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In order to achieve real autonomy, robots have to be able to navigate in completely un-

known environments. Due to the complexity of computer vision algorithms, almost every

approach for robotic navigation is either based on previous knowledge of the environ-
ment, such as markers or as resulting from learning methods, or makes strong simplifying

assumptions about it (height-map representations, static scenarios). While showing im-
pressive success in certain applications, these approaches limit the potential of legged

robots to achieve the amazing flexibility of humans in all kind of terrains. In this work, we

present a strategy for full 3D vision processing that does not assume previous knowledge
about the surroundings and is able to handle changing, dynamic environments. These are

modeled using simple geometries, which are processed in real-time by the motion planner
of our biped robot Lola for avoiding moving obstacles and walking over unexpected plat-
forms. In order to allow for a more intuitive development of such systems in the future,

we present tools for visualization including two mixed reality applications using both an

external camera and Microsoft’s HoloLens. We validate our system in simulations and
experiments with our full-size humanoid robot Lola and publish our framework open

source for the benefit of the community.

Keywords: Environment modeling; 3D Image Processing; Autonomous Robotics; Legged
Robots; Navigation.

1. Introduction

Two main components of an autonomous navigation system are the perception and

motion planning modules. In order for a robot to navigate in a real environment,

the perception module needs to acquire an abstract representation (or ”model”) of

it, which is then used by the planning module to find a feasible path while avoiding

collisions 1. The modeling strategy restricts the kind of environments the robot can
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1



February 5, 2018 20:33 WSPC/INSTRUCTION FILE ws-ijhr

2 Daniel Wahrmann et al.

navigate through and determines the capabilities of the motion planner 2.

In what is usually considered to be the first example of autonomous robotic nav-

igation, 2D maps were used to represent the environment and the A* algorithm

was presented to navigate an unknown scenario avoiding static walls 1. Later works

included height information in a 2D grid to generate “height-maps” and navigate

in uncluttered, horizontal terrain 3. Using this approach, wheeled robots have been

able to achieve impressive feats 4.

Since the Fukushima nuclear disaster, however, the mobility limitations of these

robotic systems became manifest and there was an unprecedented interest in an-

thropomorphic robots. Legged robots are better suited for navigating through clut-

tered environments and could potentially be used in such hazardous areas. A few

years ago, the DARPA Robotics Challenge (DRC ) 5 was organized, in which several

teams with different robots tried to solve several tasks inspired by those scenarios.

Still, the completion of the tasks relied strongly on teleoperation. To the authors’

knowledge, none of the participating teams performed completely autonomous nav-

igation.

The complexity of this problem lies, on the one hand, in the particular dynamics of

biped robots. Besides being naturally underactuated, their high number of degrees

of freedom makes it computationally challenging to perform real-time motion plan-

ning and control. In order to solve this, reduced models are used for approximating

the robot’s dynamics 6, 7, 8, 9, 10.

On the other hand, a detailed model of the environment is not suited for real-time

navigation due to its computational costs, both on the computer vision and the

motion planning side 11, 12. Therefore, real-time humanoid navigation has only

been achieved using simplified environment models on relatively uncomplicated,

static scenarios. In the first application of height-maps to biped navigation, static

scenes could be traversed in real-time due to its simplified representation 13. An

extension to this representation, consisting of the segmentation and classification

of these 2.5D maps, is a very popular approach in humanoid research as it permits

a real-time solution for the motion planning problem 14, 15, 16, 17, 18. However, it

still limits the complexity of applicable scenarios. One possible example of a more

detailed representation are the Octomaps 19, which are fully 3D and can be used

for more complex environments but assume them to be static. However, collision

avoidance algorithms take significantly longer time with these representations, even

for standard robotic manipulators 12 and cannot currently be applied in real-time

(i.e. during walking).

In this work we try to bridge this gap by introducing a full 3D environment rep-

resentation which can represent complex, dynamic scenarios and can be processed

in real-time by the motion planner. Together with an efficient vision system, we

present our strategy for biped navigation in 3D environments. We validate it with

our full-size humanoid robot Lola, which can autonomously avoid dynamic objects,

traverse unknown obstacles and walk over unexpected platforms using a standard
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Fig. 1. Environment modeling. Left: obstacles are represented as point- and line-SSVs; surfaces

as polygons with line-SSVs at the edges. Right: environment representation enables real-time 3D
planning and collision avoidance.

RGB-D sensor. To the authors’ knowledge, this is the fastest demonstration of au-

tonomous walking in uneven terrain so far, as well as the first to handle unknown,

dynamic environments in real-time.

In our approach, we use swept-sphere-volumes (SSVs) for efficient collision checking
20, which consist of extended volumes (with constant radius) of points, segments or

triangles. As shown in previous works 18, 21, this representation of objects allows

for fast planning and obstacle avoidance in cluttered environments (see Fig. 1). Col-

lisions -both internal and external- are checked in 3D in real-time 22. In a previous

version of our vision system 23, we showed the approximation of obstacles with

these geometries for real-time collision avoidance; our robot Lola was able to avoid

previously unknown obstacles by performing complex motions such as stepping over

or walking sideways 21, 24.

We extend our system and give it a general structure that handles more complex

scenarios. Our previous vision system 23 could only detect obstacles on the ground

which were considered static. In this work, instead of assuming a flat ground we

detect all kinds of walkable surfaces. Additionally, we improve the detection and

tracking of moving obstacles by explicitly estimating their velocity with a Kalman

filter combined with a more robust clustering algorithm. Surfaces on which the robot

can walk (e.g. platforms, ramps, stairs) are represented using polygons; obstacles

which the robot needs to avoid are represented with one or more SSVs. In contrast

to other works, this full 3D representation does not require previous information

and is able to react to dynamic environments during walking. Additionally, we only

rely on on-board sensing and processing. We combine new and state-of-the-art al-

gorithms to make our system as efficient and robust as possible and design it in a
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modular fashion so that it can be easily integrated as a mix of vision processing

and visualization libraries into other systems. These libraries include tools for lo-

cal visualization and mixed reality with either an external camera or Microsoft’s

HoloLens25. Our code is available open sourcea. As it processes 3D point clouds

directly and does not depend on identifiers such as form, color or texture, it is di-

rectly compatible with other robots and sensors. Furthermore, it can be combined

with classic computer vision algorithms for scene or object recognition.

