectories performed by
the instrument during surgery can be compared with other surgeries, thus paving
the way to objective quality assessment for RM. Surgical tool tracking has been
investigated in di↵erent medical specialties: nephrectomy [2], neurosurgery [3],



laparoscopy/endoscopy [4, 5]. However, RM presents specific challenges such as
strong illumination changes, blur and variability of surgical instruments appear-
ance, that make the aforementioned approaches not directly applicable in this
scenario. Among the several works recently proposed in the field of tool tracking
for RM, Pezzementi et al. [6] suggested to perform the tracking in two steps: first
via appearance modeling, which computes a pixel-wise probability of class mem-
bership (foreground/background), then filtering, which estimates the current
tool configuration. Richa et al. [7] employ mutual information for tool tracking.
Snitzman et al. [8] introduced a joint algorithm which performs simultaneously
tool detection and tracking. The tool configuration is parametrized and track-
ing is modeled as a Bayesian filtering problem. Succesively, in [9], they propose
to use a gradient-based tracker to estimate the tool’s ROI followed by fore-
ground/background classification of the ROI’s pixels via boosted cascade. In
[10], a gradient boosted regression tree is used to create a multi-class classifier
which is able to detect di↵erent parts of the instrument. Li et al. [11] present
a multi-component tracking, i.e. a gradient-based tracker able to capture the
movements and an online-detector to compensate tracking losses.

In this paper, we introduce a robust closed-loop framework to track and lo-
calize the instrument parts in in-vivo RM sequences in real-time, based on the
dual-random forest approach for tracking and pose estimation proposed in [12].
A fast tracker directly employs the pixel intensities in a random forest to infer
the tool tip bounding box in every frame. To cope with the strong illumina-
tion changes a↵ecting the RM sequences, one of the main contributions of our
paper is to adapt the o✏ine model to online information while tracking, so to
incorporate the appearance changes learned by the trees with real photometric
distortions witnessed at test time. This o✏ine learning - online adaption leads to
a substantial capability regarding the generalization to unseen sequences. Sec-
ondly, within the estimated bounding box, another random forest predicts the
locations of the tool joints based on gradient information. Di↵erently from [12],
we enforce spatial temporal constraints by means of a Kalman filter [13]. As
a third contribution of this work, we propose to “close the loop” between the
tracking and 2D pose estimation by obtaining a joint prediction concerning the
template position acquired by merging the outcome of the two separate forests
through the confidence of their estimation. Such cooperative prediction will in
turn provide pose information for the tracker, improving its robustness and ac-
curacy. The performance of the proposed approach is quantitatively evaluated
on two di↵erent in-vivo RM datasets, and demonstrate remarkable advantages
with respect to the state-of-the-art in terms of robustness and generalization.

2 Method

In this section, we discuss the proposed method, for which an overview is depicted
in Fig. 1. First, a fast intensity-based tracker locates a template around the
instrument tips using an o✏ine trained model based on random forest (RF) and
the location of the template in the previous frame. Within this ROI, a pose
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Fig. 1: Framework: The description of the Tracker, Sampling and Online Learn-
ing can be found in Sec. 2.1. The Pose Estimator and Kalman Filter is presented
in Sec. 2.2. Details on the Integrator are given in Sec. 2.3.

estimator based on HOG recovers the three joints employing another o✏ine
learned RF and filters the result by temporal-spatial constraints. To close the
loop, the output is propagated to an integrator, aimed at merging together
the intensity-based and gradient-based predictions in a synergic way in order
to provide the tracker with an accurate template location for the prediction in
the next frame. Simultaneously, the refined result is propagated to a separate
thread which adapts the model of the tracker to the current data characteristics
via online learning.

A central element in this approach is the definition of the tracked template,
which we define by the landmarks of the forceps. Let (L, R, C)> 2 R2⇥3 be the
left, right and central joint of the instrument, then the midpoint between the tips
is given by M = L+R

2 and the 2D similarity transform from the patch coordinate
system to the frame coordinate system can be defined as
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for a fixed

patch size of 100⇥150 pixel and b 2 R defining the relative size. In this way,
the entire instrument tip is enclosed by the template and aligned with the tool’s
direction. In the following, details of the di↵erent components are presented.

2.1 Tracker – O✏ine Learning, Online Adaption

Derived from image registration, tracking aims to determine a transformation
parameter that minimizes the similarity measure to a given template. In con-
trast to attaining a single template, the tool undergoes an articulated motion
and a variation of lighting changes which is di�cult to minimize as an energy
function. Thus, the tracker learns a generalized model of the tool based on mul-
tiple templates, taken as the tool undergoes di↵erent movements in a variety



of environmental settings, and predicts the translation parameter from the in-
tensity values at n random points {xp}n

p=1 within the template, similar to [12].
In addition, we assume a piecewise constant velocity from consecutive frames.
Therefore, given the image It at time t and the translation vector of the template
from t� 2 to t� 1 as vt�1 = (vx, vy)>, the input to the forest is a feature vector
concatenating the intensity values on the current location of the template It(xp)
with the velocity vector vt�1, assuming a constant time interval. In order to
learn the relation between the feature vector and the transformation update, we
use a random forest that follows a dimension-wise splitting of the feature vector
such that the translation vector on the leaves point to a similar location.

The cost of generalization is the inadequacy to describe the conditions that
are specific to a particular situation, such as the type of tool used in the surgery.
As a consequence, the robustness of the tracker is a↵ected, since it cannot con-
fidently predict the location of the template for challenging frames with high
variations from the generalized model. Hence, in addition to the o✏ine learning
for a generalized tracker, we propose to perform an online learning strategy that
considers the current frames and learns the relation of the translation vector
with respect to the feature vector. The objective is to stabilize the tracker by
adapting its forest to the specific conditions at hand. In particular, we propose
to incrementally add new trees to the forest by using the predicted template
location on the current frames of the video sequence. To achieve this goal, we
impose random synthetic transformations on the bounding boxes that enclose
the templates to build the learning dataset with pairs of feature and translation
vectors, such that the transformations emulate the motion of the template be-
tween two consecutive frames. Thereafter, the resulting trees are added to the
existing forest and the prediction for the succeeding frames include both the gen-
eralized and environment-specific trees. Notably, our online learning approach
does not learn from all the incoming frames, but rather introduces in Sec. 2.3 a
confidence measure to evaluate and accumulate templates.

