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Abstract
We provide a D-vine copula based method to model and forecast data,
which are relevant in reinsurance, e.g. for appropriate risk capital alloca-
tion. We deal with unbalanced data, where the number of observations in-
creases over time. Using the Inference for Marginals (IFM) method, we first
obtain probability integral transformed random variables by modelling the
marginals via different methods. This includes elaborate regression mo-
dels such as Generalized Additive Models to account for location, scale and shape
(GAMLSS). Second, we fit D-vine models, which naturally capture the se-
rial dependence inherent in the data. A concept for forecasting future data
by shifting the fitted D-vine structure is introduced. The quality of predicti-
ons is assessed with continuous rank probability scoring (CRPS).
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Zusammenfassung
Wir stellen eine D-Vine Copula basierte Methode vor, die zur Modellierung
und Vorhersage von Daten genutzt werden kann, welche in der Rückver-
sicherung z.B. zur Allokation von Risikokapital relevant sind. Wir arbei-
ten mit einem sogenannten unbalanced setting, in dem die Anzahl der Be-
obachtungen über die Zeit zunimmt. Mithilfe der Inference for Marginals
(IFM) Methode erhalten wir zuerst sogenannte probability integral transfor-
med Zufallsvariablen, indem wir die Ränder mit verschiedenen Methoden
modellieren. Darunter auch komplexe Regressionsmodelle, wie etwa die
Generalized Additive Models for location, scale and shape (GAMLSS). Als zwei-
ten Schritt passen wir D-Vine Modelle an, welche von Natur aus die se-
quentielle Abhängikeit der Daten abbilden. Anschließend wird ein Kon-
zept zur Vorhersage von zukünftigen Daten durch das Verschieben der an-
gepassten D-Vine Struktur eingeführt. Schlussendlich wird die Qualität
der Vorhersagen durch das sogenannte Continuous Rank Probability Scoring
(CRPS) bewertet.
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Chapter 1

Introduction

A reinsurance works as an insurance for another (primary) insurance. Look-
ing at a contract between these two parties, one important piece of infor-
mation that the primary insurance shares with the reinsurance is a list of
so-called exposure limits. These limits are of special interest when the rein-
surance company wants to, for example, calculate pricings or allocate risk
capital. Thus, good knowledge of these limits is important for reinsurance
businesses. However, usually only data from the past are available while
the reinsurance is interested in information on future time points.

In order to provide better knowledge on future time points, a statistical
model is needed. When it comes to multivariate data, typical features are
different marginal distributions, tail dependency between certain pairs as
well as non-symmetric dependencies. Classical distributions, such as the
multivariate Gaussian distribution can be used to model the data but may
not be flexible enough to capture the aforementioned behaviour. Especially
complex dependence structures of the data can be challenging to model cor-
rectly. The theory of copulas, based on the work of Sklar (1959), allows us to
model the underlying dependence structure separately from the margins.
This approach is very flexible and has thus gained a lot of popularity (see
e.g. Nelsen, 2010 for an overview)

In this thesis, we will apply the copula approach by making use of so-
called vine copulas, as introduced by Aas, Czado et al. (2009). The advan-
tage of vine copulas is the application of simple so-called bivariate pair-
copulas as building blocks for modelling in arbitrary dimensions. With the
help of vine copulas we will fit multiple models in this thesis in order to
describe the dependencies and allow forecasts of future exposure limits.

The remainder of this thesis is organized as follows. Chapter 2 lays
out the necessary theoretical background for this thesis. First, the theory
of copula and vines, in particular D-vines, is introduced and accompanied
by the procedure of fitting a vine and diagnostic methods for them. Then,
details on marginal models, including the introduction of the regression ap-
proach called Generalized Additive Models for Location, Scale and Shape
(GAMLSS), are given and again accompanied by a few diagnostic tools. In
the last section of this chapter, the concept of shifting a fitted model is pro-
posed in order to forecast data and finally, a tool for assessing the forecas-
ting quality called continuous rank probability score (CRPS) is presented.

Chapter 3 provides an exploratory data analysis of the available data.
We first determine a set of data that we want to work with and give details
of its properties. In the second half, we visually explore this data set with
multiple plots in order to determine further characteristics.
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In Chapter 4, we introduce four different ways to model the margins.
The first model is based on a simple non-parametric density estimation of
the limits themselves. The second model works with standardized observa-
tions whose density is estimated again non-parametrically. The third and
fourth model make use of the previously mentioned GAMLSS models to
gain residuals in a parametric way before estimating their densities once pa-
rametrically and once non-parametrically. The chapter also includes com-
parisons of the marginal models and diagnostics for the resulting data.

Chapter 5 begins with a visual analysis of the dependence structure via
pairs plots. It then continues with the estimation of D-vine copulas based
on four different constraints: There are two sets of copula families that are
allowed and for each set the estimation procedure once contains a test for
independence and once doesn’t. At the end, the estimation results are com-
pared regarding the fit and also the quality of estimation is assessed with
the help of the continuous rank probability scoring (CRPS).

Finally, a short conclusion is given in Chapter 6.
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Chapter 2

Theoretical background

In this chapter, we introduce the necessary theory and tools used in our
subsequent work. This includes basics in copula theory and dependence
measures, the concept of D-vines, a brief introduction into the GAMLSS
framework, as well as some diagnostic and scoring tools. We also propose
a way to forecast data in this D-vine copula framework and present the
CRPS method to assess the forecast quality.

2.1 Dependence modelling using copulas

We start with an introduction to copula theory. Copulas are tools for mo-
delling dependence of several random variables.

Definition 1 (Copula). A d-dimensional copula is a multivariate distribution
functionC : [0, 1]d → [0, 1] with uniformly distributed marginals. Let (U1, . . . , Ud)
be a random vector where Uj ∼ U [0, 1] for j = 1, . . . , d, then

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) for u1, . . . , ud ∈ [0, 1] .

A fundamental statement about copulas is Sklar’s theorem (Sklar, 1959)
as it provides the foundation for the application of copulas by giving us
a link between multivariate distributions and their copulas. It states that
for every multivariate distribution F of a random vector X = (X1, . . . , Xd)
with marginal distributions F1, . . . , Fd , there exists a copula C such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))

and in the case that F is absolutely continuous (which we will assume
throughout this thesis), this decomposition is unique.

A similar relationship can be given for the density function

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd) , (2.1)

where f1, . . . , fd are the marginal densities and c is the copula density defi-
ned as

c(u1, . . . , ud) :=
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud) .

If we are only interested in the dependence structure of the random
vector X, we can apply the probability integral transform (PIT) to its known
marginals to obtain the so-called u-data:

Uj = Fj (Xj) ∼ U [0, 1] , j = 1, . . . , d . (2.2)
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And similarly

Xj = F−1j (Uj) ∼ Fj , j = 1, . . . , d .

So the copula C corresponding to the cumulative distribution function F
of X is the distribution function of F1(X1), . . . , Fd(Xd) and we obtain for
(U1, . . . , Ud) ∼ C: (

F−11 (U1), . . . , F
−1
d (Ud)

)
∼ F .

Thus, based on Sklar’s theorem, we can use the following 2-stage pro-
cess: First, estimate the marginal distributions to obtain u-data of which
the margins are approximately uniformly distributed on [0, 1] and then esti-
mate a copula describing the dependence structure for the estimated u-data
which inherits the dependence structure of the original data, see Joe and Xu
(2016) and Joe (2005) for details on the 2-stage estimation process, called in-
ference for marginals (IFM).

Dependence measures

As copulas describe a dependence structure, we now want to introduce
measures to quantify this dependence.

First, we introduce the rank-based global dependence measure called
Kendall’s rank correlation coefficient, also called Kendall’s τ , developed by
Kendall (1938):

Definition 2 (Kendall’s τ ). For the i.i.d. (independent and identically distribu-
ted) random vectors (X,Y )′ and (X̃, Ỹ )′, Kendall’s τ is defined as

τ (X,Y ) = P
((
X − X̃

)(
Y − Ỹ

)
> 0
)
− P

((
X − X̃

)(
Y − Ỹ

)
< 0
)
.

We list some properties of Kendall’s τ from Embrechts, Lindskog et al.
(2001):

Proposition 1 (Properties of Kendall’s τ ). Let (X,Y )′ be a vector of continuous
random variables with copula C. Then

1. τ(X,Y ) = 4
∫
[0,1]2 C(u, v)dC(u, v)− 1 .

2. τ(X,Y ) ∈ [−1, 1] .

3. If X and Y are independent, then τ(X,Y ) = 0 .

4. If X and Y are perfectly positively dependent, then τ(X,Y ) = 1 .

5. If X and Y are perfectly negatively dependent, then τ(X,Y ) = −1 .

As the first property shows, Kendall’s τ can be expressed using only
copulas and thus is independent of the marginal distributions. Hence, it
allows us to completely describe the dependence captured by the copula.

Next, we describe the concept of tail dependence, which is relevant for
the study of dependence between extreme values as it relates to the depen-
dence in the upper-right- or lower-left-quadrant tail of a bivariate distribu-
tion (from Embrechts, Lindskog et al. (2001)):
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Definition 3 (Tail dependence coefficients). Let (X,Y )′ be a vector of con-
tinuous random variables with marginal distribution functions F and G. The
coefficient of upper tail dependence of (X,Y )′ is

lim
u↗1

P
(
Y > G−1(u)|X > F−1(u)

)
=: λU (X,Y )

provided that the limit λU ∈ [0, 1] exists.
If λU (X,Y ) ∈ (0, 1], X and Y are said to be asymptotically dependent in the

upper tail and if λU (X,Y ) = 0,X and Y are said to be asymptotically independent
in the upper tail. Similarly,

lim
u↘0

P
(
Y < G−1(u)|X < F−1(u)

)
=: λL(X,Y )

is the coefficient of lower tail dependence.

Further, Embrechts, Lindskog et al. (2001) show that the concept of tail
dependence is a copula property and give the equivalent definition:

Definition 4 (Copula tail dependence coefficients). If a bivariate copula C is
such that

lim
u↗1

(1− 2u+ C(u, u)) /(1− u) =: λU (X,Y )

exists, then C has upper tail dependence if λU (X,Y ) ∈ (0, 1] and upper tail inde-
pendence if λU (X,Y ) = 0. Similarly, if

lim
u↘0

C(u, u)/u =: λL(X,Y )

exists, then C has lower tail dependence if λL(X,Y ) ∈ (0, 1] and upper tail inde-
pendence if λL(X,Y ) = 0

Bivariate copula families

In this section, we will list a number of commonly used bivariate copula
families (descriptions are mostly from Barthel (2015)).

The first one is the non-parametric independence copula (Embrechts,
McNeil et al., 2002)

Example 1 (Independence copula). Let U1, U2
i.i.d.∼ U [0, 1]. Then the indepen-

dence copula is given by

P(U1 ≤ u1, U2 ≤ u2) = u1u2 .

Next, we introduce the Gaussian and t-copula, which belong to the so-
called class of elliptical copulas, named for the elliptical bivariate distribu-
tions they are based on. They are both symmetric with respect to the diago-
nal as well as with respect to the counterdiagonal (Embrechts, McNeil et al.,
2002).

Example 2 (Gaussian copula). Let Φρ denote the cumulative distribution function
of a bivariate standard normal distribution (zero mean, unit variance) and correla-
tion ρ ∈ (−1, 1). Let Φ denote the cumulative distribution function of a standard
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univariate normal distribution. Then the bivariate Gaussian copula with parame-
ter ρ is given by

C(u1, u2; ρ) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)
.

Example 3 (Student t-copula). Let tν,ρ denote the cumulative distribution function
of a bivariate t-distribution with zero mean, correlation ρ ∈ (−1, 1) and ν degrees
of freedom. Let t−1ν denote the inverse of a cumulative distribution function of a
standard univariate t-distribution with ν degrees of freedom. Then the bivariate
t-copula (also called Student t-copula) with parameters ν and ρ is given by

C(u1, u2; ν, ρ) = tν,ρ
(
t−1ν (u1), t

−1
ν (u2)

)
.

For the class of so-called Archimedian copulas, we introduce the Clay-
ton, Gumbel, Frank and Joe copula (Clayton (1978), Gumbel (1960), Frank
(1979) and Joe (1993)). Archimedian copulas can be constructed with an
appropriate generator function ϕ (Nelsen, 2010):

Definition 5 (Bivariate Archimedian copulas). Let ϕ : [0, 1] → [0,∞] be a
continuous, strictly monotone decreasing and convex function such that ϕ(1) = 0
and let the pseudo-inverse of ϕ be the function ϕ[−1] : [0,∞]→ [0, 1] given by

ϕ[−1](t) =

{
ϕ−1(t) , 0 ≤ t ≤ ϕ(0) ,

0 , ϕ(0) ≤ t ≤ ∞ ,

with ϕ[−1](t) = ϕ−1(t) for ϕ(0) =∞. Then

C(u1, u2) = ϕ[−1] (ϕ(u1) + ϕ(u2))

is a bivariate Archimedian copula with generator ϕ.

Example 4 (Clayton copula). Choosing

ϕ(t) =
1

θ

(
t−θ − 1

)
with dependence parameter θ ∈ (0,∞), the bivariate Clayton copula is given by

C(u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)−1/θ
.

Example 5 (Gumbel copula). Choosing

ϕ(t) = (− log(t))θ

with dependence parameter θ ∈ [1,∞), the bivariate Gumbel copula is given by

C(u1, u2; θ) = exp

[
−
(

(− log(u1))
θ + (− log(u2))

θ
)1/θ]

.

Example 6 (Frank copula). Choosing

ϕ(t) = − log

(
exp(−θt)− 1

exp(−θ)− 1

)
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with dependence parameter θ ∈ R \ {0}, the bivariate Frank copula is given by

C(u1, u2; θ) = −1

θ
log

(
1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)

(exp(−θ)− 1)

)
.

Example 7 (Joe copula). Choosing

ϕ(t) = − log
(

1− (1− t)θ
)

with dependence parameter θ ∈ [1,∞), the bivariate Joe copula is given by

C(u1, u2; θ) = 1−
(

(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ
)1/θ

.

Similarly to Archimedian copulas, extreme value copulas can be con-
structed with the help of the Pickands’ representation:

C(u, v;A) = exp

[
log(uv)A

(
log(u)

log(uv)

)]
, (2.3)

where A : [0, 1] → [0, 1] is the so-called Pickands’ dependence function
(Pickands, 1981). Note that for u = v = 1, the dependence function A is
set to 0. One example of extreme value copulas is the Tawn copula (Tawn,
1988):

Example 8 (Tawn copula). Choosing the Pickands’ dependence function as

A(t) = 1− β + (β − α)t+
[
(α(1− t))θ + (βt)θ

]1/θ
,

for t ∈ [0, 1] with α, β ∈ [0, 1] and θ ∈ [1,∞), and inserting it into equation (2.3),
we obtain the Tawn copula with three parameters. The special cases where β = 1
or α = 1 are called Tawn Type 1 and Tawn Type 2 copula respectively (which have
two parameters).

