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Abstract

This thesis investigates a numerical method to quickly assess the response of a laminar, pre-
mixed flame to equivalence ratio perturbations. This linearized reacting flow (LRF) solver re-
lies on linearizing Navier-Stokes equations with reacting species equations. The governing
equations are linearized around a steady operation point, while reaction and heat release
terms are expressed with a linearized Arrhenius equation. The number of independent vari-
ables is kept low by exploiting analytic correlations from the reaction equation. Discretiza-
tion is done by the discontinuous Galerkin finite element method. The linear system of equa-
tions is solved in frequency domain with the simulation software COMSOL 4.4 to compute
the flame response functions (FRF).

The LRF solver is applied to investigate attached and lifted laminar premixed flames in 2D
for equivalence ratio perturbations. Results are compared to FRF identified from a CFD sim-
ulation. The phase of simulated FRFs is in excellent agreement with the reference data from
CFD. Gain, however, is underestimated by the LRF solver for the attached flame and falsely
predicts the excessive gain peak frequency for the lifted flame. Secondly, the LRF solver’s
solution is examined towards the influence of mass fraction perturbations on enthalpy and
temperature perturbations. Results show, that temperature is not influenced by mass fraction
perturbations, while mass fraction perturbations have to be modelled for enthalpy perturba-
tions.
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1 Introduction

The first chapter will explain: Why is this topic interesting? How are similar problems investi-
gated and what improvements are possible? At the end of the chapter, the thesis structure is
outlined for the reader’s overview.

For the steady supply of power in electricity generation or propulsion, gas turbines are a
widely spread technology. Their design and optimization commands a high attention from
both academic and industry researchers. Within this research, the study of the thermoacous-
tic properties of combustion chambers is a field of particular interest, as emission specifica-
tions are becoming increasingly strict. This requires operation at lean conditions, where gas
turbines tend to instabilities. These arise from feedback interaction of hear release rate, flow
and acoustics. The coupling effects of burner flames and acoustic waves are therefore to be
carefully considered in the design of modern combustion systems, such as aircraft and rocket
engines or stationary power and heat supply.

Instabilities can cause a number of effects, that can be harmful: oscillations in flow param-
eters (velocities, pressure, temperature, etc.), increasing amplitudes of flame movement and
heat transfer to walls, destruction of combustion chamber parts, or loss of system control. In
general, development aims at avoiding and controlling unstable flame regimes. (cf. [3])

Premixed flame combustors are usually designed to operate at a stable design point with
a premixed flame whose flow may be laminar or stabilized by turbulence (swirl-stabilization).

1.1 Flame Transfer Functions in Stability Analysis

The flow-flame interaction often represented by a flame response function (FRF) which relate
a flame’s heat release fluctuations Q̇ ′ to perturbations of velocity or to equivalence ratio per-
turbations upstream of the flame. For the case of velocity perturbations, the flame response
function is also referred to as flame transfer function (FTF). This definition reads:

Velocity perturbations:
Q̇ ′

Q̇
= Fu

u′
ref

uref
(1.1)

Equivalence ratio perturbations:
Q̇ ′

Q̇
= Fφ

φ′
ref

φref

(1.2)

Note, that this formulation omits that heat release rate terms are taken as intergrals over the
entire domain, while the flow variables are point values at a fixed reference point.

On equivalence ratio perturbations, Albayrak et al. [4] repeat the danger of uncontrolled,
large amplitude oscillations in combustion chambers. The authors also state that ’perturba-
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Introduction

tions in equivalence ratio modulate the heat of reaction and the laminar flame speed, which
affect the heat release rate of the flame in a direct manner’ [4, p. 3726]. This correlation was
discovered by Dowling and Hubbard [5] in 2000. Further research on the topic of fuel-air ratio
oscillations was carried out by Cho and Lieuwen [6], Shreekrishna et al. [7] and Hemchandra
[8].

Even though computational resources are constantly increasing, highly resolved LES of
e.g. a turbine combustor is still too expensive for industrial development. In order to downsize
the problem, hybrid approaches are taken, that couple acoustic models with a FRF. (cf. for
instance [9, 10, 11]). Then the identification of the flame response to perturbations is typically
done from time series data, that is computed with rather costly CFD methods [12, 13].

In the popular thermoacoustic network models the combustion chamber is modelled as a
series of ducts or area jumps, through which acoustic waves travel. Owing to better algorithms
and computing power, the resolution of the acoustic field in a combustor is now possible
with two- or three-dimensional simulation of the Helmholtz, linearized Euler or the linearized
Navier-Stokes equations. The flame dynamics is in all models introduced by a FRF, that has to
be previously identified.

Recent work by Avdonin et al. [14] introduces a method, that is not relying on externally
provided FTFs. Here, the Navier-Stokes and reacting species equations are analytically lin-
earized to obtain linearized reacting flow (LRF). The LRF solver uses the discontinuous Galer-
kin finite element discretization and operates in the frequency domain. Besides CFD simula-
tion to generate the mean fields, no further input is needed.

Earlier works by van Kampen et al. [15] on flame response to equivalence ratio perturba-
tions and by Blanchard et al. [16] on the effects of flow fluctuations on the flame also operate
with linearization techniques. Their approach is, however, to numerically linearize the gov-
erning equations and compute FRFs as step response in the time domain.

This thesis aims to show that LRF could be used for equivalence ratio perturbations in
laminar, premixed flames.

1.2 Motivation and Outline

The main goal of the presented work is to investigate LRF as a method for computing FRFs,
that is computationally less expensive than LES and still displays flame-acoustics interac-
tion accurately. Even though computing power has been permanently increasing over the last
decades and simulation of complete combustion chambers in three dimensions is now possi-
ble, CFD simulation of reactive flow fields in high resolution (LES or DNS) is still available for
only few reference cases and at high costs. With the demand for new, less emissive turbines, a
feasible alternative for daily application in R&D departments is sought after.

The simulation model based on linearization of the governing equations could show to be
a candidate for fast identification of FTFs. Deduction and application of the LRF approach to
equivalence ratio perturbations is presented in this thesis.

The next chapter will explain, how the Navier-Stokes equations (NSE) are linearized with
first order Taylor expansion and acting forces terms like diffusion or sources are modelled. At
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1.2 Motivation and Outline

the end we obtain so called linearized reacting flow (LRF) equations.
Chapter 3 will describe, how the number of independent variables is reduced by utilizing

the chemical reaction of the combustion. Thus, the number of degrees of freedom and thereby
computational effort is reduced.

The linearized governing equations for methane combustion are then discretized by the
discontinuous Galerkin finite element method. The discontinuous Galerkin form of the LRF
is described in chapter 4.

Thereafter, in chapter 5, the numerical setup with the software COMSOL Multiphysics 4.4
is introduced. Geometry, meshing, and boundary conditions are shown and the simulation
procedure described. Afterwards, the numerical model is applied to study attached and lifted
laminar premixed flames. The main part will focus on the model’s performance in computing
the FRF for equivalence ratio perturbations. The results are discussed in terms of accuracy in
gain and phase of frequency responses. Secondly, influence of mass fraction perturbations in
linearized terms for temperature and enthalpy are examined.

Finally the thesis is concluded with a review the work done and ideas for future work.
Appendixes give detailed formula and explanations, where needed, and are referenced in

the text.
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2 Linearization of the 2D compressible
Navier-Stokes equations

At the base of our approach is the linearization of the Navier-Stokes equations (NSE), the
ideal gas law, and the included material properties. This procedure is explained in detail in
the following chapter.

2.1 The non-linear Navier-Stokes equations

The full compressible NSE describe the behaviour of a fluid as a continuum. These are lin-
earized to obtain the LRF equations. The non-linear conservation laws are solved in the Open-
FOAM solver in this form:

Mass:
∂ρ

∂t
+ ∂ρui

∂xi
= 0

Momentum:
∂ρui

∂t
+ ∂ρui u j

∂x j
=− ∂p

∂xi
+ ∂τi j

∂x j

Species:
∂ρYk

∂t
+ ∂ρu j Yk

∂x j
= ∂

∂x j

(
Dk

∂Yk

∂x j

)
+ ω̇k

Sensible enthalpy:
∂

∂t

(
ρh −p

)
+ ∂ρui h

∂xi
= ω̇T + ∂

∂xi

(
α
∂h

∂xi

)
.

(2.1)

Here, ∂
∂t denotes the time derivative and ∂

∂xi
the space derivative in Cartesian coordinate di-

rection i . The conservation of sensible enthalpy is taken from [17] (eq.13), but kinetic energy
and viscous terms are omitted. This thesis follows the OpenFOAM definitions of mass and
thermal diffusivities, Dk and α, with SI-units kg/(ms).

Modelling Assumptions

The following assumptions are made in order to simplify the real physics, while keeping enough
accuracy.

All fluids are treated as Newtonian fluids, i.e. the viscosity tensor entries are taken from
Newton’s law as

τi j =µ
(∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
4



2.1 The non-linear Navier-Stokes equations

with the Kronecker-Delta

δi j =
{

1, if i = j ,

0, if i 6= j .

Molecular diffusion in the species conservation equations is modelled by Fick’s Law.
For modelling the temperature dependence of viscosity, Sutherland’s law is applied. By

assumption of a constant Prandtl number Pr:

Pr = µ

α
= 0.71

the thermal diffusion coefficient α is dependent on the modeling for µ. This assumption was
earlier made even for turbulent premixed flames by Haworth and Poinsot [18, p. 411]. We also
assume a unity Lewis number for all species and thereby get a constant Schmidt number Sc
and expression for mass diffusivity Dk :

Sc = µ

Dk
= 0.71

As OpenFOAM equations are solved, −α ∂h
∂xi

is replacing −λ ∂T
∂xi

, the common expression
for heat flux in Fourier’s law.

The ideal gas law for mixtures

p = ρ R T
∑
k

Yk

Wk

is applied as a closure equation in linearized form to express temperature T by field variables
ϕϕϕ.

For the reaction rate ω̇k and heat release ω̇T , a one-step chemical mechanism is assumed,
as proposed by Westbrook and Dryer [19], and the rate of progress is described by a linearized
Arrhenius formulation.