2.2 2D Pose Estimation with temporal-spatial Constraints

During pose estimation, we model a direct mapping between image features and
the location of the three joints in the 2D space of the patch. Similar to [12], we
employ HOG features around a pool of randomly selected pixel locations within
the provided ROI as an input to the trees in order to infer the pixel o↵sets to
the joint positions. Since the HOG feature vector is extracted as in [14], the
splitting function of the trees considers only one dimension of the vector and is
optimized by means of information gain. The final vote is aggregated by a dense-
window algorithm. The predicted o↵sets to the joints in the reference frame of
the patch are back-warped onto the frame coordinate system. Up to now, the
forest considers every input as a still image. However, the surgical movement
is usually continuous. Therefore, we enforce a temporal-spatial relationship for
all joint locations via a Kalman filter [13] by employing the 2D location of the
joints in the frame coordinate system and their frame-to-frame velocity.



2.3 Closed Loop via Integrator

Although the combination of the pose estimation with the Kalman filter would
already define a valid instrument tracking for all three joints, it completely relies
on the gradient information, which may be unreliable in case of blurred frames.
In these scenarios, the intensity information is still a valid source for predict-
ing the movement. On the other hand, gradient information tends to be more
reliable for precise localization in focused images. Due to the definition of the
template, the prediction of the joint positions can directly be connected to the
expected prediction of the tracker via the similarity transform. Depending on
the confidence for the current prediction of the separate random forests, we de-
fine the scale sF and the translation tF of the joint similarity transform as the
weighted average

sF =
sT · �P + sP · �T

�T + �P
and tF =

tT · �P + tP · �T

�T + �P

where �T and �P are the average standard deviation of the tracking prediction
and pose prediction, respectively, and the tF is set to be greater than or equal to
the initial translation. In this way, the final template is biased towards the more
reliable prediction. If �T is higher than a threshold ⌧�, the tracker transmits
the previous location of the template, which is subsequently corrected by the
similarity transform of the predicted pose. Furthermore, the prediction of the
pose can also correct for the scale of the 2D similarity transform which is actually
not captured by the tracker, leading to a scale adaptive tracking. This is an
important improvement because an implicit assumption of the pose algorithm is
that the size of the bounding box corresponds to the size of the instrument due
to the HOG features. The refinement also guarantees that only reliable templates
are used for the online learning thread.

3 Experiments and Results

We evaluated our approach on two di↵erent datasets ([9, 12]), which we refer to
as Szn- and Rie-dataset, respectively. We considered both datasets because of
their intrinsic di↵erence: the first one presents a strong coloring of the sequences
and a well-focused ocular of the microscope; the second presents di↵erent types
of instruments, changing zoom factor, presence of light source and presence of
detached epiretinal membrane. Further information on the dataset can be found
in Table 1 and in [9, 12]. Analogously to baseline methods, we evaluate the
performance of our method by means of a threshold measure [9] for the separate
joint predictions and the strict PCP score [15] for evaluating the parts connected
by the joints. The proposed method is implemented in C++ and runs at 40 fps on
a Dell Alienware Laptop, Intel Core i7-4720HQ @ 2.6GHz and 16 GB RAM. In
the o✏ine learning for the tracker, we trained 100 trees per parameter, employed
20 random intensity values and velocity as feature vectors, and used 500 sample
points. For the pose estimation, we used 15 trees and the HOG features are set
to a bin size of 9 and pixel size resolution of 50⇥50.



Set Szn [9] Rie [12]

#
F
ra

m
es I 402 200

II 222 200
III 547 200
IV — 200

Resolution 640⇥480 1920⇥1080

Table 1: Summary of the datasets.

POSE [12] Velocity (Sec. 2.1)
Online Learning (Sec. 2.1) Kalman Filter (Sec. 2.2)
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Fig. 2: Component evaluation.

3.1 Evaluation of Components

To analyze the influence of the di↵erent proposed components, we evaluate the
algorithm with di↵erent settings on the Rie-dataset, whereby the sequences I,
II and III are used for the o✏ine learning and sequence IV is used as the test
sequence. Fig. 2 shows the threshold measure for the left tip in (a) and the strict
PCP for the left fork in (b). Individually, each component excels in performance
and contribute to a robust performance when combined. Among them, the most
prominent improvement is the weighted averaging of the templates from Sec. 2.3.

3.2 Comparison to State-of-the-Art

We compare the performance of our method against the state-of-the-art methods
DDVT [9], MI [7], ITOL [11] and POSE [12]. Throughout the experiments on the
Szn-dataset, the proposed method can compete with state-of-the-art methods,
as depicted in Fig. 3. In the first experiment, in which the forest are learned on
the first half of a sequence and evaluated on the second half, our method reaches
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Fig. 3: Szn-dataset: Sequential and combined evaluation for sequence 1-3. For
over 93%, the results are so close that the single graphs are not distinguishable.



Table 2: Strict PCP for Cross Validation of Rie-Dataset for Left and Right Fork.

Methods Set I (L/R) Set II (L/R) Set III (L/R) Set IV (L/R)

Our Work 89.0/88.5 98.5/99.5 99.5/99.5 94.5/95.0
POSE [12] 69.7/58.5 93.94/93.43 94.47/94.47 46.46/57.71

an accuracy of at least 94.3% by means of threshold distance for the central
joint. In the second experiment, all the first halves of the sequences are included
into the learning database and tested on the second halves.

In contrast to the Szn-dataset, the Rie-dataset is not as saturated in terms
of accuracy and therefore the benefits of our methods are more evident. Fig. 4
illustrates the results for the cross-validation setting, i.e. the o✏ine training is
performed on three sequences and the method is tested on the remaining one. In
this case, our method outperforms POSE for all test sequences. Notably, there is
a significant improvement in accuracy for the Rie-Set IV which demonstrates the
generalization capacity of our method for unseen illumination and instrument.
Table 2 also reflects this improvement in the strict PCP scores which indicate
that our method is nearly twice as accurate as the baseline method [12].
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Fig. 4: Rie-dataset: Cross validation evaluation – the o✏ine forests are learned
on three sequences and tested on the unseen one.