This paper is organized as follows. In Section 2, we give an overview of other repre-

sentation models, focusing on applications to biped locomotion. Our vision system

is explained and evaluated in detail in Section 3. In Section 4, we present the inte-

gration with the walking controller and our strategy for real-time motion planning

as well as external mixed reality applications. Experimental results are shown in

Section 5, while the system’s capabilities and limitations, as well as future work are

discussed in Section 6.

2. Related Work

In this paper, we deal with the environment modeling of completely unknown sce-

narios for humanoid navigation. This is in contrast to the object recognition meth-

ods (based on e.g. geometric descriptors or learning algorithms), which are an active

area of research in the field of computer vision 12. As they cannot identify all pos-

sible situations, we consider that a modeling strategy for unknown environments

will always continue to be relevant; that is the focus of this section.

As mentioned before, 2.5D maps were used in 2003 to represent a sufficiently struc-

tured terrain 13. The authors could generate collision-free trajectories for their H7

robot. Other early approaches include a 2D classification of the environment 26 in

which the biped robot Johnnie could navigate over obstacles and surfaces which

were previously known. In order to deal with more complex scenarios, a 3D occu-

pancy grid was added to the 2.5D map in order to recognize obstacles 14, 15, but

relied on textured surfaces to climb stairs with the QRIO robot. In one of the few

works dealing with dynamic environments 27, the Asimo robot managed to safely

navigate between 2D, moving obstacles; these were previously known and moved

only with constant speed in the lateral direction. An impressive degree of autonomy

was shown in 16, 17 with the HRP-2 robot. Out of a structured environment, it

could extract planes and label other regions as obstacles for walking over them and

onto platforms. It relied on a pivoting laser scanner for which static scenarios were

assumed. In 2010, a 2D-based occupancy approach was used for quickly generat-

ing collision-free trajectories in non-static environments 28, but it didn’t consider

complex obstacle avoidance motions such as stepping over. A different represen-

tation of the environment using octrees was presented later 29, 30. The authors

achieved collision-free navigation with the Nao robot but used texture and color for

aThe different tools can be found in our repository: https://github.com/am-lola

https://github.com/am-lola
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classification. Motivated by the DRC, some authors 31, 32 presented autonomous

navigation results of the Atlas robot; they do not consider dynamic environments.

In one work, a height-map of relatively simple scenarios was generated while the

robot was standing 31 and simple collision checking was done via Octomaps. In an-

other one 32, accurate and dense 3D maps of the environment were used to extract

walkable surfaces (but not obstacles) from static terrains. The robot is able to plan

future footsteps during walking.

The works mentioned above present several limitations. In most cases, the sce-

narios considered are relatively simple, such that they can be represented using

height-maps. Additionally, collision checking is based only on footstep locations and

heuristics. Most importantly, either the vision system, motion planner or both take

too long to be applied to unknown dynamic environments in real-time. Our work

overcomes all of these issues with an efficient environment representation based on

direct point cloud processing. On the vision side, it is fast enough to be generated

online while the robot is movingb. On the planning side, it enables reactive footstep

planning and real-time 3D collision avoidance.

Another related research area worth mentioning in this section is the autonomous

vehicles industry, where dynamic scenarios are taken into account for real-time navi-

gation. However, conditions differ greatly from the ones considered here. On the one

hand, the environment is not entirely unknown: streets can be previously scanned

and localized with positioning methods; usual components of the scene, such as

other vehicles, bicycles and pedestrians can be recognized using learning methods.

On the other hand, objects can be modeled with simple bounding boxes and avoided

using 2D planning, without considering the complex motions of humanoid robots
33, 34.

3. Vision System

3.1. Structure

Our concept for a vision system for autonomous robots can be seen in Fig. 2. Object

recognition techniques, which have lately become more robust with the use of deep

learning methods 35, enable all kinds of applications such as manipulation and in-

teraction. Still, there will always be sections of the environment (or even complete

scenarios) that will not be recognized by the most comprehensive database; these

can be modeled in parallel using basic geometries, which the robot’s motion plan-

ner can handle. Furthermore, for obstacle avoidance a rough approximation of an

object is not only sufficient but desirable for computational reasons. In this sec-

tion, we will present our strategy for environment modeling which is available open

bOur sensor generates point clouds with 30Hz and our vision system can process them at 10Hz
or faster, as will be shown later.
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Fig. 2. Concept for a Vision System for Autonomous Navigation: sections of the environment which
are not recognized by learning methods (Scene Recognition) are modeled by an approximation
strategy (Environment Modeling) with a set of pre-defined geometries. This work deals with the
latter.

sourcec together with our visualization libraryd. In the future, we plan to combine

it with object recognition methods as shown in Fig. 2 to extend the manipulation

capabilities of our humanoid robot or determine objects to lean on while performing

autonomous navigation.

In the last few years, 3D sensors became widely available 36, which in turn moti-

vated the research on efficient 3D computer vision algorithms 37. In order to make

our system as general as possible, we base our vision algorithm on direct 3D point

cloud processing; we make use of the Point Cloud Library (PCL) 37 and a com-

pletely modular design to make it compatible with other kinds of robots and sensors.

For our experiments, we use a standard RGB-D sensor that serves as a robustness

assessment: if the system is robust against this sensor’s high levels of noise it will

perform even better with other, more accurate sensors. Additionally, the sensor’s

noise can be interpreted as simulating the result of a more accurate sensor over more

irregular terrain, testing the robustness of the system against real-world scenarios.

In Fig. 3, the structure of our Environment Modeling system can be seen. A paral-

lel structure allows to speed up the whole system and make use of multi-threading

computation: each process runs with its own cycle time and can access the latest

scene information regardless of the other parallel processes. In order to do that,

classification criteria have to be defined. In this work, we classify the environment

according to whether it is walkable or not. For other robotic systems, different cri-

teria could be applied, making use of the same approximation algorithms.

As shown in Fig. 3, one process (Plane Segmentation) finds points in the scene

(planes) which can potentially be walked over by the robot. Using the latest plane

coefficients obtained, both the Surface and Obstacle Approximation filter the new

incoming point cloud (the Surface Approximation keeps points belonging to the

planes and the Obstacle Approximation discards them) for generating the corre-

sponding basic geometries. Note that, even though the coefficients are taken from

previous frames (less than 50ms old, see Section 4), they should still be valid in our

chttps://github.com/am-lola/lepp3
dhttps://github.com/am-lola/ARVisualizer

https://github.com/am-lola/lepp3
https://github.com/am-lola/ARVisualizer
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Fig. 3. Environment Modeling. The Plane Segmentation process classifies the incoming point cloud
into walkable surfaces (for the Surface Approximation) and collision objects (for the Obstacle

Approximation).