The sensible enthalpy h is defined from the integral formulation

h =
∫ T

Tr e f

cp (T,Yk ) dT

and the heat capacity cp (T,Yk ) is taken from the Joint Army-Navy-NASA-Air Force (JANAF)
Interagency Propulsion Committee as a polynomial of 4th degree

cp =∑
k

Rk

( 4∑
n=0

an,k T n
)
Yk

Lastly, occurring species i are methane, oxygen, nitrogen, carbon dioxide, and water.

i ∈ {
C H4,O2, N2,CO2, H2O

}
and air is - at the inflow - modelled a constant mixture of 78.8 %V ol N2 and 21.2 %V ol O2, while
all other possible components (Ar,CO2,etc.) are neglected.

Any further assumptions not given here, are explained en route as the model is derived.
Also, more detailed mathematical expressions and further information are given, when the
described simplifications are applied in the next section.
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Linearization of the 2D compressible Navier-Stokes equations

2.2 Linearization

The linearization approach assumes, that a steady-state mean flow is superimposed by time-
variant perturbations. The mean flow is in our case generated by CFD simulation with Open-
FOAM and taken as an input of constant fields.

Thus, equations (2.1) are linearized by the assumption that the field variables can be writ-
ten as a sum of time-independent mean flow and time-dependent perturbations:

ρ(x, t ) = ρ(x)+ρ′(x, t ) (2.2)

u(x, t ) = u(x)+u′(x, t )

v(x, t ) = v(x)+ v ′(x, t )

p(x, t ) = p(x)+p ′(x, t )

Yk (x, t ) = Y k (x)+Y ′
k (x, t )

As a steady state with perturbations excited by fluctuations at the inlet is examined, the gov-
erning equations formulated in mean flow field variables (ϕϕϕ only) remain valid. This charac-
teristic is called mean value property (MVP) and allows us to disregard the terms with onlyϕϕϕ
in the LNSE. As linearization is done with Taylor expansion to the first derivative, quadratic
or higher order (HO) terms of perturbation are assumed small ϕ′ϕ′ϕ′2 << ϕ′ϕ′ϕ′ and are therefore
neglected.

These are combined in the field variable vectorϕϕϕ and perturbations are considered small
in comparison to mean flow:

ϕϕϕ=



ρ

u
v
p

YC H4
...


=



ρ

u
v
p

Y C H4
...


︸ ︷︷ ︸

ϕϕϕ

+



ρ′

u′

v ′

p ′

Y ′
C H4
...


︸ ︷︷ ︸

ϕ′ϕ′ϕ′

ϕϕϕ >> ϕ′ϕ′ϕ′

Since material properties are highly temperature dependent, viscosityµ, diffusion coefficients
Dk and thermal diffusivity α are linearized as well as sensible enthalpy h.

2.2.1 Continuity equation

The linearized continuity equation is obtained by inserting the terms for density and veloci-
ties from eq. (2.2) into the mass conservation from eq. (2.1):

6



2.2 Linearization

∂(ρ+ρ′)
∂t

+ ∂(ρ+ρ′)(u +u′)
∂x

+ ∂(ρ+ρ′)(v + v ′)
∂y

= 0 (2.3)

∂ρ

∂t
+ ∂ρ′

∂t
+ ∂ρu

∂x
+ ∂ρ′u

∂x
+ ∂ρu′

∂x
+ ∂ρ′u′

∂x
+ ∂ρv

∂y
+ ∂ρ′v

∂y
+ ∂ρv ′

∂y
+ ∂ρ′v ′

∂y
= 0

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y︸ ︷︷ ︸
=0 cf. MVP

+∂ρ
′

∂t
+ ∂ρ′u

∂x
+ ∂ρu′

∂x
+ ∂ρ′v

∂y
+ ∂ρv ′

∂y
+
��

���
��

∂ρ′u′

∂x
+ ∂ρ′v ′

∂y︸ ︷︷ ︸
HO terms

= 0

As described earlier, the conservation of mass for the mean values is unchanged allowing
us to apply the MVP. The higher order terms containing non-linear combinations of pertur-
bations are left out in order to obtain linearized conservation laws.

Finally, the linearized continuity equation reads:

∂ρ′

∂t
+ ∂ρ′u

∂x
+ ∂ρu′

∂x
+ ∂ρ′v

∂y
+ ∂ρv ′

∂y
= 0 (2.4)

2.2.2 Momentum equations

Similar to the previous section, the terms from eq. (2.2) are substituted into the momentum
conservation equation in eq. (2.1).

The linearization technique is the same for conservation equations. The total flow vari-
ables from ϕϕϕ are replaced by the sum ϕϕϕ+ϕ′ϕ′ϕ′ and all multiplications are fully expanded. Sub-
sequently, the MVP is applied and HO terms cancelled out.

Detailed deductions of the linearized conservation laws can be found in Appendix A.

x-Momentum equation

∂ρ′u
∂t

+ ∂ρu′

∂t
+ ∂ρuu′

∂x
+ ∂ρu′u

∂x
+ ∂ρ′uu

∂x
+ ∂ρuv ′

∂y
+ ∂ρu′v

∂y
+ ∂ρ′uv

∂y
=

−∂p ′

∂x
+ ∂

∂x
µ′

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
+ ∂

∂x
µ

(
4

3

∂u′

∂x
− 2

3

∂v ′

∂y

)
+ ∂

∂y
µ′

(
∂u

∂y
+ ∂v

∂x

)
+ ∂

∂y
µ

(
∂u′

∂y
+ ∂v ′

∂x

) (2.5)

y-Momentum equation

∂ρ′v
∂t

+ ∂ρv ′

∂t
+ ∂ρuv ′

∂x
+ ∂ρu′v

∂x
+ ∂ρ′uv

∂x
+ ∂ρv v ′

∂y
+ ∂ρv ′v

∂y
+ ∂ρ′v v

∂y
=

−∂p ′

∂y
+ ∂

∂y
µ′

(
4

3

∂v

∂y
− 2

3

∂u

∂x

)
+ ∂

∂y
µ

(
4

3

∂v ′

∂y
− 2

3

∂u′

∂x

)
+ ∂

∂x
µ′

(
∂u

∂y
+ ∂v

∂x

)
+ ∂

∂x
µ

(
∂u′

∂y
+ ∂v ′

∂x

) (2.6)

7



Linearization of the 2D compressible Navier-Stokes equations

Linearization of dynamic viscosity µ and the ideal gas law

As mentioned in section 2.1, the dynamic viscosity µ is expressed by the formula introduced
by Sutherland [20] in 1893:

µ= AS
p

T

1+ TS
T

(2.7)

with AS = 1.67212·10−6 kg/(msK
1
2 ) and TS = 170.672 K.

The linearization is obtained by a first order Taylor expansion:

µ=µ(T )︸ ︷︷ ︸
µ

+ ∂µ

∂T

∣∣
T T −T︸ ︷︷ ︸

T ′

µ′ =µ−µ= ∂

∂T

[
AS

p
T

1+ TS
T

]∣∣∣∣
T

T ′

µ′ =µ T +3TS

2(T +TS)

T ′

T
(2.8)

Note, that in eq. (2.8) the linearized viscosity perturbation µ′ is a function of the pertur-
bation value for temperature T ′, which is not part of ϕ′ϕ′ϕ′. Using the ideal gas law, T ′ can be
substituted by variables ofϕ′ϕ′ϕ′. The ideal gas law for mixtures reads:

p = ρ R T
∑

i

Yk

Wk
(2.9)

As only premixed combustion is considered, the ideal gas constant remains constant at
R = 8.314 J/(mol K). The first order Taylor polynomial for the equation above - interpreted as
p = f (ρ, T, Yi ) - reads:

p = p + ∂p

∂ρ

∣∣∣
ϕ

(ρ−ρ)+ ∂p

∂T

∣∣∣
ϕ

(T −T )+ ∂p

∂Yk

∣∣∣
ϕ

(Yk −Yk )

p −p =
(
RT

∑
k

Y k

Wk

)
ρ′+

(
ρR

∑
k

Y k

Wk

)
T ′+

(
ρR

∑
k

1

Wk

)
Y ′

k

p ′ =
(
ρRT

∑
k

Y k

Wk

)ρ′

ρ
+

(
ρRT

∑
k

Y k

Wk

)T ′

T
+

(
ρRT

∑
k

Y k

Wk

) Y ′
i

Y k

After dividing by p = ρRT
∑

k
Y k
Wk

and replacing
Y ′

k

Y k
=

∑
k Y ′

k /Wk∑
k Y k /Wk

= W
∑

k
Y ′

k
WK

, the linearized

ideal gas law (LIGL) is obtained as:

p ′

p
= ρ′

ρ
+ T ′

T
+W

∑
k

Y ′
k

Wk
(2.10)

Thus, the perturbation viscosity can be expressed as:

µ′ =µ T +3TS

2(T +TS)

(
p ′

p
− ρ′

ρ
−W

∑
k

Y ′
k

Wk

)
(2.11)
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2.2 Linearization

2.2.3 Species equation

By the same treatment (replace ϕϕϕ by ϕϕϕ and ϕ′ϕ′ϕ′, then apply MVP and neglect HO terms), the
conservation of species k is obtained as:

∂ρ′Y k

∂t
+ ∂ρY ′

k

∂t
+ ∂ρuY ′

k

∂x
+ ∂ρu′Y k

∂x
+ ∂ρ′uY k

∂x
+ ∂ρvY ′

k

∂y
+ ∂ρv ′Y k

∂y
+ ∂ρ′vY k

∂y
=

∂

∂x

(
Dk

∂Y ′
k

∂x

)
+ ∂

∂x

(
D ′

k

∂Y k

∂x

)
+ ∂

∂y

(
Dk

∂Y ′
k

∂y

)
+ ∂

∂y

(
D ′

k

∂Y k

∂y

)
+ ω̇k

′
(2.12)

Modeling of diffusion coefficients Dk

By the assumption on the Lewis number, Le = 1 (cf. [3, p. 39] and [18, p. 411]), the thermal
diffusivity can be expressed as:

Le = Sc

Pr
= α

Dk
= 1 ⇐⇒ α= Dk

with the Schmidt number Sc and Prandtl number Pr. This relation shows that thermal and
species mass diffusion are ruled by the same correlations. Consequently, mass diffusivity is
the same for all species and is written without index k further on. The linearization of α is
shown with the energy equation in the next section.