4 Conclusion

In this work, we propose a closed-loop framework for tool tracking and pose
estimation, which runs at 40 fps. A combination of separate predictors yields
robustness which is able to withstand the challenges of RM sequences. The work
further shows the method’s capability to generalize to unseen instruments and
illumination changes by allowing an online adaption. These key drivers allow our
method to outperform state-of-the-art on two benchmark datasets.

References

1. Ehlers, J.P., Kaiser, P.K., Srivastava, S.K.: Intraoperative optical coherence to-
mography using the rescan 700: preliminary results from the discover study. British
Journal of Ophthalmology (2014) 1329–1332

2. Reiter, A., Allen, P.K.: An online learning approach to in-vivo tracking using
synergistic features. In: IROS. (2010) 3441–3446

3. Bouget, D., Benenson, R., Omran, M., Ri↵aud, L., Schiele, B., Jannin, P.: Detect-
ing surgical tools by modelling local appearance and global shape. IEEE Transac-
tions on Medical Imaging 34(12) (Dec 2015) 2603–2617

4. Allan, M., Chang, P.L., Ourselin, S., Hawkes, D., Sridhar, A., Kelly, J., Stoyanov,
D.: Image based surgical instrument pose estimation with multi-class labelling and
optical flow. In: MICCAI. (2015) 331–338

5. Wolf, R., Duchateau, J., Cinquin, P., Voros, S.: 3d tracking of laparoscopic instru-
ments using statistical and geometric modeling. In: MICCAI. (2011) 203–210

6. Pezzementi, Z., Voros, S., Hager, G.D.: Articulated object tracking by rendering
consistent appearance parts. In: ICRA. (2009) 3940–3947

7. Richa, R., Balicki, M., Meisner, E., Sznitman, R., Taylor, R., Hager, G.: Visual
tracking of surgical tools for proximity detection in retinal surgery. In: IPCAI.
(2011) 55–66

8. Sznitman, R., Basu, A., Richa, R., Handa, J., Gehlbach, P., Taylor, R.H., Jedy-
nak, B., Hager, G.D.: Unified detection and tracking in retinal microsurgery. In:
MICCAI. (2011) 1–8

9. Sznitman, R., Ali, K., Richa, R., Taylor, R.H., Hager, G.D., Fua, P.: Data-driven
visual tracking in retinal microsurgery. In: MICCAI. (2012) 568–575

10. Sznitman, R., Becker, C., Fua, P.: Fast part-based classification for instrument
detection in minimally invasive surgery. In: MICCAI. (2014) 692–699

11. Li, Y., Chen, C., Huang, X., Huang, J.: Instrument tracking via online learning in
retinal microsurgery. In: MICCAI. (2014) 464–471

12. Rieke, N., Tan, D.J., Alsheakhali, M., Tombari, F., Amat di San Filippo, C., Be-
lagiannis, V., Eslami, A., Navab, N.: Surgical tool tracking and pose estimation in
retinal microsurgery. MICCAI (2015) 266–273

13. Haykin, S.S.: Kalman Filtering and Neural Networks. J. Wiley & Sons, Inc. (2001)
14. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection

with discriminatively trained part-based models. PAMI 32(9) (2010) 1627–1645
15. Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction

for human pose estimation. In: CVPR. (2008) 1–8





Concurrent Segmentation and Localization for
Tracking of Surgical Instruments

Iro Laina*1, Nicola Rieke*1, Christian Rupprecht 1,2, Josué Page Vizcaíno1, Abouzar
Eslami3 , Federico Tombari1, Nassir Navab1,2

1 Chair for Computer Aided Medical Procedures (CAMP), TU Munich, Germany.
2 Johns Hopkins University, Baltimore, USA.
3 Carl Zeiss MEDITEC München, Germany.

Copyright Statement. ©2017 Springer and Information Processing in Computer- Assisted
Interventions, Lecture Notes in Computer Science, Proceedings, Part II, 2017, pp 664-672,
Iro Laina, Nicola Rieke, Christian Rupprecht, Josué Page Vizcaíno, Abouzar Eslami, Federico
Tombari, Nassir Navab, ’Concurrent Segmentation and Localization for Tracking of Surgical
Instruments’. DOI: https://doi.org/10.1007/978-3-319-66185-8_75. With kind permission
of Springer Nature.

Contribution. The main contributions of this publication, including the main idea of simulta-
neous segmentation and 2D instrument pose estimation, dataset preparation and validation
were done and coordinated by the author of this thesis. Iro Laina, joint first author, was
responsible for the implementation of the up-sampling layers and the regression tasks. Both
joint first authors contributed equally to the development of the method and the writing of
the manuscript. Co-authors contributed to the revision of the manuscript and to evaluation of
alternative methods on the same dataset.

93

https://doi.org/10.1007/978-3-319-66185-8_75


Concurrent Segmentation and Localization for
Tracking of Surgical Instruments

Iro Laina1*, Nicola Rieke1*, Christian Rupprecht1,2, Josué Page Vizcáıno1,
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Abstract. Real-time instrument tracking is a crucial requirement for
various computer-assisted interventions. To overcome problems such as
specular reflection and motion blur, we propose a novel method that
takes advantage of the interdependency between localization and seg-
mentation of the surgical tool. In particular, we reformulate the 2D pose
estimation as a heatmap regression and thereby enable a robust, concur-
rent regression of both tasks via deep learning. Throughout experimen-
tal results, we demonstrate that this modeling leads to a significantly
better performance than directly regressing the tool position and that
our method outperforms the state-of-the-art on a Retinal Microsurgery
benchmark and the MICCAI EndoVis Challenge 2015.