For each of the above mentioned copula families, Table 2.1 shows the
Kendall’s τ values as well as upper and lower tail dependence coefficients
in terms of the copula parameter(s). Figures 2.1 and 2.2 show scatter plots
of simulated copula data as well as normal marginal contour plots of the
underlying copula densities for each of the copula families, i.e. the contour
plots consider the transformation to a joint distribution with normalN (0, 1)
margins.
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Family Kendall’s τ τ range Lower tail dependence Upper tail dependence

Gaussian τ = 2
π arcsin(ρ) τ ∈ [−1, 1] - -

Student t τ = 2
π arcsin(ρ) τ ∈ [−1, 1] 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Clayton τ = θ

θ+2 τ ∈ [0, 1] 2−1/θ -

Gumbel τ = 1− 1
θ τ ∈ [0, 1] - 2− 21/θ

Frank
τ = 1− 4

θ + 4D1(θ)
θ

with D1(θ) =
∫ θ
0

x/θ
exp(x)−1dx (Debye function)

τ ∈ [−1, 1] - -

Joe τ = 1 + 4
θ2

∫ 1
0 x log(x)(1− x)2(1−θ)/θdx τ ∈ [0, 1] - 2− 21/θ

Tawn Type 1
τ =

∫ 1
0
t(1−t)A′′(t)

A(t)

where A(t) = (1− δ)t+
[
(δ(1− t))θ + (t)θ

]1/θ τ ∈ [0, 1] - δ + 1−
(
δθ + 1

)1/θ
Tawn Type 2

τ =
∫ 1
0
t(1−t)A′′(t)

A(t)

where A(t) = 1− δ + (δ − 1)t+
[
(1− t)θ + (δt)θ

]1/θ τ ∈ [0, 1] - δ + 1−
(
δθ + 1

)1/θ
TABLE 2.1: Kendall’s τ values as well as upper and lower tail dependence coefficients (where available) in terms of the copula parame-

ter(s) for the families given in Examples 2 to 8 (from Schepsmeier, Stoeber et al. (2017b)).
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All of the above copulas can also be rotated by 90, 180 and 270 degrees.
This is useful as some of them only have a limited dependence range or can
only capture lower or upper tail dependence (see Table 2.1). Rotating can
be defined as follows (Joe, 1993):

Definition 6. For a copula functionC(·, ·) with density c(·, ·), its counter-clockwise
rotations are given by

• 90 degrees: C90(u1, u2) := u2 − C(1− u1, u2)
c90(u1, u2) := c(1− u1, u2)

• 180 degrees: C180(u1, u2) := u1 + u2 − 1 + C(1− u1, 1− u2)
c180(u1, u2) := c(1− u1, 1− u2)

• 270 degrees: C270(u1, u2) := u1 − C(u1, 1− u2)
c270(u1, u2) := c(u1, 1− u2)

Remark that the 180 degree rotation of a copula is often called the sur-
vival copula.
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FIGURE 2.1: Scatter plots of simulated copula data for 1000
simulations as well as normal contour plots of the under-
lying copula density with weaker (τ = 0.3) and stronger
(τ = 0.6) dependence for the families given in Examples 2

to 5.
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(E) Tawn 1, τ = 0.3
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FIGURE 2.2: Scatter plots of simulated copula data for 1000
simulations as well as normal contour plots of the under-
lying copula density with weaker (τ = 0.3) and stronger
(τ = 0.6) dependence for the families given in Examples 6

to 8.
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2.2 Dependence modelling using D-vine copulas

At the end of the last section, we gave examples of bivariate copulas (such
as Gaussian, Gumbel or Tawn copula). They are of special interest as they
provide the foundation for so-called vine copulas, which we will discuss in
this section (as introduced, for example, in Bedford and Cooke (2001)). A
vine is a graphical tool that allows for the ordering of decomposed densities
via recursive factorisation into pairs. (see Diestel (2000) for an extensive
introduction to graph theory, of which we will use some basics). This can be
of advantage as there are many bivariate parametric pair-copulas available
to choose from, making this a very flexible model. In contrast, only few
copula families exist for higher dimensions.

A vine V is a nested set of connected trees, where the edges in the first
tree are the nodes of the second tree, the edges in the second tree are the
nodes of the third tree and so on.

A regular vine (or R-vine) is a vine in which two edges in a tree are
joined by an edge in the next tree only if these edges share a common node.
This is called the proximity condition.

In this thesis, we will focus on so-called ordered D-vines. A D-vine is
characterized by assigning no more than two edges to each node in the first
tree. This way, a D-vine is uniquely determined by its first tree and we call
it an ordered D-vine if the nodes are ordered in an increasing way, i.e. 1-2-
3-4-. . . and so on. As our data set consists of observations at successive time
points, this serial dependence naturally leads to the use of ordered D-vines.

In the context of copulas, a (D- or R-) vine copula consists of the vine
structure as described above where each edge is associated with a (con-
ditional) bivariate copula. Figure 2.3 shows a graphical representation of
a 4-dimensional D-vine structure where we can also see the division into
trees (denoted by T1, T2 and T3). Here, a 4-dimensional copula density is
factorised into pair-copulas as labelled on the edges, e.g. 1, 2 refers to the
copula connecting nodes 1 and 2 while 1, 4; 2, 3 refers to the copula con-
necting nodes 1 and 4 conditioned on 2 and 3.

T1 1 2 3 4

T2 1,2 2,3 3,4

T3 1,3;2 2,4;3

1,2 2,3 3,4

1,3;2 2,4;3

1,4;2,3

FIGURE 2.3: A 4-dimensional ordered D-vine structure. The
connecting edges are labelled with the corresponding pair-

copulas.

We will now introduce some notation (taken from Kraus and Czado
(2017)) to help us simplify the following parts.

Given a subset D ⊂ {1, . . . , d} and i, j ∈ {1, . . . , d} \ D with i < j,
we denote by Ci,j;D(·, ·; xD) the copula corresponding to the conditional



2.2. Dependence modelling using D-vine copulas 13

distribution of (Xi, Xj) given XD = xD, where xD = {xu : u ∈ D}, and by
cij;D(·, ·; xD) the associated copula density.

In the same way, Fi|D(·|xD) denotes the conditional distribution function
of Xi given XD = xD.

And finally, we denote by Ci|D(·; uD) the conditional distribution of the
PIT random variable Ui given UD = uD.

We callD the conditioning set and {i, j} the conditioned set. Now recall
the ascending order of nodes in an ordered D-vine and the fact that each
edge is assigned a bivariate copula. Thus, in the case of ordered D-vines,
for a given conditioned set {i, j}, the conditioning set is always given by
D = {i+ 1, . . . , j − 1}.

A common assumption when working with D-vine copulas (and R-vine
copulas in general) is to assume that the copulas ci,j;D(·, ·; xD) actually do
not depend on the specific observations of the conditioning vector xD, i.e.
ci,j;D(·, ·; xD) ≡ ci,j;D(·, ·). This is the so-called simplifying assumption (dis-
cussed, for example, in Stoeber, Joe et al. (2013)) which we will use from
now on.

In case that a copula is parametric and we want to refer to the para-
meters, they will be denoted by the parameter vector θi,j;D and we write
ci,j;D(·, ·;θi,j;D).

We now want to derive a pair-copula representation for multivariate
densities. Thus, recall Sklar’s theorem applied to densities from equation
(2.1), stating that the cumulative density function f(x1, . . . , xd) can be writ-
ten as the product of the marginal densities and the d-dimensional copula
density, i.e.

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd)

and that we can, for example, recursively decompose

f(x1, . . . , xd) = fd(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · · · f(x1|x2, . . . , xd) .
(2.4)

Following Czado (2010), we can see in the 2-dimensional case that

f(x1, x2) = c1,2(F1(x1), F2(x2)) · f1(x1) · f2(x2)

for the associated pair-copula density c1,2(·, ·) and it follows for the condi-
tional density

f(x1|x2) = c1,2(F1(x1), F2(x2)) · f1(x1) (2.5)

In the 3-dimensional case, we have for example

f(x1|x2, x3) = c1,3;2(F1|2(x1|x2), F3|2(x3|x2)) · f(x1|x2) , (2.6)

where c1,3;2(·, ·) is the corresponding pair-copula density for the conditional
distribution of (X1, X3) given X2. By inserting equation (2.5) into (2.6) we
get

f(x1|x2, x3) = c1,3;2(F1|2(x1|x2), F3|2(x3|x2)) · c1,2(F1(x1), F2(x2)) · f1(x1) .
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In this way, we can decompose (2.4) into the marginals and bivariate copula
densities (Czado, 2010):

f(x1, . . . , xd) =
d∏

k=1

fk(xk)
d−1∏
i=1

d∏
j=i+1

ci,j;D
(
Fi|D(xi|xD), Fj|D(xj |xD)

)
,

with D = {i+ 1, . . . , j − 1}.
This is called an ordered D-vine density with order X1 −X2 − · · · −Xd.

If all margins are uniform (as is the case when PIT variables are used), we
call this an ordered D-vine copula.

As shown in Joe (1997), it is possible to evaluate arguments of these
copula densities (which are univariate conditional distribution functions)
using only the pair-copulas from lower trees by recursively applying so-
called h-functions:

Definition 7 (h-functions). For a pair-copula Ci,j;D(·, ·), a set D ⊂ {1, . . . , d}
and i, j ∈ {1, . . . , d} \D with i < j,

hi|j;D(ũi|ũj) :=
∂

∂ũj
Cij;D (ũi, ũj) and

hj|i;D(ũi|ũj) :=
∂

∂ũi
Cij;D(ũi, ũj)

are the h-functions corresponding to the pair-copula Ci,j;D(·, ·).

Now, let j ∈ D and D−j := D \ j to get (see Joe (1997))

Fi|D (xi|xD) = hi|j;D−j

(
Fi|D−j

(
xi|xD−j

)∣∣∣Fj|D−j

(
xj |xD−j

))
, (2.7)

where the argument is again an h-function, illustrating the recursive cha-
racter.

We will illustrate this with the 4-dimensional example from Figure 2.3
and start at the third tree (T3) copula c1,4;2,3(·, ·). Its arguments are:

F1|2,3(x1|x2, x3) = h1|3;2
(
F1|2(x1|x2)

∣∣F3|2(x3|x2)
)
,

F4|2,3(x4|x2, x3) = h4|2;3
(
F4|3(x4|x3)

∣∣F2|3(x2|x3)
)
.

We can replace the new arguments again using h-functions:

F1|2(x1|x2) = h1|2(F1(x1)|F2(x2)) ,

F3|2(x3|x2) = h3|2(F3(x3)|F2(x2)) ,

F4|3(x4|x3) = h4|3(F4(x4)|F3(x3)) ,

F2|3(x2|x3) = h2|3(F2(x2)|F3(x3)) .

Thus, we can write the arguments of c1,4;2,3(·, ·) as

F1|2,3(x1|x2, x3) = h1|3;2
(
h1|2(F1(x1)|F2(x2))

∣∣h3|2(F3(x3)|F2(x2))
)

and
F4|2,3(x4|x2, x3) = h4|2;3

(
h4|3(F4(x4)|F3(x3))

∣∣h2|3(F2(x2)|F3(x3))
)
,
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which now only depend on the pair-copulas and their parameters from the
lower trees T1 and T2 as well as the marginal distributions F1, F2, F3, F4.

Next, we also want to introduce the concept of truncated vines and the
special case of a Markov tree dependence structure:

Definition 8 (Truncated D-vine). A d-dimensional `-truncated D-vine with
` ∈ {1, . . . , d− 1} is a D-vine where all pair-copulas after ` trees are replaced by
the independence copula.

When ` = 1, the result is a Markov tree dependence structure, i.e. two
variables not connected by an edge are conditionally independent given the
variables of the conditioning set (Brechmann and Joe, 2014). Truncation is
often used in order to reduce the complexity of a model where the number
of parameters increases exponentially in larger dimensions.

Vine fitting

Assuming we have estimated the marginals in the first step, we can per-
form the second step of estimating the vine copula, which can generally be
broken down into three tasks:

• Selection of the R-vine structure.

• Selection of bivariate copula families for each pair in the structure.

• Estimation of the corresponding parameter(s) for each bivariate co-
pula pair.

The first task (selection of the structure) is most commonly done by a se-
quential method based on Kendall’s τ (Dissmann, Brechmann et al. (2013)
for details) but we will restrict ourselves to an ordered D-vine structure,
as introduced before, because the specific pair structure in the first tree is
particularly suited for the serial dependence in our data.

In the next steps, copula families are selected for each pair by exploiting
the tree structure of the vine: We start by estimating all unconditional pair-
copulas in the first tree. The estimation of pair-copulas is achieved by first
fitting all considered copulas using maximum likelihood estimation and
then computing an information criterion (AIC or BIC, chosen beforehand)
to find the family with the minimal value. We then compute the variables
needed in the second tree by applying the corresponding h-functions (from
Definition 7) and estimate the conditional copulas in the second tree and so
on.

This way, we can completely fit a vine copula model with only bivariate
estimations, which is quite efficient. This so-called sequential approach is
also implemented in the R package VineCopula which we will use in this
thesis (Schepsmeier, Stoeber et al., 2017a).

Alternatively, it is possible to perform a joint maximum likelihood es-
timation for the whole vine copula. However, this method can be compu-
tationally heavy. In fact, the sequential estimation approach was originally
introduced to find good starting values for the joint estimation and thus
reduces the computation time. But as the sequential approach proved to al-
ready provide excellent estimation results, it is now widely used in practice
(see Hobæk Haff et al. (2013) for asymptotic behaviour of these sequential
estimates).
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Vine diagnostics

We now want to introduce several methods to compare different ordered D-
vine models to each other. As we will later fit ordered D-vines with different
families that are used for forecasting, we want to be able to compare these
models with respect to how well the fitted dependence structure matches
our data. As a basis, we first introduce the log-likelihood function for a
D-vine copula:

Proposition 2 (Ordered D-vine copula log-likelihood). Consider an ordered
d-dimensional D-vine copula with a set of marginal parameters α as well as a set of
copula parameters θ and let N be the number of observed individuals, i.e. the com-
plete data set is given by x′ = (x′1, . . . ,x

′
N ) with xi = (xi,1, . . . , xi,d)

′ ∈ [0, 1]d

for i = 1, . . . , N . Then, the log-likelihood of the ordered D-vine copula is given by

L(α,θ|x) =
N∑
i=1

d∑
j=1

log [fj(xi,j |αj)]

+

N∑
i=1

d−1∑
j=1

d∑
k=j+1

log
[
cj,k;D

(
Fj|D(xi,j |xi,j+1, . . . , xi,k−1),

Fk|D(xi,k|xi,j+1, . . . , xi,k−1);θj,k;D
)]
,

where θj,k;D is the vector of parameters for the copula cj,k;D (·, ·;θj,k;D).

However, we will later see that our data consist of individuals with dif-
ferent dimension, i.e. the lengths of the xi are not identical. This is often cal-
led an unbalanced setting. In this case, a single vine is not enough as indi-
viduals with less than d dimensions are missing nodes in the d-dimensional
vine. Thus, there are actually multiple vines of different dimensions, corre-
sponding to the dimensions of the observed individuals. See Table 2.2 for
an example where individuals have different dimensions.

Time points
1 2 3 4

x1 x1,1 x1,2 x1,3 x1,4 4-dimensional D-vine

In
di

vi
du

al
s x2 x2,2 x2,3 x2,4

x3 x3,2 x3,3 x3,4 3-dimensional D-vine

x4 x4,3 x4,4 2-dimensional D-vine

x5 x5,4

TABLE 2.2: Example of individual observations with diffe-
rent dimensions. Only the first individual x1 has enough
observations to be used for the 4-dimensional vine copula
(blue). Observations from individuals x1, x2 and x3 starting
at time point 2 are used for the 3-dimensional vine copula
(red). All individuals except x5 are used from time point 3

onwards for the 2-dimensional vine copula (green).

The log-likelihood function can thus be given in a more general setting:

Proposition 3 (Ordered D-vine copulas log-likelihood with different di-
mensions). Let N be the number of observed individuals x′ = (x′1, . . . ,x

′
N ) with
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different dimensions, where the maximum dimension is d. Each xi of dimension
di ∈ {2, . . . , d} is given by xi = (xi,1+d−di , . . . , xi,d)

′ ∈ [0, 1]di for i = 1, . . . , N .
Consider a set of D-vine copulas with maximum dimension d, a set of marginal pa-
rameters α and a set of copula parameters θ. Then, the log-likelihood of the D-vine
copulas is given by

L(α,θ|x) =
N∑
i=1

d∑
j=1+d−di

log [fj(xi,j |αj)]

+
N∑
i=1

d−1∑
j=1+d−di

d∑
k=j+1

log
[
cdij,k;D

(
Fj|D(xi,j |xi,j+1, . . . , xi,k−1),

Fk|D(xi,k|xi,j+1, . . . , xi,k−1);θ
di
j,k;D

)]
,

where θdij,k;D is the vector of parameters for the copula cdij,k;D
(
·, ·;θdij,k;D

)
which

has dimension di.

Note that, as mentioned before, we will apply the method of inference
for marginals (IFM) in order to estimate parameters. This means that the
estimation of marginal parameters α and copula parameters θ will not be
done simultaneously. Thus, from now on, we will denote by L(θ|x) the log
likelihood function of D-vine copulas with fixed marginal parameters.