Modeling of premixed flame combustion with one-step chemistry

The linearization of the reaction term ω̇k is conducted differently from the previous terms, as
it depends on the chemical reaction. The general form of a chemical reaction is

K∑
k=1

ν′knMk *)
K∑

k=1
ν′′knMk (2.13)

with the k-th chemical species symbol Mk , and the n-th reaction stoichiometric coeffi-
cients for reactants (ν′kn) and products (ν′′kn). The reaction rate ω̇k is formulated

ω̇k =
N∑

n=1
ω̇kn =Wk

N∑
n=1

νknQn (2.14)

with
ω̇kn

Wkνkn
=Qn and νkn = ν′′kn −ν′kn

The rate of progress of the n-th reaction Qn is

Qn = K f ,n

K∏
k=1

[Xk ]ν
′
kn −Kr,n

K∏
k=1

[Xk ]ν
′′
kn (2.15)

The forward rate K f n and backward rate Kr n are modelled by an Arrhenius ansatz:

9



Linearization of the 2D compressible Navier-Stokes equations

K f ,n = A f n

(
T

Tr e f

)β
exp

(
− Ea

RT

)
(2.16)

where A f n is a pre-exponential factor, βn the temperature exponent, Tr e f a reference temper-
ature. The activation energy is formulated Ea = RTa where Ta is the activation temperature.

We consider methane combustion a one-step mechanism, as proposed by Westbrook and
Dryer [19]. Now, the chemical reaction (cf. eq. (2.13)) reads:

C H4 +2O2 →CO2 +2H2O (2.17)

Further simplifications are the absence of a reverse reaction (Kr n = 0) and setting β to
zero. Thereby equations (2.15) and (2.16) simplify to

Qn = A exp

(
− Ta

T

)
[O2]a[C H4]b (2.18)

which is shortened to Q for readability of further expressions. The exponents a and b are
taken from [19, p. 36f.] to be 1.3 and 0.2 respectively.

Now, the molar concentrations are substituted by [Xi ] = ρ Yi
Wi

:

Q = A exp

(
− Ta

T

)(
ρ

YO2

WO2

)a(
ρ

YC H4

WC H4

)b

= A exp

(
− Ta

T

)
ρa+b 1

W a
O2

W b
C H4

(YO2 )a(YC H4 )b
(2.19)

The linearization of eq. (2.19) is given by:

Q =Q+ ∂Q

∂ρ

∣∣∣
ϕϕϕ

(ρ−ρ)︸ ︷︷ ︸
ρ′

+∂Q
∂T

∣∣∣
ϕϕϕ

(T −T )︸ ︷︷ ︸
T ′

+∑
i

∂Q

∂Yi

∣∣∣
ϕϕϕ

(Yi −Y k )︸ ︷︷ ︸
Y ′

i

with

∂Q

∂ρ

∣∣∣
ϕϕϕ
= a +b

ρ
Q

∂Q

∂T

∣∣∣
ϕϕϕ
= Ta

T

1

T
Q

∂Q

∂YO2

∣∣∣
ϕϕϕ
= a

Y O2

Q

∂Q

∂YC H4

∣∣∣
ϕϕϕ
= b

Y C H4

Q

10



2.2 Linearization

Using Q−Q =Q′ and substituting T ′
T

from eq. (2.10), the rate of progress for reaction (2.17)
is linearized as:

Q′

Q
= (a +b)

ρ′

ρ
+ Ta

T

(
p ′

p
− ρ′

ρ
−W

∑
i

Y ′
k

Wi

)
+ a

Y O2

Y ′
O2

+ b

Y C H4

Y ′
C H4

(2.20)

As Y C H4 appears in the denominator of this equation, its minimum value is limited to avoid
problems in numerical simulation:

(
Y C H4

)
min = 10−4 · (Y C H4

)
max.

The right hand side of equation (2.20) is from now on referred to as f (ρ′, p ′,Y ′
k ). Inserting

this relation into eq.(2.14) yields:

ω̇′
k

ω̇k

= WkνknQ′

WkνknQ
= f (ρ′, p ′,Y ′

k ) ⇒ ω̇′
k = ω̇k · f (ρ′, p ′,Y ′

k )

and in the end we can formulate the reaction rate as

ω̇k = ω̇k + ω̇′
k = ω̇k + ω̇k f (ρ′, p ′,Y ′

k ) (2.21)

which has the same rate of progress for all species in this combustion process. Be reminded,
that the mean reaction rates ω̇k still contains stoichiometric coefficient νkn and molar weight
Wk and are species specific!

2.2.4 Sensible enthalpy equation

Finally, the conservation law for sensible enthalpy reads in linearized form:

∂

∂t

(
ρ′h +ρh′−p ′

)
+ ∂

∂x

(
ρuh′+ρu′h +ρ′uh

)
+ ∂

∂y

(
ρvh′+ρv ′h +ρ′vh

)
=

ω̇T · f (ρ′, p ′,Y ′
k )+ ∂

∂x
α′∂h

∂x
+ ∂

∂x
α
∂h′

∂x
+ ∂

∂y
α′∂h

∂y
+ ∂

∂y
α
∂h′

∂y

(2.22)

Modeling of heat release with one-step chemistry

The heat release term ω̇T can be formulated by the reaction rate ω̇k as follows:

ω̇T =−∑
k
∆h0

f ,kω̇k =−∑
k

(
∆h0

f ,kWkνkn

)
Q (2.23)

with ∆h0
f ,k as the standard enthalpy of formation for each species.

Now, we can express ω̇T as a linear function of Q similar to equation (2.20):

ω̇′
T

ω̇T
= Q′

Q
= f (ρ′, p ′,Y ′

k ) (2.24)

Therefore, it is linearized as:

ω̇T = [
ω̇T

]+ ω̇T · f (ρ′, p ′,Y ′
k ) (2.25)
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Linearization of the 2D compressible Navier-Stokes equations

Modeling of heat conductivity with Sutherland law

For the energy diffusion terms ∂
∂xi
α ∂h
∂xi

, the linearization of the thermal diffusion coefficient
α has to be considered. By assuming a constant Prandtl number Pr, the heat conductivity can
be also expressed by the Sutherland law:

α= µ

Pr
= 1

Pr

AS
p

T

1+ TS
T

(2.26)

As air is the dominant mixture fraction and pressure perturbations are assumed to be com-
paratively small, a constant Pr is justifiable.

The linearization is obtained as:

α=α+α′ =α(T )+ ∂α

∂T

∣∣∣
T

(T −T )

α′ =α−α= 1

Pr

∂

∂T

( AS
p

T

1+ TS
T

)∣∣∣
T

T ′

= 1

Pr

AS

√
T

1+ TS

T

T +3TS

2(T +TS)

T ′

T

α′ =α T +3TS

2(T +TS)

T ′

T
(2.27)

Linearization of enthalpy h

As described in section 2.1, sensible enthalpy h is formulated with the heat capacity being a
polynomial of 4th degree as suggested by Burcat [21]. Values for the polynomial factors an,k

are taken from [22].

The linearization of enthalpy then reads as follows:

h = h + h′
T + h′

Y

= h
(
T ,Y k

) + ∂h

∂T

∣∣∣
T ,Y k

(
T −T

) + ∂h

∂Yi

∣∣∣
T ,Y k

(
Yk −Y k

)
12



2.2 Linearization

with

h
(
T ,Y k

)= ∫ T

Tref

cp (T̃ ,Y k )dT̃ =∑
k

Rk

[ 4∑
n=0

an,k

T
n+1 −T n+1

ref

n +1

]
Y k︸ ︷︷ ︸

h

∂h

∂T

∣∣∣
T ,Y k

(
T −T

)= ∂

∂T

∫ T

Tref

cp (T̃ ,Y k )dT̃ T ′ =∑
k

Rk

[ 4∑
n=0

an,k T
n
]

Y k︸ ︷︷ ︸
cp

T ′

∂h

∂Yk

∣∣∣
T ,Y k

(
Yk −Y k

)= ∂

∂Yk

∫ T

Tref

cp (T̃ ,Y k )dT̃ Y ′
k =∑

k

[
Rk

[ 4∑
n=0

an,k

T
n+1 −T n+1

ref

n +1

]]
︸ ︷︷ ︸

hYi

Y ′
k

Hence, linearized sensible enthalpy is obtained as:

h′ = h′
T +h′

Y = cp T ′+∑
k

hYk Y ′
k (2.28)
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3 Reduction of Independent Variables

In the previous chapter, the LRF equations are written as partial differential equations (PDE)
of the field variable vector ϕϕϕ. The vector ϕϕϕ′ in this form has 8 entries: the flow properties ρ′,
u′, v ′ and p ′, as well as 4 out of 5 occurring species mass fractions Y ′

C H4
, Y ′

O2
, Y ′

N2
, Y ′

CO2
and

Y ′
H2O

1.
In the following chapter a different formulation is shown, that expresses the five Yi by only

two variables: nitrogen’s mass fraction and methane’s mass fraction. The choice for these two
is made, because nitrogen (N2) is not taking part in the global one-step reaction and thus
represents the transport of equivalence ration perturbations through the domain. Methane
(C H4) on the other hand is completely consummated during combustion and can thus be
used to describe the generation of carbon dioxide (CO2) and water (H2O).

Other possible choices could be the equivalence ratio φ or a progress variable ξ, for both
of which definitions are given later on in the chapter.

3.1 Species conservation for nitrogen

In order to describe how perturbations are transported through the domain, the species equa-
tion for nitrogen N2 is very useful. Since N2 does not react in the flame, its species equation
is decoupled from the remaining PDE. Otherwise mixture fraction perturbations could be
tracked by transporting a small fraction of argon Ar . To improve readability, YN2 is renamed
Z from now on.