1 Introduction and Related Work

In recent years there has been significant progress towards computer-based sur-
gical assistance in Minimally Invasive Surgery (MIS) and Retinal Microsurgery
(RM). One of the key components is tracking and segmentation of surgical in-
struments during the intervention, which enables for example proximity estima-
tion to the retina in RM or detecting suitable regions for a graphical overlay
of additional information without obstructing the surgeon’s view. Marker-free
approaches are particularly desirable for this task as they do not interfere with
the surgical workflow or require modifications to the tracked instrument. Despite
recent advances, the vision-based tracking of surgical tools in in-vivo scenarios
remains challenging, as summarized by Bouget et al. [1], mainly due to nuisances
such as strong illumination changes and blur. Prior work in the field relies on
handcrafted features, such as Haar wavelets [2], HoG [3, 4] or color features [5],
which come with their own advantages and disadvantages. While color features,
for example, are computationally cheap, they are not robust towards strong illu-
mination changes which are frequently present during the surgery. Gradients, on
the other hand, are not reliable to withstand the typical motion blur of the tools.

* I. Laina and N. Rieke contributed equally to this work.
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Fig. 1. Overview of the proposed method (CSL): Concurrent semantic segmen-
tation and landmark localization with a CNN-based approach.

Rieke et al. [6] employed both feature types in two separate Random Forests and
proposed to adaptively choose the more reliable one. Since their explicit feature
representation incorporates implicit simplifications, this tends to limit the gener-
alization power of the forests. Sarikaya et al. [7] present a deep learning approach
for tool detection via region proposals, which provides a bounding box and but
not a precise localization of the landmarks. Instead of tracking the tool directly,
two-step methods based on tool segmentation have also been proposed. Color,
HOG and SIFT features were employed by Allan et al. [8] for pixel-wise classifi-
cation of the image. The position was subsequently determined based on largest
connected components. Instead of reducing the region of interest, Reiter et al. [9]
employ the segmentation as a post-processing step for improving the localization
accuracy. Recent segmentation methods [10] can be employed for these two-step
approaches. However, the observation that segmentation can be used both for
pre- and post-processing suggests that tracking of an instrument landmark and
its segmentation are not only dependent, but indeed interdependent.

Our contributions are as follows. Instead of carrying out the tasks as two sub-
sequent pipeline stages, we propose to perform tool segmentation and pose esti-
mation simultaneously, in a unified deep learning approach (Fig. 1). To this end,
we reformulate the pose estimation task and model the problem as a heatmap
regression where every pixel represents a confidence proportional to its proximity
to the correct landmark location. This modeling allows for representing seman-
tic segmentation and localization with equal dimensionality, which leverages on
their spatial dependency and facilitates simultaneous learning. It also enables
employing state-of-the-art deep learning techniques, such as Fully Convolutional
Residual Networks [11, 12]. The resulting model is trained jointly and end-to-
end for both tasks, relying only on contextual information, thus being capable of
reaching both objectives e�ciently without requiring any post-processing tech-
nique. We compare the proposed method to state-of-the-art algorithms on a
benchmark dataset of in-vivo RM sequences and on the EndoVis Challenge1, on
which we also outperform other popular CNN architectures, such as U-net [13]
and FCN [10]. To the best of our knowledge, this is the first approach that em-

1 MICCAI 2015 Endoscopic Vision Challenge Instrument Segmentation and Tracking
Sub-challenge http://endovissub-instrument.grand-challenge.org
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Fig. 2. Modeling Strategies: The proposed CSL architecture and two baselines.

ploys deep learning for surgical instrument tracking by predicting segmentation
and localization simultaneously and is successful despite limited data.

2 Method

This section describes our CNN-based approach to model the mapping from an
input image to the location of the tool landmarks and the corresponding dense
semantic labeling. For this purpose, we motivate the use of a fully convolutional
network, that models the problem of landmark localization as a regression of a
set of heatmaps (one per landmark) in combination with semantic segmentation.
This approach exploits global context to identify the position of the tool and has
clear advantages comparing to patch-based techniques, which rely only on local
information, thus being less robust towards false positives, e.g. reflections of the
instrument. We compare the proposed architecture and discuss its advantage
over two baselines. A common block for all discussed architectures is the encoder
(Sec. 2.1), which progressively down-samples the input image through a series
of convolutions and pooling operations. The di↵erences lie in the subsequent
decoding stages (Sec. 2.2) and the output formulation. An overview is depicted
in Fig. 2. We denote a training sample as (X, S, y), where y 2 R(n⇥2) refers to the

2D coordinates of n tracked landmarks in the image X 2 Rw⇥h⇥3, S 2 R w
2 ⇥h

2 ⇥c

represents the semantic segmentation for c labels and w, h denote the image
width and height respectively.

2.1 Encoder

For the encoding part of the three proposed models, we employ ResNet-50 [12], a
state-of-the-art architecture that achieves top performance in several computer
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vision tasks, such as classification and object detection. It is composed of suc-
cessive residual blocks, each consisting of several convolutions and a shortcut
(identity) connection summed to its output. In this way, it allows for a very
deep architecture without hindering the learning process and at relatively low
complexity. Although deeper versions of ResNet exist, we use the 50-layer vari-
ant, as computation time is still crucial for our problem. As input to the network,
we consider images with w = h = 480 pixels. Thus, the feature maps at the last
convolutional layer of ResNet have a resolution of 15⇥15 pixels. The last pooling
layer and the loss layer are removed.

2.2 Decoder Tasks

We then define three di↵erent CNN variants, appended to the encoder, to find
the best formulation for our task. In the following we outline the characteristics
of each model and motivate the choice of the final proposed model.

Localization (L): First, we examine the näıve approach that regresses the real
2D locations of the landmarks directly. Here, the segmentation task is excluded.
To further reduce the spatial dimensions of the last feature maps, we append
another residual block with stride to the end of the encoder (8⇥ 8⇥ 2048). Sim-
ilarly to the original architecture [12], this is followed by a 8⇥ 8 average pooling
layer and a fully-connected layer which produces the output. This dimensional-
ity reduction is needed so that the averaging is not applied over a large region,
which would result in a greater loss of spatial information, thus a↵ecting the
precision with which the network is able to localize. In this case, the training
sample is (X, y) and the predicted location is ỹ 2 R2⇥n. The network is trained
with a standard L2 loss: lL(ỹ, y) = ||ỹ � y||22.