Also note that there are at most d − 1 different vines to consider since
the individuals’ dimensions di range from 2 to d. For the rest of this thesis,
we will assume that for a given pair {j, k}, we have

cdij,k;D

(
·, ·;θdij,k;D

)
= cj,k;D (·, ·;θj,k;D)

for all di ∈ {2, . . . , di}, i.e. we assume that the copula families and their
parameters are identical for the same pairs, regardless of the underlying
observed individuals’ dimensions. This means the dependence structure is
independent of the number of available observations. See Figure 2.4 for an
illustration in the 3-dimensional case.

T 3
1 1 2 3

T 3
2 1,2 2,3

c31,2 c32,3

c31,3;2

3-dimensionsal observations

T 2
1 2 3

c22,3

Same copula: c2,3

2-dimensionsal observations

FIGURE 2.4: Example of ordered D-vine copula for 3-
dimensional and 2-dimensional observations. The copula
for the pair {2, 3} is the same regardless of the dimension of

the vine.
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With this, we can also define the well-known Akaike and Bayesian In-
formation criteria (AIC and BIC) for D-vine copulas which allow us to com-
pare different vine estimations (Akaike, 1998 and Schwarz et al., 1978):

Definition 9 (AIC and BIC). Let m be the number of parameters and θ the pa-
rameter set of a D-vine copula model with observations x′ = (x′1, . . . ,x

′
N ) and

log-likelihood function L(θ|x). Then the Akaike Information Criterion (AIC) is
defined as

AIC := −2L(θ|x) + 2m

and we call 2m the penalty term.
Similarly, the Bayesian Information Criterion (BIC) is defined as

BIC := −2L(θ|x) + log(N)m ,

where log(N)m is the penalty term.

The penalty term of the BIC depends on the number of observed indi-
viduals N . However, in our case, the number of individuals changes over
time (recall Table 2.2) and it is not clear what that number should be for the
BIC. Thus, we also work with an alternative of the BIC proposed by Killi-
ches and Czado (2017) where each parameter is weighted according to the
number of observed individuals that contribute to its estimation:

Definition 10 (BIC for D-vines). For a d-dimensional D-vine model, let mi be
the number of parameters of the D-vine model restricted to the observations from
i to d for i = 1, . . . , d and define ∆mi := mi − mi+1 for i = 1, . . . , d − 1 and
∆md := md. Further denote by Ni the number of individuals observed at time i.
Then the BIC of the D-vine model is given by

BICD := −2L(θ|x) +

d∑
i=1

∆mi log(Ni)

Additionally to the AIC and BIC, we want to note the so-called Vuong
test (Vuong, 1989). It can be used to directly compare two non-nested mo-
dels and tells us the preferred model at a given significance level:

Definition 11 (Vuong test). Let c1 and c2 be two vine copulas in terms of their
densities with estimated parameter sets θ̂1 and θ̂2. We then compute the test sta-
tistic ν as the standardized sum of the log differences of their pointwise likelihoods

mi := log c1(ui;θ̂1)

c2(ui;θ̂2)
for observations ui ∈ [0, 1] with i = 1, . . . , N , i.e.

statistic := ν =

1

N

∑N
i=1mi√∑N

i=1(mi − m̄)2
.

As ν is asymptotically standard normal, according to the null hypothesis

H0 : E[mi] = 0 , for all i = 1, . . . , N ,

the vine model with density c1 is preferred at level α if

ν > Φ−1
(

1− α

2

)
,
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while the other model is preferred if ν < −Φ−1
(
1− α

2

)
.

The statistic can also be corrected for the number of parameters used in the
models, either by the Akaike or the Schwarz correction, which correspond to the
penalty terms in the AIC and BIC.

With these, we have a selection of tools to help us compare different
vine models.

2.3 Marginal modelling

Recall that Sklar’s theorem allows us to use a 2-step process of handling
the marginal distributions and the copulas separately. We now want to
introduce the tools needed for the first step, i.e. fitting the marginals.

Kernel density estimation

As described before, in order to gain the approximately uniformly distri-
buted data for the copulas, we can use the probability integral transforma-
tion (PIT) if we have the cumulative distribution functions (or a sufficiently
good fit) of each marginal. Estimation of the distribution functions can be
done either parametrically or non-parametrically. We choose a kernel den-
sity estimation (KDE) to non-parametrically obtain a continuous cdf, which
is described in detail in Nagler (2017a). This so-called continuous convo-
lution KDE allows us to gain a continuous cdf from discrete samples by
adding random noise to the observations.

Given N observations xi, i = 1, . . . , N with unknown density f , and
a random vector E ∈ Rn with i.i.d components Ei (see Nagler (2017a) for
classes of appropriate distributions), the continuous density estimator of f
is given by

f̂(x) =
1

NbN

N∑
i=1

K

(
(xi + Ei)− x

bN

)
,

where bn > 0 and K a symmetric density function.
Once we have estimated corresponding cdfs for each marginal, we only

need to apply it to the data to obtain approximately uniformly distributed
u-data, similarly to equation (2.2) in the beginning (where we considered
known marginals instead of estimated ones).

Regression

Instead of applying a KDE to the data to obtain an estimated cdf, we can
also first apply a regression with explanatory variables. We then work with
the resulting residuals in order to obtain data that have a possible effect of
explanatory variables removed while still inheriting the dependence struc-
ture.

Our data have a few important characteristics, which we will describe
in more detail in later chapters. These characteristics include large outliers,
a left truncation as well as changing behaviours of mean and standard de-
viation over time that also depend on explanatory variables. Thus, we tried
different regression methods for our data, from a simple linear regression
over more advanced models such as Generalized Linear Models (GLM) to
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the complex Generalized Additive Models for Location, Scale and Shape
(GAMLSS).

Neither the simple regressions nor the GLMs were able to capture the
behaviour of our data sufficiently. Hence, we decided to work within the
GAMLSS framework, which can be seen as an extension to Generalized Li-
near Models and which provides a good fit in our case. While GLMs are al-
ready quite flexible compared to ordinary linear regression as they allow for
response variables that have error distribution models other than a normal
distribution (specifically, exponential family distributions), GAMLSS allow
for an even wider range of distributions, including highly skew and/or
kurtotic continuous and discrete distributions. The following definition of
GAMLSS is taken from Stasinopoulos, Rigby et al. (2006):

Definition 12 (GAMLSS). A GAMLSS assumes independent observations xi
for i = 1, 2, . . . , N with probability density function f

(
xi|Ψi

)
conditional on Ψi

where Ψi =
(
Ψi

1,Ψ
i
2, . . . ,Ψ

i
p

)
is a vector of p parameters, each of which is related

to the explanatory variables. Let p = 4 and denote the parameters as (µi, σi, νi, τi),
corresponding to location, scale and two shape parameters.

Let x′ = (x1, x2, . . . , xN ) be the N length vector of the response variable.
Also for k = 1, 2, 3, 4, let gk(·) be known monotonic link functions relating the
k-th parameter Ψk =

(
Ψ1
k, . . . ,Ψ

n
k

)′ to explanatory variables by semi-parametric
additive models given by

gk (Ψk) = ηk = Zkβk +

Jk∑
j=1

hj,k(zj,k) , (2.8)

where Ψk,ηk and zj,k for j = 1, 2, . . . , Jk and k = 1, 2, 3, 4 are vectors of length
N .

The function hj,k is a non-parametric additive function of the explanatory va-
riable Zj,k evaluated at zj,k. The explanatory vectors zj,k are assumed fixed and
known. Also Zk, for k = 1, 2, 3, 4 are fixed design matrices while βk are the para-
meter vectors.

One distribution family that the GAMLSS framework allows us to work
with is the Generalized Gamma (GG) distribution which we will focus on
for our model fittings. The Generalized Gamma distribution has the follo-
wing density:

f(x|µ, σ, ν) =
δδzδ|ν|e−δz

Γ(δ)x
,

where z = (x/µ)ν , δ = 1/(σ2|ν|2) for x > 0, µ > 0, σ > 0 and −∞ < ν <∞.
Thus, we will have to estimate the three parameters µ, σ and ν for a GG
regression. Choosing ν = 1, this distribution becomes the Gamma distri-
bution. When choosing ν = 0, the distribution becomes the log-normal
distribution. See Figure 2.5 for some examples of the Generalized Gamma
density with different parameters (chosen similar to those appearing in our
data).
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FIGURE 2.5: Example densities of Generalized Gamma dis-
tributions for different parametrizations.

Residual diagnostics

When working with a regression as described above, we need to make sure
that it fits the data well enough. As we are interested in the residuals, we
have to confirm that they behave as imposed by the underlying model to
make sure the model is appropriate. Thus, we first need to define the resi-
duals used in the GAMLSS case:

Definition 13 (Normalized quantile residuals). For each time t ∈ {1, . . . , d}
and i = 1, . . . , Nt, let xi,t be the observed values and F̂

(
·|Ψ̂i,t

)
the corresponding

fitted cumulative distribution function from a GAMLSS regression with fitted pa-
rameters Ψ̂i,t. Denote by Φ−1 the inverse cumulative distribution function of a
standard normal random variable. Then

ri,t := Φ−1
(
F̂
(
xi,t|Ψ̂i,t

))
are the corresponding normalized quantile residuals.

These residuals should follow a normal distribution if the model is a
good fit. See also Dunn and Smyth (1996) for details on normalized quantile
residuals.
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Thus, to get approximately uniformly distributed data, we can simply
apply the cdf of a standard normal distribution (denoted by Φ) to these
residuals, i.e.

ûi,t := Φ(ri,t) .

Now that we have defined the residuals, we want a way to check them for
goodness of fit. One way to do so is by looking at the so-called Quantile-
Quantile plots (Q-Q plots) where the empirical quantiles of residuals are
plotted against the theoretical quantiles of a standard normal distribution.
If the values lie along a line, the distribution of residuals has the same shape
as the standard normal distribution (up to location and scale).

Figure 2.6 shows examples of Q-Q plots with a line that passes through
the first and third quartiles to identify deviations from a straight line. We
can see the (average) behaviour in the case of heavy and light tailed dis-
tributions as well as right skewed ones (a left skewed distribution would
show quantiles mirrored to the ones of the right skewed example). Note
that when looking at ’real’ data, patterns may be harder to make out due to
the randomness in the data (especially with small sample sizes).
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FIGURE 2.6: Examples of Q-Q plots for different sample dis-
tributions showing different behaviours. Top left: Normal
distribution. Top right: t-distribution. Bottom left: Uniform

distribution. Bottom right: Gamma distribution.
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U-data diagnostics

As mentioned above, the obtained u-data are always just approximately
uniformly distributed. In order to check whether the data are consistently
estimated to be used in the second estimation step, we can perform the so-
called Kolmogorov-Smirnov (KS) test. This test compares the empirical and
a given theoretical cumulative distribution function and uses the maximum
difference as a test statistic.

Denote by P̂ the empirical distribution and by P the given theoretical
distribution. Then the null hypothesis H0 and alternative H1 are given by

H0 : P̂ = P0 ,

H1 : P̂ 6= P0 .

For a given set of n observations x1, . . . , xn, let F̂ be their empirical distribu-
tion function and F be the theoretical uniform distribution function. Then
the KS-test statistic D is given by

D = sup
x∈[0,1]

∣∣∣F̂ (x)− F (x)
∣∣∣ .

Now let K1−α be the 1− α quantile of the Kolmogorov distribution (Wang,
Tsang et al., 2003), then the null hypothesis H0 is rejected at level α if

√
nD > K1−α .

As the test assumes that the data are drawn from a uniform distribution, a
rejection of H0 (i.e. a low p-value) implies non-uniform distribution.

2.4 Forecasting with D-vine copulas

The following sections will first propose a method of shifting copulas in
order to be able to forecast data from a fitted D-vine copula and then intro-
duce the continuous rank probability score which is used for assessing the
quality of forecasts.

Shifting copulas for forecasting

In order to forecast (i.e. simulate) data from a fitted ordered D-vine copula,
we only need to know the marginal distributions and the dependence struc-
ture. However, as we only have fitted marginals and the fitted dependence
structure until the current time point, we need to decide how to proceed to
get these information for the next time point in order to obtain forecasts.

We first deal with the problem of the unknown dependence structure
and propose a concept of shifting the already fitted copula structure to in-
clude the new point.

Thus, let C be the d-dimensional fitted ordered D-vine copula with biva-
riate pair-copulas ci,j;D(·, ·; θi,j;D) for i, j ∈ {1, . . . , d} with i < j and order
1−2−· · ·−d. Then the new d-dimensional ordered D-vine copula CP used
for predictions consists of the nodes {2, . . . , d+1}with order 2−3−· · ·−d+1

and the corresponding bivariate pair-copulas cPk,l;k+1,...,l−1

(
·, ·; θPk,l;k+1,...,l−1

)
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are defined as

cPk,l;k+1,...,l−1
(
·, ·; θPk,l;k+1,...,l−1

)
:= c(k−1)(l−1);k,...,l−2 (·, ·; θk−1,l−1;k,...,l−2) ,

for k, l ∈ {2, . . . , d + 1} with k < l. Figure 2.7 illustrates the procedure in
the 4-dimensional case.

T1 1 2 3 4

T2 1,2 2,3 3,4

T3 1,3;2 2,4;3

c1,2 c2,3 c3,4

c1,3;2 c2,4;3

c1,4;2,3

Fitted
M

odel

TP1 2 3 4 5

TP2 2,3 3,4 4,5

TP3 2,4;3 3,5;4

cP2,3 ≡ c1,2 cP3,4 ≡ c2,3 cP4,5 ≡ c3,4

cP2,4;3 ≡ c1,3;2 cP3,5;4 ≡ c2,4;3

cP2,5;3,4 ≡ c1,4;2,3

Prediction
M

odel

FIGURE 2.7: Example of the shifting of copulas from the
fitted (top) to the prediction (bottom) vine in the case of a
4-dimensional D-vine where we add the fifth node. The
connecting edges are labelled with the corresponding pair-
copulas. Note that the pair-copulas in the bottom vine are

identical to the ones from the top vine for different pairs.

Given this new D-vine copula and observed u-data (u2, . . . ,ud), we can
forecast the data points ud+1. Recall however, that in our case the u-data
have different dimensions. Thus, the forecasted data ud+1 must also have
the lowest dimension of the u-data that is used for the forecasting. Note
that this approach of course assumes that the dependence structure does
not vary too much over time in order to be appropriate, which we will later
see to be the case for our data set.

The next question is what marginal distribution to use to transform the
forecasted u-data back into the original scale. If the marginal distributions
were estimated non-parametrically, we propose to also shift the marginal
distribution from the last time point, i.e. Fd+1(·) := Fd(·). Again, this assu-
mes that also the marginal distribution does not vary too much over time,
which will be appropriate for our data.

In case the marginal distribution was estimated parametrically, we can
also try to predict the parameters of the next time point, e.g. by regression.
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Continuous rank probability score

Once we have forecasted data, we need a method to assess the quality of
our forecasts. For this, we can use the so-called continuous rank probability
score (CRPS) that assigns a numerical score based on the forecasted value
and the actually realized value (see Matheson and Winkler (1976)):

Definition 14 (Continuous rank probability score (CRPS)). Let P consist of
the Borel probability measures on R and identify a probabilistic forecast, i.e. a mem-
ber of the class P , with its cumulative distribution function F . Denote by y an
actually observed value. Then the continuous rank probability score is defined as

CRPS(F, y) =

∫ ∞
−∞

(
F (t)− 1{y≤t}

)2
dt ,

where 1{y≤t} represents the indicator function of the event {y ≤ t} .
An important characteristic of the CRPS is that it not only punishes fo-

recasts with expected values farther away from the observations but also
considers their variation. Figure 2.8 illustrates this behaviour for two ex-
ample forecasts where both have the same mean but Forecast 2 (red) has a
larger standard deviation. The second image shows the difference between
the cumulative distribution functions of the forecasts and the actual obser-
vation 2 (which is simply an indicator function for the set {2 ≤ t}). Due to
the higher standard deviation, the absolute difference in the second image
is larger for Forecast 2 and thus the squared values are also larger or equal
than those of Forecast 1 in the third image. As the CRPS takes the integral
over these squared differences, Forecast 2 receives a larger CRPS value than
Forecast 1.