The linearized conservation equation for nitrogen’s mass fraction reads:

∂ρ′Z
∂t

+ ∂ρZ ′

∂t
+ ∂ρuZ ′

∂x
+ ∂ρu′Z

∂x
+ ∂ρ′uZ

∂x
+ ∂ρv Z ′

∂y
+ ∂ρv ′Z

∂y
+ ∂ρ′v Z

∂y
=

∂

∂x

(
D
∂Z ′

∂x

)
+ ∂

∂x

(
D ′∂Z

∂x

)
+ ∂

∂y

(
D
∂Z ′

∂y

)
+ ∂

∂y

(
D ′∂Z

∂y

) (3.1)

Note, that the reaction rate ω̇′
Z is already left out. As nitrogen doesn’t react, its mean field

Z will remain constant over the whole domain and its gradients are therefore zero.
The next step to simplify eq. (3.1) comes from multiplying the linearized continuity equa-

tion (2.4) with Z :

1As the sum of mass fractions must be always 1, it is not necessary to solve conservation equations for all
species. Alternatively, one could also omit the continuity equation and solve all species equations instead.
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3.2 Reformulation of variable vectorϕ′ϕ′ϕ′

∂ρ′Z
∂t

+ ∂ρ′uZ

∂x
+ ∂ρu′Z

∂x
+ ∂ρ′v Z

∂y
+ ∂ρv ′Z

∂y
= 0 (3.2)

After inserting equation (3.2) and neglecting all gradients of Z , equation (3.1) becomes:

∂ρZ ′

∂t
+ ∂ρuZ ′

∂x
+ ∂ρv Z ′

∂y
= ∂

∂x

(
D
∂Z ′

∂x

)
+ ∂

∂y

(
D
∂Z ′

∂y

)
(3.3)

Applying partial differentiation on the left-hand side, the mean value form of the continu-
ity equation (2.1) appears and can be cancelled out as well:

∂ρZ ′

∂t
+ ∂ρuZ ′

∂x
+ ∂ρv Z ′

∂y
= ρ∂Z ′

∂t
+ρu

∂Z ′

∂x
+ρv

∂Z ′

∂y
+Z ′

(∂ρ
∂t

+ ∂ρu

∂x
+ ∂ρv

∂y

)
︸ ︷︷ ︸

= 0, cf. MVP

The final decoupled equation is written as:

ρ
∂Z ′

∂t
+ρu

∂Z ′

∂x
+ρv

∂Z ′

∂y
= ∂

∂x

(
D
∂Z ′

∂x

)
+ ∂

∂y

(
D
∂Z ′

∂y

)
(3.4)

This decoupled PDE for nitrogen (3.4) now contains no entries from the flow variable vec-
tor ϕϕϕ′ other than Y ′

N2
= Z ′, and can therefore be solved independently from the rest of the

coupled system of equations.

3.2 Reformulation of variable vectorϕ′ϕ′ϕ′

The expressions for is the reaction equation (cf. eq. (2.17)) for methane-air combustion rewrit-
ten as:

C H4 +2(O2 +3.76N2)︸ ︷︷ ︸
dry air

→CO2 +2H2O +7.52N2 (3.5)

In this formulation all species are included and their molar proportions known. These can be
described by the following relations in order to shorten some expressions.

Composition of dry air

The ratio of mass fractions in dry air (at the inlet) is assumed fixed and called γai r :

γair = YO2,air

YN2,air
= XO2 WO2

XN2 WN2

1
W
1

W

= 1

3.76

32 g
mol

28 g
mol

= 0.304

This fixed mass fraction relation of nitrogen and oxygen before reaction will be used later
on.

YO2,air = γair YN2,air (3.6)
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Reduction of Independent Variables

Equivalence ratio φ

The equivalence ratio φ describes the composition of fresh gases at the intake as:

φ= ṁfuel/ṁoxidizer(
ṁfuel/ṁoxidizer

)
st

= s
Yfuel

Yoxidizer
= s

YC H4

YO2

(3.7)

with s = 2WO2

WC H4

= 4

The mass stoichiometric ratio s is constant, whilst φ changes with fuel inlet perturbations.
For lean combustion the equivalence ratio takes values φ < 1. That means, that there is not
enough methane in the combustion chamber, to consume all available oxygen.

Figure 3.1 shows the case of stoichiometric combustion (φ = 1) in 1D with typical devel-
opments of fuel and oxidizer mass fractions, temperature, reaction rate and progress variable
ξ. An exemplary definition of ξ is given in Appendix B.

Figure 3.1: Laminar premixed flame in 1D at equivalence ratio φ = 1. Figure modified from
Veynante and Vervisch [1, p. 200]

ϕ′ϕ′ϕ′ by Y ′ and Z ′

In order to shorten expressions, the mass fraction for methane YC H4 is written as Y further on.
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3.2 Reformulation of variable vectorϕ′ϕ′ϕ′

YN2 = YN2,0 ≡ Z (3.8)

YC H4 = YC H4,nr︸ ︷︷ ︸
not yet reacted

≡ Y (3.9)

Analytic expressions for the reduction of number of variables for mass fractions are deduced
from eq. (3.5). The following equations for mass fractions of oxygen O2, carbon dioxide CO2

and water H2O were developed together with supervisor Alexander Avdonin.

YO2 = YO2,0︸ ︷︷ ︸
initial oxygen

− YO2,r︸ ︷︷ ︸
reacted

= γairZ − s (YC H4,0 −Y ) (3.10)

YCO2 =
WCO2

WC H4

YC H4,r︸ ︷︷ ︸
already reacted

= WCO2

WC H4

(YC H4,0 −Y ) (3.11)

YH2O = 2 WH2O

WC H4

YC H4,r︸ ︷︷ ︸
already reacted

= 2 WH2O

WC H4

(YC H4,0 −Y ) (3.12)

Here, YC H4,0 denotes the total mass fraction of methane flowing into the domain, it is avail-
able before reaction in the flame. YC H4,0 can be expressed by Z from the constraint ’the sum
of all mass fractions must be equal 1’:

YC H4,0 = 1−YO2,0 −YN2,0 = 1− (1+γair)Z

The linearized perturbations are obtained as:

Y ′
N2

= Z ′ (3.13)

Y ′
C H4

= Y ′ (3.14)

Y ′
O2

= γair Z ′+ s
(
(1+γair)Z ′+Y ′) (3.15)

Y ′
CO2

=−WCO2

WC H4

(
(1+γair)Z ′+Y ′) (3.16)

Y ′
H2O =−2 WH2O

WC H4

(
(1+γair)Z ′+Y ′) (3.17)

An analytic examination of the relations in eqns. (3.8)-(3.12) and (3.13)-(3.17) is given in
appendix B, where it it shown that the sum of all mass fractions adds up to 1 for total values
and zero for pertubations respectively.
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Reduction of Independent Variables

Applying the formulations in eqn. (3.13)-(3.17), the sum of mass fraction perturbations
becomes∑

i

Y ′
k

Wi
=

(
1

WC H4

+ s

WO2

− WCO2

WC H4WCO2

− 2 WH2O

WC H4WH2O︸ ︷︷ ︸
= 1

WC H4
(1+2−1−2) = 0

)
Y ′

+
(
γair

WO2

+ 2 s

WC H4

(1+γair)− WCO2

WC H4WCO2

(1+γair)− 2 WH2O

WC H4WH2O
(1+γair)︸ ︷︷ ︸

= 1
WC H4

(2−1−2)(1+γair) =−1+γair
WC H4

+ 1

WN2

)
Z ′

and is just an expression of Z ′. This sum is used in the linearized ideal gas law (LIGL) as given

by eq. (2.10) and the term W
∑

i
Y ′

k
Wi

simplifies to :

W
∑

i

Y ′
k

Wi
=W

(
γair

WO2

− 1+γair

WC H4

+ 1

WN2

)
︸ ︷︷ ︸

= k∑
Y ′

Z ′ = k∑
Y ′ Z ′. (3.18)

Applying the formulations in eqns. (3.17)-(3.17) and (3.18) to eqns. (2.11), (2.21), (2.24) and
(2.27), all can be expressed as functions of a new variable vectorϕϕϕ′

Y Z .

ϕϕϕ′
Y Z =



ρ′

u′

v ′

p ′

Y ′

Z ′

 (3.19)

Importantly, eq. (2.20) can now be written as:

f (ϕϕϕ′
r eac ) = (a +b)

ρ′

ρ
+ Ta

T

(
p ′

p
− ρ′

ρ
−k∑

Y ′ Z ′
)

+ a

Y O2

(
γair Z ′+ s

(
(1+γair)Z ′+Y ′))+ b

Y C H4

Y ′
(3.20)

The term h′
Y from eq.(2.28) in this formulation reads:

h′
Y =

(
hC H4 + s hO2 −

hCO2 WCO2

WC H4

− 2 hH2O WH2O

WC H4

)
Y ′

+
(
hO2

(
γair + s

(
1+γair

))− hCO2 WCO2

WC H4

(
1+γair

)
− 2 hH2O WH2O

WC H4

(
1+γair

)+hN2

)
Z ′

(3.21)
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3.2 Reformulation of variable vectorϕ′ϕ′ϕ′

Applying the formulations from this chapter makes the solution of the PDEs faster, as the
original variable vectorϕϕϕ′ is shortened from 8 to 6 entries inϕϕϕ′

Y Z . Consequently, the numer-
ical problem size is also reduced, making the numerical solution less expensive in terms of
computation time and storage demand. With the decoupling of the species equation for Z,
only 5 indepedent variables are coupled and have to be solved for simultaneously.

19



4 The Discontinuous Galerkin Method

The discontinuous Galerkin Finite Element Method (DG-FEM) is commonly described as a
”hybrid method” between classical finite element and finite volume approaches. Typical ad-
vantages of FEM over FVM are ’the straight-forward extendibility to higher order schemes
(pFEM) and the applicability to unstructured meshes’ [23, p.3]. The uses in standard FEM,
however, causes numerical instability, due to the discretezation of the convective terms. Re-
cently the discontinuous Galerkin method has shown to be a suitable numerical approach on
convection dominated problems. Its discretization of linear and non-linear PDEs yields stable
schemes with high accuracy and high convergence potential[23, p.4].

The use of FEM requires an integral formulation of the PDE (strong form), that is mul-
tiplied by test functions (giving the weak form), and then solved for each discrete element
separately (Galerkin form). For the DG-FEM these test functions do not have to be point-wise
equal on neighboring element nodes, but can have steps between each element. These jumps
constitute a Riemann problem at each element face and are balanced by fluxes between ele-
ments, a modelling approach typical for FVM.