Segmentation and Localization (SL): In this model we regress the 2D lo-
cations and additionally predict the semantic segmentation map of an input
within a single architecture. Both tasks share weights along the encoding part
of the network and then split into two distinct parts to model their di↵erent
dimensionality. For the regression of the landmark positions we follow the afore-
mentioned model (L). For the semantic segmentation, we employ successive
residual up-sampling layers as in [11], to predict the probability of each pixel
belonging to a specified class, e.g. manipulator, shaft or background. Due to
real-time constraints, we produce the network output with half of the input res-
olution and bilinearly up-sample the result. By sharing the encoder weights, the
two tasks can influence each other while upholding their own objectives. Here,
the training sample is (X, S, y), and the prediction consists of ỹ 2 R2⇥n and

S̃ 2 R w
2 ⇥h

2 ⇥c. The network is trained by combining the losses for the separate
tasks: lSL(ỹ, y, S̃, S) = �LlL(ỹ, y) + lS(S̃, S), where �L balances the influence of
both loss terms. For the segmentation we employ a pixel-wise softmax-log loss:

lS(S̃, S) = � 1

wh

wX

x=1

hX

y=1

cX

j=1

S(x, y, j) log

 
eS̃(x,y,j)

Pc
k=1 eS̃(x,y,k)

!
(1)
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Concurrent Segmentation and Localization (CSL): In both L and SL
architectures, only a single 2D position is considered as the correct target for
each landmark. However, manual annotations can di↵er in a range of several
pixels, which in turn implies discrepancies or imprecise labeling. Predicting an
absolute target location is arbitrary and ignores image context. Therefore, in
the proposed model, we address this problem by regressing a heatmap for each
tracked landmark instead of its exact coordinates. The heatmap represents the
confidence of being close to the actual location of the tracked point and is cre-
ated by applying a Gaussian kernel to its ground truth position. The heatmaps
have the same size as the segmentation and can explicitly share weights over the
entire network. We further enhance the architecture with long-range skip con-
nections that sum lower-level feature maps from the encoding into the decoding
stage, in addition to the residual connections of the up-sampling layers [11]. This
allows higher resolution information from the initial layers to flow to the out-
put layers without being compressed through the encoder, thus increasing the
model’s accuracy. Finally, we enforce a strong dependency of the two tasks by
only separating them at the very end and concatenating the predicted segmen-
tation scores (before softmax) to the last set of feature maps as an auxiliary
means for guiding the location heatmaps. The overall loss is given by:

lCSL = lS(S̃, S) +
�H

n

nX

i=1

wX

x=1

hX

y=1

|| 1p
2⇡�2

e�
||yi�(x,y)T ||22

2�2 � ỹ⇤
x,y,i||22 (2)

The standard deviation � controls the spread of the Gaussian around the land-
mark location yi. In testing, the point of maximum confidence in each predicted
heatmap ỹ⇤

i 2 R w
2 ⇥h

2 ⇥n is used as the location of the instrument landmark.
Notably, a misdetection is indicated by high variance in the predicted map.

3 Experiments and Results

In this section, we evaluate the performance of the proposed method in terms of
localization of the instrument landmarks, as well as segmentation accuracy.
Datasets: The Retinal Microsurgery Dataset [3] consists of 18 in-vivo se-
quences, each with 200 frames of resolution 1920 ⇥ 1080 pixels. The set is
further classified into four instrument-dependent subsets. The annotated tool
joints are n = 3 and semantic classes c = 2 (tool and background). In the
EndoVis Dataset, the training data contains four ex-vivo 45s sequences and the
testing includes the rest 15s of the same sequences, plus two new 60s videos. All
sequences have a resolution of 720 ⇥ 576 pixels and include one or two surgical
instruments. There is n = 1 joint per tool and c = 3 semantic classes.
Implementation details: The encoder is initialized with ResNet-50 weights
pretrained on ImageNet. All newly added layers are randomly initialized from a
normal distribution with zero mean and 0.01 variance. All images are resized to
640⇥480 pixels and augmented during training with random rotations [�5�, 5�],
scaling [1, 1.2], random crops of 480⇥ 480, gamma correction with � 2 [0.9, 1.1],
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Fig. 3. Evaluation of Modeling Strategies: Accuracy of the models by means of
Threshold Score for the left tip (a), right tip (b) and center joint (c) of the instrument.

a multiplicative color factor c 2 [0.8, 1.2]3 and specular reflections. For localiza-
tion, we set � = 5 for RM and � = 7 for EndoVis in which the tools are larger.
All CNNs are trained with stochastic gradient descent with learning rate 10�7,
momentum 0.9 and empirically chosen �L,�H = 1. The inference time is 56ms
per frame on a NVIDIA GeForce GTX TITAN X using MatConvNet.

3.1 Evaluation of Modeling Strategies

First, we evaluate the models for tool landmark localization by training on 9
sequences of the RM dataset and testing on the remaining ones. In Fig. 3, the
baseline of explicit 2D landmark localization (L) shows the lowest results, while
its combination with a segmentation task (SL) increases the performance. The
proposed CSL model achieves the highest accuracy of over 90% for both tool
tips and 79% for the center joint (for thres. 20 pixels). Our model exploits con-
textual information for precise localization of the tool, by sharing feature maps
with the semantic segmentation task. Another baseline is the U-Net architec-
ture [13] trained with the same objectives. CSL is consistently more accurate in
localization and achieves a DICE score of 75.4%, while U-Net scores 72.5%, SL
73.7% and CSL without skip connections 74.4%.

3.2 Retinal Microsurgery

Analogously to [3], we train on all first halves of the 18 RM sequences and
evaluate on the remaining frames, referred to as Half Split. As shown in Fig. 4,
the proposed method clearly outperforms the state-the-art-methods, reaching an
average accuracy of more than 84% considering the KBB score with ↵ = 0.15.
Next, we evaluate the generalization ability of our method not only to unseen
sequences and but also to unknown geometry. We employ a leave-one-out scheme
on the subsets given by the 4 di↵erent instrument types, referred to as Cross
Validation, and show that our method achieves state-of-the-art performance.