Fig. 4. Result of the vision system. Left: rgb image of an example scene (for reference). Right:
surfaces (including the ground) are modeled with polygons and obstacles with SSVs.

application scenarios. Fast moving surfaces (e.g. escalators) are therefore treated

as obstacles because their points do not correspond with earlier plane parameters

(which is fine, as they cannot be handled by our planner yet). In Fig. 4 the approx-

imation of an example scene using polygons and SSVs can be seen.

Afterwards, both processes follow a similar strategy for the geometric approximation

which consists of the following steps:

• clustering, where points are grouped into separate “clusters”,
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sensor’s FOV

objects are not updated

Fig. 5. The sensor’s field of view is limited. Objects that enter the skyblue region stop being
updated but are not removed. Objects outside both the FOV and skyblue region are removed.

• tracking, where each surface or obstacle is tracked and filtered across frames

and

• approximation, where each cluster of points is assigned one or more approx-

imating geometries.

In the tracking step the data is additionally checked for consistency. As explained in

our previous paper 23, sensor noise can cause false detection of non-existing objects.

Therefore, surfaces or obstacles need to appear in several consecutive frames before

they are considered real and are sent to the planner. Moreover, as the sensor’s field

of view (FOV) does not include the section of the ground nearest the robot, objects

stop being updated once they get close to the robot and before they leave the FOV

(see Fig. 5).

In order to maintain consistency during tracking regardless of the robot’s motion,

the point cloud is transformed to a fixed coordinate system using the robot’s odome-

try. Even though a Simultaneous Localization and Mapping (SLAM ) method could

be applied to reduce odometry errors, these are sufficiently small for our appli-

cation 23. Moreover, as we consider only on-board sensing, measurements of the

environment are continuously updated and correct with respect to the robot. In

the following, we explain the different processes of Fig. 3 in more detail. As stated

above, a real-time application is the main motivation behind our proposed system.

Throughout our implementation, we chose strategies by prioritizing robustness and

runtime over optimality. The following algorithms satisfy these criteria and are the

result of extensive testing and development.

3.2. Plane Segmentation

Our segmentation strategy is based on RANSAC 38. Compared to Depth-map-based

and Normal-based methods, it proved to be faster, more robust and transferable
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throughout different frames (key for our parallel approach). PCL’s Sample Consen-

sus Segmentation 39 provides a RANSAC implementation which randomly selects 3

points of a point cloud to get a plane’s coefficients ((a, b, c, d) | ax+ by+ cz+d = 0)

and test them against the remaining points. If enough points belong to the plane

(within a certain threshold), these are removed and the process starts over. As the

algorithm finds different planes’ sections separately, these are joined together and

clustered in the end to obtain clean surfaces. We select only surfaces that are suffi-

ciently large to fit the robot’s foot and which are nearly horizontal (up to 20◦ slope

in our configuration) and, thus, walkable. Additionally, we introduce the following

two modifications:

i) Not-so-RANSAC. In order to speed up the process, old plane parameters are

tested against the incoming point cloud before starting RANSAC, so that pre-

viously existing surfaces can be quickly identified. This can speed up the seg-

mentation routine up to seven times.

ii) Classification. The standard segmentation process is not robust against inter-

secting surfaces with similar inclinations (such as the ground and a ramp); when

joining sections of planes together, both surfaces may be joined into one single

plane. Therefore, before this step, planes’ sections are classified according to

their inclination so that all different plane parameters are correctly identified

and adjacent surfaces separately approximated. As will be seen in the following,

this simple modification also helps speed up the surface approximation routine.

The final list of plane coefficients {ai, bi, ci, di} , 1 ≤ i ≤ nplanes is sent to both the

Surface and the Obstacle Approximation process.

3.3. Surface Approximation

3.3.1. Clustering

After filtering surface-points with the plane coefficients, these must be clustered

into separate surface objects. Even points with the same coefficients might belong

to separate surfaces (e.g. two separated platforms with equal height). Standard

clustering algorithms (e.g. PCL’s Euclidean Clustering 39) are computationally ex-

pensive, partly because they are implemented for 3D point clouds. However, we can

take advantage of our modified RANSAC implementation to reduce the clustering

step to a 2D problem: as planes are already classified according to their inclination

and position, only points belonging to the same plane need to be clustered further.

Thus, points can be projected into their corresponding plane and clustered using

local 2D coordinates.

For our application, clustering criteria depend on the robot’s feet. A cluster can be

defined such that the distance between neighboring points is considerably smaller

than the foot size. For clustering a given plane, we use a simple grid discretization:

we group points according to a grid with a relatively small unit length (5 cm in

our implementation) and define connectivity based on neighboring occupied cells
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(note that the grid is only used for clustering while the original points are passed

along to further stages). We tested our implementation against different clustering

algorithms using varied scenes with multiple separated platforms of equal height.

Algorithms tested include: PCL’s 3D Euclidean Clustering 39, OpenCV ’s 2D Eu-

clidean Clustering 40 and a local implementation of DBSCAN 41. The difference

in clustering results was always less than 1% of the number of points while the

difference in runtime was significant: the grid strategy (runtime of less than 2ms in

the most complicated scenarios) performed more than 50 times faster than every

other algorithm.

3.3.2. Approximation

Surfaces are approximated by simple polygons for the reasons mentioned before. At

present, concave or incomplete surfaces are not considered due to the way footstep

locations are optimized for collision avoidance (Section 4); we plan to include them

in the future. We start our approximation by projecting the clustered point clouds

to the corresponding ideal plane and applying the popular QuickHull algorithm
42, 43 (chosen for its runtime and easy parallelization). It iteratively expands a

polygon until it contains all points. The result is a group of polygons with varying

number of vertices. In order to facilitate the integration with the motion planner

these are reduced to a maximum number of vertices nvertices (nvertices = 8 in our

experiments) by iteratively removing those vertices which subtract the smallest area

from the polygon (see Algorithm 1).