The deduction of the DG-form for LRF equations is first shown for mass conservation in
detail. Later on, all other LNSE are listed as used in DG-FEM.

4.1 DG-FEM of Mass Conservation

The strong form of the linearized mass equation (2.4) for the computational domainΩ reads:∫
Ω

[
∂ρ′

∂t
+ ∂ρ′u

∂x
+ ∂ρu′

∂x
+ ∂ρ′v

∂y
+ ∂ρv ′

∂y

]
dΩ= 0 (4.1)

Multiplying this equation with an ansatz function lϕi for the respective variable, yields the
weak form. For the continuity equation, this ansatz function is lρ:∫

Ω
lρ

[
∂ρ′

∂t
+ ∂ρ′u

∂x
+ ∂ρu′

∂x
+ ∂ρ′v

∂y
+ ∂ρv ′

∂y

]
dΩ= 0 (4.2)

Now, equation (4.2) is reformulated on element level Ωe and the convective term solved by
partial integration:

∫
Ωe

lρ
∂ρ′

∂t
dΩe −

∫
Ωe

∂

∂x

[
lρ(ρ′u +ρu′)

]
+ ∂

∂y

[
lρ(ρ′v +ρv ′)

]
dΩe

+
∫
Ωe

∂lρ
∂x

(
ρ′u +ρu′

)
+ ∂lρ
∂y

(
ρ′v +ρv ′

)
dΩe = 0
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4.2 DG-FEM of LRF

To formulate the final equation, the third term is transformed by applying Gauss’s theorem.

∫
Ωe

lρ
∂ρ′

∂t
−

[
∂lρ
∂x

(
ρ′u +ρu′

)
+ ∂lρ
∂y

(
ρ′v +ρv ′

)]
dΩe

+
∫
Γe

lρ
(
ρ′u +ρu′

)
nx︸ ︷︷ ︸

normal flux in x-direction
fρ,nx

+lρ
(
ρ′v +ρv ′

)
ny︸ ︷︷ ︸

normal flux in y-direction
fρ,ny

dΓe = 0 (4.3)

Here, Γe denotes the element boundaries and ni the element boundary’s normal vector. The
flux terms over the element boundaries fρ,ni , which solve the local Riemann problem, are
calculated by the local Lax-Friedrichs flux:

f lLF
ρ,ni

= fρ,ni (Ωe )+ fρ,ni (Ωe+1)

2
+ C

2

(
ρ′(Ωe )−ρ′(Ωe+1)

)
(4.4)

where indices e and e + 1 denote the current, and the neighboring element respectively.
The constant C is based on the characteristic wave speed:

C = max
Ωe ,Ωe+1

c +|ui ni | with c =
√
κ
ρ

p

4.2 DG-FEM of LRF

In general, the LRF equations can be written in short as

∂ϕ′
i

∂t
+
∂Ψ′

j

∂x j
= S′

ϕi
(4.5)

By the same approach as used above, the general DG-FEM formulation on element level
reads: ∫

Ωe

lϕi

∂ϕ′

∂t︸︷︷︸
transient change in
transport variable

+∂lϕi

∂x j

(
Ψ′

j︸︷︷︸
flux

−
∫

S′
ϕi︸︷︷︸

sum of forces

d xi

)
dΩe

︸ ︷︷ ︸
change in cell volume

−
∫
Γe

lϕi

(
Ψ′

j −
∫

S′
ϕi

d xi

)
nx j dΓe︸ ︷︷ ︸

flux over cell boundaries
fϕi ,ni

= 0

(4.6)

For LRF the transported variablesϕ′, fluxesΨ′
j , and source terms S′

ϕi
are listed in table 4.1.
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The Discontinuous Galerkin Method

ϕ′ Ψ′
j S′

ϕi

Mass ρ′ ρ′u j +ρu′
j 0

Momentum ρ′ui +ρu′
i ρ′ui u j +ρu′

i u j +ρui u′
j +

∂p ′
∂xi

− ∂τ′i , j

∂x j
0

Species Y ρ′Y +ρY ′ ρ′Y u j +ρY ′u j +ρY u′
j − ∂

∂xi
(D ′ ∂Y

∂xi
+D ∂Y ′

∂xi
) ω̇′

Y

Species Z ρZ ′ ρu j Z ′− ∂
∂xi

(D ∂Z ′
∂xi

) 0

Sensible enthalpy ρ′h +ρh′−p ′ ρ′u j h +ρu′
j h +ρu j h′− ∂

∂xi
(α∂h′

∂xi
+α′ ∂h

∂xi
) ω̇′

T

Table 4.1: Transport variable ϕ′, Flux termΨ′
j and Source terms S′

ϕi
for LRF

Note, that the force terms in eq. (4.6) mostly include derivatives ∂
∂x , which cancel out the

integral from partial integration similar to the flux terms. In the energy and species conser-
vation equations however, heat release and reaction rate would have to be integrated and are
therefore excluded from partial integration.

The fluxes over the element boundaries fϕi ,ni are calculated by the local Lax-Friedrichs
flux

f l LF
ϕi ,ni

= fϕi ,ni (Ωe )+ fϕi ,ni (Ωe+1)

2
+ C

2

(
ϕ′

i (Ωe )−ϕ′
i (Ωe+1)

)
(4.7)

with the constant C being

C = max
Ωe ,Ωe+1

c +|ui ni | , c =
√
κ
ρ

p

The full formulations for the x- and y-Momentum, the Species i, and the Energy equations
are shown in Appendix C.

4.3 Flame frequency response calculation

In order to calculate the flame frequency response, the following discretized system of linear
PDEs has to be solved:

E ϕ̇ϕϕ′ = Kϕϕϕ′+lll (4.8)
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4.3 Flame frequency response calculation

where E is the mass matrix, K the stiffness matrix and lll the load vector. For each frequency f
the forced flame response is calculated with the ansatz function

ϕ̇ϕϕ′ = ϕ̂ϕϕ e i 2π f t . (4.9)

Inserting eq. (4.9) into (4.8) yields the equation for the linearized fields:

i 2π f E ϕ̂ϕϕ= K ϕ̂ϕϕ+ l̂ll (4.10)

with the solution in frequency domain:

ϕ̂ϕϕ= (i 2π f E−K)−1 l̂ll (4.11)

For the forced response of the linearized field ϕ̂ϕϕ′, the inverse (i 2π f E−K)−1 is computed in
COMSOL by the direct solver MUMPS (MUltifrontal Massively Parallel sparse direct Solver).
Simulation procedure is to first solve the decoupled Z -equation (3.4) independently on a
band of frequencies, and then use the result as an input to solve the remainder of the LRF
equations.

For larger problems, the use of an iterative method or cluster computation should be con-
sidered. From the linearized fields the heat release fluctuations can be computed using an
integration matrix B:

̂̇QQQ = B ϕ̂ϕϕ (4.12)

In this thesis the frequency response to equivalence ratio perturbations Fφ is defined by
eq. (1.2), while the LRF solver computes it with respect to methane mass fraction perturba-
tions Y ′/Y . Therefore, a correction factor has to be introduced in the post-processing. Its de-
duction is shown in Appendix D. This correction slightly lowers the gain values, but does not
affect the phase.

23



5 Study of laminar premixed flames

The previously introduced LRF method is now applied to compute the flame responses to
equivalence perturbations for laminar premixed flames. These types of flame can be seen in
Bunsen burners or as a single flame in a multiple slit burner configuration.

The premixed flame setup is investigated under two boundary conditions. One yields an
attached flame due to adiabatic boundary conditions on the slit wall, whereas for a constant
temperature wall a lifted flame is obtained.

Also, two versions of the LRF solver are applied for the solution. In order to see if there is a
trade-off between accuracy and computation time for the reduced model, the LRF solver with
all species equations is also run. Results from the former are denoted ’LRF-YZ’ and from the
latter ’LRF-Full’.

At the end, we investigate the influence of mass fraction perturbations in the linearized
ideal gas law and in enthalpy perturbations.

5.1 Numerical Setup in COMSOL

Geometry

The setup under investigation is inspired by the configuration described by Kornilov et al. [2]
in fig. 5.1. Taking advantage of the geometric symmetries in the slit Bunsen-type burner, just
half a slit is examined (as shown in fig. 5.2) in order to keep computational costs low.

For our geometry, the slit width d and distance l are d = 2mm and l = 3mm. The inflow
and outflow lengths are 5 mm and 8 mm respectively. The slit sheet depth is 1 mm. Note, that
only half the transversal lengths are depicted in fig. 5.2.

As the goal is to examine the possibility to replace DNS/LES identification of the flame
response by the LRF solver, numerical results of this thesis will be compared to FRF intenti-
fied from OpenFOAM LES of exactly the same geometry. Also, the mean fields, which are not
calculated by the LNSE, are taken from OpenFOAM simulation.

Meshing

The discretization and simulation is performed on a uniform mesh of 21100 quadratic plane
elements, that each have a side length of ∆x = 40 µm.

Element size in OpenFOAM (for the computation of the reference FRF with LES) is ∆x =
25 µm, giving 53600 square cells. Avdonin et al. [14] tested mesh sizes of ∆x = 50 µm and
40 µm. They show that the mesh with ∆x = 40 µm yields similar results as the finer one with
25 µm, a strong hint of mesh convergence.
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5.1 Numerical Setup in COMSOL

Figure 5.1: Combustion and flame model for the study: (a) Experimental and (b) deducted
numerical setup. Figure modified from Kornilov et al. ([2, p. 1960]).

On every element linear test functions are solved, which gives 4 degrees of freedom (DOFs)
per element for each independent variable in ϕ′ϕ′ϕ′

Y Z . The linear test functions’ normalized
forms can be seen in fig. 5.3. Thus, the model’s total number of DOFs is:

# DOFstot = 4︸︷︷︸
# DOFs per element

× 6︸︷︷︸
# independent variables

[ρ′,u′, v ′, p ′,Y ′, Z ′]

× 21,100︸ ︷︷ ︸
# elements

= 506,400

Computing the solution for a single frequency on this mesh on a Windows workstation,
with 16GB of RAM and an Intel i7-4790 CPU @ 3.60 GHz, takes roughly 2 minutes.