3.3 EndoVis Challenge

For this dataset, we performed our experiments in a leave-one-surgery-out fash-
ion, as specified by the guidelines. We report our quantitative results in Ta-
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Fig. 4. RM dataset: Comparison to FPBC [14], POSE [3] and Online Adaption [6],
measured by the metric KBB. The charts (a) to (c) show the accuracy for the left
tip, right tip and center joint, respectively, for the Half Split experiment. In the Cross
Validation, the training set is given by 3 instrument dependent subsets and the method
is tested on the remaining set. (d) shows the average KBB score for the center point.

ble 1, both binary and multi-class, and compare to the previous state-of-the-art,
which we significantly outperform. Notably, the proposed method can also pro-
vide multi-segmentation for the separate tools (Fig. 5) if trained with c = 5. A
challenging aspect of this dataset is that two instruments can be present in the
testing set, while only one is included in the training. To alleviate this problem,
we additionally augment with horizontal flips, such that the instrument is at least
seen from both sides. In Sets 5 and 6, the network was capable of successfully
localizing and segmenting a previously unseen instrument and viewpoint2.

Binary Shaft Grasper Joint
Sequence B.Acc.Rec. Spec. DICE Rec. Spec. Rec. Spec. loc. error

1 91.9 85.0 98.7 88.5 79.2 99.1 76.2 98.7 39.0/30.8
2 94.8 90.0 99.7 93.0 90.9 99.8 82.0 99.8 9.7
3 94.7 90.1 99.3 91.6 89.1 99.5 86.8 99.7 10.9
4 91.1 83.1 99.0 85.8 82.9 99.2 65.4 99.6 13.0
5 91.5 84.2 98.8 87.3 82.8 99.1 75.9 99.2 38.4/60.0
6 91.7 84.9 99.0 88.9 78.0 99.3 78.1 98.4 36.4/63.9

CSL (mean) 92.6 86.2 99.0 88.9 83.8 99.3 77.4 99.2 24.8/51.6

FCN [10] 83.7 72.2 95.2 - - - - - -
FCN+OF [10] 88.3 87.8 88.7 - - - - - -

Balanced Accuracy (B.Acc.), Recall (Rec.), Specificity (Spec.) and
DICE are in %. The average localization error (loc. error) is in pixel.

Table 1. Cross-Validation results for EndoVis. Fig. 5. Qualitative Result.

2 The challenge administrators believe that the ground truth regarding tracking for
sequence 5 and 6 is not as accurate as for the rest of the sequences.
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4 Conclusion

In this paper, we propose to model the localization of instrument landmarks
as a heatmap regression. This allows us to leverage deep-learned features via a
CNN to concurrently regress the instrument segmentation and its articulated
2D pose in an end-to-end manner. We evaluate the performance on two di↵erent
benchmarks and, throughout the experiments our approach outperforms state-
of-the-art methods.
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Abstract. Recent neural-network-based architectures for image segmentation make exten-
sive usage of feature forwarding mechanisms to integrate information from multiple scales.
Although yielding good results, even deeper architectures and alternative methods for fea-
ture fusion at different resolutions have been scarcely investigated for medical applications.
In this work we propose to implement segmentation via an encoder- decoder architecture
which differs from any other previously published method since (i) it employs a very deep
architecture based on residual learning and (ii) combines features via a convolutional Long
Short Term Memory (LSTM), instead of concatenation or summation. The intuition is that
the memory mechanism implemented by LSTMs can better integrate features from different
scales through a coarse-to-fine strategy; hence the name Coarse-to-Fine Context Memory
(CFCM). We demonstrate the remarkable advantages of this approach on two datasets: the
Montgomery county lung segmentation dataset, and the EndoVis 2015 challenge dataset for
surgical instrument segmentation.
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Purpose. Intraoperative Optical Coherence Tomography (iOCT) is an increasingly available
imaging technique for ophthalmic microsurgery that provides high-resolution cross-sectional
information of the surgical scene. We propose to build on its desirable qualities and present a
method for tracking the orientation and location of a surgical needle. Thereby, we enable direct
analysis of instrument-tissue interaction directly in OCT space without complex multimodal
calibration that would be required with traditional instrument tracking methods.
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Method. The intersection of the needle with the iOCT scan is detected by a peculiar multi-
step ellipse fitting that takes advantage of the directionality of the modality. The geometric
modelling allows us to use the ellipse parameters and provide them into a latency aware
estimator to infer the 5DOF pose during needle movement.

Results. Experiments on phantom data and ex-vivo porcine eyes indicate that the algorithm
retains angular precision especially during lateral needle movement and provides a more
robust and consistent estimation than baseline methods.

Conclusion. Using solely cross-sectional iOCT information, we are able to successfully and
robustly estimate a 5DOF pose of the instrument in less than 5.4 ms on a CPU.

International Conference on Information Processing in Computer-Assisted Interventions
(IPCAI 2018), 2018, Berlin, Germany.

Injection Assistance via Surgical Needle Guidance using
Microscope-Integrated OCT (MI-OCT) [2]

Jakob Weiss, Nicola Rieke, Ali M. Nasseri, Mathias Maier, Chris Lohmann, Nassir Navab
and Abouzar Eslami

Purpose. Injection in ophthalmic interventions requires precise targeting of anatomic layers
both in anterior and posterior segment surgery. In the current workflow surgeons mainly rely
on the binocular en-face view of the microscope which provides only a limited perception
of depth and distance to target. Our work aims at assisting the surgeon by providing the
projected intersection point of instrument and anatomy and thereby enabling intuitive and
more precise targeting.

Method. The proposed method uses cross-sectional information provided by MI-OCT. The
surgical needle and the position of the anatomical target is localized in five continuously
acquired parallel MI-OCT B-Scans. To that end, the maximum intensity along each A-Scan
is extracted for each OCT image. Given this point set, the target layer and the instrument
cross-section is found by a geometry fitting algorithm. In the second step, we find the 3D
needle pose based on these segmented cross-sections by using the specific geometry of the
surgical needle and a temporal filter. Finally, the estimated injection position is determined by
the geometric intersection of the approximated target layer with the needle. By projecting
the computed intersection point to the en-face view, we can overlay the estimated position in
real-time via a heads-up display on the microscopic view. As a result, the surgeons can infer
the distance to the target layer by the distance between needle tip and projected injection
point in an intuitive way.