The CRPS can also be written as (see e.g. Gneiting and Raftery (2007)):

CRPS(F, y) = E [|X − y|]− 1

2
E
[∣∣∣X − X̃∣∣∣] ,

where E[·] represents the expected value and X, X̃ are independent copies
of a random variable with distribution function F and finite first moment.

A feature of the CRPS is that it penalizes predictions less when their
probabilities are close to the actual value, and more when their probabilities
are farther away from it. A lower score is preferred to a higher one.

In practice, we can use an approximation for the CRPS. For m ∈ N+ let

qX

(
i

m

)
:= F−1

(
i

m

)
, i = 1, . . . ,m− 1 ,

denote the i
m -quantile of the random variable X with cdf F (we leave out

the 0% and 100% quantiles for numerical reasons). Then the CRPS can be
approximated by

CRPS(F, y) ≈

1

m− 1

m−1∑
i=1

∣∣∣∣qX ( i

m

)
− y
∣∣∣∣− 1

2(m− 1)2

m−1∑
i=1

m−1∑
j=1

∣∣∣∣qX ( i

m

)
− qX

(
j

m

)∣∣∣∣ .
We can apply this scoring method to our copula framework by using the
conditional quantile function as described in Kraus and Czado (2017) (also
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recall the notations from section 2.2 for D-vine copulas): Assume we have
d+ 1 variables X1, . . . , Xd+1, d ≥ 1 with Xj ∼ Fj and j = 1, . . . , d+ 1. Then
the conditional quantile function of Xd+1 given (X1, . . . , Xd) = (x1, . . . , xd)
for α ∈ (0, 1) is given by

qd+1|1,...,d(α|x1, . . . , xd) := F−1d+1|1,...,d(α|x1, . . . , xd) .

Applying the probability integral transformation, we get Uj = Fj(Xj) with
corresponding values uj = Fj(xj). Then

Fd+1|1,...,d(y|x1, . . . , xd) = Cd+1|1,...,d(ud+1|u1, . . . , ud)

and thus

F−1d+1|1,...,d(α|x1, . . . , xd) = F−1d+1

(
C−1d+1|1,...,d(α|u1, . . . , ud)

)
,

which gives us a representation of the conditional quantile function in terms
of the marginal distribution of Xd+1 and the conditional copula quantile
function C−1d+1|1,...,d conditioned on the PIT values of x1, . . . , xd.

An estimation of the conditional quantile function can be obtained by
first estimating the marginals Fj for j = 1, . . . , d + 1 as well as the copula
C1,...,d+1 and then setting

q̂d+1|1,...,d(α|x1, . . . , xd) := F̂−1d+1

(
Ĉ−1d+1|1,...,d(α|û1, . . . , ûd)

)
,

where ûj := F̂j(xj) for j = 1, . . . , d.
Recall from before that we can express the cdfCd+1|1,...,d(ud+1|u1, . . . , ud)

and its inverse with h-functions and inverse h-functions. Thus, we can ap-
ply the approximated CRPS from before to a copula model by applying the
conditional quantile function.

Assuming we have a Markov tree dependence structure (as we will la-
ter see to be the case for our data set), the quantile function only needs to
be conditioned on the last time point d, thus we obtain the CRPS of each
individual observation xi,d as

CRPSi
(
Fd+1|d(xi,d+1|xi,d), xi,d+1

)
=

1

m− 1

m−1∑
i=1

∣∣∣∣F−1d+1

(
C−1d+1|d

(
i

m

∣∣∣∣ud))− xi,d+1

∣∣∣∣
− 1

2(m− 1)2

m−1∑
i=1

m−1∑
j=1

∣∣∣∣F−1d+1

(
C−1d+1|d

(
i

m

∣∣∣∣ud))− F−1d+1

(
C−1d+1|d

(
j

m

∣∣∣∣ud))∣∣∣∣ .
(2.9)

Since we have multiple observations at the last time point d, we assign
the forecasting method a score by averaging the scoring rule over all obser-
vations at time d. Thus, for a given forecasting method, i.e. a given set of
margins and copulas, the overall score of the method is given by

CRPS =
1

Nd

Nd∑
i=1

CRPSi
(
Fd+1|d(xi,d+1|xi,d), xi,d+1

)
.
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FIGURE 2.8: Illustration of the different CRPS values re-
sulting from two forecasts with the same mean but different
standard deviations. The higher standard deviation (red fo-

recast) is punished more.
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Chapter 3

Exploratory data analysis

In this chapter, we want to introduce the data set at hand and analyse its
characteristics. We later want to model the marginal distributions from this
data for our 2-step approach.

Our data consist of so called exposure limits. When a primary insu-
rance enters a reinsurance contract, they will provide information about
their own portfolio of insured risks. One of those information is called
the exposure limit: The primary insurance sets these individual limits for
each risk defining how much exposure that risk can contribute at most, i.e.
when a company is insured at the primary insurance, this is the maximum
amount of damage covered by the insurance. However, at any given time,
the company may have less exposure than the limit (e.g. a company pro-
ducing less goods for some reason) or more than the limit (in this case, the
additional exposure is not covered). In fact, for large companies, the exact
amount changes constantly. We only know the exposure limits (which are
fixed for a given period) and have no knowledge of the underlying ’real’
exposure.

It is important to quantify these exposure limits in order to model future
losses. However, since the information on exposure limits is only known
up to and including the present time point and we want to predict future
events, we want a model to predict the evolution of these limits.

A note on truncation

In practice, the primary insurance will only deliver exposure limits that are
above a certain threshold (identical for all companies) in order to reduce
the amount of data to only relevant information. Thus, a data point for a
company only shows actual exposure if its amount is above this threshold.
In reality, the primary insurance may change the threshold of reporting as
time progresses. This means a data point can show zero exposure for a com-
pany not only when there is no exposure but also when the threshold is set
above the company’s exposure (note that we do not know what the actual
reason is). The zero values and the fact that we only have data available
larger than the threshold is called left-truncation and it causes a bias in the
estimation of the data’s density. While there are ways to deal with this bias,
we do not use them for our analysis as the effects can be neglected in our
case. However, we will still notice this behaviour in many of the following
plots.
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3.1 Data patterns

We first want to give a short overview of the data set. We have exposure
limits for 22 time points beginning in 2011 Q1 and ending in 2016 Q2 (one
data point per quarter) from a total of 2073 companies. Considering the
above mentioned truncation and the fact that not all companies have conti-
nuous contracts since 2011, there are a total of 10,156 non-zero data points.
For each company, we also know the country where it is based. Additio-
nally, we have data points from 2016 Q3 available for each observation from
2016 Q2. We do not use this information for modelling purposes but will
later come back to it when assessing the quality of forecasting.

When looking at the exposure limit development over time, it is useful
to look at the data in the form of patterns to get a better overview. A pattern
describes at which points in time a company has active exposures.

We observe 486 unique patterns. See Figure 3.1 for a visualization of
those patterns.

Since we want to predict future exposure limits, we will only concen-
trate on those patterns that have an active exposure at the last (22nd) time
point (i.e. 2016 Q2) which correspond to the first 168 patterns in Figure 3.1.

As we can see, many patterns have several discontinuities and only
sparse data available, especially in the early quarters. The reason for this in
most cases is either that the company was not insured (i.e. an exposure of
zero) or, as mentioned before, that the threshold of reporting was set above
the exposure.

One can deal with these gaps in several ways:

• Shifting the data to remove gaps. For example, if quarters 14 and
15 were unavailable, we could move the data of quarters 1-13 up 2
quarters, i.e. they become data of quarters 3-15 and the first 2 quarters
are unavailable. However, this would distort the actual information
of the development of the limits.

• Estimating the missing data; data imputation.

• Disconnecting the continuous sets. Again for example, quarters 14
and 15 are missing. We could handle the two disconnected sets (1-
13 and 16-22) as two separate patterns, one that has only the first 13
points available and one that has no data for the first 15 points.

For now, we will use the last method and exclude all data points in our
first block that are not continuously connected to the last quarter. This re-
sults in 4264 data points remaining, or about 42% of the complete data set.
The corresponding unique patterns are displayed in Figure 3.2 for the re-
duced first block. The number of occurrences displayed show that longer
patterns (i.e. those that start early) are present only a few times. An ex-
ception is the third pattern, starting at 2012 Q1, which appears more often.
Most patterns however start in 2014 or later.

When we look at the data column-wise instead, we see how many ob-
servations per time point are available, regardless of the pattern they belong
to. This is summarized in Table 3.1. As we can see, some early time points
have only few observations.



3.1. Data patterns 31

Recall that additionally to the amount of exposure limit, we also know
the country where each company is based in. We observe a total of 85 dif-
ferent countries in the selected block of data. We can group those countries
into 5 regions: Africa, Americas, Asia, Europe and Oceania. See Table 3.2
for an overview of how many observations per region are available and the
earliest time point of data for each region.

We decide to use only data from 2014 Q2 onwards for the next steps,
as this set of data contains observations from all regions at all time points.
Table 3.3 lists the number of observations for each region and each time step
from 2014 Q2 onwards.
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FIGURE 3.1: Unique pattern occurrences for our data. The
right figure shows the frequency of each pattern.
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Time point 2011 Q1 2011 Q2 2011 Q3 2011 Q4 2012 Q1 2012 Q2

Observations 3 3 3 4 70 70

Time point 2012 Q3 2012 Q4 2013 Q1 2013 Q2 2013 Q3 2013 Q4

Observations 72 77 81 99 104 111

Time point 2014 Q1 2014 Q2 2014 Q3 2014 Q4 2015 Q1 2015 Q2

Observations 117 129 153 210 321 401

Time point 2015 Q3 2015 Q4 2016 Q1 2016 Q2

Observations 452 554 586 644

TABLE 3.1: Observations per time point in the investigated
block as displayed in Figure 3.2.

Region Asia Americas Europe Africa Oceania

Total observations 1843 1302 1046 128 83

Earliest data point 2012 Q1 2011 Q1 2012 Q1 2014 Q2 2012 Q1

TABLE 3.2: Observations split up by region and the time of
the earliest observation for each region.

Time point Asia Americas Europe Africa Oceania

2014 Q2 43 51 29 3 3

2014 Q3 57 55 32 5 4

2014 Q4 82 69 46 7 6

2015 Q1 115 106 84 9 7

2015 Q2 156 121 104 13 7

2015 Q3 179 131 118 16 8

2015 Q4 242 142 138 23 9

2016 Q1 259 149 145 24 9

2016 Q2 288 157 159 28 12

TABLE 3.3: Observations per time point and per region
from 2014 Q2 onwards.
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FIGURE 3.2: Unique pattern occurrences for the investiga-
ted block with only data connected to 2016 Q2. The right

figure shows the frequency of each pattern.

3.2 Graphical analysis

In the last section, we decided to focus on the patterns that have connected
data points until the last quarter, because we are interested in the develop-
ment from one quarter to the next. We have also seen that data in earlier
quarters are rare in general and that not all regions contain data from the
beginning, i.e. we are dealing with an unbalanced setting.

As we use only data from 2014 Q2 onwards for the next steps, this me-
ans we have

• d = 9 time points resulting in 9 different patterns.

• For each time point t ∈ {1, . . . , 9}, we have Nt ∈ N+ observations
available with N1 ≤ · · · ≤ Nd.

• The total number of companies at the last time point is Nd = 644.

• For each company i ∈ Nd, we know its associated regionRi ∈ {Europe,
Americas, Asia, Africa, Oceania}.
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Thus, we have a data matrix X = (xi,t), where xi,t ∈ R+ for t = 1, . . . , d and
i = 1, . . . , Nt and xi,t is empty otherwise as we observe no data:

X =



x1,1 x1,2 . . . x1,d−1 x1,d
...

...
. . .

...
...

xN1,1
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...

xN2,2
. . .

...
...

...
...

xNd−1,d−1
...
...
...

xNd,d


We have 4181 entries with observed values while 3129 are missing. In the
following we will take a closer look at this set of data to determine which
methods could be used on it to model the marginals.

In a first step, we look at the limits evolution over time, i.e. for each
company i we plot xi,t for t = 1, . . . , 9 as a line, seen in Figure 3.3. Besides
a few exceptions, most limits are too close to each other to see details here.
We notice though that the majority of companies’ limits are below a certain
limit and only a few companies have higher limits.

Thus, we take a look at the mean limits for each region in Figure 3.4:
For each time point t and each region R, let NR,t denote the number of
observations available at time t for region R. Then the mean of region R at
time t is given by

µ̄Rt :=
1

NR,t

Nt∑
i=1

xi,t1{Ri=R} . (3.1)

Notable are the different behaviours between the regions Americas, Asia,
Europe and the two regions Africa, Oceania. Additionally we notice a chan-
ging behaviour in the first 3 regions’ limits after the year 2014.

Figure 3.5 shows the same mean limits over time with added confidence
bands of limits for each region. The confidence bands are based on the 90%
and 10% quantiles of the limit data. We notice that these confidence bands
don’t show a lot of differences between regions from the year 2015 onwards.

This can also be seen in Figure 3.6 where we plot the standard deviation
of each region dataset over time, which is given by

σ̄Rt :=

√∑Nt
i=1 1{Ri=R}

(
xi,t − µ̄Rt

)2
NR,t − 1

. (3.2)

While in the first 3 time steps all regions behave very differently, afterwards
the 3 regions Americas, Asia, Europe show a similar downward trend while
Africa and Oceania are increasing in variance.

This pattern is also illustrated in Figure 3.7 where we plot the mean
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limits with confidence bands based on the standard deviation. Later points
in time are more similar while earlier points show a bigger difference.

Figure 3.8 shows the development of the relationship between mean
and standard deviation over time, i.e. we compute µ̄Rt /σ̄Rt . We observe that
Africa and Oceania have the most variation over time, which can be attribu-
ted to the fact that these regions contain only few observations. The other
3 regions show a more constant behaviour but still have some variation,
especially in early time points.

Next we look at a boxplot graphic of the limit data in Figure 3.9. We can
identify a small linear downward trend over time on average but see many
larger outliers. To remedy this, we look at the logarithms of the limits in
Figure 3.10. This helps to reduce the amount of outliers and we can see the
linear downward trend more clearly.

As done before, we group the data into the 5 regions Asia, Americas,
Europe, Africa and Oceania. This way, we can investigate different deve-
lopments from geographically separated companies and still have enough
data points per region. Figure 3.11 shows the boxplots of logarithmic limits
of the whole time for each region. While the average is roughly the same for
all regions, there is a lot more variation for the three regions Asia, Americas
and Europe than the other two, as we could also observe in previous plots.

To be able to differentiate between the different regions over time, we
look at the boxplots of the logarithmic limits for each region separately in
Figure 3.12: We observe that the downward trend holds true for Americas,
Asia and Europe. In each case, we can also observe a more drastic decrease
at the end of 2014. Africa shows very little variation and seems to remain
rather stable. Only data from Oceania shows a linear upward trend. These
two regions also have less outliers, however they are also the ones with the
smallest number of total observations.

Finally, to combat the outliers even more, we look at a Box-Cox trans-
formation of the data, i.e. for observations xi,t and parameter λ ∈ R, we
consider the transformed values

x̃i,t =
xλi,t − 1

λ
.

Figure 3.13 shows the boxplots for a lambda of -0.6, derived in R by using
BoxCox.lambda(Limit, method="loglik"). Indeed, the transformed
data has very few outliers now while the general trends observed from the
log transformation mostly remain and can be seen even more clearly. It
should be noted that the ranges are more compressed now and the abso-
lute differences have become small.

Thus, to summarize, we have seen evidence that for marginal modelling
purposes, we should try approaches that can model changing variance and
that it might be useful to combine regions that behave similar into groups.
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FIGURE 3.9: Boxplots for all limits over time.
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Chapter 4

Marginal model fitting

In Chapter 3, we discussed in detail our available data set of exposure li-
mits. In this chapter, we will apply different models introduced in Chapter
2 that we use to work with this limit data. Recall from Chapter 2 that the
goal of each model is to estimate the distributions of marginals in order to
gain approximately uniformly distributed data that we can then use as a
basis for our copula model. Overall we apply four different models. Each
section contains a short description of the methods used and how we ar-
rive at the uniformly distributed data sets. The last part of this chapter uses
diagnostics to compare the estimations.