Algorithm 1 Reduction of convex polygons

1: Polygon P with adjacent vertices P [i]
2: repeat

3: for all modified vertices j do

4: Update area △P [j] of the triangle 〈P [j − 1], P [j], P [j + 1]〉
5: end for

6: Remove vertex corresponding to △P [m] = min (△P [i])
7: Update P

8: until Polygon contains desired number of vertices or less

3.3.3. Tracking

Due to sensor noise and a limited FOV, the approximation process results in differ-

ent polygon approximations from frame to frame. We match surfaces between frames

by comparing plane coefficients and positions. If a corresponding previous polygon

is found, it is updated (at the approximation step) by averaging both polygons. For

this purpose, we propose a geometric interpretation of the classic low-pass filter,

or “geometric low-pass filter”. The main problem when averaging two polygons is

that there is no clear correspondence between both sets of parameters (vertices).
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Methods which simplify filtering using the polygon’s center or area often result in

inaccurate approximations of the surface’s margins, which are extremely relevant

to our application. Instead of matching vertices from both polygons with one an-

other we match each polygon vertex with the closest point (or projection) in the

other polygon. Then we average the positions of each vertex and its corresponding

projection with a factor α (this can be interpreted as a low-pass filter with inverted

factors for both polygons for consistency, as seen in Fig. 6). The set of average

points results in a polygon with double as many vertices as the original that can be

reduced using Algorithm 1 (see Algorithm 2).

A[i]

B[j]

A

B

B[j]A

A[i]B
α (B[j]−B[j]A)

α (A[i]B −A[i])

C[m]

C[n]

Fig. 6. “Geometric low-pass filter” for filtering successive polygon approximations of surfaces (see
Algorithm 2). Note that the value of α determines the weight between both polygons. By shifting it

closer to the old or new polygons, the algorithm becomes either more or less damping, respectively
(α = 0.5 in the experiments).

Algorithm 2 Geometric low-pass filter

1: Polygons A,B, with nverticesA,B
vertices A[i], B[j]

2: for all i, j do

3: Compute projection of A[i] in B, A[i]B
4: Compute projection of B[j] in A, B[j]A
5: end for

6: Compute pre-filtered polygon C =
{αA[i] + (1− α)A[i]B} ∪ {(1− α)B[j] + αB[j]A} ∀i, j
with 0 ≤ α ≤ 1

7: Perform Algorithm 1 on C
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3.4. Obstacle Approximation

An early version of our obstacle approximation strategy was published previously
23. One of the main limitations was that due to the chosen euclidean clustering

method, runtime would depend on the complexity of the scene (effectively restricting

the amount and velocity of objects). Here we overcome that problem by using new

clustering and tracking methods which are both more robust and dynamic, handling

extremely complex scenarios faster than the sensor’s frame rate (30 Hz). The SSV

approximation method hasn’t been changed and is therefore only briefly described

here.

3.4.1. Clustering

In machine learning theory, data clustering is a fundamental problem of unsuper-

vised learning. The objective is to determine correlation relationships between vari-

ables out of training data sets, without any additional information. A common

approach 44 is the Gaussian Mixture Model (GMM), which consists of a set of

probabilistic Gaussian distributions (or Gaussians) with the form:

p (xi|θ) =
K
∑

k=1

πkN (xi|µk,Σk) (1)

where K is the number of Gaussians and N (xi|µk,Σk) is the normal distribution

of Gaussian k with mean µk, covariance Σk and mixing weight πk. These weights

satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1, to ensure a correct probability distribution

p (xi|θ) of the n points xi (in this case, xi has three coordinates) with the list of

parameters θ, which consist of {πk, µk,Σk} ∀k in this case 44.

These models are potentially well suited for our application as they don’t need

many assumptions on the data and their probabilistic nature make them robust

against sensor noise. Additionally, the implicit principal axis decomposition analysis

can be directly used for the SSV approximation, as explained below. However,

classical implementations are based on static data sets and require an iteration

procedure which converges to a local maximum likelihood estimate (MLE). Even

though other authors have recently shown applications to object tracking 45, these

are still too complex for real-time applications. For our clustering and tracking

application, we propose the following adaptation of the Expectation Maximization

(EM) algorithm which, combined with a Kalman Filter, can be successfully applied

for online tracking of unknown, dynamic objects.

In order to improve runtime, only one EM-iteration is performed for each new point

cloud. They classically consist of:

• Expectation (E) step: compute an auxiliary responsibility function for each

point xi and Gaussian k.

rik =
πkN (xi|µk,Σk)

∑K

j=1 πjN (xi|µj ,Σj)
(2)
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• Maximization (M) step: for each Gaussian k, compute new estimates for

the weights πnew
k and parameters {µnew

k ,Σnew
k }.

πnew
k =

1

n

n
∑

i=1

rik =
Rk

n
(3)

µnew
k =

1

Rk

n
∑

i=1

rikxi (4)

Σnew
k =

(

1

Rk

n
∑

n=1

rikxi (xi)
T

)

− µnew
k (µnew

k )
T

(5)

Even though an MLE is not guaranteed for dynamic data, our experiments in real

environments show that it typically converges within a few frames and effectively

tracks existing objects afterwards. Nevertheless, (4) and (5) do not take into ac-

count dynamic scenarios (or changing data). In order to deal with these scenarios,

we propose a few modifications to the EM algorithm that take objects’ dynamics

directly into account and are explained in the following.

3.4.2. Tracking

It is interesting to note that the use of GMMs makes tracking much easier. Com-

pared to the euclidean segmentation 23, where new objects need to be matched

against old ones, the iterative nature the EM algorithm means that cluster identi-

ties and parameters are kept from frame to frame. However, data is supposed to be

static, meaning that new values of µnew
k do not take into account the object’s veloc-

ities and are always “lagging behind” the motions of the objects. For this reason,

we apply a Kalman filter to the values of µnew
k which results in a more dynamic up-

date procedure and better trackinge. We use a linear model with constant velocity

and Gaussian noise in both position and velocity values and replace (4) with the

new estimated value µ̂new
k . This combination of the EM and Kalman algorithms46

results in the effective tracking of multiple dynamic elements, as can be seen in

Fig. 7. Furthermore, the estimate of the velocity can be passed along to the robot

in order to directly consider objects’ motions in the motion planning module.