Results. We evaluated our method on both anterior and posterior phantoms. In both scenarios,
we acquired three sequences of free needle movement. For acquisition, we used a Zeiss
Lumera 700 with Resight 700 in 5-line HD OCT mode and the needle is constantly touching

104 Chapter B Abstracts of Publications not Discussed in this Dissertation



the target surface to have ground truth. In the en-face camera view, we manually annotate
the ground truth touching/intersection point in each image as the needle tip in 811 images.
We report a median error of 0.230mm (mean: 0.299+-0.062mm) for anterior and median
error of 0.268mm (mean: 0.358+- 0.090mm) for posterior guidance.

Conclusion. We present an approach to provide continuous injection guidance based on
conventional MI-OCT B- Scans. The system provides accurate prediction and visualization of
the injection point, thus supporting the surgeon in difficult injection tasks.

Proceedings of the Association for Research in Vision and Ophthalmology Annual Meeting
(ARVO 2018), 2018, Honolulu, USA.

Automatic Initialization and Failure Detection for Surgical Tool
Tracking in Retinal Microsurgery [4]

Josué Page Vizcaíno, Nicola Rieke, David Joseph Tan, Federico Tombari, Abouzar Eslami,
Nassir Navab

Instrument tracking is a key step for various computer-aided interventions in retinal mi-
crosurgery. One of the bottlenecks of state-of-the-art template based algorithms is the (re-
)initialization during the surgery. We propose an algorithm for robustly detecting the bounding
box around the tool tip together with a failure detection of the tracking algorithm. Hereby,
the user input dependent algorithm is transformed into a completely automatic framework
without the need of an assistant. The performance was compared to two state-of-the-art
methods.

Proceedings of Workshop Bildverarbeitung für die Medizin (BVM 2017), 2017, Heidelberg, Germany.

Automatic iOCT Positioning During Membrane Peeling via
Real-time High Resolution Surgical Forceps Tracking [8]

Nicola Rieke, Stefan Duca, Abouzar Eslami and Nassir Navab

Purpose. During membrane peeling, the intraoperative OCT (iOCT) has to be positioned
manually, which may be time consuming and distracting from the actual procedure. By
automatically repositioning according to the position of forceps tips, this step can be avoided.
Compared to rigid instruments such as diamond dusted tools, the robust tracking of the forceps
is considerably more challenging due to partial occlusions and pose variations, i.e. opening
and closing movement. We introduce a novel method for automatic repositioning of the iOCT
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by analyzing the surgeon’s maneuver based on a real-time, precise tracking of the tool tips in
the co-registered microscopic view. The developed algorithm is robust to different shapes of
the available forceps in the market as well as the field of view and microscope zoom.

Method. The algorithm is a two-step process: first, the tracker infers the location of the tips
and the joint point of the forceps in real-time from local image features in the microscopic view.
The resulting angle spanned by the two forceps tips in stored in a buffer of several frames. In
the second step, a linear regression is performed on this time-series for detecting a grasping
movement and the current forceps tip locations are used to reposition the OCT scan location in
a microscope-integrated OCT system. The SD-OCT scanner is calibrated with the microscopic
view which is fed to our algorithm through a high definition camera. Machine learning is
employed to make the algorithm robust to lighting changes induced by the intraocular light.

Results. We created a dataset of 2400 annotated frames from 12 different recorded in-vivo
surgery sequences showing at least one grasping movement. For evaluation, the dataset was
equally divided in a training and a testing set. The median Euclidean localization error of the
tool tips is 14.45 pixel for the left tip, 124.2 pixel for the right tip and 11.84 pixel for the center
joint considering a frame of 1950× 1010 pixel. The grasping movement was detected correctly
in 92, 85% of the cases. Conclusion. We presented a novel method for repositioning the iOCT
during peeling based on a robust instrument tracking which can handle the large variations in
illumination, instrument appearance and shape.

Proceedings of International Society of Imaging in the Eye Conference, Association for Research in
Vision and Ophthalmology (ARVO 2016), 2016, Seattle, USA.

Image Descriptors in Angiography [9]

Katharina Hofschen, Timo Geissler, Nicola Rieke, Christian Schulte zu Berge, Nassir
Navab and Stefanie Demirci

Abstract. Despite recent advances in the field of image-guided interventions (IGI), the bot-
tleneck for Angiography/X-ray guided procedures in particular is accurate and robust 2D-3D
image alignment. The conventional, straight-forward parameter optimisation approach is
known to be ill-posed and less efficient. Retrieval-based approaches may be of superior
choice here. However, this requires salient and robust image features, which can handle the
difficulties of Angiographic images such as high level of noise and contrast variance. In this
paper, we investigate state-of-the-art features of the field of Computer Vision regarding the
applicability and reliability in the challenging scenario of Angiography.

Proceedings on Workshop Bildverarbeitung für die Medizin (BVM 2016), 2016, Berlin, Germany.
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Ultrasound Interactive Segmentation with Tensor-Graph
Methods [11]

Nicola Rieke, Christoph Hennersperger, Diana Mateus and Nassir Navab

Abstract. We address the problem of segmenting aortic aneurysms in ultrasound images. As
solution we propose a novel frame- work based on graph-based interactive segmentation
methods, such as graph-cuts and random walks. Our main contribution is extending these
approaches to handle structure tensor ultrasound images. Our hypothesis is that the structure
tensor is better suited to represent the contextual information in ultrasound images than the
pure b-mode intensity values. We demonstrate that this extension significantly improves the
performance of both methods in clinical data.