4.1 Marginal model specification

Model 1: Non-parametric probability integral of limits

The first model we introduce uses a non-parametric kernel density estima-
tion of the limit data at each time step. With this, we also obtain estimated
cumulative distribution functions for each point in time that we apply to
the limit data to gain uniformly distributed data (i.e. we use the probability
integral transformation).

Thus, this model does not differentiate between regions and estimates
only one density for all exposure limits at a given time step. In R, this is
achieved by applying the function kde1d from the package kdevine to
our data (Nagler, 2017b). The resulting estimated densities are displayed
in Figure 4.1. We can observe that the densities show similar behaviours in
general, while the first three quarters are slightly shifted to the right. This
captures the behaviour seen in the previous Chapter 3, where we noticed
higher limits for these three quarters.

We also note the effect of the left truncation which results in the density
being set to zero for limits below a certain threshold. On the other hand,
densities for large limits tend to have a noticeable variation. While it is
possible to smooth the density by adjusting the bandwidth used in the esti-
mation, this would also cause the density for lower limits to increase (as the
whole curve widens) which in turn is not a good fit for our truncated data.
Thus, we decide to choose the bandwidth best balancing both difficulties in
this case.

The function pkde1d from the same R package allows us to get the cor-
responding estimated cumulative distribution functions F̂X,NPITt for each
time step t. Let denote as beforeNt the number of total observations at time
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t and the limit data by xi,t for i = 1, . . . , Nt to obtain

ûX,NPITi,t := F̂X,NPITt (xi,t) ,

where for each t and i = 1, . . . , Nt, the ûX,NPITi,t are now approximately
uniformly distributed in the interval [0, 1].
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FIGURE 4.1: Overlayed non-parametrically estimated den-
sities of limits for each time point between 2014 Q2 and 2016

Q2.

Model 2: Non-parametric probability integral of standardized ob-
servations

In this model, we take a form of standardized observations by detrending
and normalizing the limit data at each time step. An important difference to
the previous model is that we do so for each region separately. This means
we assume that the region has an effect on the exposure limit. As we have
seen that the three regions Americas, Europe and Asia behave similar while
the remaining two regions Oceania and Africa show a different behaviour,
we can combine these regions into a "Main" region (America, Europe, Asia)
and "Other" region (Oceania, Africa). See Figure 4.3 for kernel density es-
timates for these combined regions at each point in time. We can observe
that the densities indeed behave differently.

For the next step, we will however keep the distinction between all 5
regions. We will keep the notation from before and additionally we denote
by Ri the region where company i is located.



4.1. Marginal model specification 45

Thus, we take the means and standard deviations of regions as defined
in equations (3.1) and (3.2) to get the simplified residuals for each time t by
setting

x̃i,t :=
xi,t − µ̄Ri

t

σ̄Ri
t

, i = 1, . . . , Nt .

Similarly to the first model, we estimate the density of these adjusted limits
non-parametrically. Figure 4.2 shows the resulting densities for each time
step. We can observe that all densities have similar shapes and that there are
more large positive outliers than smaller ones, as we could also see in the
EDA plots from the previous chapter and which is again mostly explained
by the left truncation. For this KDE, we increased the bandwidth in order
to smooth out the right parts of the curves. The bandwidth was increased
until the point where the resulting u-data was still approximately uniformly
distributed based on the KS-test at the 0.05 confidence level. Again, this
gives us a balance between smooth densities and an appropriate fit for our
data.

Again, we arrive at the uniformly distributed data by applying the cor-
responding estimated cumulative distribution functions F̂STDX,NPITt :

ûSTDX,NPITi,t := F̂STDX,NPITt (x̃i,t) , i = 1, . . . , Nt .
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FIGURE 4.2: Overlayed non-parametrically estimated den-
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ans and divided by standard deviations) for each time point

between 2014 Q2 and 2016 Q2.
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Model 3: Parametric probability integral of regression residuals

For our third model, we will not work with the limits directly and instead
fit a regression model to the data first. From this regression model, we gain
residuals for each time point which we will transform into approximately
uniformly distributed data by using a probability integral transformation.

Thus, we perform Generalized Gamma regressions (see Chapter 2) on
the limit data at each time point t. As we have seen evidence in Chapter 3
that both the mean and variance depend on the region, we use the region
as the explaining variable for both µ and σ in these regressions.

This time, we use the combined regions "Main" and "Other" as intro-
duced before. As link functions we choose the logarithm for both µ and σ
while ν has the identity function as its link.

Thus, for each time t we estimate the parameters with the following
three equations (see equation 2.8 from the definition):

log(µ̂R) = β̂01 + β̂11 × 1(R=Other region)(R) ,

log(σ̂R) = β̂02 + β̂12 × 1(R=Other region)(R) ,

ν̂ = β̂03 ,

where R ∈ {Main region,Other region} is the region variable.
Using the R package gamlss (Rigby and Stasinopoulos, 2005) we fit our

data accordingly. Table 4.1 shows the estimated parameters for each time
step. Figures 4.4 and 4.5 display the resulting densities (once for the "Main"
region and once for "Other"). As before, we can note the slightly different
behaviour of the first three time points. Especially for these, the region has
a notable effect on the fit.

Main Other

Time log(µ̂) log(σ̂) log(µ̂) log(σ̂) ν̂

2014 Q2 18.30 -1.28 18.16 -1.71 -9.71

2014 Q3 18.23 -1.49 18.12 -1.98 -15.25

2014 Q4 18.07 -2.27 18.04 -2.65 -80.46

2015 Q1 17.84 -1.16 17.82 -1.35 -8.84

2015 Q2 17.78 -1.24 17.73 -1.34 -10.65

2015 Q3 17.72 -1.41 17.67 -1.47 -15.50

2015 Q4 17.84 -1.13 17.86 -1.20 -8.19

2016 Q1 17.74 -1.35 17.75 -1.38 -12.89

2016 Q2 17.72 -1.44 17.72 -1.48 -14.92

TABLE 4.1: Estimated parameters for each time point. The
first two columns refer to the estimators of the logarithm of
location and scale parameters µ and σ for the "Main" region,
the next two columns to the "Other" region. The last column
contains the estimators for the shape parameter ν which is

estimated independently of the region.
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With the fitted models, we can get the corresponding residuals ri,t for each
time step t and i = 1, . . . , Nt. As shown before, to get approximately uni-
formly distributed data, we can simply apply the cumulative distribution
function (cdf) of a standard normal to these residuals, i.e.

ûGAMLSS,PPIT
i,t := Φ(ri,t) , i = 1, . . . , Nt .

Model 4: Non-parametric probability integral of regression residu-
als

The fourth and last model is similar to the third one. We take the same
GAMLSS regression and its residuals as a starting point. However, instead
of using the probability integral transformation from the standard normal
distribution, we estimate the densities of residuals non-parametrically.

Let ri,t be the normalized quantile residual of company i from the re-
gression performed at time t, as defined before. We then use the R package
kdevine and its function kde1d to estimate a density of residuals at each
time point. Figure 4.6 shows the resulting densities. Similarly to previous
models, we apply the corresponding estimated cdfs F̂GAMLSS,NPIT

t to the
residuals to obtain

ûGAMLSS,NPIT
i,t := F̂GAMLSS,NPIT

t (ri,t) .
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FIGURE 4.6: Overlayed non-parametrically estimated den-
sities of regression residuals for each time point between

2014 Q2 and 2016 Q2.
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4.2 Overview of different marginal model approaches

In the previous sections, we introduced 4 different models with the goal to
gain approximately uniformly distributed data from our original limit data.
Figure 4.7 shows an overview of the procedures for each model. Summari-
zed, the important aspects of each model are:

• Model X,NPIT (KDE of limit data): We assume identical distributi-
ons of exposure limits for all regions. No parametric assumptions are
imposed on the data.

• Model STDX,NPIT (KDE of standardized observations): A region ef-
fect is removed in a simple approach. Detrending and normalization
of limits based on region result in standardized observations in a non-
parametric way.

• Model GAMLSS,PPIT and model GAMLSS,NPIT (GAMLSS residu-
als): A region effect is removed based on complex regression models
to obtain residuals parametrically. We also group together regions
into two aggregated groups "Main" and "Other".

The next section will analyse the resulting u-data from each model and
compare them.

X,NPIT xi,t ûX,NPITi,t

STDX,NPIT xi,t x̃i,t ûSTDX,NPITi,t

GAMLSS,PPIT xi,t ri,t ûGAMLSS,PPIT
i,t

GAMLSS,NPIT xi,t ri,t ûGAMLSS,NPIT
i,t

KDE

(x− µ)/σ KDE

GAMLSS Φ(ri,t)

GAMLSS KDE

FIGURE 4.7: Simplified overview of the four introduced
marginal models.

4.3 Marginal models comparison

In the previous section, we introduced the four marginal models that we
work with and showed their associated fits. This chapter will compare
these models to each other and discuss the results. Specifically, we start
with regression diagnostics for the Generalized Gamma regression and then
compare the u-data that we gained from each model with each other
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Regression diagnostics

Model GAMLSS,PPIT and model GAMLSS,NPIT each started with Gene-
ralized Gamma (GG) regressions to obtain residuals. We will take a closer
look at the regressions to determine whether it is appropriate to use the
results.

Recall that we fit a separate GG model to the data at each time step
since we want to estimate the marginals, and that the only covariate is the
region of the companies (combined into two regions called "Main region"
and "Other region"). Thus, as we have 9 time points, we have 9 regressions
to analyse. In the following we will look at the regression output from R as
well as histograms and Q-Q plots.

R output

At each point in time t, we call the gamlss function from the gamlss
package with the following parameters:

gamlss(formula = Limit ~NewRegion, sigma.formula =
~NewRegion, family = GG, data = na.omit(Limits[,t]),
method = mixed(20, 60). Table 4.2 shows an extract of the sum-

mary for each model. It lists the estimates as well as standard deviations
and p-values for the hypothesis test with the null hypothesis and alterna-
tive

H0 : β = 0 ,

H1 : β 6= 0

for each parameter β. We can see that some p-values are rather high, spe-
cifically those associated with estimations for the "Other region" covariate.
This means that the effect of this variable is not very significant. However,
in our case this is not a problem as we do not want to use the models to
predict values directly. Instead we are interested in the residuals and their
behaviour. Figure 4.8 visualizes the evolution of the parameters over time.
We can once again observe a different behaviour during the first three quar-
ters. Noticeable is also the estimated value of the third parameter ν and its
large standard deviation at 2014 Q4.
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2014 Q2 2014 Q3 2014 Q4 2015 Q1 2015 Q2

logµ

β01 18.3(0.08) 18.23(0.07) 18.07(0.03) 17.84(0.06) 17.78(0.06)
p-value <2E-16 <2E-16 <2E-16 <2E-16 <2E-16
β11 -0.14(0.09) -0.11(0.07) -0.02(0.02) -0.02(0.07) -0.05(0.06)
p-value 0.12 0.12 0.34 0.77 0.45

log σ

β02 -1.28(0.21) -1.49(0.23) -2.27(0.39) -1.16(0.15) -1.24(0.16)
p-value 9.16E-09 1.24E-09 1.57E-08 2.46E-14 2.52E-13
β12 -0.43(0.23) -0.49(0.19) -0.38(0.15) -0.19(0.14) -0.1(0.12)
p-value 0.07 0.01 0.01 0.18 0.39

ν
β03 -9.71(4.53) -15.25(7.54) -80.46(62.09) -8.84(2.85) -10.65(3.8)
p-value 0.03 0.04 0.20 0.00 0.01

2015 Q3 2015 Q4 2016 Q1 2016 Q2

logµ

β01 17.72(0.06) 17.84(0.06) 17.74(0.07) 17.72(0.05)
p-value <2E-16 <2E-16 <2E-16 <2E-16
β11 -0.05(0.05) 0.03(0.06) 0(0.05) 0(0.04)
p-value 0.36 0.62 0.97 0.95

log σ

β02 -1.41(0.2) -1.13(0.14) -1.35(0.2) -1.44(0.17)
p-value 5.49E-12 3.00E-14 7.74E-11 3.66E-16
β12 -0.05(0.11) -0.07(0.1) -0.04(0.09) -0.04(0.08)
p-value 0.63 0.51 0.71 0.62

ν
β03 -15.5(6.59) -8.19(2.68) -12.89(5.67) -14.92(5.54)
p-value 0.02 0.00 0.02 0.01

TABLE 4.2: R-output for the Generalized Gamma regressi-
ons. The values in brackets behind estimations refer to the

standard deviations.
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FIGURE 4.8: Evolution of the GAMLSS regression parame-
ters over time. The estimated values are visualized by the
points and the standard deviations are shown as error bars.
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Residuals plots

In order to determine the goodness of fit, we take a closer look at the resi-
duals. We begin by showing histograms of residuals for each time step in
Figure 4.9. We want the residuals to be approximately normally distributed
(see Chapter 2 for an explanation). Comparing the values to the overlaid
red density of a standard normal distribution, we see that this holds true
more or less for most time points, although larger negative values seem to
be slightly underrepresented in our data.
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FIGURE 4.9: Histograms of residuals from the Generalized
Gamma regressions for each time step. The red overlaid

curve represents a standard normal density.

Next, we look at the Q-Q plots of residuals. In Figure 4.10 we can see that
the quantiles show a generally good behaviour except for larger negative
values, which deviate upwards from the line, implying there are too few
large negative values (as we could also observe in the histograms before).
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FIGURE 4.10: Q-Q plots of residuals from the Generali-
zed Gamma regressions for each time step. The theoretical

quantiles refer to a standard normal distribution.

To summarize, both the histograms and the Q-Q plots show that our Gene-
ralized Gamma regressions have well behaving residuals.

4.4 Comparison of u-data

As outlined when we introduced our models, we try to obtain approxima-
tely uniformly distributed data sets as inputs for a copula vine model. In
this section, we will examine if the resulting data from our models satisfy
this assumption.

For this, we look at histograms and perform the Kolmogorov-Smirnov
(KS) test (see Chapter 2 for details). Figure 4.11 and 4.12 show the histo-
grams of u-data for each model and time point. Additionally, the p-values
from the KS-test are listed below each histogram. Recall that we smoothed
the density of the second model STDX,NPIT as much as possible until the
point where the p-value was at 0.05. We can see that only the last two time
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points for model GAMLSS,PPIT have a smaller p-value than 0.05. While the
last time point comes very close (0.046), the second to last one has a p-value
of only 0.03. This is problematic for the forecasting method applied later as
it heavily relies on these two time points. However, we keep using these
data for the next parts and will note the resulting differences later. Other
than that, we conclude that in general, all the data sets are consistently es-
timated to be used in the second estimation step of our approach.
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FIGURE 4.11: Histograms of u-data for each model at the
first 5 time steps. Below each plot, the associated p-value

from the KS-test is listed in brackets.
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FIGURE 4.12: Histograms of u-data for each model at the
last 4 time steps. Below each plot, the associated p-value

from the KS-test is listed in brackets.
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Chapter 5

Dependence modelling

Until now, we dealt with the models for marginal estimations and their
results. In the following sections, we turn to the dependency modelling. In
a first step, we explore some pairs plots before we deal with the estimation
of D-vines in the main part. At the end of the chapter, we compare the
different fits and take a look at the forecasting capabilities with the help of
continuous rank probability scores.

5.1 Pairs plots

First, we take a look at pairs plots for each model. The plots in Figures 5.1
to 5.4 show the histograms of our u-data on the diagonal, corresponding
pairwise scatter plots and the associated Kendall’s τ values on the upper
right as well as pairwise density normal contour plots on the lower left.