Boundary Conditions

Boundary conditions (BC) are set as follows:

• Inlet: Dirichlet BC for all variables, except for ∇p ′ (von Neumann BC)

• Outlet: von Neumann BC for all variables, except for p ′ (Dirichlet BC).

• Slit wall:

– Attached flame:(adiabatic, no-slip wall) Dirichlet BC for temperature, velocities
equal zero (Dirichlet BC), von Neumann BC for pressure and mass fractions.

– Lifted flame: (fixed temperature, no-slip wall) Dirichlet BC for temperature, veloc-
ities equal zero (Dirichlet BC), von Neumann BC for pressure and mass fractions.

25



Study of laminar premixed flames

Figure 5.2: Computational domain in COMSOL (top), mean heat release rate of the attached
flame (middle) and the lifted flame (bottom).

x

y1

x

y

1

x

y1

x

y
1

Figure 5.3: Linear test functions (normalized,blue) on a 2D quadratic element

• Symmetries (central and to next slit): von Neumann BC for all variables, except for v ′

(Dirichlet BC).

Note that, temperature BCs are fulfilled by the corresponding relations between ρ′, p ′ and Z ′

from the LIGL (see eqns. (2.10) and (3.18)). Explicit mathematical formulations for these BC
are given in tab. 5.1.

For the CFD calculations of reference FRF and mean fields the following BC are set: isother-
mal fixed-velocity fixed-mixture inlet where velocity is 0.30 m/s at an inlet temperature of
293 K. The inlet equivalence ratio is 0.8, giving mass fractions YC H4,0 = 0.0445, YO2,0 = 0.2227
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5.1 Numerical Setup in COMSOL
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Study of laminar premixed flames

and YN2,0 = 0.7328. Outlet pressure is fixed at 101325 Pa. The non-slip slit wall has a constant
temperature of 375 K for the lifted flame, whereas it is handled with zero heat flux for the
attached flame.

Reference data

The reference FRFs for velocity and equivalence ratio perturbations are obtained in Open-
FOAM with a broadband excitation of 5 % amplitude at the inlet to ensure the linear flame
response. The LES is run for 0.13 s with CFL = 0.1. The FRF is identified as a finite impulse re-
sponse (FIR) with 95 % accuracy. For robustness, a weakly compressible solver in OpenFOAM
is used, with fixed pressure in the ideal gas law. Thus, density is only dependent on tempera-
ture and any thermoacoustic instabilities are suppressed. This OpenFOAM setup was earlier
applied in [14] for velocity excitations and is adopted for equivalence ratio perturbations in
a similar manner. The reference flame responses were provided by supervisor Alexander Av-
donin. For detailed information on the identification procedure the reader should consult
Tay-Wo-Chong et al. [12] and Polifke [13].

Study of velocity perturbations

The application of the LRF solver to velocity perturbations was recently done by Avdonin et al.
[14]. It is run with velocity inlet excitation uexc = 1 over a frequency band from 0 Hz to 500 Hz.
Results are presented in fig. 5.4.

Figure 5.4: Frequency response for velocity perturbations for the attached (left) and lifted
flame (right) identified from CFD simulations (—) and computed by the LRF solver
(· − ).
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5.2 Study of equivalence ratio perturbations

The LRF model accurately predicts the phase of the frequency response, showing that
transport of the flow variables is reproduced correctly. This is an important feature, as the
linearization of the heat release with an Arrhenius ansatz (eq. (2.21)) relies upon the precise
transport of reacting species to and through the flame.

The gain of the attached flame is captured well, too. The lifted flame exhibts excess gain
in the regions around 80 Hz, with an overestimate of up to 15 % for the DG-LRF solutions.
The characteristics of the reference FTF are also found in the LRF-FTF: In the range from 0 to
80 Hz, the gain rises to a maximum, and then drops to almost zero starting with frequencies
higher than 300 Hz.

5.2 Study of equivalence ratio perturbations

For the study of equivalence ratio perturbations a modulation of methane’s mass fraction Y ′

is prescribed at the inlet, while uexc is set to zero. Note, that for the computation of flame
response functions Fφ, at least one more species equation has to be solved in the coupled sys-
tem than for velocity perturbations. Additionally, the decoupled transport of Z is simulated.
Thus, the study of eqivalence ration perturbations in slightly more expensive.

Figure 5.5 shows the flame responses Fφ obtained from the LRF with the Y Z reduction and
with all species equations solved (’LRF - Full’). The LRF solutions were computed on meshes
with grid spacing of 40µm and 25µm. They are compared to the FRF from CFD identification,
that was computed on a uniform mesh of element size ∆x = 25µm with an accuracy of more
than 95%. Therefore, confidence intervals are small and not shown in plots.

Both flames exhibit low-pass filter characteristics, where the phase slope is almost con-
stant for frequencies with considerable gain. For each flame a frequency band with excessive
gain is apparent, which has its peak around 30 Hz for the attached flame. The lifted flame
shows stronger excessive gain around frequencies of 25 Hz. The gain then decays for both
flames, until the response approaches zero for excitation higher than 200 Hz.

As for velocity excitation, the phase is precisely predicted by all LRF solutions. This shows
that transport of species is reproduced correctly.

The gain in frequency response is fairly well captured by the LRF-YZ solver for the lifted
flame, but the peak gain is displayed at 30 Hz. For the attached flame, however, the solution
shows no excessive gain for the frequency band from 0 to 50 Hz, underestimating the refer-
ence data up to 20%.

The LRF-Full solver solution for the attached flame is not distinguishable from the one
computed with the reduced LRF-YZ model. Thus, it can be deduced that the reduced model
performs equally well and saves computational effort.

In summary, the LRF solution for equivalence ratio perturbations shows good capture of
transport dynamics as the phase of FRFs agrees with the reference data. The gain is predicted
with noticeable underestimation in the excessive frequency band for the attached flame, and
with just a slight overestimate and peak displacement for the lifted flame. Overall the gain
trends are captured sufficiently by the LRF solutions.
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Study of laminar premixed flames

Figure 5.5: Frequency response for equivalence ratio perturbations for the attached (left) and
lifted flame (right) identified from CFD simulations (—) and computed by the LRF
solver with reduced Y Z -equations on mesh with ∆x = 40µm (· − ) and with ∆x =
25µm (· · · ).

5.3 Study of parametric influences

For the study of the influence of the mass fractions’ term in the linearized gas law k∑
Y ′ Z

and of the enthalpy perturbations due to mass fraction perturbations
∑

k hYk Y ′
k , only the LRF-

YZ equations are applied. This study investigates, if further modelling simplifications can be
made with reasonable accuracy.

Figure 5.6 shows the results of this examination. Omitting any of the two effects in simu-
lation has no influence on the phase prediction. The negligence of mass fractions in the ideal
gas law (k∑

Y ′ Z = 0) also is not noticeable in the gain values. If enthalpy perturbations from

mass faction fluctuations are switched off (
∑

k hYk Y ′
k = 0), the gain for each flame increases up

to around 10% for both flame configurations.
We can conclude, that temperature perturbations are only weakly linked to mass fraction

perturbations by the linearized ideal gas law. This term could be omitted. Perturbations of
species mixture, however, have an effect on enthalpy perturbations and influence results no-
tably. They should therefore be taken into account.
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5.3 Study of parametric influences

Figure 5.6: Frequency response for equivalence ratio perturbations computed by the LRF
solver (—) compared to k∑

Y ′ = 0 (- - ) and hY = 0 (· · · ).
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6 Conclusion and Outlook

Main focus of the thesis is the application of LRF to equivalence ratio perturbations. LRF
poses a simulation method, that demands less time and computation power than LES. The
approach relies on solving LNSE discretized by DG-FEM in frequency domain.

The first part shows the deduction of linearized reacting flow equations including lin-
earized reaction rates modeled with Arrhenius’ law. An approach to reduce the number of
independent variables is explained, that expresses the five involved species by only two vari-
ables using stoichiometric relations. By solving for less DOFS, the requirements on storage
and processing power are minimized further. The PDEs are discretized with the discontinu-
ous Galerkin FEM and solved in frequency domain.

Then, the reduced and full models are applied to compute the flame response functions
of laminar, premixed flames in 2D. Two boundary conditions are examined yielding either an
attached or a lifted flame.

For the case of equivalence ratio perturbations, the phase from all LRF solutions is in
good agreement with the CFD solutions, suggesting that the transport of flow variable per-
turbations including species transport is reproduced well. The gain computed on the LRF
equations, however, differs from the reference FRF: for the attached flame the excess gain
frequency band is not resolved, whereas the gain peak is predicted at a somewhat higher fre-
quency for the lifted flame.

The study of the influence of including mass fraction perturbations into the linearization
of the ideal gas law and sensible enthalpy is presented as well. It shows, that mass fraction
perturbations can be neglected for the ideal gas law, while their influence in enthalpy pertur-
bations has to be considered.

Due to satisfactory results in gain prediction and accurate phase representation for equiv-
alence ratio perturbations, FRF determination based on LRF shows promising aspects and is
computationally far less expensive than identification from CFD time series. With more so-
phisticated meshing, that better resolves the flame region and therefore reduces modeling
errors in the reactive terms, more accurate results should be obtained.

Furthermore, LRF solvers could be applied for analysis of thermoacoustic modes, that re-
quire the solution of eigenvalue problems. This was already done for velocity perturbations in
[14].

Also, the extension to turbulent flames is desirable, though here much finer spatial reso-
lution is necessary, and the number of DOFs is increased. Furthermore, turbulence modeling
and capturing interference between turbulence and chemical reactions have to be dealt with.
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A Detailed Linearization

This appendix shows detailed deductions for the LNSE as described in chapter 2.2.