For what concerns Σ, the estimation in (5) depends strongly on the present data

and thus can vary from frame to frame. In our application, it means that separate

dynamic objects are quickly joined once they are close, preventing correct tracking

and velocity estimation. Therefore, we replace it with a maximum a posteriori esti-

mation, which can be interpreted as a low-pass filter that keeps separate obstacles

separated (see Fig. 8):

Σ̂new
k = λΣk + (1− λ)Σnew

k with 0 ≤ λ ≤ 1 (6)

eEven though the obstacles might be correctly approximated after some frames without the
Kalman filter if the update rate is fast enough, it is still useful as a velocity estimator.
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Fig. 7. GMM clustering with Kalman filter for obstacle tracking. Left: in the reference rgb figure it
can be seen how a person suddenly kicks a ball. Right: several SSVs can be tracked simultaneously
(surfaces are discarded for this example); velocity vectors are shown as black segments.

Fig. 8. Keeping separate obstacles separated. In this example, a ball rolls under a chair (top left).
The standard application of the EM algorithm doesn’t take into account dynamic scenes and
obstacles are joined together (top right, λ = 0). A low-pass filter on Σ (see (6)) keeps a better
track of the ball (bottom, λ = 0.95). Only the Gaussians are shown here for simplicity.

An intrinsic problem of such a probabilistic method consists of determining the

correct number of Gaussians (or obstacles) in the scene, especially when handling

dynamic scenarios. In order to solve it, we group the points according to a simple

voxel grid with a coarse resolution (see Fig. 9) such as the one used for surface

clustering (Subsection 3.3) but in 3D (note again that the 3D grid is only used for

clustering while the original points are passed along to further stages). Again we

obtain a quick clustering of the scene, consisting of several “qclusters”. These are

used to split Gaussians that contain a considerable amount of points in more than

one qcluster (see middle image in Fig. 9). Additionally, new obstacles are created

when a qcluster is found on which most points don’t belong to previous Gaussians.
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Fig. 9. Determination of the correct number of Gaussians. From left to right: two chairs, voxel
grid for quick clustering and point cloud with approximating Gaussians (the ground is hidden).

Obstacles are removed when they present low weight values πk, as they are not

needed to represent existing points. Using these criteria to add, split and remove

Gaussians from the scene, we initialize the distribution with one Gaussian for the

entire point cloud and iterate further. Even in complex scenarios, initialization time

is fast enough for our application. Note that each obstacle can be approximated with

more than one SSV later 23.

3.4.3. Approximation

The SSV approximation is based on the maximum, middle and minimum principal

moments of inertia Imax, Imid and Imin of every obstacle point cloud (a.k.a. prin-

cipal axis decomposition). The quotients ξ1 = Imin

Imax

and ξ2 = Imid

Imax

are geometric

invariants, as they don’t depend on the scale of the point cloud. Our approximation

uses only point- and line-SSVs (see Fig. 10), which satisfy:

• Ideal point-SSVs have ξ1 = ξ2 = 1

• Ideal line-SSVs have ξ1 < ξ2 = 1

However, as detected point clouds are incomplete, the identification criteria have to

be adapted to experimental values. When neither criterion is satisfied, a more de-

tailed approximation can be achieved by iteratively splitting the point cloud (again)

and assigning more than one SSV object to every obstacle (e.g. the chair approxi-

mation in Fig. 4). The SSV parameters (fitting) are then heuristically determined

the following way 23: centers along the Imin-corresponding axis for line-SSVs and

at the point cloud centroid for point-SSVs; radius corresponding to the point with

the maximum distance from the axis or centroid, respectively.

These algorithms are implemented to run on-board a humanoid robot. In the follow-

ing section, their integration with the walking controller is explained. The perfor-

mance of the vision system and its validation in experiments are shown in Section 5.
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r

Fig. 10. SSV approximation of point clouds. After clustering, identification and splitting, point-
SSVs (left) and line-SSVs (right) are fitted using the centroid O and projections O1 and O2 to
the Imin-corresponding axis, respectively. The radius r corresponds to the farthest-away-point in
each case. On the right, the axis of inertia and projections on it are represented with black lines.

4. Integration with the Walking Controller

4.1. The Lola Robot

The humanoid platform for testing these algorithms is the biped robot Lola. It is an

electrically actuated robot with 24 degrees of freedom which weighs approximately

60 kg and is 1.8m tall. In Fig. 11, a photo and the kinematic configuration of the

robot can be seen. A more precise hardware description can be found in our pre-

vious work47. For 3D sensing, we use a standard RGB-D sensor, the Asus Xtion

PRO LIVE 48 (30Hz) mounted on top. These low-cost sensors come with relatively

high noise. As our motivation is to make a system capable of walking in all kinds

of environments (e.g. gravel, grass) where surface detection can never be accurate,

this choice serves as robustness testbench.

The walking controller and the vision system run on two parallel on–board com-

puters with Intel Core i7-4770S@3.1 GHz (4x) processors and 8GB RAM and com-

municate via Ethernet using UDP and TCP/IP.

4.2. Motion Planning

Our walking control system as depicted in Fig. 12 follows a hierarchical approach.

It is divided into a Planning Unit and a Feedback Control. Both receive the environ-

ment approximation of the vision system and use it internally to allow for collision-

free motion generation. The planning unit calculates an Ideal Walking Pattern over

a time horizon of multiple walking steps. It gets desired walking step parameters,

like the walking step length, desired goal positions or a desired velocity vector as

an input from the user. Thanks to a cycle time of Tstep, it is very responsive to

changes in the environment or in user input.

Based on the environment representation and the user’s input, the Navigation mod-

ule calculates a sequence of parameter sets describing the walking pattern based on

an A∗ search implementation 18. Here, we present an extension to take stairs and

platforms into account.

Using the output of the navigation module as an initial solution to the motion

planning problem, the Predictive Kinematic Evaluation & Optimization module
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Fig. 11. Photo and kinematic structure of the humanoid robot Lola with an RGB-D sensor mounted
on top.

Feedback Control
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Surface & Obstacle
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Parameter Optimization &
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∆t = TStep

∆t = 1ms

Fig. 12. Lola’s real-time walking control system.

optimizes the parameter set and calculates kinematically feasible, collision-free and

dynamically executable trajectories taking the environment representation and the

full robot approximation into account 21.