In each case, we can observe that the dependency is higher for pairs that
are immediately next to each other while it decreases for pairs farther away.
This makes sense, as the exposure limit for a company would not change
drastically from one time point to another and is more dependant on limits
from time points closer to it. This observation also confirms our focus on
ordered D-vines as its structure with pairs directly next to each other in the
first tree implies higher dependency for these pairs. We can also see similar
contour plots for all models which tend to exhibit upper tail dependencies.
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FIGURE 5.1: Pairs plots for the u-data from Model X,NPIT
where the limit’s density is estimated non-parametrically.
The data in the top left correspond to the first, the data in

the bottom right to the last time point.
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FIGURE 5.2: Pairs plots for the u-data from Model
STDX,NPIT where the limit data is first standardized before
its density is estimated non-parametrically. The data in the
top left correspond to the first, the data in the bottom right

to the last time point.
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Model GAMLSS,PPIT
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FIGURE 5.3: Pairs plots for the u-data from Model
GAMLSS,PPIT where the parametric PITs of residuals from
the Generalized Gamma regressions are used. The data in
the top left correspond to the first, the data in the bottom

right to the last time point.
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Model GAMLSS,NPIT
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FIGURE 5.4: Pairs plots for the u-data from Model
GAMLSS,NPIT where the non-parametric PITs of residu-
als from the Generalized Gamma regressions are used. The
data in the top left correspond to the first, the data in the

bottom right to the last time point.
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5.2 Vine copula estimations

We now want to fit vine copula models to the different marginal u-data sets
from the previous sections. As a first step, we show different estimations
and then compare the results visually as well as with Vuong tests and an
application of the continuous rank probability score.

Comparison of different D-vine fittings

In order to fit our data, we make use of the VineCopula package in R and
apply the function RVineCopSelect. Note that we always use the BIC
selection criterion in the following parts which penalizes copula families
with more parameters more than the AIC criterion.

We now fit a D-vine copula model with different optimization constraints.
We start with a fit that allows for all families implemented in the package,
which are (including possible rotations):

• Independence,

• Gaussian,

• Student t,

• Clayton,

• Gumbel,

• Frank,

• Joe,

• BB1, BB6, BB7, BB8,

• Tawn type 1 and Tawn type 2.

Also recall the examples of copula families given in Chapter 2 for most of
these. We then reduce the possible families to more ’simple’ ones (i.e. fami-
lies with only one parameter) which are Gaussian, Clayton, Gumbel, Frank
and Joe copula as well as the 90, 180 and 270 degrees rotations of these and
also the Independence copula. Additionally, we will run the function for
these scenarios with the option to perform a hypothesis test for indepen-
dence before the bivariate copula selection.

We present the results in Tables 5.1 to 5.4, where we also include infor-
mation about AIC, BIC, D-vine based BICD and log-likelihood values as
well as the number of estimated copula parameters (i.e. excluding margi-
nal parameters). Table 5.5 shows the same information grouped by mar-
ginal model for better comparability. Note that for the BIC, the number
of observations N is chosen as the number of individuals at the last time
step. According to the AIC, the D-vine model with all families and no inde-
pendence test is preferred for each marginal model, while the BIC prefers it
only for the first two marginal models and gives a lower (better) score to the
D-vine model with all families and an independence test performed in the
case of both GAMLSS marginal models. The conclusion from the D-vine ba-
sed BICD differs from the original BIC only in the case of the GAMLSS,PPIT
model where it favours the case of no independence test.
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The corresponding Kendall’s τ values for each bivariate pair-copula are
listed in brackets behind the families. For details on the estimated parame-
ters of each copula see the tables in Appendix A.

There, we can see that all dependent copulas in trees 2 to 9 are either the
independence copula or have very low Kendall’s τ values. This behaviour
becomes especially apparent in the two estimations where an independence
test at significance level 0.05 was performed for each copula and nearly all
copulas on higher trees are selected as Independence.

Thus, we truncate the vines after the first tree and assume a Markov
tree dependence structure. We also note that the first tree does not change
when performing an independence test, as no copula there is selected as the
Independence copula, indicating a strong dependence for subsequent time
points. This means that from now on we only need to consider two of the
vine models: One where all families were included in the fitting and one
where the list of families was reduced as detailed above.

Figures 5.5 and 5.6 show the corresponding D-vine models visualized as
pairwise normal contour plots for the first tree. Contour plots for all trees
can be found in Appendix A which again underline the observation that
the dependent copulas in higher trees all show independence.

For the first tree, we observe two important behaviours: First, same
pairs show very similar contours regardless of the underlying marginal
model. And second, the dependence strength as well as the copula families
don’t change a lot over time. Especially the second observation is important
for our approach of shifting the D-vine structure when it comes to forecas-
ting. Because the dependence between two subsequent points stays similar
from one pair to the next one, the shifting approach is appropriate in this
case.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 t (0.84) t (0.85) Tawn T1 (0.83) Tawn T2 (0.80)
3,2 Tawn T2 (0.81) t (0.80) Tawn T2 (0.77) Tawn T2 (0.78)
4,3 Tawn T2 (0.62) Tawn T2 (0.63) Tawn T2 (0.58) Tawn T2 (0.61)
5,4 t (0.88) t (0.87) Tawn T1 (0.87) Tawn T2 (0.84)
6,5 t (0.90) t (0.88) Tawn T1 (0.89) Tawn T1 (0.89)
7,6 t (0.87) t (0.87) Tawn T1 (0.84) Tawn T1 (0.85)
8,7 Tawn T2 (0.85) Tawn T2 (0.86) Tawn T2 (0.84) Tawn T2 (0.84)
9,8 Tawn T2 (0.79) Tawn T2 (0.81) Tawn T2 (0.79) Tawn T2 (0.79)

2

3,1|2 Ind. t (0.03) Ind. Ind.
4,2|3 Ind. t (-0.11) Joe 270° (-0.07) Joe 270° (-0.06)
5,3|4 Ind. Ind. BB8 90° (-0.22) Ind.
6,4|5 Ind. t (0.11) Gumbel 90° (-0.10) Clayton 270° (-0.10)
7,5|6 Ind. t (-0.13) Joe (0.04) t (-0.07)
8,6|7 Ind. Ind. BB8 (0.11) Ind.
9,7|8 Ind. Gumbel (0.04) Ind. Ind.

3

4,1|3,2 Frank (-0.19) Ind. t (-0.19) Ind.
5,2|4,3 Gumbel (0.11) t (0.03) Ind. Frank (0.21)
6,3|5,4 Ind. Ind. Ind. Ind.
7,4|6,5 t (-0.01) t (0.00) Gumbel 180° (0.03) Ind.
8,5|7,6 Ind. Ind. Joe 90° (-0.05) Ind.
9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Tawn T2 180° (0.08) Ind. Joe 270° (-0.03)
6,2|5,4,3 Ind. Ind. Ind. Ind.
7,3|6,5,4 Ind. Ind. Ind. Ind.
8,4|7,6,5 Ind. Ind. Ind. Joe 270° (-0.01)
9,5|8,7,6 Ind. Gumbel 90° (-0.10) Ind. Ind.

5

6,1|5,4,3,2 Ind. t (-0.15) Tawn T2 90° (0.00) Ind.
7,2|6,5,4,3 Ind. Ind. Joe (0.12) Ind.
8,3|7,6,5,4 Ind. Ind. Ind. Ind.
9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.
8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.
9,3|8,7,6,5,4 Joe 90° (-0.17) Clayton 90° (-0.08) Ind. Ind.

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.
9,2|8,7,6,5,4,3 Ind. Ind. Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

AIC -3509.7 -3361.0 -3450.1 -3447.6
BIC -3413.2 -3204.6 -3316.1 -3342.0

BICD -3433.3 -3237.4 -3342.6 -3363.6
Log-likelihood 1775.8 1715.5 1755.1 1746.8
# of Parameters 21 35 30 23

TABLE 5.1: Estimation results of D-vines with no con-
straints (i.e. all families included and no independence test)
for each marginal model. Kendall’s τ values are listed in

brackets.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 t (0.84) t (0.85) Tawn T1 (0.83) Tawn T2 (0.80)
3,2 Tawn T2 (0.81) t (0.80) Tawn T2 (0.77) Tawn T2 (0.78)
4,3 Tawn T2 (0.62) Tawn T2 (0.63) Tawn T2 (0.58) Tawn T2 (0.61)
5,4 t (0.88) t (0.87) Tawn T1 (0.87) Tawn T2 (0.84)
6,5 t (0.90) t (0.88) Tawn T1 (0.89) Tawn T1 (0.89)
7,6 t (0.87) t (0.87) Tawn T1 (0.84) Tawn T1 (0.85)
8,7 Tawn T2 (0.85) Tawn T2 (0.86) Tawn T2 (0.84) Tawn T2 (0.84)
9,8 Tawn T2 (0.79) Tawn T2 (0.81) Tawn T2 (0.79) Tawn T2 (0.79)

2

3,1|2 Ind. Ind. Ind. Ind.
4,2|3 Ind. Ind. Joe 270° (-0.07) Ind.
5,3|4 Ind. Ind. Ind. Ind.
6,4|5 Ind. t (0.11) Ind. Ind.
7,5|6 Ind. t (-0.13) Ind. Ind.
8,6|7 Ind. Ind. BB8 (0.11) Ind.
9,7|8 Ind. Ind. (0.04) Ind. Ind.

3

4,1|3,2 Ind. Ind. Ind. Ind.
5,2|4,3 Gumbel (0.11) Ind. Ind. Frank (0.21)
6,3|5,4 Ind. Ind. Frank (-0.14) Ind.
7,4|6,5 Ind. Ind. Gumbel 180° (0.03) Ind.
8,5|7,6 Ind. Ind. Ind. Ind.
9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Ind. Ind. Ind.
6,2|5,4,3 Ind. Ind. Ind. Ind.
7,3|6,5,4 Ind. Ind. Ind. Ind.
8,4|7,6,5 Ind. Ind. Gumbel 90° (-0.1) Ind.
9,5|8,7,6 Ind. Gumbel 90° (-0.10) Ind. Ind.

5

6,1|5,4,3,2 Ind. t (-0.15) Ind. Ind.
7,2|6,5,4,3 Ind. Ind. Joe (0.11) Ind.
8,3|7,6,5,4 Ind. Ind. Ind. Ind.
9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.
8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.
9,3|8,7,6,5,4 Ind. Ind. Ind. Ind.

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.
9,2|8,7,6,5,4,3 Ind. Ind. Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

AIC -3483.2 -3302.4 -3424.7 -3439.6
BIC -3405.1 -3199.7 -3322.0 -3361.5

BICD -3420.6 -3217.6 -3339.9 -3377.0
Log-likelihood 1758.6 1674.2 1735.4 1736.8
# of Parameters 17 23 23 17

TABLE 5.2: Estimation results of D-vines for all marginal
models with all families included during estimation and a
hypothesis test for independence applied before selecting a
copula (Independence copula is chosen if null hypothesis of
independence can’t be rejected at significance level of 0.05).

Kendall’s τ values are listed in brackets.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 Gumbel (0.82) Gumbel (0.82) Gumbel (0.82) Gumbel (0.83)
3,2 Gumbel (0.82) Gumbel (0.77) Gumbel (0.79) Gumbel (0.81)
4,3 Clayton 180° (0.61) Gumbel (0.68) Clayton 180° (0.60) Clayton 180° (0.63)
5,4 Gumbel (0.87) Gumbel (0.87) Joe (0.84) Gumbel (0.87)
6,5 Gumbel (0.88) Gumbel (0.87) Joe (0.86) Joe (0.86)
7,6 Gumbel (0.84) Gumbel (0.84) Gumbel (0.83) Gumbel (0.83)
8,7 Gumbel (0.87) Gumbel (0.88) Joe (0.85) Joe (0.85)
9,8 Gumbel (0.83) Gumbel (0.84) Joe (0.80) Gumbel (0.83)

2

3,1|2 Ind. Gumbel (0.12) Ind. Ind.
4,2|3 Ind. Ind. Gumbel 270° (-0.11) Frank (-0.14)
5,3|4 Ind. Ind. Frank (-0.14) Ind.
6,4|5 Ind. Joe (0.08) Joe 90° (-0.1) Joe 90° (-0.11)
7,5|6 Ind. Frank (-0.23) Joe (0.03) Frank (-0.14)
8,6|7 Joe 180° (0.01) Joe 180° (0.01) Joe 180° (0.01) Joe 180° (0.01)
9,7|8 Frank (-0.10) Frank (-0.10) Ind. Frank (-0.13)

3

4,1|3,2 Frank (-0.16) Frank (-0.16) Ind. Ind.
5,2|4,3 Gumbel (0.06) Joe(0.04) Gumbel (0.05) Gaussian (0.17)
6,3|5,4 Ind. Ind. Ind. Ind.
7,4|6,5 Ind. Ind. Ind. Ind.
8,5|7,6 Ind. Ind. Ind. Ind.
9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Ind. Joe 270° (-0.02) Gumbel 270° (-0.06)
6,2|5,4,3 Ind. Ind. Ind. Ind.
7,3|6,5,4 Joe 90° (-0.15) Clayton 270°(-0.11) Ind. Joe 90° (-0.18)
8,4|7,6,5 Ind. Ind. Gumbel 270° (-0.02) Gumbel 270° (-0.02)
9,5|8,7,6 Ind. Frank (-0.14) Gaussian (-0.08) Gumbel 90° (-0.06)

5

6,1|5,4,3,2 Gumbel 270° (-0.05) Gumbel 90° (-0.11) Ind. Ind.
7,2|6,5,4,3 Ind. Gumbel 90° (-0.13) Ind. Ind.
8,3|7,6,5,4 Clayton 90° (-0.30) Gumbel 270° (-0.22) Ind. Frank (-0.29)
9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.
8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.
9,3|8,7,6,5,4 Gumbel 90° (-0.12) Clayton 90° (-0.17) Frank (-0.30) Gumbel 270° (-0.22)

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.
9,2|8,7,6,5,4,3 Frank (-0.27) Frank (-0.16) Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

AIC -3205.6 -3014.5 -3285.2 -3233.7
BIC -3127.5 -2916.2 -3204.7 -3141.8

BICD -3151.9 -2936.8 -3220.0 -3160.9
Log-likelihood 1619.8 1529.3 1660.6 1636.9
# of Parameters 17 22 18 20

TABLE 5.3: Estimation results of D-vines for all marginal
models with only selected families (see beginning of this
section) included for estimation and no independence test.

Kendall’s τ values are listed in brackets.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 Gumbel (0.82) Gumbel (0.82) Gumbel (0.82) Gumbel (0.83)
3,2 Gumbel (0.82) Gumbel (0.77) Gumbel (0.79) Gumbel (0.81)
4,3 Clayton 180° (0.61) Gumbel (0.68) Clayton 180° (0.60) Clayton 180° (0.63)
5,4 Gumbel (0.87) Gumbel (0.87) Joe (0.84) Gumbel (0.87)
6,5 Gumbel (0.88) Gumbel (0.87) Joe (0.86) Joe (0.86)
7,6 Gumbel (0.84) Gumbel (0.84) Gumbel (0.83) Gumbel (0.83)
8,7 Gumbel (0.87) Gumbel (0.88) Joe (0.85) Joe (0.85)
9,8 Gumbel (0.83) Gumbel (0.84) Joe (0.80) Gumbel (0.83)

2

3,1|2 Ind. Ind. Ind. Ind.
4,2|3 Ind. Ind. Ind. Ind.
5,3|4 Ind. Ind. Ind. Ind.
6,4|5 Ind. Joe (0.08) Ind. Ind.
7,5|6 Ind. Frank (-0.23) Ind. Frank (-0.14)
8,6|7 Ind. Ind. Joe 180° (0.01) Ind.
9,7|8 Ind. Ind. Ind. Ind.

3

4,1|3,2 Ind. Ind. Ind. Frank (-0.18)
5,2|4,3 Gumbel (0.06) Ind. Ind. Gumbel (0.10)
6,3|5,4 Ind. Ind. Ind. Ind.
7,4|6,5 Ind. Ind. Ind. Ind.
8,5|7,6 Ind. Ind. Ind. Ind.
9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Ind. Ind. Ind.
6,2|5,4,3 Ind. Ind. Ind. Ind.
7,3|6,5,4 Ind. Ind. Ind. Ind.
8,4|7,6,5 Ind. Ind. Ind. Ind.
9,5|8,7,6 Ind. Frank (-0.12) Ind. Ind.

5

6,1|5,4,3,2 Ind. Ind. Ind. Ind.
7,2|6,5,4,3 Ind. Ind. Ind. Ind.
8,3|7,6,5,4 Ind. Gumbel 270° (-0.23) Ind. Ind.
9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.
8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.
9,3|8,7,6,5,4 Ind. Ind. Ind. Ind.