A.1 Momentum conservation

Including explicit formulations for the vicious stress tensor, the momentum conservation
equations read in index notation:

∂ρui

∂t︸ ︷︷ ︸l1
+ ∂ρui u j

∂x j︸ ︷︷ ︸l2
= − ∂p

∂xi︸ ︷︷ ︸l3
+ ∂

∂x j
µ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
︸ ︷︷ ︸l4

(A.1)

The terms l1 to l4 are now formulated individually:

l1 = ∂(ρ+ρ′)(ui +u′
i )

∂t
=

[
∂ρui

∂t

]
+ ∂ρ′ui

∂t
+ ∂ρu′

i

∂t
+ ∂ρ′u′

i

∂t︸ ︷︷ ︸
HO term

l2 =
∂(ρ+ρ′)(ui +u′

i )(u j +u′
j )

∂x j

=
[
∂ρui u j

∂x j

]
+
∂ρui u′

j

∂x j
+ ∂ρu′

i u j

∂x j
+ ∂ρ′ui u j

∂x j
+
∂ρu′

i u′
j

∂x j
+
∂ρ′ui u′

j

∂x j
+ ∂ρ′u′

i u j

∂x j
+
∂ρ′u′

i u′
j

∂x j︸ ︷︷ ︸
HO terms
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A.2 Species conservation

l3 =
[
− ∂p

∂xi

]
− ∂p ′

∂xi

l4 = ∂

∂x j
(µ+µ′)

(
∂

∂x j
(ui +u′

i )+ ∂

∂xi
(u j +u′

j )− 2

3
δi j

∂

∂xk
(uk +u′

k )

)
=

[
∂

∂x j
µ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)]
+ ∂

∂x j
µ′

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)

+ ∂

∂x j
µ

(
∂u′

i

∂x j
+
∂u′

j

∂xi
− 2

3
δi j

∂u′
k

∂xk

)
+ ∂

∂x j
µ′

(
∂u′

i

∂x j
+
∂u′

j

∂xi
− 2

3
δi j

∂u′
k

∂xk

)
︸ ︷︷ ︸

HO term

Applying the MVP, the terms in square brackets are left out from the equation, as well as
HO terms.

The complete linearized momentum equation reads:

∂ρ′ui

∂t
+ ∂ρu′

i

∂t
+
∂ρui u′

j

∂x j
+ ∂ρu′

i u j

∂x j
+ ∂ρ′ui u j

∂x j
=

− ∂p ′

∂xi
+ ∂

∂x j
µ′

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
+ ∂

∂x j
µ

(
∂u′

i

∂x j
+
∂u′

j

∂xi
− 2

3
δi j

∂u′
k

∂xk

) (A.2)

The formulae for x- and y-momentum are given in section 2.3, with the viscous terms
written out specificially.

A.2 Species conservation

The species equation for species k is being linearized in terms as follows:

∂ρYk

∂t︸ ︷︷ ︸l1
+ ∂ρuYk

∂x︸ ︷︷ ︸l2
+ ∂ρvYk

∂y︸ ︷︷ ︸l3
= ∂

∂x

(
D
∂Yk

∂x

)
︸ ︷︷ ︸l4

+ ∂

∂y

(
D
∂Yk

∂y

)
︸ ︷︷ ︸l5

+ ω̇i︸︷︷︸l6
(A.3)

l1 = ∂(ρ+ρ′)(Y k +Y ′
k )

∂t
=

[
∂ρY k

∂t

]
+ ∂ρ′Y k

∂t
+ ∂ρY ′

k

∂t
+ ∂ρ′Y ′

k

∂t︸ ︷︷ ︸
HO term

l2 = ∂(ρ+ρ′)(u +u′)(Y k +Y ′
k )

∂x
=

[
∂ρuY k

∂x

]
+ ∂ρuY ′

k

∂x
+ ∂ρu′Y k

∂x
+ ∂ρ′uY k

∂x

+ ∂ρu′Y ′
k

∂x
+
∂ρ′uYC H ′

4

∂x
+ ∂ρ′u′Y k

∂x
+ ∂ρ′u′Y ′

k

∂x︸ ︷︷ ︸
HO terms
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Detailed Linearization

l3 = ∂(ρ+ρ′)(v + v ′)(Y k +Y ′
k )

∂y
=

[
∂ρvY k

∂y

]
+ ∂ρvY ′

k

∂y
+ ∂ρv ′Y k

∂y
+ ∂ρ′vY k

∂y

+ ∂ρv ′Y ′
k

∂y
+ ∂ρ′vY ′

k

∂y
+ ∂ρ′v ′Y k

∂y
+ ∂ρ′v ′Y ′

k

∂y︸ ︷︷ ︸
HO terms

l4 = ∂

∂x

(
(D +D ′)

∂(Y k +Y ′
k )

∂x

)
=

[
∂

∂x

(
D
∂Y k

∂x

)]
+ ∂

∂x

(
D
∂Y ′

k

∂x

)
+ ∂

∂x

(
D ′∂Y k

∂x

)
+ ∂

∂x

(
D ′∂Y ′

k

∂x

)
︸ ︷︷ ︸

HO term

l5 = ∂

∂y

(
(D +D ′)

∂(Y k +Y ′
k )

∂y

)
=

[
∂

∂y

(
D
∂Y k

∂y

)]
+ ∂

∂y

(
D
∂Y ′

k

∂y

)
+ ∂

∂y

(
D ′∂Y k

∂y

)
+ ∂

∂y

(
D ′∂Y ′

k

∂y

)
︸ ︷︷ ︸

HO terml6 =
[
ω̇i

]
+ ω̇′

i

After neglecting higher order terms and applying the MVP (terms in square brackets), the
linearized 2D species equation reads:

∂ρ′Y k

∂t
+ ∂ρY ′

k

∂t
+ ∂ρuY ′

k

∂x
+ ∂ρu′Y k

∂x
+ ∂ρ′uY k

∂x
+ ∂ρvY ′

k

∂y
+ ∂ρv ′Y k

∂y
+ ∂ρ′vY k

∂y
=

∂

∂x

(
D
∂Y ′

k

∂x

)
+ ∂

∂x

(
D ′∂Y k

∂x

)
+ ∂

∂y

(
D
∂Y ′

k

∂y

)
+ ∂

∂y

(
D ′∂Y k

∂y

)
+ ω̇i

′
(A.4)

A.3 Sensible enthalpy conservation

In similar fashion, the enthalpy equation will be linearized in seperate terms and then recom-
piled. The non-linear form reads:

∂

∂t

(
ρh −p

)
︸ ︷︷ ︸l1

+ ∂

∂x

(
ρuh

)
︸ ︷︷ ︸l2

+ ∂

∂y

(
ρvh

)
︸ ︷︷ ︸l3

= ω̇T︸︷︷︸l4
+ ∂

∂x
α
∂h

∂x︸ ︷︷ ︸l5
+ ∂

∂y
α
∂h

∂y︸ ︷︷ ︸l6
(A.5)
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A.3 Sensible enthalpy conservation

l1 = ∂

∂t

(
(ρ+ρ′)(h +h′)− (p +p ′)

)
=

[
∂

∂t

(
ρh −p

)]
+ ∂

∂t

(
ρ′h +ρh′−p ′

)
+HO terms

l2 = ∂

∂x

(
(ρ+ρ′)(u +u′)(h +h′)

)
=

[
∂

∂x

(
ρuh

)]
+ ∂

∂x

(
ρuh′+ρu′h +ρ′uh

)
+HO terms

l3 = ∂

∂y

(
(ρ+ρ′)(v + v ′)(h +h′)

)
=

[
∂

∂y

(
ρvh

)]
+ ∂

∂y

(
ρvh′+ρv ′h +ρ′vh

)
+HO terms

l4 = ω̇T + ω̇′
T

l5 = ∂

∂x

(
(α+α′)

∂(h +h′)
∂x

)
=

[
∂

∂x
α
∂h

∂x

]
+ ∂

∂x
α′∂h

∂x
+ ∂

∂x
α
∂h′

∂x
+HO term

l6 = ∂

∂y

(
(α+α′)

∂(h +h′)
∂y

)
=

[
∂

∂y
α
∂h

∂y

]
+ ∂

∂y
α′∂h

∂y
+ ∂

∂y
α
∂h′

∂y
+HO term

Once again, the MVP-terms in square brackets are subtracted and terms of quadratic order
or higher omitted. Thus, the complete linearized Energy equation is obtained:

∂

∂t

(
ρ′h +ρh′−p ′

)
+ ∂

∂x

(
ρuh′+ρu′h +ρ′uh

)
+ ∂

∂y

(
ρvh′+ρv ′h +ρ′vh

)
=

ω̇′
T + ∂

∂x
α′∂h

∂x
+ ∂

∂x
α
∂h′

∂x
+ ∂

∂y
α′∂h

∂y
+ ∂

∂y
α
∂h′

∂y

(A.6)
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B Analytical examination of
reformulations in section 3.2

B.1 Analytical examination

This appendix gives a detailed analytical examination of eqns. (3.8) to (3.17). To show that the
given formulae are correct, two relations must be fulfilled:

1.
∑

i Yi =∑
i (Y i +Y ′

i )
!= 1 and

2. consequently:
∑

i Yi
!= 0, since

∑
i Y i = 1 is fulfilled by the mean fields by definition of

the MVP. The correctness of
∑

i Y i = 1 was further checked with a MATLAB script. The
main parts and result of this script are explained in the second section.

Proof for constraint 1:

1
!=∑

i
Yi = YN 2 +YC H4 +YO2 +YCO2 +YH2O

= Z +Y +γairZ − s
(
1− (

1+γair
)
Z −Y

)
+ WCO2 +2 WH2O

WC H4

(
1− (

1+γair
)
Z −Y

)
=

(
1+ s − WCO2 +2 WH2O

WC H4

)
︸ ︷︷ ︸
= 1+ 2·32

16 − 44+2·18
16 = 0

(
1+γair

)
Z +

(
1+ s − WCO2 +2 WH2O

WC H4

)
︸ ︷︷ ︸
= 1+ 2·32

16 − 44+2·18
16 = 0

Y

− s + WCO2 +2 WH2O

WC H4

=−4+5 = 1 q.e.d.