These trajectories are the input to the Feedback Control unit. It is called in a cycle

time of 1ms and adapts the ideal planned trajectories locally according to sensor
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feedback and taking the full approximation of the robot and the environment for

collision avoidance into account 22.

4.3. Navigation

The objective of the navigation module follows ideas from other authors 28, 17. Its

purpose is not to find long distance paths but to give the user a reactive system

which is able to safely navigate in cluttered environments. This is especially im-

portant if no full map of the environment is available and the user as well as the

robot depends only on the robot’s limited field of view (see Fig. 5). According to

the application, the user should have the possibility to guide the robot with a joy-

stick, give it desired walking parameters, or set intermediate goal positions which

the robot should reach. The robot should execute these high-level commands and

take care of a safe and optimal path. In the following, this process is explained in

detail.

4.3.1. A*–search

Based on a discrete set of footsteps an implicit A*-search is applied to solve the

planning problem and to find a sequence of nSteps walking steps. The robot’s state

s, representing the nodes of the used A*-search, is described by the current stance

foot stance = (left, right), the global position r = (x, y, z) and orientation θ =

(θx, θy, θz) of the stance foot. It follows s = (x, y, z,θ, stance).

Since the possible footstep locations are symmetric for the left and the right stance

foot, we define one action model as a = (∆x,∆y,∆θz, hobst, hStep, ca). ∆x, ∆y

and ∆θz represent the possible displacements and rotations relative to the current

stance foot. ∆z, ∆θx and ∆θy are not taken into account as part of the action

model since they are directly determined by the current position (x, y) of the robot

in the represented world. We augment the action model by hobst, which takes into

account obstacles the robot has to step over to reach the next s and by hstep, which

denotes the height change the action can make. The cost for each action is denoted

by ca. Further details are explained in our previous publication 18.

4.3.2. Collision Checking

The main difference to other A*-search based footstep planners for biped locomo-

tion 17, 49 is the collision world representation and its consistent consideration in

all modules of trajectory generation – from footstep planning to reactive collision

avoidance 22. Instead of using a grid-based environment representation which is

able to check collisions in a binary way for a 2.5D map, we base our planning

module on the environment representation presented in this paper which allows

for collision checks in full 3D. In the footstep planner, collisions are checked not

by a planar rectangle but by a 3D model of the lower leg including the foot and
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Robot

Collision Model

Obstacle Approximations

Surface in Collision World

Fig. 13. Collision model of the footstep planner for Lola stepping over an obstacle with movable
leg segments. Both the robot and obstacles are modeled with SSVs. Surfaces are represented as
polygons with edges modeled as SSVs to avoid stepping on them using the collision avoidance
framework.

a leg segment approximation. This gives a better approximation of the full robot

movement, especially for large strides, and allows for reduced safety margins.

4.3.3. 3D Walking

In addition to the viability of a state s and the corresponding action model a, the

footstep planner has to evaluate the 6D pose of the foothold. As introduced above,

the rotation θy, θz and the height z are a direct function of the environment, x, y and

θz. Apart from areas the robot is not able to step on (obstacles), we introduce areas

the robot can step on (surfaces) to the environment representation (see Fig. 13). As

presented in Subsection 3.3, surfaces are represented by convex hulls (polygons) and

a normal to the surface (see Fig. 1). In order to prevent the robot from stepping

onto the edges of the surfaces, these are modeled as obstacles using line-SSVs.

Thus, the complete foot is in contact with the surface, which helps to maintain the

robot’s stability and prevents additional modifications to the walking controller.

This representation has several advantages:

(1) Based on the current x and y value of s, the footstep planner is able to determine
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the whole 6D pose of the foot just by checking in which polygon the current s

is lying, which is computationally efficient.

(2) Surfaces are completely defined by the corner points and the normal of the sur-

face. This is a memory-efficient representation (a more detailed representation

would be unnecessary) that simplifies communication between planning mod-

ules and the vision system. In the current implementation, a maximum of eight

corner points are used. Depending on the desired level of detail it can be easily

extended to a higher (or lower) number of corner points.

(3) Additionally, surfaces are included consistently using SSV elements in our col-

lision avoidance framework. That way, the motion generation modules are able

to generate collision-free whole body motion 22, 21.

4.4. Data Visualization - Augmented Reality

When developing an autonomous navigation system, as well as when performing

teleoperation with a robot, it is useful to visualize the results of the different frame-

work modules. In order to help visualize both the results of the perception system

as well as its influence on the motion planner, an augmented (or mixed) reality

system is developed. It projects collision geometries, surface approximations, and

footstep positions online into the scene. This is done either via an external RGB

video feed from the scenef or using Microsoft’s HoloLensg; both tools are available

open source in the repository for the benefit of the community.

The objective of these systems is to provide immediate feedback about the percep-

tion system’s accuracy and the quality of the motion planner’s output in a context

which can be immediately understoood at a glance. In Fig. 14, the final setup is

shown. The vision system (Lola Environment Perception System, or LEPP) sends

the environment approximation results to the control computer (Control) while re-

ceiving odometry information from it (State Server). Additionally, two other com-

puters are included in the network for augmented reality. They both receive the

environment approximation results from LEPP, the actual and planned footstep

positions from Control and the odometry information from State Server. In the

following, both implementations are described.

The results of the first system (Lola Listener in Fig. 14) are shown in Fig. 15.

In order to render the data correctly and obtain a good registration between the

virtual objects and the RGB video feed, two things need to be taken care of. First,

the camera’s intrinsic parameters need to be measured and used to modify the

projection. Virtual objects are rendered to reproduce (as much as possible) the

physical camera’s characteristics (such as FoV or lens distortion) with a virtual

camera. This ensures that if a virtual object and a physical object lie at the same

location relative to the camera, they should cover the same pixels in the RGB image.

fhttps://github.com/am-lola/LolAR
ghttps://github.com/am-lola/HoLola

https://github.com/am-lola/LolAR
https://github.com/am-lola/HoLola
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HoLolaListener

Robot On-Board

LEPP Control

State Server

Linux Vision Computer QNX Control Computer

Detected Obstacles, Surfaces Planned Footsteps Robot Pose & Kinematic Data

Fig. 14. Setup for autonomous walking and augmented reality. The walking controller and vision

system run on two parallel computers on-board. Two external systems for augmented reality receive
information from them online.