IEEE International Symposium on Biomedical Imaging (ISBI 2014), 2014, Beijing, China.
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List of Figures

1.1 Motivation. Advances in computer science, medicine and physics have led to a
paradigm shift over the last decades: in the past, interventions were performed in
an open surgery setup and the surgeon had to rely on his pre-operative knowledge.
The development towards less invasive interventions and more patient-specific
data provided by novel imaging modalities has enabled new surgical treatments
but has led to increasing complexity for the surgeon. Today, the surgeon can base
decisions and actions on a broad spectrum of patient-specific information and
observes the surgical manipulations of the anatomical tissue indirectly. One of the
main challenges is to mentally map the different information sources. Computer
vision and surgical data science [25] allows to fuse this data to contextually useful
information and augment the capabilities of the surgeon with computer-assisted
surgical systems [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Surgical Setup of Vitreoretinal Surgery. Left: In the general setup, the surgeon
is seated at the head of the patient and observes his surgical movements through
a microscope. The foot pedal allows to modify parameters of the microscope
or position the microscope-integrated Optical Coherence Tomography. In the
depicted experimental setup, a plastic head with a pig eye was used. Middle:
Trocars are anchored into the sclera to provide a stable access to the eye cavity. A
handheld, fibre-optic light source and a surgical instrument are inserted. Right:
The image depicts the view captured by the microscope. The patient’s pupil is
dilated by medication and the eye is held open with a clamp to provide best
possible access. An infusion cannula ensures constant intraocular pressure. . . 11

2.2 Surgeon’s view during Vitreoretinal Surgery. The intervention is observed
through a microscope, which provides two different image sources that can be
displayed next to each other, here exemplarily with porcine eyes. The surgeon
has to mentally map the two image modalities. Left: the RGB en-face microscope
image captures the direct view through the pupil of the eye. Distances to the
retina are difficult to infer and the handheld light source imposes challenging
illumination conditions. Right: the OCT image provides a cross-sectional view
and therefore depth information. The image capture range is limited, as indicated
by the coloured lines. The metallic instrument is opaque and occludes subjacent
structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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2.3 Endoscopic Surgery. (a) Example of minimally invasive surgery in the abdomen
around 2006. The surgeons observe their surgical actions on a display while
manipulating surgical instruments. [Figure under common licence, link]. (b)
Schematic setup of endoscopic surgery. The cavity is inflated with a sterile gas
to create more space for the endoscope and the surgical instruments. [Figure
by Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". Wiki-
Journal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. link,
Added and modified content] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Surgical instruments. The size and mechanical manipulation of surgical in-
struments differs considerably. In many cases, however, the instrument can be
modelled as an articulated object. For vitreoretinal surgery, also the handheld
light source is depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Elements of visual tracking. Based on an image sequence the aim of visual
tracking is to determine the instrument location for every frame. The tracked
surgical tool is defined by an object representation Y . Marker-less tracking meth-
ods do not introduce artificial markers, but detect the instrument by its natural
characteristics, which can represented by feature representation X. Endoscopic
Surgery Images are from the Endovis Challenge 2015 [74]. . . . . . . . . . . . . 21

3.2 2D Object Representations. The surgical tool can be tracked in terms of differ-
ent object representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Learning strategies. A Random Forest is an ensemble of independent decisions
trees and addresses the problem by partitioning the input space using a set of
binary decisions. These splitting functions are revisiting the input space and do
not modify it. Consequently, Random Forest relies on a suitable choice for feature
representation. Deep Learning is designed to learn representations inherently by
abstracting image responses using a composition of nonlinear functions. Usually
only the input layer has access to the image while the subsequent layers receive
the resulting activations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Neural networks. Overview of different neural network components and feed-
forward architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Segmentation Evaluation. For the evaluation of a binary image segmentation,
the segmentation result is compared to the ground truth segmentation. The
resulting number of pixels for each category is used for computing segmentation
metrics such as recall or specificity. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Examples of image peculiarities. The surgical image data poses various chal-
lenges for image tracking. One of the main difficulties arises from the fact that
the image data in such a setting captures only a very restricted field of view
of the highly dynamic environment. Especially the non-static directional light
source complicates the task by creating shadows, uneven illumination and specu-
lar reflections in the images. Endoscopic Surgery Images are from the Endovis
Challenge 2015 [74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Need for template tracking. Mainly the region around the tracked instrument
provides reliable clues about the relative position to the 2D reference points. . 38
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5.2 Feed-Forward Pipeline. In this approach, we introduce a instrument tracking
method based a dual Random Forest with a feed-forward connection. A multi-
template tracker determines the region of interest around the instrument tip by
relating the movement of the instrument to the induced changes on the image
intensities. Within this bounding box, a gradient-based pose estimation infers the
instrument reference points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Robust Pipeline. Building on the offline-learned dual RF of the feed-forward
pipeline, we can develop a robust pipeline by adapting the offline model to online
information while tracking and by “closing the loop” between the tracking and
2D pose estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 End-to-End Pipeline. Instead of using explicit feature representations, we lever-
age deep learning techniques to simultaneously regress segmentation and 2D
pose of the instrument. The network architecture is a fully convolutional neural
network with skip and residual connections. . . . . . . . . . . . . . . . . . . . . 42
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4.1 Overview of related work. Relevant recent research is listed chronologically
and categorized according to their visual tracking algorithm, e.g. the object
representation refers to the tracked object description in the image, which may
not correspond to the overall target (3D coordinates). The horizontal, dashed
line separates previous related work and publications that have been published
simultaneously to the work presented in this dissertation. It should be noted
that the real-time requirement is application and hardware dependent. Conse-
quently, it should be interpreted as soft categorization (here: at least 10 fps). If a
machine-learning algorithm was presented for the visual tracking, it can be dis-
tinguished whether it has been tested in a cross-validation setting. Abbreviations:
RM = Vitreoretinal Microsurgery (Section 2.1.1), Endo = Endoscopic surgery
(Section 2.1.2), n.s = not stated, n.a = not applicable, RF = Random Forest, CNN
= Convolutional Neural Network, FCN = Fully Convolutional Network, FCRN =
Fully Convolutional Residual Network. . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Overview of major contributions. Abbreviations: RM = Retinal Microsurgery
(Section 2.1.1), Endo = Endoscopic surgery (Section 2.1.2) . . . . . . . . . . . 37
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