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.
9,2|8,7,6,5,4,3 Ind. Ind. Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

AIC -3148.3 -2936.0 -3246.2 -3195.5
BIC -3107.0 -2882.4 -3206.0 -3145.0

BICD -3115.5 -2891.1 -3212.3 -3155.8
Log-likelihood 1583.2 1480.0 1632.1 1608.7
# of Parameters 9 12 9 11

TABLE 5.4: Estimation results of D-vines for all marginal
models with only selected families (see beginning of this
section) included for estimation and a hypothesis test for
independence applied before selecting a copula (Indepen-
dence copula is chosen if null hypothesis of independence
can’t be rejected at significance level of 0.05). Kendall’s τ

values are listed in brackets.
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X,NPIT
All families
no ind. test

All families
with ind. test

Selected families
no ind. test

Selected families
with ind. test

AIC -3509.7 -3483.2 -3205.6 -3148.3

BIC -3413.2 -3405.1 -3127.5 -3107.0

BICD -3433.3 -3420.6 -3151.9 -3115.5

LL 1775.8 1758.6 1619.8 1583.2

Para. 21 17 17 9

STDX,NPIT
All families
no ind. test

All families
with ind. test

Selected families
no ind. test

Selected families
with ind. test

AIC -3361.0 -3302.4 -3014.5 -2936.0

BIC -3204.6 -3199.7 -2916.2 -2882.4

BICD -3237.4 -3217.6 -2936.8 -2891.1

LL 1715.5 1674.2 1529.3 1480.0

Para. 35 23 22 12

GAMLSS,PPIT
All families
no ind. test

All families
with ind. test

Selected families
no ind. test

Selected families
with ind. test

AIC -3450.1 -3424.7 -3285.2 -3246.2

BIC -3316.1 -3322.0 -3204.7 -3206.0

BICD -3342.6 -3339.9 -3220.0 -3212.3

LL 1755.1 1735.4 1660.6 1632.1

Para. 30 23 18 9

GAMLSS,NPIT
All families
no ind. test

All families
with ind. test

Selected families
no ind. test

Selected families
with ind. test

AIC -3447.6 -3439.6 -3233.7 -3195.5

BIC -3342.0 -3361.5 -3141.8 -3145.0

BICD -3363.6 -3377.0 -3160.9 -3155.8

LL 1746.8 1736.8 1636.9 1608.7

Para. 23 17 20 11

TABLE 5.5: Tables showing the AIC, BIC, D-vine based
BICD, log-likelihood (LL) and number of copula parame-

ters (Para.) for each marginal model and D-vine model.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(A) Model X,NPIT
2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(B) Model STDX,NPIT
2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(C) Model GAMLSS,PPIT
2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(D) Model GAMLSS,PPIT

FIGURE 5.5: Normal contour plots of the first trees for each
marginal model with all families allowed. The numbers cor-

respond to the pairs in the first tree.

2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(A) Model X,NPIT
2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(B) Model STDX,NPIT
2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(C) Model GAMLSS,PPIT
2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

(D) Model GAMLSS,NPIT

FIGURE 5.6: Normal contour plots of the first trees for each
marginal model with only selected families allowed. The

numbers correspond to the pairs in the first tree.
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Vuong tests to compare D-vine copula fits

After we have seen the different vine model fittings and compared them
visually in the last section, we now want to perform the so-called Vuong test
(see Chapter 2) to determine which model is preferable. For this, we apply
the RVineVuongTest function from the VineCopula package. For each
marginal model, we compare the D-vine model without independence test
to the one with independence test, once for the case of all families allowed
and once for the case with only selected families.

The results are shown in Tables 5.6 and 5.7 where we always compare
the case of no independence test to the one with independence test. We use
the Schwarz test statistic to adjust for model complexity and find that at
the 0.05 significance level, there is no difference between the D-vine models
that were estimated with the independence tests and the ones without.

X,NPIT STDX,NPIT
GAMLSS

PPIT
GAMLSS

NPIT

Statistic 3.51 2.61 2.53 1.25
p-value 0.00 0.01 0.01 0.21

Statistic Akaike 2.70 1.85 1.63 0.50
p-value Akaike 0.01 0.06 0.10 0.62

Statistic Schwarz 1.53 0.77 0.35 -0.57
p-value Schwarz 0.13 0.44 0.73 0.57

TABLE 5.6: Results of the Vuong tests of the vine models
with all families allowed, for each marginal model. The
vine models without an independence test performed are

compared to the ones with an independence test.

X,NPIT STDX,NPIT
GAMLSS

PPIT
GAMLSS

NPIT

Statistic 2.93 2.45 2.50 3.39
p-value 0.00 0.01 0.01 0.00

Statistic Akaike 2.91 1.95 1.71 2.31
p-value Akaike 0.02 0.05 0.09 0.02

Statistic Schwarz 1.38 1.24 0.58 0.75
p-value Schwarz 0.17 0.22 0.56 0.45

TABLE 5.7: Results of the Vuong tests of the vine models
with only selected families allowed, for each marginal mo-
del. The vine models without an independence test perfor-
med are compared to the ones with an independence test.

Thus, we test the D-vine models with all families allowed to the ones
without next. Table 5.8 shows the results. Regardless of the test statistic,
the tests indicate a significantly better fit for the model with all families
allowed at the 0.05 level, despite the use of more parameters.
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Note that, as the Vuong test needs observations for all copulas that are
part of the vine, we can only use the limited number of complete observa-
tions from the first to the last time point.

X,NPIT STDX,NPIT
GAMLSS

PPIT
GAMLSS

NPIT

Statistic 5.27 4.47 3.34 4.08
p-value 0.00 0.00 0.00 0.00

Statistic Akaike 5.03 4.22 2.89 3.89
p-value Akaike 0.00 0.00 0.00 0.00

Statistic Schwarz 4.69 3.85 2.24 3.62
p-value Schwarz 0.00 0.00 0.03 0.00

TABLE 5.8: Results of the Vuong tests of the vine models,
for each marginal model. The vine models with all families
allowed are compared to the ones with only selected fami-

lies.

Continuous rank probability scores of predictions

In order to compare the forecasting capabilities, we now apply the continu-
ous rank probability score (CRPS) to our methods. We do so for both of the
D-vine fittings and each underlying marginal model.

Recall for the following that we apply a shifting approach, as detailed at
the end of Chapter 2, to obtain a dependence structure between the current
and future time point and that we also shift the marginal distribution from
the current to the next time point.

Also note that we use the truncated versions of vines and thus only have
to include copula families of the first tree.

Thus, we now compute Equation 2.9 which is given as

CRPSi
(
Fd+1|d(xi,d+1|xi,d), xi,d+1

)
=

1

m− 1
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(
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i

m
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∣∣∣∣
− 1

2(m− 1)2
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j=1
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(
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(
i

m

∣∣∣∣ud))− F−1d+1

(
C−1d+1|d

(
j

m

∣∣∣∣ud))∣∣∣∣ ,
for an individual observation xi,d with i = 1, . . . , Nd at time point d.

In our case, the last known time point is 2016 Q2, i.e. d = 9. The con-
ditional bivariate pair-copula needed for C−1d+1|d(·|·) is the conditional pair-
copula Cd−1|d(·|·) from one time step before and the marginal distribution
Fd+1 is also given as the marginal distribution of time d, i.e. Fd. Recall that
we also have the true values of exposure limits available for the new time
point 2016 Q3, i.e. xi,d+1 for all i = 1, . . . , Nt.

We setm = 100 to use 99 conditional quantiles for each individual CRPS
value and obtain the overall CRPS by averaging over each individual CRPS.
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The resulting values are listed in Table 5.9. The best (i.e. lowest) score
is attained by the ordered D-vine copula based on the limited list of fami-
lies and the u-data from the X,NPIT marginal model while the STDX,NPIT
marginal model has the worst scores for both D-vine models. Recall that
the underlying u-data from the second marginal model were also proble-
matic regarding the uniform distribution assumption, which could explain
the worse performance.

X,NPIT STDX,NPIT
GAMLSS

PPIT
GAMLSS

NPIT

All Families 13,210,221 39,813,604 14,706,204 13,534,497

Limited Families 12,465,080 36,491,709 12,725,194 12,831,170

TABLE 5.9: Continuous rank probability scores for both
considered D-vine specifications and each marginal model.

In Figure 5.7 (and Figure 5.8 in more detail without the extreme out-
liers), the boxplots of CRPS values are displayed for each model. We ob-
serve that the difference in scores is mostly driven by larger outliers, while
the medians are very similar, except for the STDX,NPIT marginal model.
Figure 5.9 and 5.10 again show boxplots of the CRPS values, this time one
for values from the "Main" group and one for the "Other" group. We can see
that medians remain similar between groups but most outliers come from
values in the "Main" group, implying a better forecast quality for data from
the "Other" group. Note, however, that the number of observations from
the second group is also much smaller than in the first one.

As an alternative way to display the differences in CRPS values, Figure
5.11 shows the histograms of CRPS values for each model. Again, we can
see that, except for STDX,NPIT, all models have a very similar distribution
of values.

While these results show us which model is preferred, the CRPS only
gives us relative values to compare models to each other. In order to check
whether our models are actually useful for predictions, we compare them
to two benchmark cases: First, we use the Independence copula instead of
our fitted copula familes to compute CRPS values and second, we apply a
Gauss copula. For the Gauss copula, the parameters used are estimated the
same way as before by allowing only the Gauss family as a possible copula
in the estimation process. The results are listed in table 5.10. We can see
that all values are larger than the lowest score from our models (12,465,080),
implying that our best model is actually a better fit for forecasting. Howe-
ver, we also note that our previous models with the STDX,NPIT marginal
model, which are the worst performers according to the CRPS values, also
have higher scores than the Gauss model.

Thus, the dependence structure for our data is neither independent nor
shows a Gaussian behaviour and we conclude that a more complex depen-
dence modelling approach, such as our copula models, is indeed necessary.
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X,NPIT STDX,NPIT
GAMLSS

PPIT
GAMLSS

NPIT

Independence 64,799,020 70,891,560 64,941,686 64,820,170

Gauss 15,178,996 33,965,212 19,069,157 16,714,786

TABLE 5.10: Continuous rank probability scores for the
benchmark cases with the Independence copula and a

Gauss copula for each marginal model.
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FIGURE 5.7: Boxplot of CRPS values for each marginal and
vine model.
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FIGURE 5.8: Boxplot of CRPS values for each marginal and
vine model with outliers removed for better comparability.
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Only group "Main"
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FIGURE 5.9: Boxplot of CRPS values for each marginal and
vine model of data from group "Main".

Only group "Other"
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FIGURE 5.10: Boxplot of CRPS values for each marginal and
vine model of data from group "Other".
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Histograms for all families included
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FIGURE 5.11: Histograms of CRPS values for each marginal
and vine model cut off at 4× 107.
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Chapter 6

Conclusion

In this thesis, we concerned ourselves with the task of modelling and fore-
casting exposure limit data with the help of D-vine copulas.

We discussed the necessary theory and applied different methods and
models to our data, regarding both the modelling of marginals as well as the
dependence structure. In the end, we compared the models to benchmarks
and also among each other. While not all marginal models turned out to
work well, most of them outperformed the benchmarks of Independence
and Gaussian copula models. In particular, we found that the modelling
of margins using just a KDE of the data combined with a D-vine structure
based on simple, single parameter bivariate copula families is the preferred
model. This also implies that a different behaviour between regions is not
very relevant. Aside from the important observation that the dependence
structure was not a Gaussian one and thus showed the necessity of a more
complex approach such as our D-vine copula models, we also observed that
the dependence structure in the data exhibits a Markov property, i.e. the
conditioned dependences between time points farther away is negligible.

When working with this kind of exposure data, we thus showed that a
rather easy to implement model can forecast the data very well when ap-
plying our proposed approach to shift the structure, despite the difficulties
of an unbalanced setting and truncated data.

The results can thus be used to get a good estimation of future expo-
sure limits which is an important parameter for tasks such as risk capital
allocation and pricing of reinsurance contracts.
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Appendix A

Extended D-vine estimation
results and contour plots

In this Appendix, Tables A.1 to A.4 show the complete estimation results for
the D-vine fittings of Section 5.2, including estimated parameters for each
pair-copula. Figures A.1 to A.16 show the corresponding contour plots for
all pair-copulas.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 t (0.84) t (0.85) Tawn T1 (0.83) Tawn T2 (0.80)
par = 0.97, par2 = 2 par = 0.97, par2 = 2 par = 6.33, par2 = 0.99 par = 6.75, par2 = 0.93

3,2 Tawn T2 (0.81) t (0.80) Tawn T2 (0.77) Tawn T2 (0.78)
par = 7.76, par2 = 0.92 par = 0.95, par2 = 2 par = 6.39, par2 = 0.9 par = 7.18, par2 = 0.9

4,3 Tawn T2 (0.62) Tawn T2 (0.63) Tawn T2 (0.58) Tawn T2 (0.61)
par = 4.96, par2 = 0.74 par = 6, par2 = 0.72 par = 3.97, par2 = 0.74 par = 4.86, par2 = 0.74

5,4 t (0.88) t (0.87) Tawn T1 (0.87) Tawn T2 (0.84)
par = 0.98, par2 = 2 par = 0.98, par2 = 2 par = 8.2, par2 = 0.99 par = 8.28, par2 = 0.95

6,5 t (0.90) t (0.88) Tawn T1 (0.89) Tawn T1 (0.89)
par = 0.99, par2 = 2 par = 0.98, par2 = 2 par = 10.19, par2 = 0.98 par = 10.5, par2 = 0.98

7,6 t (0.87) t (0.87) Tawn T1 (0.84) Tawn T1 (0.85)
par = 0.98, par2 = 2 par = 0.98, par2 = 2 par = 7.21, par2 = 0.97 par = 7.52, par2 = 0.98

8,7 Tawn T2 (0.85) Tawn T2 (0.86) Tawn T2 (0.84) Tawn T2 (0.84)
par = 10.26, par2 = 0.94 par = 10.92, par2 = 0.94 par = 8.99, par2 = 0.94 par = 9.91, par2 = 0.93

9,8 Tawn T2 (0.79) Tawn T2 (0.81) Tawn T2 (0.79) Tawn T2 (0.79)
par = 9.3, par2 = 0.88 par = 9.48, par2 = 0.89 par = 8.48, par2 = 0.88 par = 8.88, par2 = 0.88

2

3,1|2 Ind. t (0.03) Ind. Ind.
par = 0.05, par2 = 3.04

4,2|3 Ind. t (-0.11) Joe 270° (-0.07) Joe 270° (-0.06)
par = -0.17, par2 = 3.85 par = -1.14 par = -1.1

5,3|4 Ind. Ind. BB8 90° (-0.22) Ind.
par = -1.84, par2 = -0.89

6,4|5 Ind. t (0.11) Gumbel 90° (-0.10) Clayton 270° (-0.10)
par = 0.17, par2 = 3.96 par = -1.11 par = -0.21

7,5|6 Ind. t (-0.13) Joe (0.04) t (-0.07)
par = -0.21, par2 = 4.05 par = 1.07 par = -0.11, par2 = 6.77

8,6|7 Ind. Ind. BB8 (0.11) Ind.
par = 1.31, par2 = 0.95

9,7|8 Ind. Gumbel (0.04) Ind. Ind.
par = 1.04

3

4,1|3,2 Frank (-0.19) Ind. t (-0.19) Ind.
par = -1.79 par = -0.3, par2 = 30

5,2|4,3 Gumbel (0.11) t (0.03) Ind. Frank (0.21)
par = 1.13 par = 0.05, par2 = 3.04 par = 2

6,3|5,4 Ind. Ind. Ind. Ind.

7,4|6,5 t (-0.01) t (0.00) Gumbel 180° (0.03) Ind.
par = -0.01, par2 = 5.57 par = 0, par2 = 4.26 par = 1.03

8,5|7,6 Ind. Ind. Joe 90° (-0.05) Ind.
par = -1.09

9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Tawn T2 180° (0.08) Ind. Joe 270° (-0.03)
par = 4.93, par2 = 0.08 par = -1.06

6,2|5,4,3 Ind. Ind. Ind. Ind.

7,3|6,5,4 Ind. Ind. Ind. Ind.