Second, in order to place virtual objects correctly, the transformation between the

camera’s 6D pose and the robot’s coordinate system needs to be found.

While the first point can be solved using standard camera calibration routines,

there is no simple, adequate solution available for the second one. For this example, a

manual calibration was done. Nevertheless, a module is introduced that uses markers

from the ArUco library 50 to perform the calibration automatically. The location

of the ArUco marker is improved using the correlated depth data. Additionally,

by estimating the location of the ground from the camera, the height and two

spatial orientations can be calculated. These are used to further improve the pose

estimation.

A less expensive augmented reality system (HoLola in Fig. 14) is developed for
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Fig. 15. Augmented reality system with a structured light sensor. In this picture, calibration is
performed manually. Left: the planned walking steps and results of the perception system at one
point are projected into the RGB feed. Right: the accumulated results of the perception system

and the footstep planner during the complete run against the initial RGB frame.

the Microsoft HoloLens 25. The visual feed through the HoloLens can be seen in

Fig. 16. The HoloLens application is built in two layers: a simple visualization layer

which draws/removes data as the robot generates new object approximations and

footstep plans, and a low-level networking layer for communication with the robot’s

computers. Because the HoloLens localizes itself very accurately, rather than trying

to identify the device in the robot’s coordinate system a common reference is used.

The users can place a coordinate frame anywhere in the HoloLens’ map of the

world, and by aligning this with the robot coordinate system, all data from the

robot can easily be rendered. The location selected by users in this way is anchored

to the features that the HoloLens uses for tracking and persists between executions

of the application, so it only needs to be adjusted when the location of the robot

coordinate system’s origin changes. It can also be updated on the fly at any time.

The HoloLens also provides an RGB feed from a front-facing camera on the device

which could be used to locate a marker on the robot, as with the external camera

application. A short video can be found online at https://youtu.be/EeDR1UNDpIY.

https://youtu.be/EeDR1UNDpIY
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Fig. 16. Augmented reality system with the HoloLens. Both the results of the perception system
and the motion planner are projected into the environment (the ground plane is left out for clarity).

The executed footsteps are depicted in blue and green and the planned ones in the same, but semi-
transparent colors. The calibration is performed by placing a virtual coordinate system (depicted
with a yellow sphere at the origin and red, green and blue spheres corresponding to the x, y and z

axes, respectively) coincident with the one of the robot at the foot. The small error in the obstacle
approximation is due to occlusion.

5. Results

5.1. Simulations

In order to evaluate the effectiveness of our algorithm, we simulate several environ-

ments using synthetic point clouds. We first create a dataset of 3D files, including

one for a large floor area from which point clouds are generated. By scaling, trans-

forming and combining these objects, we can automatically and randomly create

increasingly complex scenes. Moreover, we can simulate moving objects by applying

frame-varying transformations and generating a stream of point clouds. Addition-

ally, in order to better recreate the real scenario, the robot’s field of view and its

resulting occlusion effect are also taken into account by frustum culling and ray

casting 39 (see Fig. 17).

With these synthetic scenarios, we evaluated the approximation of obstacles, sur-

faces and tracking of dynamic objects. By randomly varying scale, transformation

and combinations of platforms and objects with different shapes, parameters were

adjusted and the results of both the Surface and Obstacle Approximation were com-

pared against scaled ideal values of the original object dataset. Around 100 different

scenarios were tested.

For the polygon evaluation, we used inclined platforms with different sizes and the

following shapes: circles, rectangles with normal/round corners, ellipses, regular and

irregular convex polygons and polygons with some rounded corners. The error in

inclination is negligible in all cases. While the error in area lies in the range of 0-4%
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Fig. 17. Evaluation of the algorithm via synthetic point clouds: 3D objects (top left) are trans-
formed into point clouds (bottom left) which are combined with the floor, filtered via frustum
culling and ray casting, and approximated by the vision system (right).

for polygons, the error in area can be up to 10% in the case of rounded shapes: this

is mainly caused by the limited number of vertices used in the polygon approxima-

tion. However, the approximated area is always smaller than the original area, and

the remaining points will be approximated with SSVs so the result is always safe

for navigation.

In the case of the SSV evaluation, we used prisms, cylinders, platforms and com-

binations of more than one shape. The volume of the approximating SSVs varies

between 100-300% of the original shapes, with the best results corresponding to

rounded shapes and higher number of splitting steps. As expected, the volume of

the approximation is consistently higher than the original shapes (due to the con-

servative fitting strategy).

Using a stream of point clouds, we first evaluated the obstacle tracking (see Fig. 18).

The obstacle tracking algorithm, running at 30Hz, is capable of tracking objects

moving with constant speeds up to 3m/s (at higher speeds, the displacement be-

tween frames is too large to be correctly matched). We performed around ≃ 200

simulations of randomly-sampled velocities between 0.01m/s and 3m/s. Conver-

gence of the estimated velocities to a value with less than 3% error takes between

30-60 frames for the fastest moving objectsh.

The evaluation of synthetic point clouds is a valuable tool for development. Addi-

tionally, it helps to validate the capacities of the developed system. It is capable

of correctly approximating a large variety of dynamic scenarios. Errors may be-

come significant due to the simplifications necessary for fast processing, but they

are always conservative and safe for robot navigation.

hThe initialization time of the algorithm required when starting the robot is not taken into account.



February 5, 2018 20:33 WSPC/INSTRUCTION FILE ws-ijhr

Vision-Based 3D Modeling of Unknown Dynamic Environments for Real-Time Humanoid Navigation 25

Fig. 18. Obstacle tracking performance. An object moves with constant speed and is approximated
with an SSV. Objects moving with constant speeds up to 3m/s can be successfully tracked.

Spatial Planes Surfaces Obstacles

Resolution max min mean max min mean max min mean

1 cm3

(∼ 65000 points)
45 6 13 373 1 92 353 8 107

2 cm3

(∼ 21000 points)
19 2 6 123 1 21 284 3 57

Table 1. Performance of Vision System. Runtime (in ms) for different point cloud resolutions of the
(Plane Segmentation), (Surface Approximation) and (Obstacle Approximation) processes of the

vision system (maximum, minimum and mean values) for highly complex and dynamic scenarios
spanning 500 frames approximately.