(B.1)

Proof for constraint 2:

0
!=∑

i
Y ′

i = Y ′
N 2 +Y ′

C H4
+Y ′

O2
+Y ′

CO2
+Y ′

H2O

= Z ′+Y ′+γairZ ′+ s′
((

1+γair
)
Z ′+Y ′

)
− WCO2 +2 WH2O

WC H4

((
1+γair

)
Z ′+Y ′

)
=

(
1+ s − WCO2 +2 WH2O

WC H4

)
︸ ︷︷ ︸
= 1+ 2·32

16 − 44+2·18
16 = 0

(
1+γair

)
Z +

(
1+ s − WCO2 +2 WH2O

WC H4

)
︸ ︷︷ ︸
= 1+ 2·32

16 − 44+2·18
16 = 0

Y = 0 q.e.d.

(B.2)
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B.2 MATLAB check-up

B.2 MATLAB check-up

In order to check, if mass fraction formulations are correct, they are tested with the following
MATLAB script. A dimensionless domain is defined by:

% Domain settings

start_reac_zone =0.55;
end_reac_zone =0.65;
delta_x_reac =0.002;
delta_x_no_reac =0.05;

x_l =0:delta_x_no_reac:start_reac_zone;
x_reac =start_reac_zone:delta_x_reac:end_reac_zone;
x_r =end_reac_zone:delta_x_no_reac:1;

x =[x_l x_reac x_r]’;

The combustion progress is described with a cumulative distribution function for progress
variable ξ:

% Progress variable xi (defined by CDF)

mu = 0;
sigma = sqrt(0.06);
pd = makedist(’Normal’,0,sqrt(0.06));
reac_zone=linspace(-1,1,length(x_reac));
xi_reac =cdf(pd,reac_zone);
xi_l =zeros(size(x_l));
xi_r =ones(size(x_r));

xi =[xi_l xi_reac xi_r]’;

Combustion progress

The progress variable ξ describes the combustion’s development. For ξ = 0, methane is com-
pletely unburnt and the mixture consists of only methane and air. For ξ = 1, all the C H4 is
burnt and the mixture contains fractions of carbon dioxide, vaporized water, nitrogen and
oxygen that was not consummated by the reaction.

ξ= YC H4,0 −YC H4

YC H4,0

With this definition, ξ takes values between 0 and 1, and will always develop as is shown
in fig. 3.1 for lean combustion. There, the case of stoichiometric combustion in 1D is shown
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Analytical examination of reformulations in section 3.2

with typical developments of fuel and oxidizer mass fractions, temperature, reaction rate and
progress variable.

For the model from section 3.2, mass fractions are calculated by:

Z(:,k) =Y_N2_0(k).*ones(size(x));
Y_CH4(:,k) =(ones(size(x)) - x).*Y_CH4_0(k);
Y_O2(:,k) =air_mix*Z(:,k)-s*(ones(size(x))...

-(1+air_mix)*Z(:,k)-Y_CH4(:,k));
Y_H2O(:,k) =(2*W_H2O/W_CH4)*(ones(size(x))...

-(1+air_mix)*Z(:,k)-Y_CH4(:,k));
Y_CO2(:,k) =(W_CO2/W_CH4)*(ones(size(x))...

-(1+air_mix)*Z(:,k)-Y_CH4(:,k));

Here, the progress variable ξ is imposed on the methane mass fraction YC H4 in order to ’sim-
ulate’ combustion. Whether mass fractions add up to one, is checked for every point in the
domain:

Y_tot(:,k) = Y_CH4(:,k) + Y_O2(:,k) ...
+ Y_CO2(:,k) + Y_H2O(:,k) + Z(:,k);

% Y_checker
Y_checker=Y_tot(:,k);
for n=1:length(Y_checker)

if abs((1-Y_checker(n)))>1e-4
error (’Mass fractions dont add up!’)

end
end

The result is shown in fig. B.1 and indicates that eqns. (3.8) to (3.12) correctly represent the

mass fractions, since the constraint
∑

i Yi
!= 1 is fulfilled at all points and for different equiva-

lence ratios.
The calculations represent a premixed, laminar flame in 1D as presented in fig. 3.1. The

flame region for this program is situated around x/l = 0.6. The development of each species
is shown for example equivalence ratios of φ= 0.95, 0.8 and 0.6. The sum of mass fractions is
exactly 1 in all cases. Furthermore the plot in the bottom-right shows, that this is also true for
every other equivalence ratio.
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B.2 MATLAB check-up

Figure B.1: Mass fractions Yi , initial values Yi ,0 and combustion progress ξ in development
over the domain as computed in MATLAB for values of φ from 0.5 to 1.
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C Discontinous Galerkin form of the LNSE

This appendix lists the full formulations for the remaining DG-form of the LRF as they are
introduced in chapter 4, and shortened to table 4.1.

C.1 x-Momentum equation

∫
Ωe

lu
∂

∂t

[
ρ′u +ρu′

]
−

[
∂lu

∂x

(
ρ′u2 +2ρuu′+p ′−µ(

4

3

∂u′

∂x
− 2

3

∂v ′

∂y
)−µ′(

4

3

∂u

∂x
− 2

3

∂v

∂y
)
)

+ ∂lu

∂y

(
ρ′uv +ρu′v +ρuv ′−µ(

∂u′

∂y
+ ∂v ′

∂x
)−µ′(

∂u

∂y
+ ∂v

∂x
)
)]

dΩe

+
∫
Γe

lu

(
ρ′u2 +2ρuu′+p ′−µ(

4

3

∂u′

∂x
− 2

3

∂v ′

∂y
)−µ′(

4

3

∂u

∂x
− 2

3

∂v

∂y
)
)
nx︸ ︷︷ ︸

normal flux in x-direction
fρu,nx

+ lu

(
ρ′uv +ρu′v +ρuv ′−µ(

∂u′

∂y
+ ∂v ′

∂x
)−µ′(

∂u

∂y
+ ∂v

∂x
)
)
ny︸ ︷︷ ︸

normal flux in y-direction
fρu,ny

dΓe = 0

(C.1)

C.2 y-Momentum equation

∫
Ωe

lv
∂

∂t

[
ρ′v +ρv ′

]
−

[
∂lv

∂y

(
ρ′v2 +2ρv v ′+p ′−µ(

4

3

∂v ′

∂y
− 2

3

∂u′

∂x
)−µ′(

4

3

∂v

∂y
− 2

3

∂u

∂x
)
)

+ ∂lv

∂x

(
ρ′uv +ρu′v +ρuv ′−µ(

∂u′

∂y
+ ∂v ′

∂x
)−µ′(

∂u

∂y
+ ∂v

∂x
)
)]

dΩe

+
∫
Γe

lv

(
ρ′v2 +2ρv v ′+p ′−µ(

4

3

∂v ′

∂y
− 2

3

∂u′

∂x
)−µ′(

4

3

∂v

∂y
− 2

3

∂u

∂x
)
)
ny︸ ︷︷ ︸

normal flux in y-direction
fρv,ny

+ lv

(
ρ′uv +ρu′v +ρuv ′−µ(

∂u′

∂y
+ ∂v ′

∂x
)−µ′(

∂u

∂y
+ ∂v

∂x
)
)
nx︸ ︷︷ ︸

normal flux in x-direction
fρv,nx

dΓe = 0

(C.2)
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C.3 Species equation

C.3 Species equation∫
Ωe

lYi

∂

∂t

[
ρ′Yi +ρY ′

i

]
− lYi ω̇

′
i −

[
∂lYi

∂x

(
ρ′uYi +ρu′Yi +ρuY ′

i −ρ′Di
∂Y i

∂x
−ρDi

∂Y ′
i

∂x

)
+ ∂lYi

∂y

(
ρ′vYi +ρv ′Yi +ρvY ′

i −ρ′Di
∂Y i

∂y
−ρDi

∂Y ′
i

∂y

)]
dΩe

+
∫
Γe

lYi

(
ρ′uYi +ρu′Yi +ρuY ′

i −ρ′Di
∂Y i

∂x
−ρDi

∂Y ′
i

∂x
)
)
nx︸ ︷︷ ︸

normal flux in x-direction
fρYi ,nx

+ lYi

(
ρ′vYi +ρv ′Yi +ρvY ′

i −ρ′Di
∂Y i

∂y
−ρDi

∂Y ′
i

∂y

)
ny︸ ︷︷ ︸

normal flux in y-direction
fρYi ,ny

dΓe = 0

(C.3)

C.4 Sensible Enthalpy equation∫
Ωe

lp
∂

∂t

[
ρ′h +ρh′−p ′

]
− lp ω̇

′
T

−
[
∂lp

∂x

(
ρ′uh +ρu′h +ρuh′

)
+ ∂lp

∂y

(
ρ′vh +ρv ′h +ρvh′

)]
+

[
∂lp

∂x

(
α
∂h′

∂x
+α′∂h

∂x

)
+ ∂lp

∂y

(
α
∂h′

∂y
+α′∂h

∂y

)]
dΩe

+
∫
Γe

lp

(
ρ′uh +ρu′h +ρuh′−α∂h′

∂x
−α′∂h

∂x

)
nx︸ ︷︷ ︸

normal flux in x-direction
fρh,nx

+ lp

(
ρ′vh +ρv ′h +ρvh′−α∂h′

∂y
−α′∂h

∂y

)
ny︸ ︷︷ ︸

normal flux in y-direction
fρh,ny

= 0

(C.4)
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D Correction factor for flame response
function Fφ

This appendix shows the deduction of the correction factor for the conversion from mass
fraction to equivalence ratio perturbations.

From the definition of the equivalence ratio in eq. (3.7) it can be rewritten to:

φ= s
YC H4

YO2

= s
(1+γair)Y

γair(1−Y )
(D.1)

using

1 = YC H4 +YO2 +YN2

1−Y = YO2 +
1

γair
YO2

YO2 =
γair(1−Y )

1+γair
.

From eq. (D.1) the linearization is obtained as:

φ′ = s
1+γair

γair

(1−Y )+Y

(1−Y )2
Y ′ =φ 1

1−Y

Y ′

Y

φ′

φ
= 1

1−Y

Y ′

Y

(D.2)

Thus, the correction factor for the flame response to equivalence ratio perturbations (cf.
eq. (1.2)) calculation reads:

Fφ = Q̇ ′/Q̇

φ′/φ
= Q̇ ′/Q̇

Y ′/Y
(1−Y )︸ ︷︷ ︸

= 1 - 0.0445

= 0.9555

(D.3)
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