8,4|7,6,5 Ind. Ind. Ind. Joe 270° (-0.01)
par = -1.01

9,5|8,7,6 Ind. Gumbel 90° (-0.10) Ind. Ind.
par = -1.12

5

6,1|5,4,3,2 Ind. t (-0.15) Tawn T2 90° (0.00) Ind.
par = -0.23, par2 = 4.17 par = -17.94, par2 = 0

7,2|6,5,4,3 Ind. Ind. Joe (0.12) Ind.
par = 1.25

8,3|7,6,5,4 Ind. Ind. Ind. Ind.

9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.

8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.

9,3|8,7,6,5,4 Joe 90° (-0.17) Clayton 90° (-0.08) Ind. Ind.
par = -1.37 par = -0.17

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.

9,2|8,7,6,5,4,3 Ind. Ind. Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

TABLE A.1: Complete results of D-vines with all families
included and no independence test.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 t (0.84) t (0.85) Tawn T1 (0.83) Tawn T2 (0.80)
par = 0.97, par2 = 2 par = 0.97, par2 = 2 par = 6.33, par2 = 0.99 par = 6.75, par2 = 0.93

3,2 Tawn T2 (0.81) t (0.80) Tawn T2 (0.77) Tawn T2 (0.78)
par = 7.76, par2 = 0.92 par = 0.95, par2 = 2 par = 6.39, par2 = 0.9 par = 7.18, par2 = 0.9

4,3 Tawn T2 (0.62) Tawn T2 (0.63) Tawn T2 (0.58) Tawn T2 (0.61)
par = 4.96, par2 = 0.74 par = 6, par2 = 0.72 par = 3.97, par2 = 0.74 par = 4.86, par2 = 0.74

5,4 t (0.88) t (0.87) Tawn T1 (0.87) Tawn T2 (0.84)
par = 0.98, par2 = 2 par = 0.98, par2 = 2 par = 8.2, par2 = 0.99 par = 8.28, par2 = 0.95

6,5 t (0.90) t (0.88) Tawn T1 (0.89) Tawn T1 (0.89)
par = 0.99, par2 = 2 par = 0.98, par2 = 2 par = 10.19, par2 = 0.98 par = 10.5, par2 = 0.98

7,6 t (0.87) t (0.87) Tawn T1 (0.84) Tawn T1 (0.85)
par = 0.98, par2 = 2 par = 0.98, par2 = 2 par = 7.21, par2 = 0.97 par = 7.52, par2 = 0.98

8,7 Tawn T2 (0.85) Tawn T2 (0.86) Tawn T2 (0.84) Tawn T2 (0.84)
par = 10.26, par2 = 0.94 par = 10.92, par2 = 0.94 par = 8.99, par2 = 0.94 par = 9.91, par2 = 0.93

9,8 Tawn T2 (0.79) Tawn T2 (0.81) Tawn T2 (0.79) Tawn T2 (0.79)
par = 9.3, par2 = 0.88 par = 9.48, par2 = 0.89 par = 8.48, par2 = 0.88 par = 8.88, par2 = 0.88

2

3,1|2 Ind. Ind. Ind. Ind.

4,2|3 Ind. Ind. Joe 270° (-0.07) Ind.
par = -1.14

5,3|4 Ind. Ind. Ind. Ind.

6,4|5 Ind. t (0.11) Ind. Ind.
par = 0.17, par2 = 3.96

7,5|6 Ind. t (-0.13) Ind. Ind.
par = -0.21, par2 = 4.05

8,6|7 Ind. Ind. BB8 (0.11) Ind.
par = 1.31, par2 = 0.95

9,7|8 Ind. Ind. Ind. Ind.

3

4,1|3,2 Ind. Ind. Ind. Ind.

5,2|4,3 Gumbel (0.11) Ind. Ind. Frank (0.21)
par = 1.13 par = 1.94

6,3|5,4 Ind. Ind. Frank (-0.14) Ind.
par = -1.27

7,4|6,5 Ind. Ind. Gumbel 180° (0.03) Ind.
par = 1.03

8,5|7,6 Ind. Ind. Ind. Ind.

9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Ind. Ind. Ind.

6,2|5,4,3 Ind. Ind. Ind. Ind.

7,3|6,5,4 Ind. Ind. Ind. Ind.

8,4|7,6,5 Ind. Ind. Gumbel 90° (-0.1)
par = -1.11

9,5|8,7,6 Ind. Gumbel 90° (-0.10) Ind. Ind.
par = -1.12

5

6,1|5,4,3,2 Ind. t (-0.15) Ind. Ind.
par = -0.23, par2 = 4.17

7,2|6,5,4,3 Ind. Ind. Joe (0.11) Ind.
par = 1.23

8,3|7,6,5,4 Ind. Ind. Ind. Ind.

9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.

8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.

9,3|8,7,6,5,4 Ind. Ind. Ind. Ind.

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.

9,2|8,7,6,5,4,3 Ind. Ind. Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

TABLE A.2: Complete results of D-vines with all families
included and independence test performed.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 Gumbel (0.82) Gumbel (0.82) Gumbel (0.82) Gumbel (0.83)
par = 5.53 par = 5.49 par = 5.65 par = 6.03

3,2 Gumbel (0.82) Gumbel (0.77) Gumbel (0.79) Gumbel (0.81)
par = 5.62 par = 4.32 par = 4.87 par = 5.37

4,3 Clayton 180° (0.61) Gumbel (0.68) Clayton 180° (0.60) Clayton 180° (0.63)
ar = 3.06 par = 3.1 par = 3.06 par = 3.36

5,4 Gumbel (0.87) Gumbel (0.87) Joe (0.84) Gumbel (0.87)
par = 7.67 par = 7.59 par = 11.16 par = 7.48

6,5 Gumbel (0.88) Gumbel (0.87) Joe (0.86) Joe (0.86)
par = 8.59 par = 7.7 par = 13.16 par = 13.39

7,6 Gumbel (0.84) Gumbel (0.84) Gumbel (0.83) Gumbel (0.83)
par = 6.24 par = 6.26 par = 5.79 par = 6.02

8,7 Gumbel (0.87) Gumbel (0.88) Joe (0.85) Joe (0.85)
par = 7.96 par = 8.35 par = 11.81 par = 12.02

9,8 Gumbel (0.83) Gumbel (0.84) Joe (0.80) Gumbel (0.83)
par = 5.98 par = 6.37 par = 8.64 par = 5.79

2

3,1|2 Ind. Gumbel (0.12) Ind. Ind.
par = 1.13

4,2|3 Ind. Ind. Gumbel 270° (-0.11) Frank (-0.14)
par = -1.13 par = -1.31

5,3|4 Ind. Ind. Frank (-0.14) Ind.
par = -1.31

6,4|5 Ind. Joe (0.08) Joe 90° (-0.1) Joe 90° (-0.11)
par = 1.14 par = -1.2 par = -1.23

7,5|6 Ind. Frank (-0.23) Joe (0.03) Frank (-0.14)
par = -2.16 par = 1.06 par = -1.25

8,6|7 Joe 180° (0.01) Joe 180° (0.01) Joe 180° (0.01) Joe 180° (0.01)
par = 1.01 par = 1.01 par = 1.01 par = 1.01

9,7|8 Frank (-0.10) Frank (-0.10) Ind. Frank (-0.13)
par = -0.93 par = -0.87 par = -1.21

3

4,1|3,2 Frank (-0.16) Frank (-0.16) Ind. Ind.
par = -1.49 par = -1.47

5,2|4,3 Gumbel (0.06) Joe(0.04) Gumbel (0.05) Gaussian (0.17)
par = 1.07 par = 1.08 par = 1.05 par = 0.27

6,3|5,4 Ind. Ind. Ind. Ind.

7,4|6,5 Ind. Ind. Ind. Ind.

8,5|7,6 Ind. Ind. Ind. Ind.

9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Ind. Joe 270° (-0.02) Gumbel 270° (-0.06)
par = -1.04 par = -1.07

6,2|5,4,3 Ind. Ind. Ind. Ind.

7,3|6,5,4 Joe 90° (-0.15) Clayton 270°(-0.11) Ind. Joe 90° (-0.18)
par = -1.32 par = -0.24 par = -1.4

8,4|7,6,5 Ind. Ind. Gumbel 270° (-0.02) Gumbel 270° (-0.02)
par = -1.02 par = -1.02

9,5|8,7,6 Ind. Frank (-0.14) Gaussian (-0.08) Gumbel 90° (-0.06)
par = -1.26 par = -0.12 par = -1.06

5

6,1|5,4,3,2 Gumbel 270° (-0.05) Gumbel 90° (-0.11) Ind. Ind.
par = -1.05 par = -1.12

7,2|6,5,4,3 Ind. Gumbel 90° (-0.13) Ind. Ind.
par = -1.15

8,3|7,6,5,4 Clayton 90° (-0.30) Gumbel 270° (-0.22) Ind. Frank (-0.29)
par = -0.86 par = -1.27 par = -2.8

9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.

8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.

9,3|8,7,6,5,4 Gumbel 90° (-0.12) Clayton 90° (-0.17) Frank (-0.30) Gumbel 270° (-0.22)
par = -1.14 par = -0.41 par = -2.89 par = -1.28

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.

9,2|8,7,6,5,4,3 Frank (-0.27) Frank (-0.16) Ind. Ind.
par = -2.54 par = -1.44

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

TABLE A.3: Complete results of D-vines with selected fami-
lies included and no independence test.
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Tree Pairs X,NPIT STDX,NPIT GAMLSS, PPIT GAMLSS,NPIT

1

2,1 Gumbel (0.82) Gumbel (0.82) Gumbel (0.82) Gumbel (0.83)
par = 5.53 par = 5.49 par = 5.65 par = 6.03

3,2 Gumbel (0.82) Gumbel (0.77) Gumbel (0.79) Gumbel (0.81)
par = 5.62 par = 4.32 par = 4.87 par = 5.37

4,3 Clayton 180° (0.61) Gumbel (0.68) Clayton 180° (0.60) Clayton 180° (0.63)
ar = 3.06 par = 3.1 par = 3.06 par = 3.36

5,4 Gumbel (0.87) Gumbel (0.87) Joe (0.84) Gumbel (0.87)
par = 7.67 par = 7.59 par = 11.16 par = 7.48

6,5 Gumbel (0.88) Gumbel (0.87) Joe (0.86) Joe (0.86)
par = 8.59 par = 7.7 par = 13.16 par = 13.39

7,6 Gumbel (0.84) Gumbel (0.84) Gumbel (0.83) Gumbel (0.83)
par = 6.24 par = 6.26 par = 5.79 par = 6.02

8,7 Gumbel (0.87) Gumbel (0.88) Joe (0.85) Joe (0.85)
par = 7.96 par = 8.35 par = 11.81 par = 12.02

9,8 Gumbel (0.83) Gumbel (0.84) Joe (0.80) Gumbel (0.83)
par = 5.98 par = 6.37 par = 8.64 par = 5.79

2

3,1|2 Ind. Ind. Ind. Ind.

4,2|3 Ind. Ind. Ind. Ind.

5,3|4 Ind. Ind. Ind. Ind.

6,4|5 Ind. Joe (0.08) Ind. Ind.
par = 1.14

7,5|6 Ind. Frank (-0.23) Ind. Frank (-0.14)
par = -2.16 par = -1.25

8,6|7 Ind. Ind. Joe 180° (0.01) Ind.
par = 1.01

9,7|8 Ind. Ind. Ind. Ind.

3

4,1|3,2 Ind. Ind. Ind. Frank (-0.18)
par = -1.68

5,2|4,3 Gumbel (0.06) Ind. Ind. Gumbel (0.10)
par = 1.07 par = 1.11

6,3|5,4 Ind. Ind. Ind. Ind.

7,4|6,5 Ind. Ind. Ind. Ind.

8,5|7,6 Ind. Ind. Ind. Ind.

9,6|8,7 Ind. Ind. Ind. Ind.

4

5,1|4,3,2 Ind. Ind. Ind. Ind.

6,2|5,4,3 Ind. Ind. Ind. Ind.

7,3|6,5,4 Ind. Ind. Ind. Ind.
Ind.

8,4|7,6,5 Ind. Ind. Ind. Ind.

9,5|8,7,6 Ind. Frank (-0.12) Ind. Ind.
par = -1.26

5

6,1|5,4,3,2 Ind. Ind. Ind. Ind.

7,2|6,5,4,3 Ind. Ind. Ind. Ind.

8,3|7,6,5,4 Ind. Gumbel 270° (-0.23) Ind. Ind.
par = -1.29

9,4|8,7,6,5 Ind. Ind. Ind. Ind.

6
7,1|6,5,4,3,2 Ind. Ind. Ind. Ind.

8,2|7,6,5,4,3 Ind. Ind. Ind. Ind.

9,3|8,7,6,5,4 Ind. Ind.

7
8,1|7,6,5,4,3,2 Ind. Ind. Ind. Ind.

9,2|8,7,6,5,4,3 Ind. Ind. Ind. Ind.

8 9,1|8,7,6,5,4,3,2 Ind. Ind. Ind. Ind.

TABLE A.4: Complete results of D-vines with selected fami-
lies included and independence test performed.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.1: Contour plots of all pair copulas from the D-
vine with all families allowed, no independence test perfor-

med and the marginal Model X,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.2: Contour plots of all pair copulas from the D-
vine with all families allowed, no independence test perfor-

med and the marginal Model STDX,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.3: Contour plots of all pair copulas from the D-
vine with all families allowed, no independence test perfor-

med and the marginal Model GAMLSS,PPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.4: Contour plots of all pair copulas from the D-
vine with all families allowed, no independence test perfor-

med and the marginal Model GAMLSS,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.5: Contour plots of all pair copulas from the D-
vine with all families allowed, independence test perfor-

med and the marginal Model X,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.6: Contour plots of all pair copulas from the D-
vine with all families allowed, independence test perfor-

med and the marginal Model STDX,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.7: Contour plots of all pair copulas from the D-
vine with all families allowed, independence test perfor-

med and the marginal Model GAMLSS,PPIT.



Appendix A. Extended D-vine estimation results and contour plots 93

2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.8: Contour plots of all pair copulas from the D-
vine with all families allowed, independence test perfor-

med and the marginal Model GAMLSS,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.9: Contour plots of all pair copulas from the D-
vine with selected families allowed, no independence test

performed and the marginal Model X,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.10: Contour plots of all pair copulas from the D-
vine with selected families allowed, no independence test

performed and the marginal Model STDX,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.11: Contour plots of all pair copulas from the D-
vine with selected families allowed, no independence test

performed and the marginal Model GAMLSS,PPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.12: Contour plots of all pair copulas from the D-
vine with selected families allowed, no independence test

performed and the marginal Model GAMLSS,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.13: Contour plots of all pair copulas from the D-
vine with selected families allowed, independence test per-

formed and the marginal Model X,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.14: Contour plots of all pair copulas from the D-
vine with selected families allowed, independence test per-

formed and the marginal Model STDX,NPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.15: Contour plots of all pair copulas from the D-
vine with selected families allowed, independence test per-

formed and the marginal Model GAMLSS,PPIT.
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2,1 3,2 4,3 5,4 6,5 7,6 8,7 9,8

3,1 ; 2 4,2 ; 3 5,3 ; 4 6,4 ; 5 7,5 ; 6 8,6 ; 7 9,7 ; 8

4,1 ; 3,2 5,2 ; 4,3 6,3 ; 5,4 7,4 ; 6,5 8,5 ; 7,6 9,6 ; 8,7

5,1 ; 4,3,2 6,2 ; 5,4,3 7,3 ; 6,5,4 8,4 ; 7,6,5 9,5 ; 8,7,6

6,1 ; 5,4,3,2 7,2 ; 6,5,4,3 8,3 ; 7,6,5,4 9,4 ; 8,7,6,5

7,1 ; 6,5,4,3,2 8,2 ; 7,6,5,4,3 9,3 ; 8,7,6,5,4

8,1 ; 7,6,5,4,3,2 9,2 ; 8,7,6,5,4,3

9,1 ; 8,7,6,5,4,3,2

FIGURE A.16: Contour plots of all pair copulas from the D-
vine with selected families allowed, independence test per-

formed and the marginal Model GAMLSS,NPIT.
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