5.2. Performance of the Vision System

Here we evaluate the live performance of our vision system. In order to obtain a

greater amount of data and validate our system in more complex environments, a

series of dynamic scenes with humans, objects and platforms are recorded in front

of the robot’s camera. These include dynamic scenes with several objects and plat-

forms of different shapes and sizes. Examples of these scenes can be seen throughout

this paper in Figs. 4 and 7 to 9, including transitions between them. The duration

of the different processes can be seen in Table 1. In the Surface Approximation pro-

cess, higher runtimes correspond to frames that consist mostly of walkable planes,

as the different algorithms need to iterate through a high number of points. In the

case of the Obstacle Approximation process, higher runtimes are the result of sud-

den changes of the scene where the algorithm needs to re-converge; they improve

considerably after a few frames. The final list of obstacles and surfaces are sent to

the motion planning module with a set frequency of around 5Hz, which re-plans

the future 8 walking footsteps every walking step (0.8 s).

Unfortunately, open source perception systems for humanoids are extremely un-

common. Most relevant publications in the field don’t release their source code and

often omit thorough performance results, which makes it difficult to perform an ob-

jective comparison. Nevertheless, a few examples are mentioned for reference. The

framework presented by Nishiwaki et al.17 requires a 1 second sensor sweep with the

robot still to acquire and process perception information to create 2.5D maps. Us-
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ing a similar sensor and resolution as this work, the framework presented by Maier

et al.29 for the Nao robot runs at a frequency of 6Hz and uses a 3D voxelization

to model environments, without performing surface segmentation. More recently,

Fallon et al.32 presented an approach for sensor fusion and plane detection. It is

based on 2.5D maps which are further reduced by removing points belonging to the

ground. In its actual configuration, the segmentation process takes 615ms on av-

erage. Even though the algorithm runs during motion, each walking step takes 4 s,

which is five times slower than the presented experiments with Lola. Moreover, all

these frameworks assume static environments in their application. In comparison,

the framework presented in this work proved to be faster as well as more flexible

and generally applicable.

5.3. Experiments

A video of the experiments presented in this section can be found at https://

youtu.be/VceqNJucPiw. Videos of additional experiments, including a recorded live

demo, are available on our YouTube Channeli. We tested our framework repeatedly

by making our robot Lola continuously walk in different scenarios. It is important

to note that, throughout all experiments performed, the robot walks continuously

without stopping and both the vision system and the motion planning module react

to previously unknown scenarios during walking. In order to highlight the features

presented throughout in this paper, we discuss three of themj in the following:

Unexpected Obstacles

In this experiment we confirm the ability of the robot to avoid unexpected obstacles,

using motions such as stepping over or sideways. A sequence of the video and

the results of the vision system is depicted in Fig. 19. The robot needs to find a

way through the room which is blocked with relatively small, previously unknown

obstacles in the ground. In contrast to our previous work 23, this time the complete

vision system recognizing surfaces as well as obstacles is used, and the new motion

planning module 24 generates broader and more flexible paths through the room.

Platform

In these experiments we test the reaction of our framework to uneven terrain, such

as platforms or stairs. We validate both the ability of the vision system to detect

and model surfaces accurately and fast enough during walking and the flexibility

of our motion planner to adapt the walking sequence in real-time. A sequence of

the video and the results of the vision system is depicted in Fig. 20. We place a

platform (12 cm high) and a few obstacles on the ground (to block alternative paths

around the platform), obstructing the way through the room. The robot walks up

and down the platform on its way forward (see Fig. 21).

ihttps://www.youtube.com/appliedmechanicstum
jAll experiments shown here were performed with the same configuration as the one available in
our repository.

https://youtu.be/VceqNJucPiw
https://youtu.be/VceqNJucPiw
https://www.youtube.com/appliedmechanicstum
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Fig. 19. Experiment with unexpected obstacles. Top: the robot tries to find a way through the
room obstructed by obstacles on the ground. Bottom: the results of the vision system (the point

cloud is cropped to the walking area).

Fig. 20. Experiment with unexpected platform. Top: the robot walks up and down an unexpected
platform which stands in the way to the end of the room. Bottom: the results of the vision system

(the point cloud is cropped to the walking area).

Highly Dynamic Scenarios with Large Obstacles and Humans

In this experiment we test the ability of our framework to react to dynamic envi-

ronments. We validate both the ability of the vision system to track large dynamic

objects during walking and the fast reaction times from our motion planner 24. A

sequence of the video and the results of the vision system is depicted in Fig. 22.

We give the robot a goal position in an initially empty area. When the robot starts

moving, a person walks in, blocking its path. When the robot turns to avoid the per-

son, he blocks its path again with a chair. After avoiding the chair and the person,

the robot’s path is blocked yet again so that it is prevented from reaching the goal

position. The robot’s reaction (which depends on the sensor’s limited FOV) can be

clearly seen in Fig. 22, emphasizing the real-time capabilities of the framework.



February 5, 2018 20:33 WSPC/INSTRUCTION FILE ws-ijhr

28 Daniel Wahrmann et al.

Fig. 21. Collision world. Left: the robot walks up an unexpected platform which stands in the way
to the end of the room. Right: representation of the 3D collision world including the robot and

external obstacles modeled as SSVs, the platform modeled as a polygon and the planned footstep
locations.

Fig. 22. Experiment in dynamic scenarios. Top: the robot tries to reach a goal position in the
room despite a person repeatedly blocking its way. Bottom: the results of the vision system (the

point cloud is cropped to the walking area and further-away points are removed to ensure limited
reaction times).

6. Conclusion

In this work we presented a framework for autonomous walking in unknown dynamic

environments. It is based on a novel 3D environment representation which presents

considerable advantages for real-time motion planning and collision avoidance. We

introduced an open source 3D vision system for environment modeling that repre-

sents dynamic scenarios with simple geometries. It is integrated with our motion

planning system to perform autonomous navigation in unknown, dynamic scenarios

with our robot Lola. We validated our framework via simulation and experiments.

Our robot is now able to walk over platforms at around 0.4m/s while avoiding

moving obstacles in previously unknown scenarios. To facilitate our research we
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developed visualization and augmented reality tools that project the results of the

vision and planning systems into the scene; they are released open source as well.

Future work includes the integration of environment recognition strategies to aug-

ment the capabilities of the robot. On the control side, we plan to introduce time

explicitly into the motion planning strategy to coordinate the robot’s motion with

moving scenarios.
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